
REALTIMEEDGEUG
Real-time Edge Software User Guide
Rev. 2.7 — 18 December 2023 User guide

Document information
Information Content

Keywords REALTIMEEDGEUG, Real-time Edge Software, Real-time Networking, Real-time System,
Protocols, i.MX boards, QorIQ (Layerscape) boards, i.MX 6ULL EVK, i.MX 8DXL EVK, i.MX 8M
Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK, i.MX 93 9x9 QSB, LX2160ARDB
Rev2, NXP hardware platforms

Abstract This document describes the features and implementation of Real-time Edge Software on NXP
hardware platforms. The key technology components include Real-time System, Real-time
Networking, Heterogeneous Multicore Framework, Heterogeneous Multi-SoC Framework, and
Protocols.

https://www.nxp.com

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1 Introduction

1.1 Real-time Edge software
Real-time Edge software is an evolved version of Open Industrial Linux (OpenIL) for real-time and deterministic
systems in different fields. The key technology components include Real-time System, Heterogeneous Multicore
Framework, Heterogeneous Multi-SoC Framework, Real-time Networking and Protocols.

• Real-time System includes PREEMPT_RT Linux, Native RTOS on Cortex-A, Jailhouse, U-Boot based
Baremetal framework, RTOS and Baremetal on Cortex-M, and different combinations of these systems.

• Heterogeneous Multicore Framework provides a general software framework to support Heterogeneous
AMP. It enables AMP to be inter-connected and provides a unified resource management and life-cycle
management.

• Heterogeneous Multi-SoC Framework enables the usage of a combination of MPU and MCU. It extends
MCU's hardware as the MPU's hardware component.

• Real-time Networking includes TSN technology, TSN standards, management, configuration, and
applications. Networking and redundancy features are also supported.

• Protocols component includes support for industry standard protocols such as EtherCAT, CoE, FlexCan,
OPC-UA, and others.

This document describes the features and implementation of Real-time Edge Software on NXP hardware
platforms.

1.2 Real-time Edge Software Yocto Project
For using Yocto build environment, refer to the Real-time Edge Yocto Project User Guide. This document
describes the steps to build Real-time Edge images using a Yocto Project build environment for both i.MX and
QorIQ (Layerscape) boards.

1.3 Supported NXP platforms
The Table 1 lists the NXP hardware SoCs and boards that support the Real-time Edge software.

Platform Architecture Boot

i.MX 6ULL EVK Arm v7 SD

i.MX 8DXL LPDDR4 EVK Arm v8 SD

i.MX 8M Mini LPDDR4 EVK Arm v8 SD

i.MX 8M Plus LPDDR4 EVK Arm v8 SD

i.MX 93 EVK Arm v8 SD

i.MX 93 9x9 QSB Arm v8 SD

LS1028ARDB Arm v8 SD, eMMC

LS1043ARDB Arm v8 SD

LS1046ARDB Arm v8 SD, eMMC

LS1046AFRWY Arm v8 SD

LX2160ARDB Rev 2 Arm v8 SD

Table 1. Supported NXP platforms

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
2 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1.3.1 Switch settings

The Table 2 lists and describes the switch configuration for the platforms supported by Real-time Edge software.

Platform Boot source Switch setting

i.MX 6ULL EVK Internal Boot / MicroSD SW602 = 0b'10 (internal boot) and SW601[1:4] = 0b'0010
(MicroSD)

i.MX 8DXL LPDDR4 EVK SD SW1[1:4] = 0b'1100

i.MX 8M Mini LPDDR4 EVK MicroSD / uSDHC2 • SW1101[1:10] = 0b’ 0110110010
• SW1102[1:10] = 0b’ 0001101000

i.MX 8M Plus LPDDR4 EVK MicroSD / SDHC2 SW4[1:4] = 0b’0011

i.MX 93 EVK MicroSD / uSDHC2 SW1301[1:4] = 0b'0100

i.MX 93 9x9 QSB MicroSD / uSDHC2 SW601[1:4] = 0b'0011

LS1028ARDB SD, eMMC • SD: SW2[1:8] = 0b’10001000
• eMMC: SW2[1:8] = 0b’10011000

SW4[1:8] + SW5[1] = 0b'00100000_0LS1043ARDB SD

UART1 output select
• SW3[3] = 0b’0: RJ45
• SW3[3] = 0b’1: CMSIS-DAP (MiniUSB)

SW5[1:8] + SW4[1] = 0b'00100000_0LS1046ARDB SD, eMMC

UART1 output select
• SW4[4] = 0b’0: RJ45
• SW4[4] = 0b’1: CMSIS-DAP (MicroUSB)

LS1046AFRWY SD SW1[1:10] = 0b'0010000000

LX2160ARDB Rev2 SD SW1[1:8] = 0b'10001000

Table 2. Switch setting for various NXP platforms

1.3.2 Flashing pre-built images

Pre-built images for platforms supported by Real-time Edge software can be downloaded from NXP website
from the below URL:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-
SOFTWARE.

Download the image required and extract it by using the commands below: (The code below shows the
commands used for LS1028ARDB-PA as an example)

$ unzip Real-time_Edge_v2.7_LS1028ARDB.zip
$ cd Real-time_Edge_v2.7_LS1028ARDB/real-time-edge
$ ls
atf fsl-ls1028a-rdb-jailhouse-without-enetc.dtb
dp Image-ls1028ardb.bin
fsl-ls1028a-rdb-dpdk.dtb nxp-image-real-time-edge-ls1028ardb.manifest
fsl-ls1028a-rdb-dsa-swp5-eno3.dtb nxp-image-real-time-edge-
ls1028ardb.rootfs.tar.bz2
fsl-ls1028a-rdb.dtb nxp-image-real-time-edge-ls1028ardb.wic.zst
fsl-ls1028a-rdb-jailhouse.dtb rcw
$ zstd -d nxp-image-real-time-edge-ls1028ardb.wic.zst

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
3 / 400

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Insert SD card, device node “sdx” (for example: sdc) is created in directory “/dev/” with USB reader, flash file
“nxp-image-real-time-edge-ls1028ardb.wic” to SD card:

$ sudo dd if=./nxp-image-real-time-edge-ls1028ardb.wic of=/dev/sdc bs=1M
 conv=fsync

After flashing this image to SD card, insert this SD card into LS1028ARDB board, connect UART1 port and
open it. Then, powering on the LS1028ARDB board displays the message as shown in Figure 1.

Figure 1. LS1028ARDB boot log

1.4 Related documentation
All documentation related to Real Time Edge is available on the link: REALTIME EDGE Documentation. The
following documents are available:

• Real-time Edge Yocto Project User Guide (refer to it for using Yocto build environment)
• GenAVB/TSN Stack Evaluation User Guide (provides information on how to set up Audio Video Bridging

evaluation experiments of the GenAVB/TSN Stack on NXP platforms)
• Harpoon User's Guide (provides information to build Harpoon Yocto images)
• i.MX6ULL EVK GenAVB/TSN Rework Application Note (AN13678)
• For details about the graphics feature available in i.MX 8M Plus and i.MX 8M Mini boards, refer to the i.MX

Graphics User's Guide

To boot up and set up the boards mentioned in this document, refer to the instructions available in the following
user guides:

• i.MX 6ULL EVK Quick Start Guide
• i.MX 8M Mini LPDDR4 EVK Quick Start Guide
• i.MX 8M Plus LPDDR4 EVK Quick Start Guide

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
4 / 400

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/docs/en/quick-reference-guide/8MMINILPD4EVKBQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• LS1028ARDB Quick Start Guide
• LS1043ARDB Getting Started Guide
• LS1046ARDB Getting Started Guide
• LS1046AFRWY Getting Started Guide
• LX2160A/LX2160A-Rev2 RDB Quick Start Guide
• IMX93EVK Quick Start Guide

1.5 Acronyms and abbreviations
The Table 3 lists the acronyms used in this document.

Term Description

AVB Audio video bridging

AMP Asymmetric multiprocessing

BC Boundary clock

BLE Bluetooth low energy

BMC Best master clock

CA Client application

CAN Controller area network

CBS Credit-based shaper

CDW Concurrent Dual Wi-Fi

CMLDS Common Mean Link Delay Service

DoS Daniel-of-Service

DEI Drop eligibility indication

DP Display port

EtherCAT Ethernet for control automation technology

ECU Electronic control units

FDB Forwarding database

FQTSS Forwarding and queuing enhancements for time-sensitive streams

FMan Frame manager

GPU General processor unit

ICMP Internet control message protocol

IEEE Institute of electrical and electronics engineers

IETF Internet engineering task force

IPC Inter-processor communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

MU Message Unit

NFC Near field communication

Table 3. Acronyms and abbreviations

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
5 / 400

https://www.nxp.com/webapp/Download?colCode=LS1028ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&location=null&fsrch=1&sr=10&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&location=null&fsrch=1&sr=3&pageNum=2&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/quick-reference-guide/FRWY-LS1046AGSG.pdf
https://www.nxp.com/webapp/Download?colCode=LX2160ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=IMX93EVKQSG

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Term Description

NCI NFC controller interface

NMT Network management

OC Ordinary clock

OpenIL Open industry Linux

OPC Open platform communications

OP-TEE Open portable trusted execution environment

OS Operating system

OTA Over-the-air

OTPMK One-time programmable master key

PCP Priority code point

PDO Process data object

PHC PTP hardware clock

PIT Packet inter-arrival times

PLC programmable logic controller

PTP Precision time protocol

QSPI Queued serial peripheral interface

RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RPMSG Remote processor messaging

RTEdge Real-time edge

RTC Real-time clock

RTT Round-trip times

RX Receiver

SABRE Smart application blueprint for rapid engineering

SDO Service data object

SOEM Simple Open EtherCAT master

SPI Serial periphery interface

SRP Stream reservation protocol

SRTM Simplified Real-time Messaging

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TC Traffic classification

TCP Transmission control protocol

TEE Trusted execution environment

Table 3. Acronyms and abbreviations...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
6 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Term Description

TFTP Trivial file transfer protocol

TSN Time sensitive networking

TX Transmitter

TZASC Trust zone address space controller

UDP User datagram protocol

VLAN Virtual local area network

Table 3. Acronyms and abbreviations...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
7 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2 Release notes

2.1 What's new
The following sections describe the new features for each release.

2.1.1 What's new in Real-time Edge software v2.7

• Real-time System
– Preempt-RT Linux 6.1.36-rt12
– Baremetal: math library extended to all platforms
– Harpoon 2.5

• Heterogeneous multcore Framework
– lwIP on Cortex-A Core (ENET on i.MX8MP)
– RPMSG between two FreeRTOS
– RPMSG performance evaluation tools
– RAM console on FreeRTOS
– Flexible bootstraps with application

• Heterogeneous Multi-SoC Framework
– NETC DSA switch driver on Linux
– Device driver of DSA control interface on Linux DSA
– Service driver of DSA control interface on i.MX RT1180
– NETC DSA switch configuration on i.MX RT1180

• Protocols
– AVB bridge with SJA1105

• Benchmarking
– Heterogeneous Multicore VirtIO performance optimization

• NPI
– i.MX93 A1 9*9

– Preempt RT, Baremetal, Jailhouse, Heterogeneous Multicore (RPMSG, UART sharing), TSN web-UI
configuration

• Based on lf-6.1.36-2.1.0
– U-Boot v2023.04
– LTS 6.1.36
– MCUX SDK 2.13.1
– Yocto mickledore 4.2

• Documentation
– Real-time Edge QRG (Quick Reference Guide)

2.1.2 What's new in Real-time Edge software v2.6

• Real-time system
– Preempt-RT Linux 6.1.22-rt8
– Baremetal

– LS1028A
– Preempt-RT Linux + Baremetal
– All Cortex-A running under Baremetal

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
8 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

– Math library support
– DM mode for Baremetal example and driver: I2C, QSPI

– Harpoon 2.4.0
• Heterogeneous multcore framework

– VirtIO Ethernet sharing RFP
• Protocols

– EtherCAT master CodeSYS networking optimization
– i.MX 8M Plus, i.MX 8M Mini, i.MX93, i.MX 6ULL

– TSN
– Enhancements for Avnu Alliance Conformance Test for IEEE802.1Qbu/IEEE802.3br

– AVB Milan 1.1 Test Suite conformance
• Benchmark

– Heterogeneous multicore performance: networking
– CodeSYS EtherCAT master stack benchmarking

• NPI
– i.MX93 A0 9*9

– Preempt RT, TSN, TSN stack, and config tool
– i.MX8DXL: AVB Media Clock Recovery

• Based on lf-6.1.22-2.0.0
– U-Boot v2023.04
– LTS 6.1.22
– MCUX SDK 2.13.1
– Yocto mickledore 4. 2

2.1.3 What's new in Real-time Edge software v2.5

• Real-time system
– Heterogeneous multi-core

– RPMSG Vring buffer increasing from 256 KB to 8 MB
– VirtIO network sharing with performance optimization

– Baremetal improvements on LS1046A
– All Cortex-A cores running under Baremetal
– Flextimer
– Baremetal example and driver change to DM mode: GPIO

– Integration of Harpoon 2.3
– Support for AVB Talker in FreeRTOS audio app
– Support for RPMsg control (FreeRTOS, all boards)
– Support for Virtual Ethernet
– Basic support for i.MX 93 ("hello world")

• Protocols
– EtherCAT master

– Basic CodeSYS PLC control support and native driver optimization
– i.MX 8M Plus, i.MX 8M Mini, i.MX 93, i.MX 6ULL

• NPI
– i.MX93 A0 11*11

– Baremetal, RPMSG based UART sharing
– AVB Media Clock Recovery

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
9 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

– i.MX8DXL: AVB audio talker/listener
• Platform

– eMMC booting on LS1028ARDB and LS1046ARDB
– Removal of testing and documentation support, keeping code inclusion for:

– LS1021AIOT, LS1021ATSN, LS1021ATWR, LS1012ARDB
– Based on lf-5.15.71-rt-2.2.0

– LTS 5.15.71
– Yocto Kirkstone 4.0
– U-Boot v2022.04

2.1.4 What's new in Real-time Edge software v2.4

• Real-time system
– Preempt-RT Linux-5.15.52-rt
– Heterogeneous multi-core

– Inter-core communication between Cortex-A core and Cortex-A/Cortex-M core on i.MX 8M Plus and i.MX
8M Mini
– UART 9-bit Multidrop mode (RS-485) support
– RPMSG between Cortex-A cores

– Linux SGI mailbox driver on Linux
– RPMSG Lite with SGI mailbox on RTOS

– Loading binaries on i.MX 8M Mini and i.MX 8M Plus to the Cortex-M from Linux
– Baremetal extensions on LS1046A

– Single hardware interrupt routed to multiple cores
– Newlib math library

– Integration of Harpoon 2.2
– Audio SMP pipeline (Zephyr)
– RPMsg-based IPC through Linux control application
– audio AVB pipeline (FreeRTOS)
– Support for AVB Listener in FreeRTOS audio app

• Real-time Networking
– TSN

– Dynamic TSN configuration of Qci for bandwidth limitation
– Qbu: added preemption TLV on LLDP package and preemption verification support

– AVB
– AVB integration improvements

• Protocols
– AVB Milan extensions
– EtherCAT master stacks

– EtherCAT master multiple axes control system
– HMI: LS1028A and i.MX 8M Plus

– HTML5/chromium
– Modbus

– Libmodbus package integration
– Modbus-simulator client and server

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
10 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

– WiFi enabled on i.MX 8DXL
• Reference design

– EtherCAT master multiple axes control system
– HCFA 60-axes servo using CSP mode

• NPI
– i.MX93 A0 11*11: Preempt-RT, EtherCAT master, AVB/TSN, TSN stack and config tools, TSN performance,

OPC-UA Pub/Sub
– i.MX8DXL: Preempt-RT, EtherCAT master, TSN stack and config tools, OPC-UA Pub/Sub

• Based on lf-5.15.52-2.1.0
– LTS 5.15.52
– Yocto Kirkstone 4.0
– U-boot v2022.04

2.1.5 What's new in Real-time Edge software v2.3

• Real-time Networking
– TSN

– Dynamic TSN configuration (EAR)
– Qci configuration
– CAF configuration based on 802.1 Qch

– YANG modules updating to latest version
– AVB

– Endpoint support on i.MX 6ULL, i.MX 8M Plus, and i.MX 8M Mini
• Real-time System

– PREEMPT-RT Linux-5.15.5-rt22
– Heterogeneous AMP software

– Yocto based unified delivery for Cortex-A and Cortex-M
– Resource sharing

– RPMSG-based UART sharing
– Virtual UART to physical UART 1:1 mapping
– Virtual UART to physical UART n:1 mapping
– Virtual UART to physical UART flexible mapping

– Harpoon (RTOS on Cortex-A)
– Zephyr integration on i.MX 8M Plus and i.MX 8M Mini
– Audio Application

– Sine wave playback
– Record and playback (loopback)
– Audio pipeline

– Industrial applications:
– TSN over Ethernet test application
– CAN test application

• Protocols
– EtherCAT master stack

– IGH EtherCAT master native driver on LS1043A and LS1046A
– Multiple EtherCAT masters
– Flexible port selection for EtherCAT and Ethernet

– SOEM EtherCAT master stack enablement (PRC):
– RTOS on Cortex-M on i.MX 8M Plus

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
11 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

– RTOS on Cortex-M on i.MX 8M Mini
– FreeRTOS or without an operating system

• Benchmark
– Scheduling latency on Preempt_RT and Harpoon RTOS
– Inter-core communication bandwidth of Baremetal
– Packet processing time of TSN
– Packet processing time of EtherCAT

• Based on lf-5.15.5-1.0.0
– Linux 5.15.5-rt22
– U-Boot v2021.04
– Yocto Honister 3.4

2.1.6 What's new in Real-time Edge software v2.2

• Real-time Networking
– TSN

– 802.1AS: PHY delay correction calibration
– AF_XDP performance improvements
– IEEE 1588 PTP UDP on LS1028ARDB TSN switch

• Real-time system
– PREEMPT-RT Linux-5.10.72-rt53
– Harpoon (RTOS on Cortex-A)

– Integration of Harpoon on i.MX 8M Plus and i.MX 8M Mini
• Protocols

– EtherCAT master stack
– IGH EtherCAT master native driver on

LS1043A and LS1046A
– Multiple EtherCAT masters
– Flexible port selection for EtherCAT and Ethernet

– SOEM EtherCAT master stack enablement (EAR):
– RTOS on Cortex-M on i.MX 8M Plus
– FreeRTOS

or without an operating system
• Based on lf-5.10.72-2.2.0

– Linux 5.10.72-rt
– U-Boot v2021.04
– Yocto Hardknott 3.3

2.1.7 What's new in Real-time Edge software v2.1

What’s New:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
12 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Real-time Networking
– TSN

– 802.1AS-2020
– CMLDS (generic interface to PTP stack)

– TSN application
– TSN application with AF_XDP data path

– TSN configuration
– Path selection for Qbv
– Schedule mapping for Qbv

• Real-time system
– PREEMPT-RT Linux-5.10.52-rt47
– Jailhouse

– GPIO in non-root cell Linux support on LS1028ARDB
– ENETC in non-root cell Linux support on LS1028ARDB

• Protocols
– Native EtherCAT-capable network driver module on ENETC (LS1028ARDB)
– Native EtherCAT-capable network driver module on FEC (i.MX 8M Plus EVK)
– EtherCAT: CoE 6-8 axis control
– OPC UA PubSub
– OPC UA PubSub over TSN

• Based on i.MX L5.10.52_2.1.0
– Linux 5.10.52-rt
– U-Boot v2021.04
– Yocto Hardknott 3.3

2.1.8 What's new in Real-time Edge software v2.0

• Based on Yocto project 3.2 (Gatesgarth)
• Real-time System

– PREEMPT-RT Linux
– Heterogeneous architecture

– Baremetal: PREEMPT-RT Linux on A core + Baremetal architecture on A core
– i.MX 8M Plus EVK, i.MX 8M Mini EVK, LS1028ARDB, LS1046ARDB, LS1043ARDB, LS1021A-IoT

– Jailhouse: PREEMPT-RT Linux on A core + Jailhouse + PREEMPT-RT Linux on A core
– i.MX 8M Plus EVK, LS1028ARDB, LS1046ARDB

• Real-time Networking
– TSN

– TSN Standards
– IEEE 802.1Qav
– IEEE 802.1Qbv
– IEEE 802.1Qbu
– IEEE 802.1Qci
– IEEE 802.1CB
– IEEE 802.1AS-2020 (gPTP)
– IEEE 802.1Qat-2010 (SRP)

– TSN Configurations
– Linux tc command and tsntool
– NETCONF/YANG

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
13 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

– Dynamic TSN configuration - web-based TSN configuration, dynamic topology discovery
– TSN Applications

– Example for real-time traffic processing
– Networking

– 802.1 Q-in-Q
– VCAP tc flower chain mode

– Priority set, VLAN tag push/pop/modify, Policer Burst and Rate Configuration, drop/trap/redirect
• Industrial

– EtherCAT master
– IGH EtherCAT master stack
– Native EtherCAT-capable network driver module (i.MX 8M Mini EVK)

– FlexCAN
– SocketCAN on Linux kernel

– CANOpen
– CANOpen master and slave example code

– CoE: CANOpen over EtherCAT
– CiA402(DS402) profile framework based on IGH CoE interface
– EtherCAT CoE 6-8 axis control (i.MX 8M Mini EVK)

– OPC UA/OPC UA PubSub
– open62541

– Modbus
– Modbus master and slave
– Modbus-RTU
– Modbus-TCP
– Modbus-ASCII

• New Added Platform
– i.MX 6ULL EVK

2.1.9 What's new in OpenIL v1.11

What’s New:

• TSN
– 802.1AS-2020

– Initial support for multi-domain on i.MX 8M Plus and LS1028A
• Hardware

– i.MX 8M Plus silicon A1
• Linux Kernel

– LTS 5.4.70 for i.MX 8 Series
• U-Boot

– v2020.04 for i.MX 8 Series
• Baremetal

– v2020.04 for Layerscape and i.MX 8 Series
– i.MX 8M Plus EVK

2.1.10 What's new in OpenIL v1.10

What’s New:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
14 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• TSN
– VCAP chain mode
– GenAVB/TSN stack

• Real-time
– PREEMPT-RT 5.4 on i.MX 8M Mini

– Ethernet
– PCIe
– GPIO
– DSI

• Baremetal
– i.MX 8M Mini EVK (A core to A core)

– ICC
– Ethernet
– GPIO

• OpenIL framework
– Board

– i.MX 8M Mini platform
– GPU: OpenGL ES
– Display: OpenGL ES, Weston, DSI-MIPI, CSI-MIPI

2.1.11 What's new in OpenIL v1.9

What’s New:

• TSN
– tc flower support for Qbu and Qci
– 802.1 QinQ
– Multi-ports TSN switch solution
– i.MX 8M Plus - TSN

• Real-time
– PREEMPT-RT 5.4 on i.MX 8M Plus

• Baremetal
– LX2160ARDB rev2 support and ICC

• OpenIL framework
– linuxptp uprev to 3.0
– Board

– i.MX 8M Plus EVK
– TSN: Qbv, Qbu, Qav
– GPU: OpenGL ES, OpenCL
– Display: OpenGL ES, Weston

– LS1028ARDB
– Display: OpenGL ES, Weston
– GPU: OpenGL ES, OpenCL

– LX2160ARDB Rev2

2.1.12 What's new in OpenIL v1.8

What’s New:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
15 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• TSN
– tc VCAP support for VLAN-retagging
– tc VCAP support for police
– tc support for Qav and Qbv
– SJA1105 DSA Support and clock synchronization
– YANG modules for network config (IP, MAC, and VLAN)

• Real time
– PREEMPT-RT 5.4

• Baremetal
– LX2160A rev1 ICC

• OpenIL framework
– buildroot uprev to 2020.02
– Kernel/U-Boot

– Linux upgraded to LSDK20.04 - Linux-5.4.3
– U-Boot upgraded to LSDK20.04 - U-Boot 2019.10

– Board
– i.MX 8M Mini
– Foxconn LS1028ATSN board with SJA1105

2.1.13 What's new in OpenIL v1.7

What’s New:

• TSN
– BC-based 802.1AS bridge mode
– Netopper2 support based on sysrepo. Support Qbv, Qbu, Qci configuration
– VLAN-based tc flower policer
– Web-based TSN configuration tool - available for Qbv, Qbu, and Qci configuration

• Real time
– Xenomai

– Xenomai I-pipe uprev to 4.19
– Baremetal

– SAI support on LS1028
– i.MX6Q Baremetal ICC

• Industrial protocols
– CANopen over EtherCAT

• OpenIL framework
– Kernel/U-Boot

– Linux upgraded to LSDK1909 - 4.19
– U-Boot upgraded to U-Boot-2019.04

– Boards
– LX2160ARDB SD boot
– LX2160ARDB XSPI boot
– LS1028ARDB XSPI boot
– LS1046ARDB eMMC boot

2.1.14 What's new in OpenIL v1.6

What’s New:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
16 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• TSN
– Web-based TSN configuration tool - available for Qbv and Qbu configuration
– TSN driver enhancement

• Real time
– Baremetal

– i.MX6Q-sabresd Baremetal support
• NETCONF/YANG

– NETCONF/YANG model for Qbu and Qci protocol
• Industrial protocols

– LS1028A - BEE click board

2.1.15 What's new in OpenIL v1.5

What’s New:

• TSN
– Web-based TSN configuration tool - available for Qbv and Qbu configuration
– 802.1AS endpoint mode for LS1028A TSN switch

• Real time
– Xenomai

– LS1028 ENETC Xenomai RTNET support
– Baremetal

– LS1028 Baremetal ENETC support
• NETCONF/YANG

– NETCONF/YANG model for Qbv protocol
• Industrial protocols

– LS1028A - BLE click board

2.1.16 What's new in OpenIL v1.4

What’s New:

• TSN
– ENETC TSN driver: Qbv, Qbu, Qci, Qav
– ENETC 1588 two steps timestamping support
– SWTICH TSN driver: Qbv, Qci, Qbu, Qav, 802.1CB support

• Real time
– Xenomai

– LS1028ARDB
– Baremetal

– LS1021AIoT, LS1043ARDB, LS1046ARDB
– LS1028 Baremetal basic Baremetal support

• Industrial protocols
• – LS1028A - NFC click board

– QT5.11
• OpenIL framework

– boards: LS1028ARDB

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
17 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2.2 Feature support matrix
Table 4 shows the features that are supported in this release.

Feature i.MX
6ULL
14x14
EVK

i.MX
8DXL

LPDDR4
EVK

i.MX 8M Mini
LPDDR4 EVK

i.MX 8M
Plus

LPDDR4
EVK

i.MX
93

EVK

i.MX
93 9x9

LPDDR4
QSB

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LS1046
AFRWY

LX2160
ARDB

SD Y Y Y Y Y Y Y Y Y Y YBoot
mode eMMC Y Y

Preempt-RT Linux Y Y Y Y Y Y Y Y Y Y Y

ICC Y Y Y Y Y Y Y Y

PCIe Y Y Y

Ethernet Y Y Y Y Y Y

GPIO Y Y Y

IPI Y Y Y Y Y Y Y Y

UART Y Y Y Y Y Y Y Y

USB Y Y

SAI Y

CAN

I2C Y Y Y

QSPI Y

IFC Y

Flextimer Y

ICC Y Y Y Y Y Y Y YLinux
(communi-
cation with
Baremetal)

IPI
Y Y Y Y Y Y Y Y

Single HW Interrupt
to multiple cores Y

Newlib Math library Y Y Y Y Y Y Y Y

Baremetal

All Cortex-A cores
running under
Baremetal

Y Y

Jailhouse Y Y Y Y Y Y

FreeRTOS Y Y Y

Real-Time
System

Harpoon
(RTOS on
Cortex-A) Zephyr Y Y Y

Flexible Realtime
System

Y Y Y

RAM Console Y Y Y
Flexible
Real-time
System

Networking stack on
A Core RTOS Y

U-Boot booting
Native RTOS/
Baremetal A Core
Image

Y Y Y

U-Boot booting
NativeRTOS/
Baremetal MCore
Image

Y Y Y Y
Unified
Life Cycle
Management

Linux booting Native
RTOS/
Baremetal MCore
Image

Y Y Y Y

RPMSG
between A Core
Linux and
M-Core RTOS

Y Y Y Y Y

Heterogen-
eous
Multicore
Framework

RPMSG
RPMSG
between A Core
Linux and
A-Core RTOS

Y Y

Table 4. Key features

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
18 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Feature i.MX
6ULL
14x14
EVK

i.MX
8DXL

LPDDR4
EVK

i.MX 8M Mini
LPDDR4 EVK

i.MX 8M
Plus

LPDDR4
EVK

i.MX
93

EVK

i.MX
93 9x9

LPDDR4
QSB

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LS1046
AFRWY

LX2160
ARDB

RPMSG
between ACore
RTOS
and A-Core
RTOS

Y

RPMSG
between A core
and M core
with enhanced
8MB buffer

Y

RPMSG
Performance
Evaluation

Y

UART Sharing
based on
RPMSG

Y Y Y

Heterogeneous
Multicore VirtIO
Performance
Evaluation

Y
Heterogene
-ous
Multicore
VirtIO

Heterogeneous
Multicore
VirtIO Network
Sharing

Y Y Y

DSA single port
mode Y Y

DSA bridge mode Y Y

MTU configuration Y Y

VLAN configuration Y Y

FDB configuration Y Y

Heterogen-
eous
Multi-SoC
Framework

DSA switch
on MPU +
MCU

Port statistics Y Y

Qbv Y Y Y Y Y

Qbu Y Y Y Y Y

Qci Y

Qav Y Y Y Y Y Y

802.1AS Y Y Y Y Y Y Y Y Y Y

802.1CB Y

VCAP chain mode Y

TSN
Standards

802.1 Q-in-Q Y

Linux tc command Y Y Y Y Y

TSN tool Y

Qbv Y Y Y Y Y

Qbu Y Y Y Y Y

Qci Y

IP Y Y Y Y Y

MAC Y Y Y Y Y

NETCONF/
YANG

VLAN
config Y Y Y Y Y

Qbv Y Y Y Y Y

Qbu Y Y Y Y YWeb-based
configuration

Qci Y

Dynamic topology
discovery Y Y Y Y Y

Qci Y

CQF Y

Real Time
Networking

TSN
Configurati
ons

Dynamic
TSN
configuration

Qbv Y Y Y Y Y

Table 4. Key features...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
19 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Feature i.MX
6ULL
14x14
EVK

i.MX
8DXL

LPDDR4
EVK

i.MX 8M Mini
LPDDR4 EVK

i.MX 8M
Plus

LPDDR4
EVK

i.MX
93

EVK

i.MX
93 9x9

LPDDR4
QSB

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LS1046
AFRWY

LX2160
ARDB

AVTP Talker/
Listener Y Y Y Y Y

AVDECC Y Y Y Y Y

MAAP Y Y Y Y Y

Milan Y Y Y Y Y

AVB
standards

Media clock
recovery Y Y Y [1] Y Y [1]

AVB Bridge on SJA1105Q-EVB Y

IEEE 1588/802.1AS Y Y Y Y Y Y Y Y Y Y

IGH EtherCAT
master stack Y Y Y Y Y Y Y Y Y Y

IGH native Ethernet
device driver Y Y Y Y Y Y Y

SOEM Y Y

EtherCAT
master

CodeSYS EtherCAT
master stack Y Y Y Y

FlexCAN Y

CANopen

open62541 Y Y Y Y Y Y Y Y Y Y Y
OPC UA OPC UA PubSub

over TSN Y Y Y Y Y

BEE (Mikroe Click board) Y

BLE (Mikroe Click board) Y

NFC (Mikroe Click board) Y

Modbus-RTU Y Y Y Y Y Y

Industrial
Protocol

Modbus
Modbus-TCP Y Y Y Y Y Y Y Y Y Y Y

Table 4. Key features...continued

[1] Media clock recovery is implemented through a software-based sampling

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
20 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2.3 Open, fixed, and closed issues
This section contains three tables that describe Open, Fixed, and Closed issues.

• Open issues do not currently have a resolution. Workaround suggestions are provided where possible. Refer
Table 5

• Fixed issues have a software fix that has been integrated into the 'Fixed In' Release. Refer Table 6.
• Closed issues are issues where the root cause and fix are outside the scope of Real-time Edge Software.

Disposition is to provide the explanation. Refer Table 7.

ID Description Opened In Workaround

INDLINUX-3750 logout after listing services by running
'service --status-all' on LS1028ARDB

Real-time Edge
software v2.6

None

Table 5. Open issues in Real-time Edge software v2.7

ID Description Opened In Fixed In

NDLINUX-3632 Graphics feature is not functioning on
LS1028ARDB

Real-time Edge software
v2.6

Real-time Edge software
v2.7

Table 6. Fixed Issues in Real-time Edge Software v2.7

ID Description Opened In Disposition

None - - -

Table 7. Closed Issues in Real-time Edge Software v2.7

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
21 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3 Real-time system

3.1 Overview
Real-time System is to address different Real-time requirements on multicore platforms, including different
schedule latency requirements, Inter-Core communication, hardware resource sharing, unified life-cycle
management, and unified building and deployment mechanism.

For different schedule latency requirements, Real-time System provides Preempt-RT Linux, native RTOS on
Cortex-A core and Cortex-M core, RTOS on Cortex-A core with Jailhouse, Baremetal framework, and a flexible
combination of different cores running Preempt-RT Linux and RTOS/Baremetal to meet different Real-time
requirements for different use cases.

Heterogeneous Multicore Framework in Real-Rime Edge provides different inter-core communication
mechanisms and hardware resources sharing mechanisms between different CPU Core and different OS to
cover high-performance communication and Real-time requirements. Unified CPU Core life cycle management
provides a unified mechanism to bootstrap the Cortex-A core and Cortex-M core on the heterogeneous MPU
system. Refer to chapter Section 4 for more details.

The unified software building and deploying mechanism provides easy building and deployment for the
software components running on the Cortex-A core and Cortex-M core. These components and features of this
mechanism are depicted in Figure 2.

Figure 2. Real-time system

Real-time Edge software provides a general software architecture to run Real-time Systems on MPU platforms
with the following features:

• Different frameworks and flexible combinations for different schedule latency requirements
The Figure 3 shows all the OS/Baremetal supported in Real-time Edge on MPU platforms with different-scale
schedule latency:
– Preempt-RT Linux on Cortex-A Core

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
22 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Real-time Linux kernel provides deterministic low latency compared to Linux.
– Baremetal on Cortex-A Core

Single or multiple Baremetal instance run Cortex-A Core(s) with zero schedule latency.
– Native RTOS SMP/AMP on Cortex-A Core

Native RTOS (FreeRTOS or Zephyr) is kicked to one or more Cortex-A Core from U-Boot, no Jailhouse is
used and targets lower latency and higher performance as compared to RTOS with Jailhouse.

– RTOS SMP/AMP on Corex-A Core with Jailhouse
RTOS (FreeRTOS or Zephyr) runs in Jailhouse inmate with hardware resource isolations on Cortex-A Core.

– RTOS and Baremetal on Cortex-M Core
Generally used for Real-time Control system, but has less CPU computing ability than Cortex-A Core.

Figure 3. Flexible AMP in Real-time system

All these Real-time OS or BareMetal can be combined to be a flexible AMP system on multicore system. For
example, i.MX8M Plus platform has four Cortex-A53 Core and one Cortex-M7 Core. The Real-time Edge
software supports flexible AMP system to run these OS/BareMetal combinations:
– Four Cortex-A53 cores run SMP Preempt-RT Linux, Cortex-M7 core run RTOS.
– Four Cortex-A53 cores run four Baremetal/RTOS instances, Cortex-M7 core run RTOS.
– One or more Cortex-A53 cores run Preempt-RT Linux, the other Cortex-A53 cores run one or more.

Baremetal/RTOS instances, Cortex-M7 core run RTOS.
– One or more Cortex-A53 cores run Preempt-RT Linux as Jailhouse Root Cell, the other Cortex-A53 cores

run as one or more inmate cell(s) with RTOS.
• Unified Software Building, Deploy and Release

– All different OS/application running on different cores are built via Yocto.
– A bitbake command is used to create all images on different cores.
– Single Flash Image includes all OS/applications running on all CPU cores.

• Heterogeneous Multicore Framework
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
23 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

A common framework with the following key features and functions:
– Inter-Core Data Communication and Resource Sharing

Common Heterogeneous Multicore Framework provides data communication and resource sharing
between M-Core and A-Core(s) or between different A-Cores simulteneously: RPMSG provides standard
message communication for low bandwidth use cases, and Heterogeneous Multicore Virtio provides high
performance data path and resource sharing to meet high bandwidth requirement.

– Unified Life-Cycle management for flexible AMP

Real-time Edge software supports Preempt-RT Linux, FreeRTOS, Zephyr, and Baremetal running on different
processors with Heterogeneous Multicore Framework. The Table 8 shows the support matrix on NXP platforms:

Real-time System
i.MX 8M Mini
LPDDR4 EVK

i.MX 8M Plus
LPDDR4
EVK

i.MX 93
EVK

LS1028
ARDB

LS1043
ARDB

LS1046
ARDB

LX2160ARDB

Cores 4 X
A53

1 X
M4

4 X
A53

1 X
M7

2 X
A55

1 X
M33

2 X A72 4 X A53 4 X A72 16 X A72

Preempt-RT Linux Y Y Y Y Y Y Y

Baremetal Y Y Y Y Y Y Y Y Y Y

FreeRTOS Y Y Y Y Y Y
Native RTOS

Zephyr Y Y Y Y Y Y

Baremetal Y Y Y Y Y Y Y

FreeRTOS Y Y Y

Zephyr Y Y Y
Jailhouse

Harpoon Y Y Y

Table 8. Real-time-system support matrix

3.2 Building, deploying, and releasing unified software
The Yocto project is an open source collaboration project that helps developers create custom Linux-based
systems regardless of the hardware architecture. The project provides a flexible set of tools and a space where
embedded developers worldwide can share technologies, software stacks, configurations, and best practices.
These can further be used to create tailored Linux images for embedded and IoT devices, or anywhere a
customized Linux OS is needed. Moreover, Linux factory selects Yocto as the building tool. Real-time Edge
also selects Yocto as the unified SW release tool. Figure 4 shows the unified Yocto structure for Heterogeneous
AMP.

Figure 4. Unified Yocto structure for Heterogeneous AMP

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
24 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Yocto Layer meta-real-time-edge focuses on Linux and baremetal application building on Cortex-A core.
• Yocto Layer meta-nxp-harpoon focuses on RTOS building on Cortex-A core.
• Yocto Layer meta-rtos-industrial focuses on RTOS building running on Cortex-M core.

Only one build command is required to generate the complete image, including all binaries running on core A
and core M.

For example:

setup yocto environment for imx8mp-lpddr4-evk board
$ DISTRO=nxp-real-time-edge MACHINE=imx8mp-lpddr4-evk source real-time-edge-
setup-env.sh
build all images for imx8mp-lpddr4-evk board
$ bitbake nxp-image-real-time-edge

3.2.1 Yocto layer for Cortex-A core

The Cortex-A core allows users to run Linux, Jailhouse, Baremetal, and RTOS. The corresponding Yocto layer
description is as follows:

1. Linux and Rootfs
The Yocto layer meta-real-time-edge focuses on Linux building on Cortex-A cores. This layer is based
on Linux factory and describes the process for building all applications for Linux and rootfs on Cortex-A
core.

2. Jailhouse
The scripts under meta-real-time-edge/recipes-extended/real-time-edge-jailhouse
describe how to build Jailhouse running on Cortex-A core.

3. Baremetal application
The scripts under meta-real-time-edge/recipes-extended/real-time-edge-baremetal
describe how to build baremetal application on Cortex-A core. Refer to Section 3.4 for details.

4. Harpoon (RTOS on A core)
Harpoon provides an environment for developing real-time demanding applications on an RTOS running on
one (or several) Cortex-A core(s) in parallel of a Linux distribution, leveraging the 64-bit Arm (R) architecture
for higher performance. The system starts on Linux and the Jailhouse partitions the hardware to run both
Linux and the guest RTOS in parallel. The hardware partitioning is configurable and depends on the use
case. The Yocto layer meta-nxp-harpoon describes how to build these applications on Cortex-A core. For
more information, refer to Harpoon User's Guide. See Section 1.4.

3.2.2 Yocto layer for Cortex-M core

When the application runs on the Cortex-M core, it uses different toolchain and source code. For a unified
compilation interface, Yocto meta layer meta-rtos-industrial is introduced into Real-time Edge project.
The meta-rtos-industrial layer provides the build environment to create MCUX SDK application for
Cortex-M cores.

3.2.2.1 Introduction to meta-rtos-industrial

The Figure 5 shows the meta-rtos-industrial file structure.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
25 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 5. RTOS Industrial Layer structure

3.2.2.1.1 Source code definition

All source code related definition is under recipes-kernel/mcux-kernel folder.

The file mcux-sdk-src.inc defines all the repos of (NXPmicro/mcux-sdk: MCUXpresso SDK (github.com))
and the new repos.

If a new repo needs to be downloaded, append a new line to “SRC_URI” with the URL and location of the
required repo.

For example, use the below code to download 'SOEM' stack to git/core/components/SOEM folder:

git://${NXPMICRO_BASE}/soem.git;protocol=https;nobranch=1;destsuffix=git/core/
components/SOEM;name=SOEM \

mcux-sdk-src-XXX.inc defines the MCUX SDK repo commit ID for the release XXX. For example, mcux-
sdk-src-2.11.0.inc contains all the commit IDs for the release 2.11.0 repository.

The parameter PREFERRED_VERSION_MCUX-SDK defines the default version in mcux-sdk-src.inc. If you
want to compile a different version, overwrite this parameter in the local.conf.

For example:

Add the below line into local.conf
PREFERRED_VERSION_MCUX-SDK = "2.10.0"

3.2.2.1.2 Example definition

The file mcux-examples.inc describes the common method to compile install and deploy examples. Each
example bb file should include this file and then specify the folder of the example.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
26 / 400

https://github.com/NXPmicro/mcux-sdk

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Use the command below to add a new example:

include mcux-example.inc
MCUX_EXAMPLE_DIR = "examples/${RTOS-INDUSTRIAL-BOARD}/demo_apps/hello_world"

3.2.2.1.3 Toolchain definition

The file recipes-devtools/external-arm-toolchain/gcc-arm-none-eabi_VERSION.bb describes
how to download, install, and deploy gcc-arm-none-eabi toolchain of the specific VERSION.

This layer also supports external toolchain. Parameter “ARMGCC_DIR” can be overwritten to point the external
toolchain.

For example:

ARMGCC_DIR = “/MYPATH/arm-none-eabi”

3.2.2.2 Integration of meta-rtos-industrial

To integrate meta-rtos-industrial into the Real-time Edge project, you need to specify the board and
examples.

The board name is different between i.MX SDK and MCUX SDK. For example, in order to compile Cortex-
M application for i.MX 8M Mini EVK with LPDDR4, use the board name evkmimx8mm instead of imx8mm-
lpddr4-evk. The file rtos-industrial-examples.inc is created under meta-real-time-edge/
distro/include to map the board names. The board name used by MCUX SDK should be set to parameter
RTOS-INDUSTRIAL-BOARD.

In the path meta-real-time-edge/recipes-nxp/packagegroups, packagegroup-real-time-edge-
rtos.bb is used for examples that are compiled. These examples should be installed into rootfs.

3.2.2.3 Building meta-rtos-industrial

As the meta-rtos-industrial is already integrated into Real-time Edge, we do not need any special commands
or settings to enable building the rtos application. When building nxp-image-real-time-edge image, all
examples defined in packagegroup-real-time-edge-rtos.bb are built and installed into “/examples”
folder in rootfs.

Use the below commands to create nxp-image-real-time-edge image for imx8mm-lpddr4-evk board.

$ mkdir yocto-real-time-edge
$ cd yocto-real-time-edge
$ repo init -u https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git
 -b real-time-edge-mickledore -m real-time-edge-2.7.0.xml
$ repo sync
$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk source real-time-edge-
setup-env.sh -b build-imx8mpevk-real-time-edge
$ bitbake nxp-image-real-time-edge

The example binary are located under tmp/deploy/images/imx8mm-lpddr4-evk/examples and /
examples of rootfs.

examples/
|-- heterogeneous-multicore
| |-- hello-world-ca
| | `-- ddr_release

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
27 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

| | |-- hello_world_ca53.bin
| | `-- hello_world_ca53.elf
| |-- virtio-net-backend-ca
| | `-- ddr_release
| | |-- virtio_net_backend_ca53.bin
| | `-- virtio_net_backend_ca53.elf
| |-- virtio-net-backend-cm
| | `-- release
| | |-- virtio_net_backend_cm4.bin
| | `-- virtio_net_backend_cm4.elf
| |-- virtio-perf-ca
| | `-- ddr_release
| | |-- virtio_perf_ca53.bin
| | `-- virtio_perf_ca53.elf
| `-- virtio-perf-cm
| `-- release
| |-- virtio_perf_cm4.bin
| `-- virtio_perf_cm4.elf
`-- mcux-sdk
 |-- 9bit-iuart-interrupt-transfer
 | |-- ddr_release
 | | |-- 9bit_iuart_interrupt_transfer.bin
 | | `-- 9bit_iuart_interrupt_transfer.elf
 | `-- release
 | |-- 9bit_iuart_interrupt_transfer.bin
 | `-- 9bit_iuart_interrupt_transfer.elf
 |-- 9bit-iuart-polling
 | |-- ddr_release
 | | |-- 9bit_iuart_polling.bin
 | | `-- 9bit_iuart_polling.elf
 | `-- release
 | |-- 9bit_iuart_polling.bin
 | `-- 9bit_iuart_polling.elf
 |-- demo-hello-world
 | |-- ddr_release
 | | |-- hello_world.bin
 | | `-- hello_world.elf
 | `-- release
 | |-- hello_world.bin
 | `-- hello_world.elf
 |-- driver-gpio-led-output
 | |-- ddr_release
 | | |-- igpio_led_output.bin
 | | `-- igpio_led_output.elf
 | `-- release
 | |-- igpio_led_output.bin
 | `-- igpio_led_output.elf
 |-- freertos-hello
 | |-- ddr_release
 | | |-- freertos_hello.bin
 | | `-- freertos_hello.elf
 | `-- release
 | |-- freertos_hello.bin
 | `-- freertos_hello.elf
 |-- freertos-soem-gpio-pulse
 | |-- ddr_release
 | | |-- soem_gpio_pulse_freertos.bin
 | | `-- soem_gpio_pulse_freertos.elf
 | `-- release
 | |-- soem_gpio_pulse_freertos.bin

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
28 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 | `-- soem_gpio_pulse_freertos.elf
 |-- rpmsg-lite-str-echo-rtos-8m-cm
 | |-- ddr_release
 | | |-- rpmsg_lite_str_echo_rtos.bin
 | | `-- rpmsg_lite_str_echo_rtos_imxcm4.elf
 | `-- release
 | |-- rpmsg_lite_str_echo_rtos.bin
 | `-- rpmsg_lite_str_echo_rtos_imxcm4.elf
 |-- rpmsg-lite-str-echo-rtos-ca
 | `-- ddr_release
 | |-- rpmsg_lite_str_echo_rtos.bin
 | `-- rpmsg_lite_str_echo_rtos_imxca53.elf
 |-- rpmsg-lite-uart-sharing-rtos
 | `-- release
 | |-- rpmsg_lite_uart_sharing_rtos.bin
 | `-- rpmsg_lite_uart_sharing_rtos.elf
 `-- soem-gpio-pulse
 |-- ddr_release
 | |-- soem_gpio_pulse.bin
 | `-- soem_gpio_pulse.elf
 `-- release
 |-- soem_gpio_pulse.bin
 `-- soem_gpio_pulse.elf

If you just want to compile a special example, you can use the following command:

For example:

$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk bitbake demo-hello-world

3.3 Preempt-RT Linux
The Preempt-RT Linux option turns the kernel into a real-time kernel. It does so by replacing various locking
primitives (for example, spinlocks and rwlocks) with preemptible priority-inheritance aware variants. The
Preempt-RT Linux option also enforces interrupt threading and introduces mechanisms to break up long
non-preemptible sections. This makes the kernel fully preemptible and brings most execution contexts under
scheduler control. However, very low level and critical code paths (entry code, scheduler, low level interrupt
handling) remain non-preemptible.

3.3.1 System Real-time Latency tests

The basic measurement tool for Real-time Linux is cyclictest.

3.3.1.1 Running Cyclictest

Cyclictest provides statistics about the latencies of the system. It accurately and repeatedly measures the
difference between the intended wake-up time of a thread and the time at which it actually wakes up. It can
measure latencies in real-time systems caused by the hardware, the firmware, and the operating system.

Thomas Gleixner (tglx) wrote the original test, but several people had later contributed modifications. Cyclictest
is part of the test suite, rt-tests. Clark Williams and John Kacur currently maintain Cyclictest.

cyclictest:

• Use the below command to perform Latency Test:

$ cyclictest -p90 –h50 –D30m

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
29 / 400

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Note: For detailed parameters of Cyclictest, refer to Cyclictest Web Page.

3.3.2 Real-time application development

This section describes the steps for developing the Real-time application.

Real-time Application: API, Basic Structure, Background:

• Basic Linux application rules are the same; Use the POSIX API.
• There is still a division of Kernel Space and User Space.
• Linux applications run in User Space.
• For details, refer to: https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/

application_base

Real-time Application: Users can build it using the steps below:

• Using the cross-compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt –Wall

• Using the native compiler on a target example:

$ gcc <filename>.c -o <filename>.out -lrt –Wall

Scheduling policies have two classes:

1. Completely Fair Scheduling (CFS)

• SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling policy that is used for regular tasks.
Every task gets a so called 'nice value'. It is a value between -20 for the highest nice value and 19 for the
lowest nice value. The average value of execution time of the task depends on the associated nice value.

• SCHED_BATCH: Does not preempt nearly as often as regular tasks. Hence, it allows tasks to run longer and
make better use of caches, but at the cost of interactivity. This is well suited for batch jobs and optimized for
throughput.

• SCHED_IDLE: This policy is even weaker than nice 19. However, it is not a true idle timer scheduler in order
to avoid getting into priority inversion problems, which would deadlock the machine.

2. Real-time policies

• SCHED_FIFO: Tasks have a priority between 1 (low) and 99 (high). A task running under this policy is
scheduled until it finishes or a higher prioritized task preempts it.

• SCHED_RR: This policy is derived from SCHED_FIFO. The difference with respect to SCHED_FIFO policy
is that a task runs during a defined time slice (if it is not preempted by a higher prioritized task). It can be
interrupted by a task with the same priority once the time slice is used up. The time slice definition is exported
in procfs (/proc/sys/kernel/sched_rr_timeslice_ms).

• SCHED_DEADLINE: This policy implements the Global Earliest Deadline First (GEDF) algorithm. Tasks
scheduled under this policy can preempt any task scheduled with SCHED_FIFO or SCHED_RR.

3.4 Baremetal on Cortex-A core
The following sections provide an overview of the Real-time Edge Baremetal framework on A core including:

• Features supported
• Getting started with Baremetal framework using the supported platforms:

– NXP Layerscape platforms
– i.MX 8M / i.MX 93 platforms.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
30 / 400

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest)
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

It also describes how to run a sample Baremetal framework on the host environment and develop customer-
specific applications based on Baremetal framework.

3.4.1 Baremetal framework

The Baremetal framework supports the scenarios that need low latency, real-time response, and high-
performance. There is no OS running on the cores and customer-specific application runs on the core directly.
The Figure 6 depicts the baremetal framework architecture.

Figure 6. Baremetal framework architecture

The main features of the Baremetal framework are as follows:

• Core0 runs as master and runs the Baremetal or the operating system such as Linux, Vxworks.
• Slave cores run the Baremetal application.
• Easy assignment of different IP blocks to different cores.
• Interrupts between different cores and high-performance mechanism for data transfer.
• Different UART for core0 and slave cores for easy debug.
• Communication via shared memory.

The master core0 runs the Baremetal under master mode. It then loads the Baremetal application to the slave
cores and starts the Baremetal application. The Figure 7 depicts the boot flow diagram:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
31 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

…Core 0 Core 1 Core N

Power on

Initialization

Load BareMetal
library

Reset work

Initialization Initialization

Load BareMetal
library

Load BareMetal
library

Slave

Figure 7. Baremetal framework boot flow diagram

The Table 9 lists the industrial IoT features supported by various NXP processors and boards.

Processor Board Main features supported

i.MX 8M Mini i.MX 8M Mini LPDDR4
EVK

UART, IPI, data transfer, Ethernet, GPIO

i.MX 8M Plus i.MX 8M Plus
LPDDR4 EVK

UART, IPI, data transfer, Ethernet, GPIO

i.MX 93 EVK UART, IPI, data transfer, Etherneti.MX 93

i.MX 93 9x9 LPDDR4
QSB

UART, IPI, data transfer

LS1028A LS1028ARDB I2C, UART, ENETC, IPI, data transfer, SAI

LS1043A LS1043ARDB IRQ, IPI, data transfer, Ethernet, IFC, I2C, UART, FMan, USB, PCIe

LS1046A LS1046ARDB IRQ, IPI, data transfer, Ethernet, IFC, I2C, UART, FMan, QSPI, USB,
PCIe, GPIO

LX2160A/Rev2 LX2160ARDB UART, IPI, data transfer

Table 9. BareMetal features supported by NXP processors

Typical use cases are as follows:

1. Core0 as a master core runs Linux to manage slave cores and communicate with server. Slave cores run
Baremetal application for real-time processing. Refer Figure 8.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
32 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

H
W

 assignm
ent

Memory

IO devices: Ethernet, USB, GPIO, UART, I2C, SPI …

MemoryMemory

Core 0 Core 1 Core N

ICC

BareMetal BareMetal BareMetal

……

Linux

Figure 8. BareMetal Use Case 1
2. All cores run BareMetal application for real-time processing. Refer Figure 9.

H
W

 assignm
ent

Memory

IO devices: Ethernet, USB, GPIO, UART, I2C, SPI …

MemoryMemory

Core 0 Core 1 Core N

ICC

BareMetal BareMetal BareMetal

……

Figure 9. BareMetal Use Case 2

3.4.2 Getting started

This section describes how to set up the environment and run the Baremetal examples on slave cores
(assuming that the core0 is the master core and the other cores are the slave cores).

3.4.2.1 Hardware and software requirements

In order to run baremetal framework scenarios, the following are required:
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
33 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Hardware: i.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK, i.MX 93 9x9 LPDDR4
QSB, LS1028ARDB, LS1043ARDB, LS1046ARDB, LX2160ARDB, and serial cables.

• Software: Real-time Edge Software v2.7 release or later.

3.4.2.2 Hardware setup

This section describes the hardware setup required for the NXP boards for running the Baremetal framework
examples.

3.4.2.2.1 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

Follow the steps below.

1. i.MX 8M Plus LPDDR4 EVK: There is one USB MicroB Debug port on board. Four UART ports can be
found when the MicroB cable connects to PC.

/dev/ttyUSB0
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

Use /dev/ttyUSB2 for core0 (master core) and /dev/ttyUSB3 for core1, core2, and core3 (slave cores).
2. i.MX 8M Mini LPDDR4 EVK: There is one USB MicroB Debug port on board. Two UART ports can be found

when the MicroB cable connects to PC.

/dev/ttyUSB0
/dev/ttyUSB1

Use /dev/ttyUSB1 for core0 (master core) and /dev/ttyUSB0 for core1, core2, and core3 (slave cores).
3. GPIO setup

For GPIO test on i.MX 8M Plus LPDDR4 EVK, connect pin 7 and pin 8 of J21 by a jumper, as shown in
Figure 10.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
34 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 10. Connections for GPIO test on i.MX 8M Plus LPDDR4 EVK board
4. For GPIO test on i.MX 8M Mini LPDDR4 EVK, connect pin7 and pin8 of J1003 by a jumper as shown in

Figure 11.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
35 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 11. Connections for GPIO test on i.MX 8M Mini LPDDR4 EVK board

3.4.2.2.2 LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB

If the Real-time Edge Baremetal framework is developed using one of the boards- LS1028ARDB,
LX2160ARDB, LS1043ARDB, or LS1046ARDB, two serial cables are needed for connection. One serial cable
is used for core0, to connect to UART1 port. The other cable is used for slave cores and connects to the UART2
port.

To support SAI feature on LS1028ARDB, set switch SW5_8 to "ON".

3.4.2.2.3 i.MX 93 EVK

On i.MX 93 EVK board, the USB Type-C connector (J1401) provides four UART ports when connected to PC
using USB cable. The third port (LPUART1) is used for core0 (master core) and the fourth port (LPUART2) is
used for core1 (slave core).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
36 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.4.2.2.4 i.MX93 9x9 LPDDR4 QSB

On i.MX 93 9x9 LPDDR4 QSB board, the USB Type-C connector (J1708) provides four UART ports when
connected to PC using USB cable. The third port (LPUART2) is used for core0 (master core) and the fourth port
(LPUART3) is used for core1 (slave core).

3.4.2.3 Software building

There are two methods to build the Baremetal images:

• The first method is to compile the images in a standalone way, and is described in the following section.
• The second method is to build the Baremetal images using Real-time Edge framework. This method is

described in the document, Real-time Edge Yocto Project User Guide in section "Building the image through
Yocto".

3.4.2.3.1 Building Baremetal binary for slave cores

Perform the steps mentioned below:

1. Download the project source from the following path:
https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.git

2. Check it out to the tag:
• Real-Time-Edge-v2.7-baremetal-202312

3. Configure cross-toolchain on your host environment.
4. Then, run the following commands:

/* build Baremetal image for i.MX 8M Mini LPDDR4 EVK Rev.C board */
 $ make imx8mm_evk_baremetal_slave_defconfig
 $ make
/* build Baremetal image for i.MX 8M Plus LPDDR4 EVK board */
 $ make imx8mp_evk_baremetal_slave_defconfig
 $ make
/* build Baremetal image for i.MX 93 EVK board */
 $ make imx93_11x11_evk_baremetal_slave_defconfig
 $ make
/* build Baremetal image for i.MX 93 9x9 LPDDR4 QSB board */
 $ make imx93_9x9_qsb_baremetal_slave_defconfig
 $ make
/* build Baremetal image for LS1028ARDB board */
 $ make ls1028ardb_baremetal_slave_defconfig
 $ make
/* build Baremetal image with SAI for LS1028ARDB board */
 $ make ls1028ardb_baremetal_slave_sai_defconfig
 $ make
/* build Baremetal image for LS1043ARDB board */
 $ make ls1043ardb_baremetal_slave_defconfig
 $ make
/* build Baremetal image for LS1046ARDB board */
 $ make ls1046ardb_baremetal_slave_defconfig
 $ make
/* build Baremetal image for LX2160ARDB board */
 $ make lx2160ardb_baremetal_slave_defconfig
 $ make

5. Finally, the file u-boot-dtb.bin used for Baremetal is generated.

Follow Real-time Edge Software Yocto Project to get the code and build images for these platforms.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
37 / 400

https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.git

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.4.2.3.2 Building the image through Yocto

There are two methods to build the Baremetal images. The first method, which is used to compile the images
in a standalone way, is described in Section 3.4.2.3. The other method is to build the Baremetal images using
Real-time Edge software framework, and is described in this section.

The Real-time Edge software is designed for embedded industrial usage. It is an integrated Linux distribution for
industry. With the current version, the Baremetal can be built and implemented conveniently.

3.4.2.3.2.1 Getting Real-time Edge software

The latest release is available at the following URL:

https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

Follow Yocto documentation "Real-time Edge Yocto Project User Guide" to get the code and build the image.
Refer to Section 1.4.

3.4.2.3.2.2 Building the Baremetal images

This section describes the steps for building the Baremetal images for various boards. The steps described are
applicable to the boards such as LS1043ARDB, LS1046ARDB, LX2160ARDB, i.MX 8M Plus LPDDR4 EVK,
and i.MX 8M Mini LPDDR4 EVK board.

Building the Baremetal images for various boards

Run the following commands to build the final Baremetal image for Layerscape and i.MX platforms.

$ cd yocto-real-time-edge

For I.MX 93 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx93evk source real-time-edge-
setup-env.sh -b build-imx93evk-bm

For i.MX 93 9x9 LPDDR4 QSB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx93-9x9-lpddr4-qsb source real-
time-edge-setup-env.sh -b build-imx93qsb-bm

For LS1028ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1028ardb source real-time-edge-
setup-env.sh -b build-ls1028ardb-bm

For LS1043ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1043ardb source real-time-edge-
setup-env.sh -b build-ls1043ardb-bm

For LS1046ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1046ardb source real-time-edge-
setup-env.sh -b build-ls1046ardb-bm

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
38 / 400

https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

For LX2160ARDB Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=lx2160ardb-rev2 source real-time-
edge-setup-env.sh -b build-lx2160ardb-bm

For i.MX 8M Plus LPDDR4 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mp-lpddr4-evk source real-
time-edge-setup-env.sh -b build-imx8mpevk-bm

For i.MX 8M Mini LPDDR4 EVK Baremetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mm-lpddr4-evk source real-
time-edge-setup-env.sh -b build-ix8mmevk-bm

Then, use:

$ bitbake nxp-image-real-time-edge

3.4.2.4 Booting up the Linux with Baremetal

Use the following steps to boot up the system with the images built from Real-time Edge software.

For platforms that can be booted up from the SD card, there are just two steps required to program the image
into SD card.

1. Insert an SD card (at least 4 GB size) into any Linux host machine.
2. Find the image file in building directory (for example: ls1028ardb):

tmp/deploy/images/ls1028ardb/nxp-image-real-time-edge-ls1028ardb.wic.zst

3. Then, run the following commands:

$ zstd -d nxp-image-real-time-edge-ls1028ardb.wic.zst
$ sudo dd if=./nxp-image-real-time-edge-ls1028ardb.wic of=/dev/sdx bs=1M
 conv=fsync
or in some other host machine:
$ sudo dd if=./nxp-image-real-time-edge-ls1028ardb.wic of=/dev/mmcblkx bs=1M
 conv=fsync
find the right SD Card device name in your host machine and replace the
 “sdx” or “mmcblkx”.

4. Then, insert the SD card into the target board (for example ls1028ardb) and power on.

After completion of the above mentioned steps, the Linux system boots up on the master core (core 0), and the
Baremetal system boots up on slave core (core 1) automatically.

3.4.3 Running examples

The following sections describe how to run the Baremetal examples on the host environment for LS1028ARDB
board. Similar steps can be followed for LS1043ARDB, LS1046ARDB, i.MX 8M Mini LPDDR4 EVK, i.MX 8M
Plus LPDDR4 EVK, i.MX 93 EVK and i.MX 93 9x9 LPDDR4 QSB board.

3.4.3.1 Preparing the console

In current Baremetal framework design, two UART ports are used as console. One UART is used for master
core and the other UART is used for slave cores. Refer to Section 3.2.2.2 for preparing the console.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
39 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.4.3.2 Running the Baremetal binary

As described earlier, there are two methods to compile the Baremetal framework. One is a standalone method
and the other method uses the Real-time Edge software. These methods are described in Section 3.4.2.3 and
Section 3.4.2.3.2 respectively.

• If the Real-time Edge software is used to compile the Baremetal image, the Baremetal image is included in
the nxp-image-real-time-edge-xxxx.wic.zst. In this case, the master core starts the Baremetal
image on slave cores automatically.

• If standalone compilation method is used, perform the steps below to run the Baremetal binary from U-Boot
prompt of master core. See the below example run on Layerscape platform:
1. After starting U-Boot on the master, download the bare metal image: u-boot-dtb.bin on 0x84000000

using the command below:

=> tftp 0x84000000 xxxx/u-boot-dtb.bin

Where
– xxxx is your tftp server directory.
– 0x84000000 is the address of CONFIG_TEXT_BASE on bare metal for Layerscape platforms.
Note:
a. The address is 0x50200000 for i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards.
b. The address is 0x90200000 for i.MX 93 EVK board.

2. Then, start the Baremetal cores using the command below:

=> dcache flush; cpu 1 release 0x84000000

Note: In the command cpu <num> release 0x84000000, the 'num' can be 1, 2, 3, ... to the
maximum CPU number.
For i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards, us the below command:

=> dcache flush;cpu 1 release 50200000;sleep 6;cpu 2 release 50200000;sleep
 2;cpu 3 release 50200000;

3. Last, the UART2 port displays the logs, and the bare metal application runs on slave cores successfully.

3.4.4 Development based on Baremetal framework

This chapter describes how to develop customer-specific application based on Baremetal framework.

3.4.4.1 Developing the Baremetal application

The “app” directory in the U-boot repository includes the test cases for testing the I2C, GPIO, and IRQ init
features. Users can write their custom applications and store them in this directory.

3.4.4.2 Main file app.c

The file <U-boot path>/app/app.c, is the main file to add all applications. Users can modify the app.c file
to add their applications.

• When the standalone method is used to build the Baremetal image as described in Section 3.4.2.3, change
the directory to U-boot path to read or edit the app.c file.

• When the Real-time Edge software is used to compile the Baremetal binary, change to the building directory
to view or edit the app.c file.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
40 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The following is a sample code of the file app.c that shows how to add the example test cases of I2C, IRQ, and
GPIO.

void core1_main(void)
{
 test_i2c();
 test_irq_init();
 test_gpio();
 return;
}

3.4.4.3 Common header files

There are some common APIs provided by Baremetal. The table below describes the header files that include
the APIs.

Header file Description

asm/io.h Read/Write IO APIs.
For example, _raw_readb, _raw_writeb, out_be32, and in_be32.

linux/string.h APIs for manipulating strings.
For example, strlen, strcpy, and strcmp.

linux/delay.h APIs used for small pauses.
For example, udelay and mdelay.

linux/types.h APIs specifying common types.
For example, _u32 and _u64.

common.h Common APIs
For example, printf and puts.

Table 10.  Common header file description

3.4.4.4 GPIO example

The file uboot/app/test_gpio.c is an example to test the GPIO feature, and shows how to write a GPIO
application.

Here is an example for the i.MX 8M Mini board:

1. First, you need the GPIO header file, asm-generic/gpio.h and dm.h, which include all interfaces for the
GPIO.

2. Then, find the corresponding GPIO description according to the name of the GPIO (such as GPIO5_7),
configure GPIO5_7 to OUT direction, configure GPIO5_8 to IN direction and request it.

3. Now, by writing the value 1 or 0 to GPIO5_7, you can receive the same value from GPIO5_8.

The Table 11 shows the APIs used in the file test_gpio.c application example.

Function declaration Description

int dm_gpio_lookup_name(const char
*name, struct gpio_desc *desc)

Look up a named GPIO and return its description
name- Name to look up, such as GPIO5_7
desc - GPIO description
Returns: 0 if OK, -ve on error

Table 11. GPIO APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
41 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Function declaration Description

int dm_gpio_request(struct gpio_desc
*desc, const char *label)

Manually request a GPIO
desc - GPIO description of GPIO to request
label- Label to attach to the GPIO while claimed, such as "output1"
Returns: 0 if OK, -ve on error

int dm_gpio_set_value(const struct
gpio_desc *desc, int value)

Configures the direction of GPIO to OUT and writes the value to it.
desc - GPIO description
value- the value written to this GPIO
Returns: 0 if OK, -ve on error

int dm_gpio_set_dir_flags(struct
gpio_desc *desc, ulong flags)

Set direction using description and added flags
desc - GPIO description
flags - New flags to use
Returns: 0 if OK, -ve on error

int dm_gpio_free(struct udevice *dev,
struct gpio_desc *desc)

Free a single GPIO
dev: Device that requested the GPIO
desc - GPIO description
Returns: 0 if OK, -ve on error

Table 11. GPIO APIs and their description...continued

3.4.4.5 I2C example

The file uboot/app/test_i2c.c can be used as an example to test the I2C feature and shows how to write
an I2C application.

On LS1043ARDB board, read a fixed data from offset 0 of INA220 device(0x40). If the data is 0x39, a message,
[ok]I2C test ok is displayed on the console.

The table below shows the APIs used in the sample file, test_i2c.c.

Function declaration Description

int i2c_set_bus_num (unsigned
int bus)

Sets the I2C bus.
bus- bus index, zero based
Returns 0 if OK, -1 on error.

int i2c_read (uint8_t chip,
unsigned int addr, int alen,
uint8_t *buffer, int len)

Read data from I2C device chip.
• chip - I2C chip address, range 0..127
• addr - Memory (register) address within the chip
• alen - Number of bytes to use for address (typically 1, 2 for larger

memories, 0 for register type devices with only one register)
• buffer - Where to read/write the data
• len - How many bytes to read/write
Returns 0 if OK, not 0 on error.

int i2c_write (uint8_t chip,
unsigned int addr, int alen,
uint8_t *buffer, int len)

Writes data to I2C device chip.
• chip - I2C chip address, range 0..127
• addr - Memory (register) address within the chip
• alen - Number of bytes to use for address (typically 1, 2 for larger

memories, 0 for register type devices with only one register)
• buffer - Where to read/write the data
• len - How many bytes to read/write
Returns 0 if OK, not 0 on error.

Table 12.  I2C APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
42 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.4.4.6 IRQ example

The file, uboot/app/test_irq_init.c is an example to test the IRQ and IPI (Inter-Processor Interrupts)
feature, and shows how to write an IRQ application. The process is described in brief below.

The file asm/interrupt-gic.h, is the header file of IRQ, and includes all its interfaces. Then, register an IRQ
function for SGI 0. After setting an SGI signal, the CPU gets this IRQ and runs the IRQ function. Then, register
a hardware interrupt function to show how to use the external hardware interrupt.

SGI IRQ is used for inter-processor interrupts, and it can only be used between bare metal cores. In case you
want to communicate between Baremetal core and Linux core, refer to Section 3.4.4.16. SGI IRQ id is 0-15.
The SGI IRQ id '8' is reserved for ICC.

Note: For i.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK and i.MX 93 9x9 LPDDR4
QSB boards, SGI IRQ id is 9.

The Table 13 shows the APIs used in the sample file, test_irq_init.c.

Return type API name (parameter list) Description

int irq_desc_register(struct irq
*irq_data, void (*irq_handle)(int,
int, void *), void *data)

Registers an IRQ function.
• irq_data- Include IRQ id(0-15 for SGI, 16-31 for PPI, 32-1019 for

SPI), and IRQ dev
• irq_handle – IRQ function
• data – IRQ data

void gic_send_sgi(u32 id, int core_
mask)

Sets a SGI IRQ signal.
• core_mask – target core mask
• id – IRQ id

int irq_set_affinity(struct irq
*irq, int core_mask)

Sends the target core for hw IRQ.
• core_mask – target core mask
• irq – IRQ data, include IRQ id

int irq_set_polarity(struct udevice
*dev, uint id, bool active_low)

Sets the type for hardware IRQ to identify whether the corresponding
interrupt is edge-triggered or level-sensitive.
• dev – IRQ dev
• id – IRQ id
• active_low – true if active low, false for active high

Table 13. IRQ APIs and their description

3.4.4.7 QSPI example

The file uboot/app/test_qspi.c provides an example that can be used to test the QSPI feature. The below
steps show how to write a QSPI application:

1. First, locate the QSPI header files spi_flash.h and spi.h, which include all interfaces for QSPI.
2. Then, initialize the QSPI flash. Subsequently, erase the corresponding flash area and confirm that the erase

operation is successful.
3. Now, read or write to the flash with an offset of 0x3f00000 and size of 0x40000.

The Table 14 shows the APIs used in the file test_qsip.c example.

API name (type) Description

spi_find_bus_and_cs(bus,cs,
&bus_dev, &new)

The API finds if a SPI device already exists.
• “bus” - bus index, zero based.
• “cs” – the value to chip select mode.

Table 14.  QSPI APIs

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
43 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

API name (type) Description
• “bus_dev” - If the bus is found.
• “new” – If the device is found.
Returns 0 if OK, -ENODEV on error.

spi_flash_probe_bus_cs(bus, cs,
speed, mode, &new)

Initializes the SPI flash device.
• “bus” - bus index, zero based.
• “cs” – the value to Chip Select mode.
• “speed” – SPI flash speed, can use 0 or CONFIG_SF_DEFAULT_

SPEED.
• “mode” –SPI flash mode, can use 0 or CONFIG_SF_DEFAULT_MODE.
• “new” – If the device is initialized.
Returns 0 if OK, -ENODEV on error.

dev_get_uclass_priv(new) Gets the SPI flash.
• “new” - The device being initialized.
Returns flash if OK , NULL on error.

spi_flash_erase(flash, offset,
size)

Erases the specified location and length of the flash content, erases the
content of all.
• “flash” - Flash is being initialized.
• “offset” – Flash offset address.
• “size” - Erase the length of the data.
Returns 0 if OK, !0 on error.

spi_flash_read(flash, offset,
len, vbuf)

Reads flash data to memory.
• “flash” - The flash being initialized.
• “offset” – Flash offset address.
• “len” - Read the length of the data.
• "vbug" - the buffer to store the data read
Returns 0 if OK, !0 on error.

spi_flash_write(flash, offset,
len, buf)

Writes memory data to flash.
• “flash” - The flash being initialized.
• “offset” – Flash offset address.
• “len” - Write the length of the data.
• "buf" - the buffer to store the data write
Returns 0 if OK, !0 on error.

Table 14.  QSPI APIs...continued

3.4.4.8 IFC example

Both LS1043ARDB and LS1046ARDB have IFC controller. However, LS1043ARDB supports both NOR flash
and NAND flash, whereas LS1046ARDB supports only NAND flash.

NOR and NAND flash messages are displayed while booting Baremetal cores, as shown below:

1:NAND: 512 MiB
1:Flash: 128 MiB

or （LS1046ARDB）

1:NAND: 512 MiB

There is no example code to test it, but we can use a few commands to verify these features.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
44 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

For LS1043ARDB NOR Flash (the map memory address is 0x60000000), the below command can be used to
verify it:

=> md 0x60000000
1:60000000: 55aa55aa 0001ee01 10001008 0000000a .U.U............
1:60000010: 00000000 00000000 02005514 12400080 U....@.
1:60000020: 005002e0 002000c1 00000000 00000000 ..P...
1:60000030: 00000000 00880300 00000000 01110000
1:60000040: 96000000 01000000 78015709 10e00000 W.x....
1:60000050: 00001809 08000000 18045709 9e000000 W......
1:60000060: 1c045709 9e000000 20045709 9e000000 .W.......W.
1:60000070: 00065709 00000000 04065709 00001060 .W.......W..`...
1:60000080: c000ee09 00440000 58015709 00220000 D..W.X..".
1:60000090: 40800089 01000000 40006108 f56b710a ...@.....a.@.qk.
1:600000a0: ffffffff ffffffff ffffffff ffffffff

For NAND flash on LS1043ARDB and LS1046ARDB, "nand" command can be used to verify it (nand erase,
nand read, nand write, and so on.):

=> nand info
1:Device 0: nand0, sector size 128 KiB
1: Page size 2048 b
1: OOB size 64 b
1: Erase size 131072 b
1: subpagesize 2048 b
1: options 0x00004200
1: bbt options 0x00028000

=> nand
1:nand - NAND sub-system
1:Usage:
nand info - show available NAND devices
nand device [dev] - show or set current device
nand read - addr off|partition size
nand write - addr off|partition size
 read/write 'size' bytes starting at offset 'off'
 to/from memory address 'addr', skipping bad blocks.
nand read.raw - addr off|partition [count]
nand write.raw[.noverify] - addr off|partition [count]
 Use read.raw/write.raw to avoid ECC and access the flash as-is.
nand erase[.spread] [clean] off size - erase 'size' bytes from offset 'off'
 With '.spread', erase enough for given file size, otherwise,
 'size' includes skipped bad blocks.
nand erase.part [clean] partition - erase entire mtd partition'
nand erase.chip [clean] - erase entire chip'
nand bad - show bad blocks
nand dump[.oob] off - dump page
nand scrub [-y] off size | scrub.part partition | scrub.chip
 really clean NAND erasing bad blocks (UNSAFE)
nand markbad off [...] - mark bad block(s) at offset (UNSAFE)
nand biterr off - make a bit error at offset

3.4.4.9 Ethernet example

The file uboot/app/test_net.c provides an example to test the Ethernet feature and shows how to write a
net application for using this feature.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
45 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Here is an example for the LS1043ARDB (or LS1046ARDB) board.

Note: For LS1046ARDB board, network could be assgined by setting
CONFIG_FMAN_FMAN1_COREID=<core num> (core num could be 0 - 3). If you want to verify it on core 1,
please set CONFIG_FMAN_FMAN1_COREID=1 and compile baremetal image in standalone way to enable the
network for the target core.

1. Connect one Ethernet port of LS1043ARDB board to one host machine using Ethernet cable.
• For LS1046ARDB, the default ethact is FM1@DTSEC5. Network cable should be connected to SGMII1

port.
• For LS1043ARDB, the default ethact is FM1@DTSEC3. Network cable should be connected to RGMII1

port.
2. Configure the IP address of the host machine as 192.168.1.2.
3. Power up the LS1043ARDB board. If the network is connected, the message host 192.168.1.2 is

alive is displayed on the console.
4. The IP addresses of the board and host machine are defined in the file test_net.c. In this file, modify the

IP address of LS1043ARDB board using variable ipaddr and change the IP address of host machine using
variable ping_ip.

The table below lists the Net APIs and their description.

API name (type) Description

void net_init (void) Initializes the network

int net_loop (enum proto_t
protocol)

Main network processing loop.
• enum proto_t protocol - protocol type

int eth_receive (void *packet,
int length)

Reads data from NIC device chip.
• void *packet
• length - Network packet length
Returns length

int eth_send (void *packet, int
length)

Writes data to NIC device chip.
• packet - pointer to the packet is sent
• length - Network packet length
Returns length.

Table 15. Net APIs and their description

3.4.4.10 USB example

The file uboot/app/test_usb.c provides an example that can be used to test the USB features. The steps
below show how to write a USB application:

1. Connect a USB disk to the USB port.
2. Include the header file, usb.h, which includes all APIs for USB.
3. Initialize the USB device using the usb_init API.
4. Scan the USB storage device on the USB bus using the usb_stor_scanAPI.
5. Get the device number using the blk_get_devnum_by_type API.
6. Read data from the USB disk using the blk_dread API.
7. Write data to the USB disk using the blk_dwrite API.

The table below shows the APIs used in the file test_usb.c example:

API name (type) Description
Table 16. USB APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
46 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

int usb_init(void) Initializes the USB controller.

int usb_stop(void) Stops the USB controller.

int usb_stor_scan(int mode) Scans the USB and reports device information to the user if
mode = 1
• Mode – if mode = 1, the information is returned to user.
Returns
• the current device, or
• -1 (if device not found).

struct blk_desc *blk_get_devnum_by_type(enum
if_type if_type, int devnum)

Get a block device by type and number.
• If_type – Block device type
• devnum - device number
Returns
• Points to block device descriptor, or
• NULL (if not found).

unsigned long blk_dread(struct blk_desc
*block_dev, lbaint_t start, lbaint_t blkcnt,
void *buffer);

Reads data from USB device.
• block_dev – block device descripter
• start – start block
• blkcnt – block number
• buffer – buffer to store the data
Returns the block number from which, data is read.

unsigned long blk_dwrite(struct blk_desc
*block_dev, lbaint_t start, lbaint_t blkcnt,
const void *buffer);

Writes data to USB device.
• block_dev – block device descripter
• start – start block
• blkcnt – block number
• buffer – buffer to store the data
Returns the block number to which data is written.

Table 16. USB APIs and their description...continued

3.4.4.11 PCIe example

The file app/test_pcie.c provides a sample code to test PCIe and network card (such as e1000) features.
The steps below show how to write a PCIe and net application:

1. Insert a PCIe network card (such as e1000) into PCIe2, or PCIe3 slot (if it exists).
2. Configure the IP address of the host machine to 192.168.1.2.
3. Include the files include/pci.h and include/ netdev.h.
4. Initialize the PCIe controller using the pci_init API.
5. Get uclass device by its name using the uclass_get_device_by_seq API.
6. Initialize the PCIe network device using the pci_eth_init API.
7. Begin pinging the host machine using the net_loop API.

The table below shows the APIs used in the file test_pcie.c example.

API name (type) Description

void pci_init(void) Initializes the PCIe controller. Does not return a value.

int uclass_get_device_by_
seq(enum uclass_id id, int seq,
struct udevice **devp)

Gets the uclass device based on an ID and sequence:
• id – uclass ID
• seq – sequence
• devp – Pointer to device

Table 17. PCIe APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
47 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Returns:
• 0 if Ok.
• Negative value on error.

static inline int pci_eth_
init(bd_t *bis)

Initializes network card on the PCIe bus.
• Bis – struct containing variables accessed by shared code
Returns the number of network cards.

int net_loop (enum proto_t
protocol)

Main network processing loop.
• enum proto_t protocol - protocol type
Returns:
• 0 if Ok.
• Negative value on error.

Table 17. PCIe APIs and their description...continued

3.4.4.12 ENETC example

The file app/test_net.c provides an example to test ENETC Ethernet feature and shows how to write a net
application for using this feature. This example is a special case of using Net APIs.

The file test_net for ENETC is only an example for the LS1028ARDB board with
(CONFIG_ENETC_COREID_SET enabled).

1. Connect ENETC port of LS1028ARDB board to one host machine using Ethernet cable.
2. Configure the IP address of the host machine as 192.168.1.2.
3. Power up the LS1028ARDB board. If the network is connected, the message host 192.168.1.2 is

alive is displayed on the console.
4. The IP addresses of the board and host machines are defined in the file test_net.c. In this file, modify

the IP address of LS1028ARDB board using variable ipaddr and change the IP address of host machine
using variable ping_ip.

The table below lists the Net APIs for ENETC and their description, refer to Section 3.4.4 for other Net APIs.

API name (type) Description

void pci_init(void) Initializes the PCIe controller. Does not return a value.

void eth_initialize(void) Initializes the Ethernet.

Table 18. ENETC APIs and their description

3.4.4.13 SAI example

The audio feature needs SAI module and codec drivers. The following sections provide an introduction to SAI
module and the audio codec (SGTL5000). These sections also describe the steps for integrating audio with
Baremetal and running an audio application on Baremetal.

3.4.4.13.1 Synchronous Audio Interface (SAI)

The LS1028A integrates six SAI modules, but only SAI4 is used by LS1028ARDB board. The synchronous
audio interface (SAI) supports full duplex serial interfaces with frame synchronization. The bit clock and frame
sync of SAI are both generated externally (SGTL5000).

• Transmitter with independent bit clock and frame sync supporting 1 data line

• Receiver with independent bit clock and frame sync supporting 1 data line

• Maximum Frame Size of 32 words

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
48 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Word size of between 8-bits and 32-bits

• Word size configured separately for first word and remaining words in frame

• Asynchronous 32 × 32-bit FIFO for each transmit and receive channel

• Supports graceful restart after FIFO error

Figure 12. SAI block diagram

3.4.4.13.2 Audio codec (SGTL5000)

The SGTL5000 is a low-power stereo codec with headphone amplifier from NXP. It is designed to provide a
complete audio solution for products requiring LINEIN, MIC_IN, LINEOUT, headphone-out, and digital I/Os.
It allows an 8.0 MHz to 27 MHz system clock as input. The codec supports 8.0 kHz, 11.025 kHz, 12 kHz, 16
kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz sampling frequencies. The LS1028ARDB board
provides a 25 MHz crystal oscillator to the SGTL5000.

The SGTL5000 provides two interfaces (I2C and SPI) to setup registers. The LS1028ARDB board uses I2C
interface.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
49 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 13. System block diagram, signal flow, and gain

3.4.4.13.3 Digital interface formats

The SGTL5000 provides five common digital interface formats. The SAI and SGTL5000 digital interface formats
must be the same.

• I2S Format (n = bit length)

Figure 14. I2S Format (n = bit length)

• Left Justified Format (n = bit length)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
50 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 15. Left Justified Format (n = bit length)

• Right Justified Format (n = bit length)

Figure 16. Right Justified Format (n = bit length)

• PCM Format A

Figure 17. PCM Format A

• PCM Format B

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
51 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 18. PCM Format B

3.4.4.13.4 Running the SAI application

In order to run SAI application, Baremetal images should be rebuilt with SAI support.

1. Enable SAI support in Real-time Edge software

$ cd yocto-real-time-edge/sources/meta-real-time-edge
Open file "conf/distro/include/real-time-edge-base.inc", add "sai" to
 "DISTRO_FEATURES:append:ls1028ardb" like this:
DISTRO_FEATURES:append:ls1028ardb = " jailhouse real-time-edge-libbee real-time-
edge-libblep libnfc-nci \
 wayland-protocols weston imx-gpu-viv libdrm kmscube \
 real-time-edge-sysrepo tsn-scripts wayland alsa sai"

2. Build the image

$ cd yocto-real-time-edge
$ DISTRO=nxp-real-time-edge-baremetal MACHINE=ls1028ardb source real-time-edge-
setup-env.sh -b build-ls1028ardb-bm
$ bitbake nxp-image-real-time-edge

3. Play a demo audio file in slave core after booting the board:

=> wavplayer

audioformat: PCM nchannels: 1 samplerate: 16000 bitrate: 256000 blockalign: 2
 bps: 16 datasize: 67968 datastart: 44

sgtl5000 revision 0x11 fsl_sai_ofdata_to_platdata Probed
 sound 'sound' with codec 'codec@a' and i2s 'sai@f130000'
 i2s_transfer_tx_data The music waits for the end! The music is finished!

