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1. INTRODUCTION

Devices in the Internet of Things (IoT) and Industrial IoT 
(IIoT) need to be protected against cybersecurity threats. 
Hardening these devices and protecting the personal 
assets of end users has become a significant focus of 
system designers, developers, and manufacturers1, 2 as 
well as regulators and legislation3, 4. 

There do not exist two documents on securing (I)IoT 
devices that seem to agree on a common definition of 
these devices or even a common terminology to describe 
the security requirements. Furthermore, the scope of 
such documents depends on whether they relate to 
certification, legislation, or implementation guidance. 

With the topic of security becoming relevant for a broad 
audience of implementers, a common terminology to 
agree, understand and implement measures to fulfill 
standards and protect against security threats is getting 
increasingly important.

1.1 OBJECTIVE

This document aims to establish a common vocabulary 
to describe security requirements in (I)IoT systems. It 
introduces a number of “security primitives” by distilling 
common terms out of various standards to describe 
non-overlapping security features on multiple levels—
from rather low-level platform features such as software 
isolation to high-level functionality such as secure updates. 

Furthermore, this document describes a process to 
identify relevant requirements for an (I)IoT system out of 
a use case description of the system. A map to existing 
standards, certification schemes, legislation, and popular 
implementation guides is provided, which allows for 
quickly identifying implementation requirements for 
an (I)IoT product. 

The security primitives and the related process are 
intended as an entry point for gathering security 
functional requirements and process requirements 
for a particular use case.

1.2 SCOPE OF THIS DOCUMENT

(I)IoT describes an ever-growing variety of consumer, 
home, and industrial devices with network connectivity. 
These devices are interacting with the physical world 
through a transducer, i.e., a sensor or actuator, and 
incorporate at least one network interface5. As with 
most sources defining (I)IoT, conventional information 
technology (IT) devices such as personal computers, 
laptops, smartphones, or tablets are explicitly 
excluded from the range of (I)IoT devices. 

While most sources broadly agree on this definition of 
(I)IoT devices, there is no consensus on the scope of 
security requirements. Regulators and legislation typically 
evaluate this topic from the end user perspective and 
consequently target the full (I)IoT ecosystem, including the 
devices, the cloud backend, and everything in between. 
Component manufacturers and most certification 
schemes, on the other hand, typically target (I)IoT devices 
or components thereof. 

The scope of this document is an (I)IoT system as 
depicted in Figure 1. This system consists of one or more 
(I)IoT devices and the cloud backend to which they are 
connected. It also includes all processes related to all 
stages of the device life cycle, such as designing and 
manufacturing, as well as operating the devices and the 
cloud backend. In this scope, an (I)IoT product is defined 
as an (I)IoT system comprised of one (I)IoT device and 
the accompanying cloud backend. 

The (I)IoT device is further broken down into the 
security platform part that typically consists of a secure 
microcontroller or microprocessor unit (MCU/MPU) 
on a system on chip (SoC), and the (I)IoT application 
running on top of it. The platform part may also contain 
companion chips such as secure elements, as well as the 
firmware, operating system, device drivers, and software 
stacks, enabling secure operation on the MCU/ MPU. 
The (I)IoT application part contains the sensors and 
actuators it requires for its operation. 

This split of the device roughly resembles the split of 
what a platform/chip manufacturer provides to enable its 
customers and the specific functionality an (I)IoT device 
manufacturer implements. 

The cloud backend includes the backend application as 
well as the infrastructure required to connect the (I)IoT 
device to the backend. Especially in the industrial domain, 
this includes equipment such as routers, switches, and 
firewalls. Devices such as hubs that sit on the edge and 
connect devices to the cloud are also part of the cloud 
backend by this definition. 

Figure 1: Definition of an (I)IoT Systemand an (I)IoT device
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1.4 PRIMITIVE DERIVATION METHODOLOGY

To derive a common vocabulary, many different sources 
were collected. The sources include requirements 
and terminology from legislation, standards and 
recommendations, and criteria from evaluation and 
certification methodologies. 

Additionally, the requirements of the following standards 
are considered: 

• ISA/IEC 62443 4-2: “Security for Industrial Automation 
and Control Systems”6

• ETSI EN 303 645: “Cyber Security for Consumer 
Internet of Things”8

• SAE J3101: “Hardware Protected Security for Ground 
Vehicles”9

• FIPS PUB 140-3: “Security Requirements for 
Cryptographic Modules”20

• NIST SP 800-193: “Platform Firmware Resiliency 
Guidelines”21

Requirements from legislation such as the following are 
considered: 

• The United States IoT Bill4

• United Kingdom Government Code of Practice3 

• Finnish Cybersecurity label7 

To provide a mapping to common certification schemes 
and certification methodologies, criteria of the following 
sources (amongst others) are considered: 

• Security Evaluation Standard for IoT Platforms (SESIP)2 

• GlobalPlatform Trusted Execution Environment (TEE) 
Protection Profile (PP)12

• Arm® Platform Security Architecture (PSA) Level 2 
and Level 313

• GlobalPlatform IoTopia1

Finally, the terminology of the following recommendations 
is collected:  

• NISTIR 8259: “Recommendations for IoT Device 
Manufacturers: Foundational Activities and Core Device 
Cybersecurity Capability Baseline”5

• ST Microcontroller AN5156: “Introduction to STM32 
microcontrollers security”14

•  TCG: “Cyber Resilient Module and Building Block 
Requirements”22

From this input, a mapping table was created to build a 
vocabulary. The resulting categories were merged and 
distilled to find non-overlapping security features. These 
features are called “security primitives” in the remainder 
of this document. As a by-product of this derivation 
method, the derived security primitives are defined on 
multiple implementation levels and contain rather 
low-level product features such as software isolation and 
highlevel functionality such as secure updates. 
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Throughout this document, the following actors are 
identified: 

• Manufacturers—provide the platform on which the 
(I)IoT devices are built; they design and develop SPUs, 
components and related enablement kits

• Original Equipment Manufacturer/Original Device 
Manufacturer—the primary customers of the 
manufacturers; they design, develop and operate 
(I)IoT devices and related services

• End users—the intended consumers, operators or 
system integrator of (I)oT devices and their services in 
the industrial or consumer electronics market

This document is intended as an entry point for gathering 
security functional requirements and process requirements 
for a particular use case. It defines a process to evaluate 
use cases against common standards such as ISA/IEC 
624436 and select an appropriate platform. It helps (i) 
to identify gaps in general functionality, (ii) to analyze 
how secure components support a full system solution, 
(iii) to discuss the security level and attack robustness 
level needed for a primitive. It does not provide 
implementation requirements or grant any security claims. 
A detailed security analysis of the individual security 
functional requirements and their implementation is 
strongly recommended as a subsequent step. While 
this process does provide guidance towards fulfilling 
certification requirements, it is not certification evidence 
by itself but provides a structure that helps to create 
evidence and rationale for certification. 

