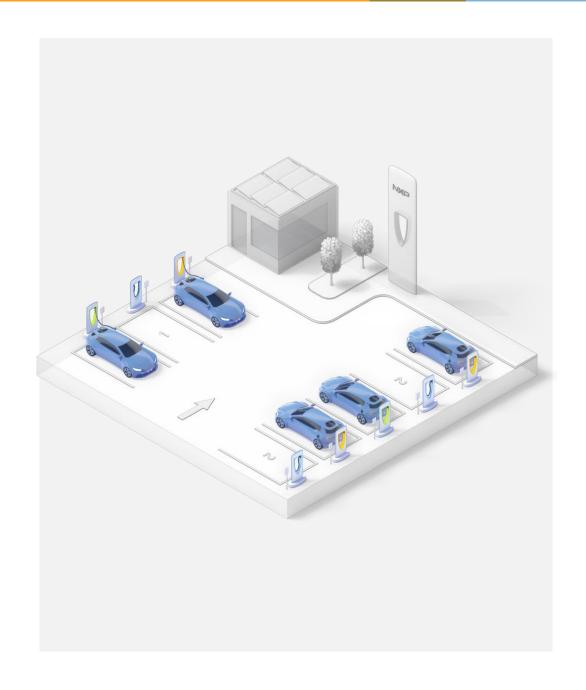
面向电动汽车的电池 接线盒解决方案

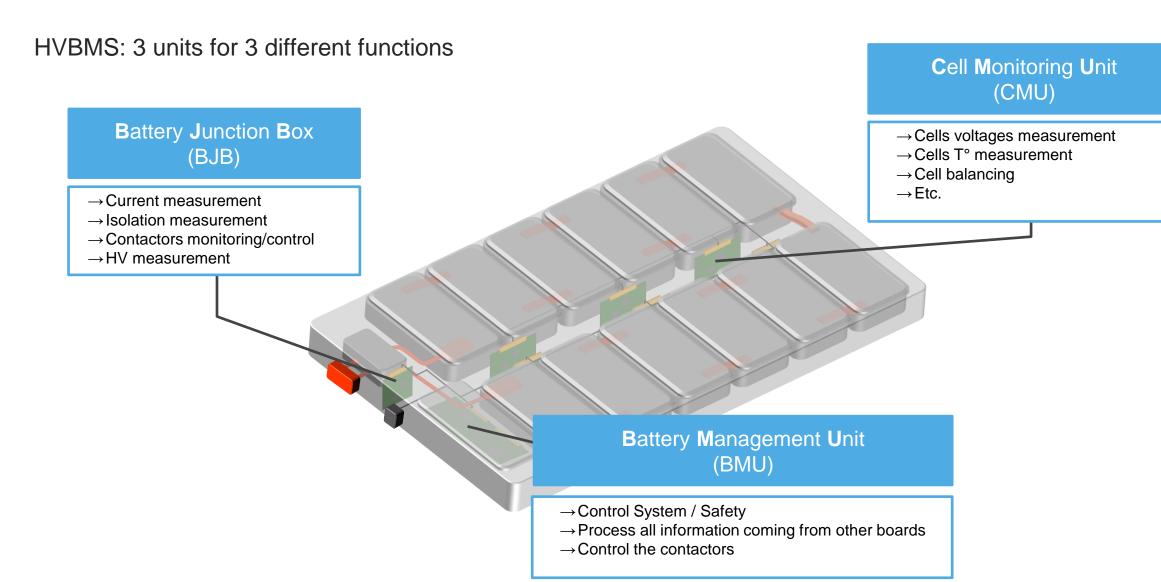
王逸凡 电池管理系统应用工程师 2022年6月



SECURE CONNECTIONS FOR A SMARTER WORLD

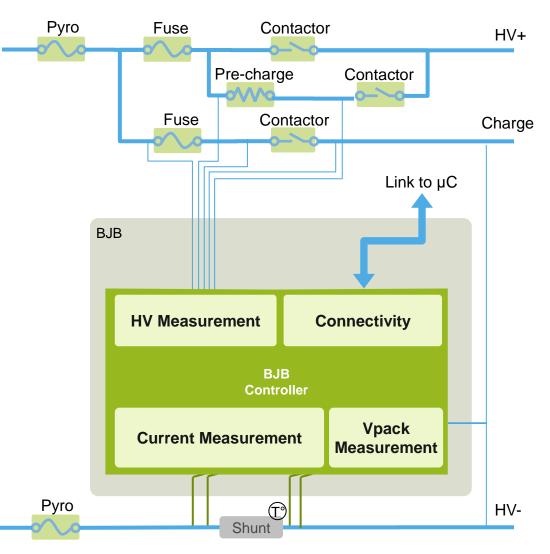
PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.



