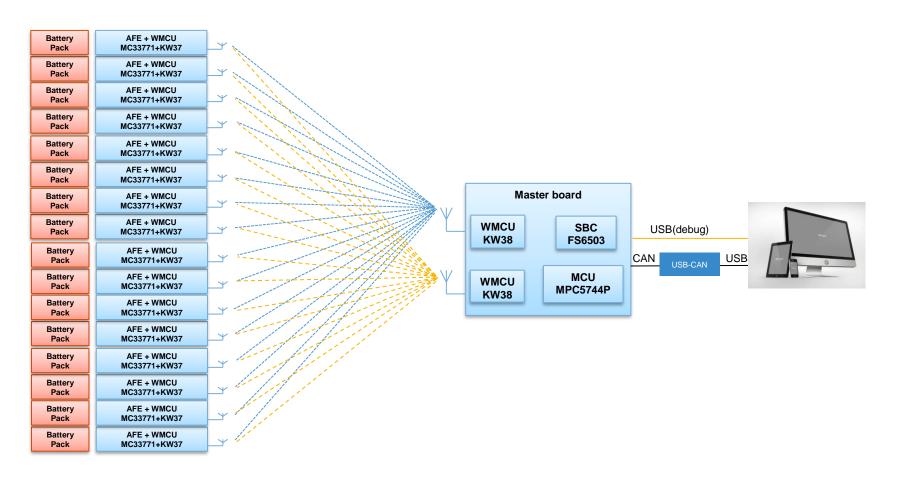

NXP WBMS

NXP APPLICATION TEAM XIAOFENG JIA

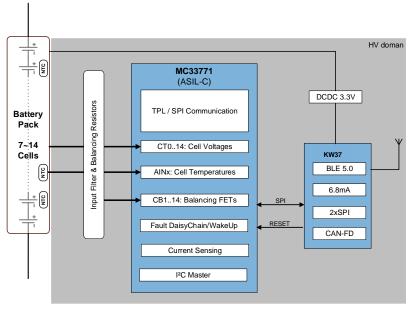

NXP Wireless BMS Roadmap (BMS China)

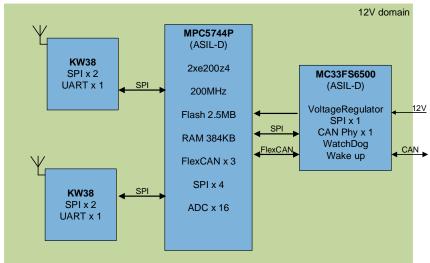
HARDWARE

WBMS V2.1 New Feature

New Feature

- Full feature BLE5.0
- KW37/38 implement
- Master board support up to 32 continuous connection
- Slave board support up to 2 continuous connection
- Add external antenna connector as an option
- Master board support 2 + 16 or 2 + 32 network.
- Free Software IDE MCUXpress, SDK


WBMS 2.1 Hardware


Slave Board RevE

Master Board RevA

Slave Board RevE

- Update Wireless MCU from KW35 to KW37(QM)
- External Antenna connector as option

Master Board RevA

- New controller board creation
- Two KW38(QM) as a dedicate communication MCU
- MPC5744P(ASIL-D) as a main controller
- CAN interface to GUI as 1Mbps speed
- Two external antenna connector as option

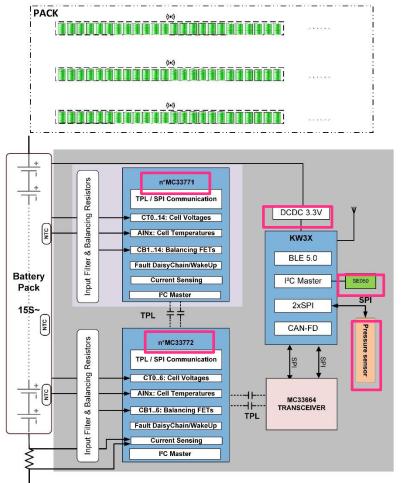
WBMS V2.1 Demo Kit

Feature

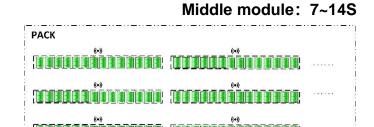
- 1 Master board + 10 slave board (8 on box, 2 mobile)
- Topology:

