
TABLE OF CONTENTS

1. Introduction .. 2

1.1 Objective .. 2

1.2 Scope of this Document 2

1.3 Intended Audience ... 3

1.4 Primitive Derivation Methodology 3

1.5 Terminology.. 4

2. Overview of the Security Primitives 4

3. Process for Application to Product and
 Use Cases ... 5

3.1 Use Case Evaluation Phase 5

3.2 Standard/Certification Evaluation Phase 6

3.3 System Evaluation Phase 7

4. Definition of Security Functional Primitives 7

4.1 Device Attestation .. 7

4.2 Secure Updates .. 7

4.3 Secure Onboarding and Offboarding 8

4.4 Secure Provisioning and Decommissioning 8

4.5 Secure Communication (Protocols) 9

4.6 Secure Debug and Test 9

4.7 Secure Backup and Recovery 9

4.8 Account Authentication and Management 10

4.9 (Attested) Secure State and Life Cycle
 Management .. 10

4.10 Genuine Identification 10

4.11 Secure Initialization .. 11

4.12 Anomaly Detection and Reaction 11

4.13 Cryptographic Key Generation
 and Injection .. 11

4.14 Cryptographic Key and
 Certificate Store ... 12

4.15 Secure (Encrypted) Storage 12

4.16 Cryptographic Operation 12

4.17 Cryptographic Random Number
 Generation ... 12

4.18 System Event Logging.................................... 13

4.19 Root of Trust ... 13

4.20 Residual Information Purging 13

4.21 Software Isolation ... 13

4.22 Monotonic Time ... 13

4.23 Reliable Control Transfer 13

4.24 Cyber Resilience ... 14

5. Definition of Security Process Primitives 14

5.1 Secure Policy Compliance 14

5.2 Security by Design ... 14

5.3 Vulnerability and Incident Management 14

5.4 Protection of Personal Information 15

6. Conclusion .. 15

Appendix A—Full Mapping Table............................. 15

Appendix B—Auxiliary Material 15

B.1 Security Primitive Dependency Graph 15

B.2 Table of Abbreviations 17

B.3 References .. 18

SECURITY PRIMITIVES:
COMMON NOMENCLATURE TO
DESCRIBE SECURITY REQUIREMENTS
IN (I)IoT SYSTEMS

WHITE PAPER
SECURITY PRIMITIVES:

COMMON NOMENCLATURE TO DESCRIBE
SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 2

1. INTRODUCTION

Devices in the Internet of Things (IoT) and Industrial IoT
(IIoT) need to be protected against cybersecurity threats.
Hardening these devices and protecting the personal
assets of end users has become a significant focus of
system designers, developers, and manufacturers1, 2 as
well as regulators and legislation3, 4.

There do not exist two documents on securing (I)IoT
devices that seem to agree on a common definition of
these devices or even a common terminology to describe
the security requirements. Furthermore, the scope of
such documents depends on whether they relate to
certification, legislation, or implementation guidance.

With the topic of security becoming relevant for a broad
audience of implementers, a common terminology to
agree, understand and implement measures to fulfill
standards and protect against security threats is getting
increasingly important.

1.1 OBJECTIVE

This document aims to establish a common vocabulary
to describe security requirements in (I)IoT systems. It
introduces a number of “security primitives” by distilling
common terms out of various standards to describe
non-overlapping security features on multiple levels—
from rather low-level platform features such as software
isolation to high-level functionality such as secure updates.

Furthermore, this document describes a process to
identify relevant requirements for an (I)IoT system out of
a use case description of the system. A map to existing
standards, certification schemes, legislation, and popular
implementation guides is provided, which allows for
quickly identifying implementation requirements for
an (I)IoT product.

The security primitives and the related process are
intended as an entry point for gathering security
functional requirements and process requirements
for a particular use case.

1.2 SCOPE OF THIS DOCUMENT

(I)IoT describes an ever-growing variety of consumer,
home, and industrial devices with network connectivity.
These devices are interacting with the physical world
through a transducer, i.e., a sensor or actuator, and
incorporate at least one network interface5. As with
most sources defining (I)IoT, conventional information
technology (IT) devices such as personal computers,
laptops, smartphones, or tablets are explicitly
excluded from the range of (I)IoT devices.

While most sources broadly agree on this definition of
(I)IoT devices, there is no consensus on the scope of
security requirements. Regulators and legislation typically
evaluate this topic from the end user perspective and
consequently target the full (I)IoT ecosystem, including the
devices, the cloud backend, and everything in between.
Component manufacturers and most certification
schemes, on the other hand, typically target (I)IoT devices
or components thereof.

The scope of this document is an (I)IoT system as
depicted in Figure 1. This system consists of one or more
(I)IoT devices and the cloud backend to which they are
connected. It also includes all processes related to all
stages of the device life cycle, such as designing and
manufacturing, as well as operating the devices and the
cloud backend. In this scope, an (I)IoT product is defined
as an (I)IoT system comprised of one (I)IoT device and
the accompanying cloud backend.

The (I)IoT device is further broken down into the
security platform part that typically consists of a secure
microcontroller or microprocessor unit (MCU/MPU)
on a system on chip (SoC), and the (I)IoT application
running on top of it. The platform part may also contain
companion chips such as secure elements, as well as the
firmware, operating system, device drivers, and software
stacks, enabling secure operation on the MCU/ MPU.
The (I)IoT application part contains the sensors and
actuators it requires for its operation.

This split of the device roughly resembles the split of
what a platform/chip manufacturer provides to enable its
customers and the specific functionality an (I)IoT device
manufacturer implements.

The cloud backend includes the backend application as
well as the infrastructure required to connect the (I)IoT
device to the backend. Especially in the industrial domain,
this includes equipment such as routers, switches, and
firewalls. Devices such as hubs that sit on the edge and
connect devices to the cloud are also part of the cloud
backend by this definition.

Figure 1: Definition of an (I)IoT Systemand an (I)IoT device

Cloud Backend
P

ro
ce

ss
Security Target

Transducer + Application Security Target

Platform Security Target

(I)
Io

T
D

ev
ic

e

1.4 PRIMITIVE DERIVATION METHODOLOGY

To derive a common vocabulary, many different sources
were collected. The sources include requirements
and terminology from legislation, standards and
recommendations, and criteria from evaluation and
certification methodologies.

