
AAUG
Android Automotive User's Guide
Rev. automotive-13.0.0_2.3.0 —
4 January 2024

User guide

Document information
Information Content

Keywords Android, Automotive, i.MX, automotive-13.0.0_2.3.0

Abstract This document describes how to configure a Linux build machine and provides the steps to
download, patch, and build the software components that create the Android system image when
working with the sources.

https://www.nxp.com

NXP Semiconductors AAUG
Android Automotive User's Guide

1 Overview

This document provides the technical information related to the i.MX 8 devices:

• Instructions for building from sources or using pre-built images.
• Instructions for copying images to boot media.
• Hardware/software configurations for programming the boot media and running the images.

This document describes how to configure a Linux build machine and provides the steps to download, patch,
and build the software components that create the Android system image when working with the sources.

For more information about building the Android platform, see source.android.com/source/building.html.

1.1 Acronyms

Acronym Description

U-Boot Universal Boot Loader

SPL U-Boot Secondary Program Loader

OS Operating system

EVS Android Exterior View System - https://source.android.com/devices/automotive/camera-hal

i.MX 8 i.MX 8 Series Applications Processors

PC Personal (host) computer

AOSP Android Open Source Project - https://source.android.com/

GCC GNU Compiler collection - https://gcc.gnu.org/

MEK Multisensory Enablement Kit - https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards:SABRE_HOME

SoC System on Chip - https://en.wikipedia.org/wiki/System_on_a_chip

GAS Google Automotive Services - https://developers.google.com/cars

CST (NXP) Code Signing Tool

GPT GUID partition table - https://en.wikipedia.org/wiki/GUID_Partition_Table

OTA Over-The-Air programming

BT Bluetooth

HVAC Heating, ventilation, and air conditioning

eMMC Embedded Multi-Media Card

SOF Sound Open Firmware

Table 1. Acronyms

2 Preparation

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 18.04 64bit version is the
most tested environment for the Android 13.0 build.

To synchronize the code and build images of this release, the computer should at least have:

• 16 GB RAM
AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
2 / 63

http://source.android.com/source/building.html
https://source.android.com/devices/automotive/camera-hal
https://source.android.com/
https://gcc.gnu.org/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards:SABRE_HOME
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards:SABRE_HOME
https://en.wikipedia.org/wiki/System_on_a_chip
https://developers.google.com/cars
https://en.wikipedia.org/wiki/GUID_Partition_Table

NXP Semiconductors AAUG
Android Automotive User's Guide

• 450 GB hard disk

Note:

• The minimum required amount of free memory is around 16 GB, even with which, some configurations may
not work. Enlarging the physical RAM capacity is a way to avoid potential build errors related to the memory.

• With 16 GB RAM, if you run into segfaults or other errors related to memory when building the images, try to
reduce your -j value. In the demonstration commands in the following part of this document, the -j value is
4.

After the setup of Linux PC, check whether you have all the necessary packages installed for an Android build.
See "Setting up your machine" on the Android website.

In addition to the packages requested on the Android website, the following packages are also needed:

sudo apt-get install uuid uuid-dev \
zlib1g-dev liblz-dev \
liblzo2-2 liblzo2-dev \
lzop \
git curl \
u-boot-tools \
mtd-utils \
android-sdk-libsparse-utils \
device-tree-compiler \
gdisk \
m4 \
bison \
flex make \
libssl-dev \
gcc-multilib \
libghc-gnutls-dev \
swig \
liblz4-tool \
libdw-dev \
dwarves \
bc cpio tar lz4 rsync \
rsync utility \
ninja-build clang \
build-essential \
libncurses5

Note:

Configure Git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following
commands:

$ cd ~ (or any other directory you like) $ tar -xzvf imx-
automotive-13.0.0_2.3.0.tar.gz

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
3 / 63

http://source.android.com/source/initializing.html

NXP Semiconductors AAUG
Android Automotive User's Guide

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the GitHub repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

Assume you have i.MX Android proprietary source code package imx-automotive-13.0.0_2.3.0.tar.gz
under ~/. directory. To generate the i.MX Android release source code build environment, execute the following
commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-automotive-13.0.0_2.3.0/imx_android_setup.sh
By default, after the preceding command is executed, the current working
 directory changes to the i.MX Android source code root directory.
${MY_ANDROID} will be referred as the i.MX Android source code root directory
 in all i.MX Android release documentation.
$ export MY_ANDROID=`pwd`

Note:

In the imx_android_setup.sh script, a .xml file that contains the code repositories' information is specified.
Code repository revision is specified with the release tag in this file. The release tag should not be moved when
the code is externally released, so no matter when the imx_android_setup.sh is executed, the working
areas of code repositories synchronized by this script are the same.

If the released code is critically fixed, another .xml file is created to help customers to synchronize the code.
Then customers need to modify imx_android_setup.sh. For this release, make the following changes on
the script:

diff --git a/imx_android_setup.sh b/imx_android_setup.sh
index 324ec67..4618679 100644
--- a/imx_android_setup.sh
+++ b/imx_android_setup.sh
@@ -26,7 +26,7 @@ if [! -d "$android_builddir"]; then
 # Create android build dir if it does not exist.
 mkdir "$android_builddir"
 cd "$android_builddir"
- repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-13 -m
 imx-automotive-13.0.0_2.3.0.xml
+ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-13 -m
 rel_automotive-13.0.0_2.3.0.xml
 rc=$?
 if ["$rc" != 0]; then
 echo "---"

The wireless-regdb repository may fail to be synchronized with the following log:

fatal: unable to access 'https://git.kernel.org/pub/scm/linux/kernel/git/
sforshee/wireless-regdb/': server certificate verification failed. CAfile: /etc/
ssl/certs/ca-certificates.crt CRLfile: none

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
4 / 63

https://github.com/nxp-imx
http://android.googlesource.com
http://www.nxp.com

NXP Semiconductors AAUG
Android Automotive User's Guide

If this issue is encountered, execute the following command on the host as a fix:

$ git config --global http.sslVerify false

3.2 Building Android images
The Android image can be built after the source code has been downloaded (Section 3.1).

Execute the source build/envsetup.sh command to import shell functions in ${MY_ANDROID}/build/
envsetup.sh.

Execute the lunch <BuildName-BuildMode> command to set up the build configuration.

The Product Name is the Android device name found in the directory ${MY_ANDROID}/device/nxp/.
Search for the keyword PRODUCT_NAME under this directory for the product name.

Build name Description

mek_8q_car i.MX 8QuadMax/8QuadXPlus MEK Board with the Exterior View System (EVS)
function enabled on the Arm Cortex-M4 CPU core

mek_8q_car2 i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the
Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex-
M4 core in this configuration)

Table 2. Build names

The “Build Mode” is used to specify what debug options are provided in the final image. The following table lists
the build modes.

Build mode Description

user Production ready image, no debug

userdebug Provides image with root access and debug, similar to user

eng Development image with debug tools

Table 3. Build modes

After the two commands above are executed, then the build process starts. The behaviour of the i.MX Android
build system used to be aligned with the original Android system. The command of make could start the build
process and all images were built out before. There are some differences now. A shell script named imx-
make.sh is provided and its symlink file can be found under the ${MY_ANDROID} directory. ./imx-make.sh
should be executed to start the build process.

The original purpose of this imx-make.sh is used to build U-Boot/kernel before building Android images.

Google puts a limit on the host tools used when compiling Android code from the Android 10.0 platform. Some
host tools necessary for building U-Boot/kernel now cannot be used in Android build system, which is under the
control of soong_ui, so U-Boot/kernel cannot be built together with Android images. Google also recommends
using prebuilt binaries for U-Boot/kernel in Android build system. It takes some steps to build U-Boot/kernel to
binaries and puts these binaries in proper directories, so some specific Android images depending on these
binaries can be built without error. imx-make.sh is then added to do these steps to simplify the build work.
After U-Boot/kernel are compiled, any build commands in standard Android can be used.

imx-make.sh can also start the soong_ui with the make function in ${MY_ANDROID}/build/
envsetup.sh to build the Android images after U-Boot/kernel are compiled, so customers can still build the
i.MX Android images with only one command with this script.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
5 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

The build configuration command lunch can be issued with an argument <Build name>-<Build type>
string, such as lunch mek_8q_car-userdebug, or can be issued without the argument presenting a menu of
selection.

Do some preparations for the first time when building the images. A detailed example of image building steps is
as follows:

1. Prepare the build environment for U-Boot and kernel.
This step is mandatory because there is no GCC cross-compile tool chain in the AOSP codebase.
An approach is provided to use the self-installed GCC cross-compile tool chain.
First, download the tool chain for the A-profile architecture on the arm Developer GNU-A Downloads page.
It is recommended to use the 9.2 version for this release. You can download gcc-arm-9.2-2019.12-
x86_64-aarch64-none-elf.tar.xz or gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-
gnu.tar.xz. The first one is dedicated for compiling bare-metal programs, and the second one can also
be used to compile the application programs.
Then, uncompress the file into a path on local disk. For example, to /opt/, export a variable named
AARCH64_GCC_CROSS_COMPILE to point to the tool as follows:

if "gcc-arm-9.2-2019.12-x86_64-aarch64-none-elf.tar.xz" is used
$ sudo tar -xvJf gcc-arm-9.2-2019.12-x86_64-aarch64-none-elf.tar.xz -C /opt
$ export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-9.2-2019.12-x86_64-aarch64-
none-elf/bin/aarch64-none-elf-
if "gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz" is used
$ sudo tar -xvJf gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz -
C /opt
$ export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-9.2-2019.12-x86_64-aarch64-
none-linux-gnu/bin/aarch64-none-linux-gnu-

Finally, follow the steps below to set external clang tools for kernel building.

$ sudo git clone https://android.googlesource.com/platform/
prebuilts/clang/host/linux-x86 /opt/prebuilt-android-clang
$ cd /opt/prebuilt-android-clang
$ sudo git checkout d20e409261d6ad80a0c29ac2055bf5c3bb996ef4
$ export CLANG_PATH=/opt/prebuilt-android-clang

$ sudo git clone https://android.googlesource.com/kernel/prebuilts/build-
tools /opt/prebuilt-android-kernel-build-tools
$ cd /opt/prebuilt-android-kernel-build-tools
$ sudo git checkout e3f6a8c059b94f30f7184a7d335876f8a13a2366
$ export PATH=/opt/prebuilt-android-kernel-build-tools/linux-x86/bin:$PATH

The final export command can be added to /etc/profile. When the host boots up,
AARCH64_GCC_CROSS_COMPILE and CLANG_PATH are set and can be directly used.

2. Prepare the build environment for the Arm Cortex-M4 image. Download the GCC tool chain from the Arm
Developers GNU-RM Downloads page. It is recommended to download the 7-2018-q2-update version.
Extract it to your installation directory, for example, /opt. Then, export a variable named ARMGCC_DIR to
point to the tool as follows:

$ sudo tar -jxvf gcc-arm-none-eabi-7-2018-q2-update-linux.tar.bz2 -C /opt
$ export ARMGCC_DIR=/opt/gcc-arm-none-eabi-7-2018-q2-update

The preceding export command can be added to /etc/profile. When the host boots up, ARMGCC_DIR is
set and can be directly used.
Upgrade the CMake version to 3.13.0 or higher. If the CMake version on your machine is not higher than
3.13.0, you can follow the steps below to upgrade it:

$ wget https://github.com/Kitware/CMake/releases/download/v3.13.2/
cmake-3.13.2.tar.gz
$ tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
6 / 63

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

NXP Semiconductors AAUG
Android Automotive User's Guide

$ sudo ./bootstrap
$ sudo make
$ sudo make install

3. Change to the top-level build directory.

$ cd ${MY_ANDROID}

4. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh

5. Execute the Android lunch command.
In this example, the setup is for the production image of i.MX 8QuadMax/8QuadXPlus MEK Board/Platform
device with EVS function enabled in the Cortex-M4 CPU core.

$ lunch mek_8q_car-userdebug

6. Execute the imx-make.sh script to generate the image.

$./imx-make.sh -j4 2>&1 | tee build-log.txt

The commands below can achieve the same result.

First, build U-Boot/kernel with imx-make.sh, but not to build Android
 images
$./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
Start the process of building Android images with "make" function
$ make -j4 2>&1 | tee -a build-log.txt

The output of make command will be written to standard output and build-log.txt. If there are errors when
building the image, error logs can be found in the build-log.txt file for checking.

To change BUILD_ID and BUILD_NUMBER, update build_id.mk in the ${MY_ANDROID}/device/nxp/
directory. For detailed steps, see the i.MX Android Frequently Asked Questions.

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/mek_8q:

• root/: root file system. It is used to generate system.img together with files in system/.
• system/: Android system binary/libraries. it is used to generate system.img together with files in root/.
• recovery/: Root file system when booting in "recovery" mode. Not used directly.
• dtbo-imx8qm.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX

8QuadMax MEK.
• dtbo-imx8qm-md.img: Board's device tree binary. It is used to support multiple-display feature for i.MX

8QuadMax MEK.
• dtbo-imx8qm-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadMax MEK.
• dtbo-imx8qxp.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX

8QuadXPlus MEK.
• dtbo-imx8qxp-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadXPlus

MEK.
• vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the

LVDS-to-HDMI display for i.MX 8QuadMax MEK.
• vbmeta-imx8qm-md.img: Android Verify boot metadata image for dtbo-imx8qm-md.img. It is used to

support the multiple-display feature for i.MX 8QuadMax MEK.
• vbmeta-imx8qm-sof.img: Android Verify boot metadata image for dtbo-imx8qm-sof.img. It is used to

support the SOF feature for i.MX 8QuadMax MEK.
• vbmeta-imx8qxp.img: Android Verify boot metadata image for dtbo-imx8qxp.img. It is used to support

the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
7 / 63

https://community.nxp.com/docs/DOC-342877

NXP Semiconductors AAUG
Android Automotive User's Guide

• vbmeta-imx8qxp-sof.img: Android Verify boot metadata image for dtbo-imx8qxp-sof.img. It is used
to support the SOF feature for i.MX 8QuadXPlus MEK.

• ramdisk.img: Ramdisk image generated from root/. Not directly used.
• system.img: EXT4 image generated from system/ and root/.
• system_ext.img: EXT4 image generated from system_ext/.
• product.img: EXT4 image generated from product/.
• partition-table.img: GPT partition table image. Used for 16 GB boot storage.
• partition-table-28GB.img: GPT partition table image. Used for 32 GB boot storage.
• spl-imx8qm.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image,

and SPL for i.MX 8QuadMax MEK.
• spl-imx8qm-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware,

Cortex-M4 image, and SPL for i.MX 8QuadMax MEK. It is a demonstration of secure unlock mechanism.
• spl-imx8qxp.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image,

and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip.
• spl-imx8qxp-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware,

Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a demonstration of
secure unlock mechanism.

• spl-imx8qxp-c0.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4
image, and SPL for i.MX 8QuadXPlus MEK with silicon revision C0 chip.

• bootloader-imx8qm.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty
OS, and U-Boot proper for i.MX 8QuadMax MEK.

• bootloader-imx8qm-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted
firmware, trusty OS, and U-Boot proper for i.MX 8QuadMax MEK. It is a demonstration of secure unlock
mechanism.

• bootloader-imx8qxp.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty
OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip.

• bootloader-imx8qxp-secure-unlock.img: The next loader image after SPL. It includes the Arm
trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision B0 chip. It is a
demonstration secure unlock mechanism.

• bootloader-imx8qxp-c0.img: The next loader image after SPL. It includes the Arm trusted firmware,
Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision C0 chip.

• u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to
MMC.

• u-boot-imx8qxp-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon
revision B0 chip. It is not flashed to MMC.