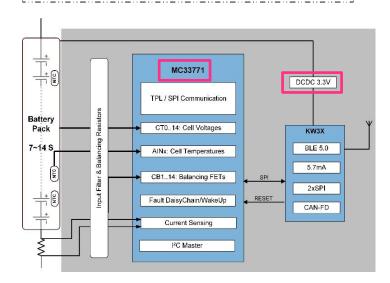
1 master → 4 slave on box, 1 mobile

1 master → 4 slave on box, 1 mobile

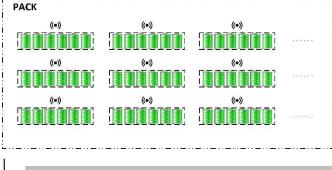

Two network work in parallel

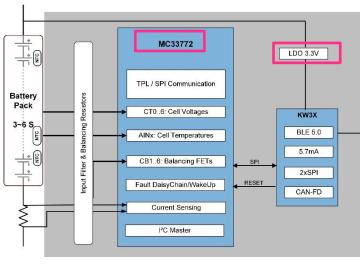
- CAN interface to unionGUI (1Mbps)
- BLE 5.0, 2Mbps
- WBMS protocol V1.0
- Two slave mobile could check
 wireless distance → stability




"Wireless Module" Coverage upon battery modules

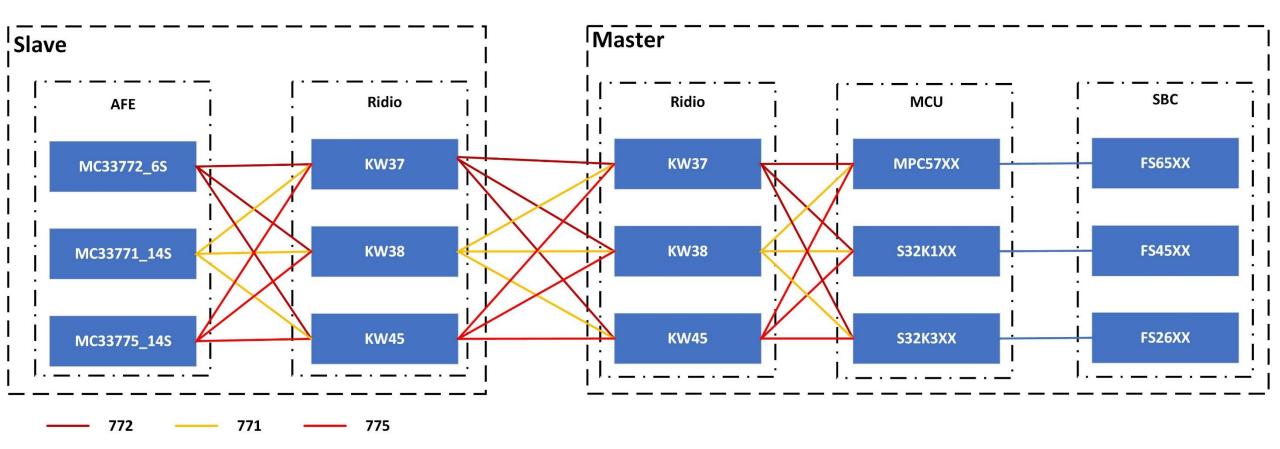
large module: 15S~


- ◆ MC33771 + MC33771/2, 15S~
- ♦ HV DCDC to supply KW3x device
- ◆ capacitor-isolation in board
- optional Pressure Sensor in the module
- ♦ optional HW authentication with NXP Security Element