Additionally, the requirements of the following standards
are considered:

• ISA/IEC 62443 4-2: “Security for Industrial Automation
and Control Systems”6

• ETSI EN 303 645: “Cyber Security for Consumer
Internet of Things”8

• SAE J3101: “Hardware Protected Security for Ground
Vehicles”9

• FIPS PUB 140-3: “Security Requirements for
Cryptographic Modules”20

• NIST SP 800-193: “Platform Firmware Resiliency
Guidelines”21

Requirements from legislation such as the following are
considered:

• The United States IoT Bill4

• United Kingdom Government Code of Practice3

• Finnish Cybersecurity label7

To provide a mapping to common certification schemes
and certification methodologies, criteria of the following
sources (amongst others) are considered:

• Security Evaluation Standard for IoT Platforms (SESIP)2

• GlobalPlatform Trusted Execution Environment (TEE)
Protection Profile (PP)12

• Arm® Platform Security Architecture (PSA) Level 2
and Level 313

• GlobalPlatform IoTopia1

Finally, the terminology of the following recommendations
is collected:

• NISTIR 8259: “Recommendations for IoT Device
Manufacturers: Foundational Activities and Core Device
Cybersecurity Capability Baseline”5

• ST Microcontroller AN5156: “Introduction to STM32
microcontrollers security”14

• TCG: “Cyber Resilient Module and Building Block
Requirements”22

From this input, a mapping table was created to build a
vocabulary. The resulting categories were merged and
distilled to find non-overlapping security features. These
features are called “security primitives” in the remainder
of this document. As a by-product of this derivation
method, the derived security primitives are defined on
multiple implementation levels and contain rather
low-level product features such as software isolation and
highlevel functionality such as secure updates.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 3

Throughout this document, the following actors are
identified:

• Manufacturers—provide the platform on which the
(I)IoT devices are built; they design and develop SPUs,
components and related enablement kits

• Original Equipment Manufacturer/Original Device
Manufacturer—the primary customers of the
manufacturers; they design, develop and operate
(I)IoT devices and related services

• End users—the intended consumers, operators or
system integrator of (I)oT devices and their services in
the industrial or consumer electronics market

This document is intended as an entry point for gathering
security functional requirements and process requirements
for a particular use case. It defines a process to evaluate
use cases against common standards such as ISA/IEC
624436 and select an appropriate platform. It helps (i)
to identify gaps in general functionality, (ii) to analyze
how secure components support a full system solution,
(iii) to discuss the security level and attack robustness
level needed for a primitive. It does not provide
implementation requirements or grant any security claims.
A detailed security analysis of the individual security
functional requirements and their implementation is
strongly recommended as a subsequent step. While
this process does provide guidance towards fulfilling
certification requirements, it is not certification evidence
by itself but provides a structure that helps to create
evidence and rationale for certification.

Section 2 provides an overview of the security
primitives as a common vocabulary to describe security
requirements in (I)IoT systems. This is followed by a
process description to apply these primitives to use cases
and products in Section 3. A detailed description of
the individual primitives and their inter-dependencies is
provided in Section 4 for the security-functional primitives
and in Section 5 for the process-related primitives.

Finally, Section 6 gives an outlook on the next steps and
future extensions of the proposed methodology.

1.3 INTENDED AUDIENCE

The intended audience of this document includes
engineers and developers working on (I)IoT systems
from platform to backend level, as well as certification
and compliance engineers, managers, decision-makers,
and everyone interested in a system view on (I)IoT
security. Reading this document does not require any
expert knowledge on security but is intended to provide
a common understanding of terminology (to follow
the requirements of relevant standards and implement
measures against security threats.)

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 4

1.5 TERMINOLOGY

Throughout this document, the keywords “MUST,”
“MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,”
“MAY,” and “OPTIONAL” are to be interpreted
as described in “Key words for Use in RFCs to
Indicate Requirement Levels”15. Additionally, the
term “MANDATORY DEPENDENCY” denotes an “is
required by” relationship between two entities, whereas
“OPTIONAL DEPENDENCY” describes an “is utilized if
present” relationship.

Finally, “CRYPTOGRAPHIC KEY MATERIAL” relates to
cryptographic private, public, or shared keys or secrets, as
well as cryptographic certificates and certificate chains.

2. OVERVIEW OF THE SECURITY PRIMITIVES

As described in the introduction, security primitives
constitute non-overlapping categories of security features,
requirements, and terminology that provide a meaningful
security service or functionality group. They provide a
vocabulary to describe security features and requirements
of an (I)IoT product and provide an easy mapping to
platform features and certification requirements. The
primitives relevant for a particular (I)IoT product could
result in implementation requirements for hardware,
software or even for appropriate processes. An overview
of these primitives is given in Table 1.

The table is split into security functional primitives and
process-related primitives. A more detailed description of
each of the primitives is provided in an implementation-
agnostic way in Sections 4 and 5.

First applications of the primitives to use cases and
products in the industrial IoT sector, the Smart Home and
Medical domains, as well as to security requirements in the
Automotive domain, have been successful and consistent.
This resulted in a process to evaluate use cases and
products that guide a developer, engineer, or designer
through the identification of security requirements of
(I)IoT products. This process is described and applied to
a simplified example use case in Section 3.

Security
Functional
Primitives

Device Attestation

Secure Updates

Secure Onboarding and Offboarding

Secure Provisioning and Decommissioning

Secure Communication (Protocols)

Secure Debug and Test

Secure Backup and Recovery

Account Authentication and Management

(Attested) Secure State and Life Cycle Management

Genuine Identification

Secure Initialization

Anomaly Detection and Reaction

Cryptographic Key Generation and Injection

Cryptographic Key and Certificate Store

Secure (Encrypted) Storage

Cryptographic Operation

Cryptographic Random Number Generation

System Event Logging

Silicon Root of Trust

Residual Information Purging

Software Isolation

Monotonic Time

Reliable Control Transfer

Cyber Resilience

Security Process
Primitives

Secure Policy Compliance

Security by Design

Vulnerability and Incident Management

Protection of Personal Information

Table 1: Overview of security primitives

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 5

• Choose a product/platform to realize the system and
evaluate it against the security requirements to derive
implementation requirements

The intention is to start with the top-most item and move
to the bottom, but the order of the individual steps can
be interchanged. Details for the individual stages of the
process are given in the following subsections.

To illustrate the application of this process, a smart
surveillance camera connected to the cloud is considered
as a use case. Please note that the following sections are
for illustration only and do not evaluate all requirements
and primitives. They shall not be considered a complete
analysis. Instead, this document focuses on the concern to
securely connect to the cloud backend and to deliver an
authentic video stream from the camera.

3. PROCESS FOR APPLICATION TO PRODUCT
AND USE CASES

This section defines a process to ease the application
of the Security Primitives to use cases and products. As
depicted in Figure 2, this process is divided into three
distinct phases:

• The selection of applicable security primitives based
on the use case

• Selecting an applicable standard and identifying
relevant primitives (in some cases the applicable
standard to be met might also be given as initial
precondition)

Use Case Select use
case security

primitives

Select applicable
standard and

review primitives

Select
platform/system

and evaluate

Standard Primitives

Platform/System Requirements

Primitives

• Identify required primitives to meet standard

• Check whether primitives were missed out
 when reviewing the use case

• Derive implementation
 requirements

• Identify gaps and user
 guidance

Figure 2: Standard evaluation for use cases and products

3.1 USE CASE EVALUATION PHASE

As shown in Figure 2, the input to this phase is a use
case description. From this definition, a list of applicable
security primitives is defined.

Taking the example of the smart surveillance camera,
the security primitive “Secure Communication (Protocols)”
outlined in Section 4.5 is immediately applicable for the
connection to the cloud backend.

However, this primitive has some dependencies,
namely Cryptographic Operation (Section 4.16) and
Cryptographic Random Number Generation (Section
4.17). These requirements are, therefore, indirectly
applicable to this use case as well. Table 2 shows how
these features are mapped to the security primitives.

Primitive Applicability

Secure
Communication
(Protocols)

The smart surveillance camera needs to connect
securely to the cloud using HTTP Live Streaming
(HLS) secured via Transport Layer Security (TLS) v1.3.

Cryptographic
Operation

Implicit requirements from Secure Communication
(Protocols):

• Required cryptographic algorithms for TLS v1.3:
– DHE-RSA
– ECDHE-RSA
– ECDHE-ECDSA
– AES-GCM
– AES-CCM
– ChaCha20-Poly1306
– HKDF-SHA256

Cryptographic
Random
Number
Generation

Implicitly required by Secure Communication
(Protocols).

