
 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 1

Demonstration Lab:
Motor Control using SMAC (ZigBeeTM Technology)

 By Edgard Palomera Mena
 RTAC Americas
 06/2005

Overview

This paper presents an example laboratory exercise based on the previous Motor Control
Demonstration lab1 using the same MCU MC9S12C32 but incorporating the ZigBee technology to
drive a DC motor remotely. NI ELVIS is used as platform to connect components, provide power, and
analyze circuit operation. The CSM12C32 and the ZigBee Module (RF MC13192U board) are plugged
into the NI ELVIS connectors; basic circuitry is used to control the motor. MCU program development
and debug are done with Metrowerks CodeWarriorTM software running on the same host PC as the NI
ELVIS and LabVIEWTM software.

Introduction

The main purpose of this demonstration lab exercise is to introduce the ZigBee Technology and to
show how easy can be use this technology. But what is ZigBee? Is a Standardized protocol for Ultra
Low Power Wireless Personal Area Networks (WPANs). The ZigBee architecture is based on the
IEEE 802.15.4 Specification and Incorporates all layers of software including the Application Layer
and below (Network, MAC, PHY); the SMAC (Simple Media Access Controller) is an ANSI C based
code stack that provides a layer of simple primitives that controls basic transceiver activities.

The ZigBee technology can be used in different markets such as consumer electronics, health care,
industrial control, building automation, and residential/light commercial control.

This motor control Lab exercise was developed to explore how the NI ELVIS system2 could
complement existing microcontroller development tools in the engineering laboratory environment. The
Freescale MC9S12C32 MCU3 and MC131924 are used. The MC13192 is a short range, low power,
2.4 GHz ISM band transceiver which contains a complete 802.15.4 physical layer (PHY) modem
designed for the IEEE 802.15.4 wireless standard. Metrowerks CodeWarrior5 is used as the MCU
development tool .The breadboard provides a convenient platform for wiring peripheral circuitry and
multiple power supplies for the lab exercise. As an added convenience, NI ELVIS virtual instruments
such as the oscilloscope provide a way to look at various signals such as the PWM signal that drives
the motor speed.

This paper discusses the implementation of this demonstration lab exercise. The implementation and
theory of operation is given for each part of the system. Several possible variations are discussed that
could be used to adapt this lab to slightly different audiences. For example, some classes might
concentrate on developing a more sophisticated LabVIEW front panel that could monitor and record
the duty cycle of the PWM drive signal and the resulting motor speed. Another class might develop a
more sophisticated application using the ZigBee technology. Yet another class might extend this lab to
implement a closed lab to implement a closed loop motor control speed controller using either PID or
fuzzy logic techniques.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 2

Figure 1. System modules.

System Block Diagram

The system consists of 2 NI ELVIS workstations. Each NI-ELVIS workstation has 1 MCU project
board, 1 CSM12C32 module and 1 MC13192U module as shown in Figure 1. One of these
workstations uses the MC13192U module as receiver and the other one uses the MC13192U module
as transmitter. The receiver workstation sends the data to the host PC through the data acquisition
card connected to the NI ELVIS system. The NI ELVIS block includes power supplies, digital I/O, as
well as a large breadboard area for experiment circuitry. The MCU block includes an MC9S12C32 16-
bit MCU along with a crystal, RS-232 level shifters, and a BDM connector for programming and
debugging the application software. CodeWarrior development software supports debugging through a
BDM pod connected to a printer port or USB port on the PC. The ZigBee Module includes the low
power transceiver MC13192FC and the antenna printed out on the PCB. The dc motor interface block
includes the motor, a 2-transistor circuit to translate the 0-5V PWM signal from the MCU into a 0-15V
signal to drive the motor. Figure 2 shows the overall block diagram6 of the system.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 3

Figure 2. Block Diagram of the Motor Control – ZigBee Demonstration Lab.

NI ELVIS – Oscilloscope

The virtual Oscilloscope is used to display the PWM signal from the MCU. The oscilloscope VI is a
virtual instrument that appears as an interactive window on the PC screen with buttons and knobs
similar to those found on traditional oscilloscopes. The probes for this oscilloscope can be connected
to the BNC connectors on the front of the NI ELVIS workstation, or they can be wires from the CHA+/-
and CH_B+/- connectors at the upper left corner of the breadboard. The student can make the same
kind of measurements with this virtual oscilloscope as they could with a physical oscilloscope, without
the need fro a separate piece of test equipment.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 4

MC9S12C32 MCU Block

The MCU block is a pre-assembled module made by Axiom Manufacturing that includes the
MC9S12C32 MCU and a small amount of common support circuitry. Figure 4 shows the pin
assignments for the Transmitter MCU block. The transmitter MCU reads the potentiometer’s voltage
using an Analog to Digital Converter (ADC channel 0) to control the motor speed remotely.

