
CodeWarrior™
Development Studio
IDE 5.5 User’s Guide

Profiler Supplement

 Revised 20030811

Freescale and the Freescale logo are registered trademarks of Freescale Corp. in the US and/or other countries.
CodeWarrior is a trademark or registered trademark of Freescale Corp. in the US and/or other countries. All other
tradenames and trademarks are the property of their respective owners.

Copyright © Freescale Corporation. 2006. ALL RIGHTS RESERVED.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materials are
governed by the license agreement that accompanied the product to which this manual pertains. This document
may be printed for non-commercial personal use only in accordance with the aforementioned license agree-
ment. If you do not have a copy of the license agreement, contact your Freescale representative or call 1-800-
377-5416 (if outside the U.S., call +1-512-996-5300.

Freescale reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Freescale software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation
7700 West Parmer Lane
MD: PL56
Austin, TX 78729
U.S.A.

World Wide Web http://www.freescale.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@freescale.com

Technical Support Voice: 800-377-5416
Email: support@freescale.com

3Profiler Supplement

Table of Contents

1 Introduction 5
Read the Release Notes! . 5

What’s in This Manual . . 5

Where to Go from Here . 6

2 Getting Started 9
What Is a Profiler? . 9

Types of Profilers . 10

A Profiling Strategy . 11

Profiling Code . 12

3 Using the Profiler 13
What It Does . 13

How It Works . 14

Profiling Made Easy . 15

4 Configuring the Profiler 19
Profiler Libraries and Interface Files 19

Profiling Special Cases . 19

Profiling Code with #pragma Statements. 20

Initializing Profiler with ProfilerInit() 20

Terminating Profiler with ProfilerDump() 22

Profiling Abnormally Terminated Functions 23

Debugging Profiled Code. 24

5 Viewing Results 27
What It Does . 27

How It Works . 27

Profiler Window . 28

Window Views . 29

Finding Performance Problems . 32

Table of Contents

4 Profiler Supplement

6 Troubleshooting 33
Profile Times Vary Between Runs 33

Problems while Profiling Inline Functions 34

Profiling Library Could not be Found 34

7 Profiler Reference 37
Compiler Directives . 37

Memory Usage . 38

Time and Timebases . 39

Profiler Function Reference . 39

ProfilerInit() . 40

ProfilerTerm() . 41

ProfilerSetStatus() . 41

ProfilerGetStatus() . 42

ProfilerGetDataSizes() . 42

ProfilerDump() . 43

ProfilerClear() . 43

Index 45

5Profiler Supplement

1
Introduction

Welcome to the CodeWarrior Development Studio IDE 5.5 User’s Guide Profiler
Supplement. The profiler is a code analysis tool designed to help you make your code
more efficient.

The introduction includes the following sections:

• Read the Release Notes!—where to go for critical, last-second details

• What’s in This Manual—a description of the contents of this manual

• Where to Go from Here—recommendations for further reading

Read the Release Notes!
Before you use your CodeWarrior prodict, you should read the release notes. They
contain important last-minute information about new features, bug fixes, and
incompatibilities that may not be included in the documentation.

The release notes directory is always included as part of a standard installation. The
release notes directory is also located at the top level of the CodeWarrior CD.

What’s in This Manual
The CodeWarrior profiler is a core component of the CodeWarrior IDE and is
launched when profiling completes on the target system or when you open a .mwp file.
The profiler is actually a system consisting of three components: the profiler libraries,
the calls you add to your code, and the Profiler window you use to view results. The
profiler system works with C and C++ code. This manual often refers to the
CodeWarrior profiler system as “CodeWarrior profiler,” or simply as “the profiler.”

Table 1.1 lists every chapter in this manual and describes the information contained in
each.

Introduction
Where to Go from Here

6 Profiler Supplement

Where to Go from Here
All the manuals mentioned here are available as part of the documentation included
with your product.

• New to CodeWarrior Profiler

– If you are unfamiliar with what a profiler is, read What Is a Profiler? This
section discusses different approaches to profiling code, and why profiling is
so useful.

– Read Using the Profiler and Viewing Results These chapters introduce you to
the three components of the CodeWarrior profiler system: the profiler
libraries, the calls you add to your code, and the Profiler window you use to
view results.

• Experienced with CodeWarrior Profiler

– If you are experiencing problems using any part of the CodeWarrior profiler
system, read Troubleshooting

– For technical details on the CodeWarrior profiler system, including the
libraries, API, and other issues, see Profiler Reference.

• Everyone

– For general information about the CodeWarrior IDE and debugger, see the
IDE User Guide .

– For information specific to the C/C++ front-end compiler, see the C
Compilers Reference.

Table 1.1 Contents of Chapters

Chapter Description

Introduction This chapter.

Getting Started Overview and background information.

Using the Profiler How-to guide to profiling your code.

Viewing Results Guide to displaying profiling results.

Troubleshooting Common problems and solutions.

Profiler Reference Reference to the libraries, compiler directives, and
function calls you use to control the CodeWarrior
profiler at compile time.

Introduction
Where to Go from Here

7Profiler Supplement

– For information on Metrowerks’ standard C/C++ libraries, see the MSL C
Reference and the MSL C++ Reference.

Introduction
Where to Go from Here

8 Profiler Supplement

9Profiler Supplement

2
Getting Started

This chapter provides you with general information about what a profiler is, different
kinds of profilers, and a typical strategy you would follow to measure program
performance. Along the way you’ll see how the CodeWarrior profiler handles the
advantages and disadvantages of profiling code.

Topics discussed are:

• What Is a Profiler?—a brief description of profilers and what they do

• Types of Profilers—different kinds of profilers, their strengths and weaknesses

• A Profiling Strategy—an outline you should follow when profiling your own
code

• Profiling Code—three steps to follow when profiling code

What Is a Profiler?
Speed and performance are important issues in most software projects. In most cases,
if your code doesn’t work quickly, it doesn’t work well.

