UuG10104

IEC60730_B_CM4_CM7_Library_UG_v4_4: IEC60730B Library User's Guide
Rev. 0 — 7 December 2023

User guide

Document information

Information Content
Keywords IEC 60730, IEC 60335, UL 60730, UL 1998
Abstract

The core self-test library provides functions performing the MCU core self-test. The library

consists of independent functions performing tests compliant with international standards (IEC
60730, IEC 60335, UL 60730, UL 1998).

https://www.nxp.com

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

1 Core self-test library

The core self-test library provides functions performing the MCU core self-test. The library consists of
independent functions performing tests compliant with international standards (IEC 60730, IEC 60335, UL
60730, UL 1998). The library supports the IAR, Keil, and MCUXpresso IDEs. The NXP core self-test library
performs the following tests:

1.1 Core-dependent part

* CPU registers test

* CPU program counter test
Variable memory test
Invariable memory test
 Stack test

1.2 Peripheral-dependent part

* Clock test

* Digital input/output test

* Analog input/output test

* Watchdog test

» Touch-sensing interface test (only for the TSIv5 and TSIv6 peripherals)

The test architecture, implementation, test, and validation of corresponding tests are comprehensively
described in independent sections for each test.

The library supports the MKV3x, MKV4x, MKV5x, MKE 1xF, MK2xF, LPC54S0x, LPC540x, MIMXRT 10xx,
MIMXRT117x, MIMXRT116x, MIMX8MNx,MIMX8MLXx, and MIMX8MMx families based on the Arm-CM4 or Arm-
CMY7 cores.

The core self-test library is distributed as an object code version. For the source code, contact an NXP
representative.

1.3 Core self-test library — object code

The object code of the library is divided into two parts: the core-dependent part and the peripheral-dependent
part with the corresponding header file.

The following are the object files for the given IDEs:

Table 1. Library object code

IDE Part Object file

IAR Core * |[EC60730B_M4_M7_IAR_v4 4.a
Peripheral » |[EC60730B_M4 M7 _COM_IAR v4_4.a

Keil Core * |[EC60730B_M4_M7_KEIL_v4_4.lib
Peripheral * |[EC60730B_M4_M7 _COM_KEIL_v4_4.lib

MCUX Core * liblIEC60730B_M4_M7_MCUX_v4_4.a
Peripheral * liblIEC60730B_M4_M7_COM_MCUX_v4_4.

a
UG10104 Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 0 — 7 December 2023

2/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

1.4 Core self-test library — source code

The library name is IEC60730B_CM4_CM?7. The main header files are iec60730b.h and iec60730b_core.h. All
the data types necessary for the library are defined in the iec60730b_types.h file.

Each source file (*.c or *.S) has a corresponding header (*.h) file.

Table 2. List of library items

File name Test type Function name Functions size |Functions
[bytes] duration
approximately
[ms]
iec60730b.h Library header file |-

iec60730b_core.h

Core-dependent
library header file

iec60730b_types.h

Data types for the
library

asm_mac_common.h Common -
assembler
directives

iec60730b_aio.c Analog /O test FS_AIO_LimitCheck() 523 1.028
Analog /0 test FS_AIO_InputSet_A1() 908 1.418
Analog /0 test FS_AIO_InputSet_A23() 40" 0.66"
Analog /0 test FS_AIO_InputSet_A4() 40° 0.892
Analog I/O test FS_AIO_InputSet_A7() 1142 1.882
Analog /O test FS_AIO_InputSet_A5() 1127 19.087
Analog /0 test FS_AIO_InputSet_A6() 444 0.14*
Analog /0 test FS_AIO_ReadResult_A23() 321 0.65
Analog I/O test FS_AIO_ReadResult_A4() 303 0.793
Analog I/O test FS_AIO_ReadResult_A7() 1362 0.552
Analog /O test FS_AIO_ReadResult_A5() 487 14.427
Analog I/O test FS_AIO_ReadResult_A1() 448 1.698
Analog /0 test FS_AIO_ReadResult_A6() 1124 1.714

iec60730b_clock.c Clock test FS_CLK_Check() 441 0511
Clock test FS_CLK_Init() g! 0.231
Clock test FS_CLK_LPTMR() 121 168"
Clock test FS_CLK_RTC() - -
Clock test FS_CLK_GPT() 124 216%
Clock test FS_CLK_WKT_LPC() -
Clock test FS_CLK_CTIMER() - -

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

3/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 2. List of library items...continued

File name

Test type

Function name

Functions size
[bytes]

Functions
duration
approximately
[us]

iec60730b_dio.c

Digital 1/0 test

FS_DIO_Input()

Digital I/0 test FS_DIO_Output() 1261 17.4
(delay=100)"

Digital I/0 test FS_DIO_Output_IMXRT() 1244 94.33
(delay=3500)"

Digital 1/0 test FS_DIO_Output_IMX8M() 130° 711
(delay=2000)°

Digital I/0 test FS_DIO_Output_LPC() 1567 34.65
(delay=75)"

iec60730b_dio_ext.c Extended digital I/ |FS_DIO_InputExt() 2081 1.781

O test

Extended digital I/ |FS_DIO_ShortToSupplySet() 1521 1.241

O test

Extended digital I/ |FS_DIO_ShortToAd;jSet() 288! 2231

O test

Extended digital I/ |FS_DIO_InputExt_IMXRT() 278% 0.86%

O test

Extended digital I/ |FS_DIO_ShortToSupplySet_IMXRT() |130% 2.00%

O test

Extended digital I/ |FS_DIO_ShortToAdjSet_IMXRT() 2304 1.76*

O test

Extended digital I/ |FS_DIO_InputExt_IMX8M() 2048 13.77°

O test

Extended digital I/ |FS_DIO_ShortToSupplySet_IMX8M() |15 13.218

O test

Extended digital I/ |FS_DIO_ShortToAdjSet_IMX8M() 280° 23.25°

O test

Extended digital I/ |FS_DIO_InputExt_LPC() 1807 21.047

O test

Extended digital I/ |FS_DIO_ShortToSupplySet_LPC() 1307 21.797

O test

Extended digital I/ |FS_DIO_ShortToAdjSet_LPC() 2547 35.37

O test

Extended digital I/
O test

FS_DIO_InputExt_MCX()

Extended digital I/
O test

FS_DIO_ShortToSupplySet_ MCX()

Extended digital I/
O test

FS_DIO_ShortToAdjSet_ MCX()

Extended digital I/
O test

FS_DIO_InputExt_RGPIO()

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

4/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 2. List of library items...continued

File name

Test type

Function name

Functions size |Functions
[bytes] duration
approximately
[us]

Extended digital I/
O test

FS_DIO_ShortToSupplySet_ RGPIO()

Extended digital I/
O test

FS_DIO_ShortToAdjSet_RGPIO()

iec60730b_tsi.c

Touch-sensing
interface test

FS_TSI_Inputlnit()

Touch-sensing
interface test

FS_TSI_InputStimulate()

Touch-sensing
interface test

FS_TSI_InputRelease()

Touch-sensing
interface test

FS_TSI_InputCheckNONStimulated()

Touch-sensing
interface test

FS_TSI_InputCheckStimulated()

Touch-sensing
interface test

FS_TSI_InputStimulate_v6()

Touch-sensing
interface test

FS_TSI_InputRelease_v6()

Touch-sensing
interface test

FS_TSI_InputCheckNONStimulated_
v6()

Touch-sensing
interface test

FS_TSI_InputCheckStimulated_v6()

memory.c

iec60730b_invariable_

Invariable memory
test (Flash)

FS_FLASH_C_HW16_K()

See the function dedicated chapter

Invariable memory
test (Flash)

FS_FLASH_C_HW16_L()

See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW32_DCP()

See the function dedicated chapter

flash.S

iec60730b_cm4_cm7_

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW16()

See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW16()

See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW32()

See the function dedicated chapter

pc.S

iec60730b_cm4_cm7_

Program counter
test

FS_CM4_CM7_PC_Test()

See the function dedicated chapter

iec60730b_cm4_cm7_

Program counter

FS_PC_Object()

See the function dedicated chapter

pc_object.S test
iec60730b_cm4_cm7_ | Variable memory FS_CM4_CM7_RAM_AfterReset() See the function dedicated chapter
ram.S test (RAM)
Variable memory FS_CM4_CM7_RAM_Runtime() See the function dedicated chapter
test (RAM)
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 0 — 7 December 2023

5/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 2. List of library items...continued

File name Test type

Function name

Functions size |Functions

[bytes] duration
approximately
[us]

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyToBackup()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyFrom
Backup()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarch
C()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarch
X()

See the function dedicated chapter

iec60730b_cm4_cm7_
reg.S

Register test

FS_CM4_CM7_CPU_Register()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_NonStacked
Register()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Primask()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_SPmain()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_SPprocess()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Control()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Special()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Special8Priority
Levels()

See the function dedicated chapter

iec60730b_cm4_cm7_
reg_fpu.S

Register test

FS_CM4_CM7_CPU_ControlFpu()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Float1()

See the function dedicated chapter

Register test

FS_CM4_CM7_CPU_Float2()