Section 2 provides an overview of the security 
primitives as a common vocabulary to describe security 
requirements in (I)IoT systems. This is followed by a 
process description to apply these primitives to use cases 
and products in Section 3. A detailed description of 
the individual primitives and their inter-dependencies is 
provided in Section 4 for the security-functional primitives 
and in Section 5 for the process-related primitives. 

Finally, Section 6 gives an outlook on the next steps and 
future extensions of the proposed methodology. 

1.3 INTENDED AUDIENCE

The intended audience of this document includes 
engineers and developers working on (I)IoT systems 
from platform to backend level, as well as certification 
and compliance engineers, managers, decision-makers, 
and everyone interested in a system view on (I)IoT 
security. Reading this document does not require any 
expert knowledge on security but is intended to provide 
a common understanding of terminology (to follow 
the requirements of relevant standards and implement 
measures against security threats.)
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1.5 TERMINOLOGY

Throughout this document, the keywords “MUST,” 
“MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” 
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” 
“MAY,” and “OPTIONAL” are to be interpreted 
as described in “Key words for Use in RFCs to 
Indicate Requirement Levels”15. Additionally, the 
term “MANDATORY DEPENDENCY” denotes an “is 
required by” relationship between two entities, whereas 
“OPTIONAL DEPENDENCY” describes an “is utilized if 
present” relationship. 

Finally, “CRYPTOGRAPHIC KEY MATERIAL” relates to 
cryptographic private, public, or shared keys or secrets, as 
well as cryptographic certificates and certificate chains. 

2. OVERVIEW OF THE SECURITY PRIMITIVES

As described in the introduction, security primitives 
constitute non-overlapping categories of security features, 
requirements, and terminology that provide a meaningful 
security service or functionality group. They provide a 
vocabulary to describe security features and requirements 
of an (I)IoT product and provide an easy mapping to 
platform features and certification requirements. The 
primitives relevant for a particular (I)IoT product could 
result in implementation requirements for hardware, 
software or even for appropriate processes. An overview 
of these primitives is given in Table 1. 

The table is split into security functional primitives and 
process-related primitives. A more detailed description of 
each of the primitives is provided in an implementation-
agnostic way in Sections 4 and 5. 

First applications of the primitives to use cases and 
products in the industrial IoT sector, the Smart Home and 
Medical domains, as well as to security requirements in the 
Automotive domain, have been successful and consistent. 
This resulted in a process to evaluate use cases and 
products that guide a developer, engineer, or designer 
through the identification of security requirements of 
(I)IoT products. This process is described and applied to 
a simplified example use case in Section 3. 

Security 
Functional 
Primitives

Device Attestation 

Secure Updates 

Secure Onboarding and Offboarding 

Secure Provisioning and Decommissioning 

Secure Communication (Protocols) 

Secure Debug and Test 

Secure Backup and Recovery 

Account Authentication and Management 

(Attested) Secure State and Life Cycle Management 

Genuine Identification 

Secure Initialization 

Anomaly Detection and Reaction 

Cryptographic Key Generation and Injection 

Cryptographic Key and Certificate Store 

Secure (Encrypted) Storage 

Cryptographic Operation 

Cryptographic Random Number Generation 

System Event Logging 

Silicon Root of Trust 

Residual Information Purging 

Software Isolation 

Monotonic Time

Reliable Control Transfer

Cyber Resilience

Security Process 
Primitives

Secure Policy Compliance 

Security by Design 

Vulnerability and Incident Management 

Protection of Personal Information

Table 1: Overview of security primitives
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• Choose a product/platform to realize the system and 
evaluate it against the security requirements to derive 
implementation requirements

The intention is to start with the top-most item and move 
to the bottom, but the order of the individual steps can 
be interchanged. Details for the individual stages of the 
process are given in the following subsections. 

To illustrate the application of this process, a smart 
surveillance camera connected to the cloud is considered 
as a use case. Please note that the following sections are 
for illustration only and do not evaluate all requirements 
and primitives. They shall not be considered a complete 
analysis. Instead, this document focuses on the concern to 
securely connect to the cloud backend and to deliver an 
authentic video stream from the camera.

3. PROCESS FOR APPLICATION TO PRODUCT 
AND USE CASES

This section defines a process to ease the application 
of the Security Primitives to use cases and products. As 
depicted in Figure 2, this process is divided into three 
distinct phases: 

• The selection of applicable security primitives based 
on the use case

• Selecting an applicable standard and identifying 
relevant primitives (in some cases the applicable 
standard to be met might also be given as initial 
precondition)

Use Case Select use 
case security 

primitives

Select applicable 
standard and 

review primitives

Select 
platform/system 

and evaluate

Standard Primitives

Platform/System Requirements

Primitives

• Identify required primitives to meet standard

• Check whether primitives were missed out   
  when reviewing the use case

• Derive implementation   
  requirements

• Identify gaps and user   
  guidance

Figure 2: Standard evaluation for use cases and products

3.1 USE CASE EVALUATION PHASE

As shown in Figure 2, the input to this phase is a use 
case description. From this definition, a list of applicable 
security primitives is defined. 

Taking the example of the smart surveillance camera, 
the security primitive “Secure Communication (Protocols)” 
outlined in Section 4.5 is immediately applicable for the 
connection to the cloud backend. 

However, this primitive has some dependencies, 
namely Cryptographic Operation (Section 4.16) and 
Cryptographic Random Number Generation (Section 
4.17). These requirements are, therefore, indirectly 
applicable to this use case as well. Table 2 shows how 
these features are mapped to the security primitives. 

Primitive Applicability

Secure 
Communication 
(Protocols)

The smart surveillance camera needs to connect 
securely to the cloud using HTTP Live Streaming 
(HLS) secured via Transport Layer Security (TLS) v1.3. 

Cryptographic 
Operation

Implicit requirements from Secure Communication 
(Protocols):

• Required cryptographic algorithms for TLS v1.3:  
– DHE-RSA 
– ECDHE-RSA 
– ECDHE-ECDSA 
– AES-GCM 
– AES-CCM 
– ChaCha20-Poly1306 
– HKDF-SHA256

Cryptographic 
Random 
Number 
Generation 

Implicitly required by Secure Communication 
(Protocols).

