
© Freescale Semiconductor, Inc., 2007. All rights reserved.

Freescale Semiconductor FMSTERUG
User’s Guide

FreeMASTER for Embedded
Applications

User Guide

Rev. 2.0, 9/2007

Important Notice

FreeMASTER for Imbedded Applications Rev. 2.0

2 Freescale Semiconductor

Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is
provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals.
This EVB may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or
computer board via off-the-shelf cables. This EVB is not a Reference Design and is not intended to represent a final design
recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit
board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective
considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open
construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic
discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards
must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales
and technical support services.

As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and
therefore may not meet the technical requirements of the directive. Please be aware that the products received may not be
regulatory compliant or agency certified (FCC, UL, CE, etc.).

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of
delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typical”, must be validated for each customer application
by customer’s technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation
where personal injury or death may occur.

Should a Buyer purchase or use Freescale products for any such unintended or unauthorized application, The Buyer shall
indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding
the design or manufacture of the part.

Freescale and the Freescale Logo are registered trademarks of Freescale, Inc. Freescale, Inc. is an Equal
Opportunity/Affirmative Action Employer. Freescale and the Freescale Logo are registered in the US Patent and Trademark
Office. All other product or service names are the property of their respective owners.

Table of Contents
Paragraph Page
Number Number

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor TOC-1

Important Notice

Chapter 1 Introduction
1.1 Overview ..1
1.2 Supported Platforms ..1

1.2.1 Going Around SCI..1
1.3 Where to Find the Latest Version ..1
1.4 FreeMASTER Features ...1
1.5 License ..2

Chapter 2 QUESTIONS and ANSWERS
2.1 Why do I need it? ...4
2.2 What does it do? ..4
2.3 Why is it such a great demonstration tool? ..4
2.4 What could I do with it if I follow the instructions? ...4
2.5 How is it connected to a target development board? ..4
2.6 What are all of these dialog boxes for? ...4
2.7 How does a project relate to my application? ..5
2.8 How do I set up remote control? Why would I want to? ..5
2.9 What is the Watch-grid? ..5
2.10 What is the Recorder? ...5
2.11 What is the Oscilloscope? ...5

Chapter 3 INSTALLATION
3.1 System Requirements ...6
3.2 Enabling a FreeMASTER Connection on the Target Application6
3.3 How to Install ...6

Chapter 4 FreeMASTER USAGE
4.1 Application Window Description ..7

4.1.1 Project Tree ...9
4.1.2 Detail View...18
4.1.3 Watch-Grid...20

4.2 Variables ..20
4.2.1 Generating Variables ...23

4.3 Commands ..23
4.4 Importing Project Files ...27
4.5 Menu description ...29

4.5.1 File Menu...29
4.5.2 Edit Menu...29
4.5.3 View Menu...30

Table of Contents

FreeMASTER for Embedded Applications Rev. 2.0,

TOC-2 Freescale Semiconductor

4.5.4 Explorer Menu ...30
4.5.5 Scope Menu...30
4.5.6 Item Menu..30
4.5.7 Project Menu..31

4.6 Toolbars ...31
4.6.1 Toolbar...31
4.6.2 Watch Bar ..31

Chapter 5 PROJECT OPTIONS
5.1 Communication ..32
5.2 Symbol Files ..33

5.2.1 Regular Expression-based MAP File Parser ...34
5.3 Packing Resource Files into Project File ...35

5.3.1 Resource Files Manager..37
5.4 HTML Pages ..37
5.5 Demo Mode ...38

Chapter 6 HTML and SCRIPTING
6.1 Special HTML Hyperlinks ..40
6.2 FreeMASTER ActiveX Object ..41
6.3 FreeMASTER ActiveX Object Methods ...42

6.3.1 SendCommand..42
6.3.2 SendCommandDlg ..43
6.3.3 ReadVariable ...44
6.3.4 WriteVariable ...45
6.3.5 ReadMemory ...46
6.3.6 WriteMemory ...47
6.3.7 ReadXxxArray..48
6.3.8 WriteXxxArray..49
6.3.9 GetCurrentRecorderData...50
6.3.10 GetCurrentRecorderSeries ..51
6.3.11 StartCurrentRecorder ..52
6.3.12 StopCurrentRecorder...53
6.3.13 GetCurrentRecorderState..54
6.3.14 RunStimulators ..55
6.3.15 StopStimulators ...56

6.4 FreeMASTER ActiveX Properties ..57
6.5 FreeMASTER ActiveX Object Events ..58

6.5.1 OnRecorderDone...58
6.5.1.1 Description..58

6.6 Examples ...58

Appendix A References ...59

Appendix B Revision History ..60

List of Figures
Figure Page
Number Number

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor LOF-1

Figure 4-1. Initial Application Window ...7
Figure 4-2. Application Window ..8
Figure 4-3. Project Block Properties - Main Page ...9
Figure 4-4. Project Block Properties - Watch Page ...10
Figure 4-5. Project Block Properties - App. commands Page ...10
Figure 4-6. Scope properties - Main Page ..11
Figure 4-7. Scope Properties - Set-up Page ...12
Figure 4-8. Basic Oscilloscope Chart ..13
Figure 4-9. Third Variable Added ..13
Figure 4-10. Third Variable Added - The Result ...14
Figure 4-11. Joining two Y-blocks ...14
Figure 4-12. Joining two Y-blocks - The Result ..15
Figure 4-13. Recorder Properties - Main Page ...16
Figure 4-14. Recorder Properties - Setup Page ..17
Figure 4-15. Recorder Properties - Trigger Page ..17
Figure 4-16. Demo Application Control Page ..18
Figure 4-17. HTML Control Page Examples ...19
Figure 4-18. Variables list Dialog Box ...20
Figure 4-19. Variable Dialog Box - Definition Tab ...21
Figure 4-20. Variable Dialog Box - Modifying Tab ..22
Figure 4-21. Generating Variables ..23
Figure 4-22. Project Application Commands ...24
Figure 4-23. Sending Application Command ..24
Figure 4-24. Application Command - Definition Tab ...25
Figure 4-25. Application Command - Arguments Tab, page 1 ..25
Figure 4-26. Application Command - Arguments Tab, page 2 ..26
Figure 4-27. Application Command - Return Codes Tab ..27
Figure 4-28. Import Project Tree Items ...28
Figure 4-29. Import Project Objects ..28
Figure 4-30. File Menu ..29
Figure 4-31. Export graph image Dialog ...29
Figure 4-32. View Menu ..30
Figure 4-33. Explorer Menu ..30

List of Figures

FreeMASTER for Embedded Applications Rev. 2.0,

LOF-2 Freescale Semiconductor

Figure 4-34. Scope Menu ..30
Figure 4-35. Project Menu ...31
Figure 4-36. Toolbar ..31
Figure 4-37. Watch Bar ...31
Figure 5-1. Communication Options ...32
Figure 5-2. Symbol Files Options ..33
Figure 5-3. Regular Expression-based xMap File Parser ...35
Figure 5-4. Testing Your Regular Expression ...35
Figure 5-5. Pack Directory Options ...36
Figure 5-6. Pack Directory Options, Example 2 ..36
Figure 5-7. Resource Files Manager ...37
Figure 5-8. HTML Pages Options ...38
Figure 5-9. Demo Mode Options ...38
Figure 5-10. Exit Demo Mode Confirmation Dialog ...39

List of Tables
Table Page
Number Number

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor LOT-1

Table 6-1. FreeMASTER ActiveX Object Properties ..57

List of Tables

Rev. 2.0, 9/2007

LOT-2 Freescale Semiconductor

Introduction

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 1

Chapter 1 Introduction

1.1 Overview
This User Manual describes the FreeMASTER application (formerly known as PC Master) developed by Freescale engineers to
allow control of an embedded application from a graphical environment running on a PC. The application was initially created for
developers of hard real-time motor control applications, but many users found it very useful for their custom development.

The FreeMASTER application is fully backward compatible with previous “PC Master” versions.

1.2 Supported Platforms
The PC-side FreeMASTER application can be installed on any Microsoft Windows-based systems starting Windows 98. For the
embedded side, there were several different serial communication (SCI) drivers for each supported platform before 2006. The
drivers differed in a programming style, other software drivers requirements, and the way the drivers were configured.

In March 2006, Freescale released a SCI driver common for all supported platforms: DSP56F800, MC56F800E, HC08, HCS08,
HC12, HCS12, HCS12X, MPC500, MPC5500, and ColdFire V2 MCF52xx. Although it still contains some platform-specific
functions, the vast majority of the driver code, the documentation, and the way how the driver is configured is the same across
all supported platforms. Together with the PC-side FreeMASTER version 1.3 released in 2006, the driver brought support for new
features like target memory protection, target-side data addressing, and others. The new features are described in detail in the
new SCI driver User Manual.

1.2.1 Going Around SCI
The original PC Master application already enabled implemention of custom communication plug-in modules, which could be
used to replace the native SCI communication with a custom one. The latest FreeMASTER version 1.3 contains two such plug-in
modules, which proved to be very useful in application development and debugging.

The BDM Communication Plug-in enables a basic memory access operations to be performed by the FreeMASTER on the
HCS08 and HC12/HCS12/X targets without any target CPU intervention. In other words, no embedded-side communication
driver is needed, and the FreeMASTER is still able to perform its basic tasks, which are reading and writing the target memory.
Currently, only the P&E Multilink BDM cables are supported (both USB and LPT), but there is a plan to extend this support to
other kinds of interface cables.

The JTAG/EOnCE Communication Plug-in enables a fully-featured communication with the 56F800E hybrid microcontrollers
over the JTAG interface cable (either using a direct LPT access, or a universal connection of CodeWarrior Command Converter
Server). The embedded-side driver is needed in this case. The plug-in uses the Real-time Data Exchange feature of
JTAG/EOnCE, which is very similar to the SCI communication. The driver is included in the FMASTERSCIDRV as a configurable
option for the 56F800E platform.

See more details about the communication plug-in modules in the read-me documents installed together with the latest
FreeMASTER application.

1.3 Where to Find the Latest Version
There are two software setup packs available on the Freescale web pages. One is for the PC-side application, and one is for the
new SCI driver for the embedded-side.

The home page of the FreeMASTER application can be found by looking under the “FREEMASTER” keyword on
www.freescale.com. The direct link to the home page as of the writing this document is
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER

Similarly, the embedded-side SCI drivers can be found by the keyword FMASTERSCIDRV. The direct download link is also
referred in the “downloads” section of the FreeMASTER application home page.
https://www.freescale.com/webapp/sps/download/license.jsp?colCode=FMASTERSCIDRV

1.4 FreeMASTER Features
• Graphical environment
• Easy to understand navigation
• Simple RS232 native connection and other options possible on selected platforms (BDM, JTAG,...)
• Real-time access to embedded-side C variables

www.freescale.com
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER
https://www.freescale.com/webapp/sps/download/license.jsp?colCode=FMASTERSCIDRV
www.freescale.com

Introduction

FreeMASTER for Embedded Applications Rev. 2.0,

2 Freescale Semiconductor

• Visualization of real-time data in the Scope window
• Acquisition of fast data changes using the on-target Recorder
• Built-in support for standard variable types (integer, floating point, bit fields)
• Value interpretation using custom defined text messages
• Several built-in transformations for real type variables
• Automatic C-application variable extraction from compiler output files (ELF/DWARF1/2, Text-based map files,...)
• Demo mode with password protection support
• HTML-based description or navigation pages
• ActiveX interface to enable VBScript or JScript control over embedded applications
• Remote Communication Server enabling a connection to target board over a network, including the Internet

Features not available in the free distribution
• Communication plug-in modules available for other physical media and protocols (CAN/CCP, Ethernet, TCP/IP,...)
• The Matlab interface to the FreeMASTER ActiveX object

1.5 License
FREESCALE SEMICONDUCTOR SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either as an individual or as an authorized representative of your employer) and
Freescale Semiconductor, Inc. (“Freescale”). It concerns your rights to use this file and any accompanying written materials (the
“Software”). In consideration for Freescale allowing you to access the Software, you are agreeing to be bound by the terms of
this Agreement. If you do not agree to all of the terms of this Agreement, do not download the Software. If you change your mind
later, stop using the Software and delete all copies of the Software in your possession or control. Any copies of the Software that
you have already distributed, where permitted, and do not destroy will continue to be governed by this Agreement. Your prior use
will also continue to be governed by this Agreement.