See the function dedicated chapter

iec60730b_cm4_cm7_ | Stack test FS_CM4_CM7_STACK_Init() See the function dedicated chapter
stack.S
Stack test FS_CM4_CM7_STACK_Test() See the function dedicated chapter
iec60730b_wdog.c Watchdog test FS_WDOG_Setup_LPTMR() g0t Duration time
depends on the
WDOG timeout
Watchdog test FS_WDOG_Setup_KEO0XZ() - Duration time
depends on the
WDOG timeout
Watchdog test FS_WDOG_Setup_IMX_GPT() 642 Duration time
depends on the
WDOG timeout
Watchdog test FS_WDOG_Setup WWDT_CTIMER() |- Duration time
depends on the
WDOG timeout
Watchdog test FS_WDOG_Setup WWDT_LPC_mrt() |- Duration time

depends on the
WDOG timeout

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

6/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 2. List of library items...continued

File name Test type Function name Functions size |Functions
[bytes] duration

approximately
[ws]

Watchdog test FS_WDOG_Check() 188" 1.2"

Watchdog test FS_WDOG_Check WWDT_LPC() - -

Watchdog test FS_WDOG_Check_WWDT_LPC55 - -

SXX()
Watchdog test FS_WDOG_Check_ WWDT_MCX() - -

1.4.1 MIMX8MMx dedicated functions

Table 3 shows the list of functions dedicated for the MIMX8M Mini device family.

Table 3. MIMX8MMx dedicated functions

File

Suitable function

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c

Section "FS_DIO_Output_IMX8M()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt_[IMX8M()"

Section "FS_DIO_ShortToSupplySet_IMX8M()"

Section "FS_DIO_ShortToAdjSet_IMX8M()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_IMX_GPT()"refresh_index = "FS_IMX8M"

Section "FS_WDOG_Check()" RegWide8b ="FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.2 MIMX8MNx and MIMX8MLXx dedicated functions

Table 4 shows the list of functions dedicated for the MIMX8M Nano and MIMX8M Plus device families.

Table 4. MIMX8MNx and MIMX8MLx dedicated functions

File

Suitable function

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c

Section "FS_DIO_Output_IMX8M()"

uG10104

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023
71140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 4. MIMX8MNx and MIMX8MLXx dedicated functions...continued

File

Suitable function

iec60730b_dio_ext.c

Section "FS_DIO_InputExt IMX8M()"

Section "FS_DIO_ShortToSupplySet_IMX8M()"

Section "FS_DIO_ShortToAdjSet_IMX8M()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_IMX8M"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.3 MIMXRT10xx dedicated functions

Table 5 shows the list of functions dedicated for the MIMXRT 10xx device family.

Table 5. MIMXRT10xx dedicated functions

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet AB()"

Section "FS_AIO_ReadResult_A6()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c

Section "FS_DIO_Output_IMXRT()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt IMXRT()"

Section "FS_DIO_ShortToSupplySet IMXRT()"

Section "FS_DIO_ShortToAdjSet_IMXRT()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_IMXRT"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_HW32_DCP()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023
8/140

NXP Semiconductors

UG10104

1.4.4 MIMXRT117x/116x dedicated functions

Table 6 shows the list of functions dedicated for the MIMXRT117x and MIMXRT116x device families.

Table 6. MIMXRT117x/116x dedicated functions

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet A1()"

Section "FS_AIO_ReadResult_A1()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_GPT()"

iec60730b_dio.c

Section "FS_DIO_Output_IMXRT()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt IMXRT()"

Section "FS_DIO_ShortToSupplySet IMXRT()"

Section "FS_DIO_ShortToAdjSet_IMXRT()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_IMX_GPT()" refresh_index = "FS_
IMXRTWDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_

32b"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.5 MK2xF dedicated functions

Table 7 shows the list of functions dedicated for the MK2xF device.

Table 7. MK2xF dedicated functions

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A23()"

Section "FS_AIO_ReadResult_A23()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c

Section "FS_DIO_Output()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

9/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 7. MK2xF dedicated functions...continued
File Suitable function

Section "FS_DIO_ShortToAdjSet()"

Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

Section "FS_FLASH_C_HW16_K()"
Section "FS_CM4_CM7_FLASH_HW16()"
Section "FS_CM4_CM7_FLASH_SW16()"
Section "FS_CM4_CM7_FLASH_SW32()"
Common for all CM4/CM7 devices
Common for all CM4/CM7 devices
Common for all CM4/CM7 devices
Common for all CM4/CM7 devices

iec60730b_wdog.c

iec60730b_invariable_memory.c

iec60730b_cm4_cm7_flash.S

iec60730b_cm4_cm7_pc.S
iec60730b_cm4_cm7_ram.S
iec60730b_cm4_cm7_reg.S
iec60730b_cm4_cm7_stack.S

1.4.6 MKE1xF dedicated functions
Table 8 shows the list of functions dedicated for the MKE1xF device.

Table 8. MKE1xF dedicated functions

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet A4()"

Section "FS_AIO_ReadResult_A4()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c

Section "FS_DIO_Output()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_WDOG32"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"

iec60730b_invariable_memory.c

Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023
10/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 8. MKE1xF dedicated functions...continued
File Suitable function

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices
iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.4.7 MKV3x dedicated functions
Table 9 shows the list of functions dedicated for the MKV3x device.

Table 9. MKV3x dedicated functions

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet_A23()"

Section "FS_AIO_ReadResult_A23()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c

Section "FS_DIO_Output()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

iec60730b_invariable_memory.c

Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.8 MKV4x dedicated functions

Table 10 shows the list of functions dedicated for the MKV4x device.

Table 10. MKV4x dedicated functions

File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"
Section "FS_AIO_InputSet A7()"
Section "FS_AIO_ReadResult_A7()"

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

11/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 10. MKV4x dedicated functions...continued

File

Suitable function

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"

iec60730b_dio.c

Section "FS_DIO_Output()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"

Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"

Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"

iec60730b_invariable_memory.c

Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

1.4.9 MKV5x dedicated functions
Table 11 shows the list of functions dedicated for the MKV5x device.

Table 11. MKV5x dedicated functions
File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"
Section "FS_AIO_InputSet_A23()"
Section "FS_AIO_ReadResult_A23()"
Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"
iec60730b_dio.c Section "FS_DIO_Output()"
iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"
Section "FS_DIO_ShortToAdjSet()"
Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_

iec60730b_clock.c

iec60730b_wdog.c

WDOG"
Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
8b"
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 0 — 7 December 2023

12/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 11. MKV5x dedicated functions...continued

File

Suitable function

iec60730b_invariable_memory.c

Section "FS_FLASH_C_HW16_K()"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_HW16()"

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.10 LPC54S0x/LPC540x dedicated functions

Table 12 shows the list of functions dedicated for the LPC54S0x/LPC540x devices.

Table 12. LPC54S0x/LPC540x dedicated functions

File

Suitable function

iec60730b_aio.c

Section "FS_AIO_LimitCheck()"

Section "FS_AIO_InputSet A5()"

Section "FS_AIO_ReadResult_A5()"

iec60730b_clock.c

Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_CTIMER()"

iec60730b_dio.c

Section "FS_DIO_Output_LPC()"

iec60730b_dio_ext.c

Section "FS_DIO_InputExt LPC()"

Section "FS_DIO_ShortToSupplySet_LPC()"

Section "FS_DIO_ShortToAdjSet_LPC()"

iec60730b_wdog.c

Section "FS_WDOG_Setup_ WWDT_CTIMER() "

Section "FS_WDOG_Check WWDT_LPC()"

iec60730b_cm4_cm7_flash.S

Section "FS_CM4_CM7_FLASH_SW16()"

Section "FS_CM4_CM7_FLASH_SW32()"

iec60730b_invariable_memory.c

Section "FS_FLASH_C_HW16_L()"

iec60730b_cm4_cm7_pc.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S

Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S

Common for all CM4/CM7 devices

1.4.11 MK32L3 CM4 dedicated functions

Table 13 shows the list of functions dedicated for the MK32L3 CM4 core.

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

13/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Table 13. MK32L3 dedicated functions for CM4 core
File Suitable function

iec60730b_aio.c Section "FS_AIO_LimitCheck()"
Section "FS_AIO_InputSet A1()"
Section "FS_AIO_ReadResult_A1()"
iec60730b_clock.c Section "FS_CLK_Check()"

Section "FS_CLK_Init()"

Section "FS_CLK_LPTMR()"
iec60730b_dio.c Section "FS_DIO_Output()"
iec60730b_dio_ext.c Section "FS_DIO_InputExt()"

Section "FS_DIO_ShortToSupplySet()"
Section "FS_DIO_ShortToAdjSet()"

iec60730b_wdog.c Section "FS_WDOG_Setup_LPTMR()" refresh_index = "FS_KINETIS_
WDOG"
Section "FS_WDOG_Check()" RegWide8b = "FS_WDOG_SRS_WIDE_
32b"
iec60730b_cm4_cm7_flash.S Functions are described in dedicated chapter
iec60730b_cm4_cm7_pc.S Functions are common for all CM4 CM7 devices
iec60730b_cm4_cm7_ram.S Functions are common for all CM4 CM7 devices
iec60730b_cm4_cm7_reg.S Functions are common for all CM4 CM7 devices
iec60730b_cm4_cm7_Stack.S Functions are common for all CM4 CM7 devices

1.5 Functions performance measurement

This section contains remarks about the functons' informative size and approximate time of execution. The
numbers in the following list are used as remark links from the corresponding sections:

The function parameter was measured on MKV31 with a clock frequency of 80 MHz.