Table 2: Applicable security primitives
to the example use case of a smart surveillance camera

**Implicit requirements are given in italics.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 6

The full list of primitives given in the following sections
provides guidance for the use case analysis. For the
following phases, it is beneficial to detail the applicability
and use case requirements as much as possible.

It is important to note that the use case evaluation
phase only considers the (abstract) use case. Ideally, it
does not include features of particular platforms or the
whole system, and it does not impose any limitations or
requirements of certain standards. As such, this step can
be performed during a product conception phase and
does not require platform specialists.

3.2 STANDARD/CERTIFICATION EVALUATION PHASE

Once all primitives are evaluated with respect to the
use case, a mapping can be performed to see which
requirements arise from compliance to particular
standards or regulations. For this purpose, a mapping
table is provided for the documents listed in
Section 1.4. This mapping needs to be applied to the
analysis performed in the previous phase.

When applied to standards, regulation, or legislation this
comparison yields two important results: on the one hand,
it immediately results in security functional requirements
(SFRs) the (I)IoT device needs to fulfill. On the other hand,
some security primitives might not be mapped or even
required as per the use case analysis but required by
the chosen standard. For the example security primitives
given in the previous section, the ISA/IEC 62443 4-2
requirements6 for security level 3 (SL3) are listed in
Table 3. These requirements need to be fulfilled by
the (I)IoT solution.

However, for the example of the smart surveillance
camera, the security primitive “Secure Backup and
Recovery” (Section 4.7) might not be relevant. This
gap can be resolved in multiple ways: either it would
require a modification of the use case (with a subsequent
delta analysis), or it would require a tailored product
certification with an argument outlining why certification
can be achieved without fulfilling this requirement.

A similar mapping can be performed to certification
schemes such as SESIP2. In this case, a list of building
blocks for the certification is achieved. Further analysis is
required here to investigate which of these are applicable
to the (I)IoT product and the targeted security level.

Once this analysis is completed, a complete list of
requirements with references to the relevant standards
is available and can be handed over to the system
evaluation phase. As with the previous phase, this phase
is independent of the platform or system related to the
(I)IoT device. Also, this phase does not need to consider
the particular use case beyond the mapping provided in
the previous phase.

Primitive ISA/IEC 62443 4-2 SL3 Requirements

Secure
Communication
(Protocols)

CR 1.1.2 Multifactor authentication for all interfaces

CR 1.2.1 Unique identification and authentication

CR 1.8.0 Public key infrastructure certificates

CR 2.2.0 Wireless use control

CR 2.5.0 Session lock

CR 2.6.0 Remote session termination

CR 2.7.0 Concurrent session control

CR 3.1.0 Communication integrity

CR 3.1.1 Communication authentication

CR 3.8.0 Session integrity

CR 4.3.0 Use of cryptography

CR 5.1.0 Network segmentation

CR 7.1.0 Denial of service protection

CR 7.1.1 Management communication load from
component

CR 7.6.0 Network and security configuration settings

CR 7.6.1 Machine-readable reporting of current
security settings

Cryptographic
Operation

CR 1.8.0 Public key infrastructure certificates

CR 1.9.0 Strength of public key-based authentication

CR 1.14.0 Strength of symmetric key-based
authentication

CR 3.1.0 Communication integrity

CR 3.1.1 Communication authentication

CR 3.3.0 Security functionality verification

CR 3.4.0 Software and information integrity

CR 3.4.1 Authenticity of software and information

CR 3.8.0 Session integrity

CR 3.9.0 Protection of audit information

CR 3.14.0 Integrity of boot process

CR 3.14.1 Authenticity of boot process

CR 4.1.0 Information confidentiality

CR 4.3.0 Use of cryptography

CR 7.3.1 Backup integrity verification

Cryptographic
Random
Number
Generation

CR 2.12.0 Non-repudiation

CR 3.1.0 Communication integrity

CR 3.1.1 Communication authentication

CR 4.3.0 Use of cryptography

Table 3: Resulting requirements for ISA/IEC 62443 4-2 SL3.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 7

3.3 SYSTEM EVALUATION PHASE

In the final phase, the security primitives are mapped
to platform and system features. The requirements
of the previous phase can be mapped to concrete
implementation details. This allows selecting the platform
that best matches the use case and requirements, as well
as identifies relevant software stacks and libraries. It also
provides a list of implementation requirements and gaps
that need to be covered by user guidance documents.

The resulting implementation security requirements out of
this phase are purely functional at this point. A dedicated
security analysis of the use case, the platform, and the
market is still required to estimate the level of security
hardening of the platform required on top. This, however,
is not in the scope of this document. Please refer, for
instance, to the SESIP methodology2, which provides a
toolbox for security certification on different security levels.

Returning to the example of the smart surveillance camera,
the chosen example platform includes the NXP® i.MX
RT1050 cross-over MCU for industrial products.
The security features of this microcontroller are extracted
from the data sheet16 and given in Table 4.

Comparing this to the applicable primitives in Table 2
and Table 3 shows that the SoC hardware itself can
only provide partial functionality for TLS. Support for
certain cryptographic algorithms such as elliptic-curve
cryptography (ECC) or Rivest–Shamir–Adleman (RSA)
that are required for TLS is missing. This gap could
either be closed by choosing an appropriate software
implementation that provides this functionality, or by
augmenting the platform with a dedicated secure element
such as the NXP EdgeLock™ SE05017, 18. Here, this
particular platform has been chosen to highlight that the
system evaluation phase may yield gaps. For this particular
use case, one might rather choose an SoC with hardware
support for the required cryptographic functionality, such
as one of the LPC55S69 security solutions for IoT19.

4. DEFINITION OF SECURITY FUNCTIONAL PRIMITIVES

This section covers functional security primitives of
(I)IoT systems. These primitives are defined in an
implementation-independent way, and their inter-relations
are highlighted. Not all primitives are applicable to every
use case or (I)IoT system.

The order of presentation of the functional security
primitives roughly correlates to the relative position in the
dependency tree. The primitives that are not themselves
a dependency to others (in terms of object-oriented
programming, they have no parents) are listed first.

A table covering all primitives and their dependencies,
as well as the dependency tree, are provided in Table 5
in the appendix.

4.1 DEVICE ATTESTATION

This functionality provides evidence on the (I)IoT device’s
(genuine) identity, its software and firmware versions, as
well as its integrity and life cycle state. If required, this
primitive includes (attested) state indicators of the (I)IoT
device and its modules.

NOTE: This primitive applies to the platform, application or both.

Mandatory Dependencies

Device Attestation has the following dependencies:

• (Attested) Secure State and Life Cycle Management:
Proof of the (I)IoT device secure state is part of the
attestation.

• Cryptographic Operation: The device attestation
requires cryptographic functionality, e.g., the
computation of a cryptographic hash.

• Genuine Identification: Proof of the genuine, unique
identifier of the (I)IoT is provided as part of the
attestation.

• Secure Initialization: Device attestation provides
evidence on the integrity protection of the system
at run-time, which requires a secure initialization of
the (I)IoT device.