Programmers have regularly observed that 10% of their code does 90% of the work.
Reworking code to make it more efficient is a non-trivial task. You should concentrate
on improving that core 10% of your code first, and improve the infrequently-used code
later, if at all.

How would you like to know precisely where your code spent its time? That’s what a
profiler does for you—it gives you clues. More than clues, the CodeWarrior profiler
gives you hard and reliable data.

A good profiler analyzes the amount of time your code spends performing various
tasks. Armed with this information, you can apply your efforts to improving the
efficiency of core routines.

A profiler can also help you detect bottlenecks—routines your data passes through to
get to other places—and routines that are just inordinately slow. Identifying these
problems is the first step to solving them.

Getting Started
Types of Profilers

10 Profiler Supplement

Types of Profilers
The simplest profilers count how many times a routine is called. They do not report
any information about which routines are called by other routines, or the amount of
time spent inside the various routines being profiled.

Clearly a good profile of the runtime performance of code requires more information
than a raw count. More advanced profilers perform statistical sampling of the runtime
environment. These profilers are called passive or sampling profilers.

A passive profiler divides the program being profiled into evenly-sized “buckets” in
memory. It then samples the processor’s program counter at regular intervals to
determine which bucket the counter is in.

The main advantage of a passive profiler is that it requires no modification to the
program under observation. You just run the profiler and tell it what program to
observe. Also, passive profilers distribute the overhead that they incur evenly over
time, allowing the post-processing steps to ignore it. On the other hand, they cannot
sample too frequently or the sampling interrupt will overwhelm the program being
sampled.

Passive profilers have a significant disadvantage. Although useful, bucket boundaries
do not line up with routine boundaries in the program. This makes it difficult if not
impossible to determine which routines are heavily used. As a result, passive profilers
generate a relatively low-resolution image of what’s happening in the program while it
runs.

In addition, because they rely on a statistical sampling technique, the program must
run for a long enough period to collect a valid sample. As a result, they do not have
good repeatability—that is, the results you get from different runs may vary unless the
sampling period is long.

The most advanced and accurate profilers are called active profilers. The CodeWarrior
profiler is an active profiler.

An active profiler tracks the precise amount of time a program spends in each
individual routine, measured directly from the system clock.

To perform this magic, an active profiler requires that you modify the code of the
program to be observed. An active profiler gains control at every routine entry and
exit. There must be a call to the profiler at the beginning of each profiled routine. The
profiler can then track how much time is spent in the routine.

This approach has significant advantages over a passive profiler. An active profiler
can report high-resolution results about exactly what your program is doing. An active
profiler also tracks the dynamic call tree of a program. This information can be very

Getting Started
A Profiling Strategy

11Profiler Supplement

useful for determining the true cost of calling a routine. The true cost of a routine call
is not only the time spent in the routine, it is also the time spent in its children—the
subsidiary routines it calls, the routines they call, and so on to whatever depth is
necessary.

Because it uses measurements and not statistical sampling, an active profiler is much
more accurate and repeatable than a passive profiler.

The requirement that you must modify the actual source code might seem like a
significant disadvantage. With the CodeWarrior profiler, this disadvantage is minimal.
Activating the profiler for an entire program—or for a range of routines within a
program—is simple. The compiler does most of the work, inserting the necessary calls
to the profiler itself. You do have to recompile the project when you turn on profiling.

Finally, active profilers generate a large amount of raw information. This can lead to
confusion and difficulty interpreting the results. The Profiler window that is part of the
CodeWarrior profiler system handles these difficulties with aplomb. You can view and
sort the data in whatever way best suits your needs.

A Profiling Strategy
You use a profiler to measure the runtime performance of your code. What is usually
important is how your code’s performance measures up to some standard. When
approaching the problem of measuring performance, you might want to take these
three steps:

1. Establish your standards.

For example, you might decide that you want the program to load in less than ten
seconds, or check the spelling of a five-page document that contains no
misspellings in 15 seconds. Also decide on the platform you will use for testing,
since processor speeds vary.

2. Determine how to measure time.

Your measurement device may be no more complicated than a stopwatch, or you
may need to add some simple code to count ticks. At this phase you want to test
the code in as close to its finished form as possible, so measure time in a way that
is accurate enough to suit your needs, and that has the lowest impact on your
code’s natural performance. You do not want to run a full-blown profile here,
because profiling can add significant overhead, thus slowing down your code’s
raw performance.

Getting Started
Profiling Code

12 Profiler Supplement

3. Run the tests and measure results.

If you meet your performance goals, your job is done. If your code does not meet
your goals, then it’s time to profile your code.

Profiling Code
To profile your code, you do three things:

1. Run a profiler on the area of the code you want tested.

This might be a single routine, a group of routines that perform a task, or even the
entire application. What you profile depends upon what you are testing.

2. Analyze the data collected by the profiler and improve your code.

You study the results of your profiling and look for problems and room for
improvement.

The profiling process is iterative. You repeat these two steps until you achieve the
performance gain you need to meet your goals.

The rest of this manual discusses how to perform these two steps—profile your
code and analyze the results—using the CodeWarrior profiler system.

3. Retest your code to verify results

When you are satisfied that you have reached your goals, you have one more step
to perform. You should run your original tests—without the profiler of course—to
verify that your code in its natural state meets your performance goals.

The CodeWarrior profiler will help you meet those goals quickly and easily.

13Profiler Supplement

3
Using the Profiler

The CodeWarrior profiler lets you analyze how processor time is distributed during
your program’s execution. With this information, you can determine where to
concentrate your efforts to optimize your code most effectively.