AGENDA

- What is a Battery Junction Box?
- Main Functions & IC Requirements
- MC33772CTC BJB IC
- Reference Designs


HVBMS SYSTEM ARCHITECTURE

BATTERY JUNCTION BOX MAIN FUNCTIONS & REQUIREMENTS

- ASIL D current measurement with shunt temperature compensation for higher accuracy
- Fast current measurement for short circuit detection
- High voltage measurements
- Temperature measurements
- Vpack & current measurements synchronization (power calculation)
- Communication link to BMU MCU
- EEPROM interface for data/configuration recording

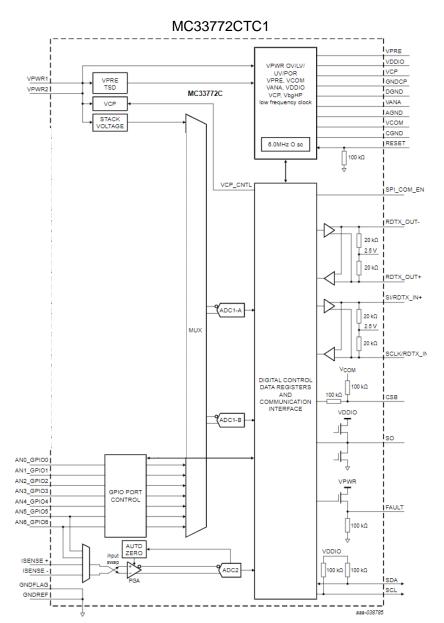
BATTERY JUNCTION BOX

FUNCTION ALLOCATION

Actuator	System Function	IC Function	IC Feature	Comment
	Crash Signal Monitoring		GPIO	Need to disconnect battery in case of crash
	Isolation Monitoring	Isolation Voltage Measurement	AINx	Up to 8x AINx inputs that can be combined with GPIOs
	Contactor Monitoring	HV Voltage Measurement	HV Voltage	Precision HV measurement to monitor the Pack voltage in synchronicity to the current measurement
	Precharge Monitoring		Measurement	
	Impedance Measurement (SOH)	Synchronous I/V Measurement		
	State of Charge (SOC, SOF)	Coulomb Counting	Precision Current Measurement	Highly accurate current measurement Integrated shunt temperature compensation
General Purpose DO	Over-Current (Li-Plating)	Slow Over-Current Detection		
Pyro Breaker Driver	Over-Current (Short Circuit)	Fast Over-Current Detection	Fast Current Measurement	
Pyro Maker Driver	HV-Circuit Active Discharge			
	Isolated Communication	Daisy Chain interface		

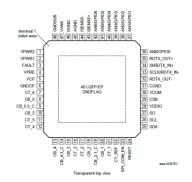
MC33772CTC1 - ASIL C ISOLATED CURRENT MEASUREMENT IC KEY FEATURES

High-performance integrated functions


- Operating voltage:
 - 6V ≤ VPWR ≤ 30 V operation, 42 V transient (for SPI communication)
 - 7V ≤ VPWR ≤ 30 V operation, 42 V transient (for TPL communication)
- SPI or isolated 2.0 Mbps differential communication
- Total stack voltage measurement
- Current measurement with ±0.5% accuracy (±1500 A)
- 7 GPIOs/Analog sensor inputs
- Internal diagnostics

Quality & robustness

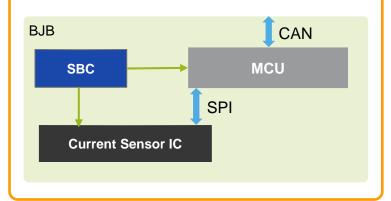
- AEC-Q100 automotive qualified
- Temp range: -40°C to 125°C (for SPI communication)
- Operational low-power mode
- Hot plug capable / EMC/ESD robustness


Typical applications

- Automotive: Battery Junction Box IC
- Industrial: current sensor IC for
 - Energy Storage Systems (ESS)
 - E-bikes, E-scooters...

Package: 48 LQFP-EP

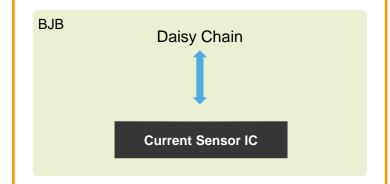
CT & CB pins are not specified or calibrated



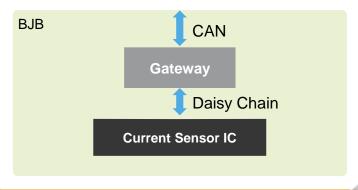
BATTERY JUNCTION BOX INTEGRATION OPTIONS

Classic BJB with MCU

Originally BJB integrate the MCU for several calculations. High SW effort and additional HW cost for extra microcontroller and communication devices