• u-boot-imx8qxp-mek-c0-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon
revision C0 chip. It is not flashed to MMC.

• vendor.img: Vendor image, which holds platform binaries. Mounted at /vendor.
• boot.img: A composite image that includes the kernel Image, ramdisk, and boot parameters.
• rpmb_key_test.bin: Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
• testkey_public_rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

Note:

• To build the U-Boot image separately, see Section 3.3.
• To build the kernel uImage separately, see Section 3.4.
• To build boot.img, see Section 3.5.
• To build dtbo.img, see Section 3.6.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
8 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

3.2.1 Configuration examples of building i.MX devices

The following table shows examples of using the lunch command to set up different i.MX devices. After the
desired i.MX device is set up, the ./imx-make.sh command is used to start the build.

Build name Lunch command

i.MX 8QuadXPlus/8QuadMax MEK Board with EVS function
enabled on the Arm Cortex-M4 CPU core $ lunch mek_8q_car-userdebug

i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function
enabled on the Arm Cortex-A CPU cores (Power mode
switch demo is running on the Cortex-M4 core in this
configuration)

$ lunch mek_8q_car2-userdebug

Table 4. i.MX device lunch examples

3.2.2 Build mode selection

There are three types of build mode to select: eng, user, and userdebug.

Note:

To pass CTS, use user build mode.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that
normally violates the security model of the platform. This makes the userdebug build good for user to test with
greater diagnosis capabilities.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build
turns off various optimizations used to provide a good user experience. Otherwise, the eng build behaves
similar to the user and userdebug builds, so that device developers can see how the code behaves in those
environments.

PRODUCT_PACKAGES_ENG and PRODUCT_PACKAGES_DEBUG can be used to specify the modules to be
installed in the appropriate product makefiles.

If a module does not specify a tag with LOCAL_MODULE_TAGS, its tag defaults to optional. An optional
module is installed only if it is required by product configuration with PRODUCT_PACKAGES.

The main differences among the three modes are listed as follows:

• eng: development configuration with additional debugging tools
– Installs modules tagged with: eng and/or debug through LOCAL_MODULE_TAGS, or specified by
PRODUCT_PACKAGES_ENG and/or PRODUCT_PACKAGES_DEBUG.

– Installs modules according to the product definition files, in addition to tagged modules.
– ro.secure=0
– ro.debuggable=1
– ro.kernel.android.checkjni=1
– adb is enabled by default.

• user: limited access; suited for production
– Installs modules tagged with user.
– Installs modules according to the product definition files, in addition to tagged modules.
– ro.secure=1
– ro.debuggable=0

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
9 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

– adb is disabled by default.
• userdebug: like user but with root access and debuggability; preferred for debugging

– Installs modules tagged with debug through LOCAL_MODULE_TAGS, or specified by
PRODUCT_PACKAGES_DEBUG.

– ro.debuggable=1
– adb is enabled by default.

There are two methods for the build of Android image.

To build Android images, an example for the i.MX 8QuadMax/8QuadXPlus MEK with EVS function enabled in
the Cortex-M4 CPU core is:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh -j4

The commands below can achieve the same result:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh bootloader kernel -j4
$ make -j4

For more Android platform building information, see source.android.com/source/building.html.

3.2.3 Build with the GAS package

Get the Google Automobile Services (GAS) package from Google. Put the GAS package into the
${MY_ANDROID}/vendor/partner_gas directory. Make sure the product.mk* file includes the following
command line:

$(call inherit-product-if-exists, vendor/partner_gas/products/gms.mk)

Then build the images. The GAS package is then installed into the target images.

3.3 Building U-Boot images
The U-Boot images can be generated separately. For example, you can generate a U-Boot image for i.MX
8QuadMax/8QuadXPlus MEK board with the EVS function enabled in the Arm Cortex-M4 CPU core as follows:

U-Boot image for 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
 the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh bootloader -j4

Multiple U-Boot variants are generated for different purposes. You can check {MY_Android}/device/
nxp/imx8q/mek_8q/UbootKernelBoardConfig.mk for more details. The following table lists the U-Boot
configurations and images for lunch target mek_8q_car-userdebug.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
10 / 63

http://source.android.com/source/building.html

NXP Semiconductors AAUG
Android Automotive User's Guide

SoC U-Boot configurations Generated images Description

i.MX 8QuadMax imx8qm_mek_
androidauto_trusty_
defconfig

spl-imx8qm.bin,
bootloader-imx8qm.img

Default i.MX 8QuadMax
Android Auto image

i.MX 8QuadMax imx8qm_mek_
androidauto_trusty_
secure_unlock_
defconfig

spl-imx8qm-secure-
unlock.bin, bootloader-
imx8qm-secure-unlock.
img

i.MX 8QuadMax Android
Auto image with secure
unlock feature enabled.
See Section 2.3.10 in i.MX
Android™ Security User's
Guide (ASUG) for more
details about secure unlock.

i.MX 8QuadXPlus B0 chip imx8qxp_mek_
androidauto_trusty_
defconfig

spl-imx8qxp.bin,
bootloader-imx8qxp.
img

Default i.MX 8QuadXPlus B0
chip Android Auto image

i.MX 8QuadXPlus C0 chip imx8qxp_mek_
androidauto_trusty_
defconfig

spl-imx8qxp-c0.bin,
bootloader-imx8qxp-
c0.img

Default i.MX 8QuadXPlus C0
chip Android Auto image

i.MX 8QuadXPlus B0 chip imx8qxp_mek_
androidauto_trusty_
secure_unlock_
defconfig

spl-imx8qxp-secure-
unlock.bin, bootloader-
imx8qxp-secure-
unlock.img

i.MX 8QuadXPlus B0 chip
Android Auto image with
secure unlock feature
enabled. See Section 2.3.10
in i.MX Android™ Security
User's Guide (ASUG) for
more details about secure
unlock.

i.MX 8QuadMax imx8qm_mek_android_
uuu_defconfig

u-boot-imx8qm-mek-
uuu.imx

U-Boot image aims to flash
images for i.MX 8QuadMax.
This should not be shipped to
end users.

i.MX 8QuadXPlus B0 chip imx8qxp_mek_android_
uuu_defconfig

u-boot-imx8qxp-mek-
uuu.imx

U-Boot image aims to flash
images for i.MX 8QuadXPlus
B0 chip. This should not be
shipped to end users.

i.MX 8QuadXPlus C0 chip imx8qxp_mek_android_
uuu_defconfig

u-boot-imx8qxp-mek-
c0-uuu.imx

U-Boot image aims to flash
images for i.MX 8QuadXPlus
C0 chip. This should not be
shipped to end users.

Table 5. U-Boot configurations and images

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

To build out the kernel image independently from the default Android build command:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh kernel -j4

With a successful build in the use case above, the generated kernel images are: ${MY_ANDROID}/out/
target/product/mek_8q/obj/KERNEL_OBJ/arch/arm64/boot/Image.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
11 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

3.5 Building boot.img
The following commands are used to generate boot.img under the Android environment:

Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
 the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh bootimage -j4

The following commands can achieve the same result:

Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
 the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh kernel -j4
$ make bootimage -j4

3.6 Building dtbo.img
DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo.img under the Android environment:

dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
 the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh dtboimage -j4

The following commands can achieve the same result:

dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
 the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh kernel -j4
$ make dtboimage -j4

4 Running the Android Platform with a Prebuilt Image

To test the Android platform before building any code, use the prebuilt images from the following packages and
go to "Programming Images" and "Booting".

Image package Description

automotive-13.0.0_2.3.0_image_
8qmek_car.tar.gz

Prebuilt-image for i.MX 8QuadXPlus/8QuadMax MEK board with EVS
function enabled in the Arm Cortex-M4 CPU core, which includes NXP
extended features.

Table 6. Image packages

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
12 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Image package Description

android_automotive-13.0.0_2.3.0_
image_8qmek_car2.tar.gz

Prebuilt-image and UUU script files for i.MX 8QuadMax/8QuadXPlus MEK
board without EVS function enabled in the Arm Cortex-M4 CPU core,
which includes NXP extended features.

Table 6. Image packages...continued

The following tables list the detailed contents of android_automotive-13.0.0_2.3.0_image_8qmek_
car.tar.gz image package.

The table below shows the prebuilt images to support the system boot from eMMC on i.MX 8QuadXPlus MEK
boards from eMMC on i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards.

i.MX 8QuadXPlus/8QuadMax MEK
image

Description

spl-imx8qm.bin The secondary program loader (SPL) for i.MX 8QuadMax MEK board.

spl-imx8qm-secure-unlock.bin The secondary program loader (SPL) with Trusty and secure unlock related
configurations for i.MX 8QuadMax MEK board.

spl-imx8qxp.bin The secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with
silicon revision B0 chip.

spl-imx8qxp-secure-unlock.bin The secondary program loader (SPL) with Trusty and secure unlock related
configurations for i.MX 8QuadXPlus MEK board with silicon revision B0 chip.

spl-imx8qxp-c0.bin The secondary program loader (SPL) for i.MX 8QuadXPlus MEK board with
silicon revision C0 chip.

bootloader-imx8qm.img The next loader image after SPL for the i.MX 8QuadMax MEK board.

bootloader-imx8qm-secure-
unlock.img

The next loader image after SPL for the i.MX 8QuadMax MEK board, including
the Arm trusted firmware, Trusty OS, and U-Boot proper.

bootloader-imx8qxp.img The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon
revision B0 chip.

bootloader-imx8qxp-secure-
unlock.img

The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon
revision B0 chip, including the Arm trusted firmware, Trusty OS, and U-Boot
proper.

bootloader-imx8qxp-c0.img The next loader image after SPL for i.MX 8QuadXPlus MEK board with silicon
revision C0 chip.

u-boot-imx8qm-mek-uuu.imx Bootloader used by UUU for i.MX 8QuadMax MEK board. It is not flashed to
MMC.

u-boot-imx8qxp-mek-uuu.imx The bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon
revision B0 chip. It is not flashed to MMC.

u-boot-imx8qxp-mek-c0-uuu.imx The bootloader used by UUU for i.MX 8QuadXPlus MEK board with silicon
revision C0 chip. It is not flashed to MMC.

partition-table.img GPT table image for 16 GB boot storage

partition-table-28GB.img GPT table image for 32 GB boot storage

vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
LVDS-to-HDMI display

vbmeta-imx8qm-md.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
multiple-display feature.

vbmeta-imx8qm-sof.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
SOF DSP feature.

Table 7. Images for i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
13 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

i.MX 8QuadXPlus/8QuadMax MEK
image

Description

vbmeta-imx8qxp.img Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support
LVDS-to-HDMI display

vbmeta-imx8qxp-sof.img Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support
SOF DSP feature.

system.img System Boot image

system_ext.img System extension image.

vendor.img Vendor image, which holds platform binaries. Mounted at /vendor.

vendor_dlkm.img Vendor DLKM image, which holds dynamically loadable kernel module. Mounted
at /vendor_dlkm.

product.img Product image.

dtbo-imx8qm.img Device tree image for i.MX 8QuadMax

dtbo-imx8qm-md.img Device tree image for i.MX 8QuadMax to support multiple display feature.

dtbo-imx8qm-sof.img Device tree image for i.MX 8QuadMax to support SOF DSP feature.

dtbo-imx8qxp.img Device tree image for i.MX 8QuadXPlus

dtbo-imx8qxp-sof.img Device tree image for i.MX 8QuadXPlus to support SOF DSP feature.

boot.img A composite image, which includes the AOSP generic kernel image and boot
parameters.

init_boot.img Generic ramdisk.

vendor_boot.img A composite image, which includes vendor ramdisk and boot parameters.

rpmb_key_test.bin Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from the default AVB private key.

Table 7. Images for i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards...continued

Note: boot.img is an Android image that stores kernel Image and ramdisk together. It also stores other
information such as the kernel boot command line, machine name. This information can be configured in
android.mk. It can avoid touching the boot loader code to change any default boot arguments.

5 Programming Images

The images from the prebuilt release package or created from source code contain the U-Boot boot loader,
system image, gpt image, vendor image, and vbmeta image. At a minimum, the storage devices on the NXP
development system (eMMC) must be programmed with the U-Boot boot loader. The i.MX 8 series boot process
determines what storage device to access based on the Boot switch settings. When the boot loader is loaded
and begins execution, the U-Boot environment space is then read to determine how to proceed with the boot
process. For U-Boot environment settings, see Section Section 6.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC storage.
• fastboot_imx_flashall script to download all images to the eMMC storage.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
14 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

5.1 System on eMMC
The images needed to create an Android system on eMMC can either be obtained from the release package or
be built from source.

The images needed to create an Android system on eMMC are listed below:

• Secondary program loader image: spl.bin
• Android bootloader image: bootloader.img
• GPT table image: partition-table.img
• Android DTBO image: dtbo.img
• Android boot image: boot.img
• Android vendor boot image: vendor_boot.img
• Android system image: system.img
• Android system extension image: system_ext.img
• Android vendor image: vendor.img
• Android vendor dynamically loadable kernel module image: vendor_dlkm.img
• Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions

The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata partition is used to put the
unpacked codes/data of the applications, system configuration database, and so on. In recovery mode, the root
file system is mounted with ramdisk from the boot partition.

Partition
type/index

Name Start offset Size File system Content

N/A bootloader0 0 KB (i.MX 8Quad
Max, i.MX 8Quad
XPlus C0) or 32KB
(i.MX 8QuadXPlus
B0)

4 MB N/A spl.bin

1 bootloader_a 8 MB 4 MB N/A bootloader.img

2 bootloader_b Follow
bootloader_a

4 MB N/A bootloader.img

3 dtbo_a Follow
bootloader_b

4 MB N/A dtbo.img

4 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

5 boot_a Follow dtbo_b 64 MB boot.img format,
a kernel + recovery
ramdisk

boot.img

6 boot_b Follow boot_a 64 MB boot.img format,
a kernel + recovery
ramdisk

boot.img

7 vendor_boot_a Follow boot_a 64 MB Part of recovery
ramdisk

vendor_boot.img

Table 8. Storage partitions

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
15 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Partition
type/index

Name Start offset Size File system Content

8 vendor_boot_b Follow boot_b 64 MB Part of recovery
ramdisk

vendor_boot.img

9 misc Follow boot_ b 4 MB N/A For recovery storage
bootloader message,
reserve

10 metadata Follow misc 16 MB N/A Metadata of OTA update,
remount, etc.

11 presistdata Follow metadata 1 MB N/A Option to operate lock
\unlock

12 super.img Follow
presistdata

4096 MB N/A system.img, system_
ext.img, vendor.img,
vendor_dlkm.img, and
product.img

13 userdata Follow super Remained
space

EXT4. Mount at /
data

Application data storage
for system application, and
for internal media partition,
in the /mnt/sdcard/
 directory

14 fbmisc Follow userdata 1 MB N/A For storing the state of lock/
unlock

15 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

16 vbmeta_b Follow vbmeta_a 1 MB N/A For storing the verify boot's
metadata

Table 8. Storage partitions...continued

Partitions are created by UUU utility, burning Android automotive images (by partition.img). Using UUU is
described in the Android Quick Start Guide (AQSUG).

5.1.2 Downloading images with UUU

UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading
images. See the Android Quick Start Guide (AQSUG) for a detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script

UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial
down mode firstly, and make the board enter boot mode once flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System
Image into board. It requires the target board be able to enter fastboot mode and the device is unlocked. There
is no need to change the boot mode with this fastboot_imx_flashall script.

The table below lists the fastboot_imx_flashall scripts.

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

Table 9. fastboot_imx_flashall script

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
16 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

With the help of fasboot_imx_flashall scripts, you do not need to use fastboot to flash Android images
one by one manually. These scripts will automatically flash all images with only one line of command.

