AAUG Android Automotive User's Guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024

User guide

Document information

Information	Content
Keywords	Android, Automotive, i.MX, automotive-13.0.0_2.3.0
	This document describes how to configure a Linux build machine and provides the steps to download, patch, and build the software components that create the Android system image when working with the sources.

1 Overview

This document provides the technical information related to the i.MX 8 devices:

- Instructions for building from sources or using pre-built images.
- Instructions for copying images to boot media.
- Hardware/software configurations for programming the boot media and running the images.

This document describes how to configure a Linux build machine and provides the steps to download, patch, and build the software components that create the Android system image when working with the sources.

For more information about building the Android platform, see <u>source.android.com/source/building.html</u>.

1.1 Acronyms

Table 1. Acronyms

Acronym	Description				
U-Boot	Universal Boot Loader				
SPL	U-Boot Secondary Program Loader				
OS	Operating system				
EVS	Android Exterior View System - https://source.android.com/devices/automotive/camera-hal				
i.MX 8	i.MX 8 Series Applications Processors				
PC	Personal (host) computer				
AOSP	Android Open Source Project - https://source.android.com/				
GCC	GNU Compiler collection - https://gcc.gnu.org/				
МЕК	Multisensory Enablement Kit - <u>https://www.nxp.com/design/development-boards/i-mx-</u> evaluation-and-development-boards:SABRE_HOME				
SoC	System on Chip - https://en.wikipedia.org/wiki/System_on_a_chip				
GAS	Google Automotive Services - https://developers.google.com/cars				
CST	(NXP) Code Signing Tool				
GPT	GUID partition table - https://en.wikipedia.org/wiki/GUID_Partition_Table				
ΟΤΑ	Over-The-Air programming				
ВТ	Bluetooth				
HVAC	Heating, ventilation, and air conditioning				
eMMC	Embedded Multi-Media Card				
SOF	Sound Open Firmware				

2 Preparation

2.1 Setting up your computer

To build the Android source files, use a computer running the Linux OS. The Ubuntu 18.04 64bit version is the most tested environment for the Android 13.0 build.

To synchronize the code and build images of this release, the computer should at least have:

• 16 GB RAM

450 GB hard disk

Note:

- The minimum required amount of free memory is around 16 GB, even with which, some configurations may not work. Enlarging the physical RAM capacity is a way to avoid potential build errors related to the memory.
- With 16 GB RAM, if you run into segfaults or other errors related to memory when building the images, try to reduce your -j value. In the demonstration commands in the following part of this document, the -j value is 4.

After the setup of Linux PC, check whether you have all the necessary packages installed for an Android build. See "Setting up your machine" on the <u>Android website</u>.

In addition to the packages requested on the Android website, the following packages are also needed:

```
sudo apt-get install uuid uuid-dev \
zlib1g-dev lib1z-dev \
liblzo2-2 liblzo2-dev \
lzop \
git curl \
u-boot-tools \
mtd-utils \
android-sdk-libsparse-utils \
device-tree-compiler \
gdisk \
m4 \setminus
bison ∖
flex make \
libssl-dev \
gcc-multilib \
libghc-gnutls-dev \
swig \
liblz4-tool ∖
libdw-dev \
dwarves \
bc cpio tar lz4 rsync \setminus
rsync utility \
ninja-build clang \
build-essential \
libncurses5
```

Note:

Configure Git before use. Set the name and email as follows:

git config --global user.name "First Last"git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package

After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

```
$ cd ~ (or any other directory you like) $ tar -xzvf imx-
automotive-13.0.0 2.3.0.tar.gz
```

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code

The i.MX Android release source code consists of three parts:

- NXP i.MX public source code, which is maintained in the GitHub repository.
- · AOSP Android public source code, which is maintained in android.googlesource.com.
- NXP i.MX Android proprietary source code package, which is maintained in <u>www.NXP.com</u>.

Assume you have i.MX Android proprietary source code package imx-automotive-13.0.0_2.3.0.tar.gz under ~/. directory. To generate the i.MX Android release source code build environment, execute the following commands:

```
$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-automotive-13.0.0_2.3.0/imx_android_setup.sh
# By default, after the preceding command is executed, the current working
directory changes to the i.MX Android source code root directory.
# ${MY_ANDROID} will be referred as the i.MX Android source code root directory
in all i.MX Android release documentation.
$ export MY_ANDROID=`pwd`
```

Note:

In the imx_android_setup.sh script, a .xml file that contains the code repositories' information is specified. Code repository revision is specified with the release tag in this file. The release tag should not be moved when the code is externally released, so no matter when the imx_android_setup.sh is executed, the working areas of code repositories synchronized by this script are the same.

If the released code is critically fixed, another .xml file is created to help customers to synchronize the code. Then customers need to modify imx_android_setup.sh. For this release, make the following changes on the script:

```
diff --git a/imx_android_setup.sh b/imx_android_setup.sh
index 324ec67..4618679 100644
--- a/imx_android_setup.sh
+++ b/imx_android_setup.sh
@@ -26,7 +26,7 @@ if [ ! -d "$android_builddir" ]; then
    # Create android build dir if it does not exist.
    mkdir "$android_builddir"
    cd "$android_builddir"
- repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-13 -m
    imx-automotive-13.0.0_2.3.0.xml
+ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-13 -m
    rel_automotive-13.0.0_2.3.0.xml
    rc=$?
    if [ "$rc" != 0 ]; then
        echo "------"
```

The wireless-regdb repository may fail to be synchronized with the following log:

```
fatal: unable to access 'https://git.kernel.org/pub/scm/linux/kernel/git/
sforshee/wireless-regdb/': server certificate verification failed. CAfile: /etc/
ssl/certs/ca-certificates.crt CRLfile: none
```

If this issue is encountered, execute the following command on the host as a fix:

\$ git config --global http.sslVerify false

3.2 Building Android images

The Android image can be built after the source code has been downloaded (Section 3.1).

Execute the source build/envsetup.sh command to import shell functions in $MY_ANDROID$ /build/envsetup.sh.

Execute the lunch <BuildName-BuildMode> command to set up the build configuration.

The Product Name is the Android device name found in the directory $MY_ANDROID/device/nxp/$. Search for the keyword PRODUCT NAME under this directory for the product name.

Table 2. Build names

Build name	Description
	i.MX 8QuadMax/8QuadXPlus MEK Board with the Exterior View System (EVS) function enabled on the Arm Cortex-M4 CPU core
	i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex- M4 core in this configuration)

The "Build Mode" is used to specify what debug options are provided in the final image. The following table lists the build modes.

Table 3. Build modes

Build mode	Description	
user	Production ready image, no debug	
userdebug	Provides image with root access and debug, similar to user	
eng	Development image with debug tools	

After the two commands above are executed, then the build process starts. The behaviour of the i.MX Android build system used to be aligned with the original Android system. The command of make could start the build process and all images were built out before. There are some differences now. A shell script named imx-make.sh is provided and its symlink file can be found under the $MY_ANDROID$ directory. ./imx-make.sh should be executed to start the build process.

The original purpose of this imx-make.sh is used to build U-Boot/kernel before building Android images.

Google puts a limit on the host tools used when compiling Android code from the Android 10.0 platform. Some host tools necessary for building U-Boot/kernel now cannot be used in Android build system, which is under the control of soong_ui, so U-Boot/kernel cannot be built together with Android images. Google also recommends using prebuilt binaries for U-Boot/kernel in Android build system. It takes some steps to build U-Boot/kernel to binaries and puts these binaries in proper directories, so some specific Android images depending on these binaries can be built without error. imx-make.sh is then added to do these steps to simplify the build work. After U-Boot/kernel are compiled, any build commands in standard Android can be used.

imx-make.sh can also start the soong_ui with the make function in \${MY_ANDROID}/build/
envsetup.sh to build the Android images after U-Boot/kernel are compiled, so customers can still build the
i.MX Android images with only one command with this script.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch mek_8q_car-userdebug, or can be issued without the argument presenting a menu of selection.

Do some preparations for the first time when building the images. A detailed example of image building steps is as follows:

1. Prepare the build environment for U-Boot and kernel.

This step is mandatory because there is no GCC cross-compile tool chain in the AOSP codebase. An approach is provided to use the self-installed GCC cross-compile tool chain.

First, download the tool chain for the A-profile architecture on the <u>arm Developer GNU-A Downloads</u> page. It is recommended to use the 9.2 version for this release. You can download gcc-arm-9.2-2019.12x86_64-aarch64-none-elf.tar.xz or gcc-arm-9.2-2019.12-x86_64-aarch64-none-linuxgnu.tar.xz. The first one is dedicated for compiling bare-metal programs, and the second one can also be used to compile the application programs.

Then, uncompress the file into a path on local disk. For example, to /opt/, export a variable named AARCH64 GCC CROSS COMPILE to point to the tool as follows:

```
# if "gcc-arm-9.2-2019.12-x86_64-aarch64-none-elf.tar.xz" is used
$ sudo tar -xvJf gcc-arm-9.2-2019.12-x86_64-aarch64-none-elf.tar.xz -C /opt
$ export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-9.2-2019.12-x86_64-aarch64-
none-elf/bin/aarch64-none-elf-
# if "gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz" is used
$ sudo tar -xvJf gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz -
C /opt
$ export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-9.2-2019.12-x86_64-aarch64-
none-linux-gnu/bin/aarch64-none-linux-gnu-
```

Finally, follow the steps below to set external clang tools for kernel building.

\$ sudo git clone https://android.googlesource.com/platform/ prebuilts/clang/host/linux-x86 /opt/prebuilt-android-clang \$ cd /opt/prebuilt-android-clang \$ sudo git checkout d20e409261d6ad80a0c29ac2055bf5c3bb996ef4 \$ export CLANG_PATH=/opt/prebuilt-android-clang

```
$ sudo git clone https://android.googlesource.com/kernel/prebuilts/build-
tools /opt/prebuilt-android-kernel-build-tools
$ cd /opt/prebuilt-android-kernel-build-tools
$ sudo git checkout e3f6a8c059b94f30f7184a7d335876f8a13a2366
$ export PATH=/opt/prebuilt-android-kernel-build-tools/linux-x86/bin:$PATH
```

The final export command can be added to /etc/profile. When the host boots up, AARCH64 GCC CROSS COMPILE and CLANG PATH are set and can be directly used.

2. Prepare the build environment for the Arm Cortex-M4 image. Download the GCC tool chain from the Arm <u>Developers GNU-RM Downloads</u> page. It is recommended to download the 7-2018-q2-update version. Extract it to your installation directory, for example, /opt. Then, export a variable named ARMGCC_DIR to point to the tool as follows:

```
$ sudo tar -jxvf gcc-arm-none-eabi-7-2018-q2-update-linux.tar.bz2 -C /opt
$ export ARMGCC DIR=/opt/gcc-arm-none-eabi-7-2018-q2-update
```

The preceding export command can be added to /etc/profile. When the host boots up, ARMGCC_DIR is set and can be directly used.

Upgrade the CMake version to 3.13.0 or higher. If the CMake version on your machine is not higher than 3.13.0, you can follow the steps below to upgrade it:

```
$ wget https://github.com/Kitware/CMake/releases/download/v3.13.2/
cmake-3.13.2.tar.gz
$ tar_wguf cmake-2 12 2 tar gg; ed cmake-2 12 2;
```

```
$ tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;
```

```
$ sudo ./bootstrap
$ sudo make
```

```
$ sudo make install
```

3. Change to the top-level build directory.

```
$ cd ${MY_ANDROID}
```

4. Set up the environment for building. This only configures the current terminal.

```
$ source build/envsetup.sh
```

 Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8QuadMax/8QuadXPlus MEK Board/Platform device with EVS function enabled in the Cortex-M4 CPU core.

```
$ lunch mek_8q_car-userdebug
```

6. Execute the imx-make.sh script to generate the image.

\$./imx-make.sh -j4 2>&1 | tee build-log.txt

The commands below can achieve the same result.

```
# First, build U-Boot/kernel with imx-make.sh, but not to build Android
images
$ ./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
# Start the process of building Android images with "make" function
$ make -j4 2>&1 | tee -a build-log.txt
```

The output of make command will be written to standard output and build-log.txt. If there are errors when building the image, error logs can be found in the build-log.txt file for checking.

To change BUILD_ID and BUILD_NUMBER, update build_id.mk in the \${MY_ANDROID}/device/nxp/ directory. For detailed steps, see the <u>i.MX Android Frequently Asked Questions</u>.

The following outputs are generated by default in $MY_ANDROID/out/target/product/mek_8q$:

- root/: root file system. It is used to generate system.img together with files in system/.
- system/: Android system binary/libraries. it is used to generate system.img together with files in root/.
- recovery/: Root file system when booting in "recovery" mode. Not used directly.
- dtbo-imx8qm.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK.
- dtbo-imx8qm-md.img: Board's device tree binary. It is used to support multiple-display feature for i.MX 8QuadMax MEK.
- dtbo-imx8qm-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadMax MEK.
- dtbo-imx8qxp.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.
- dtbo-imx8qxp-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadXPlus MEK.
- vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK.
- vbmeta-imx8qm-md.img: Android Verify boot metadata image for dtbo-imx8qm-md.img. It is used to support the multiple-display feature for i.MX 8QuadMax MEK.
- vbmeta-imx8qm-sof.img: Android Verify boot metadata image for dtbo-imx8qm-sof.img. It is used to support the SOF feature for i.MX 8QuadMax MEK.
- vbmeta-imx8qxp.img: Android Verify boot metadata image for dtbo-imx8qxp.img. It is used to support the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.

- vbmeta-imx8qxp-sof.img: Android Verify boot metadata image for dtbo-imx8qxp-sof.img. It is used to support the SOF feature for i.MX 8QuadXPlus MEK.
- ramdisk.img: Ramdisk image generated from root/. Not directly used.
- system.img: EXT4 image generated from system/ and root/.
- system_ext.img: EXT4 image generated from system_ext/.
- product.img: EXT4 image generated from product/.
- partition-table.img: GPT partition table image. Used for 16 GB boot storage.
- partition-table-28GB.img: GPT partition table image. Used for 32 GB boot storage.
- spl-imx8qm.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadMax MEK.
- spl-imx8qm-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadMax MEK. It is a demonstration of secure unlock mechanism.
- spl-imx8qxp.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip.
- spl-imx8qxp-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a demonstration of secure unlock mechanism.
- spl-imx8qxp-c0.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision C0 chip.
- bootloader-imx8qm.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadMax MEK.
- bootloader-imx8qm-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted firmware, trusty OS, and U-Boot proper for i.MX 8QuadMax MEK. It is a demonstration of secure unlock mechanism.
- bootloader-imx8qxp.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip.
- bootloader-imx8qxp-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a demonstration secure unlock mechanism.
- bootloader-imx8qxp-c0.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision C0 chip.
- u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to MMC.
- u-boot-imx8qxp-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is not flashed to MMC.
- u-boot-imx8qxp-mek-c0-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon revision C0 chip. It is not flashed to MMC.
- vendor.img: Vendor image, which holds platform binaries. Mounted at /vendor.
- boot.img: A composite image that includes the kernel Image, ramdisk, and boot parameters.
- rpmb key test.bin: Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
- testkey public rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

Note:

- To build the U-Boot image separately, see <u>Section 3.3</u>.
- To build the kernel ulmage separately, see <u>Section 3.4</u>.
- To build boot.img, see <u>Section 3.5</u>.
- To build dtbo.img, see <u>Section 3.6</u>.

3.2.1 Configuration examples of building i.MX devices

The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX device is set up, the ./imx-make.sh command is used to start the build.

 Table 4. i.MX device lunch examples

Build name	Lunch command
i.MX 8QuadXPlus/8QuadMax MEK Board with EVS function enabled on the Arm Cortex-M4 CPU core	\$ lunch mek_8q_car-userdebug
i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex-M4 core in this configuration)	\$ lunch mek_8q_car2-userdebug

3.2.2 Build mode selection

There are three types of build mode to select: eng, user, and userdebug.

Note:

To pass CTS, use user build mode.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates the security model of the platform. This makes the userdebug build good for user to test with greater diagnosis capabilities.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug builds, so that device developers can see how the code behaves in those environments.

PRODUCT_PACKAGES_ENG and PRODUCT_PACKAGES_DEBUG can be used to specify the modules to be installed in the appropriate product makefiles.

If a module does not specify a tag with LOCAL_MODULE_TAGS, its tag defaults to optional. An optional module is installed only if it is required by product configuration with PRODUCT PACKAGES.

The main differences among the three modes are listed as follows:

- eng: development configuration with additional debugging tools
 - Installs modules tagged with: eng and/or debug through LOCAL_MODULE_TAGS, or specified by PRODUCT_PACKAGES_ENG and/or PRODUCT_PACKAGES_DEBUG.
 - Installs modules according to the product definition files, in addition to tagged modules.
 - ro.secure=0
 - ro.debuggable=1
 - ro.kernel.android.checkjni=1
 - adb is enabled by default.
- user: limited access; suited for production
 - Installs modules tagged with user.
 - Installs modules according to the product definition files, in addition to tagged modules.
 - ro.secure=1
 - ro.debuggable=0

- adb is disabled by default.
- userdebug: like user but with root access and debuggability; preferred for debugging
 - Installs modules tagged with debug through LOCAL_MODULE_TAGS, or specified by PRODUCT PACKAGES DEBUG.

```
- ro.debuggable=1
```

```
- adb is enabled by default.
```

There are two methods for the build of Android image.

To build Android images, an example for the i.MX 8QuadMax/8QuadXPlus MEK with EVS function enabled in the Cortex-M4 CPU core is:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh -j4
```

The commands below can achieve the same result:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make -j4
```

For more Android platform building information, see source.android.com/source/building.html.

3.2.3 Build with the GAS package

Get the Google Automobile Services (GAS) package from Google. Put the GAS package into the \${MY_ANDROID}/vendor/partner_gas directory. Make sure the product.mk* file includes the following command line:

\$(call inherit-product-if-exists, vendor/partner gas/products/gms.mk)

Then build the images. The GAS package is then installed into the target images.

3.3 Building U-Boot images

The U-Boot images can be generated separately. For example, you can generate a U-Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with the EVS function enabled in the Arm Cortex-M4 CPU core as follows:

```
# U-Boot image for 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader -j4
```

Multiple U-Boot variants are generated for different purposes. You can check {MY_Android}/device/ nxp/imx8q/mek_8q/UbootKernelBoardConfig.mk for more details. The following table lists the U-Boot configurations and images for lunch target mek_8q_car-userdebug.

SoC	U-Boot configurations	Generated images	Description
i.MX 8QuadMax	<pre>imx8qm_mek_ androidauto_trusty_ defconfig</pre>	spl-imx8qm.bin, bootloader-imx8qm.img	Default i.MX 8QuadMax Android Auto image
i.MX 8QuadMax	<pre>imx8qm_mek_ androidauto_trusty_ secure_unlock_ defconfig</pre>	<pre>spl-imx8qm-secure- unlock.bin,bootloader- imx8qm-secure-unlock. img</pre>	i.MX 8QuadMax Android Auto image with secure unlock feature enabled. See Section 2.3.10 in <i>i.MX</i> Android [™] Security User's Guide (ASUG) for more details about secure unlock.
i.MX 8QuadXPlus B0 chip	<pre>imx8qxp_mek_ androidauto_trusty_ defconfig</pre>	<pre>spl-imx8qxp.bin, bootloader-imx8qxp. img</pre>	Default i.MX 8QuadXPlus B0 chip Android Auto image
i.MX 8QuadXPlus C0 chip	<pre>imx8qxp_mek_ androidauto_trusty_ defconfig</pre>	<pre>spl-imx8qxp-c0.bin, bootloader-imx8qxp- c0.img</pre>	Default i.MX 8QuadXPlus C0 chip Android Auto image
i.MX 8QuadXPlus B0 chip	<pre>imx8qxp_mek_ androidauto_trusty_ secure_unlock_ defconfig</pre>	<pre>spl-imx8qxp-secure- unlock.bin,bootloader- imx8qxp-secure- unlock.img</pre>	i.MX 8QuadXPlus B0 chip Android Auto image with secure unlock feature enabled. See Section 2.3.10 in <i>i.MX Android™ Security</i> <i>User's Guide</i> (ASUG) for more details about secure unlock.
i.MX 8QuadMax	<pre>imx8qm_mek_android_ uuu_defconfig</pre>	u-boot-imx8qm-mek- uuu.imx	U-Boot image aims to flash images for i.MX 8QuadMax. This should not be shipped to end users.
i.MX 8QuadXPlus B0 chip	<pre>imx8qxp_mek_android_ uuu_defconfig</pre>	u-boot-imx8qxp-mek- uuu.imx	U-Boot image aims to flash images for i.MX 8QuadXPlus B0 chip. This should not be shipped to end users.
i.MX 8QuadXPlus C0 chip	<pre>imx8qxp_mek_android_ uuu_defconfig</pre>	u-boot-imx8qxp-mek- c0-uuu.imx	U-Boot image aims to flash images for i.MX 8QuadXPlus C0 chip. This should not be shipped to end users.