LICENSE GRANT. Freescale grants to you, free of charge, the non-exclusive, non-transferable right (1) to use the Software
exclusively in conjunction with a development, prototype, or production platform utilizing at least one processor unit
from Freescale (“Exclusive Use”), (2) to reproduce the Software, (3) to distribute the Software, and (4) to sublicense to others
the right to use the distributed Software. The Software is provided to you only in object (machine-readable) form. You may
exercise the rights above only with respect to such object form. You may not translate, reverse engineer, decompile, or
disassemble the Software except to the extent applicable law specifically prohibits such restriction. In addition, you must prohibit
your sublicensees from doing the same. If you violate any of the terms or restrictions of this Agreement, Freescale may
immediately terminate this Agreement, and require that you stop using and delete all copies of the Software in your possession
or control.

COPYRIGHT. The Software is licensed to you, not sold. Freescale owns the Software, and United States copyright laws and
international treaty provisions protect the Software. Therefore, you must treat the Software like any other copyrighted material
(e.g. a book or musical recording). You may not use or copy the Software for any other purpose than what is described in this
Agreement. Except as expressly provided herein, Freescale does not grant to you any express or implied rights under any
Freescale or third-party patents, copyrights, trademarks, or trade secrets. Additionally, you must reproduce and apply any
copyright or other proprietary rights notices included on or embedded in the Software to any copies or derivative works made
thereof, in whole or in part, if any.

SUPPORT. Freescale is NOT obligated to provide any support, upgrades or new releases of the Software. If you wish, you may
contact Freescale and report problems and provide suggestions regarding the Software. Freescale has no obligation whatsoever
to respond in any way to such a problem report or suggestion. Freescale may make changes to the Software at any time, without
any obligation to notify or provide updated versions of the Software to you.

NO WARRANTY. TO THE MAXIMUM EXTENT PERMITTED BY LAW, FREESCALE EXPRESSLY DISCLAIMS ANY
WARRANTY FOR THE SOFTWARE. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. YOU ASSUME THE ENTIRE RISK ARISING OUT OF
THE USE OR PERFORMANCE OF THE SOFTWARE, OR ANY SYSTEMS YOU DESIGN USING THE SOFTWARE (IF ANY).
NOTHING IN THIS AGREEMENT MAY BE CONSTRUED AS A WARRANTY OR REPRESENTATION BY FREESCALE THAT
THE SOFTWARE OR ANY DERIVATIVE WORK DEVELOPED WITH OR INCORPORATING THE SOFTWARE WILL BE FREE
FROM INFRINGEMENT OF THE INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

INDEMNITY. You agree to fully defend and indemnify Freescale from any and all claims, liabilities, and costs (including
reasonable attorney’s fees) related to (1) your use (including your sublicensee’s use, if permitted) of the Software or (2) your
violation of the terms and conditions of this Agreement.

Introduction

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 3

LIMITATION OF LIABILITY. IN NO EVENT WILL FREESCALE BE LIABLE, WHETHER IN CONTRACT, TORT, OR
OTHERWISE, FOR ANY INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES, INCLUDING, BUT
NOT LIMITED TO, DAMAGES FOR ANY LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS, OR LOST
PROFITS, SAVINGS, OR REVENUES TO THE FULL EXTENT SUCH MAY BE DISCLAIMED BY LAW.

COMPLIANCE WITH LAWS; EXPORT RESTRICTIONS. You must use the Software in accordance with all applicable U.S. laws,
regulations and statutes. You agree that neither you nor your licensees (if any) intend to or will, directly or indirectly, export or
transmit the Software to any country in violation of U.S. export restrictions.

GOVERNMENT USE. Use of the Software and any corresponding documentation, if any, is provided with RESTRICTED
RIGHTS. Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) of the
Commercial Computer Software--Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is Freescale
Semiconductor, Inc., 6501 William Cannon Drive West, Austin, TX, 78735.

HIGH RISK ACTIVITIES. You acknowledge that the Software is not fault tolerant and is not designed, manufactured or intended
by Freescale for incorporation into products intended for use or resale in on-line control equipment in hazardous, dangerous to
life or potentially life-threatening environments requiring fail-safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems, in which the
failure of products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk
Activities”). You specifically represent and warrant that you will not use the Software or any derivative work of the Software for
High Risk Activities.

CHOICE OF LAW; VENUE; LIMITATIONS. You agree that the statutes and laws of the United States and the State of Texas, USA,
without regard to conflicts of laws principles, will apply to all matters relating to this Agreement or the Software, and you agree
that any litigation will be subject to the exclusive jurisdiction of the state or federal courts in Texas, USA. You agree that regardless
of any statute or law to the contrary, any claim or cause of action arising out of or related to this Agreement or the Software must
be filed within one (1) year after such claim or cause of action arose or be forever barred.

PRODUCT LABELING. You are not authorized to use any Freescale trademarks, brand names, or logos.

ENTIRE AGREEMENT. This Agreement constitutes the entire agreement between you and Freescale regarding the subject
matter of this Agreement, and supersedes all prior communications, negotiations, understandings, agreements or
representations, either written or oral, if any. This Agreement may only be amended in written form, executed by you and
Freescale.

SEVERABILITY. If any provision of this Agreement is held for any reason to be invalid or unenforceable, then the remaining
provisions of this Agreement will be unimpaired and, unless a modification or replacement of the invalid or unenforceable
provision is further held to deprive you or Freescale of a material benefit, in which case the Agreement will immediately terminate,
the invalid or unenforceable provision will be replaced with a provision that is valid and enforceable and that comes closest to
the intention underlying the invalid or unenforceable provision.

NO WAIVER. The waiver by Freescale of any breach of any provision of this Agreement will not operate or be construed as a
waiver of any other or a subsequent breach of the same or a different provision.

QUESTIONS and ANSWERS

FreeMASTER for Embedded Applications Rev. 2.0,

4 Freescale Semiconductor

Chapter 2 QUESTIONS and ANSWERS

First question: why place this topic immediately after an introduction? The reason is really quite practical. While writing this User
Manual, the following questions were raised. Since the answers to these questions clarified terms and topics described further
in the manual, it was decided to put this topic before those that are more detailed and perhaps less easily understood.

2.1 Why do I need it?
The primary goal of developing FreeMASTER software was to deliver a tool for debugging and demonstrating Motor Control
algorithms and applications. The result was a tool with the versatility to be used for multipurpose algorithms and applications.
Some real-world uses include:

• Real-time debugging - FreeMASTER allows users to debug applications in true real-time through its ability to watch
variables. Moreover, it allows debugging at the algorithm level, which helps to shorten the development phase.

• Diagnostic tool - FreeMASTER remote control capability allows it to be used as a diagnostic tool for debugging customer
applications remotely across a network.

• Demonstrations - FreeMASTER is an outstanding tool for demonstrating algorithm or application execution and variable
outputs.

• Education - FreeMASTER may be used for educational purposes. Its application control features allow students to play
with the application in demonstration mode, learning how to control program execution.

2.2 What does it do?
FreeMASTER communicates with the target system application via serial communication to read and write application internal
variables. FreeMASTER provides the following visualization features for displaying variable information in a friendly format:

• Oscilloscope - provides monitoring/visualization of application variables in the same manner as a classical oscilloscope
with a CRT. In this case, monitoring rates are limited by the serial communication speed.

• Recorder - provides monitoring/visualization of application variables that are changing at a rate faster than the sampling
rate of the oscilloscope. While the Scope periodically reads FreeMASTER variable values and plots them in real-time,
the Recorder is running on the target board. Variable values are sampled into a memory buffer on the board, then the
sampled data is downloaded from board to FreeMASTER. This mechanism allows a much shorter sampling period and
enables sampling and plotting of very quick actions.

2.3 Why is it such a great demonstration tool?
The embedded-side algorithm can be demonstrated in one block, or divided into several blocks, depending on which possibility
better reflects the algorithm structure. Each block’s input parameters may be explored to observe how they affect output
parameters. Each block has a description tab for explaining algorithm details using multimedia-capable and scriptable HTML
format.

2.4 What could I do with it if I follow the instructions?
Using the demo project included with the embedded-side implementation, it is easy to learn how to use FreeMASTER by playing
with the project’s defined blocks and parameters. The demo project allows you to understand how to control the application as
well. You can go into details of each item, check its properties, change parameters, and determine how each can be used in your
application. For a detailed explanation of the parameters, see Chapter 4, “FreeMASTER USAGE.

2.5 How is it connected to a target development board?
FreeMASTER requires a serial communication port on the target development hardware. Connection is made using a standard
RS-232 serial cable. On one side, the cable is plugged into the PC serial port (COM1, COM2 or other), and on the opposite side,
into the target development board’s serial connector.

In addition to RS232 link, the custom communication plug-in modules can be written and used by FreeMASTER. There are
communication plug-ins available for CAN Calibration Protocol, JTAG Real-time Data Exchange port on 56F800E, BDM interface
on HCS08/12 devices, etc.

2.6 What are all of these dialog boxes for?
In Chapter 4, “FreeMASTER USAGE, you will see pictures with dialog boxes. These dialog boxes are used as a questionnaire,
where you will enter parameters describing, for example, one algorithm block or application variable and its visualization.

QUESTIONS and ANSWERS

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 5

2.7 How does a project relate to my application?
There can be many FreeMASTER projects related to a single target-board application. For example, three specific FreeMASTER
projects can work with the same board application to provide three different purposes:

• to provide information used during debug process
• to provide service maintenance capabilities
• may be used for learning about your application during operator training phase

2.8 How do I set up remote control? Why would I want to?
For remote control, you need at least two computers connected via a network, one running the standalone mini-application called
FreeMASTER Remote Communication Server, and the second running the standard FreeMASTER application. The target
development board is then connected to the computer running FreeMASTER Server.

Remote control operation is valuable for performing remote debugging or diagnostics. An application may be diagnosed remotely
by connecting the target development board to the remote PC, and then running the FreeMASTER locally with a service project
for this customer’s application.

2.9 What is the Watch-grid?
The Watch-grid is one of the panes in the FreeMASTER application window. It shows selected application variables and their
content in human readable format. The application variables displayed are selected separately in the block property settings of
each project block.

2.10 What is the Recorder?
The Recorder is created in software on the target development board, and stores changes of variables in real-time. You can
define the list of variables which will be recorded by the embedded-side timer periodic interrupt service routine. After the
requested number of variable samples are stored within the Recorder buffer on the target board, it is downloaded from the board
and displayed in FreeMASTER Recorder pane as a graph. The main advantage of the Recorder is the ability to sample very fast
actions.

2.11 What is the Oscilloscope?
FreeMASTER Oscilloscope is similar to the classical hardware oscilloscope. It shows graphically selected variables in real-time.
The variable values are read from the board application in real-time through the serial communication line. The oscilloscope GUI
looks similar to the Recorder, except that the sampling speed of variables is limited by the communication data link.

INSTALLATION

FreeMASTER for Embedded Applications Rev. 2.0,

6 Freescale Semiconductor

Chapter 3 INSTALLATION

3.1 System Requirements
The FreeMASTER application can run on any computer with Microsoft Windows 98 or later operating system. Before installing,
the Internet Explorer 4.0 or higher (5.5 is recommended) should be installed.

The following requirements result from those for the Internet Explorer 4.0 application:

Computer: 486DX/66 MHz or higher processor

Operating system: Microsoft Windows XP, Windows 2000, Windows NT4 with SP6, Windows 98

Required software: Internet Explorer 4.0 or higher installed. For selected features (e.g. regular expression-based parsing),
Internet Explorer 5.5 or higher is required.

Hard drive space: 10MB

Other hardware requirements: Mouse, serial RS-232 port for local control, network access for remote control

3.2 Enabling a FreeMASTER Connection on the Target Application
To enable the FreeMASTER connection to the target board application, follow the instructions provided with the embedded-side
driver, the FMASTERSCIDRV. The recommended and fastest way to start using FreeMASTER is by trying the sample
application. Note that the sample application name may still refer to the “PC Master” software, which is the previous name of the
FreeMASTER tool. FreeMASTER is fully backward compatible with PC Master.

