MOTION SENSORS FOR POWER MANAGEMENT IN CONNECTED IOT DEVICES

JOHNSON SUN SYSTEM & APPLICATION, Motion Sensors

JULY 2022

Johnson.sun@nxp.com

+86 13918668532

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

Wireless battery-operated IoT devices continue to expand into all aspects of life.

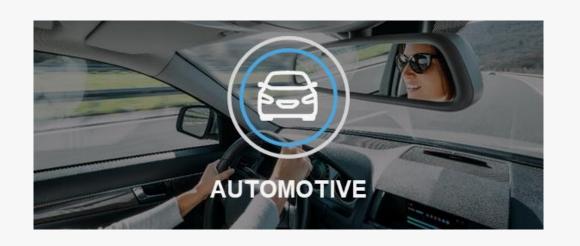
Power management therefore becomes a critical factor to support the "Green Initiative" by increasing battery lifetime.

Learn how Motion sensors can play a crucial role in power management for wireless battery-operated devices.

Agenda

- Introduction
- NXP Sensors Overview
- Auto S&C, I&M Motion Sensor Products Roadmap
- Auto S&C, I&M Motion Sensor Target Market Segments
- Why customers choose NXP
- Motion Sensors for Power Management
- Summary

Motion Sensors: Overview, Roadmap & Market Segments



SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP MEMS SENSORS OVERVIEW

40+ YEARS OF MEMS PRODUCTION

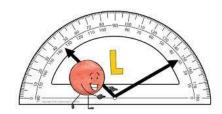
4 billion devices shipped (motion and pressure)
Focus on Automotive and Industrial / Medical IOT

BROAD PRODUCT PORTFOLIO

Accelerometers for wide range of use cases / market segments
Gyroscopes / 6DOF devices in development / refresh
New generation ultra low power magnetic switch
Absolute and differential pressure sensors
Tire Pressure Sensors & Battery pressure sensors

6th GENERATION OF AIRBAG SENSORS

4th GENERATION OF TIRE PRESSURE SENSORS



MOTION SENSORS Why Do I Need a Motion Sensor?

Motion sensors are essential for applications which need to address the following

Orientation: Which Way is Up?

Inclinometer:
At what angle am I?

Gesture Detection:
What am I doing?
Did I move a certain way? Did I fall?

Power Management / Reduce Waste: Wake up on motion – am I moving?

Vibration / Shock:
Is my equipment about to fail?
Is my equipment being abused?

Robotics / Navigation: What direction am I going?

AUTO CONVENIENCE AND SECURITY + INDUSTRIAL / MEDICAL ROADMAP

not yet

fully committed.

Indicative timing only

Idea only, not yet

fully committed.