Table 5. U-Boot configurations and images

3.4 Building a kernel image

Kernel image is automatically built when building the Android root file system.

To build out the kernel image independently from the default Android build command:

```
$ cd ${MY_ANDROID}
```

```
$ source build/envsetup.sh
```

```
$
```

```
lunch mek_8q_car-userdebug
./imx-make.sh kernel -j4
$
```

With a successful build in the use case above, the generated kernel images are: \${MY_ANDROID}/out/ target/product/mek_8q/obj/KERNEL_OBJ/arch/arm64/boot/Image.

3.5 Building boot.img

The following commands are used to generate boot.img under the Android environment:

```
# Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootimage -j4
```

The following commands can achieve the same result:

```
# Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh kernel -j4
$ make bootimage -j4
```

3.6 Building dtbo.img

DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo.img under the Android environment:

```
# dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh dtboimage -j4
```

The following commands can achieve the same result:

```
# dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh kernel -j4
$ make dtboimage -j4
```

4 Running the Android Platform with a Prebuilt Image

To test the Android platform before building any code, use the prebuilt images from the following packages and go to "Programming Images" and "Booting".

Table 6.	Image	packages
----------	-------	----------

Image package	Description	
8qmek_car.tar.gz	Prebuilt-image for i.MX 8QuadXPlus/8QuadMax MEK board with EVS function enabled in the Arm Cortex-M4 CPU core, which includes NXP extended features.	

Table 6. Image packages...continued

Image package	Description	
android_automotive-13.0.0_2.3.0_ image_8qmek_car2.tar.gz	Prebuilt-image and UUU script files for i.MX 8QuadMax/8QuadXPlus MEK board without EVS function enabled in the Arm Cortex-M4 CPU core, which includes NXP extended features.	

The following tables list the detailed contents of android_automotive-13.0.0_2.3.0_image_8qmek_ car.tar.gz image package.

The table below shows the prebuilt images to support the system boot from eMMC on i.MX 8QuadXPlus MEK boards from eMMC on i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards.

 Table 7. Images for i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards

spl-imx8qm-secure-unlock.binThe solutionspl-imx8qxp.binThe solutionspl-imx8qxp-secure-unlock.binThe solutionspl-imx8qxp-c0.binThe solutionbootloader-imx8qm.imgThe solutionbootloader-imx8qm-secure-unlock.imgThe solutionbootloader-imx8qm-secure-unlock.imgThe solutionbootloader-imx8qm-secure-unlock.imgThe solutionbootloader-imx8qxp.imgThe solutionbootloader-imx8qxp-secure-unlock.imgThe solutionbootloader-imx8qxp-secure-unlock.imgThe solutionbootloader-imx8qxp-secure-unlock.imgThe solutionbootloader-imx8qxp-secure-unlock.imgThe solutionbootloader-imx8qxp-secure-unlock.imgThe solutionbootloader-imx8qxp-c0.imgThe solutionbootloader-imx8qxp-c0.imgThe solutionbootloader-imx8qxp-c0.imgThe solutionbootloader-imx8qm-mek-uuu.imxBoot	secondary program loader (SPL) for i.MX 8QuadMax MEK board. secondary program loader (SPL) with Trusty and secure unlock related gurations for i.MX 8QuadMax MEK board. secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with in revision B0 chip. secondary program loader (SPL) with Trusty and secure unlock related gurations for i.MX 8QuadXPlus MEK board with silicon revision B0 chip.		
confispl-imx8qxp.binThe silicospl-imx8qxp-secure-unlock.binThe silicospl-imx8qxp-c0.binThe silicobootloader-imx8qm.imgThe silicobootloader-imx8qm-secure- unlock.imgThe silicobootloader-imx8qm-secure- unlock.imgThe silicobootloader-imx8qxp.secure- unlock.imgThe silicobootloader-imx8qxp.secure- unlock.imgThe silicobootloader-imx8qxp.secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-c0.imgThe silicobootloader-imx8qxp-c0.imgThe silicou-boot-imx8qm-mek-uuu.imxBoot	gurations for i.MX 8QuadMax MEK board. secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with in revision B0 chip. secondary program loader (SPL) with Trusty and secure unlock related		
silico spl-imx8qxp-secure-unlock.bin spl-imx8qxp-c0.bin bootloader-imx8qm.img bootloader-imx8qm-secure- unlock.img the A bootloader-imx8qxp.img bootloader-imx8qxp.secure- unlock.img the a bootloader-imx8qxp-secure- unlock.img bootloader-imx8qxp-secure- unlock.img bootloader-imx8qxp-secure- unlock.img bootloader-imx8qxp-c0.img the a revis bootloader-imx8qxp-c0.img bootloader-imx8qm-mek-uuu.imx Boot	n revision B0 chip. secondary program loader (SPL) with Trusty and secure unlock related		
confispl-imx8qxp-c0.binThe silicobootloader-imx8qm.imgThe silicobootloader-imx8qm-secure- unlock.imgThe silicobootloader-imx8qxp.secure- unlock.imgThe silicobootloader-imx8qxp.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-secure- unlock.imgThe silicobootloader-imx8qxp-c0.imgThe silicobootloader-imx8qxp-c0.imgThe silicou-boot-imx8qm-mek-uuu.imxBoot			
silico bootloader-imx8qm.img The m bootloader-imx8qm-secure- unlock.img The m bootloader-imx8qxp.img The m revis bootloader-imx8qxp-secure- unlock.img The m revis propu- bootloader-imx8qxp-c0.img The m revis u-boot-imx8qm-mek-uuu.imx Boot			
bootloader-imx8qm-secure- unlock.img The revis bootloader-imx8qxp.img The revis bootloader-imx8qxp-secure- unlock.img The revis propu- bootloader-imx8qxp-c0.img The revis u-boot-imx8qm-mek-uuu.imx Boot	secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with on revision C0 chip.		
unlock.imgthe Abootloader-imx8qxp.imgThe revisbootloader-imx8qxp-secure- unlock.imgThe revisbootloader-imx8qxp-c0.imgThe revisunbootloader-imx8qxp-c0.imgBoot	next loader image after SPL for the i.MX 8QuadMax MEK board.		
revis bootloader-imx8qxp-secure- unlock.img bootloader-imx8qxp-c0.img u-boot-imx8qm-mek-uuu.imx Boot	next loader image after SPL for the i.MX 8QuadMax MEK board, including rm trusted firmware, Trusty OS, and U-Boot proper.		
unlock.img revis propu- bootloader-imx8qxp-c0.img The revis u-boot-imx8qm-mek-uuu.imx Boot	next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon ion B0 chip.		
u-boot-imx8qm-mek-uuu.imx Boot	The next loader image after SPL for i.MX 8QuadXPlus MEK board with silico revision B0 chip, including the Arm trusted firmware, Trusty OS, and U-Boot proper.		
-	next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon ion C0 chip.		
MMC	loader used by UUU for i.MX 8QuadMax MEK board. It is not flashed to C.		
	bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon ion B0 chip. It is not flashed to MMC.		
	bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon ion C0 chip. It is not flashed to MMC.		
partition-table.img GPT	table image for 16 GB boot storage		
partition-table-28GB.img GPT	table image for 32 GB boot storage		
	Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support LVDS-to-HDMI display		
	oid Verify Boot metadata image for i.MX 8QuadMax MEK board to support ple-display feature.		
	oid Verify Boot metadata image for i.MX 8QuadMax MEK board to support DSP feature.		
AUG All infor	mation provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserve		

i.MX 8QuadXPlus/8QuadMax MEK image	Description		
vbmeta-imx8qxp.img	Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support LVDS-to-HDMI display		
vbmeta-imx8qxp-sof.img	Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support SOF DSP feature.		
system.img	System Boot image		
system_ext.img	System extension image.		
vendor.img	Vendor image, which holds platform binaries. Mounted at /vendor.		
vendor_dlkm.img	Vendor DLKM image, which holds dynamically loadable kernel module. Mounted at /vendor_dlkm.		
product.img	Product image.		
dtbo-imx8qm.img	Device tree image for i.MX 8QuadMax		
dtbo-imx8qm-md.img	Device tree image for i.MX 8QuadMax to support multiple display feature.		
dtbo-imx8qm-sof.img	Device tree image for i.MX 8QuadMax to support SOF DSP feature.		
dtbo-imx8qxp.img	Device tree image for i.MX 8QuadXPlus		
dtbo-imx8qxp-sof.img	Device tree image for i.MX 8QuadXPlus to support SOF DSP feature.		
boot.img	A composite image, which includes the AOSP generic kernel image and boot parameters.		
init_boot.img	Generic ramdisk.		
vendor_boot.img	A composite image, which includes vendor ramdisk and boot parameters.		
rpmb_key_test.bin	Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.		
testkey_public_rsa4096.bin	Prebuilt AVB public key. It is extracted from the default AVB private key.		

Table 7. Images for i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards...continued

Note: boot.img is an Android image that stores kernel Image and ramdisk together. It also stores other information such as the kernel boot command line, machine name. This information can be configured in android.mk. It can avoid touching the boot loader code to change any default boot arguments.

5 Programming Images

The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, gpt image, vendor image, and vbmeta image. At a minimum, the storage devices on the NXP development system (eMMC) must be programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access based on the Boot switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read to determine how to proceed with the boot process. For U-Boot environment settings, see Section <u>Section 6</u>.

The following download methods can be used to write the Android System Image:

- UUU to download all images to the eMMC storage.
- fastboot_imx_flashall script to download all images to the eMMC storage.

5.1 System on eMMC

The images needed to create an Android system on eMMC can either be obtained from the release package or be built from source.

The images needed to create an Android system on eMMC are listed below:

- Secondary program loader image: spl.bin
- Android bootloader image: bootloader.img
- GPT table image: partition-table.img
- Android DTBO image: dtbo.img
- Android boot image: boot.img
- Android vendor boot image: vendor_boot.img
- Android system image: system.img
- Android system extension image: system_ext.img
- Android vendor image: vendor.img
- Android vendor dynamically loadable kernel module image: vendor_dlkm.img
- Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions

The layout of the eMMC card for Android system is shown below:

- [Partition type/index] which is defined in the GPT.
- [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata partition is used to put the unpacked codes/data of the applications, system configuration database, and so on. In recovery mode, the root file system is mounted with ramdisk from the boot partition.

Partition type/index	Name	Start offset	Size	File system	Content
N/A	bootloader0	0 KB (i.MX 8Quad Max, i.MX 8Quad XPlus C0) or 32KB (i.MX 8QuadXPlus B0)	4 MB	N/A	spl.bin
1	bootloader_a	8 MB	4 MB	N/A	bootloader.img
2	bootloader_b	Follow bootloader_a	4 MB	N/A	bootloader.img
3	dtbo_a	Follow bootloader_b	4 MB	N/A	dtbo.img
4	dtbo_b	Follow dtbo_a	4 MB	N/A	dtbo.img
5	boot_a	Follow dtbo_b	64 MB	boot.img format, a kernel + recovery ramdisk	boot.img
6	boot_b	Follow boot_a	64 MB	boot.img format, a kernel + recovery ramdisk	boot.img
7	vendor_boot_a	Follow boot_a	64 MB	Part of recovery ramdisk	vendor_boot.img

Table 8. Storage partitions

© 2024 NXP B.V. All rights reserved.

Partition type/index	Name	Start offset	Size	File system	Content
8	vendor_boot_b	Follow boot_b	64 MB	Part of recovery ramdisk	vendor_boot.img
9	misc	Follow boot_ b	4 MB	N/A	For recovery storage bootloader message, reserve
10	metadata	Follow misc	16 MB	N/A	Metadata of OTA update, remount, etc.
11	presistdata	Follow metadata	1 MB	N/A	Option to operate lock \unlock
12	super.img	Follow presistdata	4096 MB	N/A	<pre>system.img, system_ ext.img, vendor.img, vendor_dlkm.img, and product.img</pre>
13	userdata	Follow super	Remained space	EXT4. Mount at / data	Application data storage for system application, and for internal media partition, in the /mnt/sdcard/ directory
14	fbmisc	Follow userdata	1 MB	N/A	For storing the state of lock/ unlock
15	vbmeta_a	Follow fbmisc	1 MB	N/A	For storing the verify boot's metadata
16	vbmeta_b	Follow vbmeta_a	1 MB	N/A	For storing the verify boot's metadata

Table 8. Storage partitions...continued

Partitions are created by UUU utility, burning Android automotive images (by partition.img). Using UUU is described in the Android Quick Start Guide (AQSUG).

5.1.2 Downloading images with UUU

UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading images. See the *Android Quick Start Guide* (AQSUG) for a detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script

UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode firstly, and make the board enter boot mode once flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System Image into board. It requires the target board be able to enter fastboot mode and the device is unlocked. There is no need to change the boot mode with this fastboot imx flashall script.

The table below lists the fastboot_imx_flashall scripts.

Table 9.	fastboot	_imx_	flashall	script
----------	----------	-------	----------	--------

Name	Host system to execute the script
fastboot_imx_flashall.sh	Linux OS
fastboot_imx_flashall.bat	Windows OS

With the help of fasboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one by one manually. These scripts will automatically flash all images with only one line of command.

With virtual A/B feature enabled, your host fastboot tool version should be equal to or greater than 30.0.4. You can download the host fastboot tool from Android website or you can build it with the Android project. Based on Section 3, which describes how to build Android images, perform the following steps to build fastboot:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ make -j4 fastboot
```

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

- Linux version binary file: \${MY ANDROID}/out/host/linux-x86/bin/
- Windows version binary file: \${MY ANDROID}/out/host/windows-x86/bin/

The way to use these scripts is as follows:

- Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
- Windows batch script usage: fastboot imx flashall.bat <option>

```
Options:
                       Displays this help message
     -h
     -f soc name
                       Flashes the Android image file with soc name
                       Only flashes the image to slot a
     -a
     -b
                       Only flashes the image to slot b
                      Optional setting: 28
      -c card size
                       If it is not set, use partition-table.img (default).
                        If it is set to 28, use partition-table-28GB.img for 32
GB SD card.
                       Make sure that the corresponding file exists on your
platform.
                       Flashes the Cortex-M4 image.
      -m
      -u uboot feature Flashes U-Boot or SPL&bootloader images with
 "uboot feature" in their names. For QXP CO revision please use -u cO.
                           For Android Automotive:
                                Only dual-bootloader feature is supported. By
 default, SPL&bootloader image is flashed.
                                For i.MX 8QuadXPlus CO revision, use the -u cO
 parameter.
     -d dtb feature Flashes dtbo, vbmeta, and recovery image file with
 "dtb feature" in their names.
                           If it is not set, use the default dtbo, vbmeta, and
 recovery image.
                      Erases user data after all image files are flashed.
     -e
      -1
                      Locks the device after all image files are flashed.
      -D directory
                      Directory of images.
                      If this script is execute in the directory of the images,
 it does not need to use this option.
     -s ser num
                      Serial number of the board.
                      If only one board is connected to computer, it does not
 need to use this option
```

Note:

• -f option is mandatory. SoC name can be imx8qm or imx8qxp.

• Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_android-13.0/mek_8q_car/

Option explanations:

- -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.
- -a: Only flashes slot a.
- -e: Erases user data after all image files are flashed.
- -D /imx_android-13.0/mek_8q_car/: Images to be flashed are in the directory of / imx android-13.0/mek 8q car/.

5.1.4 Downloading a single image with fastboot

Sometimes only a single image needs to be flashed again with fastboot for debug purposes.

fastboot is also implemented in userspace (recovery) in addition to the implementation in U-Boot. With dynamic partition feature enabled, the partitions are categorized into three parts. fastboot implemented in U-Boot and userspace can individually recognize part of them. The relationship between them are listed as follows.

Table 10. Partition categories

Partition category	Partition	Can be recognized by
U-Boot hard-coded partition	bootloader0,gpt,mcu_os	U-Boot fastboot
EFI partition	<pre>boot_a, boot_b, vendor_boot_a, vendor_boot_b, dtbo_a, dtbo_b, vbmeta_a, vbmeta_b, misc, metadata, presistdata, super, userdata, fbmisc</pre>	U-Boot fastboot, userspace fastboot
Logical partition	<pre>system_a, system_b, system_ ext_a, system_ext_b, vendor_a, vendor_b, product_a, product_b</pre>	Userspace fastboot

Note:

Logical partitions only exist if dynamic partition feature is enabled.

To enter U-Boot fastboot mode, for example, you can first make the board enter U-Boot command mode, and then execute the following command on the console:

```
> fastboot 0
```

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may need root permission on Linux OS:

```
# board in U-Boot fastboot mode, execute the following command on the host
```

- \$ fastboot reboot fastboot
- # board boot up to the Android system, execute the following command on the host
- \$ adb reboot fastboot

To use fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented on the device that can recognize the partition to be operated on. For example, images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz have dynamic partition feature enabled. To flash system.img to the

partition of system_a, make the board enter userspace fastboot mode, and execute the following command on the host:

\$ fastboot flash system_a system.img

6 Booting

This chapter describes booting from MMC.

6.1 Booting from eMMC

6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board

The following tables list the boot switch settings to control the boot storage.

Table 11. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadMax boot switch	download Mode (UUU mode)	eMMC boot
SW2 Boot_Mode (1-6 bit)	001000	000100

Table 12. Boot switch settings for i.MX 8QuadXPlus

i.MX 8QuadXPlus boot switch	download Mode (UUU mode)	eMMC boot
SW2 Boot_Mode (1-4 bit)	1000	0100

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i.MX 8QuadMax.

Change the board Boot_Mode switch to 0100 (1-4 bit) for i.MX 8QuadXPlus.

To use the default environment in boot.img, do not set bootargs environment in U-Boot.

Note:

bootargs is an optional setting for boota. The boot.img includes a default bootargs, which will be used if there is no bootargs defined in U-Boot.

6.2 Boot-up configurations

This section describes some common boot-up configurations, such as U-Boot environments, kernel command line, and DM-verity configurations.

6.2.1 U-Boot environment

- bootcmd: the first variable to run after U-Boot boot.
- bootargs: the kernel command line, which the bootloader passes to the kernel. As described in <u>Section 6.2.2</u>, bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs environment variable, it uses the default bootargs inside the image. If you have the environment variable, it is then used.

To use the default environment in **boot.img**, use the following command to clear the **bootargs** environment variable.

> setenv bootargs

If the environment variable <code>append_bootargs</code> is set, the value of <code>append_bootargs</code> is appended to bootargs automatically.

• boota:

boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs as needed (it only passes bootargs in boot.img when it cannot find bootargs variable in your U-Boot environment).

To boot the system, execute the following command:

U-Boot=> boota

To boot into recovery mode, execute the following command:

U-Boot=> boota recovery

6.2.2 Kernel command line (bootargs)

Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Kernel parameter	Description	Typical value	Used when
console	Where to output kernel log by printk.	console=ttymxc0	i.MX 8QuadMax MEK uses console=ttyLP0.
init	Tells kernel where the init file is located.	init=/init	All use cases. init in the Android platform is located in / instead of in /sbin.
androidboot.console	The Android shell console. It should be the same as console=.	androidboot. console=ttymxc0	To use the default shell job control, such as Ctrl+C to terminate a running process, set this for the kernel.
cma	CMA memory size for GPU/ VPU physical memory allocation.	cma=1184M@0x960M- 0xe00M	Start address is 0x96000000 and end address is 0xDFFF FFFFF. The CMA size can be configured to other value, but cannot exceed 1184 MB, because the Cortex-M4 core will also allocate memory from CMA and Cortex-M4 cannot use the memory larger than 0xDFFFFFFF.
androidboot.selinux	Argument to disable SELinux check. For details about SELinux, see <u>Security-</u> <u>Enhanced Linux in Android</u> .	androidboot. selinux=permissive	Setting this argument will also bypass all the SELinux rules defined in Android system. It is recommended to set this argument for internal developer.
androidboot.fbTile Support	It is used to enable framebuffer super tile output.	androidboot.fbTile Support=enable	-

Table 13. Kernel boot parameters

Kernel parameter	Description	Typical value	Used when
firmware_class.path	It is used to set the Wi-Fi firmware path.	firmware_class.path=/ vendor/firmware	-
androidboot. wificountrycode=US	It is used to set Wi-Fi country code. Different countries use different Wi-Fi channels. For details, see the <u>i.MX</u> <u>Android Frequently Asked</u> <u>Questions</u> .	androidboot. wificountrycode=US	-
transparent_hugepage	It is used to change the sysfs boot time defaults of Transparent Hugepage support.	transparent_ hugepage=never/ always/madvise	-
galcore.contiguous Size	It is used to configure the GPU reserved memory.	galcore.contiguous Size=33554432	It is 128 MB by default. i.MX 8QuadMax/8QuadXPlus automatically configures it to 32 MB to shorten the GPU driver initialization time.
androidboot.vendor. sysrq	It is used to enable sysrq.	androidboot.vendor. sysrq=1	-

 Table 13. Kernel boot parameters...continued

6.2.3 DM-verity configuration

DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent the device from running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system, vbmeta) will make the board unbootable. Disabling DM-verity provides convenience for developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

- 1. Unlock the device.
 - a. Boot up the device.
 - b. Enable Developer mode. click 7 times on the Settings -> About -> Build number menu.
 - c. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
 - d. Execute the following command on the target side to make the board enter fastboot mode:

```
reboot bootloader
```

e. Unlock the device. Execute the following command on the host side:

```
fastboot oem unlock
```

- f. Wait until the unlock process is complete.
- 2. Disable DM-verity.
 - a. Boot up the device.
 - b. Disable the DM-verity feature. Execute the following command on the host side:

```
adb root
adb disable-verity
adb reboot
```

7 Over-The-Air (OTA) Update

This section provides an example for the i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled in the Arm Cortex-M4 CPU core to build and implement OTA update.

For other platforms, use "lunch " to set up the build configuration. For detailed build configuration, see Section 3.2 "<u>Section 3.2</u>".

7.1 Building OTA update packages

7.1.1 Building target files

You can use the following commands to generate target files under the Android environment:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4
```

After building is complete, you can find the target files in the following path:

```
${MY_ANDROID}/out/target/product/mek_8q_car/obj/PACKAGING/
target_files_intermediates/mek_8q_car-target_files-${date}.zip
```

7.1.2 Building a full update package

A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is contained in the package.

You can use the following commands to build a full update package under the Android environment:

```
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ ./imx-make.sh bootloader kernel -j4
$ make otapackage -j4
```

Note:

The command line \$ make otapackage -j4 is used for i.MX 8QuadMax. For i.MX 8QuadXPlus, use the command line make OTA TARGET=8qxp otapackage -j4.

After building is complete, you can find the OTA packages in the following path:

\${MY ANDROID}/out/target/product/mek 8q car/mek 8q car-ota-\${date}.zip

mek_8q_car-ota-\${date}.zip includes payload.bin and payload_properties.txt. The two files
are used for full update.

Note:

• *\${date}* is the BUILD_NUMBER in build id.mk.

7.1.3 Building an incremental update package

An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result in considerably smaller update packages:

- Files that have not changed do not need to be included.
- Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding of the differences between the two files. You can install the incremental update package only on a device that has the old or source build used when constructing the package.

Before building an incremental update package, see Section <u>Section 7.1.1</u> to build two target files:

- PREVIOUS-target files.zip: one old package that has already been applied on the device.
- NEW-target files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

```
$ cd ${MY_ANDROID}
$ ./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip
NEW-target_files.zip incremental_ota_update.zip
```

\${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform

update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports updating system from a remote server or board's storage.

To update the system from a remote server, perform the following steps:

- 1. Copy full-ota.zip or incremental_ota.zip (generated on <u>Section 7.1.2</u> and <u>Section 7.1.3</u>) to the HTTP server (for example, 192.168.1.1:/var/www/).
- 2. Unzip the packages to get payload.bin and payload properties.txt.
- 3. Cat the content of payload_properties.txt like this:
 - FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
 - FILE SIZE=379074366
 - METADATA HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
 - METADATA SIZE=46866
- 4. Log in to the ADB shell and execute the following command to update:

```
update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update
--headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"
```

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to reboot" in the logcat.

To update the system from board's storage, perform the following steps:

1. Unzip full-ota.zip or incremental_ota.zip (Generated on <u>Section 7.1.2</u> and <u>Section 7.1.3</u>) to get payload.bin and payload_properties.txt.

2. Push payload.bin to board's storage:

```
adb root
adb push payload.bin /data/ota package
```

- 3. Cat the content of payload_properties.txt like this:
 - FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
 - FILE SIZE=379074366
 - METADATA HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
 - METADATA SIZE=46866

4. Input the following command in board's console to update:

```
update_engine_client --payload=file:///data/ota_package/payload.bin --update
--headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"
```

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to reboot" in the logcat.

Note:

Make sure that the -- header equals to the exact content of <code>payload_properties.txt</code>. *No more "space" or "return" characters.*

7.2.2 Using a customized application to update the Android platform

Google provides a reference OTA application (named as SystemUpdaterSample) under $MY_ANDROID / bootable/recovery/updater_sample, which can do OTA job. Perform the following steps to use this application:$

1. Generate a JSON configuration file from the OTA package.

```
PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip
```

And you can use the following command to generate an incremental OTA JSON file:

```
PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip
```

Note:

<u>http://192.168.1.1:10888/full-ota.zip</u> is a remote server address, which can hold your OTA package.

2. Set up the HTTP server (for example, lighttpd, apache). You need one HTTP server to hold OTA packages.

```
scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}
```

Note:

- server_ota_folder is one folder on your remote server to hold OTA packages.
- full-ota.zip and incremental-ota.zip are built from <u>Section 7.1.2</u> and <u>Section 7.1.3</u>.
- 3. Push JSON files to the board.

Use the following command to push JSON files to the board:

```
adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp
```

Then use the following command to move JSON files to the private folder of the SystemUpdaterSample application:

```
su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/0/
com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/
*.json
```

Note:

If you use the Android Automotive system, move JSON files to the user/10 folder as follows:

```
su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/
com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/
configs/*.json
```

4. Open the SystemUpdaterSample OTA application. There are many buttons on the UI. Their brief description is as follows:

```
Reload - reloads update configs from device storage.
View config - shows selected update config.
Apply - applies selected update config.
Stop - cancel running update, calls UpdateEngine#cancel.
Reset - reset update, calls UpdateEngine#resetStatus, can be called only when
update is not running.
Suspend - suspend running update, uses UpdateEngine#cancel.
Resume - resumes suspended update, uses UpdateEngine#applyPayload.
Switch Slot - if ab_config.force_switch_slot config set true, this button
will be enabled after payload is applied, to switch A/B slot on next reboot.
```

First, choose the desired JSON configuration file, and then click the **APPLY** button to do the update. After the update is complete, you can see "SUCCESS" in the **Engine error** text field, and "REBOOT_REQUIRED" in the **Updater state** text field. Then, reboot the board to finish the whole OTA update.

The OTA package includes the dtbo image, which stores the board's DTB. There may be many DTBs for one board. For example, in $MY_ANDROID/device/nxp/imx8q/mek_8q/BoardConfig.mk$:

TARGET_BOARD_DTS_CONFIG := imx8qm:imx8qm-mek-car.dtb imx8qxp:imx8qxp-mek-car.dtb

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD PREBUILT DTBOIMAGE := out/target/product/mek 8q/dtbo-imx8qm.img

AAUG

© 2024 NXP B.V. All rights reserved

Therefore, the default OTA package can only be applied for the mek_8qm board. To generate an OTA package for mek_8qxp, modify this BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qxp.img

The OTA package includes the bootloader image, which is specified by the following variable in \${MY_ANDROID}/device/nxp/imx8q/mek 8q/BoardConfig.mk:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/ bootloader-imx8qm.img

To generate an OTA package for mek 8qxp, modify BOARD OTA BOOTLOADERIMAGE as follows:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/ bootloader-imx8qxp.img

For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For information about the SystemUpdaterSample application, see https://android.googlesource.com/platform/
bootable/recovery/+/refs/heads/master/updater_sample/.

8 Customized Configuration

8.1 Camera configuration

Exterior View System (EVS) is supported in i.MX Android Automotive release. This feature supports a fastboot camera, which starts camera within 1 second when the board is powered on.

This section describes how this feature is implemented and how the interfaces are used to control the EVS function. This can help customers to do customization work on the EVS function.

8.1.1 Interfaces to control the EVS function

8.1.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car.tar.gz

With images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz, the Arm Cortex-A core runs Android Automotive system and the Arm Cortex-M core runs RTOS collaborate to realize this EVS function. The work sequence chart of EVS is shown in the following figure. It starts with the board power-on.

AAUG

Android Automotive User's Guide

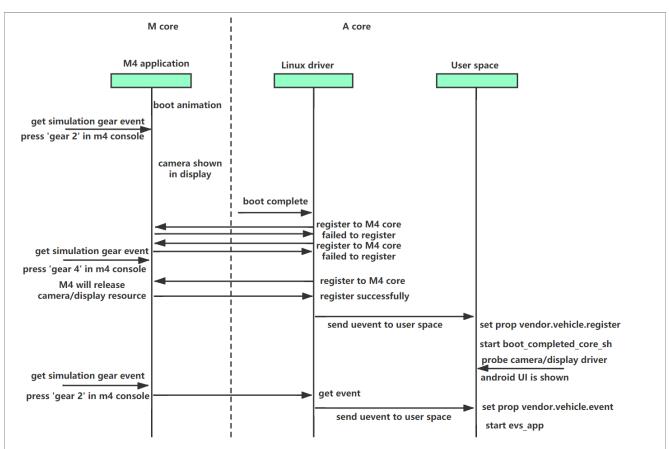


Figure 1. EVS sequence chart with Cortex-M core and Cortex-A core collaborated together

Rear view camera (RVC) is only supported in Android cars. The following is the registration process of the vehicle client.

- Set vendor.all.system_server.ready to 1 in frameworks/base/packages/SystemUI/src/ com/android/systemui/SystemUIApplication.java.
- 2. Write 1 to /sys/devices/platform/vehicle_rpmsg_m4/register in AP. Register the RPMSG client to the Cortex-M4 side.
- 3. Cortex-M4 releases camera/display resource and sends Response of RPMSG client register. If the registration status is successful, go to Step 5; otherwise, go to Step 4.
- 4. AP gets state values VEHICLE_GEAR and register_ready.
- 5. Send extcon_set_state_sync to evs_service in AP. vendor.vehicle.register is then set.
- 6. Start boot completed core sh, which probes the display/camera modules.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview camera:

- 1. Connect the camera as described in *i.MX Android Quick Start Guide* (AQSUG).
- Open the Cortex-M4 console.
 Cortex-M4 console on the i.MX 8QuadXPlus MEK board: USB-to-UART port has two consoles. One is Cortex-A core console, and the other one is Cortex-M4 console.
 Cortex-M4 console on i.MX 8QuadMax MEK board: RS-232 port on the base board.
- 3. Input gear 2 on the Cortex-M4 console when the board is powered on and Android Automotive running on Cortex-A core is not fully booted. The rearview camera will appear on the screen.
 - Input gear 4 when Android Automotive is fully booted. The Android UI appears on the screen.

4. Input gear 2 on the Cortex-M4 console after Android system boot is complete. The rearview camera appears on the screen.

Input ${\tt gear}\,\,4$ on the Cortex-M4 console. The Android UI appears on the screen.

Note:

- Inputting gear 2 on the Cortex-M4 console indicates that the Cortex-M4 core gets the reverse signal.
- Inputting gear 4 on the Cortex-M4 console indicates that the Cortex-M4 core gets the drive signal.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip also support multiple EVS cameras. The relationship between the orientation of cameras and hardware connection is show as follows.

Hardware connection	Camera orientation
INO	Rear
IN1	Front
IN2	Right
IN3	Left

The logic to handle the vehicle information is shown with the following pseudo code:

```
if (gear state == reverse)
    show rear camera view
else if (turn signal == right)
    show right camera view
else if (turn signal == left)
    show left camera
else if (gear state == park)
    show all cameras' view
else
    show no camera view
```

The meaning of commands input on the Cortex-M4 console is as follows:

Table 15.	Meaning of	commands in	put on the C	ortex-M4 console
	mouning or v		pat on the o	

Table 10. Meaning of commands input on the contex-in- console		
Command	Meaning	
turn 0	Not turn	
turn 1	Turn right	
turn 2	Turn left	
gear 1	Park	
gear 2	Reverse	
gear 4	Drive	

To start multiple-EVS-camera function:

- 1. Input su && start evs_app on the AP console to start evs_app. You can also start the rearview camera on the Cortex-M4 console with gear 2. The display should be rear camera view.
- 2. Input gear 1 on the Cortex-M4 console. All cameras must be connected to the board.

Figure 2. All cameras' views on the display

- 3. Input turn 1 on the Cortex-M4 console. It shows the right camera view on the display.
- 4. Input turn 2 on the Cortex-M4 console. It shows left camera view on the display.
- 5. Input turn 0 on the Cortex-M4 console. It shows all cameras' views on the display.
- 6. Stop EVS with stop evs app on the Cortex-A core console.

Note:

You can input gear 2 on the Cortex-M4 console anytime in boot process to start the rearview camera.

8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.tar.gz

With images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz, the EVS function is realized on Android Automotive running on the Cortex-A core.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview camera:

- 1. Connect the camera as described in *i.MX Android Quick Start Guide* (AQSUG).
- 2. Open the Cortex-A core console.

Input su && start evs_app on the Cortex-A console to start evs_app. You can also start the rearview camera with echo 2 > /sys/devices/platform/vehicle-dummy/gear on the Cortex-A console.The display should be rear camera view. Input stop evs_app on the Cortex-A console to stop the rearview camera EVS function.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip can also support multiple EVS cameras.

The relationship between the orientation of cameras and hardware connection is show as follows.

Table 16. Relationship between the orientation of cameras and hardware connection

Hardware connection	Camera orientation
INO	Rear
IN1	Front
IN2	Right
IN3	Left

The logic to handle the vehicle information is shown with the following pseudo code:

```
if (gear state == reverse)
    show rear camera view
else if (turn signal == right)
    show right camera view
else if (turn signal == left)
    show left camera
else if (gear state == park)
    show all cameras' view
else
    show no camera view
```

The meaning of commands input on the Cortex-A core console is as follows.

Table 17.	Meaning of	commands	input on the	Cortex-A	core console
	meaning of	communus	input on the		

Command	Meaning
<pre>echo 0 > /sys/devices/platform/vehicle- dummy/turn</pre>	Not turn
<pre>echo 1 > /sys/devices/platform/vehicle- dummy/turn</pre>	Turn right
echo 2 > /sys/devices/platform/vehicle- dummy/turn	Turn left
<pre>echo 1 > /sys/devices/platform/vehicle- dummy/gear</pre>	Park
echo 2 > /sys/devices/platform/vehicle- dummy/gear	Reverse
echo 4 > /sys/devices/platform/vehicle- dummy/gear	Drive

To start multiple-EVS-camera function:

- 1. Input su && start evs_app on the Cortex-A console to start evs_app. You can also start rearview camera with echo 2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The display should be rear camera view.
- 2. Input echo 1 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. All cameras must be connected to the board.

Figure 3. All cameras' views on the display

- 3. Input echo 1 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows right camera view on the display.
- 4. Input echo 2 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows left camera view on the display.

- 5. Input echo 0 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows all cameras' views on the display.
- 6. Stop EVS with stop evs_app on the Cortex-A console.

8.1.2 EVS related code

For images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz, the Cortex-M4 core runs with its code on the DDR on i.MX board. It is responsible for the following work:

- Take over control of camera/display before the Android system is fully booted.
- Get the vehicle event and pass this event to the Cortex-A core.

Source code for the Cortex-M4 core is in the $MY_ANDROID$ /vendor/nxp/mcu-sdk-auto directory.

After modifying the Cortex-M4 core source code, execute the following command to build and update the Cortex-M4 image:

```
cd ${MY_ANDROID}
source build/envsetup.sh
lunch mek_8q_car-userdebug
./imx-make.sh bootloader -j4
```

Directory of EVS related code running on the Cortex-A core is listed as follows:

- EVS HAL: \${MY ANDROID}/vendor/nxp-opensource/imx/evs hal
- EVS service: \${MY_ANDROID}/vendor/nxp-opensource/imx/evs/evs_service
- EVS kernel driver: \${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/drivers/mxc/vehicle
- EVS application: \${MY_ANDROID}/vendor/nxp-opensource/imx/evs/evs_app

After modifying the Cortex-A core source code, build the whole system to update Android Automotive images.

8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core

Images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz are built with target lunched with mek_8q_car-userdebug. EVS function in this package is realized with both Cortex-A core and the Cortex-M4 core.

The communication commands and related response packet between the Cortex-A core and the Cortex-M4 core are listed as follows.

Category	Version	Туре	Command	Data	Function	
0x08	0x0100	REQUEST	REGISTER	Data[0-3]: clientId Data[4]: reserved Data[5]: partition Data[6-15]: reserved	Registers the RPMSG client. clientId indicates different clients. partition indicates the Android partition. Partition: 0xFF: This parameter is invalid.	
0x08	0x0100	REQUEST	UNREGI STER	Data[0-3]: clientId Data[4]: reserved Data[5]: causeOf Data[6-15]: reserved	Unregisters the RPMSG client. Cortex- M4 and remote processor cannot communicate again. The causeOf parameter can indicate the reason of unregister. causeOf: 0x00: AP will power off.	
0x08	0x0100	REQUEST	CONTROL	Data[0-3]: clientId Data[4]: reserved	Sends control command to Cortex- M4 to request Cortex-M4 to do some	
AAUG	AUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved					

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)

Android Automotive User's Guide

Category	Version	Туре	Command	Data	Function
				Data[5-6]: controlCode Data[7-10]: timeout Data[11-15]: control Param Data[15]: index	actions. It needs to complete and give a response to Android in "timeout" ms. Reserved for future. Example: controlCode: 0x0000: air conditioner temperature controlParam: 4bytes (float): temperature Index: left or right.
0x08	0x0100	REQUEST	PWR_ REPORT	Data[0-3]: clientId Data[4]: reserved Data[5-6]: androidPwr State Data[7-10]: time_ postpone Data[11-15]: reserved	Reports Android power state androidPwrState: 0x0000: BOOT_COMPLETE 0x0001: DEEP_SLEEP_ENTRY 0x0002: DEEP_SLEEP_EXIT 0x0003: SHUTDOWN_POSTPONE 0x0004: SHUTDOWN_START 0x0005: DISPLAY_OFF 0x0006: DISPLAY_ON.
0x08	0x0100	REQUEST	GET_INFO	Data[0-3]: clientId Data[4]: reserved Data[5-6]: infoIndex Data[7-15]: reserved	Gets information from Cortex-M4 side. Android and Cortex-M4 should have the same information table. The information includes the sensor data, fuel data, battery data, etc. infoIndex:0x0001: vehicle unique ID.
0x08	0x0100	RES PONSE	BOOT_ REASON	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Responds to Cortex-M4's boot reason request (USER_POWER_ON, DOOR_ OPEN, DOOR_UNLOCK, REMOTE_ START, TIMER).
0x08	0x0100	RES PONSE	PWR_CTRL	Data[0-3]: clientId Data[4]: retCode Data[5-6]: androidPwr State Data[7-15]: reserved	Responds the current power state of Android.
0x08	0x0100	RES PONSE	VSTATE	Data[0-3]: clientId Data[4]: retCode Data[5-6]: unitType Data[7-15]: reserved	Responds to the control command from Cortex-M4 side. state indicates the current IVI state.