The function parameter was measured on MKV46 with a clock frequency of 80 MHz.

The function parameter was measured on MKE18F with a clock frequency of 100 MHz.

The function parameter was measured on MIMXRT 1050 with a clock frequency of 600 MHz.
The function parameter was measured on MIMX8MN with a clock frequency of 600 MHz.
The function parameter was measured on MIMXRT 1170 with a clock frequency of 996 MHz.
The function parameter was measured on LPC54S018M with a clock frequency of 96 MHz.

NooakoN -~

2 Analog Input/Output (10) test

The analog IO test procedure performs the plausibility check of the analog IO interface of the processor. The
analog |0 test can be performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return if an analog 10 error occurs. Compare
the return value of the test function with the expected value. If it is equal to the FAIL return, then a jump into the
safety error handling function occurs. The safety error handling function may be specific to the application and it
is not a part of the library. The main purpose of this function is to put the application into a safety state.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

14 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

The principle of the analog 10 test is based on sequence execution, where a certain analog level is connected
to a defined analog input. The test function checks whether the converted value is within the tolerance. The test
must check the analog input interface with three reference values: reference high, reference low, and bandgap
voltage. See the device specification document to set up the correct values. The block diagram for the analog

10 test is shown in the following figure:

User set:
state = FS_AIO_INIT

h 4

FS AIO InputSet A=xx=()

No state==
FS_AIO_PROGRESS

YES

—D| FS AlQ_ReadResult A=xx=

NO

tat
FS_AI0_SCAN_COMPLETE

FS_AIO_LimitCheck()

FS_PASS FS_AIO_FAIL

(AlIO TEST END) (Return FAIL)

Figure 1. Block diagram for analog input test

The figure above shows the sequence of conversion and checks one channel. For the full ADC test, run this
sequence with three channels: reference high, reference low, and bandgap voltage. This sequence is handled
on the user application side, all functions from the library (with the FS_ prefix) are written as non-blocking.

2.1 Analog input/output test in compliance with IEC/UL standards

The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in the following table:

Table 14. Analog input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware |Acceptable Measures
Class
Input/Output periphery |7. Input/Output Abnormal operation B/R.1 Plausibility check

periphery (7.2 — AID
conversion)

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

15/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

2.2 Analog input/output test implementation

The test functions for the analog 10 test are in the iec60730b_aio.c file and written as "C" functions. The header
file with the function prototypes is iec60730b_aio.h. iec60730b.h and iec60730b_types.h are the common
header files for the safety library.

All functions are written as non-blocking, each function checks if the state variable is set to the necessary state.
If not, they return immediately.

Throughout all supported devices, the ADC module has a slightly different arrangement of the registers that
are involved in the test. Therefore, a standalone function is created for each ADC module. See Core self-test
library — source code version for the function dedicated for your device. Also the corresponding data type must
be used with this selected function.

The analog input test is based on a conversion of three analog inputs with known voltage values and it checks if
the converted values fit into the specified limits. Normally, the limits should be roughly 10 % around the desired
reference values.

For easier implementation of the AlO test to the final aplication, the IAO test is divided to three independent
cycles:

1. Conversion and check of low reference
2. Conversion and check of high reference
3. Conversion and check of bandgap reference (the middle range of voltage)

Each of this independent phase has its own "test instance" structure with the fs_aio_test a<TYPE>_t data type.
The defined types which cover all supported devices are in the iec60730b_aio.h file. The selected type must
correspond to the used device. The description of each type is in the corresponding function description below.

The following functions are used to test the analog input:

* FS_AIO InputSet A1, FS_AIO_InputSet A23, FS_AIO_InputSet A4, FS _AlO_InputSet A5,
FS_AIO _InputSet A6, FS_AIO_InputSet A7

* FS AlIO_ReadResult A1, FS_AlIO_ReadResult A23, FS_AlO_ReadResult A4, FS_AlO_ReadResult A5,
FS_AIO_ReadResult_A6, FS_AIO_ReadResult_A7

* FS_AIO_LimitCheck

The FS_AIO_InputSet_A<xx>and FS_AIO_ReadResult_A<xx> functions are related directly to the used ADC
module.

The FS_AIO_LimitCheck function works only with the AIO test instance structure and are not related to the ADC
HW.

Each test instance structure has a "state" variable. This variable controls the code flow. You can use only a
part of the ADC check functions. For example, it is possible to use only "FS_AIO_LimitCheck()" and the HW
part of the test must be done on the application side. In this case, it is necessary to ensure that the state flow is
correctly handled. Before calling FS_A/O_LimitCheck() set the state to "FS_AIO_SCAN_COMPLETE" and fill
the "RawResult" variable.

The whole state flow is as follows:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

16 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

AlQ TEST STATE -
START

state=
FS_AIO_INIT

!

state=
FS_AID_PROGRESS

!

state=
FS_AIO_SCAN_COMPLETE

!

state=
FS_PASS/FS_AIO_FAIL

AlQ TEST STATE -
END

Figure 2. ADC Test Code flow

At the start, set the state variable to "FS_AIO_INIT". Test the items with this state. It can be used in function
"FS_AIO_InputSet_A<xx>, which sets the correct channel and trigger conversion of the ADC. After this function,
set the variable to "FS_AIO_PROGRESS". In the progress state, call the "FS_AIO_ReadResult_A<xx>"
function, which, in case that the conversion is complete, stores the conversion to the RawResult variable

in the test items structure and sets the state to "FS_AIO_SCAN_COMPLETE". After this, call the
FS_AIO_LimitCheck() function to check if RawResult is within Limits. This function sets the state variable to
FS_PASS or FS_FAIL.

Initialization of the test
In some *.c files, you must define a corresponding array variable:

Testing the instance variables definition

/***
*

STRUCTURE FOR AIO TEST

X ok X

*
***/

#define TESTED ADC ADCO

#define ADC_RESOLUTION 12
#define ADC REFERENCE 3.06
#define ADC_BANDGAP LEVEL 1.7
#define ADC_DEVIATION PERCENT 10

#define ADC_MAX ((1 << (ADC_RESOLUTION)) - 1)

#define ADC_BANDGAP LEVEL RAW (((ADC_BANDGAP LEVEL) * (ADC MAX)) /
(ADC_REFERENCE))

#define ADC MIN LIMIT (val) (uintl6_t) (((val) * (100 -
ADC_DEVIATION PERCENT)) / 100)

#define ADC_MAX LIMIT (val) (uintl6_t) (((val) * (100 +

ADC_DEVIATION PERCENT)) / 100)
fs aio test a2346 t aio safety test item VL =
{

.AdcChannel = 30,

.Limits.low = (uint32 t)ADC_MIN LIMIT (0),

.Limits.high = (uint32 t)ADC MAX LIMIT (60),
UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 0 — 7 December 2023

17 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

.state = FS ATO INIT

i

fs aio test a2346 t aio safety test item VH =

{
.AdcChannel = 29,
.Limits.low = (uint32 t)ADC MIN LIMIT (ADC MAX),
.Limits.high = (uint32 t)ADC MAX LIMIT (ADC_MAX),
.state = FS ATO INIT

}i
fs aio test a2346 t aio safety test item BG =
{
.AdcChannel = 27,
.Limits.low = (uint32 t)ADC MIN LIMIT (ADC BANDGAP LEVEL RAW),
.Limits.high = (uint32 t)ADC MAX LIMIT (ADC_BANDGAP LEVEL RAW),
.state = FS AIO INIT
}i
/* NULL terminated array of pointers to fs aio test a2346 t items for safety AIO
test */
fs aio test a2346 t *g aio safety test items[] = {&aio safety test item VI,
&aio safety test item VH,
&aio safety test item BG,
NULL};

After the definition, all necessarry variables and initialization of ADC HW can be called as a function for the AIO
test:

Test

for (uint8 t i=0;i<3;i++) /* 3 test items VL, VH and BG */
{
static int index = 0; /* Iteration variable for going through all ADC test
items */
psSafetyCommon->AI0O test result =
FS AIO LimitCheck(g aio safety test items[index]->RawResult,
& (g _alo safety test items[index]->Limits), &(g _aio safety test items[index]-
>state)) ;
switch (psSafetyCommon->AIO test result)
{
case FS ATO INIT:
FS AIO InputSet A23(g aio safety test items[index], (fs aio a23 t
*) TESTED ADC) ;
break;
case FS ATIO PROGRESS:
FS AIO ReadResult A23 (g _aio safety test items[index], (fs aio a23 t
*) TESTED ADC) ;
break;
case FS PASS: /* successfull execution of test, call the trigger function
again */
if(g aio safety test items[++index] == NULL)
{
index = 0; /* again first channel*/
}
g _aio safety test items[index]->state = FS AIO INIT;
break;
default:
__asm("NOP") ;
break;
}
/* Necessary delay for conversion time */
for (uint8 t y = 0; y < 20; y++){ __ asm("nop");}

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

18/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

2.21 ADC type A1

The ADC type of the A1 covers at least the following device families: K32L3A6, LPC55xx, i.MX RT117x, and
i.MX RT116x.