3.3 How to Install
The FreeMASTER application is distributed either as a part of bigger development tool (e.g. Freescale CodeWarrior), or as a
standalone, single file, self-extracting, executable file. In the latter case, run the executable file and follow the instructions on the
screen. This chapter contains a detailed description of the user interface for the FreeMASTER application.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 7

Chapter 4 FreeMASTER USAGE

4.1 Application Window Description
When the application is started, the main window is displayed on the screen. When there is no project loaded, the welcome
page is displayed in the main pane of the window. The initial look of the main window is shown in <st-blue>Figure 4-1.

Figure 4-1. Initial Application Window

The welcome page contains links to the documentation and to the application help. There are also several other links
corresponding to the standard menu commands (for example, the Open project command).

In the remaining part of this chapter, an application usage is demonstrated on an example of a simple demo application, which
is a part of the SCI Driver installation (FMASTERSCIDRV).

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

8 Freescale Semiconductor

Figure 4-2. Application Window

As shown in Figure 4-2, the application window consists of four panes. Three panes are always displayed: the Project Tree pane,
the Detail View pane and the Variable Watch pane. The Commands/Stimulators “fast access” pane may be shown or hidden as
described later in Section 4.5.3, “View Menu.

The Project Tree pane contains a logical tree structure of the application being monitored/controlled. Users can add project
sub-blocks, Scope, and Recorder definitions to the project block in a logical structure to form a Project Tree. This pane provides
point and click selection of defined Project Tree elements.

The Detail View pane dynamically changes its content depending on the item selected in the Project Tree. Depending on the type
of the item selected in the tree, this pane also provides several tabs with sub-pages of additional information associated to the
item.

• control page = An HTML page created for controlling the target system
• algorithm block description = An HTML page or another document whose URL is defined in the selected Project Tree

item’s properties
• current item help = Another HTML document whose URL is defined in the Scope or Recorder properties
• oscilloscope = A real-time graph displaying application variables as defined in the Scope properties
• recorder = A graph displaying recorded application variables as defined in the Recorder properties
• The control page, when defined, is available for all Project Tree items to allow the user to control the board at any time.

The content of the algorithm block description page changes with the Project Tree item selected. When a Scope or
Recorder is selected from the Project Tree, the current item help and oscilloscope/recorder chart pages are also
available.

The Variable Watch pane contains the list of variables assigned to the watch. The pane displays the immediate variable values,
and also enables you to change them (if this is enabled in the variable definition).

All the information related to one application is stored in a single project file with the extension “.pmp”. This information includes
the project settings and options, the Project Tree, Detail View HTML pages, real-time chart definitions, watch interface settings,
variables and commands, stimulators and more.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 9

4.1.1 Project Tree
When a new project is created, the Project Tree window contains an empty structure with just one root project block called “New
Project”. You can then change properties of this block or add sub-blocks, Scopes or Recorders to the structure.

Property changes and Project Tree additions can be done in two ways:
• Select an item in the Project Tree and right mouse click to use the local menu
• Select an item in the Project Tree and select main menu “Item” pull-down

4.1.1.1 Project Block and Sub-block
The Project block typically covers an integral component of the application or algorithm being demonstrated with FreeMASTER.
Sub-blocks may be added, should the user care to break the algorithm into multiple blocks. Each block has its own algorithm
block description page, watch variables and commands. All of these can be defined in the Project block properties dialog, as
shown in Figure 4-3.

Figure 4-3. Project Block Properties - Main Page

The Main page contains the following user configuration items.
• Name = Name of Project block that will be displayed in the Project Tree
• Description URL = Select a description URL or a path to .htm or .html file to be shown in the Detail View pane under the

algorithm block description tab. This file may be created with any HTML editor such as MS Front Page Express or
Netscape Composer. In the demo application used as our example, the description page is left empty, causing the
“Algorithm Block Description” tab to be hidden. See Section 4.1.2, “Detail View for more details.

• Watch-grid setup = You can select columns to display in the Watch-grid (Name, Value, Unit, Period); specify the column
order using the Up and Down arrow buttons; check the grid behavior options (column resizing/swapping, row resizing);
allow format changes to grid cells with Toolbar (see Section 4.6.2, “Watch Bar), and edit in-place variable values by
checking the next option boxes.

The Watch page shown in Figure 4-4 selects which FreeMASTER project variables are to be watched in the context of this project
block.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

10 Freescale Semiconductor

Figure 4-4. Project Block Properties - Watch Page

The variables in the Watched variables list are the project variables which are currently selected for watching in the Watch-grid.
The Available variables list contains the remaining available project variables not selected for watching with the current block item
selected in the tree. You can use the following buttons:

• Add/Remove = Moves variables into and out of the Watched variables window
• New = Creates a new variable (see Section 4.2, “Variables)
• Clone = Creates a new variable based on a copy of the selected variable
• Edit = Changes the selected variable properties
• Delete = Deletes the selected variable from the project
• Up/Down arrows = Sets the display order of the watched variables in the Watch-grid

FreeMASTER communicates with the board application by reading/writing variables and/or sending so called “application
commands” (see Section 4.3, “Commands). As the variable appearance in the Watch-grid can be dependent on the block
selected in the Project Tree pane, the availability of application commands can also be dependent on the selected block. The
App. commands page, shown in Figure 4-5, sets which commands will be available in the Fast Access pane in the context of this
project block and also enables the management of application commands.

Figure 4-5. Project Block Properties - App. commands Page

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 11

The commands are listed in the Available commands window. Use the Add button to move a command into the Displayed
commands window and to make it available in the Fast Access pane. Use the Remove button for reverse operation. You can use
the following buttons:

• New = Creates a new command (see Section 4.3, “Commands)
• Clone = Creates a new command based on a copy of the selected command
• Edit = Changes the selected command properties
• Delete = Deletes the selected command
• Up/Down arrows = Sets the display order of commands in the Fast Access pane

4.1.1.2 Scope
The Scope item in the Project Tree structure defines a real-time oscilloscope chart to be shown in the Detail View pane. The
Scope properties window, shown in Figure 4-6, allows you to configure the appearance and characteristics of the scope chart.

The Main page contains these user configuration items:
• Name = The name of the Scope item that will be displayed in the Project Tree
• Description URL = Specify the URL of the document or local path to a file to be shown in the Detail View pane under the

current item help tab. This file may be created with any HTML editor, such as MS Front Page Express or Netscape
Composer, and should explain the chart variables and settings to the user.

• Scope global properties = Common properties for all scope variables
• Period = Oscilloscope sampling period
• Buffer = The number of samples in one data subset in the chart
• Legend location = Set the visibility and location of the chart legend

Figure 4-6. Scope properties - Main Page

• Grid = Choose the horizontal and/or vertical grid lines to be displayed in the chart
• Graph type = Select the mode of oscilloscope operation
• Time graph = A variable (values versus time) will be displayed in the chart
• X-Y graph = Inter-variable dependencies (value versus value) will be displayed in the chart
• Graph setup (for Time graph):

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

12 Freescale Semiconductor

— X-axis label = Specify the name displayed for the X axis
— X-axis units = Select the axis units
— X-axis width = Specify the range of the X axis
— Auto-scale X axis until width is reached = Scales the axis width after Scope start when the length of subset is shorter

than the X axis width
• Graph setup (for X-Y graph):

— X-variable = Selects the variable whose values will be used for X axis values
— X-axis min = Sets the X axis lower limit value (checks the auto box to enable X axis auto-scaling)
— X-axis max = Sets the X axis upper limit value (checks the auto box to enable X axis auto-scaling)

The Setup page (Figure 4-7) is used to assign variables to be displayed on the oscilloscope chart. Up to eight Chart vars (seven
in X-Y mode) may be selected for display in the chart and assigned to a maximum of five Y-blocks. Select one of eight positions
and browse for a variable in the drop-down list below the list to set or change a variable at this position. Select the first (empty)
item in the drop-down list to clear the selected position in the list. Each chart variable is assigned to a Y block.

Figure 4-7. Scope Properties - Set-up Page

The Y block is a graph element represented by one left Y axis and, optionally, one right Y axis also. The Y blocks can be drawn
separately, or overlapped in the graph.

• Assign vars to block button = Assigns successive selected Chart vars to a Y block. Select the chart variables you want
to group into one Y block and press this button. A simple assignment of two variables into two separate Y blocks is
shown in Figure 4-7.

• In the Y-block Left axis frame, set the axis range by specifying the min and max axis value, or check auto box to enable
automatic minimum and/or maximum tracking. Select a Style of drawing the data subsets from the drop-down list box.

• Type the Left axis label, which will be assigned to a selected Y-block.

The resulting oscilloscope chart is displayed in Figure 4-8.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 13

Figure 4-8. Basic Oscilloscope Chart

• When more than one variable are displayed in a single Y-block, a separate Right axis may be shown. For the selected
Y-block, select the number of Right axis vars that will use the right axis within the Y-block. The value of Right axis vars
specifies the number of variables (counting from the bottom of the Chart vars list) that are assigned to the right axis
within the Y-block.

• As with Left axis, specify min, max, style and axis label for the right axis in the selected Y block.

In Figure 4-9, we added one variable to the second Y-block and set Right axis vars to one. This means that the added variable
(var32inc) will be assigned to the Right axis labeled var32 Increment.

Figure 4-9. Third Variable Added

The var32inc variable value was changed manually from 100 to 1000 to achieve the waveform shown in Figure 4-10.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

14 Freescale Semiconductor

Figure 4-10. Third Variable Added - The Result

Figure 4-11 shows the two Y-blocks joined, using the “Join” button. Both Y-blocks will be plotted “overlapped”, causing multiple
X axes to be drawn (two in our case).

Figure 4-11. Joining two Y-blocks

The resulting chart is displayed in Figure 4-12

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 15

Figure 4-12. Joining two Y-blocks - The Result

4.1.1.3 Recorder
The Recorder item in the Project Tree structure defines a real-time recorder chart to be shown in the Detail View pane. While the
Scope periodically reads variable values and plots them in real time, the Recorder is running on the target board, reads
application variables, and sends them to the FreeMASTER tool in a burst mode fashion. The recorder variables are continually
sampled and stored into a circular buffer in the target board application. When the trigger event is detected by the target, data
samples are counted until the number of Recorder samples is reached. At this point, data is sent to the FreeMASTER application.
This mechanism enables use of much shorter sampling period and enables sampling and plotting very quick actions.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

16 Freescale Semiconductor

Figure 4-13. Recorder Properties - Main Page

The Main page contains the following user configuration items:
• Name = The name of the Recorder item that will be displayed in the Project Tree
• Description URL = Specify the document’s URL or local path to a file to be shown in the Detail View pane under the

current item help tab. This file may be created with any HTML editor, such as MS Front Page Express or Netscape
Composer, and should explain the chart variables and settings to the user.

• Recorder global properties = Common properties for all Recorder variables
— Board time base = A sampling period preset by the board application. In the SDK, the time base value can be

adjusted by setting PC_MASTER_RECORDER_TIME_BASE in the appconfig.h file during the board application
development.

— Time base multiple = Sets an integer multiple of the time base to extend the sampling period used for recorder
operation

— Recorded samples = The number of samples buffered for one recorded subset
— On board recorder memory = Displays the amount of on-board application memory allocated for recorder operation.

Based on the memory size, recorded variables format, and the number of recorded variables, the maximum number
of points which fit in the recorder’s memory is calculated and displayed. The Recorded samples value set should
be lower than this result.

• Legend location = Sets the visibility and location of the chart legend
• Grid = Chooses the horizontal and/or vertical grid lines to be displayed in the chart
• Graph type = Selects the mode of recorder operation

— Time graph = A variable (values versus time) will be displayed in the chart
— X-Y graph = Inter-variable dependencies (value versus value) will be displayed in the chart

• Graph setup (for Time graph):
— X-axis label = Specify the name displayed for X axis
— X-axis units = Selects the axis units

• Graph setup (for X-Y graph):

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 17

— X-variable = Selects the variable whose values will be used for X axis values
— X-axis min = Sets the lower limit value of the X axis (check the auto box to enable auto-scaling of the X axis)
— X-axis max = Sets the upper limit value of the X axis (check the auto box to enable auto-scaling of the X axis)

The Setup page of the Recorder properties dialog, shown in Figure 4-14, looks exactly the same as the appropriate page of the
Scope properties dialog. For more information about how to add variables to the recorder chart and how to set up the chart itself,
see Section 4.1.1.2, “Scope.