This chapter discusses the following principal topics:

• What It Does—an overview of the principle features of the profiler

• How It Works—basic information on the elements of the profiler and about how
to use the profiler in your own code

• Profiling Made Easy—a step-by-step guide to using the profiler

What It Does
The CodeWarrior profiler is a state-of-the-art, user-friendly, analytical tool that can
profile C or C++ code.

For every project, from the simplest to the most complex, the profiler offers many
useful features that help you analyze your code. You can:

• turn the profiler on and off at compile time

• profile any routine, group of routines, or an entire project

• track time spent in any routine

• track time spent in a routine and the routines it calls—its children

• track execution paths and times in a dynamic call tree

• collect detailed or summary data in a profile

• use precision time resolutions for accurate profiling

• track the stack space used by each routine

Using the Profiler
How It Works

14 Profiler Supplement

How It Works
The CodeWarrior profiler is an active profiler. The profiling system consists of three
main components:

• a statically-linked code library of compiled code containing the profiler

• an Application Programming Interface (API) to control the profiler

• the Profiler window to view and analyze the profile results

Details of the API are discussed in Profiler Function Reference The Profiler window is
discussed in Viewing Results

The rest of this chapter will discuss the general profiling process. Subsequent chapters
describe how to carry out the profiling process for your particular target.

To use the profiler, you do these things:

• Include the correct profiler library and files in your CodeWarrior project

• Modify your source code to make use of the profiler API

• Use the API to initialize the profiler, to dump the results into a file, and to exit the
profiler

• Use the Profiler window to view the results

You can profile an entire program if you wish or, adding compiler directives to your
code, you can profile any individual section of your program.

You modify the original source code slightly to initialize the profiler, dump results,
and exit the profiler when through. You may modify the source code more extensively
if you wish to profile individual portions of your code.

Then the compiler and linker—using a profiler library—generate a new version of
your program, ready for profiling. While it runs, the profiler generates data. Your
program will run a little more slowly because of the profiler overhead (sometimes a lot
more slowly), but that’s taken into account in the final results. When complete, you
use the Profiler window to analyze the data and determine what changes are
appropriate to improve performance. You can repeat the process as often as desired
until you have turned your code into a fast, efficient, well-oiled machine.

See also

Profiler Function Reference and Viewing Results

Using the Profiler
Profiling Made Easy

15Profiler Supplement

Profiling Made Easy
This section takes you step by step through the general process of profiling an
application.

To profile an application, you:

• Add a profiler library to the project

• Turn on profiling

• Include the profiler API interface

• Initialize the profiler

• Dump the profile results

• Exit the profiler

In the steps that follow, we’ll detail precisely what to do in both C and C++. These
steps may seem a little complicated. Don’t be alarmed. Using the CodeWarrior
profiler is actually easier than reading about how to do it.

1. Add a profiler library to the project

The code that performs the profiler magic has been compiled into libraries. The
precise library that you add to your code depends on the target for which you’re
profiling code and on the kind of code you’re developing.

2. Turn on profiling

You can use the following methods to turn profiling on or off:

a. Project-Level Profiling

To turn on profiling for an entire project, use the project settings. In the
Project Settings dialog, choose the processor you are generating code for
under the Code Generation option. Check the Profiler Information
checkbox, as shown in Figure 3.1. With profiling on, the compiler generates
all the code necessary so that every routine calls the profiler.

Using the Profiler
Profiling Made Easy

16 Profiler Supplement

Figure 3.1 Processor Preferences Options for PowerPC

b. Routine-Level Profiling

To profile certain routines (rather than the entire project), use the appropriate
profiler API calls for your target to initialize the profiler, set up profiling, and
immediately turn profiling off. You can then manually turn profiling on and
off by placing profiler calls around the routine or routines you want to profile.
For example, you could modify your code to look like Listing 3.1.

Listing 3.1 profiling a Routine

void main()
{

...
err = ProfilerInit(...);

if (err == noErr)
{
ProfilerSetStatus(FALSE); /

/ turn off profiling until needed.
// more code....

// now you reach routine
you want to profile

ProfilerSetStatus(TRUE); /
/ turn on profiling

Using the Profiler
Profiling Made Easy

17Profiler Supplement

foobar(); // this routine
is profiled and shows up in viewer

ProfilerSetStatus(FALSE);
// turn profiling off again

// more code....
ProfilerTerm();
}

}

Assuming that profiling is on for an entire project, you can turn off profiling at
any time. First, use an appropriate call to turn off profiling. Then use another
call to turn it on. Turn it on just before calling the routine or routines you are
interested in. Turn it off when those routines return. It’s really that easy.

Alternatively, you can use #pragma statements in C/C++. These aren’t as
useful as using profiler API calls. For example, suppose you have two
routines—foo() and bar()—that each call a third utility routine,
barsoom(). If you use compiler directives to turn on profiling for foo()
and barsoom(), the result you get will include the time for barsoom()
when called from bar() as well.

3. Include the profiler API interface

To use the profiler, you add at least three profiler-related calls to your code. These
calls are detailed in the next three steps. The process varies slightly for the
different languages and targets.

Source files that make calls to the profiler API must include the appropriate
header file for your target. For example, to profile an entire application, you would
add this line of code to the source file that includes your main() function:

#include <profiler.h>

TIP You don’t have to include the header file in every file that contains a
profiled function, only in those that actually make direct profiler API
calls.

4. Initialize the profiler

At the beginning of your code, you call the appropriate function for your target.
See Profiler Function Reference to find out the precise function name that you’ll
need for your specific target.

Using the Profiler
Profiling Made Easy

18 Profiler Supplement

5. Dump the profile results

Obviously, if you profile code you want to see the results. The profiler dumps the
results to a data file. The data is in a proprietary format understood by the profiler.

6. Exit the profiler

When you are all through with the profiler, before exiting the program you should
terminate the profiler by calling the correct profiler API function. On most
platforms, if you initialize the profiler and then exit the program without
terminating the profiler, timers may be left running that could crash the machine.