3.4.4.14 FlexTimer example

The FlexTimer module (FTM) works on Baremetal core as the wakeup source for LS1046ARDB. It can support
nanosecond (ns) level alarm setting.

There is no example code to test it, but we can use a few commands to verify these features.

Use the below commands to verify FTM feature:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
52 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Use “ftm” command to get help information:
=> ftm
1:ftm - ftm alarm test

1:Usage:
ftm test ftm alarm
show - show FTM test result
start [count] us - start FTM test
stop - stop FTM test

• Use “ftm start [count]” command to start ftm test:
=> ftm start
1:Use default alarm time - 5 us
1:FTM test start.

=> ftm start 100
1:FTM test start.

• Using “ftm stop” command to stop ftm test and show the test result:
=> ftm stop
1:FTM test stop.
1:irq count | total (us) | average (us) | max (us) | min (us) |
1:3087560 | 309579251 | 100 | 102 | 100 |

• Use “ftm show” command to show the test result:
=> ftm show
1:irq count | total (us) | average (us) | max (us) | min (us) |
1:317803 | 31854521 | 100 | 102 | 100 |

The table below lists the attributes for “ftm show” and “ftm stop” result:

Attribute Name Description

irq count Generated interrupt single count since “ftm start” command

total (us) The time since “ftm start” command

average (us) The average time between two interrupt signals

max (us) The maximum time between two interrupt signals

min (us) The minimum time between two interrupts signals

Table 19. FlexTimer module attributes and their description

The table below lists the FTM APIs and their description.

API Name Description

int ftm_rtc_set_alarm_by_us (struct
udevice *dev, unsigned long us, void (*
func)(void *))

Setting alarm by us count
• struct udevice *dev – device struct of ftm
• unsigned long us – the time for ftm alarm
• void (* func)(void *) – the handle function when timeup

void ftm_rtc_set_alarm (struct udevice
dev, u16 ticks, void (func)(void
*));

Setting alarm by ftm timer count
• struct udevice *dev – device struct of ftm
• u16 ticks – the timer counter for ftm alarm
• void (* func)(void *) – the handle function when timeup

void ftm_rtc_alarm_stop(struct udevice
*dev)

Stop and reset ftm alarm
• struct udevice *dev – device struct of ftm

Table 20. FlexTimer module APIs

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
53 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

unsigned long ftm_rtc_get_max_alarm_us
(struct udevice *dev)

Get the max alarm time value for ftm alarm
• struct udevice *dev – device struct of ftm

Table 20. FlexTimer module APIs...continued

3.4.4.15 Newlib’s math library

In order to control IO devices such as changing the speed or angle, mathematical calculations are required.
Newlib’s math library is added to support such calculations. Newlib is a C library intended for use on embedded
systems.

All math related files are under math folder. The file directory structure is as follows:

math

├── COPYING
├── include
│ └── math.h
├── lib
│ └── libm.a
└── README

To use math library, the below code should be in the header of the file, and then we can directly call all kinds of
math APIs.

#include <math.h>
#undef __always_inline
#undef __section
#include <stdlib.h>
#include <common.h>
#include <command.h>
#undef log

For the detailed usage, refer to the example file which is math.c under cmd folder, The example shows how to
call the API of math library including acos/asin/atan/cos/sin/tan and log/pow/sqrt. We can use the
math command to verify these APIs under U-Boot command.

For example:

=> math

math - Test Math Functions

Usage:

math - Only test some simple math functions:

 math acos x(double)
 math asin x(double)
 math atan x(double)
 math atan2 y x(double)
 math cos x(double)
 math cosh x(double)
 math sin x(double)
 math sinh x(double)
 math tanh x(double)
 math exp x(double)
 math ldexp x(double) exp(int)
 math log x(double)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
54 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 math log10 x(double)
 math pow x(double) y(double)
 math sqrt x(double)
 math ceil x(double)
 math fabs x(double)
 math floor x(double)
 math fmod x(double) y(double)

=> math asin 0.8
= 0.927
1:=> math sin 1.0
= 0.841
1:=> math cos 1.0
= 0.540
=> math log 10
= 2.302
1:=> math log10 10
= 1.000

3.4.4.16 ICC module

Inter-core communication (ICC) module works on Linux core (master) and Baremetal core (slave). It provides
the data transfer between cores via SGI inter-core interrupt and shared memory blocks. It can support multicore
silicon platform and transfer the data concurrently and efficiently.

ICC module structure is based on two basics:

• SGI: Software-generated Interrupts in Arm GIC, used to generate inter-core interrupts. The ICC module uses
the number 8 SGI interrupt for all Linux and Baremetal cores.

• Shared memory: A memory space shared by all platform cores. The base address and size of the share
memory should be defined in header files before compilation.

ICC modules can work concurrently, lock-free among multicore platform, and support broadcast case with Buffer
Descriptor Ring mechanism.

The figure below shows the basic operating principle for data transfer from Core 0 to Core 1. After the data
writing and head point moving to next, Core 0 triggers a SGI (8) to Core 1. After this step, the Core 1 gets the
BD ring updated status and reads the new data, then moves the tail point to next.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
55 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 19. BD rings for inter-core communication

For a multicore platform (that is, four cores), the total BD rings are arranged as shown in the following figure.
(See the BD rings on Core 0 and Core 1.)

Figure 20. BD rings for multicore platform

All the ICC ring structures, BD structures, and blocks for data are in the shared memory. A four-core platform
ICC module would map the shared memory as shown in the figure below.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
56 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 21. ICC shared memory map for the four-core platform

Generally, Core 0 runs Linux as master core while other cores run Baremetal as slaves. They obtain the same
size of share memory to structure the rings and BDs, and split the blocks space with 4k unit for each block. The
reserved space at the top of the share memory is out of the ICC module and for the custom usage.

For LS1028ARDB platform with two cores, the shared memory map is defined as:

• The total shared memory size is 256 MB.
• The reserved space for custom usage is 16 MB at the top of the share memory space.
• Core 0 runs Linux as master core, the share memory size for ICC is 120 MB, in which the ring and BD

structure space is 2 M, and the block space for data is 118 MB with 4K for each block.
• Core 1 runs Baremetal as slave core, the share memory size for ICC is 120 MB, in which the ring and BD

structure space is 2M, and the block space for data is 118 MB with 4K for each block.

The ICC module includes two parts of the code:

• ICC code for Linux user space, works for data transfer between master core and slave cores. The code is
integrated into the Real-time Edge software and named real-time-edge-icc. After the compilation, the
icc binary is put into the Linux file system.

• ICC code for Baremetal runs on every slave core, works for data transfer between Baremetal cores and
master core.

The ICC code for Linux user space in the repository: https://github.com/nxp-real-time-edge-sw/real-time-edge-
icc.git.

├── icc-main.c --- the example case commands

├── inter-core-comm.c

├── inter-core-comm.h --- include the header file to use ICC module

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
57 / 400

https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

└── Makefile

The ICC code for Baremetal in baremetal directory:

baremetal/

├── arch/arm/lib/inter-core-comm.c

├── arch/arm/include/asm/inter-core-comm.h --- includes the header file to use ICC module

└── cmd/icc.c --- the example case commands

The ICC modules of the APIs are exported out for usage in both Linux user space and Baremetal code.

APIs Description

unsigned long icc_ring_
state(int coreid)

Checks the ring and block state.
Returns:
• 0 - if empty.
• !0 - the working block address currently.

Unsigned long icc_block_
request(void)

Requests a block, which is ICC_BLOCK_UNIT_SIZE size.
Returns:
• 0 - failed.
• !0 - block address can be used.

void icc_block_free(unsigned
long block)

Frees a block requested.
Be careful if the destination cores are working on this block.

int icc_irq_register(int src_
coreid, void (*irq_handle)
(int, unsigned long, unsigned
int))

Registers ICC callback handler for received data.
Returns:
• 0 - on success
• -1 - if failed.

int icc_set_block(int core_
mask, unsigned int byte_
count, unsigned long block)

Sends the data in the block to a core or multicore.
This triggers the SGI interrupt.
Returns:
• 0 - on success
• -1 - if failed.

void icc_show(void) Shows the ICC basic information.

int icc_init(void) Initializes the ICC module.

Table 21. ICC APIs

3.4.4.16.1 ICC examples

This section provides example commands for use cases in both Linux user space and Baremetal code. They
can be used to check and verify the ICC module conveniently.

1. In Linux user space, use the command icc to display the supported cases.

[root@LS1046ARDB ~] # icc
icc show - Shows all icc rings status at this core
icc perf <core_mask> <counts> - ICC performance to cores <core_mask> with
 <counts> bytes
icc send <core_mask> <data> <counts> - Sends <counts> <data> to cores
 <core_mask>
icc irq <core_mask> <irq> - Sends SGI <irq> ID[0 - 15] to <core_mask>
icc read <addr> <counts> - Reads <counts> 32bit register from <addr>
icc write <addr> <data> - Writes <data> to a register <addr>

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
58 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Likewise, in Baremetal system, use the command icc to view the supported cases.

=> icc
1:icc - Inter-core communication via SGI interrupt
1:Usage:
icc show - Show all icc rings status at this
 core
icc perf <core_mask> <counts> - ICC performance to cores
 <core_mask> with <counts> bytes
icc send <core_mask> <data> <counts> - Send <counts> <data> to cores
 <core_mask>
icc irq <core_mask> <irq> - Send SGI <irq> ID[0 - 15] to
 <core_mask>

2. The ICC module command examples on LS1046ARDB with Linux (Core 0) + Baremetal (Core 1, 2, 3)
system:
Run icc send 0x2 0x55 128 to send 128 bytes data 0x55 to core 1.

[root@LS1046ARDB ~] # icc send 0x2 0x55 128
gic_base: 0xffffa033f000, share_base: 0xffff9133f000, share_phy: 0xd0000000,
 block_phy: 0xd0200000
ICC send testing ...
Target cores: 0x2, bytes: 128
ICC send: 128 bytes to 0x2 cores success
all cores: reserved_share_memory_base: 0xdf000000; size: 16777216
mycoreid: 0; ICC_SGI: 8; share_memory_size: 62914560
block_unit_size: 4096; block number: 14848; block_idx: 0
#ring 0 base: 0xffff9133f000; dest_core: 0; SGI: 8
desc_num: 128; desc_base: 0xd00000c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0
#ring 1 base: 0xffff9133f030; dest_core: 1; SGI: 8
desc_num: 128; desc_base: 0xd00008c0; head: 1; tail: 1
busy_counts: 0; interrupt_counts: 1
#ring 2 base: 0xffff9133f060; dest_core: 2; SGI: 8
desc_num: 128; desc_base: 0xd00010c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0
#ring 3 base: 0xffff9133f090; dest_core: 3; SGI: 8
desc_num: 128; desc_base: 0xd00018c0; head: 0; tail: 0
busy_counts: 0; interrupt_counts: 0

At the same time, Core 1 displays the received information.

=> 1:Get the ICC from core 0; block: 0xd0200000, bytes: 128, value: 0x55

3. ICC command run on Baremetal side

=> icc send 0x1 0xaa 128
1:ICC send testing ...
1:Target cores: 0x1, bytes: 128
1:ICC send: 128 bytes to 0x1 cores success
1:all cores: reserved_share_memory_base: 0xdf000000; size: 16777216
1:mycoreid: 1; ICC_SGI: 8; share_memory_size: 62914560
1:block_unit_size: 4096; block number: 14848; block_idx: 0
1:#ring 0 base: 00000000d3c00000; dest_core: 0; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c000c0; head: 1; tail: 1
1:busy_counts: 0; interrupt_counts: 1
1:#ring 1 base: 00000000d3c00030; dest_core: 1; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c008c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0
1:#ring 2 base: 00000000d3c00060; dest_core: 2; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c010c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
59 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1:#ring 3 base: 00000000d3c00090; dest_core: 3; SGI: 8
1:desc_num: 128; desc_base: 00000000d3c018c0; head: 0; tail: 0
1:busy_counts: 0; interrupt_counts: 0

Then, Core 0 side (Linux) receives this data:

[root@LS1046ARDB ~] # [4247.733753] 000: Get the ICC from core 1; block:
 0xd3e00000, bytes: 128, value: 0xaa

3.4.4.17 Single hardware interrupt routed to multiple cores

This section describes how to use GPIO to simulate external interrupt to notify all slave cores. With this feature,
all the slave cores can be triggered to perform operations almost at the same time via a single hardware
interrupt.

Two GPIO pins are selected. One pin is used to output 0 and 1 to simulate an external hardware. The other one
is used as an interrupt pin to trigger an interrupt to a core under pull-down mode. When the core receives the
interrupt, it triggers other slave cores via ICC SGI interrupt.

This feature is supported on LS1046ARDB and i.MX 8M Mini. The GPIO interrupt number and two GPIO pins
required for the interrupt test can be obtained from the corresponding dts file.

In fsl-ls1046a-rdb.dts

gpio_int {
 compatible = "fsl,gpio-int";
 gpios = <&gpio1 1 0>,
 <&gpio1 2 0>;
 interrupts = <0 99 0>;
 };

In imx8mm-evk.dts

gpio_int {
 compatible = "fsl,gpio-int";
 gpios = <&gpio5 7 0>,
 <&gpio5 8 0>;
 interrupts = <0 104 0>;
 };

On LS1046ARDB, GPIO2_01 and GPIO2_02 are selected. GPIO2_01 is used to simulate an external hardware
whereas GPIO2_02 triggers an interrupt. Connect the GPIO2_01 and GPIO2_02 pins on the board. TP14 and
TP13 are connected to GPIO2_01 and GPIO2_02 separately. The figure below shows how to connect TP14
and TP13.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
60 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 22.  LS1046ARDB hardware interrupt routing to multiple cores

On i.MX 8M Mini, connect the pins GPIO5_07 and GPIO5_08 on the board. GPIO5_07 is used to simulate an
external hardware whereas GPIO5_08 triggers an interrupt. The figure below shows how to connect GPIO5_07
and GPIO5_08.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
61 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 23.  i.MX 8M Mini hardware interrupt routing to multiple cores

On LS1046ARDB, GPIO2_01 and GPIO2_02 are multiplexed with SPI_CS_B[0] and SDHC_DAT[4] signals.
User must configure RCW[382 ~ 383] to 0b'10 to enable GPIO2[0] signal.

Since GPIO2 is assigned to Baremetal core, Linux should not use it again. We can disable GPIO2 under Linux
via dts file. The below code should be added in Linux kernel file fsl-ls1046a-rdb-sdk-bm.dts to disable
GPIO2.

&gpio1 {
 status = "disabled";
 };

Function declaration Description

int gpio_request_by_name(struct
udevice *dev, const char *list_name,
int index, struct gpio_desc *desc,
int flags)

Locate and request a GPIO by name
dev- Device requesting the GPIO
index - Index number of the GPIO in that list use request (0 = first)
desc - Returns GPIO description information
flags - Indicates the GPIO input/output settings
Returns: 0 if OK, -ve on error

Table 22. GPIO_INT driver APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
62 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Function declaration Description

int dm_gpio_set_value(const struct
gpio_desc *desc, int value)

Configures the direction of GPIO to OUT and writes the value to it.
desc - GPIO description
value- the value written to this GPIO
Returns: 0 if OK, -ve on error

int dm_gpio_set_interrupt(const
struct gpio_desc *desc)

Enable GPIO interrupt
desc - GPIO description
Returns: 0 if OK, -ve on error

int dm_gpio_clr_interrupt(const
struct gpio_desc *desc)

Disable GPIO interrupt
desc - GPIO description
Returns: 0 if OK, -ve on error

Table 22. GPIO_INT driver APIs and their description...continued

Under Baremetal, gpio_interrupt command provides “enable”, “start” and “stop” commands to control
these two pins.

• gpio_interrupt enable - Initializes the gpio_int driver and enables the interrupt.
• gpio_interrupt start - Sets GPIO2_01 to high.
• gpio_interrupt stop - Sets GPIO2_01 to low.

gpio_interrupt can run under BareMetal console.

The gpio_interrupt enable command should be run first to initialize two pins. Then, use the command
pair gpio_interrupt start and gpio_interrupt stop to pull high and pull down GPIO2_01/GPIO5_07.
After the command pair, GPIO2_02/GPIO5_08 triggers an interrupt when getting pull-down signal. The core1
sends the SGI interrupt to other slave cores. The time of GPIO interrupt and SGI interrupt is dumped by each
slave core. The latency is the time difference between GPIO interrupt and SGI interrupt. The below example
shows the latency is about 1 µs. It means all slave cores could be triggered within 1 µs.

 => gpio_interrupt enable
 => gpio_interrupt start
 => gpio_interrupt stop
 1:Time(us): 0x33cc582
 3:Time(us): 0x33cc585, Get the SGI from CoreID: 1
 2:Time(us): 0x33cc584, Get the SGI from CoreID: 1
 =>

3.4.4.18 Hardware resource allocation

This section describes how to modify the hardware resource allocation depending on the application and used
reference design board.

3.4.4.18.1 LS1028ARDB board

This section describes the ENETC configuration setting for LS1028A reference design boards.

3.4.4.18.1.1 ENETC

LS1028ARDB has only one ENETC controller in use, which is assigned to core1 as the default setting. The
controller can be reconfigured by using the command, make menuconfig.

See the following:

ARM architecture --->

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
63 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

[*] Enable baremetal
[*] Enable ENETC for baremetal
 (1) Enetc1 is assigned to core1
 (1) ENETC Controller numbers

3.4.4.18.1.2 I2C

This section describes how to configure the I2C bus on LS1028A reference design boards.

LS1028ARDB has eight I2C controllers, but only controller 0 is used for I2C devices. For example, RTC,
Thermal Monitor, and Linux (core 0) use this controller for some features (for example, RTC). Therefore, the
code below just shows how to enable I2C on Baremetal side.

Note:

Operate the I2C devices in Baremetal side CAREFULLY.

#define CONFIG_SYS_I2C_MXC_I2C1 /* enable I2C bus 0 */
#define CONFIG_SYS_I2C_MXC_I2C2 /* enable I2C bus 1 */
#define CONFIG_SYS_I2C_MXC_I2C3 /* enable I2C bus 2 */
#define CONFIG_SYS_I2C_MXC_I2C4 /* enable I2C bus 3 */
#define CONFIG_I2C_BUS_CORE_ID_SET
#define CONFIG_SYS_I2C_MXC_I2C0_COREID 1

The CONFIG_SYS_I2C_MXC_I2C0_COREID defines the slave core that runs the I2C bus.

Since I2C is enabled in DM mode on Baremetal side, there is no automatic code to test it. Follow the below
steps to read RTC (0x51 address, is on bus 2) on Baremetal side:

=> i2c bus
Bus 0: i2c@2000000 (active 0)
 77: i2c-mux@77, offset len 1, flags 0
 57: generic_57, offset len 1, flags 0
Bus 1: i2c@2000000->i2c-mux@77->i2c@1
Bus 2: i2c@2000000->i2c-mux@77->i2c@3
 51: rtc@51, offset len 1, flags 0
Bus 3: i2c@2010000
Bus 4: i2c@2020000
Bus 5: i2c@2030000
Bus 6: i2c@2040000
Bus 7: i2c@2050000
Bus 8: i2c@2060000
Bus 9: i2c@2070000
=> i2c md 0x51 0
Error reading the chip: -121
=> i2c dev 2
Setting bus to 2
=> i2c md 0x51 0
0000: 04 00 36 03 12 15 02 12 20 80 80 80 80 80 00 c2 ..6.....

3.4.4.18.1.3 SAI

LS1028ARDB has only one SAI module in use, which is assigned to core1 in the default setting. The SAI
module can be reconfigured by using the command, make menuconfig.

See the following:

Command line interface --->

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
64 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 Misc commands --->
 [*] wavplayer
Device Drivers --->
 Sound support --->
 [*] Enable sound support
 [*] Enable I2S support
 [*] Freescale sound
 [*] Freescale sgtl5000 audio codec
 [*] Freescale SAI module

3.4.4.18.2 LS1043ARDB or LS1046ARDB board

The following sections describe the hardware resource allocation for the LS1043ARDB or LS1046ARDB boards
for implementing the supported features.

3.4.4.18.2.1 Linux DTS

Remove cpu1, cpu2, cpu3 nodes on DTS, and remove all the devices that bare metal has used.

3.4.4.18.2.2 Memory configuration

This section describes the memory configuration for LS1043ARDB or LS1046ARDB boards.

The LS1043ARDB or LS1046ARDB boards have a DDR of size 2 GB. To use the bare metal framework,
configure DDR into three partitions:

• 512M for core0 (Linux)
• 256M for core1 (bare metal)
• 256M for core2 (bare metal)
• 256M for core3 (bare metal), and 256M for shared memory.

The configuration can be defined in the file include/configs/ls1043a_baremetal.h.

#define CFG_BAREMETAL_SYS_SDRAM_MASTER_SIZE (512 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_SLAVE_SIZE (256 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_RESERVE_SIZE (16 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_SHARE_SIZE \
 ((256 * 1024 * 1024UL) - CFG_BAREMETAL_SYS_SDRAM_RESERVE_SIZE)

Note: The memory configuration must be consistent with the U-Boot configuration of core0.

The memory configuration for bare metal is shown in the figure below.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
65 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 24. Memory configuration for LS1043ARDB or LS1046ARDB

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG_SYS_MALLOC_LEN in defconfig of the board to change the maximum size of malloc.

API name (type) Description

void_t* malloc (size_t n) Allocates memory
• “n” – length of allocated chunk
• Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to the
chunk of memory)

Table 23. Memory APIs description

The GPIO for LS1043ARDB (or LS1046ARDB) has four GPIO controllers. You need to add a GPIO node in the
file ls1043/6a-rdb.dts to assign a GPIO resource to different cores. The configuration can be done in the
file arch/arm/dts/fsl-ls1043/6a-rdb.dts.

3.4.4.18.2.3 GPIO

LS1043 and LS1046A have four GPIO controllers. You can add a GPIO node in the file ls1043-rdb.dts or
ls1046a-rdb.dts to assign a GPIO resource to different cores. The configuration is in arch/arm/dts/
fsl-ls1043a-rdb.dts / arch/arm/dts/fsl-ls1046a-rdb.dts. Use the command below to add a
GPIO node:

&gpio2 {
 status = "okay";
 };

3.4.4.18.2.4 I2C

This section describes how to configure the I2C bus on LS1028A, LS1043A, or LS1046A reference design
boards.

The LS1043ARDB (or LS1028ARDB / LS1046ARDB) has four I2C controllers. You can configure the I2C bus
using the ls1043ardb_bm_defconfig file using the commands below:

CONFIG_SYS_I2C_MXC_I2C1=y

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
66 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

CONFIG_SYS_I2C_MXC_I2C2=y
CONFIG_SYS_I2C_MXC_I2C3=y
CONFIG_SYS_I2C_MXC_I2C4=y
CONFIG_I2C_COREID_SET=y
CONFIG_SYS_I2C_MXC_I2C0_COREID=1
CONFIG_SYS_I2C_MXC_I2C1_COREID=2
CONFIG_SYS_I2C_MXC_I2C2_COREID=3
CONFIG_SYS_I2C_MXC_I2C3_COREID=1

The CONFIG_SYS_I2C_MXC_I2C0_COREID defines the slave core that runs the I2C bus.

3.4.4.18.2.5 Hardware interrupts

LS1043A has twelve IRQs as external IO signals connected to interrupt the controller. These twelve IRQs
can be used on baremetal cores. The ids for these signals, IRQ0-IRQ11 are: 163, 164, 165, 167, 168, 169,
177, 178, 179, 181, 182, and 183. GIC interrupt APIs are defined in asm/interrupt-gic.h. The following
example shows how to register a hardware interrupt:

//register HW interrupt
int irq_desc_register(struct irq *irq_data, void (*irq_handle)(int, int, void
 *), void *data);
int irq_set_polarity(struct udevice *dev, uint irq, bool active_low);
int irq_set_affinity(struct irq *irq, int core_mask);

3.4.4.18.2.6 QSPI

LS1046ARDB has a QSPI flash device. To configure the QSPI on ls1046ardb_config.h, use the command
below:

#define CONFIG_FSL_QSPI_COREID 1

Here, the CONFIG_FSL_QSPI_COREID defines the slave core that runs this QSPI.

3.4.4.18.2.7 IFC

LS1043A and LS1046A have IFC controller. LS1043RDB supports both NOR flash and NAND flash, whereas
LS1046RDB supports only NAND flash.

1. IFC is disabled in Linux kernel via disabling "ifc" node:

&ifc {
 status = "disabled";
};

2. Enter the Baremetal-Framework directory path and then execute the commands below: (IFC is enabled
by default)

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable IFC for
 baremetal (1) IFC is assigned to that core

3.4.4.18.2.8 Ethernet

This section describes the Ethernet configuration settings for LS1043A or LS1046A reference design boards.

LS1043A or LS1046A has only one FMan, so you should remove the DPAA driver in Linux.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
67 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Disable the DPAA driver in Linux kernel:

Device Drivers --->
 Staging drivers--->
 < > Freescale Datapath Queue and Buffer management

2. Enter the Baremetal-Framework directory and then execute the commands below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable fman
 for baremetal (1) FMAN1 is assigned to that core

Configure FMan to the specified core by modifying the FMan1 is assigned to that core value,
which is the default configuration, to core1.

3.4.4.18.2.9 USB

This section describes the USB configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three DW3 USB controllers. By default, these are assigned as core1, core2,
and core3. Users can reconfigure the controllers by using the ‘make menuconfig’ command as shown below.

ARM architecture --->
[*] Enable baremetal
[*] Enable USB for baremetal
(1) USB0 is assigned to core1
(2) USB1 is assigned to core2
(3) USB2 is assigned to core3
(3) USB Controller numbers

3.4.4.18.2.10 PCI Express (PCIe)

This section describes the PCIe configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three PCIe controllers. By default, these are assigned as core0, core1, and
core2. To reconfigure them, use the command ‘make menuconfig’, as shown below:

ARM architecture --->
[*] Enable baremetal
(0) PCIe1 is assigned to core0
(1) PCIe2 is assigned to core1
(2) PCIe3 is assigned to core2
(3) PCIe Controller numbers

3.4.4.18.3 LX2160ARDB board

The following sections describe the hardware resource allocation for the LX2160ARDB boards for implementing
the supported features.

3.4.4.18.3.1 Memory configuration

This section describes the memory configuration for LX2160ARDB boards.

The LX2160ARDB boards have a 16 GB size DDR. To use the Baremetal framework, configure DDR into three
partitions:

• 15G for core0 (Linux)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
68 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• 64M per core from core1 to core15 (baremetal), and 64M for shared memory.

The configuration can be defined in the file include/configs/lx2160ardb_config.h.

#define CFG_BAREMETAL_SYS_SDRAM_MASTER_SIZE (512 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_SLAVE_SIZE (64 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_RESERVE_SIZE (16 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_SHARE_SIZE \
 ((64 * 1024 * 1024UL) - CFG_BAREMETAL_SYS_SDRAM_RESERVE_SIZE)

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG_SYS_MALLOC_LEN in include/configs/lx2160ardb.h to change the maximum size of
malloc.

API name (type) Description

void_t* malloc (size_t n) Allocates memory
• “n” – length of allocated chunk
• Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to
the chunk of memory)

Table 24. Memory API description

3.4.4.18.4 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

3.4.4.18.4.1 Linux DTS

When using Baremetal, users should remove all the devices from kernel that Baremetal has used, for example:

&fec1 {
status = "disabled";
 };
&gpio5
 {
status = "disabled";
 };
&uart3 {
status = "disabled";
 };

3.4.4.18.4.2 Memory configuration

This section describes the memory configuration for i.MX 8M Mini LPDDR4 EVK or i.MX 8M Plus LPDDR4 EVK
boards.

1. The boards have a 6 GB DDR memory. To use the Baremetal framework, configure DDR into five partitions:

• 6016M for core0 (Linux)

• 32M for core1 (bare metal)

• 32M for core2 (bare metal)

• 32M for core3 (bare metal)

• 32M for shared memory.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
69 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The configuration can be defined in the file include/configs/imx8mm_baremetal.h. or include/
configs/imx8mp_baremetal.h.

#define CFG_BAREMETAL_SYS_SDRAM_SLAVE_SIZE (32 * 1024 * 1024UL)
#define CFG_BAREMETAL_SYS_SDRAM_RESERVE_SIZE (4 * 1024 * 1024UL)

2. Memory Reserve

For IPI data transfer, Baremetal needs to share memory between master core and slave core. Hence, users
should reserve some memory from the Linux kernel, as shown in the following dtsfile:

reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; bm_reserved:
 baremetal@0x60000000 { no-map; reg = <0 0x60000000 0 0x10000000>; }; };

3.4.4.18.4.3 GPIO

1. Connect pin7 and pin8 of J1003. The test_gpio case in Baremetal uses pin7 and pin8 of J1003, so connect
these two pins.

2. Boot the Baremetal on slave core. If the GPIO is working fine, the message below is displayed:

[ok]GPIO test ok

3. Disable the devices from kernel.

For the test_gpio case, use GPIO5_7 (pin8 of J1003) and GPIO5_8 (pin7 of J1003). These two pins are muxed
as UART3_TXD and UART3_CTS, so should disable GPIO5 and UART3 from kernel.

&gpio5 { status = "disabled"; }; &uart3 { status = "disabled"; };

3.4.4.18.4.4 Ethernet

This section describes the Ethernet configuration settings for i.MX 8M Mini LPDDR4 EVK or i.MX 8M Plus
LPDDR4 EVK boards.

1. Disable the Ethernet card from dts files:

&fec1 {
status = "disabled";
};

Note:

1. i.MX 8M Mini LPDDR4 EVK has only one NIC, default status of eth0(fec1) is disabled. if user does not use
eth0 in Baremetal, can enable fec1 in kernel dts file.

2. i.MX 8M Plus LPDDR4 EVK has two NICs, default setting is eth0 for Baremetal, eth1 for Linux.

2. Confirm Baremetal configuration using the command below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable NIC for
 baremetal (1) which core that NIC is assigned to

Configure NIC to the specified core by modifying the NIC to assign that core value, which is the default
configuration, to core1.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
70 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.5 Native RTOS on Cortex-A core
Native RTOS refer to the RTOS running without Hypervisor and is kicked to specified Cortex-A Core by U-Boot
commands.

3.5.1 Overview

Real-time Edge system supports Native RTOS inlcuding FreeRTOS and Zephyr running on Cortex-A cores.

Currently we have two methods to run RTOS on Cortex-A Core:

• Jailhouse RTOS: leverage Jailhouse Hypervisor to run RTOS in Jailhouse inamte cells
• Native RTOS: running on Cortex-A Core without any Hypervisor, similar with BareMetal mode.

Jailhouse Hypervisor provides a mechanism to isolate hardware resources, such as memory and peripherals.
However, hypervisor implementation causes Cortex-A core's privileged execution level switching between EL1
and EL2 at runtime, so it introduces extra real-time latency.

Native RTOS is running on Cortex-A Core directly just like Linux kernel running, and there is no any Hypervisor
is leveraged, so it has a better Real-time performance compared with RTOS in Jailhouse inmate. It is targeted
for high real-time performance use cases with less real-time latency.

In order to run Native RTOS on Cortex-A Core, it needs to define hardware resource used by each OS to
make sure there is no resource conflict between different operating systems. If Linux is used with RTOS
simultaneously, the device nodes for peripherals used by RTOS should be disabled or removed from Linux
device tree.

3.5.2 Building native RTOS on Cortex-A core

There are two methods to build Native RTOS running on Cortex-A Core, one method is to leverage Yocto,
another method is to build the image by using ARM gcc directly.

Some native RTOS examples are available in the Heterogeneous Multicore repo, refer to Section 4.2 for how to
build Native RTOS.

3.5.3 Booting native RTOS image on Cortex-A core

Native RTOS image for Cortex-A core can be kicked to specific Cortex-A Core by using the U-Boot command.

The below example shows how to run hello_world examples on the i.MX 8M Mini EVK, i.MX 8M Plus EVK, and
i.MX93 EVK boards.

1. Setup UART console for Native RTOS
Connect DEBUG UART slot on the board to your PC through the USB Cable. This step creates on the PC
two USB serial ports (port0 and port1) for i.MX 8M Mini EVK board, and four USB serial ports (port0 ~ port3)
for i.MX 8M Plus EVK and the i.MX93 EVK boards. Open two UART consoles for UART port0 and port1 on
i.MX 8M Mini EVK board or port2 and port3 on i.MX 8M Plus EVK board and iMX93 EVK board UART using
the following setup:
• 115200
• No parity
• 8 data bits
• 1 stop bit
The first UART console is used for Linux boot up, another one is used for RTOS running on Cortex-A Core.

2. Booting Native RTOS Image
After powering up the board and entering U-Boot command line, execute the following U-Boot commands to
run the hello_world example.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
71 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Boot hello_world example on the fourth Cortex-A Core on i.MX 8M Mini EVK board using the commands
below:

=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca/ddr_release/hello_world_ca53_RTOS0_UART4.bin
=> dcache flush; icache flush
=> cpu 3 release 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex-A53: RTOS0: Hello world! Real-time Edge on MIMX8MM-EVK
RTOS1: RAM console@0x95bff000
RTOS2: RAM console@0x96bff000
RTOS3: RAM console@0x97bff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
 tac

Use the below commands for booting the hello_world example on the fourth Cortex-A Core on i.MX 8M
Plus EVK board:

=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/hello-world-
ca/ddr_release/hello_world_ca53_RTOS0_UART4.bin
=> dcache flush; icache flush;
=> cpu 3 release 0xC0000000

Booting hello_world example on the second Cortex-A Core on i.MX93 EVK board:

=> ext4load mmc 1:2 0xD0000000 /examples/heterogeneous-multicore/hello-world-
ca/ddr_release/hello_world_ca55_RTOS0_UART2.bin
=> dcache flush; icache flush;
=> cpu 1 release 0xD0000000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex-A55: RTOS0: Hello world! Real-time Edge on MIMX93-EVK
RTOS1: RAM console@0xd1fff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
 tac

The Native RTOS image can also be booted from the first Cortex-A Core, which is called master Core. Use
the same command but use the "go" command to replace "cpu" command. For example, use the command
below to boot hello_world example on the first Cortex-A Core on i.MX 8M Mini EVK board:

=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-world-
ca/ddr_release/hello_world_ca53_RTOS0_UART4.bin
=> dcache off; dcache flush; icache flush; icache off
=> go 0x93C00000

After the preceding steps are followed, the second UART console displays the following RTOS log:

Cortex-A53: RTOS0: Hello world! Real-time Edge on MIMX8MM-EVK
RTOS1: RAM console@0x95bff000
RTOS2: RAM console@0x96bff000
RTOS3: RAM console@0x97bff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
 tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic
 tac

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
72 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.6 RTOS on Cortex-A core with Jailhouse

3.6.1 Jailhouse

3.6.1.1 Overview

Jailhouse is a partitioning Hypervisor based on Linux. It is able to run baremetal applications or (adapted)
operating systems besides Linux. For this purpose, it configures CPU and device virtualization features of the
hardware platform in a way that none of these domains, called "cells" here, can interfere with each other in an
unacceptable way.

Jailhouse is optimized for simplicity rather than feature richness. Jailhouse does not support overcommitment
of resources such as CPUs, RAM, or devices. This feature makes it different from full-featured Linux-based
hypervisors such as KVM or Xen. It performs no scheduling and only virtualizes those resources in software,
which are essential for a platform and cannot be partitioned in hardware.

Once Jailhouse is activated, it runs Baremetal. This implies that it takes full control over the hardware and
needs no external support. However, in contrast to other baremetal hypervisors, it requires a normal Linux
system to be loaded and configured. Its management interface is based on Linux infrastructure. So, you boot
Linux first, then, enable Jailhouse and finally split off parts of the system's resources and assign them to
additional cells.

3.6.1.2 Running PREEMPT_RT Linux in Inmate

3.6.1.2.1 i.MX 8M Plus LPDDR4 EVK

Perform the following steps on i.MX 8M Plus LPDDR4 EVK board:

1. Execute run jh_mmcboot at U-Boot prompt on the terminal of UART2.
2. Wait for Linux OS to boot up and login.
3. Execute non-root Linux demo (Assuming rootfs have been deployed in /dev/mmcblk2p2):

cd /usr/share/jailhouse/scripts
./linux-demo-imx8mp.sh

4. Check the output on the terminal of UART4:

[0.717545] printk: console [ttymxc3] enabled
[0.721628] printk: bootconsole [ec_imx6q0] disabled
[0.732428] loop: module loaded
[0.732902] of_reserved_mem_lookup() returned NULL
[0.732952] megasas: 07.714.04.00-rc1
[0.733632] imx ahci driver is registered.
[0.735615] tun: Universal TUN/TAP device driver, 1.6
[0.735835] thunder_xcv, ver 1.0
[0.735863] thunder_bgx, ver 1.0
[0.735889] nicpf, ver 1.0
[0.736340] hclge is initializing
[0.736351] hns3: Hisilicon Ethernet Network Driver for Hip08 Family -
 version
[0.736354] hns3: Copyright (c) 2017 Huawei Corporation.
[0.736382] e1000: Intel(R) PRO/1000 Network Driver
[0.736384] e1000: Copyright (c) 1999-2006 Intel Corporation.
[0.736416] e1000e: Intel(R) PRO/1000 Network Driver
[0.736418] e1000e: Copyright(c) 1999 - 2015 Intel Corporation.
[0.736447] igb: Intel(R) Gigabit Ethernet Network Driver
[0.736450] igb: Copyright (c) 2007-2014 Intel Corporation.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
73 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

[0.736473] igbvf: Intel(R) Gigabit Virtual Function Network Driver
[0.736475] igbvf: Copyright (c) 2009 - 2012 Intel Corporation.
...
NXP Real-time Edge Distro 2.2 imx8mp-lpddr4-evk ttymxc3
imx8mp-lpddr4-evk login: root
root@imx8mp-lpddr4-evk:~#
root@imx8mp-lpddr4-evk:~# uname -a
Linux imx8mpevk 5.10.72-rt53-lts-5.10.y+g5304e5555731 #1 SMP PREEMPT_RT Tue
 Mar 1 06:03:05 UTC 2022 aarch64 aarch64 aarch64 GNU/Linux
root@imx8mp-lpddr4-evk:~#

Note: If the case fails because of rootfs error, update rootfs using the following command:

rm -fr /run/media/mmcblk2p2/*
cp -frd /usr /bin /etc /home /fat /lib /linuxrc /lost+found/ /media/ /mnt /
opt /root /sbin /run/media/mmcblk2p2/

5. Exit Jailhouse.

3.6.1.2.2 LS1028ARDB

Perform the steps listed in the following section to run PREEMPT_RT Linux on LS1028ARDB board.

3.6.1.2.2.1 Linux in non-root cell

Perform the following steps to run PREEMPT_RT Linux in Inmate on LS1028ARDB platform:

1. Execute run jh_mmcboot from U-Boot prompt.
2. Wait for Linux OS to boot up and log in it.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-ls1028ardb.sh

4. Exit Jailhouse.

../tools/jailhouse disable

3.6.1.2.2.2 ENETC in non-root cell

Follow the below steps for ENETC that is assigned to non-root cell:

1. Under U-Boot prompt, run the below commands to set the device tree blob, which has ENETC nodes
removed and then boot up Linux:

=> setenv jh_mmcboot ‘setenv dtb fsl-ls1028a-rdb-jailhouse-without-
enetc.dtb;run bootcmd’
=> run jh_mmcboot

2. Wait for Linux OS to boot up and then log in.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-ls1028ardb-enetc.sh

Then, network can be available in none-root cell Linux.
4. Exit Jailhouse.

../tools/jailhouse disable

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
74 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Note:

In this case, the GICv3 ITS node is also removed from the root cell Linux device tree. The node is assigned to
non-root cell to service ENETC MSI-X interrupts, so the root cell Linux does not support the MSI/MSI-X service
anymore.

3.6.1.2.2.3 GPIO in non-root cell

GPIO3 controller is assigned to non-root cell, below steps is for GPIO that is assigned to non-root cell:

1. Hardware setup
Connect J11 Pin5 (1588_ALARM_OUT1/GPIO3_DAT11) to Pin 8 (1588_CLK_OUT/GPIO3_DAT10)

2. RCW setting
In dash-rcw/ls1028ardb/R_SQPP_0x85bb/rcw_1500_sdboot.rcw, change as below:

EC1_SAI4_5_PMUX=1
EC1_SAI3_6_PMUX=1

EC1_SAI4_5_PMUX is set to 0b001, EC1_SAI3_6_PMUX is set to 0b001 to select GPIO.
3. Software configuration required:

a. Configure CPLD register BRDCFG3 (offset 053h) bit 2 to 0 (IEEE signals connect to the IEEE header) in
U-Boot prompt:

=> i2c mw 66 53 00

b. Boot up Linux using Jailhouse DTB and bring up non-root Linux:

=> run jh_mmcboot

c. Wait for Linux OS to boot up and login.
d. Execute non-root Linux demo.

cd /usr/share/jailhouse/scripts
./linux-demo-ls1028ardb.sh

4. Test GPIO function in non-root Linux.
a. Export GPIO pin

ls /sys/class/gpio
echo 490 > /sys/class/gpio/export
echo 491 > /sys/class/gpio/export

b. Configure GPIO output and input.

echo out > /sys/class/gpio/gpio490/direction
cat /sys/class/gpio/gpio490/direction
cat /sys/class/gpio/gpio491/direction

c. Verify write 1 to GPIO ouput.

echo 1 > /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpio491/value

d. Verify write 0 to GPIO ouput.

echo 0 > /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpio490/value
cat /sys/class/gpio/gpio491/value

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
75 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

5. Exit Jailhouse

../tools/jailhouse disable

3.6.1.2.3 LS1046ARDB

Perform the following steps:

1. Execute run jh_mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and login in it.
3. Execute non-root Linux demo:

cd /usr/share/jailhouse/scripts
./linux-demo-ls1046ardb.sh

4. Exit Jailhouse:

../tools/jailhouse disable

3.6.1.3 Running Jailhouse examples In Inmate

3.6.1.3.1 i.MX 8M Plus LPDDR4 EVK

1. Execute run jh_mmcboot in U-Boot stage
2. Wait for Linux OS to boot up and login in it.
3. Execute GIC demo.

cd /usr/share/jailhouse/scripts
./gic-demo-imx8mp.sh

4. Check the result on serial port:

5. Execute UART demo:

./uart-demo-imx8mp.sh

6. Check the result on serial port:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
76 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7. Exit Jailhouse.

../tools/jailhouse disable

3.6.1.3.2 LS1028ARDB Jailhouse example in Inmate

Perform the following steps for running LS1028ARDB Jailhouse example In Inmate:

1. Execute run jh_mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and then log in.
3. Execute GIC demo using the command below:

cd /usr/share/jailhouse/scripts
./gic-demo-ls1028ardb.sh

4. Execute UART demo using the command below:

./uart-demo-ls1028ardb.sh

5. Execute ivshmem demo using the command below:

./ivshmem-demo-ls1028ardb.sh

Note: If ivshmem case fails, then, reboot the board and test the case again.
Check the result on the second serial port:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
77 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6. Exit Jailhouse.

3.6.1.3.3 LS1046ARDB Jailhouse example

Perform the below steps for running Jailhouse examples in Inmate on LS1046ARDB:

1. Execute run jh_mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and login it.
3. Execute GIC demo:

cd /usr/share/jailhouse/scripts
./gic-demo-ls1046ardb.sh

4. Execute UART demo:

./uart-demo-ls1046ardb.sh

5. Execute ivshmem demo:

./ivshmem-demo-ls1046ardb.sh

6. Exit Jailhouse.

../tools/jailhouse disable

3.6.2 Harpoon (RTOS on Cortex-A)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
78 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3.6.2.1 Overview

Harpoon RTOS provides an environment for developing real-time demanding applications on an RTOS running
on one (or several) Cortex-A core(s) in parallel of a Linux distribution.

Harpoon leverages Jailhouse to partition the hardware and run the RTOS as a Linux guest.

The Harpoon RTOS is based on either FreeRTOS or Zephyr plus MCUXpresso drivers and provides several
example applications:

• Audio application
• Industrial application
• Real-time latency test application

For details about Harpoon OS, refer to its user guide available at the following location:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-
SOFTWARE?tab=Documentation_Tab

3.7 RTOS and Baremetal on Cortex-M core
Regarding RTOS and Baremetal building, please refer to Section 3.2

Real-time Edge images has some demo for testing.

For more example, please refer to https://mcuxpresso.nxp.com/en/welcome

3.7.1 Booting Cortex-M Core RTOS Image

There are two ways to boot ARM Cortex-M Core: booting from U-Boot, or using RemoteProc to boot from Linux.

3.7.1.1 Booting Native RTOS Cortex-M Core image from U-Boot

U-boot command "bootaux" is used to boot Cortex-M Core RTOS Image from U-Boot.

For example, after the board is booted into the U-Boot console, use the following command to boot Arm Cortex-
M core on i.MX 8M Mini EVK board or i.MX 8M Plus EVK board:

=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/freertos-hello/release/
freertos_hello.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

Or use the following command on i.MX93 EVK board:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello_world_cm33_UART2.bin; cp.b 0xd0000000 0x201e0000 20000;
=> bootaux 0x1ffe0000

3.7.1.2 Using RemoteProc to boot RTOS Cortex-M Core Image

If you choose to use RemoteProc to start the remote core directly, execute run prepare_mcore in U-Boot
before starting the Linux OS.

 => run prepare_mcore

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
79 / 400

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Then, use the following command to use RPMSG dtb file to boot the kernel:

On imx8mm-lpddr4-evk board
=> setenv fdtfile imx8mm-evk-rpmsg.dtb
=> boot

On imx8mp-lpddr4-evk board
=> setenv fdtfile imx8mp-evk-rpmsg.dtb
=> boot

Then, after the Linux kernel boots up, run the commands for i.MX 8MP:

root@imx8mp-lpddr4-evk:~# echo -n imx8mp_m7_TCM_hello_world.elf > /sys/class/
remoteproc/remoteproc0/firmware
root@imx8mp-lpddr4-evk:~# echo start > /sys/class/remoteproc/remoteproc0/state
[19.668712] remoteproc remoteproc0: powering up imx-rproc
[19.670341] remoteproc remoteproc0: Booting fw image
 imx8mp_m7_TCM_hello_world.elf, size 153316

root@imx8mp-lpddr4-evk:~# [20.191036] remoteproc remoteproc0: remote processor
 imx-rproc is now up

For i.MX 8MM, run the following commands:

root@imx8mm-lpddr4-evk:~# echo -n imx8mm_m4_TCM_hello_world.elf > /sys/class/
remoteproc/remoteproc0/firmware
root@imx8mm-lpddr4-evk:~# echo start > /sys/class/remoteproc/remoteproc0/state
[209.654414] remoteproc remoteproc0: powering up imx-rproc
[209.656646] remoteproc remoteproc0: Booting fw image
 imx8mm_m4_TCM_hello_world.elf, size 146136
root@imx8mm-lpddr4-evk:~# [210.174456] remoteproc remoteproc0: remote processor
 imx-rproc is now up

After these steps are followed, the remote processor imx-rproc is up.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
80 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4 Heterogeneous Multicore Framework

4.1 Overview
Heterogeneous Multicore Framework provides a general software framework to support Heterogeneous AMP. It
enables AMP to be interconnected and provides a unified resource management and life-cycle management.

Figure 25. Heterogeneous Multicore Framework

It provides the below key functions to help users to accelerate solution development based on multicore
platforms:

1. Data communication between different operating systems
The following technical implementation can be used to pass common data between different operating
systems. The data transer can be between Cortex-M Core and Cortex-A Core, or between different Cortex-
A Cores, or between multiple CPU Cores simultaneously.
• RPMsg

RPMsg is a standard intercore communication protocol, it is supported on Linux and RTOS.
• Heterogeneous Multicore VirtIO

Heterogeneous Multicore VirtIO applies para-virtualization VirtIO technology to build high-performance
inter-core data path, customized data path is defined according to different use cases.

2. Resource sharing between different operating systems

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
81 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Resource sharing enables sharing physical resources between different OSes. In general, one OS owns
and controls hardware resource while the other OS uses a virtual device. The following mechanism is
followed to build the control path and data path to access physical resource.
• RPMSG

Use RPMSG to build control and data path crossing OS, physical resource is shared with another OS in
terms of virtual device. Simplified Real-Time Messaging (SRTM) protocol provided in Real-time Edge is
an implementation based on RPMsg. It is used to share the physical resources of the Cortex-M core with
Cortex-A core in terms of virtual device in Linux.

• Heterogeneous Multicore VirtIO
Heterogeneous Multicore VirtIO have a better performance than RPMSG, and it can also be used for
resource sharing. POSIX compatible API can be used to access virtual device, and some existing VirtIO
device drivers in Linux can be reused. Networking sharing is provided in Real-time Edge to share the
same networking interface between multiple OSes.

3. Unified Life-Cycle Management
Heterogeneous Multicore Framework provides unified Life Cycle Management both for Cortex-A Core and
Cortex-M Core.

There are some sample application provided in Heterogeneous Multicore Framework, these application can be
used to demo and evaluate the features in Heterogeneous Multicore Framework:

1. hello_world
hello_world application is to demonstrate flexible Real-time System on MPU platforms, multiple images
provided can be used to run single or multiple RTOS on Cortex-A Core or Cortex-M with or without runing
Linux simulteneously.

2. RPMSG Applications
Heterogeneous Multicore Framework supports RPMSG communication between any Real-time Systems on
MPU Platforms, such as:
• RPMSG between RTOS on Cortex-M Core and Linux on Cortex-A core
• RPMSG between RTOS on Cortex-A Core and Linux on Cortex-A Core
• RPMSG between RTOS on Cortex-A Core and RTOS on Cortex-A Core
• RPMSG between RTOS on Cortex-M Core and RTOS on Cortex-A Core
The following applications provides filed trail for RPMSG related features
• rpmsg_str_echo

This demo demonstrates building up multiple RPMSG endpoints between RTOS and Linux. For example,
on i.MX 8M Plus EVK board, images provided in Real-time Edge can be used to run three RTOS
rpmsg_str_echo applications on two Cortex-A Core and one Cortex-M Core, the other two Cortex-A Cores
run SMP Linux, then each RTOS will establish three RPMSG Channels with Linux.

• rpmsg_pingpong
This demo is to demonstrate RPMSG communication between RTOS and RTOS, one is RPMSG master
and the other is RPMSG slave.

• rpmsg_perf
rpmsg_perf is a tool to evaluate RPMSG bandwidth performance between RTOS and Linux Kernel.

• RPMSG enahanced 8MB buffer
The application is to demonstrate how to change default RPMG buffer size and count.

• UART Sharing based on RPMSG
This application is to demonstrate how to use RPSMG to share physical peripherals or other resource
between different CPU Core or OS. This demo share physical UART controlled by Cortex-M Core with
Cortex-A Core on which virtual UART device driver is provided in Linux.

3. Heterogeneous Multicore VirtIO Applications
• virtio_perf

virtio_perf is a tool to evaluate Heterogeneous Multicore VirtIO bandwidth performance between RTOS
and Linux.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
82 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• VirtIO Networking Sharing
This application is to demonstrate how to use Heterogeneous Multicore VirtIO to share physical
peripherals or other resource between different CPU Core or OS. The applicatons provides networking
sharing, physical networking interface is controlled by Cortex-M Core or Cortex-A Core, then it is shared
with Cortex-A Core on which virtual NIC device driver is provided in Linux, Heterogeneous Multicore VirtIO
is used to established high performance data path between two sides.

The following table shows the support matrix on NXP platforms:

Heterogeneous Multicore Framework i.MX 8M Mini
LPDDR4 EVK

i.MX 8M Plus
LPDDR4 EVK

i.MX 93 EVK i.MX 93 9x9
LPDDR4 QSB

Feature Sub-feature Application 4 X A53 1 X M4 4 X A53 1 X M7 2 X A55 1 X M33 2 X A55 1 X M33

Flexible Real-
time System hello_world Y Y Y Y Y Y 　 　

RAM Console hello_world Y Y Y Y Y Y 　 　
Flexible

Real-time
System networking

stack on A-
Core RTOS

lwip_ping 　 　 Y 　 　 　 　 　

U-Boot booting
Native RTOS

on A-Core
hello_world Y 　 Y 　 Y 　 　 　

U-Boot booting
Native RTOS

on M-Core
hello_world 　 Y 　 Y 　 Y 　 Y

Unified
Life Cycle

Management

Linux booting
Native RTOS

on M-Core
remoteproc 　 Y 　 Y 　 Y 　 Y

RPMSG
between A-

Core Linux and
M-Core RTOS

rpmsg_str_echo 　 Y 　 Y 　 Y 　 Y

RPMSG
between A-

Core Linux and
A-Core RTOS

rpmsg_str_echo Y 　 Y 　 　 　 　 　

RPMSG
between A-

Core RTOS and
A-Core RTOS

rpmsg_pingpong 　 　 Y 　 　 　 　 　

RPMSG
between A core

and M core
with enhanced

8MB buffer

rpmsg_lite_str_echo_rtos 　 Y 　 　 　 　 　 　

RPMsg
Performance
Evaluation

rpmsg_perf 　 　 　 Y 　 　 　 　

RPMSG

UART Sharing
based on
RPMsg

rpmsg_lite_uart_sharing
_rtos 　 Y 　 　 　 Y 　 Y

Heterogeneous
Multicore VirtIO

Performance
Evaluation

virtio_perf Y Y 　 　 　 　 　 　
Heterogeneous

Multicore
VirtIO Heterogeneous

Multicore VirtIO
Network Sharing

virtio_net_backend Y Y Y Y Y Y 　 　

Table 25. Heterogeneous Multicore Application Support Matrix

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
83 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.2 Building Heterogeneous Multicore RTOS Application
Heterogeneous Multicore Framework provides some RTOS applications in the repo: heterogeneous-multicore.

There are two methods to build Heterogeneous Multicore RTOS Applications, one method is to leverage Yocto,
another method is to standalone method by using ARM gcc directly.

4.2.1 Build with Yocto

Real-time Edge supports to build all images by using Yocto, so please refer to "Section 3.2 Building, deploying,
and releasing unified software" for how to leverage Yocto to build RTOS Applications on Cortex-A Core an
Cortex-M Core.

The followings are some Yocto quick commands:

Build all RTOS application running both on Cortex-A Core and Cortex-M Core:

bitbake packagegroup-real-time-edge-rtos

Build single Heterogeneous Multicore RTOS application separately:

bitbake APP-NAME-CORE

The "APP-NAME-CORE" could be the following applications with suffix "-ca" for A-Core application or "-cm" for
M-Core appliction:

• hello-world-ca
• lwip-ping-ca
• rpmsg-str-echo-ca
• rpmsg-str-echo-cm
• rpmsg-pingpong-ca
• rpmsg-lite-uart-sharing-rtos
• virtio-net-backend-ca
• virtio-net-backend-cm
• virtio-perf-ca
• virtio-perf-cm

4.2.2 Build with Standalone Mode

Some RTOS applications are in the repository: heterogeneous-multicore, the repo is managed by "west" tool,
so can use "west" to download all the software components and then use ARM gcc toolchain to build the
application directly.

1. Download and install the toolchain
The toolchain for building RTOS on Cortex-A Core:

mkdir ~/toolchains/;cd ~/toolchains/
wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.3-2021.07/
binrel/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz
tar xf gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz

The toolchain for building RTOS on Cortex-M Core:

cd ~/toolchains/
wget https://developer.arm.com/-/media/Files/downloads/gnu-rm/10-2020q4/gcc-
arm-none-eabi-10-2020-q4-major-x86_64-linux.tar.bz2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
84 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

tar xf gcc-arm-none-eabi-10-2020-q4-major-x86_64-linux.tar.bz2

2. Download Source Code
This Heterogeneous Multicore project uses west to manage all related repos, west.yml provides the
description and revision for other projects used by Heterogeneous Multicore.
Use the following command to download all the source code:

west init -m https://github.com/nxp-real-time-edge-sw/heterogeneous-
multicore.git workspace
cd workspace
west update

3. Build the RTOS application.
Each application provides a building script which can be used to build the application separately. In the
meanwhile, a common building helper script "build_all.sh" in the root directory of "heterogeneous-multicore"
can be used to build single or all application for all boards.
• Build Single Application for Single Board

Take "rpmsg_str_echo" application as example, use the following command to build the application for
Cortex-A Core on i.MX 8M Plus EVK:

export ARMGCC_DIR=~/toolchains/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf
cd ~/workspace/heterogeneous-multicore/apps/rpmsg_str_echo/freertos/boards/
evkmimx8mp_ca53/armgcc_aarch64
./build_ddr_release.sh

Then the RTOS images "rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
rpmsg_str_echo_ca53_RTOS0_UART4.bin rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin"
can be found in directory "ddr_release".
And use the following commands to build the application for Cortex-M Core on i.MX 8M Plus EVK:

export ARMGCC_DIR=~/toolchains/gcc-arm-none-eabi-10-2020-q4-major
cd ~/workspace/heterogeneous-multicore/apps/rpmsg_str_echo/freertos/boards/
evkmimx8mp_cm7/armgcc
./build_release.sh

Then the RTOS image "rpmsg_str_echo_cm7.bin" can be found in directory "release".
• Build Multiple Applications

"build_all.sh" in the root directory of "heterogeneous-multicore" can be used to build single or all
application for all boards.
The following is help information for "build_all.sh" tool:

./build_all.sh core_type [directory] - build all a-core or m-
core applications in [directory]
./build_all.sh [core_type] [directory] clean - clean all a-core or m-
core or for both applications building in [directory]
 - core_type: a-core or m-
core

 For example:
 ./build_all.sh a-core -build all a-core
 applications in apps directory
 ./build_all.sh m-core apps/hello_world -build all m-core
 applications in apps/hello_world directory
 ./build_all.sh clean -clean all applications
 building in apps directory
 ./build_all.sh a-core clean -clean all a-core
 applications building in apps directory
 ./build_all.sh m-core apps/hello_world clean -clean all m-core
 applications building in apps/hello_world directory

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
85 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 ./build_all.sh apps/hello_world clean -clean all applications
 building in apps/hello_world directory

Need to set toolcharin enviroment variables "ARMGCC_DIR" firstly before using the tool.
For example, use the tool to build all hello_world application on Cortex-M Core for all supported boards:

export ARMGCC_DIR=~/toolchains/gcc-arm-none-eabi-10-2020-q4-major
cd ~/workspace/heterogeneous-multicore/
./build_all.sh m-core apps/hello_world

use the tool to build all application on Cortex-A Core for all supported boards:

export ARMGCC_DIR=~/toolchains/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf
cd ~/workspace/heterogeneous-multicore/
./build_all.sh a-core

After execute the tool, all binary images built out can be found in the directory: "binaries", for example:

binaries/
├── evkmimx8mm
│ ├── hello_world_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS0_UART4.bin
│ ├── hello_world_ca53_RTOS1_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS2_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_UART2.bin
│ ├── virtio_net_backend_ca53.bin
│ └── virtio_perf_ca53.bin
├── evkmimx8mp
│ ├── hello_world_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS0_UART4.bin
│ ├── hello_world_ca53_RTOS1_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS2_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_UART2.bin
│ ├── lwip_ping_ca53.bin
│ ├── rpmsg_pingpong_master_ca53_RAM_CONSOLE.bin
│ ├── rpmsg_pingpong_master_ca53_UART4.bin
│ ├── rpmsg_pingpong_remote_ca53_RAM_CONSOLE.bin
│ ├── rpmsg_pingpong_remote_ca53_UART4.bin
│ ├── rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── rpmsg_str_echo_ca53_RTOS0_UART4.bin
│ ├── rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin
│ └── virtio_net_backend_ca53.bin
└── mcimx93evk
 ├── hello_world_ca55_RTOS0_RAM_CONSOLE.bin
 ├── hello_world_ca55_RTOS0_UART2.bin
 ├── hello_world_ca55_RTOS1_RAM_CONSOLE.bin
 ├── hello_world_ca55_RTOS1_UART1.bin
 └── virtio_net_backend_ca55.bin

4.3 Flexible Real-time System
On NXP MPU platforms, it supports Flexible Real-time System, the system can run single or multiple RTOS on
Cortex-M Core and Cortex-A Core with or without runing Linux on Cortex-A Core simulteneously.

The system provides RAM Console to make it easy to debug multiple OS in case of no enough physcal UART
Console can be used.

And the system also provides some common software stack, such as lwIP networking stack on Cortex-A Core
or Cortex-M Core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
86 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.3.1 Heterogeneous Multicore RAM Console

RAM Console is virtual debug console which can be used by RTOS, it provides common console APIs to print
and save console log to a reserve memory region.

If run multiple OSes on MPU platform, some OSes can use physical UART as debug console, then the other
OSes can use RAM Console, then can dump the other OS's RAM Console from the OS which is using phycial
UART Console.

It provides two methods to dump the RAM Console log: use U-Boot command or Linux Userspace tool.

4.3.1.1 Use RAM Console in RTOS

This chapter descripts how to develop RTOS application based on RAM Console.

4.3.1.1.1 RAM Console Technical Details

RAM Console driver locates at debug console (utilities/debug_console) in the repository mcux-sdk.

There is a 64 bytes Console Header at the start of RAM Console log memory, the memory layout is as the
following figure:

Figure 26. RAM Console Memory Layout

The RAM Console Header includes the following parts:

• 16 bytes fixed string flag: "RAM_CONSOLE"
• console_start_address: the memory physical address for the console_start of Console Buffer
• console_buffer_length: the length in bytes of Console Buffer from console_start to console_end
• console_cursor_position: current Console cursor related position from console_start, the cursor is started

from console_start, then move towards console_end with console log increasement, when it reaches to
console_end, it will jump back to console_start, and then move towards console_end agan.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
87 / 400

https://github.com/nxp-mcuxpresso/mcux-sdk/tree/feature/heterogeneous_multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.3.1.1.2 Develop with RAM Console

Take the "hello_world" program for the "evkmimx8mm_ca53" board in the repository heterogeneous-
multicore as an example. Then follow the steps listed below to use RAM Console as debug console in RTOS
application.

1. Reserve a memory block for RAM Console, and add mmu mapping entry in app_mmu.h.
2. In application's CMakeLists.txt

...
SET(DEBUG_CONSOLE_CONFIG "-DSDK_DEBUGCONSOLE=2 -DCONFIG_RAM_CONSOLE")
...
include(utility_assert_ram_console)
include(utility_ram_console)
...

3. Call RamConsole_Init() with RAM Console memory block's address and size to initialize RAM Console

#ifdef CONFIG_RAM_CONSOLE
 RamConsole_Init(RAM_CONSOLE_ADDR, RAM_CONSOLE_SIZE);
#else
 BOARD_InitDebugConsole();
#endif

4. In general, while running multiple RTOS instances, all the RAM Console memory addresses can be printed
out to physical debug console from the RTOS instances using physical debug console.

4.3.1.1.3 Dump RAM Console Log

RAM Console Log can be dumped from U-Boot command line or from Linux userspace. While running multiple
OSes on MPU platform, the OS instances must be started using RAM Console first. Then start the OS using
physical UART Console. If the last OS using physical UART Console is RTOS, it can dump the other OS's
RAM Console log before from U-Boot command line start this last RTOS, otherwise it has to dump the console
memory by using JTAG tools. But if the last OS using physical UART Console is Linux, we can still dump the
other OS's RAM Console log by using Linux userspace tool after Linux boots up.

• Dump from U-Boot
In U-Boot comand line, use "md" command to dump the whole RAM Console memory including RAM Console
Header

u-boot=> dcache flush; md C1FFF000
c1fff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
c1fff010: c1fff040 00000000 00000fc0 00000000 @...............
c1fff020: 0000024d 00000000 00000000 00000000 M...............
c1fff030: 00000000 00000000 00000000 00000000
c1fff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
c1fff050: 3a31534f 6c654820 77206f6c 646c726f OS1: Hello world
c1fff060: 65522021 742d6c61 20656d69 65676445 ! Real-time Edge
c1fff070: 206e6f20 584d494d 2d504d38 0d4b5645 on MIMX8MP-EVK.
c1fff080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
c1fff090: 63697420 63617420 63697420 63617420 tic tac tic tac
c1fff0a0: 63697420 63617420 63697420 63617420 tic tac tic tac
c1fff0b0: 63697420 63617420 63697420 63617420 tic tac tic tac
c1fff0c0: 63697420 63617420 63697420 63617420 tic tac tic tac

• Dump from Linux
There is a Linux userspace tool provided in the repository heterogeneous-multicore "tool" directory. Use this
tool to dump RAM Console log.

root@imx8mp-lpddr4-evk:~# ram_console_dump 0xC1FFF000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
88 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore
https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

RAM Console@0xc1fff000:

Cortex-A53: RTOS1: Hello world! Real-time Edge on MIMX8MP-EVK
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic >

4.3.2 Heterogeneous Multicore hello_world

4.3.2.1 Overview

Heterogeneous Multicore hello_world application demonstrates flexible Real-time System on MPU
platforms. It can run single or multiple RTOS on Cortex-A Core or Cortex-M with or without running Linux
simulteneously.

Take i.MX 8M Plus Applications Processor as an example. It has four Cortex-A53 cores and one Cortex-M7
Core. It could run the following use cases on this MPU platform:

ID M7 A53 A53 A53 A53

0 RTOS SMP Linux

1 RTOS SMP Linux RTOS

2 RTOS SMP Linux RTOS RTOS

3 RTOS Linux RTOS RTOS RTOS

4 RTOS RTOS RTOS RTOS RTOS

Table 26. Flexible Real-time System on i.MX 8M Plus

4.3.2.2 Technical Points

• Debug Console
Take i.MX 8M Plus Applications Processor as an example, in general, UART4 is used for Cortex-M Core
RTOS or Cortex-A Core RTOS, UART2 is used for Linux, the other RTOS instance can use RAM Console.
The hello_world application could build all RTOS instances with any possible UART Console or RAM Console,
the following images are for i.MX 8M Plus EVK, the RTOS0 provides images both for UART4 Console and
RAM Console, can run any of them according to usecase setup.

├── evkmimx8mp
│ ├── hello_world_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS0_UART4.bin
│ ├── hello_world_ca53_RTOS1_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS2_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_UART2.bin

• GIC Controller Initialization
If run multiple RTOS on MPU's Cortex-A, it can only setup GIC's distributor by the first RTOS to be run. For
example, the following code in hello_world's main.c to make sure that only RTOS0 to setup GIC's distributor.

#if (RTOSID == 0)
 GIC_Enable(1);
#else
 GIC_Enable(0);

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
89 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

#endif

So in general, RTOS0 need to run firstly before running the other RTOS instances.
• Memory Usage

For RTOS applications in the repository: heterogeneous-multicore, the memory resource used by RTOS
kernel is defined in "os/freertos/Core_AArch64/boards/<PLAT_NAME>/rtos_memory.h", for
example, in the following rtos_memory.h for i.MX 8M Plus, RTOS0, RTOS1 and RTOS2, each RTOS uses
16M bytes memory from 0xC0000000, 0xC1000000 or 0xC2000000.

#ifndef _RTOS_MEMORY_H_
#define _RTOS_MEMORY_H_

/* Memory used by RTOS kernel */
#define M_INTERRUPTS_BASE (0xC0000000 + 0x1000000 * RTOSID)
#define M_INTERRUPTS_LEN 0x00002000 /* 8 kB */

#define M_TEXT_BASE (M_INTERRUPTS_BASE + M_INTERRUPTS_LEN)
#define M_TEXT_LEN 0x005FE000 /* ~6 MB */

#define M_DATA_BASE (M_TEXT_BASE + M_TEXT_LEN)
#define M_DATA_LEN 0x005FE000 /* ~6 MB */

#define M_STACKS_BASE (M_DATA_BASE + M_DATA_LEN)
#define M_STACKS_LEN 0x00002000 /* 8 kB */

#define M_STACKS_NC_BASE (M_STACKS_BASE + M_STACKS_LEN)
#define M_STACKS_NC_LEN 0x003FF000 /* ~4 MB */

/* Memory used by RAM Console */
#define RAM_CONSOLE_ADDR (M_STACKS_NC_BASE + M_STACKS_NC_LEN)
#define RAM_CONSOLE_SIZE 0x00001000 /* 4KB */

#define RTOS_MEM_LEN 0x01000000 /* 16 MB */

#endif

If run Linux kernel with RTOS simultaneously, need to reserve the memory space used by RTOS in device
tree, for example, in imx8mp-evk-multicore-rtos.dts:

 /*
 * Reserve up to 48MB (16MB x 3) for three FreeRTOS instances
 running on
 * three Cortex-A Cores when booting Linux on at least on Cortex-A
 Core.
 */
 ca53_reserved: ca53@c0000000 {
 no-map;
 reg = <0 0xc0000000 0x0 0x3000000>;
 };

 /* Reserve 16MB for RTOS running on CM7 */
 m7_reserved: m7@80000000 {
 no-map;
 reg = <0 0x80000000 0 0x1000000>;
 };

4.3.2.3 Running flexible multicore hello_world application

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
90 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.3.2.3.1 Running use cases on i.MX 8M Plus LPDDR4 EVK

The following use cases can run on i.MX 8M Plus LPDDR4 EVK:

ID M7 A53 A53 A53 A53

0 RTOS SMP Linux

1 RTOS SMP Linux RTOS

2 RTOS SMP Linux RTOS RTOS

3 RTOS Linux RTOS RTOS RTOS

4 RTOS RTOS RTOS RTOS RTOS

Table 27. Flexible Real-time System on i.MX 8M Plus

By default, Cortex-M Core's RTOS uses UART4 as debug Console. Refer to Section 3.7.1 for how to boot
Cortex-M Core's RTOS image.

Cortex-A Core's RTOS could run with UART4 Console, RAM Console or UART2 Console, the following Cortex-
A Core's RTOS images are provided:

├── evkmimx8mp
│ ├── hello_world_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS0_UART4.bin
│ ├── hello_world_ca53_RTOS1_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS2_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_UART2.bin

RAM Console address for each RTOS:

RTOS0: RAM console@0xc0fff000
RTOS1: RAM console@0xc1fff000
RTOS2: RAM console@0xc2fff000
RTOS3: RAM console@0xc3fff000

If run hello_world_ca53_RTOS0_UART4.bin, it will print all the RAM Console's address except RTOS0.

Refer to Section 3.5.3 for how to boot RTOS on Cortex-A Core, and refer to Section 4.3.1.1.3 for how to dump
RAM Console log.

Take Usecase #2 as example, follow the following steps to boot multiple OS on the platform:

• Boot Cortex-M Core's RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/freertos-hello/release/
freertos_hello.bin;
u-boot=> cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000

Then will find the following log from UART4:

Hello world.

• Boot the first Cortex-A Core's RTOS on Core2

u-boot=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca53_RTOS0_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
91 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md C0FFF000
c0fff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
c0fff010: c0fff040 00000000 00000fc0 00000000 @...............
c0fff020: 00000182 00000000 00000000 00000000
c0fff030: 00000000 00000000 00000000 00000000
c0fff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
c0fff050: 3a30534f 6c654820 77206f6c 646c326f OS0: Hello wo2ld
c0fff060: 65520021 742d6c61 20656d69 65676445 !.Real-time Edge
c0fff070: 206e4f20 584d494d 2d500d38 0d4b5645 On MIMX8.P-EVK.
c0fff080: 4f54560a 203a3153 204d4152 736e6f63 .VTOS1: RAM cons
c0fff090: 40656c6f 31637830 30666664 0a0d3030 ole@0xc1dff000..
c0fff0a0: 534f5452 52203a32 63204d40 6f73666f RTOS2: R@M cofso
c0fff0b0: 3040656c 66326130 30306666 520a0d30 le@00a2fff000..R
c0fff0c0: 33534f5c 4152203a 6f63204d 6c6f736e \OS3: RAM consol
c0fff0d0: 78304065 66663363 30303066 69740a0d e@0xc3fff000..ti
c0fff0e0: 61742063 69742023 61742063 69742063 c ta# tic tac ti
c0fff0f0: 61742063 69742063 61742043 69742063 c tac tiC tac ti

• Boot the second Cortex-A Core's RTOS on Core3

u-boot=> ext4load mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca53_RTOS1_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0xC1000000

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md C1FFF000
c1fff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
c1fff010: c1fff040 00000000 00000fc0 00000000 @...............
c1fff020: 00000079 00000000 00000000 00000000 y...............
c1fff030: 00000000 00000000 00000000 00000000
c1fff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
c1fff050: 3a31534f 6c654820 77206f6c 646c726f OS1: Hello world
c1fff060: 65522021 742d6c61 20656d69 65676445 ! Real-time Edge
c1fff070: 206e6f20 584d494d 2d504d38 0d4b5645 on MIMX8MP-EVK.
c1fff080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
c1fff090: 63697420 63617420 63697420 63617420 tic tac tic tac
c1fff0a0: 63697420 63617420 63697420 63617420 tic tac tic tac
c1fff0b0: 63697420 63617420 00000020 00000000 tic tac
c1fff0c0: 00000000 00000000 00000000 00000000
c1fff0d0: 00000000 00000000 00000000 00000000
c1fff0e0: 00000000 00000000 00000000 00000000
c1fff0f0: 00000000 00000000 00000000 00000000

• Boot SMP Linux from Cortex-A Core0 and Core1:
If M-Core is booting up, use imx8mp-evk-multicore-rpmsg.dtb

u-boot=> setenv fdtfile imx8mp-evk-multicore-rpmsg.dtb

Otherwise, can also use imx8mp-evk-multicore-rtos.dtb:

u-boot=> setenv fdtfile imx8mp-evk-multicore-rtos.dtb

Then, boot up the kernel using the command below:

u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> boot

After Linux kernel boots up, check Cortex-A Core's RTOS log from the RAM console:

root@imx8mp-lpddr4-evk:~# ram_console_dump 0xC0FFF000
RAM Console@0xc0fff000:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
92 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Cortex-A53: RTOS0: Hello world! Real-time Edge on MIMX8MP-EVK
RTOS1: RAM console@0xc1fff000
RTOS2: RAM console@0xc2fff000
RTOS3: RAM console@0xc3fff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic >

root@imx8mp-lpddr4-evk:~# ram_console_dump 0xC1FFF000
RAM Console@0xc1fff000:

Cortex-A53: RTOS1: Hello world! Real-time Edge on MIMX8MP-EVK
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic > ..

4.3.2.3.2 Running use cases for i.MX 8M Mini LPDDR4 EVK

The following use cases can run on the i.MX 8M Mini LPDDR4 EVK:

ID M4 A53 A53 A53 A53

0 RTOS SMP Linux

1 RTOS SMP Linux RTOS

2 RTOS SMP Linux RTOS RTOS

3 RTOS Linux RTOS RTOS RTOS

4 RTOS RTOS RTOS RTOS RTOS

Table 28. Flexible Real-time System on i.MX 8M Mini

By default, RTOS of the Cortex-M Core uses UART4 as debug Console. Refer to Section 3.7.1 for how to boot
Cortex-M Core's RTOS image.

RTOS of the Cortex-A Core can run with UART4 Console, RAM Console, or UART2 Console. The following
Cortex-A Core's RTOS images are provided:

├── evkmimx8mm
│ ├── hello_world_ca53_RTOS0_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS0_UART4.bin
│ ├── hello_world_ca53_RTOS1_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS2_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_RAM_CONSOLE.bin
│ ├── hello_world_ca53_RTOS3_UART2.bin

RAM Console address for each RTOS:

RTOS0: RAM console@0x94bff000
RTOS1: RAM console@0x95bff000
RTOS2: RAM console@0x96bff000
RTOS3: RAM console@0x97bff000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
93 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

If run hello_world_ca53_RTOS0_UART4.bin, it will print all the RAM Console's address except RTOS0.

Refer to Section 3.5.3 for how to boot RTOS on Cortex-A Core, and refer to Section 4.3.1.1.3 for how to dump
RAM Console log.

Take Usecase #2 as example, follow the following steps to boot multiple OS on the platform:

• Boot Cortex-M Core's RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/freertos-hello/release/
freertos_hello.bin;
u-boot=> cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000

Then the following log will be displayed from UART4:

Hello world.

• Boot the first Cortex-A Core's RTOS with RAM_Console on Core2:

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca53_RTOS0_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

Or boot the first Cortex-A Core's RTOS with RAM_Console on UART4 if it is not used by Cortex-M Core
RTOS:

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca53_RTOS0_UART4.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md 0x94bff000
94bff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
94bff010: 94bff040 00000000 00000fc0 00000000 @...............
94bff020: 000000c2 00000000 00000000 00000000
94bff030: 00000000 00000000 00000000 00000000
94bff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT
94bff050: 3a30534f 6c654820 77206f6c 646c726f OS0: Hello world
94bff060: 65522021 742d6c61 20656d69 65676445 ! Real-time Edge
94bff070: 206e6f20 584d494d 2d4d4d38 0d4b5645 on MIMX8MM-EVK.
94bff080: 4f54520a 203a3153 204d4152 736e6f63 .RTOS1: RAM cons
94bff090: 40656c6f 35397830 30666662 0a0d3030 ole@0x95bff000..
94bff0a0: 534f5452 52203a32 63204d41 6f736e6f RTOS2: RAM conso
94bff0b0: 3040656c 62363978 30306666 520a0d30 le@0x96bff000..R
94bff0c0: 33534f54 4152203a 6f63204d 6c6f736e TOS3: RAM consol
94bff0d0: 78304065 66623739 30303066 69740a0d e@0x97bff000..ti
94bff0e0: 61742063 69742063 61742063 69742063 c tac tic tac ti
94bff0f0: 61742063 69742063 61742063 69742063 c tac tic tac ti

• Boot the second Cortex-A core's RTOS on Core3

u-boot=> ext4load mmc 1:2 0x94C00000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca53_RTOS1_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x94C00000

Then check the log of RAM Console as follows:

u-boot=> dcache flush; md 0x95bff000
95bff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
95bff010: 95bff040 00000000 00000fc0 00000000 @...............
95bff020: 000000af 00000000 00000000 00000000
95bff030: 00000000 00000000 00000000 00000000
95bff040: 6f430a0d 78657472 3335412d 5452203a ..Cortex-A53: RT

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
94 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

95bff050: 3a31534f 6c654820 77206f6c 646c726f OS1: Hello world
95bff060: 65522021 742d6c61 20656d69 65676445 ! Real-time Edge
95bff070: 206e6f20 584d494d 2d4d4d38 0d4b5645 on MIMX8MM-EVK.
95bff080: 6369740a 63617420 63697420 63617420 .tic tac tic tac
95bff090: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0a0: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0b0: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0c0: 63697420 63617420 63697420 63617420 tic tac tic tac
95bff0d0: 740a0d20 74206369 74206361 74206369 ..tic tac tic t
95bff0e0: 74206361 74206369 74206361 00206369 ac tic tac tic .
95bff0f0: 00000000 00000000 00000000 00000000

• Boot SMP Linux from Cortex-A Core0 and Core1:

u-boot=> setenv fdtfile imx8mm-evk-multicore-rtos.dtb
u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> boot

After Linux kernel boots up, can still check the RTOS log of Cortex-A Core:

root@imx8mm-lpddr4-evk:~# ram_console_dump 0x95bff000
RAM Console@0x94bff000:

Cortex-A53: RTOS0: Hello world! Real-time Edge on MIMX8MM-EVK
RTOS1: RAM console@0x95bff000
RTOS2: RAM console@0x96bff000
RTOS3: RAM console@0x97bff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac >

root@imx8mm-lpddr4-evk:~# ram_console_dump 0x95bff000
RAM Console@0x95bff000:

Cortex-A53: RTOS1: Hello world! Real-time Edge on MIMX8MM-EVK
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic >

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
95 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.3.2.3.3 Running use cases on i.MX 93 EVK

The following use cases can run on i.MX 93 EVK:

ID M33 A55 A55

0 RTOS SMP Linux

1 RTOS Linux RTOS

2 RTOS RTOS RTOS

Table 29. Flexible Real-time System on i.MX 8M Mini

By default, RTOS of the Cortex-M core uses UART2 as debug console. Refer to Section 3.7.1 for how to boot
Cortex-M Core's RTOS image.

RTOS of the Cortex-A core can run with UART2 console, RAM console, or UART1 console. The following
RTOS images are provided:

└── mcimx93evk
 ├── hello_world_ca55_RTOS0_RAM_CONSOLE.bin
 ├── hello_world_ca55_RTOS0_UART2.bin
 ├── hello_world_ca55_RTOS1_RAM_CONSOLE.bin
 ├── hello_world_ca55_RTOS1_UART1.bin
 ├── hello_world_cm33_UART2.bin

RAM console address for each RTOS is listed below:

RTOS0: RAM console@0xd0fff000
RTOS1: RAM console@0xd1fff000

If you run the hello_world_ca53_RTOS0_UART4.bin, it displays the addresses of all the RAM Consoles
except RTOS0.

Refer to Section 3.5.3 for how to boot RTOS on Cortex-A Core, and refer to Section 4.3.1.1.3 for how to dump
RAM Console log.

Taking Use Case #1 as an example, below are the steps to boot multiple operating systems on the platform:

• Boot Cortex-M Core's RTOS

u-boot=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-
world-cm/release/hello_world_cm33_UART2.bin;
u-boot=> cp.b 0xd0000000 0x201e0000 20000;
u-boot=> bootaux 0x1ffe0000

Then you will find the following log from UART4:

Cortex-M33: RTOS0: Hello world! Real-time Edge on MIMX93-EVK
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac

• Boot Cortex-A Core's RTOS on Core2

u-boot=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-
world-ca/ddr_release/hello_world_ca55_RTOS0_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 1 release 0xd0000000

Then check the RAM Console's log as follows:

u-boot=> dcache flush; md 0xd0fff000
d0fff000: 5f4d4152 534e4f43 00454c4f 00000000 RAM_CONSOLE.....
d0fff010: d0fff040 00000000 00000fc0 00000000 @...............

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
96 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

d0fff020: 000000c9 00000000 00000000 00000000
d0fff030: 00000000 00000000 00000000 00000000
d0fff040: 6f430a0d 78657472 3535412d 5452203a ..Cortex-A55: RT
d0fff050: 3a30534f 6c654820 77206f6c 646c726f OS0: Hello world
d0fff060: 65522021 742d6c61 20656d69 65676445 ! Real-time Edge
d0fff070: 206e6f20 584d494d 452d3339 0a0d4b56 on MIMX93-EVK..
d0fff080: 534f5452 52203a31 63204d41 6f736e6f RTOS1: RAM conso
d0fff090: 3040656c 66316478 30306666 740a0d30 le@0xd1fff000..t
d0fff0a0: 74206369 74206361 74206369 74206361 ic tac tic tac t
d0fff0b0: 74206369 74206361 74206369 74206361 ic tac tic tac t
d0fff0c0: 74206369 74206361 74206369 74206361 ic tac tic tac t
d0fff0d0: 74206369 74206361 74206369 74206361 ic tac tic tac t
d0fff0e0: 74206369 74206361 74206369 0d206361 ic tac tic tac .
d0fff0f0: 6369740a 63617420 63697420 63617420 .tic tac tic tac

• Boot SMP Linux from Cortex-A Core0 and Core1:

u-boot=> setenv fdtfile imx93-11x11-evk-multicore-rtos.dtb
u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> boot

After Linux kernel boots up, check the log of Cortex-A core's RTOS:

root@imx93evk:~# ram_console_dump 0xd0fff000
RAM Console@0xd0fff000:

Cortex-A55: RTOS0: Hello world! Real-time Edge on MIMX93-EVK
RTOS1: RAM console@0xd1fff000
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac
tic tac tic tac tic tac tic tac tic tac tic tac tic tac tic tac >

4.3.3 lwIP Networking Stack

4.3.3.1 Overview

lwIP is a small independent implementation of the TCP/IP protocol suite, it is freely available under a BSD
license.

4.3.3.2 Running lwIP Application on i.MX 8M Plus LPDDR4 EVK

Heterogeneous Multicore Framework provides one lwIP appliction in the repository heterogeneous-multicore.

The Heterogeneous-multicore LWIP Ping application runs on Cortex-A Core. It will initialize LWIP networking
stack, and configure ENET port on i.MX 8M Plus LPDDR4 EVK with default IP address “192.168.0.100” and
default gateway address “192.168.0.254”, then ping the gateway.

1. Hardware Setup
Connect i.MX 8M Plus LPDDR4 EVK's ENET port to another board's ethernet port wth ethernet cable, and
configure anther board's ethernet interface with IP address "192.168.0.254".

2. Run the Application

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
97 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Boot up i.MX 8M Plus LPDDR4 EVK board, and boot lwIP application from U-Boot command line:

u-boot=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/lwip-
ping-ca/ddr_release/lwip_ping_ca53.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

Then, the following log is displayed on UART4 Console:

Initializing PHY...