Figure 4. Pin Assignments for the Transmitter MCU Block.

The receiver MCU provides the PWM signal to drive the motor according to the potentiometer reading
on the Transmitter MCU board. Figure 5 shows the pin assignments for the Receiver MCU block.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 5

Figure 5. Pin Assignments for the Receiver MCU Block.

The next circuit provides the required current to drive the motor, in other words the main purpose of
the circuit is to be a source of current for the dc motor. The next circuitry is going to convert the 0-5V
PWM signal coming out from the MCU into a 0-15V PWM signal, which is the signal required to drive
the motor. The function of R3 is to be a pull up resistor to ensure that Q2 is going to be off when the
switch Q1 is open. And the function of R2 is just to limit the current that comes out from the Q2 base
when the switch Q1 is on. As we are switching on and off an inductor (motor) we need to add some
diodes called freewheeling diodes in order to avoid the spikes generated by the motor. Figure 6
shows the circuitry used to drive the motor.

R2

1K

R3

10K

R1

1K

D1
1N4001

D2
1N4001

0

15V

Q2
2N3906

A
-

+

���������

1
2

Q1
2N3904

0

V1
V1 = 0/5V

0

PWM SIGNAL FROM MCU

Figure 6. DC Motor Interface.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 6

I/O Characteristics

For this lab exercise, we use an analog (ATD) input to measure the Potentiometer voltage which is
used to set the motor speed. The ATD input to the MCU is between 0-5 volts. The potentiometer is
located at the lower left corner of the MCU Project Board.

The PWM signal is a digital output pin with the same characteristics as a general purpose digital
output. The PWM frequency for this motor control demonstration lab is 3.9 KHz so that the
oscilloscope VI could be used to examine the waveform even with a relatively slow DAQ card. In a
commercial application, you would probably want to use a PWM frequency of 20 KHz or higher so that
you could not hear this frequency at a low motor speeds.

The serial port of the PC uses standard RS232 voltage levels (from –X volts to +X volts where X can
be from 6 to 15 volts depending upon the particular PC). A level shifter device is included on the MCU
block to convert the RS232 levels to the 0-5volt levels that are required at the RxD and TxD pins of the
MCU. We have wired the level shifted RxD and TxD pins to the DSUB connector. This would be used
if you were using the serial monitor rather than a BDM pod to interface CodeWarrior to the MCU. The
serial monitor eliminates the need for a BDM pod, but is not as elegant (unobtrusive) as the BDM pod.

Background Debug Connections

The ideal way to allow CodeWarrior to access the MCU is through the background debug interface.
The MCU module includes a 2x3 square-post header for this purpose. This interface uses a single
dedicated pin on the MCU plus ground and optional connections to reset and Vdd. CodeWarrior
communicates with a BDM pod through a parallel or USB port on the PC. The BDM pod converts
commands from CodeWarrior into a custom serial BDM protocol. Using this interface, CodeWarrior
can execute primitive commands to read or write memory locations (even while application programs
are running), read or write CPU registers, set breakpoints, or trace single instructions. These primitive
commands allow Code Warrior to program the Flash memory and debug user programs.

Serial Monitor Option

The serial monitor6 is a small 2 Kbytes program that is programmed into the Flash memory of the
MC9S12C32. This program emulates primitive debugging commands similar to those available
through the background debug interface. CodeWarrior has the ability to choose either a BDM pod or
this serial monitor as the interface to the target MCU.

With the serial monitor, a simple serial cable is used to connect the serial I/O port of the PC to the
(level shifted) SCI pins of the target MCU. This eliminates the cost of the BDM pod.

Motor Circuits

The circuit provided in Figure 6 is used to translate the 0-5 volt PWM signal from the MCU to the 0-15
volt levels required for the motor.

This motor is a basic dc brush motor. This motor could be driven by an analog voltage between 0 and
15 volts, or it can be driven by a PWM signal from the MCU. By adjusting the duty cycle of the PWM
signal, you can control motor’s speed. The 1N4001 across the motor reduces the amount of noise
generated by the motor when it is driven by a PWM signal. If you remove this diode while the motor is
running, you should notice the speed drop slightly and the sound will change to be slightly raspier.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 7

MICROCONTROLLER SOFTWARE

The software for this paper can be downloaded from Freescale Semiconductor web site. For this lab,
the software is built using CodeWarrior software stationery. The software stationery provides all the
software necessary to access internal microcontroller register space and program memory through
software labels. The stationery associates all register and control bit names from the MCU data sheet
with the appropriate address and bit position. The stationery provides the foundation for students to
write their own embedded programming routines.