- ♦ 1 x MC33771, 7~14 S
- external DCDC to supply KW3x device

Small module: 3~6S



- ♦ 1 x MC33772, 3~6 S
- ◆ external LDO to supply KW3x device

SECURE CONNECTIONS FOR A SMARTER WORLD

Wireless BMS BOM Select

SOFTWARE

NXP Stack Protocol for W-BMS

Network Architecture

- Provide flexible network topology: BMU + AFE x n application architecture
- For ESS Application, support long distance communication.
- Based on mature wireless protocol

Stability

- NXP WBMS involve whole **2.4GHz frequency range** that could escape conflict with other wireless working devices.
- Fast recovery once communication failure happened. Strong anti-interference of burst wireless noise.
- Provide 3 options for wireless signal antenna design to build stable communication and low cost.

Real-Time Data

- Runtime checking the AFE data effectiveness within a battery cell polling time.
- Simplify the start-up process, get fast network establishing speed when every Key-On event.

Maintenance

- support **OTA** for firmware update.
- Support Android / IOS system mobile devices connection.
- Easy to replace a failure module from running network.
- Tracking/stored AFE data in module to support module-level battery pack replacement.

Security

- Adopt the most secure symmetric encryption algorithm that is widely used in the mobile device in the world.

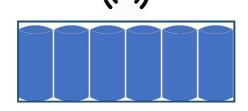
Consumption

- Ultra low power consumption
- **Protocol** could adjusted or optimized by software configure to get extremely low power consumption.

Functional Safety

- Targeting functional safety **ASIL-D** level.

Bat module

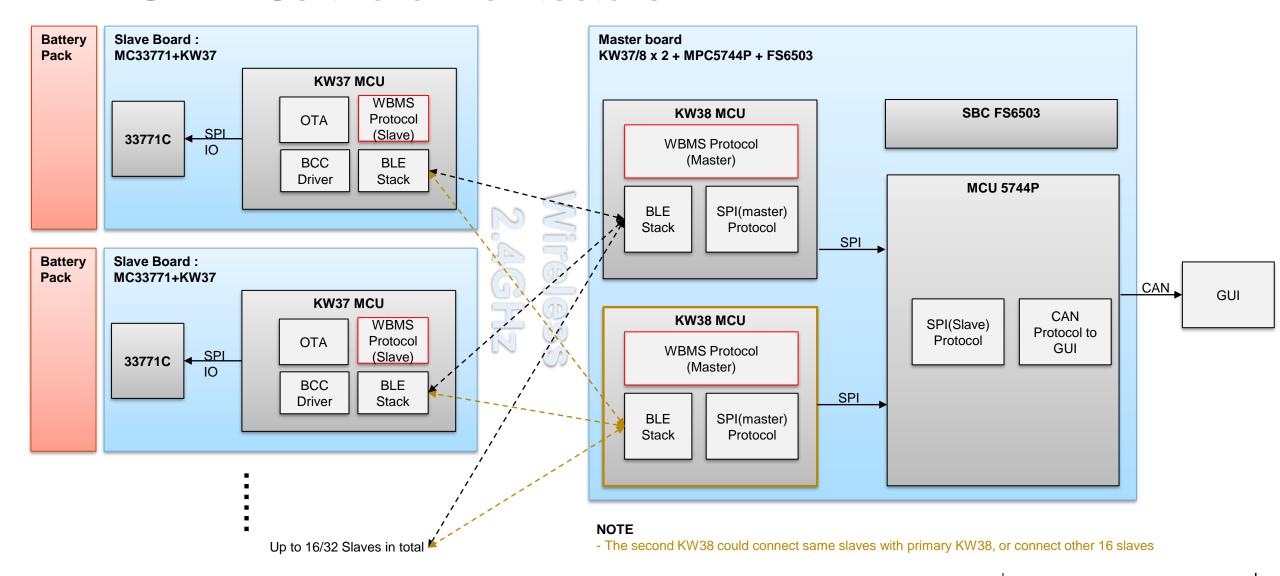

- ✓ ID traceability
- ✓ Self-diagnostic
- ✓ Automated network grouping
- ✓ Battery monitoring with OTA access