Traditionally, BMU connection is done via CAN

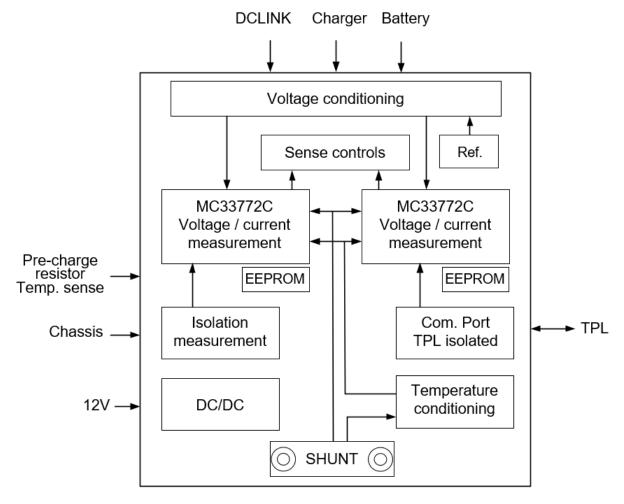
Daisy chain integrated BJB


First step of cost reduction is removal of BJB MCU

BJB may be included in CMU daisy chain

CAN BJB w/o MCU

If standard communication is required, a gateway can be used to bridge from daisy chain to CAN (FD)


BJB TPL REFERENCE DESIGN

OVERVIEW

Main features:

- 5 inputs high voltage positive measurement up to 500 V
- 2 inputs high voltage negative measurement down to -500 V
- 2 high voltage measurement from -500 V to 500 V
- 1 shunt for current measurement +/- 1500 A
- 1 shunt temperature measurement from -40 °C to 105 °C
- 1 pre-charge resistor temperature measurement from -40 °C to 140 °C
- 1 battery to chassis isolation measurement
- 2 EEPROM for data/calibration recording
- 1 TPL communication

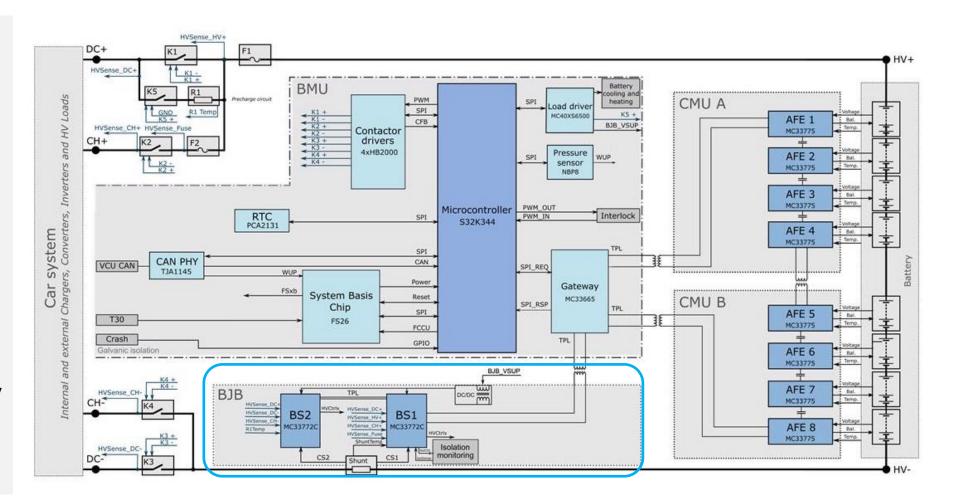
RD772BJBTPLEVB

BJB CAN-FD REFERENCE DESIGN OVERVIEW

Adding MC33665 Gateway for SW-free CAN-FD interface

MC33665 Main features:

- MCU host interface supporting SPI, CAN (FD) or UART
- Four independent TPL daisy chain ports
- Configurable response and request buffers
- Operational Low power mode
- AEC-Q100 grade 1 qualified: −40 °C to +125 °C ambient temperature range


BJB REFERENCE DESIGN

PART OF THE 400 V HVBMS DESIGN

Launch July 2022

SCOPE

- 400V BMS reference design, covering (BMU), (BJB) and up to 8 cell monitoring units (CMU)
- ASIL D ready hardware for voltage, current and temperature measurements
- Comprehensive system safety collaterals for reuse by customers
- Comprehensive reference software offering, including production ready complex drivers for AutoSAR

SUMMARY & CTA

The Battery Junction Box is the pack-level sensing part of the BMS

With the MC33772CTCXAE, NXP offers **dedicated ICs** for the BJB application

Multiple options to integrate BJB into BMS without dedicated MCU and local software effort

The **BJB Reference Design** is available from July 2022 as part of the HVBMS RD

Learn more visiting NXP.com/bms

JOURNEYS BY DESIRED ENGAGEMENT

Self-guided tour Live-streaming at set times Guided tours

JOURNEYS BY DESIRED FOCUS

Low Power Innovations Advanced Analog Connectivity Edge & AI/ML Safety & Security

60+ VIRTUAL DEMOS

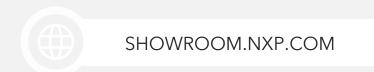
Focus on system solutions Set up along NXP verticals

WELCOME TO FOLLOW NXP AT SOCIAL PLATFORMS

欢迎您关注「恩智浦微招聘」公众号 及时获取恩智浦"芯"职位及员工 活动相关资讯

关注NXP客栈公众号,查看恩 智浦最新官方资讯及技术材料

关注恩智浦B站官方账号,观 看恩智浦最新技术视频



Q&A

SECURE CONNECTIONS FOR A SMARTER WORLD