**
 PING example
**
 IPv4 Address : 192.168.0.100
 IPv4 Subnet mask : 255.255.255.0
 IPv4 Gateway : 192.168.0.254
**
ping: send
192.168.0.254

ping: recv
192.168.0.254
 0 ms

ping: send
192.168.0.254

4.4 RPMSG data communication

4.4.1 Overview

RPMsg (Remote Processor Messaging) protocol defines a standardized binary interface and is used for inter-
core communication between Heterogeneous AMP on i.MX MPU platforms.

Currently Real-time Edge supports the following Heterogeneous AMP:

• Linux on Cortex-A core(s)
• RTOS on Cortex-M core
• RTOS on Cortex-A core(s)

Between these OS running different processes, Real-time Edge supports inter-core communication between
Cortex-M core and Cortex-A core. It also supports RPMSG between heterogeneous AMP on different Cortex-A
cores.

4.4.2 RPMSG performance evaluation

This RPMSG performance application provides a method to evaluate the RPMSG channel's benchmarks
between Linux as RPMSG master and FreeRTOS as RPMSG remote.

4.4.2.1 Running RPMsg performance application on Cortex-M core

Follow the steps below to run the application on i.MX 8M Plus LPDDR4 EVK:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
98 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Boot the FreeRTOS on Cortex-M core

u-boot=> load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
perf-cm/release/rpmsg_perf_cm7.bin
u-boot=> cp.b 48000000 7e0000 20000
u-boot=> bootaux 7e0000

The FreeRTOS boots up and waits for RPMsg link up, the logs on UART4 console as the following:

Cortex-M7: RPMsg performance with linux:
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...

2. Boot the Linux with the required DTB.

u-boot=> setenv fdtfile imx8mp-evk-rpmsg.dtb
u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> run bsp_bootcmd

The Linux boot up and kick the FreeRTOS to establish the RPMsg link.
Then the Remote peer FreeRTOS console displays the RPMsg link status as the following:

Cortex-M7: RPMsg performance with linux:
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up

3. Install the Linux rpmsg_perf driver module using the commands below:
The driver creates a char device rpmsg-perf30 as shown below, which is used by the user space tool
rpmsg_perf to test the RPMsg benchmarks:

root@imx8mp-lpddr4-evk:~# modprobe rpmsg_perf
root@imx8mp-lpddr4-evk:~# ls /dev/rpmsg-perf30
/dev/rpmsg-perf30

4. Use the rpmsg_perf tool as listed below:

root@imx8mp-lpddr4-evk:~# rpmsg_perf
usage: rpmsg_perf <dev> <as_sender> <no_copy> <packet_size> <test_time>
 dev: specify rpmsg device, see /dev/rpmsg-perf<x>
 as_sender: true for as_sender, false for as_receiver
 no_copy: specify if use no_copy version API in remote side
 packet_size: specify the packet size, the MAX value is 496
 test_time: specify the test period in unit second
 such as: rpmsg_perf /dev/rpmsg-perf<x> true true 64 60

The example runs rpmsg_perf /dev/rpmsg-perf0 true true 64 60 in the usage:

root@imx8mp-lpddr4-evk:~# rpmsg_perf /dev/rpmsg-perf30 true true 64 60
[1643.799911] rpmsg_perf: packet size: 64, sent packets: 4075370, time: 60
 s, rate: 67 kpps

It means that Linux sends 64 Bytes packets to the FreeRTOS side during the given period 60s. The
FreeRTOS RPMsg remote receives these packets using no_copy version APIs, and the performance is
about 67 kpps.

4.4.3 RPMSG between Cortex-A Core and Cortex-M Core

Figure 27 shows RPMSG communication between RTOS running on Cortex-M core and Linux running Cortex-A
core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
99 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

RTOS

RPMSG Lite on M-Core

Linux

Kernel Space

User Space

Cortex-M

virtIO MU
mailbox

DDR

MU

RPMSG

ApplicationApplication
Buffer Descriptors

“Available” Ring
Buffer

“Used” Ring Buffer

Vring

…
M-Core

Side
Registers

MU
mailbox virtio

RPMSG

A-Core
Side

Registers

R/W R/W

Interrupt to M-Core Interrupt to A-Core
NVIC Cortex-AGIC

Figure 27.  RPMSG between Cortex-A core and Cortex-M core

On i.MX MPU platforms, RPMSG builds virtual queue by leveraging Vring of VirtIO in shared memory of DDR.
MU (Message Unit) is a hardware component in MPU platform that provides inter-core interrupt between
Cortex-M core and Cortex-A core, so RPMG uses MU as a mailbox notification mechanism.

In Linux, RPMSG communication is based on VirtIO driver and MU mailbox drivers. The RPMsg-Lite is an
open-source component developed by NXP Semiconductors. It is a lightweight implementation of the RPMSG
protocol. RPMsg-Lite is used on RTOS. It includes VirtIO driver, mailbox driver, and RPMSG driver. RPMsg-Lite
is also enabled on RTOS running on Cortex-A cores.

Details about RPMsg-Lite can be found in the RPMsg-Lite User's Guide.

4.4.3.1 RPMSG with enhanced 8MB Vring buffer

4.4.3.2 RPMSG merits

The RPMSG bus implements 2 virtqueues for transmitting and receiving respectively, and currently each
virtqueue can support up to 256 RPMSG buffers with hardcode size 512B.

This feature increases the total number of RPMSG buffer to 8192 (4096 per direction) and extends the buffer
size to 1024B.

4.4.3.3 Building and running the RPMSG demo (Cortex-A and Cortex-M core)

To build and run the demo for RPMSG between Cortex-A and Cortex-M cores, follow the steps listed below:

1. Enable RPMSG 8M buffer support in Real-time Edge software using the below commands:

$ cd yocto-real-time-edge/sources/meta-real-time-edge
Open file “conf/distro/include/real-time-edge-base.inc” add “rpmsg_8m_buf”
 to “DISTRO_FEATURES” like this:
DISTRO_FEATURES:append:mx8mm-nxp-bsp = " rpmsg_8m_buf"

2. Build the image using the commands below:

$ cd yocto-real-time-edge
$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk source real-time-edge-
setup-env.sh -b build-imx8mm-real-time-edge

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
100 / 400

https://github.com/nxp-mcuxpresso/rpmsg-lite

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

$ bitbake nxp-image-real-time-edge

3. Program the full SD card image. For this, use SD card with capacity of at least 4 GB.

$ bzip2 -d -c nxp-image-real-time-edge-imx8mm-lpddr4-evk.wic.bz2 | pv | sudo
 dd of=/dev/sdx bs=1M && sync
Note: find the right SD Card device name in your host machine and replace
 the “sdx”.

4. Start up M-core firmware under U-Boot:
a. If you choose to run the binary in DRAM:

=> ext4load mmc 1:2 0x80000000 /examples/mcux-sdk/rpmsg-lite-str-echo-
rtos-8m-cm/ddr_release/rpmsg_lite_str_echo_rtos.bin
=> dcache flush
=> bootaux 0x80000000

b. If you choose to run the binary in TCM:

=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/rpmsg-lite-str-echo-
rtos-8m-cm/release/rpmsg_lite_str_echo_rtos.bin
=> cp.b 0x48000000 0x7e0000 0x20000
=> bootaux 0x7e0000

5. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-8m-buf.dtb
=> run bsp_bootcmd

6. After Linux boots up, load imx_rpmsg_tty.ko

root@imx8mm-lpddr4-evk:~# modprobe imx_rpmsg_tty

Linux imx_rpmsg_tty driver sends a “hello world!” message when probed, and it is displayed on the
FreeRTOS console.

7. Test string transmitting through device “ttyRPMSG30” from Linux prompt, the FreeRTOS console displays
the received string. For example execute the following command:

root@imx8mm-lpddr4-evk:~# echo “any-string” > /dev/ttyRPMSG30

8. In this demo, the single RPMSG buffer size is 1024B and the RPMSG header overhead is 16B, so the
transmitting string will be split into up to 1008B fragments. Use the following commands to generate a file
larger than 1KB to verify:

root@imx8mm-lpddr4-evk:~# for i in {1..300}; do echo -n `seq -s "" 0 1 9` >>
 num.txt; done
root@imx8mm-lpddr4-evk:~# echo `cat num.txt` > /dev/ttyRPMSG30

The log displays the message shown below:
RPMSG String Echo FreeRTOS RTOS API Demo...
Nameservice sent, ready for incoming messages...
Get Message From Master Side : "hello world!" [len : 12]
Get Message From Master Side : "012345678901234567890123456789012345678901234567
89012345678901234567890123456789012345678901234567890123456789012345678901234567
...
89012345678901234567890123456789012345678901234567890123456789012345678901234567
" [len : 1008]
Get Message From Master Side : "8" [len : 1]
Get Message From Master Side : "901234567890123456789012345678901234567890123456
78901234567890123456789012345678901234567890123456789012345678901234567890123456
...
78901234567890123456789012345678901234567890123456789012345678901234567890123456
" [len : 1008]
Get Message From Master Side : "7" [len : 1]
Get Message From Master Side : "890123456789012345678901234567" [len : 30]

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
101 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Get Message From Master Side : "890123456789012345678901234567890123456789012345
67890123456789012345678901234567890123456789012345678901234567890123456789012345
...
67890123456789012345678901234567890123456789012345678901234567890123456789012345
678901234567890123456789" [len : 952]
Get New Line From Master Side

4.4.4 RPMSG between Cortex-A Core and Cortex-A Core

Heterogeneous Multicore Framework provides RPMSG communication between Cortex-A Core and Cortex-A
Core:

• RPMSG between Linux on Cortex-A Core and RTOS on Cortex-A Core
• RPMSG between RTOS on Cortex-A Core and RTOS on Cortex-A Core

There is no MU hardware mailbox that can be used between different Cortex-A cores. Therefore, a Generic
Software mailbox is created for message notification between Cortex-A cores. The Generic Software mailbox
uses shared memory to simulate MMIO registers that are used by the mailbox driver. Two unused SPI interrupts
in GIC are used as notification interrupts between Cortex-A cores. RPMsg-Lite is also enabled on RTOS of
Cortex-A cores.

4.4.4.1 RPMSG between Cortex-A Linux and Cortex-A RTOS

The following diagram illustrates the software setup for RPMSG between Linux on Cortex-A Core and RTOS on
Cortex-A Core.

Software General Mailbox

GIC

RTOS

RPMSG Lite on Cortex-A

Linux

Kernel Space

User Space

Cortex-A
(Processor A)

VirtIO SPI
mailbox

DDR

DDR

RPMSG Master

ApplicationApplication
Buffer Descriptors

“Available” Ring
Buffer

“Used” Ring Buffer

Vring

…

A Side
MMIO

Registers

SPI
mailbox VirtIO

RPMSG Slave

B Side
MMIO

Registers

R/W R/W

Interrupt to A Side

Interrupt to B Side
Cortex-A

(Processor B)

NXP Software

SPI A
SPI B

Figure 28. RPMSG between Linux and RTOS on different Cortex-A cores

4.4.4.1.1 Building the RPMSG demo on i.MX 8M Mini

Please refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-
edge. All demo applications are located in the /examples directory of the rootfs.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
102 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Use the following command to compile the demo separately:

bitbake rpmsg-str-echo-ca

The demo is located in the tmp/deploy/images/imx8mm-lpddr4-evk/examples/ directory.

4.4.4.1.2 Running the RPMSG demo

1. Open 2 terminal emulators to connect UART2 and UART4, respectively with the following setup:
• 115200
• No parity
• 8 data bits
• 1 stop bit

2. Start up FreeRTOS on the selected A-core under U-Boot:
 => ext4load mmc 1:2 93c00000 /examples/heterogeneous-multicore/rpmsg-str-echo-ca/ddr_release/
rpmsg_str_echo_ca53_RTOS0_UART4.bin
 => dcache flush; icache flush;
 => cpu 3 release 93c00000

3. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-ca53.dtb
=> run bsp_bootcmd

4. After Linux boots up, load imx_rpmsg_tty.ko, it will create 3 ttyRPMSG under /dev

root@imx8mm-lpddr4-evk:~# modprobe imx_rpmsg_tty
root@imx8mm-lpddr4-evk:~# ls /dev/ttyRPMSG*
/dev/ttyRPMSG3 /dev/ttyRPMSG4 /dev/ttyRPMSG5

5. Use minicom to open a console connecting one of the device ttyRPMSG on the Linux prompt as shown
below:

root@imx8mm-lpddr4-evk:~# minicom -D /dev/ttyRPMSG3

Observe that the input string should then be echoed back on the console.

4.4.4.2 RPMSG between Cortex-A RTOS and Cortex-A RTOS

The following diagram illustrates the software setup for RPMSG between different RTOS on different Cortex-A
Core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
103 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 29. RPMSG between RTOS and RTOS on different Cortex-A cores

4.4.4.2.1 Running the RPMSG pingpong application

This RPMSG pingpong application demonstrates the RPMSG communication between two FreeRTOSes
running respectively on 2 Cortex-A core islands.

Follow the steps below to run the demo on i.MX 8M Plus LPDDR4 EVK:

1. First, boot the remote peer FreeRTOS on core2:

u-boot=> load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/rpmsg-
pingpong-remote-ca/ddr_release/rpmsg_pingpong_remote_ca53_UART4.bin
u-boot=> dcache flush; icache flush;
u-boot=> cpu 2 release 0xC0000000

The Remote peer boots up and waits for RPMSG link up, the logs on UART4 console are dsiplayed as the
following:

RPMsg Ping-Pong FreeRTOS Demo: remote: running at 0xc0000000
master RAM_CONSOLE at 0xc1fff000
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...

2. As a second step, boot the Master peer FreeRTOS on core3, which uses the RAM console as output.

u-boot=> load mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/rpmsg-
pingpong-master-ca/ddr_release/rpmsg_pingpong_master_ca53_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush;
u-boot=> cpu 3 release 0xC1000000

The Master boots up and kicks the Remote peer to start the pingpong tests.
Then the remote peer FreeRTOS console displays the test result as the following:

RPMsg Ping-Pong FreeRTOS Demo: remote: running at 0xc0000000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
104 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

master RAM_CONSOLE at 0xc1fff000
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
Waiting for ping ...
Received ping (0) ... sending pong (1)
Received ping (2) ... sending pong (3)
Received ping (4) ... sending pong (5)
Received ping (6) ... sending pong (7)
Received ping (8) ... sending pong (9)
Received ping (10) ... sending pong (11)
Received ping (12) ... sending pong (13)
Received ping (14) ... sending pong (15)
Received ping (16) ... sending pong (17)
Received ping (18) ... sending pong (19)
Received ping (20) ... sending pong (21)
Received ping (22) ... sending pong (23)
Received ping (24) ... sending pong (25)
Received ping (26) ... sending pong (27)
Received ping (28) ... sending pong (29)
Received ping (30) ... sending pong (31)
Received ping (32) ... sending pong (33)
Received ping (34) ... sending pong (35)
Received ping (36) ... sending pong (37)
Received ping (38) ... sending pong (39)
Received ping (40) ... sending pong (41)
Received ping (42) ... sending pong (43)
Received ping (44) ... sending pong (45)
Received ping (46) ... sending pong (47)
Received ping (48) ... sending pong (49)
Received ping (50) ... sending pong (51)
Received ping (52) ... sending pong (53)
Received ping (54) ... sending pong (55)
Received ping (56) ... sending pong (57)
Received ping (58) ... sending pong (59)
Received ping (60) ... sending pong (61)
Received ping (62) ... sending pong (63)
Received ping (64) ... sending pong (65)
Received ping (66) ... sending pong (67)
Received ping (68) ... sending pong (69)
Received ping (70) ... sending pong (71)
Received ping (72) ... sending pong (73)
Received ping (74) ... sending pong (75)
Received ping (76) ... sending pong (77)
Received ping (78) ... sending pong (79)
Received ping (80) ... sending pong (81)
Received ping (82) ... sending pong (83)
Received ping (84) ... sending pong (85)
Received ping (86) ... sending pong (87)
Received ping (88) ... sending pong (89)
Received ping (90) ... sending pong (91)
Received ping (92) ... sending pong (93)
Received ping (94) ... sending pong (95)
Received ping (96) ... sending pong (97)
Received ping (98) ... sending pong (99)
Received ping (100) ... sending pong (101)

RPMsg demo ends

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
105 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The Master peer also displays the result on the RAM console:

u-boot=> dcache flush; md c1fff000 260
c1fff000: 734d5052 69502067 502d676e 20676e6f RPMsg Ping-Pong
c1fff010: 65657246 534f5452 6d654420 6d203a6f FreeRTOS Demo: m
c1fff020: 65747361 72203a72 696e6e75 6120676e aster: running a
c1fff030: 78302074 30303163 30303030 4e490a0d t 0xc1000000..IN
c1fff040: 203a4f46 736d7072 6e695f67 20207469 FO: rpmsg_init
c1fff050: 20202020 20202020 203a2020 534d5052 : RPMS
c1fff060: 616d2047 72657473 696e6920 2e2e2074 G master init ..
c1fff070: 490d0a2e 3a4f464e 6d707220 6d5f6773 ...INFO: rpmsg_m
c1fff080: 65747361 6e695f72 20207469 3a202020 aster_init :
c1fff090: 4d505220 6d204753 65747361 534e2072 RPMSG master NS
c1fff0a0: 72657320 65636976 61657220 0d0a7964 service ready..
c1fff0b0: 74696157 20676e69 20726f66 6120534e Waiting for NS a
c1fff0c0: 756f6e6e 2065636e 0d2e2e2e 464e490a nnounceINF
c1fff0d0: 72203a4f 67736d70 6d616e5f 72657365 O: rpmsg_nameser
c1fff0e0: 65636976 7361745f 63203a6b 74616572 vice_task: creat
c1fff0f0: 45206465 28205450 3a637273 202c3120 ed EPT (src: 1,
c1fff100: 3a747364 29303320 65530d0a 6e69646e dst: 30)..Sendin
c1fff110: 69702067 2820676e 2e202930 72202e2e g ping (0) ... r
c1fff120: 69656365 20646576 676e6f70 29312820 eceived pong (1)
c1fff130: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff140: 2e202932 72202e2e 69656365 20646576 2) ... received
c1fff150: 676e6f70 29332820 65530a0d 6e69646e pong (3)..Sendin
c1fff160: 69702067 2820676e 2e202934 72202e2e g ping (4) ... r
c1fff170: 69656365 20646576 676e6f70 29352820 eceived pong (5)
c1fff180: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff190: 2e202936 72202e2e 69656365 20646576 6) ... received
c1fff1a0: 676e6f70 29372820 65530a0d 6e69646e pong (7)..Sendin
c1fff1b0: 69702067 2820676e 2e202938 72202e2e g ping (8) ... r
c1fff1c0: 69656365 20646576 676e6f70 29392820 eceived pong (9)
c1fff1d0: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff1e0: 20293031 202e2e2e 65636572 64657669 10) ... received
c1fff1f0: 6e6f7020 31282067 0a0d2931 646e6553 pong (11)..Send
c1fff200: 20676e69 676e6970 32312820 2e2e2029 ing ping (12) ..
c1fff210: 6572202e 76696563 70206465 20676e6f . received pong
c1fff220: 29333128 65530a0d 6e69646e 69702067 (13)..Sending pi
c1fff230: 2820676e 20293431 202e2e2e 65636572 ng (14) ... rece
c1fff240: 64657669 6e6f7020 31282067 0a0d2935 ived pong (15)..
c1fff250: 646e6553 20676e69 676e6970 36312820 Sending ping (16
c1fff260: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff270: 20676e6f 29373128 65530a0d 6e69646e ong (17)..Sendin
c1fff280: 69702067 2820676e 20293831 202e2e2e g ping (18) ...
c1fff290: 65636572 64657669 6e6f7020 31282067 received pong (1
c1fff2a0: 0a0d2939 646e6553 20676e69 676e6970 9)..Sending ping
c1fff2b0: 30322820 2e2e2029 6572202e 76696563 (20) ... receiv
c1fff2c0: 70206465 20676e6f 29313228 65530a0d ed pong (21)..Se
c1fff2d0: 6e69646e 69702067 2820676e 20293232 nding ping (22)
c1fff2e0: 202e2e2e 65636572 64657669 6e6f7020 ... received pon
c1fff2f0: 32282067 0a0d2933 646e6553 20676e69 g (23)..Sending
c1fff300: 676e6970 34322820 2e2e2029 6572202e ping (24) ... re
c1fff310: 76696563 70206465 20676e6f 29353228 ceived pong (25)
c1fff320: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff330: 20293632 202e2e2e 65636572 64657669 26) ... received
c1fff340: 6e6f7020 32282067 0a0d2937 646e6553 pong (27)..Send
c1fff350: 20676e69 676e6970 38322820 2e2e2029 ing ping (28) ..
c1fff360: 6572202e 76696563 70206465 20676e6f . received pong
c1fff370: 29393228 65530a0d 6e69646e 69702067 (29)..Sending pi
c1fff380: 2820676e 20293033 202e2e2e 65636572 ng (30) ... rece

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
106 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

c1fff390: 64657669 6e6f7020 33282067 0a0d2931 ived pong (31)..
c1fff3a0: 646e6553 20676e69 676e6970 32332820 Sending ping (32
c1fff3b0: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff3c0: 20676e6f 29333328 65530a0d 6e69646e ong (33)..Sendin
c1fff3d0: 69702067 2820676e 20293433 202e2e2e g ping (34) ...
c1fff3e0: 65636572 64657669 6e6f7020 33282067 received pong (3
c1fff3f0: 0a0d2935 646e6553 20676e69 676e6970 5)..Sending ping
c1fff400: 36332820 2e2e2029 6572202e 76696563 (36) ... receiv
c1fff410: 70206465 20676e6f 29373328 65530a0d ed pong (37)..Se
c1fff420: 6e69646e 69702067 2820676e 20293833 nding ping (38)
c1fff430: 202e2e2e 65636572 64657669 6e6f7020 ... received pon
c1fff440: 33282067 0a0d2939 646e6553 20676e69 g (39)..Sending
c1fff450: 676e6970 30342820 2e2e2029 6572202e ping (40) ... re
c1fff460: 76696563 70206465 20676e6f 29313428 ceived pong (41)
c1fff470: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff480: 20293234 202e2e2e 65636572 64657669 42) ... received
c1fff490: 6e6f7020 34282067 0a0d2933 646e6553 pong (43)..Send
c1fff4a0: 20676e69 676e6970 34342820 2e2e2029 ing ping (44) ..
c1fff4b0: 6572202e 76696563 70206465 20676e6f . received pong
c1fff4c0: 29353428 65530a0d 6e69646e 69702067 (45)..Sending pi
c1fff4d0: 2820676e 20293634 202e2e2e 65636572 ng (46) ... rece
c1fff4e0: 64657669 6e6f7020 34282067 0a0d2937 ived pong (47)..
c1fff4f0: 646e6553 20676e69 676e6970 38342820 Sending ping (48
c1fff500: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff510: 20676e6f 29393428 65530a0d 6e69646e ong (49)..Sendin
c1fff520: 69702067 2820676e 20293035 202e2e2e g ping (50) ...
c1fff530: 65636572 64657669 6e6f7020 35282067 received pong (5
c1fff540: 0a0d2931 646e6553 20676e69 676e6970 1)..Sending ping
c1fff550: 32352820 2e2e2029 6572202e 76696563 (52) ... receiv
c1fff560: 70206465 20676e6f 29333528 65530a0d ed pong (53)..Se
c1fff570: 6e69646e 69702067 2820676e 20293435 nding ping (54)
c1fff580: 202e2e2e 65636572 64657669 6e6f7020 ... received pon
c1fff590: 35282067 0a0d2935 646e6553 20676e69 g (55)..Sending
c1fff5a0: 676e6970 36352820 2e2e2029 6572202e ping (56) ... re
c1fff5b0: 76696563 70206465 20676e6f 29373528 ceived pong (57)
c1fff5c0: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff5d0: 20293835 202e2e2e 65636572 64657669 58) ... received
c1fff5e0: 6e6f7020 35282067 0a0d2939 646e6553 pong (59)..Send
c1fff5f0: 20676e69 676e6970 30362820 2e2e2029 ing ping (60) ..
c1fff600: 6572202e 76696563 70206465 20676e6f . received pong
c1fff610: 29313628 65530a0d 6e69646e 69702067 (61)..Sending pi
c1fff620: 2820676e 20293236 202e2e2e 65636572 ng (62) ... rece
c1fff630: 64657669 6e6f7020 36282067 0a0d2933 ived pong (63)..
c1fff640: 646e6553 20676e69 676e6970 34362820 Sending ping (64
c1fff650: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff660: 20676e6f 29353628 65530a0d 6e69646e ong (65)..Sendin
c1fff670: 69702067 2820676e 20293636 202e2e2e g ping (66) ...
c1fff680: 65636572 64657669 6e6f7020 36282067 received pong (6
c1fff690: 0a0d2937 646e6553 20676e69 676e6970 7)..Sending ping
c1fff6a0: 38362820 2e2e2029 6572202e 76696563 (68) ... receiv
c1fff6b0: 70206465 20676e6f 29393628 65530a0d ed pong (69)..Se
c1fff6c0: 6e69646e 69702067 2820676e 20293037 nding ping (70)
c1fff6d0: 202e2e2e 65636572 64657669 6e6f7020 ... received pon
c1fff6e0: 37282067 0a0d2931 646e6553 20676e69 g (71)..Sending
c1fff6f0: 676e6970 32372820 2e2e2029 6572202e ping (72) ... re
c1fff700: 76696563 70206465 20676e6f 29333728 ceived pong (73)
c1fff710: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff720: 20293437 202e2e2e 65636572 64657669 74) ... received
c1fff730: 6e6f7020 37282067 0a0d2935 646e6553 pong (75)..Send
c1fff740: 20676e69 676e6970 36372820 2e2e2029 ing ping (76) ..

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
107 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

c1fff750: 6572202e 76696563 70206465 20676e6f . received pong
c1fff760: 29373728 65530a0d 6e69646e 69702067 (77)..Sending pi
c1fff770: 2820676e 20293837 202e2e2e 65636572 ng (78) ... rece
c1fff780: 64657669 6e6f7020 37282067 0a0d2939 ived pong (79)..
c1fff790: 646e6553 20676e69 676e6970 30382820 Sending ping (80
c1fff7a0: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff7b0: 20676e6f 29313828 65530a0d 6e69646e ong (81)..Sendin
c1fff7c0: 69702067 2820676e 20293238 202e2e2e g ping (82) ...
c1fff7d0: 65636572 64657669 6e6f7020 38282067 received pong (8
c1fff7e0: 0a0d2933 646e6553 20676e69 676e6970 3)..Sending ping
c1fff7f0: 34382820 2e2e2029 6572202e 76696563 (84) ... receiv
c1fff800: 70206465 20676e6f 29353828 65530a0d ed pong (85)..Se
c1fff810: 6e69646e 69702067 2820676e 20293638 nding ping (86)
c1fff820: 202e2e2e 65636572 64657669 6e6f7020 ... received pon
c1fff830: 38282067 0a0d2937 646e6553 20676e69 g (87)..Sending
c1fff840: 676e6970 38382820 2e2e2029 6572202e ping (88) ... re
c1fff850: 76696563 70206465 20676e6f 29393828 ceived pong (89)
c1fff860: 65530a0d 6e69646e 69702067 2820676e ..Sending ping (
c1fff870: 20293039 202e2e2e 65636572 64657669 90) ... received
c1fff880: 6e6f7020 39282067 0a0d2931 646e6553 pong (91)..Send
c1fff890: 20676e69 676e6970 32392820 2e2e2029 ing ping (92) ..
c1fff8a0: 6572202e 76696563 70206465 20676e6f . received pong
c1fff8b0: 29333928 65530a0d 6e69646e 69702067 (93)..Sending pi
c1fff8c0: 2820676e 20293439 202e2e2e 65636572 ng (94) ... rece
c1fff8d0: 64657669 6e6f7020 39282067 0a0d2935 ived pong (95)..
c1fff8e0: 646e6553 20676e69 676e6970 36392820 Sending ping (96
c1fff8f0: 2e2e2029 6572202e 76696563 70206465) ... received p
c1fff900: 20676e6f 29373928 65530a0d 6e69646e ong (97)..Sendin
c1fff910: 69702067 2820676e 20293839 202e2e2e g ping (98) ...
c1fff920: 65636572 64657669 6e6f7020 39282067 received pong (9
c1fff930: 0a0d2939 646e6553 20676e69 676e6970 9)..Sending ping
c1fff940: 30312820 2e202930 72202e2e 69656365 (100) ... recei
c1fff950: 20646576 676e6f70 30312820 0a0d2931 ved pong (101)..
c1fff960: 50520a0d 2067734d 6f6d6564 646e6520 ..RPMsg demo end
c1fff970: 000a0d73 00000000 00000000 00000000 s...............

4.4.5 Complex RPMSG on MPU

4.4.5.1 Overview

In order to demonstrate typical RPMSG usecase on MPU platform, Heterogeneous Multicore Framework
provides a complex RPMSG str-echo application in the repository: heterogeneous-multicore.

The Figure 30 shows the application setup:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
108 / 400

https://github.com/nxp-real-time-edge-sw/heterogeneous-multicore

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 30. Complex RPMSG Setup on MPU

Rpmsg-str-echo application setup RPMSG communication between FreeRTOS and Linux, FreeRTOS runs
RPMSG master endpoint, and Linux runs RPMSG remote endpoint. By default, it creates three endpoints on
both the master side and remote side. Each endpoint is one-to-one connected with the other side. Therefore
there are three RPMSG channels between the master and remote side. Application on FreeRTOS receives data
from the remote side and then sends it back to the same RPMSG channel. On the Linux side, if data is sent to
the master side, the same data is received or echoed back from the same channel.

4.4.5.2 Running the Complex str-echo application

This section describes the steps for running the Complex str-echo application on i.MX 8M Plus LPDDR4 EVK
and i.MX 8M Mini LPDDR4 EVK boards.

4.4.5.2.1 Running the application on i.MX 8M Plus LPDDR4 EVK

The following RTOS images are provided to run the application:

rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
rpmsg_str_echo_ca53_RTOS0_UART4.bin
rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin
rpmsg_str_echo_cm7.bin

There are two RTOS images provided for RTOS0 on Cortex-A53, one uses RAM console, the other uses
UART4 console. The RAM Console image must be run if running RTOS on Cortex M7 core simultaneously
because Cortex M7 Core images use UART4 console by default.

Use the following steps to run the whole setup on i.MX 8M Plus LPDDR4 EVK:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
109 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Boot the First Cortex-A Core RTOS:

u-boot=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr_release/rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0xC0000000

2. Boot the Second Cortex-A Core RTOS:

u-boot=> ext4load mmc 1:2 0xC1000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr_release/rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0xC1000000

3. Boot Cortex-M Core RTOS:

u-boot=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-cm/release/rpmsg_str_echo_cm7.bin
u-boot=> cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000

The below log is displayed for UART4 console:

Cortex-M7: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG init ...
INFO: rpmsg_init : waiting for link establish ...

4. Boot up Linux using the commands:

u-boot=> setenv fdtfile imx8mp-evk-multicore-rpmsg.dtb
u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> boot

5. When Linux is up, install tty driver module

root@imx8mp-lpddr4-evk:~# modprobe imx_rpmsg_tty
[21.770356] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.3: new
 channel: 0x400 -> 0x3!
[21.770576] Install rpmsg tty driver!
[21.773539] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.4: new
 channel: 0x401 -> 0x4!
[21.773804] Install rpmsg tty driver!
[21.774034] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.5: new
 channel: 0x402 -> 0x5!
[21.774156] Install rpmsg tty driver!
[21.774275] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.6: new
 channel: 0x400 -> 0x6!
[21.774360] Install rpmsg tty driver!
[21.774443] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.7: new
 channel: 0x401 -> 0x7!
[21.774530] Install rpmsg tty driver!
[21.774586] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.8: new
 channel: 0x402 -> 0x8!
[21.774663] Install rpmsg tty driver!
[21.774726] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.0: new
 channel: 0x400 -> 0x0!
[21.774810] Install rpmsg tty driver!
[21.774880] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.1: new
 channel: 0x401 -> 0x1!
[21.774960] Install rpmsg tty driver!
[21.775022] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.2: new
 channel: 0x402 -> 0x2!
[21.775111] Install rpmsg tty driver!

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
110 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6. Then check Cortex-A RTOS0's RAM Console Log:

root@imx8mp-lpddr4-evk:~# ram_console_dump 0xC0FFF000
RAM Console@0xc0fff000:

Cortex-A53: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
RTOS1: RAM console@0xc1fff000
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept3: Get Message From Master Side : "hello world!" [len : 12]
ept4: Get Message From Master Side : "hello world!" [len : 12]
ept5: Get Message From Master Side : "hello world!" [len : 12]
 > ..

7. Check Cortex-A RTOS1's RAM Console Log:

root@imx8mp-lpddr4-evk:~# ram_console_dump 0xC1FFF000
RAM Console@0xc1fff000:

Cortex-A53: RTOS1: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept6: Get Message From Master Side : "hello world!" [len : 12]
ept7: Get Message From Master Side : "hello world!" [len : 12]
ept8: Get Message From Master Side : "hello world!" [len : 12]
 > ..

The folllowing log for Cortex-M Core's UART4 Log:

Cortex-M7: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept0: Get Message From Master Side : "hello world!" [len : 12]
ept1: Get Message From Master Side : "hello world!" [len : 12]
ept2: Get Message From Master Side : "hello world!" [len : 12]

It creates the following RPMSG devices:

root@imx8mp-lpddr4-evk:~# ls /dev/ttyRPMSG*
/dev/ttyRPMSG0 /dev/ttyRPMSG1 /dev/ttyRPMSG2 /dev/ttyRPMSG3 /dev/
ttyRPMSG4 /dev/ttyRPMSG5 /dev/ttyRPMSG6 /dev/ttyRPMSG7 /dev/ttyRPMSG8

/dev/ttyRPMSG0 ~ 2 are three endpoints conneted to Cortex-M Core RTOS, /dev/ttyRPMSG3 ~ 5 are three
endpoints conneted to Cortex-A Core RTOS0, /dev/ttyRPMSG6 ~ 8 are three endpoints conneted to Cortex-
A Core RTOS1,

8. Test RPMSG Communication:
Use "echo" or "minicom" to verify the RPMSG communication between the two RTOS.
For example, use "echo" and send a sample string to Cortex-M Core's endpoint:

root@imx8mp-lpddr4-evk:~# echo "adfad" > /dev/ttyRPMSG2

Then in Cortex-M Core's Console, the below string is received:

ept2: Get Message From Master Side : "adfad" [len : 5]
ept2: Get New Line From Master Side

Or use minicom to open one RPMSG endpoint: it will echo back the character inputted in minicom console:

root@imx8mp-lpddr4-evk:~# minicom -D /dev/ttyRPMSG6

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
111 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

9. Then input some character typed in using the minicom console. This character is sent to the RTOS endpoint
from Linux. Then the application running on RTOS sends the character back to Linux, finally all character
are echoed back in the minicom console. For example, if you input the characters "dadfddeddddd", the
below log would be displayed:

Welcome to minicom 2.8

OPTIONS: I18n
Compiled on Jan 1 2021, 17:45:55.
Port /dev/ttyRPMSG6, 08:36:41

Press CTRL-A Z for help on special keys

dadfddeddddd

Known Issues:

• Do not turn data cache off in U-Boot while booting Cortex-M Core RTOS.

4.4.5.2.2 Running the application on i.MX 8M Mini LPDDR4 EVK

The following RTOS images are provided to run the application:

rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
rpmsg_str_echo_ca53_RTOS0_UART4.bin
rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin
rpmsg_str_echo_cm4.bin

There are two RTOS images provided for RTOS0 on Cortex-A53, one uses RAM Console, the other uses
UART4 Console, it needs to run RAM Console image if run RTOS on Cortex M4 Core simultaneously because
Cortex M4 Core images uses UART4 Console by default.

Follow the following steps to run the whole setup on i.MX 8M Mini LPDDR4 EVK:

1. Boot the First Cortex-A Core RTOS

u-boot=> ext4load mmc 1:2 0x93C00000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr_release/rpmsg_str_echo_ca53_RTOS0_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 2 release 0x93C00000

2. Boot the Second Cortex-A Core RTOS

u-boot=> ext4load mmc 1:2 0x94C00000 /examples/heterogeneous-multicore/rpmsg-
str-echo-ca/ddr_release/rpmsg_str_echo_ca53_RTOS1_RAM_CONSOLE.bin
u-boot=> dcache flush; icache flush; cpu 3 release 0x94C00000

3. Boot Cortex-M Core RTOS

u-boot=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/rpmsg-
str-echo-cm/release/rpmsg_str_echo_cm4.bin
u-boot=> cp.b 0x48000000 0x7e0000 20000;
u-boot=> bootaux 0x7e0000

The log for UART4 Console will be the following log:

Cortex-M4: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG init ...
INFO: rpmsg_init : waiting for link establish ...

4. Boot Linux up

u-boot=> setenv fdtfile imx8mm-evk-multicore-rpmsg.dtb

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
112 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

u-boot=> setenv mmcargs $mmcargs clk_ignore_unused
u-boot=> boot

5. When Linux is up, install tty driver module

root@imx8mm-lpddr4-evk:~# modprobe imx_rpmsg_tty
[21.770356] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.3: new
 channel: 0x400 -> 0x3!
[21.770576] Install rpmsg tty driver!
[21.773539] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.4: new
 channel: 0x401 -> 0x4!
[21.773804] Install rpmsg tty driver!
[21.774034] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.5: new
 channel: 0x402 -> 0x5!
[21.774156] Install rpmsg tty driver!
[21.774275] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.6: new
 channel: 0x400 -> 0x6!
[21.774360] Install rpmsg tty driver!
[21.774443] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.7: new
 channel: 0x401 -> 0x7!
[21.774530] Install rpmsg tty driver!
[21.774586] imx_rpmsg_tty virtio1.rpmsg-virtual-tty-channel-1.-1.8: new
 channel: 0x402 -> 0x8!
[21.774663] Install rpmsg tty driver!
[21.774726] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.0: new
 channel: 0x400 -> 0x0!
[21.774810] Install rpmsg tty driver!
[21.774880] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.1: new
 channel: 0x401 -> 0x1!
[21.774960] Install rpmsg tty driver!
[21.775022] imx_rpmsg_tty virtio2.rpmsg-virtual-tty-channel-1.-1.2: new
 channel: 0x402 -> 0x2!
[21.775111] Install rpmsg tty driver!

6. Then check Cortex-A RTOS0's RAM console log:

root@imx8mm-lpddr4-evk:~# ram_console_dump 0x94BFF000
RAM Console@0x94bff000:

Cortex-A53: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
RTOS1: RAM console@0x95Bff000
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept3: Get Message From Master Side : "hello world!" [len : 12]
ept4: Get Message From Master Side : "hello world!" [len : 12]
ept5: Get Message From Master Side : "hello world!" [len : 12]
 > ..

7. And check Cortex-A RTOS1's RAM console Log:

root@imx8mm-lpddr4-evk:~# ram_console_dump 0x95BFF000
RAM Console@0x95bff000:

Cortex-A53: RTOS1: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept6: Get Message From Master Side : "hello world!" [len : 12]
ept7: Get Message From Master Side : "hello world!" [len : 12]
ept8: Get Message From Master Side : "hello world!" [len : 12]

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
113 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 > ..

The folllowing is the log displayed for Cortex-M Core's UART4 console:

Cortex-M4: RTOS0: Multiple Endpoints RPMsg String Echo FreeRTOS Demo...
INFO: rpmsg_init : RPMSG remote init ...
INFO: rpmsg_remote_init : waiting for link establish ...
INFO: rpmsg_remote_init : RPMSG link up
ept0: Get Message From Master Side : "hello world!" [len : 12]
ept1: Get Message From Master Side : "hello world!" [len : 12]
ept2: Get Message From Master Side : "hello world!" [len : 12]

The following RPMSG devices are created:

root@imx8mm-lpddr4-evk:~# ls /dev/ttyRPMSG*
/dev/ttyRPMSG0 /dev/ttyRPMSG1 /dev/ttyRPMSG2 /dev/ttyRPMSG3 /dev/
ttyRPMSG4 /dev/ttyRPMSG5 /dev/ttyRPMSG6 /dev/ttyRPMSG7 /dev/ttyRPMSG8

/dev/ttyRPMSG0 ~ 2 are three endpoints connected to Cortex-M Core RTOS, /dev/ttyRPMSG3 ~ 5 are
three endpoints connected to Cortex-A Core RTOS0, /dev/ttyRPMSG6 ~ 8 are three endpoints connected to
Cortex-A Core RTOS1.

8. Test RPMSG Communication
Use "echo" or "minicom" to verify the RPMSG communication between the two real time operating systems.
For example, use "echo" send some string to Cortex-M Core's endpoint:

root@imx8mm-lpddr4-evk:~# echo "adfad" > /dev/ttyRPMSG2

Then in Cortex-M Core's Console will find the string is received:

ept2: Get Message From Master Side : "adfad" [len : 5]
ept2: Get New Line From Master Side

Or use minicom to open one RPMSG endpoint. It then echoes back the character typed in the minicom
console:

root@imx8mm-lpddr4-evk:~# minicom -D /dev/ttyRPMSG6

9. Then input some character typed in using the minicom console. These characters are sent to the
RTOS endpoint from Linux. Then the application running on RTOS sends the character back to Linux.
Finally all characters are echoed back to the minicom console. For example, if you input the characters
"dadfddeddddd", following would be the log displayed:

Welcome to minicom 2.8

OPTIONS: I18n
Compiled on Jan 1 2021, 17:45:55.
Port /dev/ttyRPMSG6, 08:36:41

Press CTRL-A Z for help on special keys

dadfddeddddd

Known Issues:

• Do not turn data cache off in U-Boot while booting Cortex-M Core RTOS.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
114 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.5 RPMSG based resource sharing

4.5.1 Overview

On NXP MPU platforms, in general, RTOS runs on Cortex-M Core(s) and Linux runs on Cortex-A Core(s). In
some use cases, considering power management and real-time performance, Cortex-M Core owns and controls
physical resources or peripherals, but needs to share these physical resources or peripherals with Cortex-A
Core(s). The rpmsg_lite_uart_sharing_rtos is a FreeRTOS example to share physical UART owned by
Cortex-M Core with Cortex-A Core.

4.5.2 Software architecture and design

This chapter describes different software architectures based on different technologies.

4.5.3 Resource sharing based on SRTM

This example uses the Simplified Real-Time Messaging (SRTM) protocol to communicate between Cortex-A
and Cortex-M Cores. SRTM is used for communication among SoCs/processors in the same SoC. The figure
below shows the software architecture for resource sharing based on SRTM.

Figure 31. Resource sharing software architecture

SRTM runs on Cortex-M Core which owns the hardware resources. To share these, it provides an application
protocol based on RPMSG.

Virtual Device Drivers run on the resource user. The drivers provide standard device service on Cortex-A, which
needs to use the hardware resources shared by SRTM.

4.5.3.1 UART sharing design details

The UART sharing example is designed with the following features:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
115 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• RTOS on Cortex-M Core owns and fully controls the physical UART ports.
• SRTM service runs on RTOS and provides physical device sharing service to Linux.
• Virtual UART driver on Linux provides standard UART device service to applications.
• Multiple virtual UART ports are provided in Linux.
• Each virtual UART port in Linux can map to a dedicated physical UART on FreeRTOS.
• Multiple virtual UART ports can be mapped to the same physical UART.

Supported Platforms: i.MX 8M Mini LPDDR4 EVK, i.MX 93 EVK

It includes the following software components:

• Physical UART driver on FreeRTOS
• SRTM UART sharing service on FreeRTOS
• rpmsg_lite_uart_sharing_rtos application on FreeRTOS
• Virtual UART driver in Linux

The following figure illustrates the software architecture of a UART sharing design.

Figure 32. UART sharing software architecture

In order to support multiple virtual UART on a single physical UART, a multiple virtual UART protocol is used.
The example described in this document follows the packet format described in the below table.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
116 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Fields Start Flags
(4 bytes)

Address
(1 bytes)

Payload Size
(1 bytes)

Payload
(n bytes)

HEX 24 55 54 2C x n xxxxxx…

ASCII $ U T ,

Table 30. Packet Format

The packet header includes fields that indicate start flags, address, and payload size. It is 6 bytes by default.

“Start flags” field is used to figure out the start of data packets, user can configure start flags with specified
characters and size. The default start flags are 4 bytes: “$UT,”.

The “Address” field is reused by receive from transmit directions. For receive direction (blue colored path in
Figure 32), it is the destination address or ID of target virtual device. For transmit direction (orange colored path
in Figure 32), it is the source address or ID from which virtual device is transmitted.

“Payload Size” is the size of payload data, it is one byte, so the maximum payload size is 255 bytes. "Payload"
is the actual data exchanged within protocol and it follows the packet header.

4.5.4 Source code files and configuration

1. Source code files:
The source files for different software components are listed in the following table:

Name Software component Source Files/Directory

FreeRTOS application:
rpmsg_lite_uart_sharing_
rtos

mcux-sdk-examples evkmimx8mm/multicore_examples/
rpmsg_lite_uart_sharing_rtos/

SRTM Service mcu-sdk components/srtm/services/
srtm_uart_service.c
srtm_uart_service.h
srtm_uart_adapter.c
srtm_uart_adapter.h

Virtual UART driver real-time-edge-linux drivers/tty/rpmsg_tty.c

Table 31. Software source code list

2. Linux Virtual UART driver
By default, Real-time Edge kernel builds the virtual UART driver as module (rpmsg_tty.ko) by enabling
the configure item: CONFIG_RPMSG_TTY=m.

3. Virtual UART and physical UART mapping
The UART Sharing Service supports three modes of mapping between virtual UART and physical UART:
a. Virtual UART to physical UART 1:1 mapping

• Virtual UARTs on A-core have 1:1 mapping to physical UARTs on the M-core.
• Each physical UART connects to a different device.
• Each virtual UART uses a dedicated RPMSG endpoint.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
117 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

UART Sharing
Servicedev/ttyRPMSG1 UART 1

i.MX 8M Mini board

Virtual UART Driver
on A-Core

SRTM RPMSG Service
on M-Core

device 1

RPMSG
Header data data

dev/ttyRPMSG2 UART 2 device 2

dev/ttyRPMSG3 UART 3 device 3

dev/ttyRPMSG10 UART
10

device
10

… … …

01101011

10010011

Physical UARTs Devices

Figure 33. Virtual UART to physical UART 1:1 mapping
b. Virtual UART to physical UART n:1 mapping

• Multiple Virtual UARTs on A-core maps to a single physical UARTs on M-core.
• Physical UART connects to a device or another board.
• Each virtual UART uses a dedicated RPMSG Endpoint.
• Multiple UART Header is used to establish multiple virtual UART channels on a single physical UART

connect. For details about multiple UART Headers, refer to the section, “Section 4.5.3.1”.

UART Sharing
Servicedev/ttyRPMSG1

i.MX 8M Mini board

Virtual UART Driver
on A-Core

SRTM RPMSG Service
on M-Core

RPMSG
Header data data

dev/ttyRPMSG2

dev/ttyRPMSG3 UART 1 device 1

dev/ttyRPMSG10

…

01101011

10010011

Physical UARTs Devices

Multi-UART
Header

Figure 34. Virtual UART to physical UART n:1 mapping
c. Virtual UART to physical UART flexible mapping: This mapping mode can support virtual UART to

physical UART 1:1 mapping and n:1 mapping simultaneously. The following figure shows flexible
mapping between two i.MX 8M Mini boards.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
118 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

i.MX 8M Mini board 1 i.MX 8M Mini board 2

UART Sharing
Servicedev/ttyRPMSG1

Virtual UART Driver
on A-Core

SRTM RPMSG Service
on M-Core

RPMSG
Header data

dev/ttyRPMSG2

dev/ttyRPMSG3 UART 2

dev/ttyRPMSG10

…

01101011

10010011

Physical UARTs

UART Sharing
Service dev/ttyRPMSG1

Virtual UART Driver
on A-Core

SRTM RPMSG Service
on M-Core

RPMSG
Headerdata

data

dev/ttyRPMSG2

dev/ttyRPMSG3UART 2

dev/ttyRPMSG10

…
01101011

10010011

Physical UARTs

Multi-UART
Header

data

UART 1 UART 1

Figure 35. Virtual UART to physical UART flexible mapping
The mapping between virtual UART and physical UART is configured in Linux device tree, as shown in a dts
node example below:

uart_rpbus_3: uart-rpbus-3 {
 compatible = "fsl,uart-rpbus";
 bus_id = <3>; /* use uart3 */
 flags=<IMX_SRTM_UART_SUPPORT_MULTI_UART_MSG_FLAG>;
 status = "okay";
};

This dts node is configured for virtual UART3.
Note:
• The “bus_id” specifies the physical UART instance ID that this virtual UART maps to. If the property

of “bus_id” is not configured, the message sent from Linux to this virtual UART is display on M-core’s
debug console directly.

• Physical UART ID is configured in the FreeRTOS application “rpmsg_lite_uart_sharing_rtos”.
• On i.MX 8M Mini LPDDR4 EVK, physical UART3 can be used, so all virtual UART ports are mapped to

physical UART3 by default.
• On i.MX 93 EVK, physical LPUART5 can be used, so all virtual UART ports are mapped to physical

LPUART5 by default.
• If flags is set with the value IMX_SRTM_UART_SUPPORT_MULTI_UART_MSG_FLAG, the multiple virtual

UART is mapped to a single physical UART instance specified by bus_id (that implies that multiple
virtual UART protocol packet headers are used).

• If flags is not set, this virtual UART is mapped 1:1 with physical UART instance specified by bus_id.
By default, there are 11 virtual UARTs in the dtb file imx8mm-evkrpmsg.dtb” for i.MX 8M Mini LPDDR4
EVK and imx93-11x11-evk-rpmsg.dtb for i.MX 93 EVK.
• The virtual UART 0 to 9 are n:1 mapped to physical UART.
• The virtual UART 10 has no bus_id and displays messages sent from Linux to M-core’s debug console.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
119 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.5.5 Building and running the demo on i.MX 8M Mini LPDDR4 EVK

4.5.5.1 Hardware setup for i.MX 8M Mini EVK

Use flying wire to connect UART3 between two i.MX 8M Mini EVK boards. UART3’s pin is provided in J1003
connector; use the following pin connection between the two boards.

i.MX 8M Mini Board1 Connection i.MX 8M Mini Board2

Pin Function Pin Function

6 GND <-> 6 GND

8 UART3_TXD <-> 10 UART3_RXD

10 UART3_RXD <-> 8 UART3_TXD

Table 32. PIN connection between two i.MX 8M Mini boards

4.5.5.2 Building the demo images

The demo images "rpmsg_lite_uart_sharing_rtos.bin" are by default compiled with the i.MX 8M Mini
LPDDR4 EVK target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk bitbake rpmsg-lite-uart-
sharing-rtos

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx8mmevk/
examples/" on building host.

4.5.5.3 Running the i.MX 8M Mini EVK demo

1. Connect two i.MX 8M Mini EVK boards by following the steps in section of “Hardware Setup”.
2. Connect two i.MX8M Mini EVK boards to your PC via USB cable between the USB-UART connector and

the PC USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial

port number, two debug consoles for each board, one for the Linux debug console and another for the
FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line, then execute the following command:

u-boot => setenv fdtfile imx8mm-evk-rpmsg.dtb

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/rpmsg-lite-uart-
sharing-rtos/release/rpmsg_lite_uart_sharing_rtos.bin;
u-boot => cp.b 0x48000000 0x7e0000 20000; bootaux 0x7e0000

Then, FreeRTOS debug console would display the following log:

#################### RPMSG UART SHARING DEMO ####################
 Build Time: Mar 2 2022--09:38:19

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
120 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 Wait the Linux kernel boot up to create the link between M core and A
 core.

7. Then boot Linux kernel by executing the following command:

u-boot => setenv jh_clk clk_ignore_unused
u-boot => boot

After the Linux kernel boots up, in the FreeRTOS, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 8M Mini EVK board.
8. After Linux boots up, enter Linux command line, use the following commands to test the demo:

a. Check device files are available:

root@imx8mm-lpddr4-evk:~# ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG10” if the default dtb
file imx8mm-evk-rpmsg.dtb is used. The “/dev/ttyRPMSG0” to “/dev/ttyRPMSG9”have n:1
mapping to physical UART3, “/dev/ttyRPMSG10” is without “bus_id” and displays the message sent
from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, ues "minicom" to open and configure the same virtual UART
on both boards:

root@imx8mm-lpddr4-evk:~# minicom -s -D /dev/ttyRPMSG6

Then configure the UART as shown in the following figures:

Figure 36. Configuring RPMSG Virtual UART Step1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
121 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 37. Configuring RPMSG Virtual UART Step2

Save the settings and back to minicom main window, then input any characters in one board's minicom
window. These characters would be displayed on the other board's minicom window.

4.5.6 Building and running the demo on i.MX 93 EVK

4.5.6.1 Hardware setup for i.MX 93 EVK

Use flying wire to connect LPUART5 between two i.MX 93 EVK boards. LPUART5’s pin is provided in J1001
connector. Use the following pin connection between the two boards.

i.MX 93 EVK Board1 Connection i.MX 93 EVK Board2

Pin Function Pin Function

30 GND <-> 30 GND

28 LPUART5_RX <-> 27 LPUART5_TX

27 LPUART5_TX <-> 28 LPUART5_RX

Table 33. PIN connection between two i.MX 93 EVK boards

4.5.6.2 Building the demo images

The demo image "rpmsg_lite_uart_sharing_rtos.bin" is by default compiled with the i.MX 93 EVK
target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx93evk source real-time-edge-setup-env.sh -b
 <build_dir>

bitbake rpmsg-lite-uart-sharing-rtos-mcimx93evk

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx93evk/
examples/" on building host.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
122 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.5.6.3 Running the i.MX 93 demo

1. Connect two i.MX 93 EVK boards by following the steps listed in Section 4.5.6.1.
2. Connect two i.MX 93 EVK boards to your PC via USB cable between the USB-UART connector and the PC

USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port

number, four debug consoles for each board. Use the third one for the Linux debug console and the fourth
one for the FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line. Then, execute the following command:

u-boot => setenv fdtfile imx93-11x11-evk-uart-sharing-cm33.dtb

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x80000000 /examples/rpmsg-lite-uart-sharing-rtos-
mcimx93evk/release/rpmsg_lite_uart_sharing_rtos.bin
u-boot => cp.b 0x80000000 0x201e0000 0x10000
u-boot => bootaux 0x1ffe0000 0

Then, FreeRTOS debug console would display the following log:

#################### RPMSG UART SHARING DEMO ####################
 Build Time: Apr 5 2011 23:00:00
Start SRTM communication

Wait for the Linux kernel boot up to create the link between M core and A
 core.

7. And then, boot Linux kernel by executing the following command:

u-boot => setenv jh_clk clk_ignore_unused
u-boot => boot

8. After the Linux kernel boots up, in the FreeRTOS console, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 93 EVK board.
9. After Linux boots up, enter Linux command line, use the following commands to test the demo:

a. Check device files are available:

root @imx93evk:~# ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG10” if the default dtb
file imx93-11x11-evk-uart-sharing-cm33.dtb is used. The “/dev/ttyRPMSG0” to “/dev/
ttyRPMSG9” have n:1 mapping to physical LPUART5, “/dev/ttyRPMSG10” is without “bus_id” and
displays the message sent from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, execute the following on the first board:
• Use "minicom" to open and configure the same virtual UART on both boards:

root@imx93evk:~# minicom -s -D /dev/ttyRPMSG6

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
123 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Then configure the UART as shown in the following figures:

Figure 38. Configure RPMSG Virtual UART Step1

Figure 39. Configure RPMSG Virtual UART Step2

Save the settings and go back to minicom main window, then input any characters in one board's
minicom window. Then, the characters would be displayed on the other board's minicom window.

4.5.7 Building and running the demo on i.MX 93 QSB

4.5.7.1 Hardware setup for i.MX 93 QSB

Use flying wire to connect LPUART5 between two i.MX 93 QSB boards. LPUART5’s pin is provided in J1401
connector. Use the following pin connection between the two boards.

i.MX 93 QSB Board1 Connection i.MX 93 QSB Board2

Pin Function Pin Function

30 GND <-> 30 GND

28 LPUART5_RX <-> 27 LPUART5_TX

Table 34. PIN connection between two i.MX 93 QSB boards

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
124 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

i.MX 93 QSB Board1 Connection i.MX 93 QSB Board2

Pin Function Pin Function

27 LPUART5_TX <-> 28 LPUART5_RX

Table 34. PIN connection between two i.MX 93 QSB boards...continued

4.5.7.2 Building the demo images

The demo image "rpmsg_lite_uart_sharing_rtos.bin" is by default compiled with the i.MX 93 QSB
target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx93-9x9-lpddr4-qsb source real-time-edge-
setup-env.sh -b <build_dir>

bitbake rpmsg-lite-uart-sharing-rtos-mcimx93qsb

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx93-9x9-lpddr4-
qsb/examples/" on building host.

4.5.7.3 Running the demo on i.MX 93 QSB

1. Connect two i.MX 93 QSB boards by following the steps listed in Section 4.5.7.1.
2. Connect two i.MX 93 QSB boards to your PC via USB cable between the USB-UART connector and the PC

USB connector.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port

number, four debug consoles for each board. Use the third one for the Linux debug console and the fourth
one for the FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line. Then, execute the following command:

u-boot => setenv fdtfile imx93-9x9-qsb-uart-sharing-cm33.dtb

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x80000000 /examples/rpmsg-lite-uart-sharing-rtos-
mcimx93qsb/release/rpmsg_lite_uart_sharing_rtos.bin
u-boot => cp.b 0x80000000 0x201e0000 0x10000
u-boot => bootaux 0x1ffe0000 0

Then, FreeRTOS debug console would display the following log:

#################### RPMSG UART SHARING DEMO ####################
 Build Time: Oct 30 2023 11:20:34
 Start SRTM communication

 Wait for the Linux kernel boot up to create the link between M core and A
 core.

7. And then, boot Linux kernel by executing the following command:

u-boot => setenv jh_clk clk_ignore_unused

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
125 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

u-boot => boot

8. After the Linux kernel boots up, in the FreeRTOS console, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 93 QSB board.
9. After Linux boots up, enter Linux command line using the following commands to test the demo:

a. Check the device files are available:

root@imx93-9x9-lpddr4-qsb:~# ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG10” if the default dtb
file imx93-9x9-qsb-uart-sharing-cm33.dtb is used. The “/dev/ttyRPMSG0” to “/dev/
ttyRPMSG9” have n:1 mapping to physical LPUART5, “/dev/ttyRPMSG10” is without “bus_id” and
displays the message sent from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSG0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, ues "minicom" to open and configure the same virtual UART
on both boards:

root@imx93-9x9-lpddr4-qsb:~# minicom -s -D /dev/ttyRPMSG6

Then configure the UART as shown in the following figures:

Figure 40. Configure RPMSG Virtual UART Step1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
126 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 41. Configure RPMSG Virtual UART Step2

Save the settings and go back to minicom main window, then input any characters in one board's
minicom window. Then, the characters would be displayed on the other board's minicom window.

4.6 Heterogeneous Multicore VirtIO and networking sharing

4.6.1 Heterogeneous Multicore VirtIO

Heterogeneous Multicore VirtIO leverages para-virtualization VirtIO technology to build resource sharing
between Heterogeneous asymmetric multiprocessing (AMP). The main difference from para-virtualization VirtIO
is that Heterogeneous Multicore VirtIO does not use and depend on any hypervisor. Therefore, it can be used
for resource sharing between Cortex-A and Cortex-M cores, or between multiple Cortex-A cores.

The VirtIO is a standard for para-virtualization to provide high-performance IO device virtualization for VM. The
Figure 42 shows the architecture of the VirtIO solution.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
127 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 42. Para-virtualization VirtIO on Hypervisor

The frontend VirtIO driver runs in the guest kernel space, and the backend VirtIO device runs in the Hypervisor.
The Virtqueue and Vring via shared memory provide data transfer capability. The Hypervisor emulates the
device logic by VMExit and injecting vCPU IRQ. Therefore, para-virtualization VirtIO is used for resource
sharing between Virtual Machine guest OS and host OS, and it depends on the Hypervisor to run VirtIO
backend.

The Heterogeneous Multicore VirtIO in Real Time Edge leverages VirtIO technology. However, it runs VirtIO
backend on any CPU core including Cortex-A core and Cortex-M core. The VirtIO frontend runs on any other
CPU core. This technology uses VirtIO to establish communication between the Frontend and Backend, which
run on different CPU cores. Therefore, VirtIO can be used to share hardware resources between different CPU
cores.

In the current implementation, the backend runs RTOS and owns the hardware resource, such as peripherals.
The frontend runs on Linux. As there is no Hypervisor providing VMExit and vCPU IRQ injecting mechanism,
the hardware or software mailbox between the frontend and backend is needed. The Figure 43 shows the
architecture of the Heterogeneous Multicore VirtIO.

Figure 43.  Heterogeneous Multicore VirtIO

Heterogeneous Multicore VirtIO leverages shared memory to build Vring structure and data buffers. The shared
memory should be coherent between Frontend and Backend.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
128 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.6.2 Heterogeneous Multicore VirtIO performance evaluation

A VirtIO transmission device is introduced for evaluating the performance between the frontend and backend
through virtqueues. There are 2 virtqueues for transmitting and receiving directions separately, and the device
configuration registers are used to configure and control the test cases.

The Table 35 lists the combination of supported cases.

Direction Pkt size Frontend
Buffer copy

Backend
Buffer copy

TX
(Linux -> FreeRTOS)

Max 2KB Y/N Y/N

RX
(FreeRTOS -> Linux)

Max 2KB Y/N Y/N

Table 35. Heterogeneous Multicore VirtIO performance evaluation

4.6.3 Heterogeneous Multicore VirtIO network sharing

The following figure shows the heterogeneous Multicore VirtIO network sharing architecture.

Cortex-M/A RTOS

Virtual Networking Backend

Virtual Switch

ENET
Driver

Cortex-A Linux

Application

VirtIO
Driver

VirtIO
Driver

VirtIO
Driver

virtio-net (ethx)
(Frontend)

Application

VirtIO Driver

Shared Memory

Mailbox

Cortex-A RTOS

virtio-net
(Frontend)

Application

VirtIO Driver

Shared Memory

Mailbox

…

ENET

Port Port Port Port

packets

Port

New
Software

Existing
Software

Hardware

Data Path

Control Path

virtio-net
(backend)

virtio-net
(backend)

virtio-net
(backend)

Control
Module

virtio-net

VirtIO MMIO (Bus)
Hypervisor-less MMIO Portal

Figure 44. Heterogeneous Multicore VirtIO Networking Sharing

The virtual networking frontend runs on Cortex-A core, the frontend in Linux reuses the existing “drivers/
net/virtio_net.c” driver by selecting kernel configuration item “CONFIG_VIRTIO_NET”. RTOS frontend
driver is not enabled in this release.

The Virtual Networking Backend can run in RTOS on Cortex-A core or Cortex-M core. The virtio-net backend
drivers use Heterogeneous Multicore VirtIO to communicate with virtio-net frontend. It includes two data paths to
handle data packets receiving/transmitting of frontend and one control path to handle control requirements from
the frontend.

A Virtual Switch in the backend is used to switch packets from different ports. The switch ports include one
“remote port” and many “local ports”. In general, a “remote port” is a physical Ethernet port such as physical
ENET port, which is used to receive/transmit packets from/to the physical Ethernet port. Here, “local port” refers
to the virtual software port, such as the local port for virtio-net backend used to receive/transmit from/to virtio-net
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
129 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

backend. In fact, the packet is from/to virtio-net frontend through data path of Heterogeneous Multicore VirtIO
and another type of “local port” is used to connect to “virt-net” on RTOS to provide virtual Ethernet interface for
RTOS locally.

In the current implementation, an Ethernet L2 switch functions as the Virtual Switch. Each “local port” has
different MAC address, so the packets received from “remote port” can be switched to the destination “local
port” according to destination MAC address in the networking packets. The packets whose destination MAC
address does not match any “local port” are discarded, except broadcast packets. For the packets received
from the “local port”, the switch tries to check whether destination MAC address matches the address of other
“local ports”. If a matching entry is found, the packet is switched to the matched “local port”, so that the virtual
switch can implement switching packets between “local ports” locally. In case a match is not found, the packets
are sent to the external by “remote port”. That is to say Virtual Switch supports “local switch” and “remote
switch”.

The Virtual Switch can connect to multiple “local port”, that is to say single physical Ethernet port, controlled by
CPU Core running backend, can be shared with multiple OS running on different CPU Core by though multiple
frontend, and local virtual Ethernet driver in backend also provide Ethernet service for backend CPU Core
locally.

Note: In this release, “virt-net” on backend is not included and cannot provide local Ethernet service for
backend CPU Core. The “virtio-net” frontend on RTOS is also not included in this release.

4.6.4 Building Heterogeneous Multicore VirtIO backend firmware

Refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge. All demo
applications are located in the /examples directory of the rootfs.

The command bellow is used to compile the demo separately.

bitbake <multicore-app-name>

Where: "<multicore-app-name>" can be "virtio-perf-ca", "virtio-perf-cm", "virtio-net-backend-ca" or "virtio-net-
backend-cm".

The backend firmware is located in the directory:

tmp/deploy/images/imx8mm-lpddr4-evk/examples/heterogeneous-multicore/

For example, for i.MX8MM, the following binary images are located:

• “virtio-perf-cm/release/virtio_perf_cm4.bin”
• “virtio-perf-ca/ddr_release/virtio_perf_ca53.bin”
• “virtio-net-backend-cm/release/virtio_net_backend_cm4.bin”
• "virtio-net-backend-ca/ddr_release/virtio_net_backend_ca53.bin"

4.6.5 Building Heterogeneous Multicore VirtIO Frontend linux images

Refer to the RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge,
Linux image. Use the dtb files, which are located in rootfs images.

Alternatively, use the command bellow to compile the demo separately.

bitbake linux-imx

Then copy the following images to board’s first FAT32 partition:

• arch/arm64/boot/Image: Kernel Image

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
130 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• arch/arm64/boot/dts/freescale/imx8mm-evk-virtio-perf-ca53.dtb: i.MX8MM DTB file for
VirtIO performance evaluation, backend on Cortex-A53.

• arch/arm64/boot/dts/freescale/imx8mm-evk-virtio-perf-cm4.dtb: i.MX8MM DTB file for
VirtIO performance evaluation, backend on Cortex-M4.

• arch/arm64/boot/dts/freescale/imx8mm-evk-virtio-net-ca53.dtb: i.MX8MM DTB file for
VirtIO networking sharing, backend on Cortex-A53.

• arch/arm64/boot/dts/freescale/imx8mm-evk-virtio-net-cm4.dtb: i.MX8MM DTB file for VirtIO
networking sharing, backend on Cortex-M4.

• arch/arm64/boot/dts/freescale/imx8mp-evk-virtio-net-ca53.dtb: i.MX8MP DTB file for
VirtIO networking sharing, backend on Cortex-A53.

• arch/arm64/boot/dts/freescale/imx8mp-evk-virtio-net-cm7.dtb: i.MX8MP DTB file for VirtIO
networking sharing, backend on Cortex-M7.

• arch/arm64/boot/dts/freescale/imx93-11x11-evk-virtio-net-ca55.dtb: i.MX93 DTB file for
VirtIO networking sharing, backend on Cortex-A55.

• arch/arm64/boot/dts/freescale/imx93-11x11-evk-virtio-net-cm33.dtb: i.MX93 DTB file for
VirtIO networking sharing, backend on Cortex-M33.

4.6.6 Running VirtIO performance testing on i.MX 8M Mini EVK

Perform the following steps for VirtIO performance testing:

1. Set up the UART console for Frontend and Backend:
Connect the DEBUG UART slot on the board to your PC through the USB Cable. This step creates two USB
serial ports on the PC. Open 2 UART consoles to connect these two USB serial ports respectively, using the
following setup:
• 115200
• No parity
• 8 data bits
• 1 stop bit
One USB serial port is used for Linux that runs VirtIO frontend, the other can be used for RTOS that runs
the VirtIO backend.

2. Boot backend on Cortex-A core or Cortex-M core
Heterogeneous Multicore VirtIO Backend can run on Cortex-A core or Cortex-M core to evaluate different
use cases.
a. Run the backend on Cortex-M core

On the U-Boot command line, execute the following commands to boot Cortex-M core with backend
firmware:

=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
perf-cm/release/virtio_perf_cm4.bin
=> cp.b 0x48000000 0x7e0000 0x20000
=> bootaux 0x7e0000
=> setenv fdtfile imx8mm-evk-virtio-perf-cm4.dtb
=> setenv mmcargs $mmcargs clk_ignore_unused
=> run bsp_bootcmd

Or Run the backend on Cortex-A53 core by executing the following command in U-Boot
command line:
=> ext4load mmc 1:2 0x93c00000 /examples/heterogeneous-multicore/virtio-
perf-ca/ddr_release/virtio_perf_ca53.bin
=> dcache flush; icache flush;
=> cpu 3 release 0x93c00000
=> setenv fdtfile imx8mm-evk-virtio-perf-ca53.dtb

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
131 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

=> setenv mmcargs $mmcargs maxcpus=3
=> run bsp_bootcmd

3. Use the “vt_test.sh” tool in Linux to start the performance testing use case. The following is help
information
of the tool.

root@imx8mm-lpddr4-evk:~# vt_test.sh -h
USAGE: vt_test.sh [-h] [-s pkt_size] [-r regression] [-t type] [-b backend
 copy] [-f frontend copy]
-s: Pagket size: max 2048 Bytes, default: 64 Bytes
-r: Regression times: default: 1000
-t: Test type: 0: TX; 1: RX
-b: Backend copy buffer option: 0: not copy; 1: copy
-f: Frontend copy buffer option: 0: not copy; 1: copy
-h: This USAGE info

a. “-s” specifies the packet size to be used for testing, such as “-s 64”, it uses 64-byte packets for testing.
b. “-t” specifies the testing direction:

• “-t 0” means the test sends packets from frontend (Linux) to backend(RTOS on A-Core or M-Core),
• “-t 1” means the test sends packets from backend (RTOS on A-Core or M-Core) to frontend(Linux).

c. “-r” specifies the regression times:
• “-r 100000” indicates that the test case sends 100000 packets with the direction from backend to

frontend or frontend to backend, which is specified by the “-t” parameter.
d. “-b” specifies whether there is a memory copy in the backend:

• For the memory copy case, use “-b 1”, for enabling memory copy from Vring buffer to user application
buffer when receiving packet from fontend, or copy from user application buffer to Vring buffer when
transmitting packets to frontend.

• For no memory copy case “-b 0”, specifies there will be no memory copy in backend for each packet
receiving or transmitting.

e. “-f” specifies whether there is a memory copy in the frontend.
For example, see the command below:

vt_test.sh -s 64 -r 1000000 -t 0 -b 0 -f 0

The above test case transmits 1000000 packets from frontend (Linux) to backend (RTOS on A-Core or M-
Core), each packet size is 64 bytes, there is no memory copy both on frontend and backend. The test log is
as follows:

root@imx8mm-lpddr4-evk:~# vt_test.sh -s 64 -r 1000000 -t 0 -b 0 -f 0
[20.561527] ***
[20.561539] Front-end: interrupt mode
[20.561543] Back-end: interrupt mode
[20.561544] Front-end: do NOT copy buffer
[20.561546] Back-end: do NOTcopy buffer
[20.561547] Test case: TX
[20.561547] pkt_size: <64>
[20.561547] regress times: <1000000>
[21.868494] tx_test: pkt_size (64 B), pkt_cnt (1000000), period (1298108 µs)

The log shows that 1000000 packets are transmitted from frontend to backend in 1298108 µs. Therefore,
the performance is 770 kpps or 394 Mbit/s.

4.6.7 Running VirtIO network sharing

VirtIO Network Sharing supports running on i.MX 8M Mini, i.MX 8M Plus, and i.MX 93 platforms.

1. Set up the UART console for the frontend and backend

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
132 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Connect the DEBUG UART slot on the board to your PC through the USB Cable. On the PC, this step
creates two USB serial ports (port0 and port1) for i.MX 8M Mini EVK board, and four USB serial ports (port0
~ port3) for i.MX 8M Plus EVK board and i.MX93 EVK board. Open two UART consoles for UART port0 and
port1 on i.MX 8M Mini EVK board or port2 and port3 on i.MX 8M Plus EVK board and i.MX93 EVK board
UART with the following setup:
• 115200
• No parity
• 8 data bits
• 1 stop bit
The first UART console is used for Linux that runs the VirtIO frontend. The UART console is used for RTOS,
which runs the VirtIO backend.

2. Hardware setup
Connect ENET port on EVK board to a networking switch or another board by using an Ethernet cable.
For i.MX 8M Mini EVK board, there is a single Ethernet port on the board. So, use this port for testing.
For i.MX 8M Plus EVK board and i.MX93 EVK board, there are two Ethernet ports are on the board. The
first one, which is close to DEBUG USB port is ENET port and it is used for VirtIO Networking Sharing. So
connect this port to the networking link. Another Ethernet port is an ENET QoS port and it is not used for
this demo.

3. Booting backend and frontend
Heterogeneous Multicore VirtIO backend can run on Cortex-A core or Cortex-M core.
• Running Virtio Networking Backend on i.MX8 MM

a. Run the backend on a Cortex-M4 core
On U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
net-backend-cm/release/virtio_net_backend_cm4.bin
=> cp.b 0x48000000 0x7e0000 0x20000
=> bootaux 0x7e0000

Then boot Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-cm4.dtb
=> setenv mmcargs $mmcargs mem=2048MB clk_ignore_unused
=> run bsp_bootcmd

b. Or run the backend on the Cortex-A53 core
Execute the following command in the U-Boot command line:

=> ext4load mmc 1:2 0x93c00000 /examples/heterogeneous-multicore/virtio-
net-backend-ca/ddr_release/virtio_net_backend_ca53.bin
=> dcache flush; icache flush;
=> cpu 3 release 0x93c00000

Then, boot the Linux kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-ca53.dtb
=> setenv mmcargs $mmcargs maxcpus=3 clk_ignore_unused
=> run bsp_bootcmd

• Running Virtio Networking Backend on i.MX 8MP
a. Run the backend on Cortex-M7 core

U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> ext4load mmc 1:2 0x48000000 /examples/heterogeneous-multicore/virtio-
net-backend-cm/release/virtio_net_backend_cm7.bin
=> cp.b 0x48000000 0x7e0000 0x20000
=> bootaux 0x7e0000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
133 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Then, boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-net-cm7.dtb
=> setenv mmcargs $mmcargs mem=2048MB clk_ignore_unused
=> run bsp_bootcmd

b. Or running the backend on Cortex-A53 core
Execute the following command in U-Boot command line:

=> ext4load mmc 1:2 0xC0000000 /examples/heterogeneous-multicore/virtio-
net-backend-ca/ddr_release/virtio_net_backend_ca53.bin
=> dcache flush; icache flush;
=> cpu 3 release 0xC0000000

Then boot Linux kernel:

=> setenv fdtfile imx8mp-evk-virtio-net-ca53.dtb
=> setenv mmcargs $mmcargs maxcpus=3 clk_ignore_unused
=> run bsp_bootcmd

• Running Virtio Networking Backend on i.MX93
a. Running the backend on Cortex-M33

On U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/virtio-
net-backend-cm/release/virtio_net_backend_cm33.bin
=> cp.b 0xd0000000 0x201e0000 20000
=> bootaux 0x1ffe0000

Then boot Linux kernel:

=> setenv fdtfile imx93-11x11-evk-virtio-net-cm33.dtb
=> setenv mmcargs $mmcargs clk_ignore_unused
=> run bsp_bootcmd

b. Or running the backend on Cortex-A55
Execute the following command in the U-Boot command line:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/virtio-
net-backend-ca/ddr_release/virtio_net_backend_ca55.bin
=> dcache flush && icache flush
=> cpu 1 release 0xd0000000

Then boot Linux kernel:

=> setenv fdtfile imx93-11x11-evk-virtio-net-ca55.dtb
=> setenv mmcargs $mmcargs maxcpus=1 clk_ignore_unused
=> run bsp_bootcmd

4. Evaluate Networking Sharing
After backend starts, the second UART console displays the following backend log:

Starting Virtio networking backend...
virtio network device initialization succeed!
Switch enabled with enet remote port succeed!
ENET: PHY link is up with speed 1000M full-duplex

After the kernel boots up, use “ifconfig” and “ping” commands to verify the virtual networking interface.
In the following log, "eth0" is virtio_net interface, but it may be different on different platform. So, use
"ethtool" to find out the virtio_net interface that is using "virtio_net" driver, and the default MAC address of
virtio_net interface is "00:04:9f:00:01:02".

root@imx8mm-lpddr4-evk:~# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
134 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 inet 192.168.1.107 netmask 255.255.255.0 broadcast 192.168.1.255
 inet6 fd08:d7d5:e652::733 prefixlen 128 scopeid 0x0<global>
 inet6 fd08:d7d5:e652:0:201:2ff:fe03:405 prefixlen 64 scopeid
 0x0<global>
 inet6 fe80::201:2ff:fe03:405 prefixlen 64 scopeid 0x20<link>
 ether 00:04:9f:00:01:02 txqueuelen 1000 (Ethernet)
 RX packets 54 bytes 5544 (5.4 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 143 bytes 20887 (20.3 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@imx8mm-lpddr4-evk:~# ethtool -i eth0
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: b8400000.virtio_net
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

root@imx8mm-lpddr4-evk:~# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.888 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.541 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=2.13 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=2.29 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=1.73 ms

Use the following command to change the MAC address of virtio_net:

root@imx8mm-lpddr4-evk:~# ifconfig eth0 hw ether 00:04:9f:00:01:03

4.7 Unified Life Cycle management

4.7.1 Overview

Heterogeneous Multicore Framework provides unified Life Cycle Management for both Cortex-A and Cortex-M
cores.

Real-time Edge supports bootstrapping the native Zephyr and native FreeRTOS on the Cortex-A core and
Cortex-M core with U-Boot command and with the RemoteProc under Linux as listed in the below table.

Core Type U-Boot RemoteProc on Linux

NativeZephyr on M core Y Y

NativeFreeRTOS on M core Y Y

NativeZephyr on A core Y -

NativeFreeRTOS on A core Y -

Table 36. Bootstrapping options for Cortex-A and CortexM cores

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
135 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4.7.2 Booting Native RTOS Cortex-A core image from U-Boot

Downloading the Pure RTOS Cortex-A Core image into DDR memory firstly, and then use U-Boot command
"go" to boot the image from Core0 or use U-Boot command "cpu" to boot the image from the other Cortex-A
Cores.

Refer to Section 3.5.3 for details.

4.7.3 Booting Native RTOS Cortex-M Core image from U-Boot

U-boot command "bootaux" is used to boot Cortex-M Core RTOS Image from U-Boot.

For example, after the board is booted into the U-Boot console, use the following command to boot Arm Cortex-
M core on i.MX 8M Mini EVK board or i.MX 8M Plus EVK board:

=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/freertos-hello/release/
freertos_hello.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

Or use the following command on i.MX93 EVK board:

=> ext4load mmc 1:2 0xd0000000 /examples/heterogeneous-multicore/hello-world-cm/
release/hello_world_cm33_UART2.bin; cp.b 0xd0000000 0x201e0000 20000;
=> bootaux 0x1ffe0000

4.7.4 Using RemoteProc to boot RTOS Cortex-M Core Image

If you choose to use RemoteProc to start the remote core directly, execute run prepare_mcore in U-Boot
before starting the Linux OS.

 => run prepare_mcore

Then, use the following command to use RPMSG dtb file to boot the kernel:

On imx8mm-lpddr4-evk board
=> setenv fdtfile imx8mm-evk-rpmsg.dtb
=> boot

On imx8mp-lpddr4-evk board
=> setenv fdtfile imx8mp-evk-rpmsg.dtb
=> boot

Then, after the Linux kernel boots up, run the commands for i.MX 8MP:

root@imx8mp-lpddr4-evk:~# echo -n imx8mp_m7_TCM_hello_world.elf > /sys/class/
remoteproc/remoteproc0/firmware
root@imx8mp-lpddr4-evk:~# echo start > /sys/class/remoteproc/remoteproc0/state
[19.668712] remoteproc remoteproc0: powering up imx-rproc
[19.670341] remoteproc remoteproc0: Booting fw image
 imx8mp_m7_TCM_hello_world.elf, size 153316

root@imx8mp-lpddr4-evk:~# [20.191036] remoteproc remoteproc0: remote processor
 imx-rproc is now up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
136 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

For i.MX 8MM, run the following commands:

root@imx8mm-lpddr4-evk:~# echo -n imx8mm_m4_TCM_hello_world.elf > /sys/class/
remoteproc/remoteproc0/firmware
root@imx8mm-lpddr4-evk:~# echo start > /sys/class/remoteproc/remoteproc0/state
[209.654414] remoteproc remoteproc0: powering up imx-rproc
[209.656646] remoteproc remoteproc0: Booting fw image
 imx8mm_m4_TCM_hello_world.elf, size 146136
root@imx8mm-lpddr4-evk:~# [210.174456] remoteproc remoteproc0: remote processor
 imx-rproc is now up

After these steps are followed, the remote processor imx-rproc is up.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
137 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

5 Heterogeneous Multi-SoC Framework

This section describes the features of heterogeneous Multi-SoC framework and how to implement it using NXP
hardware platforms.

5.1 Introduction
Heterogeneous Multi-SoC Framework enables the usage of a combination of MPU and i.MX RT1180 as an
Industrial Switch. This extends the MPU hardware capability with the i.MX RT1180 hardware capability, thereby
providing switch functionality, TSN functionality, and the capability of supporting different Industrial Protocols.
The i.MX RT1180 can be used to run real-time tasks such as industrial protocols in the real-time domain,
whereas the MPU can process compute-heavy tasks, in the non-real-time domain.

The external Ethernet ports of i.MX RT1180 can be exposed to the MPU side as standard Ethernet interfaces as
data path. Different interfaces such as SPI or I2C can be used as the management interface between MPU and
i.MX RT1180.

5.2 Software architecture
The Linux Distributed Switch Architecture (DSA) framework is used to expose the i.MX RT1180 NETC
switch ports to MPU side. In this architecture, one of the NETC switch ports or ENETC port is used as the
data interface. Different interfaces (for example LPSPI, I2C or message unit) can be used as management
interfaces.

For more information regarding Linux DSA, refer to https://docs.kernel.org/networking/dsa/dsa.html.

Figure 45. Using switch port as DSA CPU port which is connected to MPU

Note: The industrial protocols listed in the box of i.MX RT1180 are not supported yet.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
138 / 400

https://docs.kernel.org/networking/dsa/dsa.html

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 46. Using ENETC port as DSA CPU port which is connected to MPU

Note: The configuration illustrated in this figure is not supported in this release yet.

The software architecture implementation includes:

• NETC DSA switch driver on Linux
• Device driver of DSA control interface on Linux DSA
• Service driver of DSA control interface on i.MX RT1180
• NETC DSA switch configuration on i.MX RT1180

– Using NETC switch port as DSA CPU port
– Using ENETC port as DSA CPU port (not supported in this release yet)
The external Ethernet ports of i.MX RT1180 are exposed to MPU with Linux DSA framework. The ports can be
viewed as standard Ethernet ports which could support the below operations:
– Binding Linux IP address to a specific port
– Broadcast on a specific port and others
To identify the source traffic of incoming traffic, the outer VLAN tag is used as the DSA tag to indicate which
port the traffic is coming from. The VID field of the VLAN tag is encoded to include the source/destination port.
Below is the description of the12-bit VID field:

11 10 9 8 7 6 5 4 3 2 1 0

RSV VBID SWITCH_ID VBID PORT

Table 37. VID field description

Note: The above custom VID definition is coming from the Linux tag_8021q source code (net/dsa/
tag_8021q.c) which is used by the Linux NETC DSA driver. As a result, VLAN ID 3072 to 3076 as well as
3088 are reserved by the Linux NETC DSA driver and will not be allowed to be used by the user.

5.2.1 Using one of the i.MX RT1180 switch ports as DSA CPU port

Consider the case when one of the i.MX RT1180 switch ports is used as DSA CPU port that is connected to
MPU. In such a situation, the packets received on the external ports of i.MX RT1180 are filtered using Ingress
Port Filter Table. The incoming packets will be filtered according to the ingress port ID, and forwarded to
the DSA CPU port by either stream forwarding (by-passing the 802.1Q bridge forwarding) or 802.1Q bridge

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
139 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

forwarding using Ingress Stream Table. The outer VLAN tag is added by using Egress Treatment Table on
egress DSA CPU port.

The packets received on the DSA CPU port are filtered according to the DSA tag, which is viewed a VID from
i.MX RT1180 perspective. This is done by using Ingress Port Filter Table and the packets are directed to the
port mapped to the VID by using Ingress Stream Table. The outer VLAN tag is removed on ingress DSA CPU
port by also using Ingress Stream Table.

5.2.2 Using i.MX RT1180 ENETC port as DSA CPU port

Note: This configuration is not supported in this release yet.