With virtual A/B feature enabled, your host fastboot tool version should be equal to or greater than 30.0.4. You
can download the host fastboot tool from Android website or you can build it with the Android project. Based on
Section 3, which describes how to build Android images, perform the following steps to build fastboot:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

• Linux version binary file: ${MY_ANDROID}/out/host/linux-x86/bin/
• Windows version binary file: ${MY_ANDROID}/out/host/windows-x86/bin/

The way to use these scripts is as follows:

• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size Optional setting: 28
 If it is not set, use partition-table.img (default).
 If it is set to 28, use partition-table-28GB.img for 32
 GB SD card.
 Make sure that the corresponding file exists on your
 platform.
 -m Flashes the Cortex-M4 image.
 -u uboot_feature Flashes U-Boot or SPL&bootloader images with
 "uboot_feature" in their names. For QXP C0 revision please use -u c0.
 For Android Automotive:
 Only dual-bootloader feature is supported. By
 default, SPL&bootloader image is flashed.
 For i.MX 8QuadXPlus C0 revision, use the -u c0
 parameter.
 -d dtb_feature Flashes dtbo, vbmeta, and recovery image file with
 "dtb_feature" in their names.
 If it is not set, use the default dtbo, vbmeta, and
 recovery image.
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images,
 it does not need to use this option.
 -s ser_num Serial number of the board.
 If only one board is connected to computer, it does not
 need to use this option

Note:

• -f option is mandatory. SoC name can be imx8qm or imx8qxp.
• Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
17 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_android-13.0/mek_8q_car/

Option explanations:

• -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.
• -a: Only flashes slot a.
• -e: Erases user data after all image files are flashed.
• -D /imx_android-13.0/mek_8q_car/: Images to be flashed are in the directory of /
imx_android-13.0/mek_8q_car/.

5.1.4 Downloading a single image with fastboot

Sometimes only a single image needs to be flashed again with fastboot for debug purposes.

fastboot is also implemented in userspace (recovery) in addition to the implementation in U-Boot. With
dynamic partition feature enabled, the partitions are categorized into three parts. fastboot implemented in
U-Boot and userspace can individually recognize part of them. The relationship between them are listed as
follows.

Partition category Partition Can be recognized by

U-Boot hard-coded partition bootloader0, gpt, mcu_os U-Boot fastboot

EFI partition boot_a, boot_b, vendor_boot_a,
vendor_boot_b, dtbo_a, dtbo_b,
vbmeta_a, vbmeta_b, misc,
metadata, presistdata, super,
userdata, fbmisc

U-Boot fastboot, userspace fastboot

Logical partition system_a, system_b, system_
ext_a, system_ext_b, vendor_a,
vendor_b, product_a, product_b

Userspace fastboot

Table 10. Partition categories

Note:

Logical partitions only exist if dynamic partition feature is enabled.

To enter U-Boot fastboot mode, for example, you can first make the board enter U-Boot command mode, and
then execute the following command on the console:

> fastboot 0

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may
need root permission on Linux OS:

board in U-Boot fastboot mode, execute the following command on the host
$ fastboot reboot fastboot
board boot up to the Android system, execute the following command on the host
$ adb reboot fastboot

To use fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented on
the device that can recognize the partition to be operated on. For example, images in automotive-13.0.0_
2.3.0_image_8qmek_car2.tar.gz have dynamic partition feature enabled. To flash system.img to the

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
18 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

partition of system_a, make the board enter userspace fastboot mode, and execute the following command on
the host:

$ fastboot flash system_a system.img

6 Booting

This chapter describes booting from MMC.

6.1 Booting from eMMC

6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board

The following tables list the boot switch settings to control the boot storage.

i.MX 8QuadMax boot switch download Mode (UUU mode) eMMC boot

SW2 Boot_Mode (1-6 bit) 001000 000100

Table 11. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadXPlus boot switch download Mode (UUU mode) eMMC boot

SW2 Boot_Mode (1-4 bit) 1000 0100

Table 12. Boot switch settings for i.MX 8QuadXPlus

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i.MX 8QuadMax.

Change the board Boot_Mode switch to 0100 (1-4 bit) for i.MX 8QuadXPlus.

To use the default environment in boot.img, do not set bootargs environment in U-Boot.

Note:

bootargs is an optional setting for boota. The boot.img includes a default bootargs, which will be used if
there is no bootargs defined in U-Boot.

6.2 Boot-up configurations
This section describes some common boot-up configurations, such as U-Boot environments, kernel command
line, and DM-verity configurations.

6.2.1 U-Boot environment

• bootcmd: the first variable to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in

Section 6.2.2, bootargs environment is optional for booti. boot.img already has bootargs. If you do not
define the bootargs environment variable, it uses the default bootargs inside the image. If you have the
environment variable, it is then used.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
19 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

To use the default environment in boot.img, use the following command to clear the bootargs environment
variable.

> setenv bootargs

If the environment variable append_bootargs is set, the value of append_bootargs is appended to
bootargs automatically.

• boota:
boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs
as needed (it only passes bootargs in boot.img when it cannot find bootargs variable in your U-Boot
environment).
To boot the system, execute the following command:

U-Boot=> boota

To boot into recovery mode, execute the following command:

U-Boot=> boota recovery

6.2.2 Kernel command line (bootargs)

Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for
bootargs.

Kernel parameter Description Typical value Used when

console Where to output kernel log by
printk.

console=ttymxc0 i.MX 8QuadMax MEK uses
console=ttyLP0.

init Tells kernel where the init
file is located.

init=/init All use cases. init in the
Android platform is located in
/ instead of in /sbin.

androidboot.console The Android shell console.
It should be the same as
console=.

androidboot.
console=ttymxc0

To use the default shell job
control, such as Ctrl+C to
terminate a running process,
set this for the kernel.

cma CMA memory size for GPU/
VPU physical memory
allocation.

cma=1184M@0x960M-
0xe00M

Start address is 0x96000000
 and end address is 0xDFFF
FFFFF. The CMA size can
be configured to other value,
but cannot exceed 1184 MB,
because the Cortex-M4 core
will also allocate memory
from CMA and Cortex-M4
cannot use the memory
larger than 0xDFFFFFFFF.

androidboot.selinux Argument to disable SELinux
check. For details about
SELinux, see Security-
Enhanced Linux in Android.

androidboot.
selinux=permissive

Setting this argument will
also bypass all the SELinux
rules defined in Android
system. It is recommended to
set this argument for internal
developer.

androidboot.fbTile
Support

It is used to enable
framebuffer super tile output.

androidboot.fbTile
Support=enable

-

Table 13. Kernel boot parameters

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
20 / 63

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

NXP Semiconductors AAUG
Android Automotive User's Guide

Kernel parameter Description Typical value Used when

firmware_class.path It is used to set the Wi-Fi
firmware path.

firmware_class.path=/
vendor/firmware

-

androidboot.
wificountrycode=US

It is used to set Wi-Fi country
code. Different countries use
different Wi-Fi channels.
For details, see the i.MX
Android Frequently Asked
Questions.

androidboot.
wificountrycode=US

-

transparent_hugepage It is used to change the
sysfs boot time defaults
of Transparent Hugepage
support.

transparent_
hugepage=never/
always/madvise

-

galcore.contiguous
Size

It is used to configure the
GPU reserved memory.

galcore.contiguous
Size=33554432

It is 128 MB by default. i.MX
8QuadMax/8QuadXPlus
automatically configures it to
32 MB to shorten the GPU
driver initialization time.

androidboot.vendor.
sysrq

It is used to enable sysrq. androidboot.vendor.
sysrq=1

-

Table 13. Kernel boot parameters...continued

6.2.3 DM-verity configuration

DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent the
device from running unauthorized images. This feature is enabled by default. Replacing one or more partitions
(boot, vendor, system, vbmeta) will make the board unbootable. Disabling DM-verity provides convenience for
developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

1. Unlock the device.
a. Boot up the device.
b. Enable Developer mode. click 7 times on the Settings -> About -> Build number menu.
c. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
d. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader

e. Unlock the device. Execute the following command on the host side:

fastboot oem unlock

f. Wait until the unlock process is complete.
2. Disable DM-verity.

a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
21 / 63

https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877

NXP Semiconductors AAUG
Android Automotive User's Guide

7 Over-The-Air (OTA) Update

This section provides an example for the i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled
in the Arm Cortex-M4 CPU core to build and implement OTA update.

For other platforms, use "lunch " to set up the build configuration. For detailed build configuration, see Section
3.2 "Section 3.2".

7.1 Building OTA update packages

7.1.1 Building target files

You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/mek_8q_car/obj/PACKAGING/
target_files_intermediates/mek_8q_car-target_files-${date}.zip

7.1.2 Building a full update package

A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is
contained in the package.

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4

Note:

The command line $ make otapackage -j4 is used for i.MX 8QuadMax. For i.MX 8QuadXPlus, use the
command line make OTA_TARGET=8qxp otapackage -j4.

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/product/mek_8q_car/mek_8q_car-ota-${date}.zip

mek_8q_car-ota-${date}.zip includes payload.bin and payload_properties.txt. The two files
are used for full update.

Note:

• ${date} is the BUILD_NUMBER in build_id.mk.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
22 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

7.1.3 Building an incremental update package

An incremental update contains a set of binary patches to be applied to the data that is already on the device.
This can result in considerably smaller update packages:

• Files that have not changed do not need to be included.
• Files that have changed are often very similar to their previous versions, so the package only needs to contain

encoding of the differences between the two files. You can install the incremental update package only on a
device that has the old or source build used when constructing the package.

Before building an incremental update package, see Section Section 7.1.1 to build two target files:

• PREVIOUS-target_files.zip: one old package that has already been applied on the device.
• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip
 NEW-target_files.zip incremental_ota_update.zip

${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and
payload_properties.txt. The two files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform

update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports updating
system from a remote server or board's storage.

To update the system from a remote server, perform the following steps:

1. Copy full-ota.zip or incremental_ota.zip (generated on Section 7.1.2 and Section 7.1.3) to the
HTTP server (for example, 192.168.1.1:/var/www/).

2. Unzip the packages to get payload.bin and payload_properties.txt.
3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Log in to the ADB shell and execute the following command to update:

update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update
 --headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting
to reboot" in the logcat.

To update the system from board's storage, perform the following steps:

1. Unzip full-ota.zip or incremental_ota.zip (Generated on Section 7.1.2 and Section 7.1.3) to get
payload.bin and payload_properties.txt.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
23 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

2. Push payload.bin to board's storage:

adb root
adb push payload.bin /data/ota_package

3. Cat the content of payload_properties.txt like this:
• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Input the following command in board's console to update:

update_engine_client --payload=file:///data/ota_package/payload.bin --update
 --headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to
reboot" in the logcat.

Note:

Make sure that the -- header equals to the exact content of payload_properties.txt. No more "space" or
"return" characters.

7.2.2 Using a customized application to update the Android platform

Google provides a reference OTA application (named as SystemUpdaterSample) under ${MY_ANDROID}/
bootable/recovery/updater_sample, which can do OTA job. Perform the following steps to use this
application:

1. Generate a JSON configuration file from the OTA package.

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip

And you can use the following command to generate an incremental OTA JSON file:

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip

Note:
http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold your OTA package.

2. Set up the HTTP server (for example, lighttpd, apache).
You need one HTTP server to hold OTA packages.

scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
24 / 63

http://192.168.1.1:10888/full-ota.zip

NXP Semiconductors AAUG
Android Automotive User's Guide

Note:
• server_ota_folder is one folder on your remote server to hold OTA packages.
• full-ota.zip and incremental-ota.zip are built from Section 7.1.2 and Section 7.1.3.

3. Push JSON files to the board.
Use the following command to push JSON files to the board:

adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp

Then use the following command to move JSON files to the private folder of the SystemUpdaterSample
application:

su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/0/
com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/
*.json

Note:
If you use the Android Automotive system, move JSON files to the user/10 folder as follows:

su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/
com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/
configs/*.json

4. Open the SystemUpdaterSample OTA application.
There are many buttons on the UI. Their brief description is as follows:

Reload - reloads update configs from device storage.
View config - shows selected update config.
Apply - applies selected update config.
Stop - cancel running update, calls UpdateEngine#cancel.
Reset - reset update, calls UpdateEngine#resetStatus, can be called only when
 update is not running.
Suspend - suspend running update, uses UpdateEngine#cancel.
Resume - resumes suspended update, uses UpdateEngine#applyPayload.
Switch Slot - if ab_config.force_switch_slot config set true, this button
 will be enabled after payload is applied, to switch A/B slot on next reboot.

First, choose the desired JSON configuration file, and then click the APPLY button to do the update.
After the update is complete, you can see "SUCCESS" in the Engine error text field, and
"REBOOT_REQUIRED" in the Updater state text field. Then, reboot the board to finish the whole OTA
update.

The OTA package includes the dtbo image, which stores the board's DTB. There may be many DTBs for one
board. For example, in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/BoardConfig.mk:

TARGET_BOARD_DTS_CONFIG := imx8qm:imx8qm-mek-car.dtb imx8qxp:imx8qxp-mek-car.dtb

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qm.img

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
25 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Therefore, the default OTA package can only be applied for the mek_8qm board.To generate an OTA package
for mek_8qxp, modify this BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qxp.img

The OTA package includes the bootloader image, which is specified by the following variable in ${MY_
ANDROID}/device/nxp/imx8q/mek_8q/BoardConfig.mk:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/
bootloader-imx8qm.img

To generate an OTA package for mek_8qxp, modify BOARD_OTA_BOOTLOADERIMAGE as follows:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/
bootloader-imx8qxp.img

For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For information about the SystemUpdaterSample application, see https://android.googlesource.com/platform/
bootable/recovery/+/refs/heads/master/updater_sample/.

8 Customized Configuration

8.1 Camera configuration
Exterior View System (EVS) is supported in i.MX Android Automotive release. This feature supports a fastboot
camera, which starts camera within 1 second when the board is powered on.

This section describes how this feature is implemented and how the interfaces are used to control the EVS
function. This can help customers to do customization work on the EVS function.

8.1.1 Interfaces to control the EVS function

8.1.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_
car.tar.gz

With images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz, the Arm Cortex-A core runs
Android Automotive system and the Arm Cortex-M core runs RTOS collaborate to realize this EVS function. The
work sequence chart of EVS is shown in the following figure. It starts with the board power-on.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
26 / 63

https://source.android.com/devices/tech/ota/ab/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/

NXP Semiconductors AAUG
Android Automotive User's Guide

Figure 1. EVS sequence chart with Cortex-M core and Cortex-A core collaborated together

Rear view camera (RVC) is only supported in Android cars. The following is the registration process of the
vehicle client.

1. Set vendor.all.system_server.ready to 1 in frameworks/base/packages/SystemUI/src/
com/android/systemui/SystemUIApplication.java.

2. Write 1 to /sys/devices/platform/vehicle_rpmsg_m4/register in AP. Register the RPMSG client
to the Cortex-M4 side.

3. Cortex-M4 releases camera/display resource and sends Response of RPMSG client register. If the
registration status is successful, go to Step 5; otherwise, go to Step 4.

4. AP gets state values VEHICLE_GEAR and register_ready.
5. Send extcon_set_state_sync to evs_service in AP. vendor.vehicle.register is then set.
6. Start boot_completed_core_sh, which probes the display/camera modules.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview
camera:

1. Connect the camera as described in i.MX Android Quick Start Guide (AQSUG).
2. Open the Cortex-M4 console.

Cortex-M4 console on the i.MX 8QuadXPlus MEK board: USB-to-UART port has two consoles. One is
Cortex-A core console, and the other one is Cortex-M4 console.
Cortex-M4 console on i.MX 8QuadMax MEK board: RS-232 port on the base board.