Figure 4-14. Recorder Properties - Setup Page

The Trigger page, shown in Figure 4-15, defines the Recorder start conditions. The trigger starts the Recorder when the Trigger
variable exceeds the specified Threshold value with the selected type of slope, (positive = rising edge or negative = falling edge).

Figure 4-15. Recorder Properties - Trigger Page

• Threshold = Specify conditions for the trigger event
— Trigger variable = Selects a variable to be tracked for the trigger event
— Threshold value = The value of the variable being recorded that, when crossed, causes the trigger event. Specify

a threshold value and select whether the value is in raw format (as in the board application) or whether it must be
translated back into raw format (e.g., when a real-type transformation is defined for the variable and you want to
apply an inverse transformation on the trigger value before it is set as threshold in the embedded application).

— Threshold crossing slope = Selects the slope on which the threshold crossing is monitored

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

18 Freescale Semiconductor

— Pretrigger samples = Specify the number of samples to save and display prior to the trigger event
• Auto run = Specifies conditions for reactivating the trigger for repeated recording

— Auto run mode = Select to enable repeated recording. After detecting the trigger event, filling the buffer and
downloading the buffer data to FreeMASTER, the trigger is automatically reactivated and new data is downloaded
immediately after the next trigger event occurs.

— Hold triggered signal = Check this box and specify how long to wait after one signal is displayed in the chart and
before reactivating the trigger.

— Automatic stopping = Check this box and specify the maximum time period for detecting the trigger event. If the
event is not detected within the specified time, the sampling is unconditionally stopped, and actual buffer data is
downloaded.

4.1.2 Detail View
The Detail View is a multipage pane. Availability of various pages in the Detail View depends on the type of item selected in the
Project Tree.

The control page, when defined in project Options (5.4, “HTML Pages), is available for all Project Tree items to allow the user to
control the board at any time. The content of the algorithm block description page changes with the Project Tree item selected.
When a Scope or Recorder item is selected in the Project Tree, the current item help and oscilloscope/recorder chart pages are
also available.

4.1.2.1 Control Page
The Control Page is an HTML page created for board application control. It typically contains the scripts-enhanced form or forms
which enable user-friendly control of the embedded application. The URL of the page or the path to the HTML file with a page
source code can be specified in project Options dialog described in Section 5.4, “HTML Pages.

The control page for the demo application used as an example is shown in Figure 4-16. Despite of its name, there are no “control”
features utilized in this simple application. Still, it demonstrates a JScript scripting technique to display a variable value directly
in the HTML-coded page. See more details on HTML and scripting in Section 6.2, “FreeMASTER ActiveX Object.

Figure 4-16. Demo Application Control Page

A few more sophisticated control page screen shots are shown below. The applications shown here use some 3rd party
Instrumentation components, inserted into the HTML code as embedded ActiveX objects. More screen shots are available on
the FreeMASTER Home Page on the www.freescale.com (see Section 1.3, “Where to Find the Latest Version for more details).

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 19

Figure 4-17. HTML Control Page Examples

4.1.2.2 Algorithm Block Description
The Algorithm Block Description page in the Detail View pane is designated for placing an HTML page describing the selected
block functionality. The URL or local path to the source file is specified in block item properties dialog, described in
Section 4.1.1.1, “Project Block and Sub-block. This page is displayed when it is defined and when the user selects the appropriate
block item or any of its child scope or recorder items.

As the standard HTML page, this page can also contain the scripts or other controls, but it is not a common practice.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

20 Freescale Semiconductor

4.1.2.3 Current Item Help
The Current item help tab is designated for placing an HTML page describing the selected Scope or Recorder. This page should
contain such information as definitions or use instructions and is specified as the Description URL.

4.1.2.4 Oscilloscope / Recorder
The Oscilloscope page in the Detail View pane contains the real-time chart representing tracked variables, as already shown
above in Section 4.1.1.2, “Scope. Similarly, the Recorder page contains the chart created from the recorded data as described
in Section 4.1.1.3, “Recorder.

4.1.3 Watch-Grid
The Watch-Grid pane in the bottom of the application window contains the list of watch variables. The selection of watch variables
and their graphical properties are defined separately for each project block. As a result, the Watch-Grid pane changes its contents
each time a different project block is selected.

During the definition of the variable, the variable name, units, and number format are specified. Moreover, the Watch bar can be
used to change the graphical look of the variable, including font type and size, foreground and background color, and alignment.
Refer to Section 4.6.2, “Watch Bar for details.

Read-only variables can only be monitored. Variables with changes allowed (modifying enabled in the variable definition) can be
altered from the Watch-Grid pane. Details about variables can be found below in Section 4.2, “Variables.

4.2 Variables
FreeMASTER communicates with the board application via a well-defined communication protocol. This protocol supports
sending commands from the PC application to the target board application and reading or writing its variables. All commands
and variables used in the FreeMASTER project must be specified within the project.

The Variables list dialog box, shown in Figure 4-18, can be opened by selecting the Variables item from the Project menu. It can
also be opened from other project-development points, where it could be used to manage variables (e.g. Scope Setup).

Figure 4-18. Variables list Dialog Box

To define a new variable, use the button New. This will open the Variable dialog box, where you can set the variable properties
described in Section , “Variable Settings. When you need to create a copy of an existing variable, select the original variable and
press the Clone button.

The Edit button opens the same Variable dialog box for changing the selected variable properties. After pressing the Delete
button, the user is asked for confirmation of deletion and the selected variable will be deleted.

Generate button opens the interface for mass creation of variable objects based on the symbols loaded from an embedded
application executable file. It is described in Section 4.2.1, “Generating Variables; loading of symbol files is described in
Section 5.2, “Symbol Files.

Variable Settings

The Variable definition dialog has two tabs: Definition, shown in Figure 4-19, and Modifying, shown in Figure 4-20.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 21

Figure 4-19. Variable Dialog Box - Definition Tab

On the Definition tab, you specify a general variable properties.
• Variable name = Specify the variable name as the variable identifier in the project
• Sampling period = The time period of reading the variable value from the board when the variable is displayed in the

variable watch
• Shows as = A format in which the variable value is printed in the watch window. Select the proper format from the

drop-down list (DEC, HEX, BIN, ASCII or REAL).
• Variable panel = Information about the variable as it is defined in the embedded application

— Address = The physical address of the variable in the target application memory. Although you can type the direct
hexadecimal value, it is recommended that you select a symbol name of the application variable from the
drop-down list. A symbol table can be loaded directly from the embedded application executable (if it is in standard
ELF/Dwarf1 format) or from the text-based MAP file generated by the linker. See Section 5.2, “Symbol Files for
more information about loading the symbol tables from selected files.

— Type = Select the variable type as it is defined in the target application (unsigned fixed point, signed fixed point,
floating point IEEE, fractional <-1,1), unsigned fractional <0,2) or string)

— Size = Specify the size of the variable as it is defined in target application
• Bit fields = The parameters for extracting the single bit or bit groups from a given variable

— Shift = Specify the number of bits the received value is right-shifted before it is masked
— Mask = Select or specify the mask value which is AND-ed with the shifted value
— Using the Shift and Mask fields, you can extract any bit field from the received variable. For example: to extract the

most significant bit from the 16-bit integer value, you would specify 15-bit shifting and one-bit mask (0x1).
• Show = According to the value display format selected in the Show as field, this set of parameters controls how the

variable value is actually printed
— val, min, max = Check the boxes if you want the variable watch to display the immediate variable value and/or the

detected peak values. The peak values can be reset by right-clicking the variable entry in the watch window and
selecting the menu command Reset MIN/MAX.

— Fixed digits (for Show as set to DEC, HEX or BIN) = Prints numeric values left-padded by zeroes or spaces to a
given number of digits

— Fixed digits (for Show as set to REAL) = Prints floating-point numeric values with a constant number of digits after
the decimal point

— Zero terminated (for Show as set to string) = The string values are printed only to the first occurrence of zero
character. For string values, you can also select whether to display unprintable characters as HEX numbers (or
question marks) and a few other string-specific settings.

• Real type transformation = When the Show as format is set to REAL, you can define further post-processing numeric
transformation, which is applied to the variable value.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

22 Freescale Semiconductor

— Transformation type
linear: ax + b: Specify the a and b constants of the linear transformation y = ax + b. The ‘a’ and ‘b’ parameters can
be specified as a numeric values or by the name of the project variables whose immediate value (last valid value)
is then used as the parameter.
linear two points: If it is more convenient for you to specify the linear transformation by two points, rather than by
the parameters a and b, fill in the two coordinate points (x1, y1) and (x2, y2). As the parameter values, you can
again specify the numeric values or variable names.
hyp: d/(ax+b) + c: Specify the parameters a, b, c and d of a hyperbolic transformation function.

— Unit = The name of unit displayed in the variable watch
— Use “Moving Averages” filter = When monitoring a noisy action, you might want to display the average value instead

of the immediate one
— History time = The time interval from which the average value is computed

• Text enumeration = This allows you to describe the meaning of certain variable values and assign the text label to each
of them, which is then displayed in the variable watch together with or instead of the numeric value. Use Edit, Add and
Del buttons to manage the look-up table with value to text label assignment.
— Default = Specify the default text label, which is displayed when no matching text is found in the look-up table.

The Modifying page, shown in Figure 4-20, contains settings and restrictions for variable value modifications.

Figure 4-20. Variable Dialog Box - Modifying Tab

• Modifying mode
— Don’t allow any modifications = The variable is read-only; all other settings on this page are disabled
— Any value within proper limits = You can specify the Min and/or Max value. The value the user enters in the watch

window is then validated with the specified limits.
— One of listed values only = Once you have specified a list of values, only those values will be accepted in the watch

window to be written. The acceptable values can be specified in the Pre-defined values group.
All numbers from min to max = All the numbers from “min” to “max” by “step” will be treated as predefined values
Text enumeration = Treat all values from the text enumeration look-up table as predefined
Other = Specify any other predefined values (comma or semicolon separated)

• Edit style = Select the look of the edit interface for a given variable, which is displayed in the appropriate cell in the watch
window grid
— Edit box with spin control = The variable value edit interface will be displayed in the form of an edit box with two

spin arrows for incrementing and decrementing the value
— Combo box with pre-defined values = The variable value edit interface will be displayed in the form of a drop-down

list box. The predefined values will be available in the list.
— Hide edit interface at inactive cells = The variable edit interface will be hidden when the appropriate cell in the watch

grid looses a keyboard focus

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 23

• Write style = Specify exactly when the new variable value is actually sent to the board application.
— Write immediately after each value changes = The modified variable value will be sent to the embedded application

each time the user presses the spin arrow button or selects a new value in the drop-down list box.
— Write after ENTER or kill focus only = The modified variable value will not be sent to the embedded application until

the user does not press the Enter key

4.2.1 Generating Variables
The Generate button in the variable list dialog (Figure 4-18) opens the Generate variable dialog box shown in Figure 4-21.

In this dialog, the user can automatically generate the variable objects for the symbols loaded from an embedded application
executable (ELF) or a linker MAP file (see Section 5.2, “Symbol Files for more information about symbol tables).

Figure 4-21. Generating Variables

The list in the dialog shows all the symbols available in the project as they were read from the current symbol file. The symbols
for which the variables are already defined are marked with a check mark.

• Edit symbol variable = Press this button to edit a variable bound to the selected symbol, if any
• Delete symbol variable = Press to delete a variable bound to the selected symbol(s)
• Generate single variables = Generates a new variable with the same name as the symbol and with proper address, type

and size settings. After creation, you can push the Edit symbol variable button to see and change other settings in the
Variable dialog box

• Generate array for symbol = Enables you to generate a set of variables encapsulating the selected symbol and its
successive locations (offsets)

4.3 Commands
The list of Application commands defined in the project can be opened by selecting the Project / Commands menu and is shown
in Figure 4-22. You can use the buttons New, Clone, Edit and Delete to manage the list. It is very similar to variables management:

• New button = Creates a new application command
• Edit button = Edits properties of the selected application command
• Clone button = Creates a new command as a copy of the selected command
• Delete button = Deletes the selected command
• Send button = Opens the interface which enables the command to be sent to the embedded application

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

24 Freescale Semiconductor

Figure 4-22. Project Application Commands

In the Send application command dialog box which follows after pressing the Send button, specify the command parameters (if
any) and you can send the command to the embedded application. The dialog is shown in Figure 4-23. For each argument, you
can define the help message, which is displayed in this dialog when typing the argument value as shown in Figure 4-24.