The call to terminate the profiler stops the profiler and deallocates memory. It
does not dump any information. Any collected data that has not been dumped is
lost when you call the function to terminate the profiler.

Having performed these quick steps, you simply compile your program and run it.
The IDE automatically opens this file in the Profiler window when the dump is
complete. You can later re-open the file in the IDE to view the info again.

In summary, the process of using the CodeWarrior profiler is quite easy. You add the
requisite library, turn on profiling, include the header file, initialize the profiler, dump
the results, and exit. It is a remarkably painless and simple process that quickly gets
you all the data you need to perform a professional-level analysis of your application’s
runtime behavior.

19Profiler Supplement

4
Configuring the Profiler

This reference section discusses how to use the profiler libraries, APIs, and compiler
options.

The sections in this chapter are:

• Profiler Libraries and Interface Files—the libraries and interface files that you
add to your code in order to use the profiler

• Profiling Special Cases—special cases to consider when profiling code

Profiler Libraries and Interface Files
You can find all of the profiler libraries and interface files in the Profiler folder. The
profiling code that actually keeps track of the time spent in a routine exists in a series
of libraries. Depending upon the nature of your project and the platform for which you
are writing code, you link in one or another of these libraries as appropriate. The
libraries you use must match your settings in the Target settings panel.

The profiler.h file is the header file for the profiler API for C and C++. Include
this file to make calls to conrol the profiler

Profiling Special Cases
The profiler handles recursive and mutually recursive calls transparently. The profiler
also warns you when profiling information was lost because of insufficient memory.
(The profiler uses memory buffers to store profiling data.)

For leading-edge programmers, the profiler transparently handles and reliably reports
the times for abnormally terminated routines exited through the C++ exception
handling model (try, throw, catch) or the ANSI C library setjmp() and
longjmp() routines.

This section describes special cases you may encounter while profiling your code:

• Profiling Code with #pragma Statements

Configuring the Profiler
Profiling Special Cases

20 Profiler Supplement

• Initializing Profiler with ProfilerInit()

• Terminating Profiler with ProfilerDump()

• Profiling Abnormally Terminated Functions

• Debugging Profiled Code

Profiling Code with #pragma Statements
You can substitute #pragma statements for profiler API function calls to profile your
C/C++ code on the function level. However, this is not as useful as the profiler calls.
See “Routine-Level Profiling” on page 16 for more information.

Setting the “Generate Profiler Calls” Processor preference option sets a preprocessor
variable named __profile__ to 1. If profiling is off, the value is zero. You can use
this value at compile time to test whether profiling is on.

Instead of, or in addition to, setting the option in the Processor preferences, you can
turn on profiling at compile time. The C/C++ compiler supports three preprocessor
directives that you can use to turn compiling on and off at will.

You can use these directives to turn profiling on for any functions you want to profile,
regardless of the settings in the Processor preferences. You can also turn off profiling
for any function you don’t want to profile.

Initializing Profiler with ProfilerInit()
At the beginning of your code, you call ProfilerInit() to initialize the profiler.
Table 4.1 shows the prototypes for ProfilerInit() for C/C++.

#pragma profile on enables calls to the profiler in functions that are
declared following the pragma

#pragma profile off disables calls to the profiler in functions that are
declared following the pragma

#pragma profile reset sets the profile setting to the value selected in the
preferences panel

Configuring the Profiler
Profiling Special Cases

21Profiler Supplement

The parameters tell the profiler how this collection run is going to operate, and how
much memory the profiler should allocate for its data buffers. Each parameter and its
purpose is given in Table 4.2.

The collection method may be either collectDetailed or collectSummary.
If you collect detailed data, you get information for the calling tree—the time in each
routine and each of its children in the calling hierarchy. Summary data collects data for
the time spent in each routine without regard to the calling chain. Collecting detailed
data requires more memory.

The timeBase may be one of the following values:

• ticksTimeBase

• microsecondsTimeBase

• timeMgrTimeBase

• PPCTimeBase

• win32TimeBase

• bestTimeBase

The bestTimeBase option automatically selects the most precise timing
mechanism available on the computer running the profiled software. Not all of these
values are supported on all target platforms. Refer to the Targeting Manual for your
product to determine which timebases are available for use.

Table 4.1 ProfilerInit() Prototypes

C/C++ long ProfilerInit(
 ProfilerCollectionMethod method,
 ProfilerTimeBase timeBase,
 short numFunctions, short
 stackDepth);

Table 4.2 ProfilerInit() Parameters

Parameter Purpose

method collect detailed or summary data

timeBase time scale to use in measurements

numFunctions maximum number of routines to profile

stackDepth approximate maximum depth of deepest calling tree

Configuring the Profiler
Profiling Special Cases

22 Profiler Supplement

The numFunctions parameter is the approximate number of routines to be profiled.
The stackDepth parameter is the approximate maximum depth of your calling
chain. You don’t need to know the precise values ahead of time. If the profiler runs out
of memory to hold data in its buffers, it loses some data but you’ll be told in the
results. You can then modify the parameters in the call to ProfilerInit() to
increase the buffers and preserve all your data.

The profiler allocates buffers in the profiled application’s heap based on the method of
collection, the number of routines, and the depth of the calling tree. On platforms
where it is possible, the profiler will allocate memory outside of the application’s
heap, which helps reduce the profiler’s effect on the application.

The call to ProfilerInit() returns a non-zero error value if the call fails for any
reason. Use the return value to ensure that memory was allocated successfully before
continuing with the profiler. Typically you would add this call as conditionally
compiled code so that it compiles and runs only if profiling is on and the call to
ProfilerInit() was successful.

You call ProfilerInit() before any profiling occurs. Typically you make the
call at the beginning of your code.

See also Time and Timebases and Memory Usage

Calling ProfilerInit() in C/C++
In C/C++, the call would be at the beginning of your main() function.