3. Input gear 2 on the Cortex-M4 console when the board is powered on and Android Automotive running on
Cortex-A core is not fully booted. The rearview camera will appear on the screen.
Input gear 4 when Android Automotive is fully booted. The Android UI appears on the screen.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
27 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

4. Input gear 2 on the Cortex-M4 console after Android system boot is complete. The rearview camera
appears on the screen.
Input gear 4 on the Cortex-M4 console. The Android UI appears on the screen.

Note:

• Inputting gear 2 on the Cortex-M4 console indicates that the Cortex-M4 core gets the reverse signal.
• Inputting gear 4 on the Cortex-M4 console indicates that the Cortex-M4 core gets the drive signal.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip also support multiple EVS
cameras. The relationship between the orientation of cameras and hardware connection is show as follows.

Hardware connection Camera orientation

IN0 Rear

IN1 Front

IN2 Right

IN3 Left

Table 14. Relationship between the orientation of cameras and hardware connection

The logic to handle the vehicle information is shown with the following pseudo code:

if (gear state == reverse)
 show rear camera view
else if (turn signal == right)
 show right camera view
else if (turn signal == left)
 show left camera
else if (gear state == park)
 show all cameras' view
else
 show no camera view

The meaning of commands input on the Cortex-M4 console is as follows:

Command Meaning

turn 0 Not turn

turn 1 Turn right

turn 2 Turn left

gear 1 Park

gear 2 Reverse

gear 4 Drive

Table 15. Meaning of commands input on the Cortex-M4 console

To start multiple-EVS-camera function:

1. Input su && start evs_app on the AP console to start evs_app. You can also start the rearview
camera on the Cortex-M4 console with gear 2. The display should be rear camera view.

2. Input gear 1 on the Cortex-M4 console. All cameras must be connected to the board.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
28 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Figure 2. All cameras' views on the display
3. Input turn 1 on the Cortex-M4 console. It shows the right camera view on the display.
4. Input turn 2 on the Cortex-M4 console. It shows left camera view on the display.
5. Input turn 0 on the Cortex-M4 console. It shows all cameras' views on the display.
6. Stop EVS with stop evs_app on the Cortex-A core console.

Note:

You can input gear 2 on the Cortex-M4 console anytime in boot process to start the rearview camera.

8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_
car2.tar.gz

With images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz, the EVS function is realized on
Android Automotive running on the Cortex-A core.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start single-rearview
camera:

1. Connect the camera as described in i.MX Android Quick Start Guide (AQSUG).
2. Open the Cortex-A core console.

Input su && start evs_app on the Cortex-A console to start evs_app. You can also start the rearview
camera with echo 2 > /sys/devices/platform/vehicle-dummy/gear on the Cortex-A console.
The display should be rear camera view. Input stop evs_app on the Cortex-A console to stop the
rearview camera EVS function.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision C0 chip can also support multiple EVS
cameras.

The relationship between the orientation of cameras and hardware connection is show as follows.

Hardware connection Camera orientation

IN0 Rear

IN1 Front

IN2 Right

IN3 Left

Table 16. Relationship between the orientation of cameras and hardware connection

The logic to handle the vehicle information is shown with the following pseudo code:

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
29 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

if (gear state == reverse)
 show rear camera view
else if (turn signal == right)
 show right camera view
else if (turn signal == left)
 show left camera
else if (gear state == park)
 show all cameras' view
else
 show no camera view

The meaning of commands input on the Cortex-A core console is as follows.

Command Meaning

echo 0 > /sys/devices/platform/vehicle-
dummy/turn

Not turn

echo 1 > /sys/devices/platform/vehicle-
dummy/turn

Turn right

echo 2 > /sys/devices/platform/vehicle-
dummy/turn

Turn left

echo 1 > /sys/devices/platform/vehicle-
dummy/gear

Park

echo 2 > /sys/devices/platform/vehicle-
dummy/gear

Reverse

echo 4 > /sys/devices/platform/vehicle-
dummy/gear

Drive

Table 17. Meaning of commands input on the Cortex-A core console

To start multiple-EVS-camera function:

1. Input su && start evs_app on the Cortex-A console to start evs_app. You can also start rearview
camera with echo 2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The
display should be rear camera view.

2. Input echo 1 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. All
cameras must be connected to the board.

Figure 3. All cameras' views on the display
3. Input echo 1 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows

right camera view on the display.
4. Input echo 2 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows

left camera view on the display.
AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
30 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

5. Input echo 0 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows all
cameras' views on the display.

6. Stop EVS with stop evs_app on the Cortex-A console.

8.1.2 EVS related code

For images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz, the Cortex-M4 core runs with its
code on the DDR on i.MX board. It is responsible for the following work:

• Take over control of camera/display before the Android system is fully booted.
• Get the vehicle event and pass this event to the Cortex-A core.

Source code for the Cortex-M4 core is in the ${MY_ANDROID}/vendor/nxp/mcu-sdk-auto directory.

After modifying the Cortex-M4 core source code, execute the following command to build and update the
Cortex-M4 image:

cd ${MY_ANDROID}
source build/envsetup.sh
lunch mek_8q_car-userdebug
./imx-make.sh bootloader -j4

Directory of EVS related code running on the Cortex-A core is listed as follows:

• EVS HAL: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs_hal
• EVS service: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs/evs_service
• EVS kernel driver: ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/drivers/mxc/vehicle
• EVS application: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs/evs_app

After modifying the Cortex-A core source code, build the whole system to update Android Automotive images.

8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core

Images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz are built with target lunched with
mek_8q_car-userdebug. EVS function in this package is realized with both Cortex-A core and the Cortex-M4
core.

The communication commands and related response packet between the Cortex-A core and the Cortex-M4
core are listed as follows.

Category Version Type Command Data Function

0x08 0x0100 REQUEST REGISTER Data[0-3]: clientId
Data[4]: reserved
Data[5]: partition
Data[6-15]: reserved

Registers the RPMSG client.
clientId indicates different clients.
partition indicates the Android
partition.
Partition:0xFF: This parameter is
invalid.

0x08 0x0100 REQUEST UNREGI
STER

Data[0-3]: clientId
Data[4]: reserved
Data[5]: causeOf
Data[6-15]: reserved

Unregisters the RPMSG client. Cortex-
M4 and remote processor cannot
communicate again. The causeOf
parameter can indicate the reason of
unregister.
causeOf: 0x00: AP will power off.

0x08 0x0100 REQUEST CONTROL Data[0-3]: clientId
Data[4]: reserved

Sends control command to Cortex-
M4 to request Cortex-M4 to do some

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
31 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Category Version Type Command Data Function
Data[5-6]: controlCode
Data[7-10]: timeout
Data[11-15]: control
Param
Data[15]: index

actions. It needs to complete and give
a response to Android in “timeout” ms.
Reserved for future.
Example:
controlCode: 0x0000: air
conditioner temperature
controlParam: 4bytes (float):
temperature
Index: left or right.

0x08 0x0100 REQUEST PWR_
REPORT

Data[0-3]: clientId
Data[4]: reserved
Data[5-6]: androidPwr
State
Data[7-10]: time_
postpone
Data[11-15]: reserved

Reports Android power state
androidPwrState:
0x0000: BOOT_COMPLETE
0x0001: DEEP_SLEEP_ENTRY
0x0002: DEEP_SLEEP_EXIT
0x0003: SHUTDOWN_POSTPONE
0x0004: SHUTDOWN_START
0x0005: DISPLAY_OFF
0x0006: DISPLAY_ON.

0x08 0x0100 REQUEST GET_INFO Data[0-3]: clientId
Data[4]: reserved
Data[5-6]: infoIndex
Data[7-15]: reserved

Gets information from Cortex-M4 side.
Android and Cortex-M4 should have the
same information table. The information
includes the sensor data, fuel data,
battery data, etc.
infoIndex:0x0001: vehicle unique
ID.

0x08 0x0100 RES
PONSE

BOOT_
REASON

Data[0-3]: clientId
Data[4]: retCode
Data[5-15]: reserved

Responds to Cortex-M4's boot reason
request (USER_POWER_ON, DOOR_
OPEN, DOOR_UNLOCK, REMOTE_
START, TIMER).

0x08 0x0100 RES
PONSE

PWR_CTRL Data[0-3]: clientId
Data[4]: retCode
Data[5-6]: androidPwr
State
Data[7-15]: reserved

Responds the current power state of
Android.

0x08 0x0100 RES
PONSE

VSTATE Data[0-3]: clientId
Data[4]: retCode
Data[5-6]: unitType
Data[7-15]: reserved

Responds to the control command from
Cortex-M4 side. state indicates the
current IVI state.

Table 18. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)...continued

Category Version Type Command Data Function

0x08 0x0100 RES
PONSE

REGISTER Data[0-3]: clientId
Data[4]: retCode
Data[5-6]: mcuOperate
Mode
Data[7-15]: reserved

Response of RPMSG client register.
(success, failed), mcuOperateMode
indicates Cortex-M4 work state
mcuOperateMode:
SHARED_RESOURCE_FREE: 0x0000
SHARED_RESOURCE_OCCUPIED:
0x0001.

Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
32 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Category Version Type Command Data Function

0x08 0x0100 RES
PONSE

UNREGI
STER

Data[0-3]: clientId
Data[4]: retCode
Data[5-15]: reserved

Response of RPMSG client unregister.

0x08 0x0100 RES
PONSE

CONTROL Data[0-3]: clientId
Data[4]: retCode
Data[5-6]: actionState
Data[7-15]: reserved

Response to the result of the control
request. MCU will do some actions to
complete Android’s request. action
State is not used currently.

0x08 0x0100 RES
PONSE

PWR_
REPORT

Data[0-3]: clientId
Data[4]: retCode
Data[5-15]: reserved

Response to Android power state
report.

0x08 0x0100 RES
PONSE

GET_INFO Data[0-3]: clientId
Data[4]: retCode
Data[5-6]: infoIndex
Data[7-14]: data
Data[15]: reserve

Response to the GET_INFO request.
infoIndex should be the same as
request index. The length of infoData
should be specific according to info
Index. The information includes sensor
data, fuel data, and battery data. And
it is a response packet to Android's
request.

0x08 0x0100 REQUEST BOOT_
REASON

Data[0-3]: clientId
Data[4]: reserved
Data[5]: bootReason
Data[6-15]: reserved

Notifies Android system why VMCU
boots the Cortex-A core (Android). It is
sent after the MCU sends normal drive
command to the Android system.
bootReason:
0x00: USER_POWER_ON
0x01: DOOR_OPEN
0x02: DOOR_UNLOCK
0x03: REMOTE_START.

0x08 0x0100 REQUEST PWR_CTRL Data[0-3]: clientId
Data[4]: reserved
Data[5-6]: powerState
Req
Data[7-8]: addition
Param
Data[9-15]: reserved

Requests Android system to enter
specific power state (ON_DISP_OFF,
ON_FULL, SHUTDOWN_PREPARE)
powerStateReq:
0x0000: ON_DISP_OFF
0x0001: ON_FULL
0x0002: SHUTDOWN_PREPARE

0x08 0x0100 REQUEST VSTATE Data[0-3]: clientId
Data[4]: reserved
Data[5-6]: unitType
Data[7-10]: stateValue
Data[11-15]: reserved

Requests Vehicle state to Android
(Door open/close/lock/unlock, Fan on/
off/speed/recycle/direction, AC on/
off/temperature, heater on/off/power,
defrost on/off/front/back)
(mute/unmute, volume adjust, rear view
camera on/off, lights on/off …)
unitType indicates the type of each
unit of vehicle, such as door, fan, and
air condition. stateValue indicates
the unit state parameter.

Table 19. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)...continued

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
33 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

8.1.4 Delay of camera/display module probe

The RVC is occupied by the Cortex-M4 core in early stage when booting up in an Android car. AP needs to
separate camera/display resource in boot stage. There are two resources that need to pay attention in AP boot
stage: clock and power domain.

1. Separate clock in boot stage.
a. Add CONFIG_VEHICLE_CLK_POST_INIT, which does not register camera/display related CLK in clk-

imx8qxp.c and clk-imx8qm.c.
b. Add clk-post-imx8qm.c and clk-post-imx8qxp.c, which are probed in

notice_evs_released.
2. Separate power domain in boot stage.

SC_R_CSI_0/SC_R_LVDS_1/SC_R_DC_1/SC_R_ISI_CH0 are used at Cortex-M4 side. The related power
domain used in DTS needs to be removed under the DTS node vehicle_rpmsg_m4.
• The node whose power domain is pd_dc1 needs to be moved into vehicle_rpmsg_m4.
• The node whose power domain is under pd_dc1 (such as pd_mipi1/pd_lvds1/pd_mipi1_i2c0/..) needs to

be moved into the DTS node vehicle_rpmsg_m4.
• The node whose power domain is pd_isi_ch0 needs to be moved into the DTS node
vehicle_rpmsg_m4.

• The node whose power domain is under pd_isi_ch0 (such as pd_csi0/pd_csi1/..) needs to be moved
into the DTS node vehicle_rpmsg_m4.

• The camera node needs to be moved into the DTS node vehicle_rpmsg_m4.

8.2 Audio configuration

8.2.1 Routing audio stream to different sound cards

In Android Automotive, different audio streams route to different sound cards. When configured, the route is
statically decided, unlike the dynamically routed in standard Android image.

In the Android Automotive release, the route is configured as follows: Alarm, notification, and system sounds
are played from the audio jack on the CPU board. Other sounds such as music are played from the extended
audio board. The following are steps to change the route. For example, music and navigation go through the
extended audio board, and others go through the audio jack on the CPU board.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
34 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Figure 4. Routing audio stream to different sound cards

1. Map the bus index to bus address in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/audio_policy_
configuration_car.xml. The bus index "0/1" is parsed from the tagName.

<devicePort tagName="bus0_media_out" role="sink" type="AUDIO_DEVICE_OUT_BUS"
 address="bus0_media_out">
<gains>
 <gain name="" mode="AUDIO_GAIN_MODE_JOINT"
 minValueMB="-3200" maxValueMB="600" defaultValueMB="0"
 stepValueMB="100"/>
</gains>
</devicePort>
<devicePort tagName="bus1_system_sound_out" role="sink"
 type="AUDIO_DEVICE_OUT_BUS"
 address="bus1_system_sound_out">
<gains>
 <gain name="" mode="AUDIO_GAIN_MODE_JOINT"
 minValueMB="-3200" maxValueMB="600" defaultValueMB="0"
 stepValueMB="100"/>
</gains>
</devicePort>

2. Build the image.

8.3 Display configuration

8.3.1 Configuring the logical display density

The Android UI framework defines a set of standard logical densities to help application developers target
application resources. Device implementations must report one of the following logical Android framework
densities:

• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'
AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
35 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the
physical density of the screen, unless that logical density pushes the reported screen size below the minimum
supported.

The default display density value is defined in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/Board
Config.mk as shown below:

BOARD_KERNEL_CMDLINE += androidboot.lcd_density=200

The display density value can be changed by modifying the related lines mentioned above in ${MY_ANDROID}/
device/nxp/imx8q/mek_8q/BoardConfig.mk and then recompiling the code or setting (the density value)
in U-Boot command line as bootargs during boot-up.

8.3.2 Starting the cluster display

Cluster display is supported in the i.MX Android Automotive release package. With this feature, two displays
connected to the board can display different content.

To do customization work on this function, you need to know how this function can be started and controlled.

To start the cluster display, connect the two i.MX mini SAS cables with LVDS-to-HDMI adapters to the "LVDS0"
and "LVDS1" ports of the board. After the system boots into Android launcher, different content is displayed on
the two displays connected to the board.

8.3.3 Enabling the multiple-display function

The following boards support more than one display.