Monitored by cloud all lifecycle

Wireless comm:

- Low power consumption
- High performance
- High reliability

Wireless-module


Get module and cell information by mobile device in real time:

- Wireless connect by BLE protocol
- SOC of cells and module
- SOH of cells and module

SECURE CONNECTIONS FOR A SMARTER WORLD

WBMS V2.1 Software Architecture

WBMS Develop environment setup

- IDE
 - IAR system
 - commercial, have to pay for it

- MCUXpresso
 - NXP provide for free, download from NXP official website

NXP KWXX

Kinetis KW37/38/39 MCU Family | Features

Core/Memory/System

- Cortex-M0+ running up to 48 MHz
- KW37: 512kB (2x256kB, swappable) Program Flash with ECC OR
- KW38/39: 256kB Program Flash + 256kB FlexNVM both with ECC;
- 64 kB SRAM
- KW38/39: 8 KB of user-segment defined byte write/erase EEPROM
 - Allocation of FlexNVM (minimum 32KB) to EEPROM emulation will determine effective endurance
- Four independently programmable DMA controller channels

Radio

- Support for Bluetooth LE 5.0 and Generic FSK
 - High Speed (2 Mbps), Long Range, Advertising Extensions
- -97 dBm receiver sensitivity in BLE 1Mbps mode
- -105 dBm receive sensitivity in BLE long range 125kbps mode
- -30 to +5 dBm programmable output power

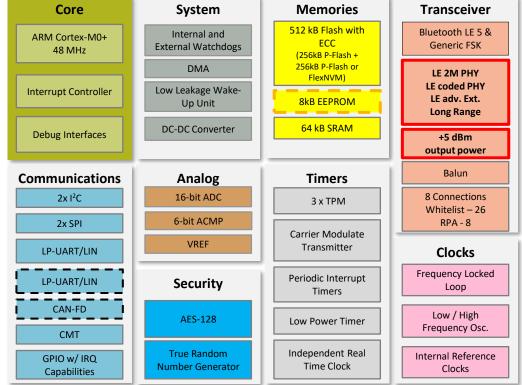
Communications/HMI/Timers

- 2xSPI, LP-UART with LIN, 2xI2C, CMT, GPIO with IRQ capability (KBI)
- KW38: CAN-FD and 2nd UART with LIN
- 3x FlexTimer (TPM) with PWM & quadrature decode support
- · Low Power (LPTMR), Programmable Interrupt (PIT) and RTC timers

Analog

- 16-bit ADC with integrated temperature sensor and battery monitor
- 6-bit High-speed Analog Comparator
- 1.2V voltage reference (VREF)

Security


· AES Accelerator and True Random Number Generator

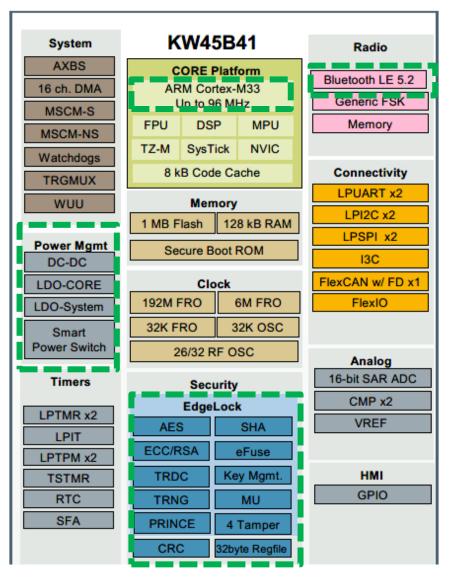
Unique Identifiers

- 80-bit device ID programmed at factory
- 40-bit unique number can be used for Bluetooth Low Energy