resource estimate.
Indicative timing only

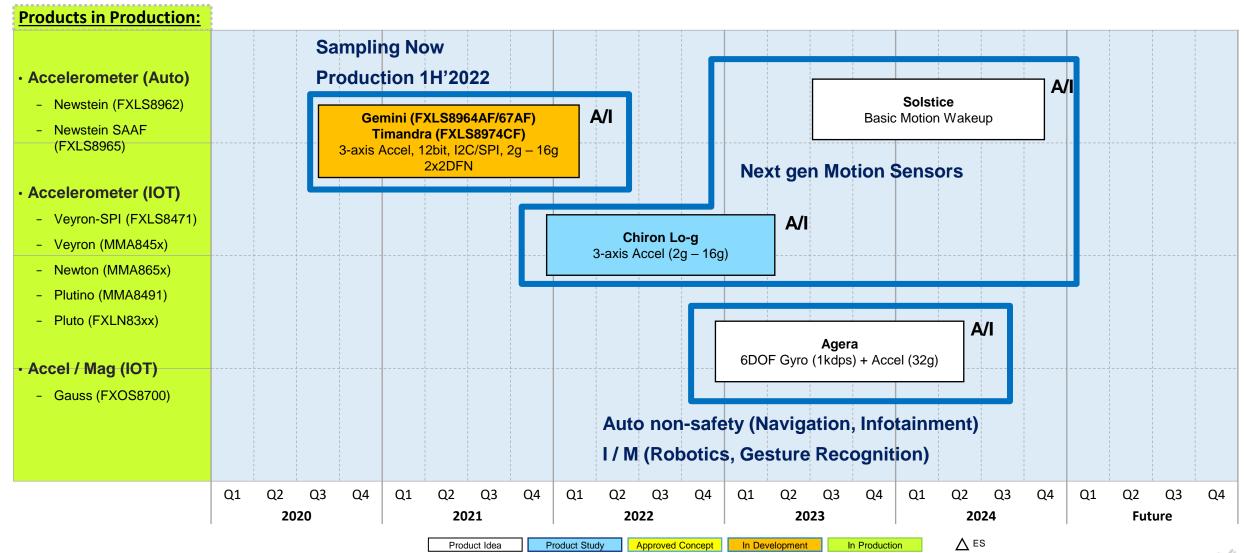
after PI-gate

Product concept,

indicative timing only

after PCA-gate

Project, resources.


timing committed,

after PPA-gate

Product in production,

after R-gate

A = Auto I = Ind/Med

▲ CES

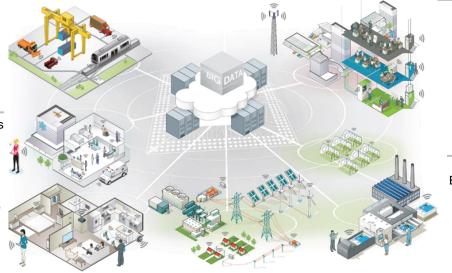
★ Production

(R-gate)

PUBLIC

INDUSTRIAL AND MEDICAL (I/M) MOTION SENSOR TARGET MARKET SEGMENTS

Industrial Transportation


Heavy Machinery Farm Equipment Asset Tracking

Patient Care

Medical Wearables Drug Delivery

Connected Home

Smart Doors/windows Smart appliances

Conservation Smart metering (tamper detection)

Building Control

HVAC Access / Security Surveillance

Factory Automation

Robotics **Equipment Monitors**

Asset Tracking

Sensor Proliferation:

- Human Interaction: Gesture. Orientation, Vibration, Tap
- Machine Learning: Motion and Vibration detection for Preventive Maintenance and Anomaly Detection
- Intelligent Sensors for increasing motion detection at lower power
- Always on applications: Asset Tracking, Security,

AUTOMOTIVE SECURITY & CONVENIENCE APPLICATION EXAMPLES

Keyfob / Passive entry

- Relay attach prevention
- Power consumption reduction

Car Alarm / Telematics boxes

- OEM or aftermarket

eCall

- Rollover or shock detection when the vehicle is off

Smart Doors / Latches

- Inclination detection for doors, trunks, and other enclosures

Electrical vehicles

- Shock during recharging - need safe disconnect of power plug

Surround view camera

- Capture surrounding scene when the vehicle is "bumped" while parked

WHY CUSTOMERS CHOOSE NXP

Why NXP?

- Lowest Power in Industry
- Developers Ecosystem: Ease of evaluation, development.
- System solution w/ NXP (i.e. Keyfob MCU, Wireless/IoT MCUs)
- Only product that meets the specification & reliability requirements in many automotive applications

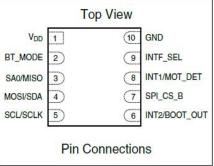
What Is Next?