Board Number of displays Display port

i.MX 8QuadMax MEK 4 If physical HDMI output (J6) is used
If physical HDMI output (J6) is not used

i.MX 8QuadXPlus MEK 2 DSI0/LVDSI0, DSI1/LVDSI1

Table 20. Displays supported by different boards

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

To evaluate the multiple-display on i.MX 8QuadMax MEK, flash dtbo-imx8qm-md.img.

8.3.3.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/
etc/input-port-associations.xml is used to do this work when the system is running, but the input
device location and display-id vary with the connection forms of these ports with corresponding input and
display devices, which means that the input location and display-id need to be retrieved before the connection is
fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the
${MY_ANDROID}/device/nxp/ directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

dumpsys SurfaceFlinger --display-id

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
36 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL
 P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=NXP displayName="NXP
 Android"
Display 4692921138614786 (HWC display 2): port=2 pnpId=NXP displayName="NXP
 Android"
Display 18309706364381699 (HWC display 3): port=3 pnpId=NXP displayName="NXP
 Android"

2. Use the following commands to get the touch input location:

getevent -i | grep location location:
location: "usb-xhci-hcd.1.auto-1.3.4/input0"
location: "usb-xhci-hcd.1.auto-1.2.4/input0"

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be
modified according to the actual connection. One display port can be bound with multiple input ports.

<ports>
<port display="0" input="usb-xhci-hcd.1.auto-1.1.4/input0" />
<port display="1" input="usb-xhci-hcd.1.auto-1.2.4/input0" />
<port display="2" input="usb-xhci-hcd.1.auto-1.3.4/input0" />
<port display="3" input="usb-xhci-hcd.1.auto-1.4.4/input0" />
<port display="0" input="usb-xhci-hcd.1.auto-1.4/input0" />
<port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</ports>

To make the modifications take effect, you can modify the source file under the ${MY_ANDROID}/device/
nxp/ directory and re-build the images. Keep the connection of display devices and input devices unchanged
and reflash the images. You can also disable DM-verity on the board and then use the adb push command to
push the file to the vendor partition to overwrite the original one.

8.3.3.2 Enabling multi-client input method

Only multi-client IMEs support typing at the same time with different displays. The following is the way to enable
the pre-installed multi-client IME.

Enable multi-client IME for the side-loaded sample multi-client IME
adb root
adb shell setprop persist.debug.multi_client_ime
 com.example.android.multiclientinputmethod/.MultiClientInputMethod
adb reboot

To disable multi-client IME on non-supported devices, clear persist.debug.multi_client_ime as follows.
Then, reboot the system to make it take effect.

Disable multi-client IME again
adb root
adb shell "setprop persist.debug.multi_client_ime ''"
adb reboot

The pre-installed multi-client IME in the system is a sample multi-client IME from AOSP. The performance
is not as good as the default Google Input Method Editor. To develop multi-client IME, see the document in
source code (${MY_ANDROID}/frameworks/base/services/core/java/com/android/server/
inputmethod/multi-client-ime.md).

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
37 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

8.3.3.3 Launching applications on different displays

To launch an application to a display, select the Home application (MultiDisplay or Quickstep). The MultiDisplay
is the new launcher for multi-display feature. The Quickstep is the original launcher of Android system. If
Quickstep is selected as the Home application, you can also tap the "MD Launcher" application to get multi-
display home screen. Select different display ports on the top of the pop-up menu, the selected application is
displayed on the specific display port.

8.3.4 Configuring the primary display resolution

The whole Android UI stack needs a display resolution to be defined before Android framework boots up.

In normal Android and car2 build, the display resolution is obtained when enumerating /dev/dri/cardX in
display HAL. The system selects the best aligned resolution when the ro.boot.displaymode property is set,
or select the default "1080p60" when the property is not set.

In car build, the predefined resolution is defined by the ro.boot.fake.ui_resolution property and it
should be aligned with physical display device. When the physical display is ready, the PollFileThread gets the
event and enumerates the /dev/dri/cardX again to configure the physical display.

When the MCU takes over the display, the resolution of the display is hardcoded in the MCU-SDK code by
macro APP_FRAME_HEIGHT and APP_FRAME_WIDTH in the isi_example.h file. This resolution should align
with Android UI settings, or the display experience is different.

8.4 HVAC configuration
HVAC is short for "Heating, Ventilation and Air Conditioning". This section describes the interfaces to control the
HVAC system. It helps customers to do customization work on HVAC.

8.4.1 Interfaces to control the HVAC system

For images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz built with the lunch target
mek_8q_car-userdebug, see the following table to control the HVAC system.

AP-> Cortex-M4 Cortex-M4 -> AP (input on
the Cortex-M4 console)

Comment

AC ON Cortex-M4 Console has the
following print when AC is on:
Android control: AC_ON, on/off

=>report ac_on 0/1
AC on the panel is on/off.

-

Fan direction Android control: FAN_DIRECTION,
0x2
Typical value:
0x1 (to face)
0x2 (to floor)
0x03 (to face and floor)
0x06 (to floor and defrost)

=>report fan_direction 0x1/0x
2/0x03/0x06
It sets the fan direction.

-

Fan speed Android control: FAN_SPEED, 0x6
Typical value: 0x00(off)/0x01/0x02/
0x03/0x04/0x05/0x06(MAX)

=>report fan_speed 1/2/3/4/
5/6
It sets the fan speed.

-

HVAC power on Cortex-M4 Console has the
following print when HVAC is on:

=>report hvac_power 0/1
It sets the HVAC power.

-

Table 21. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
38 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

AP-> Cortex-M4 Cortex-M4 -> AP (input on
the Cortex-M4 console)

Comment

Android control: HVAC_POWER_
ON, on/off

AUTO ON Cortex-M4 Console has the
following print when HVAC is auto:
Android control: AUTO_ON, on/off

=>report auto_on 0/1
AUTO on the panel is on/off.

-

Defrost Left one: Android control:
DEFROST, index=1, on/off
Right one: Android control:
DEFROST, index=2, on/off

Left one:=>report defrost 0/1
1
defrost on the panel is on/off.
Right one:=>report defrost 0/
1 2
defrost on the panel is on/off.

-

Temperature Left temp +-: Android control: AC_
TEMP, index=49, temp=16.16
Right temp +-: Android control: AC_
TEMP, index=68, temp=18.18

=>report ac_temp 23.45 49/
68 sends 23.45 Centigrade
value to the Android side,
and the left/right HVAC temp
bar changes to 74.

You can calculate the
Fahrenheit temp with the
following ways: Fahrenheit
= 32 + 1.8 * Centigrade
Fahrenheit: the num shown
in hvacCentigrade: printed on
the Cortex-M4 console.

RECIRC Cortex-M4 Console has the
following print when recirc is on:
Android control: RECIRC_ON, off/
on

=>report recirc_on 0/1
RECIRC on the panel is on/
off.

-

SEAT TEMPER
ATURE

Left one: Android control: SEAT_
TEMP, index=1, values 0,1,2,3
Right one: Android control: SEAT_
TEMP, index=4, values 0,1,2,3

=>report seat_temp 1/4
0/1/2/3

-

Table 21. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz...continued

For images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz built with the lunch target
mek_8q_car2-userdebug, see the following table to control the HVAC system.

AP-> dummy vehicle driver Cortex-M4 -> dummy
vehicle driver

Comment

AC ON AP Console has the following print
when AC is off/on: set fan AC on with
value 0/1

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/ac_on
AC on the panel is on/off.

Fan direction Set fan direction with value 8
Typical value:
0x1 (to face)
0x2 (to floor)
0x03 (to face and floor)
0x06 (to floor and defrost)

echo 1/2/3/6 > /sys/
devices/platform/
vehicle-dummy/fan_dir
ection

Fan speed Set fan speed with value 8
Typical value: 0x00(off)/0x01/0x02/
0x03/0x04/0x05/0x06(MAX)

echo 1/2/3/4/5/6 > /
sys/devices/platform/
vehicle-dummy/fan_
speed
It sets the fan speed.

Table 22. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
39 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

AP-> dummy vehicle driver Cortex-M4 -> dummy
vehicle driver

Comment

HVAC power on HVAC on: Android control: HVAC_
POWER_ON, on/off

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/hvac_on

AUTO ON Set auto on with value 0/1
Set auto off/on

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/auto_on
AUTO on the panel is on/off.

Defrost Left one: set defroster index 1 with
value 0/1
Right one: set defroster index 2 with
value 0/1

Left one: echo 0/1
> /sys/devices/
platform/vehicle-
dummy/defrost_right
defrost on the panel is close/
open.
Right one: echo 0/
1 > /sys/devices/
platform/vehicle-
dummy/defrost_right
defrost on the panel is on/off.

Temperature Left temp +-: set temp index 49
with value 1097859072
Right temp +-: set temp index 68
with value 1100422258

echo 1095528903 > /
sys/devices/platform/
vehicle-dummy/temp_
left
The left HVAC temp bar
changes to 55.

You can calculate the
Fahrenheit temp as follows:
Fahrenheit = 32 + 1.8 *
Centigrade
Fahrenheit: the num shown
in HVAC
Centigrade: 1095528903 is
the float of Centigrade.

RECIRC Recirc on: set recirc on with value 0/1 echo 0/1 > /sys/
devices/platform/
vehicle-dummy/recirc_
on
RECIRC on the panel is on/
off.

SEAT TEMPER
ATURE

Control seat temperature with values
0/1/2/3/4. Value 0 means OFF.

echo 0/1/2/3
> /sys/devices/
platform/ vehicle-
dummy/seat_temp_left
echo 0/1/2/3
> /sys/devices/
platform/ vehicle-
dummy/seat_temp_right

-

Table 22. HVAC test items for automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz...continued

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can
support only one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the
configurations to enable it and disable the USB 3.0 gadget driver.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
40 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

For i.MX 8QuadMax MEK, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 9ceb9d58f1..a54766eb6a 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -101,13 +101,11 @@ CONFIG_SPL_DM_USB_GADGET=y
CONFIG_USB=y
CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_USB_GADGET_MANUFACTURER="FSL"
CONFIG_USB_GADGET_VENDOR_NUM=0x0525
CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
CONFIG_USB_GADGET_DUALSPEED=y
CONFIG_SPL_USB_GADGET=y
@@ -124,7 +122,7 @@ CONFIG_FSL_FASTBOOT=y
CONFIG_FASTBOOT_BUF_ADDR=0x98000000
CONFIG_FASTBOOT_BUF_SIZE=0x19000000
CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0
CONFIG_BOOTAUX_RESERVED_MEM_BASE=0x88800000
CONFIG_BOOTAUX_RESERVED_MEM_SIZE=0x02000000
diff --git a/include/configs/imx8qm_mek_android_auto.h b/include/configs/
imx8qm_mek_android_auto.h
index 793530c61a..5bef17b451 100644
--- a/include/configs/imx8qm_mek_android_auto.h
+++ b/include/configs/imx8qm_mek_android_auto.h
@@ -51,7 +51,6 @@
#define CONFIG_SYS_MALLOC_LEN (64 * SZ_1M)
#endif
-#define CONFIG_FASTBOOT_USB_DEV 1
#define CONFIG_ANDROID_RECOVERY
#define CONFIG_CMD_BOOTA

For i.MX 8QuadXPlus, to enable USB2.0 for the u-boot-imx8qxp.imx, make the following changes under
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
index e3f60821b0..6b59fa71ab 100644
--- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
@@ -103,13 +103,11 @@ CONFIG_SPL_DM_USB_GADGET=y
CONFIG_USB=y
CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_USB_GADGET_MANUFACTURER="FSL"
CONFIG_USB_GADGET_VENDOR_NUM=0x0525
CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
41 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

-CONFIG_USB_CDNS3_GADGET=y
CONFIG_USB_GADGET_DUALSPEED=y
CONFIG_SPL_USB_GADGET=y
CONFIG_SPL_USB_SDP_SUPPORT=y
@@ -124,7 +122,7 @@ CONFIG_FSL_FASTBOOT=y
CONFIG_FASTBOOT_BUF_ADDR=0x98000000
CONFIG_FASTBOOT_BUF_SIZE=0x19000000
CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0
CONFIG_SYS_I2C_IMX_VIRT_I2C=y
CONFIG_I2C_MUX_IMX_VIRT=y
CONFIG_IMX_VSERVICE_SHARED_BUFFER=0x90000000
diff --git a/include/configs/imx8qxp_mek_android_auto.h b/include/configs/
imx8qxp_mek_android_auto.h
index 95ec29d307..376b306c72 100644
--- a/include/configs/imx8qxp_mek_android_auto.h
+++ b/include/configs/imx8qxp_mek_android_auto.h
@@ -45,7 +45,6 @@
#endif
#define CONFIG_SKIP_RESOURCE_CHECKING
-#define CONFIG_FASTBOOT_USB_DEV 1
#define CONFIG_ANDROID_RECOVERY
#define CONFIG_CMD_BOOTA

More than one defconfig file is used to build U-Boot images for one platform. Make the same changes on
defconfig files as above to enable USB 2.0 for other U-Boot images. You can use the following command under
the ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/ directory to list all related defconfig files:

ls configs | grep "imx8q.*android.*"

Note:

U-Boot used by UUU is compiled with imx8qm_mek_android.h and imx8qxp_mek_android.h, not the
imx8qm_mek_android_auto.h and imx8qxp_mek_android_auto.h listed above.

8.6 Trusty OS/security configuration
Trusty OS firmware is used in the i.MX Android 13 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports i.MX 8QuadMax MEK and i.MX 8QuadXplus
MEK Board. This section describes some basic configurations to make Trusty OS work on MEK boards. For
more configurations about security-related features, see the i.MX Android Security User's Guide (ASUG).

Customers can modify the Trusty OS code to make different configurations and enable different features. First,
use the following commands to fetch code to build the target Trusty OS binary.

First, create a directory for Trusty OS code and enter this directory.

$ repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-android-13 -m
 imx-trusty-automotive-13.0.0_2.3.0.xml
$ repo sync
$ source trusty/vendor/google/aosp/scripts/envsetup.sh
$ make imx8qxp #i.MX 8QuadXPlus MEK
$ cp ${TRUSTY_REPO_ROOT}/build-imx8qxp/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-
proprietary/uboot-firmware/imx8q_car/tee-imx8qx.bin

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
42 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Then, build the images, and tee-imx8qx.bin is integrated into bootloader-imx8qxp.img and
bootloader-imx8qxp-secure-unlock.img. Flash the spl-imx8qxp.bin and bootloader-
imx8qxp.img files to the target device.

Note:

• For i.MX 8QuadMax MEK, use make imx8qm_a72 to build the Trusty OS image, and copy the final
lk.bin to ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-
imx8qm.bin.

• ${TRUSTY_REPO_ROOT} is the root directory of the Trusty OS codebase.
• ${MY_ANDROID} is the root directory of the Android codebase.

8.6.1 Initializing the secure storage for Trusty OS

Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC
chip. RPMB needs to be initialized with a key, and default execution flow of images does not make this
initialization.

Initialize the RPMB with CAAM hardware bound key or vendor specified key are both supported. Note that the
RPMB key cannot be changed once it is set.

• To set a CAAM hardware bound key, perform the following steps:
Make your board enter fastboot mode, and then execute the following commands on the host side:
– fastboot oem set-rpmb-hardware-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

• To set a vendor specified key, perform the following steps:
Make your board enter fastboot mode, and then execute the following commands on the host side:
– fastboot stage < path-to-your-rpmb-key >
– fastboot oem set-rpmb-staged-key
After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.
Note:
– The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.
– A prebuilt rpmb_key_test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated

with the following shell commands:
– touch rpmb_key_test.bin

– echo -n "RPMB" > rpmb_key_test.bin

– echo -n -e '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' >> rpmb_key_test.bin

The '\xHH' means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above
with the key you want to set.

• Note:
For more details, see the i.MX Android Security User's Guide (ASUG).