The call might look like this:

if (!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))
{
// your profiled code
}

Of course, your parameters may vary depending upon how many routines you have
and the depth of your calling chains.

Terminating Profiler with ProfilerDump()
The profiler dumps its data to a file when you call ProfilerDump(). The file
appears in the current default directory, usually the project directory.

You provide a file name when you call ProfilerDump(). You may dump results
as often as you like. You can provide a different file name for intermediate results (if
you have multiple calls to ProfilerDump()), or use the same name. If the

Configuring the Profiler
Profiling Special Cases

23Profiler Supplement

specified file already exists, a new file is created with an incrementing number
appended to the file name for each new file. This allows the dump to be called inside a
loop with a constant file name. This can be useful for dumping intermediate results on
a long task.

ProfilerDump() does not clear accumulating results. If you want to clear results
you can call ProfilerClear().

A typical call to ProfilerDump() would be placed just before you exit your
program, or at the end of the code you are profiling. The prototypes for
ProfilerDump() are listed in Table 4.3.

Calling ProfilerDump()
There is only one parameter: char*. The parameter points to a C-style string for
filename. The IDE automatically adds a .cwp extension to the file name.

Profiling Abnormally Terminated Functions
The profiler correctly reports data for abnormally terminated functions that exited
through the C++ exception handling model (try, throw, catch) or the ANSI C library
setjmp() and longjmp() routines. You do not have to do anything to get this
feature, it is automatic and part of the profiler’s design.

However, there is a possibility of some errors in the reported results for an abnormally
terminated function.

First, the profiler does not detect the abnormal termination until the next profiling call
after the abnormal termination. Therefore, some additional time will be reported as
belonging to the terminated function.

Second, if the next profiler event is a profiler entry, and the new stack frame for that
function is larger than the frames that were abnormally exited, the profiler will not
immediately detect that the original function was abnormally terminated. In that case
the profiler will treat the function just entered as a child of the function abnormally
terminated. The profiler will correct itself on the next profiling event without this
property—that is, when the stack returns to a point smaller than it was when the
abnormally terminated function exited.

Table 4.3 ProfilerDump() Prototypes

C/C++ long ProfilerDump(
 unsigned char *filename);

Configuring the Profiler
Profiling Special Cases

24 Profiler Supplement

Finally, remember that the profiler is not closed properly and the output file is not
dumped when exit() is called. If you need to call exit() in the middle of your
program and want the profiler output, call ProfilerDump().

If you are using the profiler, you should always call ProfilerTerm() before
exit().

CAUTION If a program exits after calling ProfilerInit() without calling
ProfilerTerm(), timers may be left running that could crash the
machine.

Debugging Profiled Code
It is possible to debug code that has calls to the profiler in it. However, the profiler
does interfere with stepping through code. You may find it simpler to debug non-
profiled code, and profile separately. In this section, We’ll take you through what
happens when you step into a profiled routine and step out of a profiled routine. In
addition, we’ll talk about the effect that stopping in the debugger has on the profile
results.

See also the CodeWarrior IDE User Guide for more information on how to use the
debugger.

Stepping into a Profiled Routine
If you step into a profiled routine you may see assembly code instead of source code.
The compiler has added calls to __PROFILE_ENTRY at the start of the routine. This
is how the profiler knows when to start counting time for the routine.

If you step through the assembly code far enough to get to the code derived from the
original source code, then switch the view from source to assembly and back again,
you can see the original source code.

Stepping out of a Profiled Routine
If you single-step out of a routine being profiled, you may end up in the
__PROFILE_EXIT assembly code from the profiler library. This is how the profiler
knows when to stop counting time for the routine.

Configuring the Profiler
Profiling Special Cases

25Profiler Supplement

Effect of Stopping on the Profile Results
If you stop in a profiled routine, the profiler counts all the time you spend in the
debugger as time that routine was running. This skews the results.

CAUTION If you debug profiled code, you should not to kill the code from the
debugger. If you have called ProfilerInit() you should call
ProfilerTerm() on exit. If you do not do so, you may crash your
system.

Configuring the Profiler
Profiling Special Cases

26 Profiler Supplement

27Profiler Supplement

5
Viewing Results

This chapter discusses the ways you may view the data created by the CodeWarrior
profiler.

In this chapter you will look at:

• What It Does—the principle features of the profiler

• How It Works—the profiler interface and how you can view data

• Finding Performance Problems—use the profiler to locate problems

What It Does
The Profiler window displays profiler output for you to analyze the results of your
program’s execution. The profiler reads the dump files created by the calls in your
code and displays the data in a form that you can use. Using the data display you can:

• sort data by any of several relevant criteria such as name, time in routine, percent
of time in routine, and so forth

• open multiple profiles simultaneously to compare different versions of the
profiled code

• identify trouble spots in the code

• view summary, detailed, or object-based data

How It Works
You open profile data files exactly as you open files in any application. You can use
the Open command from the File menu or drop the data file’s icon on the
CodeWarrior IDE. Whatever approach you take, when you open a file a window
appears.

Viewing Results
How It Works

28 Profiler Supplement

Profiler Window
The Profiler window allows you to view several elements of the profile data
simultaneously, as shown in Figure 5.1.

Figure 5.1 Profiler Window

Profiler Window Data Columns
The profiler window contains a series of columns containing data from the profile. All
times are displayed according to the resolution of the timer that you use to profile data.
The results in the window are only as precise as the timer used.

The times shown in the data columns are relative. Each time datum is reported to three
decimal places. However, some time bases (most notably ticksTimeBase) are less
precise. See Time and Timebases

Table 5.1 lists each of the columns in the profiler window (from left to right) and the
information that column contains.

Table 5.1 Profile Window Data Columns

Column Contents

Function name Routine name. (The profiler unmangles C++ function names.)

Count Number of times this routine was called.