For this group of devices, the following functions are dedicated:

e FS AIO_ InputSet A1
* FS AlIO_ReadResult A1
e FS_AIO_LimitCheck

For this type of ADCs, it is necessary use these data types:

» fs_aio_test a1l _t - for the test instance
« fs_aio_a1l_t - for a pointer to the ADC peripheral

2211 fs_aio_a1 t

fs_aio_a1_tis data type for acessing ADC module registers. This data type is defined in the iec60730b_types.h
file and supports the device families mentioned above.

2.21.2 fs_aio_test_a1l_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
uint8 t AdcChannel;
uintlé t commandBuffer;
uint8 t SideSelect; /* 0 = A side, 1 = B side*/
uint8 t softwareTriggerEvent;
fs aio limits t Limits;
uint32 t RawResult;
FS RESULT state;
} fs _aio test al t;

¢ AdcChannel - the number of the ADC channel

» comandBuffer - the index of CommandBuffer

» SideSelect - 0 A side, 1 B side

 softwareTriggerEvent - the index of the software trigger

* Limits - a structure with low and high limits for AdcChannel

* RawResult - a raw result of the ADC conversion of "AdcChannel"

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.1.3 FS_AIO_InputSet_A1()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

19/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function prototype:
FS_RESULT FS_AIO_InputSet_A1(fs_aio_test_a1_t *pObj, fs_aio_a1_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

e FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.1.4 FS_AIO_ReadResult_A1()

This function is tied to the ADC hardware. This function reads the converted analog value only if pObj->state
== FS_AIO_PROGRESS. When the valule is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE". The function uses a non-blocking approach.

Function prototype:
FS RESULT FS_AIO_ReadResult A1(fs_aio_test a1 _t *pObj, fs_aio_a1_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS _AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.2 ADC type A23

The ADC type A23 covers at least the following device families: KV1x, KV3x, KLxx, K32L2A, K32L2B, K22F,
KW3x, and KEOXx.

For this group of devices, the following functions are dedicated:

* FS_AIO InputSet A23
* FS AlIO_ReadResult A23
e FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:
» fs_aio_test a2346 t - for the test instance

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

20/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

« fs_aio_a23 t - for a pointer to the ADC peripheral

2.2.21 fs_aio_a23 t

The "fs_aio_a23_t" data type serves for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.2.2 fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
uint8 t AdcChannel;
fs aio limits t Limits;
uint32 t RawResult;
FS RESULT state;
} fs_aio test a2346 t;

¢ AdcChannel - the number of the ADC channel
* Limits - a structure with low and high limits for AdcChannel
RawResult - a raw result of the ADC conversion of AdcChannel

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.2.3 FS_AIO_InputSet_A23()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:
FS RESULT FS_AIO _InputSet A23(fs_aio_test A2346_t *pObj, fs_aio_a23 t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32 t FS RESULT;

* FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

21/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

2.2.2.4 FS_AIO_ReadResult_A23()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:
FS RESULT FS_AIO_ReadResult_A23(fs_aio_test a2346 t *pObj, fs_aio_a23 t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS _AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.3 ADC type A4
The ADC type A4 covers at least the following device families: KE1xZ and KE1xF.

For this group of devices, the following functions are dedicated:

* FS _AIO_InputSet A4
* FS _AIO_ReadResult_A4
* FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

» fs_aio_test_a2346_t - for the test instance
» fs_aio_a4 t - for a pointer to the ADC peripheral

2.2.31 fs_aio_a4 t

The "fs_aio_a4_t" data type serves for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.3.2 fs_aio_test_a2346_t
This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
uint8 t AdcChannel;
fs aio limits t Limits;
uint32 t RawResult;
FS RESULT state;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

22/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

} fs aio test a2346 t;

¢ AdcChannel - the number of the ADC channel
* Limits - a structure with low and high limits for AdcChannel
RawResult - a raw result of the ADC conversion of AdcChannel

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.3.3 FS_AIO_InputSet_A4()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:
FS_RESULT FS_AIO_InputSet_A4(fs_aio_test_a2346_t *pObj, fs_aio_a4 t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

« FS_AlO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.3.4 FS_AIO_ReadResult_A4()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:
FS RESULT FS_AIO_ReadResult A4(fs_aio _test a2346 t *pObj, fs_aio_a4 t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

23/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library — source code version.

2.2.4 ADC type A6
The ADC type A6 covers at least the following device family: i. MXRT10xx.

For this group of devices, the following functions are dedicated:

* FS_AIO_InputSet A6
* FS _AlIO_ReadResult A6
* FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

» fs_aio_test a2346 t - for test instance
e fs_aio_ab6_t - for a pointer to the ADC peripheral

2241 fs_aio_ab6_t

The "fs_aio_a6_t" data type is used for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.24.2 fs_aio_test a2346 t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct

{
uint8 t AdcChannel;
fs_aia_limits_t Limits;
uint32 t RawResult;
FS RESULT state;

} fs _aio _test a2346 t;

AdcChannel - the number of the ADC channel
* Limits - a structure with low and high limits for AdcChannel
¢ RawResult - a raw result of the ADC conversion of AdcChannel

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.4.3 FS_AIO_InputSet_A6()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:
FS_RESULT FS_AIO_InputSet_A6(fs_aio_test_A2346_t *pObj, fs_aio_ab_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

247140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function output:
typedef uint32_t FS_RESULT;
e FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.4.4 FS_AIO_ReadResult_A6()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When valule is readed is stored to pObj->RawResult and variable pObj->State is set
to "FS_AIO_SCAN_COMPLETE"

Function prototype:
FS _RESULT FS_AIO_ReadResult A6(fs_aio_test a2346 t* pObj, fs_aio_ab_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS _AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.5 ADC type A5
The ADC type A5 covers at least the following device families: LPC51U68, LPC8xx, LPC540x, and LPC54S0x.

For this group of devices, the following functions are dedicated:

* FS_AIO InputSet A5
* FS AlIO_ReadResult A5
* FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

» fs_aio_test _ab5 t - for the test instance
» fs_aio_ab5 t - for a pointer to the ADC peripheral

2.251 fs_aio_a5 _t

The "fs_aio_a5_t" data type servesfor acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

25/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

2.2.5.2 fs_aio_test a5 _t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct

{
uint8 t AdcChannel;
uint8 t sequence;
fs aio limits t Limits;
uint32 t RawResult;
FS RESULT state;

} fs_aio test a5 t;

* AdcChannel - the number of the ADC channel

* sequence - the index of the used sequence

* Limits - a structure with low and high limits for AdcChannel
RawResult - a raw result of the ADC conversion of AdcChannel

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL _AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

2.2.5.3 FS_AIO_InputSet_A5()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:
FS RESULT FS_AIO_InputSet A5(fs_aio_test a5 t *pObj, fs_aio_ab t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

* FS AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.5.4 FS_AIO_ReadResult_A5()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:
FS_RESULT FS_AIO_ReadResult_A5(fs_aio_test a5 t*pObj, fs_aio_a5 _t *pAdc);

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

26 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.6 ADC type A7
The ADC type A7 covers at least the following device family: KV4x.

For this group of devices, the following functions are dedicated:

* FS_AIO_InputSet A7
* FS _AlIO_ReadResult A7
* FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

» fs_aio_test a7 _t - for the test instance
» fs_aio_a7_t - for a pointer to the ADC peripheral

2.2.6.1 fs_aio_a7_t

The "fs_aio_a7_t" data type is used for acessing ADC module registers. This data type is defined in the
iec60730b_types.h file and it supports the device families mentioned above.

2.2.6.2 fs_aio_test_a7_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct

{
uint8 t AdcChannel;
uint8 t Sample;
fs aio limits t Limits;
uint32 t RawResult;
FS_RESULT state;

} £fs_aio test a7 t;

¢ AdcChannel - the number of the ADC channel

» Sample - the number of the sample register

Limits - a structure with low and high limits for AdcChannel
RawResult - a raw result of the ADC conversion of AdcChannel

* state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT,
FS_AIO_PROGRESS, FS_AIO_SCAN_COMPLETE

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

271140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

2.2.6.3 FS_AIO_InputSet_A7()

This function executes the first part of the AlO test sequence. This function sets up the ADC input channel and
also triggers the conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when
the ADC module is idle and ready for the next conversion. The function has effect only when the input state is
"FS_AIO_INIT". It has no effect in other states.

Function prototype:
FS _RESULT FS_AIO_InputSet A7(fs_aio_test a7 _t *pObj, fs_aio_a7 _t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

* FS _AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.6.4 FS_AIO_ReadResult_A7()

This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State"
variable is set to "FS_AIO_SCAN_COMPLETE".