8.6.2 AVB key provision

The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the
vbmeta image. The public key is used by AVB to authenticate the vbmeta image. The following figure shows the
relationships between the private key and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot.
With Trusty OS, it is saved in secure storage.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
43 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Figure 5. Relationship between AVB key and vbmeta

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following
commands to generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
 test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb
supports such commands. You can get the public key test_rsa4096_public.bin with the following
commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output
 test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_
ANDROID}/external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the
BOARD_AVB_ALGORITHM and BOARD_AVB_KEY_PATH to use different algorithm and private key:

BOARD_AVB_ALGORITHM := <algorithm-type>
BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM)
can help accelerate the hash calculation. The Android build system signs the vbmeta image with the private key
above and stores one copy of the public key in the signed vbmeta image. During AVB verification, the U-Boot
validates the public key first and then uses the public key to authenticate the signed vbmeta image.

8.6.2.2 How to set the vbmeta public key

The public key must be stored in Trusty OS backed RPMB for Android system when Trusty OS is enabled.
Perform the following steps to set the public key.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
44 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Make your board enter fastboot mode, and execute the following commands on the host side:

fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private
key is specified, set the public key as prebuilt testkey_public_rsa4096.bin, which is extracted from the
default private key testkey_rsa4096.pem.

8.6.3 Key attestation

The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-
backed, what the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the
corresponding certificate chains to partners from the Android Partner Front End (APFE). After retrieving the
"keybox" from Google, you need to parse the "keybox" and provision the keys and certificates to secure storage.
Both keys and certificates should be Distinguished Encoding Rules (DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure
storage is properly initialized for Trusty OS:

• Set RSA private key:

fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key

• Set ECDSA private key:

fastboot stage <path-to-ecdsa-private-key>
fastboot oem set-ec-atte-key

• Append RSA certificate chain:

fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert

Note:
This command may need to be executed multiple times to append the whole certificate chain.

• Append ECDSA certificate chain:

fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert

Note:
This command may need to be executed multiple times to append the whole certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly. Besides,
secure provision provides a way to prevent the plaintext attestation keys and certificates from exposure. For
more details, see the i.MX Android Security User's Guide (ASUG).

8.7 SCFW configuration
SCFW is a binary stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into
bootloader.

To customize the SCFW, download the SCFW porting kit on the i.MX Software and Development Tools page.
For this release, click Embedded Linux, and then click the RELEASES tab, find the Linux LF5.15.71_2.2.0

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
45 / 63

https://www.nxp.com/imx6tools

NXP Semiconductors AAUG
Android Automotive User's Guide

release and download its corresponding SCFW Porting kit. Then, decompress the file with the following
commands:

tar -zxvf imx-scfw-porting-kit-1.15.0.tar.gz
cd packages
chmod a+x imx-scfw-porting-kit-1.15.0.bin
./imx-scfw-porting-kit-1.15.0.bin
cd imx-scfw-porting-kit-1.15.0/src
tar -zxvf scfw_export_mx8qm_b0.tar.gz # for i.MX 8QuadMax MEK
tar -zxvf scfw_export_mx8qx_b0.tar.gz # for i.MX 8QuadXPlus MEK

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration
file, taking i.MX 8QuadXPlus MEK as an example, it is the scfw_export_mx8qx_b0/platform/board/
mx8qx_mek/board.c. Based on this file, some changes are made for Android Automotive and the file is
stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/board-
imx8qxp.c.

You can copy board-imx8qxp.c/board-imx8qm.c in vendor/nxp/fsl-proprietary to the SCFW
porting kit, modify it, and then build the SCFW.

The following are steps to build SCFW (taking i.MX 8QuadXPlus as example):

1. Download the GCC tool from the arm Developer GNU-RM Downloads page. It is recommended to
download the version of "6-2017-q2-update" as it is verified.

2. Unzip the GCC tool to /opt/scfw_gcc.
3. Export TOOLS="/opt/scfw-gcc".
4. Copy the board configuration file from ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-

firmware/imx8q/board-imx8qxp.c to the porting kit.

cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-
imx8qxp.c scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c

5. Build SCFW.

cd scfw_export_mx8qx_b0 # enter the directory just uncompressed for i.MX
 8QuadXPlus MEK
make clean
make qx R=B0 B=mek

6. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qx_b0/scfw_tcm.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8q_car/mx8qx-scfw-tcm.bin

7. Build the bootloader.

cd ${MY_ANDROID}
./imx-make.sh bootloader -j4

Note:

To build SCFW for i.MX 8QuadMax MEK, use "qm" to replace "qx" in the steps above.

8.8 Power state configuration
Android automotive power HAL supports power request property, which can be used to control the system
power state: ON, OFF, or suspend.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
46 / 63

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

NXP Semiconductors AAUG
Android Automotive User's Guide

It is assumed that the power state of the Cortex-A core is controlled by separate power controller. In the
following use case, MCU and dummy vehicle driver play the role of power controller in the car and car2 image
accordingly.

Connect the board to a BT device to better show the system power state.

Power control
from car MCU
console

Power control from car2 AP
console

Comment

shutdown now power 1 1 echo "1 1" > /sys/
devices/platform/vehicle-
dummy/power_req

The system shuts down right now. Then, long press
the power-on key to wake up the system.

suspend power 1 2 echo "1 2" > /sys/
devices/platform/vehicle-
dummy/power_req

The system disconnects from BT, waits for all tasks
to be done, and then enter suspend mode. Press
the power-on key to wake up the system. BT is
connected again. The system wakes up by itself
every 60 seconds due to battery health checking.

shutdown
postpone

power 1 3 echo "1 3" > /sys/
devices/platform/vehicle-
dummy/power_req

The system waits for all tasks to be done, and then
shuts down.

cancel power 2 0 echo "2 0" > /sys/
devices/platform/vehicle-
dummy/power_req

Cancel the shutdown and suspend command if
it has not been executed. First, enter power 1
3 for car image or echo 1 3 to power_req for
car2 image. The system disconnects from the BT,
turns off the display, and prepares for shutdown.
Before the system shuts down, enter power 2 0
for car image (or echo 2 0 to power_req for car2
image). The system cancels shutdown command,
turns on the display, and connects BT.

Table 23. Power state configuration

8.9 Boot time tuning

8.9.1 Boot time overview

In this document, the boot time is the time it takes the board the to start from cold boot to when Android
Automotive Launcher UI appears on the display screen when the hardware is not in the first-time boot from
factory. Due to the fact that the first successful boot sets up the accelerating software executing environment, it
takes longer time to boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug
efficiency, some debug purpose modules and interfaces are kept in the release. Before the product is ready
to ship, these modules and interfaces can be configured to save the boot time and make the boot time
performance best in the final product.

8.9.2 What NXP did to tune the boot time

To make Android Automotive boot faster, lots of changes were made on different modules to achieve better
performance. The following changes impact the boot time:

• Removed the debug command in U-Boot and Linux kernel to save its initialization time and image size.
• Built Linux kernel as zImage to save the image size.
• Removed unused driver in U-Boot and Linux kernel.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
47 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

• Make some drivers as kernel module, and load them when Android boot is completed so that the connectivity
devices and camera driver are initialized after the Android Automotive Launcher UI is shown on the display.
This makes the Android Automotive Launcher UI show earlier.

• Removed unused device from Android Framework, such as Ethernet, Sensors.
• Refined Android Verify Boot procedure.
• Optimized Android Framework to make service execute on different CPUs.
• Delayed some non-critical services for SystemUI module of Android after boot is completed.
• Delayed Zygote32 to when UI is shown.
• Delayed Bluetooth service to when UI is shown.
• Removed some unused service in Android Framework.
• Booted from the Cortex-A72 core instead of Cortex-A53 (only for i.MX 8QuadMax MEK).

All the changes above do not impact any of the functions and the performance except the boot time.

8.9.3 How to get the shorter boot time

For debug and development purpose, the U-Boot boot delay and the logs in U-Boot, Trusty OS, and Linux
kernel are enabled by default. In field measurement, the Linux kernel dmesg takes about 1.15 seconds during
the boot process because UART is a slow device. Therefore, before the final product, it is recommended to
remove the U-Boot delay and the logs in U-Boot, Trusty OS, and Linux Kernel by performing the following
operations:

1. Set CONFIG_BOOTDELAY=-2 in the U-Boot defconfig file to remove boot delay.
2. Remove CONFIG_SPL_SERIAL_SUPPORT=y in U-Boot defconfig file to disable logs at SPL stage.
3. Set CONFIG_SERIAL_PRESENT=n in U-Boot defconfig file to disable logs in U-Boot proper. Disable the

UART node in U-Boot DTS. Take i.MX 8QuadMax as example:

--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
diff --git a/arch/arm/dts/fsl-imx8qm-mek-auto.dts b/arch/arm/dts/fsl-imx8qm-
mek-auto.dts
index 461ee46fa8..58356e1466 100644
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
@@ -54,6 +54,10 @@
 };
};
+&lpuart0 {
+ status = "disabled";
+};
/delete-node/ &pd_dc0;
/delete-node/ &pd_dc1;
/delete-node/ &pd_isi_ch0;
•Disable "DEBUG" in Trusty OS to remove TA logs like below:
diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index e58c15a..8c20e99 100644
--- a/project/imx8-inc.mk
+++ b/project/imx8-inc.mk
@@ -16,7 +16,7 @@
 LOCAL_DIR := $(GET_LOCAL_DIR)
-DEBUG := 1
+DEBUG := 0
 WITH_SMP := 1
 SMP_MAX_CPUS ?= 4
 SMP_CPU_CLUSTER_SHIFT ?= 2

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
48 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

4. Modify the Linux bootargs in build system. Append loglevel=0 in it, which will prevent the dmesg printing
on the console when the system is booted.

5. By default, the images are built by userdebug build. When it is changed to user build, it saves about 0.5
seconds boot time.

Note:

When setting loglevel=0, the debug message is not displayed directly to the console. To check it, however,
you can use the $dmesg command in the shell to output it.

8.9.4 How to build system.img with squashfs files system type

The default file system of system.img is ext4. After the system.img file system type is changed to
squashfs, the system.img size can be reduced to about 50%. Smaller storage size costs more CPU
resource but less eMMC IO operation, so this is a balanced option between IO and CPU loading. By default,
this is not enabled. If the target device has a strong CPU but weak eMMC, squashfs is an option for boot time
tuning.

To change the default file system type to squashfs, perform the following steps:

1. Add the following Linux kernel macro in ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/
arch/arm64/configs/android_car_config:
• CONFIG_SQUASHFS=y
• CONFIG_SQUASHFS_LZ4=y
• CONFIG_SQUASHFS_XATTR=y
• CONFIG_SQUASHFS_DECOMP_MULTI=y

2. Add the following configuration in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/BoardConfig.mk:

BOARD_SYSTEMIMAGE_FILE_SYSTEM_TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX
8QuadMax MEK Board, but there is no boot time optimization on the i.MX 8QuadXPlus MEK Board.

8.9.5 How to measure the boot time

Per the definition of the boot time described in Section 8.9.1, users need to measure the boot time duration from
power-on to when the display shows the desktop.

Pay attention to the following:

• Keep the device in lock state by $fastboot oem lock.
• Make sure that the device is powered down safely. $setprop sys.powerctl shutdown makes the device

power down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.
• Make sure the action of Section 8.9.3 has been done.

The boot time is different for different boot that the AOSP Android Framework schedules the system services.
To evaluate the boot time performance, calculate the average values based on about 50 times boot. According
to the boot time analyzing tools provided by Google (https://source.android.com/devices/tech/perf/boot-
times), evaluate the time by that first sys.boot_completed=1 shown from initialization logs. The process is
easier. You can also get the bootanylaze tool from ${MY_ANDROID}/system/extras/boottime_tools/
bootanalyze. To make sure that this log is printed, append printk.devkmsg=on in bootargs. Based on the
timestamp for the first time, sys.boot_completed=1 is displayed in the log. This is the boot time from kernel
started to Android Framework boot completed.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
49 / 63

https://source.android.com/devices/tech/perf/boot-times
https://source.android.com/devices/tech/perf/boot-times

NXP Semiconductors AAUG
Android Automotive User's Guide

Then, evaluate the boot time for the modules, which boot before the Linux kernel. It is easy to evaluate it by
adding the following codes to print the timer value before jumping to Linux in U-Boot.

diff --git a/arch/arm/lib/bootm.c b/arch/arm/lib/bootm.c
index 96cac780b5..aae07a98ba 100644
--- a/arch/arm/lib/bootm.c
+++ b/arch/arm/lib/bootm.c
@@ -423,6 +423,8 @@ int do_bootm_linux(int flag, int argc, char * const argv[],
 return 0;
}
+ printf("%d\n", get_timer(0));
+
if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
 boot_jump_linux(images, flag);
 return 0;

The boot evaluation by software is the sum of the timestamp for the first time we see
sys.boot_completed=1 and the timer values printed in U-Boot.

8.10 Configuration for the load orders of driver modules

8.10.1 Why does Android Automotive have driver load orders

As the boot time performance of Android Automotive is important, make Linux kernel boot as soon as possible
to enable some critical services earlier. Therefore, some drivers that are not critical for the Android Automotive
booting are not loaded during the early boot stage. The set of drivers is built into kernel modules during build
time and are loaded and probed after the Android Automotive key service boots successfully. This makes the
display and UI ready earlier.

In this release, the following module-related drivers are probe before the initialization process starts:

• Camera (only in mek_8q_car)
• USB
• Wi-Fi

8.10.2 How does the non-critical driver load

In i.MX Android Automotive, there are two kinds of build. The mek_8q_car and mek_8q_car2. mek_8q_car
have special design to support the EVS features, which use the Arm Cortex-M4 core to handle camera-related
modules before the Android display related service is ready. Therefore, mek_8q_car and mek_8q_car2 loads
different driver modules in different stages.

In i.MX Android Automotive, all kernel driver modules are loaded in init.rc by the script named
init.insmod.sh.

For mek_8q_car, when the EVS service running in the Arm Cortex-M4 core releases the hardware resource
for camera modules, Android Automotive loads the camera-related driver modules. This typically happens
when the late_start service is triggered in init.rc, if the EVS service running in Android Automotive
is initialized successfully. This part of drivers is listed in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/
setup.core.cfg. After the core drivers are probed successfully, it triggers low-priority driver modules to load
and probe by triggering the service named boot_completed_main_sh, which loads drivers listed in ${MY_
ANDROID}/device/nxp/imx8q/mek_8q/setup.main.cfg in init.rc. The "main" drivers are the rest of
driver modules.

For mek_8q_car2, not like mek_8q_car, it has no "core" driver modules to be loaded and probed during the
boot process. As all necessary camera driver modules are built in inside the kernel image, like mek_8q_car,
AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
50 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

the "main" drivers are the same ones like rfkill for BT, USB, and Wi-Fi. The driver load and probe are triggered
once sys.boot_completed property is set to be 1. This is handled in init.rc.

8.10.3 How to change driver load orders

Generally, the driver follows the priority below to be loaded:

• Built-in
• Listed in early.init_car_gki.cfg
• Listed in setup.main.gki.cfg

In each cfg file, the drivers are loaded one by one. To change the driver load orders, in early.init.cfg or
setup.main.cfg, just change the text list order. If some built-in drivers need to be loaded in low priority, follow
the changes below:

• In the kernel defconfig file, mark specific CONFIG to be m instead of y .
• Modify the BOARD_VENDOR_KERNEL_MODULES in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/Share
dBoardConfig.mk to copy the specific .ko files to the target image.

• Add the driver module name in early.init_car_gki.cfg or setup.main.gki.cfg based on its loading
priority.