Table 2: Applicable security primitives 
to the example use case of a smart surveillance camera 

**Implicit requirements are given in italics.
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The full list of primitives given in the following sections 
provides guidance for the use case analysis. For the 
following phases, it is beneficial to detail the applicability 
and use case requirements as much as possible. 

It is important to note that the use case evaluation 
phase only considers the (abstract) use case. Ideally, it 
does not include features of particular platforms or the 
whole system, and it does not impose any limitations or 
requirements of certain standards. As such, this step can 
be performed during a product conception phase and 
does not require platform specialists. 

3.2 STANDARD/CERTIFICATION EVALUATION PHASE

Once all primitives are evaluated with respect to the 
use case, a mapping can be performed to see which 
requirements arise from compliance to particular 
standards or regulations. For this purpose, a mapping 
table is provided for the documents listed in 
Section 1.4. This mapping needs to be applied to the 
analysis performed in the previous phase. 

When applied to standards, regulation, or legislation this 
comparison yields two important results: on the one hand, 
it immediately results in security functional requirements 
(SFRs) the (I)IoT device needs to fulfill. On the other hand, 
some security primitives might not be mapped or even 
required as per the use case analysis but required by 
the chosen standard. For the example security primitives 
given in the previous section, the ISA/IEC 62443 4-2 
requirements6 for security level 3 (SL3) are listed in 
Table 3. These requirements need to be fulfilled by 
the (I)IoT solution. 

However, for the example of the smart surveillance 
camera, the security primitive “Secure Backup and 
Recovery” (Section 4.7) might not be relevant. This 
gap can be resolved in multiple ways: either it would 
require a modification of the use case (with a subsequent 
delta analysis), or it would require a tailored product 
certification with an argument outlining why certification 
can be achieved without fulfilling this requirement. 

A similar mapping can be performed to certification 
schemes such as SESIP2. In this case, a list of building 
blocks for the certification is achieved. Further analysis is 
required here to investigate which of these are applicable 
to the (I)IoT product and the targeted security level. 

Once this analysis is completed, a complete list of 
requirements with references to the relevant standards 
is available and can be handed over to the system 
evaluation phase. As with the previous phase, this phase 
is independent of the platform or system related to the 
(I)IoT device. Also, this phase does not need to consider 
the particular use case beyond the mapping provided in 
the previous phase. 

Primitive ISA/IEC 62443 4-2 SL3 Requirements

Secure 
Communication 
(Protocols)

CR 1.1.2 Multifactor authentication for all interfaces 

CR 1.2.1 Unique identification and authentication 

CR 1.8.0 Public key infrastructure certificates 

CR 2.2.0 Wireless use control 

CR 2.5.0 Session lock 

CR 2.6.0 Remote session termination 

CR 2.7.0 Concurrent session control 

CR 3.1.0 Communication integrity 

CR 3.1.1 Communication authentication 

CR 3.8.0 Session integrity 

CR 4.3.0 Use of cryptography 

CR 5.1.0 Network segmentation 

CR 7.1.0 Denial of service protection 

CR 7.1.1 Management communication load from 
component 

CR 7.6.0 Network and security configuration settings 

CR 7.6.1 Machine-readable reporting of current 
security settings

Cryptographic 
Operation

CR 1.8.0 Public key infrastructure certificates 

CR 1.9.0 Strength of public key-based authentication 

CR 1.14.0 Strength of symmetric key-based 
authentication 

CR 3.1.0 Communication integrity 

CR 3.1.1 Communication authentication 

CR 3.3.0 Security functionality verification 

CR 3.4.0 Software and information integrity 

CR 3.4.1 Authenticity of software and information 

CR 3.8.0 Session integrity 

CR 3.9.0 Protection of audit information 

CR 3.14.0 Integrity of boot process 

CR 3.14.1 Authenticity of boot process 

CR 4.1.0 Information confidentiality 

CR 4.3.0 Use of cryptography 

CR 7.3.1 Backup integrity verification

Cryptographic 
Random 
Number 
Generation

CR 2.12.0 Non-repudiation 

CR 3.1.0 Communication integrity 

CR 3.1.1 Communication authentication 

CR 4.3.0 Use of cryptography

Table 3: Resulting requirements for ISA/IEC 62443 4-2 SL3.
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3.3 SYSTEM EVALUATION PHASE

In the final phase, the security primitives are mapped 
to platform and system features. The requirements 
of the previous phase can be mapped to concrete 
implementation details. This allows selecting the platform 
that best matches the use case and requirements, as well 
as identifies relevant software stacks and libraries. It also 
provides a list of implementation requirements and gaps 
that need to be covered by user guidance documents. 

The resulting implementation security requirements out of 
this phase are purely functional at this point. A dedicated 
security analysis of the use case, the platform, and the 
market is still required to estimate the level of security 
hardening of the platform required on top. This, however, 
is not in the scope of this document. Please refer, for 
instance, to the SESIP methodology2, which provides a 
toolbox for security certification on different security levels. 

Returning to the example of the smart surveillance camera, 
the chosen example platform includes the NXP® i.MX 
RT1050 cross-over MCU for industrial products. 
The security features of this microcontroller are extracted 
from the data sheet16 and given in Table 4.

Comparing this to the applicable primitives in Table 2 
and Table 3 shows that the SoC hardware itself can 
only provide partial functionality for TLS. Support for 
certain cryptographic algorithms such as elliptic-curve 
cryptography (ECC) or Rivest–Shamir–Adleman (RSA) 
that are required for TLS is missing. This gap could 
either be closed by choosing an appropriate software 
implementation that provides this functionality, or by 
augmenting the platform with a dedicated secure element 
such as the NXP EdgeLock™ SE05017, 18. Here, this 
particular platform has been chosen to highlight that the 
system evaluation phase may yield gaps. For this particular 
use case, one might rather choose an SoC with hardware 
support for the required cryptographic functionality, such 
as one of the LPC55S69 security solutions for IoT19.

4. DEFINITION OF SECURITY FUNCTIONAL PRIMITIVES

This section covers functional security primitives of 
(I)IoT systems. These primitives are defined in an 
implementation-independent way, and their inter-relations 
are highlighted. Not all primitives are applicable to every 
use case or (I)IoT system. 

The order of presentation of the functional security 
primitives roughly correlates to the relative position in the 
dependency tree. The primitives that are not themselves 
a dependency to others (in terms of object-oriented 
programming, they have no parents) are listed first. 