For the case using the ENETC port as the DSA CPU port that is connected to MPU, the packets received on
the external ports of i.MX RT1180 are forwarded to the CPU of i.MX RT1180 by 802.1Q bridge forwarding. The
software bridge stack running on the CPU of i.MX RT1180 will add the DSA tag and forward the packets to the
ENETC port.

The packets received on the DSA CPU port are received by the software bridge stack. The software bridge
stack removes the DSA tag and then forwards the packets to the switch port accordingly.

5.3 Running the Heterogeneous Multi-SoC Framework
This section describes the process to implement and run the heterogeneous Multi-SoC framework on supported
MPU platforms and i.MX RT1180 EVK.

5.3.1 Building and running on MPU + i.MX RT1180 EVK

The currently supported MPU platforms include i.MX 8M Plus EVK and i.MX 93 EVK.

Note: For i.MX RT1180 EVK, the supported board revision is SCH-50577 REV C2 (700-50577 REVC), which
has i.MX RT1180 Rev. B0 chip.

5.3.1.1 Hardware setup for i.MX 8M Plus EVK and i.MX RT1180 EVK

1. SPI connection between i.MX 8M Plus EVK and i.MX RT1180 EVK
On i.MX 8M Plus EVK, ECSPI2 pins are available on J21 connector, but due to signal incompatibility
with the i.MX RT1180 EVK LPSPI3 pins on J44 connector, board rework is needed on i.MX 8M Plus EVK
to replace a translating transceiver NBT0104 U55 which has limited capacitive loading for 70 pF with
NTS0104GU12, which has internal pull-up of 10K and bigger capacitive loading.. Refer to the schematic
shown in the Figure 47 below:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
140 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 47. Hardware rework for SPI signals on i.MX 8M Plus EVK
Connect ECSPI2 pins on J21 connector i.MX RT1180 EVK LPSPI3 pins by following the connection in
Table 38.

i.MX 8M Plus EVK i.MX RT1180 EVK

Pin Function
Connection

Pin Function

21 ECSPI2_MISO <-> 10 LPSPI3_SIN

19 ECSPI2_MOSI <-> 8 LPSPI3_SOUT

23 ECSPI2_SCLK <-> 12 LPSPI3_CLK

24 ECSPI2_SS0 <-> 6 LPSPI3_PCS0

6 GND <-> 14 GND

Table 38. Pin connection between i.MX 8M Plus EVK and i.MX RT1180 EVK

2. Ethernet connection between i.MX 8M Plus EVK and i.MX RT1180 EVK
Using Ethernet cable to connect i.MX 8M Plus EVK ENET2 port (eth1 in Linux) on J8 RJ45 connector and
i.MX RT1180 EVK NETC switch port 3 (ENET3) on J31 RJ45 connector.

5.3.1.2 Hardware setup for i.MX 93 EVK and i.MX RT1180 EVK

1. LPSPI connection between i.MX 93 EVK and i.MX RT1180 EVK
Using flying wire to connect i.MX 93 EVK LPSPI3 pins on J1001 connector and i.MX RT1180 EVK LPSPI3
pins on J44 connector by following the pin connection in below table:

i.MX 93 EVK i.MX RT1180 EVK

Pin Function
Connection

Pin Function

19 LPSPI3_SOUT <-> 10 LPSPI3_SIN

21 LPSPI3_SIN <-> 8 LPSPI3_SOUT

Table 39. Pin connection between i.MX 93 EVK and i.MX RT1180 EVK

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
141 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

i.MX 93 EVK i.MX RT1180 EVK

Pin Function
Connection

Pin Function

23 LPSPI3_CLK <-> 12 LPSPI3_CLK

24 LPSPI3_PCS0 <-> 6 LPSPI3_PCS0

25 GND <-> 14 GND

Table 39. Pin connection between i.MX 93 EVK and i.MX RT1180 EVK...continued

2. Ethernet connection between i.MX 93 EVK and i.MX RT1180 EVK
Using Ethernet cable to connect i.MX 93 EVK ENET_QOS port (eth1 in Linux) on J501 RJ45 connector
and i.MX RT1180 EVK NETC switch port 3 (ENET3) on J31 RJ45 connector. In DSA terminology, the
ENET_QOS Ethernet controller on i.MX 93 is referred to as the ‘master’ interface, while the NETC switch
port 3 on i.MX RT1180 is referred to as ‘CPU’ port.

5.3.1.3 Building the DSA switch application for i.MX RT1180 EVK

The demo application images dsa_switch.elf and dsa_switch.bin for i.MX RT1180 EVK are installed
into target rootfs with the MPU Yocto image build, and are available in /examples/heterogeneous-multi-
soc/dsa-switch-evkmimxrt1180-cm33/ directory.

Also, the demo application images can be deployed into the Yocto build directory by using the following Yocto
commands:

For i.MX 8M Plus EVK
$ DISTRO=nxp-real-time-edge MACHINE=imx8mp-lpddr4-evk source real-time-edge-
setup-env.sh -b <build_dir>
$ bitbake dsa-switch-evkmimxrt1180-cm33
For i.MX 93 EVK
$ DISTRO=nxp-real-time-edge MACHINE=imx93evk source real-time-edge-setup-env.sh
 -b <build_dir>
$ bitbake dsa-switch-evkmimxrt1180-cm33

After the Yocto bitbake command is used, the demo application images can be found in the below directory on
the build host:

<build_dir>/tmp/deploy/images/<MACHINE>/examples/heterogeneous-multi-soc/dsa-
switch-evkmimxrt1180-cm33

The demo applications are available in both release and ram_release mode. The release image boots
from the external QuadSPI NOR flash and then relocates to internal memory (Code TCM, System TCM and
OCRAM) and needs to be flashed in the external NOR flash. The ram_release image boots from internal
memory and needs to be loaded directly into internal memory by host debug tools.

5.3.1.4 Bringing up MPU and i.MX RT1180 EVK

1. Make SPI and Ethernet connections between i.MX 8M Plus EVK or i.MX 93 EVK and i.MX RT 1180 EVK by
following the steps in the Section Section 5.3.1.1 or Section 5.3.1.2.

2. Make a serial connection between J23 connector on i.MX 8M Plus EVK or J1401 connector on i.MX 93 EVK
and USB connector on host PC using USB cable. Open the terminal application on host PC, such as PuTTY
or TeraTerm, and connect to the 3rd debug console which is used by Linux running on MPU.

3. Make a serial connection between J53 connector on i.MX RT1180 EVK and USB connector on host PC
using USB cable. Open another terminal application on host PC, and connect to the debug console which
is used by FreeRTOS running on i.MX RT1180 EVK. Note that the terminal settings ‘Implicit CR in every LF’
should be enabled for correct display of the logs.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
142 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4. Power on i.MX RT1180 EVK board, and flash the binary image release/dsa_switch.bin on i.MX
RT1180 EVK and power cycle the board. Alternatively, one can download the elf image ram_release/
dsa_switch.elf by host debug tools (e.g. using JTAG debugger connected to J37 connector). After the
demo application is running, there should be continuous logs displayed in the console.

5. Power on the MPU board and enter U-Boot command line. Then, execute the following commands:

For i.MX 8M Plus EVK
u-boot=> setenv fdtfile imx8mp-evk-revb4-dsa.dtb
u-boot=> boot
For i.MX 93 EVK
u-boot=> setenv fdtfile imx93-11x11-evk-dsa.dtb
u-boot=> boot

After Linux is up on MPU, refer to the Section 5.3.1.5 for the detailed usage on how to show and configure
various NETC switch features on i.MX RT1180.

5.3.1.5 Runtime usage on MPU and i.MX RT1180 EVK

This section describes the major i.MX RT1180 NETC switch features that can be queried or configured on MPU
+ i.MX RT1180 EVK heterogeneous multi-SoC architecture using Linux DSA (Distributed Switch Architecture).

5.3.1.5.1 i.MX RT1180 NETC switch interface under Linux

On MPU, after Linux is up, on successful initialization of the Linux NETC DSA driver, the i.MX RT1180 NETC
front panel switch port 0 (ENET0), port 1 (ENET1), port 2 (ENET2) should have a network device interface
attached with the swpX name format.

i.MX RT1180 EVK NETC switch port Label on i.MX RT1180 EVK Linux network device name on MPU

Port 0 ENET0 (J28) swp0

Port 1 ENET1 (J29) swp1

Port 2 ENET2 (J30) swp2

Port 3 ENTE3 (J31) N/A

Port 4 (internal) N/A N/A

Table 40. i.MX RT1180 EVK NETC switch port mapping in Linux on MPU

Note: Linux DSA does not currently create user network device for CPU port. The i.MX RT1180 NETC switch
port 3 is used as CPU port. Therefore, it is not visible to the user as a normal network device in Linux.

One can use ifconfig -a command to show these network device interfaces.

Example - NETC switch port interfaces swpX shown by ifconfig -a

ifconfig -a
[…]
swp0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:04:9f:08:49:31 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
swp1: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:04:9f:08:49:31 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
143 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
swp2: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:04:9f:08:49:31 txqueuelen 1000 (Ethernet)
 RX packets 78 bytes 19158 (18.7 KiB)
 RX errors 0 dropped 78 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Also, the ip link show command uses the swpX@eth1 name format to also indicate the associated master
Ethernet interface (eth1) on MPU for the DSA switch port.

Example - NETC switch port interfaces swpX and DSA master interface eth1 shown by ip link show.

ip link show
[…]
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1504 qdisc mq state UP mode
 DEFAULT group default qlen 1000
 link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff
4: swp0@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 group default qlen 1000
 link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff
5: swp1@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 group default qlen 1000
 link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff
6: swp2@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 group default qlen 1000
 link/ether 00:04:9f:08:49:31 brd ff:ff:ff:ff:ff:ff

5.3.1.5.2 Maximum frame size configuration

The Linux NETC DSA driver correlates between Layer-2 maximum frame size and Layer-3 MTU. Typical
settings of Layer-2 maximum frame size is 1518 bytes for standard untagged frames and the corresponding
Layer-3 MTU is 1500 bytes.

Example 1: Setting Layer-3 MTU of NETC switch port 1 (swp1) to 1000 bytes

ifconfig swp1 mtu 1000
or
ip link set dev swp1 mtu 1000

Note:

Setting the Layer-3 MTU for an external NETC switch port on i.MX RT1180 EVK to a value larger than 1500
bytes also changes the Layer-3 MTU of both the CPU port on i.MX RT1180 EVK and the master Ethernet
interface (eth1) on MPU accordingly.

As the maximum MTU of eth1 is 1600, the maximum MTU value that can be configured on an external NETC
switch port is 1596 bytes. However, the NETC Ethernet MAC supports configurable maximum frame size up
to 2000 bytes. The 4 extra bytes in MTU for both the CPU port on i.MX RT1180 EVK and the master Ethernet
interface (eth1) on MPU are used to store the 4-bytes 802.1Q DSA tag.

5.3.1.5.3 Single port mode for i.MX RT1180 NETC switch ports

After Linux is up on MPU, by default all the i.MX RT1180 NETC switch ports available in Linux works in single
port mode. In this configuration mode the traffic received on other switch ports is forwarded to the CPU port
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
144 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

(i.MX RT1180 NETC switch port 3). Each of the other external switch port interface can be used independently
to send and receive packets.

Example 1: Single port configuration of the Linux NETC DSA driver

/* configure IP address on external switch interfaces */
ip addr add 192.168.1.1/24 dev swp0
ip addr add 192.168.2.1/24 dev swp1
ip addr add 192.168.3.1/24 dev swp2
/* master interface to be brought up first – up by default */
ip link set eth1 up
/* bring up the switch slave interfaces */
ip link set swp0 up
ip link set swp1 up
ip link set swp2 up

Assuming there is one remote host connected to each of the external switch ports, one can ping the remote
host.

/* Assuming the IP is 192.168.1.2 for the remote host connected to swp0 */

ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=1.75 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=1.77 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=1.76 ms
[…]
/* Assuming the IP is 192.168.2.2 for the remote host connected to swp1 */
ping 192.168.2.2
PING 192.168.2.2 (192.168.2.2) 56(84) bytes of data.
64 bytes from 192.168.2.2: icmp_seq=1 ttl=64 time=3.23 ms
64 bytes from 192.168.2.2: icmp_seq=2 ttl=64 time=1.75 ms
64 bytes from 192.168.2.2: icmp_seq=3 ttl=64 time=1.75 ms
[…]
/* Assuming the IP is 192.168.3.2 for the remote host connected to swp2 */
ping 192.168.3.2
PING 192.168.3.2 (192.168.3.2) 56(84) bytes of data.
64 bytes from 192.168.3.2: icmp_seq=1 ttl=64 time=2.80 ms
64 bytes from 192.168.3.2: icmp_seq=2 ttl=64 time=1.76 ms
64 bytes from 192.168.3.2: icmp_seq=3 ttl=64 time=1.77 ms
[…]

5.3.1.5.4 Bridge mode for i.MX RT1180 NETC switch ports

In this configuration mode, the external switch ports (DSA slave interfaces) are added to a bridge for L2
forwarding. The eth1 interface is brought up as the DSA master interface.

Example 1: Bridge configuration of the Linux NETC DSA driver

/* bring up master interface before the slave ports – up by default */
ip link set eth1 up
/* bring up the switch slave interfaces */
ip link set swp0 up
ip link set swp1 up
ip link set swp2 up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
145 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

/* create bridge */
ip link add name br0 type bridge
/* add the external switch ports to the bridge */
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set dev swp2 master br0
/* configure IP address and bring up the bridge */
ip addr add 192.168.2.1/24 dev br0
ip link set dev br0 up

Assuming there is a remote host connected to one of the external switch ports, one can ping the remote host.

/* Assuming the IP is 192.168.2.2 for the remote host connected to
 * one of the external switch ports (swp0, swp1 and swp2)
 * /
ping 192.168.2.2
PING 192.168.2.2 (192.168.2.2) 56(84) bytes of data.
64 bytes from 192.168.2.2: icmp_seq=1 ttl=64 time=1.76 ms
64 bytes from 192.168.2.2: icmp_seq=2 ttl=64 time=1.80 ms
64 bytes from 192.168.2.2: icmp_seq=3 ttl=64 time=1.77 ms
[…]

At the same time, the L2 forwarding works using the external switch ports (swp0, swp1 and swp2). Assuming
there is one remote host connected to each of the external switch ports, each remote host can ping other hosts.

5.3.1.5.5 i.MX RT1180 NETC switch port statistics counters

The NETC DSA switch driver supports ethtool -S swpX statistics reporting for each external DSA slave
switch port through the associated net devices. Note that the first 4 stats (tx_packets, tx_bytes,
rx_packets, rx_bytes) are counted by Linux networking stack and the other stats are directly read from
NETC switch hardware.

Example 1: Query the port statistics counters of NETC switch port 1 (swp1)

ethtool -S swp1
NIC statistics:
 tx_packets: 232
 tx_bytes: 30985
 rx_packets: 1178
 rx_bytes: 76913
 in-bytes: 150749
 in-valid-bytes: 150749
 in-pause-frames: 0
 in-valid-frames: 1846
 in-vlan-frames: 0
 in-uc-frames: 814
 in-mc-frames: 85
 in-bc-frames: 947
 in-frames: 1846
[…]
 out-bytes: 381591
 out-valid-bytes: 381591
 out-pause-frames: 0
 out-valid-frames: 4539
 out-vlan-frames: 0
 out-uc-frames: 810
 out-mc-frames: 3673

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
146 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 out-bc-frames: 56
 out-frames: 4539
[…]
 q0-rejected-bytes: 0
 q0-rejected-frames: 0
 q0-dequeue-bytes: 0
 q0-dequeue-frames: 0
 q0-dropped-bytes: 0
 q0-dropped-frames: 0
 q0-frames: 0
[…]
 q7-rejected-bytes: 0
 q7-rejected-frames: 0
 q7-dequeue-bytes: 0
 q7-dequeue-frames: 0
 q7-dropped-bytes: 0
 q7-dropped-frames: 0
 q7-frames: 0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
147 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

5.3.1.5.6 VLAN configuration

By default, the DSA switch application running on i.MX RT1180 EVK configures the NETC switch as VLAN
filtering enabled. The bridge tool from iproute2 package can be used to manipulate the VLAN filter table.

To make the bridge VLAN aware, run the below command to toggle the vlan_filtering property on the
bridge that already exists.

ip link set dev br0 type bridge vlan_filtering 1

By default, only the default pvid (1) of the bridge is installed on all the switch ports. So, all VLAN-tagged traffic,
except that tagged with VID 1, will be dropped.

Note: Since the default pvid (port-based VLAN) is 1, all untagged traffic will also get internally processed by
the switch as having VID 1. So

• Untagged traffic is treated the same as traffic tagged with VID 1, or any other value that the pvid may have.
• Deleting VID 1 from the VLAN table will effectively block untagged traffic too.

Note: VLAN ID 3072 to 3076 as well as 3088 are reserved by the Linux NETC DSA driver and won't be
allowed to be used by the user.

Example 1: To add a new VLAN filter entry by which both the NETC switch port 1 (swp1) and port 2 (swp2) can
accept and transmit tagged traffic with VLAN ID 100:

bridge vlan add dev swp1 vid 100
bridge vlan add dev swp2 vid 100

Example 2: To delete the VLAN filter entry added in previous example.

bridge vlan delete dev swp1 vid 100
bridge vlan delete dev swp2 vid 100

Example 3: To display the current VLAN filter table:

bridge vlan show

It is also possible for the switch to tag untagged traffic with a different VLAN ID on ingress using the pvid
option.

Example 4: To add new VLAN filter entries by which both the NETC switch port 1 (swp1) and port 2 (swp2) can
accept and transmit tagged traffic with VLAN ID 100 and 200, also configure the PVID of NETC switch port 1
(swp1) to 100 and configure the PVID of NETC switch port 2 (swp2) to 200.

bridge vlan add dev swp1 vid 100 pvid
bridge vlan add dev swp2 vid 100
bridge vlan add dev swp1 vid 200
bridge vlan add dev swp2 vid 200 pvid

Using the above configuration, when an untagged packet enters swp1, it gets internally processed by the switch
as having VID 100. If it is forwarded to swp2 as a result of FDB lookup and exits swp2, it is tagged with VLAN
ID 100. Similarly, when an untagged packet enters swp2, it gets internally processed by the switch as having
VID 200. If it is forwarded to swp1 as a result of FDB lookup and exits swp1, it is tagged with VLAN ID 200.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
148 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

In the above example, if the VLAN tag added by PVID on the original untagged packet is not desired, it can be
stripped on egress using the untagged option.

Example 5: To strip the VLAN tag added by PVID on untagged source traffic:

bridge vlan add dev swp1 vid 100 pvid untagged
bridge vlan add dev swp2 vid 100 untagged
bridge vlan add dev swp1 vid 200 untagged
bridge vlan add dev swp2 vid 200 pvid untagged

Using the above configuration, when an untagged packet enters swp1, it gets internally processed by the switch
as having VID 100. If it is forwarded to swp2 as a result of FDB lookup and exits swp2, it is still untagged.
Similarly, when an untagged packet enters swp2, it gets internally processed by the switch as having VID 200. If
it is forwarded to swp1 as a result of FDB lookup and exits swp1, it is still untagged.

5.3.1.5.7 FDB configuration

By default, hardware MAC learning is enabled. FDB table entries <MAC, VID, PORT> are added or updated in
the FDB table when packets with new unique <MAC + VID> are received on the NETC switch port.

Example 1: To display the current FDB table entries related to NETC switch port swp1

bridge fdb show | grep swp1

Example 2: To add a static FDB entry associated with NETC switch port swp1

bridge fdb add dev swp1 11:22:33:44:55:66 vlan 1 master static

Note that the VLAN filter entry for the VLAN ID specified for vlan option must have been added before adding
the FDB entry for that VLAN ID.

Example 3: To delete a static FDB entry

bridge fdb del dev swp1 11:22:33:44:55:66 vlan 1 master static

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
149 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6 Real-time networking

6.1 Time Sensitive Networking (TSN) on NXP platforms
Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards
compatible with IEEE 802.1 and 802.3. These extensions intend to address the limitations of standard Ethernet
in sectors ranging from industrial and automotive applications to live audio and video systems. Applications
running over traditional Ethernet must be designed to be very robust in order to withstand corner cases such as
packet loss, delay, or even reordering. TSN aims to provide guarantees for deterministic latency and packet loss
under congestion. Therefore, it allows critical and non-critical traffic to be converged in the same network.

This chapter describes the process and use cases for implementing TSN features on the i.MX 8M LPDDR4
Plus, i.MX 8DXL LPDDR4 EVK, i.MX 93 EVK, i.MX 93 9x9 QSB, and LS1028ARDB boards.

6.1.1 TSN hardware capability

Platform 802.1Qbv
(Enhancements
for Scheduled
Traffic)

802.1Qbu
and 802.3br
(Frame
Preemption)

802.1Qav
(Credit Based
Shaper)

802.1AS
(Precision
Time Protocol)

802.1CB
(Frame
Replication
and
Elimination for
Reliability)

802.1Qci
(Per Stream
Filtering and
Policing)

ENETC (LS1028
A)

Y Y Y Y N Y

Felix switch
(LS1028A)

Y Y Y Y Y Y

Stmac (i.MX
8DXL, i.MX 8M
Plus, i.MX 93)

Y Y Y Y N N

Table 41. TSN hardware capability on different platforms

6.1.2 TSN configuration

The table below describes the TSN configuration tools support on different platforms

Platform 802.1Qbv
(Enhancements
for Scheduled
Traffic)

802.1Qbu
and 802.3br
(Frame
Preemption)

802.1Qav
(Credit
Based
Shaper)

802.1AS
(Precision
Time
Protocol)

802.1CB
(Frame
Replication
and
Elimination for
Reliability)

802.1Qci (Per
Stream Filtering
and Policing)

ENETC
(LS1028A)

tc-taprio
tsntool

ethtool
tsntool

tc-cbs
tsntool

ptp4l N/A tc-flower
tsntool

Felix switch
(LS1028A)

tc-taprio
tsntool

ethtool
tsntool

tc-cbs
tsntool

ptp4l, Gen
AVB/TSN
stack

tsntool tc-flower
tsntool

Stmac (i.MX
8DXL, i.MX 8M
Plus, i.MX 93)

tc-taprio ethtool tc-cbs ptp4l, Gen
AVB/TSN
stack

N/A N/A

Table 42. TSN configuration tool support on different hardware platforms

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
150 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.2.1 Using Linux traffic control (tc)

Enable the following configurations in kernel when using Linux traffic control (tc):

Symbol: NET_SCH_MQPRIO [=y] && NET_SCH_CBS [=y] && NET_SCH_TAPRIO [=y]
 [*] Networking support --->
 Networking options --->
 [*] QoS and/or fair queueing --->
 <*> Credit Based Shaper (CBS)
 <*> Time Aware Priority (taprio) Scheduler
 <*> Multi-queue priority scheduler (MQPRIO)
 [*] Actions --->
 <*> Traffic Policing
 <*> Generic actions
 <*> Redirecting and Mirroring
 <*> SKB Editing
 <*> Vlan manipulation
 <*> Frame gate entry list control tc action

On lS1028A platform, ENETC QoS driver needs to be set to support tc configuration.

Symbol: FSL_ENETC_QOS [=y]
 Device Drivers--->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 [*] ENETC hardware Time-sensitive Network support

1. The below link provides details for using tc-taprio to set Qbv:

https://man7.org/linux/man-pages/man8/tc-taprio.8.html

2. The below link provides details for using tc-cbs to set Qav:

https://man7.org/linux/man-pages/man8/tc-cbs.8.html

3. The below link provides details for using tc-flower to set Qci and ACL:

https://man7.org/linux/man-pages/man8/tc-flower.8.html

6.1.2.2 Tsntool

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. It is used on
LS1028A platform. You should enable TSN, ENETC_TSN, and MSCC_FELIX_SWITCH_TSN to support tsntool
configuration on LS1028A.

Symbol: TSN [=y]
 [*] Networking support --->
 Networking options --->
 [*] 802.1 Time-Sensitive Networking support
Symbol: ENETC_TSN [=y] && FSL_ENETC_PTP_CLOCK [=y] && FSL_ENETC_HW_TIMESTAMPING
 [=y]
 Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 <*> ENETC PF driver
 <*> ENETC VF driver
 -*- ENETC MDIO driver
 <*> ENETC PTP clock driver

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
151 / 400

https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://man7.org/linux/man-pages/man8/tc-flower.8.html

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 [*] ENETC hardware timestamping support
 [*] TSN Support for NXP ENETC driver
Symbol: MSCC_FELIX_SWITCH_TSN [=y]
 Device Drivers --->
 [*] Network device support --->
 Distributed Switch Architecture drivers --->
 <*> Ocelot / Felix Ethernet switch support --->
 <*> TSN on FELIX switch driver

Enable PKTGEN in the kernel to use pktgen for testing using the commands below:

Symbol: NET_PKTGEN [=y]
 [*] Networking support --->
 Networking options --->
 Network testing --->
 <*> Packet Generator (USE WITH CAUTION)

Refer to Tsntool User Manual for the details.

6.1.2.2.1 Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document
describes how to use tsntool for NXP's LS1028ARDB hardware platform.

Note: Tsntool supports only the LS1028ARDB platform.

6.1.2.2.1.1 Getting the source code

Github of the tsntool code is mentioned below.

https://github.com/nxp-qoriq/tsntool

6.1.2.2.1.2 Tsn tool commands

The Table 43 lists the TSN tool commands and their description.

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

qbvset Sets time gate scheduling config for <ifname>

qbvget Gets time scheduling entries for <ifname>

cbstreamidset Sets stream identification table

cbstreamidget Gets stream identification table and counters

qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

Table 43. TSN tool commands and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
152 / 400

https://github.com/nxp-qoriq/tsntool

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Command Description

qcisficounterget Gets stream filter counters

qcifmiset Sets flow metering instance

qcifmiget Gets flow metering instance

cbsset Sets TCs credit-based shaper configuration

cbsget Gets TCs credit-based shaper status

qbuset Sets one 8-bits vector showing the preemptable traffic class

qbugetstatus Not supported

tsdset Not supported

tsdget Not supported

ctset Sets cut through queue status (specific for ls1028 switch)

cbgen Sets sequence generate configure (specific for ls1028 switch)

cbrec Sets sequence recover configure (specific for ls1028 switch)

dscpset Sets queues map to DSCP of Qos tag (specific for ls1028 switch)

sendpkt Not supported

regtool Registers read/write of bar0 of PFs (specific for ls1028 enetc)

ptptool ptptool get/set ptp timestamp. Useful commands:
#get ptp0 clock time ptptool -g
#get ptp1 clock time ptptool -g -d /dev/ptp1

dscpset Set queues map to DSCP of QoS tag (specific for ls1028 switch)

qcicapget Gets max capability of the qci instance

tsncapget Gets tsn capability of the device

Table 43. TSN tool commands and their description...continued

6.1.2.2.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 44 lists the qbvset parameter and its arguments.

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0.

--entryfile
<filename>

A file script to input gatelist format. It has the following arguments:
#'NUMBER' 'GATE_VALUE' 'TIME_LONG'
• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.
• GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB

corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.

• TIME_LONG: # nanoseconds. Do not input 0 time long.
t0 11101111b 10000 t1 11011111b 10000

Note: Entryfile parameter must be set. If not set, there will be a vi text editor prompt,
"require to input the gate list".

--basetime <value> AdminBaseTime
A 64-bit hex value means nanosecond until now.

Table 44. qbvset

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
153 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description
OR a value input format as: Seconds.decimalSecond
Example: 115.000125means 115 seconds and 125 μs.

--cycletime <value> AdminCycleTime

--cycleextend <value> AdminCycleTimeExtension

--enable | --disable • enable: enables the qbv for this port.
• disable: disables the qbv for this port.
By default, the value is set to enable, if user does not provide any input.

--maxsdu <value> queueMaxSDU

--initgate <value> AdminGateStates

--configchange ConfigChange. Default set to 1.

--configchangetime
<value>

ConfigChangeTime

Table 44. qbvset...continued

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

Table 45. qbvget

Parameter <argument> Description

--enable | --disable • enable: Enables the entry for this index.
• disable: Disables the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--index <value> Index entry number in this controller. Mandatory parameter.
This value corresponds to tsnStreamIdHandle on switch configuration.

--device <string> An interface such as eno0/swp0

--streamhandle
<value>

tsnStreamIdHandle

--infacoutport
<value>

tsnStreamIdInFacOutputPortList

--outfacoutport
<value>

tsnStreamIdOutFacOutputPortList

--infacinport <value> tsnStreamIdInFacInputPortList

--outfacinport
<value>

tsnStreamIdOutFacInputPortList

--nullstreamid | -
-sourcemacvid | -
-destmacvid | --
ipstreamid

tsnStreamIdIdentificationType:
• -nullstreamid:Null Stream identification
• -sourcemacvid: Source MAC and VLAN Stream identification
• -destmacvid: not supported
• -ipstreamid: not supported

--nulldmac <value> tsnCpeNullDownDestMac

Table 46. cbstreamidset

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
154 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description

--nulltagged <value> tsnCpeNullDownTagged

--nullvid <value> tsnCpeNullDownVlan

--sourcemac <value> tsnCpeSmacVlanDownSrcMac

--sourcetagged
<value>

tsnCpeSmacVlanDownTagged

--sourcevid <value> tsnCpeSmacVlanDownVlan

Table 46. cbstreamidset ...continued

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 47. cbstreamidget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--enable | --disable • enable: enable the entry for this index
• disable: disable the entry for this index

By default, this field is set to enable if there is no enable or disable input.

--maxsdu <value> Maximum SDU size.

--flowmeterid <value> Flow meter instance identifier index number.

--index <value> StreamFilterInstance. index entry number in this controller.
This value corresponds to tsnStreamIdHandle of cbstreamidset command on switch
configuration.

--streamhandle
<value>

StreamHandleSpec
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--priority <value> PrioritySpec

--gateid <value> StreamGateInstanceID

--oversizeenable StreamBlockedDueToOversizeFrameEnable

--oversize StreamBlockedDueToOversizeFrame

Table 48. qcisfiset

parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 49. qcisfiget

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
155 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--enable | --disable • enable: enable the entry for this index. PSFPGateEnabled
• disable: disable the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--configchange configchange

--enblkinvrx PSFPGateClosedDueToInvalidRxEnable

--blkinvrx PSFPGateClosedDueToInvalidRx

--initgate PSFPAdminGateStates

--initipv AdminIPV

--cycletime Default not set. Get by gatelistfile.

--cycletimeext PSFPAdminCycleTimeExtension

--basetime PSFPAdminBaseTime
A 64-bit hex value means nanosecond until now.
OR a value input format as: Seconds.decimalSecond
Example: 115.000125means 115 seconds and 125 μs.

--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE_VALUE' 'IPV' 'TIME_
LONG' 'OCTET_MAX'
• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an error.
• GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds

to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.
• IPV: # 0~7
• TIME_LONG: in nanoseconds. Do not input time long as 0.
• OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If zero,

there is no maximum.
Example:
t0 1b -1 50000 10

Table 50. qcisgiset

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 51. qcisgiget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.

--cir <value> cir. kbit/s.

Table 52. qcifmiset

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
156 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description

--cbs <value> cbs. octets.

--eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.

--cm cm. color mode.

--dropyellow drop yellow.

--markred_enable mark red enable.

--markred mark red.

Table 52. qcifmiset ...continued

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 53. qcifmiget parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--preemptable <value> 8-bit hex value. Example: 0xfe The MS bit corresponds to traffic class 7.
The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1 indicates
preemptable.

Table 54. qbuset parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

--percentage <value> Set percentage of tc limitation.

--all <tc-percent:tc-
percent...>

Not supported.

Table 55. cbsset command

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

Table 56. cbsget

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
157 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description

pf number: pf number for the pci resource to act on

offset: offset into pci memory region to act upon

Usage: regtool { pf
number } { offset }
[data]

data: data to be written

Table 57. regtool

Parameter <argument> Description

--device <ifname> An interface such as swp0

--queue_stat <value> Specifies which priority queues have to be processed in cut-through mode of operation. Bit
0 corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 58. ctset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport_mask <value> INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value> SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

--seq_len <value> SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.
tsnSeqGenSpace = 2**SEQ_SPACE_LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--seq_num <value> GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.
Note: Only lower 16-bits are sent in RED_TAG.

Table 59. cbgen

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.
tsnSeqRecSeqSpace = 2**SEQ_REC_SPACE_LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag_pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Table 60. cbrec

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
158 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disables DSCP to traffic class for frames

--index DSCP value

--cos Priority number of queue which is mapped to

--dpl Drop level which is mapped to

Table 61. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 62. qcicapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 63. tsncapget

6.1.2.2.1.4 Input tips

While providing the command input, user can use the following shortcut keys to make the input faster:

• When a user inputs a command, use the TAB key to help list the related commands.
For example:

tsntool> qbv

Then press TAB key, to get all related qbv* start commands.
If there is only one choice, it is filled as the whole command automatically.

• When you want to input parameters and do not remember the parameter name, you can just input “--”. Then
pressing TAB key displays all the parameters.

• If you input only half the parameter’s name, pressing the TAB key lists all the related names.
• History: Press the up arrow “↑” . User gets the command history and can re-use the command.

6.1.2.2.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.

For example:

In the interactive mode:

tsntool> qbuset --device eno0 --preemptable 0xfe

In non-interactive mode:

tsntool qbuset --device eno0 --preemptable 0xfe

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
159 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.2.3 Remote configuration using NETCONF/YANG

1. Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and
modification. It enables a client to adjust to the specific features of any network equipment by using a remote
procedure call (RPC) paradigm and a system to expose device (server) capabilities.

YANG is a standards-based, extensible, hierarchical data modeling language. YANG is used to model the
configuration and state data used by NETCONF operations, RPCs, and server event notifications.

2. Support for different platforms in Real-time Edge

Real-time Edge

LS1028A i.MX 8DXL / i.MX 8M Plus / i.MX 93

TSN offload

libtsn tc tc

802.1Qbv
(Time Aware Shaper)

Y Y Y

802.1Qbu/802.3br
(Frame Preemption)

Y Y Y

802.1Qav
(Credit Based Shaper)

- - -

802.1CB
(Frame Replication and Elimination for
Reliability)

- - N/A

802.1Qci
(Per-Stream Filtering and Policing)

Y Y N/A

IP config Y Y Y

MAC config Y Y Y

VLAN config Y Y Y

Table 65.  Real-time Edge platform support

3. Installation and configuration

Netopeer is a set of NETCONF tools built on the libnetconf library. The sysrepo-tsn (https://github.com/
nxp-real-time-edge-sw/real-time-edge-sysrepo.git) helps to configure TSN features, including Qbv, Qbu, Qci,
and stream identification via network, without logging in to device. For details of configuring TSN features via
Netopeer, refer to NETCONF/YANG). Some application scenarios for tsn refer to Application scenarios.

6.1.2.4 Web-based configuration

6.1.2.4.1 Setting up web server

The Web UI allows the remote control of the YANG model and also get devices information by websockets. This
demo is already added to tsntool in the folder tsntool/demos/cnc/.

In case user wants to setup the web server step by step, follow the below steps one by one:

1. Install related libraries: Suppose user is installing the demo on a Centos PC or Ubuntu PC as the
WebServer. CNC demo requires python3 and related libraries: pyang, libnetconf, and libssh.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
160 / 400

https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

For Ubuntu:
$ sudo apt install -y libtool python-argparse libtool-bin python-sphinx
 libffi-dev
$ sudo apt install -y libxslt1-dev libcurl4-openssl-dev xsltproc python-
setuptools
$ sudo apt install -y zlib1g-dev libssl-dev python-libxml2 libaugeas-dev
$ sudo apt install -y libreadline-dev python-dev pkg-config libxml2-dev
$ sudo apt install -y cmake openssh-server
$ sudo apt install -y python3-sphinx python3-setuptools python3-libxml2
$ sudo apt install -y python3-pip python3-dev python3-flask python3-pexpect
$ sudo apt install -y libnss-mdns avahi-utils
$ pip3 install flask-restful
$ pip3 install websockets

For Centos 7.2:
$ sudo yum install libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-
devel
$ sudo yum install doxygen libevent readline.x86_64 ncurses-libs.x86_64
$ sudo yum install ncurses-devel.x86_64 libssh.x86_64 libssh2-devel.x86_64
$ sudo yum install libssh2.x86_64 libssh2-devel.x86_64
$ sudo yum install nss-mdns avahi avahi-tools

2. Install pyang

$ git clone https://github.com/mbj4668/pyang.git
$ cd pyang
$ git checkout b92b17718de53758c4c8a05b6818ea66fc0cd4d8 -b fornetconf1
$ sudo python setup.py install

3. . Install libssh:

$ git clone https://git.libssh.org/projects/libssh.git
$ cd libssh
$ git checkout fe18ef279881b65434e3e44fc4743e4b1c7cb891 -b fornetconf1
$ mkdir build; cd build/
$ cmake ..
$ make
$ sudo make install

Note: There is a version issue for libssh installation on Ubuntu below version 16.04. Apt-get install libssh
may get version 0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall
by downloading the source code and installing it manually.

4. Get tsntool source code on the web server PC:

git clone https://github.com/nxp-qoriq/tsntool
cd tsntool/demos/cnc/

5. Install libnetconf:
In the below command segments,
• PATH-to-tsntool is the path to the tsntool source code.

$ git clone https://github.com/CESNET/libnetconf.git
$ cd libnetconf
$ git checkout 8e934324e4b1e0ba6077b537e55636e1d7c85aed -b fornetconf1
$ cp PATH-to-tsntool/demos/cnc/0003-update-the-hostkeys-of-ssh-session-
connection.patch .
$ git am 0003-update-the-hostkeys-of-ssh-session-connection.patch
$ autoreconf --force --install
$./configure
$ make

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
161 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

$ sudo make install

6. Install python library:
In the below command segments,
• PATH-to-libnetconf is the path to the libnetconf source code.
• PATH-to-tsntool is the path to the tsntool source code.

$ cd PATH-to-libnetconf/

The libnetconf needs to add two patches based on the below commit point to fix the demo python support.
Ensure that the commit id is 313fdadd15427f7287801b92fe81ff84c08dd970.

$ git checkout 313fdadd15427f7287801b92fe81ff84c08dd970 -b cnc-server
$ cp PATH-to-tsntool/demos/cnc/*patch .
$ git am 0001-lnctool-to-make-install-transapi-yang-model-proper.patch
$ git am 0002-automatic-python3-authorizing-with-root-password-non.patch
$ cd PATH-to-libnetconf/python
$ python3 setup.py build; sudo python3 setup.py install

Note:
If rebuilding python lib, user need to remove the build folder by command rm build -rf before rebuilding. On
the boards Real-time Edge supports, avahi-daemon and netopeer server are required. Remember to also
add the netopeer2-server run at boards.

7. To start the web server on webserver PC, input the command below at shell into the folder: PATH-to-
tsntool/demos/cnc/:

sudo python3 cnc.py

8. Start topoagent server on the boards supported
• Make sure the netopeer2-server run at boards(Not necessary for topology discovery).
• Make sure the lldpd daemon is running at boards.
• Make sure the avahi-daemon is running at boards.
• Start the topology server on boards:

ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

#Stop lldpd service.
pkill lldpd
#Start lldpd and limit interfaces to use. Use all ports except the control
 port.
lldpd -I swp0,swp1,swp2,swp3
#If the hostname is not real-time-edge-$boardname, change to real-time-edge-
$boardname.
avahi-set-host-name real-time-edge-ls1028ardb
cd /home/root/samples/cncdemo/
python3 topoagent.py

9. Use the web browser to track the topology and configuration of the devices. Input the IP of web server with
the port 8180 at browser. For example:

http://10.193.20.147:8180

Note:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
162 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

TSN configuration debug:
• It is recommended to track the boards using tsntool to check the real tsn configuration for comparison.
• For tsn configuration, it is also recommended to track if the netopeer2-server is running at board or not.
Limitations of Web UI are:
• The server setup on a Centos PC or Ubuntu PC could be more compatible.
• Supports Qbv, Qbu, and Qci in current version.
• For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or

else, user will get failure for setting Stream-filter without a stream gate id link to.
• The boards and the web server PC are required to be in the same IP domain since the bridge may block

the probe frames.

6.1.2.4.2 Remote configuration

This section describes the steps for remote configuration.

• Overview
The Web UI allows the remote control of the YANG model. The user can connect to the http server and input
TSN parameters on the web UI. Click "Yes, confirm" button to send the parameters to the board as shown in
Figure 48.

Figure 48. A sample setup for remote configuration
• User Interface

Click the device displayed on the home page, and an interface description table appears. Click the interface to
jump to the configuration page.

• Qbv Configuration: Selecting 'qvb' option setting displays the options as shown in Figure 49.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
163 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 49. Qbv Configuration
• Qbu Configuration: Selecting 'qvb' option setting displays the options as shown in Figure 50.

Figure 50. Qbu configuration
• Qci Configuration: Selecting 'qci' option setting displays the options as shown in Figure 51.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
164 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 51. Qci configuration
The qci interface allows user to select the configuration for "stream identify", "stream filter", "stream gate", and
"flow metering".
Note:
1. Configure the "stream identify" first, then configure the "stream gate" and "flow metering",
configure the "stream filter" at last.
2. "index" in "stream filter" configuration and "streamhandle" in "stream identify" should be the
same value.
3. "flow meter index" in "stream filter" and "index" in "flow metering" should be the same
value (63-246).

6.1.2.4.3 Dynamic remote configuration

The dynamic TSN configuration is used for the TSN configuration dynamically. Users do not need to log into
each TSN node to specify the TSN parameters for TSN configuration. They only need to select the path,
the base time, and then specify the cycle time. Then, the schedule mapping component calculates the TSN
configuration parameters according to the user input and the path selected. The configuration parameters are
delivered to each node by YANG models.

6.1.2.4.3.1 TSN working flow

This section provides an example of the TSN configuration working flow, which is described below:

After topology discovery and device registration, the network topology can be displayed over the web-browser.
The user should select the nodes, specify the stream, input the timing requirement through the stream
reservation component, and schedule configuration component. The results are passed down to the schedule
mapping component to calculate the mapping from customer input to the TSN configuration. The configuration
is instantiated using the YANG model and is delivered to different nodes for actual configuration.

The major components include:

• TSN network topology discovery
• Schedule mapping
• NETCONF/YANG configuration

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
165 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• TSN Protocol Driver and TSN configuration
• Dashboard for stream management and customer input parse

Figure 52 shows the architecture diagram.

Industrial
dashboard

Stream
registration

Stream
reservation

Topology
display

Schedule
configuration

Cfg Instantiation
for YANG model

Topology
discovery

On-field controller
Schedule
mapping

Stream
management

LS1028A
ENETC TSN

i.MX8MP TSN

i.MXRT TSN

Bridges Listeners

Topology
discovery

YANG model
analysis

TSN protocol
driver

LS1028A
TSN

switch

LS1028A
TSN

switch

LS1028A
TSN

switch

YANG model
configuration

LS1028A
ENETC TSN

i.MX8MP TSN

i.MXRT TSN

Talker

Figure 52. TSN architecture diagram

The Figure 52 illustrates the three layers of the TSN architecture. The first layer is the TSN network layer. The
second layer is the service layer, which runs on the on-field controller/server. The third layer is an optional
service that runs in the cloud or on-field server.

The TSN network layer includes TSN switches and endpoints that form the TSN network. For example, it
includes the LS1028A TSN switch and TSN endpoints such as LS1028 ENETC TSN and i.MX 8M Plus TSN
endpoint. The different components run on each of the nodes. For example, the topology discovery component
collects the network topology, YANG model performs the TSN register configuration, and NETCONF server
parses the YANG model for TSN configuration.

The second layer is the on-field controller layer. It is the server running on-field to host the services of the
industrial board, topology discovery and schedule mapping.

The third layer runs on the cloud, which could host the services running on the on-field controller. This layer is
an optional layer.

6.1.2.4.3.2 Topology discovery

The topology discovery component is used to discover network connections by running LLDP on each TSN
network node. The connection information is delivered to topology discovery service running on the on-field
server.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
166 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.2.4.3.3 Path selection

Path selection implements an algorithm to select the path between the selected talker and listener. If there are
multiple paths, the dashboard displays all paths and the user can select one of the paths for the stream. Set a
different VLAN ID for the selected path, and the stream with this VID can flow in the path.

6.1.2.4.3.4 Path delay

Clock synchronization and path delay calculation are two prerequisites for schedule mapping. Clock
synchronization uses gPTP to synchronize the clock of the system. The example described in this document
uses linuxptp PMC tool to get the path delay.

Figure 53 shows a sample configuration to show the PMC running environment on LS1028ARDB boards.

Figure 53. PMC running environment on LS1028ARDB boards

6.1.2.4.3.5 Schedule mapping

The schedule mapping component is a critical component to convert the customer requirement to TSN register
configuration. This component performs the following:

• Gets the user input and converting the input into TSN parameters.
• Gets the path and path delay from the link object of the NetworkGraph file.
• Gets the old TSN configuration for each node and calculates a new configuration to meet the user's

requirements.

6.1.2.4.3.6 Dashboard configuration demo

The figure below shows the dashboard for the configuration demo.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
167 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 54. Dashboard Configuration Demo

Registering a stream

Click “Check Path” button, input the start device in “first device” input box, and end device in “Second device”
input box. Then click the “submit” button, path is described in the Figure 55.

Figure 55. Stream Registration

Click “Register Stream” button, then select the path in path select. Fill VLAN ID, Stream ID, Priority, and then
click “Add” button. The Figure 56 shows the output a stream table.

Figure 56. Registering a Stream

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
168 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Configure stream identification

Click one stream ID in stream table, jump to stream configuration page. Select streamidentify and fill information
in input boxes. The stream MAC information and VLAN ID identify a stream according to the 802.1CB definition.
This information is used by the PSFP configuration. Therefore, the streamidentify page should be configured
before configuring Qci and CFQ. Refer Figure 57.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
169 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 57. Configuring stream identification

Configure Qbv and Qci On Stream

Select Qbv, and then fill basetime, cycletime, and gate open time in the respective input textboxes. Select
enable Qci button to configur both Qci gate control on input port and Qbv control list on the output port. The
CNC server calculates the gate open time slot on each board and get a minimum time delay. Each path node
tries to open gate with a minimum time delay. Refer to Figure 58.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
170 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 58. Configuring Qbv and Qci On Stream

Configuring CQF

The CQF configuration is based on the 802.1Qch definition to configure Qbv and Qci. The CQF configuration
cannot be mixed with the previous Qbv configuration. In CQF configuration, the cycle time and gate open time
for all streams should be the same, and cycle time must be an integer multiple of gate open time. Packets are
delayed for a gate open time on each path node. Refer Figure 59.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
171 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 59. Configuring CQF

6.1.3 TSN on i.MX 8DXL / i.MX 8M Plus / i.MX 93

The following sections describe TSN configuration on i.MX 8DXL, i.MX 8M Plus, or i.MX 93 hardware platforms

6.1.3.1 Test environment

On i.MX 8M Plus EVK / i.MX 93 EVK platform, the interface name of ENET_QOS port which supports TSN is
eth1. On i.MX 8DXL EVK / i.MX 93 9x9 LPDDR4 QSB, the interface name of ENET_QOS port which supports
TSN is eth0.

Connect ENET_QOS port to the TestCenter to test TSN features. The commands in this section use the i.MX
8M Plus EVK platform as example:

Use the following command to check the TSN Ethernet device name:

#ls /sys/devices/platform/soc@0/30800000.bus/30bf0000.ethernet/net/ eth1

The Figure 60 shows the TSN test environment setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
172 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 60. TSN test environment setup

Note: TestCenter is a device used to capture streams from eth1 of i.MX8MP board. For this example, Spirent
TestCenter is used to capture preemptable frames in Qbu test case.

6.1.3.2 Clock synchronization

To test 1588 synchronization on dwcMAC interfaces, use the following procedure:

1. Connect eth1 interfaces on two boards in a back-to-back manner. The Linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Configure the IP address using the command below:

ifconfig eth1 192.168.3.1

3. Check PTP clock and time stamping capability:

ethtool -T eth1
Time stamping parameters for eth1:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)
 ptpv1-l4-event (HWTSTAMP_FILTER_PTP_V1_L4_EVENT)
 ptpv1-l4-sync (HWTSTAMP_FILTER_PTP_V1_L4_SYNC)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
173 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 ptpv1-l4-delay-req (HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ)
 ptpv2-l4-event (HWTSTAMP_FILTER_PTP_V2_L4_EVENT)
 ptpv2-l4-sync (HWTSTAMP_FILTER_PTP_V2_L4_SYNC)
 ptpv2-l4-delay-req (HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ)
 ptpv2-event (HWTSTAMP_FILTER_PTP_V2_EVENT)
 ptpv2-sync (HWTSTAMP_FILTER_PTP_V2_SYNC)
 ptpv2-delay-req (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ)

4. Run ptp4l on two boards:

ptp4l -i eth1 -p /dev/ptp1 -m -2

5. After running, one board is automatically selected as the master, and the slave board displays
synchronization messages.

6. For 802.1AS testing, use the configuration file gPTP.cfg in linuxptp source. Run the below command on
the boards, instead:

ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m

Or use GenAVB/TSN Stack with the following command: 'avb.sh start'. Note that the configuration file /
etc/genavb/fgptp.cfg is automatically used.

Note: i.MX 8M Plus current dwmac driver (eth1) initializes few hardware functions while opening net device,
including PTP initialization. Before that, the operations such as ethtool queries, and PTP operations might not
work. So, the workaround is to do operations on the eth1 and PTP of dwmac only after "ifconfig eth1 up".

Note: If Qbu preemption is enabled on remote device and the PTP packets are sent as preemption frames,
run clock synchronization using the ptp4l command along with the parameter --hwts_filter=full. For
example:

 ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m --hwts_filter=full

6.1.3.3 Qbv

Note: The Qbu frame preemption capability is enabled automatically if the link partner also supports frame
preemption. This is achieved by LLDP protocol by which the link partner announces its support for the
preemption capability via an Additional Ethernet Capabilities TLV in an LLDPDU addressed to the Nearest
Bridge group address (see IEEE Std 802.1Q).. So firstly user needs to check whether frame preemption
is active by command ethtool --show-frame-preemption eth1. If so, user needs to disable frame
preemption using command ethtool --set-frame-preemption eth1 disabled before configuring Qbv
using S (SetGateStates) command in sched-entry.

1. Enable the ptp device, and get the current ptp time.

ptp4l -i eth1 -p /dev/ptp1 -m
#Get current time(seconds)
devmem2 0x30bf0b08
0x5E01F9B2

2. Get the basetime to be 2 minutes later.

#Basetime = (currentime + 120) * 1000000000 = 1577187882000000000

3. Set time schedule, open queue 1 in 100 µs and open queue 2 in 100 µs.

tc qdisc replace dev eth1 parent root handle 100 taprio \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
174 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time
 1577187882000000000 \
 sched-entry S 1 100000 \
 sched-entry S 2 100000 \
 sched-entry S 4 100000 flags 2

4. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 1 -s 1000 -n 0 -m
 90:e2:ba:ff:ff:ff

5. Capture the streams on TestCenter, 100 µs queue 1 frames (length=1004) and 100 µs queue 2 frames
(length=1504) will be got. Or if the Ethernet port is connected to another board, the frames can be captured on
that board by using Linux tcpdump command as shown below:

tcpdump -i eth0 -e -n -t -xx -c 10000 -w tsn.pcap

Then Wireshark can be used to analyze the pcap file on host PC.

Note:

• More than one entry needs to be set on each tc taprio command.
• Use “devmem2 0x30bf0c58” to get Qbv status and check if qbv status is active. refer to
MTL_EST_Status register.

6.1.3.4 Qbu

1. Using ethtool to enable Qbu on eth1, set queue 2 to be preemptable.

ethtool --set-frame-preemption eth1 preemptible-queues-mask 0x04 min-frag-
size 60

Note: Once Qbu is enabled, queue 0 is always preemptable queue. To support preemption, MAC should
have at least 1 queue designated as express queue.
Note: On a back-to-back setup using two i.MX8M Plus EVK boards connected via eth1, Qbu should be
enabled on eth1 of both boards.

2. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 1 -s 150 -n 0 -m
 90:e2:ba:ff:ff:ff

3. Capture the mPacket on Spirent TestCenter. Users can observe that Q2 frames are preempted into
fragments.
Note: Spirent TestCenter can capture the preamble of mPacket. Refer to Section 99.3, "MAC Merge Packet
(mPacket)" of IEEE standard for Ethernet 802.3-2018 for the mPacket format.
a. Below is an example mPacket that contains an express packet, which has SMD value of 0xD5.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
175 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 61. Sample mPAcket that contains an express packet
b. Below is an example mPacket containing an initial fragment of a preemptable packet, which has SMD-

S1 value of 0x4C.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
176 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 62. Sample mPacket containing an initial fragment of a preemptable packet
c. Below is an example mPacket containing a continuation fragment of a preemptable packet, which has

SMD-C1 value of 0x52, as well as frag_count value of 0xE6.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
177 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 63. Sample mPacket containing a continuation fragment of a preemptable packet
4. User can also check the below counter for the number of fragments transmitted.

ethtool -S eth1 | grep "mmc_tx_fpe_fragment_cntr"

5. Qbu combined with Qbv test
Once a queue is set to be a preemptable queue and the gate open/close is invalid in Qbv gate control list,
the queue is considered as always "Open". Use Hold/Release to control all preemptable queues. When
the GCL entry is set from Hold to Release, preemptable queues begin transmitting. When GCL entry is set
from Release to Hold, preemptable queues are held.

tc qdisc replace dev eth1 parent root handle 100 taprio \
 num_tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time
 1577187882000000000 \
 sched-entry H 2 100000 \
 sched-entry R 4 100000 flags 2

6.1.3.4.1 Preemption Verification

The preemption capability is enabled only if the link partner announces its support for the preemption capability
via an Additional Ethernet Capabilities TLV in an LLDPDU addressed to the Nearest Bridge group address (see
IEEE Std 802.1Q). The preemption capability is disabled if the MAC Merge sublayer receives indication of link
failure.

Connect eth1 of two boards back to back. Then, run below command to enable the hardware verification:

ethtool --set-frame-preemption eth1 fp on preemptible-queues-mask 0x04 min-frag-
size 60

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
178 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

After that, make the link down and then up to enable the verify mPacket and response mPacket to be
exchanged between two boards. Run below command to show the preemption status.

 ethtool --show-frame-preemption eth1

Capture the LLDP frames on eth1 port to check the Additional Ethernet Capabilities TLV.

6.1.3.5 Qav

1. Set a queue map handle.

tc qdisc add dev eth1 root handle 1: mqprio num_tc 5 map 0 1 2 3 4 queues 1@0
 1@1 1@2 1@3 1@4 hw 0

2. Set bandwidth of queue 3 to be 20 Mbps.

tc qdisc replace dev eth1 parent 1:4 cbs locredit -1470 hicredit 30 sendslope
 -980000 idleslope 20000 offload 1

3. Send a stream into queue 3:

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 3 -s 500 -n 3000

4. Get the result, bandwidth is 19 Mbps.

WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl^C to stop
Done
Result device: eth1
Params: count 3000 min_pkt_size: 500 max_pkt_size: 500
 frags: 0 delay: 0 clone_skb: 0 ifname: eth1
 flows: 0 flowlen: 0
 queue_map_min: 3 queue_map_max: 3
 dst_min: 198.18.0.42 dst_max:
 src_min: src_max:
 src_mac: a6:85:82:fc:89:bf dst_mac: 02:5d:ae:ba:e0:00
 udp_src_min: 9 udp_src_max: 109 udp_dst_min: 9 udp_dst_max: 9
 src_mac_count: 0 dst_mac_count: 0
 Flags: UDPSRC_RND NO_TIMESTAMP QUEUE_MAP_RND
Current:
 pkts-sofar: 3000 errors: 0
 started: 5631940023us stopped: 5632560030us idle: 79984us
 seq_num: 3001 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
 cur_saddr: 0.0.0.0 cur_daddr: 198.18.0.42
 cur_udp_dst: 9 cur_udp_src: 41
 cur_queue_map: 3
 flows: 0
Result: OK: 620007(c540023+d79984) usec, 3000 (500byte,0frags)
 4838pps 19Mb/sec (19352000bps) errors: 0

5. Set bandwidth of queue 4 to be 40 Mbps.

tc qdisc replace dev eth1 parent 1:5 cbs locredit -1440 hicredit 60 sendslope
 -960000 idleslope 40000 offload 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
179 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6. Send a stream into queue 4 and get the result.

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 4 -s 500 -n 3000
WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl^C to stop
Done
Result device: eth1
Params: count 3000 min_pkt_size: 500 max_pkt_size: 500
 frags: 0 delay: 0 clone_skb: 0 ifname: eth1
 flows: 0 flowlen: 0
 queue_map_min: 4 queue_map_max: 4
 dst_min: 198.18.0.42 dst_max:
 src_min: src_max:
 src_mac: a6:85:82:fc:89:bf dst_mac: 02:5d:ae:ba:e0:00
 udp_src_min: 9 udp_src_max: 109 udp_dst_min: 9 udp_dst_max: 9
 src_mac_count: 0 dst_mac_count: 0
 Flags: UDPSRC_RND NO_TIMESTAMP QUEUE_MAP_RND
Current:
 pkts-sofar: 3000 errors: 0
 started: 6113136017us stopped: 6113443758us idle: 38457us
 seq_num: 3001 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
 cur_saddr: 0.0.0.0 cur_daddr: 198.18.0.42
 cur_udp_dst: 9 cur_udp_src: 17
 cur_queue_map: 4
 flows: 0
Result: OK: 307741(c269283+d38457) usec, 3000 (500byte,0frags)
 9748pps 38Mb/sec (38992000bps) errors: 0

7. Send two streams into queue 3 and queue 4 using the command below:

/home/root/samples/pktgen/pktgen_twoqueue.sh -i eth1 -q 3 -s 1500 -n 0

8. Capture the streams on TestCenter, the frames sort by one Q3 frame and two Q4 frames.

6.1.4 TSN on LS1028A

The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files /usr/
bin/tsntool and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

6.1.4.1 TSN configuration on ENETC

The tsntool is an application configuration tool to configure the TSN capability. Users can find the files /usr/
bin/tsntool and /usr/lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following
sections describe the TSN configuration examples on the ENETC Ethernet driver interfaces.

Before testing the ENETC TSN test cases, you must enable mqprio by using the command below:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

6.1.4.1.1 Clock synchronization

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
180 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Check PTP clock and timestamping capability:

ethtool -T eno0
Time stamping parameters for eno0:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

3. Configure the IP address and run ptp4l on two boards:

ifconfig eno0 <ip_addr>
ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command
on the boards, instead:

ptp4l -i eno0 -p /dev/ptp0 -f /etc/ptp4l_cfg/gPTP.cfg -m

6.1.4.1.2 Qbv

This test includes the Basic Gates Closing test, Basetime test, and the Qbv performance test. These are
described in the following sections.

6.1.4.1.2.1 Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > qbv0.txt << EOF
t0 00000000b 20000
EOF

#Explanation:
'NUMBER' : t0
'GATE_VALUE' : 00000000b
'TIME_LONG' : 20000 ns

tsntool
tsntool> verbose
tsntool> qbvset --device eno0 --entryfile ./qbv0.txt
ethtool -S eno0
ping 192.168.0.2 -c 1 #Should not pass any frame since gates are all off.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
181 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.1.2.2 Basetime test

Base on case 1 qbv1.txt gate list.

#create 1s gate
cat > qbv1.txt << EOF
t0 11111111b 10000
t1 00000000b 99990000
EOF
#ENETC Qbv basetime can be set any past time or future time.
#For the past time, hardware calculate by:
effective-base-time = base-time + N x cycle-time
#where N is the smallest integer number of cycles such that effective-base-time
 >= now.
#If you want a future time, you can get current time by:
tsntool> ptptool -g
#Below example shows basetime start at 260.666 s (start of 1 January 1970):
tsntool> qbvset --device eno0 --entryfile qbv1.txt --basetime 260.666
tsntool> qbvget --device eno0 #User can check configchange time
tsntool> regtool 0 0x11a10 #Check pending status, 0x1 means time gate is working
#Waiting to change state, ping remote computer
ping 192.168.0.2 -A -s 1000
#The reply time will be about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c 1 -s 1300 #frame should not pass

6.1.4.1.2.3 Qbv performance test

Use the setup described in the Figure 64 for testing ENETC port0 (MAC0).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
182 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

(swp0) P0

LS1028ARDB (swp1) P1

(swp2) P2

TSN- Switch

(eno2) enetc 2 P4 (swp4)

P5 (swp5) (eno3) enetc 3

(swp3) P3

(eno1) enetc 1

ENETC

(eno0) enetc 0

TPCI BUS

SWP0

SWP1

SWP2

SWP3

MAC0

TTFTP/BOOT
network

Te1000

TTest Center

Figure 64. Setup for testing ENETC port0

Note: TestCenter is a device used to capture streams from enetc0 of LS1028ARDB board. Users can use
another board to capture streams by using tcpdump command and then use Wireshark to analyze it.

cat > qbv5.txt << EOF
t0 11111111b 1000000 t1 00000000b 1000000
EOF
qbvset --device eno0 --entryfile qbv5.txt
/home/root/samples/pktgen/pktgen_twoqueue.sh -i eno0 -q 3 -n 0
#The stream would get about half line rate

6.1.4.1.2.4 Using taprio Qdisc Setup Qbv

LS1028ARDB support the taprio qdisc to setup Qbv either. Below is an example setup.

#Qbv test do not require the mqprio setting.
If mqprio is enabled, try to disable it by below command:
tc qdisc del dev eno0 root handle 1: mqprio
Enable the Qbv for ENETC eno0 port
Below command set eno0 with gate 0x01, means queue 0 open, the other queues
 gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5
 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 01 300000
 flags 0x2
Ping through eno0 port should be ok
Then close the gate queue 0. Open gate queue 1. The other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5
 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000
 flags 0x2
Ping through eno0 port should be dropped
#Disable the Qbv for ENETC eno0 port as below

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
183 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

tc qdisc del dev eno0 parent root handle 100 taprio

6.1.4.1.3 Qbu

• If user has two LS1028ARDB boards, then link the two eno0 ports back to back. In this case, the test does not
need the switch to be set up. Users can omit the steps 2, 3, and 4 and just perform steps 1, 5, and 6.

• If user has only one board, user can set the frame path from eno0 to switch by linking enetc ports MAC0
- SWP0. The setup enables the switch SWP0 port-merging capability. Then enetc eno0 can show the
preemption capability. Use the setup as shown in the for the Qbu test.

Figure 65. Qbu test

Before linking the cable between ENETC port0 to SWP0, set up the switch up (refer the Switch configuration)
and set IP for ENETC port0. To make sure the ENETC port0 is linked to SWP0, use the steps below:

1. Do not forget to enable the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
184 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2. Make sure link speed is 1 Gbps by using the command:

ethtool eno0

3. If it is not 1 Gbps, set it to 1 Gbps by using the command:

ethtool -s swp0 speed 1000 duplex full autoneg on

4. Set the switch to enable merge (or user can link to another merge capability port in another board):

devmem2 0x1fc100048 w 0x111 #DEV_GMII:MM_CONFIG:ENABLE_CONFIG

5. ENETC port setting set and frame preemption test:

ip link set eno0 address 90:e2:ba:ff:ff:ff
tsntool qbuset --device eno0 --preemptable 0xfe
/home/root/samples/pktgen/pktgen_twoqueue.sh -i eno0 -q 0 -s 100 -n 20000 -m
 90:e2:ba:ff:ff:ff

pktgen would flood frames on TC0 and TC1.
6. Check the TX merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11f18

Note: 0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC_MERGE_MMFCTXR)

LS1028ARDB also supports ethtool setup for preemption as in the example below:

ethtool --set-frame-preemption eno0 preemptible-queues-mask 0xfe

This implies that we can get same result by using TC0 to pass express MAC and TC1~TC7 to pass
preemptable MAC.

The ENETC also supports preemption verify. Use two boards to test preemption verification on eno0. Refer to
Section 6.1.3.4.1.

6.1.4.1.4 Qci

Use the following as the background setting:

• Set eno0 MAC address

ip link set eno0 address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.
• Use the figure below as the hardware setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
185 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 66. Qci test case setup
Note: TestCenter is a device to send streams to enetc0 of LS1028ardb board. User also can use another
board to send streams.

6.1.4.1.4.1 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module, which are the streams without MAC address
and vid filter. Such kind of filter setting always sets a larger index number stream for filter entry. The frames that
are not filtered then flow into this stream filter entry.

The below example tests no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream
entry id 2. Then none stream identifies frames would flow into the stream filter entry index 2 then pass the gate
entry index 2, as shown in the following example:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2

• Streams no streamhandle should pass this filter.

tsntool> qcisfiget --device eno0 --index 2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
186 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Send a frame from the opposite device port (ping for example).

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2

tsntool> qcisgiset --device eno0 --index 2 --initgate 1

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2, gate closes permanently.

tsntool> qcisgiset --device eno0 --index 2 --initgate 0

• Send a frame from the opposite device port.

tsntool> qcisfiget --device eno0 --index 2
#The result should look like below:
 match pass gate_drop sdu_pass sdu_drop red
 1 0 1 1 0 0

6.1.4.1.4.2 Testing null stream identify entry

Null stream identify in stream identify module means trying to filter using destination MAC address and vlan id.

Following steps show the stream identify entry index 1 set with filtering destination mac address as
10:00:80:00:00:00 and vlan id ignored (with or without vland id). Then stream filter is set on the entry index 1
with stream gate index entry id 1.

1. Set main stream by closing gate.
2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.

tsntool> cbstreamidget --device eno0 --index 1

4. Set Stream filer entry 1 with stream gate entry id 1.

tsntool> qcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask user for editing
gate list).

tsntool> qcisgiset --device eno0 --index 1 --initgate 0

6. Send one frame from the opposite device port should pass to the close gate entry id 1.

tsntool> qcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate_drop sdu_pass sdu_drop red
1 0 1 1 0 0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
187 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.1.4.3 Testing source stream identify entry

Source stream identify means stream identify the frames by the source mac address and vlan id.

Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.
2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not

with destination mac address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac
address)

3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid --sourcemac
 0x112233445566 --sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> qcisfiget --device eno0 --index 1

6.1.4.1.4.4 SGI stream gate list

Use the command below for this test:

cat > sgi1.txt << EOF
t0 0b -1 100000000 0
t1 1b -1 100000000 0
EOF
tsntool> qcisfiset --device eno0 --index 2 --gateid 2
tsntool> qcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgi1.txt
#flooding frame size 64bytes from opposite device port.(iperf or netperf as
 example)
tsntool> qcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open
and 100ms close periodically.

6.1.4.1.4.5 FMI test

Only send green color frames (normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the
eno0 port speed to 10000 kbsp/s:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
 1500 --eir 5000

The 'cm' parameter set color mode enable means frames to separate green frames and yellow frames judged
by the TCI bit in frame. Or else, any frames are green frames.

The 'cf' parameter sets the coupling flag enable. When CF is set to 0, the frames that are declared yellow are
bound by EIR. When CF is set to 1, the frames that are declared Yellow are bound by CIR + EIR, depending on
volume of the offered frames that are declared Green.

After the above commands are setup, since green frames are not larger than EIR + CIR 10 Mbit/s. So the green
frame would not be dropped.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
188 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The below setting shows the dropped frames:

tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
 1500 --eir 2000

This case makes the green frames pass 5 Mbit/s in CIR, then it pass to the EIR space. However, EIR is 2 Mbit/
s, so total EIR + CIR 7 Mbit/s still do not qualify the total 10 Mbit/s bandwidth. So green frame would be dropped
part.

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> qcifmiget --device eno0 --index 2
==
bytecount drop dr0_green dr1_green dr2_yellow remark_yellow dr3_red remark_red
1c89 0 4c 0 0 0 0 0
===
index = 2
cir = c34c
cbs = 5dc
eir = 4c4b3c
ebs = 5dc
couple flag
color mode

6.1.4.1.5 Qav

6.1.4.1.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
189 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 67. Qav test setup

Note: TestCenter is a device to capture streams from enetc0 of LS1028ARDB board. Users can also use
another board to capture streams by using tcpdump command, and use Wireshark network protocol analyzer
to analyze results.

0. Ensure to enable the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

tsntool cbsset --device eno0 --tc 7 --percentage 60
tsntool cbsset --device eno0 --tc 6 --percentage 20

2. Check each queue bandwidth (pktgen requires enabling NET_PKTGEN in kernel)

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n
 30000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
190 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Wait a few seconds later to check the result. It should get about 60% percentage line rate.

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n
 30000

Wait a few seconds later to check the result. It should get about 20% percentage line rate.

6.1.4.1.5.2 Using CBS Qdisc to setup Qav

LS1028a supports the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100 Mbit/s for
queue 7 and 300 Mbit/s for queue 6.

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
tc qdisc replace dev eno0 parent 1:8 cbs locredit -1350 hicredit 150 sendslope
 -900000 idleslope 100000 offload 1
tc qdisc replace dev eno0 parent 1:7 cbs locredit -1050 hicredit 950 sendslope
 -700000 idleslope 300000 offload 1

Try to flood stream here (require kernel enable NET_PKTGEN)
/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 20000
/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n 20000
tc qdisc del dev eno0 parent 1:7 cbs
tc qdisc del dev eno0 parent 1:8 cbs

6.1.4.2 TSN configuration on Felix switch

The following sections describe examples for the basic configuration of TSN switch.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
191 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.2.1 Switch configuration

Figure 68. TSN switch configuration

Use the following commands to configure bridge on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces for swp0, swp1, swp2 and swp3 as shown below:

ip link set eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

6.1.4.2.2 Linuxptp test

To run PTP clock synchronization cases on TSN switch in:

• 4.3.5 Quick Start for IEEE 1588
• 4.3.6 Quick Start for IEEE 802.1AS

There are additional configurations of PTP packets trapping besides basic L2 switch mode configuration of
“4.1.4.2.1 Switch configuration”. An available IP should be configured on bridge, and don’t configure IP on swpX
interfaces.

$./switch-ptp-trap.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
192 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

$ ifconfig switch <ip_address>

switch-ptp-trap.sh

swp0, trap ptp
tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp0 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp0 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp0 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp0 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000
tc filter add dev swp0 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000
tc filter add dev swp0 ingress chain 20000 protocol 0x88f7 flower skip_sw action
 trap action goto chain 21000
tc filter add dev tc filter add dev swp0 ingress chain 20000 protocol ip flower
 skip_sw dst_ip 224.0.1.129 action trap action goto chain 21000
tc filter add dev tc filter add dev swp0 ingress chain 20000 protocol ip flower
 skip_sw dst_ip 224.0.0.107 action trap action goto chain 21000

swp1, trap ptp
tc qdisc add dev swp1 clsact
tc filter add dev swp1 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp1 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp1 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp1 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp1 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000
tc filter add dev swp1 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000
tc filter add dev swp1 ingress chain 20000 protocol 0x88f7 flower skip_sw action
 trap action goto chain 21000
tc filter add dev swp1 ingress chain 20000 protocol ip flower skip_sw dst_ip
 224.0.1.129 action trap action goto chain 21000
tc filter add dev swp1 ingress chain 20000 protocol ip flower skip_sw dst_ip
 224.0.0.107 action trap action goto chain 21000

swp2, trap ptp
tc qdisc add dev swp2 clsact
tc filter add dev swp2 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp2 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp2 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp2 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp2 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
193 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

tc filter add dev swp2 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000
tc filter add dev swp2 ingress chain 20000 protocol 0x88f7 flower skip_sw action
 trap action goto chain 21000
tc filter add dev swp2 ingress chain 20000 protocol ip flower skip_sw dst_ip
 224.0.1.129 action trap action goto chain 21000
tc filter add dev swp2 ingress chain 20000 protocol ip flower skip_sw dst_ip
 224.0.0.107 action trap action goto chain 21000

swp3, trap ptp
tc qdisc add dev swp3 clsact
tc filter add dev swp3 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp3 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp3 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp3 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp3 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000
tc filter add dev swp3 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000
tc filter add dev swp3 ingress chain 21000 protocol 0x88f7 flower skip_sw action
 trap action goto chain 21000
tc filter add dev swp3 ingress chain 21000 protocol ip flower skip_sw dst_ip
 224.0.1.129 action trap action goto chain 21000
tc filter add dev swp3 ingress chain 21000 protocol ip flower skip_sw dst_ip
 224.0.0.107 action trap action goto chain 21000

ebtables, route ptp, not bridge
ebtables --table broute --append BROUTING --protocol 0x88F7 --jump DROP
ebtables --table broute --append BROUTING --protocol 0x0800 --ip-protocol udp --
ip-destination-port 320 --jump DROP
ebtables --table broute --append BROUTING --protocol 0x0800 --ip-protocol udp --
ip-destination-port 319 --jump DROP

6.1.4.2.3 Qbv test setup for LS1028ARDB

The following figure describes the setup for Qbv test on LS1028ARDB.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
194 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 69. Qbv test

Reserve buffer for each queue on ingress and egress port to avoid resource depletion when Qbv gate is closed.

ingressport=0
egressport=1
for tc in {0..7}; do {
 devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc $tc type
 ingress pool 0 th 3000
 devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
 ingress pool 0 th 10
 devlink sb tc bind set pci/0000:00:00.5/$egressport sb 0 tc $tc type egress
 pool 1 th 3000
 devlink sb tc bind set pci/0000:00:00.5/$egressport sb 1 tc $tc type egress
 pool 1 th 10
}
done

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
195 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.2.3.1 Tsntool usage

Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > qbv0.txt
#Explaination:
'NUMBER' : t0
'GATE_VALUE' : 00000000b
'TIME_LONG' : 20000 ns
./tsntool
tsntool> verbose
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt
#Send one broadcast frame to swp0 from TestCenter.
ethtool -S swp1
#Should not get any frame from swp1 on TestCenter.
echo “t0 11111111b 20000” > qbv0.txt
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt
#Send one broadcast frame to swp0 on TestCenter.
ethtool -S swp1
#Should get one frame from swp1 on TestCenter.

Basetime test

For the basetime test, first get the current time in seconds:

#Get current time:
tsntool> ptptool -g -d /dev/ptp1

#add some seconds, for example user gets 200.666 time clock, then set 260.666 as
 result

tsntool> qbvset --device swp1 --entryfile ./qbv0.txt --basetime 260.666

#Send one broadcast frame to swp0 on the TestCenter.
#Frame could not pass swp1 until time offset.

Qbv performance test

Use the following commands for the QBv performance test:

cat > qbv5.txt << EOF
t0 11111111b 1000000
t1 00000000b 1000000
EOF
qbvset --device swp1 --entryfile qbv5.txt

#Send 1G rate stream to swp0 on TestCenter.

#The stream would get about half line rate from swp1.

Note: Each entry time must be larger than guard band, the guard band is set by "--maxsdu", if it's not set, use
default 1518Bytes, the least entry time is (1518*8)/1G≈12us.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
196 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.2.3.2 Tc-taprio usage

LS1028ARDB supports the tarprio qdisc to setup Qbv either. Below is an example setup.

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300 µs.

tc qdisc replace dev swp1 parent root handle 100 taprio num_tc 8 map 0 1 2 3 4 5
 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02
 300000 flags 0x2

Note: Since the hardware can only use PCP, DSCP or other methods to classify QoS, it cannot map QoS to
different hardware queues. mqprio is not implemented in the felix driver, so "map 0 1 2 3 4 5 6 7" in the tc-taprio
command is invalid.

Note: Tc-taprio uses default port max SDU(1518B) as guard band value. Each entry time must be larger than
guard band(1518*8/1G≈12us).

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, so as to capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and the frame from swp1
cannot be captured.

4. Disable the Qbv for swp1 port as below:

tc qdisc del dev swp1 parent root handle 100 taprio

6.1.4.2.4 Qbu

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
197 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 70. Qbu test on switch

6.1.4.2.4.1 Tsntool usage

1. Disable the Cut-through mode before enabling preemption on switch ports.

tsntool> ctset --device swp3 --queue_stat 0x0

2. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#tsntool command to set preemptable queues:
tsntool> qbuset --device swp3 --preemptable 0x02

3. Send two streams from TestCenter, set packet size to be 1500 Byte and bandwidth to be 1G. Now, check
the number of additional mPackets transmitted by PMAC using the command below:

ethtool -S swp3 | grep tx_merge_fragments

4. Follow the steps below to perform Qbu combined with Qbv test.
Set queue 0 gate open 20 µs, queue 1 gate open to 20 µs.

cat > qbv0.txt << EOF
t0 00000001b 200000
t1 00000010b 200000
EOF
qbvset --device swp3 --entryfile qbv0.txt

Send two streams from TestCenter. Observe that packets in queue 1 are preempted when gate 1 is closed.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
198 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.2.4.2 Ethtool usage

1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#ethtool command to set preemptable queues:
ethtool --set-frame-preemption swp3 preemptible-queues-mask 0x02 min-frag-
size 124

Explanation:
• preemptible-queues-mask: An 8-bit vector that specifies preemptable queues within the 8 priorities

(with bit-0 for priority-0 and bit-7 for priority-7).
• min-frag-size: specifies the least frame bytes that have been transmitted in the fragment. The

minimum non-final fragment size is 64, 128, 192, or 256 octets (include 4 Bytes fragment header).
2. Send two streams from TestCenter. Set packet size to be 1500 Bytes and bandwidth to be 1 G. Now, check

the number of additional mPackets transmitted by PMAC:

ethtool -S swp3 | grep tx_merge_fragments

3. Qbu combined with Qbv test.
Set queue 0 gate open 20 µs, queue 1 gate open 20 µs.

tc qdisc replace dev swp3 parent root handle 100 taprio num_tc 8 map 0 1 2 3
 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \
 sched-entry S 01 200000 \
 sched-entry S 02 200000 flags 0x2

Send two streams from TestCenter. Note that packets in queue 1 are preempted when gate 1 closed.
4. The felix switch port also supports preemption verify. Use two boards to test preemption verification on

swp0-3. Refer to "4.1.3.4.1 Preemption verify.

6.1.4.2.5 Qci

The figure below illustrates the Qci test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
199 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 71. Qci test case

6.1.4.2.5.1 Tsntool usage

Stream identification

Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01,
Vlan ID : 1

2. Add the MAC to MAC table on LS1028a. (This step is not needed if the mac is already learned on port)

bridge fdb add 00:01:83:fe:12:01 dev swp1 vlan 1 master static

3. Use the destination MAC as: 00:01:83:fe:12:01, vlan ID : 1 to set the stream identification on
LS1028A.

tsntool> cbstreamidset --device swp1 --nullstreamid --index 1 --nulldmac
 0x000183fe1201 --nullvid 1 --streamhandle 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
200 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Explanation:
• device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by

switch, switch will not care device port.
• nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.
• nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> qcisfiset --device swp0 --index 1 --streamhandle 1 --gateid 1 --
priority 0 --flowmeterid 68

Explanation:
• device: can be any one of switch ports.
• index: value is the same as streamhandle of cbstreamidset.
• streamhandle: value is the same as streamhandle of cbstreamidset.
• flowmeterid: PSFP Policer id, ranges from 63 to 383.

4. Send one frame, then check the frames.

ethtool -S swp1
ethtool -S swp2

Only swp1 can get the frame.
5. Use the following command to check and debug the stream identification status.

qcisfiget --device swp0 --index 1

Note: The parameter streamhandle is the same as index in stream filter set, we use streamhandle as
SFID to identify the stream, and use index to set stream filter table entry.

Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt --basetime 0x0

Explanation:
• 'device': can be any one of switch ports.
• 'index': gateid
• 'basetime': It is the same as Qbv set.

2. Send one frame on TestCenter.

ethtool -S swp1

Note that the frame could pass, and green_prio_3 has increased.
3. Now run the following commands:

echo "t0 0b 3 50000 200" > sgi.txtx
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt --basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swp1

Note that the frame could not pass.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
201 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

SFI maxSDU test

Disable the cut-through mode on swp0 and swp1:

tsntool> ctset --device swp0 --queue_stat 0
tsntool> ctset --device swp1 --queue_stat 0

Use the following command to run this test:

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid
 68 --maxsdu 200

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swp1

Users can observe that the frame could not pass.

FMI test

Use the following set of commands for the FMI test.

1. Reserve buffer for each queue on ingress port to receive yellow frames(dp=1) in switch.

ingressport=0
for tc in {0..7}; do {
 devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc $tc type
 ingress pool 0 th 3000
 devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
 ingress pool 0 th 10
}
done

2. Run the command:

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs
 4000 --eir 100000

Note:
• The 'device' in above command can be any one of the switch ports.
• The index of qcifmiset must be the same as flowmeterid of qcisfiset.

3. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swp0

Note that all frames pass and get all green frames.
4. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swp0

Observe that all frames pass and get green and yellow frames.
5. Send one stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get green, yellow, and red frames.
6. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swp0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
202 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

All frames pass and get all yellow frames.
7. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.
8. Test cf mode.

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs
 4000 --eir 100000 --cf

9. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames (use CIR as well as EIR).
10. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

Port-based SFI set

LS1028A switch can work on port-based PSFP set. This implies that when a null-identified stream is received
on an ingress port, switch will use the port, default SFI.

Below example tests no streamhandle in qcisfiset to set a port, default SFI.

1. Use SFID 2 to set swp0 port as default SFI.

tsntool> qcisfiset --device swp0 --index 2 --gateid 1 --flowmeterid 68

After the port default SFI set, any stream sent from swp0 port will do the gate 1 and flowmeter 68 policy.

2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0 --
gatelistfile sgi.txt

3. Send any stream to swp0.

ethtool -S swp1

Note that the frame could pass, and green_prio_4 has increased.

6.1.4.2.5.2 Tc-flower usage

The figure below illustrates the TC-flower-based Qci test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
203 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 72. TC-flower based Qci test case

1. Add the MAC address 'CA:9C:00:BC:6D:68' in MAC table by using bridge fdb command if it is not
learned.

bridge fdb add dev swp3 CA:9C:00:BC:6D:68 vlan 1 master static

2. Register chains on ingress port swp0. Refer to Section 6.4.2.

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp0 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp0 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp0 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp0 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000
tc filter add dev swp0 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000

3. Set Qci on ingress port swp0.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
204 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

a) Use the following commands to set Qci gate.

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q flower skip_sw
 dst_mac CA:9C:00:BC:6D:68 vlan_id 1 action gate index 1 base-time 0 sched-entry
 CLOSE 6000 -1 -1

b). Use the following commands to set Qci flow meter.

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q flower skip_sw
 dst_mac CA:9C:00:BC:6D:68 vlan_id 1 action police index 1 rate 10Mbit burst
 10000 conform-exceed drop/ok

c). Use the following commands to set Qci SFI priority.

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q flower skip_sw
 dst_mac CA:9C:00:BC:6D:68 vlan_id 1 vlan_prio 1 action gate index 1 base-time 0
 sched-entry CLOSE 6000 -1 -1

d). Use the following commands to set both gate and flow meter.

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q flower skip_sw
 dst_mac CA:9C:00:BC:6D:68 vlan_id 1 action gate index 1 base-time 0 sched-entry
 OPEN 6000 2 -1 action police index 1 rate 10Mbit burst 10000 conform-exceed
 drop/ok

3. Send a stream from TestCenter, set the stream destination mac as CA:9C:00:BC:6D:68, set vid=1 and
vlan_prio=1 in the vlan tag.

4. Using "tcpdump -i eno0 -w eno0.pcap" to receive the stream on eno0, check if packets are received.

5. Use the following commands to delete a stream rule.

tc -s filter show dev swp0 ingress chain 30000
tc filter del dev swp0 ingress chain 30000 pref 49152

Note:

• Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.
• MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.
• Qci gate cycle time is expected to be more than 5 μs.
• Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

6.1.4.2.6 Qav

The below figure illustrates the Qav test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
205 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 73. Qav test case

6.1.4.2.6.1 Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> ctset --device swp0 --queue_stat 0x0
tsntool> ctset --device swp1 --queue_stat 0x0
tsntool> ctset --device swp2 --queue_stat 0x0
tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 --percentage 40

2. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.
Note: Stream rate must lager than bandwidth limited of queue.

3. Capture frames on swp2 on TestCenter.
The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2),
(PCP=2),…

6.1.4.2.6.2 Tc-cbs usage

LS1028A supports the CBS qdisc to setup Credit-based Shaper. The below commands set CBS with 20 Mbit/s
for queue 1 and 40 Mbit/s for queue 2.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
206 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Set the cbs of two traffic classes:

tc qdisc add dev swp2 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
tc qdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
 sendslope -980000 idleslope 20000 offload 1
tc qdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
 sendslope -960000 idleslope 40000 offload 1

2. Send one stream with PCP=1 from TestCenter, we can get the stream bandwith is 20 Mbit/s from swp2.

3. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note: The frame count of queue1 is half of queue2.

4. Delete the cbs rules.

tc qdisc del dev swp2 parent 1:2 cbs
tc qdisc del dev swp2 parent 1:3 cbs

6.1.4.2.7 802.1CB

The Figure 74 describes the test setup for the seamless redundancy test case.