Optional Dependencies

None

4.2 SECURE UPDATES

This primitive describes the functionality and process to
securely update an (I)IoT device in the field. Depending on
the device implementation, this might encompass updates
and patches of firmware, software, applications, operating
system, or a combination thereof, as well as modifying
the device configuration and the installation of new
applications. Depending on the use case, this may also
include downgrades to previous versions in a controlled
and secured manner. In that case, the (I)IoT device shall
include a mechanism to enforce update policies.

NOTE: This primitive applies to the process, platform, application,
or a combination thereof.

Primitive Security Feature of the i.MX RT1050

Secure
Communication
(Protocols)

• M2M Authentication (e.g. Cloud)

• Interface with third parties cloud services

• Integration of TLS (e.g. mbedTLS)

• Digital Certification handling, challenge
response authentication

Cryptographic
Operation

Data coprocessor (DCP)

• AES-128, ECB, and CBC mode

• SHA-1 and SHA-256

• CRC-32

Bus Encryption Engine (BEE)

• AES-128, ECB, and CTR mode

• On-the-fly QSPI flash decryption

Cryptographic
Random Number
Generation

True random number generation (TRNG)

Table 4: Security features of the i.MX RT1050,
taken from the data sheet16.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 8

Mandatory Dependencies

Secure updates have the following dependencies:

• (Attested) Secure State and Life Cycle Management:
Secure updates require secured states as starting and
endpoints. Usually, the update itself is performed in a
life cycle state with restricted functionality and exposure.

• Cryptographic Operation: Secure updates require
cryptographic functionality, e.g., computing a
cryptographic hash of the update to be applied.

Optional Dependencies

Secure updates have the following dependencies:

• Cryptographic Key and Certificate Store: Secure
updates may require the key and certificate store if the
OEM uses certificates or public keys to validate the
authenticity of updates or decrypt them if required.

• Secure (Encrypted) Storage: Update files or parts
thereof may be stored in the secure storage to ensure
integrity across power cycles or device reboots.

• Secure Communication (Protocols): A secure update
may require secure communication protocols.

4.3 SECURE ONBOARDING AND OFFBOARDING

This functionality provides evidence on the (I)IoT device’s
(genuine) identity, its software and firmware versions, as
well as its integrity and life cycle state. If required, this
primitive includes (attested) state indicators of the (I)IoT
device and its modules.

NOTE: This primitive applies to the process, platform, application,
cloud backend, or a combination thereof.

Mandatory Dependencies

Secure onboarding and offboarding have the following
dependencies:

• Genuine Identification: Secure onboarding requires a
genuine, unique identifier the (I)IoT device uses towards
the (local) cloud backend.

Optional Dependencies

Secure onboarding and offboarding have the following
optional dependencies:

• (Attested) Secure State and Life Cycle Management:
An OEM may choose to use different life cycle states
depending on whether the (I)IoT device is onboarded.

• Cryptographic Key and Certificate Store: The
onboarding process may require authenticating the
device or cloud backend with key material stored in
the cryptographic key and certificate store.

• Cryptographic Key Generation and Injection: During
onboarding, key material may be generated on the
device or injected into it.

• Residual Information Purging: Offboarding (I)IoT device
may be accompanied by purging the (I)IoT device.

• Secure Communication (Protocols): The onboarding
process usually relies on secure communication
protocols.

• Secure Provisioning and Decommissioning: Secure
onboarding may leverage OEM/ODM keys.

4.4 SECURE PROVISIONING AND DECOMMISSIONING

Provisioning of (I)IoT devices is the process of generating
and injection (or deriving) key material that an OEM/ODM
can trust. This may be done by different technical means, it
may be based on the root of trust of the (I) IoT device, and
the key material will finally reside on the (I)IoT device. The
key material may include public keys or hashes to identify
and validate future updates, keys, and certificates to
validate the cloud backend identity, secrets for encrypted
connections, or device identifiers.

Secure provisioning shall be performed by a trustworthy
process that ensures the confidentiality, integrity and
authenticity of the OEM/ODM key material. This process
may be based on trustworthy environments (often called
secure environments), by a secure protocol or by a
combination of both. An OEM/ODM may delegate this
step to the manufacturer by utilizing pre-provisioned key
material established on the platform during a secured
(I)IoT platform manufacturing process or based on key
material derived thereof.

Decommissioning describes the reverse process, where
sensitive data is securely purged once the end-of-life of
the (I)IoT device is declared or reached. Performing a
factory reset, purging the device for re-sale, or similar
actions performed by the end user are covered in secure
onboarding and offboarding.

NOTE: This primitive applies to the process, platform, application,
or a combination thereof.

Mandatory Dependencies

Secure provisioning and decommissioning have the
following dependencies:

• (Attested) Secure State and Life Cycle Management:
After provisioning, a life cycle state change is triggered
to prevent repeating the provisioning. Similarly, end-of-
life is a dedicated secure state that, depending on the
use case, may restrict functionality on the device.

• Cryptographic Key Generation and Injection: During
provisioning, key material needs to be generated on the
device or injected into it.

• Genuine Identification: Secure provisioning requires a
genuine, unique identifier of the (I)IoT against which the
key material is issued.

• Root of Trust: Secure provisioning assumes trust in the
supply chain.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 9

Optional Dependencies

Secure provisioning and decommissioning have the
following optional dependencies:

• Cryptographic Key and Certificate Store: The
provisioning process may store OEM/ODM key material
in the Cryptographic key and certificate store.

• Residual Information Purging: Decommissioning
(I)IoT device may be accompanied by purging the
(I)IoT device.

4.5 SECURE COMMUNICATION (PROTOCOLS)

(I)IoT devices need to communicate securely with
each other, cloud backend or a combination thereof.
These primitive clusters provide support for secure
communication as well related communication protocol
support. Examples of such communication could be
encrypted buses on a hardware level, but also the
GlobalPlatform secure channel protocol or high-level
protocols such as hypertext transfer protocol (HTTP)
secured with transport layer security (TLS).

NOTE: This primitive applies to the platform, application, cloud backend,
or a combination thereof.

Mandatory Dependencies

Secure communication and the related protocols have
the following dependencies:

• Cryptographic Operation: Secure communication
requires cryptographic functionality such as encryption
of the exchanged messages.

• Cryptographic Random Number Generation: Most
secure communication protocols require the generation
of a random seed or nonce, e.g., for proof of possession
of the private key by the communication partner.

Optional Dependencies

Secure communication and the related protocols have the
following optional dependencies:

• Cryptographic Key and Certificate Store: The key
material stored in the cryptographic key and certificate
store may be used for the establishment of a
communication session.

• Cryptographic Key Generation and Injection: During
the establishment of a communication session,
cryptographic keys might be generated.

4.6 SECURE DEBUG AND TEST

Debugging and testing are essential utilities for
developing an (I)IoT device. However, they typically also
allow for manipulation of the device state and extracting
sensitive data from it. Therefore, they shall be disabled
on production devices before being shipped to end
users. This primitive encompasses both the controlled
disablement of debugging and testing facilities as well as
the securing of debugging interfaces.

Both logical debug facilities and physical interfaces need
to be protected. Examples for logical debug interfaces
contain software APIs dedicated to testing, or debug
symbols in compiled code. A physical test interface
commonly found in ICs is the Joint Test Action Group
(JTAG) interface.

NOTE: This primitive applies to the platform, application or both.

Mandatory Dependencies

Secure debug and test have the following dependencies:

• (Attested) Secure State and Life Cycle Management:
Debugging and testing shall only be available in certain
life cycle states but not in the field.