Figure 4-23. Sending Application Command

If you wish to wait for data to be returned from the board (a command result) without closing the dialog, check the Wait for result
box. Before sending the command, you can review or edit the command definition.

When defining or editing the command, the Application command dialog box is opened. The first of three pages of the dialog is
shown in Figure 4-24.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 25

Figure 4-24. Application Command - Definition Tab

On the Definition tab, enter the Command name used in the project and specify the one-byte command Code which identifies
the command in the target board application. The command codes and their purposes, as well as the command return codes and
their purposes, come from the board application developer.

The Response time-out is the maximum time interval in milliseconds that FreeMASTER waits for response from the board
application. If the embedded application does not acknowledge the command and respond to it before this time-out occurs, the
text entered into the Timeout error message field appears in alert window.

Figure 4-25. Application Command - Arguments Tab, page 1

The Arguments tab, shown in Figure 4-25, is used for definition of command arguments. Commands which do not have
arguments will have an empty argument list. Commands can have arguments to pass a value to the target board application
together with the command code.

Use the New button to create a new argument, the Delete button to delete an argument selected in the list, and the up and down
arrows to change the arguments’ order.

On the Argument setup sub-page, you define the selected argument parameters:
• Name = Specify the argument name as it should appear in the list and in the Send application command dialog when

the user is prompted for argument values. You can also select the existing argument name from the drop-down list box.
• Type = Specify the argument’s numeric value (integer or floating point)
• Size = Specify the argument’s value size in bytes
• Unit = Specify any text which will be displayed as argument units. This text is not sent to the target application.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

26 Freescale Semiconductor

• Dflt = Enter the default value of the argument. This value will be set in the argument list of the Send application command
dialog. If empty, the user must type the value any time he sends the command.

• Modifiable = Unless this box is checked, the user is not allowed to change the default argument value in the argument
list of Send application command dialog.

• Visible = If this box is not checked, the argument will not be displayed in the argument list and its default value will always
be sent to the target application.

• Help = Write any text information which will be shown in the Send application command dialog when the user will be
prompted for an argument value.

Figure 4-26. Application Command - Arguments Tab, page 2

On the Enter validation sub-page, shown in Figure 4-26, you define the validation criteria for the argument value:
• Specify which values are allowed for the argument

— Any value = Any numeric value is allowed as the argument value. The value must be between Min and Max limits,
if these are set.

— One of predefined values = Only one of the values defined in the Pre-defined values fields can be supplied as an
argument value

• Pre-defined values
— All numbers from min to max = When this box is checked, all numbers between Min and Max limits, incremented

by Step, are considered to be valid for the argument value
— Other = Check this box and specify the list of other values (comma separated) which are valid as argument value

The Return codes page, shown in Figure 4-27, is used for specifying the command return code messages. To create a return
code, enter the return code value in hexadecimal (0x00) or decimal form in the code field at the lower left of the page; enter the
return code message in the next field; and click the New button. The return code item will appear in the list. Repeat to create all
desired return codes. A Message icon may be assigned to each return code message from the panel at the lower right of the
page. It will then appear in the message dialog, together with the text of message.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 27

Figure 4-27. Application Command - Return Codes Tab

Return codes can be local or global. Local return codes apply to a single command, while global return codes are valid for all
commands of the project. To switch between local and global validity, use the Make local and Make global buttons.

Check the Show default messages for unknown return codes box at the top of the page to pop up a standard message box with
return code when an unlisted code returns from the board application.

4.4 Importing Project Files
When preparing your project, you may want to reuse the variables, commands, scope and recorder definitions or watch
definitions you created in previous projects. Selecting the File / Import menu command opens a dialog in which you can select
objects defined in different projects and import them to the current project.

The first dialog of the Import procedure is shown in Figure 4-28. After specifying the name of the original project file, you select
and check the project tree items you wish to have in your current project. You can also select the target block item under which
you want the imported items to be created.

Together with imported tree items, all referenced objects, such as variables or application commands, are also automatically
imported. Using the switch radio-buttons below the lists, you can specify how the referenced objects are created:

• Overwrite existing = When there is an object, such as a variable, imported with a tree item, for example, an oscilloscope,
the current project is searched for an object of the same type (variable) and with the same name. If found, it is
overwritten with the one imported.

• Bind to existing = If an object with the same name is found, it is not overwritten, but the imported tree item binds to it
• Always create new = All referenced objects are created, even if they already exist in the current document; in such a

case, the name will be duplicated
• Merge imported root item = When importing the root item, it is possible to merge its variable watch definition with the

watch of the root item in the current project. When this option is not checked, the root item will be imported and inserted
as a standard block item.

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

28 Freescale Semiconductor

Figure 4-28. Import Project Tree Items

Pressing the Next button opens the second part of the Import procedure, where you can select additional objects to be imported.
The second dialog is shown in Figure 4-29. The three check-box lists contain the objects found in the source project file:

• Variables = Put a check mark by each variable you want to import. You don’t need to import variables which are
referenced from the tree items selected in previous dialog from Figure 4-28; such variables are always unconditionally
imported.

• App. commands = Put a check mark by each application command definitions you want to import. As with variable
objects, you don’t need to check commands which are referenced from the block tree items selected in previous dialog.
— Global return messages = If this box is checked, the application commands return codes and messages are

imported from the source document.
— Overwrite existing = The existing return codes are overwritten with those being imported.

• Stimulators = Put a check mark by each variable stimulator you want to import.

Figure 4-29. Import Project Objects

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 29

4.5 Menu description

4.5.1 File Menu
Selecting New Project creates a new empty project, while Open Project opens an existing
project file, which has the extension .pmp.

Import Wizard enables you to import selected objects (Project Tree items, variables,
commands, stimulators) from an existing project (.pmp file) into the current project.

Save Project saves the open project into the current file, while Save As allows users to
specify a new filename for the current project.

Stop Communication pauses the communication with the board and unlocks the
communication port. When the communication is released from the paused state, the
symbol file is automatically checked for changes. If a difference is found, the user can
choose to reload the new version of the file.

Print prints the content of current window, when possible. Currently, printing is supported
only for HTML description and control pages. Print Setup opens the standard Print Setup
dialog.

The list of the most recently loaded projects: Selecting one of these items loads the
specified project, just like using the Open Project command.

Demo Mode is a switch to enter or leave the application demonstration mode. While in
Demo Mode, you cannot modify any important project settings.

Exit exits the application.

4.5.2 Edit Menu
Edit menu contains standard clipboard manipulation commands (Cut, Copy and Paste).

Copy Special is enabled when the Oscilloscope or Recorder graph is active. The command enables saving the graph image to
the clipboard or to a file in a different format or size. The set-up dialog is shown in Figure 4-31.

Figure 4-31. Export graph image Dialog

Figure 4-30. File Menu

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

30 Freescale Semiconductor

4.5.3 View Menu
In the View menu, you can select whether to show or hide the Toolbar,
the Watch Bar or the Status Line.

Another feature of the View menu is the ability to adjust the size of
individual panes without using a mouse. Use Adjust Left Splitter for
changing the height of the Fast Access pane in the Tree pane. Adjust
Right Splitter can be used for changing the height of the Detail View pane
(HTML pages and charts). Finally, Adjust Vertical Splitter changes the
width of the Project Tree pane.

Show Fast Access Pane switches the display of the Fast Access pane,
a small helper window located at the bottom-left part of the application
window. It contains two pages: the Commands Page, which lists
currently-defined application commands and the Stimulators Page,
which lists all stimulator objects. When the menu item Show all project
commands is checked, FreeMASTER is forced to show all application
commands defined in the project. The content of the commands page is
then independent of which block is currently selected from the Project
Tree. Otherwise, only commands selected for displaying in the current tree context are displayed; see Figure 4-5 and
Section 4.1.1.1, “Project Block and Sub-block for more information.

4.5.4 Explorer Menu
The Explorer sub-menu is available when an HTML page (Control page, Block Description
page or Chart Variables Info) is displayed in the Detail View. When a Chart View page is
displayed in the Detail View, then the Explorer menu item is replaced by the Scope or Recorder
sub-menu.

Items Back, Forward and Refresh represent commands for the Internet Explorer window
embedded in the FreeMASTER. They are used to move through previously-visited pages and
to refresh the page contents.

Fonts sets the font size for the current Internet Explorer window.

4.5.5 Scope Menu

The Stop Scrolling and Stop Data commands cause the FreeMASTER
to stop moving (rolling) the oscilloscope chart and to enter a mode in
which the chart can be zoomed and the data series can be examined
with the data cursor.

The difference between these two commands is that Stop Scrolling
stops the picture, but allows incoming data to be appended to the end
of the chart, while Stop Data also stops the incoming data.

Export Picture opens the Export graph image dialog, where you can
specify the picture format and export the picture to the clipboard or to
a file.

Data cursor enables you to select the style of data cursor for
examining the chart values. The Next Subset sub-item selects the next
chart line to be examined.

The Zoom submenu consists of zooming modes and commands. The
Horizontal Zoom Only mode allows “x-axis only” zooming; Horz and Vert Zoom allows free rectangle zooming.

4.5.6 Item Menu
The content of this sub-menu depends on the selected object within the FreeMASTER application window. The same menu is
displayed when you click the right mouse button on this object. The menu usually consists of the Delete item for deleting the
selected object and the Properties item for opening an object properties dialog.

Figure 4-32. View Menu

Figure 4-33. Explorer
Menu

Figure 4-34. Scope Menu

FreeMASTER USAGE

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 31

4.5.7 Project Menu
Variables opens the Variables list dialog box, where you can manage all project variables at once.

Commands opens the Application commands dialog box, where you can manage all project
commands.

The Reload Map File command updates the physical addresses of board application variables from
the .map file.

Options opens the multipage dialog box for all project option settings.

4.6 Toolbars

4.6.1 Toolbar
The toolbar allows quick access to some of the menu commands.

Figure 4-36. Toolbar

4.6.2 Watch Bar
The Watch Bar is available when the Watch-Grid pane has the focus and Watch Pane is selected from the View menu. It contains
buttons with which you can change various graphical attributes of variables.

Figure 4-37. Watch Bar

Figure 4-35. Project
Menu

Open Project
Save Project

Stop Communication
Show Fast Access Pane

Copy Special
Export Picture

Print

Back
Forward

Stop Data
Stop Scrolling

Horizontal Zoom Only
Horz and Vert Zoom

Zoom Out
Zoom All

Watch Grid
Shift Up

Shift Down
Properties

Font Font Size
Bold

Italic
Underlined

Foreground Color
Background Color

Align Left
Align Center

Align Right

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

32 Freescale Semiconductor

Chapter 5 PROJECT OPTIONS

To set application and project options, use the Options dialog, which can be activated by selecting Options from the Project menu.
The dialog consists of several pages - each dedicated to a different group of settings.

5.1 Communication
To set up the parameters related to communication between FreeMASTER application and target board, select the first tab, as
shown in Figure 5-1.

• Communication
— Direct RS232 connection = The standard serial interface (3-wire RS232 cable) will be used to connect to the target

application
Port = Select the serial port on which the board is accessed
Speed = Select or specify the communication baud rate. This speed must correspond with the embedded
application settings.

— Plug-in Module Interface = The communication with an embedded device will be handled by a separate (custom)
plug-in module. The module must conform to the Microsoft COM specification and must be registered in the system
registry database. See protocol and communication library documentation for more information.
The drop-down list contains all plug-in modules known (registered) in the local system.
Connect string = The plug-in module configuration is saved in string form, internally called a “connect string”. You
can directly specify this string, or you can press the Build button to open the module-specific configuration dialog.