A table covering all primitives and their dependencies, 
as well as the dependency tree, are provided in Table 5 
in the appendix. 

4.1 DEVICE ATTESTATION

This functionality provides evidence on the (I)IoT device’s 
(genuine) identity, its software and firmware versions, as 
well as its integrity and life cycle state. If required, this 
primitive includes (attested) state indicators of the (I)IoT 
device and its modules. 

NOTE: This primitive applies to the platform, application or both.

Mandatory Dependencies

Device Attestation has the following dependencies: 

•  (Attested) Secure State and Life Cycle Management: 
Proof of the (I)IoT device secure state is part of the 
attestation. 

•  Cryptographic Operation: The device attestation 
requires cryptographic functionality, e.g., the 
computation of a cryptographic hash. 

•  Genuine Identification: Proof of the genuine, unique 
identifier of the (I)IoT is provided as part of the 
attestation. 

•  Secure Initialization: Device attestation provides 
evidence on the integrity protection of the system 
at run-time, which requires a secure initialization of 
the (I)IoT device. 

Optional Dependencies

None

4.2 SECURE UPDATES

This primitive describes the functionality and process to 
securely update an (I)IoT device in the field. Depending on 
the device implementation, this might encompass updates 
and patches of firmware, software, applications, operating 
system, or a combination thereof, as well as modifying 
the device configuration and the installation of new 
applications. Depending on the use case, this may also 
include downgrades to previous versions in a controlled 
and secured manner. In that case, the (I)IoT device shall 
include a mechanism to enforce update policies. 

NOTE: This primitive applies to the process, platform, application, 
or a combination thereof. 

Primitive Security Feature of the i.MX RT1050

Secure 
Communication 
(Protocols)

• M2M Authentication (e.g. Cloud) 

• Interface with third parties cloud services 

• Integration of TLS (e.g. mbedTLS) 

• Digital Certification handling, challenge 
response authentication

Cryptographic 
Operation

Data coprocessor (DCP)

• AES-128, ECB, and CBC mode

• SHA-1 and SHA-256

• CRC-32 

Bus Encryption Engine (BEE)

• AES-128, ECB, and CTR mode

• On-the-fly QSPI flash decryption

Cryptographic 
Random Number 
Generation

True random number generation (TRNG)

Table 4: Security features of the i.MX RT1050, 
taken from the data sheet16.



WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 8

Mandatory Dependencies

Secure updates have the following dependencies: 

•  (Attested) Secure State and Life Cycle Management: 
Secure updates require secured states as starting and 
endpoints. Usually, the update itself is performed in a 
life cycle state with restricted functionality and exposure. 

•  Cryptographic Operation: Secure updates require 
cryptographic functionality, e.g., computing a 
cryptographic hash of the update to be applied. 

Optional Dependencies

Secure updates have the following dependencies: 

•  Cryptographic Key and Certificate Store: Secure 
updates may require the key and certificate store if the 
OEM uses certificates or public keys to validate the 
authenticity of updates or decrypt them if required. 

•  Secure (Encrypted) Storage: Update files or parts 
thereof may be stored in the secure storage to ensure 
integrity across power cycles or device reboots. 

•  Secure Communication (Protocols): A secure update 
may require secure communication protocols. 

4.3 SECURE ONBOARDING AND OFFBOARDING

This functionality provides evidence on the (I)IoT device’s 
(genuine) identity, its software and firmware versions, as 
well as its integrity and life cycle state. If required, this 
primitive includes (attested) state indicators of the (I)IoT 
device and its modules. 

NOTE: This primitive applies to the process, platform, application, 
cloud backend, or a  combination thereof. 

Mandatory Dependencies

Secure onboarding and offboarding have the following 
dependencies: 

•  Genuine Identification: Secure onboarding requires a 
genuine, unique identifier the (I)IoT device uses towards 
the (local) cloud backend. 

Optional Dependencies

Secure onboarding and offboarding have the following 
optional dependencies:  

•  (Attested) Secure State and Life Cycle Management: 
An OEM may choose to use different life cycle states 
depending on whether the (I)IoT device is onboarded.

•  Cryptographic Key and Certificate Store: The 
onboarding process may require authenticating the 
device or cloud backend with key material stored in 
the cryptographic key and certificate store.  

•  Cryptographic Key Generation and Injection: During 
onboarding, key material may be generated on the 
device or injected into it. 

•  Residual Information Purging: Offboarding (I)IoT device 
may be accompanied by purging the (I)IoT device. 

•  Secure Communication (Protocols): The onboarding 
process usually relies on secure communication 
protocols. 

•  Secure Provisioning and Decommissioning: Secure 
onboarding may leverage OEM/ODM keys.

4.4 SECURE PROVISIONING AND DECOMMISSIONING

Provisioning of (I)IoT devices is the process of generating 
and injection (or deriving) key material that an OEM/ODM 
can trust. This may be done by different technical means, it 
may be based on the root of trust of the (I) IoT device, and 
the key material will finally reside on the (I)IoT device. The 
key material may include public keys or hashes to identify 
and validate future updates, keys, and certificates to 
validate the cloud backend identity, secrets for encrypted 
connections, or device identifiers.

Secure provisioning shall be performed by a trustworthy 
process that ensures the confidentiality, integrity and 
authenticity of the OEM/ODM key material. This process 
may be based on trustworthy environments (often called 
secure environments), by a secure protocol or by a 
combination of both. An OEM/ODM may delegate this 
step to the manufacturer by utilizing pre-provisioned key 
material established on the platform during a secured 
(I)IoT platform manufacturing process or based on key 
material derived thereof. 

Decommissioning describes the reverse process, where 
sensitive data is securely purged once the end-of-life of 
the (I)IoT device is declared or reached. Performing a 
factory reset, purging the device for re-sale, or similar 
actions performed by the end user are covered in secure 
onboarding and offboarding. 

NOTE: This primitive applies to the process, platform, application, 
or a combination thereof. 

Mandatory Dependencies

Secure provisioning and decommissioning have the 
following dependencies:

•  (Attested) Secure State and Life Cycle Management: 
After provisioning, a life cycle state change is triggered 
to prevent repeating the provisioning. Similarly, end-of-
life is a dedicated secure state that, depending on the 
use case, may restrict functionality on the device. 

•  Cryptographic Key Generation and Injection: During 
provisioning, key material needs to be generated on the 
device or injected into it. 

•  Genuine Identification: Secure provisioning requires a 
genuine, unique identifier of the (I)IoT against which the 
key material is issued. 