(swp0) P0

LS1028ARDB (swp1) P1

(swp2) P2

TSN- Switch

(eno2) enetc 2 P4 (swp4)

P5 (swp5) (eno3) enetc 3

(swp3) P3

(eno1) enetc 1

ENETC

(eno0) enetc 0
MAC0

TPCI BUS

(swp0) P0

LS1028ARDB(swp1) P1

(swp2) P2

TSN- Switch

P4 (swp4)

P5 (swp5)

(swp3) P3

(eno2) enetc 2

(eno3) enetc 3

(eno1) enetc 1

ENETC

(eno0) enetc 0
MAC0

TPCI BUS

Board A
Board B

TTest Center

Capture CaptureSend

Figure 74. Seamless redundancy test

6.1.4.2.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.
On board A:

ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
207 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

On board B
ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

2. On board A, run the commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static
tsntool> cbstreamidset --device swp0 --index 1 --nullstreamid --nulldmac
 0x7EA88C9B41DD --nullvid 1 --streamhandle 1
tsntool> cbgen --device swp3 --index 1 --iport_mask 0x08 --split_mask 0x07 --
seq_len 16 --seq_num 2048

In the command above,
• device: can be any one of switch ports.
• index: value is the same as streamhandle of cbstreamidset.

3. Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.
4. Capture frames on swp2 on TestCenter.

We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801,
23450802, 23450803…

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

6.1.4.2.7.2 Sequence Recover test

Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static
tsntool> cbstreamidset --device swp2 --index 1 --nullstreamid --nulldmac
 0x7EA88C9B41DD --nullvid 1 --streamhandle 1
tsntool> cbrec --device swp0 --index 1 --seq_len 16 --his_len 31 --
rtag_pop_en

In the cbrec command mentioned above:
• device: can be any one of switch ports.
• index: value is the same as streamhandle of cbstreamidset.

2. Send a frame from TestCenter to swp3 of board A, set the destination MAC address to be
7E:A8:8C:9B:41:DD.

3. Capture frames from swp2 of board B on the TestCenter, we can get only one frame without sequence tag.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
208 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.1.4.2.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to
different QoS class. These are explained in the following sections.

6.1.4.2.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default
QoS class is 0.

Set the PCP value on TestCenter.

Figure 75. Using PCP value of Vlan tag

6.1.4.2.8.2 Based on DSCP of ToS tag

Use the below steps to identify stream based on DSCP value of ToS tag.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
209 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swp0 --index 1 --cos 1 --dpl 0

Explanation:
• index: DSCP value of stream, 0-63.
• cos: QoS class which is mapped to.
• dpl: Drop level which is mapped to.

2. Set the DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP
value on TestCenter as shown in Figure 76.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
210 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 76. Setting DSCP value on TestCenter

6.1.4.2.8.3 Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.

1. Identify a stream.

tsntool> cbstreamidset --device swp1 --nullstreamid --nulldmac 0x000183fe1201
 --nullvid 1 --streamhandle 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
211 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --flowmeterid 68

2. Set to Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt

Note: The Qci-based identity stream can only be used on both the ingress and egress are bridge ports.
The flow injected or extracted through the CPU port cannot be configured for Qci.

6.2 GenAVB/TSN stack
This section describes the steps for configuring GenAVB/TSN stack.

6.2.1 Introduction

The GenAVB/TSN Stack provides advanced implementation for Audio Video Bridging (AVB) and Time-Sensitive
Networking (TSN) functionalities on NXP SoCs and hardware platforms, for both Endpoints and Bridges.

This section provides information on how to set up and evaluate the GenAVB/TSN Stack. In that context, it
provides information on supported SoCs and boards, compile time software package configuration, and runtime
configuration settings.

The GenAVB/TSN stack supports the following roles:

• TSN Endpoint

TSN Endpoint functionality requires TSN hardware support, available on i.MX 93, i.MX 8M Plus, and i.MX 8DXL
SoCs.

• AVB/TSN Bridge

AVB/TSN Bridge functionality requires AVB/TSN hardware support, available in LS1028A SoC.

• AVB Endpoint

AVB Endpoint functionality is provided in i.MX 93, i.MX 8M Plus, i.MX 8DXL, i.MX 8M Mini, and i.MX 6ULL SoCs
(using hardware support if available).

6.2.1.1 gPTP Stack

The gPTP stack implements IEEE 802.1AS-2020 standard, and supports both time-aware Endpoint and
Bridge systems. The stack runs fully in userspace, using Linux socket APIs for packet transmit, receive, and
timestamping. Linux clock APIs are used for clock adjustment. Configuration files are used to configure the
stack at initialization time and extensive logging is available at runtime.

6.2.1.2 SRP stack

The SRP stack implements MRP, MVRP, and MSRP defined in IEEE 802.1Q-2018, sections 10, 11, and 35,
and supports both Endpoint and Bridge systems. The stack runs fully in userspace, using Linux socket APIs
for packet transmit and receive. Linux tc and bridge netlink APIs are used to update Multicast FDB entries
and FQTSS Credit Based Shaper (CBS) configuration. Configuration files are used to configure the stack at
initialization time and extensive logging is available at runtime.

6.2.1.3 AVTP Stack

The AVTP stack implements IEEE 1722-2016 standard, supporting both AVB Talker/Listener end stations and
multiple Audio/Video stream formats. The stack runs in userspace, in combination with a Linux AVB kernel

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
212 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

module, providing low latency network packet processing and AVTP packet encapsulation/decapsulation.
The stack provides an API for external media applications through a run time library. The API allows external
applications to act as sources of AVTP Talker streams/sinks of AVTP Listener streams.

6.2.1.4 AVDECC/Milan Stack

The AVDECC stack implements IEEE 1722.1-2013 standard, and supports Talker, Listener and Controller
entities. The stack also implements Milan “Discovery, connection and control specification for talkers and
listeners Revision 1.1a” standard, which can be enabled at initialization time. AVDECC entity definitions are
loaded from the filesystem and can be created based on a C header file definition. The stack provides an API
for external media applications through a run time library.

6.2.1.5 MAAP Stack

The MAAP stack implements IEEE 1722-2016, Annex B. The stack provides an API for external media
applications through a run time library, but it mainly serves the AVDECC/Milan stack.

6.2.1.6 Supported configurations

GenAVB/TSN stack currently supports the following boards and the associated roles:

• LS1028ARDB: gPTP Time-aware Bridge and SRP Bridge
• i.MX 93 EVK: gPTP Time-aware Endpoint station, TSN Endpoint, and AVB Endpoint stack/applications.
• i.MX 93 9x9 LPDDR4 QSB: gPTP Time-aware Endpoint station and TSN Endpoint.
• i.MX 8M Plus LPDDR4 EVK: gPTP Time-aware Endpoint station, TSN Endpoint, and AVB Endpoint stack/

applications.
• i.MX 8M Mini LPDDR4 EVK: gPTP Time-aware Endpoint station and AVB Endpoint stack/applications.
• i.MX 6ULL 14x14 EVK: gPTP Time-aware Endpoint station and AVB Endpoint stack/applications.
• i.MX 8DXL LPDDR4 EVK: gPTP Time-aware Endpoint station, TSN Endpoint and AVB Endpoint stack/

applications. Along with AVB bridge stack when connecting SJA1105Q-EVB Hardware.

The TSN stack supports and is enabled in the following Yocto Real-time Edge machines:

• imx93evk
• imx93-9x9-lpddr4-qsb
• imx8mp-lpddr4-evk
• ls1028ardb
• imx8dxlb0-lpddr4-evk

The AVB Endpoint stack supports and is enabled in the following Yocto Real-time Edge machines:

• imx6ull14x14evk
• imx8mm-lpddr4-evk
• imx8mp-lpddr4-evk
• imx8dxlb0-lpddr4-evk

Follow Real-time Edge Software Yocto Project to get the code and build images for these platforms.

6.2.1.7 AVB endpoint example applications

The stack provides extensive example applications for media playback/capture and server. Please refer to
“GenAVB/TSN Stack Evaluation User Guide” for detailed information. Refer Section 1.4.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
213 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.1.8 TSN endpoint example application

The TSN example application provides example code and re-usable middleware exercising the GenAVB/TSN
API. It can be used to exercise and verify the real time behavior of the local system as well as TSN properties of
the network between endpoints. Figure 77 shows the TSN application cycle.

Figure 77. TSN application cycle

The TSN example application implements a control loop similar to industrial use cases requiring cyclic
isochronous exchanges over the network.

The TSN endpoints run their application synchronized to a common time grid in the same gPTP domain so that
they can send and receive network traffic in a cyclic isochronous pattern (the application cycle time is equal and
synchronous to the network cycle time as shown in Figure 77). Currently the cycle is configured with a period
of 2 ms, and periods as low as 1 ms have been confirmed to work as well. When the application is scheduled,
frames from other endpoints are ready to be read and at the end of the application time frames are sent to other
endpoints.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
214 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 78. TSN application scheduling
As shown in Figure 78, the controller and the IO devices are scheduled with a half cycle offset in order to reduce
the processing latency.

The time sensitive traffic is layer 2 multicast with VLAN header and proprietary EtherType. Its priority is defined
using the PCP field of the VLAN header.

In addition, the TSN application provides detailed logs and time sensitive traffic timing statistics (based on
hardware timestamping of packets), which allow characterization of an entire real time distributed system.

Finally, a OPCUA server is implemented and offer the possibility to browse and retrieve the TSN application
statistics exposed as OPCUA objects. The OPCUA server runs over TCP and allows access to any OPCUA
client.

6.2.2 GenAVB/TSN stack start/stop

GenAVB/TSN stack can be manually started/stopped at runtime by using the commands listed below.

1. To start the TSN stack (if not already started) and start/stop the demo applications:

avb.sh <start|stop>

2. To just start/stop the TSN stack (gPTP and SRP) use:

fgptp.sh <start|stop>

3. To restart/stop all GenAVB/TSN processes, TSN stack, and demo applications:

avb.sh restart_all/stop_all

4. Real-time Edge also provides a systemd service to run genavb-tsn stack as a system service.

systemctl enable genavb-tsn
systemctl start genavb-tsn

5. The below commands can be used to stop or disable this service.

systemctl stop genavb-tsn
systemctl disable genavb-tsn

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
215 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.3 Use cases description

6.2.3.1 AVB endpoint

AVB endpoint use cases and example applications are described in the GenAVB/TSN Stack AVB Endpoint User
Guide located in Real Time Edge Documentation.

6.2.3.2 gPTP Bridge

LS1028ARDB or i.MX8DXL EVK paired with a SJA1105Q-EVB can be used as a generic time-aware bridge,
connected to other time-aware end stations or bridges.

By default, they don't forward packets if no bridge interface is configured under Linux. Enabling bridge interface
is dependent on the board used. For example, the configuration of bridge interface is described in section
Section 6.1.4.2.1.

Note: The i.MX8DXL EVK uses eth0 instead of eno2.

Once gPTP stack is started, logs can be displayed with the following command:

tail –f /var/log/fgptp-br

In this log file, one can observe which ports are connected, which ports are currently communicating a
synchronized time and what is the role of the port in the time-aware system.

If a port of the bridge is connected to another port capable of communicating a synchronized time, the following
log should appear for each enabled gPTP domain:

gptp_stats_dump : Port(1) domain(0,0): Role: Master Link: Up asCapable: Yes
 neighborGptpCapable: Yes DelayMechanism: P2P
...
gptp_stats_dump : Port(1) domain(1,20): Role: Master Link: Up asCapable: Yes
 neighborGptpCapable: Yes DelayMechanism: COMMON_P2P

Role status can also take the value Slave depending on parameters described in section Section 6.2.4.2.2.

If a port is not connected, Link status takes the value Down.

If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value
COMMON_P2P, else the value P2P.

For further details about gPTP logs, refer to section Section 6.2.5.2.

6.2.3.3 gPTP Endpoint

Once gPTP stack is started, logs can be displayed using the following command:

tail –f /var/log/fgptp

In this log file, one can observe the role of the port in the time-aware system.

If the port of the endpoint is connected to another port capable of communicating a synchronized time, the
following log should appear for each gPTP domain:

gptp_stats_dump : Port(0) domain(0,0): Role: Slave Link: Up AS_Capable: Yes
 neighborGptpCapable: Yes DelayMechanism: P2P
...

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
216 / 400

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

gptp_stats_dump : Port(0) domain(1,20): Role: Slave Link: Up AS_Capable: Yes
 neighborGptpCapable: Yes DelayMechanism: COMMON_P2P

Role status can also take the value Master depending on Grandmaster Parameters described in section
Section 6.2.4.2.2.

If a port is not connected, Link status takes the value Down.

If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value
COMMON_P2P, else the value P2P.

For further details about gPTP logs, refer to section Section 6.2.5.1.

6.2.3.4 gPTP multiple domains

This use case illustrates two gPTP domains co-existing independently on a TSN network, over different
802.1AS-2020 Time-aware systems.

The first domain uses the PTP timescale whereas the second domain uses the ARB (arbitrary) timescale.

6.2.3.4.1 Requirements

The reference setup for gPTP multiple domains is made of:

• Two gPTP endpoints EP1-DUT and EP2-DUT:
– (i.MX 8M Plus LPDDR4 EVK or i.MX 93 EVK connected through TSN interface eth1: dwmacOr
– i.MX 8DXL LPDDR4 EVK or i.MX 93 9x9 LPDDR4 QSB connected through TSN interface eth0):

• One gPTP bridge (LS1028ARDB): BR-DUT

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
217 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

PC i.MX 8M Plus
TSN Endpoint

USB

Ethernet

USB

USB

USB

Ethernet

USB

0

1

2

3

i.MX 8M Plus
TSN Endpoint

USB

Ethernet

USB

Ethernet

i.MX 8M Plus
TSN Endpoint

USB

Ethernet

USB

Ethernet

USB

LS1028
TSN Bridge

Controller

IO Device 1

IO Device 2

Figure 79. gPTP multiple domains setup

6.2.3.4.2 gPTP Stack Configuration

The gPTP stack can enable or disable each domain independently through a configuration file.

The default configuration file (for example: /etc/genavb/fgptp.cfg) is for general gPTP parameters as
well as domain 0 parameters. To enable other domains, new files must be created with ‘-N’ appended to the
filename (for example: /etc/genavb/fgptp.cfg-1 for domain 1).

For gPTP multiple domains, all devices configuration should be changed to support two domains. The first
domain (domain 0) must be assigned domain number 0. The second domain (domain 1) is assigned domain
number 20.

BR-DUT is defined as the GrandMaster for the first domain (domain 0). EP1-DUT is defined as the
GrandMaster for the second domain (domain 1).

On EP1-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain_number and priority1
parameters as follows:

domain_number = 20
priority1 = 245

On EP2-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain_number parameter as follows:

domain_number = 20

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
218 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

On BR-DUT, edit the file /etc/genavb/fgptp-br.cfg-1 and change domain_number parameter as
follows:

domain_number = 20

Note:

• On Domain 0, BR-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the
domain (BR-DUT priority1=246, EP1-DUT and EP2-DUT priority1=248).

• On Domain 1, EP1-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the
domain (BR-DUT priority1=246, EP1-DUT priority1=245 and EP2-DUT priority1=248).

• By default,
– All ports on Domain 0 are configured to use the per instance peer delay mechanism

(DelayMechanism=P2P).
– All ports on Domain 1 are configured to use the CMLDS (DelayMechanism=COMMON_P2P).

6.2.3.4.3 Evaluation instructions

Test Procedure

1. Start gPTP stack manually on all DUTs by issuing the command below:

tsn.sh start

2. Wait for 30 s.
3. Check gPTP stack logs on BR-DUT (/var/log/fgptp-br), EP1-DUT and EP2-DUT (/var/log/fgptp)

Verification:

Check the following:

• After Step 3, the log on EP1-DUT reports Port 0 as synchronized on domain 0 only:

Port(0) domain(0, 0) SYNCHRONIZED – synchronization time (ms): 250

• After Step 3, the log on EP2-DUT reports Port 0 as synchronized on all domains :

Port(0) domain(0, 0) SYNCHRONIZED – synchronization time (ms): 250
Port(0) domain(1, 20) SYNCHRONIZED – synchronization time (ms): 250

• After Step 3, the log on BR-DUT reports Port 0 as synchronized on domain 1 only:

Port(0) domain(1, 20) SYNCHRONIZED – synchronization time (ms): 250

• The “Initial adjustment" message should be reported only once per synchronized domains (domain 0 for EP1-
DUT and EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain(0,0) Initial Adjustment, offset: 125486471315484 ns, freq_adj: 32764

domain(1,20) Initial Adjustment, offset: 125455671332661 ns, freq_adj: 16384

Once synchronization is achieved, all the reported clock offset average values should be stable within -50 to
+50 ns range (domain 0 for EP1-DUT and EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain(0,0) Offset between GM and local clock (ns): min -45 avg 0 max 35

domain(1,20) Offset between GM and local clock (ns): min -66 avg 0 max 15

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
219 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.3.5 AVB Bridge

This use case illustrates an AVB Bridge (mixing gPTP and SRP stack) with other AVB Endpoints

6.2.3.5.1 Requirements

6.2.3.5.1.1 Using LS1028ARDB as AVB bridge

• Two AVB endpoints
• One AVB bridge (LS1028ARDB)

Figure 80. AVB Bridge setup

6.2.3.5.1.2 Using i.MX8DXL EVK with SJA1105Q EVB as AVB bridge

• Two AVB endpoints including:
– an i.MX8DXL with an IMX-RMII-PHY TJA1100
– an i.MX8MPlus with an Ethernet to BoardR-Reach converter

• One AVB bridge (i.MX8DXL with a SJA1105Q-EVB)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
220 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 81. AVB Bridge setup

Setup the device tree:

• On the i.MX8DXL Bridge with a SJA1105Q-EVB. Use the following device tree in U-boot:

setenv fdt_file imx8dxl-evk-enet0-sja1105.dtb

• On the i.MX8DXL Endpoint with a TJA1100. Use the following device tree in U-boot:

setenv fdt_file imx8dxl-evk-enet0-tja1100-avb.dtb

Configure MASTER/SLAVE role of the PHYs:

• On the Bridge with SJA1105Q-EVB, check the default phy role for the connected ports:

ethtool swpX

Note: Default role is Master (ethtool will report forced-master under master-slave cfg)
• On the endpoint with TJA1100 PHY Daughter card, set the PHY role accordingly (master if SJA1105 port

reports slave and vice versa):

ethtool -s eth0 master-slave forced-slave

• On the automotive media converter, set the role using the same method

6.2.3.5.2 AVB network configuration

This topic describes AVB configuration.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
221 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.3.5.2.1 Priority to traffic class mapping

The priority to traffic class mapping used for the bridge comes directly from the recommended mapping for two
SR classes in IEEE Std 802.1Q-2018 Table 34-1:

Priority 0 1 2 3 4 5 6 7

Traffic Class 1 0 6 7 2 3 4 5

Table 66. Priority to traffic class mapping

The Bridge should be configured to forward VLAN tagged packets based on their PCP values according to this
mapping, and should configure credit-based shapers on the two highest traffic classes (traffic class 6 and traffic
class 7) for SR class A (priority 3) and SR class B (priority 2) traffic.

Refer to Section 6.2.3.5.3 for the bridge PCP mapping configuration.

6.2.3.5.2.2 FQTSS Credit Based Shapers configuration

The SRP bridge stack relies on preconfigured qdiscs with specific handles to configure the hardware's credit-
based shapers, on the two hardware queues with the two highest traffic classes, for every port. Thus, an mqprio
qdisc with 8 traffic classes should be configured with the above priority to traffic class mapping and credit-based
shapers qdiscs with the following handles: 0x9006 for CBS on traffic class 6 and 0x9007 for CBS on traffic class
7.

Refer to Section 6.2.3.5.3 for the bridge qdisc configuration.

6.2.3.5.2.3 Linux Best Effort Traffic classification

Linux classifies egress packets, for assignment to traffic classes, based on skb priorities. To avoid assigning
egress best effort traffic to traffic classes with configured credit-based shapers, the skb priorities should be
rewritten so no packets with skb priorities 2 and 3 are present on egress. Furthermore, the bridge code is using
the skb priority as the traffic class for packets injected from the CPU port, making packets with skb priorities 6
and 7 end up in the hardware's traffic classes 6 and 7 on the external ports which in turn harms traffic shaping.
Again, forcing a remapping of these skb priorities avoids this scenario.

Refer to Section 6.2.3.5.3 for the skb priorities remapping configuration.

6.2.3.5.2.4 Bridge VLAN awareness

A proper AVB bridge functioning requires that the switch forward AVB streams (with multicast destination
MAC addresses and specific VLAN ID) only to ports configured in the Forwarding DataBase (FDB). For that,
we should enable VLAN filtering on bridge level, add the desired VLAN ID to all ports and disable the default
multicast flooding configuration (at least for the two highest priority queues) on all the external ports.

Refer to Section 6.2.3.5.3 for the bridge vlan configuration.

6.2.3.5.3 Setup preparation

This has two steps described in the following sections.

6.2.3.5.3.1 GenAVB/TSN stack configuration

This configuration needs to be done once and is saved accross reboots.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
222 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Edit the GenAVB/TSN configuration file using the following command at the Linux prompt:

vi /etc/genavb/config

And set the GENAVB_TSN_CONFIG correctly as "Bridge AVB".

Note: It's the default configuration on LS1028A while the Bridge with SJA1105Q needs to be changed
accordingly

For a proper gPTP operation with AVB endpoints, the gPTP stack needs to compensate for PHY delay in PTP
timestamps:

• AVB Bridge on LS1028A

In the /etc/genavb/fgptp-br.cfg, apply the settings (rxDelayCompensation and txDelayCompensation)
described in Table 78 on all bridge ports.

Attention: The PHY Delay Compensation Values in Table 78 are calibrated for 1 Gbps links. The i.MX AVB
endpoints are configured to run by default with 100 Mbps links. These compensation values should be enough
to keep pDelay values under 800 ns (propagation time threshold), and therefore the port would still be declared
as Capable. If, with these values, the calculated propagation delay is still above 800 ns (or too close to it), adapt
them accordingly (decrease rxDelayCompensation and/or increase txDelayCompensation).

Future releases shall have proper compensation values for each supported link speed.

• AVB Bridge on SJA1105Q

On AVB bridge setup with SJA1105Q-EVB, the calculated propagation delay is exceeding default
propagation delay threshold (800ns) and the link would not be asCapable. To bypass that, increase the
neighborPropDelayThreshold on all devices, including the bridge:

vi /etc/genvb/fgptp-br.cfg

Set the neighborPropDelayThreshold to 8000ns

The same should be done on endpoints connected to the bridge: /etc/genavb/fgptp.cfg

6.2.3.5.3.2 Bridge configuration

This configuration should be done after each boot. The user can either enter these commands manually or
execute a ready to use script provided by GenAVB/TSN stack.

1. If you're using an i.MX8DXL Bridge, edit the GenAVB/TSN configuration file using the following command at
the Linux prompt:

vi /etc/genavb/config

And set the configuration GENAVB_TSN_CONFIG to use the config_avb_bridge file:

GENAVB_TSN_CONFIG=3

2. Execute the automated configuration script and start the AVB bridge stack:

avb-bridge.sh
avb.sh start

3. Alternatively, configure the bridge manually using the following commands:
a. Setup bridge forwarding:

ip link add name br0 type bridge
ip link set br0 up
ip link set master br0 swp0 up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
223 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

ip link set master br0 swp1 up
ip link set master br0 swp2 up
ip link set master br0 swp3 up

b. Establish the PCP to QoS mapping for every port on the bridge using a custom tool (supported only on
LS1028A):
pcp_to_qos_map=([0]="1" [1]="0" [2]="6" [3]="7" [4]="2" [5]="3" [6]="4" [7]="5"); \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
 for ((pcp=0; pcp < 8; ++pcp)); do \
 tsntool pcpmap -d $port -p $pcp -e 0 -c ${pcp_to_qos_map[$pcp]} -l 0; \
 tsntool pcpmap -d $port -p $pcp -e 1 -c ${pcp_to_qos_map[$pcp]} -l 1; \
 done ;\
done

c. Configure the qdiscs and shapers, with the correct handles, and optionally offload the pcp to qos
mapping for every external port
pcp_to_qos_map=([0]="1" [1]="0" [2]="6" [3]="7" [4]="2" [5]="3" [6]="4" [7]="5"); \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
tc qdisc add dev $port root handle 100: mqprio num_tc 8 map ${pcp_to_qos_map[@]} queues 1@0
 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw <HW Offload> ; \
 tc qdisc replace dev $port handle 0x9007 parent 100:8 \
 cbs locredit -2147483646 hicredit 2147483647 sendslope -1000000 idleslope 0 offload
 0 ; \
 tc qdisc replace dev $port handle 0x9006 parent 100:7 \
 cbs locredit -2147483646 hicredit 2147483647 sendslope -1000000 idleslope 0 offload
 0 ; \
done

Note:
<HW offload>: set to 1 if the driver supports MQPrio PCP mapping offload (SJA1105Q), otherwise 0
(LS1028A).
The two most important CBS parameters for every port device are:
• the parent, which should match the traffic class 6 and 7,
• the handle, which should be 0x9006 and 0x9007.
The other parameters are initialization values and are overridden by the stack at runtime stream
configuration:
• offload is set to 1 to offload the operation to hardware,
• idleslope and sendslope are set depending on stream,
• port bit rates and the credit values are kept at their minimum and maximum values as they

do not directly affect the hardware shaping operation.
d. Setup skb priorities remapping for every external port:

avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
 tc qdisc add dev $port clsact; \
 tc filter add dev $port egress basic match 'meta(priority eq 2)' or
 'meta(priority eq 3)' action skbedit priority 0; \
done

4. Enable Vlan filtering, set the correct Vlan IDs and disable multicast flooding, for every external port:

ip link set br0 type bridge vlan_filtering 1; \
avb_ports="swp0 swp1 swp2 swp3"; \
for port in $avb_ports; do \
 bridge vlan add dev $port vid 2 master; \
 bridge link set dev $port mcast_flood off; \
done

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
224 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

5. Start the AVB and gPTP stacks:

avb.sh start

• Since multicast traffic flooding is now disabled, adding MDB entries for AVDECC (ACMP/ADP) and MAAP
protocols multicast addresses is needed. The following commands should be executed for every port facing
an AVB endpoint.

bridge mdb add dev br0 port <port> grp 91:e0:f0:01:00:00 permanent
bridge mdb add dev br0 port <port> grp 91:e0:f0:00:ff:00 permanent

6.2.3.5.4 Evaluation instructions

1. Reset all endpoints and the bridge.
2. Using the procedures described above, configure the bridge and start the stack on all connected devices

(bridge and endpoints)
3. After a few seconds, AVB endpoints should be synchronized through gPTP
4. Connect an SR class A (or SR class B) stream from EP-DUT2 as talker to EP-DUT1 as listener: the stream

should be forwarded correctly to the listener endpoint

6.2.3.5.4.1 gPTP operation

If the gPTP protocol is running correctly on all devices, the following line should appear in the bridge gptp log
file for every port connected to a gPTP capable device:

gptp_stats_dump: Port(0) domain(0, 0): Role: Master Link: Up asCapable: Yes
 neighborGptpCapable: Yes DelayMechanism: P2P
...
gptp_stats_dump: Port(1) domain(0, 0): Role: Master Link: Up asCapable: Yes
 neighborGptpCapable: Yes DelayMechanism: COMMON_P2P

Refer to Section 6.2.3.2, for more details on gPTP Bridge operation.

6.2.3.5.4.2 SRP Operation

A detailed view on the SRP protocol communications (such as Domain declaration, SRP port boundary, Talker/
Listener declarations and registration) can be followed by displaying the SRP specific logs from the TSN bridge
stack log file /var/log/tsn-br :

tail -f /var/log/tsn-br | grep srp

On stream connection, the FQTSS and FDB operation should be visible in the TSN bridge stack log file:

• Stack log shows the FQTSS configuration for the port facing the AVB listener:

fqtss_set_oper_idle_slope : logical_port(2) port (swp0, ifindex 5) tc(7)
 cbs_qdisc_handle(9007:0): set idle_slope 7872000

• Stack log shows the FDB configuration for the port facing the AVB listener:

bridge_rtnetlink : add MDB: bridge (br0, ifindex 9) logical_port(2) port (swp0,
 ifindex 5) mac_addr(91:e0:f0:00:fe:11) vlan_id(2)

Also, the same configuration can be checked using the Linux standard tools (tc and bridge)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
225 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• TC tool shows the FQTSS configuration for the port facing the AVB listener:

tc qdisc show dev swp0
qdisc mqprio 100: root tc 8 map 1 0 6 7 2 3 4 5 0 0 0 0 0 0 0 0
 queues:(0:0) (1:1) (2:2) (3:3) (4:4) (5:5) (6:6) (7:7)
qdisc pfifo 0: parent 9006: limit 1000p
qdisc pfifo 0: parent 9007: limit 1000p
qdisc pfifo_fast 0: parent 100:6 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc pfifo_fast 0: parent 100:5 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc pfifo_fast 0: parent 100:4 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc pfifo_fast 0: parent 100:3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc pfifo_fast 0: parent 100:2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc pfifo_fast 0: parent 100:1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1
 1
qdisc cbs 9006: parent 100:7 hicredit 2147483647 locredit -2147483646 sendslope
 -1000000 idleslope 0 offload 0
qdisc cbs 9007: parent 100:8 hicredit 2147483647 locredit -2147483648 sendslope
 -992128 idleslope 7872 offload 1

• Bridge tool shows the FDB configuration for the port facing the AVB listener:

bridge mdb show
dev br0 port swp0 grp 91:e0:f0:00:fe:11 permanent offload vid 2

6.2.3.6 TSN endpoint sample application

6.2.3.6.1 Requirements

• Two TSN endpoints
– i.MX 8MPlus LPDDR4 EVK or i.MX 93 EVK connected through TSN interface eth1: dwmac
– i.MX 8DXL LPDDR4 EVK or i.MX 93 9x9 LPDDR4 QSB connected through TSN interface eth0 or optionally

an i.MX RT1170 EVK
• One TSN bridge (LS1028ARDB)

Note: The second IO Device is optional.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
226 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 83. TSN endpoint sample application setup

6.2.3.6.2 Configuring GenAVB/TSN stack and example applications

For some platforms, the GenAVB/TSN stack supports both modes: Endpoint TSN and Endpoint AVB.

By default, these platforms are configured as Endpoint TSN. The GENAVB_TSN_CONFIG parameter should be
set to the right configuration using the file /etc/genavb/config:

avb.sh stop_all
vi /etc/genavb/config

Platforms that support both Endpoint AVB and Endpoint TSN (for example i.MX 8MP, i.MX 8DXL and i.MX 93),
should have:

GENAVB_TSN_CONFIG=1

For Endpoint TSN mode, the change from one profile to another is made by modifying the /etc/genavb/
config_tsn file. This file specifies the application configuration file. APPS_CFG_FILE (apps-*.cfg) points to a
file containing a demo configuration (application to use, options...). It is parsed by the startup script avb.sh.

TSN configuration profile is made of the application configuration profile. The file /etc/genavb/config_tsn
already lists the supported cfg files. Set the PROFILE variable to choose the desired configuration profile.

6.2.3.6.3 TSN network configuration

This topic describes TSN configuration.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
227 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.3.6.3.1 Streams

The stream details can be used for analysis and also for computing scheduled traffic timings.

Stream No Source Destination Unicast /
Multicast

Destination
MAC Address Vlan ID Vlan PCP

Frame
Length[1]

(bytes)

Stream1 Controller IO device(s) Multicast 91:e0:f0:00:fe:70 2 5 84

Stream2 IO device 1 Controller Multicast 91:e0:f0:00:fe:71 2 5 84

Stream3 IO device 2 Controller Multicast 91:e0:f0:00:fe:80 2 5 84

Table 67. TSN streams definition

[1] The frame length includes inter frame gap, preamble, start of frame and CRC (can be used as is for timing calculations)

6.2.3.6.3.2 Scheduled traffic

For deterministic packet transmission the use of scheduled traffic is required both on endpoints and bridges.

The default scheduling configuration for the TSN endpoint example application, as shown in Figure 78, leads to
the following traffic schedules.

Endpoints

Endpoints are running a schedule with a 2000us period. The base offset of the schedule is aligned to gPTP time
modulo 1 second.

Controller transmit gate (for Stream1) opens at 500us offset (relative to the period start).

IO device transmit gate (for Stream2/3) opens at 1000us + 500us offset (relative to the period start).

The gate open interval is around 4us (enough to accommodate the stream frame length plus some margin).

The 500us offset is related to the worst case application latency to send its frame to its peer(s). This value
provides a good margin for a Linux PREEMPT-RT system but can be lowered on a well-tuned system.

Bridges

The schedule for all Bridges and all Bridge ports that transmit one of the streams above, must have a 2000 μs
period and a base offset aligned to gPTP time modulo 1 second.

One possible schedule is to open transmit gate (for the ports and queues transmitting Stream 1) at offset 500 μs
and use a gate open interval that accommodates the worst propagation delay.

It is also possible to use a fixed gate open interval but increase the transmit time offset at each hop along the
stream path.

For ports and queues transmitting Stream 2 and 3, open the transmit gate at offset 1000 + 500 μs.

6.2.3.6.4 Setup preparation

One of the TSN endpoint needs to be configured as “controller” and the other one as “IO device”. Both
endpoints are connected to the TSN bridge.

Note:

1. On i.MX 8MPlus LPDDR4 EVK and i.MX 93 EVK: the TSN interface used is eth1.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
228 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2. On i.MX 8DXL LPDDR4 EVK and i.MX 93 9x9 LPDDR4 QSB: the TSN interface used is eth0 rather than
eth1.

6.2.3.6.4.1 Preparing the controller

To be done once:

1. Edit the GenAVB configuration file using the following command at the Linux prompt:

vi /etc/genavb/config_tsn

2. Set the configuration profile to PROFILE 1:

PROFILE=1

3. Exit and save.
The below steps should be done at each boot:

4. The system configuration required for the tsn-app can be performed (after setting the correct PROFILE) by
using the following command (replace ethX with the right TSN network interface):
• eth1 on i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK
• eth0 on i.MX 8DXL LPDDR4 EVK and i.MX 93 9x9 LPDDR4 QSB

tsn-app-setup.sh ethX

Note: This script sets many different settings to improve real time system behavior and to setup proper
network configuration
• VLAN configuration: the script sets vlan id 2 on the TSN interface as VLAN hardware filtering is enabled

by default in kernel.
• Low latency settings on network interface: the script disable coalescing and flow control on TSN interface.
• Qdiscs and filters: the script sets taprio qdisc with proper parameters for TX and flower qdisc for RX

classification.
• Interrupts, network tasks, CPU affinities, and priorities: the scripts enable threaded NAPI in kernel and

isolate tasks processing TSN traffic on a separate CPU core.
5. Start the TSN demo application using the following command:

avb.sh start

6.2.3.6.4.2 Preparing IO device(s)

To be done once:

1. Edit the GenAVB configuration file using the following command at the Linux prompt:

vi /etc/genavb/config_tsn

2. Set the configuration profile to PROFILE 2:

PROFILE=2

3. Exit and save.
The below steps should be done at each boot:

4. Edit the system configuration needed for the tsn-app after setting the correct PROFILE. using the
command shown below (replace ethX with the right TSN network interface):
• eth1 on i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
229 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• eth0 on i.MX 8DXL LPDDR4 EVK and i.MX 93 9x9 LPDDR4 QSB

tsn-app-setup.sh ethX

5. Note: This script sets many different settings to improve real time system behavior and to setup proper
network configuration:
• VLAN configuration: the script sets vlan id 2 on the TSN interface as VLAN hardware filtering is enabled

by default in the kernel.
• Low latency settings on network interface: the script disables coalescing and flow control on TSN

interface.
• Qdiscs and filters: the script sets taprio qdisc with proper parameters for TX and flower qdisc for

RX classification.
• Interrupts, network tasks, CPU affinities, and priorities: the scripts enable threaded NAPI in kernel and

isolate tasks processing TSN traffic on a separate CPU core.
6. Start the TSN demo application using the following command:

avb.sh start

6.2.3.6.4.3 Preparing the Bridge

Refer to section Section 6.1.2 and Section 6.1.4.2.3.2 to configure scheduled traffic on the LS1028ARDB board.

The schedule described in section Section "Bridges" should be followed.

The below steps should be done at each boot:

1. Setup bridge forwarding:

ip link add name br0 type bridge
ip link set br0 up
ip link set master br0 swp0 up
ip link set master br0 swp1 up
ip link set master br0 swp2 up
ip link set master br0 swp3 up

2. Disable Pause frames:

ethtool -A swp0 autoneg off rx off tx off
ethtool -A swp1 autoneg off rx off tx off
ethtool -A swp2 autoneg off rx off tx off
ethtool -A swp3 autoneg off rx off tx off

3. Start the gPTP stack:

tsn.sh start

4. Setup scheduled traffic (see above)

tc qdisc del dev swp0 root
tc qdisc del dev swp1 root
tc qdisc del dev swp2 root
tc qdisc replace dev swp0 root taprio \
 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 1500000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 1980000 \
 flags 0x2
tc qdisc replace dev swp1 root taprio \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
230 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 500000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 1980000 \
 flags 0x2
tc qdisc replace dev swp2 root taprio \
 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 500000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 1980000 \
 flags 0x2

6.2.3.6.4.4 Preparing the OPC UA client

In order to visualize the data exposed by the TSN endpoint application OPC UA server it is required to use an
OPC UA client on a PC connected to the bridge.

1. Install an OPC UA client on a PC:
a. FreeOpcUa: client with a Qt GUI interface.

Can be found here: http://freeopcua.github.io/
b. opcua-commander: CLI alternative based nodejs node-opcua stack. Can be found here:

https://github.com/node-opcua/opcua-commander
2. Connect the PC to the bridge. If not already done, setup IP addresses on the endpoint running the TSN

example application and also on the PC. Then, make sure you can successfully ping the endpoint using the
PC.

6.2.3.6.5 Evaluation instructions

1. Reset all endpoints.
2. Using the procedures described above, start the gPTP stack on the bridge and the tsn-app application on

the endpoints with the proper enabled scheduled traffic as configured above.
3. After a few seconds, TSN endpoints should be synchronized through gPTP and exchanging packets at the

rate of 500 packets per second (pps). In order to observe this behavior, logs should be checked.

6.2.3.6.5.1 gPTP operation

If the gPTP protocol is running correctly on an endpoint or on the bridge, the following line should appear in the
gptp log file (refer to Section 6.2.3.3 for more details):

gptp_stats_dump: Port(0) domain(0,0) : Role: Slave Link : Up AS_Capable: Yes
 DelayMechanism: P2P

If the device is grand master, the role field should be “Master” otherwise it should be “Slave”. The line
appears periodically, but the role should not change over time, except for significant events (such as a cable
disconnection).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
231 / 400

http://freeopcua.github.io/
https://github.com/node-opcua/opcua-commander

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

6.2.3.6.5.2 Baseline tsn-app operation

If the TSN endpoint sample application is running correctly and receiving valid packets, the following points may
be verified in the tsn_app log file (refer to Section 6.2.5.4 for more details).

The following line should appear at regular intervals:

socket_stats_print : link up

The "valid frames" counter should increment by 2500 (500 pps for 5 seconds) between two appearances of the
following log:

socket_stats_print : valid frames : XXXXX

The various error counters should not increment (it is normal to have non-zero values, because of the startup
period when gPTP and/or the remote tsn-app endpoint may not be running and stable):

• "sched early", "sched late", "sched missed", "sched timeout", "sched discont", "clock err"
• "err id", "err ts", "err underflow"
• "frames err" (for both RX and TX directions)

Note:

The checks above apply to all tsn-app endpoints, whether they be the controller or one of the IO devices.

6.2.3.6.5.3 Scheduled traffic evaluation with no concurrent traffic

The observations below assume an otherwise idle system receiving and sending traffic only through the tsn-app
application, with a 802.1Qbv schedule in place on all devices (tsn-app endpoints, bridge).

Scheduling error statistics ("sched err") should respect the following:

• min around 8 µs
• avg around 11 µs
• max around 25 µs

stats(0xaaab06ed74b0) sched err min 8817 mean 11120 max 22077 rms^2 125202075
 stddev^2 1544829 absmin 7417 absmax 1882057

Processing time statistics ("processing time") should respect the following:

• min around 23 µs
• avg around 29 µs
• max around 70 µs

stats(0xaaab06ed7910) processing time min 23400 mean 29185 max 59100 rms^2
 857707540 stddev^2 5943315 absmin 19560 absmax 4143240

Traffic latency statistics should respect the following:

• min around 503 µs
• avg around 503 µs
• max around 503 µs

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
232 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• stddev^2 less than 3000

stats(0x419a28) traffic latency min 503417 mean 503503 max 503637 rms^2
 253515981945 stddev^2 2004 absmin 503397 absmax 504337

6.2.3.6.5.4 Scheduled traffic evaluation with TX best-effort traffic

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).
2. Run iperf3 in server mode on the PC (replace ethX by the PC interface connected to the LS1028):

ifconfig ethX 192.168.1.10 up
iperf3 -s &
iperf3 -s -p 5202 &
iperf3 -s -p 5203 &
iperf3 -s -p 5204 &

3. Run iperf3 in client mode on the controller (replace ethX by the controller interface connected to the
LS1028):

ifconfig ethX 192.168.1.80
taskset b iperf3 -c 192.168.1.10 -u -b 0 -i 2 -t 100 &
taskset b iperf3 -p 5202 -c 192.168.1.10 -u -b 0 -l 64 -i 2 -t 100 &
taskset b iperf3 -p 5203 -c 192.168.1.10 -u -b 0 -l 64 -i 2 -t 100 &
taskset b iperf3 -p 5204 -c 192.168.1.10 -u -b 0 -l 64 -i 2 -t 100 &

4. Observe stats in the tsn-app log files (a 2nd terminal may have to be opened through SSH). The values
should match the table below (in µs):

min mean max stddev^2

Sched err (controller) 21 29 41

Processing time
(controller)

47 80 260

Traffic latency
(controller and IO
device)

503 503 503 <3000

6.2.3.6.5.5 Scheduled traffic evaluation with RX best-effort traffic

Note:

By default, the tsn-app traffic is processed in the same queue as best-effort untagged traffic. To more easily
validate tsn-app with best-effort traffic, we should add a VLAN tag with PCP=0 to best-effort packets so they are
dispatched into a different queue on receive.

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).
2. Run iperf3 in server mode on the controller (replace ethX by the controller interface connected to the

LS1028):

ip link add link ethX name ethX.5 type vlan id 5
ifconfig ethX.5 192.168.5.80 up
taskset b iperf3 -s &
taskset b iperf3 -s -p 5202 &
taskset b iperf3 -s -p 5203 &
taskset b iperf3 -s -p 5204 &

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
233 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. Run iperf3 in client mode on the PC (replace ethX by the PC interface connected to the LS1028):

ip link add link ethX name ethX.5 type vlan id 5
ifconfig ethX.5 192.168.5.10 up
iperf3 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &
iperf3 -p 5202 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &
iperf3 -p 5203 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &
iperf3 -p 5204 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &

4. Observe stats in the tsn-app log file (a 2nd terminal may have to be opened through SSH). The values
should match the table below (in µs):

min mean max stddev^2

Sched err (controller) 9 13 26

Processing time
(controller)

25 33 70

Traffic latency
(controller and IO
device)

503 503 503 <130000

6.2.3.6.5.6 Modifying the scheduling period of the TSN sample application

The default tsn-app period of 2 ms can be changed through a command-line option. The change has to be
made on all endpoints (controller and devices). The 802.1 Qbv schedule must also be updated to reflect the
new period. The example below shows how to modify the period from the default 2 ms down to 1 ms (this value
has been confirmed to work on the latest builds).

On the controller:

1. Stop the application if it was already running:

avb.sh stop

2. Edit the application configuration file:

vi /etc/genavb/apps-tsn-network-controller.cfg

or for an IO device:

vi /etc/genavb/apps-tsn-network-iodevice.cfg

3. Use the "-p" option to change the period. The below example sets the period to 1 ms (1000000 ns):

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller -p 1000000"

4. Update the traffic schedule using 'tc' command.
In the sample command below, replace ethX with the right TSN network interface:
• eth1 on i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK
• eth0 on i.MX 8DXL LPDDR4 EVK and i.MX 93 9x9 LPDDR4 QSB

tc qdisc del dev ethX root
#tc qdisc replace dev ethX root taprio \
num_tc 5 \
map 0 0 1 1 2 2 3 4 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 1@3 1@4 \
base-time 250000 \
sched-entry S 0x4 4000 \
sched-entry S 0x1b 996000 \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
234 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

flags 0x2

5. Restart the tsn-app application:

avb.sh start

On the IO device(s):

1. Stop the application if it was already running:

avb.sh stop

2. Edit the application configuration file:

vi /etc/genavb/apps-tsn-network-iodevice.cfg

3. Use the "-p" option to change the period. The below example sets the period to 1 ms (1000000 ns):

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r iodevice_N -p 1000000"

4. Update the traffic schedule using tc.
In the sample command below, replace ethX with the right TSN network interface:
• eth1 on i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK
• eth0 on i.MX 8DXL LPDDR4 EVK and i.MX 93 9x9 LPDDR4 QSB

tc qdisc del dev ethX root
#tc qdisc replace dev ethX root taprio \
num_tc 5 \
map 0 0 1 1 2 2 3 4 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 1@3 1@4 \
base-time 750000 \
sched-entry S 0x4 4000 \
sched-entry S 0x1b 996000 \
flags 0x2

5. Restart the tsn-app application:

avb.sh start

On the bridge, update the Qbv schedule on all ports:

tc qdisc del dev swp0 root
tc qdisc del dev swp1 root
tc qdisc del dev swp2 root
tc qdisc replace dev swp0 root taprio \
 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 750000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 980000 \
 flags 0x2
tc qdisc replace dev swp1 root taprio \
 num_tc 8 \
 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 250000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 980000 \
 flags 0x2
tc qdisc replace dev swp2 root taprio \
 num_tc 8 \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
235 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 map 0 1 2 3 4 5 6 7 \
 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
 base-time 250000 \
 sched-entry S 0x20 20000 \
 sched-entry S 0xdf 980000 \
 flags 0x2

After that, the evaluation can follow the various use cases described previously with the default configuration:
baseline operation, scheduled traffic evaluation with or without best-effort traffic.

Note:

An arbitrary low period might run into the scheduling limits of the systems, and result in errors in the tsn-app
logs, as the systems may no longer be able to keep up with the requested pace.

6.2.3.6.5.7 Enabling AF_XDP sockets in TSN sample application

A new feature makes it possible to use AF_XDP sockets with the Linux tsn-app application, to take advantage
of the lower latency offered by the AF_XDP path. The steps below describe how to reconfigure an i.MX8M Plus
LPDDR4 EVK, i.MX 8DXL LPDDR4 EVK, i.MX 93 EVK or i.MX 93 9x9 LPDDR4 QSB board to use AF_XDP
sockets.

1. Stop the application and TSN stack if they were already running:

avb.sh stop_all

2. Edit the application configuration file:

vi /etc/genavb/apps-tsn-network-controller.cfg

3. To enable AF_XDP mode, replace the line:

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller"

With:

CFG_EXTERNAL_MEDIA_APP_OPT="-m network_only -r controller -x"

4. Attach the XDP program to the TSN interface. This step can be done at any time, even if the TSN sample
application is still running with its default configuration, as long as it is done before restarting it in AF_XDP
mode.

ip l set dev ethX xdp obj /lib/firmware/genavb/genavb-xdp.bin

5. Restart the tsn-app application in AF_XDP mode:

avb.sh start

After that, the evaluation can follow the various use cases described previously with the default configuration:
baseline operation, scheduled traffic evaluation with or without best-effort traffic. Statistics should be similar to
or better than the default configuration, except for traffic latencies: because AF_XDP currently cannot provide
packet timestamps, traffic latencies display bogus values that should be ignored. The tables below summarize
typical values (in µs), on a setup using a 1 ms period.

min mean max

Sched err (controller) 6 7 16

Processing time
(controller)

10 13 19

Table 68. Timing statistics without any concurrent traffic

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
236 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

min mean max

Total time (controller) 16 20 33

Table 68. Timing statistics without any concurrent traffic...continued

min mean max

Sched err (controller) 18 25 51

Processing time
(controller)

21 26 52

Total time (controller) 42 51 108

Table 69. Timing statistics with TX best-effort traffic

min mean max

Sched err (controller) 7 9 34

Processing time
(controller)

8 11 25

Total time (controller) 15 21 55

Table 70. Timing statistics with RX best-effort traffic

6.2.3.6.5.8 OPC UA server evaluation

The OPC UA server address is in this format : opc.tcp://<endpoint IP address>:4840/

Once connected, the server objects can be browsed and accessed. The same statistics described in the TSN
example application logs are available as OPC UA objects. The OPC UA server traffic is classified as best effort
and doesn't affect the time sensitive traffic.

See below screenshot using FreeOPCUA GUI client:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
237 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 84. FreeOPCUA GUI client

6.2.4 Configuration files

6.2.4.1 System

The system configuration file, located in /etc/genavb/system.cfg, lists system network interface names
and PTP hardware clock device names. The default values are used if the configuration file or the option key
are missing. The values in the installed file may also required to be updated to match the system configuration.

This section lists network interface names.
Currently endpoint package supports a single endpoint and bridge package a single bridge (with up to 5 ports).

Name Key Default value Description

Endpoint interface endpoint eth0

Endpoint network interface
name. Only valid for endpoint
package, otherwise should
be set to “off”

Bridge 0 interfaces bridge_0
SJA1105P_p0, SJA1105P_
p1, SJA1105P_p2, SJA1105

P_p3, SJA1105P_p4*

Bridge 0 network interface
names (comma separated).
Only valid for bridge
package, otherwise should
be set to “off”

Table 71. Logical ports

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
238 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

This section lists clock device names.
Clocks names are either a PHC device name or a generic software clock (sw_clock). Local clock points to a PHC device,
target clocks point to either:
• The same PHC device as local clock (gPTP time is reflected in the local clock)
• A generic software clock (in which case gPTP time is not reflected in the local clock).

Name Key Default value Description

Endpoint gPTP
domain 0 target clock endpoint_gptp_0 /dev/ptp0

Endpoint clock for gPTP
domain 0 target clock. Only
valid for endpoint package.

Endpoint gPTP
domain 1 target clock endpoint_gptp_1 sw_clock

Endpoint clock for gPTP
domain 1 target clock. Only
valid for endpoint package.

Endpoint local clock endpoint_local /dev/ptp0
Endpoint clock for the local
clock. Only valid for endpoint
package.

Bridge gPTP domain
0 target clock bridge_gptp_0 sw_clock

Bridge clock for gPTP
domain 0 target clock. Only
valid for bridge package.

Bridge gPTP domain
1 target clock bridge_gptp_1 sw_clock

Bridge clock for gPTP
domain 1 target clock. Only
valid for bridge package.

Bridge local clock bridge_local /dev/ptp1
Bridge clock for the local
clock. Only valid for bridge
package.

Table 72. Clock

6.2.4.2 gPTP

The gPTP general parameters as well as default domain (domain 0) parameters are defined in the following
configuration files depending on the package used:

• Endpoint package: /etc/genavb/fgptp.cfg
• Bridge package: /etc/genavb/fgptp-br.cfg

To enable other domains, new configuration files must be created with the associated domain instance
appended to the configuration file name e.g.:

• Endpoint package, domain 1: /etc/genavb/fgptp.cfg-1
• Bridge package, domain 1: /etc/genavb/fgptp-br.cfg-1

Attention:

By default the GenAVB/TSN gPTP stack is packaged with the general parameters configuration file
(fgptp.cfg or fgptp-br.cfg) and a reference configuration for domain 1 (fgptp.cfg-1 or fgptp-
br.cfg-1)

6.2.4.2.1 General

Profile

The gPTP stack can operate in two different modes known as 'standard' or 'automotive' profiles.

When the 'standard' profile is selected, the gPTP stack operates following the specifications described in
IEEE 802.1AS. When the 'automotive' profile is selected, the gPTP stack operates following the specifications
described in the AVnu AutoCDSFunctionalSpec_1.4 which is a subset of the IEEE 802.1AS standard optimized
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
239 / 400

https://avnu.org/wp-content/uploads/2014/05/AutoCDSFunctionalSpec-1_4-public_with_legal_notices.pdf

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

for automotive applications. IEEE 802.1AS-2020 features are not available in 'automotive' profile (e.g.
Multiple domains).

The automotive environment is unique in that it is a closed system. Every network device is known prior to
startup and devices do not enter or leave the network, except in the case of failures. Because of the closed
nature of the automotive network, it is possible to simplify and improve gPTP startup performance. Specifically,
functions like election of a grand master and calculations of wire delays are tasks that can be optimized for a
closed system.

Reverse sync feature control

The Reverse Sync feature (Avnu specification) should be used for test/evaluation purpose only. Usually, to
measure the accuracy of the clock synchronization, the traditional approach is to use a 1 Pulse Per Second
(1PPS) physical output. While this is a good approach, there may be cases where using a 1PPS output is not
feasible. More flexible and fully relying on software implementation the Reverse Sync feature serves the same
objective using the standard gPTP Sync/Follow-Up messages to relay the timing information, from the Slave
back to the GM.

Neighbor propagation delay threshold

The parameter neighborPropDelayThresh defines the propagation time threshold, above which a port
is not considered capable of participating in the IEEE 802.1AS protocol (see IEEE 802.1AS-2020 - 11.2.2
Determination of asCapable and asCapableAcrossDomains). If a computed neighborPropDelay exceeds
neighborPropDelayThresh, then asCapable is set to FALSE for the port. This setting does not apply to
Automotive profile where a link is always considered to be capable or running IEEE 802.1AS.

IEEE 802.1AS-2011 Compatibility

The parameter force_2011 defines if the gPTP Stack operates following the IEEE 802.1AS-2011 standard,
i.e. disabling the IEEE 802.1AS-2020 specifics features such as Multiple Domain support. The use of this option
may, in some cases, improve compatibility with gPTP equipment not supporting IEEE 802.1AS-2020 standard.

General configuration parameters[1]

Name Key Default value Range Description

Profile profile “standard” "standard" or
"automotive"

Set fgptp main profile.
"standard" - IEEE 802.1AS
specs, "automotive" - AVnu
automotive profile

Grandmaster ID gm_id "0x0001f2fffe0025fe" 64bits EUI
format

Set static grandmaster ID in
host order (used by automotive
profile, ignored in case of
standard profile)

Domains domain_number
0: for default domain

-1: for domains
different from 0

-1 to 127
Disable (-1) or assign a gPTP
domain number to a domain
instance.

802.1AS-2011 mode force_2011 no "no" or "yes"
Set to "yes" to force 802.1AS-
2011 standard. "no" to enable
802.1AS-2020 full support.

Log output level log_level info crit, err, init,
info, or dbg

Set this configuration to dbg to
enable debug mode

Reverse sync
feature control reverse_sync 0 0 or 1 Set to 1 to enable reverse sync

feature.

Reverse sync
feature interval reverse_sync_interval 112 32 to 10000 Reverse sync transmit interval

in ms units

Table 73. General parameters

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
240 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

General configuration parameters[1]

Name Key Default value Range Description

Neighbor
propagation

delay threshold
neighborPropDelayThresh 800 32 to 10

000000
Neighbor propagation delay
threshold expressed in ns

Statistics
output interval statsInterval 10 0 to 255

Statistics output interval
expressed in seconds. Use 0
to disable statistics

Table 73. General parameters...continued

[1] For domain instances other than 0, only domain_number is configurable in this section.

6.2.4.2.2 Grandmaster parameters

This section defines the native Grand Master capabilities of a time-aware system (see IEEE 802.1AS-2020 -
8.6.2 PTP Instance attributes). Grand Master capabilities parameters are defined in the main configuration file
for gPTP domain 0 (e.g. fgptp.cfg) and in the additional per domain configuration files for other domains (e.g.
fgptp.cfg-1).

gmCapable defines if the time-aware system is capable of being a grandmaster. By default gmCapable is set to
1 as in standard profile operation the Grand Master is elected dynamically by the BMCA. In case of automotive
profile gmCapable must be set on each AED node to match the required network topology (that is, within a
given gPTP domain only one node must have its gmCapable property set to 1).

priority1, priority2, clockClass, clockAccuracy and offsetScaledLogVariance are parameters used by the Best
Master Clock algorithm to determine which of the Grand Master capable node within the gPTP domain has the
highest priority/quality. Note that the lowest value for these parameters matches the highest priority/quality.

Grandmaster capabilities parameters[1]

Name Key Default value Range Description

Grandmaster
capable setting gmCapable 1 0 or 1

Set to 1 if the device has
grandmaster capability.
Ignored in automotive profile
if the port is SLAVE.

Grandmaster
priority1 value priority1 248 for AED-E and

246 for AED-B 0 to 255 Set the priority1 value of this
clock

Grandmaster
priority2 value priority2 248 0 to 255 Set the priority2 value of this

clock

Grandmaster
clock class value clockClass 248 0 to 255 Set the class value of this

clock

Grandmaster clock
accuracy value clockAccuracy 0xfe 0x0 to 0xff Set the accuracy value of

this clock

Grandmaster
variance value offsetScaledLogVariance 17258 0x0 to 0xffff Set the offset scaled log

variance value of this clock

Table 74. Grandmaster parameters

[1] The parameters in this section are configurable for all supported domains.

6.2.4.2.3 Automotive parameters

The static pdelay feature is used only if the gPTP stack operates in automotive profile configuration.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
241 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

At init time the gPTP stack's configuration file is parsed and based on neighborPropDelay_mode the specified
initial_neighborPropDelay is applied to all ports and used for synchronization until a pdelay response from the
peer is received. This is done only if no previously stored pdelay is available from the nvram database specified
by nvram_file. As soon as a pdelay response from the peer is received the 'real' pdelay value is computed, and
used for current synchronization. An indication may then be sent via callback up to the OS-dependent layer.
Upon new indication the Host may update its nvram database and the stored value will be used at next restart
for the corresponding port instead of the initial_neighborPropDelay. The granularity at which pdelay change
indications are sent to the Host is defined by the neighborPropDelay_sensitivity parameter.

In the gPTP configuration file the neighborPropDelay_mode parameter is set to 'static' by default, meaning that
a predefined propagation delay is used as described above while pdelay requests are still sent to the network.

The 'silent' mode behaves the same way as the 'static' mode except that pdelay requests are never sent at all to
the network.

Optionally the neighborPropDelay_mode parameter can be set to standard forcing the stack to operate
propagation delay measurements as specified in the 802.1AS specifications even if the automotive profile is
selected.

(see AutoCDSFunctionalSpec-1_4 - 6.2.2 Persistent gPTP Values)

Name Key Default value Value & Range Description

Pdelay mode neighborPropDelay_mode static 'static', 'silent'
or 'standard'

Defines pdelay mechanism
used

Static
pdelay value initial_neighborPropDelay 250 0 to 10000

Predefined pdelay value
applied to all ports. Expressed
in ns.

Static pdelay
sensitivity neighborPropDelay_sensitivity 10 0 to 1000

Amount of ns between two
pdelay measurements required
to trigger a change indication.
Expressed in ns.

Nvram
file name nvram_file /etc/genavb/

fgptp.nvram Path and nvram file name.

Table 75. Automotive parameters

6.2.4.2.4 Timing

Pdelay requests and Sync messages sending intervals have a direct impact on the system synchronization
performance. To reduce synchronization time while optimizing overall system load, two levels of intervals are
defined. The first level called 'Initial', defines the messages intervals used until pdelay values have stabilized
and synchronization is achieved. The second level called 'Operational', defines the messages intervals used
once the system is synchronized.

initialLogPdelayReqInterval and operLogPdelayReqInterval define the intervals between the sending of
successive Pdelay_Req messages. initialLogSyncInterval and operLogSyncInterval define the intervals
between the sending of successive Sync messages. initialLogAnnounceInterval defines the interval between the
sending of successive Announce messages

(see AutoCDSFunctionalSpec-1_4 - 6.2.1 Static gPTP Values, IEC-60802 section 5, 802.1AS-2020 sections
10.7 and 11.5)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
242 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Name Key Default value Value and
Range Description

Initial pdelay request
interval value initialLogPdelayReqInterval 0 0 to 3

Set pdelay request initial
interval between the sending
of successive Pdelay_Req
messages. Expressed in log2
unit (default 0 -> 1s).

Initial sync
interval value initialLogSyncInterval -3 -5 to 0

Set sync transmit initial
interval between the
sending of successive Sync
messages. Expressed in log2
unit (default -3-> 125ms).

Initial announce
interval value initialLogAnnounceInterval 0 0 to 3

Set initial announce transmit
interval between the sending
of successive Announce
messages. Expressed in log2
unit (default 0 -> 1s).

Operational pdelay
request interval value operLogPdelayReqInterval 0 0 to 3

Set pdelay request transmit
interval used during normal
operation state. Expressed in
log2 unit (default 0 -> 1s).

Operational sync
interval value operLogSyncInterval -3 -5 to 0

Set sync transmit interval
used during normal operation
state. Expressed in log2 unit
(default -3 -> 125ms).

Table 76. Timing parameters

6.2.4.2.5 PORTn

This section describes the settings per port where n represents the port index starting at n=1.

Name Key Default
value Value & Range Description

Port role portRole disabled 'slave', 'master', 'disabled'
Static port role (ref. 802.1AS-2011,
section 14.6.3, Table 10-1), applies to
"automotive" profile only.

Ptp port
enabled ptpPortEnabled 1 0 or 1

Set to 1 if both time-synchronization
and best master selection functions of
the port should be used (ref. 802.1AS-
2011, sections 14.6.4 and 10.2.4.12).

RX timestamp
compensation rxDelayCompensation 0

min=-100000
max=100000
(in ns units)

Compensation delay subtracted from
receive timestamps.

TX timestamp
compensation txDelayCompensation 0

min=-100000
max=100000
(in ns units)

Compensation delay added to
transmit timestamps.

Delay
Mechanism delayMechanism P2P 'P2P' or 'COMMON_P2P'

Must be set to COMMON_P2P for all
domains others than Domain 0. For
Domain 0 the value can be either P2P
or COMMON_P2P.

Table 77. Port related parameters

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
243 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The following table lists the recommended Rx and Tx compensation values to be applied to the supported NXP
boards for optimized gPTP synchronization.

Board Type rxDelayCompensation txDelayCompensation

LS1028ARDB -274 349

I.MX 8M Plus EVK -569 184

Table 78. PHY Delay Compensation Values

6.2.4.3 SRP

The SRP parameters are defined in the following configuration files, depending on the package used:

• Endpoint: /etc/genavb/srp.cfg
• Bridge: /etc/genavb/srp-br.cfg

The default values are used if the configuration file or the option key are missing. The values in the installed file
may also required an update to match the system configuration.

This section lists general SRP stack component parameters.

Name Key Default value Range Description

Log output level log_level info crit, err, init,
info, or dbg

Log level for the SRP stack
component.

Table 79. SRP General

This section lists MSRP parameters.

Name Key Default value Range Description

Enabled enabled 1 0-disabled,
1-enabled Enable/disable MSRP at runtime.

Table 80. MSRP

6.2.5 Log files

Several log files are available at runtime to monitor the different stack components.

6.2.5.1 gPTP Endpoint

Logs are stored in /var/log/fgptp.

• Linux command:

tail –f /var/log/fgptp

• If the stack is configured in automotive mode, then the log contains:

Running fgptp in automotive profile on interface eth0

• Port Role, Port AS-capability and link Status are reported each time there is a change in the link state (link
is 802.1AS capable or not) or upon Grand Master (GM) change. This information is also displayed regularly
along with current synchronization and pdelay statistics for each of the enabled gPTP domain:

Port(0) domain(0,0): role changed from DISABLED to SLAVE
…
Port(0) domain(0,0): Slave – Link: Up – AS_Capable: Yes

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
244 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Selected Grand Master (GM) capabilities are reported upon new GM selection. Root Identity represents the
clock ID of the currently selected GM. Priority1, Priority2, Class and Accuracy describe the clock quality of the
selected GM. Finally, the Source Port Identity of the peer master port (e.g. the bridge port the local slave port
is connected to). This information is displayed for each of the enabled gPTP domain:

domain(0,0) Grand master: root identity 00049ffffe039e35
domain(0,0) Grand master: priority1 245 priority2
domain(0,0) Grand master: class 248 accuracy 248
domain(0,0) Grand master: variance 17258
domain(0,0) Grand master: source port identity 0001f2fffe0025fe, port number 2

• Synchronization State is reported upon GM selection (SYNCHRONIZED) or when no GM is detected (NOT
SYNCHRONIZED). Synchronization Time expressed in ms represents the time it took for the local clock to
reach synchronization threshold starting from the first SYNC message received. This information is displayed
for each of the enabled domain.

Port(0) domain(0) SYNCHRONIZED – synchronization time (ms): 250

• Pdelay (propagation delay) and local clock adjustments are printed out every 5 seconds. PDelay is expressed
in ns units and represents the one-way delay from the endpoint and its peer master. Correction is expressed
in parts per billion and represents the frequency adjustment performed to the local clock. Offset is expressed
in ns represents the resulting difference between the locally adjusted clock and the reference gPTP
GrandMaster’s clock. (Min/Max/Avg and Variance are computed for both Correction and Offset statistics).
PDelay is displayed only for Domain 0. Correction and Offset are displayed for each of the enabled domain.

Port 0 domain(0,0): Propagation delay (ns): 37.60 min 34 avg 36 max 45
 variance 17
Port 0 domain(0,0): Correction applied to local clock (ppb): min -5603 avg 5572
 max 5538 variance 148
Port 0 domain(0,0): Offset between GM and local clock (ns) min -12 avg 4 max 22
 variance 111
...
Port 0 domain(1,20): Correction applied to local clock (ppb): min 32074 avg
 32314 max 32574 variance 17695
Port 0 domain(1,20): Offset between GM and local clock (ns) min -61 avg 3 max
 70 variance 1149

• The following per port per domain statistics (32 bits counters) are printed out every 15 seconds on slave and
master entities:

Receive counters

PortStatRxPkts Number of gPTP packets received (ether type 0x88F7)

PortStatRxSyncCount Number of SYNC packets received

PortStatRxSyncReceiptTimeouts Number of SYNC packets receive timeout

PortStatRxFollowUpCount Number of FOLLOW-UP packets received

PortStatRxAnnounce Number of ANNOUNCE packets received

PortStatAnnounceReceiptTimeouts Number of ANNOUNCE packets timeout

PortStatAnnounceReceiptDropped Number of ANNOUNCE packets dropped by the entity

PortStatRxSignaling Number of SIGNALING packets received

PortStatRxPdelayRequest Number of PDELAY REQUEST packets received

PortStatRxPdelayResponse Number of PDELAY RESPONSE packets received

Table 81. Port statistics displayed on slave and master entities

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
245 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

PortStatPdelayAllowedLostResponsesExceeded Number of excess of allowed lost responses to PDELAY
requests

PortStatRxPdelayResponseFollowUp Number of PDELAY FOLLOW-UP packets received

PortStatRxErrEtype Number of ether type errors (not 0x88F7)

PortStatRxErrPortId Number or port ID errors

Transmit counters

PortStatTxPkts Number of gPTP packets transmitted

PortStatTxSyncCount Number of SYNC packets transmitted

PortStatTxFollowUpCount Number of FOLLOW-UP packets transmitted

PortStatTxAnnounce Number of ANNOUNCE packets transmitted

PortStatTxSignaling Number of SIGNALING packets transmitted

PortStatTxPdelayReques Number of PDELAY REQUEST packets transmitted

PortStatTxPdelayResponse Number of PDELAY RESPONSE packets transmitted

PortStatTxPdelayResponseFollowUp Number of PDELAY FOLLOW-UP packets transmitted

PortStatTxErr Number of transmit errors

PortStatTxErrAlloc Number of transmit packets allocation errors

Miscellaneous counters

PortStatAdjustOnSync Number of adjustments performed upon SYNC received

PortStatMdPdelayReqSmReset Number of reset of the PDELAY REQUEST state
machine

PortStatMdSyncRcvSmReset Number of reset of the SYNC RECEIVE state machine

PortStatHwTsRequest Number of egress timestamp requests

PortStatHwTsHandler Number of egress timestamp notification

PortStatNumSynchronizationLoss Number or synchronization loss on the slave endpoint
(e.g. GM change, GM reference clock discontinuity...)

PortStatNumNotAsCapable Number of transitions from AS_Capable=TRUE to AS_
Capable=FALSE

Table 81. Port statistics displayed on slave and master entities...continued

6.2.5.2 gPTP Bridge

Logs are stored in /var/log/fgptp-br.

• Linux command:

tail –f /var/log/fgptp-br

• The bridge stack statistics are similar to the endpoint stack ones except that they are reported for each of the
external ports of the switch (Port 0 to 3) and also for the internal port connected to the endpoint stack (Port 4)
in case of Hybrid setup.

• Pdelay (propagation delay) is printed only for Domain 0. Link status, AS capability and Port Role are printed
out for each port and each gPTP domain.

Port 0 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable:
 No DelayMechanism: P2P
Port 1 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable:
 No DelayMechanism: P2P

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
246 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Port 2 domain(0,0): Role: Disabled Link: Up AS_Capable: Yes
 neighborGptpCapable: Yes DelayMechanism: P2P
Port 2 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457
 variance 87
Port 3 domain(0,0): Role: Disabled Link: Up AS_Capable: No neighborGptpCapable:
 No DelayMechanism: P2P
Port 4 domain(0,0): Role Master Link: Up AS_Capable: Yes neighborGptpCapable:
 Yes DelayMechanism: P2P
Port 4 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457
 variance 87
...
Port 0 domain(1,20): Role: Disabled Link: Up AS_Capable: No
 neighborGptpCapable: No DelayMechanism: COMMON_P2P
Port 1 domain(1,20): Role: Disabled Link: Up AS_Capable: No
 neighborGptpCapable: No DelayMechanism: COMMON_P2P
Port 2 domain(1,20): Role: Disabled Link: Up AS_Capable: Yes
 neighborGptpCapable: Yes DelayMechanism: COMMON_P2P
Port 3 domain(1,20): Role: Disabled Link: Up AS_Capable: No
 neighborGptpCapable: No DelayMechanism: COMMON_P2P
Port 4 domain(1,20): Role Master Link: Up AS_Capable: Yes neighborGptpCapable:
 Yes DelayMechanism: COMMON_P2P

6.2.5.3 SRP Bridge

Logs are stored in /var/log/tsn-br.

• Linux command:

tail -f /var/log/tsn-br | grep srp

• SRP protocol information is reported per port

INFO srp msrp_vector_add_event : port(0) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(0) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(1) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(1) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(2) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(2) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(4) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(4) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_handler : port(3) domain(5, 2, 2)
 MRP_ATTR_EVT_MT
INFO srp msrp_vector_handler : port(3) domain(6, 3, 2)
 MRP_ATTR_EVT_MT
INFO srp msrp_vector_handler : port(3) domain(5, 2, 2)
 MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_handler : port(3) domain(6, 3, 2)
 MRP_ATTR_EVT_JOINMT
INFO srp msrp_vector_add_event : port(3) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOININ
INFO srp msrp_vector_add_event : port(3) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOININ

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
247 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

INFO srp msrp_vector_add_event : port(3) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOININ
INFO srp msrp_vector_add_event : port(3) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_JOININ
INFO srp msrp_vector_add_event : port(0) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(0) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(1) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(1) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(2) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(2) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(4) domain(5, 2, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT
INFO srp msrp_vector_add_event : port(4) domain(6, 3, 2)
 MSRP_ATTR_TYPE_DOMAIN MRP_ATTR_EVT_MT

6.2.5.4 TSN Endpoint example application

Logs are stored in /var/log/tsn_app.

The TSN application has various counters and statistics which help to validate:

• application scheduling and processing timing statistics
• network traffic correctness and latency statistics

Most of the information in the logs are either:

• Counters: single integer values counting specific events (frames received, transmitted, errors, etc)
• Statistics: composite data over a series of measurements: min (minimum during the last period), mean

(average of measurements during the last period), max (maximum during the last period), rms^~(root
mean square of measurements during the last period), stddev^2 (square of standard deviation during the
last period), absmin(absolute minimum since the application start), absmax (absolute maximum since the
application start)

• Histograms: number and size of slots of the histogram one the 1st line, array of counters for each slot on the
2nd line.

6.2.5.4.1 Main TSN task

The main TSN task logs are described below:

• Scheduling counters (“sched” should increment of 500 per second):

INFO 1604531064 tsn_task_stats_print tsn task(0x37d8d630)
INFO 1604531064 tsn_task_stats_print sched : 1700000
INFO 1604531064 tsn_task_stats_print sched early : 0
INFO 1604531064 tsn_task_stats_print sched late : 0
INFO 1604531064 tsn_task_stats_print sched missed : 0
INFO 1604531064 tsn_task_stats_print sched timeout : 0
INFO 1604531064 tsn_task_stats_print clock discont : 0
INFO 1604531064 tsn_task_stats_print clock err : 0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
248 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Scheduling error statistics (difference between actual task scheduling time and programmed time, in ns):

stats(0x2ddd4560) sched err min 8062 mean 10662 max 18862 rms^2 116252492
 stddev^2 2558383 absmin 2842 absmax 35082

• Scheduling error histogram (XXX ns bucket)

n_slot 101 slot_size 10000
18081119 21722197 1676 7 0
 0
 0

• Processing time statistics (main task duration in ns)

stats(0x2ddd49c0) processing time min 21600 mean 27564 max 47460 rms^2
 768483628 stddev^2 8664988 absmin 12540 absmax 152100

• Processing time histogram (XXX ns bucket)

n_slot 101 slot_size 1000
0 0 0 0 0 0 0 0 0 0 0 0 9 13 7 259 302 187 14273 64041 91896 427011 1473790
 2154889 4239252 4681777 5682883 5516429 4915621 3789351 2688466 1709802
 1036649 587716 327653 170711 89620 47637
 25422 15211 9573 6908 4852 3694 3101 2910 3028 3036 3331 3091 2842 2375 1748
 1251 895 585 342 208 100 63 64 26 21 13 9 14 6 7 4 4 6 3 4 1 0 2 2 1 1 0 0 0 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

• Total time statistics (scheduling error + processing time, in ins)

stats(0x2ddd4e20) total time min 30082 mean 38227 max 55862 rms^2 1473506486
 stddev^2 12160755 absmin 18962 absmax 170082

• Total time histogram (XXX ns bucket)

n_slot 101 slot_size 1000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 15 16 57 273 1674 7795 30165 80952
 240707 651779 1497160 2290907 3606869 4077757 4761502 4647779 4239893 3631222
 2831749 2209868 1631293 1173544
 819740 536234 338535 201816 115114 65529 36480 21413 12892 8249 5613 4178 3310
 3034 2890 2921 2615 2461 2132 1790 1427 1082 844 585 353 266 170 98 73 48 20
 25 6 14 14 1 6 2 3 8 2 2 1 3 2 1 1 2 1 2 0 1 1 0 0 0 10 0

6.2.5.4.2 Network socket

Below is an example of the network socket logs:

• Low-level network socket. Only frames relevant to the network socket (Layer 2) are counted here:

INFO 1604531059 net_socket_stats_print net rx socket(0x37d8d660) 0
INFO 1604531059 net_socket_stats_print frames : 1697802
INFO 1604531059 net_socket_stats_print frames err : 0
INFO 1604531059 net_socket_stats_print net tx socket(0x37d8d6e0) 0
INFO 1604531059 net_socket_stats_print frames : 1697500
INFO 1604531059 net_socket_stats_print frames err : 0

6.2.5.4.3 Application socket

• Application header is checked at this level. Also, the timestamps from the remote peers are verified as well
which guarantees that only expected and in sequence data is processed.

INFO 1604531069 socket_stats_print cyclic rx socket(0x419560)
 net_sock(0x37d8d660) peer id: 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
249 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

INFO 1604531069 socket_stats_print valid frames : 1702497
INFO 1604531069 socket_stats_print err id : 0
INFO 1604531069 socket_stats_print err ts : 305
INFO 1604531069 socket_stats_print err underflow : 2
INFO 1604531069 socket_stats_print link up

• Traffic latency statistics (the difference between the theoretical scheduling time of the peer that sent the frame
and the frame receive time (measured by the MAC), in ns)

stats(0x419a28) traffic latency min 503417 mean 503503 max 503637 rms^2
 253515981945 stddev^2 2004 absmin 503397 absmax 504337

• Traffic latency histogram (XXX ns bucket)

n_slot 101 slot_size 1000
0 0
 0
 0 299998 0

6.3 IEEE 1588/802.1AS
IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and
control systems.

IEEE 802.1AS is the IEEE standard for local and metropolitan area networks – timing and synchronization for
time-sensitive applications in bridged local area networks. It specifies the use of IEEE 1588 specifications where
applicable in the context of IEEE Std 802.1D-2004 and IEEE Std 802.1Q-2005.

NXP's Layerscape platform provides hardware assist for 1588 compliant time stamping with the 1588 timer
module to support applications of IEEE 1588/802.1AS.

6.3.1 Introduction

NXP’s i.MX and Layerscape platforms provide hardware assist for 1588 compliant time stamping with the 1588
timer module. The software components required to run IEEE 1588/802.1AS protocol utilizing the hardware
feature are listed below:

1. Linux PTP Hardware Clock (PHC) driver

2. Linux Ethernet controller driver with hardware timestamping support

3. A software stack application for IEEE 1588/802.1AS

Note: In this document, IEEE 1588 mentioned is IEEE 1588-2008, and IEEE 802.1AS mentioned is IEEE
802.1AS-2011.

6.3.2 IEEE 1588 device types

There are five basic types of PTP devices in IEEE 1588.

• Ordinary clock

A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the timescale used in
the domain. It may serve as a source of time (if used as a master clock) or may synchronize with another clock
(if used as a slave clock).

• Boundary clock

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
250 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains the timescale used
in the domain. It may serve as a source of time (be a master clock) or may synchronize to another clock (be a
slave clock).

• End-to-end transparent clock

A transparent clock that supports the use of the end-to-end delay measurement mechanism between slave
clocks and the master clock.

• Peer-to-peer transparent clock

A transparent clock that provides Precision Time Protocol (PTP) event transit time information. It also provides
corrections for the propagation delay of the link connected to the port receiving the PTP event message. In the
presence of peer-to-peer transparent clocks, delay measurements between slave clocks and the master clock
are performed using the peer-to-peer delay measurement mechanism.

• Management node

A device that configures and monitors clocks.

Note: Transparent clock is a device that measures the time taken for a PTP event message to transit the
device. It provides this information to clocks receiving the PTP event message.

6.3.3 IEEE 802.1AS time-aware systems

In gPTP, there are only two types of time-aware systems: end stations and Bridges, while IEEE 1588 has
ordinary clocks, boundary clocks, end-to-end transparent clocks, and P2P transparent clocks. A time-aware
end station corresponds to an IEEE 1588 ordinary clock, and a time-aware Bridge is a type of IEEE 1588
boundary clock where its operation is very tightly defined, so much so that a time-aware Bridge with Ethernet
ports can be shown to be mathematically equivalent to a P2P transparent clock in terms of how synchronization
is performed.

1. Time-aware end station

An end station that is capable of acting as the source of synchronized time on

the network, or destination of synchronized time using the IEEE 802.1AS protocol, or both.

2. Time-aware bridge

A Bridge that is capable of communicating synchronized time received on one

port to other ports, using the IEEE 802.1AS protocol.

6.3.4 Software stacks

6.3.4.1 linuxptp stack

Features of open source linuxptp

• Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.
• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls,

including the clock_adjtimex system call.
• Implements Boundary Clock (BC), Ordinary Clock (OC) and Transparent Clock (TC).
• Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).
• Supports IEEE 802.1AS-2011 in the role of end station.
• Modular design allowing painless addition of new transports and clock servos.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
251 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Implements unicast operation.
• Supports a number of profiles, including:

– The automotive profile.
– The default 1588 profile.
– The enterprise profile.
– The telecom profiles G.8265.1, G.8275.1, and G.8275.2.
– Supports the NetSync Monitor protocol.

• Implements Peer to peer one-step.
• Supports bonded, IPoIB, and vlan interfaces.

Note: the features listed are from linuxptp website. It does not mean all these features work on release boards.
The hardware 1588 capability, driver support and ptp4l version needs to be considered. Refer to following user
manual of this chapter for what had been verified.

Features added by Real-time Edge

• Supports IEEE 802.1AS-2011 in the role of time-aware bridge.
• Support dynamic direction in ts2phc to cooperate with ptp4l.

6.3.4.2 NXP GenAVB/TSN gPTP stack

Following are the features of the NXP GenAVB/TSN gPTP stack:

• Implements gPTP IEEE 802.1AS-2020, for both time-aware Endpoint and Bridge systems
• Implements gPTP BMCA
• Supports GrandMaster, Master, and Slave capabilities
• Supports multiple gPTP domains
• Supports Avnu Alliance Automotive profile
• Supports configuration profiles for the stack
• Supports hardware time stamping via the Linux SO_TIMESTAMPING socket option
• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls,

including the clock_adjtimex system call.

6.3.5 Quick Start for IEEE 1588

6.3.5.1 Ordinary clock verification

Connect two network interfaces in back-to-back manner for two boards. Make sure there is no MAC address
conflict on the boards, the IP addresses are set properly and ping the test network. Run linuxptp on each
board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -m

On running the above command time synchronization will start, and the slave linuxptp selected automatically
will synchronize to master with synchronization messages displayed, such as time offset, path delay and so on.
For example,

ptp4l[878.504]: master offset -10 s2 freq -2508 path delay 1826
ptp4l[878.629]: master offset -5 s2 freq -2502 path delay 1826
ptp4l[878.754]: master offset 0 s2 freq -2495 path delay 1826
ptp4l[878.879]: master offset 9 s2 freq -2482 path delay 1826
ptp4l[879.004]: master offset -9 s2 freq -2507 path delay 1826
ptp4l[879.129]: master offset -24 s2 freq -2530 path delay 1826

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
252 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

ptp4l[879.255]: master offset -7 s2 freq -2508 path delay 1826
ptp4l[879.380]: master offset -2 s2 freq -2502 path delay 1826
ptp4l[879.505]: master offset -17 s2 freq -2524 path delay 1827
ptp4l[879.630]: master offset 6 s2 freq -2493 path delay 1827
ptp4l[879.755]: master offset 6 s2 freq -2492 path delay 1827
ptp4l[879.880]: master offset 0 s2 freq -2500 path delay 1827

Some other options of ptp4l

Delay Mechanism
-E E2E, delay request-response (default)
-P P2P, peer delay mechanism
Network Transport
-2 IEEE 802.3
-4 UDP IPV4 (default)
-6 UDP IPV6

Note: must keep same delay mechanism and network transport protocol used on two boards.

Configure master mode

In default, the master clock is selected by BMC (Best Master Clock) algorithm. To appoint a specific clock
as master, a lower "priority1" attribute value than the other clock can be set. Lower value takes precedence.
For example, in current case, specify one clock as master with below option. (The other clock is using default
priority1 value 128.)

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2. To use one-step timestamping, add below option
for ptp4l running.

--twoStepFlag=0

6.3.5.2 Boundary clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is
no MAC address conflict on the boards, the IP addresses are set properly and ping the test network.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
253 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 85. Hardware setup for boundary clock verification

Run linuxptp on Board1 (boundary clock).

$ ptp4l -i eth0 -i eth1 -m

Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above command, time synchronization starts, and the slaves linuxptp selected automatically
synchronizes to the unique master with synchronization messages displayed such as time offset, path delay
and so on. For example,

ptp4l[878.504]: master offset -10 s2 freq -2508 path delay 1826
ptp4l[878.629]: master offset -5 s2 freq -2502 path delay 1826
ptp4l[878.754]: master offset 0 s2 freq -2495 path delay 1826
ptp4l[878.879]: master offset 9 s2 freq -2482 path delay 1826
ptp4l[879.004]: master offset -9 s2 freq -2507 path delay 1826
ptp4l[879.129]: master offset -24 s2 freq -2530 path delay 1826
ptp4l[879.255]: master offset -7 s2 freq -2508 path delay 1826
ptp4l[879.380]: master offset -2 s2 freq -2502 path delay 1826
ptp4l[879.505]: master offset -17 s2 freq -2524 path delay 1827
ptp4l[879.630]: master offset 6 s2 freq -2493 path delay 1827
ptp4l[879.755]: master offset 6 s2 freq -2492 path delay 1827
ptp4l[879.880]: master offset 0 s2 freq -2500 path delay 1827

Some other options of ptp4l

Delay Mechanism
-E E2E, delay request-response (default)
-P P2P, peer delay mechanism
Network Transport
-2 IEEE 802.3
-4 UDP IPV4 (default)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
254 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

-6 UDP IPV6

Note: You must keep same delay mechanism and use same network transport protocol on these boards.

Configure master mode

In default, the master clock is selected by BMC (Best Master Clock) algorithm. To appoint a specific clock as
master, a lower "priority1" attribute value than the other clock can be set. Lower value takes precedence. For
example, in current case, specify one clock as master with below option. (The other clocks is using default
priority1 value 128.)

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2. To use one-step timestamping, add below option
for ptp4l running.