Function prototype:
FS_RESULT FS_AIO_ReadResult_A7(fs_aio_test a7 _t *pObj, fs_aio_a7_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.
*pAdc - The input argument is the pointer to the analog converter.
Function output:

typedef uint32_t FS_RESULT;

* FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult"
variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library — source code version.

2.2.7 FS_AIO_LimitCheck()

This function executes the last part of the AlO test sequence and it is common for all ADC types. If the state is
"FS_AIO_SCAN_COMPLETE", the function checks if value from the "RawResult" input parameter is within the
limits from the "pLimits" structure.

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

28/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_AIO_LimitCheck(uint32_t RawResult, fs_aio_limits_t *pLimits, FS_RESULT *pState);

Function inputs:

uint32_t RawResult - The input argument is the "RawResult" of the ADC conversion.

*pLimits - The input argument is the pointer to the "fs_aio_limits_t" structure with conversion limits.
*pState - The input argument is the pointer to the "FS_RESULT" variable.

Function output:

typedef uint32_t FS_RESULT;

* FS_FAIL _AIO - The input "RawResult" is not within the borders defined in "Limits".
* FS_PASS - The input "RawResult" is in the border defined in "Limits".

If any other value is returned, the function has no effect.

Function call example:

The example of the function call is provided in Section "Analog input/output test implementation"”.

Function performance:

The information about the function performance is in Core self-test library — source code version.

3 Clock test

The clock test procedure tests the oscilators of the processor for the wrong frequency. The clock test can be
performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return in case of a clock fault. Assess the
return value of the test function. If it is equal to the FAIL return, then a jump into the safety error handling
function should occur. The safety error handling function is specific to the application and it is not a part of the
library. The main purpose of this function is to put the application into a safety state.

The clock test principle is based on the comparison of two independent clock sources. If the test routine detects
a change in the frequency ratio between the clock sources, a fail error code is returned. The test routine uses
one timer and one periodical event in the application. The periodical event could be also an interrupt from a
different timer than that already involved.

The device supported by the library has many timer/counter modules. See Core self-test library — source code
version for a function suitable for your device.

The block diagram for the clock test is shown in Figure 3.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

29/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

/ Calculate limit values ™
v forthe used timer

Periodical event #1
Catch the value from the
timer and restart it

In appropriate time, compare
caught value with the limits

Periodical event #2
Catch the value from the
timer and restart it

Periodical event #n T T T
Catch the value from the 'd return PAS '““--.; { return FAIL i
timer and restart it S - S -

B e

Figure 3. Block diagram for clock test

3.1 Clock test in compliance with IEC/UL standards

The performed overload test fulfils the safety requirements according to the EC 60730-1, IEC 60335, UL 60730,
and UL 1998 standards, as described in the following table:

Table 15. Clock test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware |Acceptable Measures
Class
Clock test 3.Clock Wrong frequency B/R.1 Frequency monitoring

3.2 Clock test implementation

The test functions for the clock test are in the iec60730b_clock.c file and they are written as "C" functions. The
header file with the function prototypes is iec60730b_clock.h. iec60730b.h and iec60730b_types.h are the
common header files for the safety library.

The following functions are called to test the clock frequency:

* FS_CLK_Init()
* FS CLK_LPTMR()/FS_CLK_RTC()/FS_CLK_GPT()/FS_CLK_WKT_LPC()/FS_CLK_CTIMER|)
* FS _CLK Check()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

30/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Configure the reference timer, choose an appropriate periodical event, and calculate the limit values.
Declare the 32-bit global variable for storing the content of the timer counter register. The clock source of the
chosen timer must differ from the clock source of the periodical event. The FS_CLK_Init() function is called
once, usually before the while() loop. The FS_CLK_LPTMR() (to choose the dedicated function for your
device, see Core self-test library — source code version) function is then called within a periodic event. The
FS_CLK_Check() function for evaluation can be called at any given time. When the test is in the initialization
phase, the check function returns the “in progress” value. If the captured value from the reference counter is
within the preset limits, the check function returns a pass value. If not, a defined fail value is returned.

The example of the test implementation is as follows:

#include “iec60730b.h”
FS RESULT st;
unsigned long clockTestContext;
#defineISR_FREQUENCY (100)
#define CLOCK TEST TOLERANCE (10)
#define REF TIMER CLOCK FREQUENCY (32e031)
RTC _SC = RTC_SC RTCLKS (2) |RTC_SC RTCPS (1) ;
SysTick->VAL = 0x0;
SysTick->LOAD = 100e6*0.01;
SysTick->CTRL = SysTick CTRL CLKSOURCE Msk | SysTick CTRL ENABLE Msk|
SysTick CTRL TICKINT Msk;
SysTick->VAL = 0x0;
FS CLK Init (&clockTestContext);
while (1) { st = FS CLK Check(clockTestContext, FS CLK FREQ LIMIT LO,
FS_CLK FREQ LIMIT HI);
if (FS_FAIL CLK == st) SafetyError();
}
void timer isr (void)
{
FS CLK RTC((uint32 t*)RTC BASE PTR, &clockTestContext);
}

3.2.1 FS_CLK_lnit()

This function initializes one instance of the clock sync test. It sets the TestContext value to the “in progress”
state.

Function prototype:
void FS_CLK_Init(uint32_t *pTestContext);

Function inputs:

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.2 FS_CLK_Check()

This function handles the clock test. It evaluates the captured value stored in the testContext variable
with predefined limits. Until the first execution of the respective Isr function, the check function returns
FS_CLK_PROGRESS.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

31/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function prototype:
FS_RESULT FS_CLK_Check(uint32_t testContext, uint32_t limitLow, uint32_t limitHigh);

Function inputs:

testContext - The captured value of the timer.
limitLow - The low limit.

limitHigh - The high limit.

Function output:

typedef uint32_t FS_RESULT;

e FS _PASS - The testContext fits into the limits.
e FS FAIL CLK - The testContext value does not fit into the limits.
* FS_ CLK _PROGRESS - The reference counter value is not read yet.

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.3 FS_CLK_LPTMR()

This function is used only with the LPTMR module. The function reads the counter value from the timer and
saves it into the TestContext variable. After that, the function starts the LPTMR again.

Function prototype:
void FS_CLK_LPTMR(fs_Iptmr_t *pSafety Tmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.
*nTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.4 FS_CLK_RTC()

This function is used only with the RTC module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the RTC again.

Function prototype:
void FS_CLK_RTC(fs_rtc_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.
*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

32/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.5 FS_CLK_GPT()

This function is used only with the GPT module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the GPT again.

Function prototype:
void FS_CLK_GPT(fs_gpt t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.
*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.6 FS_CLK_CTIMER()

This function is used only with the CTimer module. This function reads the counter value from the timer and
saves it into the TestContext variable. After that, it starts the CTimer again.

Function prototype:
void FS_CLK_CTIMER(fs_ctimer _t *pSafety Tmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.
*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library — source code version.

3.2.7 FS_CLK_WKT_LPC()

This function is used only with the WKT module. This function reads the counter value from the timer and saves
it into the TestContext variable. After that, it starts the WKT again.

Function prototype:
void FS_CLK _WKT _LPC(fs_wkt _t *pSafetyTmr, uint32_t *pTestContext, uint32_t startValue);

Function inputs:

*pSafetyTmr - The timer module address.
*pTestContext - The pointer to the variable that holds the captured timer value.

startValue - The start value to decrease the WKT counter.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

33/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function output:

void

Function performance:

The information about the function performance is in Core self-test library — source code version.

4 Digital input/output test

The Digital Input/Output (DIO) test procedure performs the plausibility check of the processor's digital 10
interface.

The identification of the safety error is ensured by the specific FAIL return in case of the digital 10 error. Assess
the return value of the test function and if it is equal to the FAIL return, the move into the safety error handling
function should occur. The safety error handling function may be specific to the application and it is not a part of
the library. The main purpose of this function is to put the application into a safe state.

The DIO test functions are designed to check the digital input and output functionality and short circuit
conditions between the tested pin and the supply voltage, ground, or optional adjacent pin. The execution of
the DIO tests must be adapted to the final application. Be careful with the hardware connections and design. Be
sure about which functions can be applied to a respective pin. In most of cases, the tested (and sometimes also
auxiliary) pin must be reconfigured during the application run. When testing the digital output, reserve enough
time between the test arrangement and the reading of results.

4.1 Digital input/output test in compliance with IEC/UL standards

The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL
60730, and UL 1998 standards, as described in Table 16.

Table 16. Digital input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware |Acceptable Measures
Class
Input/Output periphery |7. Input/Output Abnormal operation B/R.1 Plausibility check
periphery (7.1 — Digital
1/0)

4.2 Digital input/output test implementation

The test functions for the digital 10 test are placed in the iec60730b_dio.c and iec60730b_dio_ext.c files. The
header files with the function prototypes are iec60730b_dio.h and iec60730b_dio_ext.h. iec60730b.h and
iec60730b_types.h are the common header files for the safety library.