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)...continued

Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)

Category	Version	Туре	Command	Data	Function
0x08	0x0100	RES PONSE	REGISTER	Data[0-3]: clientId Data[4]: retCode Data[5-6]: mcuOperate Mode Data[7-15]: reserved	Response of RPMSG client register. (success, failed), mcuOperateMode indicates Cortex-M4 work state mcuOperateMode: SHARED_RESOURCE_FREE: 0x0000 SHARED_RESOURCE_OCCUPIED: 0x0001.

Category	Version	Туре	Command	Data	Function
0x08	0x0100	RES PONSE	UNREGI STER	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Response of RPMSG client unregister.
0x08	0x0100	RES PONSE	CONTROL	Data[0-3]: clientId Data[4]: retCode Data[5-6]: actionState Data[7-15]: reserved	Response to the result of the control request. MCU will do some actions to complete Android's request. action State is not used currently.
0x08	0x0100	RES PONSE	PWR_ REPORT	Data[0-3]: clientId Data[4]: retCode Data[5-15]: reserved	Response to Android power state report.
0x08	0x0100	RES PONSE	GET_INFO	Data[0-3]: clientId Data[4]: retCode Data[5-6]: infoIndex Data[7-14]: data Data[15]: reserve	Response to the GET_INFO request. infoIndex should be the same as request index. The length of infoData should be specific according to info Index. The information includes sensor data, fuel data, and battery data. And it is a response packet to Android's request.
0x08	0x0100	REQUEST	BOOT_ REASON	Data[0-3]: clientId Data[4]: reserved Data[5]: bootReason Data[6-15]: reserved	Notifies Android system why VMCU boots the Cortex-A core (Android). It is sent after the MCU sends normal drive command to the Android system. bootReason: 0x00: USER_POWER_ON 0x01: DOOR_OPEN 0x02: DOOR_UNLOCK 0x03: REMOTE_START.
0x08	0x0100	REQUEST	PWR_CTRL	Data[0-3]: clientId Data[4]: reserved Data[5-6]: powerState Req Data[7-8]: addition Param Data[9-15]: reserved	Requests Android system to enter specific power state (ON_DISP_OFF, ON_FULL, SHUTDOWN_PREPARE) powerStateReq: 0x0000: ON_DISP_OFF 0x0001: ON_FULL 0x0002: SHUTDOWN_PREPARE
0x08	0x0100	REQUEST	VSTATE	Data[0-3]: clientId Data[4]: reserved Data[5-6]: unitType Data[7-10]: stateValue Data[11-15]: reserved	Requests Vehicle state to Android (Door open/close/lock/unlock, Fan on/ off/speed/recycle/direction, AC on/ off/temperature, heater on/off/power, defrost on/off/front/back) (mute/unmute, volume adjust, rear view camera on/off, lights on/off) unitType indicates the type of each unit of vehicle, such as door, fan, and air condition. stateValue indicates the unit state parameter.

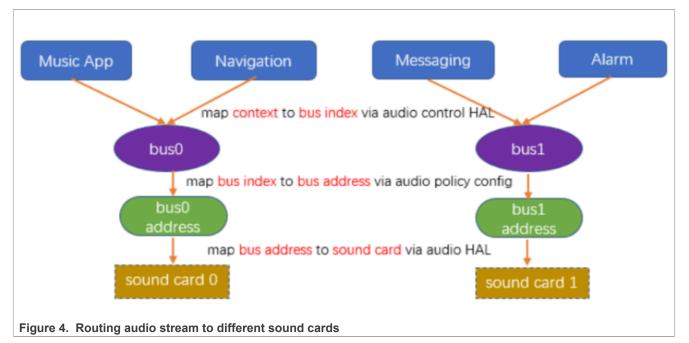
Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)...continued

8.1.4 Delay of camera/display module probe

The RVC is occupied by the Cortex-M4 core in early stage when booting up in an Android car. AP needs to separate camera/display resource in boot stage. There are two resources that need to pay attention in AP boot stage: clock and power domain.

1. Separate clock in boot stage.

- a. Add CONFIG_VEHICLE_CLK_POST_INIT, which does not register camera/display related CLK in clk-imx8qxp.c and clk-imx8qm.c.
- b. Add clk-post-imx8qm.c and clk-post-imx8qxp.c, which are probed in notice_evs_released.
- Separate power domain in boot stage.
 SC_R_CSI_0/SC_R_LVDS_1/SC_R_DC_1/SC_R_ISI_CH0 are used at Cortex-M4 side. The related power domain used in DTS needs to be removed under the DTS node vehicle rpmsg m4.
 - The node whose power domain is pd dc1 needs to be moved into vehicle rpmsg m4.
 - The node whose power domain is under pd_dc1 (such as pd_mipi1/pd_lvds1/pd_mipi1_i2c0/..) needs to be moved into the DTS node vehicle rpmsg m4.
 - The node whose power domain is pd_isi_ch0 needs to be moved into the DTS node vehicle rpmsg m4.
 - The node whose power domain is under pd_isi_ch0 (such as pd_csi0/pd_csi1/..) needs to be moved into the DTS node <code>vehicle_rpmsg_m4</code>.
 - The camera node needs to be moved into the DTS node vehicle_rpmsg_m4.


8.2 Audio configuration

8.2.1 Routing audio stream to different sound cards

In Android Automotive, different audio streams route to different sound cards. When configured, the route is statically decided, unlike the dynamically routed in standard Android image.

In the Android Automotive release, the route is configured as follows: Alarm, notification, and system sounds are played from the audio jack on the CPU board. Other sounds such as music are played from the extended audio board. The following are steps to change the route. For example, music and navigation go through the extended audio board, and others go through the audio jack on the CPU board.

1. Map the bus index to bus address in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/audio_policy_ configuration car.xml. The bus index "0/1" is parsed from the tagName.

```
<devicePort tagName="bus0 media out" role="sink" type="AUDIO DEVICE OUT BUS"</pre>
    address="bus0 media_out">
<gains>
    <gain name="" mode="AUDIO GAIN MODE JOINT"
             minValueMB="-3200" maxValueMB="600" defaultValueMB="0"
stepValueMB="100"/>
</gains>
</devicePort>
<devicePort tagName="bus1 system sound out" role="sink"</pre>
 type="AUDIO DEVICE OUT BUS"
    address="bus1_system_sound_out">
<gains>
    <gain name="" mode="AUDIO_GAIN_MODE_JOINT"
    minValueMB="-3200" maxValueMB="600" defaultValueMB="0"</pre>
 stepValueMB="100"/>
</gains>
</devicePort>
```

2. Build the image.

8.3 Display configuration

8.3.1 Configuring the logical display density

The Android UI framework defines a set of standard logical densities to help application developers target application resources. Device implementations must report one of the following logical Android framework densities:

- 120 dpi, known as 'ldpi'
- 160 dpi, known as 'mdpi'
- 213 dpi, known as 'tvdpi'
- 240 dpi, known as 'hdpi'

- 320 dpi, known as 'xhdpi'
- 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical density of the screen, unless that logical density pushes the reported screen size below the minimum supported.

The default display density value is defined in $MY_ANDROID/device/nxp/imx8q/mek_8q/Board Config.mk as shown below:$

BOARD_KERNEL_CMDLINE += androidboot.lcd_density=200

The display density value can be changed by modifying the related lines mentioned above in $MY_ANDROID / device/nxp/imx8q/mek_8q/BoardConfig.mk and then recompiling the code or setting (the density value) in U-Boot command line as bootargs during boot-up.$

8.3.2 Starting the cluster display

Cluster display is supported in the i.MX Android Automotive release package. With this feature, two displays connected to the board can display different content.

To do customization work on this function, you need to know how this function can be started and controlled.

To start the cluster display, connect the two i.MX mini SAS cables with LVDS-to-HDMI adapters to the "LVDS0" and "LVDS1" ports of the board. After the system boots into Android launcher, different content is displayed on the two displays connected to the board.

8.3.3 Enabling the multiple-display function

The following boards support more than one display.

Table 20.	Displays	supported	bv	different boards
	Displays	Supported	Ny	

Board	Number of displays	Display port
i.MX 8QuadMax MEK		If physical HDMI output (J6) is used If physical HDMI output (J6) is not used
i.MX 8QuadXPlus MEK	2	DSI0/LVDSI0, DSI1/LVDSI1

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

To evaluate the multiple-display on i.MX 8QuadMax MEK, flash dtbo-imx8qm-md.img.

8.3.3.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/ etc/input-port-associations.xml is used to do this work when the system is running, but the input device location and display-id vary with the connection forms of these ports with corresponding input and display devices, which means that the input location and display-id need to be retrieved before the connection is fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the $\{MY \ ANDROID\}/device/nxp/directory.$

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

```
dumpsys SurfaceFlinger --display-id
```

```
Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL
P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=NXP displayName="NXP
Android"
Display 4692921138614786 (HWC display 2): port=2 pnpId=NXP displayName="NXP
Android"
Display 18309706364381699 (HWC display 3): port=3 pnpId=NXP displayName="NXP
Android"
```

2. Use the following commands to get the touch input location:

```
getevent -i | grep location location:
location: "usb-xhci-hcd.1.auto-1.3.4/input0"
location: "usb-xhci-hcd.1.auto-1.2.4/input0"
```

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be modified according to the actual connection. One display port can be bound with multiple input ports.

```
<ports>
<port display="0" input="usb-xhci-hcd.1.auto-1.1.4/input0" />
<port display="1" input="usb-xhci-hcd.1.auto-1.2.4/input0" />
<port display="2" input="usb-xhci-hcd.1.auto-1.3.4/input0" />
<port display="3" input="usb-xhci-hcd.1.auto-1.4.4/input0" />
<port display="0" input="usb-xhci-hcd.1.auto-1.4/input0" />
</port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</ports>
```

To make the modifications take effect, you can modify the source file under the $fMY_ANDROID/device/nxp/$ directory and re-build the images. Keep the connection of display devices and input devices unchanged and reflash the images. You can also disable DM-verity on the board and then use the adb push command to push the file to the vendor partition to overwrite the original one.

8.3.3.2 Enabling multi-client input method

Only multi-client IMEs support typing at the same time with different displays. The following is the way to enable the pre-installed multi-client IME.

```
# Enable multi-client IME for the side-loaded sample multi-client IME
adb root
adb shell setprop persist.debug.multi_client_ime
    com.example.android.multiclientinputMethod/.MultiClientInputMethod
    adb reboot
```

To disable multi-client IME on non-supported devices, clear persist.debug.multi_client_ime as follows. Then, reboot the system to make it take effect.

```
# Disable multi-client IME again
adb root
adb shell "setprop persist.debug.multi_client_ime ''"
adb reboot
```

The pre-installed multi-client IME in the system is a sample multi-client IME from AOSP. The performance is not as good as the default Google Input Method Editor. To develop multi-client IME, see the document in source code (\${MY_ANDROID}/frameworks/base/services/core/java/com/android/server/inputmethod/multi-client-ime.md).

AAUG

© 2024 NXP B.V. All rights reserved.

8.3.3.3 Launching applications on different displays

To launch an application to a display, select the Home application (MultiDisplay or Quickstep). The MultiDisplay is the new launcher for multi-display feature. The Quickstep is the original launcher of Android system. If Quickstep is selected as the Home application, you can also tap the "MD Launcher" application to get multi-display home screen. Select different display ports on the top of the pop-up menu, the selected application is displayed on the specific display port.

8.3.4 Configuring the primary display resolution

The whole Android UI stack needs a display resolution to be defined before Android framework boots up.

In normal Android and car2 build, the display resolution is obtained when enumerating /dev/dri/cardX in display HAL. The system selects the best aligned resolution when the ro.boot.displaymode property is set, or select the default "1080p60" when the property is not set.

In car build, the predefined resolution is defined by the <code>ro.boot.fake.ui_resolution</code> property and it should be aligned with physical display device. When the physical display is ready, the PollFileThread gets the event and enumerates the /dev/dri/cardX again to configure the physical display.

When the MCU takes over the display, the resolution of the display is hardcoded in the MCU-SDK code by macro APP_FRAME_HEIGHT and APP_FRAME_WIDTH in the isi_example.h file. This resolution should align with Android UI settings, or the display experience is different.

8.4 HVAC configuration

HVAC is short for "Heating, Ventilation and Air Conditioning". This section describes the interfaces to control the HVAC system. It helps customers to do customization work on HVAC.

8.4.1 Interfaces to control the HVAC system

For images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz built with the lunch target mek 8q car-userdebug, see the following table to control the HVAC system.

	AP-> Cortex-M4	Cortex-M4 -> AP (input on the Cortex-M4 console)	Comment
AC ON	Cortex-M4 Console has the following print when AC is on: Android control: AC_ON, on/off	=>report ac_on 0/1 AC on the panel is on/off.	-
Fan direction	Android control: FAN_DIRECTION, 0x2 Typical value: 0x1 (to face) 0x2 (to floor) 0x03 (to face and floor) 0x06 (to floor and defrost)	=>report fan_direction 0x1/0x 2/0x03/0x06 It sets the fan direction.	-
Fan speed	Android control: FAN_SPEED, 0x6 Typical value: 0x00(off)/0x01/0x02/ 0x03/0x04/0x05/0x06(MAX)	=>report fan_speed 1/2/3/4/ 5/6 It sets the fan speed.	-
HVAC power on	Cortex-M4 Console has the following print when HVAC is on:	=>report hvac_power 0/1 It sets the HVAC power.	-

Table 21. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz

	AP-> Cortex-M4	Cortex-M4 -> AP (input on the Cortex-M4 console)	Comment
	Android control: HVAC_POWER_ ON, on/off		
AUTO ON	Cortex-M4 Console has the following print when HVAC is auto: Android control: AUTO_ON, on/off	=>report auto_on 0/1 AUTO on the panel is on/off.	-
Defrost	Left one: Android control: DEFROST, index=1, on/off Right one: Android control: DEFROST, index=2, on/off	Left one:=>report defrost 0/1 1 defrost on the panel is on/off. Right one:=>report defrost 0/ 1 2 defrost on the panel is on/off.	-
Temperature	Left temp +-: Android control: AC_ TEMP, index=49, temp=16.16 Right temp +-: Android control: AC_ TEMP, index=68, temp=18.18	=>report ac_temp 23.45 49/ 68 sends 23.45 Centigrade value to the Android side, and the left/right HVAC temp bar changes to 74.	You can calculate the Fahrenheit temp with the following ways: Fahrenheit = 32 + 1.8 * Centigrade Fahrenheit: the num shown in hvacCentigrade: printed on the Cortex-M4 console.
RECIRC	Cortex-M4 Console has the following print when recirc is on: Android control: RECIRC_ON, off/ on	=>report recirc_on 0/1 RECIRC on the panel is on/ off.	-
SEAT TEMPER ATURE	Left one: Android control: SEAT_ TEMP, index=1, values 0,1,2,3 Right one: Android control: SEAT_ TEMP, index=4, values 0,1,2,3	=>report seat_temp 1/4 0/1/2/3	-

Table 21. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz...continued

For images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz built with the lunch target mek 8q car2-userdebug, see the following table to control the HVAC system.

	AP-> dummy vehicle driver	Cortex-M4 -> dummy vehicle driver	Comment
AC ON	AP Console has the following print when AC is off/on: set fan AC on with value 0/1	echo 0/1 > /sys/ devices/platform/ vehicle-dummy/ac_on AC on the panel is on/off.	
Fan direction	Set fan direction with value 8 Typical value: 0x1 (to face) 0x2 (to floor) 0x03 (to face and floor) 0x06 (to floor and defrost)	<pre>echo 1/2/3/6 > /sys/ devices/platform/ vehicle-dummy/fan_dir ection</pre>	
Fan speed	Set fan speed with value 8 Typical value: 0x00(off)/0x01/0x02/ 0x03/0x04/0x05/0x06(MAX)	<pre>echo 1/2/3/4/5/6 > / sys/devices/platform/ vehicle-dummy/fan_ speed It sets the fan speed.</pre>	

	AP-> dummy vehicle driver	Cortex-M4 -> dummy vehicle driver	Comment
HVAC power on	HVAC on: Android control: HVAC_ POWER_ON, on/off	<pre>echo 0/1 > /sys/ devices/platform/ vehicle-dummy/hvac_on</pre>	
AUTO ON	Set auto on with value 0/1 Set auto off/on	echo 0/1 > /sys/ devices/platform/ vehicle-dummy/auto_on AUTO on the panel is on/off.	
Defrost	Left one: set defroster index 1 with value 0/1 Right one: set defroster index 2 with value 0/1	Left one: echo 0/1 > /sys/devices/ platform/vehicle- dummy/defrost_right defrost on the panel is close/ open. Right one: echo 0/ 1 > /sys/devices/ platform/vehicle- dummy/defrost_right defrost on the panel is on/off.	
Temperature	Left temp +-: set temp index 49 with value 1097859072 Right temp +-: set temp index 68 with value 1100422258	<pre>echo 1095528903 > / sys/devices/platform/ vehicle-dummy/temp_ left The left HVAC temp bar changes to 55.</pre>	You can calculate the Fahrenheit temp as follows: Fahrenheit = 32 + 1.8 * Centigrade Fahrenheit: the num shown in HVAC Centigrade: 1095528903 is the float of Centigrade.
RECIRC	Recirc on: set recirc on with value 0/1	<pre>echo 0/1 > /sys/ devices/platform/ vehicle-dummy/recirc_ on RECIRC on the panel is on/ off.</pre>	
SEAT TEMPER ATURE	Control seat temperature with values 0/1/2/3/4. Value 0 means OFF.	<pre>echo 0/1/2/3 > /sys/devices/ platform/ vehicle- dummy/seat_temp_left echo 0/1/2/3 > /sys/devices/ platform/ vehicle- dummy/seat_temp_right</pre>	-

Table 22. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz...continued

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can support only one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable it and disable the USB 3.0 gadget driver.