•  Root of Trust: Secure provisioning assumes trust in the 
supply chain. 
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Optional Dependencies

Secure provisioning and decommissioning have the 
following optional dependencies: 

•  Cryptographic Key and Certificate Store: The 
provisioning process may store OEM/ODM key material 
in the Cryptographic key and certificate store.  

•  Residual Information Purging: Decommissioning 
(I)IoT device may be accompanied by purging the 
(I)IoT device. 

4.5 SECURE COMMUNICATION (PROTOCOLS)

(I)IoT devices need to communicate securely with 
each other, cloud backend or a combination thereof. 
These primitive clusters provide support for secure 
communication as well related communication protocol 
support. Examples of such communication could be 
encrypted buses on a hardware level, but also the 
GlobalPlatform secure channel protocol or high-level 
protocols such as hypertext transfer protocol (HTTP) 
secured with transport layer security (TLS). 

NOTE: This primitive applies to the platform, application, cloud backend, 
or a combination thereof. 

Mandatory Dependencies

Secure communication and the related protocols have 
the following dependencies: 

•  Cryptographic Operation: Secure communication 
requires cryptographic functionality such as encryption 
of the exchanged messages. 

•  Cryptographic Random Number Generation: Most 
secure communication protocols require the generation 
of a random seed or nonce, e.g., for proof of possession 
of the private key by the communication partner. 

Optional Dependencies

Secure communication and the related protocols have the 
following optional dependencies: 

•  Cryptographic Key and Certificate Store: The key 
material stored in the cryptographic key and certificate 
store may be used for the establishment of a 
communication session.  

•  Cryptographic Key Generation and Injection: During 
the establishment of a communication session, 
cryptographic keys might be generated. 

4.6 SECURE DEBUG AND TEST

Debugging and testing are essential utilities for 
developing an (I)IoT device. However, they typically also 
allow for manipulation of the device state and extracting 
sensitive data from it. Therefore, they shall be disabled 
on production devices before being shipped to end 
users. This primitive encompasses both the controlled 
disablement of debugging and testing facilities as well as 
the securing of debugging interfaces. 

Both logical debug facilities and physical interfaces need 
to be protected. Examples for logical debug interfaces 
contain software APIs dedicated to testing, or debug 
symbols in compiled code. A physical test interface 
commonly found in ICs is the Joint Test Action Group 
(JTAG) interface.

NOTE: This primitive applies to the platform, application or both. 

Mandatory Dependencies

Secure debug and test have the following dependencies:

•  (Attested) Secure State and Life Cycle Management: 
Debugging and testing shall only be available in certain 
life cycle states but not in the field. 

Optional Dependencies

Secure debug and test have the following optional 
dependencies:

•  Account Authentication and Management: 
Some debugging interfaces may require account 
authentication. 

4.7 SECURE BACKUP AND RECOVERY

Secure backup and recovery describes the functionality 
to back up the (I)IoT device (locally or in the cloud), and 
may be restored at a later point in time. The backup may 
include user data, device software, device state, device 
configuration, or a combination thereof. The backup data 
shall be integrity and authenticity protected. Backup 
and recovery may be performed as a part of the device 
commissioning or onboarding.

Optionally, the backup might provide an availability 
property to be resilient against Denial-of-Service (DoS) 
attacks. In this case, Secure (Encrypted) Storage needs 
to provide the write-latch functionality.

Depending on the use case, this functionality may 
include the functionality to create legitimate clones. 
However, then it would not be possible to attest a 
genuine device identification. 

NOTE: This primitive applies to the platform, application, cloud backend, 
or a combination thereof. 

Mandatory Dependencies

Secure backup and recovery have the following 
dependencies:

•  Cryptographic Operation: To ensure integrity, 
authenticity, and, if required, confidentiality of the 
backup data, cryptographic operations are required. 

•  Secure (Encrypted) Storage: Backup files or parts 
thereof shall be stored in the secure storage to ensure 
the integrity and, if required, confidentiality and/or 
availability via a write-latch functionality.
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Optional Dependencies

Secure backup and recovery have the following optional 
dependencies:

•  (Attested) Secure State and Life Cycle Management: 
Backups may only be available in certain life cycle states. 

•  Cryptographic Key and Certificate Store: Secure backup 
and recovery may require key material stored in the key 
and certificate store. 

4.8 ACCOUNT AUTHENTICATION AND MANAGEMENT

This primitive collects functionality to identify and 
authenticate the user and (I)IoT device accounts. User 
accounts are typically owned by end users who have 
signed-up for the OEM’s (I)IoT system. Device accounts 
may be used in scenarios of private clouds or in dedicated 
industrial networks, where machines identify themselves 
to the cloud backend without user interaction. This 
primitive includes the process of managing such accounts 
and encompasses processes and technical means for 
on- and offboarding of accounts, suspending and 
resuming accounts and similar functionality. It may include 
authorization and access control management. 

NOTE: This primitive applies to processes, application, cloud backend, 
or a combination thereof. 

Mandatory Dependencies

Account authentication and management have the 
following dependencies: 

•  Cryptographic Operation: The account authentication 
requires cryptographic functionality. 

•  Secure (Encrypted) Storage: User credentials need 
to be stored in a secured manner. 

Optional Dependencies

Account authentication and management have the 
following optional dependencies: 

•  Cryptographic Key and Certificate Store: Account 
credentials may be stored in the cryptographic key 
and certificate store. 

4.9 (ATTESTED) SECURE STATE AND LIFE CYCLE 
MANAGEMENT

This primitive and its related implementation ensures that 
an (I)IoT device is in a defined, secured life cycle state. 
Optionally, this primitive also encompasses functionality to 
provide evidence on the device state. If required, secure 
life cycle transitions of the device and policies for such 
transition, as well as proof of the correctness of transition, 
may be part of the life cycle management. 

In this work, no life cycle states are explicitly defined. 
However, a few dedicated states are assumed to be 
present to enable security primitives that depend on life 
cycle management: 

• A “manufacturing life cycle state” that allows the 
commissioning of the device, including the generation 
or injection of key material; development of the (I)IoT 
device with debugging and testing facilities may be 
enabled in this state or a dedicated one.

• An “in-field life cycle state” with disabled debugging 
and testing facilities intended for end user (I)IoT devices 
during normal operation. 

• A “decommissioned life cycle state” that prohibits 
onboarding of the (I)IoT devices to the (local) cloud. 

A good starting point on life cycles and their transitions 
in the context of secure (I)IoT devices is given in 
GlobalPlatform2. 

NOTE: This primitive applies to the platform,  application, or both. 

