eIQ® Inference with TensorFlow™ Lite Micro

框图

eIQ® TensorFlow Lite for MCU

eIQ<sup>&reg;</sup> TensorFlow Lite for MCUs

特性

  • 可作为恩智浦MCUXpresso SDK里的中间件
  • 适用于在i.MX RT跨界MCU上运行机器学习模型
  • 具有在Arm® Cortex®-M内核上运行推理的能力
  • 可以在边缘进行推理,且延迟更低,二进制文件更小

支持的器件

  • i.MX-RT1050: i.MX RT1050跨界MCU,配备Arm®Cortex®-M7内核
  • i.MX-RT1060: i.MX RT1060: 跨界MCU, 配备Arm®Cortex®-M7
  • i.MX-RT1064: i.MX RT1064: 跨界MCU, 配备Arm®Cortex®-M7
  • i.MX-RT1170: i.MX RT1170: 1GHz跨界MCU,配备Arm®Cortex®内核
  • i.MX-RT1160: i.MX RT1160跨界MCU, 双核Arm®Cortex®-M7和Cortex-M4
  • i.MX-RT600: i.MX RT600跨界MCU,配备Arm®Cortex®-M33和DSP内核
  • i.MX-RT500: i.MX RT500跨界MCU,配备Arm®Cortex®-M33、DSP和GPU内核

下载

快速参考恩智浦 软件类型.