For i.MX 8QuadMax MEK, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under $\{MY \ ANDROID\}/vendor/nxp-opensource/uboot-imx:$

diff --qit a/configs/imx8qm mek androidauto trusty defconfig b/configs/ imx8qm mek androidauto trusty defconfig index 9ceb9d58f1..a54766eb6a 100644 --- a/configs/imx8qm mek androidauto trusty defconfig +++ b/configs/imx8qm mek androidauto trusty defconfig 00 -101,13 +101,11 00 CONFIG SPL DM USB GADGET=y CONFIG USB=y CONFIG USB GADGET=y -#CONFIG CI UDC=y +CONFIG CI UDC=y CONFIG USB GADGET DOWNLOAD=y CONFIG USB GADGET MANUFACTURER="FSL" CONFIG USB GADGET VENDOR NUM=0x0525 CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5 -CONFIG_USB_CDNS3=y -CONFIG_USB_CDNS3_GADGET=y CONFIG_USB_GADGET_DUALSPEED=y CONFIG SPL USB GADGET=y 00 -124,7 +122,7 00 CONFIG FSL FASTBOOT=y CONFIG FASTBOOT BUF ADDR=0x9800000 CONFIG FASTBOOT BUF SIZE=0x1900000 CONFIG FASTBOOT FLASH=y -CONFIG_FASTBOOT_USB_DEV=1 +CONFIG_FASTBOOT_USB_DEV=0 CONFIG BOOTAUX RESERVED MEM BASE=0x88800000 CONFIG BOOTAUX RESERVED MEM SIZE=0x02000000 diff --git a/include/configs/imx8qm mek android auto.h b/include/configs/ imx8qm mek android auto.h index 793530c61a..5bef17b451 100644 --- a/include/configs/imx8qm mek android auto.h +++ b/include/configs/imx8qm mek_android_auto.h 00 -51,7 +51,6 00 #define CONFIG SYS MALLOC LEN (64 * SZ 1M) #endif -#define CONFIG FASTBOOT USB DEV 1 #define CONFIG ANDROID RECOVERY #define CONFIG CMD BOOTA

For i.MX 8QuadXPlus, to enable USB2.0 for the u-boot-imx8qxp.imx, make the following changes under \${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

```
diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
index e3f60821b0..6b59fa71ab 100644
---- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
e0 -103,13 +103,11 00 CONFIG_SPL_DM_USB_GADGET=y
CONFIG_USB=y
CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_USB_GADGET_MANUFACTURER="FSL"
CONFIG_USB_GADGET_VENDOR_NUM=0x0525
CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y
```

```
-CONFIG USB CDNS3 GADGET=y
CONFIG_USB_GADGET_DUALSPEED=y
CONFIG SPL USB GADGET=y
CONFIG_SPL_USB_SDP_SUPPORT=y
00 -124,7 +122,7 00 CONFIG FSL FASTBOOT=y
CONFIG FASTBOOT BUF ADDR=0x9800000
CONFIG FASTBOOT BUF SIZE=0x19000000
CONFIG FASTBOOT FLASH=y
-CONFIG FASTBOOT USB DEV=1
+CONFIG FASTBOOT USB DEV=0
CONFIG_SYS_I2C_IMX_VIRT_I2C=y
CONFIG_I2C_MUX_IMX_VIRT=y
CONFIG_IMX_VSERVICE_SHARED_BUFFER=0x90000000
diff --git a/include/configs/imx8qxp mek android auto.h b/include/configs/
imx8qxp mek android auto.h
index 95ec29d307..376b306c72 100644
--- a/include/configs/imx8qxp mek android auto.h
+++ b/include/configs/imx8qxp mek android auto.h
@@ -45,7 +45,6 @@
#endif
#define CONFIG SKIP RESOURCE CHECKING
-#define CONFIG FASTBOOT USB DEV 1
#define CONFIG ANDROID RECOVERY
#define CONFIG CMD BOOTA
```

More than one defconfig file is used to build U-Boot images for one platform. Make the same changes on defconfig files as above to enable USB 2.0 for other U-Boot images. You can use the following command under the \${MY ANDROID}/vendor/nxp-opensource/uboot-imx/ directory to list all related defconfig files:

```
ls configs | grep "imx8q.*android.*"
```

Note:

U-Boot used by UUU is compiled with imx8qm_mek_android.h and *imx8qxp_mek_android.h*, not the *imx8qm_mek_android auto.h* and *imx8qxp_mek_android auto.h* listed above.

8.6 Trusty OS/security configuration

Trusty OS firmware is used in the i.MX Android 13 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports i.MX 8QuadMax MEK and i.MX 8QuadXplus MEK Board. This section describes some basic configurations to make Trusty OS work on MEK boards. For more configurations about security-related features, see the *i.MX Android Security User's Guide* (ASUG).

Customers can modify the Trusty OS code to make different configurations and enable different features. First, use the following commands to fetch code to build the target Trusty OS binary.

First, create a directory for Trusty OS code and enter this directory.

```
$ repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-android-13 -m
imx-trusty-automotive-13.0.0_2.3.0.xml
$ repo sync
$ source trusty/vendor/google/aosp/scripts/envsetup.sh
$ make imx8qxp #i.MX 8QuadXPlus MEK
$ cp ${TRUSTY_REPO_ROOT}/build-imx8qxp/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-
proprietary/uboot-firmware/imx8q_car/tee-imx8qx.bin
```

AAUG

© 2024 NXP B.V. All rights reserved.

Then, build the images, and tee-imx8qx.bin is integrated into bootloader-imx8qxp.img and bootloader-imx8qxp-secure-unlock.img. Flash the spl-imx8qxp.bin and bootloader-imx8qxp.img files to the target device.

Note:

- For i.MX 8QuadMax MEK, use make imx8qm_a72 to build the Trusty OS image, and copy the final lk.bin to \${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-imx8qm.bin.
- *\$*{TRUSTY_REPO_ROOT} is the root directory of the Trusty OS codebase.
- *\${MY ANDROID}* is the root directory of the Android codebase.

8.6.1 Initializing the secure storage for Trusty OS

Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC chip. RPMB needs to be initialized with a key, and default execution flow of images does not make this initialization.

Initialize the RPMB with CAAM hardware bound key or vendor specified key are both supported. Note that the RPMB key cannot be changed once it is set.

 To set a CAAM hardware bound key, perform the following steps: Make your board enter fastboot mode, and then execute the following commands on the host side:

- fastboot oem set-rpmb-hardware-key After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

• To set a **vendor specified** key, perform the following steps:

Make your board enter fastboot mode, and then execute the following commands on the host side:

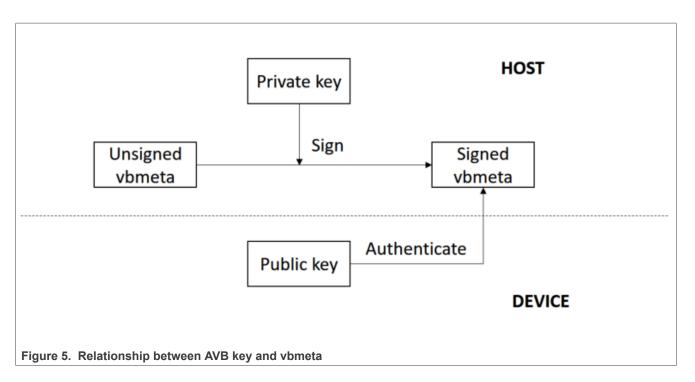
- fastboot stage < path-to-your-rpmb-key >

- fastboot oem set-rpmb-staged-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

Note:

- The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.
- A prebuilt rpmb_key_test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated with the following shell commands:
- touch rpmb_key_test.bin
 echo -n "RPMB" > rpmb_key_test.bin
 echo -n "kpMB" > rpmb_key_test.bin


The '\xHH' means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above with the key you want to set.

• Note:

For more details, see the i.MX Android Security User's Guide (ASUG).

8.6.2 AVB key provision

The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the vbmeta image. The public key is used by AVB to authenticate the vbmeta image. The following figure shows the relationships between the private key and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot. With Trusty OS, it is saved in secure storage.

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to generate the RSA-4096 private key test_rsa4096_private.pem:

```
openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
test rsa4096 private.pem
```

The public key can be extracted from the private key. The avbtool in $MY_ANDROID/external/avb supports such commands. You can get the public key test_rsa4096_public.bin with the following commands:$

avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from \${MY_ ANDROID}/external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the BOARD_AVB_ALGORITHM and BOARD_AVB_KEY_PATH to use different algorithm and private key:

```
BOARD_AVB_ALGORITHM := <algorithm-type>
BOARD_AVB_KEY_PATH := <key-path>
```

Algorithm SHA256_RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM) can help accelerate the hash calculation. The Android build system signs the vbmeta image with the private key above and stores one copy of the public key in the signed vbmeta image. During AVB verification, the U-Boot validates the public key first and then uses the public key to authenticate the signed vbmeta image.

8.6.2.2 How to set the vbmeta public key

The public key must be stored in Trusty OS backed RPMB for Android system when Trusty OS is enabled. Perform the following steps to set the public key.

AAUG

Android Automotive User's Guide

Make your board enter fastboot mode, and execute the following commands on the host side:

```
fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key
```

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private key is specified, set the public key as prebuilt testkey_public_rsa4096.bin, which is extracted from the default private key testkey_rsa4096.pem.

8.6.3 Key attestation

The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardwarebacked, what the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the corresponding certificate chains to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse the "keybox" and provision the keys and certificates to secure storage. Both keys and certificates should be Distinguished Encoding Rules (DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure storage is properly initialized for Trusty OS:

Set RSA private key:

```
fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key
```

• Set ECDSA private key:

```
fastboot stage <path-to-ecdsa-private-key>
fastboot oem set-ec-atte-key
```

• Append RSA certificate chain:

```
fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert
```

Note:

This command may need to be executed multiple times to append the whole certificate chain.

• Append ECDSA certificate chain:

```
fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert
```

Note:

This command may need to be executed multiple times to append the whole certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly. Besides, secure provision provides a way to prevent the plaintext attestation keys and certificates from exposure. For more details, see the *i.MX* Android Security User's Guide (ASUG).

8.7 SCFW configuration

SCFW is a binary stored in $MY_ANDROID/vendor/nxp/fsl-proprietary/uboot-firmware, built into bootloader.$

To customize the SCFW, download the SCFW porting kit on the <u>i.MX Software and Development Tools</u> page. For this release, click **Embedded Linux**, and then click the **RELEASES** tab, find the Linux LF5.15.71_2.2.0

release and download its corresponding SCFW Porting kit. Then, decompress the file with the following commands:

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration file, taking i.MX 8QuadXPlus MEK as an example, it is the <code>scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c.</code> Based on this file, some changes are made for Android Automotive and the file is stored in $MY_ADROID/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/board-imx8qxp.c.$

You can copy board-imx8qxp.c/board-imx8qm.c in vendor/nxp/fsl-proprietary to the SCFW porting kit, modify it, and then build the SCFW.

The following are steps to build SCFW (taking i.MX 8QuadXPlus as example):

- 1. Download the GCC tool from the <u>arm Developer GNU-RM Downloads</u> page. It is recommended to download the version of "6-2017-q2-update" as it is verified.
- 2. Unzip the GCC tool to /opt/scfw_gcc.
- 3. Export TOOLS="/opt/scfw-gcc".
- 4. Copy the board configuration file from \${MY_ANDROID}/vendor/nxp/fsl-proprietary/ubootfirmware/imx8q/board-imx8qxp.c to the porting kit.

cp \${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/boardimx8qxp.c scfw export mx8qx b0/platform/board/mx8qx mek/board.c

5. Build SCFW.

6. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qx_b0/scfw_tcm.bin \${MY_ANDROID}/vendor/nxp/fsl-proprietary/ uboot-firmware/imx8q_car/mx8qx-scfw-tcm.bin

7. Build the bootloader.

```
cd ${MY_ANDROID}
./imx-make.sh bootloader -j4
```

Note:

To build SCFW for i.MX 8QuadMax MEK, use "qm" to replace "qx" in the steps above.

8.8 Power state configuration

Android automotive power HAL supports power request property, which can be used to control the system power state: ON, OFF, or suspend.

It is assumed that the power state of the Cortex-A core is controlled by separate power controller. In the following use case, MCU and dummy vehicle driver play the role of power controller in the car and car2 image accordingly.

Connect the board to a BT device to better show the system power state.

	Power control from car MCU console	Power control from car2 AP console	Comment
shutdown now	power 1 1	echo "1 1" > /sys/ devices/platform/vehicle- dummy/power_req	The system shuts down right now. Then, long press the power-on key to wake up the system.
suspend	power 1 2	echo "1 2" > /sys/ devices/platform/vehicle- dummy/power_req	The system disconnects from BT, waits for all tasks to be done, and then enter suspend mode. Press the power-on key to wake up the system. BT is connected again. The system wakes up by itself every 60 seconds due to battery health checking.
shutdown postpone	power 1 3	echo "1 3" > /sys/ devices/platform/vehicle- dummy/power_req	The system waits for all tasks to be done, and then shuts down.
cancel	power 2 0	echo "2 0" > /sys/ devices/platform/vehicle- dummy/power_req	Cancel the shutdown and suspend command if it has not been executed. First, enter power 1 3 for car image or echo 1 3 to power_req for car2 image. The system disconnects from the BT, turns off the display, and prepares for shutdown. Before the system shuts down, enter power 2 0 for car image (or echo 2 0 to power_req for car2 image). The system cancels shutdown command, turns on the display, and connects BT.

Table 23. Power state configuration

8.9 Boot time tuning

8.9.1 Boot time overview

In this document, the boot time is the time it takes the board the to start from cold boot to when Android Automotive Launcher UI appears on the display screen when the hardware is not in the first-time boot from factory. Due to the fact that the first successful boot sets up the accelerating software executing environment, it takes longer time to boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug efficiency, some debug purpose modules and interfaces are kept in the release. Before the product is ready to ship, these modules and interfaces can be configured to save the boot time and make the boot time performance best in the final product.

8.9.2 What NXP did to tune the boot time

To make Android Automotive boot faster, lots of changes were made on different modules to achieve better performance. The following changes impact the boot time:

- Removed the debug command in U-Boot and Linux kernel to save its initialization time and image size.
- Built Linux kernel as zImage to save the image size.
- Removed unused driver in U-Boot and Linux kernel.

- Make some drivers as kernel module, and load them when Android boot is completed so that the connectivity devices and camera driver are initialized after the Android Automotive Launcher UI is shown on the display. This makes the Android Automotive Launcher UI show earlier.
- Removed unused device from Android Framework, such as Ethernet, Sensors.
- Refined Android Verify Boot procedure.
- Optimized Android Framework to make service execute on different CPUs.
- Delayed some non-critical services for SystemUI module of Android after boot is completed.
- Delayed Zygote32 to when UI is shown.
- Delayed Bluetooth service to when UI is shown.
- Removed some unused service in Android Framework.
- Booted from the Cortex-A72 core instead of Cortex-A53 (only for i.MX 8QuadMax MEK).

All the changes above do not impact any of the functions and the performance except the boot time.

8.9.3 How to get the shorter boot time

For debug and development purpose, the U-Boot boot delay and the logs in U-Boot, Trusty OS, and Linux kernel are enabled by default. In field measurement, the Linux kernel dmesg takes about 1.15 seconds during the boot process because UART is a slow device. Therefore, before the final product, it is recommended to remove the U-Boot delay and the logs in U-Boot, Trusty OS, and Linux Kernel by performing the following operations:

- 1. Set CONFIG BOOTDELAY=-2 in the U-Boot defconfig file to remove boot delay.
- 2. Remove CONFIG SPL SERIAL SUPPORT=y in U-Boot defconfig file to disable logs at SPL stage.
- 3. Set CONFIG_SERIAL_PRESENT=n in U-Boot defconfig file to disable logs in U-Boot proper. Disable the UART node in U-Boot DTS. Take i.MX 8QuadMax as example:

```
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
diff --git a/arch/arm/dts/fsl-imx8qm-mek-auto.dts b/arch/arm/dts/fsl-imx8qm-
mek-auto.dts
index 461ee46fa8..58356e1466 100644
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
@@ -54,6 +54,10 @@
    };
};
+&lpuart0 {
   status = "disabled";
+
+};
/delete-node/ &pd dc0;
/delete-node/ &pd dc1;
/delete-node/ &pd isi ch0;
•Disable "DEBUG" in Trusty OS to remove TA logs like below:
diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index e58c15a..8c20e99 100644
--- a/project/imx8-inc.mk
+++ b/project/imx8-inc.mk
@@ -16,7 +16,7 @@
LOCAL DIR := $ (GET LOCAL DIR)
-DEBUG := 1
+DEBUG := 0
 WITH SMP := 1
 SMP MAX CPUS ?= 4
 SMP CPU CLUSTER SHIFT ?= 2
```

- 4. Modify the Linux bootargs in build system. Append loglevel=0 in it, which will prevent the dmesg printing on the console when the system is booted.
- 5. By default, the images are built by userdebug build. When it is changed to user build, it saves about 0.5 seconds boot time.

Note:

When setting loglevel=0, the debug message is not displayed directly to the console. To check it, however, you can use the *\$dmesg* command in the shell to output it.

8.9.4 How to build system.img with squashfs files system type

The default file system of system.img is ext4. After the system.img file system type is changed to squashfs, the system.img size can be reduced to about 50%. Smaller storage size costs more CPU resource but less eMMC IO operation, so this is a balanced option between IO and CPU loading. By default, this is not enabled. If the target device has a strong CPU but weak eMMC, squashfs is an option for boot time tuning.

To change the default file system type to squashfs, perform the following steps:

- Add the following Linux kernel macro in \${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/ arch/arm64/configs/android car config:
 - CONFIG SQUASHFS=y
 - CONFIG SQUASHFS LZ4=y
 - CONFIG SQUASHFS XATTR=y
 - CONFIG SQUASHFS DECOMP MULTI=y
- 2. Add the following configuration in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/BoardConfig.mk:

BOARD SYSTEMIMAGE FILE SYSTEM TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX 8QuadMax MEK Board, but there is no boot time optimization on the i.MX 8QuadXPlus MEK Board.

8.9.5 How to measure the boot time

Per the definition of the boot time described in <u>Section 8.9.1</u>, users need to measure the boot time duration from power-on to when the display shows the desktop.

Pay attention to the following:

- Keep the device in lock state by \$fastboot oem lock.
- Make sure that the device is powered down safely. \$setprop sys.powerctl shutdown makes the device
 power down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.
- Make sure the action of <u>Section 8.9.3</u> has been done.

The boot time is different for different boot that the AOSP Android Framework schedules the system services. To evaluate the boot time performance, calculate the average values based on about 50 times boot. According to the boot time analyzing tools provided by Google (<u>https://source.android.com/devices/tech/perf/boot-times</u>), evaluate the time by that first sys.boot_completed=1 shown from initialization logs. The process is easier. You can also get the bootanylaze tool from \${MY_ANDROID}/system/extras/boottime_tools/ bootanalyze. To make sure that this log is printed, append printk.devkmsg=on in bootargs. Based on the timestamp for the first time, sys.boot_completed=1 is displayed in the log. This is the boot time from kernel started to Android Framework boot completed.

Then, evaluate the boot time for the modules, which boot before the Linux kernel. It is easy to evaluate it by adding the following codes to print the timer value before jumping to Linux in U-Boot.

The boot evaluation by software is the sum of the timestamp for the first time we see sys.boot completed=1 and the timer values printed in U-Boot.

8.10 Configuration for the load orders of driver modules

8.10.1 Why does Android Automotive have driver load orders

As the boot time performance of Android Automotive is important, make Linux kernel boot as soon as possible to enable some critical services earlier. Therefore, some drivers that are not critical for the Android Automotive booting are not loaded during the early boot stage. The set of drivers is built into kernel modules during build time and are loaded and probed after the Android Automotive key service boots successfully. This makes the display and UI ready earlier.

In this release, the following module-related drivers are probe before the initialization process starts:

- Camera (only in mek_8q_car)
- USB
- Wi-Fi

8.10.2 How does the non-critical driver load

In i.MX Android Automotive, there are two kinds of build. The mek_8q_car and mek_8q_car2. mek_8q_car have special design to support the EVS features, which use the Arm Cortex-M4 core to handle camera-related modules before the Android display related service is ready. Therefore, mek_8q_car and mek_8q_car2 loads different driver modules in different stages.

In i.MX Android Automotive, all kernel driver modules are loaded in init.rc by the script named init.insmod.sh.

For mek_8q_car, when the EVS service running in the Arm Cortex-M4 core releases the hardware resource for camera modules, Android Automotive loads the camera-related driver modules. This typically happens when the late_start service is triggered in init.rc, if the EVS service running in Android Automotive is initialized successfully. This part of drivers is listed in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/setup.core.cfg. After the core drivers are probed successfully, it triggers low-priority driver modules to load and probe by triggering the service named boot_completed_main_sh, which loads drivers listed in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/setup.main.cfg in init.rc. The "main" drivers are the rest of driver modules.