- Auto Non-Safety Apps
 - Car Alarm
 - Baby Seat Monitor
 - Under-hood Lamp
 - Two-Wheeler Tilt / Engine Management
- IoT
 - Remote Control Power Management
 - Movement / Vibration Sensor

New Product Introduction: FXLS8964/67 AF & FXLS8974CF

SECURE CONNECTIONS FOR A SMARTER WORLD

FXLS8964 / 67 (GEMINI) - 3-AXIS AUTOMOTIVE QUALIFIED ACCELEROMETER DESIGNED FOR AUTOMOTIVE SECURITY & CONVENIENCE (NON-SAFETY) APPLICATIONS


Features

- Fully Pin and SW compatible replacement for FXLS8962
- Ultra Low power: < 1μA in low power wakeup mode (0.78 Hz to 6.25 Hz ODR)
- Sensor Data Change Detection (SDCD) function: highly configurable digital window comparator for easy / efficient implementation of low-power motion detection
- Self-Test Diagnostic: Can be run in field to assess device health (unaffected by device orientation or motion)
- ±2 to ±16g (user selectable) full scale range
- 12-bit Sensor Data Output Resolution
- I2C / SPI (pin configurable) digital interfaces
- 2x2 DFN Package, 0.4mm pitch with wettable flanks
- -40 to 105°C operating temperature, AECQ-100 auto / industrial qualified
- EMC Class III Compliant

Target Applications

- FXLS8964: Keyfob motion detection
- FXLS8967: Telematics, Car Alarm, Electrified Doors

Project Milestones

- Samples: NOW

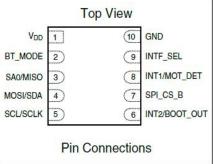
- Automotive PPAPed: Mar. 2022 (8964) / Apr. 2022 (8967)

- Production Release: NOW

DATASHEET SPECIFICATION DIFFERENCES (FXLS8964 VS 67AF)

Device	FXLS8964AF	FXLS8967AF		
Target Automotive Applications	Keyfob motion detection Direct FXLS8962AF replacement	Angle detection Telematics, Car Alarm, Electrified Doors		
Offset	±250mg TYP, ±550mg MAX	XY axis ±50 mg TYP, ±200 mg MAX Z axis ±150 mg TYP, ±550 mg MAX		
TCO	1mg/°C	XY axis: 0.55 mg/°C Z axis: 0.8 mg/°C		
Noise	280μg/√Hz	XY axis: 217 μg/√Hz Z-axis: 257 μg/√Hz		
Idd Hibernate	300 nA MAX (T=-40°C to +85°C)	300 nA MAX (T=-40°C to +85°C) 2 μA MAX (T=-40°C to +105°C)		
WHO_AM_I	0x84	0x87		

FXLS8974CF (TIMANDRA) - 3-AXIS ACCELEROMETER FOR INDUSTRIAL / MEDICAL


Features

- Ultra Low power: < 1µA in low power wakeup mode (0.78 Hz to 6.25 Hz ODR)
- Sensor Data Change Detection (SDCD) function: highly configurable digital window comparator for easy / efficient implementation of low-power motion detection
- Self-Test Diagnostic: Can be run in field to assess device health (unaffected by device orientation or motion)
- ±2 to ±16g (user selectable) full scale range
- 12-bit Sensor Data Output Resolution
- I2C / SPI (pin configurable) digital interfaces
- 2x2 DFN Package, 0.4mm pitch with wettable flanks
- 40 to 105°C operating temperature
- **EMC Class III** Compliant

Target Applications

- Medical Wearables, Asset Tracking, Cameras, Smart Meters, Connected Home, Equipment Monitoring, Surveillance / Security

Project Milestones

- Samples: NOW

- Production Release: NOW

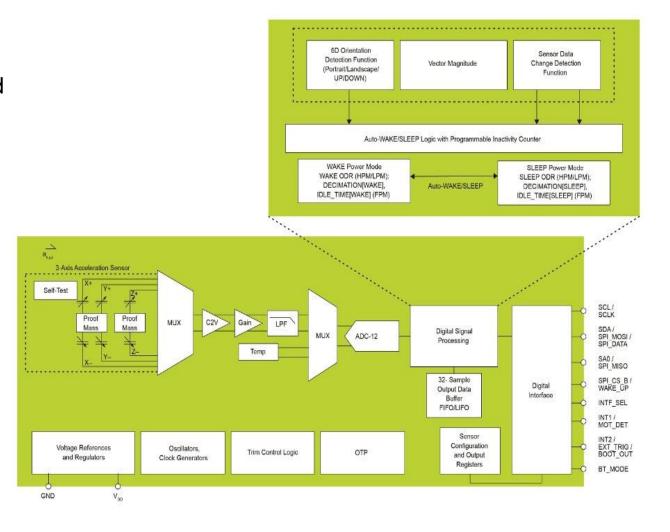
ASIC DIFFERENCE (FXLS8964/67AF VS. FXLS8974CF)