8.11 Dual-bootloader configuration

8.11.1 Dual-bootloader layout

Dual-bootloader feature splits the default u-boot.imx into two parts: spl.bin and bootloader.img. The
spl.bin goes to the bootloader0 partition, which is managed by U-Boot itself. The bootloader.img goes to the
bootloader_a/bootloader_b partitions, which are managed by GPT and thus gets a chance to be updated.

The layout of dual-bootloader is as follows (taking i.MX 8Quad as an example):

The bootloader.img contains U-Boot proper, Arm Trusted Firmware, and Trusty OS. All of them can be
updated easily through OTA to fix some power or security issues.

8.11.2 Configuring dual-bootloader

Dual-bootloader feature is enabled for Android Automotive by default. It is enabled by configuring
CONFIG_DUAL_BOOTLOADER in U-Boot. Take i.MX 8Quad as an example:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 82ec5ca..e0b210e 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -170,4 +170,4 @@ CONFIG_APPEND_BOOTARGS=y
CONFIG_LIBAVB=y
CONFIG_SHA256=y
CONFIG_SPL_MMC_WRITE=y
+CONFIG_DUAL_BOOTLOADER=y
diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
index 30fe32d..2f709d2 100644
--- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
@@ -179,4 +179,4 @@ CONFIG_APPEND_BOOTARGS=y
CONFIG_LIBAVB=y

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
51 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

CONFIG_SHA256=y
CONFIG_SPL_MMC_WRITE=y
+CONFIG_DUAL_BOOTLOADER=y

Then, imx-mkimage needs to pack spl.bin and bootloader.img separately. Taking i.MX 8QuadMax and
i.MX 8QuadXPlus as an example, two targets are used to handle the dual-bootloader image generation with
Cortex-M4 images in imx-mkimage:

i.MX 8QuadMax: flash_b0_spl_container_m4_1_trusty
i.MX 8QuadXPlus: flash_all_spl_container_ddr_car

When Trusty OS is enabled, bootloader rollback index can be used to prevent rollback attack. For more details
to set the bootloader rollback index, see Section 2.3.5 in the i.MX Android Security User's Guide (ASUG).

Besides, after enabling dual-bootloader, the steps to sign images with the CST tool are different. For more
information, see Section 2.1 in the i.MX Android Security User's Guide (ASUG).

8.12 Miscellaneous configuration

8.12.1 Changing boot command line in boot.img

After boot.img is used, the default kernel boot command line is stored inside this image. It packages together
during Android build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the ${MY_ANDROID}/device/
nxp/imx8q/mek_8q/BoardConfig.mk file.

8.12.2 Notices before the debugging work

When doing the customization work, you may need to do some debugging work. The debugging work will be
convenient and flexible if the read-only filesystems are remounted as writable, so that files in it can be replaced
with the adb push command. It helps to avoid flashing the images again and saves time.

To remount the read-only filesystems, perform the following steps:

1. Unlock the device.
2. Boot up the system to Android platform.
3. Execute the following commands on the host. The second command takes seconds to finish.

$ adb root
$ adb disable-verity

4. Reboot the device, and execute the following command on the host:

$ adb root
$ adb remount

Then, the images can be pushed to the board with the adb push command. Before the further debugging
work, be aware of the following notices:

• Do not erase the "userdata" partition after adb disable-verity is executed.
With the dynamic partition feature enabled in i.MX Android images, and the size is not specified for system,
system_ext, vendor, and product partitions when building the images, overlayfs is used when remounting the
read-only filesystems. An upper directory that can be written in OverlayFS is needed in this condition. When
the adb push command is executed, the files are pushed to the upper directory of OverlayFS, while the
original read-only filesystems are not modified.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
52 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

i.MX Android images use only one partition named "super" to store images in logical partitions, and
ext4 filesystem is used for the userdata partition, which is mounted on /data. When executing the adb
disable-verity command, an image is allocated under /data/gsi/remount/scratch.img.0000. Its
size is half the size of the "super" partition and should not be greater than 2 GB. The layout information of this
image is stored in /metadata/gsi/remount/lpmetadata in the format logical partition metadata.
When rebooting the system, at the first stage of the init program, the information in /metadata/gsi/
remount/lpmetadata is used to create a logical partition named "scratch", and it is mounted on /mnt/
scratch. This is used as the upper directory in OverlayFS used in remount. When the adb push command
is executed to modify the originally read-only filesystems, files are written to the "scratch" partition.
At the first stage of the init program, the userdata partition is not mounted. The code judges whether the
backing image of the scratch partition exists in the userdata partition by checking whether the /metadata/
gsi/remount/lpmetadata file can be accessed. Therefore, if the userdata partition is erased, but the
logical partition is still created, this could be catastrophic and may make the system crash.

• To make changes to files from the console, execute remount on the console first.
adb and sh are in different mount namespaces. adb remount does not change the mount status that
sh sees.

• For MEK boards, if files need to be pushed to /vendor/etc, push them to another path.
Images for i.MX 8Quad Max MEK and i.MX 8QuadXPlus MEK are built together with one target. Media codec
configuration files' names and paths are hardcoded in framework, while these two SoCs need different media
codec configurations. It means that the media codec configuration files for these two boards with different
content should have the same name and being accessed with the same path. Therefore, OverlayFS is used,
and images for these two boards have different OverlayFS upper directories. The mount command can be
found in ${MY_ANDROID}/device/nxp/imx8q/mek_8q/init.rc:

mount overlay overlay /vendor/etc ro lowerdir=/vendor/vendor_overlay_soc/
${ro.boot.soc_type}/vendor/etc:/vendor/etc,override_creds=off

The value of ${ro.boot.soc_type} can be imx8qxp or imx8qm here.
With the preceding command executed, access to files under /vendor/etc can access files both under
/vendor/etc and /vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc. The /
vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc:/vendor/etc directory is the
upper directory in OverlayFS and /vendor/etc is both the lower directory and mount point.
After remount, the lower directory /vendor/etc is still read-only, and files can be pushed to other sub-paths
under /vendor except /vendor/etc. To push a modified file, which should be accessed from /vendor/
etc, push it to /vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc, and then reboot
the system to make it take effect.
For example, if you modified the file cdnhdmi_config.json, a file should be under /vendor/etc/
configs/audio/. Execute the following commands on the console:

su
umask 000
cd /vendor/vendor_overlay_soc/imx8qm/vendor/etc/
mkdir -p configs/audio/

Then, execute the following commands on the host:

sudo adb push cdnhdmi_config.json /vendor/vendor_overlay_soc/imx8qm/vendor/etc/

At last, reboot the device to make this change take effect.
There are two limitations here:
– To delete a file under /vendor/etc/, you can only rebuild the image and flash the vendor image again.
– The OverlayFS is mounted with a command in an init .rc file. The init .rc files are all parsed by the init

program before the OverlayFS is mounted. Therefore, to modify init .rc files under /vendor/etc, you can
only rebuild the image and flash the vendor image again.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
53 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

9 Generic Kernel Image (GKI) Development

The Generic Kernel Image (GKI) project addresses kernel fragmentation by unifying the core kernel and moving
SoC and board support out of the core kernel into loadable modules. The GKI kernel presents a stable Kernel
Module Interface (KMI) for kernel modules, so modules and kernel can be updated independently.

Devices that launch with the Android 13 (2023) platform release using kernel versions v5.15 or higher are
required to ship with the GKI kernel.

The following boards have enabled GKI:

• i.MX 8QuadMax
• i.MX 8QuadXPlus

9.1 Changes after GKI enabled
• boot.img

After GKI is enabled, boot.img is a composite image, which includes the Android Open Source Project
(AOSP) generic kernel image and boot parameters.
It is built from one prebuilt boot.img, stored in the Android source code ${MY_ANDROID}/vendor/nxp/
fsl-proprietary/gki/boot.img. This boot.img is certified and released from AOSP, and then signed
with the AVB key to generate the final boot.img.
By default, the UUU and fastboot script flash this image.
To build boot.img, run ./imx-make.sh or make bootimage.

• system_dlkm.img
system_dlkm.img is signed by Google using the kernel build-time key pair and is compatible only with the
GKI it is built with. There is no ABI stability between boot.img and system_dlkm.img. For modules to load
correctly during runtime, boot.img and system_dlkm.img must be built and updated together.
It needs to be built with the following steps:
1. Download Google Released android14-6.1 GKI system_dlkm_staging_archive.tar.gz.
2. Run cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fsl-

proprietary/gki/system_dlkm_staging_archive.tar.gz.
3. Run tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging.
4. Run make system_dlkmimage.

• boot-imx.img
boot-imx.img is built from the i.MX kernel tree for debugging purposes. By default, it is built out by imx-
make.sh with TARGET_IMX_KERNEL=true, and then renamed from boot.img to boot-imx.img. For
details, see the last piece of code in the imx-make.sh build script.
Note: boot.img and boot-imx.img are generated by the imx-make.sh script as follows.

TARGET_IMX_KERNEL=true make ${parallel_option} ${build_bootimage}
 ${build_vendorbootimage} ${build_dtboimage} ${build_vendordlkmimage} || exit
if [-n "${build_bootimage}"] || [${build_whole_android_flag} -eq 1]; then
if [${TARGET_PRODUCT} = "evk_8mp"] || [${TARGET_PRODUCT} = "evk_8mn"] \
|| [${TARGET_PRODUCT} = "evk_8ulp"] || [${TARGET_PRODUCT} = "mek_8q"] \
|| [${TARGET_PRODUCT} = "mek_8q_car"] || [${TARGET_PRODUCT} =
 "mek_8q_car2"] \
|| [${TARGET_PRODUCT} = "evk_8mm"] || [${TARGET_PRODUCT} = "evk_8mq"]; then
 if [${sign_gki} -eq 1]; then
 mv ${OUT}/boot.img ${OUT}/boot-imx.img
 make bootimage
 fi
fi
fi

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
54 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

To build boot-imx.img, run ./imx-make.sh or TARGET_IMX_KERNEL=true make bootimage && mv
${OUT}/boot.img ${OUT}/boot-imx.img.

• Kernel defconfig
The kernel .config is generated by one generic gki_defconfig along with one board-specific config, like
imx8q_car_gki.fragment.

• Driver modules
As GKI requires, all vendor drivers need to be built as modules. Their configs are set as "m" in the board-
specific configuration file mentioned above. In addition, explicitly install those modules on board by adding
them to the following two Android predefined macros. For example, see ${MY_ANDROID}/device/nxp/
imx8q/mek_8q/SharedBoardConfig.mk:
– BOARD_VENDOR_RAMDISK_KERNEL_MODULES

Modules under this macro are copied to ${MY_ANDROID}/out/target/product/mek_8qvendor_
ramdisk/lib/modules, and then built as vendor_boot.img. They are installed to the kernel in the first
stage of initialization. In general, put essential modules here and be careful of the sequence.

– BOARD_VENDOR_KERNEL_MODULES
Modules under this macro are copied to ${MY_ANDROID}/out/target/product/mek_8q/ven
dor_dlkm/lib/modules, and then built as vendor_dlkm.img. They are installed later than
vendor_ramdisk, after the Android filesystem is ready.

Note:

Due to SoC errata TKT340553 in i.MX 8QuadMax, GKI is not fully enabled. The boot_8q_car.img and
system_dlkm_staging_8q_car are built locally for both i.MX 8QuadMax and i.MX 8QuadXPlus.

9.2 How to add new drivers
To add new drivers, perform the following steps:

1. Set the driver configuration to m in the configuration fragment file of the board:

diff --git a/arch/arm64/configs/imx8q_car_gki.fragment b/arch/arm64/configs/
imx8q_car_gki.fragment
index 594bf1228f72..b5585c423bbf 100644
--- a/arch/arm64/configs/imx8q_car_gki.fragment
+++ b/arch/arm64/configs/imx8q_car_gki.fragment
@@ -109,3 +109,5 @@ CONFIG_DMABUF_IMX=m
 # CONFIG_IMX_SENTNL_MU is not set
 # CONFIG_IMX_RPMSG_TTY is not set
+CONFIG_ZRAM=m
+CONFIG_ZSMALLOC=m

2. Add the driver .ko files to the board:
Note: If other driver modules depend on them, put them before others.

diff --git a/imx8q/mek_8q/SharedBoardConfig.mk b/imx8q/mek_8q/
SharedBoardConfig.mk
index df7850b0b285..84d136c224cd 100644
--- a/imx8q/mek_8q/SharedBoardConfig.mk
+++ b/imx8q/mek_8q/SharedBoardConfig.mk
@@ -102,6 +104,10 @@ endif
BOARD_VENDOR_RAMDISK_KERNEL_MODULES += \
+$(KERNEL_OUT)/mm/zsmalloc.ko \
+$(KERNEL_OUT)/crypto/lzo.ko \
+$(KERNEL_OUT)/crypto/lzo-rle.ko \
+$(KERNEL_OUT)/drivers/block/zram/zram.ko \
$(KERNEL_OUT)/drivers/soc/imx/soc-imx8m.ko \

3. Fix the symbol issues.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
55 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

If some symbols are not exported but used by the added driver modules, perform the following steps to
export them:
a. Export symbols with EXPORT_SYMBOL_GPL(xxx).

Note: If the symbols are in the core kernel code (which means not in the loadable modules), such
changes must upstream to the AOSP GKI Kernel tree.

b. Add symbols to the AOSP GKI Kernel tree android/abi_gki_aarch64.stg.

9.3 How to build GKI locally
In the development stage, it is useful to build the GKI image locally to verify drivers.

1. Prepare the GKI Kernel build repository (taking the 6.1 kernel as an example):

mkdir gki && cd gki
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android14-6.1
repo sync

2. (Optional) Enable the early console.
Early console is useful. If the system is stuck at "Starting kernel ...", apply the following changes in
the GKI Kernel tree gki/common.

diff --git a/arch/arm64/configs/gki_defconfig b/arch/arm64/configs/
gki_defconfig
index 29782a39fffa..6cae9ad783b4 100644
--- a/arch/arm64/configs/gki_defconfig
+++ b/arch/arm64/configs/gki_defconfig
@@ -387,6 +387,7 @@ CONFIG_SERIAL_AMBA_PL011=y
CONFIG_SERIAL_AMBA_PL011_CONSOLE=y
CONFIG_SERIAL_SAMSUNG=y
CONFIG_SERIAL_SAMSUNG_CONSOLE=y
+CONFIG_SERIAL_IMX_EARLYCON=y
CONFIG_SERIAL_QCOM_GENI=y
CONFIG_SERIAL_QCOM_GENI_CONSOLE=y
CONFIG_SERIAL_SPRD=y
diff --git a/drivers/tty/serial/Kconfig b/drivers/tty/serial/Kconfig
index e2a2ff6c1296..52ad477c964a 100644
--- a/drivers/tty/serial/Kconfig
+++ b/drivers/tty/serial/Kconfig
@@ -500,7 +500,6 @@ config SERIAL_IMX_CONSOLE
config SERIAL_IMX_EARLYCON
 bool "Earlycon on IMX serial port"
 -depends on ARCH_MXC || COMPILE_TEST
 depends on OF
 select SERIAL_CORE
 select SERIAL_EARLYCON

3. Build the GKI Image.

tools/bazel run //common:kernel_aarch64_dist

The GKI boot.img is obtained from out/kernel_aarch64/dist/boot.img. The GKI
system_dlkm_staging_archive.tar.gz is obtained from out/kernel_aarch64/dist/system_
dlkm_staging_archive.tar.gz.