--twoStepFlag=0

6.3.5.3 Transparent clock verification

At least three boards are needed. Below is an example for three boards network connection. Make sure there is
no MAC address conflict on the boards, the IP addresses are set properly, and ping the test network.

Figure 86. Sample network connection of three boards

Run linuxptp on Board1 (transparent clock). If you want Board1 works as E2E TC, use E2E-TC.cfg. If your
want Board1 works as P2P TC, use P2P-TC.cfg.

$ ptp4l -i eth0 -i eth1 -f /etc/linuxptp/E2E-TC.cfg -m

Run linuxptp on Board2/Board3 (ordinary clock).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
255 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

$ ptp4l -i eth0 -m -2

On running the above commands, time synchronization starts between ordinary clocks, and the slave linuxptp
selected automatically synchronizes to the master with synchronization messages displayed such as time
offset, path delay and so on.

6.3.6 Quick Start for IEEE 802.1AS

The following sections describe the steps for implementing IEEE 802.1AS on NXP boards. The following steps
make use of linuxptp stack but similar commands can be executed with NXP GenAVB/TSN gPTP stack on
supported boards, as described here.

6.3.6.1 Time-aware end station verification

Connect two network interfaces in back-to-back way for two boards. Make sure no MAC address conflict on the
boards, IP address set properly and ping test work.

Remove below option in /etc/linuxptp/gPTP.cfg to use default larger value, because estimate path delay
including PHY delay may exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -f /etc/linuxptp/gPTP.cfg -m

Time synchronization will start, and the slave linuxptp selected automatically will synchronize to master with
synchronization messages printed, like time offset, path delay and so on.

6.3.6.2 Time-aware bridge verification

At least three boards are needed for the time-aware bridge verification. Below is an example of the network
connection amongst the three boards. Make sure there is no MAC address conflict on the boards.

Figure 87. Setup for time-aware bridge verification

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
256 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Remove the below option in /etc/linuxptp/gPTP.cfg file to use the default larger value, because
estimated path delay including PHY delay may exceed 800 ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

Run linuxptp on Board1 (time-aware bridge) using the command below:

$ ptp4l -i eth0 -i eth1 -f /etc/linuxptp/gPTP.cfg -m

Run linuxptp on Board2/Board3 (time-aware end station) using the command:

$ ptp4l -i eth0 -f /etc/linuxptp/gPTP.cfg -m

Time synchronization will start between the three boards, and the linuxptp slaves selected will automatically
synchronize to the unique master with synchronization messages displayed (such as time offset, path delay and
so on).

6.3.7 Long term test

This section describes the long term test results for Linux PTP stack implementation.

6.3.8 Known issues and limitations

1. When LS1028A TSN switch in Linux is configured as L2 switch, the interfaces should not be configured with
IP addresses. Running linuxptp on these interfaces must use Ethernet protocol instead of UDP/IP. The method
is to add an option “-2” executing ptp4l command. For example,

$ ptp4l -i eth0 -2 -m

2. i.MX 8M Plus current dwmac driver (eth1) initializes some hardware functions during opening net device,
including PTP initialization. Before that, the operations on it may not work, like ethtool queries, and PTP
operations. So, the workaround is, do operations on the eth1 and PTP of dwmac only after "ifconfig eth1
up".

3. If below error is reported during ptp4l running, just try to increase tx_timestamp_timeout. User space
may need to wait longer for TX timestamp.

For example, use option --tx_timestamp_timeout=20 when running ptp4l as shown below:

ptp4l[1560.726]: timed out while polling for tx timestamp
ptp4l[1560.726]: increasing tx_timestamp_timeout may correct this issue, but it
 is likely caused by a driver bug

6.4 Networking

6.4.1 Q-in-Q on LS1028A Felix switch

1. Q-in-Q feature
Q-in-Q feature allows service providers to create a Layer 2 Ethernet connection between two user sites.
Providers can segregate VLAN traffic of different users on a link or bundle using different user VLANs.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
257 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

When using Q-in-Q, the service VLAN tag (S-TAG: 0x88A8) prepend the 802.1Q VLAN tags (C-
TAG:0x8100) of the user.

2. Q-in-Q application scenario
In the following scenario, port swp0 of the switch connects with Customer 1's LAN, swp1 connects with the
MAN of the ISP.
The traffic with VLAN tag is shown below:
uplink: Customer LAN (only C-TAG) -> swp0 -> swp1 (add S-TAG) -> ISP MAN (S-TAG +
C-TAG)
downlink: ISP MAN (S-TAG + C-TAG) -> swp1 (pop S-TAG)-> swp0 (only C-TAG) ->
Customer LAN

Figure 88. Q-in-Q application scenario
3. Q-in-Q configuration example

a. Enable swp1 Q-in-Q mode

devlink dev param set pci/0000:00:00.5 name qinq_port_bitmap value 2 cmode
 runtime

Note:
• 0000:00:00.5 is the PCIe bus and device number of ocelot switch.
• The value 2 is bitmap for port 1. If port n is linked to ISP MAN, the related bit 'n' should be set to 1.

b. Create bridge and add ports:

ip link add dev br0 type bridge vlan_protocol 802.1ad
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set dev br0 type bridge vlan_filtering 1

c. Set swp0 pvid and set untagged for egress traffic:

bridge vlan del dev swp0 vid 1 pvid
bridge vlan add dev swp0 vid 100 pvid untagged
bridge vlan add dev swp1 vid 100

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
258 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

d. The result is displayed below:

Customer(tpid:8100 vid:111) -> swp0 -> swp1 -> ISP(STAG tpid:88A8 vid:100,
 CTAG tpid:8100 vid:111)
ISP(tpid:88A8 vid:100 tpid:8100 vid:222) -> swp1 -> swp0 ->
 Customer(tpid:8100 vid:222)

6.4.2 VCAP on LS1028A Felix switch

The VCAP is a content-aware packet processor for wire-speed packet inspection. It uses the 'tc flower`
command to set the filter and actions. Following keys and actions are supported on LS1028A:
keys: vlan_id vlan_prio dst_mac/src_mac for non IP frames dst_ip/src_ip dst_port/
src_port
actions: trap drop police vlan modify vlan push(Egress)

Use the following commands to set, get, and delete VCAP rules:

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain [chain-id] protocol [ip/802.1Q] flower
 skip_sw [keys] action [actions]
tc -s filter show dev swp0 ingress chain [chain-id]
tc filter del dev swp0 ingress chain [chain-id] pref [pref_id]
tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw [keys] action vlan
 push id [value] priority [value]
tc filter show dev swp1 egress
tc filter del dev swp1 egress pref [pref_id]

There are two ingress VCAPs and one egress VCAPs. The tc-flower chains are used on LS1028A ingress
ports. Each action has a fixed chain. Following is the chain allocation:

chain ID Actions Hardware module keys

10000 skbedit priority IS1 lookup 0 Source MAC address,
source IP address (32 bits)
outer VLAN, IP protocol,
source TCP/UDP ports.

11000 vlan pop; vlan modify IS1 lookup 1 Inner and outer VLAN,
source and destination IP addresses (32 bits),
IP protocol,
source and destination TCP/UDP ports.

12000 goto chain [PAG] IS1 lookup 2 Source MAC address,
source IP address (32 bits)
outer VLAN, IP protocol,
source TCP/UDP ports.

20000-20255 police; trap IS2 lookup 0 Source and destination MAC address,
source and destination IP addresses (32 bits),
IP protocol,
source and destination TCP/UDP ports.

21000-21255 drop; redirect IS2 lookup 1 Source and destination MAC address,
source and destination IP addresses (32 bits),
IP protocol,

Table 82. Chain allocation

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
259 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

chain ID Actions Hardware module keys
source and destination TCP/UDP ports.

30000 gate; police PSFP destination MAC address and Vlan ID

Table 82. Chain allocation...continued

Before using chains, users should register each chain and set chain pipeline order for a packet. The hardware
ingress order is: IS1->IS2->PSFP.

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp0 ingress chain 10000 pref 49152 flower skip_sw action goto
 chain 11000
tc filter add dev swp0 ingress chain 11000 pref 49152 flower skip_sw action goto
 chain 12000
tc filter add dev swp0 ingress chain 12000 pref 49152 flower skip_sw action goto
 chain 20000
tc filter add dev swp0 ingress chain 20000 pref 49152 flower skip_sw action goto
 chain 21000
tc filter add dev swp0 ingress chain 21000 pref 49152 flower skip_sw action goto
 chain 30000

After registering the chain, add rules to the corresponding chain. Following are the use cases for testing:

Figure 89. VCAP test

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
260 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Drop all frames from source IP 192.168.2.1.

tc filter add dev swp0 ingress chain 21000 protocol ip flower skip_sw src_ip
 192.168.2.1 action drop

Set source IP as 192.168.2.1 and send IP package from TestCenter, package will be dropped on swp0.
2. Limit bandwidth of HTTP streams to 10 Mbps.

tc filter add dev swp0 ingress chain 20000 protocol ip flower skip_sw
 ip_proto tcp dst_port 80 action police rate 10Mbit burst 10000 conform-
exceed drop/pipe action goto chain 21000

Send TCP package and set destination port as 80 on TestCenter, set the stream bandwidth to 1Gbit/s, we
can get a 10Mbits/s stream rate.

3. Filter frames that have a specific vlan tag (VID=1 and PCP=1). Then, modify the vlan tag (VID=2, PCP=2)
and classified to QoS traffic class 2.

ip link set switch type bridge vlan_filtering 1
tc filter add dev swp0 ingress chain 11000 protocol 802.1Q flower skip_sw
 vlan_id 1 vlan_prio 1 action vlan modify id 2 priority 2 action goto chain
 12000
bridge vlan add dev swp0 vid 2
bridge vlan add dev swp1 vid 2

Set vid=1 and pcp=1 in vlan tag. Then, send IP package from TestCenter. Thus you can get a package
with vid=2, pcp=2 from swp1 on TestCenter.

4. Push a specific vlan tag (vid=3, pcp=3) into frames (classified vid=2, pcp=2 in switch) egress from swp1.

tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw vlan_id 2
 vlan_prio 2 action vlan push id 3 priority 3

Set vid=1 and pcp=1 in vlan tag, then send IP package from TestCenter, the frame will hit rule in usecase 3
and retag the vlan (vid=2, pcp=2). Thus, users can get a frame with vid=3, pcp=3 from swp1 on TestCenter.

5. Push double vlan tag(Q-in-Q) into frames egress to swp1.

ip link add dev br0 type bridge
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set br0 type bridge vlan_filtering 1
bridge vlan add dev swp0 vid 222
bridge vlan add dev swp1 vid 222
tc qdisc add dev swp1 clsact
tc filter add dev swp1 egress protocol 802.1Q flower skip_sw \
 vlan_id 222 vlan_prio 2 \
 action vlan push id 200 priority 1 protocol 802.1AD \
 action vlan push id 300 priority 3

Result: TX(tpid:8100 vid:222 pri:2) -> swp0 -> swp1 -> RX(S-TAG tpid:88A8 vid:200
pri:1, C-TAG tpid:8100 vid:300 pri:3)

6. Pop single or double vlan tag(Q-in-Q) from frames ingress from swp0.

ip link add dev br0 type bridge
ip link set dev swp0 master br0
ip link set dev swp1 master br0
tc filter add dev swp0 ingress chain 11000 \
 protocol 802.1ad flower \
 vlan_id 111 vlan_prio 1 vlan_ethtype 802.1q \
 cvlan_id 222 cvlan_prio 2 cvlan_ethtype ipv4 \
 action vlan pop action goto chain 12000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
261 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:222 pri:2) -> swp0
-> swp1 -> RX(TAG tpid:8100 vid:222 pri:2)

tc filter add dev swp0 ingress chain 11000 \
 protocol 802.1ad flower \
 vlan_id 111 vlan_prio 1 vlan_ethtype 802.1q \
 cvlan_id 223 cvlan_prio 2 cvlan_ethtype ipv4 \
 action vlan pop \
 action vlan pop action goto chain 12000

Result: TX(S-TAG tpid:88A8 vid:111 pri:1, C-TAG tpid:8100 vid:223 pri:2) -> swp0
-> swp1 -> RX(received packets without VLAN tag)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
262 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7 Protocols

This section describes the protocols supported.

7.1 EtherCAT master
Real-time Edge supports the usage of EtherCAT (Ethernet for Control Automation Technology) master and
integrates the IGH EtherCAT master stack and SOEM. EtherCAT is verified on NXP platforms.

7.1.1 Introduction

EtherCAT is an Ethernet-based fieldbus system, invented by BECKHOFF Automation. The protocol is
standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in
automation technology. EtherCAT was developed with an objective to apply Ethernet for automation applications
requiring short data update times, low communication jitter, and reduced hardware costs.

Note: (Data update time is also called cycle time; low communication jitter implies less than 100 µs and for
precise synchronization purposes, it is lesser than 1 µs).

• EtherCAT is Fast: 1000 dig. I/O: 30 µs, 100 slaves: 100 µs.
• EtherCAT is Ethernet: Standard Ethernet at I/O level.
• EtherCAT is Flexible: Star, line, drop, with or without switch.
• EtherCAT is Inexpensive: Ethernet is mainstream technology, therefore inexpensive.
• EtherCAT is Easy: everybody knows Ethernet, it is simple to use.

Currently, there are two open source EtherCAT masters, IGH for Cortex-A core and SOEM for Cortex-M core,
which Real-time Edge supports. Both IgH and SOEM are solutions that help users get rid of the low-level
development directly on EtherCAT protocol, and provide a common API for real-time applications. For more
information, see https://rt-labs.com/ethercat/ and http://www.etherlab.org.

As integrated into the Preempt-RT Linux kernel and using native Ethernet drivers (only supported on a few
specific NXP platforms), IgH shows significantly superior real-time characteristics. Also, IgH is more powerful
and integrated by providing users with auxiliary functions such that it encourages users to focus on specific
high-level programs. For example, IgH runs with an automatic master FSM (Finite State Machine), which is a
EtherCAT slave manager dynamically adapting the slave configurations to the new topology and responding to
requests from application-layer. In addition, IgH provides a command-line tool in user space to display detailed
information about master/slave configurations and to list SDO dictionaries and reading/writing addresses.

SOEM (Simple Open EtherCAT master) is a C library that offers methods to send and receive EtherCAT frames.
It is very light-weight but still powerful and stable. It can run on multiple operating systems, for example, Linux,
Windows, or FreeRTOS. It can even run without an operating system (such as 'baremetal'). Unlike IgH, users
have to configure PDOs and SDOs aligned with determined memory addresses in their own applications,
which might cause uncertainties during development. On Real-time Edge software, SOEM is only supported
on Cortex-M core on i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK platforms and runs on
FreeRTOS or baremetal.

7.1.2 EtherCAT protocol

Following are the characteristics of the EtherCAT protocol:

• The EtherCAT protocol is optimized for process data and is transported directly within the standard IEEE
802.3 Ethernet frame using Ethertype 0x88a4.

• The data sequence is independent of the physical order of the nodes in the network; addressing can be in any
order.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
263 / 400

https://rt-labs.com/ethercat/
http://www.etherlab.org

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Broadcast, multicast, and communication between slaves is possible, but must be initiated by the master
device.

• If IP routing is required, the EtherCAT protocol can be inserted into UDP/IP datagrams. This also enables any
control with Ethernet protocol stack to address EtherCAT systems.

• It does not support shortened frames.

The Figure 90 shows the EtherCAT frame structure.

Figure 90.  EtherCAT frame structure

7.1.3 IGH EtherCAT architecture

The components of the master environment are described below:

• Master module: This is the kernel module containing one or more EtherCAT master instances, the ‘Device
Interface’ and the ‘Application Interface’.

• Device modules: These are EtherCAT-capable Ethernet device driver modules that offer their devices to
the EtherCAT master via the device interface. These modified network drivers can handle network devices
used for EtherCAT operation and ‘normal’ Ethernet devices in parallel. A master can accept a certain device
and then, is able to send and receive EtherCAT frames. Ethernet devices declined by the master module are
connected to the kernel's network stack, as usual.

• Application: A program that uses the EtherCAT master (usually for cyclic exchange of process data with
EtherCAT slaves). These programs are not part of the EtherCAT master code, but require to be generated or
written by the user. An application can request a master through the application interface. If this succeeds, it
has the control over the master: It can provide a bus configuration and exchange process data. Applications
can be kernel modules that use the kernel application interface directly. They also include user space
programs, which use the application interface via the EtherCAT library or the RTDM library.
The Figure 91 shows the IGH EtherCAT master architecture.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
264 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 91. IGH EtherCAT master architecture

7.1.3.1 IGH EtherCAT device drivers

The EtherCAT protocol is based on the Ethernet standard, so a master relies on standard Ethernet hardware
to communicate with the bus. The term device is used as a synonym for Ethernet network interface hardware.
There are two kinds of device drivers modules:

1. Native Ethernet Device Drivers

Native Ethernet Device Drivers allow the EtherCAT master direct and exclusive access to the Ethernet
hardware. This implies that the network device must not be connected to the kernel's stack as usual, which
allows a high Real-time performance. In Real-time Edge software, there are three native Ethernet drivers:

• ec_fec: the native driver ec_fec can be used for the FEC MAC on i.MX 8DXL LPDDR4 EVK, i.MX 8M
Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, and i.MX 93 EVK. This driver is not verified on other i.MX

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
265 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

platforms in this release. Please note that the original Ethernet fec driver must be recompiled to a module by
reconfiguring Linux with command "make menuconfig" when using ec_fec native driver.

• ec_enetc: the native driver "ec_enetc" is used for ENETC MAC on the LS1028ARDB platform.
• ec_dpaa1: the native driver "ec_dpaa1" is used for DPAA1 MAC on the LS1043ARDB and LS1046ARDB.

2. Generic Ethernet Device Driver

The Generic driver uses the lower layers of the Linux network stack to connect to the hardware, independently
of the actual hardware driver. So it can be used by all the hardware platforms that Real-time Edge supports.
However, the performance by using generic Ethernet Device driver is a bit worse than the native driver, because
the Ethernet frame data has to traverse the Linux network stack.

7.1.3.2 IGH EtherCAT setup

Before the IGH EtherCAT daemon starts, the Ethernet device and the Ethernet driver must be specified by
setting the "MASTER0_DEVICE" and "DEVICE_MODULES" variables in the "/etc/ethercat.conf" file.

7.1.3.2.1 Specifying the Ethernet device

The Ethernet device is specified by setting MASTER0_DEVICE variable to the MAC address of the Ethernet
device to use as the EtherCAT network interface as below:

MASTER0_DEVICE="00:04:9f:07:11:a6"

For LS1046ARDB or LS1043ARDB platforms, if multiple masters are required, adding a non-empty variable
MASTER1_DEVICE creates a second master, and so on.

7.1.3.2.2 Generic Ethernet driver

The generic Ethernet driver is enabled on Real-time Edge images by default for all platforms. It can be specified
by setting "DEVICE_MODULES" variable to "generic" as shown below in the "/etc/ethercat.conf" file.

DEVICE_MODULES="generic"

7.1.3.2.3 Native Ethernet driver for i.MX 8M Mini LPDDR4 EVK

The native Ethernet driver "ec_fec" is enabled on Real-time Edge images by default for i.MX 8M Mini
LPDDR4 EVK. And it can be specified by setting "DEVICE_MODULES" variable to "fec" as below on "/etc/
ethercat.conf" file.

DEVICE_MODULES="fec"

But note that the original Ethernet fec driver must be compiled to modules by reconfiguring Linux menuconfig
when the native Ethernet driver "ec_fec" is enabled. On Real-time Edge, the original fec Ethernet driver has
been configured as a module by default.

7.1.3.2.4 Native Ethernet Driver for i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK

The native Ethernet driver 'ec_fec' is not enabled on Real-time Edge images by default for i.MX 8M Plus
LPDDR4 EVK and i.MX 93 EVK. It can be enabled manually before building the Real-time Edge images by
following the steps listed below:

1. Reconfigure the original Ethernet fec driver to modules:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
266 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Similar to i.MX 8M Mini LPDDR4 EVK, the original ENET fec driver must be compiled to modules when
the native Ethernet driver 'ec_fec' is enabled. The native Ethernet driver 'ec_fec' can be reconfigured
by adding the below line on "source/meta-real-time-edge/conf/distro/include/real-time-
edge-base.inc" file.

for i.MX 8M Plus LPDDR4 EVK
DELTA_KERNEL_DEFCONFIG:append:mx8mp-nxp-bsp = " linux-fec.config"

for i.MX 93 EVK
DELTA_KERNEL_DEFCONFIG:append:mx93-nxp-bsp = " linux-fec.config"

2. Enable the native Ethernet driver 'ec_fec' for i.MX 8M Plus LPDDR4 EVK or i.MX 93 EVK::
The native Ethernet driver 'ec_fec' can be enabled by adding the below line on "source/meta-real-
time-edge/conf/distro/include/igh-ethercat.inc" file for i.MX 8M Plus LPDDR4 EVK.

for i.MX 8M Plus LPDDR4 EVK
IGH_ETHERCAT:imx8mp-lpddr4-evk = " fec "

for i.MX 93 EVK
IGH_ETHERCAT:imx93evk = " fec "

Note: In the above code examples, that the interface names of ENET and ENET_QOS are exchanged because
modules are loaded later than built-in drivers. It means that the ENET would be renamed "eth1". In the
meantime, the ENET_QOS interface would be renamed to "eth0" from "eth1". This change might break some
existing scripts that use “eth1” for ENET_QOS.

7.1.3.2.5 Native Ethernet driver for LS1028ARDB

The native Ethernet driver ec_enetc is enabled on Real-time Edge images by default for LS1028ARDB. It can
be specified by setting DEVICE_MODULES variable to enetc as shown in the below /etc/ethercat.conf
file.

DEVICE_MODULES="enetc"

7.1.3.2.6 Native Ethernet driver for LS1043ARDB and LS1046ARDB

The native Ethernet driver 'ec_dpaa1‘ is enabled by default for LS1046ARDB and LS1043ARDB platforms.
There are up to 7 Ethernet ports on LS1046ARDB or LS1043ARDB. Hence, the multiple master and
redundancy features can be supported on LS1046ARDB and LS1043ARDB platforms.

DPAA is a network co-processer that is more complex than ordinary network cards and is different from other
native drivers mentioned above, . So the native driver "ec_dpaa1" must be configured by "ethercat_port"
variable in U-Boot to notify the DPAA co-processer how to schedule data frames before EtherCAT stack
starting. The format of "ethercat_port" variable is as below:

ethercat_port=master<x>_device,master<x>_backup,core_index;

The master<x>_device variable specifies the main Ethernet port for master with index 'x', while the
master<x>_backup variable specifies the backup Ethernet port if redundancy is required. Every master must
be bundled a specified CPU core. and core_index variable is used to specific which CPU core to be bundled for
this master.

The relationship between Ethernet port name on LS1046ARDB chassis and the name in the Linux is in the
Table 83:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
267 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Port name on chassis Port name in Linux

RGMII1 fm1-mac3

RGMII2 fm1-mac4

SGMII1 fm1-mac5

SGMII2 fm1-mac6

10G Copper fm1-mac9

10G SEP+ fm1-mac10

Table 83. LS1046ARDB chassis

Figure 92. LS1046ARDB Ethernet chassis

The relationship between Ethernet port name on LS1043ARDB chassis and the name in the Linux is shown in
Table 84.

Port name on chassis Port name in Linux

QSGMII.P0 fm1-mac1

QSGMII.P1 fm1-mac2

QSGMII.P2 fm1-mac5

QSGMII.P3 fm1-mac6

RGMII1 fm1-mac3

RGMII2 fm1-mac4

10G Copper fm1-mac9

Table 84. LS1043ARDB chassis

Figure 93. LS1043ARDB Ethernet chassis

There are 3 instances of ec_dpaa1 configuration for LS1046ARDB.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
268 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. There is only one network topology, and no backup port for redundancy. The Ethernet port of this network is
RGMII1, and the master is bundled to CPU core 3. For this case, the ethercat_port variable is as below:

setenv ethercat_port "fm1-mac3,,3;"

2. There are two EtherCAT network topologies, and each network topology has a backup port for redundancy.
The main port of the first network is RGMII1, the backup port is RGMII2, and the master of this network is
bundled to CPU core 3. The main port of the other network is SRGMII1, the backup port is SRGMII2, and
the master of this network is bundled to CPU core 2. For this case, the ethercat_port variable is as
below:

setenv ethercat_port "fm1-mac3,fm1-mac4,3;fm1-mac5,fm1-mac6,2;"

3. There are two EtherCAT network topologies, and only the first network topology has a backup port for
redundancy. The main port of the first network is RGMII1, the backup port is RGMII2, and the master of this
network is bundled to CPU core 3. The main port of the other network is SRGMII1, and the master of this
network is bundled to CPU core 2. For this case, the ethercat_port variable is as below:

setenv ethercat_port "fm1-mac3,fm1-mac4,3;fm1-mac5,,2;"

As mentioned above, each master is bundled to a specific CPU core. So it is recommended to bundle the
corresponding EtherCAT real-time application to the same core with the master.

7.1.3.2.7 Starting IGH EtherCAT

Use the below command to start the IGH EtherCAT daemon:

$ ethercatctl start

Also, the below commands are used to stop or restart it.

ethercatctl stop
ethercatctl restart

Note: If the generic driver is used, make sure using "ifconfig <ethX> up" command to enable the network
Card.

IGH provides a powerful auxiliary command-line tool, named “ethercat”. it is can be used to query the master
and all slaves information and status. The usage is as below:

Usage: ethercat <COMMAND> [OPTIONS] [ARGUMENTS]
 Commands (can be abbreviated):
 alias Write alias addresses.
 config Show slave configurations.
 crc CRC error register diagnosis.
 cstruct Generate slave PDO information in C language.
 data Output binary domain process data.
 debug Set the master's debug level.
 domains Show configured domains.
 download Write an SDO entry to a slave.
 eoe Display Ethernet over EtherCAT statistics.
 foe_read Read a file from a slave via FoE.
 foe_write Store a file on a slave via FoE.
 graph Output the bus topology as a graph.
 master Show master and Ethernet device information.
 pdos List Sync managers, PDO assignment and mapping.
 reg_read Output a slave's register contents.
 reg_write Write data to a slave's registers.
 rescan Rescan the bus.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
269 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 sdos List SDO dictionaries.
 sii_read Output a slave's SII contents.
 sii_write Write SII contents to a slave.
 slaves Display slaves on the bus.
 soe_read Read an SoE IDN from a slave.
 soe_write Write an SoE IDN to a slave.
 states Request application-layer states.
 upload Read an SDO entry from a slave.
 version Show version information.
 xml Generate slave information XML.

Real-time Edge also provides a systemd service to run IGH EtherCAT daemon as a system service.

systemctl enable ethercat
systemctl start ethercat

The below commands are used to stop or disable this service:

systemctl stop ethercat
systemctl disable ethercat

7.1.3.3 The 'real-time-edge-servo' stack

The real-time-edge-servo is a CiA402 (also referred to as DS402) profile framework based on IgH CoE
interface. (For details of an EtherCAT Master stack, see Section 7.1). It abstracts the CiA 402 profile and
provides an easily-usable API for the Application developer.

The real-time-edge-servo project consists of a basic library libnservo and several auxiliary tools.

The application developed with libnservo is flexible enough to adapt to the changing of CoE network by
modifying the xml config file, which is loaded when the application starts. The xml config file describes the
necessary information, which includes EtherCAT network topology, slave and master configurations, and
definitions of all the axles.

The stack has been tested on below CoE servo production: DELTA ASDA-B3, HCFA SV-X6EB, SV-X3EB, Just
Motion Control 2HSS458-EC, and INOVANCE InoSV680N.

7.1.3.3.1 CoE network

The Figure 94 illustrates a typical CoE network.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
270 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 94. CoE network

There are three CoE servos on this network and we name them slave x as the position they are. Each CoE
servo can have more than one axle. The libnservo initiates the CoE network and encapsulates the details of
network topology into axle nodes. Therefore, the developer can focus on the each axle operation without taking
care of the network topology.

7.1.3.3.2 Libnservo architecture

real-time-edge-servo runs on top of the Igh EtherCAT stack. The Igh stack provides CoE communication
mechanisms - Mailbox and Process Data. Using these mechanisms, real-time-edge-servo can access the CiA
Object Dictionary located on CoE servo. The Figure 95 shows the Libservo architecture.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
271 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 95. Libnservo architecture

The control task initiates the master and all slaves on the CoE network and registers all PDOs to Igh stack. It
then constructs a data structure to describe each axle. Finally, the control task creates a task to run the user
task periodically.

7.1.3.3.3 Xml configuration for real-time-edge-servo

This section describes how the xml config file that describes a CoE network should be configured.

The basic framework of the XML configuration is shown in the code below:

<?xml version="1.0" encoding="utf-8"?>
<Config Version="1.2">
 <PeriodTime>#10000000</PeriodTime>
 <MaxSafeStack>#8192</MaxSafeStack>
 <master_status_update_freq>#1</master_status_update_freq>
 <slave_status_update_freq>#1</slave_status_update_freq>
 <axle_status_update_freq>#1</axle_status_update_freq>
 <sync_ref_update_freq>#2</sync_ref_update_freq>
 <sched_priority>#90</sched_priority>
 <sched_policy>#SCHED_FIFO</sched_policy>
 <Masters>
 <Master>
 ...
 <\Master>
 <Master>
 ...
 <\Master>
 <\Master>

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
272 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 <Axles>
 <Axle>
 ...
 <\Axle>
 <Axle>
 ...
 <\Axle>
 <\Axles>
</Config>

• All config elements must be within the <Config> element.
• All config elements shown above are mandatory.
• The numerical value started with # indicates that it is a decimal value.
• The numerical value started with #x indicates that it is a hexadecimal value.
• <PeriodTime> element indicates that the period of control task is 10 ms.
• <MaxSafeStack> indicates the stack size, and it is an estimated value. 8K is sufficient to meet the needs of

most applications.
• <master_status_update_freq> element indicates the frequency of masters status update. the value #1

means update the masters status every task period.
• <slave_status_update_freq> element indicates the frequency of slaves status update. the value #1

signifies to update the slaves status every task period.
• <axle_status_update_freq> element indicates the frequency of axles status update. the value #1

signifies to update the axles status every task periods.
• <sync_ref_update_freq> element indicates the frequency of reference clock update. the value #2

signifies to update the axles status every two task periods.
• <sched_policy> element specifies which schedule policy is used for a user task.
• <sched_priority> element indicates the priority of the user task.
• <Masters> element can contain more than one Master element. For most cases, there is only one master on

a host.
• <Axles> element can contain more than one Axle element, which is an important feature for the developers.

7.1.3.3.3.1 Master element

As shown in the Section 7.1.3.3.1, the Master can have many slaves, so the Master element might consist of
few Slave elements.

<Master>
 <Master_index>#0</Master_index>
 <Reference_clock>#0</Reference_clock>
 <Slave alias="#0" slave_position="#0">

 </Slave>
 <Slave alias="#1" slave_position="#1">

 </Slave>
 </Master>

• <Master_index> element indicates the index of the master. As mentioned above, for many cases, there is
only one master, so the value of this element is always #0.

• <Reference_clock> element indicates the slave that is used the reference clock.
• <Slave> element indicates that there is a slave on this master.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
273 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Slave element

 <Slave alias="#0" slave_position="#0">
<VendorId>#x66668888</VendorId>
<ProductCode>#x20181302</ProductCode>
 <Name>2HSS458-EC</Name>
 <Emerg_size>#x08</Emerg_size>
<WatchDog>
 <Divider>#x0</Divider>
 <Intervals>#4000</Intervals>
</WatchDog>
<DC>
 <SYNC SubIndex='#0'>
 <Shift>#0</Shift>
 </SYNC>
</DC>
<SyncManagers force_pdo_assign="#1">
 <SyncManager SubIndex="#0">
 ...
 </SyncManager>
 <SyncManager SubIndex="#1">
 ...
 </SyncManager>
</SyncManagers>
<Sdos>
 <Sdo>
 ...
 </Sdo>
 <Sdo>
 ...
 </Sdo>
</Sdos>
 </Slave>

• alias attribute means the alias name of this slave.
• slave_position attribute means which position of the slave is on this network.
• <Name>element is the name of the slave.
• <Emerg_size> element is always 8 for all CoE device.
• <WatchDog> element is used to set the watch dog of this slave.
• <DC> element is used to set the sync info.
• <SyncManagers> element should contain all syncManager channels.
• <Sdos> element contains the default value we want to initiate by SDO channel.

SyncManagers Element

For a CoE device, there are generally four syncManager channels.

• SM0: Mailbox output
• SM1: Mailbox input
• SM2: Process data outputs
• SM3: Process data inputs

<SyncManager SubIndex="#2">
 <Index>#x1c12</Index>
 <Name>Sync Manager 2</Name>
 <Dir>OUTPUT</Dir>

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
274 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 <Watchdog>ENABLE</Watchdog>
 <PdoNum>#1</PdoNum>
 <Pdo SubIndex="#1">
 <Index>#x1600</Index>
 <Name>RxPdo 1</Name>
 <Entry SubIndex="#1">
 ...
 </Entry>
 <Entry SubIndex="#2">
 ...
 </Entry>
 </Pdo>
</SyncManager>

• <Index> element is the object address.
• <Name> is a name of this syncmanager channel.
• <Dir> element is the direction of this syncmanager channel.
• <Watchdog> is used to set watchdog of this syncmanager channel.
• <PdoNum> element means how many PDO we want to set.
• <Pdo SubIndex="#1> element contains the object dictionary entry that is required to be mapped to.

– <Index> PDO address.
– <Name> PDO name
– <Entry> the object dictionary we want to mapped.

The Entry element is used to describe an object dictionary that is required to be mapped to.

<Entry SubIndex="#1">
 <Index>#x6041</Index>
 <SubIndex>#x0</SubIndex>
 <DataType>UINT</DataType>
 <BitLen>#16</BitLen>
 <Name>statusword</Name>
</Entry>

Sdo element

The Sdo element is used to set the default value of a object dictionary.

<Sdo>
 <Index>#x6085</Index>
 <Subindex>#x0</Subindex>
 <value>#x1000</value>
 <BitLen>#32</BitLen>
 <DataType>DINT</DataType>
 <Name>Quick_stop_deceleration</Name>
</Sdo>

The element shown in figure above means set the Object Dictionary "6085" to 0x1000.

7.1.3.3.3.2 Axle element

<Axle master_index='#0' slave_position="#0" AxleIndex="#0" AxleOffset="#0">
 <Mode>pp</Mode>
 <Name>x-axle</Name>
 <reg_pdo>

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
275 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 ...
 </reg_pdo>
 <reg_pdo>
 ...
 </reg_pdo>
</Axle>

• master_index attribute indicates which master this axle belongs to.
• slave_position attribute indicates which slave this axle belongs to.
• AxleOffset attribute indicates which axle this axle is on the slave. As mentioned above, a CoE slave could

have more than one axle . If this axle is the second axle on the slave, set AxleOffset="#1" .
• <Mode> indicates the mode this axle will work on.
• <Name> is the name of this axle.
• <reg_pdo> is the PDO entry we want to register.

reg_pdo element

<reg_pdo>
 <Index>#x606c</Index>
 <Subindex>#x0</Subindex>
 <Name></Name>
</reg_pdo>

7.1.3.3.4 Testing a CoE servo system

7.1.3.3.4.1 Hardware preparation

• A CoE servo system:
A CoE servo system includes a CoE servo and a motor. In this test, 'Delta ASDA-B3-E' or '2HSS458-EC'
servo system shown as in the figure below is used.

• A board supported by Real-time Edge:
For this test, i.MX 8M Mini LPDDR4 EVK is used.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
276 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 96. '2HSS458-EC' servo system

Figure 97. ASDA-B3-E Servo System

7.1.3.3.4.2 Software preparation

Make sure the below config options are selected when configuring Real-time Edge.

• igh-ethercat
• libxml2
• real-time-edge-servo

7.1.3.3.4.3 CoE network detection

• Igh configuration
– Configure the MASTER0_DEVICE field of the /etc/ethercat.conf

Set MASTER0_DEVICE to the MAC address to indicate which port the Igh uses.
– Configure DEVICE_MODULES="generic" of the /etc/ethercat.conf

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
277 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Use the command below to start Igh service.

[root]# ethercatctl start

• Check CoE servo using below command.

[root]# ethercat slaves
0 0:0 PREOP + 2HSS458-EC
Or
[root]# ethercat slaves
0 0:0 PREOP + Delta ASDA-B3-E EtherCAT(CoE) Drive Rev0.00

7.1.3.3.4.4 Starting the test with 2HSS458-EC servo

Note:

The Position encoder resolution and Velocity encoder resolution of "2HSS458-EC" servo system are both 4000.
It means the ratio of encoder increments per motor revolution.

Profile Position mode test

• Start the test service as below.

[root]# nservo_run -f /home/root/nservo_example/hss248_ec_config_pp.xml &

• Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
0 0:0 OP + 2HSS458-EC

• Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase
 Phase: Operation

• Run below commands to test whether the motor works.
– Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Position Mode

– Get current position of axle 0.

[root]# nservo_client -a 0 -c get_current_position
get_current_position of the axle 0 : 0

– Get the profile speed of axle 0.

[root# nservo_client -a 0 -c get_profile_velocity
get_profile_velocity of the axle 0 : 800000

The value 800000 indicates 200 revolutions per second.
– Set profile speed of axle 0.

[root]# nservo_client -a 0 -c set_profile_velocity:20000
set_profile_velocity of the axle 0 : 20000

Set the profile speed to 5 revolutions per second.
– Set target position of axle 0

[root]# nservo_client -c set_target_position:400000
set_target_position of the axle 0 : 400000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
278 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The value 400000 means that the motor will turn 100 rounds.
(target_position: 400000 - current_position:0) / 4000 = 100

– Get current speed of axle 0

[root]# nservo_client -a 0 -c get_current_velocity
get_current_velocity of the axle 0 : 19999

– Get target position of axle 0

[root]# nservo_client -a 0 -c get_target_position
get_target_position of the axle 0 : 400000

• Exit

[root]# nservo_client -c exit

Profile Velocity mode test

• Start the test service as below.

[root]# nservo_run -f /home/root/nservo_example/hss248_ec_config_pv.xml &

• Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
0 0:0 OP + 2HSS458-EC

• Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase
 Phase: Operation

• Run below commands to test whether the motor works.
– Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Velocity Mode

– Set target speed of axle 0.

[root]# nservo_client -a 0 -c set_target_velocity:40000
set_target_velocity of the axle 0 : 40000

The value 40000 means that the motor will turn with 10 revolutions per second.
– Get current speed of axle 0.

[root]# nservo_client -a 0 -c get_current_velocity
get_current_velocity of the axle 0 : 32000

– Get target speed of axle 0.

[root]# nservo_client -a 0 -c get_target_velocity
get_target_velocity of the axle 0 : 40000

• Exit

[root]# nservo_client -c exit

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
279 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.1.3.3.4.5 Starting test with ASDA-B3-E servo system

Note: The position encoder resolution of "ASDA-B3-E" servo system is 16777216 (24 bits). It signifies that the
ratio of encoder increments per motor revolution.

Profile Position mode test

1. Start the test service as below.

[root]# nservo_run -f /home/root/nservo_example/Delta-ASDA-B3-pp.xml &

Check whether the status of the slave has been transferred from "PREOP" to "OP".

 [root]# ethercat slaves
 0 0:0 OP + Delta ASDA-B3-E EtherCAT(CoE) Drive Rev0.00

2. Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase Phase: Operation

3. Run the below commands to test whether the motor works.
a. Get the current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
get_mode of the axle 0 : Profile Position Mode

b. Get the current position of axle 0.

[root]# nservo_client -a 0 -c get_current_position
get_current_position of the axle 0 : 0

c. Get the profile speed of axle 0.

[root# nservo_client -a 0 -c get_profile_velocity
get_profile_velocity of the axle 0 : 0

d. Set profile speed of axle 0.

[root]# nservo_client -a 0 -c set_profile_velocity:16777216
set_profile_velocity of the axle 0 : 16777216

e. Set profile speed to 1 revolutions per second. Set target position of axle 0.

[root]# nservo_client -c set_target_position:167772160
set_target_position of the axle 0 : 167772160

The value 167772160 means that the motor turns 10 rounds. (target_position: 167772160 -
current_position:0) / 16777216 = 10

f. Get the current position of axle 0.

[root]# nservo_client -a 0 -c get_current_position
get_current_position of the axis 0 : 167772152

g. Get target position of axle 0

[root]# nservo_client -a 0 -c get_target_position
get_target_position of the axle 0 : 167772160

4. Exit.

[root]# nservo_client -c exit

Profile Velocity mode test

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
280 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Start the test service as below.

[root]# nservo_run -f /home/root/nservo_example/Delta-ASDA-B3-pv.xml &

2. Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
 0 0:0 OP + Delta ASDA-B3-E EtherCAT(CoE) Drive Rev0.00

3. Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase Phase: Operation

4. Run the below commands to test whether the motor works.
a. Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode
 get_mode of the axle 0 : Profile Velocity Mode

b. Set target speed of axle 0.

[root]# nservo_client -a 0 -c set_target_velocity:600
 set_target_velocity of the axle 0 : 600

The value 600 means that the motor turns with 60 revolutions per minute for ASDA-B3-E servo.
c. Get current speed of axle 0.

[root]# nservo_client -a 0 -c get_current_velocity
 get_current_velocity of the axle 0 : 600

d. Get target speed of axle 0.

[root]# nservo_client -a 0 -c get_target_velocity
 get_target_velocity of the axle 0 : 600

5. Exit

 [root]# nservo_client -c exit

Cyclic Sync Position mode test

1. Start the test service as below.

[root]# nservo_run -f /home/root/nservo_example/Delta-ASDA-B3-csp.xml &

2. Check whether the status of the slave has been transferred from "PREOP" to "OP".

[root]# ethercat slaves
0 0:0 OP + Delta ASDA-B3-E EtherCAT(CoE) Drive Rev0.00

3. Check whether the phase of the master has been transferred from "Idle" to "Operation".

[root]# ethercat master | grep Phase Phase: Operation

4. Run the below commands to test whether the motor works.
a. Get current mode of axle 0.

[root]# nservo_client -a 0 -c get_mode

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
281 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 get_mode of the axle 0 : Cyclic sync Position Mode

b. Load trajectory planning information from the command line for axle 0.

./nservo_client -a 0 -c set_tparrays:"Cyclic=1; Scale=46603; Bias=0;
 Accel=8; Decel=8; Max_speed=3600; TpArrays=[(0:1000),(45:1000),(45:1000),
(90:1000)];"

The command parameters are described below:
• Cyclic: if this field is set, the motor will come back to the first point of TpArrays and begin running

again
• Scale: this field is used to set the resolution of per unit. For example, the unit of position point in

TpArrays is degree. So the Scale should be set to 167772160/360 = 46603.
167772160 is the resolution per motor revolution.

• Bias: this field is used to set the bias value for the position point in TpArrays.
• Accel: the acceleration, unit^2 per second.
• Decel: the deceleration, unit^2 per second.
• Max_speed: The maximum speed, unit per second.
• TpArrays: is used to save trajectory planning information. Each element represents a position point

and the time taken for the motor to rotate to this point from the last point. The unit of the time field
is ms. Load trajectory planning information from a tp file for axle 0. Except loading the trajectory
planning information from command line. This information could also be loaded from a tp file. The
format of a sample tp file is shown below.

cat example/x6e_sv680_delta_tp_arrays
Axis=0; Cyclic=1; Scale=364; Bias=0; Accel=8; Decel=8; Max_speed=3600;
 TpArrays=[(0:2000),(45:1000),(45:2000),(90:1000),(90:2000),(270:1000),
(270:2000),(0:1000)];
Axis=1; Cyclic=1; Scale=364; Bias=0; Accel=8; Decel=8; Max_speed=3600;
 TpArrays=[(0:2000),(45:1000),(45:2000),(90:1000),(90:2000),(270:1000),
(270:2000),(0:1000)];

• Axis: the index of the axle.
• Cyclic: if this field is set, the motor will come back to the first point of TpArrays and run again.
• Scale: this field is used to set the resolution of per unit. For example, the unit of position point in

TpArrays is degree. So the Scale should be set to 167772160/360 = 46603.
167772160 is the resolution per motor revolution.

• Bias: this field is used to set bias value for the position point in TpArrays.
• Accel: the acceleration in unit^2 per second.
• Decel: the deceleration in unit^2 per second.
• Max_speed: The maximum speed, unit per second.
• TpArrays: are used to save trajectory planning information. Each element represents a position point

and the time taken for the motor rotating to the this point from the last point. The unit of the time field
is ms.

./nservo_client -c load_tp_file:"/home/root/nservo_example/Delta-ASDA-
B3-tp_arrays"

• Cyclic: if this field is set, the motor will come back to the first point of TpArrays and begin running
again.

• Scale: this field is used to set the resolution of per unit. For example, the unit of the position point
in TpArrays is degree. So the Scale should be set to 167772160/360 = 46603. 167772160 is the
resolution per motor revolution. /

• Accel: the acceleration, unit^2 per second.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
282 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Decel: the deceleration, unit^2 per second.
• Max_speed: The maximum speed, unit per second.
• TpArrays: used to save trajectory planning information. Each element represents a position point and

the time taken for the motor to rotate to this point from the last point. The unit of the time field is ms.
Set the axle 0 to start running using the below command:

[root]# nservo_client -a 0 -c set_start
set_start of the axis 0

• Get the current_position of axle 0 using the below command:

[root]# nservo_client -a 0 -c get_current_position
get_current_position of the axis 0 : 2815922

• Set axle 0 to stop running using the below command:

[root]# nservo_client -a 0 -c set_stop
set_stop of the axis 0

• Set all axles in CSP mode to start running using the below command:

[root]# nservo_client -c set_start_all

All CSP axis in ready status start to run.
• Set all axles in CSP mode to stop running using the below command:

[root]# nservo_client -c set_stop_all

All CSP axis in running status begin to stop.
• Exit

[root]# nservo_client -c exit

7.1.3.3.5 EtherCAT multiple axes control system

7.1.3.3.5.1 HCFA 60-axes servo system

Below is a 60-axes servo system built by HCFA, and this system consists of 60 X3E servo motors and also 60
pointers in the screen which could rotate 360 degrees under the corresponding servo motor control. As shown
in the figure below, this system can render any character on the screen by rotating these pointers.

Any platforms supported on Real-time Edge could be used as the controller of this servo system, and the
software is based on real-time-edge-servo stack.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
283 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 98. 60-axes servo system built by HCFA

HCFA performance

The task period is 1 ms, and servo control mode is CSP.

• Native EtherCAT driver + IGH stack: 26 µs
• Schedule latency: 200 µs on i.MX 8MP, 220 µs on i.MX 8M Mini
• Link propagation latency: 64 µs
• Customer task: 690-700 µs saved for app

Running this case (HCFA)

All software associated with this controller is integrated in Real-time Edge by default, and can be set up using
the below steps:

• Start the nservo service as below:

[root]# nservo_run -f /home/root/nservo_example/x3e_csp_60_config.xml &

• Run the below commands to confirm whether the motor works:

[root]# nservo_client -a 59 -c get_mode

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
284 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Load the trajectory planning information:

[root]#nservo_client -c load_tp_file:"/home/root/nservo_example/
x3e_60_axis_nxp_logo"e file x3e_60_axis_nxp_logo includes all of trajectory
 planning information for 60-axes to control this servo system to present NXP
 logo.

• Start all servo motors:
After the trajectory planning information file is loaded, use the below command to start the system.

[root]# nservo_client -c set_start_all

7.1.4 SOEM EtherCAT Master

The SOEM is a library that provides the user application the means to send and receive EtherCAT frames. The
application provides for:

• Reading and writing process data to be sent/received by SOEM
• Keeping local IO data synchronized with the global IO map
• Detecting errors reported by SOEM
• Managing errors reported by SOEM

Refer http://openethercatsociety.github.io/doc/soem/tutorial_8txt.html for more details. On Real-time Edge
software, SOEM is only supported on Cortex-M core on the below platform:

• i.MX 8M Plus LPDDR4 EVK platform

• i.MX 8M Mini LPDDR4 EVK platform

And SOEM runs on FreeRTOS or without an operating system (baremetal).

There are two SOEM demos provided in this release. Both of them have the same function, but is based on
different layer. Demo "freertos_soem_gpio_pulse" is based on FreeRTOS, while demo "soem-gpio-
pulse" is based on bare metal (without an operating system).

7.1.4.1 SOEM for i.MX 8M Plus LPDDR4 EVK platform

7.1.4.1.1 Setup hardware environment

The below hardware is required to set up these two demos.

• i.MX 8M Plus LPDDR4 EVK platform
• EK1100 - EtherCAT Coupler
• EL2008 - EtherCAT Terminal, 8-channel digital output, 24V DC
• EL1018 - EtherCAT Terminal, 8-channel digital input, 24 V DC
• 24V DC Power Supply

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
285 / 400

http://openethercatsociety.github.io/doc/soem/tutorial_8txt.html

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 99. SOEM hardware setup for i.MX 8M Plus LPDDR4 EVK platform
The channel-1 of the EL1018 is connected to a button to generate a 24 V pulse as a input signal to change
the output of the channel-1 of the EL2008 labeled as "Dir" . The channel-2 of the EL2008 outputs a square-
wave signal with a period of 250 µs.

7.1.4.1.2 Building the demo images

By default, the demo images "freertos_soem_gpio_pules" and "soem_gpio_pules" are compiled with
the i.MX 8M Plus LPDDR4 EVK target image compiling, and they are installed into the directory "/example" of
the target rootfs. For JTAG download, these images can also be found in the directory "<image-build-dir>/
tmp/deploy/images/imx8mpevk/examples/" on building host.

cd <image-build-dir>/
tree tmp/deploy/images/imx8mpevk/examples/mcux-sdk/soem-gpio-pulse
|── ddr_release
| └── soem_gpio_pulse.elf
| └── soem_gpio_pulse.bin
| ── release
 └── soem_gpio_pulse.elf
 └── soem_gpio_pulse.bin
tree tmp/deploy/images/imx8mpevk/examples/mcux-sdk/freertos-soem-gpio-pulse
|── ddr_release
| └── freertos_soem_gpio_pulse.elf
| └── freertos_soem_gpio_pulse.bin
| ── release
 └── freertos_soem_gpio_pulse.elf
 └── freertos_soem_gpio_pulse.bin

Also, the demo images can be compiled using the below command on i.MX 8M Plus LPDDR4 EVK build
directory:

bitbake soem-gpio-pulse

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
286 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

or

bitbake freertos-soem-gpio-pulse

7.1.4.1.3 Running SOEM demo images using J-Link GDB Server

This section describes the steps to run a demo application using J-Link GDB Server application. After the J-Link
interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the i.MX 8M Plus LPDDR4 EVK platform to your PC via USB cable between the USB-UART
connector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to the SWD/
JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port
number. Configure the terminal with these settings:
• 115200 baud rate
• No parity
• 8 data bits
• 1 stop bit

3. Open the J-Link GDB Server application on Linux host.
If the OS of your PC is Linux, using the below configuration to set up GDB Server. Assuming the J-Link
software is installed, the application can be launched from a new terminal for the MIMX8ML_M7 device:

$ JLinkGDBServer -if JTAG -device
SEGGER J-Link GDB Server Command Line Version
JLinkARM.dll
Command line: -if JTAG -device MIMX8ML8_M7
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
< -- Skipping lines -->
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device:
Target interface: JTAG
Target interface speed: 1000 kHz
Target endian: little
Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Feb 2 2020 18:12:40
Hardware: V10.10
S/N: 600109545 Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 1.82 V
Listening on TCP/IP port 2331
Connecting to target...
J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 (Cortex-M7)
Connected to target
Waiting for GDB connection...

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
287 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

4. Open the J-Link GDB Server application on Window host.
If the OS of your PC is Windows, use the below image to set up GDB Server. Assuming the J-Link software
is installed, the application can be launched by going to the Windows operating system “Start” menu and
selecting “Programs -> SEGGER -> J-Link <version> J-Link GDB Server”.
After server is launched, modify the settings as below. The target device selected for this demo is
MIMX8ML8_M7 .

After GDB server is running, the screen looks like as below:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
288 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 100. GDB server settings and log
5. Start the GDB client:

Assuming the arm-none-eabi-gdb is installed, and change to the directory that contains the demo images
output "<build-dir>/tmp/deploy/images/imx8mpevk/examples/soem-gpio-pulse".
$ arm-none-eabi-gdb ./release/soem_gpio_pulse.elf
GNU gdb (GNU Tools for Arm Embedded Processors 9-2019-q4-major) 8.3.0.20190709-git
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later < http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=i686-w64-mingw32 --target=arm-none-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>
For help, type "help". Type "apropos word" to search for commands related to "word"...
Reading symbols from soem_gpio_pulse.elf...
(gdb)

6. Connect to the GDB server and load the binary by running the following commands:
a. target remote <GDB Server IP>:2331
b. monitor reset
c. monitor halt
d. load

(gdb) target remote localhost:2331
Remote debugging using localhost:2331

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
289 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

0x00000008 in __isr_vector ()
(gdb) monitor reset Resetting target
(gdb) monitor halt
(gdb) load
Loading section .interrupts, size 0x240 lma 0x0
Loading section .text, size 0x3ab8 lma 0x240
Loading section .ARM, size size 0x8 lma 0x3cf8
Loading section .init_array, size 0x4 lma 0x3d00
Loading section .fini_array, size 0x4 lma 0x3d04
Loading section .data, size 0x64 lma 0x3d08
Start address 0x2f4, load size 15724
Transfer rate: 264 KB/sec, 2620 bytes/write.
(gdb)

The application is now downloaded and stopped at the reset vector. Execute the monitor go command to start
the demo application.

(gdb) monitor go

7.1.4.1.4 Running SOEM demo images by U-Boot

This section describes the steps to write SOEM demo image file to TCM or DRAM with the Real-time Edge
image. The following steps describe how to use the U-Boot:

1. Connect the DEBUG UART slot on the board to your PC through the USB cable. The Windows OS installs
the USB driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find USB serial Port in Ports (COM and LPT). Assume that
the ports are COM9 and COM10. One port is for the debug message from the Cortex-A53 and the other is
for the Cortex-M7. The port number is allocated randomly, so opening both is beneficial for development.
On Ubuntu OS, find the TTY device with name /dev/ttyUSB* to determine your debug port. Similar to
Windows OS, opening both is beneficial for development.

3. Build and flash the nxp-image-real-time-edge image to a SD card and insert the SD card to the target
board. Make sure to use the default boot SD slot and check the DIP boot switch configuration.

4. Open your preferred serial terminal for the serial devices. Set the speed to 115200 bps, 8 data bits, 1 stop
bit (115200, 8N1), no parity. Then, power on the board.

5. Power on the board and hit any key to stop autoboot in the terminal window. Then enter the U-Boot
command line mode. You can then write the image and run it from TCM or DRAM with the following
commands:
a. If the soem_gpio_pulse.bin is made from the <examples/..>/release target, which means
the binary file will run at TCM, use the following commands to boot:

=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/soem-gpio-pulse/release/
soem_gpio_pulse.bin;
=> cp.b 0x48000000 0x7e0000 0x20000;
=> bootaux 0x7e0000

b. If the soem_gpio_pulse.bin is made from the <examples/..>/ddr_release target, which
means the binary file runs at DRAM, use the following commands:

=> ext4load mmc 1:2 0x80000000 /examples/mcux-sdk/soem-gpio-pulse/
ddr_release/soem_gpio_pulse.bin;
=> dcache flush
=> bootaux 0x80000000

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
290 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Note: If the Linux OS kernel runs together with M7, make sure the correct dtb file is used. This dtb file
reserves resources used by M7 and avoids the Linux kernel from configuring them. Use the following command
in U-Boot before running the kernel:

setenv fdtfile imx8mp-evk-rpmsg.dtb

Note:

You should perform a modification in case you require that SOEM app still works when running Linux. M7 core
needs exclusive access to Ethernet. So, you should remove the Ethernet access from Linux Kernel. Perform the
following steps:

1. In kernel-source/arch/arm64/boot/dts/freescale/imx8mp-evk-rpmsg.dts add at the end of
the kernel device tree the following lines:

&fec {
 status = "disabled";
};
Recompile the kernel:
$ bitbake -f -c compile virtual/kernel
$ bitbake virtual/kernel

2. Copy the new device tree and the kernel image to SD boot partition.

Now, SOEM still works while Linux is running.

7.1.4.2 SOEM for i.MX 8M Mini LPDDR4 EVK platform

7.1.4.2.1 Setup hardware environment

The below hardware are required to set up these two demos.

• i.MX 8M Mini LPDDR4 EVK platform
• EK1100 - EtherCAT Coupler
• EL2008 - EtherCAT Terminal, 8-channel digital output, 24V DC
• EL1018 - EtherCAT Terminal, 8-channel digital input, 24 V DC
• 24V DC Power Supply

Figure 101. Hardware setup for SOEM on i.MX 8M Mini LPDDR4 EVK platform

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
291 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The channel-1 of the EL1018 is connected to a button to generate a 24 V pulse as a input signal to change
the output of the channel-1 of the EL2008 labeled as "Dir" . The channel-2 of the EL2008 outputs a square-
wave signal with a period of 250 µs.

7.1.4.2.2 Building the demo images

The demo images "freertos_soem_gpio_pules" and "soem_gpio_pules" are by default compiled with
the i.MX 8M Mini LPDDR4 EVK target image compiling. They are installed into the directory "/example" of the
target rootfs. For JTAG download, these images can also be found on the directory "<image-build-dir/
tmp/deploy/images/imx8mmevk/examples/" on building host.

cd <image-build-dir>/
tree tmp/deploy/images/imx8mmevk/examples/mcux-sdk/soem-gpio-pulse
|── ddr_release
| └── soem_gpio_pulse.elf
| └── soem_gpio_pulse.bin
| ── release
 └── soem_gpio_pulse.elf
 └── soem_gpio_pulse.bin
tree tmp/deploy/images/imx8mmevk/examples/mcux-sdk/freertos-soem-gpio-pulse
|── ddr_release
| └── freertos_soem_gpio_pulse.elf
| └── freertos_soem_gpio_pulse.bin
| ── release
 └── freertos_soem_gpio_pulse.elf
 └── freertos_soem_gpio_pulse.bin

Also, the demo images could be compiled using the below command on i.MX 8M Mini LPDDR4 EVK build
directory:

bitbake soem-gpio-pulse

or

bitbake freertos-soem-gpio-pulse

7.1.4.2.3 Running SOEM demo images

This section describes the steps to run a demo application using J-Link GDB Server application. After the J-Link
interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the i.MX 8M Mini LPDDR4 EVK platform to your PC via USB cable between the USB-UART
connector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to the SWD/
JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port
number. Configure the terminal with these settings:
• 115200 baud rate
• No parity
• 8 data bits
• 1 stop bit

3. Open the J-Link GDB Server application on Linux host.
If the OS of your PC is Linux, using the below configuration to set up GDB Server. Assuming the J-Link
software is installed, the application can be launched from a new terminal for the MIMX8MM6_M4 device:

$ JLinkGDBServer -if JTAG -device

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
292 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

SEGGER J-Link GDB Server Command Line Version
JLinkARM.dll
Command line: -if JTAG -device MIMX8MM6_M4
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
< -- Skipping lines -->
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device:
Target interface: JTAG
Target interface speed: 1000 kHz
Target endian: little
Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Feb 2 2020 18:12:40
Hardware: V10.10
S/N: 600109545 Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 1.82 V
Listening on TCP/IP port 2331
Connecting to target...
J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 (Cortex-M7)
Connected to target
Waiting for GDB connection...

4. Open the J-Link GDB Server application on Window host.
If the OS of your PC is Windows, use the settings listed in the below figure to set up GDB Server. Assuming
the J-Link software is installed, the application can be launched by going to the Windows operating system
“Start” menu and selecting “Programs -> SEGGER -> J-Link <version> J-Link GDB Server”.
After launch, modify the settings as below. The target device selected for this demo is MIMX8MM6_M4 .

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
293 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

After GDB server is running, the screen looks like as below:

5. Start the GDB client:
Assuming the arm-none-eabi-gdb is installed, and change to the directory that contains the demo images
output "<build-dir>/tmp/deploy/images/imx8mmevk/examples/soem-gpio-pulse".

$ arm-none-eabi-gdb ./release/soem_gpio_pulse.elf
GNU gdb (GNU Tools for Arm Embedded Processors 9-2019-q4-major)
 8.3.0.20190709-git

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
294 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later < http://gnu.org/licenses/
gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=i686-w64-mingw32 --target=arm-none-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>
For help, type "help". Type "apropos word" to search for commands related to
 "word"...
Reading symbols from soem_gpio_pulse.elf...
(gdb)

6. Connect to the GDB server and load the binary by running the following commands:
a. target remote <GDB Server IP>:2331
b. monitor reset
c. monitor halt
d. load

(gdb) target remote localhost:2331
Remote debugging using localhost:2331
0x00000008 in __isr_vector ()
(gdb) monitor reset Resetting target
(gdb) monitor halt
(gdb) load
Loading section .interrupts, size 0x240 lma 0x0
Loading section .text, size 0x3ab8 lma 0x240
Loading section .ARM, size size 0x8 lma 0x3cf8
Loading section .init_array, size 0x4 lma 0x3d00
Loading section .fini_array, size 0x4 lma 0x3d04
Loading section .data, size 0x64 lma 0x3d08
Start address 0x2f4, load size 15724
Transfer rate: 264 KB/sec, 2620 bytes/write.
(gdb)

The application is now downloaded and stopped at the reset vector. Execute the monitor go command to start
the demo application.

(gdb) monitor go

7.1.4.2.4 Running SOEM demo images by U-Boot

The steps to write SOEM demo image file to TCM or DRAM using the Real-time Edge image on i.MX 8M Mini
LPDDR4 EVK are same as followed for i.MX 8M Plus LPDDR4 EVK board. Refer Section 7.1.4.1.4.

7.1.5 CODESYS EtherCAT Master

7.1.5.1 Overview

Based on Real-time Edge yocto project, a new yocto distro named "nxp-real-time-edge-plc" is added,
which is specific to the PLC use case. This document describes how to build a Real-time Edge PLC image and
how to setup a CODESYS test project as an example to drive motors.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
295 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• For more information about i.MX Yocto project, refer to:https://www.nxp.com.cn/docs/en/user-guide/
IMX_YOCTO_PROJECT_USERS_GUIDE.pdf

• For additional information, refer to https://www.nxp.com.cn/docs/en/user-guide/
RTEDGEYOCTOUG_Rev2.7.pdf

7.1.5.2 Features

Features are as follows:

• Optimized native driver

Typical industrial software, for example CODESYS or SOEM EtherCAT master stack, work on user space and
communicate using Linux standard network interface. To reduce the latency when Ethernet raw packets pass
from user space through Linux standard network, the network driver is optimized to avoid memory reallocation
and copying, task rescheduling. The latency of the critical path is reduced for packet transmitting and receiving.

• Light root filesystem

Lighter root filesystem saves CPU cycles that could be used by the PLC user program.

• Supported platforms
– imx6ull14x14evk
– imx8mm-lpddr4-evk
– imx8mp-lpddr4-evk
– imx93evk

7.1.5.3 Building the image

This section provides detailed information along with the procedure for building an image.

7.1.5.3.1 Build configurations

A new yocto distro named "nxp-real-time-edge-plc" is added for the PLC use case, and below platforms are
supported:

• imx6ull14x14evk
• imx8mm-lpddr4-evk
• imx8mp-lpddr4-evk
• imx93evk

Real-time Edge provides the script real-time-edge-setup-env.sh to simply the setup for both i.MX and
Layerscape boards. To use the script, the name of the specific machine to be built for and the desired distro
must be specified. The script sets up a directory and the configuration files for the specified machine and distro.

The syntax for the real-time-edge-setup-env.sh script is shown below:

$ DISTRO=nxp-real-time-edge-plc MACHINE=<machine name> source real-time-edge-
setup-env.sh -b <build dir>

where:

• MACHINE=<machine name> is the name of the supported platforms.
• -b <build dir> specifies the name of the build directory created by the real-time-edge-setup-env.sh

script.

After the script runs, the working directory is the one just created by the script, specified with the -b option. A
conf folder is created containing the files bblayers.conf and local.conf.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
296 / 400

https://www.nxp.com.cn/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf
https://www.nxp.com.cn/docs/en/user-guide/IMX_YOCTO_PROJECT_USERS_GUIDE.pdf
https://www.nxp.com.cn/docs/en/user-guide/RTEDGEYOCTOUG_Rev2.7.pdf
https://www.nxp.com.cn/docs/en/user-guide/RTEDGEYOCTOUG_Rev2.7.pdf

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The local.conf file contains the machine and distro specifications. An example is shown below:

MACHINE ??= 'imx8mp-lpddr4-evk'
DISTRO ?= 'nxp-real-time-edge-plc'
ACCEPT_FSL_EULA = "1"

The MACHINE configuration can be changed by editing this file, if necessary.

7.1.5.3.2 Build scenarios

The following are build setup scenarios for various configurations. Set up the manifest and populate the Yocto
Project layer sources using the commands below:

$ mkdir yocto-real-time-edge
$ cd yocto-real-time-edge
$ repo init -u https://github.com/nxp-real-time-edge-sw/yoctoreal-time-edge.git
 \
-b real-time-edge-mickledore \
-m real-time-edge-2.7.0.xml
$ repo sync

The following sections give some specific examples.

• Real-time Edge PLC image on i.MX 6ULL EVK
$ DISTRO=nxp-real-time-edge-plc MACHINE=imx6ull14x14evk source real-time-edge-
setup-env.sh -b build-imx-real-time-edge-plc
$ bitbake nxp-image-real-time-edge-plc

• Real-time Edge PLC image on i.MX 8M Mini EVK
$ DISTRO=nxp-real-time-edge-plc MACHINE=imx8mm-lpddr4-evk source real-time-
edge-setup-env.sh -b build-imx-real-time-edge-plc
$ bitbake nxp-image-real-time-edge-plc

• Real-time Edge PLC image on i.MX 8M Plus EVK
$ DISTRO=nxp-real-time-edge-plc MACHINE=imx8mp-lpddr4-evk source real-time-
edge-setup-env.sh -b build-imx-real-time-edge-plc
$ bitbake nxp-image-real-time-edge-plc

• Real-time Edge PLC image on i.MX 93 EVK
$ DISTRO=nxp-real-time-edge-plc MACHINE=imx93evk source real-time-edge-setup-
env.sh -b build-imx-real-time-edge-plc
$ bitbake nxp-image-real-time-edge-plc

7.1.5.3.3 Image deployment

All filesystem images are deployed to the <build directory>/tmp/deploy/images directory. Each image
building creates a U-Boot image, a kernel image, and an image type based on the IMAGE_FSTYPES variable
defined in the machine configuration file. Most machine configurations provide an SD card image (.wic) and a
rootfs image (.tar). The SD card image contains a partitioned image (with U-Boot, kernel, rootfs, and other such
files) suitable for booting the corresponding hardware.

Copy image to SD card：

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
297 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The SD card image file, (<image_name>.wic) contains a partitioned image (with U-Boot, kernel, rootfs, and
other files) suitable for booting the corresponding hardware. Run the following commands to copy the image to
an SD card:

$ zstd -d <image_name>.wic.zst
$ sudo dd if=<image_name>.wic of=/dev/sd<disk> bs=1M conv=fsync

7.1.5.4 Running CODESYS on the boards

7.1.5.4.1 Running CODESYS on i.MX 6ULL

Execute the following command to update the dtb file and boot into kernel.

uboot ==> setenv fdt_file imx6ull-14x14-evk-ecat.dtb
uboot ==> run bootcmd

Set the CPU frequency governor to “performance” for CPU core to use the highest frequency.

echo performance > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor

Enable the EtherCAT port.

ethercat_port=`ls /sys/bus/platform/devices/2188000.ethernet/net` && echo
 $ethercat_port
ifconfig $ethercat_port up

Assign IP address for the Ethernet port automatically if there is a DHCP server in the network.

ethernet_port=`ls /sys/bus/platform/devices/20b4000.ethernet/net` && echo
 $ethernet_port
udhcpc -i $ethernet_port

Else assign IP address manually.

ethernet_port=`ls /sys/bus/platform/devices/20b4000.ethernet/net` && echo
 $ethernet_port
ifconfig $ethernet_port 192.168.1.xx

Use scp command to copy codesyscontrol.bin into the board and start it:

./codesyscontrol.bin > CODESYS.log &

Note:

• Please refer to the next section to obtain codesyscontrol.bin.
• CODESYS logs can be viewed in the CODESYS.log file.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
298 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.1.5.4.2 Running CODESYS on i.MX 8M Mini and i.MX 8M Plus

Execute the following command to isolate CPU1 (by default, the “EtherCAT_Task” thread created by the
Realtime of CODESYS is bound into CPU1).

uboot ==> setenv mmcargs 'setenv bootargs ${jh_clk} ${mcore_clk} console=
${console} root=${mmcroot} isolcpus=1'

Execute the following command to update the dtb file and boot into kernel.

// on i.MX 8M Mini
uboot ==> setenv fdtfile imx8mm-evk-ecat.dtb
// on i.MX 8M Plus
uboot ==> setenv fdtfile imx8mp-evk-ecat.dtb

uboot ==> run bootcmd

Set the CPU frequency governor to “performance” for CPU1 core to use the highest frequency.

echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor

Stop the “udhcpc” service which interface is connected to the EtherCAT servos.

ethercat_net=`ls /sys/bus/platform/devices/30be0000.ethernet/net` && echo
 $ethercat_net
ps
// find “PID root 3468 S udhcpc -R -b -p /var/run/udhcpc.eth0.pid -i
 $ethercat_net”
kill -9 PID

Enable the EtherCAT port.

ethercat_port=`ls /sys/bus/platform/devices/30be0000.ethernet/net` && echo
 $ethercat_port
ifconfig $ethercat_port up

Assign IP address for the Ethernet port automatically if there is a DHCP server in the network.

// assume the name of the USB network port is eth1
udhcpc -i eth1

Else assign IP address manually.

// assume the name of the USB network port is eth1
ifconfig eth1 192.168.1.xx

Use scp command to copy codesyscontrol.bin into the board and start it:

./codesyscontrol.bin > CODESYS.log &

Note:

• Please refer to the next section to obtain codesyscontrol.bin.
• CODESYS logs can be viewed in the CODESYS.log file.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
299 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.1.5.4.3 Running CODESYS on i.MX 93

Execute the following command to isolate CPU1 (by default, the “EtherCAT_Task” thread created by the
Realtime of CODESYS is bound into CPU1).

uboot ==> setenv mmcargs 'setenv bootargs ${jh_clk} ${mcore_clk} console=
${console} root=${mmcroot} isolcpus=1'

Execute the following command to update the dtb file and boot into kernel.

uboot ==> setenv fdtfile imx93-11x11-evk-ecat.dtb
uboot ==> run bootcmd

Stop the “udhcpc” service which interface is connected to the EtherCAT servos.

ethercat_net=`ls /sys/bus/platform/devices/42890000.ethernet/net` && echo
 $ethercat_net
ps
// find “PID root 3468 S udhcpc -R -b -p /var/run/udhcpc.eth0.pid -i
 $ethercat_net”
kill -9 PID

Enable the EtherCAT port.

ethercat_port=`ls /sys/bus/platform/devices/42890000.ethernet/net` && echo
 $ethercat_port
ifconfig $ethercat_port up

Assign IP address for the Ethernet port automatcally if there is a DHCP server in the network.

ethernet_port=`ls /sys/bus/platform/devices/428a0000.ethernet/net` && echo
 $ethernet_port
udhcpc -i $ethernet_port

Else assign IP address manually.

ethernet_port=`ls /sys/bus/platform/devices/428a0000.ethernet/net` && echo
 $ethernet_port
ifconfig $ethernet_port 192.168.1.xx

Execute the following command to disable the "CPU1" idle state1.

echo "1" > /sys/devices/system/cpu/cpu1/cpuidle/state1/disable

Execute the following command to disable the DDR auto clock gating.

echo 0 > /sys/devices/platform/imx93-lpm/auto_clk_gating

Use scp command to copy codesyscontrol.bin into the board and start it:

./codesyscontrol.bin > CODESYS.log &

Note:

• Please refer to the next section to obtain codesyscontrol.bin.
• CODESYS logs can be viewed in the CODESYS.log file.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
300 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.1.5.5 Setting up CODESYS

CODESYS is a powerful commercial PLC software programming tool. It supports IEC61131-3 standard IL,
ST, FBD, LD, CFC, SFC, and six kinds of PLC programming languages. Users can choose different language
editing subroutines in the same project, function module, and so on.

7.1.5.5.1 Board environment setup

i.MX 6ULL EVK Boards

• Hardware requirements
– Two network cables
– Mini/micro USB cable
– One servo motor(DELTA ASDA-B3)
– Personal Computer on which the CODESYS has been installed

• Preparing the example
– Connect the PC and the network port labeled J1501 B on the board.
– Connect the servo motors to the network port labeled J1501 A on the board.
– Connect a USB cable between the host PC and the OpenSDA USB port on the target board. Then, open a

serial terminal with the following settings
– 115200 baud rate
– 8 data bits
– No parity
– One stop bit
– No flow control

i.MX 8M Mini EVK Boards

• Hardware requirements
– Two Network cables
– Mini/micro USB cable
– Network port converter with type-C interface

Note: i.MX 8M Mini has only one network port, so it is needs another network port connected with
CODESYS IDE.

– One servo motor (DELTA ASDA-B3)
– Personal Computer on which the CODESYS has been installed.

• Preparing the example
– Connect the servo and the network port of the board.
– Plug the Network port converter into the USB port (labeled PORT1) of the board, and then connect the

Network port converter to the PC using a network cable.
– Connect a USB cable between the host PC and the OpenSDA USB port on the target board, open a serial

terminal with the following settings:
– 115200 baud rate
– 8 data bits
– No parity
– One stop bit
– No flow control

The connection diagram for i.MX 8M Mini board is as follows.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
301 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 102. i.MX 8M Mini board connection
i.MX 8M Plus EVK Boards

• Hardware requirements
– Two Network cables
– Mini/micro USB cable
– One servo motor (DELTA ASDAB3)
– Personal Computer on which the CODESYS has been installed.

• Preparing the example
– Connect the PC to the network port labeled ENET2 on the board.
– Connect the servo motors to the network port labeled ENET1 on the board.
– Connect a USB cable between the host PC and the OpenSDA USB port on the target board, and open a

serial terminal with the following settings:
– 115200 baud rate
– 8 data bits
– No parity
– One stop bit
– No flow control

i.MX 93 EVK Boards

• Hardware requirements
– Two Network cables
– Mini/micro USB cable
– One servo motor(DELTA ASDAB3)
– Personal Computer on which the CODESYS has been installed

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
302 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Preparing the example
– Connect the PC to the network port labeled ENET1 on the board.
– Connect the servo motors to the network port labeled ENET2 on the board.
– Connect a USB cable between the host PC and the OpenSDA USB port on the target board, and open a

serial terminal with the following settings:
– 115200 baud rate
– 8 data bits
– No parity
– One stop bit
– No flow control

7.1.5.5.2 CODESYS project setup

7.1.5.5.2.1 Downloading CODESYS runtime binary

Download the corresponding runtime binary file from CODESYS website and decompress it using the
commands below:

unzip CODESYS\ Control\ for\ Linux\ ARM64\ SL\ 4.7.0.0.package CODESYS.package
cd Delivery/
dpkg-deb -R codesyscontrol_linuxarm64_4.7.0.0-b.trunk.39_arm64.deb software
cd software/opt/codesys/bin/

The runtime binary codesyscontrol.bin is located in the software/opt/codesys/bin/ directory.

Note:

• Download 32-bit version for the platform:

- i.MX 6ULL EVK

• Download 64-bit version for the platforms:

- i.MX 8M Mini EVK

- i.MX 8M Plus EVK

- i.MX 93 EVK

7.1.5.5.2.2 Starting CODESYS runtime

Use the scp command to copy codesyscontrol.bin into the board and start it:

./codesyscontrol.bin > CODESYS.log &

CODESYS logs can be viewed in the CODESYS.log file.

7.1.5.5.2.3 Creating a new CODESYS project

This section describes the steps to create the CODESYS project in the machine on which the CODESYS tool
has been installed.

• Open CODESYS and build a new project using the steps below:

1. Click “File” -> “New project”.
2. Select “Standard project” as the template.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
303 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. Rename this project.
4. Click “OK” to complete it.

Figure 103. Select Standard project as template

• Set Device and PLC_PRG

1. Select “CODESYS Control for Linux ARM64 SL” or “CODESYS Control for Linux ARM SL” as the
Device.

2. Select “Structured Text(ST)” as the PLC_PRG.
3. Click “OK” to complete it.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
304 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 104. Selecting the device and PLC_PRG

7.1.5.5.2.4 Adding EtherCAT Master and Slave

• Set EtherCAT master

1. Right-click on the device -> “Add Device”
2. Select “EtherCAT Master SoftMotion”
3. Click “Add Device” to complete it.

Figure 105. Selecting EtherCAT master

• Download DELTA ASDA-B3 device description file

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
305 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

https://downloadcenter.deltaww.com/en-US/DownloadCenter?v=1&q=ASDA-A3-E%2F%20B3-E%20XML%20
File%20v0.04&sort_expr=cdate&sort_dir=DESC

• Add DELTA device description file

1. Click “Tools” -> “Device Repository”.
2. Click “Install”.
3. Select “Delta ASDA-x3-E rev0.04_10EMC.XML” file.
4. Click “Close” to complete it.

Figure 106. Adding DELTA device description file

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
306 / 400

https://downloadcenter.deltaww.com/en-US/DownloadCenter?v=1&q=ASDA-A3-E%2F%20B3-E%20XML%20File%20v0.04&sort_expr=cdate&sort_dir=DESC
https://downloadcenter.deltaww.com/en-US/DownloadCenter?v=1&q=ASDA-A3-E%2F%20B3-E%20XML%20File%20v0.04&sort_expr=cdate&sort_dir=DESC

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 107. View Installed devices

• Add servo device

1. Right-click on the “EtherCAT_Master_SoftMotion” -> “Add Device”.
2. Select the corresponding servo.
3. Click “Add Device” to complete it.

Figure 108. Adding a Device

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
307 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 109. Select the device to be added

• Add CiA402 Axis device

1. Right-click on the servo -> “Add SoftMotion CiA402 Axis“.

Figure 110. Adding CiA402 Axis device
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
308 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.1.5.5.2.5 Adding PLC program

The below steps describe how to add the PLC program to the drive motor:

1. Right-click on the “Application” -> “Add Object” -> “POU” and name it “PLC_PRG”. (If it already exists, do
not add it.) -> Pull the PLC_PRG under the EtherCAT_Task

2. Right-click on the “PLC_PRG” -> “Add Object” -> “action” and name it “axiscontrol”
3. Fill in the following PLC code:

Figure 111. Filling the PLC code

The PLC_PRG (PRG) variable is as follows:

PROGRAM PLC_PRG
VAR CONSTANT
CONST : INT := 1; // The number of belt axes can be modified from here
END_VAR
VAR
 Ton_E :TON;
 TON_F :TON;
 TON_B :TON;
 ECAT_Success :BOOL;
 ECAT_Error :BOOL;
 AXIS : ARRAY [1..CONST] OF POINTER TO AXIS_REF_SM3;
 FB_Power : ARRAY [1..CONST] OF MC_Power;
 FB_Jog : ARRAY [1..CONST] OF MC_Jog;
 N : INT;
 start : BOOL;
 JOG_Velocity : REAL :=10;
 JOG_Forward :BOOL;
 JOG_Backward :BOOL;
END_VAR

The PLC_PRG (PRG) code is as follows:

// Master station operation judgment
Ton_E (IN:=EtherCAT_Master_SoftMotion.xConfigFinished
 AND EtherCAT_Master_SoftMotion.xDistributedClockInSync
 AND NOT EtherCAT_Master_SoftMotion.xError ,
 PT:=T#50MS, Q=> , ET=>);
ECAT_Success S= Ton_E.Q;

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
309 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

ECAT_Error :=NOT Ton_E.Q AND ECAT_Success;
// Axis pointer acquisition
AXIS[1] :=ADR(SM_Drive_GenericDSP402);
Axiscontrol();
IF ECAT_Success THEN
 start :=TRUE;
ELSE
 start :=FALSE;
END_IF
IF JOG_Forward=FALSE AND JOG_Backward =FALSE THEN
 JOG_Backward :=TRUE;
END_IF
 TON_F (IN:= JOG_Forward, PT:= T#10S, Q=> , ET=>);
 TON_B (IN:= JOG_Backward, PT:= T#10S, Q=> , ET=>);
IF TON_F.Q THEN
 JOG_Forward :=FALSE;
 JOG_Backward :=TRUE;
ELSIF TON_B.Q THEN
 JOG_Forward :=TRUE;
 JOG_Backward :=FALSE;
END_IF

The axis control code is as follows:

FOR N :=1 TO CONST BY 1 DO
 FB_Power[N](
 Axis:= AXIS[N]^,
 Enable:= TRUE,
 bRegulatorOn:= start,
 bDriveStart:= TRUE,
 Status=> ,
 bRegulatorRealState=> ,
 bDriveStartRealState=> ,
 Busy=> ,
 Error=> ,
 ErrorID=>);
 FB_Jog[N](
 Axis:= AXIS[N]^,
 JogForward:= FB_Power[N].Status AND JOG_Forward,
 JogBackward:= FB_Power[N].Status AND JOG_Backward,
 Velocity:= JOG_Velocity,
 Acceleration:= JOG_Velocity *10,
 Deceleration:= JOG_Velocity *10,
 Jerk:= ,
 Busy=> ,
 CommandAborted=> ,
 Error=> ,
 ErrorId=>);
END_FOR

7.1.5.5.2.6 Running CODESYS Project

1. In the Codesys_Control window, fill in the IP address of the board in respective textbox. Then, press Enter
to connect to the board as shown in the figure below:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
310 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 112. Adding IP address of the board
2. Select the network port on the board that is used to communicate with the servo.

Figure 113. Selecting the network port
Note: For network port selection, refer to Section 7.1.5.5.1.

3. Click “Login” and “Start” button to run the PLC program:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
311 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 114. Running the PLC program

The motor will start to rotate after all steps above are done.

7.2 FlexCAN and CANopen
The following sections provide an introduction to the FlexCAN standard, details of the CAN bus, the CANopen
communication system, details of how to integrate FlexCAN with Real-time Edge, and running a FlexCAN
application.

7.2.1 Introduction

The LS1028ARDB board have the FlexCAN module. The FlexCAN module is a communication controller
implementing the CAN protocol according to the CAN 2.0 B protocol specification. The main sub-blocks
implemented in the FlexCAN module include an associated memory for storing message buffers, Receive (RX)
Global Mask registers, Receive Individual Mask registers, Receive FIFO filters, and Receive FIFO ID filters.
A general block diagram is shown in the following figure. The functions of these submodules are described in
subsequent sections.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
312 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 115. FlexCAN block diagram

7.2.1.1 CAN bus

CAN (Controller Area Network) is a serial bus system. A CAN bus is a robust vehicle bus standard designed
to allow microcontrollers and devices to communicate with each other in applications without a host
computer. Bosch published several versions of the CAN specification and the latest is CAN 2.0 published in
1991. This specification has two parts; part A is for the standard format with an 11-bit identifier, and part B is for
the extended format with a 29-bit identifier. A CAN device that uses 11-bit identifiers is commonly called CAN
2.0A and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B.

CAN is a multi-master serial bus standard for connecting Electronic Control Units [ECUs] also known as nodes.
Two or more nodes are required on the CAN network to communicate. The complexity of the node can range
from a simple I/O device up to an embedded computer with a CAN interface and sophisticated software. The
node may also be a gateway allowing a standard computer to communicate over a USB or Ethernet port to
the devices on a CAN network. All nodes are connected to each other through a two wire bus. The wires are a
twisted pair with a 120 Ω (nominal) characteristic impedance.

High speed CAN signaling drives the CAN high wire towards 5 V and the CAN low wire towards 0 V when
transmitting a dominant (0), and does not drive either wire when transmitting a recessive (1). The dominant
differential voltage is a nominal 2 V. The termination resistor passively returns the two wires to a nominal
differential voltage of 0 V. The dominant common mode voltage must be within 1.5 V to 3.5 V of common and
the recessive common mode voltage must be within +/-12 V of common.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
313 / 400

https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Multi-master_bus
https://en.wikipedia.org/wiki/Serial_bus

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 116.  High speed CAN signaling

Figure 117. Base frame format

Figure 118. High speed CAN network

7.2.1.2 CANopen

CANopen is a CAN-based communication system. It comprises higher-layer protocols and profile specifications.
CANopen has been developed as a standardized embedded network with highly flexible configuration
capabilities. Today it is used in various application fields, such as medical equipment, off-road vehicles,
maritime electronics, railway applications, and building automation.

CANopen provides several communication objects, which enable device designers to implement desired
network behavior into a device. With these communication objects, device designers can offer devices that
can communicate process data, indicate device-internal error conditions or influence and control the network
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
314 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

behavior. As CANopen defines the internal device structure, the system designer knows exactly how to access
a CANopen device and how to adjust the intended device behavior.