Mandatory Dependencies

(Attested) Secure state and life cycle management have 
the following dependencies:   

•  Anomaly Detection and Reaction: Mutual dependency—
maintaining a secure state requires proper detection and 
reaction of anomalies. 

•  Secure Initialization: A secure state can only be reached 
through secure initialization. 

Optional Dependencies

None

4.10 GENUINE IDENTIFICATION

Genuine identification is the functionality to emit a unique 
identification of an (I)IoT device. The identification may 
be realized as a unique identifier, such as a serial number 
stored on the platform or may be derived from platform 
features. Optionally, this identification is physically 
unclonable and is used as part of fraud prevention 
and detection. 

Proof of this identity is not covered here but is part of 
the device attestation. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

None

Optional Dependencies

Genuine identification has the following optional 
dependencies: 

•  Cryptographic Operation: Genuine identification 
may be cryptographically computed. 



WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 11

4.11 SECURE INITIALIZATION 

This primitive ensures the authenticity and integrity of the 
device bootloader, firmware, and other software during 
the boot process and ensures that the intended secure life 
cycle state is reached. If required, the implementation may 
handle confidentiality protected (encrypted) boot code. 

Depending on the use case, secure initialization may 
encompass one or more boot stages that are each 
cryptographically secured. Secure initialization may also 
include validating and securely starting of the application 
running on the platform. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

Secure initialization has the following dependencies: 

•  Cryptographic Operation: Secure Initialization requires 
cryptographic functionality; at the very minimum, the 
computation of a cryptographic hash of the boot image. 

Optional Dependencies

Secure initialization has the following optional 
dependencies: 

•  Cryptographic Key and Certificate Store: Secure 
initialization may require key material stored in the 
Cryptographic key and certificate store. 

4.12 ANOMALY DETECTION AND REACTION

This primitive describes the process or algorithm that 
analyzes the (I)IoT device input and output, such as sensor 
data, as well as the software integrity and application 
operation for abnormal events and, if required, triggers 
and executes an action. Typically these actions encompass 
logging the anomaly, issuing a message to the cloud 
backend, resetting the device, and/or changing a secure 
life cycle state. Especially in safety-critical domains, a 
detected anomaly would trigger transitioning into a 
fail-safe state of operation. 

This primitive includes logical and physical tamper 
detection (stand-alone or as an input to the detection 
algorithm) and tamper protection. Monitoring of the 
cloud backend also falls into this category. It may also 
cover error handling, e.g., in case of software anomalies.

Optionally, Reliable Control Transfer can be used to 
enforce the execution of reactions or the communication 
to an external trusted authority.

NOTE: This primitive applies to the platform, application, backend, 
or a combination thereof. 

Mandatory Dependencies

Anomaly detection and reaction have the following 
dependencies:

•  (Attested) Secure State and Life Cycle Management: 
Mutual dependency—upon detection of an anomaly, a 
secure life cycle state change shall be triggered if the 
operation of the (I)IoT device is compromised. This may 
either be realized as a transition into a fail-safe or error 
state or by performing a power-cycle on the (I)IoT device 
followed by a secure initialization in order to re-establish 
a secure state. In some cases where a reaction may 
severely impact the functional operation or safety, it may 
be required to mark the (I)IoT system state compromised 
instead of transitioning to another (I)IoT device state. 

Optional Dependencies

Anomaly detection and reaction have the following 
optional dependencies:

•  System Event Logging: Upon detection of an anomaly, 
a system event may be logged securely. 

•  Secure (Encrypted) Storage: Upon detection of an 
anomaly, the secure storage may be wiped. 

•  Residual Information Purging: Upon detection of an 
anomaly, the device RAM may be wiped. 

•  Reliable Control Transfer: Can be used to enforce the 
execution of reactions or the communication to an 
external trusted authority.

4.13 CRYPTOGRAPHIC KEY GENERATION 
AND INJECTION

This item describes functionality to securely generate 
cryptographic keys and optionally to securely inject or 
import them into the (I)IoT device. The implementation 
may support key exchange and key agreement support, as 
well as key derivation schemes. If a cryptographic key and 
certificate store is present, an interface shall be provided 
to generate or store the keys in the secure key store. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

Cryptographic key generation and injection have the 
following dependencies:

•  Cryptographic Operation: Cryptographic key generation 
and injection requires cryptographic functionality. 

•  Cryptographic Random Number Generation: 
Cryptographic key generation and injection requires 
the generation of (true) random numbers. 

Optional Dependencies

Cryptographic key generation and injection has the 
following optional dependencies:

•  Cryptographic Key and Certificate Store: If present, key 
generation and injection shall leverage the cryptographic 
key and certificate store. 
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4.14 CRYPTOGRAPHIC KEY AND CERTIFICATE STORE

The cryptographic key and certificate store allows the 
user to store key material such as keys and certificates and 
enforce policies on them. The key and certificate store 
shall provide (non-cryptographic) management functionality 
for the key material such as policy management or key 
material deletion. 

If the use case requires a key export, the cryptographic 
key and certificate store shall provide policy management 
to mark key material as non-exportable and enforce this 
policy by technical means. 

The policy management may provide additional flags for 
key material such as limitations on usage.  

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

The cryptographic key and certificate store have the 
following dependencies: 

•  (Attested) Secure State and Life Cycle Management: 
Operations on the key and certificate store shall only be 
available in the (I)IoT device is in a secure life cycle state. 

•  Cryptographic Operation: The cryptographic key and 
certificate store provides cryptographic functionality on 
the key material it holds. 

•  Secure (Encrypted) Storage: Key material is stored in 
the secure encrypted storage. 

Optional Dependencies

The cryptographic key and certificate store has the 
following optional dependencies: 

•  Residual Information Purging: If the underlying platform 
supports it, the cryptographic key and certificate store 
shall purge the memory regions used for its operations. 

•  Software Isolation: If the underlying platform supports it, 
operations of the cryptographic key and certificate store 
shall be executed in isolation. 

4.15 SECURE (ENCRYPTED) STORAGE

Secure storage provides functionality to store data securely 
and maintain its integrity. If required, it may provide 
additional functionality such as encryption to protect data 
confidentiality.

Additionally secure storage may provide a write-latch 
functionality. A write-latch is a write protection mechanism 
which is activated by software, preferably during Secure 
Initialization, but afterwards can only be deactivated by a 
device reset.

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

The secure (encrypted) storage has the following 
dependencies: 

•  Cryptographic Operation: The secure storage requires 
cryptographic functionality to provide integrity 
protection and, if required, ensure the confidentiality 
of the stored data. 