4. Build Android boot.img and system_dlkm.img.

cp out/kernel_aarch64/dist/boot_8q_car.img {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/boot.img
cd ${MY_ANDROID}
TARGET_IMX_KERNEL=true make bootimage

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
56 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/system_dlkm_staging_archive.tar.gz
cd {MY_ANDROID}/vendor/nxp/fsl-proprietary/gki
tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging_8q_car
cd ${MY_ANDROID}
make system_dlkmimage

5. Build Android boot_8q_car.img and system_dlkm_8q.img (only for i.MX 8QuadXPlus and i.MX
8QuadMax MEK boards).
To address TKT340553 Errata and support for multiple-state domains, i.MX 8QuadXPlus and i.MX
8QuadMax require boot_8q_car.img and system_dlkm_8q.img. This boot_8q_car.img and
system_dlkm_staging_8q are built locally with aosp/android14-6.1-2023-06. Then add the
following:

4546ce4e1756 MA-21443 usb: typec: tcpm: not sink vbus if operational current
 is 0mA
e01d5b00e46d MA-21424 ANDROID: sound: usb: Fix wrong behavior of vendor
 hooking
c50351a6e73e MLK-21052-08 clk: imx: Add CLK_SET_PARENT_NOCACHE
8e99deaf8919 drivers: base: move devices pm to tail when driver bound
4ef42b29925d PM / Domains: remove no governor for states warning
c959d2873210 PM / Domains: Choose the deepest state to enter if no devices
 using it
d15e8c9838e2 PM / Domains: Support enter deepest state for multiple states
 domains
2e8cc8f442a4 PM / Domains: Move the Subdomain check into _genpd_power_off
72276f7e6758 MLK-16005-2 soc: imx: scu: add the SW workaround for i.MX8QM
 TKT340553
e8be8b652866 LF-363 arm64: kernel: TKT340553 Errata workaround update for
 i.MX8QM
40d0546bf89f MLK-23277: 8qm: Fix SW workaround for i.MX8QM TKT340553
d9d668fd112f arm64: drop the use of user_addr_max()
8ce9077c89de arm64: extable: update to use new UACCESS API
40e917c28b0 AAUTO-8 Add vehicle driver (change base on 628be171887 commit).
 Vehicle driver is used communicate M4 and also report vehicle event into
 vehicle HAL.
5ea08b62de6 AAUTO-14 add driver for boot time specification of dm to linux
 kernel
8a19fa54a8d AAUTO-16 Seperate clock and PM domain init according to shared
 resources

Add TKT340553_SW_WORKAROUND to the symbol list:

diff --git a/android/abi_gki_aarch64_imx b/android/abi_gki_aarch64_imx
index ac16191a3545..601c0eef9456 100644
--- a/android/abi_gki_aarch64_imx
+++ b/android/abi_gki_aarch64_imx
@@ -2419,3 +2419,4 @@
xdp_rxq_info_reg_mem_model
xdp_rxq_info_unreg
xdp_warn
+TKT340553_SW_WORKAROUND

Then update the AOSP symbol list according to Section 9.4. These patches are going upstream.

9.4 How to export new symbols
AOSP GKI image only exports those symbols listed at android/abi_gki_aarch64.stg. To update them,
see the official document: https://source.android.com/devices/architecture/kernel/abi-monitor. The following is a
quick start guide to export new symbols.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
57 / 63

https://source.android.com/devices/architecture/kernel/abi-monitor

NXP Semiconductors AAUG
Android Automotive User's Guide

1. Generate the device symbol list (android/abi_gki_aarch64_imx):

mkdir gki && cd gki (Make sure folder gki is not inside of ${MY_ANDROID})
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android14-6.1
repo sync
cd common

Note: Switch the kernel in this common folder from AOSP to its own device kernel and apply all your local
patches that may require new symbols.

git remote add device <device kernel git URL>
git remote update
git checkout device/<device kernel branch>
git apply <all device patches if needed>
cd ..
(Due to ISP and wifi code is out of kernel tree, set it explicitly to collect
 their symbols)
ln -s ${MY_ANDROID}/vendor/nxp-opensource/verisilicon_sw_isp_vvcam
 verisilicon_sw_isp_vvcam
ln -s ${MY_ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex
tools/bazel run //common:imx_abi_update_symbol_list

Then common/android/abi_gki_aarch64_imx is updated.
2. Update the AOSP symbol list (android/abi_gki_aarch64.stg):

cd gki
cp common/android/abi_gki_aarch64_imx /tmp/abi_gki_aarch64_imx
cd common

Note: Switch the kernel in this common folder from its own device kernel to the AOSP kernel.

git reset --hard
git checkout aosp/android14-6.1
cp /tmp/abi_gki_aarch64_imx android/abi_gki_aarch64_imx
cd ..
tools/bazel run //common:kernel_aarch64_abi_update

Then common/android/abi_gki_aarch64.stg is updated.
3. Build Android 8q_car.img and system_dlkm.img locally.

cp out/kernel_aarch64/dist/8q_car.img {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/8q_car.img
cd ${MY_ANDROID}
TARGET_IMX_KERNEL=true make bootimage
cp system_dlkm_staging_archive.tar.gz {MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/system_dlkm_staging_archive.tar.gz
cd {MY_ANDROID}/vendor/nxp/fsl-proprietary/gki
tar -xzf system_dlkm_staging_archive.tar.gz -C system_dlkm_staging_8q_car
cd ${MY_ANDROID}
make system_dlkmimage

Then 8q_car.img and system_dlkm.img built locally will export those symbols.
4. To enable the AOSP released GKI image to export these symbols, upstream these two files to AOSP:

android/abi_gki_aarch64_imx android/abi_gki_aarch64.stg.

9.5 How to update the GKI image
To update the GKI image, perform the following steps:

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
58 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

1. Download GKI boot.img from Google. Put boot.img in ${MY_ANDROID}/vendor/nxp/fsl-
proprietary/gki/boot.img. Run the following command to build signed boot.img.

./imx-make.sh bootimage
or
make bootimage

2. Download GKI system_dlkm_staging_archive.tar.gz from Google. Put
system_dlkm_staging_archive.tar.gz in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
gki/system_dlkm_staging_archive.tar.gz. Unzip system_dlkm_staging_archive.tar.gz
to system_dlkm_staging. Run the following command to build system_dlkm.img.

make system_dlkmimage

3. Get boot.img and system_dlkm_staging_archive.tar.gz from the Android 14-6.1 Release Builds.

10 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11 Revision History

This table provides the revision history.

Revision number Release date Description

automotive-13.0.0_2.3.0 4 January 2024 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-13.0.0_2.1.0 10/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-13.0.0_1.3.0 07/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

Table 24. Revision history

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
59 / 63

https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds

NXP Semiconductors AAUG
Android Automotive User's Guide

Revision number Release date Description

automotive-13.0.0_1.1.0 05/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-12.1.0_1.1.0 12/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-12.0.0_2.1.0 09/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-12.0.0_1.1.0 06/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-11.0.0_2.5.0 03/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-11.0.0_2.3.0 12/2021 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0) GA
release

automotive-11.0.0_2.1.0 11/2021 Added the examples for i.MX 8QuadXPlus and upgraded the tool
version

android-11.0.0_1.1.0-AUTO 01/2021 i.MX 8QuadXPlus/8QuadMax MEK GA release

android-10.0.0_2.4.0 07/2020 i.MX 8QuadMax MEK GA release

android-10.0.0_2.2.0-AUTO 06/2020 i.MX 8QuadXPlus/8QuadMax MEK GA release

automotive-10.0.0_1.1.0 03/2020 Deleted the Android 10 image

automotive-10.0.0_1.1.0 03/2020 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0) GA release

P9.0.0_2.1.0-AUTO-ga 08/2019 Updated the location of the SCFW porting kit

P9.0.0_2.1.0-AUTO-ga 04/2019 i.MX 8QuadXPlus/8QuadMax Automotive GA release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

O8.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

O8.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

Table 24. Revision history...continued

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
60 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
61 / 63

mailto:PSIRT@nxp.com

NXP Semiconductors AAUG
Android Automotive User's Guide

Contents
1 Overview ...2
1.1 Acronyms ...2
2 Preparation ... 2
2.1 Setting up your computer 2
2.2 Unpacking the Android release package 3
3 Building the Android platform for i.MX4
3.1 Getting i.MX Android release source code 4
3.2 Building Android images5
3.2.1 Configuration examples of building i.MX

devices ...9
3.2.2 Build mode selection ... 9
3.2.3 Build with the GAS package10
3.3 Building U-Boot images 10
3.4 Building a kernel image 11
3.5 Building boot.img ... 12
3.6 Building dtbo.img ... 12
4 Running the Android Platform with a

Prebuilt Image ..12
5 Programming Images 14
5.1 System on eMMC ..15
5.1.1 Storage partitions ...15
5.1.2 Downloading images with UUU 16
5.1.3 Downloading images with fastboot_imx_

flashall script ..16
5.1.4 Downloading a single image with fastboot18
6 Booting ... 19
6.1 Booting from eMMC .. 19
6.1.1 Booting from eMMC on the i.MX

8QuadXPlus/8QuadMax MEK board 19
6.2 Boot-up configurations19
6.2.1 U-Boot environment ...19
6.2.2 Kernel command line (bootargs)20
6.2.3 DM-verity configuration21
7 Over-The-Air (OTA) Update22
7.1 Building OTA update packages 22
7.1.1 Building target files .. 22
7.1.2 Building a full update package 22
7.1.3 Building an incremental update package 23
7.2 Implementing OTA update23
7.2.1 Using update_engine_client to update the

Android platform .. 23
7.2.2 Using a customized application to update

the Android platform .. 24
8 Customized Configuration 26
8.1 Camera configuration 26
8.1.1 Interfaces to control the EVS function 26
8.1.1.1 Starting the EVS function with images

in automotive-13.0.0_2.3.0_image_8qmek_
car.tar.gz .. 26

8.1.1.2 Starting the EVS function with images
in automotive-13.0.0_2.3.0_image_8qmek_
car2.tar.gz .. 29

8.1.2 EVS related code .. 31
8.1.3 Communication protocol between Cortex-A

core and Cortex-M4 core31
8.1.4 Delay of camera/display module probe34

8.2 Audio configuration ..34
8.2.1 Routing audio stream to different sound

cards .. 34
8.3 Display configuration 35
8.3.1 Configuring the logical display density35
8.3.2 Starting the cluster display 36
8.3.3 Enabling the multiple-display function36
8.3.3.1 Binding the display port with the input port 36
8.3.3.2 Enabling multi-client input method37
8.3.3.3 Launching applications on different displays38
8.3.4 Configuring the primary display resolution38
8.4 HVAC configuration ... 38
8.4.1 Interfaces to control the HVAC system 38
8.5 USB configuration ..40
8.5.1 Enabling USB 2.0 in U-Boot for i.MX

8QuadMax/8QuadXPlus MEK 40
8.6 Trusty OS/security configuration42
8.6.1 Initializing the secure storage for Trusty OS 43
8.6.2 AVB key provision ... 43
8.6.2.1 Generating the AVB key to sign images 44
8.6.2.2 How to set the vbmeta public key44
8.6.3 Key attestation ...45
8.7 SCFW configuration ...45
8.8 Power state configuration 46
8.9 Boot time tuning .. 47
8.9.1 Boot time overview .. 47
8.9.2 What NXP did to tune the boot time 47
8.9.3 How to get the shorter boot time 48
8.9.4 How to build system.img with squashfs files

system type ... 49
8.9.5 How to measure the boot time 49
8.10 Configuration for the load orders of driver

modules ... 50
8.10.1 Why does Android Automotive have driver

load orders ...50
8.10.2 How does the non-critical driver load50
8.10.3 How to change driver load orders51
8.11 Dual-bootloader configuration51
8.11.1 Dual-bootloader layout51
8.11.2 Configuring dual-bootloader 51
8.12 Miscellaneous configuration 52
8.12.1 Changing boot command line in boot.img52
8.12.2 Notices before the debugging work 52
9 Generic Kernel Image (GKI)

Development .. 54
9.1 Changes after GKI enabled54
9.2 How to add new drivers55
9.3 How to build GKI locally 56
9.4 How to export new symbols 57
9.5 How to update the GKI image 58
10 Note About the Source Code in the

Document ... 59
11 Revision History .. 59

Legal information ...61

AAUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. automotive-13.0.0_2.3.0 — 4 January 2024
62 / 63

NXP Semiconductors AAUG
Android Automotive User's Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 4 January 2024
Document identifier: AAUG

	1 Overview
	1.1 Acronyms

	2 Preparation
	2.1 Setting up your computer
	2.2 Unpacking the Android release package

	3 Building the Android platform for i.MX
	3.1 Getting i.MX Android release source code
	3.2 Building Android images
	3.2.1 Configuration examples of building i.MX devices
	3.2.2 Build mode selection
	3.2.3 Build with the GAS package

	3.3 Building U-Boot images
	3.4 Building a kernel image
	3.5 Building boot.img
	3.6 Building dtbo.img

	4 Running the Android Platform with a Prebuilt Image
	5 Programming Images
	5.1 System on eMMC
	5.1.1 Storage partitions
	5.1.2 Downloading images with UUU
	5.1.3 Downloading images with fastboot_imx_flashall script
	5.1.4 Downloading a single image with fastboot

	6 Booting
	6.1 Booting from eMMC
	6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board

	6.2 Boot-up configurations
	6.2.1 U-Boot environment
	6.2.2 Kernel command line (bootargs)
	6.2.3 DM-verity configuration

	7 Over-The-Air (OTA) Update
	7.1 Building OTA update packages
	7.1.1 Building target files
	7.1.2 Building a full update package
	7.1.3 Building an incremental update package

	7.2 Implementing OTA update
	7.2.1 Using update_engine_client to update the Android platform
	7.2.2 Using a customized application to update the Android platform

	8 Customized Configuration
	8.1 Camera configuration
	8.1.1 Interfaces to control the EVS function
	8.1.1.1 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_car.tar.gz
	8.1.1.2 Starting the EVS function with images in automotive-13.0.0_2.3.0_image_8qmek_car2.tar.gz

	8.1.2 EVS related code
	8.1.3 Communication protocol between Cortex-A core and Cortex-M4 core
	8.1.4 Delay of camera/display module probe

	8.2 Audio configuration
	8.2.1 Routing audio stream to different sound cards

	8.3 Display configuration
	8.3.1 Configuring the logical display density
	8.3.2 Starting the cluster display
	8.3.3 Enabling the multiple-display function
	8.3.3.1 Binding the display port with the input port
	8.3.3.2 Enabling multi-client input method
	8.3.3.3 Launching applications on different displays

	8.3.4 Configuring the primary display resolution

	8.4 HVAC configuration
	8.4.1 Interfaces to control the HVAC system

	8.5 USB configuration
	8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

	8.6 Trusty OS/security configuration
	8.6.1 Initializing the secure storage for Trusty OS
	8.6.2 AVB key provision
	8.6.2.1 Generating the AVB key to sign images
	8.6.2.2 How to set the vbmeta public key

	8.6.3 Key attestation

	8.7 SCFW configuration
	8.8 Power state configuration
	8.9 Boot time tuning
	8.9.1 Boot time overview
	8.9.2 What NXP did to tune the boot time
	8.9.3 How to get the shorter boot time
	8.9.4 How to build system.img with squashfs files system type
	8.9.5 How to measure the boot time

	8.10 Configuration for the load orders of driver modules
	8.10.1 Why does Android Automotive have driver load orders
	8.10.2 How does the non-critical driver load
	8.10.3 How to change driver load orders

	8.11 Dual-bootloader configuration
	8.11.1 Dual-bootloader layout
	8.11.2 Configuring dual-bootloader

	8.12 Miscellaneous configuration
	8.12.1 Changing boot command line in boot.img
	8.12.2 Notices before the debugging work

	9 Generic Kernel Image (GKI) Development
	9.1 Changes after GKI enabled
	9.2 How to add new drivers
	9.3 How to build GKI locally
	9.4 How to export new symbols
	9.5 How to update the GKI image

	10 Note About the Source Code in the Document
	11 Revision History
	Legal information
	Contents