The digital input/output tests can be executed using the following functions properly:

* FS DIO Input()

* FS_DIO_Output() / FS_DIO_Output_IMXRT() / FS_DIO_Output_IMX8M() / FS_DIO_Output_LPC()

* FS_DIO InputExt() / FS_DIO_InputExt IMXRT() / FS_DIO_InputExt IMX8M() / FS_DIO_InputExt LPC()/
FS_DIO_InputExt RGPIO()/ FS_DIO_InputExt_MCX()

* FS_DIO_ShortToSupplySet() / FS_DIO_ShortToSupplySet IMXRT() / FS_DIO_ShortToSupplySet_IMX8M() /
FS_DIO_ShortToSupplySet_LPC()/ FS_DIO_ShortToSupplySet RGPIO() /
FS_DIO_ShortToSupplySet_MCX()

* FS_DIO_ShortToAdjSet() / FS_DIO_ShortToAdjSet_IMXRT() / FS_DIO_ShortToAdjSet_IMX8M() /
FS_DIO_ShortToAdjSet_LPC()/ FS_DIO_ShortToAdjSet_RGPIO()/ FS_DIO_ShortToAdjSet_MCX()

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

34/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

The pointer to the "fs_dio_test _t" structure type is a parameter of each function. The structure is defined in the
iec60730b_dio.h file.

typedef struct

{

uint32 t pcr; /* Pin control register */
uint32 t pddr; /* Port data direction register */
uint32 t pdor; /* Port data output register */
} fs_dio backup t;

typedef struct

{

uint32 t gpio;

fs dio backup t pcr;

uint8 t pinNum;

uint8 t pinDir;

uint8 t pinMux;

fs dio backup t sTestedPinBackup;

} fs dio test t;

These variables must be initialized before calling a test function. The following is an example of initialization:

fs dio test t dio safety test item 0 =

{

.gpio = GPIOE BASE,
.pcr = PORTE BASE,

.pinNum =
.pinDir =
.pinMux

k7

fs dio test t dio safety test item 1

{

24,
PIN DIRECTION IN,
PIN MUX GPIO,

.gpio = GPIOA BASE,
.pcr = PORTA BASE,

.pinNum =
.pinDir
.pinMux =

I 8

2,
PIN DIRECTION OUT,
PIN MUX GPIO,

fs dio test t *dio safety test items[] = { &dio safety test item O,
&dio_safety test item 1, 0 };
if (dio_safety test item 0 .gpio == GPIOE BASE)

dio safety test item 0 .pcr = PORTE BASE;

if (dio safety test item 1 .gpio == GPIOA BASE)

dio safety test item 1 .pcr = PORTA BASE;

4.2.1 FS_DIO_Input()

This function executes the digital input test. The test tests one digital pin. The pin is tested according to the
block diagram in Figure 4:

uG10104

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023
35/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(FS_DIO_Input())

v

st=PASS

tested pinis
configured
as input ?

st=F5_FAIL_DIO_INPUT

expected value
matches 7

st=
FS_FAIL_DIO _WRONG_VALUE

v

(Return st)

Figure 4. Block diagram for digital input test

Function prototype:
FS RESULT FS_DIO_Input(fs_dio_test t *pTestedPin, bool_t expectedValue);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

expectedValue - The expected input value. Adjust this parameter correctly.
Function output:

typedef uint32_t FS_RESULT;

e FS PASS
 FS_FAIL _DIO_INPUT- The pin is not set as the input.
e FS FAIL DIO WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs dio input test result

_ - FS DIO Input (&dio safety test items[0],
DIO EXPECTED VALUE) ;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

36/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Function performance:

The information about the function performance is in Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a GPIO with input direction.

4.2.2 FS_DIO_Output()

The digital output test tests the digital output functionality of the pin. The principle of the test is to set up and
read both logical values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is
long enough for the device to reach the desired logical value on the pin. A very low delay parameter causes the

fail return value of the function.

st=PASS

v

Store the actual
value of the pin

FS_FAIL_DIO_OUTPUT

pin configured as
output

Set pin logic level
to1

Delay interval

logic level ==1?

original value == Q,
?

| Set pin logic level to 0 |
v

st=
FS_FAIL_DIO_NOT_SET

Set pin logic level
to 0

Delay interval

. __ st=
logiclevel == 07 FS_FAIL_DIO_NOT_CLEAR

v

Restore the original
value of the pin

Figure 5. Block diagram for digital output test

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

371140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output(fs_dio_test_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS

* FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

* FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

* FS _FAIL _DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs dio output test result = FS DIO Output (&dio safety test items[1],
DIO WAIT CYCLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as the digital output. Define an appropriate delay for proper functionality.

4.2.3 FS_DIO_InputExt()

This is a modified version of the previously mentioned digital input test. It cannot be used with MKEOx devices.
This version is a get function for the "short-to" tests. The function is applied to the pin that is already configured
as a GPIO input and you know what logical level is expected at the time of the test. The logical level can

result from the actual configuration in the application or it can be initialized for the test (if possible). The block
diagram of the FS_DIO_InputExt() function is shown in Figure 6. Two function input parameters are related to
an adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs
as for the tested pin (recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

38/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

Figure 6. Extended digital input test

(DIO_InputExt...)
v

st=PASS

tested pin is
configured
as input ?

st=FS_FAIL_DIO_INPUT

Si=
FS_FAIL_DIO_WRONG_VALUE

expected value
matches ?

Backup
enabled?

Restore all registers
related to the tested pin

v

Restore all registers
related to the adjacent pin

Function prototype:

FS RESULT FS_DIO_InputExt(fs_dio_test t *pTestedPin, fs_dio_test t *pAdjPin, bool _t testedPinValue, bool t

backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.
backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

e FS PASS
* FS _FAIL DIO_INPUT - The pin is not set as the input.
* FS _FAIL DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs dio input test result = FS DIO InputExt (&dio safety test item O,
&dio safety test item 0, DIO EXPECTED VALUE, BACKUP ENABLE) ;

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

39/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

The information about the function performance is in Core self-test library — source code version.

Calling restrictions:

The function cannot be used with MKEOx devices. The tested pin must be configured as a GPIO input before
calling the function. Even if no adjacent pin is involved in the test, specify the AdjacentPin parameter. It is
recommended to enter the same input as for the TestedPin.

4.2.4 FS_DIO_ShortToAdjSet()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function

is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 7. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt() function is described in the respective section. Specify the tested pin and the adjacent
pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

40/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

C

DIO_ShortToAdjSet...)

v

st=PASS

Backup
enabled?

Backup of all register
related to tested and
adjacent pins

v

Set tested pin as
input

v

Set adjacent pin as

output

Is tested pin
configured
as input ?

st=
FS_FAIL_DIO_INPUT

Is adjacent pin
configured
as input ?

st=
FS_FAIL_DIO_OUTPUT

Is testedPinValue?

Set pull-up resistor on
tested pin

Set pull-down resistor

on tested pin

Setlogical level on
adjacent pin to 0

Setlogical level on
adjacent pin to 1

y
Return st

Figure 7. Block diagram of FS_DIO_ShortToAdjSet() function

Function prototype:

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

411/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAd]Set(fs_dio_test t *pTestedPin, fs_dio_test t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS
e FS _FAIL DIO_INPUT - The tested pin is not set as the input.
* FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

Function always returns the first detected error.

Example of function call:

The following is the code example of the short-to-adjacent pin test:

#define BACKUP ENABLE 1

#define LOGICAL ONE 1

#define LOGICAL ZERO 0

dio_short to adj test result = FS DIO ShortToAdjSet (&dio safety test items[0],
&dio safety test items[1l], LOGICAL ONE, BACKUP ENABLE) ;

dio short to adj test result =FS DIO InputExt (&dio safety test items[O0],
&dio_safety test items[1], LOGICAL ONE, BACKUP ENABLE) ;

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function cannot be used with MKEOx devices. The tested pin must be configured as a GPIO input and

the adjacent pins must be configured as GPIO outputs before calling the function. If the backup functionality is
enabled, the function sets directions for both pins. If not, configure the directions (the tested pin as the input, the
adjacent pin as the output). After the end of the function, the application cannot manipulate neither the tested
nor the adjacent pins until the FS_DIO_InputExt() function is called for these pins.

4.2.5 FS_DIO_ShortToSupplySet()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between
the tested pin and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 8. The second part of the test (result evaluation) is ensured

by the FS_DIO_InputExt() function that is described in the respective section. The main purpose of the
FS_DIO_InputExt() function is to set the pull-up (or pull-down) resistor connection on the tested pin. It also
ensures whether the pin is correctly configured and backs up its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

42/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(FS_DIO_ShortToSuppIySet...)

st=PASS
Backup of all
Backup enabled? register related to
the pin
v
Setpin as input

tested pin is
configured
as input ?

FS_FAIL_DIO_INPUT

Set pull down
resistor

testshort
against GND
?

Set pull-up

Figure 8. Block diagram of FS_DIO_ShortToSupplySet function

Function prototype:

FS _RESULT FS_DIO_ShortToSupplySet(fs_dio_test t *pTestedPin, bool t shortToVoltage, bool t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for the short against GND or Vdd. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:
typedef uint32 t FS RESULT;

* FS_PASS
« FS_FAIL DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short-to-GND is tested, the parameter must have a
non-zero value and the other way around.