Optional Dependencies

Secure debug and test have the following optional
dependencies:

• Account Authentication and Management:
Some debugging interfaces may require account
authentication.

4.7 SECURE BACKUP AND RECOVERY

Secure backup and recovery describes the functionality
to back up the (I)IoT device (locally or in the cloud), and
may be restored at a later point in time. The backup may
include user data, device software, device state, device
configuration, or a combination thereof. The backup data
shall be integrity and authenticity protected. Backup
and recovery may be performed as a part of the device
commissioning or onboarding.

Optionally, the backup might provide an availability
property to be resilient against Denial-of-Service (DoS)
attacks. In this case, Secure (Encrypted) Storage needs
to provide the write-latch functionality.

Depending on the use case, this functionality may
include the functionality to create legitimate clones.
However, then it would not be possible to attest a
genuine device identification.

NOTE: This primitive applies to the platform, application, cloud backend,
or a combination thereof.

Mandatory Dependencies

Secure backup and recovery have the following
dependencies:

• Cryptographic Operation: To ensure integrity,
authenticity, and, if required, confidentiality of the
backup data, cryptographic operations are required.

• Secure (Encrypted) Storage: Backup files or parts
thereof shall be stored in the secure storage to ensure
the integrity and, if required, confidentiality and/or
availability via a write-latch functionality.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 10

Optional Dependencies

Secure backup and recovery have the following optional
dependencies:

• (Attested) Secure State and Life Cycle Management:
Backups may only be available in certain life cycle states.

• Cryptographic Key and Certificate Store: Secure backup
and recovery may require key material stored in the key
and certificate store.

4.8 ACCOUNT AUTHENTICATION AND MANAGEMENT

This primitive collects functionality to identify and
authenticate the user and (I)IoT device accounts. User
accounts are typically owned by end users who have
signed-up for the OEM’s (I)IoT system. Device accounts
may be used in scenarios of private clouds or in dedicated
industrial networks, where machines identify themselves
to the cloud backend without user interaction. This
primitive includes the process of managing such accounts
and encompasses processes and technical means for
on- and offboarding of accounts, suspending and
resuming accounts and similar functionality. It may include
authorization and access control management.

NOTE: This primitive applies to processes, application, cloud backend,
or a combination thereof.

Mandatory Dependencies

Account authentication and management have the
following dependencies:

• Cryptographic Operation: The account authentication
requires cryptographic functionality.

• Secure (Encrypted) Storage: User credentials need
to be stored in a secured manner.

Optional Dependencies

Account authentication and management have the
following optional dependencies:

• Cryptographic Key and Certificate Store: Account
credentials may be stored in the cryptographic key
and certificate store.

4.9 (ATTESTED) SECURE STATE AND LIFE CYCLE
MANAGEMENT

This primitive and its related implementation ensures that
an (I)IoT device is in a defined, secured life cycle state.
Optionally, this primitive also encompasses functionality to
provide evidence on the device state. If required, secure
life cycle transitions of the device and policies for such
transition, as well as proof of the correctness of transition,
may be part of the life cycle management.

In this work, no life cycle states are explicitly defined.
However, a few dedicated states are assumed to be
present to enable security primitives that depend on life
cycle management:

• A “manufacturing life cycle state” that allows the
commissioning of the device, including the generation
or injection of key material; development of the (I)IoT
device with debugging and testing facilities may be
enabled in this state or a dedicated one.

• An “in-field life cycle state” with disabled debugging
and testing facilities intended for end user (I)IoT devices
during normal operation.

• A “decommissioned life cycle state” that prohibits
onboarding of the (I)IoT devices to the (local) cloud.

A good starting point on life cycles and their transitions
in the context of secure (I)IoT devices is given in
GlobalPlatform2.

NOTE: This primitive applies to the platform, application, or both.

Mandatory Dependencies

(Attested) Secure state and life cycle management have
the following dependencies:

• Anomaly Detection and Reaction: Mutual dependency—
maintaining a secure state requires proper detection and
reaction of anomalies.

• Secure Initialization: A secure state can only be reached
through secure initialization.

Optional Dependencies

None

4.10 GENUINE IDENTIFICATION

Genuine identification is the functionality to emit a unique
identification of an (I)IoT device. The identification may
be realized as a unique identifier, such as a serial number
stored on the platform or may be derived from platform
features. Optionally, this identification is physically
unclonable and is used as part of fraud prevention
and detection.

Proof of this identity is not covered here but is part of
the device attestation.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

None

Optional Dependencies

Genuine identification has the following optional
dependencies:

• Cryptographic Operation: Genuine identification
may be cryptographically computed.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 11

4.11 SECURE INITIALIZATION

This primitive ensures the authenticity and integrity of the
device bootloader, firmware, and other software during
the boot process and ensures that the intended secure life
cycle state is reached. If required, the implementation may
handle confidentiality protected (encrypted) boot code.

Depending on the use case, secure initialization may
encompass one or more boot stages that are each
cryptographically secured. Secure initialization may also
include validating and securely starting of the application
running on the platform.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

Secure initialization has the following dependencies:

• Cryptographic Operation: Secure Initialization requires
cryptographic functionality; at the very minimum, the
computation of a cryptographic hash of the boot image.

Optional Dependencies

Secure initialization has the following optional
dependencies:

• Cryptographic Key and Certificate Store: Secure
initialization may require key material stored in the
Cryptographic key and certificate store.

4.12 ANOMALY DETECTION AND REACTION

This primitive describes the process or algorithm that
analyzes the (I)IoT device input and output, such as sensor
data, as well as the software integrity and application
operation for abnormal events and, if required, triggers
and executes an action. Typically these actions encompass
logging the anomaly, issuing a message to the cloud
backend, resetting the device, and/or changing a secure
life cycle state. Especially in safety-critical domains, a
detected anomaly would trigger transitioning into a
fail-safe state of operation.

This primitive includes logical and physical tamper
detection (stand-alone or as an input to the detection
algorithm) and tamper protection. Monitoring of the
cloud backend also falls into this category. It may also
cover error handling, e.g., in case of software anomalies.

Optionally, Reliable Control Transfer can be used to
enforce the execution of reactions or the communication
to an external trusted authority.

NOTE: This primitive applies to the platform, application, backend,
or a combination thereof.

Mandatory Dependencies

Anomaly detection and reaction have the following
dependencies:

• (Attested) Secure State and Life Cycle Management:
Mutual dependency—upon detection of an anomaly, a
secure life cycle state change shall be triggered if the
operation of the (I)IoT device is compromised. This may
either be realized as a transition into a fail-safe or error
state or by performing a power-cycle on the (I)IoT device
followed by a secure initialization in order to re-establish
a secure state. In some cases where a reaction may
severely impact the functional operation or safety, it may
be required to mark the (I)IoT system state compromised
instead of transitioning to another (I)IoT device state.

Optional Dependencies

Anomaly detection and reaction have the following
optional dependencies:

• System Event Logging: Upon detection of an anomaly,
a system event may be logged securely.

• Secure (Encrypted) Storage: Upon detection of an
anomaly, the secure storage may be wiped.

• Residual Information Purging: Upon detection of an
anomaly, the device RAM may be wiped.

• Reliable Control Transfer: Can be used to enforce the
execution of reactions or the communication to an
external trusted authority.