For mek_8q_car2, not like mek_8q_car, it has no "core" driver modules to be loaded and probed during the boot process. As all necessary camera driver modules are built in inside the kernel image, like mek 8q car,

AAUG

© 2024 NXP B.V. All rights reserved.

the "main" drivers are the same ones like rfkill for BT, USB, and Wi-Fi. The driver load and probe are triggered once sys.boot completed property is set to be 1. This is handled in init.rc.

8.10.3 How to change driver load orders

Generally, the driver follows the priority below to be loaded:

- Built-in
- Listed in early.init_car_gki.cfg
- Listed in setup.main.gki.cfg

In each cfg file, the drivers are loaded one by one. To change the driver load orders, in <code>early.init.cfg</code> or <code>setup.main.cfg</code>, just change the text list order. If some built-in drivers need to be loaded in low priority, follow the changes below:

- In the kernel defconfig file, mark specific CONFIG to be m instead of y.
- Modify the BOARD_VENDOR_KERNEL_MODULES in \${MY_ANDROID}/device/nxp/imx8q/mek_8q/Share dBoardConfig.mk to copy the specific .ko files to the target image.
- Add the driver module name in early.init_car_gki.cfg or setup.main.gki.cfg based on its loading priority.

8.11 Dual-bootloader configuration

8.11.1 Dual-bootloader layout

Dual-bootloader feature splits the default u-boot.imx into two parts: spl.bin and bootloader.img. The spl.bin goes to the bootloader0 partition, which is managed by U-Boot itself. The bootloader.img goes to the bootloader_a/bootloader_b partitions, which are managed by GPT and thus gets a chance to be updated.

The layout of dual-bootloader is as follows (taking i.MX 8Quad as an example):

The bootloader.img contains U-Boot proper, Arm Trusted Firmware, and Trusty OS. All of them can be updated easily through OTA to fix some power or security issues.

8.11.2 Configuring dual-bootloader

Dual-bootloader feature is enabled for Android Automotive by default. It is enabled by configuring CONFIG DUAL BOOTLOADER in U-Boot. Take i.MX 8Quad as an example:

```
diff --git a/configs/imx8qm mek androidauto trusty defconfig b/configs/
imx8qm mek androidauto trusty defconfig
index 82ec5ca..e0b210e 100644
--- a/configs/imx8qm mek androidauto trusty defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
00 -170,4 +170,4 00 CONFIG APPEND BOOTARGS=y
CONFIG LIBAVB=y
CONFIG SHA256=y
CONFIG SPL MMC WRITE=y
+CONFIG DUAL BOOTLOADER=y
diff --qit a/configs/imx8qxp mek androidauto trusty defconfig b/configs/
imx8qxp mek androidauto trusty defconfig
index 30fe32d..2f709d2 100644
--- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
00 -179,4 +179,4 00 CONFIG APPEND BOOTARGS=y
CONFIG LIBAVB=y
```

CONFIG_SHA256=y CONFIG_SPL_MMC_WRITE=y +CONFIG_DUAL_BOOTLOADER=y

Then, imx-mkimage needs to pack spl.bin and bootloader.img separately. Taking i.MX 8QuadMax and i.MX 8QuadXPlus as an example, two targets are used to handle the dual-bootloader image generation with Cortex-M4 images in imx-mkimage:

i.MX 8QuadMax: flash_b0_spl_container_m4_1_trusty i.MX 8QuadXPlus: flash_all_spl_container_ddr_car

When Trusty OS is enabled, bootloader rollback index can be used to prevent rollback attack. For more details to set the bootloader rollback index, see Section 2.3.5 in the *i.MX Android Security User's Guide* (ASUG).

Besides, after enabling dual-bootloader, the steps to sign images with the CST tool are different. For more information, see Section 2.1 in the *i.MX Android Security User's Guide* (ASUG).

8.12 Miscellaneous configuration

8.12.1 Changing boot command line in boot.img

After boot.img is used, the default kernel boot command line is stored inside this image. It packages together during Android build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the $MY_ANDROID/device/nxp/imx8q/mek_8q/BoardConfig.mk file.$

8.12.2 Notices before the debugging work

When doing the customization work, you may need to do some debugging work. The debugging work will be convenient and flexible if the read-only filesystems are remounted as writable, so that files in it can be replaced with the adb push command. It helps to avoid flashing the images again and saves time.

To remount the read-only filesystems, perform the following steps:

- 1. Unlock the device.
- 2. Boot up the system to Android platform.
- 3. Execute the following commands on the host. The second command takes seconds to finish.

```
$ adb root
$ adb disable-verity
```

4. Reboot the device, and execute the following command on the host:

```
$ adb root
$ adb remount
```

Then, the images can be pushed to the board with the adb push command. Before the further debugging work, be aware of the following notices:

• Do not erase the "userdata" partition after adb disable-verity is executed.

With the dynamic partition feature enabled in i.MX Android images, and the size is not specified for system, system_ext, vendor, and product partitions when building the images, overlayfs is used when remounting the read-only filesystems. An upper directory that can be written in OverlayFS is needed in this condition. When the adb push command is executed, the files are pushed to the upper directory of OverlayFS, while the original read-only filesystems are not modified.

i.MX Android images use only one partition named "super" to store images in logical partitions, and ext4 filesystem is used for the userdata partition, which is mounted on /data. When executing the adb disable-verity command, an image is allocated under /data/gsi/remount/scratch.img.0000. Its size is half the size of the "super" partition and should not be greater than 2 GB. The layout information of this image is stored in /metadata/gsi/remount/lpmetadata in the format logical partition metadata. When rebooting the system, at the first stage of the init program, the information in /metadata/gsi/ remount/lpmetadata is used to create a logical partition named "scratch", and it is mounted on /mnt/ scratch. This is used as the upper directory in OverlayFS used in remount. When the adb push command is executed to modify the originally read-only filesystems, files are written to the "scratch" partition. At the first stage of the init program, the userdata partition is not mounted. The code judges whether the backing image of the scratch partition exists in the userdata partition by checking whether the /metadata/ gsi/remount/lpmetadata file can be accessed. Therefore, if the userdata partition is erased, but the logical partition is still created, this could be catastrophic and may make the system crash.

- To make changes to files from the console, execute remount on the console first. adb and sh are in different mount namespaces. adb remount does not change the mount status that sh sees.
- For MEK boards, if files need to be pushed to /vendor/etc, push them to another path. Images for i.MX 8Quad Max MEK and i.MX 8QuadXPlus MEK are built together with one target. Media codec configuration files' names and paths are hardcoded in framework, while these two SoCs need different media codec configurations. It means that the media codec configuration files for these two boards with different content should have the same name and being accessed with the same path. Therefore, OverlayFS is used, and images for these two boards have different OverlayFS upper directories. The mount command can be found in \${MY ANDROID}/device/nxp/imx8q/mek 8q/init.rc:

mount overlay overlay /vendor/etc ro lowerdir=/vendor/vendor_overlay_soc/
\${ro.boot.soc_type}/vendor/etc:/vendor/etc,override_creds=off

The value of \${ro.boot.soc type} can be imx8qxp or imx8qm here.

With the preceding command executed, access to files under /vendor/etc can access files both under /vendor/etc and /vendor/vendor_overlay_soc/\${ro.boot.soc_type}/vendor/etc. The / vendor/vendor_overlay_soc/\${ro.boot.soc_type}/vendor/etc:/vendor/etc directory is the upper directory in OverlayFS and /vendor/etc is both the lower directory and mount point. After remount, the lower directory /vendor/etc is still read-only, and files can be pushed to other sub-paths under /vendor except /vendor/etc. To push a modified file, which should be accessed from /vendor/ etc, push it to /vendor/vendor_overlay_soc/\${ro.boot.soc_type}/vendor/etc, and then reboot the system to make it take effect.

For example, if you modified the file cdnhdmi_config.json, a file should be under /vendor/etc/ configs/audio/. Execute the following commands on the console:

```
su
umask 000
cd /vendor/vendor_overlay_soc/imx8qm/vendor/etc/
mkdir -p configs/audio/
```

Then, execute the following commands on the host:

sudo adb push cdnhdmi_config.json /vendor/vendor_overlay_soc/imx8qm/vendor/etc/

At last, reboot the device to make this change take effect.

There are two limitations here:

- To delete a file under /vendor/etc/, you can only rebuild the image and flash the vendor image again.

- The OverlayFS is mounted with a command in an init .rc file. The init .rc files are all parsed by the init program before the OverlayFS is mounted. Therefore, to modify init .rc files under /vendor/etc, you can only rebuild the image and flash the vendor image again.

9 Generic Kernel Image (GKI) Development

The Generic Kernel Image (GKI) project addresses kernel fragmentation by unifying the core kernel and moving SoC and board support out of the core kernel into loadable modules. The GKI kernel presents a stable Kernel Module Interface (KMI) for kernel modules, so modules and kernel can be updated independently.

Devices that launch with the Android 13 (2023) platform release using kernel versions v5.15 or higher are required to ship with the GKI kernel.

The following boards have enabled GKI:

- i.MX 8QuadMax
- i.MX 8QuadXPlus

9.1 Changes after GKI enabled

• boot.img

After GKI is enabled, boot.img is a composite image, which includes the Android Open Source Project (AOSP) generic kernel image and boot parameters.

It is built from one prebuilt boot.img, stored in the Android source code $MY_ANDROID/vendor/nxp/fsl-proprietary/gki/boot.img$. This boot.img is certified and released from AOSP, and then signed with the AVB key to generate the final boot.img.

By default, the UUU and fastboot script flash this image.

To build boot.img, run ./imx-make.sh or make bootimage.

• system dlkm.img

system_dlkm.img is signed by Google using the kernel build-time key pair and is compatible only with the GKI it is built with. There is no ABI stability between boot.img and system_dlkm.img. For modules to load correctly during runtime, boot.img and system_dlkm.img must be built and updated together. It needs to be built with the following steps:

- 1. Download Google Released android14-6.1 GKI system_dlkm_staging_archive.tar.gz.
- Run cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fslproprietary/gki/system dlkm staging archive.tar.gz.
- 3. Run tar -xzf system dlkm staging archive.tar.gz -C system dlkm staging.
- 4. Run make system dlkmimage.
- boot-imx.img

boot-imx.img is built from the i.MX kernel tree for debugging purposes. By default, it is built out by imxmake.sh with TARGET_IMX_KERNEL=true, and then renamed from boot.img to boot-imx.img. For details, see the last piece of code in the imx-make.sh build script.

Note: boot.img and boot-imx.img are generated by the imx-make.sh script as follows.

```
TARGET_IMX_KERNEL=true make ${parallel_option} ${build_bootimage}
${build_vendorbootimage} ${build_dtboimage} ${build_vendordlkmimage} || exit
if [ -n "${build_bootimage}" ] || [ ${build_whole_android_flag} -eq 1 ]; then
if [ ${TARGET_PRODUCT} = "evk_8mp" ] || [ ${TARGET_PRODUCT} = "evk_8mn" ] \
|| [ ${TARGET_PRODUCT} = "evk_8ulp" ] || [ ${TARGET_PRODUCT} = "mek_8q" ] \
|| [ ${TARGET_PRODUCT} = "mek_8q_car" ] || [ ${TARGET_PRODUCT} =
"mek_8q_car2" ] \
|| [ ${TARGET_PRODUCT} = "evk_8mm" ] || [ ${TARGET_PRODUCT} =
"mek_8q_car2" ] \
|| [ ${TARGET_PRODUCT} = "evk_8mm" ] || [ ${TARGET_PRODUCT} = "evk_8mq" ]; then
if [ ${sign_gki} -eq 1 ]; then
mv ${OUT}/boot.img ${OUT}/boot-imx.img
make_bootimage
fi
fi
```

To build boot-imx.img, run ./imx-make.sh or TARGET_IMX_KERNEL=true make bootimage && mv \${OUT}/boot.img \${OUT}/boot-imx.img.

```
    Kernel defconfig
```

The kernel .config is generated by one generic gki_defconfig along with one board-specific config, like imx8q_car_gki.fragment.

Driver modules

As GKI requires, all vendor drivers need to be built as modules. Their configs are set as "m" in the boardspecific configuration file mentioned above. In addition, explicitly install those modules on board by adding them to the following two Android predefined macros. For example, see $M_{M_{and}} = M_{and} / device / nxp / imx8q/mek 8q/SharedBoardConfig.mk:$

 BOARD_VENDOR_RAMDISK_KERNEL_MODULES
 Modules under this macro are copied to \${MY_ANDROID}/out/target/product/mek_8qvendor_ ramdisk/lib/modules, and then built as vendor_boot.img. They are installed to the kernel in the first stage of initialization. In general, put essential modules here and be careful of the sequence.

- BOARD_VENDOR_KERNEL_MODULES Modules under this macro are copied to \${MY_ANDROID}/out/target/product/mek_8q/ven dor_dlkm/lib/modules, and then built as vendor_dlkm.img. They are installed later than vendor ramdisk, after the Android filesystem is ready.

Note:

Due to SoC errata TKT340553 in i.MX 8QuadMax, GKI is not fully enabled. The boot_8q_car.img and system_dlkm_staging_8q_car are built locally for both i.MX 8QuadMax and i.MX 8QuadXPlus.

9.2 How to add new drivers

To add new drivers, perform the following steps:

1. Set the driver configuration to m in the configuration fragment file of the board:

```
diff --git a/arch/arm64/configs/imx8q_car_gki.fragment b/arch/arm64/configs/
imx8q_car_gki.fragment
index 594bf1228f72..b5585c423bbf 100644
--- a/arch/arm64/configs/imx8q_car_gki.fragment
+++ b/arch/arm64/configs/imx8q_car_gki.fragment
@@ -109,3 +109,5 @@ CONFIG_DMABUF_IMX=m
    # CONFIG_IMX_SENTNL_MU is not set
    # CONFIG_IMX_RPMSG_TTY is not set
+CONFIG_ZRAM=m
+CONFIG_ZSMALLOC=m
```

Add the driver . ko files to the board:
 Note: If other driver modules depend on them, put them before others.

```
diff --git a/imx8q/mek_8q/SharedBoardConfig.mk b/imx8q/mek_8q/
SharedBoardConfig.mk
index df7850b0b285..84d136c224cd 100644
--- a/imx8q/mek_8q/SharedBoardConfig.mk
+++ b/imx8q/mek_8q/SharedBoardConfig.mk
@@ -102,6 +104,10 @@ endif
BOARD_VENDOR_RAMDISK_KERNEL_MODULES += \
+$ (KERNEL_OUT) /mm/zsmalloc.ko \
+$ (KERNEL_OUT) /crypto/lzo.ko \
+$ (KERNEL_OUT) /crypto/lzo-rle.ko \
+$ (KERNEL_OUT) /crypto/lzo-rle.ko \
$ (KERNEL_OUT) /drivers/block/zram/zram.ko \
```

3. Fix the symbol issues.

If some symbols are not exported but used by the added driver modules, perform the following steps to export them:

- a. Export symbols with EXPORT_SYMBOL_GPL(xxx). **Note:** If the symbols are in the core kernel code (which means not in the loadable modules), such changes must upstream to the AOSP GKI Kernel tree.
- b. Add symbols to the AOSP GKI Kernel tree android/abi_gki_aarch64.stg.

9.3 How to build GKI locally

In the development stage, it is useful to build the GKI image locally to verify drivers.

1. Prepare the GKI Kernel build repository (taking the 6.1 kernel as an example):

```
mkdir gki && cd gki
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android14-6.1
repo sync
```

2. (Optional) Enable the early console.

Early console is useful. If the system is stuck at "Starting kernel ...", apply the following changes in the GKI Kernel tree gki/common.

```
diff --git a/arch/arm64/configs/gki defconfig b/arch/arm64/configs/
gki defconfig
index 29782a39fffa..6cae9ad783b4 100644
--- a/arch/arm64/configs/gki_defconfig
+++ b/arch/arm64/configs/gki_defconfig
00 -387,6 +387,7 00 CONFIG SERIAL AMBA PL011=y
CONFIG SERIAL AMBA PL011 CONSOLE=y
CONFIG SERIAL SAMSUNG=y
CONFIG SERIAL SAMSUNG CONSOLE=y
+CONFIG SERIAL IMX EARLYCON=y
CONFIG_SERIAL_QCOM_GENI=y
CONFIG_SERIAL_QCOM_GENI_CONSOLE=y
CONFIG_SERIAL_SPRD=y
diff --git a/drivers/tty/serial/Kconfig b/drivers/tty/serial/Kconfig
index e2a2ff6c1296..52ad477c964a 100644
--- a/drivers/tty/serial/Kconfig
+++ b/drivers/tty/serial/Kconfig
@@ -500,7 +500,6 @@ config SERIAL IMX CONSOLE
config SERIAL IMX EARLYCON
    bool "Earlycon on IMX serial port"
    -depends on ARCH MXC || COMPILE TEST
    depends on OF
    select SERIAL CORE
    select SERIAL EARLYCON
```

3. Build the GKI Image.

tools/bazel run //common:kernel_aarch64_dist

```
The GKI boot.img is obtained from out/kernel_aarch64/dist/boot.img. The GKI
system_dlkm_staging_archive.tar.gz is obtained from out/kernel_aarch64/dist/system_
dlkm_staging_archive.tar.gz.
```

4. Build Android boot.img and system_dlkm.img.

```
cp out/kernel_aarch64/dist/boot_8q_car.img {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/boot.img
cd ${MY_ANDROID}
TARGET IMX KERNEL=true make bootimage
```

```
cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/system_dlkm_staging_archive.tar.gz
cd {MY_ANDROID}/vendor/nxp/fsl-proprietary/gki
tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging_8q_car
cd ${MY_ANDROID}
make system_dlkmimage
```

5. Build Android boot_8q_car.img and system_dlkm_8q.img (only for i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards).

To address TKT340553 Errata and support for multiple-state domains, i.MX 8QuadXPlus and i.MX 8QuadMax require boot_8q_car.img and system_dlkm_8q.img. This boot_8q_car.img and system_dlkm_staging_8q are built locally with aosp/android14-6.1-2023-06. Then add the following:

4546ce4e1756 MA-21443 usb: typec: tcpm: not sink vbus if operational current is OmA e01d5b00e46d MA-21424 ANDROID: sound: usb: Fix wrong behavior of vendor hooking c50351a6e73e MLK-21052-08 clk: imx: Add CLK SET PARENT NOCACHE 8e99deaf8919 drivers: base: move devices pm to tail when driver bound 4ef42b29925d PM / Domains: remove no governor for states warning c959d2873210 PM / Domains: Choose the deepest state to enter if no devices using it d15e8c9838e2 PM / Domains: Support enter deepest state for multiple states domains 2e8cc8f442a4 PM / Domains: Move the Subdomain check into genpd power off 72276f7e6758 MLK-16005-2 soc: imx: scu: add the SW workaround for i.MX8QM TKT340553 e8be8b652866 LF-363 arm64: kernel: TKT340553 Errata workaround update for i.MX8OM 40d0546bf89f MLK-23277: 8qm: Fix SW workaround for i.MX8QM TKT340553 d9d668fd112f arm64: drop the use of user addr max() 8ce9077c89de arm64: extable: update to use new UACCESS API 40e917c28b0 AAUTO-8 Add vehicle driver (change base on 628be171887 commit). Vehicle driver is used communicate M4 and also report vehicle event into vehicle HAL. 5ea08b62de6 AAUTO-14 add driver for boot time specification of dm to linux kernel 8a19fa54a8d AAUTO-16 Seperate clock and PM domain init according to shared resources

Add TKT340553 SW WORKAROUND to the symbol list:

```
diff --git a/android/abi_gki_aarch64_imx b/android/abi_gki_aarch64_imx
index ac16191a3545..601c0eef9456 100644
--- a/android/abi_gki_aarch64_imx
+++ b/android/abi_gki_aarch64_imx
@@ -2419,3 +2419,4 @@
xdp_rxq_info_reg_mem_model
xdp_rxq_info_unreg
xdp_warn
+TKT340553 SW WORKAROUND
```

Then update the AOSP symbol list according to <u>Section 9.4</u>. These patches are going upstream.