To open the demo software, first extract the file labeled NI_ELVIS_ZIGBEE_DEMO.zip to your chosen
directory. The extraction will form a directory labeled NI_ELVIS_ZIGBEE_DEMO (ex.
C:\NI_ELVIS_MCU_DEMO\), which includes a directory labeled NI_ELVIS_ZIGBEE_DEMO_C32. The
NI_ELVIS_ZIGBEE_DEMO_C32 project directory is built for the MC9S12C32 MCU Block. To proceed,
make sure to have Metrowerks CodeWarrior for HC(S)12 installed on your computer. Within the
NI_ELVIS_ZIGBEE_DEMO_C32 you will find a file labeled NI_ELVIS_ZIGBEE_DEMO_C32.mcp,
which is the Metrowerks CodeWarrior project file for this lab’s demo software. Double-click on the file
and the demo software will be loaded in the CodeWarrior development environment. Figure 6 shows
the lab’s demo software open in the CodeWarrior development environment.

Figure 7. Motor Control-ZigBee Project in CodeWarrior.

The software is divided mainly in to parts. The SMAC (Simple Media Access Controller) section and
the motor control application part. The SMAC7 is an ANSI C based code stack available as sample
source code, which can be used to develop proprietary RF transceiver applications using the
MC1319x integrated circuit. For a better understanding of the SMAC code you can download the
SMACRM User’s guide from the freescale website.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 8

Basically the SMAC section contains the Initialization and Hardware configuration needed to interface
the MCS12C32 with the MC13192 transceiver. The communication between the MCU and the
transceiver is implemented via the Serial Peripheral Interface (SPI). The hardware interface uses five signals
(Reset, RTXEN, ATTN, and IRQ) besides the four required for the SPI module.

The user needs to choose if the software is for the transmitter board or for the receiver board as
shown in figure 8.

Figure 8. Transmitter and receiver mode selection.

Figure 9 shows the initialization part. In this section 3 functions are called in order to make the
necessary initialization. The function AppInit(); initializes the packet structure as much as for the
transmitter packet as for the receiver packet. The function mcu_init(); makes the proper initialization
for the Microcontroller, initializes the SPI, GPIO’s etc. The function MC13192_init() Initializes the
MC13192 register map.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 9

Figure 9. Initialization Section.

The next code section determines if the ADC or the PWM modules is going to be initialized. If the
transmitter mode has been selected by the user, the Analog to Digital Converter module Channel 0 is
going to be initialized, and after that is going to call the TXMotor(); which is the transmitter main loop.
And if the receiver mode has been selected by the user the Pulse Width Modulation module Channel 2
is going to be initialized, and after that is going to call the RXMotor(); which is the receiver main loop.
See Figure 10.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 10

Figure 10. ADC or PWM modules initialization.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 11

The following code section is going to be executed only if the user selects previously the receiver
mode. This section switches the application status to a receiver always on state. The PWM duty cycle
register is updated each cycle. See Figure 11.

Figure 11. Receiver main loop.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 12

The following section of the code is going to be executed only if the user selects previously the
transmitter mode. In this section of the code, the data (ADC reading) loaded into the buffer is sent to
the receiver board. See Figure 12.

Figure 12. Transmitter main loop.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 13

The next function is called every time a data has been received, in this section of the code the data
received is read and loaded into the PWMCh2DutyCycle variable; and after that the duty cycle register
is updated with this value. See Figure 13.

Figure 13. Receive data indication.

 Guadalajara Applications Lab
 manufacturability

Freescale Semiconductor 14

The next section shows the ADC interrupt. Each time an ADC conversion is completed the following
code is executed. The variable ATDCh0DataResult is loaded with the value in the register ATDDR0L,
the value contained in the register ATDDR0L is the conversion’s result of the ADC reading. See Figure
14.

Figure 14. ADC interrupt

REFERENCES

1. Eduardo Montanez and Jim Sibigtroth, Motor Control Demonstration Lab, Freescale Semiconductor Inc.,Austin,
TX(2003).
2. National Instruments, NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) User
Manual, National Instruments, Austin, TX (2003).
3. Freescale, MC9S12C32 Users Guides, Freescale Semiconductor Inc., Austin, TX (2003).
4. Freescale, MC13192DS, Freescale Semiconductor Inc., (2004).
5. Metrowerks, CodeWarrior Development Studio for HC(S)12 Microcontrollers (Special Edition),
Metrowerks, Austin, TX (2003).
6. Freescale, MC13192FS, Freescale Semiconductor Inc., (2004).
7. Freescale, SMAC User’s Guide (SMACRM), Freescale Semiconductor Inc., (2004).