Time Time spent in this routine, not counting time in routines that this
routine calls.

% Percent of total time for the Time column.

+Children Time spent in this routine and all the routines it calls.

% Percent of total time for the +Children column.

Viewing Results
How It Works

29Profiler Supplement

Sorting Data
You can view the data sorted by the value in any column. To change the sort order,
click the column title. The heading becomes highlighted and data is sorted by the value
in that column. Use the arrow control to change the direction of the sort (ascending/
descending).

Multiple Windows
You can open any number of different profile windows simultaneously. This allows
you to compare the results of different runs easily.

Window Views
In the tabs, you may choose to view the data in one of three ways: flat, detail, or class.
Not all possibilities are available for all profiles.

Flat View
The flat view displays a complete, non-hierarchical, flat list of each routine profiled.
No matter what calling path was used to reach a routine, the profiler combines all the
data for the same routine and displays it on a single line. Figure 5.2 shows a flat view.

Average Average time for each routine invocation: Time divided by the
number of times the routine was called.

Maximum Longest time for an invocation of the routine.

Minimum Shortest time for an invocation of the routine.

Table 5.1 Profile Window Data Columns (continued)

Column Contents

Viewing Results
How It Works

30 Profiler Supplement

Figure 5.2 Flat View

The flat view is particularly useful for comparing routines to see which take the
longest time to execute. The flat view is also useful for finding a performance problem
with a small routine that is called from many different places in the program. This
view helps you look for the routines that make heavy demands in time or raw number
of calls.

A flat view window can be displayed for any profile.

Detail View
The detail view displays routines according to the dynamic call tree as shown in
Figure 5.3.

Figure 5.3 Detail View

Routines that are called by a given routine are shown indented under that routine. This
means that a routine may appear more than once in the profile if it called from
different routines. This makes it difficult to tell how much total time was spent in a
routine. However, you can use the flat view for that purpose.

The detail view is useful for detecting design problems in code; it lets you see what
routines are called how often from what other routines. Armed with knowledge of
your code’s underlying design, you may discover flow-control problems.

Viewing Results
How It Works

31Profiler Supplement

For example, you can use detailed view to discover routines that are called from only
one place in your code. You might decide to fold that routine’s code into the caller,
thereby eliminating the routine call overhead entirely. If it turns out that the little
routine is called thousands of times, you can gain a significant performance boost.

In detail view, sorting is limited to routines at the same level in the hierarchy. For
example, if you sort by routine name, the routines at the top of the hierarchy will be
sorted alphabetically. For each of those first-level routines, its second-level routines
will be sorted alphabetically underneath it, and so on.

The detail view requires that collectDetailed be passed to ProfilerInit()
when collecting the profile. If collectSummary is used, you cannot display the
data in detailed view.

Class View
The class view displays summary information sorted by class. Beneath each class the
methods are listed. This is a two-level hierarchy. You can open and close a class to
show or hide its methods, just like you can in the detail view.

When sorting in class view, functions stay with their class, just like subsidiary
functions in detail view stay in their hierarchical position. Figure 5.4 shows the
methods sorted by count.

Class view allows you to study the performance impact of substituting one
implementation of a class for another. You can run profiles on the two
implementations, and view the behavior of the different objects side by side. You can
do the same with the flat view on a routine-by-routine basis, but the class view gives
you a more natural way of accessing object-based data. It also allows you to gather all
the object methods together and view them simultaneously, revealing the effect of
interactions between the object’s methods.

Viewing Results
Finding Performance Problems

32 Profiler Supplement

Figure 5.4 Class View

Object view will display “N/A” (Not Available) in the +Children column for classes in
a collectSummary profile. This is because the detail information is missing from
the file.

The class view requires that the profile contain at least one mangled C++ name. If
there is none, you cannot use object view.

Finding Performance Problems
As you work with the profiler, you will see that the information provided quickly
guides you to problem areas.

To look for time hogs, sort the view by either the Time column or the +Children
column. Then examine routines that appear near the top of the list. These are the
routines that swallow the greatest percentage of your code’s time. Any improvement
in these routines will be greatly magnified in your code’s final performance.

You may also want to sort based on the number of times a routine is called. The time
you save in a heavily-used routine is saved each time it is called.

If stack size is a concern in your code, you can sort based on the Stack Space column.
This lets you see the largest size the stack reached during the profile.

33Profiler Supplement

6
Troubleshooting

This chapter answers common questions about the profiler. So if you have a problem
with the profiler, consult this chapter first. Other users may have encountered similar
difficulties, and there may be a simple solution.

Profile Times Vary Between Runs

I’m getting different results (within 10%) in the profiler every time I run my program.

Background

There are two potential reasons that this may be happening. Both are time-related
problems. The first problem that can occur is inadequate time in the function relative
to the profiler resolution. The second problem is clock resonance.

Inadequate Time in the Function

If the function time that you are trying to measure is only 10 times greater than the
resolution of the timebase, you will encounter this problem.

Solution

To solve this problem, increase the number of times your function is called, then the
average the profiler computes will be more accurate.

Sometimes it is helpful to pull a routine out of a program, and into a special test
program which calls it many times in a loop for performance tuning purposes.
However, this technique is susceptible to cache differences between the test and real
program.

Clock Resonance

If the operations you are performing in your profiled code coincide with the
incrementing of the profiler clock, the results can be distorted, and could show wild
variations.

Troubleshooting

34 Profiler Supplement

Solution

Avoid this problem by increasing the number of times your function is called.

Problems while Profiling Inline Functions

My inline functions are not getting inlined when I’m profiling my code. What’s
happening?

Background

When the compiler switch for profiling is turned on, the default setting for “don’t
inline functions” is changed to true. This is so that these functions will have profiling
information collected for them.

Solution

Place a #pragma dont_inline off in your source file to turn on function
inlining again. You will not collect profile information for inline functions. In effect, a
function can be inlined or profiled, but not both. The profiler cannot profile an inlined
function.