• FXLS8974CF are SW compatible to FXLS8964/67AF with exceptions that FXLS8974CF implements a minor in the Sensor Data Change Detection (SDCD) block so it is easier to detect slow motion in IOT application.

	FXLS8964/67AF	FXLS8974CF		
WHO_AM_I Register	0x84 / 0x87	0x86		
PROD_REV Register	0x13	0x14		
SDCD_CONFIG2 Register	Difference in REI	F_UPDM as noted		

FXLS8964/67 behavior as noted in original text FXLS8974 behavior as noted in corrected text

13.31.4 SDCD_CONFIG2 register (address 30h)


Table 101.	SDCD	CONFIG2	register	(address 30h) bit allocation
-------------------	------	---------	----------	--------------	------------------

Bit	7	6	5	4	3	2	1	0
Name	SDCD_ EN	REF_UF	PDM[1:0]	OT_ DBCTM	WT_ DBCTM	WT_ LOG_SEL	MODE	REF_ UPD
Reset (BT_MODE = GND)	0	0	0	0	0	0	0	0
Reset (BT_MODE = V _{DD})	1	1	0	1	1	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Field	Description
6:5	SDCD internal reference values update mode
REF_UPDM	ODD: The function stores the first 12-bit X/Y/Z decimated and trimmed input data (OUT_X/Y/Z[n=0]) as the internal REF_X/Y/Z values after the function is enabled (SDCD_EN is set to 1). The REF_X/Y/Z values are updated with the current 12-bit X/Y/Z decimated input data (OUT_X/Y/Z[n]) at the time the SDCD_OT_EA flag transitions from False to True.
	O1b: The function stores the first decimated and trimmed X/Y/Z acceleration input data (OUT_X/Y/Z[n=0]) as the internal REF_X/Y/Z values when the SDCD function is enabled; the REF_X/Y/Z values are then held constant and never updated until the SDCD function is disabled and subsequently reenabled, or asynchronously when the REF_UPD bit is set by the host.
	10b: The function updates the SDCD_REF_X/Y/Z values with the current decimated and trimmed X/Y/Z acceleration input data after the function evaluation. This allows for acceleration slope detection with Data(n) to Data(n-1) always used as the input to the window comparator.
	11b: The function uses a fixed value of 0 for each of the SDCD_REF_X/Y/Z registers, making the function operate in absolute comparison mode.

FXLS89XX BLOCK DIAGRAM

- MEMS Transducer
 - Two separate transducers: XY and Z
 - Differential topology for increased sensitivity and common mode noise rejection
 - <u>Self-Test Diagnostic</u>
- Signal Chain
 - Portion of ASIC that converts changes in transducer capacitance to voltage, performs signal conditioning and converts signal to the digital domain.
- Digital Features
 - Sensor Data Change Detection:
 - Auto Wake/Sleep
 - Programmable interrupts
 - SPI / I2C digital interfaces