4.13 CRYPTOGRAPHIC KEY GENERATION
AND INJECTION

This item describes functionality to securely generate
cryptographic keys and optionally to securely inject or
import them into the (I)IoT device. The implementation
may support key exchange and key agreement support, as
well as key derivation schemes. If a cryptographic key and
certificate store is present, an interface shall be provided
to generate or store the keys in the secure key store.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

Cryptographic key generation and injection have the
following dependencies:

• Cryptographic Operation: Cryptographic key generation
and injection requires cryptographic functionality.

• Cryptographic Random Number Generation:
Cryptographic key generation and injection requires
the generation of (true) random numbers.

Optional Dependencies

Cryptographic key generation and injection has the
following optional dependencies:

• Cryptographic Key and Certificate Store: If present, key
generation and injection shall leverage the cryptographic
key and certificate store.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 12

4.14 CRYPTOGRAPHIC KEY AND CERTIFICATE STORE

The cryptographic key and certificate store allows the
user to store key material such as keys and certificates and
enforce policies on them. The key and certificate store
shall provide (non-cryptographic) management functionality
for the key material such as policy management or key
material deletion.

If the use case requires a key export, the cryptographic
key and certificate store shall provide policy management
to mark key material as non-exportable and enforce this
policy by technical means.

The policy management may provide additional flags for
key material such as limitations on usage.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

The cryptographic key and certificate store have the
following dependencies:

• (Attested) Secure State and Life Cycle Management:
Operations on the key and certificate store shall only be
available in the (I)IoT device is in a secure life cycle state.

• Cryptographic Operation: The cryptographic key and
certificate store provides cryptographic functionality on
the key material it holds.

• Secure (Encrypted) Storage: Key material is stored in
the secure encrypted storage.

Optional Dependencies

The cryptographic key and certificate store has the
following optional dependencies:

• Residual Information Purging: If the underlying platform
supports it, the cryptographic key and certificate store
shall purge the memory regions used for its operations.

• Software Isolation: If the underlying platform supports it,
operations of the cryptographic key and certificate store
shall be executed in isolation.

4.15 SECURE (ENCRYPTED) STORAGE

Secure storage provides functionality to store data securely
and maintain its integrity. If required, it may provide
additional functionality such as encryption to protect data
confidentiality.

Additionally secure storage may provide a write-latch
functionality. A write-latch is a write protection mechanism
which is activated by software, preferably during Secure
Initialization, but afterwards can only be deactivated by a
device reset.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

The secure (encrypted) storage has the following
dependencies:

• Cryptographic Operation: The secure storage requires
cryptographic functionality to provide integrity
protection and, if required, ensure the confidentiality
of the stored data.

Optional Dependencies

The secure (encrypted) storage has the following
optional dependencies:

• Secure Initialization: Write-latches need to be
activated during Secure Initialization before any
untrusted code is executed.

4.16 CRYPTOGRAPHIC OPERATION

This primitive groups cryptographic functionality such as
encryption, decryption, hashing, or signing. Depending on
the platform and use case, these might be provided by a
dedicated secure element, by specific hardware features,
or by a cryptographic library or software stack used by
the application. In the latter case, the security framework,
libraries, or software stack provided by the platform shall
be used. If a cryptographic key and certificate store is
present, an interface shall be provided to leverage this
functionality utilizing the keys in the secure key store.

If required by the use case, cryptographic operation
may include higher-level functionality such as certificate
verification, certificate signing, and certificate signing
request (CSR) handling.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

None

Optional Dependencies

Cryptographic operation has the following optional
dependencies:

• Software Isolation: If the underlying platform supports it,
cryptographic operations shall be executed in isolation.

4.17 CRYPTOGRAPHIC RANDOM NUMBER GENERATION

For many secure protocols and related cryptographic
functionality, it is required to generate random numbers
securely. Optionally, this primitive includes the generation
of true random numbers.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

None

Optional Dependencies

None

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 13

4.18 SYSTEM EVENT LOGGING

Most (I)IoT devices require facilities to (securely)
log system events in an integrity-protected way.

This primitive may be used to implement means of
ensuring non-repudiation.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

System event logging has the following dependencies:

• Secure (Encrypted) Storage: Events and related data
are stored in the secure encrypted storage.

Optional Dependencies

System event logging has the following optional
dependencies:

• Monotonic Time: System event logging may use
monotonic counters or timestamps to ensure integrity
on the order of events.

4.19 ROOT OF TRUST

This primitive relates to the initial root of trust (RoT)
on the security component that is established during the
manufacturing process and is the foundation for the
device commissioning. This might be achieved, for
instance, by manufacturing the (I)IoT device inside trusted
manufacturing facilities, or, if available, by using pre-
provisioned secure elements in a zero-trust environment.

NOTE: This primitive applies to the process, platform, or both.

Mandatory Dependencies

None

Optional Dependencies

The root of trust has the following optional dependencies:

• Cryptographic Operation: The root of trust may use
cryptographic functionality to derive device identity or
key material.

4.20 RESIDUAL INFORMATION PURGING

This functionality ensures that deallocated data is no
longer present; for instance, that a newly allocated and
not yet initialized memory does not contain (parts of) its
previous content. This covers data in volatile memory
and optionally non-volatile memories.

One implementation that falls into this primitives is the
blanking of cryptographic keys.

NOTE: This primitive applies to the platform, application or both.

Mandatory Dependencies

None

Optional Dependencies

None

4.21 SOFTWARE ISOLATION

This primitive describes means to isolate the device
operating system (OS) from applications, as well as
applications from each other. This includes the separation
of resources such as memory regions claimed by the OS,
applications or a combination of both.

This may be realized by moving secure applications,
cryptographic functionality, or both into a dedicated secure
subsystem or secure element.

NOTE: This primitive applies to the platform.

Mandatory Dependencies

None

Optional Dependencies

None

4.22 MONOTONIC TIME

Rollback and replay protection, as well as mechanisms
for non-repudiation, require monotonically increasing
counters or timestamps or similar. This primitive includes
measures in hardware or software (for instance, leveraging
blockchains) to provide measures of monotonically
increasing time.

NOTE: This primitive applies to the platform, application, or both.

Mandatory Dependencies

None

Optional Dependencies

None

4.23 RELIABLE CONTROL TRANSFER

Reliable Control Transfer describes the ability to always
initiate Secure Initialization not only when the device
is in an inoperable state but also when it is under full
adversarial control. This is implemented via a dedicated
watchdog counter which resets the device and thus
initiates Secure Initialization on expiry. There are different
options to guarantee this. A watchdog counter can be
authenticated, such that it can only be serviced by signed
messages from an external trusted authority. In another
instantiation it can be latched such that Secure Initialization
activates and locks the watchdog counter, such that it
cannot be serviced at all. This inevitably forces a reset.

NOTE: This primitive applies to the platform, application, cloud backend,
or a combination thereof.

Mandatory Dependencies

Reliable Control Transfer has the following dependencies:

• Secure Initialization: The watchdog counter needs to
be activated during Secure Initialization before any
untrusted code is executed.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 14

Optional Dependencies

Reliable Control Transfer has the following optional
dependencies:

• Cryptographic Operation: The authenticated watchdog
counter needs to verify the authenticity of the messages
from the external trusted authority.

• Cryptographic Key and Certificate Store: The public
key of the external trusted authority needs to be
integrity protected.