Optional Dependencies

The secure (encrypted) storage has the following 
optional dependencies:

•  Secure Initialization: Write-latches need to be 
activated during Secure Initialization before any 
untrusted code is executed. 

4.16 CRYPTOGRAPHIC OPERATION

This primitive groups cryptographic functionality such as 
encryption, decryption, hashing, or signing. Depending on 
the platform and use case, these might be provided by a 
dedicated secure element, by specific hardware features, 
or by a cryptographic library or software stack used by 
the application. In the latter case, the security framework, 
libraries, or software stack provided by the platform shall 
be used. If a cryptographic key and certificate store is 
present, an interface shall be provided to leverage this 
functionality utilizing the keys in the secure key store. 

If required by the use case, cryptographic operation 
may include higher-level functionality such as certificate 
verification, certificate signing, and certificate signing 
request (CSR) handling. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

None

Optional Dependencies

Cryptographic operation has the following optional 
dependencies:

•  Software Isolation: If the underlying platform supports it, 
cryptographic operations shall be executed in isolation. 

4.17 CRYPTOGRAPHIC RANDOM NUMBER GENERATION

For many secure protocols and related cryptographic 
functionality, it is required to generate random numbers 
securely. Optionally, this primitive includes the generation 
of true random numbers. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

None

Optional Dependencies

None



WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 13

4.18 SYSTEM EVENT LOGGING

Most (I)IoT devices require facilities to (securely) 
log system events in an integrity-protected way.  

This primitive may be used to implement means of 
ensuring non-repudiation.

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

System event logging has the following dependencies: 

•  Secure (Encrypted) Storage: Events and related data 
are stored in the secure encrypted storage. 

Optional Dependencies

System event logging has the following optional 
dependencies: 

•  Monotonic Time: System event logging may use 
monotonic counters or timestamps to ensure integrity 
on the order of events. 

4.19 ROOT OF TRUST

This primitive relates to the initial root of trust (RoT) 
on the security component that is established during the 
manufacturing process and is the foundation for the 
device commissioning. This might be achieved, for 
instance, by manufacturing the (I)IoT device inside trusted 
manufacturing facilities, or, if available, by using pre-
provisioned secure elements in a zero-trust environment.

NOTE: This primitive applies to the process, platform, or both. 

Mandatory Dependencies

None 

Optional Dependencies

The root of trust has the following optional dependencies: 

•  Cryptographic Operation: The root of trust may use 
cryptographic functionality to derive device identity or 
key material. 

4.20 RESIDUAL INFORMATION PURGING

This functionality ensures that deallocated data is no 
longer present; for instance, that a newly allocated and 
not yet initialized memory does not contain (parts of) its 
previous content. This covers data in volatile memory 
and optionally non-volatile memories. 

One implementation that falls into this primitives is the 
blanking of cryptographic keys. 

NOTE: This primitive applies to the platform, application or both. 

Mandatory Dependencies

None

Optional Dependencies

None 

4.21 SOFTWARE ISOLATION

This primitive describes means to isolate the device 
operating system (OS) from applications, as well as 
applications from each other. This includes the separation 
of resources such as memory regions claimed by the OS, 
applications or a combination of both. 

This may be realized by moving secure applications, 
cryptographic functionality, or both into a dedicated secure 
subsystem or secure element. 

NOTE: This primitive applies to the platform. 

Mandatory Dependencies

None

Optional Dependencies

None

4.22 MONOTONIC TIME

Rollback and replay protection, as well as mechanisms 
for non-repudiation, require monotonically increasing 
counters or timestamps or similar. This primitive includes 
measures in hardware or software (for instance, leveraging 
blockchains) to provide measures of monotonically 
increasing time. 

NOTE: This primitive applies to the platform, application, or both. 

Mandatory Dependencies

None

Optional Dependencies

None

4.23 RELIABLE CONTROL TRANSFER

Reliable Control Transfer describes the ability to always 
initiate Secure Initialization not only when the device 
is in an inoperable state but also when it is under full 
adversarial control. This is implemented via a dedicated 
watchdog counter which resets the device and thus 
initiates Secure Initialization on expiry. There are different 
options to guarantee this. A watchdog counter can be 
authenticated, such that it can only be serviced by signed 
messages from an external trusted authority. In another 
instantiation it can be latched such that Secure Initialization 
activates and locks the watchdog counter,  such that it 
cannot be serviced at all. This inevitably forces a reset.

NOTE: This primitive applies to the platform, application, cloud backend, 
or a combination thereof. 

Mandatory Dependencies

Reliable Control Transfer has the following dependencies:

•  Secure Initialization: The watchdog counter needs to 
be activated during Secure Initialization before any 
untrusted code is executed.
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Optional Dependencies

Reliable Control Transfer has the following optional 
dependencies:

•  Cryptographic Operation: The authenticated watchdog 
counter needs to verify the authenticity of the messages 
from the external trusted authority.

•  Cryptographic Key and Certificate Store: The public 
key of the external trusted authority needs to be 
integrity protected.

4.24 CYBER RESILIENCE

Cyber Resilience describes the functionality to 
automatically recover a compromised device remotely 
to a trusted state. This primitive requires the device to 
implement a Reliable Control Transfer and to provide 
Secure Backup and Recovery including the availability 
functionality. Optionally, Secure Updates may allow 
to patch a vulnerability after a trusted state has been 
reestablished. Furthermore, Anomaly Detection and 
Reaction can be used to reduce recovery time and to 
reach a trusted state earlier.

NOTE: This primitive applies to the platform, application, cloud backend, 
or a combination thereof. 

Mandatory Dependencies

Cyber Resilience has the following dependencies:

•  Reliable Control Transfer: To ensure that control can 
be taken from an adversary and transferred to Secure 
Initialization.

•  Secure Backup and Recovery: To ensure that code 
which brings a device into a trusted state is always 
available to Secure Initialization.

•  Secure Initialization: To ensure that Reliable Control 
Transfer and Secure Backup and Recovery are initialized 
properly. To ensure that after a Reliable Control Transfer, 
a Secure Initialization can be performed.

Optional Dependencies

Cyber Resilience has the following optional dependencies:

•  Secure Updates: Provide the ability to patch 
vulnerabilities after a trusted state has been 
reestablished.

 Anomaly Detection and Reaction: Can be used to reduce 
recovery time and to reach a trusted state earlier. 