Figure 5-1. Communication Options

— Save settings to project file = If checked, the communication parameters will be stored within the project file during
the next Save Project operation. When the project is next loaded, the communication settings will be restored and
used instead of the defaults.

— Save settings to registry = If checked, the settings are stored in the local computer registry database. These settings
will be used as default when the application is started next time.

NOTE
There are two communication plug-in modules distributed within the FreeMASTER
installation pack which handle a communication with the FreeMASTER Remote Server
application. The difference between the two is a protocol used to connect to the server. One
uses Microsoft DCOM remote procedure call interface while the other uses standard HTTP
text-based protocol.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 33

When using the DCOM-based communication to remote server, the security issues must be
considered when connecting over the network. Both sides of the communication must have
the DCOM properly set up on the system level by running the DCOMCNFG utility. Also, the
remote server must be properly installed on the remote side. If there are problems
connecting to the remote computer, contact your local network administrator.

• Communication state = By selecting one of three options, you can set whether the communication port will be opened
or not when the application is started.
Open port at start-up
Do not open port at start-up
Store port status on exit, apply it on start-up
— Store status to project file, apply it on its load = If checked, the state of the communication port will be saved to a

project file during the next Save Project operation. The state will be then restored the next time the project is loaded.

5.2 Symbol Files
When defining project variables, it is often useful to specify the physical address of the target memory location as the symbol
name instead of direct hexadecimal value. The symbol table can be loaded directly from the embedded application executable if
it is the standard ELF or Dwarf1debugging format. For other cases, the text MAP file generated by the linker may be loaded and
parsed for symbol information.

In the project, you can specify multiple files which contain the symbol table. Later, you can switch between different symbol tables
from different files by selecting the menu command Project / Select Symbol File. For example, with the DSP embedded
application tested on an EVM board, you can have two symbol files specified in the project--one for code running from RAM
memory and the second for code running from Flash.

Figure 5-2 shows the MAP File tab in the project Options dialog.

Figure 5-2. Symbol Files Options

• Default symbol file = Specify the name of the symbol file, which will be loaded by default. You can press the browse
button (...) to locate the file in the standard open file dialog.

• File format = Select the format of the file
— Standard binary ELF = Choose this option for an ELF file
— Hiware MAP File 509 = Choose this option for HiWare Smart Linker v5.0.9
— Define new Regular Expression-based parser = Choose this to define a new text file parser based on regular

expression pattern matching; see Section 5.2.1, “Regular Expression-based MAP File Parser
• List of valid symbol files = The list of symbol files defined in the project. Use New and Del buttons to manage the list.
• View = View the symbol table parsed from the selected file

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

34 Freescale Semiconductor

NOTE
The paths to symbol files may be specified in several forms. It can be the absolute path on
the local disk, the path relative to the directory where the project file is stored or the path
relative to the current “pack” directory. The latter is the most suitable for project deployment
to other computers; see Section 5.3, “Packing Resource Files into Project File for more
information.

• On Load panel options control the actions performed with symbol files after the project is loaded:
— Let the user select the symbol file = When checked, the user is prompted to select the initial symbol file when the

project is loaded.
— Synchronize variables each time the map file loads = When checked, the variables are automatically updated by

new symbol addresses after the project is loaded
— List errors = When this box is checked, all the variables using the symbols missing in the loaded symbol table are

listed in a special dialog box. The user is able to edit the corrupted variables or select another symbol file.

5.2.1 Regular Expression-based MAP File Parser
When your compiler or linker does not support ELF output format and the MAP file cannot be parsed by the built-in HiWare 5.0.9
parser, you must describe the internal MAP file structure by using the regular expression pattern.

It would be out of the scope of this document to describe the theory of regular expression pattern matching, but a simple example
might help to understand the strength of this technology. In the example, we will define the parser of xMap files generated by
CodeWarrior Compiler and Linker for the Freescale DSP56800 processor family.

The example of the xMap line, which describes the global symbol length might look like the following:

00002320 00000001 .bss Flength(bsp.lib pcmasterdrv.o)

00002321 00000001 .bss Fpos(bsp.lib pcmasterdrv.o)

First, we must describe the line format by the regular expression pattern. The following pattern

[0-9a-fA-F]+\s+[0-9a-fA-F]+\s+\S+\s+F\w+

could be read as follows:
• first, there are one or more hexadecimal digits: [0-9a-fA-F]+
• followed by one or more spaces (or another white characters): \s+
• followed again by one or more hexadecimal digits: [0-9a-fA-F]+
• followed again by one or more white characters: \s+
• followed by a set of any non-white characters: \S+
• followed by one or more white characters again: \s+
• followed by the character F
• followed by one or more alphanumeric (word) characters: \w+

To identify the sub-patterns which describe the symbol parameters, we put them in the round parentheses:

([0-9a-fA-F]+)\s+([0-9a-fA-F]+)\s+\S+\s+F(\w+)

Now we must identify the sub-pattern indexes for individual symbol values:
• The first sub-pattern corresponds with the symbol address (index 1)
• The next sub-pattern corresponds with the symbol size (index 2)
• The next sub-pattern corresponds with the symbol name (index 3)

Supply all the parameters prepared above in the regular expression dialog as shown in <st-blue>Figure 5-3.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 35

Figure 5-3. Regular Expression-based xMap File Parser

By pressing Test your regular expression button, the dialog vertically expands and the test panel is displayed as shown in
Figure 5-4. Cut and paste a single line from the xMap file to Input line field and press the button Execute reg. expression:

Figure 5-4. Testing Your Regular Expression

The Symbol name, Symbol address and Symbol size output fields should be displayed as shown in Figure 5-4. If you have errors,
please be sure that you have Internet Explorer 5.5 or higher installed on your machine for the regular expression functionality.

To finish our example, you must set a one bit shifting of the “size” value in the Symbol post-processing parameters. This is
because the symbol size is printed in word units (16-bit) in the xMap file, but we need this value in bytes.

NOTE
All created regular-expression parsers will automatically be saved to the project file and to
the local computer registry database for future use.

5.3 Packing Resource Files into Project File
The project often uses data from many different files. For example, each HTML page displayed for a project tree item or each
image used on such a page is stored in a separate file. This may cause problems when you want to deploy or distribute a project
to different computers. Using the Pack options shown in Figure 5-3, you can choose to pack the resource files into the project file
when it is saved.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

36 Freescale Semiconductor

Figure 5-5. Pack Directory Options

To pack resource files into the project file, put all these files into one directory or a directory structure and specify the path to that
directory in both fields of the Pack Dir page. By pressing the browse button (...), you can find and select the directory in the
standard open directory dialog. The path to the directory can be specified by a path relative to the directory where the project file
is saved.

When the project with the packed files is loaded next time by the application, the original path, entered in the second entry of the
Pack Dir page, is checked. If it is missing, or if one of the files in it differs from the files originally packed in the project, a temporary
directory is created in the system temporary space and the packed files are extracted into that directory. The temporary directory
is then set as a default for the rest of resource files. It is thus very important to specify the FreeMASTER paths to HTML files or
to the symbol file relative to the directory specified in Pack Dir dialog.

The Pack Dir page displays the path to the temporary directory if it is currently in use, but still remembers the path to the original
resource directory.

Figure 5-6. Pack Directory Options, Example 2

Using the other Pack Directory options shown in Figure 5-6, you can set the conditions under which the temporary directory is
created.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 37

5.3.1 Resource Files Manager
Before deploying a complex project which uses many external resources or symbol files, it is worth verifying that all file paths are
correct and in the proper relative format. The path relative format must in turn be properly evaluated when the files are extracted
to a temporary directory on different hosts.

The Resource Files Manager can be activated in the menu Project / Resource Files. The typical look of the window is shown in
Figure 5-7

Figure 5-7. Resource Files Manager

The dialog displays all external files directly referenced by the project. Note that there can also be other files (e.g., images)
referenced indirectly from the HTML pages. You should verify whether the files lie in the pack directory and whether the HTML
pages point to them using a relative path.

— The first list in the dialog contains the files located in the current pack directory. These files will be properly stored
in the project file when it is saved. On other hosts, the files will be extracted in a temporary space if needed.

— The second list in dialog contains the files which are successfully used by the project, but are located outside the
pack directory. Their file names are specified either by absolute path or by a path relative to the directory where
project is stored. However, the files will not automatically be stored in the project file and you will have to deploy
them manually.

— The third list contains references to nonexisting files.
• “Pack” directory setup = Pressing this button opens the project Options dialog, where you can redefine the pack

directory location and other settings.
• Go to reference = Opens the dialog in which the selected file is referenced. This can be either a Properties dialog for a

project tree item or a project Options dialog for shared HTML or symbol files.

5.4 HTML Pages
The project uses HTML pages to display the description and controls related to the selected item in the project tree. The path or
URL of the pages are specified in the property dialog for each tree item. On the HTML Pages options tab, shown in Figure 5-8,
you can specify the paths to common HTML files, displayed in the application main window.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

38 Freescale Semiconductor

Figure 5-8. HTML Pages Options

Specify the Frame Set page URL if you want to divide the pages displayed for project tree items into the frames. The page
specified in this field must contain the <FRAMSET> declaration, with one frame dedicated as a target for the description pages.
The name of the target frame must be specified exactly.

The HTML code can contain frames, controls and scripts (i.e., Visual Basic Script) which can be used to access the attached
target board through defined variables and commands. A special HTML page dedicated to the control task can be defined and
can be displayed in the separated tab in the detail view of the application main window.

5.5 Demo Mode
An important part of the FreeMASTER’s capabilities is the demonstration and description of the target board application. It is
essential that the demonstration project, once prepared, is not accidentally modified. To prevent modification, the project’s author
can lock the project against changes by switching it into the Demo Mode. See Figure 5-9 for details of the Demo Mode tab.

Figure 5-9. Demo Mode Options

When the Enter the Demo Mode... box is checked, the demo mode is activated automatically after the project is loaded. The
Demo Mode can be started manually by selecting Demo Mode from the File menu. Exit from Demo Mode can be protected by a
password.

PROJECT OPTIONS

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 39

In the Demo Mode, the user cannot change the Project Tree item properties, cannot add or remove the tree items, and cannot
change any project options, except those on the communication page.

When the user asks to leave the Demo Mode, the warning message shown in Figure 5-10 appears, and the user is prompted for
the password if the Demo Mode is password-protected.

Figure 5-10. Exit Demo Mode Confirmation Dialog

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

40 Freescale Semiconductor

Chapter 6 HTML and SCRIPTING

All HTML pages used in FreeMASTER are rendered using the standard Microsoft Internet Explorer component.

The advantage of using the HTML and Internet Explorer component is that it fully supports scripting languages and enables
scripts to embed and access third-party ActiveX controls. The FreeMASTER application itself implements an (non-visual) ActiveX
component to let script-based code to access and control the target board application.

The following text is recommended only for HTML page creators experienced with scripting and interfacing of the ActiveX
controls.

6.1 Special HTML Hyperlinks
When creating HTML pages which are to be displayed in the FreeMASTER environment, the author can use special hyperlinks
to let users navigate in the project tree or to invoke selected application commands (see 4.3, “Commands).

Application command invocation hyperlinks include:
• HREF=pcmaster:cmd:cmdname(arguments) sends an application command cmdname. Command argument values

can be specified in round brackets. An argument with a defined default value may be omitted.
• HREF=pcmaster:cmdw:cmdname(arguments) sends an application command cmdname and waits until the target

application processes it
• HREF=pcmaster:cmddlg:cmdname(arguments) displays “Send Application Command” dialog for the application

command cmdname. Any specified argument values are filled into appropriate fields in the dialog.
• HREF=pcmaster:selitem:itemname:tabname selects a project tree item named itemname and displays detail view and

watch view contents exactly as if the user had selected the item manually. It then selects the specified tab in detail view.

Valid tabname identifiers are:
— ctl,ctltab,control,controltab = Control Page tab
— blk,blktab,blkinfo,blkinfotab = Algorithm Block Description tab
— info,infotab,iteminfo,iteminfotab = Current Item Help tab
— scope,osc,oscilloscope,osctab,scopetab = Oscilloscope tab
— recorder,rec,rectab,recordertab = Recorder tab

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 41

6.2 FreeMASTER ActiveX Object
The FreeMASTER object is registered in the system registry during each start of the FreeMASTER application. Its class ID
(CLSID) is:

{48A185F1-FFDB-11D3-80E3-00C04F176153}

The registry name is "MCB.PCM.1"; version independent name is "MCB.PCM".