TIP If you use the #pragma dont_inline off in your code, you
may see profile results for some inline functions.
When you declare an inline function, the compiler is allowed, but not
required to inline the function. It is perfectly legal for the compiler to
inline some functions, but not others. Data is collected only for the
calls that were not inlined. The calls that were inlined have their time
added into the time of the calling function.

Profiling Library Could not be Found

While trying to profile my dynamically linked library (shared library), I get an error
message saying that the profiling library could not be found.

Troubleshooting

35Profiler Supplement

Background

This problem occurs when trying to use the profiling library to profile your
dynamically linked library and the profiling library is not in the search path.

Solution

Add the profiling library to the search path. If you are using the CodeWarrior IDE, see
the CodeWarrior IDE User’s Guide for information on search paths.

Troubleshooting

36 Profiler Supplement

37Profiler Supplement

7
Profiler Reference

This chapter contains the detailed technical reference information you may need when
using the profiler.

The topics discussed include:

• Compiler Directives—handling compiler directives

• Memory Usage—understanding memory usage

• Time and Timebases—the available time resolutions

• Profiler Function Reference—a reference for all of the profiler API functions

Compiler Directives
You can control routine-level profiling using compiler directives.

The C/C++ compiler supports three preprocessor directives that you can use to turn
compiling on and off at will.

You can use these directives to turn profiling on for any functions you want to profile,
regardless of the settings in the Processor preferences. You can also turn off profiling
for any function you don’t want to profile.

As there are compiler directives to turn the profiler on and off, there are also directives
to test if the profiler is on. You can use these tests in your code so that you can run
your program with or without the profiler and not have to modify your code each time.

In C/C++, use the #if-#endif clause. For example:

#pragma profile on Enables calls to the profiler in functions that are declared
following the pragma.

#pragma profile off Disables calls to the profiler in functions that are declared
following the pragma.

#pragma profile
reset

Sets the profile setting to the value selected in the
preferences panel.

Profiler Reference
Memory Usage

38 Profiler Supplement

void main()
{
#if __profile__ // is the profiler on?

if
(!ProfilerInit(collectDetailed, bestTimeBase, 20, 5))

{
#endif

test(15);
#if __profile__

ProfilerDump("Example.prof");
ProfilerTerm();
}

#endif
}

See also Routine-Level Profiling

Memory Usage
The profiler allocates two buffers in your program’s heap to hold data as it collects
information about your code: one based on the number of routines, and one based on
the stack depth. You pass these parameters in your call to ProfilerInit().

When possible, the profiler will allocate its memory outside of your program’s heap to
reduce the impact of the profiler on your program. If this is not possible, the profiler’s
memory buffers will be allocated in your program’s default heap. You must ensure
that the heap is large enough to hold both your program’s dynamically allocated data
and the profiler’s buffers.

In summary collection mode, the profiler allocates 64 bytes * numFunctions and
40 bytes * stackDepth.

In detailed collection mode, the profiler allocates 12 * 64 * numFunctions bytes
and 40 * stackDepth bytes.

As an example, assume numFunctions is set to 100, and stackDepth to 10. In
summary mode the profiler allocates buffers of 6,400 bytes and 400 bytes. In detailed
mode it allocates buffers of 76,800 bytes and 400 bytes.

ProfilerGetDataSizes() lets you query the profiler for the current size of the
data collected in the function and stack tables. This information can be used to tune the
parameters passed to ProfilerInit().

Profiler Reference
Time and Timebases

39Profiler Supplement

See also “ProfilerInit()” on page 40.

Time and Timebases
The timeBase may be one of the following values:

• ticksTimeBase

• microsecondsTimeBase

• timeMgrTimeBase

• PPCTimeBase

• win32TimeBase

• bestTimeBase

The bestTimeBase option automatically selects the most precise timing
mechanism available on the computer running the profiled software. Not all of these
values are supported on all target platforms. Refer to the Targeting Manual for your
product to determine which timebases are available for use.

When you call ProfilerInit(), the constant bestTimeBase tells the profiler
to figure out the most precise timebase available on your platform and to use it.

Profiler Function Reference
This is a reference for all profiler functions mentioned in the text of this manual. The
functions described in this chapter are:

• ProfilerInit()

• ProfilerTerm()

• ProfilerSetStatus()

• ProfilerGetStatus()

• ProfilerGetDataSizes()

• ProfilerDump()

• ProfilerClear()

The discussion of each function includes the following attributes:

• Description: A high-level description of the function

• Prototypes: The entire C/C++ prototypes for the function

Profiler Reference
Profiler Function Reference

40 Profiler Supplement

• Remarks: Implementational or other notes about the function

ProfilerInit()

ProfilerInit() prepares the profiler for use and turns the profiler on. The
parameters tell the profiler how this collection run is going to operate, and how much
memory to allocate. ProfilerInit() must be the first profiler call before you can
call any other routine in the profiler API.

Prototypes

typedef enum {

collectDetailed,

collectSummary

} ProfilerCollectionMethod;

typedef enum {

bestTimeBase

} ProfilerTimeBase;

long ProfilerInit(

ProfilerCollectionMethod method,

ProfilerTimeBase bestTimeBase,

long numFunctions,short stackDepth);

Remarks

ProfilerInit() will allocate its memory outside of your program’s heap to
reduce the impact of the profiler on your program. If this is not possible, the profiler’s
memory buffers will be allocated in your program’s default heap. You must ensure
that the heap is large enough to hold both your program’s dynamically allocated date
and the profiler’s buffers.

ProfilerInit() returns an error status that indicates whether or not the profiler
was able to allocate it’s memory buffers. If the return value is 0, then memory

Profiler Reference
Profiler Function Reference

41Profiler Supplement

allocation was successful. If a non-zero value is returned, then the allocation was not
successful.