#define DIO_SHORT TO GND TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

43/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

#define DIO SHORT TO VDD TEST 0
dio_short to vcc test result =
FS DIO ShortToSupplySet (&dio safety test items[0], DIO SHORT TO GND TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt (&dio safety test items[0],
&dio safety test items[0], DIO SHORT TO GND TEST, BACKUP ENABLE);
dio short to vcc test result =
FS DIO ShortToSupplySet (&dio safety test items[0], DIO SHORT TO VDD TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt (&dio safety test items[0],
&dio safety test items[0], DIO SHORT TO VDD TEST, BACKUP ENABLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function cannot be used with MKEOx devices. The tested pin must be configured as a GPIO input before
calling the function. If the backup functionality is enabled, the function sets the input direction for the tested pin.
If not, configure the input direction. After the end of the function, the application cannot manipulate the tested
pin until the FS_DIO_InputExt() function is called for the tested pin.

4.2.6 FS_DIO_InputExt_MCX()

This is a modified version of the previously mentioned digital input test. This version is a get function for the
"short-to" tests. The function is applied to the pin that is already configured as a GPIO input and you know what
logical level is expected at the time of the test. The logical level can result from the actual configuration in the
application or it can be initialized for the test (if possible). The block diagram is shown in Figure 6. Two function
input parameters are related to an adjacent pin. For a simple input test functionality, these parameters are not
important. Enter the same inputs as for the tested pin (recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

44140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(DIO_InputExt...)
v

st=PASS

tested pin is
configured
as input ?

st=FS_FAIL_DIO_INPUT

Si=
FS_FAIL_DIO_WRONG_VALUE

expected value
matches ?

Backup
enabled?

Restore all registers
related to the tested pin

v

Restore all registers
related to the adjacent pin

Figure 9. Extended digital input test

Function prototype:

FS RESULT FS_DIO_InputExt MCX(fs_dio_test t *pTestedPin, fs_dio_test t *pAdjPin, bool_t testedPinValue,
bool t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.
backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

e FS PASS
* FS FAIL DIO_WRONG_VALUE - Different value on pin against the settings.
« FS_FAIL DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

fs dio input test result = FS DIO InputExt MCX(&dio safety test item O,
&dio safety test item 0, DIO EXPECTED VALUE, BACKUP ENABLE) ;

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

45/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

The information about the function performance is in Core self-test library — source code version.

Calling restrictions:

The function works only on dedicated devices (see Core self-test library — source code version). The tested pin
must be configured as a GPIO input before calling the function. Even if no adjacent pin is involved in the test,
specify the AdjacentPin parameter. It is recommended to enter the same input as for the TestedPin.

4.2.7 FS_DIO_ShortToAdjSet_MCX()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function
is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can

be theoretically shorted with the tested pin. The function block diagram is shown in Block diagram of
FS_DIO_ShortToAdjSet MCX() function. Similarly to the short-to-supply test, this test requires the use of
two functions. The second (get) function evaluates the test result. The FS_DIO_InputExt_MCX() function is
described in the respective section. Specify the tested pin and the adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

46 /140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

C

DIO_ShortToAdjSet...)

v

st=PASS

Backup
enabled?

Backup of all register
related to tested and
adjacent pins

v

Set tested pin as
input

v

Set adjacent pin as

output

Is tested pin
configured
as input ?

st=
FS_FAIL_DIO_INPUT

Is adjacent pin
configured
as input ?

st=
FS_FAIL_DIO_OUTPUT

Is testedPinValue?

Set pull-up resistor on
tested pin

Set pull-down resistor

on tested pin

Setlogical level on
adjacent pin to 0

Setlogical level on
adjacent pin to 1

y
Return st

Figure 10. Block diagram of FS_DIO_ShortToAdjSet_MCX() function

Function prototype:

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

471140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_MCX(fs_dio_test_t *pTestedPin, fs_dio_test t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS
e FS _FAIL DIO_INPUT - The tested pin is not set as the input.
* FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is the code example of the short-to-adjacent pin test:

#define BACKUP ENABLE 1

#define LOGICAL ONE 1

#define LOGICAL ZERO 0

dio short to adj test result =
FS DIO ShortToAdjSet MCX(&dio safety test items[0], &dio safety test items[l],
LOGICAL ONE, BACKUP ENABLE) ;

dio short to adj test result =FS DIO InputExt MCX (&dio safety test items[O0],
&dio_safety test items[1l], LOGICAL ONE, BACKUP ENABLE) ;

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function cannot be used with MKEOx devices. The tested pin must be configured as a GPIO input and

the adjacent pins must be configured as GPIO outputs before calling the function. If the backup functionality is
enabled, the function sets directions for both pins. If not, configure the directions (the tested pin as the input, the
adjacent pin as the output). After the end of the function, the application cannot manipulate neither the tested
nor the adjacent pins until the FS_DIO_InputExt_MCX() function is called for these pins.

4.2.8 FS_DIO_ShortToSupplySet_MCX()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between

the tested pin and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Block diagram of FS_DIO_ShortToSupplySet_ MCX function. The second
part of the test (result evaluation) is ensured by the FS_DIO_InputExt_MCX() function that is described in the
respective section. The main purpose of the FS_DIO_InputExt_ MCX() function is to set the pull-up (or pull-
down) resistor connection on the tested pin. It also ensures whether the pin is correctly configured and backs up
its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

48 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(FS_DIO_ShortToSuppIySet...)

st=PASS
Backup of all
Backup enabled? register related to
the pin
v
Setpin as input

tested pin is
configured
as input ?

FS_FAIL_DIO_INPUT

Set pull down
resistor

testshort
against GND
?

Set pull-up

Figure 11. Block diagram of FS_DIO_ShortToSupplySet_MCX function

Function prototype:

FS RESULT FS_DIO_ShortToSupplySet MCX(fs_dio_test t *pTestedPin, bool t shortToVoltage, bool t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for the short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:
typedef uint32 t FS RESULT;

* FS_PASS
« FS_FAIL DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short-to-GND is tested, the parameter must have a
non-zero value and the other way around.

#define DIO_SHORT TO GND TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

49/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

#define DIO SHORT TO VDD TEST 0
dio_short to vcc test result =
FS DIO ShortToSupplySet MCX(&dio safety test items[0], DIO SHORT TO GND TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt MCX(&dio safety test items[O0],
&dio safety test items[0], DIO SHORT TO GND TEST, BACKUP ENABLE);
dio short to vcc test result =
FS DIO ShortToSupplySet MCX(&dio safety test items[0], DIO SHORT TO VDD TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt MCX(&dio safety test items[O0],
&dio safety test items[0], DIO SHORT TO VDD TEST, BACKUP ENABLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function cannot be used with MKEOx devices. The tested pin must be configured as a GPIO input before
calling the function. If the backup functionality is enabled, the function sets the input direction for the tested pin.
If not, configure the input direction. After the end of the function, the application cannot manipulate the tested
pin until the FS_DIO_InputExt_MCX() function is called for the tested pin.

4.2.9 FS_DIO_InputExt_IMX8M()

This is a modified version of the previously mentioned digital input test. Use this version as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a GPIO input and you know
what logical level is expected at the time of the test. The logical level results from the actual configuration in
the application or it is initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_IMX8M()
function is shown in Figure 12. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

50/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(DIO_InputExt...)
v

st=PASS

tested pin is
configured
as input ?

st=FS_FAIL_DIO_INPUT

Si=
FS_FAIL_DIO_WRONG_VALUE

expected value
matches ?

Backup
enabled?

Restore all registers
related to the tested pin

v

Restore all registers
related to the adjacent pin

Figure 12. Extended digital input test for IMX8M

Function prototype:

FS RESULT FS_DIO_InputExt IMX8M(fs_dio _test imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.
backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

e FS PASS
* FS _FAIL DIO_INPUT - The pin is not set as the input.
* FS _FAIL DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs dio input test result = FS DIO InputExt IMX8M(&dio safety test item O,
&dio safety test item 0, DIO EXPECTED VALUE, BACKUP ENABLE) ;

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

51/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function can be used only for the i.MX8M devices. Configure the tested pin as a GPIO input before
calling the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is
recommended to enter the same input as for "TestedPin".

4.2.10 FS_DIO_Output_IMX8M()

This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical
values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough
for the device to reach the desired logical value on the pin. A very low delay parameter causes the "fail" return

value of the function.

st=PASS

v

Store the actual
value of the pin

t=

pin configured as FS_FALL_DIO_OUTPUT

output

Set pin logic level
to1

Delay interval

logic level ==1?

original value == Q,
?

| Set pin logic level to 0 |
v

st=
FS_FAIL_DIO_NOT_SET

Set pin logic level
to 0

Delay interval

. __ st=
logiclevel ==0 7 FS_FAIL_DIO_NOT_CLEAR

v

Restore the original
value of the pin

Figure 13. Block diagram for digital output test

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

52/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output_IMX8M(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS

* FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

* FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

* FS _FAIL _DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs dio output test result = FS DIO Output IMX8M(&dio safety test items[1],
DIO WAIT CYCLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.11 FS_DIO_ShortToAdjSet_IMX8M()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function

is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 14. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt_IMX8M() function is described in the respective chapter. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

53/140

NXP Semiconductors

UG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

C

DIO_ShortToAdjSet...)

v

st=PASS

Backup
enabled?