Operating Characteristics

- Voltage range: Buck 2.1 V to 3.6V, Bypass 1.71 V to 3.6 V
- Ambient temperature range: –40 to 105 °C
- AEC Q100 Grade 2 Automotive (A version) Qualification
- Industrial (Z version) Qualification

aniscerve.	
etooth LE 5 & eneric FSK	
E 2M PHY coded PHY E adv. Ext. ong Range	
+5 dBm tput power	
Balun	
Connections hitelist – 26 RPA - 8	
Clocks	ī
uency Locked Loop	
ow / High quency Osc.	
nal Reference Clocks	


Device	CAN FD	2 nd UART with LIN	8KB EEPROM	Qualification Tier	Package
MKW 3 7 <mark>A</mark> 512VFT4	N	N	N	AEC Q100 Grade 2	7x7 48-pin HVQFN "Wettable"
MKW37 <mark>Z</mark> 512VFT4				Industrial	
MKW38 <mark>A</mark> 512VFT4	Y	Y	Υ	AEC Q100 Grade 2	
MKW38 <mark>Z</mark> 512VFT4				Industrial	
MKW39 <mark>A</mark> 512VFT4	N	N	Y	AEC Q100 Grade 2	

KW38/39 only

Changes from

KW34/35/36

KW45 Wireless MCU Features

Core Platform

- Up to 96 MHz Cortex-M33 , <45uA/MHz
- TrustZone-M, MPU, IEEE 754 FPU, DSP
- 8 kB Code Cache

Memory

- 1 MB Flash
- 128kB RAM w/ ECC (32kB)
- Secure Boot ROM

EdgeLock Secure Enclave

- Trusted resource domain controller (TRDC) providing access policies for embedded memory and peripherals
- Advanced flash access protection
- Optional flash encryption and on-the-fly decryption
- Hardware encryption and decryption
- Symmetric Key Encryption: AES-128/192/256
- Asymmetric Key Encryption: RSA-1024/2048/3072/4096, ECC P-192/224/256/384/521
- Digital Signature Algorithms: ECDSA
- Hash Algorithms: SHA2-224/384/512
- Psuedo & True Random Number Generator (P/TRNG)
- Up to 4 digital tamper pins

Bluetooth LE Radio

- Bluetooth LE 5.2 radio supporting direction finding, highspeed, long range, advertising extensions
- · Up to 24 simultaneous Bluetooth LE connections
- Generic FSK modulation (Up to 2 Mbps)
- Radio memory for Bluetooth LE LL (Controller)
- Receiver Sensitivity
 - o -95 dBm, 2 Mbps Bluetooth LE
 - -98 dBm, 1 Mbps Bluetooth LE
- -101.5 dBm, 500 kbps Bluetooth LE Long Range
- -106 dBm, 125 kbps Bluetooth LE Long Range
- Programmable Transmit Output Power up to +10 dBm

Communication Interfaces

- 2x LPSPI, one up to 40MHz
- 2x LPUART, w/ IrDA
- 2x LPI2C, one up to 3.4M bps
- 1x I3C
- 1x FlexCAN w/ FD support
- 1x FlexIO