The method and timeBase parameters select the appropriate profiler options. The
numFunctions parameter indicates the number of routines in the program for
which the profiler should allocate buffer storage. If the profiler is operating in detailed
mode, this number is internally increased (exponentially), because of the branching
factors involved. The stackDepth parameter indicates how many routines deep the
stack can get.

A call to ProfilerInit() must be followed by a matching call to
ProfilerTerm().

ProfilerTerm()

ProfilerTerm() stops the profiler and deallocates the profiler’s buffers. It calls
ProfilerDump() to dump out any information that has not been dumped.
ProfilerTerm() must be called at the end of a profile session.

void ProfilerTerm(void);

Remarks

If a program exits after calling ProfilerInit() you should call
ProfilerTerm(). Failing to do so may lead to a crash on some platforms.

ProfilerSetStatus()

ProfilerSetStatus() lets you turn profiler recording on and off in the program.
This makes it possible to profile specific sections of your code such as screen redraw
or a calculation engine. The profiler output makes more sense if the profiler is turned
on and off in the same routine, rather than in different routines.

void ProfilerSetStatus(short on);

Remarks

This routine and ProfilerGetStatus() are the only profiler routines that may
be called at interrupt time.

Profiler Reference
Profiler Function Reference

42 Profiler Supplement

Pass 1 to turn recording on and 0 to turn recording off.

ProfilerGetStatus()

ProfilerGetStatus() lets you query the profiler to determine if it is collecting
profile information.

short ProfilerGetStatus(void);

Remarks

This routine and ProfilerSetStatus() are the only profiler routines that may
be called at interrupt time.

ProfilerGetStatus() returns a 1 if the profiler is currently recording, 0 if it is
not.

ProfilerGetDataSizes()

ProfilerGetDataSizes() lets you query the profiler for the current size of the
data collected in the function and stack tables. This information can be used to tune the
parameters passed to ProfilerInit().

Prototypes

void ProfilerGetDataSizes(

long *functionSize,

long *stackSize);

Remarks

If you have passed collectDetailed to ProfilerInit(),
ProfilerGetDataSizes() returns the number of actual routines in the table,
which may be larger than the value passed to ProfilerInit() in
numFunctions. This is because the profiler multiplies numFunctions by 12
when it allocates the table. The multiplication is done so that you can easily switch
between collectDetailed and collectSummary methods without changing
the parameters.

Profiler Reference
Profiler Function Reference

43Profiler Supplement

ProfilerDump()

ProfilerDump() dumps the current profile information without clearing it.

long ProfilerDump(char* filename);

Remarks

This can be useful for dumping intermediate results on a long task. If the specified file
already exists, a new file is created with an incrementing number appended to the
filename. This allows the dump to be called inside a loop with a constant filename.

A non-zero value from ProfilerDump() indicates that an error has occured.

ProfilerClear()

ProfilerClear() clears any profile information from the buffers.

void ProfilerClear(void);

Remarks

ProfilerClear() retains the settings of collectionMethod and timeBase
that were set by ProfilerInit(). It does not deallocate the buffers.

Profiler Reference
Profiler Function Reference

44 Profiler Supplement

45Profiler Supplement

Index

Symbols
#pragma directives, profiler 37
__copy_vectors() 40
__PROFILE_ENTRY 24
__PROFILE_EXIT 24

A
abnormal termination 23
accuracy, Profiler 28
active profiler 10
API, including Profiler 17

B
bestTimeBase 21, 39

C
class view 31
collection method 21
compiler directives 20, 37

D
data

finding problems 32
sorting 29
viewing 27

data columns
contents 28

debugging
profiled code 24

design problems, finding 30
detail view 30

finding design problems 30
detailed data, collecting 21
directives

C/C++ 37
compiler 20

display accuracy, Profiler 28
dumping results 18

E
early profilers 10
exceptions 23

exit() 24
exiting Profiler 18

F
finding problems 32
flat view 29
function-level profiling 16, 37

I
initialize Profiler 17
interface files 17
interrupt time

and profiler 42
interrupt time, and profiler 41

L
Libraries

Profiler 19–??

longjmp() 23

M
memory usage 22, 38
microsecondsTimeBase 21, 39

O
object performance 31
Open command (Profiler) 27

P
passive profiler 10
PPCTimeBase 21, 39
preprocessor directives 20

C/C++ 37
Profiler

accuracy 28
active 10
components 14
defined 9
early 10
exiting 18
getting results 18
including API 17

46 Profiler Supplement

initialize 17
libraries 19–??
memory usage 22
passive 10
recursive calls 19
sampling 10
Using Debugger with 24

Profiler Function Reference 39–??
ProfilerClear() 43
ProfilerDump() 43
ProfilerGetDataSizes() 42
ProfilerGetStatus() 42
ProfilerInit() 40
ProfilerSetStatus() 41
ProfilerTerm() 41

Profiler Information 15
Profiler window

data columns 28–??

ProfilerClear() 43
ProfilerDump() 24, 43
ProfilerGetDataSizes() 42
ProfilerGetStatus() 42
ProfilerInit() 22, 38, 40

warning 24, 25
ProfilerSetStatus() 41
ProfilerTerm() 24, 41

warning 24, 25
profiling

activating 15
by function 16, 37
exceptions 23
inline functions 34
setjmp() 23

Project Settings 15

R
recursive calls 19
results

dumping 18
finding problems 32
opening 27
sorting 29

S
sampling profiler 10
saving results 18
setjmp() 23

sorting data 29
stack space, finding problems 32
summary data 21

T
ticksTimeBase 21, 28, 39
time hogs, finding 32
timebase 21, 39
timeMgrTimeBase 21, 39

V
view in profiler

class 31
detail 30
flat 29

W
what’s in this manual 5
where to learn more 6
win32TimeBase 21, 39