1 下载

  • 样品及快速入门软件

    MCUXpresso SDK Builder

注意: 推荐在电脑端下载软件,体验更佳。

Y true 0 SSPEIQ-TFLITE-MICROzh 4 应用笔记 Application Note t789 2 应用笔记软件 Application Note Software t783 1 简介 Fact Sheet t523 1 zh zh zh 应用笔记 Application Note 2 1 2 English AN13562: This application note presents the process of building and deploying deep learning models for Smart Sensing Appliances. It also highlights how to validate and evaluate the performance of a model by running it through different inference engines on an Embedded Sensing Device. 1644318754124703028011 SSP 4.9 MB None None documents None 1644318754124703028011 /docs/en/application-note/AN13562.pdf 4943726 /docs/en/application-note/AN13562.pdf AN13562 documents N N 2022-02-08 Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs /docs/en/application-note/AN13562.pdf /docs/en/application-note/AN13562.pdf Application Note N 645036621402383989 2024-07-17 en Sep 27, 2023 645036621402383989 Application Note Y N Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs 1 Chinese This application note presents the process of building and deploying deep learning models for Smart Sensing Appliances. It also highlights how to validate and evaluate the performance of a model by running it through different inference engines on an Embedded Sensing Device. 1644318754124703028011zh SSP 4.9 MB None None documents None 1644318754124703028011 /docs/zh/application-note/AN13562.pdf 4943726 /docs/zh/application-note/AN13562.pdf AN13562 documents N N 2022-02-08 Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs /docs/zh/application-note/AN13562.pdf /docs/zh/application-note/AN13562.pdf Application Note N 645036621402383989 2024-07-17 pdf N zh Apr 25, 2022 645036621402383989 Application Note Y N Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs 2 1 English AN12603SW.zip /docs/en/application-note-software/AN12603SW.zip /docs/en/application-note-software/AN12603SW.zip This application note focuses on handwritten digit recognition on embedded systems through deep learning. It explains the process of creating an embedded machine learning application that can classify handwritten digits and present an example solution based on NXP’s SDK and the eIQ technology. 1574420453849717848145 SSP 419.5 KB None None documents None 1574420453849717848145 /docs/en/application-note/AN12603.pdf 419490 /docs/en/application-note/AN12603.pdf AN12603 documents N N 2019-11-22 Handwritten Digit Recognition Using TensorFlow Lite Micro on i.MX RT devices /docs/en/application-note/AN12603.pdf /docs/en/application-note/AN12603.pdf Application Note N 645036621402383989 2024-07-17 pdf N en Oct 20, 2021 645036621402383989 Application Note Y N Handwritten Digit Recognition Using TensorFlow Lite Micro on i.MX RT devices 应用笔记软件 Application Note Software 1 3 1 English Application Note software for AN12603 1590650375305723857901 SSP 9.1 MB None None documents None 1590650375305723857901 /docs/en/application-note-software/AN12603SW.zip 9081713 /docs/en/application-note-software/AN12603SW.zip AN12603SW documents N N 2020-05-28 Application Note software for AN12603 /docs/en/application-note-software/AN12603SW.zip /docs/en/application-note-software/AN12603SW.zip Application Note Software N 789425793691620447 2022-12-07 zip N en Oct 20, 2021 789425793691620447 Application Note Software Y N Application Note software for AN12603 简介 Fact Sheet 1 4 4 Japanese Machine learning software for NXP i.MX and MCUs – libraries, example applications, inference engines, HALs 1562948465206707057398ja SSP 653.2 KB None None documents None 1562948465206707057398 /docs/ja/fact-sheet/EIQ-FS.pdf 653150 /docs/ja/fact-sheet/EIQ-FS.pdf EIQ-FS documents N N 2019-07-12 eIQ Software Fact Sheet /docs/ja/fact-sheet/EIQ-FS.pdf /docs/ja/fact-sheet/EIQ-FS.pdf Fact Sheet N 736675474163315314 2022-12-07 ja Jul 11, 2023 736675474163315314 Fact Sheet Y N eIQ 機械学習ソフトウェア開発環境 4 English Machine learning software for NXP i.MX and MCUs – libraries, example applications, inference engines, HALs 1562948465206707057398 SSP 653.2 KB None None documents None 1562948465206707057398 /docs/en/fact-sheet/EIQ-FS.pdf 653150 /docs/en/fact-sheet/EIQ-FS.pdf EIQ-FS documents N N 2019-07-12 eIQ Software Fact Sheet /docs/en/fact-sheet/EIQ-FS.pdf /docs/en/fact-sheet/EIQ-FS.pdf Fact Sheet N 736675474163315314 2022-12-07 pdf N en Jan 21, 2022 736675474163315314 Fact Sheet Y N eIQ Software Fact Sheet false 0 EIQ-TFLITE-MICRO downloads zh-Hans true 1 Y SSP Y Y 应用笔记 2 /docs/zh/application-note/AN13562.pdf 2022-02-08 1644318754124703028011zh SSP 1 Apr 25, 2022 Application Note This application note presents the process of building and deploying deep learning models for Smart Sensing Appliances. It also highlights how to validate and evaluate the performance of a model by running it through different inference engines on an Embedded Sensing Device. None /docs/zh/application-note/AN13562.pdf Chinese documents 4943726 None 645036621402383989 2024-07-17 N /docs/zh/application-note/AN13562.pdf Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs /docs/zh/application-note/AN13562.pdf documents 645036621402383989 Application Note N zh None Y pdf 1 N N Building and Benchmarking Deep Learning Models for Smart Sensing Appliances on MCUs 4.9 MB AN13562 N 1644318754124703028011 /docs/en/application-note/AN12603.pdf 2019-11-22 1574420453849717848145 SSP 2 Oct 20, 2021 Application Note This application note focuses on handwritten digit recognition on embedded systems through deep learning. It explains the process of creating an embedded machine learning application that can classify handwritten digits and present an example solution based on NXP’s SDK and the eIQ technology. None /docs/en/application-note/AN12603.pdf English documents 419490 None 645036621402383989 2024-07-17 N /docs/en/application-note/AN12603.pdf Handwritten Digit Recognition Using TensorFlow Lite Micro on i.MX RT devices /docs/en/application-note/AN12603.pdf documents 645036621402383989 Application Note N en None Y pdf 1 N N Handwritten Digit Recognition Using TensorFlow Lite Micro on i.MX RT devices 419.5 KB AN12603 N 1574420453849717848145 应用笔记软件 1 /docs/en/application-note-software/AN12603SW.zip 2020-05-28 1590650375305723857901 SSP 3 Oct 20, 2021 Application Note Software Application Note software for AN12603 None /docs/en/application-note-software/AN12603SW.zip English documents 9081713 None 789425793691620447 2022-12-07 N /docs/en/application-note-software/AN12603SW.zip Application Note software for AN12603 /docs/en/application-note-software/AN12603SW.zip documents 789425793691620447 Application Note Software N en None Y zip 1 N N Application Note software for AN12603 9.1 MB AN12603SW N 1590650375305723857901 简介 1 /docs/en/fact-sheet/EIQ-FS.pdf 2019-07-12 1562948465206707057398 SSP 4 Jan 21, 2022 Fact Sheet Machine learning software for NXP i.MX and MCUs – libraries, example applications, inference engines, HALs None /docs/en/fact-sheet/EIQ-FS.pdf English documents 653150 None 736675474163315314 2022-12-07 N /docs/en/fact-sheet/EIQ-FS.pdf eIQ Software Fact Sheet /docs/en/fact-sheet/EIQ-FS.pdf documents 736675474163315314 Fact Sheet N en None Y pdf 4 N N eIQ Software Fact Sheet 653.2 KB EIQ-FS N 1562948465206707057398 true Y Softwares

文档

快速参考恩智浦 文档类别.

4 文件

紧凑列表

硬件

快速参考恩智浦 板类型.

4 硬件

相关软件

快速参考恩智浦 软件类型.

1 软件文件

注意: 推荐在电脑端下载软件,体验更佳。

工程服务

1 工程服务

查看支持该软件的全部合作伙伴列表,请参见 合作伙伴市场.

培训

3 培训