• CANopen lower layers
CANopen is based on a data link layer according to ISO 11898-1. The CANopen bit timing is specified in
CiA 301 and allows the adjustment of data rates from 10 kbit/s to 1000 kbit/s. Although all specified CAN-
ID addressing schemata are based on the 11-bit CAN-ID, CANopen supports the 29-bit CAN-ID as well.
Nevertheless, CANopen does not exclude other physical layer options.

• Internal device architecture
A CANopen device consists of three logical parts. The CANopen protocol stack handles the communication
via the CAN network. The application software provides the internal control functionality. The CANopen object
dictionary interfaces the protocol as well as the application software. It contains indices for all used data types
and stores all communication and application parameters. The CANopen object dictionary is most important
for CANopen device configuration and diagnostics.

• CANopen protocols
– SDO protocol
– PDO protocol
– NMT protocol
– Special function protocols
– Error control protocols

The following figure shows the CANopen architecture.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
315 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 119. CANopen architecture

7.2.2 Introducing the function of CAN example code

CAN example code supports the CANopen protocol. It mainly implements three parts of functions: network
manage function (NMT protocol), service data transmission function (SDO protocol), and process data
transmission function (PDO protocol). NMT protocol can manage and monitor slave nodes, include heart beat
message. SDO protocol can transmit single or block data. The PDO protocol can transmit process data that
requires real time.

CAN example calls the CANopen interfaces, described in the table below:

API name (type) Description

UNS8 canReceive_driver (CAN_HANDLE fd0, Message * m) SocketCAN receives CAN messages
• fd0 – SocketCAN handle
• m – Receive buffer

UNS8 canSend_driver (CAN_HANDLE fd0, Message const *
m)

SocketCAN sends CAN messages
• fd0 – SocketCAN handle
• m – CAN message to be sent

Table 85. CAN Net APIs and their description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
316 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

API name (type) Description

void setNodeId(CO_Data* d, UNS8 nodeId) Set this node id value.
• d – object dictionary
• nodeId – id value (up to 127)

UNS8 setState(CO_Data* d, e_nodeState newState) Set node state
• d – object dictionary
• newState – The state that needs to be set
Returns 0 if OK, > 0 on error

void canDispatch(CO_Data* d, Message *m) CANopen handles data frames that CAN receive.
• d – object dictionary
• m – Received CAN message

void timerForCan(void) CANopen virtual clock counter.

UNS8 sendPDOrequest (CO_Data * d, UNS16 RPDOIndex) Master node requests slave node to feedback specified data.
• d – object dictionary
• RPDOIndex – index value of specified data

UNS8 readNetworkDictCallback (CO_Data* d, UNS8
nodeId, UNS16 index, UNS8 subIndex, UNS8 dataType,
SDOCallback_t Callback, UNS8 useBlockMode)

The master node gets the specified data from the slave
node.
• d – object dictionary
• nodeId – the id value of slave node
• index – the index value of the specified data
• subIndex – the subindex value of the specified data
• dataType – the data type of the specified data
• Callback – callback function
• useBlockMode – specifies whether it is a block

transmission

UNS8 writeNetworkDictCallBack (CO_Data* d, UNS8 nodeId,
UNS16 index, UNS8 subIndex, UNS32 count, UNS8 data
Type, void *data, SDOCallback_t Callback, UNS8 useBlock
Mode)

The master node sets the specified data to the slave node.
• d – object dictionary
• nodeId – the id value of slave node
• index – the index value of the specified data
• subIndex – the subindex value of the specified data
• count – the length of the specified data
• dataType – the data type of the specified data
• Callback – callback function
• useBlockMode – specifies whether it is a block

transmission

Table 85. CAN Net APIs and their description...continued

7.2.3 Running a CAN application

The following sections describe the hardware and software preparation steps for running a CAN application.

7.2.3.1 Hardware preparation for LS1028ARDB

For LS1028ARDB, below hardware is required:

• LS1028ARDB board
• Two cables to connect CAN1 and CAN.

The hardware connection diagram is as shown in the following figure.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
317 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 120. Physical connection for CAN using LS1028ARDB

7.2.3.2 Running the SocketCAN commands

This section describes the steps for running SocketCAN commands that can be performed on LS1028ARDB.
These commands are executed on Linux. The standard SocketCAN commands are the following:

1. Open the can0 port.

$ ip link set can0 up

2. Close the can0 port.

$ ip link set can0 down

3. Set the baud rate to 500K for the can0 port

$ ip link set can0 type can bitrate 500000

4. Set can0 port to Loopback mode.

$ ip link set can0 type can loopback on

5. Send a message through can0. 002 (HEX) is node id, and this value must be 3 characters. 2288DD (HEX)
is a message, and can take a value up to 8 bytes.

$ cansend can0 002#2288DD

6. Monitor can0 port and wait for receiving data.

$ candump can0

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
318 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7. See can0 port details.

$ ip -details link show can0

Note: The third and fourth commands are valid when the state of can0 port is closed.

7.2.3.3 Testing CAN bus

Below is the sample code for testing the CAN bus on LS1028ARDB.

[root]# ip link set can0 down
[root]# ip link set can1 down
[root]# ip link set can0 type can loopback off
[root]# ip link set can1 type can loopback off
[root]# ip link set can0 type can bitrate 500000
[root]# ip link set can1 type can bitrate 500000
[root]# ip link set can0 up
[root]# ip link set can1 up
[root]# candump can0 &
[root]# candump can1 &
[root]# cansend can0 001#224466
 can0 001 [3] 22 44 66
[root]# can1 001 [3] 22 44 66
[root]# cansend can1 001#224466
 can0 001 [3] 22 44 66
 can1 001 [3] 22 44 66
[root]# cansend can1 001#113355
 can0 001 [3] 11 33 55
 can1 001 [3] 11 33 55
[root]# cansend can0 000#224466
 can0 000 [3] 22 44 66

7.3 OPC UA
OPC (originally known as “OLE for Process Control”, now “Open Platform Communications”) is a collection of
multiple specifications, most common of which is OPC Data Access (OPC DA).

OPC Unified Architecture (OPC UA) was released in 2010 by the OPC Foundation as a backward incompatible
standard to OPC Classic, under the name of IEC 62541.

OPC UA has turned away from the COM/DCOM (Microsoft proprietary technologies) communication model of
OPC Classic, and switched to a TCP/IP based communication stack (asynchronous request/response), layered
into the following:

• Raw connections
• Secure channels
• Sessions

7.3.1 OPC introduction

OPC UA defines:

• The transport protocol for communication (that can take place over HTTP, SOAP/XML or directly over TCP).
• A set of 37 'services' that run on the OPC server, and which clients call into, via an asynchronous request/

response RPC mechanism.
• A basis for creating information models of data using object-oriented concepts and complex relationships.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
319 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The primary goal of OPC is to extract data from devices in the easiest way possible.

The Information Model provides a way for servers to not only provide data, but to do so in the most self-
explanatory and intuitive way possible.

Note: Further references to 'OPC' in this document will imply OPC UA. OPC Classic is not discussed in this
document.

Following are the typical scenarios for embedding an OPC-enabled device into a project:

• Manually investigate (“browse”) the server’s Address Space looking for the data user need using a generic,
GUI client (such as UaExpert from Unified Automation, or the FreeOpcUa covered in this chapter).

• Using References and Attributes, understand the format it is in, and the steps that may be needed to convert
the data.

• Have a custom OPC client (integrated into the application) subscribe directly to data changes of the node that
contains the desired data.

In a typical use case:

• The OPC server runs near the source of information (in industrial contexts, this means near the physical
process – for example, on a PLC on a plant floor).

• Clients consume the data at runtime (for example, logging into a database, or feeding it into another industrial
process).

OPC-enabled applications can be composed: an industrial device may run an OPC client and feed the collected
data into another physical process, while also exposing the latter by running an OPC server.

7.3.2 The node model

Data in an OPC server is structured in Nodes. The collection of all nodes that an OPC server exposes to its
clients is known as an Address Space. Some nodes have a predefined meaning, while others have meaning
that is unique to the Information Model of that specific OPC server.

Every Node has the following Attributes:

• an ID (unique)
• a Class (what type of node it is)
• a BrowseName (a string for machine use)
• a DisplayName (a string for human use)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
320 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 121. OPC UA address space

Shown on the left-hand side of the figure is the Address Space (collection of information that the server makes
available to clients) of the OPC server found at opc.tcp://192.168.15.4:16664.

Selected is a node with NodeID ns=1;i=118, BrowseName=1:SJA1105 and of NodeClass Object.

The full path of the selected node is 0:Root,0:Objects,1:SJA1105.

7.3.3 Node Namespaces

Namespaces are the means for separating multiple Information Models present in the same Address Space of a
server.

• Nodes that do not have the ns= prefix as part of the NodeID have an implicit ns=0; prefix (are part of the
namespace zero).

• Nodes in namespace * 0 have NodeID’s pre-defined by the OPC UA standard. For example, the 0:Server
object, which holds self-describing information (capabilities, diagnostics, and vendor information), has a
predefined NodeID of ns=0;i=2253;.

It is considered a good practice to not alter any of the nodes exposed in the namespace * 0.

7.3.4 Node classes

OPC nodes have an inheritance model, based on their NodeClass.

There are eight base node classes defined by the standard:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
321 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Object
• Variable
• Method
• View
• ObjectType
• VariableType
• ReferenceType
• DataType

All nodes have the same base Attributes (inherited from the Node object), plus additional ones depending on
their NodeClass.

7.3.5 Node graph and references

It may appear that nodes are only chained hierarchically, in a simple parent-child relationship. However, in
reality nodes are chained in a complex directed graph, through References to other nodes.

Figure 122. Hierarchy of the standard ReferenceTypes, defined in Part 3 of the OPC UA specification (Image taken
from www.open62541.org)

In OPC, even ReferenceTypes are Nodes, and as such are structured hierarchically, as can be seen in the
figure above.

The definitions of all OPC ReferenceTypes can be found under the 0:Root,0:Types,0:ReferenceTypes
path.

The semantics of OPC references can be enriched by creating custom ReferenceType nodes.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
322 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 123. The 'Attributes' and 'References' views of the FreeOpcUa Client populated with details of the RGMII4
node

Selected in the Address Space is node ns=1;i=197. Conceptually, this represents one of the five Ethernet
ports of the SJA1105 TSN switch.

Its NodeClass is Object, but it has a reference of type HasTypeDefinition to NodeID ns=1;i=117 which is
1:EthPortType. For this reason, the 1:RGMII4 node is of the custom ObjectType EthPortType.

7.3.6 Open62541

Real-time Edge integrates the Open62541 software stack (https://open62541.org/). This supports both server-
side and client-side API for OPC UA applications. Only server-side capabilities of open62541 are being shown
here.

Open62541 is distributed as a C-based dynamic library (libopen62541.so). The services run on pthreads, and
the application code runs inside an event loop.

Enable open62541 in Real-time Edge file ./recipes-nxp/packagegroups/packagegroup-real-time-edge-
industrial.bb":

libopen62541 \

In order to install Open62541 example application, file "meta-real-time-edge/conf/distro/include/libopen62541.
inc" has been included in distro configuration.

The following Open62541 example applications are included in the target image:

• open62541_access_control_client

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
323 / 400

https://open62541.org/

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• open62541_access_control_server
• open62541_client
• open62541_client_async
• open62541_client_connect
• open62541_client_connectivitycheck_loop
• open62541_client_connect_loop
• open62541_client_subscription_loop
• open62541_custom_datatype_client
• open62541_custom_datatype_server
• open62541_server_ctt
• open62541_server_inheritance
• open62541_server_instantiation
• open62541_server_loglevel
• open62541_server_mainloop
• open62541_server_nodeset
• open62541_server_repeated_job
• open62541_tutorial_client_events
• open62541_tutorial_client_firststeps
• open62541_tutorial_datatypes
• open62541_tutorial_server_datasource
• open62541_tutorial_server_firststeps
• open62541_tutorial_server_method
• open62541_tutorial_server_monitoreditems
• open62541_tutorial_server_object
• open62541_tutorial_server_variable
• open62541_tutorial_server_variabletype

7.3.7 OPC UA Pub/Sub over TSN

This section introduces OPC UA PubSub and demonstrates how TSN can be used to make deterministic and
reliable transmission of OPC UA PubSub traffic as well as PTP traffic on a network co-existing with best effort
traffic.

7.3.7.1 OPC UA Pub/Sub introduction

The 14th part of the OPC UA specification defines the OPC UA PubSub communication model. It provides an
OPC UA Publish Subscribe model that complements the Client/Server communication model.

In PubSub, the participating OPC UA applications can assume the roles of Publishers and Subscribers.
Publishers are the sources of data, while Subscribers consume that data. Communication in PubSub is
message-based. Publishers send messages to a Message Oriented Middleware, without knowledge of what,
if any, Subscribers there may be. Similarly, Subscribers express interest in specific types of data, and process
messages that contain this data, without knowledge of what Publishers there are.

To cover a large number of use cases, OPC UA PubSub supports two largely different Message Oriented
Middleware variants. These are:

1. A broker-based form, where the core component of the Message Oriented Middleware is a message Broker.
Subscribers and Publishers use standard messaging protocols like AMQP or MQTT to communicate with
the Broker.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
324 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2. A broker-less form, where the Message Oriented Middleware is the network infrastructure that is able to
route datagram-based messages. Subscribers and Publishers use datagram protocols such as UDP or
raw Ethernet as the transport protocol. In this form, the data sources (Publishers) and the data consumers
(Subscribers) join a multicast group. Any data sent by a source to the group goes to all consumers
subscribed to the same group. Joining is trivial in Ethernet (Layer 2): the network broadcasts multicast
frames everywhere, leaving it to receivers to decide whether to pick up the frame based on the destination
address. The OPC UA PubSub sample applications in this section will use this form.

Compared with client-server, the Publishers and Subscribers are decoupled. The number of Subscribers
receiving data from a Publisher does not influence the Publisher. This makes PubSub suitable for applications
where location independence and/or scalability are required.

One example use case for PubSub is generating logs to multiple systems. For example, sensors or actuators
can write logs to a monitoring system, an HMI, an archive application for later querying, and so on. In this case,
the data is sent cyclically.

7.3.7.2 OPC UA PubSub over TSN

In general, OPC UA operates at the upper layers of the OSI reference model for networking, whereas TSN is
a Layer 2 protocol. TSN adds real-time capability to standard Ethernet. Operating at different layers, TSN and
OPC UA PubSub complement each other, yielding a complete communication stack for the industrial Internet
of Things. OPC UA standardizes the protocols by which applications exchange data and TSN enables this
exchange to meet factories’ timing requirements.

One of the key things is to define a mechanism for OPC UA nodes to tell the TSN layers how to prioritize
data streams. This cross-layer control is essential to enabling operations technology (OT) using the OPC UA
framework to get the data they need when they need it. It also enables time-sensitive OT to coexist on the same
network as information technology (IT) functions. In this section, standard Linux tools (that is, tc) are used to
map packets from different sources to different traffic classes in order to use TSN features like IEEE 802.1AS
and IEEE 802.1Qbv.

7.3.7.3 OPC UA PubSub components

The following figure shows the different components of OPC UA PubSub and their relation to each other. The
WriterGroup, DataSetWriter, and PublishedDataSet components define the data acquisition for DataSets,
message generation, and transmission on the Publisher side. These parameters should be known on the
Subscriber side to configure DataSetReaders to filter and process DataSetMessages.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
325 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 124. OPC UA PubSub components

1. PubSubConnection: It represents settings needed for the transport protocol. One connection can have
a number of writer groups and reader groups. A PubSub connection defines the used protocol and the
network address for sending or receiving messages. In the case of using raw Ethernet as transport protocol,
the network address can be an MAC multicast address. The Ethernet frame uses EtherType 0xB62C to
encapsulate UADP (UA Datagram Protocol) NetworkMessages as payload without IP or UDP headers.

2. PublishedDataSet: It contains the collection of the published fields.
3. WriterGroup: Each writer group can have one or more DataSetWriters. A WriterGroup defines the timing

(that is, publishing interval) and header settings for PubSub NetworkMessages sent by a Publisher.
4. DataSetWriter: It is the glue between the WriterGroup and the PublishedDataSet. Each DataSetWriter is

bound to a single PublishedDataSet. A PublishedDataSet can have multiple DataSetWriters.
5. ReaderGroup: It is used to group a list of DataSetReaders and contains a few shared settings for them.
6. DataSetReader: It is the counterpart to a DataSetWriter on the Subscriber side. It defines the filter for the

selection of the Publisher and DataSetWriter of interest. The parameters for the filter include the publisher
identifier, WriterGroup identifier and DataSetWriter identifier.

7. SubscribedDataSet: Its parameters define the processing of the decoded DataSet in the Subscriber for
one DataSetReader. The default processing is a mapping to target variables in the Subscriber address
space.

7.3.7.4 OPC UA PubSub sample application

There are two sample applications for demonstrating OPC UA PubSub on NXP development boards. One acts
as Publisher and the other acts as Subscriber.

On the Publisher:

1. A PubSubConnection is created with the required parameters passed in via command line arguments.
These includes the network address URL (for example, opc.eth://01-00-5E-00-00-01) and the Ethernet
interface (for example, eth1 for ENET2 on i.MX8M Plus LPDDR4 EVK). Also the Publisher ID is hard-coded
to 2234.

2. A PublishedDataSet is added with several DataSetFields added. One of the DataSetFields is the CPU
temperature measured by the thermal monitoring unit on i.MX8M Plus. Another DataSetField is the TX HW
timestamp of the published packet.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
326 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. A WriteGroup is added with WriterGroup ID hard-coded to 100 and the publishing interval set to 1 second.
The Publisher transmits one packet per second cyclically. Each cycle aligns with whole second using Linux
system clock CLOCK_REALTIME.

4. A DataSetWriter is created with DataSetWriter ID hard-coded to 62541.

On the Subscriber:

1. A PubSubConnection is created with the required parameters passed in via command line arguments.
These includes the network address URL (for example, opc.eth://01-00-5E-00-00-01) and the Ethernet
interface (for example, eth1 for ENET2 on i.MX8M Plus LPDDR4 EVK). Note that the Subscriber uses the
same network address URL as the Publisher.

2. A ReaderGroup is added.
Note: The Subscriber also runs cyclically with 1 second cycle time to receive packet. Each cycle aligns with
whole second with 500 µs offset to account for the application delay on the publisher and the path delay
from publisher to subscriber.
Linux system clock CLOCK_REALTIME is used.

3. A DataSetReader is added and configured with Publisher ID of 2234, WriterGroup ID of 100, and
DataSetWriter ID of 62541. Note that all these parameters match the corresponding settings on the
Publisher in order to filter the DataSetMessages to be processed by the DataSetReader.

4. A SubscribedDataSet is added with a list of targetVariables. The targetVariables corresponds to the
DataSetFields in the PublishedDataSet on the Publisher.

5. Besides the above, the RX HW timestamp of the received packet is taken and the path delay is calculated
by subtracting the RX HW timestamp taken on the Subscriber from the TX HW timestamp taken on
the Publisher for the same packet. To achieve this, both the Publisher and the Subscriber must have
synchronized time. This is achieved by running gPTP.

Both the Publisher and the Subscriber also run a OPC UA server. Users can use a OPC UA client running on a
host PC to browse the server’s Address Space on either the Publisher or the Subscriber.

7.3.7.5 OPC UA PubSub sample application over TSN

Hardware Requirements:

1. Two or three i.MX 8DXL LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, or i.MX 93 EVK boards
2. One LS1028ARDB board

Software Requirements:

1. linuxptp package which provides tools such as ptp4l, phc2sys, phc_ctl, and hwstamp_ctl.
2. iproute2 package which provides tools such as tc.
3. Open source OPC UA stack open62541 compiled as shared library (libopen62541.so).
4. OPC UA PubSub sample application opcua_pubsub_publisher and opcua_pubsub_subscriber

under /home/root/open62541_example.

All the above software tools and binaries are already in the rootfs.

The following sections use i.MX 8M Plus LPDDR4 EVK board as an example.

7.3.7.5.1 Case #1: two i.MX8M Plus LPDDR4 EVK connected back-to-back

A simple setup could be made by connecting two i.MX8M Plus LPDDR4 EVK boards back-to-back via ENET2
as shown in Figure 125. One i.MX8M Plus LPDDR4EVK (Board A) acts as Publisher and the other (Board B)
acts as Subscriber. Also the ENET1 interface on both boards is connected to LAN (that is, office network). Note
that the actual device name in Linux might be different.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
327 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 125. Two i.MX8M Plus LPDDR4 EVK boards connected back-to-back

• On both boards, bring up ENET2 (that is, eth1):

ip link set eth1 up
ethtool eth1

Using the command ethtool eth1 should display a message: Link detected: yes. Otherwise, check the
hardware connection.

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), add one tc filter rule to match OPC UA PubSub
packet (EtherType 0xb62c) on ENET2 (that is, eth1) and modify SKB priority to 2.

tc qdisc add dev eth1 clsact
tc filter add dev eth1 egress prio 1 u32 match u16 0xb62c 0xffff at -2 action
 skbedit priority 2
tc filter show dev eth1 egress

• On both boards, run ptp4l for PTP time synchronization and run phc2sys to synchronize PHC clock to Linux
system clock (CLOCK_REALTIME).
Also on the Subscriber (i.MX8M Plus LPDDR4 EVK - Board B), use hwstamp_ctl to change the RX
hardware timestamp setting to 'time stamp any incoming packet' in order to get the RX hardware
timestamp of the packets transmitted by the Publisher.
On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A):

cp /etc/ptp4l_cfg/gPTP.cfg .
sed -i 's/priority1.*248/priority1\t\t246/g' ./gPTP.cfg
ptp4l -i eth1 -p /dev/ptp1 -f ./gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Subscriber (i.MX8M Plus LPDDR4 EVK - Board B):

ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/ptp4l.log
 2>&1 &
phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &
hwstamp_ctl -i eth1 -r 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
328 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

It is recommended to SSH to both boards to check the logs of ptp4l and phc2sys so that we can continue to
execute other commands on the serial console). On both boards, observe the logs of ptp4l and phc2sys to
check the time synchronization progress by using below commands:

tail -f /var/log/ptp4l.log
tail -f /var/log/phc2sys.log

On the Subscriber, the rms value reported by ptp4l shows the root mean square of the time offset between the
PHC and the GM clock. If ptp4l consistently reports rms lower than 100 ns, the PHC is synchronized. Example
ptp4l log below:

Figure 126. A sample ptp4l log
On both the Publisher and the Subscriber, the offset information reported by phc2sys shows the time offset
between the PHC and the system clock (CLOCK_REALTIME). If phc2sys consistently reports offset lower
than 100 ns, the System clock is synchronized. A sample phc2sys log is shown below:

Figure 127. A sample phc2sys log
After establishing the time synchronization successfully on both the Publisher and the Subscriber, we can
configure TSN Qbv and run the OPC UA PubSub sample applications as in the following steps.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
329 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), configure TSN Qbv on ENET2 (that is, eth1) to map
SKB priority to traffic class to hardware queue as below, set gate control list to have 2 entries and total cycle
time of 1ms (queue 4 has 500 µs for best effort traffic, queue 0 and queue 2 share 500us for OPC UA PubSub
and PTP traffic as well as other traffic like ping), also set base time to 1ms so that the schedule is aligned to
1ms. This is just an example configuration for the schedule.

SKB priority 0 -> traffic class 0 -> queue 0
SKB priority 1 -> traffic class 1 -> queue 1
SKB priority 2 -> traffic class 2 -> queue 2
SKB priority 3 -> traffic class 3 -> queue 3
SKB priority 4 -> traffic class 4 -> queue 4

tc qdisc replace dev eth1 parent root handle 100 taprio num_tc 5 map 0 1 2
 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time 001000000 sched-entry S 0x10 500000
 sched-entry S 0x05 500000 flags 2
tc -g qdisc show dev eth1

Together with the tc filter rule configured previously, the above TSN Qbv configuration on ENET2 distributes
OPC UA PubSub traffic into Tx hardware queue 2, PTP traffic into Tx hardware queue 0. Also, we will send
best effort traffic to Tx hardware queue 4. Other traffic such as pings can still go into Tx hardware queue 0.
Because the OPC UA PubSub and PTP traffic have different Tx hardware queues and time slot than the best
effort traffic, the latter cannot influence the former.

• On the Subscriber (i.MX8M Plus LPDDR4 EVK - Board B), run the OPC UA PubSub Subscriber sample
application. Run the Subscriber application before the Publisher application so that no packets sent by the
Publisher are missed.
Note that octets in the MAC address should be separated by hyphens (-).
/home/root/open62541_example/opcua_pubsub_subscriber -u
 opc.eth://01-00-5E-00-00-01 -d eth1

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), run the OPC UA PubSub Publisher sample
application.
Note that octets in the MAC address should be separated by hyphens (-).
/home/root/open62541_example/opcua_pubsub_publisher -u
 opc.eth://01-00-5E-00-00-01 -d eth1

Example log on the Publisher:

Figure 128. Example log on the Publisher
Example log on the Subscriber:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
330 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 129. Example log on the Subscriber
• On a PC connected to office network and with OPC UA Client installed (that is, UaExpert as in below

snapshots), we can browser either the OPC UA server’s Address Space on either the Publisher or the
Subscriber. (We assume that eth0 has obtained the IP address by DHCP automatically).
The URL of the OPC UA server on the Publisher is below:
opc.tcp://<IP_of_eth0_on_Publisher>:4840/
The URL of the OPC UA server on the Subscriber is below:
opc.tcp://<IP_of_eth0_on_Subscriber>:4801/
Example snapshot of UaExpert connected to the Publisher:

Figure 130. Sample snapshot of UaExpert connected to the Publisher
Example snapshot of UaExpert connected to the Subscriber:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
331 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 131. Sample snapshot of UaExpert connected to the Subscriber
On the UaExpert client connected to the Subscriber, we can observe the CPU temperature published by the
Publisher and the path delay from Publisher to Subscriber which is close to 800 ns.

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), we can use pktgen to simulate high load best effort
traffic which is sent to queue 4 of ENET2.

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eth1 -q 4 -s 1000 -n 0

The OPC UA PubSub traffic and PTP traffic are protected by TSN Qbv by having different Tx hardware
queue and time slot than the best effort traffic. Hence, users can see consistent output on the console of the
Publisher and the Subscriber, and the path delay from Publisher to Subscriber is still close to 800 ns.
In case TSN Qbv was not configured, after pktgen starts running, various issues may happen. First of all, the
ptp4l application will show timeout issue as below.
Example error log of ptp4l on the Publisher:

Figure 132. Sample error log of ptp4l on the Publisher

Example error log of ptp4l on the Subscriber
Figure 133. Sample error log of ptp4l on the Subscriber

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
332 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The OPC UA PubSub sample application may also be impacted by best effort traffic without TSN, especially
when the publish cycle time is very short (that is, 2 ms). Note that the publish cycle time is hard-coded to 1
second in the sample application to make observation easier on the Subscriber console as well as on the
UaExpert client. Several issues can be observed under high load best effort traffic without TSN. For example,
the Publisher application may display warning message timed out while polling for tx timestamp!. The
Subscriber application may show that the packet sequence number stops incrementing, and the path delay
from Publisher to Subscriber displayed on UaExpert may show a large number due to packet transmission
delay. When this issue happens, it can only be recovered by restarting both the Publisher and Subscriber
applications.

7.3.7.5.2 Case #2: two i.MX 8M Plus LPDDR4 EVK boards connected to LS1028ARDB TSN
switch

The setup could use one LS1028ARDB as TSN switch plus two or three i.MX 8M Plus LPDDR4 EVK boards.
One i.MX8M Plus LPDDR4 EVK (Board A) acts as Publisher and others act as Subscribers. The block diagram
of this setup is below. The ENET2 interface on each i.MX8M Plus LPDDR4 EVK is connected to the switch port
on LS1028ARDB. Also, the ENET1 interface on each i.MX8M Plus LPDDR4 EVK is connected to LAN (that is,
office network). Note that the actual device name in Linux may change.

Figure 134. Two i.MX 8M Plus LPDDR4 EVK boards connected to LS1028ARDB TSN switch

The following steps assume that two i.MX8M Plus LPDDR4 EVK boards are used. Board A acts as Publisher
and Board B acts as Subscriber. In this setup, the switch port swp0 is the ingress port for OPC UA PubSub
traffic and best effort traffic. The switch port swp1 is the egress ports for OPC UA PubSub traffic and best effort
traffic.

Since the TSN switch on LS1028ARDB uses the value of VLAN PCP field to map traffic to different TX
hardware queue on egress switch port (that is, swp1), we add VLAN header to the OPC UA PubSub packet
and best effort packet. Note that the PTP packet is untagged without VLAN header.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
333 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• On LS1028ARDB, configure Ethernet bridge on TSN switch and enable VLAN filtering.

ip link set eno2 up
ip link set swp0 up
ip link set swp1 up
ip link add name br0 type bridge vlan_filtering 1
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set dev br0 up
bridge vlan add dev swp0 vid 100
bridge vlan add dev swp1 vid 100
bridge vlan show

• On both the Publisher (i.MX 8M Plus LPDDR4 EVK - Board A) and the Subscriber (i.MX 8M Plus LPDDR4
EVK - Board B), bring up ENET2 (that is, eth1):

ip link set eth1 up

• On the Publisher (i.MX 8M Plus LPDDR4 EVK - Board A), add one tc filter to match OPC UA PubSub packet
(EtherType 0xb62c) on ENET2 (that is, eth1) and modify SKB priority to 2.

tc qdisc add dev eth1 clsact # tc filter add dev eth1 egress prio 1 u32 match
 u16 0xb62c 0xffff at -2 action skbedit priority 2
tc filter show dev eth1 egress

• On each board, run ptp4l for PTP time synchronization and run phc2sys to synchronize PHC clock to Linux
system clock (CLOCK_REALTIME).
Also on the Subscriber (i.MX8M Plus LPDDR4 EVK - Board B), use hwstamp_ctl to change the RX
hardware timestamp setting to 'time stamp any incoming packet' in order to get the RX hardware
timestamp of the packets transmitted by the Publisher.
On LS1028ARDB:

ptp4l -i swp0 -i swp1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/
ptp4l.log 2>&1 &
phc2sys -s swp0 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Publisher (i.MX 8M Plus LPDDR4 EVK - Board A):

cp /etc/ptp4l_cfg/gPTP.cfg .
sed -i 's/priority1.*248/priority1\t\t246/g' ./gPTP.cfg
ptp4l -i eth1 -p /dev/ptp1 -f ./gPTP.cfg -m > /var/log/ptp4l.log 2>&1 &
phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &

On the Subscriber (i.MX 8M Plus LPDDR4 EVK - Board B):

ptp4l -i eth1 -p /dev/ptp1 -f /etc/ptp4l_cfg/gPTP.cfg -m > /var/log/ptp4l.log
 2>&1 &
phc2sys -s eth1 -O 0 -S 0.00002 -m > /var/log/phc2sys.log 2>&1 &
hwstamp_ctl -i eth1 -r 1

On each board, observe the logs of ptp4l and phc2sys to check the time synchronization progress by using
the below commands: (In order to continue to execute other commands on the serial console, performing an
SSH to each board to check the logs of ptp4l and phc2sys is recommended).

tail -f /var/log/ptp4l.log
tail -f /var/log/phc2sys.log

On LS1028ARDB and the Subscriber, the rms value reported by ptp4l shows the root mean square of the time
offset between the PHC and the GM clock. If ptp4l consistently reports rms lower than 100 ns, the PHC is
synchronized. Refer to the example log of ptp4l in the back-to-back case.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
334 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

On each board, the offset information reported by phc2sys shows the time offset between the PHC and the
system clock (CLOCK_REALTIME). If phc2sys consistently reports offset lower than 100 ns, the System clock
is synchronized. Refer to the example log of phc2sys in the back-to-back case.
After establishing the time synchronization successfully on each board, users can configure TSN Qbv and run
the OPC UA PubSub sample applications using the following steps.

• On the Publisher (i.MX 8M Plus LPDDR4 EVK - Board A), configure TSN Qbv on ENET2to map SKB priority
to traffic class to hardware queue as below, set gate control list to have 2 entries and total cycle time of 1 ms
(queue 4 has 500 μs for best effort traffic, queue 0 and queue 2 share 500 μs for OPC UA PubSub and PTP
traffic as well as other traffic like ping), also set base time to 1 ms so that the schedule is aligned to 1 ms. This
is just an example configuration for the schedule.

 SKB priority 0 -> traffic class 0 -> queue 0
 SKB priority 1 -> traffic class 1 -> queue 1
 SKB priority 2 -> traffic class 2 -> queue 2
 SKB priority 3 -> traffic class 3 -> queue 3
 SKB priority 4 -> traffic class 4 -> queue 4

tc qdisc replace dev eth1 parent root handle 100 taprio num_tc 5 map 0 1 2
 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time 001000000 sched-entry S 0x10 500000
 sched-entry S 0x05 500000 flags 2
tc -g qdisc show dev eth1

Together with the tc filter rule configured previously, the above TSN Qbv configuration on ENET2 distributes
OPC UA PubSub traffic into TX hardware queue 2, PTP traffic into TX hardware queue 0. Also, send best
effort traffic to TX hardware queue 4. Other traffic like ping can still go into TX hardware queue 0. Because the
OPC UA PubSub and PTP traffic have different TX hardware queues and time slot than the best effort traffic,
the latter cannot influence the former.

• On LS1028ARDB, configure TSN Qbv on swp1, set gate control list to have 2 entries and total cycle time of
200 μs. Ensure that queue 4 has 500 μs for best effort traffic, queue 0 and queue 2 share 500 μs for OPC UA
PubSub and PTP traffic as well as other traffic such as ping. In addition, set the base time to 1 ms so that the
schedule is aligned to 1 ms as 1 ms. Note that the TSN Qbv configuration on LS1028ARDB TSN switch is
used to protect the OPC UA PubSub traffic from traffic which may enter the switch from other switch ports. In
this use case, it is optional and is used for demonstration purpose only.

tc qdisc replace dev swp1 root taprio num_tc 8 map 0 1 2 3 4 5 6 7 queues
 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 001000000 sched-entry S 0x10 500000
 sched-entry S 0x05 500000 flags 0x2
tc -g qdisc show dev swp1

• With the above TSN Qbv configuration on egress switch port swp1,
– OPC UA PubSub traffic goes into TX hardware queue 2 (Add VLAN header with PCP field set to 2 for OPC

UA PubSub packet).
– The best effort traffic goes into TX hardware queue 4 (Add VLAN header with PCP field set to 4 using

pktgen for generating best effort traffic). Note that the PTP traffic is untagged without VLAN header and will
use TX hardware queue 0 of swp1 to transmit to the Subscriber. Similar to the TSN Qbv configuration on
Publisher, the OPC UA PubSub and PTP traffic have different TX hardware queues and time slot than the
best effort traffic, the latter cannot influence the former.

• On the Subscriber (i.MX8M Plus LPDDR4 EVK - Board B), run the OPC UA PubSub Subscriber sample
application. Run the Subscriber application before the Publisher application so that no packet sent by the
Publisher is missed.
Note that in the URL of below command 100.2 means VLAN ID 100 and PCP value 2 and it is separated from
the MAC address using a colon.

/home/root/open62541_example/opcua_pubsub_subscriber -u
 opc.eth://01-00-5E-00-00-01:100.2 -d eth1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
335 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), run the OPC UA PubSub Publisher sample
application.
Note that in the URL of below command 100.2 means VLAN ID 100 and PCP value 2 and it is separated from
the MAC address using a colon.

/home/root/open62541_example/opcua_pubsub_publisher -u
 opc.eth://01-00-5E-00-00-01:100.2 -d eth1

Example log on the Publisher:
Figure 135. Example log on the Publisher

Example log on the Subscriber:

Figure 136. Example log on the Subscriber
• On a PC connected to office network and with OPC UA Client installed (that is, UaExpert as in below

snapshots), we can browser either the OPC UA server’s Address Space on either the Publisher or the
Subscriber. (We assume that eth0 have got IP address by DHCP automatically.
The URL of the OPC UA server on the Publisher is below:
opc.tcp://<IP_of_eth0_on_Publisher>:4840/
The URL of the OPC UA server on the Subscriber is below:
opc.tcp://<IP_of_eth0_on_Subscriber>:4801/
Refer to the example snapshot of UaExpert in the back-to-back case. On the UaExpert client connected
to the Subscriber, we can observe the CPU temperature published by the Publisher and the path delay
from Publisher to Subscriber which is around 4 μs. Compared to the 800 ns in the back-to-back case, the
increased path delay is added by the bridge.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
336 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• On the Publisher (i.MX8M Plus LPDDR4 EVK - Board A), we can use pktgen to simulate high load best effort
traffic with VLAN ID set to 100 and VLAN PCP set to 4 in VLAN header.

cp /home/root/samples/pktgen/pktgen_sample01_simple.sh /home/root/samples/
pktgen/pktgen_sample01_simple_vlan.sh
sed -i '/^UDP_MAX=.*/a VLAN_ID=100\nVLAN_P=4' /home/root/samples/pktgen/
pktgen_sample01_simple_vlan.sh
/home/root/samples/pktgen/pktgen_sample01_simple_vlan.sh -i eth1 -q 4 -s 1000
 -n 0

Note: In order to protect the OPC UA PubSub traffic and PTP traffic, the TSN Qbv should be configured to
have different TX hardware queue and time slot from the best effort traffic on both the Publisher and TSN
switch. This ensures that users can get consistent output on the console of the Publisher and the Subscriber,
and the path delay from Publisher to Subscriber is still around 4 μs.
In case TSN Qbv was not configured, after pktgen starts running, various issues might occur. Refer to the
issues detailed in the back-to-back case.

• On LS1028ARDB, it is possible to check the status of TX packets of swp1 by using the command below:

ethtool -S swp1 | grep -i "tx_green_prio_"

Example log below: (tx_green_prio_0 mainly for PTP traffic, tx_green_prio_2 mainly for OPC UA
PubSub traffic, tx_green_prio_4 mainly for best effort traffic generated by pktgen).

Figure 137. Sample log after checking the stats of TX packets of swp1

7.3.8 OPC UA client installation and usage

7.3.8.1 UaExpert

The UaExpert is an OPC UA Client developed by Unified Automation. It is free to download. Before
downloading, you need to register on the following link to create an free account. Then login using your account,
download the installation file and install it on a host PC. The UaExpert is available for both Windows and Linux.

https://www.unified-automation.com/downloads/opc-ua-clients.html

Below steps shows how to use UaExpert to connect to an OPC UA server on a Window10 PC.

• Open the UaExpert GUI. Click on the 'Add Server' button.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
337 / 400

https://www.unified-automation.com/downloads/opc-ua-clients.html

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 138. UaExpert GUI
• The ‘Add Server’ window will pop up. Select Custom Discovery and double click '< Double click to Add

Server... >'. The 'Enter URL' window will pop up. Input IP address and port number of the OPC UA server
separated by colon. For example, the complete URL is opc.tcp://10.193.20.15:4840 in below
snapshot. Click OK.

Figure 139. Adding the OPC UA server

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
338 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• The new server (that is, opc.tcp://10.193.20.15:4840) will be listed under Custom Discovery. Click to
expand it. Then click to expand 'open62541-based OPC UA Application (opc.tcp)'. A 'Replaced
Hostname' window will pop up. Click 'Yes'.

Figure 140. Server listed under Custom Discovery
• Click to select 'None – None (…)' and click OK.

Figure 141. Selecting the hostname
• Right click on the server listed under ‘Servers’ and click ‘Connect’.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
339 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 142. Connecting to the server
• You are now connected to the OPC UA server and can browse or monitor its object. To monitor the value of

an object, you can drag and drop the object to the ‘Data Access View’ area.

Figure 143. Data Access View to monitor OPC UA objects

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
340 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.3.8.2 FreeOpcUa

FreeOpcUa is a project to implement an open-source (LGPL/GPL) OPC UA stack and associated tools. A GUI
client from FreeOpcUa is available. It is written using freeopcua python api and pyqt. Use below command to
install it on a Linux PC using pip3. Make sure python3 and python3-pip is installed.

$ sudo pip3 install opcua-client

For installation on Windows, please refer to the instructions available from below link:

https://github.com/FreeOpcUa/opcua-client-gui

Below steps shows how to use FreeOpcUa GUI client to connect to an OPC UA server on a Ubuntu 18.04 PC.

1) Launch the FreeOpcUa GUI client from the terminal on the Linux host PC:

$ opcua-client

In the FreeOpcUa GUI client, input the URL (that is, opc.tcp://10.193.20.15:4840) and click ‘Connect’. You are
now connected to the OPC UA server and can browse or monitor its object.

Figure 144. FreeOpcUa GUI client Connect options

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
341 / 400

https://github.com/FreeOpcUa/opcua-client-gui

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.4 NETCONF/YANG
This chapter provides an overview of the NETCONF protocol and Yang (a data modeling language for
NETCONF). It describes the applications, installation and configuration steps, operation examples, Web UI
demo, and troubleshooting aspects of NETCONF. It also describes how to enable the NETCONF feature in this
Real-time Edge software.

7.4.1 Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and
modification. It uses a remote procedure call (RPC) paradigm and a system of exposing device (server)
capabilities, which enables a client to adjust to the specific features of any network equipment. NETCONF
further distinguishes between state data (which is read-only) and configuration data (which can be modified).
Any NETCONF communication happens on four layers as shown in the table below. XML is used as the
encoding format.

Layer Purpose Example

1 Content Configuration data, Notification data

2 Operations <edit-config>

3 Messages <rpc>, <rpc-reply>, <notification>

4 Secure Transport SSH

Table 86. The NETCONF layers

YANG is a standards-based, extensible, hierarchical data modeling language that is used to model the
configuration and state data used by NETCONF operations, remote procedure calls (RPCs), and server event
notifications. The device configuration data are stored in the form of an XML document. The specific nodes
in the document as well as the allowed values are defined by a model, which is usually in YANG format or
possibly transformed into YIN format with XML-based syntax. There are many such models created directly
by IETF to further support standardization and unification of the NETCONF interface of the common network
devices. For example, the general system settings of a standard computer are described in the IETF-system
model (rfc7317) or the configuration of its network interfaces defined by the IETF-interfaces model (rfc7223).
However, it is common for every system to have some specific parts exclusive to it. In that case there are
mechanisms defined to enable extensions while keeping the support for the standardized core. Also, as this
whole mechanism is designed in a liberal fashion, the configuration does not have to concern strictly network.
Even RPCs additional to those defined by NETCONF can be characterized. Therefore, it allows the client to
request an explicit action from the server.

A YANG module defines a data model through its data, and the hierarchical organization of and constraints on
that data. A module can be a complete, standalone entity, or it can reference definitions in other modules and
sub-modules as well as augment other data models with additional nodes. The module dictates how the data is
represented in XML.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines relationships
between and constraints on the data. This enables user to create syntactically correct configuration data that
meets constraint requirements and enables user to validate the data against the model before uploading it and
committing it on a device.

For information about NETCONF, see RFC 6241, NETCONF Configuration Protocol.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF), and related RFCs.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
342 / 400

https://tools.ietf.org/html/rfc7317
https://tools.ietf.org/html/rfc7223
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6020

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.4.2 Netopeer2

7.4.2.1 Overview

Netopeer2 is a set of tools implementing network configuration tools based on the NETCONF protocol. This
is the second generation of the toolset, originally available as the Netopeer project. It is based on the new
generation of the NETCONF and YANG libraries - libyang and libnetconf2. The Netopeer2 server uses
sysrepo as a NETCONF datastore implementation. In Real-time Edge software, version v0.7-r2 was used. It
allows developers to control their devices via NETCONF and operators to connect to their NETCONF-enabled
devices.

Figure 145. High level architecture of Netopeer and sysrepo

7.4.2.2 Installing Netopeer2-cli on Ubuntu18.04

Use the following steps for installing Netopeer2-cli on Ubuntu18.04 operating systems.

1. Install the following packages:

$ sudo apt install -y git cmake build-essential bison autoconf dh-autoreconf
 flex
$ sudo apt install -y libavl-dev libprotobuf-c-dev protobuf-c-compiler
 zlib1g-dev
$ sudo apt install -y libgcrypt20-dev libssh-dev libev-dev libpcre3-dev

2. Install libyang:

$ git clone https://github.com/CESNET/libyang.git
$ cd libyang;
$ git checkout v1.0-r4 -b v1.0-r4
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

3. Install sysrepo (v0.7.8):

$ git clone https://github.com/sysrepo/sysrepo.git
$ cd sysrepo

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
343 / 400

https://github.com/CESNET/Netopeer2/tree/v0.7-r2

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

$ git checkout v0.7.8 -b v0.7.8
$ mkdir build; cd build
$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

4. Install libnetconf2:

$ git clone https://github.com/CESNET/libnetconf2.git
$ cd libnetconf2
$ git checkout v0.12-r2 -b v0.12-r2
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ..
$ make
$ sudo make install

5. Install protobuf:

$ git clone https://github.com/protocolbuffers/protobuf.git
$ cd protobuf
$ git checkout v3.18.0 -b v3.18.0
$ git submodule update --init --recursive
$./autogen.sh
$./configure
$ make
$ sudo make install
$ sudo ldconfig # refresh shared library cache.

6. Install Netopeer2-cli(v0.7-r2):

$ git clone https://github.com/CESNET/Netopeer2.git
$ cd Netopeer2
$ git checkout v0.7-r2 -b v0.7-r2
$ cd cli
$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .
$ make
$ sudo make install

7.4.2.3 Sysrepo

Sysrepo is an YANG-based configuration and operational state data store for Unix/Linux applications.

Applications can use sysrepo to store their configuration modeled by provided YANG model instead of
using e.g. flat configuration files. In Real-time Edge software, version v0.7.8 was used. Sysrepo will ensure
data consistency of the data stored in the datastore and enforce data constraints defined by YANG model.
Applications can currently use C language API of sysrepo Client Library to access the configuration in the
datastore, but the support for other programming languages is planned for later too (since sysrepo uses Google
Protocol Buffers as the interface between the datastore and client library, writing of a native client library for any
programing language that supports GPB is possible).

For information about sysrepo, see:

https://netopeer.liberouter.org/doc/sysrepo/master/html/

7.4.2.4 Netopeer2 server

Netopeer2 software is a collection of utilities and tools to support the main application, Netopeer2 server, which
is a NETCONF server implementation. It uses libnetconf2 for all NETCONF communication. Conforming to
the relevant RFCs2 and still being part of the aforementioned library, it supports the mandatory SSH as the

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
344 / 400

https://github.com/sysrepo/sysrepo/tree/v0.7.8
http://tools.ietf.org/html/rfc6020
https://github.com/sysrepo/sysrepo/blob/v0.7.8/inc/sysrepo.h
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://netopeer.liberouter.org/doc/sysrepo/master/html/

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

transport protocol. Once a client successfully connects using either of these transport protocols and establishes
a NETCONF session, it can send NETCONF RPCs and the Netopeer2 server responds with correct replies.

The following set of tools are a part of the Netopeer server:

• Netopeer2-keystored as a tool for the storage and process of keys.
• Netopeer2-server as the main service daemon integrating the SSH server.

7.4.2.5 Netopeer2 client

Netopeer2-cli is a CLI interface that allows user to connect to a NETCONF-enabled device and obtain and
manipulate its configuration data.

This application is a part of the Netopeer2 software bundle, but compiled and installed separately. It is a
NETCONF client with a command line interface developed and primarily used for Netopeer2 server testing, but
allowing all the standards and even some optional features of a full-fledged NETCONF client.

Netopeer2-cli serves as a generic NETCONF client providing a simple interactive command line interface. It
allows user to establish a NETCONF session with a NETCONF-enabled device on the network and to obtain
and manipulate its configuration data.

7.4.2.6 Workflow in application practice

In practical application, we use the YANG language to model the device and generate the YANG model. The
model is then instantiated to generate configuration files in XML format. The device was then configured using
this configuration file as input via netopeer.

Figure 146. Workflow for netopeer

7.4.3 Configuration

7.4.3.1 Enabling NETCONF feature

This feature is enabled by default in Real-time Edge software.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
345 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The below packages are enabled by default in Real-time Edge software:

netopeer2-keystored netopeer2-server real-time-edge-sysrepo

sysrepo-tsn is daemon application to implement tsn configuration based on sysrepo. It was enabled for
LS1028ARDB, i.MX 8DXL LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK.

Note:

• For LS1028ARDB board, Qbv, Qbu, Qci, stream identification in CB, IP, MAC, and VLAN are supported.

7.4.3.2 Netopeer2-server

The netopeer2-server is the NETCONF protocol server running as a system daemon. The netopeer2-server is
based on sysrepo and libnetconf2 library.

• -U listen locally on a unix socket
• -d debug mode (do not daemonize and print verbose messages to stderr instead of syslog)
• -V: Show program version.
• -v level verbose output level(0 : errors, 1 : errors and warnings, 2 : errors, warnings, and verbose messages).

7.4.3.3 Netopeer2-cli

The netopeer2-cli is command line interface similar to the NETCONF client. It serves as a generic NETCONF
client providing a simple interactive command line interface. It allows user to establish a NETCONF session with
a NETCONF-enabled device on the network and to obtain and manipulate its configuration data. netopeer2-cli
is limited to a single NETCONF connection at a time via a forward or a reverse (Call Home) connecting method.

7.4.3.3.1 Netopeer2 CLI commands

Following are the Netopeer2 CLI commands:

1. help: Displays a list of commands. The --help option is also accepted by all commands to show detailed
information about the command.

2. connect: Connects to a NETCONF server.

connect [--help] [--ssh] [--host <hostname>] [--port <num>] [--login
 <username>]

The connect command has the following arguments:
• --login user name: Specifies the user to log in as on the NETCONF server. If not specified, current local

user name is taken.
• --port num

– Port to connect to on the NETCONF server. By default, port 830 for SSH transport is used.
• host

– Hostname or ip-address of the target NETCONF server.
3. disconnect: disconnects from a NETCONF server.
4. commit

• Performs the NETCONF commit operation. For details, see RFC 6241, section 8.3.4.1.
5. copy-config: Performs NETCONF copy-config operation. For details, see RFC 6241 section 7.3.

copy-config [--help] --target running|startup|candidate|url:<url> (--source
 running|startup|candidate|url:<url> | --src-config[=<file>])
 [--defaults report-all|report-all-tagged|trim|explicit]

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
346 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Where, the arguments are the following:
• --defaults mode: Use: with the -defaults capability with specified retrieval mode. For details, refer to

the RFC 6243 section 3 or WITH-DEFAULTS section of this manual.
• --target datastore: Specifies the target datastore for the copy-config operation. For description of the

datastore parameter, refer to Section 7.4.3.3.2.
• --source datastore: Specifies the source datastore for the copy-config operation. For description of the

datastore parameter, refer to Section 7.4.3.3.2.
6. delete-config Performs NETCONF delete-config operation. Refer to section 7.4 of the RFC 6241

specification for more details.

delete-config [--help] --target startup|url:<url>

Where
• target datastore: Specifies the target datastore for the delete-config operation.

7. edit-config
Performs NETCONF edit-config operation. For details, refer to RFC 6241 section 7.2.

edit-config [--help] --target running|candidate (--config[=<file>] | --url
 <url>)
 [--defop merge|replace|none] [--test set|test-only|test-then-set] [--
error stop|continue|rollback]

Where
• --defop operation:

Specifies default operation for applying configuration data.
– merge: Merges configuration data at the corresponding level. By default, the value is merge.
– replace: Edits configuration data completely replaces the configuration in the target datastore.
– none: The target datastore is unaffected by the edit configuration data, unless and until the edit

configuration data contains the operation attribute to request a different operation. For more information,
see the EDIT-CONFIG section of RFC 6241.
Note: To delete non-mandatory items, nc:operation="delete" should be added
into the end of start tag of the item to be deleted. At the same time, the namespace
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" should also be added to the start tag of the
root node. Mandatory items cannot be deleted individually. They can only be deleted with their parent
node.

• --error action
Sets reaction to an error.
– Stop: Aborts the operation on first error. This is the default value.
– Continue: Continues to process configuration data on error. The error is recorded and negative

response is returned.
– Rollback: Stops the operation processing on error and restore the configuration to its complete

state at the start of this operation. This action is available only if the server supports rollback-on-error
capability (see RFC 6241 section 8.5).

• --test option
Performs validation of the modified configuration data. This option is available only if the server supports
:validate:1.1 capability (see RFC 6241 section 8.6).
– set: Does not perform validation test.
– test-only: Does not apply the modified data, only performs the validation test.
– test-then-set: Performs a validation test before attempting to apply modified configuration data.
test-then-set is the default value.

• --config file
– Specifies path to a file containing edit configuration data. The content of the file is placed into the
config element of the edit-config operation. Therefore, it does not have to be a well-formed XML

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
347 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

document with only a single root element. If neither --config nor --url is specified, user is prompted to
write edit configuration data manually. For examples, see the EDIT-CONFIG section of RFC 6241.

• --url URI
– Specifies remote location of the file containing the configuration data hierarchy to be modified, encoded

in XML under the element config in the urn:ietf:params:xml:ns:netconf:base:1.0
namespace. Note, that this differs from file parameter, where the config element is not expected.

• --target
– Target datastore to modify. For description of possible values, refer to Section 7.4.3.3.2. Note that the url

configuration datastore cannot be modified.
8. get: Performs NETCONF get operation. Receives both the status as well as configuration data from

the current running datastore. Refer to section 7.7 of the RFC 6241 specification for more details. The
command format is as follows:

get [--help] [--filter-subtree[=<file>] | --filter-xpath <XPath>] [--defaults
 report-all|report-all-tagged|trim|explicit] [--out <file>]

• --defaults mode
– Use with the -defaults capability with specified retrieval mode. For further details, refer to the Section

3 or 'WITH-DEFAULTS' section of the RFC 6241 specification.
• --filter [file]

– Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path
to the file containing the filter specification. If the path is not specified, user is prompted to write the filter
specification manually.

9. get-config Performs NETCONF get-config operation. Retrieves only configuration data from the
specified target_datastore. For details, refer to RFC 6241 section 7.1.

get-config [--help] --source running|startup|candidate [--filter-
subtree[=<file>] | --filter-xpath <XPath>]
 [--defaults report-all|report-all-tagged|trim|explicit] [--out <file>]

10. --defaults mode
• Use: with the -defaults capability with specified retrieval mode. For more details see RFC 6243

section 3 or WITH-DEFAULTS section of this manual.
11. --filter [file]

• Specifies if the request will contain subtree filter (RFC 6241 section 6). The option is able to accept path
to the file containing the filter specification. If the path is not specified, user is prompted to write the filter
specification manually.

12. --target
• Target datastore to retrieve. For description of possible values, refer to Section 7.4.3.3.2. Note, that the url

configuration datastore cannot be retrieved.
13. lock

Performs the NETCONF lock operation to lock the entire configuration datastore of a server. For details,
see RFC 6241 section 7.5.

lock [--help] --target running|startup|candidate

Where the
• --target: specifies the target datastore to lock. For description of possible values, refer to

Section 7.4.3.3.2. Note, that the url configuration datastore cannot be locked.
14. unlock: Performs the NETCONF unlock operation to release a configuration lock, previously obtained with

the lock operation. Refer to section 7.6 of the RFC 6241 specification for more details.

unlock [--help] --target running|startup|candidate

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
348 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

where
• --target: specifies the target datastore to unlock. For description of possible values, refer to

Section 7.4.3.3.2. Note, that the url configuration datastore cannot be unlocked.
15. verb

• Enables/disables verbose messages.
16. quit

• Quits the program.

7.4.3.3.2 Netopeer2 CLI datastore

Following are the netopeer2 CLI datastores:

• running
– This is the base NETCONF configuration datastore holding the complete configuration currently active on

the device. This datastore always exists.

• startup
– The configuration datastore holding the configuration loaded by the device when it boots. This datastore is

available only on servers that implement the :startup capability.

• candidate
– The configuration datastore that can be manipulated without impacting the device's current configuration

and that can be committed to the running configuration datastore. This datastore is available only on servers
that implement :candidate capability.

• url:URI
– Refers to a remote configuration datastore located at URI. The file that the URI refers to contains

the configuration data hierarchy to be modified, encoded in XML under the element config in the
urn:ietf:params:xml:ns:netconf:base:1.0 namespace. This datastore is available only on
servers that implement the :url capability.

7.4.3.4 Sysrepod

Sysrepo deamon provides the functionality of the datastore on the system (executes the system-wide Sysrepo
Engine). In normal circumstances, it gets automatically started when the system starts up. However, auto-
start is not configured by cmake install operation and user should configure it manually, according to the
guidelines of user's system.

Usage:

sysrepod [-h] [-v] [-d] [-l <level>]

Options:

• -h Prints usage help.

• -v Prints version.

• -d Debug mode - daemon runs in the foreground and print logs to stderr instead of syslog.

• -l <level> Sets verbosity level of logging:
– 0 = all logging turned off
– 1 = log only error messages
– 2 = (default) log error and warning messages
– 3 = log error, warning and informational messages
– 4 = log everything, including development debug messages

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
349 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.4.3.5 Sysrepocfg

sysrepocfg is a command-line tool for editing, importing, and exporting configuration stored in Sysrepo
datastore. It allows users to edit startup or running configuration of specified module in a preferred text editor.
It also propagates the performed changes into the datastore transparently for all subscribed applications.
Moreover, the user can export the current configuration into a file or get it printed to the standard output.
Similarly, an already prepared configuration can be imported from a file or read from the standard input.

In the background, sysrepocfg uses Sysrepo client library for any data manipulation rather than directly
accessing configuration data files. Thus, it effectively inherits all main features of Sysrepo, such as YANG-based
data validation, full transaction and concurrency support. Most importantly, subscribed applications are notified
about the changes made using \fBsysrepocfg\fP and can immediately take the new configuration into account.

7.4.3.6 Sysrepoctl

The sysrepoctl provides functions to manage modules. It can be configured using the options and commands
described below.

operation-operations

• --help: Prints the generic description and a list of commands. The detailed description and list of arguments
for the specific command are displayed by using --help argument of the command.

• --install: Installs specified schema into sysrepo (--yang or --yin must be specified).
• --uninstall: Uninstalls specified schema from sysrepo (--module must be specified).
• --list: Lists YANG modules installed in sysrepo (note that Conformance Installed implies also Implemented).
• --change : Changes specified module in sysrepo (--module must be specified).
• --feature-enable: Enables a feature within a module in sysrepo (feature name is the argument, --module must

be specified).
• --feature-disable: Disables a feature within a module in sysrepo (feature name is the argument, --module

must be specified).

Other-options

• --yang : Path to the file with schema in YANG format (--install operation).
• --yin : Path to the file with schema in YIN format (--install operation).
• --module : Name of the module to be operated on (--change, --feature-enable, --feature-disable operations, --

uninstall - several modules can be delimited with ',').
• --permissions : Access permissions of the module's data in chmod format (--install, --change operations).

Examples

• Installs a new module by specifying YANG file, ownership and access permissions:

sysrepoctl --install --yang=/home/user/ietf-interfaces.yang --owner=admin:admin
 --permissions=644

• Changes the ownership and permissions of an existing YANG module:

sysrepoctl --change --module=ietf-interfaces --owner=admin:admin --
permissions=644

• Enables a feature within a YANG module:

sysrepoctl --feature-enable=if-mib --module=ietf-interfaces

• Uninstalls 2 modules, second one is without revision:

sysrepoctl --uninstall --module=mod-a,mod-b --revision=2035-05-05

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
350 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.4.3.7 List of yang models

YANG models name Official revision List of the developer changes Draft or Published

ieee802-types 2020-10-23 DRAFT

ieee802-dot1q-types 2020-10-23 DRAFT

ietf-interfaces 2018-02-20 DRAFT

iana-if-type 2020-01-10 - Delete duplicate revision PUBLISHED

ietf-yang-types 2013-07-15 PUBLISHED

ieee802-dot1q-bridge 2020-11-24 - Add prefix of bridge-type and bridge-
component

DRAFT

ieee802-dot1q-sched 2020-07-07 - Add prefix of gate operation-name
- Allow gate-control-entry to be empty
- Delete cycle-time limited

DRAFT

ieee802-dot1q-preemption 2020-07-07 DRAFT

ieee802-dot1cb-stream-
identification-types

2021-06-14 DRAFT

ieee802-dot1cb-stream-
identification

2021-05-06 DRAFT

ieee802-dot1q-stream-filters-
gates

2020-11-06 PUBLISHED

ieee802-dot1q-psfp 2020-07-07 - Add prefix of set-gate-and-ipv
- Delete cycle-time limited

DRAFT

ietf-ip 2018-02-22 RFC

ieee802-dot1q-pb 2020-11-24 DRAFT

ieee802-dot1q-qci-augment 2019-05-20 - Add by NXP PROPRIETARY

ieee802-dot1cb-frer-types 2021-05-06 DRAFT

ieee802-dot1cb-frer 2021-05-06 DRAFT

nxp-bridge-vlan-tc-flower 2020-04-02 - Add by NXP PROPRIETARY

Table 87. Revision of yang models

7.4.3.8 Operation examples

The following figure describes the steps to configure device via netopeer2:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
351 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 147. Steps to configure device via netopeer2 using MAC0 interface on LS1028ARDB

In sysrepo-tsn, there are some instance files to configure TSN features on LS1028ARDB board:

• Instance files for TSN configuration

Users can configure TSN functions of LS1028ARDB board using these instance files. Before starting, make
sure that sysrepod, sysrepo-plugind, sysrepo-tsn and netopeer2-server are running on the board. Use the
following steps to configure TSN feature on LS1028ARDB board.

1. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli

2. Connect to netopeer2-server on LS1028ARDB board(use the IP on LS1028ARDB, here 10.193.20.53 is
example):

> connect --login root --host 10.193.20.53

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
352 / 400

https://github.com/real-time-edge-sw/real-time-edge-sysrepo
https://github.com/real-time-edge-sw/real-time-edge-sysrepo/tree/master/Instances

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. Get status data of server:

> get

4. Get configuration data in running datastore:

> get-config --source running

5. Configure QBV feature of LS1028ARDB with qbv-eno0-enable.xml

> edit-config --target running --config=qbv-eno0-enable.xml

6. Check configuration data of QBV:

> get-config --source running --filter-xpath /ietf-interfaces:interfaces/
interface[name='eno0']/ieee802-dot1q-sched:gate-parameters

7. Copy configuration data in running datastore to startup datastore:

> copy-config --source running --target startup

8. Disconnect with netopeer2-server:

> disconnect

7.4.3.9 Application scenarios

Note: The related xml file in the following cases can be obtained from the link: https://github.com/nxp-real-time-
edge-sw/real-time-edge-sysrepo/blob/master/Instances.

Note: The interface name in the xml file should match with the actual interface name used on the board.

1. Prerequisites:
a. Start netopeer2-cli on the computer with netopeer2-cli installed:

$ netopeer2-cli

b. Connect to the notopeer2-server using the command below:

> connect --login root --host 10.193.20.53

2. Configure the IP address:
a. Edit configuration file, change Ethernet interface name and IP:

$ vim ietf-ip-cfg.xml

b. Send the configuration file:

> edit-config --target running --config=ietf-ip-cfg.xml

3. Configure the MAC address for the bridge:
a. Create a bridge named br1:

$ ip link add name br1 type bridge

b. Edit the configuration file, change bridge name and MAC:

$ vim ietf-mac-cfg.xml

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
353 / 400

https://github.com/real-time-edge-sw/real-time-edge-sysrepo/blob/master/Instances/qbv-eno0-enable.xml
https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo/blob/master/Instances
https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo/blob/master/Instances

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

c. Send the configuration file:

$ edit-config --target running --config=ietf-mac-cfg.xml

4. Add VLAN for Ethernet interface:
a. Create bridge named "br1" if not existing:

$ ip link add name br1 type bridge

b. Edit the configuration file to change the interface name and VLAN ID:

$ vim ietf-vlan-cfg.xml

c. Send the configuration file:

> edit-config --target running --config=ietf-vlan-cfg.xml

5. Configure LS1028ARDB Qbv via tc.
a. Edit the configuration file to change the interface name and VLAN ID:

$ vim qbv-swp0-enable.xml

b. Send the configuration file:

> edit-config --target running --config=qbv-swp0-enable.xml

c. Show the result.

tc qdisc show dev swp0

Note: If using tc or ethtool commands instead of libtsn, enable "real-time-edge-sysrepo-
tc" in conf/distro/include/real-time-edge-base.inc as shown below:

REAL_TIME_EDGE_SYSREPO_ls1028ardb = "real-time-edge-sysrepo-tc"

Otherwise, disable "real-time-edge-sysrepo-tc":

REAL_TIME_EDGE_SYSREPO_ls1028ardb = ""

• For LS1028ARDB board, if real-time-edge-sysrepo-tc is enabled, you should set prerequisite for
swpx (swp0 swp1 or swp2 ...) port using the following commands:

tc qdisc add dev swpx ingress
tc filter add dev swpx ingress chain 0 pref 49152 flower skip_sw action
 goto chain 10000
tc filter add dev swpx ingress chain 10000 pref 49152 flower skip_sw
 action goto chain 11000
tc filter add dev swpx ingress chain 11000 pref 49152 flower skip_sw
 action goto chain 12000
tc filter add dev swpx ingress chain 12000 pref 49152 flower skip_sw
 action goto chain 20000
tc filter add dev swpx ingress chain 20000 pref 49152 flower skip_sw
 action goto chain 21000
tc filter add dev swpx ingress chain 21000 pref 49152 flower skip_sw
 action goto chain 30000

6. Configure LS1028ARDB Qci via tc using the steps below.
a. Create a bridge named "switch" if not existing:

ip link add name switch type bridge

b. Edit and send configuration file:

edit-config --target running --config=switch-qci-fm-gate-enable.xml

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
354 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

c. Show the result.

tc filter show dev swp0 ingress

d. Disable the configuration.

> edit-config --target running --config=switch-qci-fm-gate-disable.xml

Note:
• The destination-address in instance file should be learned by switch.
• Users should send switch-qci-fm-gate-disable.xml after switch-qci-fm-gate-enable.xml

7. Configure LS1028ARDB Qbu via ethtool using the steps below.
Note: Disable cut through on the target board first by executing the command below:

tsntool ctset --device swp0 --queue_stat 0x0

a. Edit and send configuration file:

> edit-config --target running --config=qbu-swp0.xml

b. Show the result:

ethtool --show-frame-preemption swp0

8. Configure LS1028ARDB VLAN ID and priority filter via tc:
a. Edit configuration file, change the interface name and action_spec:

$ vim ietf-br-vlan-cfg.xml

b. Send the configuration file:

> edit-config --target running --config=ietf-br-vlan-cfg.xml

9. Configure i.MX 8DXL / i.MX 8M Plus / i.MX 93 Qbv via tc.
a. Edit and send configuration file:

> edit-config --target running --config=qbv-eth1-enable.xml

b. Display the result using the command below:

tc qdisc show dev eth1

10. Configure i.MX 8DXL / i.MX 8M Plus / i.MX 93 Qbu via ethtool.
a. Edit and send configuration file:

> edit-config --target running --config=qbu-eth1.xml

b. Display the result using the command below:

ethtool --show-frame-preemption eth1

7.4.4 Troubleshooting

1. Connection fails at client side:

nc ERROR: Remote host key changed, the connection will be terminated!
nc ERROR: Checking the host key failed.
cmd_connect: Connecting to the 10.193.20.4:830 as user "root" failed.

Fixing:
The reason is that the SSHD key changed at the server.
• First, users should get host list using the command knownhosts.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
355 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

• Then, remove the related item. For example knownhosts --del 19.
2. Request could not be completed because the relevant data model content does not exist.

type: application
tag: data-missing
severity: error
path: /ietf-interfaces:interfaces/interface[name='eno0']/ieee802-dot1q-
sched:gate-parameters/admin-gate-states
message: Request could not be completed because the relevant data model
 content does not exist.

Fixing:
The reason is that the configuration data in xpath does not exist in the datastore. Such as deleting a node
that does not exist.
When encountering such an error, user can get configuration data in the board with get-config
command, and check whether the operation type (add/delete/modify) of the node in the path is
reasonable or not.

7.5 Graphics on LS1028A
This chapter is applicable to LS1028A. For i.MX 8M Plus and i.MX 8M Mini, refer to i.MX Graphics User's Guide
for verification of the features.

7.5.1 GPU

The GPU consists of a 3D graphics core and a 2D graphics core.

3D graphics core features are the following:

• Supports 166 million triangles/sec
• Supports 1 Giga pixel/sec fill rate
• Supports 16 GFLOPs
• Supports OpenGL ES 1.1, 2.0, 3.0, 3.1
• Supports OpenCL 1.2
• Vulkan

2D graphics core features are:

• Supports multi-source composition
• Supports one-pass filter
• Supports tile format from 3D graphics core
• Supports tile format from VPU

Step1: Software setting and configuration

GPU is enabled by default when compiling the image for i.MX 8M Plus, i.MX 8M Mini, and LS1028A.

Step 2: Hardware setup

• For LS1028ARDB, connect the monitor and LS1028ARDB with DP cable.
• For i.MX 8M Mini LPDDR4 EVK, connect MIPI-DSI to HDMI module, then connect to the monitor.
• For i.MX 8M Plus LPDDR4 EVK, connect the monitor and i.MX 8M Plus LPDDR4 EVK using HDMI cable.

Insert the USB mouse into USB port in the keyboard.

Step 3: Running GPU demo

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
356 / 400

https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

OpenCL demo (example A and B) is supported on LS1028ARDB and i.MX 8M Plus LPDDR4 EVK. i.MX 8M
Mini LPDDR4 EVK do not support this feature.

Note: Weston is running by default, before doing below demo, need to exit weston by command "killall weston".

A. OpenCL information

root@ls1028ardb:~# cd /opt/viv_samples/cl11/UnitTest
root@ls1028ardb:/opt/viv_samples/cl11/UnitTest# ./clinfo
>>>>>>>> ./clinfo Starting...
Available platforms: 1
Platform ID: 0
 CL_PLATFORM_NAME: Vivante OpenCL Platform
 CL_PLATFORM_PROFILE: FULL_PROFILE
 CL_PLATFORM_VERSION: OpenCL 1.2 V6.4.0.p2.234062
 CL_PLATFORM_VENDOR: Vivante Corporation
 CL_PLATFORM_EXTENSIONS: cl_khr_icd
 Available devices: 1
 Device ID: 0
 Device Ptr: 0xd04742f0
 CL_DEVICE_NAME: Vivante OpenCL Device GC7000UL.6202.0000
 CL_DEVICE_VENDOR: Vivante Corporation
 CL_DEVICE_TYPE: GPU
 CL_DEVICE_OPENCL_C_VERSION: OpenCL C 1.2
 CL_DEVICE_VENDOR_ID: 0x00564956
 CL_DEVICE_PLATFORM: 0x9e272728
 CL_DEVICE_VERSION: OpenCL 1.2
 CL_DEVICE_PROFILE: FULL_PROFILE
 CL_DRIVER_VERSION: OpenCL 1.2
 V6.4.0.p2.234062
 CL_DEVICE_MAX_COMPUTE_UNITS: 1
 CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: 3
 CL_DEVICE_MAX_WORK_ITEM_SIZES[0]: 512
 CL_DEVICE_MAX_WORK_ITEM_SIZES[1]: 512
 CL_DEVICE_MAX_WORK_ITEM_SIZES[2]: 512
 CL_DEVICE_MAX_WORK_GROUP_SIZE: 512
 CL_DEVICE_MAX_CLOCK_FREQUENCY: 650 MHz
 CL_DEVICE_IMAGE_SUPPORT: Yes
 CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
 CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
 CL_DEVICE_IMAGE2D_MAX_WIDTH: 8192
 CL_DEVICE_IMAGE2D_MAX_HEIGHT: 8192
 CL_DEVICE_IMAGE3D_MAX_WIDTH: 8192
 CL_DEVICE_IMAGE3D_MAX_HEIGHT: 8192
 CL_DEVICE_IMAGE3D_MAX_DEPTH: 8192
 CL_DEVICE_MAX_SAMPLERS: 16
...

B. Fourier transform based on GPU

root@ls1028ardb:~# cd /opt/viv_samples/cl11/fft/
root@ls1028ardb:/opt/viv_samples/cl11/fft# ./fft 16
Block size: 16
Print result: yes
Initializing device(s)...
Get the Device info and select Device...
of Devices Available = 1
of Compute Units = 1
compute units = 1
Creating Command Queue...

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
357 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

log2(fft size) = log2(16)=4
Compiling radix-2 FFT Program for GPU...
creating radix-2 kernels...
Creating kernel fft_radix2 0 (p=1)...
Creating kernel fft_radix2 1 (p=2)...
Creating kernel fft_radix2 2 (p=4)...
Creating kernel fft_radix2 3 (p=8)...
Setting kernel args for kernel 0 (p=1)...
Setting kernel args for kernel 1 (p=2)...
Setting kernel args for kernel 2 (p=4)...
Setting kernel args for kernel 3 (p=8)...
running kernel 0 (p=1)...
running kernel 1 (p=2)...
running kernel 2 (p=4)...
running kernel 3 (p=8)...
Kernel execution time on GPU (kernel 0) : 0.000118 seconds
Kernel execution time on GPU (kernel 1) : 0.000122 seconds
Kernel execution time on GPU (kernel 2) : 0.000102 seconds
Kernel execution time on GPU (kernel 3) : 0.000076 seconds
Total Kernel execution time on GPU : 0.000418 seconds
Successful.

C. OpenGL ES demo

Note: Kill the Weston process before running kmscube.

kmscube is used to test OpenGL ES, as it supports HDMI and eDP interface.

For eDP interface, 4K resolution is not supported due to firmware limitation.

root@LS1028ARDB:~# kmscube
Using display 0x3107b6d0 with EGL version 1.5
===================================
EGL information:
 version: "1.5"
 vendor: "Vivante Corporation"
 client extensions: "EGL_EXT_client_extensions EGL_EXT_platform_base
 EGL_KHR_platform_wayland EGL_EXT_platform_wayland EGL_KHR_platform_gbm"
 display extensions: "EGL_KHR_fence_sync EGL_KHR_reusable_sync
 EGL_KHR_wait_sync EGL_KHR_image EGL_KHR_image_base EGL_KHR_image_pixmap
 EGL_KHR_gl_texture_2D_image EGL_KHR_gl_texture_cubemap_image
 EGL_KHR_gl_renderbuffer_image EGL_EXT_image_dma_buf_import
 EGL_EXT_image_dma_buf_import_modifiers EGL_KHR_lock_surface
 EGL_KHR_create_context EGL_KHR_no_config_context EGL_KHR_surfaceless_context
 EGL_KHR_get_all_proc_addresses EGL_EXT_create_context_robustness
 EGL_EXT_protected_surface EGL_EXT_protected_content EGL_EXT_buffer_age
 EGL_ANDROID_native_fence_sync EGL_WL_bind_wayland_display
 EGL_WL_create_wayland_buffer_from_image EGL_KHR_partial_update
 EGL_EXT_swap_buffers_with_damage EGL_KHR_swap_buffers_with_damage"
===================================
OpenGL ES 2.x information:
 version: "OpenGL ES 3.1 V6.4.0.p2.234062"
 shading language version: "OpenGL ES GLSL ES 3.10"
 vendor: "Vivante Corporation"
 renderer: "Vivante GC7000UL"
 extensions: "GL_OES_vertex_type_10_10_10_2 GL_OES_vertex_half_float
 GL_OES_element_index_uint GL_OES_mapbuffer GL_OES_vertex_array_object
 GL_OES_compressed_ETC1_RGB8_texture GL_OES_compressed_paletted_texture
 GL_OES_texture_npot GL_OES_rgb8_rgba8 GL_OES_depth_texture
 GL_OES_depth_texture_cube_map GL_OES_depth24 GL_OES_depth32
 GL_OES_packed_depth_stencil GL_OES_fbo_render_mipmap GL_OES_get_program_binary

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
358 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 GL_OES_fragment_precision_high GL_OES_standard_derivatives GL_OES_EGL_image
 GL_OES_EGL_sync GL_OES_texture_stencil8 GL_OES_shader_image_atomic
 GL_OES_texture_storage_multisample_2d_array GL_OES_required_internalformat
 GL_OES_surfaceless_context GL_OES_draw_buffers_indexed
 GL_OES_texture_border_clamp GL_OES_texture_buffer GL_OES_texture_cube_map_array
 GL_OES_draw_elements_base_vertex GL_OES_texture_half_float GL_OES_texture_float
 GL_KHR_blend_equation_advanced GL_KHR_debug GL_KHR_robustness
 GL_KHR_robust_buffer_access_behavior GL_EXT_texture_type_2_10_10_10_REV
 GL_EXT_texture_compression_dxt1 GL_EXT_texture_format_BGRA8888
 GL_EXT_texture_compression_s3tc GL_EXT_read_format_bgra
 GL_EXT_multi_draw_arrays GL_EXT_frag_depth GL_EXT_discard_framebuffer
 GL_EXT_blend_minmax GL_EXT_multisampled_render_to_texture
 GL_EXT_color_buffer_half_float GL_EXT_color_buffer_float
 GL_EXT_robustness GL_EXT_texture_sRGB_decode GL_EXT_draw_buffers_indexed
 GL_EXT_texture_border_clamp GL_EXT_texture_buffer GL_EXT_texture_cube_map_array
 GL_EXT_multi_draw_indirect GL_EXT_draw_elements_base_vertex GL_EXT_texture_rg
 GL_EXT_protected_textures GL_EXT_sRGB GL_VIV_direct_texture "
===================================
Rendered 120 frames in 2.000008 sec (59.999758 fps)
Rendered 241 frames in 4.016689 sec (59.999663 fps)
Rendered 361 frames in 6.016730 sec (59.999368 fps)

Below is the snapshot on screen.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
359 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 148. OpenGL ES demo with kmscube

7.5.2 Wayland and Weston

Weston is the reference implementation of a Wayland, this section describes how to enable Weston on NXP
platforms. Weston is supported by LS1028ARDB, i.MX 8M Plus LPDDR4 EVK, and i.MX 8M Mini LPDDR4 EVK
platforms.

1. Software setting and configuration
It is enabled by default when compiling the image for i.MX 8M Plus, i.MX 8M Mini, and LS1028A platforms.

2. Hardware setup
• For LS1028ARDB, connect the monitor and LS1028ARDB using DP cable.
• For i.MX 8M Plus LPDDR4 EVK, connect the monitor and i.MX 8M Plus LPDDR4 EVK using HDMI cable.
• For i.MX 8M Mini LPDDR4 EVK, connect MIPI-DSI to HDMI module, then connect to the monitor. Then,

insert USB mouse and keyboard into USB port.
3. Run the lightweight desktop

root@ls1028ardb:~# mkdir -p /run/user/0/
root@ls1028ardb:~# export XDG_RUNTIME_DIR="/run/user/0/"
root@ls1028ardb:~# weston --tty=1
With parameter "-i" or "--idle-time" to set the time to enter idle state,
 default is 300s.
"0" means weston will not enter idle state.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
360 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

root@ls1028ardb:~# weston --tty=1 -i 0 # or
root@ls1028ardb:~# weston --tty=1 --idle-time=0
Date: 2020-08-20 UTC
[14:38:00.002] weston 8.0.0
 https://wayland.freedesktop.org
 Bug reports to: https://gitlab.freedesktop.org/wayland/weston/
issues/
 Build: 8.0.0
[14:38:00.002] Command line: weston --tty=1
[14:38:00.002] OS: Linux, 5.4.3-rt1, #1 SMP PREEMPT_RT Tue Aug 18 14:49:14
 CST 2020, aarch64
[14:38:00.002] Starting with no config file.
[14:38:00.005] Output repaint window is 16 ms maximum.
[14:38:00.007] Loading module '/usr/lib/libweston-8/drm-backend.so'
[14:38:00.050] initializing drm backend
[14:38:00.054] using /dev/dri/card0
[14:38:00.054] DRM: supports universal planes
[14:38:00.054] DRM: supports atomic modesetting
[14:38:00.054] DRM: supports picture aspect ratio
[14:38:00.056] Loading module '/usr/lib/libweston-8/gl-renderer.so'
[14:38:00.208] EGL client extensions: EGL_EXT_client_extensions
 EGL_EXT_platform_base EGL_KHR_platform_wayland
 EGL_EXT_platform_wayland EGL_KHR_platform_gbm
[14:38:00.224] EGL version: 1.5
[14:38:00.224] EGL vendor: Vivante Corporation
[14:38:00.224] EGL client APIs: OpenGL_ES OpenGL OpenVG
[14:38:00.224] EGL extensions: EGL_KHR_fence_sync EGL_KHR_reusable_sync
 EGL_KHR_wait_sync EGL_KHR_image EGL_KHR_image_base
 EGL_KHR_image_pixmap EGL_KHR_gl_texture_2D_image
 EGL_KHR_gl_texture_cubemap_image EGL_KHR_gl_renderbuffer_image
 EGL_EXT_image_dma_buf_import
 EGL_EXT_image_dma_buf_import_modifiers EGL_KHR_lock_surface
 EGL_KHR_create_context EGL_KHR_no_config_context
 EGL_KHR_surfaceless_context EGL_KHR_get_all_proc_addresses
 EGL_EXT_create_context_robustness EGL_EXT_protected_surface
 EGL_EXT_protected_content EGL_EXT_buffer_age
 EGL_ANDROID_native_fence_sync EGL_WL_bind_wayland_display
 EGL_WL_create_wayland_buffer_from_image EGL_KHR_partial_update
 EGL_EXT_swap_buffers_with_damage
 EGL_KHR_swap_buffers_with_damage
[14:38:00.224] EGL_KHR_surfaceless_context available
[14:38:00.310] GL version: OpenGL ES 3.1 V6.4.0.p2.234062
[14:38:00.311] GLSL version: OpenGL ES GLSL ES 3.10
[14:38:00.311] GL vendor: Vivante Corporation
[14:38:00.311] GL renderer: Vivante GC7000UL
[14:38:00.311] GL extensions: GL_OES_vertex_type_10_10_10_2
 GL_OES_vertex_half_float GL_OES_element_index_uint
 GL_OES_mapbuffer GL_OES_vertex_array_object
 GL_OES_compressed_ETC1_RGB8_texture
 GL_OES_compressed_paletted_texture GL_OES_texture_npot
 GL_OES_rgb8_rgba8 GL_OES_depth_texture
 GL_OES_depth_texture_cube_map GL_OES_depth24 GL_OES_depth32
 GL_OES_packed_depth_stencil GL_OES_fbo_render_mipmap
 GL_OES_get_program_binary GL_OES_fragment_precision_high
 GL_OES_standard_derivatives GL_OES_EGL_image GL_OES_EGL_sync
 GL_OES_texture_stencil8 GL_OES_shader_image_atomic
 GL_OES_texture_storage_multisample_2d_array
 GL_OES_required_internalformat GL_OES_surfaceless_context
 GL_OES_draw_buffers_indexed GL_OES_texture_border_clamp
 GL_OES_texture_buffer GL_OES_texture_cube_map_array

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
361 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 GL_OES_draw_elements_base_vertex GL_OES_texture_half_float
 GL_OES_texture_float GL_KHR_blend_equation_advanced
 GL_KHR_debug GL_KHR_robustness
 GL_KHR_robust_buffer_access_behavior
 GL_EXT_texture_type_2_10_10_10_REV
 GL_EXT_texture_compression_dxt1 GL_EXT_texture_format_BGRA8888
 GL_EXT_texture_compression_s3tc GL_EXT_read_format_bgra
 GL_EXT_multi_draw_arrays GL_EXT_frag_depth
 GL_EXT_discard_framebuffer GL_EXT_blend_minmax
 GL_EXT_multisampled_render_to_texture
 GL_EXT_color_buffer_half_float GL_EXT_color_buffer_float
 GL_EXT_robustness GL_EXT_texture_sRGB_decode
 GL_EXT_draw_buffers_indexed GL_EXT_texture_border_clamp
 GL_EXT_texture_buffer GL_EXT_texture_cube_map_array
 GL_EXT_multi_draw_indirect GL_EXT_draw_elements_base_vertex
 GL_EXT_texture_rg GL_EXT_protected_textures GL_EXT_sRGB
 GL_VIV_direct_texture
[14:38:00.311] GL ES 2 renderer features:
 read-back format: BGRA
 wl_shm sub-image to texture: yes
 EGL Wayland extension: yes
[14:38:00.343] warning: no input devices on entering Weston. Possible causes:
 - no permissions to read /dev/input/event*
 - seats misconfigured (Weston backend option 'seat', udev device
 property ID_SEAT)
[14:38:00.343] failed to create input devices
[14:38:00.349] DRM: head 'DP-1' found, connector 56 is connected, EDID make
 'DEL', model 'DELL P2417H', serial 'C9G5D7561ECB'
[14:38:00.349] Registered plugin API 'weston_drm_output_api_v1' of size 24
[14:38:00.357] Chosen EGL config details: id: 41 rgba: 8 8 8 0 buf: 24
 dep: 0 stcl: 0 int: 1-60 type: win|pix|pbf|swap_preserved vis_id: XRGB8888
 (0x34325258)
[14:38:00.357] Output DP-1 (crtc 48) video modes:
 1920x1080@60.0, preferred, current, 148.5 MHz
 1600x900@60.0, 108.0 MHz
 1280x1024@75.0, 135.0 MHz
 1280x1024@60.0, 108.0 MHz
 1152x864@75.0, 108.0 MHz
 1024x768@75.0, 78.8 MHz
 1024x768@60.0, 65.0 MHz
 800x600@75.0, 49.5 MHz
 800x600@60.3, 40.0 MHz
 640x480@75.0, 31.5 MHz
 640x480@59.9, 25.2 MHz
 720x400@70.1, 28.3 MHz
[14:38:00.357] Output 'DP-1' enabled with head(s) DP-1
[14:38:00.357] Compositor capabilities:
 arbitrary surface rotation: yes
 screen capture uses y-flip: yes
 presentation clock: CLOCK_MONOTONIC, id 1
 presentation clock resolution: 0.000000001 s
[14:38:00.359] Loading module '/usr/lib/weston/desktop-shell.so'
[14:38:00.367] launching '/usr/libexec/weston-keyboard'
[14:38:00.373] launching '/usr/libexec/weston-desktop-shell'
[14:39:23.341] event0 - Logitech USB Optical Mouse: is tagged by udev as:
 Mouse
[14:39:23.341] event0 - Logitech USB Optical Mouse: device is a pointer
[14:39:23.341] libinput: configuring device "Logitech USB Optical Mouse".
[14:39:23.342] associating input device event0 with output DP-1 (none by
 udev)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
362 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

could not load cursor 'dnd-move'
could not load cursor 'dnd-copy'
could not load cursor 'dnd-none'
[14:39:33.459] event0 - Logitech USB Optical Mouse: device removed
[14:39:51.794] event0 - Dell Dell USB Keyboard: is tagged by udev as:
 Keyboard
[14:39:51.794] event0 - Dell Dell USB Keyboard: device is a keyboard
[14:39:51.859] libinput: configuring device "Dell Dell USB Keyboard".
[14:39:51.859] associating input device event0 with output DP-1 (none by
 udev)
[14:40:03.937] event0 - Dell Dell USB Keyboard: device removed
[14:40:11.758] event0 - Logitech USB Optical Mouse: is tagged by udev as:
 Mouse
[14:40:11.758] event0 - Logitech USB Optical Mouse: device is a pointer
[14:40:11.758] libinput: configuring device "Logitech USB Optical Mouse".
[14:40:11.758] associating input device event0 with output DP-1 (none by
 udev)
[14:40:19.403] event0 - Logitech USB Optical Mouse: device removed
[14:40:29.454] event0 - Dell Dell USB Keyboard: is tagged by udev as:
 Keyboard
[14:40:29.454] event0 - Dell Dell USB Keyboard: device is a keyboard
[14:40:29.454] libinput: configuring device "Dell Dell USB Keyboard".
[14:40:29.454] associating input device event0 with output DP-1 (none by
 udev)
[14:41:00.156] event0 - Dell Dell USB Keyboard: device removed
[14:42:29.287] event0 - Logitech USB Optical Mouse: is tagged by udev as:
 Mouse
[14:42:29.287] event0 - Logitech USB Optical Mouse: device is a pointer
[14:42:29.287] libinput: configuring device "Logitech USB Optical Mouse".
[14:42:29.287] associating input device event0 with output DP-1 (none by
 udev)
[14:42:35.418] event1 - Dell Dell USB Keyboard: is tagged by udev as:
 Keyboard
[14:42:35.419] event1 - Dell Dell USB Keyboard: device is a keyboard
[14:42:35.419] libinput: configuring device "Dell Dell USB Keyboard".
[14:42:35.419] associating input device event1 with output DP-1 (none by
 udev)

Below is the snapshot.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
363 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 149. Weston demo

7.5.3 CSI Camera

NXP provides i.MX 8M Mini LPDDR4 EVK board that have CSI MIPI and DSI MIPI interfaces. The gstreamer
video stream captures video frame from CSI camera and displays it to screen via DSI MIPI interface. The
element waylandsink is based on wayland library and Weston desktop. Refer to Section 7.5.2 to enable them.
Users should follow the steps below to enable gstreamer on a target board.