FreeMASTER functions can be called from any HTML code via the FreeMASTER ActiveX control. Insert the FreeMASTER
ActiveX control into your HTML code by the Class ID number (see the example below) and set the dimensions (height and width)
to zero to make the object invisible.

<object name="freemaster" width="0" height="0"
classid="clsid:48A185F1-FFDB-11D3-80E3-00C04F176153">

The FreeMASTER ActiveX control provides the following functions:
• SendCommand sends FreeMASTER-defined command
• SendCommandDlg opens command dialog and send a FreeMASTER-defined command
• ReadVariable reads value from a FreeMASTER-defined variable
• WriteVariable writes value to a FreeMASTER-defined variable
• ReadMemory, ReadMemoryHex reads a block of memory from a specified location
• GetCurrentRecorderData retrieves data currently displayed in the recorder chart
• GetCurrentRecorderSerie retrieves one data series from the currently-displayed recorder chart
• StartCurrentRecorder starts the currently-displayed recorder
• StopCurrentRecorder stops the currently-displayed recorder
• GetCurrentRecorderState retrieves the current recorder status code and text

One callback event is implemented:
• OnRecorderDone, called when the currently-selected recorder finishes downloading new recorder data

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

42 Freescale Semiconductor

6.3 FreeMASTER ActiveX Object Methods

6.3.1 SendCommand
SendCommand (bsCmd, bWait, bsRetMsg)

6.3.1.1 Description
This function sends a FreeMASTER-defined application command to the target application.

6.3.1.2 Arguments:

6.3.1.3 Return Value:

bsCmd
[in]

String value with the command name and arguments to be sent. The
command must be defined in the currently-open FreeMASTER project

bWait
[in]

Boolean value which selects whether to wait for the result of the
command; select True (non-zero) to wait, False (zero) not to wait

bsRetMsg
[out, optional]

String value returned after the command invocation. When an error
occurs, this value contains an error message; otherwise, it contains a
message defined in the FreeMASTER project as command return
value

Boolean Value
“True” is returned if the command has been sent without errors. “False” is
returned if the command could not be found in FreeMASTER project or if
there was a communication error.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 43

6.3.2 SendCommandDlg
SendCommandDlg (bsCmd, bsRetMsg)

6.3.2.1 Description
This function invokes the FreeMASTER Send Application Command dialog.

6.3.2.2 Arguments:

6.3.2.3 Return Value:

bsCmd
[in]

String value with the command name and arguments which should be
displayed in the dialog. The command must be defined in the
currently-open FreeMASTER project

bsRetMsg
[out, optional]

Text returned after the command invocation. When an error occurs, this
value contains an error message

Boolean value “True” is returned if the command has been sent without errors. “False” is
returned if the command could not be found in FreeMASTER project.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

44 Freescale Semiconductor

6.3.3 ReadVariable
ReadVariable (bsVar, vValue, tValue, bsRetMsg)

6.3.3.1 Description
This function reads value from a FreeMASTER-defined variable.

6.3.3.2 Arguments:

6.3.3.3 Return Value:

bsVar
[in]

String value with the name of the variable to be read. The variable must
be defined in the FreeMASTER project which is currently opened.

vValue
[out, optional] Returns numeric representation of the variable bsVar

tValue
[out, optional]

Returns string value which represents the variable format and units
necessary for displaying the variable value

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message; otherwise,
it is empty

Boolean value
“True” is returned if the variable has been read without errors. “False” is
returned if the specified variable was not found in FreeMASTER project
or if a communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 45

6.3.4 WriteVariable
WriteVariable (bsVar, vValue, bsRetMsg)

6.3.4.1 Description
This function writes a value to a FreeMASTER variable.

6.3.4.2 Arguments:

6.3.4.3 Return Value:

bsVar
[in]

A string value with the name of the variable to be written. The variable
must be defined in the currently-open FreeMASTER project

vValue
[in] Value to write to the variable

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message;
otherwise, it is empty

Boolean value
“True” is returned if the variable has been written without errors. “False” is
returned if the specified variable was not found in FreeMASTER project, if
the value passed was invalid, or if a communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

46 Freescale Semiconductor

6.3.5 ReadMemory
ReadMemory (vAddr, vSize, arrData, bsRetMsg)

ReadMemory_t (vAddr, vSize, arrData, bsRetMsg)

ReadMemoryHex (vAddr, vSize, bsRet, bsRetMsg)

6.3.5.1 Description
These functions read a block of memory from the target application. They differ in how the data is returned to the caller.

• ReadMemory returns data in the safearray of variants, which can be used in both scripting languages like VBScript and
in compiled languages like Visual Basic.

• ReadMemory_t returns data in the safearray of type “unsigned 1 byte integer”, which can be used in compiled languages
like Visual Basic. Using typed arrays is faster than using arrays of variants.

• ReadMemoryHex returns data in the string value. Each byte is represented in hexadecimal form by two characters.

6.3.5.2 Arguments:

6.3.5.3 Return Value:

vAddr
[in]

The address of the memory block to be read. This can be either an
absolute numeric address, a symbol name valid in the current
FreeMASTER project, or a symbol name plus offset value

vSize
[in] The size of memory block to be read

arrData
[out, optional] The return array of the values

bsRetMsg
[out, optinal]

When an error occurs, this value contains an error message; otherwise, it
is empty

Boolean value
“True” is returned if the memory block has been read without errors.
“False” is returned if the specified address was invalid or if a
communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 47

6.3.6 WriteMemory
WriteMemory (vAddr, vSize, arrData, bsRetMsg])

6.3.6.1 Description
This function writes a block of bytes to the target application’s memory.

6.3.6.2 Arguments:

6.3.6.3 Return Value:

vAddr
[in]

The address of the memory area to be written. This can be either an
absolute numeric address, a symbol name valid in the current
FreeMASTER project, or a symbol name plus offset value

vSize
[in] The size of memory block to be written

arrData
[in] Safe array of bytes to be written. It must contain at least vSize elements.

bsRetMsg
[out, optinal]

When an error occurs, this value contains an error message; otherwise, it
is empty

Boolean value
“True” is returned if the memory block has been read without errors.
“False” is returned if the specified address was invalid or if a
communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

48 Freescale Semiconductor

6.3.7 ReadXxxArray
To access array of 1,2, or 4-byte signed integers:

ReadIntArray (vAddr, vSize, vElemSize, arrData, bsRetMsg)

ReadIntArray_t (vAddr, vSize, vElemSize, arrData, bsRetMsg)

To access array of 1,2, or 4-byte unsigned integers:

ReadUIntArray (vAddr, vSize, vElemSize, arrData, bsRetMsg)

ReadUIntArray_v (vAddr, vSize, vElemSize, arrData, bsRetMsg)

ReadUIntArray_t (vAddr, vSize, vElemSize, arrData, bsRetMsg)

To access array of 4-byte floating point numbers:

ReadFloatArray (vAddr, vSize, arrData, bsRetMsg)

ReadFloatArray_t (vAddr, vSize, arrData, bsRetMsg)

To access array of 8-byte floating point numbers:

ReadDoubleArray (vAddr, vSize, arrData, bsRetMsg)

ReadDoubleArray_t (vAddr, vSize, arrData, bsRetMsg)

6.3.7.1 Description
These functions read a block of memory from the target application and translate return it to the caller in the form of integer or
floating point numbers. For each call, there are one or two optional functions which can be used in different scripting
environments:

• ReadXxxArray returns data as a safearray of variants, which can be used in both scripting languages like VBScript and
in compiled languages like Visual Basic. As VBScript engine does not handle variants encapsulating 2 and 4-byte
unsigned integer types, this method converts such a values to floating point format before returning.

• ReadXxxArray_v is the same as ReadXxxArray except it does not perform the VBScript translation for 2 and 4-byte
unsigned integer types.

• ReadXxxArray_t returns data in the safearray of strictly typed values, which can be used in compiled languages like
Visual Basic. Using typed arrays is significantly faster than using arrays of variants.

6.3.7.2 Arguments:

6.3.7.3 Return Value:

vAddr
[in]

The address of the memory block to be read. This can be either an
absolute numeric address, a symbol name valid in the current
FreeMASTER project, or a symbol name plus offset value

vSize
[in] The number of elements to be read from the array

vElemSize
[in]

The size of an array element in bytes. The total number of bytes read
from the target can be calculated as vSize * vElemSize.

arrData
[out, optional] The return array of the values

bsRetMsg
[out, optinal]

When an error occurs, this value contains an error message; otherwise, it
is empty

Boolean value
“True” is returned if the memory block has been read without errors.
“False” is returned if the specified address was invalid or if a
communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 49

6.3.8 WriteXxxArray
To access array of 1,2, or 4-byte signed integers:

WriteIntArray (vAddr, vSize, vElemSize, arrData, bsRetMsg)

To access array of 1,2, or 4-byte unsigned integers:

WriteUIntArray (vAddr, vSize, vElemSize, arrData, bsRetMsg)

To access array of 4-byte floating point numbers:

WriteFloatArray (vAddr, vSize, arrData, bsRetMsg)

To access array of 8-byte floating point numbers:

WriteDoubleArray (vAddr, vSize, arrData, bsRetMsg)

6.3.8.1 Description
These functions translate an array of numbers passed by the caller into a block of bytes suitable for the target CPU and write it
into the target memory.

6.3.8.2 Arguments:

6.3.8.3 Return Value:

vAddr
[in]

The address of the memory block to be written. This can be either an
absolute numeric address, a symbol name valid in the current
FreeMASTER project, or a symbol name plus offset value

vSize
[in] The number of elements to be written to the target memory.

vElemSize
[in]

The size of an array element in bytes. The total number of bytes to be
written to the target can be calculated as vSize * vElemSize.

arrData
[in] The array of the values to be written

bsRetMsg
[out, optinal]

When an error occurs, this value contains an error message; otherwise, it
is empty

Boolean value
“True” is returned if the memory block has been Write without errors.
“False” is returned if the specified address was invalid or if a
communication error occurred.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

50 Freescale Semiconductor

6.3.9 GetCurrentRecorderData
GetCurrentRecorderData (arrData, arrSerieNames, timeBaseSec, bsRetMsg)

GetCurrentRecorderData_t (arrData, arrSerieNames, timeBaseSec, bsRetMsg)

6.3.9.1 Description
These functions retrieve data currently displayed in the recorder chart. They differ in how the data is returned to the caller.

• GetCurrentRecorderData returns data in the safearray of variants, which can be used in both scripting languages like
VBScript and in compiled languages like Visual Basic

• GetCurrentRecorderData_t returns data in the safearray of type “double floating point”, which can be used in compiled
languages like Visual Basic. Using typed arrays is faster than using arrays of variants.

6.3.9.2 Arguments:

6.3.9.3 Return Value:

arrData
[out, optinal]

Return, two-dimensional array of values; the first dimension is
series index, the second dimension is value index

arrSerieNames
[out, optional] Return array with names of series on appropriate indexes

timeBaseSec
[out, optional]

Returned time between individual recorded samples in seconds;
this value can be 0 if the target does not supply such a value.

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message;
otherwise, it is empty

Boolean value
“True” is returned if the data has been retrieved successfully from the
recorder item. “False” is returned if there is no valid data in the recorder or
there is no currently-active recorder.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 51

6.3.10 GetCurrentRecorderSeries
GetCurrentRecorderSeries (bsSerieName, arrData, timeBaseSec, bsRetMsg)

GetCurrentRecorderSeries_t (bsSerieName, arrData, timeBaseSec, bsRetMsg)

6.3.10.1 Description
These functions retrieve one data series from the currently-displayed recorder chart. They differ in how the data is returned to
the caller.

• GetCurrentRecorderSeries returns data in the safearray of variants, which can be used in both scripting languages like
VBScript and in compiled languages like Visual Basic.

• GetCurrentRecorderSeries_t - returns data in the safearray of type “double floating point”, which can be used in
compiled languages like Visual Basic. Using typed arrays is faster than using arrays of variants.