Timers

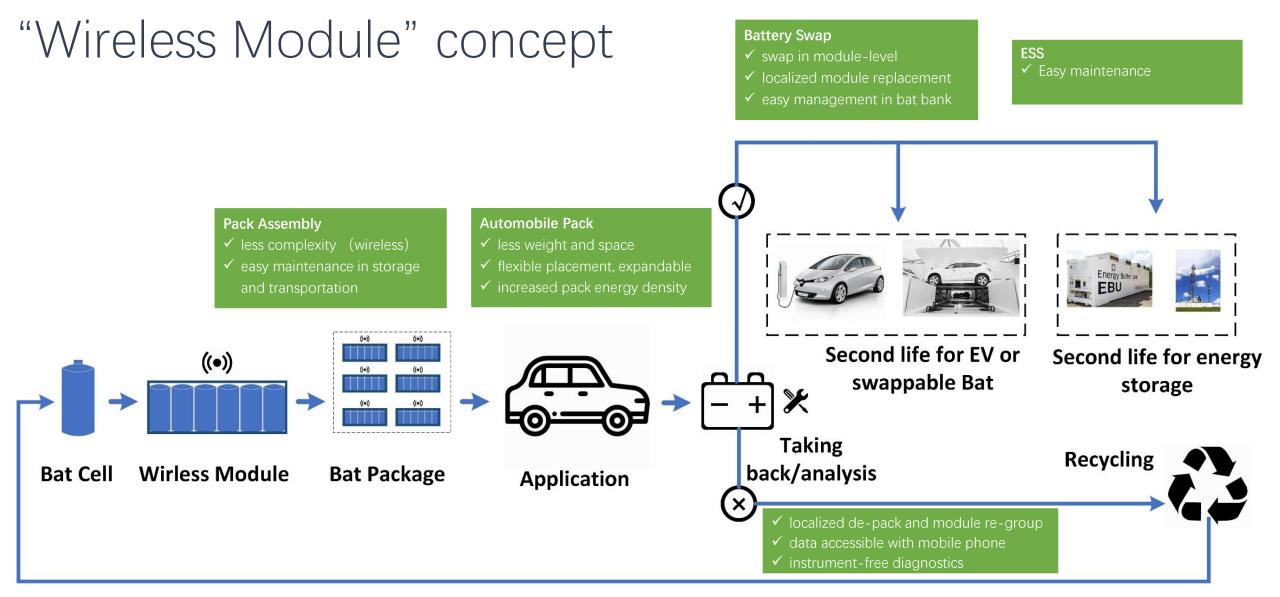
- 2x 6-ch LP Timer/PWM Module (TPM)
- 1x 4-ch LP Interval Timer (LPIT)
- 2x Low Power Timer (LPTPM)
- 1x Timestamp Timer (LSTMR)
- · 2x Internal Watchdog, 1x External Watchdog
- 1x RTC w/ 32 byte Register File
- Signal Frequency Analyzer (SFA)

Analog

- · 1x 16-bit SAR ADC, up to 2Msps
 - 2x Single End 16-bit ADC
- 2x Comparator
- · 1.0-2.1V Programmable Voltage Reference

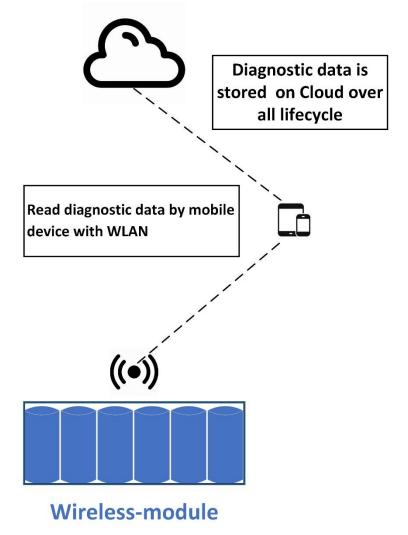
Power Management

- DCDC, 1.71 to 3.6 V, LDO-Sys, 1.71 to 3.6V
- LDO-Core, 1.71~3.6 V (Enable); 0.84~1.21 V (Bypass)
- <100 nA Smart Power Switch (low leakage)