9.4 How to export new symbols

AOSP GKI image only exports those symbols listed at android/abi_gki_aarch64.stg. To update them, see the official document: <u>https://source.android.com/devices/architecture/kernel/abi-monitor</u>. The following is a quick start guide to export new symbols.

1. Generate the device symbol list (android/abi gki aarch64 imx):

```
mkdir gki && cd gki (Make sure folder gki is not inside of ${MY_ANDROID})
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android14-6.1
repo sync
cd common
```

Note: Switch the kernel in this common folder from AOSP to its own device kernel and apply all your local patches that may require new symbols.

```
git remote add device <device kernel git URL>
git remote update
git checkout device/<device kernel branch>
git apply <all device patches if needed>
cd ..
(Due to ISP and wifi code is out of kernel tree, set it explicitly to collect
their symbols)
ln -s ${MY_ANDROID}/vendor/nxp-opensource/verisilicon_sw_isp_vvcam
verisilicon_sw_isp_vvcam
ln -s ${MY_ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex
tools/bazel run //common:imx_abi_update_symbol_list
```

Then common/android/abi_gki_aarch64_imx is updated.

2. Update the AOSP symbol list (android/abi_gki_aarch64.stg):

```
cd gki
cp common/android/abi_gki_aarch64_imx /tmp/abi_gki_aarch64_imx
cd common
```

Note: Switch the kernel in this common folder from its own device kernel to the AOSP kernel.

```
git reset --hard
git checkout aosp/android14-6.1
cp /tmp/abi_gki_aarch64_imx android/abi_gki_aarch64_imx
cd ..
tools/bazel run //common:kernel_aarch64_abi_update
```

Then common/android/abi_gki_aarch64.stg is updated.

3. Build Android 8q_car.img and system_dlkm.img locally.

```
cp out/kernel_aarch64/dist/8q_car.img {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/8q_car.img
cd ${MY_ANDROID}
TARGET_IMX_KERNEL=true make bootimage
cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/system_dlkm_staging_archive.tar.gz
cd {MY_ANDROID}/vendor/nxp/fsl-proprietary/gki
tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging_8q_car
cd ${MY_ANDROID}
make system_dlkmimage
```

Then 8q car.img and system dlkm.img built locally will export those symbols.

4. To enable the AOSP released GKI image to export these symbols, upstream these two files to AOSP: android/abi gki aarch64 imx android/abi gki aarch64.stg.

9.5 How to update the GKI image

To update the GKI image, perform the following steps:

1. Download GKI boot.img from Google. Put boot.img in \${MY_ANDROID}/vendor/nxp/fslproprietary/gki/boot.img. Run the following command to build signed boot.img.

```
./imx-make.sh bootimage
or
make bootimage
```

2. Download GKI system_dlkm_staging_archive.tar.gz from Google. Put system_dlkm_staging_archive.tar.gz in \${MY_ANDROID}/vendor/nxp/fsl-proprietary/ gki/system_dlkm_staging_archive.tar.gz. Unzip system_dlkm_staging_archive.tar.gz to system dlkm staging. Run the following command to build system dlkm.img.

make system dlkmimage

3. Get boot.img and system dlkm staging archive.tar.gz from the Android 14-6.1 Release Builds.

10 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11 Revision History

This table provides the revision history.

Table 24. Revision history		
Revision number	Release date	Description
automotive-13.0.0_2.3.0	4 January 2024	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-13.0.0_2.1.0	10/2023	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-13.0.0_1.3.0	07/2023	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release

Table 24. Revision history

Revision number	Release date	Description
automotive-13.0.0_1.1.0	05/2023	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-12.1.0_1.1.0	12/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-12.0.0_2.1.0	09/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-12.0.0_1.1.0	06/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-11.0.0_2.5.0	03/2022	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-11.0.0_2.3.0	12/2021	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA release
automotive-11.0.0_2.1.0	11/2021	Added the examples for i.MX 8QuadXPlus and upgraded the tool version
android-11.0.0_1.1.0-AUTO	01/2021	i.MX 8QuadXPlus/8QuadMax MEK GA release
android-10.0.0_2.4.0	07/2020	i.MX 8QuadMax MEK GA release
android-10.0.0_2.2.0-AUTO	06/2020	i.MX 8QuadXPlus/8QuadMax MEK GA release
automotive-10.0.0_1.1.0	03/2020	Deleted the Android 10 image
automotive-10.0.0_1.1.0	03/2020	i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0) GA release
P9.0.0_2.1.0-AUTO-ga	08/2019	Updated the location of the SCFW porting kit
P9.0.0_2.1.0-AUTO-ga	04/2019	i.MX 8QuadXPlus/8QuadMax Automotive GA release
P9.0.0_1.0.2-AUTO-beta	01/2019	i.MX 8QuadXPlus/8QuadMax Automotive Beta release
P9.0.0_1.0.2-AUTO-alpha	11/2018	i.MX 8QuadXPlus/8QuadMax Automotive Alpha release
O8.1.0_1.1.0_AUTO-beta	05/2018	i.MX 8QuadXPlus/8QuadMax Beta release
08.1.0_1.1.0_AUTO-EAR	02/2018	Initial release

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications - This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