6.3.10.2 Arguments:

6.3.10.3 Return Value:

bsSerieName
[in] String with the name of the series whose data is to be retrieved

arrData
[out, optional] Return array of the values

timeBaseSec
[out, optional]

Returned time between individual recorded samples in seconds;
this value can be 0 if the target does not supply such a value.

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message;
otherwise, it is empty

Boolean value “True” is returned if the data has been retrieved successfully from the
recorder item. “False” is returned if there is no valid data in the recorder or if
there is no recorder currently active.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

52 Freescale Semiconductor

6.3.11 StartCurrentRecorder
StartCurrentRecorder (bsRetMsg)

6.3.11.1 Description
This function starts the recorder which is currently-displayed in the FreeMASTER window.

6.3.11.2 Argument:

6.3.11.3 Return value:

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message; otherwise,
it is empty

Boolean value “True” is returned if the recorder has been started successfully. “False”
is returned if there is no recorder currently active.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 53

6.3.12 StopCurrentRecorder
StopCurrentRecorder (bsRetMsg)

6.3.12.1 Description
This function manually stops the Recorder which is currently-displayed in the FreeMASTER window.

6.3.12.2 Argument:

6.3.12.3 Return Value:

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message; otherwise,
it is empty

Boolean value “True” is returned if the recorder has been successfully stopped. “False”
is returned if there is no recorder currently active.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

54 Freescale Semiconductor

6.3.13 GetCurrentRecorderState
GetCurrentRecorderState (nState, bsRetMsg)

6.3.13.1 Description
This function retrieves current recorder status code and assigned status text.

6.3.13.2 Arguments:

6.3.13.3 Return Value:

nState
[out, optional]

Return numeric value identifying current recorder state. Valid states
codes are:
0=idle;
1=starting;
2=running;
3=downloading results;
4=holding received signal;
5=error;
6=manually stopping;
7=not initialized

bsRetMsg
[out, optional]

When an error occurs, this value contains an error message; otherwise,
it contains text description of current recorder state

Boolean value “True” is returned if the recorder state has been read successfully.
“False” is returned if there is no recorder currently active.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 55

6.3.14 RunStimulators
RunStimulators (bsStimNames)

6.3.14.1 Description
This function starts one or more FreeMASTER variable stimulators.

6.3.14.2 Arguments:

6.3.14.3 Return Value:

bsStimNames
[in] A semicolon-delimited list of stimulators to be started.

Integer Value

Number of stimulators actually started. This number may be equal or
less than the number of semicolon-delimited stimulator names passed
in bsStimNames parameter. The return count does not include
stimulators not found by name and stimulators which were already
running.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

56 Freescale Semiconductor

6.3.15 StopStimulators
StopStimulators (bsStimNames)

6.3.15.1 Description
This function halts one or more FreeMASTER variable stimulators.

6.3.15.2 Arguments:

6.3.15.3 Return Value:

bsStimNames
[in] A semicolon-delimited list of stimulators to be halted.

Integer Value

Number of stimulators actually stopped. This number may be equal or
less than the number of semicolon-delimited stimulator names passed
in bsStimNames parameter. The return count does not include
stimulators not found by name and stimulators which were not running.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 57

6.4 FreeMASTER ActiveX Properties
Starting version 1.2.20, the FreeMASTER also supports scripting languages which do not implement by-reference passing of the
function parameters (e.g. JScript). The “output” parameters in all ActiveX methods are now declared as “optional” and do not
need to be specified by the caller at the time the FreeMASTER method is called. After the call is made, all output values can be
fetched using ActiveX properties as described in Table 6-1.

For each property in the FreeMASTER ActiveX interface, there is also a “GetLast...” function available and implements the same
functionality as when reading the property value itself. Such functions can be used in scripting environment where accessing
ActiveX object properties is not possible or convenient.

Table 6-1. FreeMASTER ActiveX Object Properties

Property Name Description

LastResult The return value of the last ActiveX function called

LastRetMsg The error message returned by the last ActiveX function
called (the value of bsRetMsg output parameter)

LastVariable_vValue The value of the “vValue” output parameter returned by the
last ReadVariable method called

LastVariable_tValue The value of the “tValue” output parameter returned by the
last ReadVariable method called

LastMemory_hexstr The value of the “bsRet” output parameter returned by the
last ReadMemoryHex method called

LastMemory_data
The array of values returned in “arrData” output parameter

by the last call to one of the ReadMemory or ReadXxxArray
methods.

LastRecorder_data
The array of values returned in “arrData” output parameter

by the last call to GetCurrentRecorderData or
GetCurrentRecorderSeries methods.

LastRecorder_serieNames
The array of values returned in “arrSerieNames” output
parameter by the last call to GetCurrentRecorderData

method.

LastRecorder_timeBaseSec The value of the “timeBaseSec” output parameter returned
by the last call to GetCurrentRecorderData method.

LastRecorder_state The value of the “nState” output parameter returned by the
last call to GetCurrentRecorderState method.

HTML and SCRIPTING

FreeMASTER for Embedded Applications Rev. 2.0,

58 Freescale Semiconductor

6.5 FreeMASTER ActiveX Object Events

6.5.1 OnRecorderDone
OnRecorderDone()

6.5.1.1 Description
This event is called when the active recorder finishes downloading of a new data.

6.6 Examples
FreeMASTER ActiveX control functions can be used within HTML script code, JScript, or VBScript. The following example
demonstrates the use in VBScript. JScript users should also refer to Section 6.4, “FreeMASTER ActiveX Properties.

<script language="VBScript">

Function GetSpeed()

succ = pcm.ReadVariable("Speed", vValue, tValue, bsRetMsg)

If succ then

idSpeed.InnerText = tValue

If vValue > 100 then

pcm.SendCommand("SlowDown()", 1)

End If

Else

idError.InnerText = bsRetMsg

End If

End Function

</script>

<object classid="clsid:48A185F1-FFDB-11D3-80E3-00C04F176153"

height="0" width="0" id="pcm" name="pcm">

<input TYPE=button VALUE="Get Speed" onClick="GetSpeed()">

References

FreeMASTER for Embedded Applications Rev. 2.0,

Freescale Semiconductor 59

Appendix A References
[1] The FreeMASTER Tool home page at http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER
[2] FreeMASTER Serial Communication Driver User Manual. Installed with the FMASTERSCIDRV software

from
https://www.freescale.com/webapp/sps/download/license.jsp?colCode=FMASTERSCIDRV

[3] The DSP56800E_Quick_Start Initialization and Development Tool home page at
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=DSP56800EQUICKSTART

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=DSP56800EQUICKSTART
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER
https://www.freescale.com/webapp/sps/download/license.jsp?colCode=FMASTERSCIDRV

Revision History

FreeMASTER for Embedded Applications Rev. 2.0,

60 Freescale Semiconductor

Appendix B Revision History
The following revision history table summarizes changes contained in this document.

Revision Date Description

0 2/2002 Published as 56F800 SDK document SDK111/D

1.0 6/2004 Updated for FreeMASTER Application. Made as separate document.

2.0 9/2007 Updated for FreeMASTER version 1.3. New application screen shots used. New Freescale
document template used.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

FMSTRUG
Rev. 2.0,
9/2007

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.

	Important Notice
	Chapter 1 Introduction
	1.1 Overview
	1.2 Supported Platforms
	1.2.1 Going Around SCI

	1.3 Where to Find the Latest Version
	1.4 FreeMASTER Features
	1.5 License

	Chapter 2 QUESTIONS and ANSWERS
	2.1 Why do I need it?
	2.2 What does it do?
	2.3 Why is it such a great demonstration tool?
	2.4 What could I do with it if I follow the instructions?
	2.5 How is it connected to a target development board?
	2.6 What are all of these dialog boxes for?
	2.7 How does a project relate to my application?
	2.8 How do I set up remote control? Why would I want to?
	2.9 What is the Watch-grid?
	2.10 What is the Recorder?
	2.11 What is the Oscilloscope?

	Chapter 3 INSTALLATION
	3.1 System Requirements
	3.2 Enabling a FreeMASTER Connection on the Target Application
	3.3 How to Install

	Chapter 4 FreeMASTER USAGE
	4.1 Application Window Description
	4.1.1 Project Tree
	4.1.1.1 Project Block and Sub-block
	4.1.1.2 Scope
	4.1.1.3 Recorder

	4.1.2 Detail View
	4.1.2.1 Control Page
	4.1.2.2 Algorithm Block Description
	4.1.2.3 Current Item Help
	4.1.2.4 Oscilloscope / Recorder

	4.1.3 Watch-Grid

	4.2 Variables
	4.2.1 Generating Variables

	4.3 Commands
	4.4 Importing Project Files
	4.5 Menu description
	4.5.1 File Menu
	4.5.2 Edit Menu
	4.5.3 View Menu
	4.5.4 Explorer Menu
	4.5.5 Scope Menu
	4.5.6 Item Menu
	4.5.7 Project Menu

	4.6 Toolbars
	4.6.1 Toolbar
	4.6.2 Watch Bar

	Chapter 5 PROJECT OPTIONS
	5.1 Communication
	5.2 Symbol Files
	5.2.1 Regular Expression-based MAP File Parser

	5.3 Packing Resource Files into Project File
	5.3.1 Resource Files Manager

	5.4 HTML Pages
	5.5 Demo Mode

	Chapter 6 HTML and SCRIPTING
	6.1 Special HTML Hyperlinks
	6.2 FreeMASTER ActiveX Object
	6.3 FreeMASTER ActiveX Object Methods
	6.3.1 SendCommand
	6.3.1.1 Description
	6.3.1.2 Arguments:
	6.3.1.3 Return Value:

	6.3.2 SendCommandDlg
	6.3.2.1 Description
	6.3.2.2 Arguments:
	6.3.2.3 Return Value:

	6.3.3 ReadVariable
	6.3.3.1 Description
	6.3.3.2 Arguments:
	6.3.3.3 Return Value:

	6.3.4 WriteVariable
	6.3.4.1 Description
	6.3.4.2 Arguments:
	6.3.4.3 Return Value:

	6.3.5 ReadMemory
	6.3.5.1 Description
	6.3.5.2 Arguments:
	6.3.5.3 Return Value:

	6.3.6 WriteMemory
	6.3.6.1 Description
	6.3.6.2 Arguments:
	6.3.6.3 Return Value:

	6.3.7 ReadXxxArray
	6.3.7.1 Description
	6.3.7.2 Arguments:
	6.3.7.3 Return Value:

	6.3.8 WriteXxxArray
	6.3.8.1 Description
	6.3.8.2 Arguments:
	6.3.8.3 Return Value:

	6.3.9 GetCurrentRecorderData
	6.3.9.1 Description
	6.3.9.2 Arguments:
	6.3.9.3 Return Value:

	6.3.10 GetCurrentRecorderSeries
	6.3.10.1 Description
	6.3.10.2 Arguments:
	6.3.10.3 Return Value:

	6.3.11 StartCurrentRecorder
	6.3.11.1 Description
	6.3.11.2 Argument:
	6.3.11.3 Return value:

	6.3.12 StopCurrentRecorder
	6.3.12.1 Description
	6.3.12.2 Argument:
	6.3.12.3 Return Value:

	6.3.13 GetCurrentRecorderState
	6.3.13.1 Description
	6.3.13.2 Arguments:
	6.3.13.3 Return Value:

	6.3.14 RunStimulators
	6.3.14.1 Description
	6.3.14.2 Arguments:
	6.3.14.3 Return Value:

	6.3.15 StopStimulators
	6.3.15.1 Description
	6.3.15.2 Arguments:
	6.3.15.3 Return Value:

	6.4 FreeMASTER ActiveX Properties
	6.5 FreeMASTER ActiveX Object Events
	6.5.1 OnRecorderDone
	6.5.1.1 Description

	6.6 Examples
	Appendix A References

	[1] The FreeMASTER Tool home page at http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER
	[2] FreeMASTER Serial Communication Driver User Manual. Installed with the FMASTERSCIDRV software from https://www.freescale.com/webapp/sps/download/license.jsp?colCode=FMASTERSCIDRV
	[3] The DSP56800E_Quick_Start Initialization and Development Tool home page at http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=DSP56800EQUICKSTART
	Appendix B Revision History