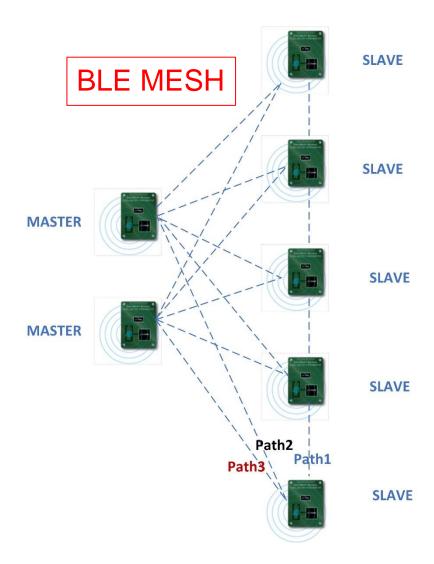

Qualification

- AEC-Q100 Grade2
- Extended operating temp up to +120°C (Ta)
- Packages
- 48HVQFN "Wettable" 7x7, 0.5p
- 40HVQFN "Wettable" 6x6, 0.5p

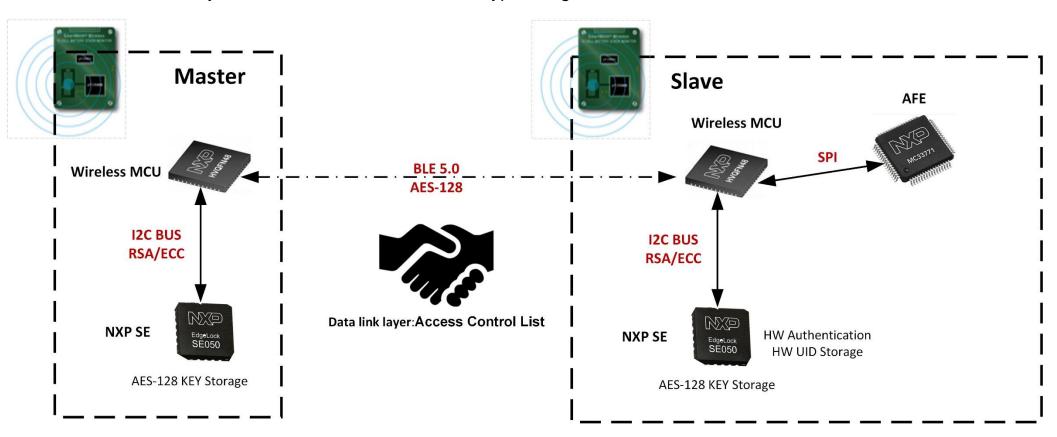
WIRELESS MODULE



NXP Wireless Module Over Battery LifeCycle


Self Diagnosis and diagnostic with cloud data

	Diagnosis Items	Module	PACK	In-service	taking back/analysis	Cascade Utilization
	Diagnosis items	Module	PACK	III-Service	Dack/ allalysis	Otilization
1	Cell OT					
2	Cell UT					
3	Cell Temperature rising too fast					
4	Cell OV					
5	Cell UV					
6	Bad Cell Consistency					
7	Module UV					
8	Module OV					
9	Module Consistency					
10	Charge Current OC					
11	Dis-charge Current OC					
12	SOH too low					
13	SOC too high					
14	SOC too low					
15	SOC Drop Suddenly					
16	Communication Fault					


Automated network grouping

- Channel hopping design for multi-network coexistence, redundancy and reliability
- Each slave communicates with both network master and one other slave (3 paths)
- If transmission has no action, automatically resent on different channel and/or different path
- Master monitor RF performance and data latency, and provides problem notifications
- If one master fails, the other Manager handles all network traffic but warning
- If both masters fail, all slaves network is still alive and slave hop to be master which organize the communication again
- Slave in the network is replaced or added, the new slave will be involved in the network automatically

Access with data security

- Access control list based on MAC addresses of KW3x
- HW authentication for dedicated module device(welcome for battery bank)
- AES-128 communication encryption algorithm
- Secure AES-128 key access based on RSA/ECC encryption algorithm

SECURE CONNECTIONS FOR A SMARTER WORLD