Backup of all register
related to tested and
adjacent pins

v

Set tested pin as
input

v

Set adjacent pin as

output

Is tested pin
configured
as input ?

st=
FS_FAIL_DIO_INPUT

Is adjacent pin
configured
as input ?

st=
FS_FAIL_DIO_OUTPUT

Is testedPinValue?

Set pull-up resistor on
tested pin

Set pull-down resistor

on tested pin

Setlogical level on
adjacent pin to 0

Setlogical level on
adjacent pin to 1

y
Return st

Figure 14. Block diagram of FS_DIO_ShortToAdjSet_IMX8M() function

Function prototype:

uG10104

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 0 — 7 December 2023

54/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_ShortToAdjSet_IMX8M(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin,
bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS
e FS _FAIL DIO_INPUT - The tested pin is not set as the input.
* FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP ENABLE 1

#define LOGICAL ONE 1

#define LOGICAL ZERO 0

dio short to adj test result =
FS DIO ShortToAdjSet IMX8M(&dio safety test items[0],
&dio safety test items[1l], LOGICAL ONE, BACKUP ENABLE) ;

dio short to adj test result =FS DIO InputExt IMX8M(&dio safety test items[O0],
&dio_safety test items[1l], LOGICAL ONE, BACKUP ENABLE) ;

Function performance:

The information about the function performance is in Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pin must be configured as a GPIO
output before calling the function. If the backup functionality is enabled, the function sets the directions for
both pins. If not, configure the directions (the tested pin as the input, the adjacent pin as the output). After
the end of the function, the application cannot manipulate neither the tested pin nor the adjacent pin until the
FS_DIO InputExt IMX8M() function is called for these pins.

4.2.11.1 FS_DIO_ShortToAdjSet_LPC()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function

is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 15. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (get) function evaluates the test result.
The FS_DIO_InputExt LPC() function is described in the respective section. Specify the tested pin and the
adjacent pin for the input test function.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

55/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

DIO_ShortToAdjSet_LPC()

Backup
enabled?

Backup of all registers
related to the tested pin

Backup of all registers

related io the adjacent pin

Setlested pin as input
Set adjacent pin as output

on et .I st=FS_FAIL_DIO_MODE

DIGI mode on _
“Adi pin set? st=FS_FAIL_DIO_MODE

adjacentpinis st=FS_FAL_DIO_OUTPUT
configured
as output ?

lestedPinValug
?

Setpull-up on Set pull-down on
tested pin tested pin

+ +

Clear adjacent pin Set adjacent pin fo
to 0 1

Figure 15. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test Ipc_t *pTestedPin, fs_dio_test_Ipc_t *pAdjPin, bool _t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:

typedef uint32_t FS_RESULT;

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

56 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_PASS

FS _FAIL _DIO _INPUT - The tested pin is not set as the input.

FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

FS_FAIL_DIO_MODE - The tested or adjacent pins do not have the "digimode" set - only for specific LPC
devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP ENABLE 1

#define LOGICAL ONE 1

#define LOGICAL ZERO 0

dio short to adj test result =

FS DIO ShortToAdjSet LPC(&dio safety test items[0], &dio safety test items([1],
LOGICAL ONE, BACKUP ENABLE) ;

dio_short to adj test result =FS DIO InputExt LPC(&dio_ safety test items[0],
&dio_safety test items[1l], LOGICAL ONE, BACKUP ENABLE) ;

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pins must be configured as GPIO outputs
before calling the function. If the backup functionality is enabled, the function sets the directions for both pins.

If not, configure the directions (tested pin as input, adjacent pin as output). After the end of the function, the
application can manipulate neither the tested nor the adjacent pins until the FS_DIO_InputExt_LPC() function is
called for these pins.

4.2.12 FS_DIO_ShortToSupplySet_IMX8M()

This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the
tested pin and the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground
(GND). Its block diagram is shown in Figure 16. The second part of the test (result evaluation) is ensured

by the FS_DIO_InputExt_IMX8M() function described in the respective section. The main purpose of the
FS_DIO_InputExt_IMX8M() function is to set the pull-up or pull-down resistor connections on the tested pin. It
also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

571140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(FS_DIO_ShortToSuppIySet...)

st=PASS
Backup of all
Backup enabled? register related to
the pin
v
Setpin as input

tested pin is
configured
as input ?

FS_FAIL_DIO_INPUT

Set pull down
resistor

testshort
against GND
?

Set pull-up

Figure 16. Block diagram of FS_DIO_ShortToSupplySet_IMX8M() function

Function prototype:

FS RESULT FS_DIO_ShortToSupplySet IMX8M(fs_dio_test imx_t *pTestedPin, bool t shortToVoltage, bool t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For
VDD, enter 0 or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.
Function output:
typedef uint32 t FS RESULT;

* FS_PASS
« FS_FAIL DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the
implementation difference is only in one parameter. If the short to the GND is tested, the parameter must have a
non-zero value (and the other way around).

#define DIO_SHORT TO GND TEST 1

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

58/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

#define DIO SHORT TO VDD TEST 0
dio_short to vcc test result =
FS DIO ShortToSupplySet IMX8M(&dio safety test items[0], DIO SHORT TO GND TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt IMX8M(&dio safety test items[0],
&dio safety test items[0], DIO SHORT TO GND TEST, BACKUP ENABLE);
dio short to vcc test result =
FS DIO ShortToSupplySet IMX8M(&dio safety test items[0], DIO SHORT TO VDD TEST,
BACKUP_ ENABLE) ;
dio_short to vcc test result = FS DIO InputExt IMX8M(&dio safety test items[0],
&dio safety test items[0], DIO SHORT TO VDD TEST, BACKUP ENABLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is
enabled, the function sets the input direction for the tested pin. If not, configure the input direction. After the end
of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt_IMX8M() function is
called for the tested pin.

4.2.13 FS_DIO_InputExt_IMXRT/()

This is a modified version of the previously mentioned digital input test. Use this version as a get function for
the "short-to" tests. Apply the function to the pin that is already configured as a GPIO input and you know
what logical level is expected at the time of the test. The logical level results from the actual configuration in
the application or it is initialized for the test (if possible). The block diagram of the FS_DIO_InputExt_IMXRT()
function is shown in Figure 17. Two function input parameters are related to an adjacent pin. For a simple
input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

59/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

(DIO_InputExt...)
v

st=PASS

tested pin is
configured
as input ?

st=FS_FAIL_DIO_INPUT

Si=
FS_FAIL_DIO_WRONG_VALUE

expected value
matches ?

Backup
enabled?

Restore all registers
related to the tested pin

v

Restore all registers
related to the adjacent pin

Figure 17. Extended digital input test for IMXRT

Function prototype:

FS RESULT FS_DIO_InputExt IMXRT(fs_dio_test imx_t *pTestedPin, fs_dio_test imx_t *pAdjPin, bool t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.
backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

e FS PASS
* FS _FAIL DIO_INPUT - The pin is not set as the input.
* FS _FAIL DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs dio input test result = FS DIO InputExt IMXRT (&dio safety test item O,
&dio safety test item 0, DIO EXPECTED VALUE, BACKUP ENABLE) ;

Function performance:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

60 /140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The function can be used only for the i.MX RT devices. Configure the tested pin as a GPIO input before
calling the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is
recommended to enter the same input as for "TestedPin".

4.2.14 FS_DIO_Output_IMXRT()

This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical
values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough
for the device to reach the desired logical value on the pin. A very low delay parameter causes the "fail" return

value of the function.

st=PASS

v

Store the actual
value of the pin

t=

pin configured as FS_FALL_DIO_OUTPUT

output

Set pin logic level
to1

Delay interval

logic level ==1?

original value == Q,
?

| Set pin logic level to 0 |
v

st=
FS_FAIL_DIO_NOT_SET

Set pin logic level
to 0

Delay interval

. __ st=
logiclevel ==0 7 FS_FAIL_DIO_NOT_CLEAR

v

Restore the original
value of the pin

Figure 18. Block diagram for digital output test

Function prototype:

UG10104 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 7 December 2023

61/140

NXP Semiconductors UuGcG10104

IEC60730_B_CM4_CM7_Library_UG_v4 _4: IEC60730B Library User's Guide

FS_RESULT FS_DIO_Output_IMXRT(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.
Function output:

typedef uint32_t FS_RESULT;

* FS_PASS

* FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

* FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

* FS _FAIL _DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs dio output test result = FS DIO Output IMXRT (&dio safety test items[1],
DIO WAIT CYCLE);

Function performance:

For information about the function performance, see Core self-test library — source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.15 FS_DIO_ShortToAdjSet_IMXRT()

This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function

is to configure the tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be
theoretically shorted with the tested pin. The function block diagram is shown in Figure 19. Similarly to the short-
to-supply test, this test requires the use of two functions. The second (ge