4.24 CYBER RESILIENCE

Cyber Resilience describes the functionality to
automatically recover a compromised device remotely
to a trusted state. This primitive requires the device to
implement a Reliable Control Transfer and to provide
Secure Backup and Recovery including the availability
functionality. Optionally, Secure Updates may allow
to patch a vulnerability after a trusted state has been
reestablished. Furthermore, Anomaly Detection and
Reaction can be used to reduce recovery time and to
reach a trusted state earlier.

NOTE: This primitive applies to the platform, application, cloud backend,
or a combination thereof.

Mandatory Dependencies

Cyber Resilience has the following dependencies:

• Reliable Control Transfer: To ensure that control can
be taken from an adversary and transferred to Secure
Initialization.

• Secure Backup and Recovery: To ensure that code
which brings a device into a trusted state is always
available to Secure Initialization.

• Secure Initialization: To ensure that Reliable Control
Transfer and Secure Backup and Recovery are initialized
properly. To ensure that after a Reliable Control Transfer,
a Secure Initialization can be performed.

Optional Dependencies

Cyber Resilience has the following optional dependencies:

• Secure Updates: Provide the ability to patch
vulnerabilities after a trusted state has been
reestablished.

 Anomaly Detection and Reaction: Can be used to reduce
recovery time and to reach a trusted state earlier.

5. DEFINITION OF SECURITY PROCESS PRIMITIVES

This section covers process-related security primitives
of (I)IoT systems. As depicted in Figure 1, processes
typically encompass the whole development process and
operation of the IoT device. As such, these primitives are
applicable to the platform, the application and the cloud
backend, as well as the process category itself.

5.1 SECURE POLICY COMPLIANCE

This primitive describes compliance of the (I)IoT
device functionality, as well as related development
and operational processes to local and global security
policies and legislation.

Mandatory Dependencies

Secure policy compliance has the following dependencies:

• Security by Design: Most secure policies and
processes require security to be considered during
the design phase.

• Vulnerability and Incident Management: Most policies
and processes mandate a vulnerability and incident
management process.

• Protection of Personal Information: Most regulations
mandate the protection of personal information.

Optional Dependencies

None

5.2 SECURITY BY DESIGN

This primitive describes a process to ensure security
best practices are followed during the (I)IoT device
development and manufacturing phase. It also mandates
baseline security for the device configuration and (end
user) credentials.

Mandatory Dependencies

None

Optional Dependencies

Security by design has the following optional
dependencies:

• Account Authentication and Management: Security
by design mandates policies on account management
if such functionality is available.

5.3 VULNERABILITY AND INCIDENT MANAGEMENT

Processes to allow third parties to report flaws and
vulnerabilities and react on them, as well as to disclose
vulnerabilities and incidents to end users and authorities.
This is mandated by many regulations, such as the
European General Data Protection Regulation (GDPR).

Mandatory Dependencies

None

Optional Dependencies

None

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 15

5.4 PROTECTION OF PERSONAL INFORMATION

Protection of personally identifiable information of
end users and compliance with corresponding legislation
such as GDPR.

Mandatory Dependencies

Protection of personal information has the following
dependencies:

• Cryptographic Operation: Cryptographic functionality
is required to ensure the confidentiality of personal
information.

• Secure (Encrypted) Storage: Personal data shall be
stored in secure encrypted storage.

Optional Dependencies

Protection of personal information has the following
optional dependencies:

• Cryptographic Key and Certificate Store: If present,
end user key material shall be stored in the key and
certificate store.

6. CONCLUSION

In this document, a nomenclature in the form of security
primitives is presented for IoT security requirements. The
security primitives are defined, consisting of meaningful
and non-overlapping categories of security features and
requirements. A procedure is described for how the
primitives can be aligned with common standards, and
finally, how the resulting set of primitives can be mapped
to a particular product for the use case. Thus, based on this
analysis, one has a structured set of information to continue
to evaluate the product’s functional sufficiency, its security
requirements. To illustrate the procedure, one particular
use case and the example of the ISA/IEC 62443 standard
is shown how the security primitives can be mapped to this
specific use case and to the detailed requirements of the
standard. This yields the security functional requirements an
(I)IoT device needs to fulfill, and as such, helps to identify
the respective product features and primitives needed to
meet the requirements of the standard.

After defining the terminology and approach and showing
its applicability to a specific use case and standard, the
recommended next steps are to prove the concept along
further use cases and standards. Following this, security
levels can be defined based on such a commonly agreed
terminology and discussed to show the robustness of a
particular implementation.

APPENDIX A FULL MAPPING TABLE

An electronic version of the mapping table is provided
on request

APPENDIX B AUXILIARY MATERIAL

B.1 Security Primitive Dependency Table

The full relation of the security primitives detailed in
Sections 4 and 5 is compiled into the format of a table
and given in Table 5. In this table, all dependencies of a
security primitive are given in a row, with direct mandatory
dependencies depicted as a filled circle. By recursively
considering the mandatory dependencies, all indirect
dependent primitives are identified and shown as an
empty circle. Direct optional dependencies are given as an
empty square. Please refer to the respective section of the
security primitive for a rationale on the dependencies.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 16

Table 5: Dependency Table of the Security Primitives.

● indicates mandatory dependencies, ○ denotes indirect mandatory dependencies and □ is for optional dependencies.

D
ev

ic
e

A
tt

es
ta

ti
on

Se
cu

re
 U

p
d

at
es

Se
cu

re
 O

nb
oa

rd
in

g
 a

nd
 O

ff
b

oa
rd

in
g

Se
cu

re
 P

ro
vi

si
on

in
g

 a
nd

 D
ec

om
m

is
si

on
in

g

Se
cu

re
 C

om
m

un
ic

at
io

n
(P

ro
to

co
ls

)

Se
cu

re
 D

eb
ug

 a
nd

 T
es

t

Se
cu

re
 B

ac
ku

p
 a

nd
 R

ec
ov

er
y

A
cc

ou
nt

 A
ut

he
nt

ic
at

io
n

an
d

 M
an

ag
em

en
t

(A
tt

es
te

d
) S

ec
ur

e
St

at
e

an
d

 L
ife

cy
cl

e
M

an
ag

em
en

t

G
en

ui
ne

 Id
en

ti
fic

at
io

n

Se
cu

re
 In

it
ia

liz
at

io
n

A
no

m
al

y
D

et
ec

ti
on

 a
nd

 R
ea

ct
io

n

C
ry

p
to

g
ra

p
hi

c
K

ey
 G

en
er

at
io

n
an

d
 In

je
ct

io
n

C
ry

p
to

g
ra

p
hi

c
K

ey
 a

nd
 C

er
ti

fic
at

e
St

or
e

Se
cu

re
 (E

nc
ry

p
te

d
) S

to
ra

g
e

C
ry

p
to

g
ra

p
hi

c
O

p
er

at
io

n

C
ry

p
to

g
ra

p
hi

c
R

an
d

om
 N

um
b

er
 G

en
er

at
io

n

Sy
st

em
 E

ve
nt

 L
og

g
in

g

R
oo

t
of

 T
ru

st

R
es

id
ua

l I
nf

or
m

at
io

n
Pu

rg
in

g

M
on

ot
on

ic
 T

im
e

Se
cu

re
 P

ol
ic

y
C

om
p

lia
nc

e

Se
cu

ri
ty

 b
y

D
es

ig
n

So
ft

w
ar

e
Is

ol
at

io
n

Vu
ln

er
ab

ili
ty

 a
nd

 In
ci

d
en

t
M

an
ag

em
en

t

Pr
ot

ec
ti

on
 o

f
Pe

rs
on

al
 In

fo
rm

at
io

n

R
el

ia
b

le
 C

on
tr

ol
 T

ra
ns

fe
r

C
yb

er
 R

es
ili

en
ce

Device Attestation ● ● ● ○ ●
Secure Updates □ ● ○ ○ □ □ ●
Secure Onboarding
and Offboarding □ □ □ ● □ □ □
Secure
Provisioning and
Decommissioning