5. DEFINITION OF SECURITY PROCESS PRIMITIVES

This section covers process-related security primitives 
of (I)IoT systems. As depicted in Figure 1, processes 
typically encompass the whole development process and 
operation of the IoT device. As such, these primitives are 
applicable to the platform, the application and the cloud 
backend, as well as the process category itself. 

5.1 SECURE POLICY COMPLIANCE

This primitive describes compliance of the (I)IoT 
device functionality, as well as related development 
and operational processes to local and global security 
policies and legislation.

Mandatory Dependencies

Secure policy compliance has the following dependencies: 

•  Security by Design: Most secure policies and 
processes require security to be considered during 
the design phase. 

•  Vulnerability and Incident Management: Most policies 
and processes mandate a vulnerability and incident 
management process. 

•  Protection of Personal Information: Most regulations 
mandate the protection of personal information. 

Optional Dependencies

None

5.2 SECURITY BY DESIGN

This primitive describes a process to ensure security 
best practices are followed during the (I)IoT device 
development and manufacturing phase. It also mandates 
baseline security for the device configuration and (end 
user) credentials.

Mandatory Dependencies

None

Optional Dependencies

Security by design has the following optional 
dependencies: 

•  Account Authentication and Management: Security 
by design mandates policies on account management 
if such functionality is available. 

5.3 VULNERABILITY AND INCIDENT MANAGEMENT

Processes to allow third parties to report flaws and 
vulnerabilities and react on them, as well as to disclose 
vulnerabilities and incidents to end users and authorities. 
This is mandated by many regulations, such as the 
European General Data Protection Regulation (GDPR).

Mandatory Dependencies

None

Optional Dependencies

None
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5.4 PROTECTION OF PERSONAL INFORMATION

Protection of personally identifiable information of 
end users and compliance with corresponding legislation 
such as GDPR.

Mandatory Dependencies

Protection of personal information has the following 
dependencies: 

•  Cryptographic Operation: Cryptographic functionality 
is required to ensure the confidentiality of personal 
information. 

•  Secure (Encrypted) Storage: Personal data shall be 
stored in secure encrypted storage. 

Optional Dependencies

Protection of personal information has the following 
optional dependencies:

•  Cryptographic Key and Certificate Store: If present, 
end user key material shall be stored in the key and 
certificate store. 

6. CONCLUSION

In this document, a nomenclature in the form of security 
primitives is presented for IoT security requirements. The 
security primitives are defined, consisting of meaningful 
and non-overlapping categories of security features and 
requirements. A procedure is described for how the 
primitives can be aligned with common standards, and 
finally, how the resulting set of primitives can be mapped 
to a particular product for the use case. Thus, based on this 
analysis, one has a structured set of information to continue 
to evaluate the product’s functional sufficiency, its security 
requirements. To illustrate the procedure, one particular 
use case and the example of the ISA/IEC 62443 standard 
is shown how the security primitives can be mapped to this 
specific use case and to the detailed requirements of the 
standard. This yields the security functional requirements an 
(I)IoT device needs to fulfill, and as such, helps to identify 
the respective product features and primitives needed to 
meet the requirements of the standard.

After defining the terminology and approach and showing 
its applicability to a specific use case and standard, the 
recommended next steps are to prove the concept along 
further use cases and standards. Following this, security 
levels can be defined based on such a commonly agreed 
terminology and discussed to show the robustness of a 
particular implementation.

APPENDIX A  FULL MAPPING TABLE

An electronic version of the mapping table is provided 
on request

APPENDIX B  AUXILIARY MATERIAL

B.1 Security Primitive Dependency Table

The full relation of the security primitives detailed in 
Sections 4 and 5 is compiled into the format of a table 
and given in Table 5. In this table, all dependencies of a 
security primitive are given in a row, with direct mandatory 
dependencies depicted as a filled circle. By recursively 
considering the mandatory dependencies, all indirect 
dependent primitives are identified and shown as an 
empty circle. Direct optional dependencies are given as an 
empty square. Please refer to the respective section of the 
security primitive for a rationale on the dependencies. 
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Table 5: Dependency Table of the Security Primitives. 

● indicates mandatory dependencies, ○ denotes indirect mandatory dependencies and □ is for optional dependencies. 
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Device Attestation ● ● ● ○ ●
Secure Updates □ ● ○ ○ □ □ ●
Secure Onboarding 
and Offboarding □ □ □ ● □ □ □
Secure 
Provisioning and 
Decommissioning

● ● ○ ○ ● □ ○ ○ ● □
Secure 
Communication 
(Protocols)

□ □ ● ●
Secure Debug and 
Test □ ● ○ ○ ○
Secure Backup and 
Recovery □ □ ● ●
Account 
Authentication and 
Management

□ ● ●
(Attested) Secure 
State and Life Cycle 
Management

● ● ○
Genuine 
Identification □
Secure Initialization □ ●
Anomaly Detection 
and Reaction ● ○ ○ □ ○ □ □ □
Cryptographic Key 
Generation and 
Injection

□ ● ●
Cryptographic Key 
and Certificate 
Store

● ○ ○ ● ● □ □
Secure (Encrypted) 
Storage ●
Cryptographic 
Operation □
Cryptographic 
Random Number 
Generation
System Event 
Logging ● ○ □
Root of Trust □
Residual 
Information Purging

Software Isolation

Monotonic Time

Secure Policy 
Compliance ○ ○ ○ ○ ● ● ●
Security by Design □
Vulnerability 
and Incident 
Management
Protection 
of Personal 
Information

○ ○ □ ● ●
Cyber Resilience □ ● ● □ ○ ○ ●
Reliable Control 
Transfer ● □ □
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B.2 Table of Abbreviations

A glossary of the abbreviations used in this document is 
given in Table 6. 

Abbreviation Description

GDPR General Data Protection Regulation

ECC Elliptic-curve cryptography

HTTP Hypertext transfer protocol

(I)IoT (Industrial) Internet of Things

IT Information technology

JTAG Joint Test Action Group

MCU Microcontroller unit

MPU Microprocessor unit

OS Operating system

OEMs/ODMs Original Equipment Manufacturer/Original Device 
Manufacturer

PP Protection profile

PSA Platform security architecture

RAM Random access memory

RoT Root of trust

RSA Rivest–Shamir–Adleman (Cryptosystem)

SESIP Security evaluation standard for IoT platforms

SFR Security functional requirement

SoC System on chip

SPU Secure processing unit

TCG Trusted Computing Group

TEE Trusted execution environment

TLS Transport layer security 

Table 6: Resulting requirements for ISA/IEC 62443 4-2 SL3.
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