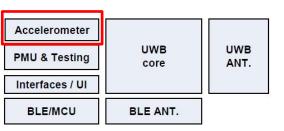
Motion Sensors for Power Management

SECURE CONNECTIONS FOR A SMARTER WORLD

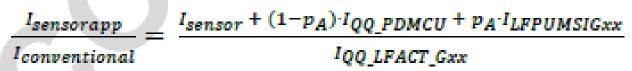
MOTION SENSORS FOR POWER MANAGEMENT

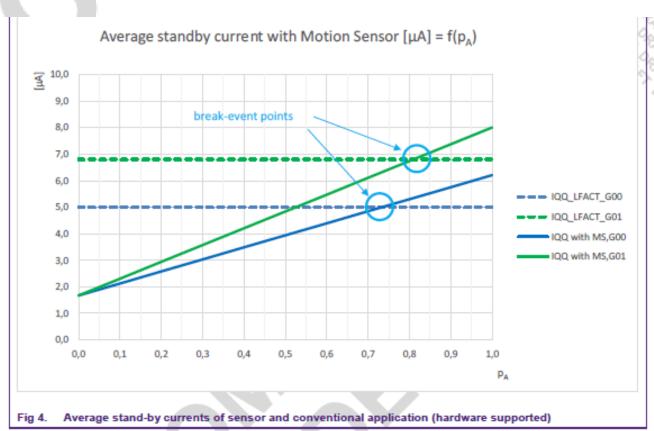
- Battery operated IoT devices with wireless connectivity (BLE, UWB, SigFox, Wi-Fi etc.) generally have MCUs (ARM Cortex-M0+ or M4 or M33 based) that support low power save modes.
- Depending on end use-case, wireless connectivity can consume between 40-70% of the total power consumption of such devices.
- Motion Sensors can be used to increase battery lifetime by 2x 4x:
 - Ultra-low power wakeup on motion gestures: wake up MCU from ultra-low power mode.
 - Reduce the wireless RX/TX time for meaningful data transmission ex: motion anomalies.

UWB SmartSensing Tags


BLE SmartSensing Inhaler

SigFox Asset Tracker





UWB/NFC Tag

SYSTEM POWER SAVING WITH MOTION DETECTION IN KEYFOB

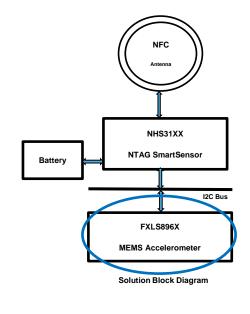
Picture taken from TR-SCA1601
See section 2.4.3



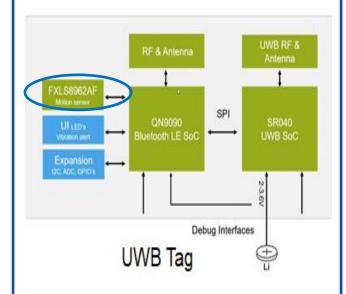
SENSORS REFERENCE DESIGNS FOR MII SEGMENT

Smart Logistics

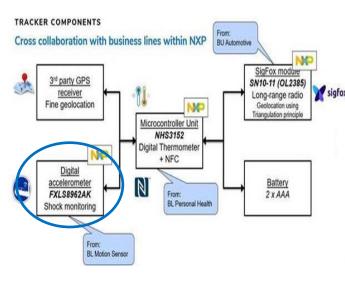
- Smart Warehouse
- Factory Automation


NTAG Sensor Board

NTAG Sensor Button


- Machine monitoring
- Predictive maintenance

UWB Finder Tag


- Smart Home
- Smart / Safe Workplace
- Tamper /Theft Detection

Sigfox Asset tracker

- Asset tracking
- Smart Warehouse
- Factory Automation

SUMMARY

- NXP has a rich history of supplying motion sensors into automotive, industrial, and medical markets
- NXP has a broad portfolio of sensors covering the needs of various markets and application use cases. In particular, NXP motion sensors are ideal for applications where power management is critical
- Low power motion sensors are a critical component of battery operated systems with wireless connectivity (BLE, UWB, SigFox, Wi-Fi etc.), enabling 2x 4x power savings in such systems as demonstrated by the use case provided in this presentation.

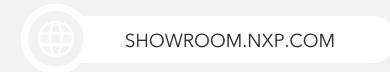
JOURNEYS BY DESIRED ENGAGEMENT

Self-guided tour Live-streaming at set times Guided tours

JOURNEYS BY DESIRED FOCUS

Edge & AI/ML Safety & Security Connectivity Analog

40+ VIRTUAL DEMOS


Focus on system solutions Set up along NXP verticals

SECURE CONNECTIONS FOR A SMARTER WORLD