● ● ○ ○ ● □ ○ ○ ● □
Secure
Communication
(Protocols)

□ □ ● ●
Secure Debug and
Test □ ● ○ ○ ○
Secure Backup and
Recovery □ □ ● ●
Account
Authentication and
Management

□ ● ●
(Attested) Secure
State and Life Cycle
Management

● ● ○
Genuine
Identification □
Secure Initialization □ ●
Anomaly Detection
and Reaction ● ○ ○ □ ○ □ □ □
Cryptographic Key
Generation and
Injection

□ ● ●
Cryptographic Key
and Certificate
Store

● ○ ○ ● ● □ □
Secure (Encrypted)
Storage ●
Cryptographic
Operation □
Cryptographic
Random Number
Generation
System Event
Logging ● ○ □
Root of Trust □
Residual
Information Purging

Software Isolation

Monotonic Time

Secure Policy
Compliance ○ ○ ○ ○ ● ● ●
Security by Design □
Vulnerability
and Incident
Management
Protection
of Personal
Information

○ ○ □ ● ●
Cyber Resilience □ ● ● □ ○ ○ ●
Reliable Control
Transfer ● □ □

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 17

B.2 Table of Abbreviations

A glossary of the abbreviations used in this document is
given in Table 6.

Abbreviation Description

GDPR General Data Protection Regulation

ECC Elliptic-curve cryptography

HTTP Hypertext transfer protocol

(I)IoT (Industrial) Internet of Things

IT Information technology

JTAG Joint Test Action Group

MCU Microcontroller unit

MPU Microprocessor unit

OS Operating system

OEMs/ODMs Original Equipment Manufacturer/Original Device
Manufacturer

PP Protection profile

PSA Platform security architecture

RAM Random access memory

RoT Root of trust

RSA Rivest–Shamir–Adleman (Cryptosystem)

SESIP Security evaluation standard for IoT platforms

SFR Security functional requirement

SoC System on chip

SPU Secure processing unit

TCG Trusted Computing Group

TEE Trusted execution environment

TLS Transport layer security

Table 6: Resulting requirements for ISA/IEC 62443 4-2 SL3.

WHITE PAPER SECURITY PRIMITIVES: COMMON NOMENCLATURE TO DESCRIBE SECURITY REQUIREMENTS IN (I)IoT SYSTEMS

www.nxp.com 18

B.3 References

1 GlobalPlatform, “IoTopia: A comprehensive framework for IoT security,” [Online]. Available:
https://globalplatform.org/iotopia/. [Accessed 20 January 2020].

2 GlobalPlatform, Security Evaluation Standard for IoT Platforms (SESIP), Version 0.0.0.5, 2019.

3 U.K. Government, “Secure by Design,” 28 February 2019. [Online]. Available:
https://www.gov.uk/government/collections/secure-by-design. [Accessed 22 November 2019].

4 U.S. Congress, Internet of Things Cybersecurity Improvement Act of 2019, 2019.

5 M. Fagan, K. N. Megas, K. Scarfone and M. Smith, NISTIR 8259: Recommendations for IoT Device Manufacturers:
Foundational Activities and Core Device Cybersecurity Capability Baseline (2nd Draft), Gaithersburg, MD: National
Institute of Standards and Technology, 2020.

6 International Society of Automation, “New ISA/IEC 62443 standard specifies security capabilities
for control system components,” [Online]. Available: https://www.isa.org/intech/201810standards/.
[Accessed 20 January 2020].

7 TRAFICOM Finnish Transport and Communications Agency National Cyber Security Centre,
“Finland becomes the first European country to certify safe smart devices – new Cybersecurity label helps
consumers buy safer products,” 26 November 2019. [Online]. Available: https://www.kyberturvallisuuskeskus.fi/en/
news/finland-becomes-first-european-country-certify-safe-smart-devices-new-cybersecurity-label.
[Accessed 10 December 2019].

8 ETSI, “ETSI EN 303 645: Cyber Security for Consumer Internet of Things, Draft V2.0.0,” November 2019. [Online].
Available: https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.00.00_20/en_303645v020000a.pdf.
[Accessed 28 February 2020].

9 SAE International, “SAE J3101: Hardware Protected Security for Ground Vehicles,” 10 February 2020. [Online].
Available: https://www.sae.org/standards/content/j3101_202002/. [Accessed 14 January 2020].

10 National Institute of Standards and Technology, FIPS PUB 140-2: Security Requirements for Cryptographic
Modules, Gaithersburg, MD, 2001.

11 National Institute of Standards and Technology, FIPS PUB 140-3: Security Requirements for Cryptographic
Modules, Gaithersburg, MD, 2019.

12 GlobalPlatform Device Committee, TEEProtection Profile, version 1.2, 2014.

13 Arm Ltd., “Platform Security Architecture,” [Online]. Available: https://www.arm.com/why-arm/architecture/
platform-security-architecture. [Accessed 2 March 2020].

14 STMicroelectronics NV , “AN5156: Introduction to STM32 microcontrollers security, rev. 4,” 2020.

15 S. Bradner, RFC2119: Key words for use in RFCs to Indicate Requirement Levels, 1997.

16 NXP Semiconductors, i.MX RT1050 Crossover MCUs for Industrial Products, rev. 1.4, Eindhoven,
Netherlands, 2020.

17 NXP Semiconductors, SE050 Plug & Trust Secure Element - Objective Data Sheet, Eindhoven,
Netherlands, 2019.

18 NXP Semiconductors, AN12400: SE050 for secure connection to OEM cloud, Eindhoven, Netherlands, 2019.

19 NXP Semiconductors, AN12278: LPC55S69 Security Solutions for IoT, Eindhoven, Netherlands, 2019.

20 National Institute of Standards and Technology. “Security requirements for cryptographic modules.”
 FIPS PUB 140 (2019): 140-3.

21 Regenscheid, Andrew. Platform firmware resiliency guidelines. NIST Special Publication (SP) 800-193.
 National Institute of Standards and Technology, 2018.

22 Trusted Computing Group. Cyber Resilient Module and Building Block Requirements, 2022.

HOW TO REACH US

Home Page: www.nxp.com
Web Support: www.nxp.com/support

USA/Europe or Locations Not Listed:
NXP Semiconductors USA, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.nxp.com/support

Europe, Middle East, and Africa:
NXP Semiconductors Germany GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.nxp.com/support

Japan:
NXP Japan Ltd.
Yebisu Garden Place Tower 24F,
4-20-3, Ebisu, Shibuya-ku,
Tokyo 150-6024, Japan
0120 950 032 (Domestic Toll Free)
www.nxp.com/jp/support/

Asia/Pacific:
NXP Semiconductors Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@nxp.com

www.nxp.com

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners.
© 2023 NXP B.V.

Document Number: SECPRIMWPA4 REV 1