Contents

2 Preparation 2 cards 2.1 Setting up your computer 2 8.3 Display 2.2 Unpacking the Android release package 3 B.3.1 Configuration 3.1 Getting i.MX Android release source code 4 8.3.2 Starting 3.2 Building Android images 5 8.3.3 Enablim 3.2 Configuration examples of building i.MX 8.3.3 Launchi 3.2.1 Configuration examples of building i.MX 8.3.3.2 Enablim 3.2.2 Build mode selection 9 8.3.4 Configuration 3.3 Building the Android Platform with a 8.4.1 HVACC 3.4 Building the Android Platform with a 8.6.1 Interface 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.1 How to 5.1.2 Downloading images with fastboot imx_ 8.7 SCFW0 8.9 5.1.4 Downloading a single image with fastboot imx_ 8.7 SCFW0 8.9 How to 6.1 Booting from	1 1.1	Overview		8.2 8.2.1	Audio c Routing
2.1 Setting up your computer 2 8.3 Display 2.2 Unpacking the Android release package 3 8.3.1 Configu 3.1 Getting i, MX Android release source code 4 8.3.3 Enabling 3.2 Building the Android pattern for i.MX 4 8.3.3 Enabling 3.2.1 Configuration examples of building i.MX 8.3.3.2 Enabling devices 9 8.3.3 Launch HVAC c 3.2.2 Build with the GAS package 10 8.4 HVAC c 3.3 Building boot.img 12 8.5.1 Enabling 3.4 Building boot.img 12 8.5.1 Enabling 3.5 Building boot.img 12 8.5.1 Enabling 3.6 Building the Android Platform with a 8.6 Trusty C 4 Running the Android Platform with a 8.6.2 AWB ke 5.1.4 Storage partitions 15 8.6.2.2 How to 5.1.3 Downloading images with fastboot_imz_ 6 8.9 Boot tin 6.1 Booting from eMMC 18		•		0.2.1	
2.2 Unpacking the Android release package 3 8.3.1 Configure 3.1 Getting I.MX Android release source code 4 8.3.2 Starting 3.1 Getting I.MX Android release source code 4 8.3.3 Enablin 3.2 Building Android images 5 8.3.3.1 Binding 3.2.1 Configuration examples of building I.MX 8.3.3.2 Enablin 3.2.2 Build with the GAS package 0 8.4 HVAC c 3.3 Building U-Boot images 10 8.4.1 HVAC c 3.4 Building dubo.img 12 8.5.1 Enablin 3.5 Building dubo.img 12 8.6.1 Buulding 3.6 Building dubo.img 12 8.6.1 Initializi 3.6 Building dubo.img 12 8.6.1 Norage partitions 15 8.6.2.2 AVB ket 5.1 System on eMMC 15 8.6.2.1 General 8.7 SCFW distal 8.7 SCFW distal 8.7 SCFW distal 8.7 SCFW distal 8.9 Boot tin 8.9 Boot tin <td< td=""><td></td><td></td><td></td><td>8.3</td><td></td></td<>				8.3	
3 Building the Android platform for i.MX 4 8.3.2 Starting 3.1 Getting I.MX Android release source code 4 8.3.3 Enabling 3.2 Building Android images 5 8.3.3.1 Binding 3.2.1 Configuration examples of building i.MX 8.3.3.2 Enabling devices 9 8.3.3.1 Launching 3.2.2 Build mode selection 9 8.3.4 Configu 3.2.3 Building U-Boot images 10 8.4.1 Interface 3.4 Building boot.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.6.1 Initializi 3.6 Building dtbo.img 12 8.6.2.1 General 5 Programming Images with UUU 6 8.6.2.1 General 5.1.3 Downloading inages with fastboot imx					1 2
3.1 Getting I.MX Android release source code 4 8.3.3 Enabling 3.2 Building Android images 5 8.3.3.1 Binding 3.2.1 Configuration examples of building i.MX 8.3.3.2 Enabling devices 9 8.3.3.3 Launchi 3.2.2 Build with the GAS package 10 8.4 HVAC configuration 3.3 Building U-Boot images 10 8.4.1 HVAC configuration 3.4 Building a kernel image 11 8.5 USB co 3.5 Building dtbo.img 12 8.5.1 Enabling 3.6 Building bot.img 12 8.5.1 Enabling 3.6 Building bot.img 12 8.5.1 Initializit 5 Programming Images 14 8.6.2 AVB ker 5.1.1 Storage partitions 15 8.6.2.1 General 5.1.2 Downloading images with fastboot ims					-
3.2 Building Android images 5 8.3.3.1 Binding 3.2.1 Configuration examples of building i.MX 8.3.3.2 Enabling 3.2.2 Build mode selection 9 8.3.4 Configu 3.2.3 Build mode selection 9 8.3.4 Configu 3.3 Building U-Boot images 10 8.4 HVAC of 3.3 Building U-Boot images 10 8.4 HVAC of 3.4 Building diboot.img 12 80.1 Interface 3.6 Building otbo.img 12 80.24 Runaing the Android Platform with a 8.6 Trusty C 5 Programming Images 14 8.6.2 AVB ket 5 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.1 General 5 8.6.2.1 How to 5.1.2 Downloading images with fastboot_imx_ 8.7 SCFW d SCFW d SCFW d SCFW d SCFW d Sc.2.2 How to Sc.2.2 How to<					•
3.2.1 Configuration examples of building i.MX 8.3.3.2 Enabling devices 9 8.3.3.3 Launchi 3.2.2 Build mode selection 9 8.3.4 Configuration 3.2.3 Build with the GAS package 10 8.4 HVAC of 3.3 Building U-Boot images 10 8.4.1 Interface 3.4 Building booting 12 8.5.1 Enabling 3.4 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.6.1 Initializin 3.6 Programming Images 14 8.6.2 AVB ket 5.1 System on eMMC 15 8.6.2.2 How to 5.1.3 Downloading images with fastboot_imx_ 8.7 SCFW of 6.1 Booting from eMMC 19 8.9.1 Boot in 6.1 Booting from eMMC on the i.MX 8.9.3 How to 6.2.2		•			
devices 9 8.3.3.3 Launchi 3.2.2 Build with the GAS package 10 8.4 HVAC G 3.3 Building U-Boot images 10 8.4.1 Interface 3.4 Building a kernel image 11 8.5 USB cc 3.5 Building dbo.img 12 80.adM 4 Running the Android Platform with a 8.6 Trusty C 5 Programming Images 14 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.1 General 5.1.1 Downloading images with fastboot_imx_ 8.7 SCFW d 5.1.3 Downloading a single image with fastboot_imx_ 8.7 SCFW d 5.1.4 Downloading a single image with fastboot_18 8.9 Boot tim 6.1 Booting from eMMC 19 8.9.1 Boot tim 6.1.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.1 U-Boot e			0		
3.2.2 Build mode selection 9 8.3.4 Configu 3.3 Build with the GAS package 10 8.4 HVAC of 3.3 Building Leoto images 10 8.4 HVAC of 3.4 Building a kernel image 11 8.5 USB co 3.5 Building dboot.img 12 80uadh 3.6 Building the Android Platform with a 8.6 Trusty C 9 Prebuilt Image 12 80uadh 4 Running the Android Platform with a 8.6 Trusty C 9 Programming Images 14 8.6.2 AVB ker 5.1 System on eMMC 15 8.6.2.1 General 5.1.3 Downloading images with UUU 16 8.6 Ker atts 5.1.4 Downloading images with fastboot 18 8.9 Boot tim 6 Booting 19 8.9.1 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8.2.2 What N 8.9.4 How to 6.2.2 Boot up configurations 19 <td< td=""><td>0.2.1</td><td></td><td>9</td><td></td><td></td></td<>	0.2.1		9		
3.2.3 Build with the GAS package 10 8.4 HVAC of a state of the state o	322				
3.3 Building U-Boot images 10 8.4.1 Interface 3.4 Building a kernel image 11 8.5 USB co 3.5 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.6.1 Initializit 5 Prebuilt Image 12 8.6.1 Initializit 5 Programming Images 14 8.6.2 AVB key 5.1.1 Storage partitions 15 8.6.2.1 General 5.1.3 Downloading images with fastboot_imx_ 8.6.3 Key atte 6.1 Booting form eMMC 19 8.9.1 Boot tin 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8.2.4 How to 8.9.4 How to 8.9.5 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel comfiguration 21 modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 6.2.2 Balod ord <td></td> <td></td> <td></td> <td></td> <td>•</td>					•
3.4 Building a kernel image 11 8.5 USB co. 3.5 Building boot.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 80uadh 4 Running the Android Platform with a 12 80uadh 5 Programming Images 14 8.6.2 AVB keg 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.2 How to 5.1.3 Downloading images with UUU 16 8.6 Rev atte 5.1.4 Downloading a single image with fastboot_imx_ 8.7 SCFWd 6 Booting mages with fastboot_imx_ 8.7 SCFWd 6.1 Booting from eMMC on the i.MX 8.9 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8.0.4 How to 8.9.4 How to 8.0.2 Kernel command line (bootargs) 20 8.10 What No 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.3 DM-verity configurati				-	-
3.5 Building boot.img 12 8.5.1 Enabling 3.6 Building dtbo.img 12 8.6.1 Enabling 3.6 Running the Android Platform with a 12 8.6.1 Initializi 5 Programming Images 14 8.6.2 AVB kee 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.2 How to 5.1.2 Downloading images with fastboot_imx_ 8.7 SCFW at flashall script 16 8.6.3 Key atte 5.1.4 Downloading a single image with fastboot_imx_ 8.7 SCFW at 6 Booting from eMMC on the i.MX 8.9 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8.0.4 How to 8.9.4 How to 8.0.2 Boot-up configuration 21 modulate 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modulate modulate 7 Over-The-Air (OTA)				8.5	
3.6 Building dtbo.img 12 8Quadh 4 Running the Android Platform with a Prebuilt Image 12 8.6.1 Initializi 5 Programming Images 14 8.6.2 AVB ket 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.1 How to 5.1.2 Downloading images with fastboot imx_ 8.7 SCFW of 6.1.3 Downloading a single image with fastboot 18 8.9 Boot tim 6.1 Booting from eMMC 19 8.9.1 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2.1 Boot-up configurations 19 8.9.5 How to 6.2.3 DM-verity configuration 21 modules module 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1.1 Building a full update package 23 8.11.1 Dual-bo 7.1.2 Building a incremental update package 23 8.11.1				8.5.1	Enablin
4 Running the Android Platform with a 8.6 Trusty C 9 Probuilt Image 12 8.6.1 Initializi 5 Programming Images 14 8.6.2 AVB ket 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.1 How to 5.1.2 Downloading images with UUU 16 8.6.3 Key attt 5.1.3 Downloading as sigle image with fastboot_imx_ 8.7 SCFW d flashall script 16 8.9 Boot im 6 Booting from eMMC on the i.MX 8.9.1 Boot in 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 62.2 Kernel command line (bootargs) 20 8.10 Configu 62.3 DM-verity configuration 21 modules Modu do 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1 Building of Yu update package 22 8.10.1 Why do 7.2 <td></td> <td></td> <td></td> <td></td> <td></td>					
Prebuilt Image128.6.1Initializin5Programming Images148.6.2AVB key5.1System on eMMC158.6.2.1General5.1.1Storage partitions158.6.2.2How to5.1.2Downloading images with fastboot_imx_8.6.2How to5.1.3Downloading images with fastboot_imx_8.7SCFW offlashall script168.8Powers5.1.4Downloading a single image with fastboot_imx_8.9Boot im6Booting198.9.1Boot im6.1Booting from eMMC198.9.2What N6.1.1Booting from eMMC on the i.MX8.9.3How to8.0uadXPlus/8QuadMax MEK board198.9.4How to6.2.2Boot-up configurations198.9.4How to to6.2.3DM-verity configuration21modules7Over-The-Air (OTA) Update228.10.1Why do7.1.1Building a full update package228.10.1Why do7.1.2Building a full update package238.11Dual-bo7.2.2Using a customized application to update8.12.1Changir7.2.4Android platform269Generid7.2.5Lusing a customized application to update8.12.1Changir7.2.4Using a customized application to update8.12.2Notices8.1.1Camera configuration269.1Change7.2.1 <t< td=""><td></td><td></td><td></td><td>8.6</td><td></td></t<>				8.6	
5 Programming Images 14 8.6.2 AVB ket 5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.2 How to 5.1.2 Downloading images with fastboot_imx_ 8.6.2.1 How to 5.1.3 Downloading images with fastboot_imx_ 8.7 SCFW of flashall script 16 8.8 Power statts 5.1.4 Downloading a single image with fastboot_imx_ 18 8.9 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.1 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 7.1 Building OTA update package 22 8.10.1 Why do 7.1.1 Building a full update package 23 8.11.2 Lonfigu 7.2 Implementing OTA update 8.12.2 Now to 8.11.2 <td></td> <td></td> <td> 12</td> <td>8.6.1</td> <td></td>			12	8.6.1	
5.1 System on eMMC 15 8.6.2.1 General 5.1.1 Storage partitions 15 8.6.2.2 How to 5.1.2 Downloading images with UUU 16 8.6.3 Key atte 5.1.3 Downloading images with fastboot_imx_ 6 8.7 SCFW of flashall script 16 8.8 Power's 5.1.4 Downloading a single image with fastboot_in8 8.9 Boot tin 6 Booting from eMMC 19 8.9.1 Boot tin 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules 10 configu 7 Over-The-Air (OTA) Update 22 8.10.2 How do 10ad ord 7.1.1 Building an incremental update package 22 8.11.1 Dual-boo 7.2.1 Using update_engine_client	5			8.6.2	
5.1.1 Storage partitions 15 8.6.2.2 How to 5.1.2 Downloading images with UUU 16 8.6.3 Key att 5.1.3 Downloading images with fastboot_imx_ 8.7 SCFW flashall script 16 8.8 Power s 5.1.4 Downloading a single image with fastboot_in8 8.9 Boot tim 6 Booting from eMMC 19 8.9.1 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 6.2 Boot-up configurations 19 8.9.4 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.3 DM-verity configuration 21 modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1 Building a full update package 22 8.10.2 How do 7.1.2 Building a full update package 23 8.11 Dual-bo 7.2.1 Building a full update package 23 8.11 Dual-bo 7.2.1 Using update_engine_client to update the android platform 8.12 Misce				8.6.2.1	General
5.1.2 Downloading images with UUU 16 8.6.3 Key atte 5.1.3 Downloading images with fastboot_imx_ 8.7 SCFW display flashall script 16 8.8 Power sign display 6.1 Booting medMC 19 8.9.1 Boot tim 6.1 Booting from eMMC on the i.MX 8.9.3 How to 8.04 Bootup configurations 19 8.9.4 How to 6.2 Bootup configurations 19 8.9.5 How to 6.2.3 DM-verity configuration 21 module module 6.2.4 U-Boot environment 19 8.9.5 How to 10 6.2.3 DM-verity configuration 21 module module 7.1 Building OTA update packages 22 8.10.1 Why do 7.1.1 Building a full update package 22 8.10.2 How do 7.1.2 Building a full update package 23 8.11 Dual-boo 7.1.4 Building a full update package 23 8.11 Dual-boo 7.1.5 Building a full update package	5.1.1			8.6.2.2	How to
flashall script168.8Power state5.1.4Downloading a single image with fastboot188.9Boot tin6Booting from eMMC198.9.1Boot tin6.1Booting from eMMC on the i.MX8.9.3How to8QuadXPlus/8QuadMax MEK board198.9.4How to6.2Boot-up configurations198.9.5How to6.2.1U-Boot environment198.9.5How to6.2.2Kernel command line (bootargs)208.10Configu6.2.3DM-verity configuration21modules7Over-The-Air (OTA) Update228.10.1Why do7.1Building OTA update packages228.10.2How to7.1.1Building an incremental update package238.11.1Dual-bo7.2Implementing OTA update238.11.1Dual-bo7.2.1Using update_engine_client to update the Android platform238.12.1Changir7.2.2Using a customized application to update in automotive-13.0.0_2.3.0_image_8qmek_ cart.ar.gz269Generic Develop8.1.1.2Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.4 ra.gz29Docum8.1.2EVS related code3111Revisio8.1.4Delay of camera/display module probe3411Revisio	5.1.2			8.6.3	Key atte
flashall script168.8Power state5.1.4Downloading a single image with fastboot188.9Boot tin6Booting from eMMC198.9.1Boot tin6.1Booting from eMMC on the i.MX8.9.3How to8QuadXPlus/8QuadMax MEK board198.9.4How to6.2Boot-up configurations198.9.5How to6.2.1U-Boot environment198.9.5How to6.2.2Kernel command line (bootargs)208.10Configu6.2.3DM-verity configuration21modules7Over-The-Air (OTA) Update228.10.1Why do7.1Building OTA update packages228.10.2How to7.1.1Building an incremental update package238.11.1Dual-bo7.2Implementing OTA update238.11.1Dual-bo7.2.1Using update_engine_client to update the Android platform238.12.1Changir7.2.2Using a customized application to update in automotive-13.0.0_2.3.0_image_8qmek_ cart.ar.gz269Generic Develop8.1.1.2Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.4 ra.gz29Docum8.1.2EVS related code3111Revisio8.1.4Delay of camera/display module probe3411Revisio	5.1.3	Downloading images with fastboot imx		8.7	SCFW (
6Booting198.9.1Boot tim6.1Booting from eMMC198.9.2What N.6.1.1Booting from eMMC on the i.MX8.9.3How to8QuadXPlus/8QuadMax MEK board198.9.4How to6.2Boot-up configurations198.9.5How to6.2.1U-Boot environment198.9.5How to6.2.2Kernel command line (bootargs)208.10Configuration6.2.3DM-verity configuration21modules7Over-The-Air (OTA) Update228.10.1Why do6.1.1Building OTA update packages228.10.2How to7.1.2Building a full update package238.11Dual-bo7.1.3Building an incremental update package238.11.1Dual-bo7.2.1Using update_engine_client to update8.12.2Moticella7.2.2Using a customized application to update8.12.2Noticella7.2.2Using a customized application to update8.12.2Noticella8Customized Configuration269Generic8.1.1Interfaces to control the EVS function269.1Change8.1.1.1Starting the EVS function with images9.5How to8.1.1.2Starting the EVS function with images9.5How to9.5How toin automotive-13.0.0_2.3.0_image_8qmek_9.3How to8.1.2EVS related code3111Revisio8.1.2<			16	8.8	Power s
6.1 Booting from eMMC 19 8.9.2 What NJ 6.1.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2 Boot-up configurations 19 8.9.4 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules 10ad ord 7.1 Building OTA update packages 22 8.10.1 Why do 7.1.2 Building a full update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu 7.2.2 Using a customized application to update 8.12.2 Notices 8 Customized Configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26	5.1.4	Downloading a single image with fastboot	18	8.9	Boot tim
6.1.1 Booting from eMMC on the i.MX 8.9.3 How to 8QuadXPlus/8QuadMax MEK board 19 8.9.4 How to 6.2 Boot-up configurations 19 system 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 6.1.1 Building of a full update packages 22 8.10.2 How to 7.1.1 Building a full update package 23 8.11 Dual-bo 7.1.2 Building an incremental update package 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the Android platform 8.12.1 Chingi 7.2.1 Using a customized application to update 8.12.1 Changi 8.1.1 Interfaces to control the EVS function 26 9 Generic 8.1.1 Interfaces to control with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.tar.gz 9.5 How to	6	Booting	19	8.9.1	Boot tin
8QuadXPlus/8QuadMax MEK board198.9.4How to to6.2Boot-up configurations19system6.2.1U-Boot environment198.9.5How to6.2.2Kernel command line (bootargs)208.10Configu6.2.3DM-verity configuration21modules7Over-The-Air (OTA) Update228.10.1Why doo7.1Building OTA update packages228.10.2How to7.1.1Building a full update package228.10.3How to7.1.2Building an incremental update package238.11Dual-boo7.2Implementing OTA update238.11Dual-boo7.2.1Using update_engine_client to update the Android platform8.12Miscella7.2.2Using a customized application to update the Android platform269Generic8.1Camera configuration269.1Changer8.1.1Interfaces to control the EVS function269.2How to8.1.1.2Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.tar.gz9.3How to8.1.2EVS related code3111Revisio Legal in8.1.2EVS related code3111Revisio Legal in8.1.2EVS related code3111Revisio Legal in8.1.2EVS related code3111Revisio Legal in8.1.4Delay of camera/display module probe34 <td>6.1</td> <td>Booting from eMMC</td> <td> 19</td> <td>8.9.2</td> <td>What N</td>	6.1	Booting from eMMC	19	8.9.2	What N
6.2 Boot-up configurations 19 system 6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1 Building OTA update packages 22 8.10.2 How do 7.1.1 Building a full update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu 7.2.1 Using a customized application to update 8.12.1 Changir 7.2.2 Using a customized application to update 8.12.1 Changir 8.11 Customized Configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Interfaces to control the EVS	6.1.1	Booting from eMMC on the i.MX		8.9.3	How to
6.2.1 U-Boot environment 19 8.9.5 How to 6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why doo 7.1 Building OTA update packages 22 8.10.2 How to 7.1.1 Building a full update package 22 8.10.3 How to 7.1.2 Building an incremental update package 23 8.11 Dual-bo 7.1.3 Building an incremental update package 23 8.11.1 Dual-bo 7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu 7.2.1 Using a customized application to update 8.12.1 Changir 7.2.2 Using a customized application to update 8.12.1 Changir 8.1 Camera configuration 26 9 Generic 8.1 Camera configuration with images 9.2 How to 0.2 8.1.1.1 Inter		8QuadXPlus/8QuadMax MEK board	19	8.9.4	How to
6.2.2 Kernel command line (bootargs) 20 8.10 Configu 6.2.3 DM-verity configuration 21 modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1 Building OTA update packages 22 8.10.1 Why do 7.1 Building a full update package 22 8.10.2 How do 7.1.2 Building an incremental update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu Android platform 23 8.12 Miscella 7.2.2 Using a customized application to update 8.12.1 Change 8.12.1 Camera configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Starting the EVS function with images 9.2 How to 0 8.1.1.2 Starting the EVS function with images 9.5 How to 0 8.1.2 EVS related cod	6.2	Boot-up configurations	19		system
6.2.3 DM-verity configuration 21 modules 7 Over-The-Air (OTA) Update 22 8.10.1 Why do 7.1 Building OTA update packages 22 8.10.1 Why do 7.1 Building target files 22 8.10.2 How do 7.1.1 Building a full update package 22 8.10.2 How do 7.1.2 Building an incremental update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu 7.2.2 Using a customized application to update 8.12.1 Changir 7.2.2 Using a customized application to update 8.12.1 Changir 8 Customized Configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Starting the EVS function with images 9.2 How to 10 Note At 8.1.1.2 Starting the EVS function with images 9.5 How to 10 Note At	6.2.1	U-Boot environment	19	8.9.5	How to
7Over-The-Air (OTA) Update228.10.1Why do7.1Building OTA update packages22load ord7.1.1Building target files228.10.2How do7.1.2Building a full update package228.10.3How to7.1.3Building an incremental update package238.11Dual-bo7.2Implementing OTA update238.11.1Dual-bo7.2.1Using update_engine_client to update the Android platform8.12.2Miscella7.2.2Using a customized application to update the Android platform8.12.1Changir8.11Camera configuration269Generic8.11.1Interfaces to control the EVS function269.1Change8.11.1Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car.tar.gz9.3How to8.11.2EVS related code3111Revisio8.11.2EVS related code3111Revisio8.11.2EVS related code3131118.1.3Communication protocol between Cortex-A core and Cortex-M4 core31318.1.4Delay of camera/display module probe3434	6.2.2			8.10	Configu
7.1 Building OTA update packages 22 load ord 7.1.1 Building target files 22 8.10.2 How do 7.1.2 Building a full update package 22 8.10.3 How to 7.1.3 Building an incremental update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the Android platform 8.11.2 Configu Android platform 7.2.2 Using a customized application to update the Android platform 8.12.1 Changir Changir the Android platform 8 Customized Configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ car2.tar.gz 9.3 How to 8.1.2 EVS related code 31 11 Revisio 8.1.2 EVS related code 31 11 Revisio 8.1.2 EVS related code 31 11 Revisio 8.1.2 EVS related code	6.2.3				modules
7.1.1 Building target files 22 8.10.2 How do 7.1.2 Building a full update package 22 8.10.3 How to 7.1.3 Building an incremental update package 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11 Dual-bo 7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu Android platform 23 8.12 Miscella 7.2.2 Using a customized application to update 8.12.1 Changei 8.1 Camera configuration 24 8.12.2 Notices 8 Customized Configuration 26 9 Generice 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Starting the EVS function with images 9.2 How to 10 8.1.1.2 Starting the EVS function with images 9.5 How to 10 Note Al 8.1.2 EVS related code 31 11 Revisio Legal in	-			8.10.1	
7.1.2Building a full update package228.10.3How to7.1.3Building an incremental update package238.11Dual-bo7.2Implementing OTA update238.11.1Dual-bo7.2.1Using update_engine_client to update the Android platform8.11.2Configu7.2.2Using a customized application to update the Android platform8.12Miscella7.2.2Using a customized application to update the Android platform8.12.1Changir Develop8.1Customized Configuration269Generic8.1.1Interfaces to control the EVS function269.1Change8.1.1Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek car.tar.gz9.3How to8.1.2EVS related code3111Revisio8.1.2EVS related code3111Revisio8.1.2EVS related code3131118.1.4Delay of camera/display module probe3434					load or
7.1.3Building an incremental update package238.11Dual-bo7.2Implementing OTA update238.11.1Dual-bo7.2.1Using update_engine_client to update the Android platform8.11.2Configu7.2.2Using a customized application to update the Android platform8.12.1Changir7.2.2Using a customized application to update the Android platform8.12.1Changir8Customized Configuration269Generic8.1.1Interfaces to control the EVS function269.1Change8.1.1Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek car.tar.gz9.3How to8.1.2EVS related code3111Revisio8.1.2EVS related code3111Revisio8.1.3Communication protocol between Cortex-A core and Cortex-M4 core31118.1.4Delay of camera/display module probe3434					
7.2 Implementing OTA update 23 8.11.1 Dual-bo 7.2.1 Using update_engine_client to update the 8.11.2 Configu Android platform 23 8.12 Miscella 7.2.2 Using a customized application to update 8.12.1 Changir the Android platform 24 8.12.1 Changir the Android platform 26 9 Generic 8.11.1 Interfaces to configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1 Starting the EVS function with images 9.2 How to 10 8.1.1.2 Starting the EVS function with images 9.5 How to 10 Note At car2.tar.gz 29 Docume 29 Docume 29 Docume 8.1.2 EVS related code 31 11 Revisio Legal in core and Cortex-M4 core 31 11 Revisio Legal in 29 Legal in <td></td> <td></td> <td></td> <td></td> <td>How to</td>					How to
7.2.1 Using update engine client to update the Android platform 8.11.2 Configu 7.2.2 Using a customized application to update the Android platform 23 8.12 Miscella 7.2.2 Using a customized application to update the Android platform 24 8.12.1 Changir 8 Customized Configuration 26 9 Generic 8.1 Camera configuration 26 9 Generic 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek car2.tar.gz 9.3 How to 8.1.2 EVS related code 31 11 Revisio 8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core 31 31 11 8.1.4 Delay of camera/display module probe 34 34 34 <td></td> <td></td> <td></td> <td></td> <td></td>					
Android platform238.12Miscella7.2.2Using a customized application to update the Android platform248.12.1Changir8Customized Configuration269Generic8.1Camera configuration269Develop8.1.1Interfaces to control the EVS function269.1Change8.1.1.1Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek car.tar.gz9.2How to8.1.2Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek car2.tar.gz9.5How to8.1.2EVS related code3111Revisio8.1.2EVS related code3111Revisio8.1.3Communication protocol between Cortex-A core and Cortex-M4 core3131118.1.4Delay of camera/display module probe3434			23		
7.2.2 Using a customized application to update the Android platform 8.12.1 Changir 8.12.2 8 Customized Configuration 26 9 Generic Develop 8.1 Camera configuration 26 9 Generic Develop 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Interfaces to control the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek 9.2 How to 8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek 9.5 How to 8.1.2.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek 9.5 How to 8.1.2 EVS related code 31 11 Revisio 8.1.2 EVS related code 31 11 Revisio 8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core 31 11 Legal in 8.1.4 Delay of camera/display module probe 34 34	7.2.1			-	•
the Android platform248.12.2Notices8Customized Configuration269Generic8.1Camera configuration269Develop8.1.1Interfaces to control the EVS function269.1Change8.1.1.1Starting the EVS function with images9.2How toin automotive-13.0.0_2.3.0_image_8qmek9.3How tocar.tar.gz269.4How to8.1.1.2Starting the EVS function with images9.5How tosatting the EVS function with images9.5How toautomotive-13.0.0_2.3.0_image_8qmek10Note Allcar2.tar.gz29Docume8.1.2EVS related code31118.1.3Communication protocol between Cortex-ALegal incore and Cortex-M4 core3134			23	-	
8 Customized Configuration 26 9 Generic 8.1 Camera configuration 26 Develop 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1 Interfaces to control the EVS function with images 9.2 How to in automotive-13.0.0_2.3.0_image_8qmek 9.3 How to car.tar.gz 26 9.4 How to 8.1.1.2 Starting the EVS function with images 9.5 How to s.1.1.2 Starting the EVS function with images 9.5 How to acar2.tar.gz 29 Docume Docume 8.1.2 EVS related code 31 11 Revisio 8.1.3 Communication protocol between Cortex-A Legal in core and Cortex-M4 core 31 8.1.4 Delay of camera/display module probe 34 34 34	7.2.2				-
8.1 Camera configuration 26 Develop 8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1.1 Starting the EVS function with images 9.2 How to in automotive-13.0.0_2.3.0_image_8qmek 9.3 How to car.tar.gz 26 9.4 How to 8.1.1.2 Starting the EVS function with images 9.5 How to 8.1.1.2 Starting the EVS function with images 9.5 How to 8.1.1.2 Starting the EVS function with images 9.5 How to automotive-13.0.0_2.3.0_image_8qmek_ 29 Docume 8.1.2 EVS related code 31 11 Revisio 31 11 Revisio 8.1.3 Communication protocol between Cortex-A Legal in core and Cortex-M4 core 31 31 8.1.4 Delay of camera/display module probe 34	_				
8.1.1 Interfaces to control the EVS function 26 9.1 Change 8.1.1 Starting the EVS function with images 9.2 How to in automotive-13.0.0_2.3.0_image_8qmek 9.3 How to car.tar.gz 26 9.4 How to 8.1.1.2 Starting the EVS function with images 9.5 How to s.1.1.2 Starting the EVS function with images 9.5 How to s.1.1.2 Starting the EVS function with images 9.5 How to automotive-13.0.0_2.3.0_image_8qmek_ 10 Note All car2.tar.gz 29 Docume 8.1.2 EVS related code 31 11 8.1.3 Communication protocol between Cortex-A Legal in core and Cortex-M4 core 31 11 8.1.4 Delay of camera/display module probe 34				9	
8.1.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ 9.2 How to acar.tar.gz 9.3 How to 9.3 How to 8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ 9.5 How to 8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ 10 Note All Note All car2.tar.gz 8.1.2 EVS related code 31 11 Revisio 8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core 31 11 Legal in 8.1.4 Delay of camera/display module probe 34 34 34	-			0.4	-
in automotive-13.0.0_2.3.0_image_8qmek_ 9.3 How to car.tar.gz	-		26		•
car.tar.gz 26 9.4 How to 8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ 9.5 How to car2.tar.gz 29 Docume 8.1.2 EVS related code 31 11 8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core 31 11 8.1.4 Delay of camera/display module probe 34	8.1.1.1	•			
8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_ 9.5 How to Note All Docume 8.1.2 EVS related code 29 Docume 8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core 31 11 Revisio 8.1.4 Delay of camera/display module probe 34 34 34			00		
in automotive-13.0.0_2.3.0_image_8qmek_ 10 Note All car2.tar.gz			26		
car2.tar.gz29Docume8.1.2EVS related code3111Revisio8.1.3Communication protocol between Cortex-A core and Cortex-M4 core3111Legal in8.1.4Delay of camera/display module probe343434	ö.1.1.2				
8.1.2EVS related code3111Revisio8.1.3Communication protocol between Cortex-A core and Cortex-M4 core3111Legal in8.1.4Delay of camera/display module probe343411			20	10	
8.1.3Communication protocol between Cortex-A core and Cortex-M4 core	010			44	
core and Cortex-M4 core			31	11	
8.1.4 Delay of camera/display module probe	0.1.3		24		Legal II
	814	-	-		
	AAUG				and dia di forma

8.2	Audio configuration	34
8.2.1	Routing audio stream to different sound	
	cards	
8.3	Display configuration	
8.3.1	Configuring the logical display density	
8.3.2	Starting the cluster display	
8.3.3	Enabling the multiple-display function	
8.3.3.1	Binding the display port with the input port	
8.3.3.2	Enabling multi-client input method	
8.3.3.3	Launching applications on different displays	
8.3.4	Configuring the primary display resolution	
8.4	HVAC configuration	
8.4.1	Interfaces to control the HVAC system	
8.5	USB configuration	40
8.5.1	Enabling USB 2.0 in U-Boot for i.MX	
	8QuadMax/8QuadXPlus MEK	
8.6	Trusty OS/security configuration	
8.6.1	Initializing the secure storage for Trusty OS	
8.6.2	AVB key provision	
8.6.2.1	Generating the AVB key to sign images	
8.6.2.2	How to set the vbmeta public key	
8.6.3	Key attestation	
8.7	SCFW configuration	
8.8	Power state configuration	
8.9	Boot time tuning	
8.9.1	Boot time overview	
8.9.2	What NXP did to tune the boot time	
8.9.3	How to get the shorter boot time	48
8.9.4	How to build system.img with squashfs files	
	system type	
8.9.5	How to measure the boot time	. 49
8.10	Configuration for the load orders of driver	
	modules	. 50
8.10.1	Why does Android Automotive have driver	
	load orders	
8.10.2	How does the non-critical driver load	
8.10.3	How to change driver load orders	
8.11	Dual-bootloader configuration	
8.11.1	Dual-bootloader layout	
8.11.2	Configuring dual-bootloader	
8.12	Miscellaneous configuration	
8.12.1	Changing boot command line in boot.img	
8.12.2	Notices before the debugging work	52
9	Generic Kernel Image (GKI)	
	Development	
9.1	Changes after GKI enabled	54
9.2	How to add new drivers	
9.3	How to build GKI locally	
9.4	How to export new symbols	
9.5	How to update the GKI image	58
10	Note About the Source Code in the	
	Document	
11	Revision History	
	Legal information	61

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

Date of release: 4 January 2024 Document identifier: AAUG