1. Software setting and configuration
Gstream is enabled by default.

2. Hardware setup
• For i.MX 8M Mini LPDDR4 EVK boards, DSI MIPI, and CSI MIPI modules are connected to the board.
• MIPI-DSI to HDMI interface:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
364 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 150. MIPI-DSI to HDMI interface
3. MIPI-CSI camera module: The following figure shows the MIPI-CSI camera module:

Figure 151. MIPI-CSI camera module
4. Run gstreamer for camera.

After entering Linux prompt, run gstreamer command as shown in the below steps:

[root@imx8mmevk ~] # gst-launch-1.0 v4l2src device= /dev/video0 ! 'video/x-
raw,width=640,height=480,framerate=(fraction)30/1' ! videoconvert ! fbdevsink

Below is the snapshot with fbdevsink:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
365 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 152. fbdevsink
5. Run wayland and weston for waylandsink using the commands shown below:

[root@imx8mmevk ~] # mkdir -p /run/user/0/
[root@imx8mmevk ~] # export XDG_RUNTIME_DIR="/run/user/0/"
[root@imx8mmevk ~] # weston --tty=1 &
[root@imx8mmevk ~] # gst-launch-1.0 v4l2src device= /dev/video0 ! 'video/
x-raw,width=640,height=480,framerate=(fraction)30/1' ! videoconvert !
 waylandsink

The below snapshot shows waylandsink implementation:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
366 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 153. Waylandsink implementation

7.5.4 OpenCV on LS1028ARDB

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning
software library. OpenCV was built to provide a common infrastructure for computer vision applications and to
accelerate the use of machine perception in the commercial products. Being a BSD-licensed product, OpenCV
makes it easy for businesses to utilize and modify the code.

In Real-time Edge software v2.1 or later, OpenCV-4.5.2 and Python3 are enabled.

In order to get the FPS wanted during developing OpenCV application, below code is necessary to set the FPS.

camera.set(cv2.CAP_PROP_FPS, 30)

7.6 Wireless on LS1028A

7.6.1 NFC

NFC click board is a mikroBUS add-on board with a versatile near field communications controller from NXP —
the PN7120 NFC devices are used in contactless payment systems, electronic ticketing, smartcards. In retail
and advertising, inexpensive NFC tags can be embedded into packaging labels, flyers, or posters.

This board is fully compliant with NFC Forum specifications. This implies that users can use the full potential of
NFC and its three distinct operating modes listed below:

1. Card emulation
2. Read/Write

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
367 / 400

https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-controller-with-integrated-firmware-and-nci-interface-for-home-appliances:PN7120

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. P2P

7.6.1.1 Introduction

The NXP’s PN7120 IC integrates an Arm™ Cortex-M0 MCU, which enables easier integration into designs,
because it requires fewer resources from the host MCU. The integrated firmware provides all NFC protocols for
performing the contactless communication in charge of the modulation, data processing, and error detection.

The board communicates with the target board MCU through the mikroBUS™ I2C interface, in compliance with
NCI (NFC controller interface) 1.0 host protocols. RST and INT pins provide additional functionality. The board
uses a 3.3 V power supply.

7.6.1.2 PN7120 features

PN7120 IC embeds a new generation RF contactless front-end, supporting various transmission modes
according to NFCIP-1 and NFCIP-2, ISO/IEC14443, ISO/IEC 15693, ISO/IEC 18000-3, MIFARE, and FeliCa
specifications. It embeds an Arm Cortex-M0 microcontroller core loaded with the integrated firmware supporting
the NCI 1.0 host communication.

7.6.1.3 Hardware preparation

Use the following hardware items for the NFC clickboard demo setup:

1. LS1028ARDB
2. NFC click board
3. NFC sample card (tag)

Note: Users should insert the NFC click board into the LS1028ARDB mikroBUS1 slot.

7.6.1.4 Software preparation

In order to support NFC click board, use the following steps:

1. In Real-time Edge, libnfc-nci is enabled by default.
2. In Linux kernel configuration, make sure the below options are enabled:

[*] Networking support --->
 <M> NFC subsystem support --->
 Near Field Communication (NFC) devices --->
 <M> NXP PN5XX based driver

Note: The NXP PN5XX based driver only supports the Module mode.
3. Use the make command to create the images.

7.6.1.5 Testing the NFC click board

Use the following steps for testing the NFC Clickboard:

1. Install NFC driver module

[root]# modprobe pn5xx_i2c.ko

2. The following log appears at the console after the above command is successful. The error information can
be ignored in this case.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
368 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

3. Run the nfcDemoApp application:

[root]# nfcDemoApp poll

4. Put the NFC Sample Card (tag) on top of the NFC click board:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
369 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Display of the above information indicates successful card reading.

7.6.2 Bluetooth Low Energy

This chapter introduces the features of the Bluetooth Low Energy P click board and how to use it on NXP's
LS1028A reference design board (RDB).

7.6.2.1 Introduction

The BLE P Click board carries the nRF8001 IC that allows user to add Bluetooth 4.0 to user's device. The click
communicates with the target board MCU through mikroBUS SPI (CS, SCK, MISO, MOSI), RDY and ACT lines,
and runs on 3.3 V power supply.

The BLE P Click board features a PCB trace antenna, designed for the 2400 MHz to 2483.5 MHz frequency
band. The maximum device range is up to 40 meters in open space.

7.6.2.2 Bluetooth Low Energy

LS1028ARDB support Bluetooth Low Energy click board, Bluetooth Low Energy P click carries the nRF8001 IC
that allows user to add Bluetooth 4.0 to the device.

7.6.2.3 Features

Following are the features provided by BLE P Click board:

• nRF8001 Bluetooth low energy RF transceiver
– 16 MHz crystal oscillator
– Ultra-low peak current consumption <14 mA
– Low current for connection-oriented profiles, typically 2 μA

• PCB trace antenna (2400-2483.5 MHz, up to 40 meters)
• BLE Android app
• Interface: SPI (CS, SCK, MISO, MOSI), RDY, and ACT lines
• 3.3 V power supply

7.6.2.4 Hardware preparation

Use the following hardware items for the BLE P Click board demo setup:

1. LS1028ARDB
2. BLE P Click board
3. Android phone (option)

The figure below depicts the hardware setup required for the demo:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
370 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 154. BLE P Click board hardware setup

7.6.2.5 Software preparation

Use these steps for the BLE P click board demo software setup:

• Download the JUMA UART (Android app) by using the link: https://apkpure.com/juma-uart/com.juma.
UART

• Then, run the steps below in order to support BLE P click board:
1. In Real-time Edge, libblep is enabled by default.
2. In Linux kernel configuration, make sure the below options are enabled:

Device Drivers --->
 SPI support --->
 <*> Freescale DSPI controller
 <*> User mode SPI device driver support

3. Use the make command to create the images.

7.6.2.6 Testing the BLE P click board

Use the following steps for testing the BLE P click board:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
371 / 400

https://apkpure.com/juma-uart/com.juma.UART
https://apkpure.com/juma-uart/com.juma.UART

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Running the blep_demo application:
The following log is displayed to indicate that the BLE P click board is initialized. After this, users can scan
from their mobile phone or computer's Bluetooth device for the BLE P click board. The name of the BLE P
click board used is “MikroE”.

Figure 155. Initialization log
2. Connection log

Connect the BLE P click board via mobile app. On successful connection, the following log is displayed.
Thereafter, the application can communicate with the BLE P click board.

Figure 156. Connection log
3. Disconnection log

Click the Disconnect button of the Android APP to disconnect from the BLE P click board. The following
log displays that the disconnection is successful:

Figure 157. Disconnection log
4. Command line introduction

The blep _demo application supports four command lines: devaddr, name=, version, and echo.
a. devaddr

This command is used to obtain the MAC address of the BLE P click board. User can run this command
at any time.

Figure 158. devaddr command log
b. name=

This command is used to set the Bluetooth name of the BLE P click board while broadcasting. No
spaces are required after the equal sign "=", and the content after the 'equal to' sign is the set name.
The maximum length is 16 characters.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
372 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 159. name log
c. version

This command is used to obtain the version of the BLE P click board. User can run this command at any
time.

Figure 160. version log
d. echo

This command is used to send a string to the Android app. This command should be executed after the
connection is established. The maximum length is 20 characters.
The below log displays the message displayed after user tries to send a string when no connection is
established:

Figure 161. User input log (no connection)
The below log is displayed when user sends a string after a connection is established:

Figure 162. User input log (after a connection is established)
5. Receiving data

When the Android app sends a string:

Figure 163. Received data log

7.6.3 BEE

This chapter introduces the features of the BEE Click Board and how to use it on LS1028ARDB.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
373 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.6.3.1 BEE/ZigBEE

LS1028ARDB supports BEE click board, which can implement the MRF24J40MA 2.4 GHz IEEE 802.15.4 radio
transceiver module from Microchip.

7.6.3.2 Introduction

Heterogeneous Multi-SoC Framework enables the usage of a combination of MPU and i.MX RT1180 as an
Industrial Switch. This extends the MPU hardware capability with the i.MX RT1180 hardware capability, thereby
providing switch functionality, TSN functionality, and the capability of supporting different Industrial Protocols.
The i.MX RT1180 can be used to run real-time tasks such as industrial protocols in the real-time domain,
whereas the MPU can process compute-heavy tasks, in the non-real-time domain.

The external Ethernet ports of i.MX RT1180 can be exposed to the MPU side as standard Ethernet interfaces as
data path. Different interfaces such as SPI or I2C can be used as the management interface between MPU and
i.MX RT1180.

7.6.3.3 Features

The features of the BEE Click Board are listed below:

• PCB antenna
• MRF24J40MA module
• Low current consumption (TX 23 mA, RX 19 mA, Sleep 2 μA)
• ZigBee stack
• MiWi™ stack
• SPI Interface
• 3.3 V power supply

7.6.3.4 Hardware preparation

Use the following hardware items for the BEE Click Board demo setup:

• Two LS1028ARDB boards
• Two BEE Click Boards

The Figure 164 describes the hardware setup for the BEE Click Board.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
374 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 164. BEE Click Board hardware setup

Note: The WA pin of BEE Click Board connects with the NC pin.

7.6.3.5 Software preparation

In order to support BEE click board, use the following steps:

1. In Real-time Edge, libbee is enabled by default.
2. In Linux kernel configuration, make sure the below options are enabled:

Device Drivers --->
 SPI support --->
 <*> Freescale DSPI controller
 <*> User mode SPI device driver support
 -*- GPIO Support --->
 [*] /sys/class/gpio/... (sysfs interface)
 Memory mapped GPIO drivers --->
 [*] MPC512x/MPC8xxx/QorIQ GPIO support

3. Use the make command to create the images.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
375 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.6.3.6 Testing the BEE click board

The test application bee_demo is created by using the BEE Click Board library. This application can transfer the
file between two BEE Click Boards.

1. Users should create a file in any path. For example, ./samples/test.txt.
2. First, start a server node by running the command below:

bee_demo -s -f=XXX

The command parameters are as below:
• -s: This device node acts as a server.
• -f=XXX: This parameter is valid only on the server node. XXX is the file path (relative or absolute) to be

transferred.

[root]# ls
samples
[root]# bee_demo -s -f=./samples/test.txt
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
BEE Click Board Demo.
This node is a server node.
Waiting for a client
Reading the content of the file

3. Start a client node on another LS1028ARDB by running the command bee_demo -c. In the above
command, the parameter -c implies that this device node acts as a client. After receiving the file, the client
node automatically exits. The received file is saved in the current path.

[root]# ls
samples
[root]# bee_demo -c
 spi mode: 0x0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 BEE Click Board Demo.
 This node is a client node.
 Starting to get a file
 Send the SEQ_REQ command.
 Send the SEQ_START command.
 Send the SEQ_START command.
[root]# ls
samples test.txt
[root]#

4. The following log indicates that the server node has finished sending a file.

Send the SEQ_INFO command.
Start to send the file
It's completed to send a file.

7.7 SAI on LS1028ARDB
SAI on LS1028ARDB is enabled. Due to the pins are shared between IEEE 1588 and SAI, therefore the default
setting is to enable IEEE 1588 and disable SAI.

Following below steps to enable SAI in Real-time Edge Linux.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
376 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

1. Enable SAI support in Real-time Edge software

$ cd yocto-real-time-edge/sources/meta-real-time-edge
Open file "conf/distro/include/real-time-edge-base.inc", add "sai" to
 "DISTRO_FEATURES:append:ls1028ardb" like this:
DISTRO_FEATURES:append:ls1028ardb = " jailhouse real-time-edge-libbee real-
time-edge-libblep libnfc-nci \
 wayland-protocols weston imx-gpu-viv libdrm kmscube \
 real-time-edge-sysrepo tsn-scripts wayland alsa sai"

2. Build the image

$ cd yocto-real-time-edge
$ DISTRO=nxp-real-time-edge MACHINE=ls1028ardb source real-time-edge-setup-
env.sh -b build-ls1028ardb
$ bitbake nxp-image-real-time-edge

3. Turn on "Lineout Playback Switch" and
boot up LS1028ARDB with new image, enter Linux prompt:

$ amixer -c 0 cset name='Lineout Playback Switch' on
numid=11,iface=MIXER,name='Lineout Playback Switch'
 ; type=BOOLEAN,access=rw------,values=1
 : values=on

4. Run audio test (insert 3.5 mm headphone in AUDIO port on LS1028ARDB, some voice can be heard from
left and right).

$ speaker-test -c 2 -l 10 -t wav
speaker-test 1.2.5.1
Playback device is default
Stream parameters are 48000Hz, S16_LE, 2 channels
WAV file(s)
Rate set to 48000Hz (requested 48000Hz)
Buffer size range from 96 to 1048576
Period size range from 32 to 349526
Using max buffer size 1048576
Periods = 4
was set period_size = 262144
was set buffer_size = 1048576
 0 - Front Left
 1 - Front Right
Time per period = 7.964220
 0 - Front Left
 1 - Front Right
Time per period = 2.976679
 0 - Front Left
 1 - Front Right
...

7.8 Wi-Fi on i.MX 8DXL EVK

7.8.1 Wi-Fi card information

The Wi-Fi card shipped with i.MX 8DXL EVK is called ‘1XL M.2 Module’ which is co-developed by Embedded
Artists and Murata. The table below describes this Wi-Fi card.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
377 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Feature Description

Manufacturer Embedded Artists

Part Number EAR00387

Module Murata LBEE5ZZ1XL (also known as 1XL)

Chipset NXP 88W9098

Wi-Fi Standards 802.11 a/b/g/n/ac/ax 2x2 MU-MIMO, Wi-Fi 6

Frequency 2.4 GHz and 5 GHz

Wi-Fi Interface PCIe 3.0 (in M.2 form factor)

Table 88. Wi-Fi card

The NXP 88W9098 wireless SoC is the industry’s first Wi-Fi 6 solution based on the latest IEEE 802.11ax
standard with an innovative Concurrent Dual Wi-Fi (CDW) architecture. CDW supports separate Wi-Fi networks
simultaneously using both 2.4 GHz and 5 GHz frequency bands.

7.8.2 Hardware Setup

Install the Wi-Fi card ‘1XL M.2 Module’ to the M.2 connector (J17) on i.MX 8DXL EVK.

7.8.3 Software Enablement

The following instructions show how to bring up the Wi-Fi module on i.MX 8DXL EVK and connect to Access
Point (AP) in Station Mode.

1. Boot up Linux using DTB imx8dxl-evk-rpmsg.dtb.

=> setenv fdt_file imx8dxl-evk-rpmsg.dtb

=> boot

2. Load the Wi-Fi kernel driver module moal.ko.
The module parameters are in configuration file /lib/firmware/nxp/wifi_mod_para.conf.
The NXP Wi-Fi SoCs require a firmware image to be loaded on power-up/reset. The firmware image for
NXP 88W9098 with PCIe interface is /lib/firmware/nxp/pcieuart9098_combo_v1.bin.

modprobe moal mod_para=nxp/wifi_mod_para.conf

• Verify the kernel debug messages printed in serial console. Notice the bold texts.

[44.855282] mlan: loading out-of-tree module taints kernel.
[44.893129] wlan: Loading MWLAN driver
[44.897479] wlan: Register to Bus Driver...
[44.903192] wlan_pcie 0000:01:00.0: enabling device (0000 -> 0002)
[44.909628] Attach moal handle ops, card interface type: 0x206
[44.916925] PCIE9098: init module param from usr cfg
[44.922056] card_type: PCIE9098, config block: 0
[44.926746] cfg80211_wext=0xf
[44.929821] max_vir_bss=1
[44.932503] cal_data_cfg=none
[44.935612] ps_mode = 1
[44.938076] auto_ds = 1
[44.940610] host_mlme=enable
[44.947387] fw_name=nxp/pcieuart9098_combo_v1.bin

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
378 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

[44.952178] rx_work=1 cpu_num=2
[44.955403] Attach mlan adapter operations.card_type is 0x206.
[44.967149] Request firmware: nxp/pcieuart9098_combo_v1.bin
[45.247953] FW download over, size 682784 bytes
[45.510922] WLAN FW is active
[45.513922] on_time is 79996054375
[45.531982] VDLL image: len=160672
[45.535888] fw_cap_info=0xc8fcffa3, dev_cap_mask=0xffffffff
[45.541571] max_p2p_conn = 8, max_sta_conn = 64
[45.549005] wlan: mlan0 set max_mtu 2000
[45.569666] wlan: uap0 set max_mtu 2000
[45.584434] wlan: wfd0 set max_mtu 2000
[45.604604] wlan: version = PCIE9098--17.92.1.p116.1-MM5X17344.p3-GPL-
(FP92)
[45.617407] wlan_pcie 0000:01:00.1: enabling device (0000 -> 0002)
[45.623935] Attach moal handle ops, card interface type: 0x206
[45.630063] PCIE9098: init module param from usr cfg
[45.635290] card_type: PCIE9098, config block: 1
[45.640039] cfg80211_wext=0xf
[45.643271] max_vir_bss=1
[45.645925] cal_data_cfg=none
[45.650328] ps_mode = 1
[45.653099] auto_ds = 1
[45.655658] host_mlme=enable
[45.662576] fw_name=nxp/pcieuart9098_combo_v1.bin
[45.667565] rx_work=1 cpu_num=2
[45.670767] Attach mlan adapter operations.card_type is 0x206.
[45.687250] Request firmware: nxp/pcieuart9098_combo_v1.bin
[45.694421] WLAN FW already running! Skip FW download
[45.701756] WLAN FW is active
[45.704867] on_time is 80092507000
[45.710734] VDLL image: len=160672
[45.714827] fw_cap_info=0x68fcffa3, dev_cap_mask=0xffffffff
[45.720564] max_p2p_conn = 8, max_sta_conn = 64
[45.727958] wlan: mmlan0 set max_mtu 2000
[45.741123] wlan: muap0 set max_mtu 2000
[45.747316] wlan: mwfd0 set max_mtu 2000
[45.754666] wlan: version = PCIE9098--17.92.1.p116.1-MM5X17344.p3-GPL-
(FP92)
[45.762585] wlan: Register to Bus Driver Done
[45.767017] wlan: Driver loaded successfully

3. Verify the Wi-Fi interface.

ifconfig -a

Notice the bold texts in the output.

ifconfig -a
……
mlan0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:50:43:20:12:34 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mmlan0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:50:43:20:52:56 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
379 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
muap0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:50:43:20:53:56 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mwfd0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 02:50:43:20:52:56 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
uap0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 00:50:43:20:13:34 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wfd0: flags=4098<BROADCAST,MULTICAST> mtu 1500
 ether 02:50:43:20:12:34 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

4. Enable Wi-Fi interface. Either mlan0 or mmlan0 can be used in the following steps.

ifconfig mlan0 up

5. Scan the visible Wi-Fi access points.

iw dev mlan0 scan

An sample output is below. Output for only one AP is shown for simplicity. Notice the bold text for the
frequency and SSID.

iw dev mlan0 scan
[88.895756] wlan: mlan0 START SCAN
[90.941865] wlan: SCAN COMPLETED: scanned AP count=11
……
BSS 00:fe:c8:d3:00:6e(on mlan0)
 TSF: 90867505 usec (0d, 00:01:30)
 freq: 5320
 beacon interval: 102 TUs
 capability: ESS Privacy SpectrumMgmt RadioMeasure (0x1111)
 signal: -73.00 dBm
 last seen: 4 ms ago
 SSID: NXPOPEN
 Supported rates: 18.0 24.0* 36.0 48.0 54.0
 TIM: DTIM Count 0 DTIM Period 1 Bitmap Control 0x0 Bitmap[0] 0x0
 Country: CN Environment: Indoor/Outdoor
 Channels [36 - 48] @ 23 dBm
 Channels [52 - 64] @ 23 dBm
 Channels [149 - 165] @ 30 dBm
 BSS Load:
 * station count: 8

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
380 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 * channel utilisation: 34/255
 * available admission capacity: 23437 [*32us]
 Power constraint: 0 dB
 HT capabilities:
 Capabilities: 0x19ee
 HT20/HT40
 SM Power Save disabled
 RX HT20 SGI
 RX HT40 SGI
 TX STBC
 RX STBC 1-stream
 Max AMSDU length: 7935 bytes
 DSSS/CCK HT40
 Maximum RX AMPDU length 65535 bytes (exponent: 0x003)
 Minimum RX AMPDU time spacing: 8 usec (0x06)
 HT RX MCS rate indexes supported: 0-23
 HT TX MCS rate indexes are undefined
 RSN: * Version: 1
 * Group cipher: CCMP
 * Pairwise ciphers: CCMP
 * Authentication suites: PSK
 * Capabilities: 4-PTKSA-RC 4-GTKSA-RC (0x0028)
 HT operation:
 * primary channel: 64
 * secondary channel offset: below
 * STA channel width: any
 * RIFS: 0
 * HT protection: no
 * non-GF present: 1
 * OBSS non-GF present: 0
 * dual beacon: 0
 * dual CTS protection: 0
 * STBC beacon: 0
 * L-SIG TXOP Prot: 0
 * PCO active: 0
 * PCO phase: 0
 RM enabled capabilities:
 Capabilities: 0x73 0xc0 0x00 0x00 0x00
 Link Measurement
 Neighbor Report
 Beacon Passive Measurement
 Beacon Active Measurement
 Beacon Table Measurement
 Transmit Stream/Category Measurement
 Triggered Transmit Stream/Category
 Nonoperating Channel Max Measurement Duration: 0
 Measurement Pilot Capability: 0
 Extended capabilities:
 * Proxy ARP Service
 * BSS Transition
 * DMS
 * QoS Map
 * WNM-Notification
 * Operating Mode Notification
 * Max Number Of MSDUs In A-MSDU is unlimited
 VHT capabilities:
 VHT Capabilities (0x0f8379b2):
 Max MPDU length: 11454
 Supported Channel Width: neither 160 nor 80+80
 RX LDPC

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
381 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

 short GI (80 MHz)
 TX STBC
 SU Beamformer
 SU Beamformee
 VHT RX MCS set:
 1 streams: MCS 0-9
 2 streams: MCS 0-9
 3 streams: MCS 0-9
 4 streams: not supported
 5 streams: not supported
 6 streams: not supported
 7 streams: not supported
 8 streams: not supported
 VHT RX highest supported: 0 Mbps
 VHT TX MCS set:
 1 streams: MCS 0-9
 2 streams: MCS 0-9
 3 streams: MCS 0-9
 4 streams: not supported
 5 streams: not supported
 6 streams: not supported
 7 streams: not supported
 8 streams: not supported
 VHT TX highest supported: 0 Mbps
 VHT operation:
 * channel width: 0 (20 or 40 MHz)
 * center freq segment 1: 0
 * center freq segment 2: 0
 * VHT basic MCS set: 0xffc0
 Transmit Power Envelope:
 * Local Maximum Transmit Power For 20 MHz: 1 dBm
 * Local Maximum Transmit Power For 40 MHz: 1 dBm
 WMM: * Parameter version 1
 * u-APSD
 * BE: CW 15-1023, AIFSN 3
 * BK: CW 15-1023, AIFSN 7
 * VI: CW 7-15, AIFSN 2, TXOP 3008 usec
 * VO: CW 3-7, AIFSN 2, TXOP 1504 usec
 DS Parameter set: channel 64
……

6. Check the current link status.

iw dev mlan0 link

The output should be as below:

iw dev mlan0 link
Not connected.

7. Configure the Wi-Fi network SSID and password in /etc/wpa_supplicant.conf. First delete lines
from line 5 to end. Then run ‘wpa_passphrase <ssid> <password>’ and append the output to /etc/
wpa_supplicant.conf. This step only needs to be done once and is saved across reboots.

sed -i '5,$ d' /etc/wpa_supplicant.conf
wpa_passphrase <ssid> <password> >> /etc/wpa_supplicant.conf

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
382 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

A sample /etc/wpa_supplicant.conf file is shown below:

cat /etc/wpa_supplicant.conf
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1
network={
 ssid="NXPOPEN"
 psk=c5397a26ced00bcb3545de1e0b421f76c9b6ed2c72a36150b87d5951b755cf7c
}

8. Connect to the WLAN with the given SSID in /etc/wpa_supplicant.conf.

wpa_supplicant -B -i mlan0 -c /etc/wpa_supplicant.conf -D nl80211

9. Check the link status again for the WLAN it is connected to.

iw dev mlan0 link

A sample output is below:

iw dev mlan0 link
Connected to fc:5b:39:5f:5d:ce (on mlan0)
 SSID: NXPOPEN
 freq: 5745
 RX: 52226 bytes (109 packets)
 TX: 2454 bytes (20 packets)
 signal: -75 dBm
 rx bitrate: 24.0 MBit/s
 tx bitrate: 6.5 MBit/s VHT-MCS 0 VHT-NSS 1
 bss flags:
 dtim period: 1
 beacon int: 102

10. Run DHCP client to get IP address.

udhcpc -i mlan0

11. Check the IP address of AP and ping the AP to check connectivity.

ip route
ping <IP address of AP>

The sample output is shown below:

ip route
default via 192.168.0.1 dev mlan0 metric 10
192.168.0.0/23 dev mlan0 proto kernel scope link src 192.168.0.158
ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=255 time=5.39 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=255 time=5.37 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=255 time=6.13 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=255 time=7.02 ms
……

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
383 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

12. Check the connectivity to the public website.

echo nameserver "8.8.8.8" >> /etc/resolv.conf
ping www.nxp.com
PING e6860.h.akamaiedge.net (23.7.170.207) 56(84) bytes of data.
64 bytes from a23-7-170-207.deploy.static.akamaitechnologies.com
 (23.7.170.207): icmp_seq=1 ttl=50 time=311 ms
64 bytes from a23-7-170-207.deploy.static.akamaitechnologies.com
 (23.7.170.207): icmp_seq=2 ttl=50 time=356 ms
64 bytes from a23-7-170-207.deploy.static.akamaitechnologies.com
 (23.7.170.207): icmp_seq=3 ttl=50 time=299 ms
64 bytes from a23-7-170-207.deploy.static.akamaitechnologies.com
 (23.7.170.207): icmp_seq=4 ttl=50 time=340 ms
64 bytes from a23-7-170-207.deploy.static.akamaitechnologies.com
 (23.7.170.207): icmp_seq=5 ttl=50 time=282 ms
……

7.9 MODBUS
MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model, that provides
client/server communication between devices connected on different types of buses or network.

7.9.1 Libmodbus introduction

Real-time Edge integrates libmodbus library. Libmodbus is a free software library used to send or receive data
with a device that conforms to the Modbus protocol. It contains various backends to communicate over different
networks (for example, serial in RTU mode or Ethernet in TCP IPv4/IPv6).

All the i.MX series and Layerscape series of boards support modbus. It can be used to write both:

• Client applications that reads/writes data from various devices.
• Server applications that provide data to several clients.

The official website that contains the latest version of the documentation for libmodbus is https://libmodbus.org/.

7.9.2 Modbus-Simulator introduction

Modbus-Simulator is a Modbus tool based on libmodbus library. And it contains a modbus client and a modbus
device simulator.

Modbus-device-Simulator supports both TCP and RTU modes, and each mode supports the following functions.

Features supported by TCP:

• Gets CPU temperature of a device
• Gets the status of the LED light of a device
• Modifies the status of the LED light of a device

Features supported by RTU:

• Gets CPU temperature of a device
• Gets the status of the LED light of a device
• Modifies the status of the LED light of a device
• Modifies the slave address of the device
• Modifies the baud rate of the device

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
384 / 400

http://www.nxp.com
https://libmodbus.org/

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Note: Only the i.MX 8M Mini and i.MX 8M Plus boards support LED light function and CPU temperature
function, other boards define a dummy variable. By default Modbus-Simulator is disable except i.MX 8M Mini
and i.MX 8M Plus, taking I.MX 93 as an example, add the following line to meta-real-time-edge/conf/
distro/include/real-time-edge-base.inc to enable it.

DISTRO_FEATURES:append:mx93-nxp-bsp = " modbus-simulator"

7.9.3 Modbus-Simulator usage

SYNOPSIS

{modbus_device_simulator|modbus_client_simulator} [OPTION]… {RTU-PARAMS|TCP-
PARAMS}… {SERIALPORT|HOST}… [WRITE-DATA]…

7.9.3.1 Parameter description

The parameter of [Option] is the general parameter of TCP and RTU startup.

Parameter
option

Description

--debug, show debug information.

-m, connection Type TCP/RTU, optional parameter: {tcp|rtu}.

-a, slave address.

-c, read and write data number.

-t,

function codes, the following function codes are available.
(0x01) Read Coils, (0x02) Read Discrete Inputs, (0x05) Write Single Coil
(0x03) Read Holding Registers, (0x04) Read Input Registers, (0x06) Write Single Register

-r, register start address.

-o, response timeout(ms).

Table 89. Parameter description

The parameter of RTU-PARAMS is the general parameter of RTU startup.

Parameter
option

Description

-b, baud rate, optional parameter: {4800|9600|19200|115200}.
NOTE: when running the modbus_device_simulator, directly select the above parameters, when running the
modbus_client_simulator, select the index of the parameters: {0|1|2|3}.

-d, data bits, optional parameter: {7|8}.

-s, stop bits, optional parameter: {1|2}.

-p, verify type, optional parameter: {none | even | odd}.

Table 90. Parameter description

The parameter of TCP-PARAMS is the general parameter of TCP startup.

Parameter option Description

-p, port.

Table 91. Parameter description

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
385 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

7.9.3.2 Examples of TCP and RTU

Examples of TCP modbus_device_simulator and modbus_client_simulator startup are as follows:

1. Start modbus_device_simulator locally with port 1502.

modbus_device_simulator --debug -m tcp -p 1502 0.0.0.0

2. Start modbus_client_simulator and connect to the modbus_device_simulator with 127.0.0.1 and
port 1502, function code is Write Single Coil. Function: Change the status of the LED light to 1.

modbus_client_simulator --debug -m tcp -t 0x05 -r 0 -p 1502 127.0.0.1
 0xFF00

Examples of RTU modbus_device_simulator and modbus_client_simulator startup are as
follows:

1. Start modbus_device_simulator serial connection, slave address is 1, baud rate is 115200, verify type
is none, device is /dev/ttymxc2.

modbus_device_simulator --debug -m rtu -a 1 -b 115200 -p none /dev/ttymxc2

2. Start modbus_client_simulator serial connection, slave address is 1, function code is Write Single
Register, register start address is 1, baud rate is 115200, verify type is none, device is /dev/ttymxc2,
write date is 1. Function: Change the baud rate of /dev/ttymxc2 from 9600 to 115200.

modbus_client_simulator --debug -m rtu -a 1 -t 0x06 -r 1 -b 1 -p none /dev/
ttymxc2

Note: For i.MX 6ULL, do the following:

J1704: pin7 - GND

J1703: pin1 - TX pin2 - RX

==> setenv fdtfile imx6ull-14x14-evk-lpuart.dtb
==> run bootcmd

Device name: /dev/ttymxc1

For i.MX 93, do the following:

J1001: pin25 - GND pin27 - TX pin28 - RX

==> setenv fdtfile imx93-11x11-evk-lpuart.dtb
==> run bootcmd

Device name: /dev/ttyLP4

7.9.3.3 Commands for all features

The commands for all features of TCP are as follows:

1. Read the status of the LED light:

modbus_client_simulator --debug -m tcp -t 0x01 -r 0 -p 1502 127.0.0.1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
386 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

2. Change the status of the LED light:

modbus_client_simulator --debug -m tcp -t 0x05 -r 0 -p 1502 127.0.0.1
 {0xFF00|0x0000}

3. Read the temperature of CPU

modbus_client_simulator --debug -m tcp -t 0x04 -r 0 -p 1502 127.0.0.1

The commands for all features of RTU are as follows:

1. Read the status of the LED light:

modbus_client_simulator --debug -m rtu -a 1 -t 0x01 -r 0 -b 3 -p none /dev/
ttymxc2

2. Change the status of the LED light:

modbus_client_simulator --debug -m rtu -a 1 -t 0x05 -r 0 -b 3 -p none /dev/
ttymxc2 {0xFF00|0x0000}

3. Read the temperature of CPU:

 # modbus_client_simulator --debug -m rtu -a 1 -t 0x04 -r 0 -b 3 -p none /
dev/ttymxc2

4. Change modbus_device_simulator slave address from 1 to 6.

modbus_client_simulator --debug -m rtu -a 1 -t 0x06 -r 0 -b 3 -p none /dev/
ttymxc2 6

5. Change modbus_device_simulator baud rate from 115200 to 9600.

modbus_client_simulator --debug -m rtu -a 6 -t 0x06 -r 1 -b 3 -p none /dev/
ttymxc2 1

7.9.4 Testing Modbus-Simulator

Use two i.MX8MP boards to test the functions of the modbus-simulator.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
387 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Figure 165. Testing the functions of the modbus-simulator

Note: Learn about the startup parameters before starting.

7.9.4.1 Testing TCP functions

Read the status of the LED light on the board1.

1. Enter board1 and start up modbus_device_simulator.

modbus_device_simulator --debug -m tcp -p 1502 0.0.0.0

2. Enter board2 and start up modbus_client_simulator.

modbus_client_simulator --debug -m tcp -t 0x01 -r 0 -p 1502 10.193.21.104

Figure 166. Debug log on i.mx8mp-lpddr4-evk board

7.9.4.2 Testing RTU functions

Preparation: Connect the serial ports on the two boards, as shown below.

Figure 167. Connection of two i.MX8MP boards

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
388 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The pin connection information of the two boards should be as follows:

• GND <---> GND
• TXD <---> RXD
• RXD <---> TXD

Read the temperature of CPU on the board1

1. Enter board1 and start up modbus_device_simulator.

modbus_device_simulator --debug -m rtu -a 1 -b 115200 -p none /dev/ttymxc2

2. Enter board2 and start up modbus_client_simulator.

modbus_client_simulator --debug -m rtu -a 1 -t 0x04 -r 0 -b 3 -p none /dev/
ttymxc2

Note: The default number of stop bits is 1.

7.10 UART 9-bit Multidrop mode (RS-485) support

7.10.1 Overview

The UART provides a 9-bit mode to facilitate multidrop (RS-485) network communication. When 9-bit RS-485
mode is enabled, UART transmitter can transmit the ninth bit (9th bit) set by TXB8. The UART receiver can
differentiate between data frames (9th bit = 0) and address frames (9th bit = 1).

Two examples are provided to demo UART RS485 9-bit multidrop support:

• 9bit_iuart_interrupt_transfer for interrupt mode
• 9bit_iuart_polling for polling mode.

These two demos support i.MX 8M Mini LPDDR4 EVK board.

7.10.2 Building and running the demo

7.10.2.1 Building the demo

Refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge. All
demos are in the /examples directory of the rootfs.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
389 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

The bellow command compiles the demo separately.

bitbake 9bit-uart-interrupt-transfer

The demo is located in the below directory:

 tmp/deploy/images/imx8mm-lpddr4-evk/examples/

7.10.2.2 Hardware setup

In order to test this feature by using a single i.MX 8M Mini LPDDR4 EVK board, use external loopback of
UART3 for testing. Refer to the figure below to connect PIN8 (UART3_TXD) and PIN10 (UART3_RXD) by using
a flying wire.

Figure 168.  i.MX 8M Mini LPDDR4 EVK UART Connection

7.10.2.3 Preparing the demo

1. Connect 12 V power supply, switch SW101 to power on the board.
2. Connect a USB cable between the host PC and the J901 USB port on the target board. Two UART

connections appear on the PC, one is used for Linux console, and another is used for FreeRTOS console.
Open two serial terminal on host PC with the following settings for each UART connection:
• 115200 baud rate
• 8 data bits
• No parity
• One stop bit
• No flow control

7.10.2.4 Running the demo

Power up the board and start up the M-core firmware under U-Boot by using the commands listed in the below
paragraph. Use 9bit_iuart_interrupt_transfer or 9bit_iuart_polling for different examples
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
390 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

to replace “DEMO_NAME” in the following commands. Use 9-bit-iuart-interrupt-transfer or 9-bit-iuart-polling to
replace "DEMO_DIRECTORY" in the following commands..

If you choose to run the binary in DRAM:

=> ext4load mmc 1:2 0x80000000 /examples/mcux-sdk/DEMO_NAME/ddr_release/
DEMO_DIRECTORY.bin
=> dcache flush
=> bootaux 0x80000000

If you choose to run the binary in TCM:

=> ext4load mmc 1:2 0x48000000 /examples/mcux-sdk/DEMO_NAME/release/
DEMO_DIRECTORY.bin
=> cp.b 0x48000000 0x7e0000 0x20000
=> bootaux 0x7e0000

The demo configures the UART used for testing in 9-bit multidrop mode and sets its slave address to be “0xfe”.
Then it sends two pieces of data, the 9-bit of these data is zero, so they are figured out to be “data”. In general,
need to send “address” with 9-bit “1” to the physical line of UART before sending “data” with 9-bit “0”. In order to
do function verification, the demo does not send “address” before sending “data”, so UART cannot receive this
data when it is looped back to itself. The second piece of data is received when it is looped back, because the
demo sends “address” with 0xfe firstly before sending this “data".

Below is a sample log displayed on the FreeRTOS console when the demo runs successfully:

UART will send first piece of data out without addressing itself:

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

UART will send second piece of data out with addressing itself:

Address: 0xfe : 0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87

RS-485 Slave Address has been detected.
UART received data:

Address: 0xfe : 0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87

All data matches!

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
391 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

8 Revision history

Table 92 summarizes the revisions to this document.

Date Revision
number

Topic cross-reference Description

18/12/2023 2.7 Added Section 5 Updated for Real Time Edge Software 2.7 release.

- Updated for Real Time Edge Software 2.6 release.28/7/2023 2.6

Section 7.1.5.4 Added the Section.

- Updated for Real Time Edge Software 2.5 release.

Section 4.6 Added the Section "Heterogeneous Multicore VirtIO and
networking sharing"

Section 7.1.5,
Section 3.4.4.14

Added the Sections "Codesys EtherCAT Master", "Flextimer
module".

Section 4.5.6 Added the Section "Running the i.MX 93 demo".

30/3/2023 2.5

• Section 4.4.3
• Section 3.4.4.4

Modified the Sections:
• RPMSG Cortex-A core and Cortex-M core
• GPIO file

- Added support for i.MX 8DXL and i.MX 93 EVK boards
throughout the document.

Configuring Flow Meter
policy on stream

Added the Section.

Section 6.1.3.4.1 Added the Section for preemptive verify.

Section 3.4.4.15 Added the Math library support.

Section 7.8 Added the Section.

16/12/2022 2.4

Section 7.1.3.3.5 Added the Section.

What's new in Real-time
Edge software v2.3

Updated the Section.

Heterogeneous AMP
Architecture

Added the Section.

Section 6.2 Updated the Section.

28/07/2022 2.3

- Other updates throughout the document.

29/03/2022 2.2 What's new in Real-time
Edge software v2.2

Added the Section. Updated for Real-time Edge Software Rev
2.2. Support for TLS protocol removed for NETCONF feature.

Section 2.1.7 Added the Section. Updated for Real-time Edge Software Rev
2.1.

15/12/2021 2.1

Section 2.3 Updated the Section.

- • 'Real-time Edge Software' introduced instead of 'Open
Industrial Linux', with real-time feature support.

• Rearranged the document structure to include the Chapters:
Real-time System, Real-time Networking, and Protocols.

29/07/2021 2.0

- Added support for building Real-time Edge image using Yocto
Project build environment. Details are provided in the Real-time
Edge Yocto Project User Guide.

Table 92. Document revision history

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
392 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Date Revision
number

Topic cross-reference Description

Section 2.1 Added the Section.

- Integrated Baremetal framework in the document.

Section 2.1 Added the Section that describes the new features of each
release.

- Updated the Section 'Getting Open IL'.

26/04/2021 1.11

- Deleted references to Edgescale, OP-TEE, OTA throughout the
document and other minor updates.

Section 6.2 Added the Chapter and related contents.

- Added the 'Camera' Section and related details.

22/12/2020 1.10

- Added the Host setup for i.MX 8M Plus EVK board details.

Section 6.3 Added the Section.

Section 7.5.1 Added the Chapter and related description

Section 7.5.2 Added the Chapter and related description

15/09/2020 1.9

Section 7.1.3.3 Made it a part of the Chapter "EtherCAT"

Section 3.3 Added the Section in Section 7.

- Updated this Section Interface naming in Linux for LS1028
ARDB.

- Updated the Section Host system requirements for Open IL.

29/05/2020 1.8

- Updated the Section Running Selinux demo.

20/02/20 1.7.1 Section 7.4.3.8 Updated this Section.

Section 7.1.3.3 Added the Chapter (nxp servo).

Section 6.3 Added the Chapter.

Getting Open IL Updated the Section.

17/01/20 1.7

Section 7.4 Other updates.

Section 6.1.4 • Information related to pcpmap command removed from the
Section Section 6.1.4.1 and Section 6.1.4.2

• Port names "eno/swp0" changed to "swp0" for few tsntool
commands.

• Note added in Section Section "Stream identification" for
usage of nulltagged and streamhandle parameters.

• Added the Section Section 6.1.4.2.8.
• Other minor updates

- Updated the table "Host system mandatory packages". Added
autogen autoconf libtool and pkg-config packages

Section 7.6.3 Added this Chapter

- Updated Section 7.4

31/08/19 1.6

Section 7.4 • Added the Section Section 7.4.3.1 and other updates.

01/05/2019 1.5 - Added the Section to describe interface naming for U-Boot and
Linux for LS1028ARDB.

Table 92. Document revision history...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
393 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Date Revision
number

Topic cross-reference Description

Section 6.1.4 Updated this Section in the Chapter Section 6.1

Section 7.6.2 Added the Chapter

- Added the Chapter 'EdgeScale Client'

- Updated the OpenIL version and Git tag in the Section 'Getting
Open IL'.

Section 1.3 Added support for LS1028ARDB (64-bit and Ubuntu). Updated
various Sections accordingly

- Updated the OpenIL version and Git tag in the Section 'Getting
Open IL'.

- Added this Section for LS1028ARDB support

Section 6.1 Reorganized this Chapter and added separate Section for
Section 6.1.4

Section 7.6.1 Added the Chapter.

Section 7.2 Minor updates in this Chapter. Also added the Section,
Section 7.2.3.1 and Section 7.2.3.3.

01/02/2019 1.4

- Added the Chapter QT.

15/10/2018 1.3.1 - Updated the OpenIL version and Git tag in the Section 'Getting
Open IL'

EtherCAT Added the Chapter.

FlexCAN Added the Chapter.

i.MX6QSabreSD support. Added the Section in Chapter 'NXP OpenIL platforms'. Updated
other Sections for i.MX6Q Sabre support.

Getting Open IL Updated the Section.

31/08/2018 1.3

Selinux demo Added the Section for enabling SELinux and updated Basic
setup. Updates in other Sections.

- Updated the Section, "Hardware requirements" for RTnet.31/05/2018 1.2

- Updated the Section, "Software requirements" for RTnet.

- Added the Section, "RTnet".18/04/2018 1.1.1

- Added a note for LS1043A switch setting

- Added support for industrial IoT Baremetal framework in this
Section.

- Added a note for steps to be performed before booting up the
board.

30/03/2018 1.1

Section 1.4 Added the Section.

Section 7.3 Added the Chapter.

Section 6.1 Chapters for "1-board TSN demo" and "3-board TSN demo"
replaced by a single Chapter, "TSN demo".

22/12/2017 1.0

Section 7 • Updated the Section, 'Industrial Features'.
• -IEEE 1588 -'sja1105-ptp' support removed.

25/08/2017 0.3 - Set up the OpenIL websitehttp://www.openil.org/.

Table 92. Document revision history...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
394 / 400

http://www.openil.org/

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Date Revision
number

Topic cross-reference Description

- OTA - Xenomai Cobalt 64-bit and SJA1105 support added.

Section 6.1 Qbv support added.

- SELinux support for LS1043 / LS1046 Ubuntu Userland added.

- OP-TEE support for LS1021ATSN platform added.

- 4G LTE module - 64-bit support for LS1043ARDB, LS1046
ARDB, and LS1012ARDB added.

Section 6 Ubuntu Userland support for 64-bit LS1043ARDB and 64-bit
LS1046ARDB added.

26/05/2017 0.2 - Initial public release.

Table 92. Document revision history...continued

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
395 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
396 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
397 / 400

mailto:PSIRT@nxp.com

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.
I2C-bus — logo is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.
Oracle and Java — are registered trademarks of Oracle and/or its affiliates.
QorIQ — is a trademark of NXP B.V.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
398 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

Contents
1 Introduction .. 2
1.1 Real-time Edge software 2
1.2 Real-time Edge Software Yocto Project2
1.3 Supported NXP platforms2
1.3.1 Switch settings ...3
1.3.2 Flashing pre-built images 3
1.4 Related documentation4
1.5 Acronyms and abbreviations 5
2 Release notes .. 8
2.1 What's new .. 8
2.1.1 What's new in Real-time Edge software

v2.7 .. 8
2.1.2 What's new in Real-time Edge software

v2.6 .. 8
2.1.3 What's new in Real-time Edge software

v2.5 .. 9
2.1.4 What's new in Real-time Edge software

v2.4 .. 10
2.1.5 What's new in Real-time Edge software

v2.3 .. 11
2.1.6 What's new in Real-time Edge software

v2.2 .. 12
2.1.7 What's new in Real-time Edge software

v2.1 .. 12
2.1.8 What's new in Real-time Edge software

v2.0 .. 13
2.1.9 What's new in OpenIL v1.1114
2.1.10 What's new in OpenIL v1.1014
2.1.11 What's new in OpenIL v1.9 15
2.1.12 What's new in OpenIL v1.8 15
2.1.13 What's new in OpenIL v1.7 16
2.1.14 What's new in OpenIL v1.6 16
2.1.15 What's new in OpenIL v1.5 17
2.1.16 What's new in OpenIL v1.4 17
2.2 Feature support matrix 18
2.3 Open, fixed, and closed issues21
3 Real-time system ... 22
3.1 Overview ..22
3.2 Building, deploying, and releasing unified

software ... 24
3.2.1 Yocto layer for Cortex-A core 25
3.2.2 Yocto layer for Cortex-M core25
3.3 Preempt-RT Linux ..29
3.3.1 System Real-time Latency tests 29
3.3.2 Real-time application development30
3.4 Baremetal on Cortex-A core 30
3.4.1 Baremetal framework31
3.4.2 Getting started ... 33
3.4.3 Running examples ...39
3.4.4 Development based on Baremetal

framework .. 40
3.5 Native RTOS on Cortex-A core 71
3.5.1 Overview ..71
3.5.2 Building native RTOS on Cortex-A core 71
3.5.3 Booting native RTOS image on Cortex-A

core ..71

3.6 RTOS on Cortex-A core with Jailhouse 73
3.6.1 Jailhouse ..73
3.6.2 Harpoon (RTOS on Cortex-A) 78
3.7 RTOS and Baremetal on Cortex-M core79
3.7.1 Booting Cortex-M Core RTOS Image 79
4 Heterogeneous Multicore Framework81
4.1 Overview ..81
4.2 Building Heterogeneous Multicore RTOS

Application ... 84
4.2.1 Build with Yocto ... 84
4.2.2 Build with Standalone Mode84
4.3 Flexible Real-time System86
4.3.1 Heterogeneous Multicore RAM Console87
4.3.2 Heterogeneous Multicore hello_world89
4.3.3 lwIP Networking Stack97
4.4 RPMSG data communication 98
4.4.1 Overview ..98
4.4.2 RPMSG performance evaluation 98
4.4.3 RPMSG between Cortex-A Core and

Cortex-M Core ... 99
4.4.4 RPMSG between Cortex-A Core and

Cortex-A Core ..102
4.4.5 Complex RPMSG on MPU 108
4.5 RPMSG based resource sharing 115
4.5.1 Overview .. 115
4.5.2 Software architecture and design 115
4.5.3 Resource sharing based on SRTM115
4.5.4 Source code files and configuration117
4.5.5 Building and running the demo on i.MX 8M

Mini LPDDR4 EVK .. 120
4.5.6 Building and running the demo on i.MX 93

EVK ..122
4.5.7 Building and running the demo on i.MX 93

QSB ... 124
4.6 Heterogeneous Multicore VirtIO and

networking sharing ...127
4.6.1 Heterogeneous Multicore VirtIO127
4.6.2 Heterogeneous Multicore VirtIO

performance evaluation 129
4.6.3 Heterogeneous Multicore VirtIO network

sharing ... 129
4.6.4 Building Heterogeneous Multicore VirtIO

backend firmware .. 130
4.6.5 Building Heterogeneous Multicore VirtIO

Frontend linux images 130
4.6.6 Running VirtIO performance testing on i.MX

8M Mini EVK ..131
4.6.7 Running VirtIO network sharing132
4.7 Unified Life Cycle management135
4.7.1 Overview .. 135
4.7.2 Booting Native RTOS Cortex-A core image

from U-Boot ... 136
4.7.3 Booting Native RTOS Cortex-M Core image

from U-Boot ... 136
4.7.4 Using RemoteProc to boot RTOS Cortex-M

Core Image ..136
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.7 — 18 December 2023
399 / 400

NXP Semiconductors REALTIMEEDGEUG
Real-time Edge Software User Guide

5 Heterogeneous Multi-SoC Framework 138
5.1 Introduction .. 138
5.2 Software architecture138
5.2.1 Using one of the i.MX RT1180 switch ports

as DSA CPU port .. 139
5.2.2 Using i.MX RT1180 ENETC port as DSA

CPU port ..140
5.3 Running the Heterogeneous Multi-SoC

Framework ... 140
5.3.1 Building and running on MPU + i.MX

RT1180 EVK .. 140
6 Real-time networking 150
6.1 Time Sensitive Networking (TSN) on NXP

platforms .. 150
6.1.1 TSN hardware capability 150
6.1.2 TSN configuration ..150
6.1.3 TSN on i.MX 8DXL / i.MX 8M Plus / i.MX 93 . 172
6.1.4 TSN on LS1028A .. 180
6.2 GenAVB/TSN stack 212
6.2.1 Introduction .. 212
6.2.2 GenAVB/TSN stack start/stop215
6.2.3 Use cases description 216
6.2.4 Configuration files ..238
6.2.5 Log files ... 244
6.3 IEEE 1588/802.1AS250
6.3.1 Introduction .. 250
6.3.2 IEEE 1588 device types 250
6.3.3 IEEE 802.1AS time-aware systems251
6.3.4 Software stacks ... 251
6.3.5 Quick Start for IEEE 1588 252
6.3.6 Quick Start for IEEE 802.1AS256
6.3.7 Long term test ... 257
6.3.8 Known issues and limitations 257
6.4 Networking ... 257
6.4.1 Q-in-Q on LS1028A Felix switch 257
6.4.2 VCAP on LS1028A Felix switch 259
7 Protocols .. 263
7.1 EtherCAT master ... 263
7.1.1 Introduction .. 263
7.1.2 EtherCAT protocol ... 263
7.1.3 IGH EtherCAT architecture 264
7.1.4 SOEM EtherCAT Master285
7.1.5 CODESYS EtherCAT Master295
7.2 FlexCAN and CANopen312
7.2.1 Introduction .. 312
7.2.2 Introducing the function of CAN example

code ... 316
7.2.3 Running a CAN application 317
7.3 OPC UA ...319
7.3.1 OPC introduction ... 319
7.3.2 The node model .. 320
7.3.3 Node Namespaces .. 321
7.3.4 Node classes ... 321
7.3.5 Node graph and references322
7.3.6 Open62541 .. 323
7.3.7 OPC UA Pub/Sub over TSN324

7.3.8 OPC UA client installation and usage337
7.4 NETCONF/YANG ...342
7.4.1 Overview .. 342
7.4.2 Netopeer2 .. 343
7.4.3 Configuration ..345
7.4.4 Troubleshooting ... 355
7.5 Graphics on LS1028A 356
7.5.1 GPU ... 356
7.5.2 Wayland and Weston360
7.5.3 CSI Camera ...364
7.5.4 OpenCV on LS1028ARDB367
7.6 Wireless on LS1028A 367
7.6.1 NFC ..367
7.6.2 Bluetooth Low Energy 370
7.6.3 BEE ..373
7.7 SAI on LS1028ARDB 376
7.8 Wi-Fi on i.MX 8DXL EVK377
7.8.1 Wi-Fi card information 377
7.8.2 Hardware Setup ...378
7.8.3 Software Enablement 378
7.9 MODBUS ... 384
7.9.1 Libmodbus introduction384
7.9.2 Modbus-Simulator introduction 384
7.9.3 Modbus-Simulator usage385
7.9.4 Testing Modbus-Simulator 387
7.10 UART 9-bit Multidrop mode (RS-485)

support ...389
7.10.1 Overview .. 389
7.10.2 Building and running the demo389
8 Revision history ...392
9 Note about the source code in the

document ..396
Legal information ...397

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 18 December 2023
Document identifier: REALTIMEEDGEUG

	1 Introduction
	1.1 Real-time Edge software
	1.2 Real-time Edge Software Yocto Project
	1.3 Supported NXP platforms
	1.3.1 Switch settings
	1.3.2 Flashing pre-built images

	1.4 Related documentation
	1.5 Acronyms and abbreviations

	2 Release notes
	2.1 What's new
	2.1.1 What's new in Real-time Edge software v2.7
	2.1.2 What's new in Real-time Edge software v2.6
	2.1.3 What's new in Real-time Edge software v2.5
	2.1.4 What's new in Real-time Edge software v2.4
	2.1.5 What's new in Real-time Edge software v2.3
	2.1.6 What's new in Real-time Edge software v2.2
	2.1.7 What's new in Real-time Edge software v2.1
	2.1.8 What's new in Real-time Edge software v2.0
	2.1.9 What's new in OpenIL v1.11
	2.1.10 What's new in OpenIL v1.10
	2.1.11 What's new in OpenIL v1.9
	2.1.12 What's new in OpenIL v1.8
	2.1.13 What's new in OpenIL v1.7
	2.1.14 What's new in OpenIL v1.6
	2.1.15 What's new in OpenIL v1.5
	2.1.16 What's new in OpenIL v1.4

	2.2 Feature support matrix
	2.3 Open, fixed, and closed issues

	3 Real-time system
	3.1 Overview
	3.2 Building, deploying, and releasing unified software
	3.2.1 Yocto layer for Cortex-A core
	3.2.2 Yocto layer for Cortex-M core
	3.2.2.1 Introduction to meta-rtos-industrial
	3.2.2.1.1 Source code definition
	3.2.2.1.2 Example definition
	3.2.2.1.3 Toolchain definition

	3.2.2.2 Integration of meta-rtos-industrial
	3.2.2.3 Building meta-rtos-industrial

	3.3 Preempt-RT Linux
	3.3.1 System Real-time Latency tests
	3.3.1.1 Running Cyclictest

	3.3.2 Real-time application development

	3.4 Baremetal on Cortex-A core
	3.4.1 Baremetal framework
	3.4.2 Getting started
	3.4.2.1 Hardware and software requirements
	3.4.2.2 Hardware setup
	3.4.2.2.1 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board
	3.4.2.2.2 LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB
	3.4.2.2.3 i.MX 93 EVK
	3.4.2.2.4 i.MX93 9x9 LPDDR4 QSB

	3.4.2.3 Software building
	3.4.2.3.1 Building Baremetal binary for slave cores
	3.4.2.3.2 Building the image through Yocto
	3.4.2.3.2.1 Getting Real-time Edge software
	3.4.2.3.2.2 Building the Baremetal images
	Building the Baremetal images for various boards

	3.4.2.4 Booting up the Linux with Baremetal

	3.4.3 Running examples
	3.4.3.1 Preparing the console
	3.4.3.2 Running the Baremetal binary

	3.4.4 Development based on Baremetal framework
	3.4.4.1 Developing the Baremetal application
	3.4.4.2 Main file app.c
	3.4.4.3 Common header files
	3.4.4.4 GPIO example
	3.4.4.5 I2C example
	3.4.4.6 IRQ example
	3.4.4.7 QSPI example
	3.4.4.8 IFC example
	3.4.4.9 Ethernet example
	3.4.4.10 USB example
	3.4.4.11 PCIe example
	3.4.4.12 ENETC example
	3.4.4.13 SAI example
	3.4.4.13.1 Synchronous Audio Interface (SAI)
	3.4.4.13.2 Audio codec (SGTL5000)
	3.4.4.13.3 Digital interface formats
	3.4.4.13.4 Running the SAI application

	3.4.4.14 FlexTimer example
	3.4.4.15 Newlib’s math library
	3.4.4.16 ICC module
	3.4.4.16.1 ICC examples

	3.4.4.17 Single hardware interrupt routed to multiple cores
	3.4.4.18 Hardware resource allocation
	3.4.4.18.1 LS1028ARDB board
	3.4.4.18.1.1 ENETC
	3.4.4.18.1.2 I2C
	3.4.4.18.1.3 SAI

	3.4.4.18.2 LS1043ARDB or LS1046ARDB board
	3.4.4.18.2.1 Linux DTS
	3.4.4.18.2.2 Memory configuration
	3.4.4.18.2.3 GPIO
	3.4.4.18.2.4 I2C
	3.4.4.18.2.5 Hardware interrupts
	3.4.4.18.2.6 QSPI
	3.4.4.18.2.7 IFC
	3.4.4.18.2.8 Ethernet
	3.4.4.18.2.9 USB
	3.4.4.18.2.10 PCI Express (PCIe)

	3.4.4.18.3 LX2160ARDB board
	3.4.4.18.3.1 Memory configuration

	3.4.4.18.4 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board
	3.4.4.18.4.1 Linux DTS
	3.4.4.18.4.2 Memory configuration
	3.4.4.18.4.3 GPIO
	3.4.4.18.4.4 Ethernet

	3.5 Native RTOS on Cortex-A core
	3.5.1 Overview
	3.5.2 Building native RTOS on Cortex-A core
	3.5.3 Booting native RTOS image on Cortex-A core

	3.6 RTOS on Cortex-A core with Jailhouse
	3.6.1 Jailhouse
	3.6.1.1 Overview
	3.6.1.2 Running PREEMPT_RT Linux in Inmate
	3.6.1.2.1 i.MX 8M Plus LPDDR4 EVK
	3.6.1.2.2 LS1028ARDB
	3.6.1.2.2.1 Linux in non-root cell
	3.6.1.2.2.2 ENETC in non-root cell
	3.6.1.2.2.3 GPIO in non-root cell

	3.6.1.2.3 LS1046ARDB

	3.6.1.3 Running Jailhouse examples In Inmate
	3.6.1.3.1 i.MX 8M Plus LPDDR4 EVK
	3.6.1.3.2 LS1028ARDB Jailhouse example in Inmate
	3.6.1.3.3 LS1046ARDB Jailhouse example

	3.6.2 Harpoon (RTOS on Cortex-A)
	3.6.2.1 Overview

	3.7 RTOS and Baremetal on Cortex-M core
	3.7.1 Booting Cortex-M Core RTOS Image
	3.7.1.1 Booting Native RTOS Cortex-M Core image from U-Boot
	3.7.1.2 Using RemoteProc to boot RTOS Cortex-M Core Image

	4 Heterogeneous Multicore Framework
	4.1 Overview
	4.2 Building Heterogeneous Multicore RTOS Application
	4.2.1 Build with Yocto
	4.2.2 Build with Standalone Mode

	4.3 Flexible Real-time System
	4.3.1 Heterogeneous Multicore RAM Console
	4.3.1.1 Use RAM Console in RTOS
	4.3.1.1.1 RAM Console Technical Details
	4.3.1.1.2 Develop with RAM Console
	4.3.1.1.3 Dump RAM Console Log

	4.3.2 Heterogeneous Multicore hello_world
	4.3.2.1 Overview
	4.3.2.2 Technical Points
	4.3.2.3 Running flexible multicore hello_world application
	4.3.2.3.1 Running use cases on i.MX 8M Plus LPDDR4 EVK
	4.3.2.3.2 Running use cases for i.MX 8M Mini LPDDR4 EVK
	4.3.2.3.3 Running use cases on i.MX 93 EVK

	4.3.3 lwIP Networking Stack
	4.3.3.1 Overview
	4.3.3.2 Running lwIP Application on i.MX 8M Plus LPDDR4 EVK

	4.4 RPMSG data communication
	4.4.1 Overview
	4.4.2 RPMSG performance evaluation
	4.4.2.1 Running RPMsg performance application on Cortex-M core

	4.4.3 RPMSG between Cortex-A Core and Cortex-M Core
	4.4.3.1 RPMSG with enhanced 8MB Vring buffer
	4.4.3.2 RPMSG merits
	4.4.3.3 Building and running the RPMSG demo (Cortex-A and Cortex-M core)

	4.4.4 RPMSG between Cortex-A Core and Cortex-A Core
	4.4.4.1 RPMSG between Cortex-A Linux and Cortex-A RTOS
	4.4.4.1.1 Building the RPMSG demo on i.MX 8M Mini
	4.4.4.1.2 Running the RPMSG demo

	4.4.4.2 RPMSG between Cortex-A RTOS and Cortex-A RTOS
	4.4.4.2.1 Running the RPMSG pingpong application

	4.4.5 Complex RPMSG on MPU
	4.4.5.1 Overview
	4.4.5.2 Running the Complex str-echo application
	4.4.5.2.1 Running the application on i.MX 8M Plus LPDDR4 EVK
	4.4.5.2.2 Running the application on i.MX 8M Mini LPDDR4 EVK

	4.5 RPMSG based resource sharing
	4.5.1 Overview
	4.5.2 Software architecture and design
	4.5.3 Resource sharing based on SRTM
	4.5.3.1 UART sharing design details

	4.5.4 Source code files and configuration
	4.5.5 Building and running the demo on i.MX 8M Mini LPDDR4 EVK
	4.5.5.1 Hardware setup for i.MX 8M Mini EVK
	4.5.5.2 Building the demo images
	4.5.5.3 Running the i.MX 8M Mini EVK demo

	4.5.6 Building and running the demo on i.MX 93 EVK
	4.5.6.1 Hardware setup for i.MX 93 EVK
	4.5.6.2 Building the demo images
	4.5.6.3 Running the i.MX 93 demo

	4.5.7 Building and running the demo on i.MX 93 QSB
	4.5.7.1 Hardware setup for i.MX 93 QSB
	4.5.7.2 Building the demo images
	4.5.7.3 Running the demo on i.MX 93 QSB

	4.6 Heterogeneous Multicore VirtIO and networking sharing
	4.6.1 Heterogeneous Multicore VirtIO
	4.6.2 Heterogeneous Multicore VirtIO performance evaluation
	4.6.3 Heterogeneous Multicore VirtIO network sharing
	4.6.4 Building Heterogeneous Multicore VirtIO backend firmware
	4.6.5 Building Heterogeneous Multicore VirtIO Frontend linux images
	4.6.6 Running VirtIO performance testing on i.MX 8M Mini EVK
	4.6.7 Running VirtIO network sharing

	4.7 Unified Life Cycle management
	4.7.1 Overview
	4.7.2 Booting Native RTOS Cortex-A core image from U-Boot
	4.7.3 Booting Native RTOS Cortex-M Core image from U-Boot
	4.7.4 Using RemoteProc to boot RTOS Cortex-M Core Image

	5 Heterogeneous Multi-SoC Framework
	5.1 Introduction
	5.2 Software architecture
	5.2.1 Using one of the i.MX RT1180 switch ports as DSA CPU port
	5.2.2 Using i.MX RT1180 ENETC port as DSA CPU port

	5.3 Running the Heterogeneous Multi-SoC Framework
	5.3.1 Building and running on MPU + i.MX RT1180 EVK
	5.3.1.1 Hardware setup for i.MX 8M Plus EVK and i.MX RT1180 EVK
	5.3.1.2 Hardware setup for i.MX 93 EVK and i.MX RT1180 EVK
	5.3.1.3 Building the DSA switch application for i.MX RT1180 EVK
	5.3.1.4 Bringing up MPU and i.MX RT1180 EVK
	5.3.1.5 Runtime usage on MPU and i.MX RT1180 EVK
	5.3.1.5.1 i.MX RT1180 NETC switch interface under Linux
	5.3.1.5.2 Maximum frame size configuration
	5.3.1.5.3 Single port mode for i.MX RT1180 NETC switch ports
	5.3.1.5.4 Bridge mode for i.MX RT1180 NETC switch ports
	5.3.1.5.5 i.MX RT1180 NETC switch port statistics counters
	5.3.1.5.6 VLAN configuration
	5.3.1.5.7 FDB configuration

	6 Real-time networking
	6.1 Time Sensitive Networking (TSN) on NXP platforms
	6.1.1 TSN hardware capability
	6.1.2 TSN configuration
	6.1.2.1 Using Linux traffic control (tc)
	6.1.2.2 Tsntool
	6.1.2.2.1 Tsntool User Manual
	6.1.2.2.1.1 Getting the source code
	6.1.2.2.1.2 Tsn tool commands
	6.1.2.2.1.3 Tsntool commands and parameters
	6.1.2.2.1.4 Input tips
	6.1.2.2.1.5 Non-interactive mode

	6.1.2.3 Remote configuration using NETCONF/YANG
	6.1.2.4 Web-based configuration
	6.1.2.4.1 Setting up web server
	6.1.2.4.2 Remote configuration
	6.1.2.4.3 Dynamic remote configuration
	6.1.2.4.3.1 TSN working flow
	6.1.2.4.3.2 Topology discovery
	6.1.2.4.3.3 Path selection
	6.1.2.4.3.4 Path delay
	6.1.2.4.3.5 Schedule mapping
	6.1.2.4.3.6 Dashboard configuration demo
	Registering a stream
	Configure stream identification
	Configure Qbv and Qci On Stream
	Configuring CQF

	6.1.3 TSN on i.MX 8DXL / i.MX 8M Plus / i.MX 93
	6.1.3.1 Test environment
	6.1.3.2 Clock synchronization
	6.1.3.3 Qbv
	6.1.3.4 Qbu
	6.1.3.4.1 Preemption Verification

	6.1.3.5 Qav

	6.1.4 TSN on LS1028A
	6.1.4.1 TSN configuration on ENETC
	6.1.4.1.1 Clock synchronization
	6.1.4.1.2 Qbv
	6.1.4.1.2.1 Basic gates closing
	6.1.4.1.2.2 Basetime test
	6.1.4.1.2.3 Qbv performance test
	6.1.4.1.2.4 Using taprio Qdisc Setup Qbv

	6.1.4.1.3 Qbu
	6.1.4.1.4 Qci
	6.1.4.1.4.1 Test SFI No Streamhandle
	6.1.4.1.4.2 Testing null stream identify entry
	6.1.4.1.4.3 Testing source stream identify entry
	6.1.4.1.4.4 SGI stream gate list
	6.1.4.1.4.5 FMI test

	6.1.4.1.5 Qav
	6.1.4.1.5.1 Using tsntool
	6.1.4.1.5.2 Using CBS Qdisc to setup Qav

	6.1.4.2 TSN configuration on Felix switch
	6.1.4.2.1 Switch configuration
	6.1.4.2.2 Linuxptp test
	6.1.4.2.3 Qbv test setup for LS1028ARDB
	6.1.4.2.3.1 Tsntool usage
	Closing basic gates
	Basetime test
	Qbv performance test

	6.1.4.2.3.2 Tc-taprio usage

	6.1.4.2.4 Qbu
	6.1.4.2.4.1 Tsntool usage
	6.1.4.2.4.2 Ethtool usage

	6.1.4.2.5 Qci
	6.1.4.2.5.1 Tsntool usage
	Stream identification
	Stream gate control
	SFI maxSDU test
	FMI test
	Port-based SFI set

	6.1.4.2.5.2 Tc-flower usage

	6.1.4.2.6 Qav
	6.1.4.2.6.1 Tsntool usage
	6.1.4.2.6.2 Tc-cbs usage

	6.1.4.2.7 802.1CB
	6.1.4.2.7.1 Sequence Generator test
	6.1.4.2.7.2 Sequence Recover test

	6.1.4.2.8 TSN stream identification
	6.1.4.2.8.1 Stream identification based on PCP value of Vlan tag
	6.1.4.2.8.2 Based on DSCP of ToS tag
	6.1.4.2.8.3 Based on qci stream identification

	6.2 GenAVB/TSN stack
	6.2.1 Introduction
	6.2.1.1 gPTP Stack
	6.2.1.2 SRP stack
	6.2.1.3 AVTP Stack
	6.2.1.4 AVDECC/Milan Stack
	6.2.1.5 MAAP Stack
	6.2.1.6 Supported configurations
	6.2.1.7 AVB endpoint example applications
	6.2.1.8 TSN endpoint example application

	6.2.2 GenAVB/TSN stack start/stop
	6.2.3 Use cases description
	6.2.3.1 AVB endpoint
	6.2.3.2 gPTP Bridge
	6.2.3.3 gPTP Endpoint
	6.2.3.4 gPTP multiple domains
	6.2.3.4.1 Requirements
	6.2.3.4.2 gPTP Stack Configuration
	6.2.3.4.3 Evaluation instructions

	6.2.3.5 AVB Bridge
	6.2.3.5.1 Requirements
	6.2.3.5.1.1 Using LS1028ARDB as AVB bridge
	6.2.3.5.1.2 Using i.MX8DXL EVK with SJA1105Q EVB as AVB bridge

	6.2.3.5.2 AVB network configuration
	6.2.3.5.2.1 Priority to traffic class mapping
	6.2.3.5.2.2 FQTSS Credit Based Shapers configuration
	6.2.3.5.2.3 Linux Best Effort Traffic classification
	6.2.3.5.2.4 Bridge VLAN awareness

	6.2.3.5.3 Setup preparation
	6.2.3.5.3.1 GenAVB/TSN stack configuration
	6.2.3.5.3.2 Bridge configuration

	6.2.3.5.4 Evaluation instructions
	6.2.3.5.4.1 gPTP operation
	6.2.3.5.4.2 SRP Operation

	6.2.3.6 TSN endpoint sample application
	6.2.3.6.1 Requirements
	6.2.3.6.2 Configuring GenAVB/TSN stack and example applications
	6.2.3.6.3 TSN network configuration
	6.2.3.6.3.1 Streams
	6.2.3.6.3.2 Scheduled traffic
	Endpoints
	Bridges

	6.2.3.6.4 Setup preparation
	6.2.3.6.4.1 Preparing the controller
	6.2.3.6.4.2 Preparing IO device(s)
	6.2.3.6.4.3 Preparing the Bridge
	6.2.3.6.4.4 Preparing the OPC UA client

	6.2.3.6.5 Evaluation instructions
	6.2.3.6.5.1 gPTP operation
	6.2.3.6.5.2 Baseline tsn-app operation
	6.2.3.6.5.3 Scheduled traffic evaluation with no concurrent traffic
	6.2.3.6.5.4 Scheduled traffic evaluation with TX best-effort traffic
	6.2.3.6.5.5 Scheduled traffic evaluation with RX best-effort traffic
	6.2.3.6.5.6 Modifying the scheduling period of the TSN sample application
	6.2.3.6.5.7 Enabling AF_XDP sockets in TSN sample application
	6.2.3.6.5.8 OPC UA server evaluation

	6.2.4 Configuration files
	6.2.4.1 System
	6.2.4.2 gPTP
	6.2.4.2.1 General
	6.2.4.2.2 Grandmaster parameters
	6.2.4.2.3 Automotive parameters
	6.2.4.2.4 Timing
	6.2.4.2.5 PORTn

	6.2.4.3 SRP

	6.2.5 Log files
	6.2.5.1 gPTP Endpoint
	6.2.5.2 gPTP Bridge
	6.2.5.3 SRP Bridge
	6.2.5.4 TSN Endpoint example application
	6.2.5.4.1 Main TSN task
	6.2.5.4.2 Network socket
	6.2.5.4.3 Application socket

	6.3 IEEE 1588/802.1AS
	6.3.1 Introduction
	6.3.2 IEEE 1588 device types
	6.3.3 IEEE 802.1AS time-aware systems
	6.3.4 Software stacks
	6.3.4.1 linuxptp stack
	6.3.4.2 NXP GenAVB/TSN gPTP stack

	6.3.5 Quick Start for IEEE 1588
	6.3.5.1 Ordinary clock verification
	6.3.5.2 Boundary clock verification
	6.3.5.3 Transparent clock verification

	6.3.6 Quick Start for IEEE 802.1AS
	6.3.6.1 Time-aware end station verification
	6.3.6.2 Time-aware bridge verification

	6.3.7 Long term test
	6.3.8 Known issues and limitations

	6.4 Networking
	6.4.1 Q-in-Q on LS1028A Felix switch
	6.4.2 VCAP on LS1028A Felix switch

	7 Protocols
	7.1 EtherCAT master
	7.1.1 Introduction
	7.1.2 EtherCAT protocol
	7.1.3 IGH EtherCAT architecture
	7.1.3.1 IGH EtherCAT device drivers
	7.1.3.2 IGH EtherCAT setup
	7.1.3.2.1 Specifying the Ethernet device
	7.1.3.2.2 Generic Ethernet driver
	7.1.3.2.3 Native Ethernet driver for i.MX 8M Mini LPDDR4 EVK
	7.1.3.2.4 Native Ethernet Driver for i.MX 8M Plus LPDDR4 EVK and i.MX 93 EVK
	7.1.3.2.5 Native Ethernet driver for LS1028ARDB
	7.1.3.2.6 Native Ethernet driver for LS1043ARDB and LS1046ARDB
	7.1.3.2.7 Starting IGH EtherCAT

	7.1.3.3 The 'real-time-edge-servo' stack
	7.1.3.3.1 CoE network
	7.1.3.3.2 Libnservo architecture
	7.1.3.3.3 Xml configuration for real-time-edge-servo
	7.1.3.3.3.1 Master element
	Slave element
	SyncManagers Element
	Sdo element

	7.1.3.3.3.2 Axle element

	7.1.3.3.4 Testing a CoE servo system
	7.1.3.3.4.1 Hardware preparation
	7.1.3.3.4.2 Software preparation
	7.1.3.3.4.3 CoE network detection
	7.1.3.3.4.4 Starting the test with 2HSS458-EC servo
	7.1.3.3.4.5 Starting test with ASDA-B3-E servo system

	7.1.3.3.5 EtherCAT multiple axes control system
	7.1.3.3.5.1 HCFA 60-axes servo system
	HCFA performance
	Running this case (HCFA)

	7.1.4 SOEM EtherCAT Master
	7.1.4.1 SOEM for i.MX 8M Plus LPDDR4 EVK platform
	7.1.4.1.1 Setup hardware environment
	7.1.4.1.2 Building the demo images
	7.1.4.1.3 Running SOEM demo images using J-Link GDB Server
	7.1.4.1.4 Running SOEM demo images by U-Boot

	7.1.4.2 SOEM for i.MX 8M Mini LPDDR4 EVK platform
	7.1.4.2.1 Setup hardware environment
	7.1.4.2.2 Building the demo images
	7.1.4.2.3 Running SOEM demo images
	7.1.4.2.4 Running SOEM demo images by U-Boot

	7.1.5 CODESYS EtherCAT Master
	7.1.5.1 Overview
	7.1.5.2 Features
	7.1.5.3 Building the image
	7.1.5.3.1 Build configurations
	7.1.5.3.2 Build scenarios
	7.1.5.3.3 Image deployment

	7.1.5.4 Running CODESYS on the boards
	7.1.5.4.1 Running CODESYS on i.MX 6ULL
	7.1.5.4.2 Running CODESYS on i.MX 8M Mini and i.MX 8M Plus
	7.1.5.4.3 Running CODESYS on i.MX 93

	7.1.5.5 Setting up CODESYS
	7.1.5.5.1 Board environment setup
	7.1.5.5.2 CODESYS project setup
	7.1.5.5.2.1 Downloading CODESYS runtime binary
	7.1.5.5.2.2 Starting CODESYS runtime
	7.1.5.5.2.3 Creating a new CODESYS project
	7.1.5.5.2.4 Adding EtherCAT Master and Slave
	7.1.5.5.2.5 Adding PLC program
	7.1.5.5.2.6 Running CODESYS Project

	7.2 FlexCAN and CANopen
	7.2.1 Introduction
	7.2.1.1 CAN bus
	7.2.1.2 CANopen

	7.2.2 Introducing the function of CAN example code
	7.2.3 Running a CAN application
	7.2.3.1 Hardware preparation for LS1028ARDB
	7.2.3.2 Running the SocketCAN commands
	7.2.3.3 Testing CAN bus

	7.3 OPC UA
	7.3.1 OPC introduction
	7.3.2 The node model
	7.3.3 Node Namespaces
	7.3.4 Node classes
	7.3.5 Node graph and references
	7.3.6 Open62541
	7.3.7 OPC UA Pub/Sub over TSN
	7.3.7.1 OPC UA Pub/Sub introduction
	7.3.7.2 OPC UA PubSub over TSN
	7.3.7.3 OPC UA PubSub components
	7.3.7.4 OPC UA PubSub sample application
	7.3.7.5 OPC UA PubSub sample application over TSN
	7.3.7.5.1 Case #1: two i.MX8M Plus LPDDR4 EVK connected back-to-back
	7.3.7.5.2 Case #2: two i.MX 8M Plus LPDDR4 EVK boards connected to LS1028ARDB TSN switch

	7.3.8 OPC UA client installation and usage
	7.3.8.1 UaExpert
	7.3.8.2 FreeOpcUa

	7.4 NETCONF/YANG
	7.4.1 Overview
	7.4.2 Netopeer2
	7.4.2.1 Overview
	7.4.2.2 Installing Netopeer2-cli on Ubuntu18.04
	7.4.2.3 Sysrepo
	7.4.2.4 Netopeer2 server
	7.4.2.5 Netopeer2 client
	7.4.2.6 Workflow in application practice

	7.4.3 Configuration
	7.4.3.1 Enabling NETCONF feature
	7.4.3.2 Netopeer2-server
	7.4.3.3 Netopeer2-cli
	7.4.3.3.1 Netopeer2 CLI commands
	7.4.3.3.2 Netopeer2 CLI datastore

	7.4.3.4 Sysrepod
	7.4.3.5 Sysrepocfg
	7.4.3.6 Sysrepoctl
	7.4.3.7 List of yang models
	7.4.3.8 Operation examples
	7.4.3.9 Application scenarios

	7.4.4 Troubleshooting

	7.5 Graphics on LS1028A
	7.5.1 GPU
	7.5.2 Wayland and Weston
	7.5.3 CSI Camera
	7.5.4 OpenCV on LS1028ARDB

	7.6 Wireless on LS1028A
	7.6.1 NFC
	7.6.1.1 Introduction
	7.6.1.2 PN7120 features
	7.6.1.3 Hardware preparation
	7.6.1.4 Software preparation
	7.6.1.5 Testing the NFC click board

	7.6.2 Bluetooth Low Energy
	7.6.2.1 Introduction
	7.6.2.2 Bluetooth Low Energy
	7.6.2.3 Features
	7.6.2.4 Hardware preparation
	7.6.2.5 Software preparation
	7.6.2.6 Testing the BLE P click board

	7.6.3 BEE
	7.6.3.1 BEE/ZigBEE
	7.6.3.2 Introduction
	7.6.3.3 Features
	7.6.3.4 Hardware preparation
	7.6.3.5 Software preparation
	7.6.3.6 Testing the BEE click board

	7.7 SAI on LS1028ARDB
	7.8 Wi-Fi on i.MX 8DXL EVK
	7.8.1 Wi-Fi card information
	7.8.2 Hardware Setup
	7.8.3 Software Enablement

	7.9 MODBUS
	7.9.1 Libmodbus introduction
	7.9.2 Modbus-Simulator introduction
	7.9.3 Modbus-Simulator usage
	7.9.3.1 Parameter description
	7.9.3.2 Examples of TCP and RTU
	7.9.3.3 Commands for all features

	7.9.4 Testing Modbus-Simulator
	7.9.4.1 Testing TCP functions
	7.9.4.2 Testing RTU functions

	7.10 UART 9-bit Multidrop mode (RS-485) support
	7.10.1 Overview
	7.10.2 Building and running the demo
	7.10.2.1 Building the demo
	7.10.2.2 Hardware setup
	7.10.2.3 Preparing the demo
	7.10.2.4 Running the demo

	8 Revision history
	9 Note about the source code in the document
	Legal information
	Contents

