
1 Overview
This document provides the technical information related to the i.MX 8 devices:

• Instructions for building from sources or using pre-built images.

• Copying the images to boot media.

• Hardware/software configurations for programming the boot media and
running the images.

This document describes how to configure a Linux build machine and provides
the steps to download, patch, and build the software components that create
the Android system image when working with the sources.

For more information about building the Android platform, see
source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as follows:

• 16 GB RAM

• 300 GB hard disk

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64bit version is the most tested
environment for the Android 10.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build. See
"Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

sudo apt-get install uuid uuid-dev
sudo apt-get install zlib1g-dev liblz-dev
sudo apt-get install liblzo2-2 liblzo2-dev
sudo apt-get install lzop
sudo apt-get install git-core curl
sudo apt-get install u-boot-tools
sudo apt-get install mtd-utils
sudo apt-get install android-tools-fsutils
sudo apt-get install openjdk-8-jdk
sudo apt-get install device-tree-compiler
sudo apt-get install gdisk
sudo apt-get install liblz4-tool
sudo apt-get install m4
sudo apt-get install libz-dev
sudo apt-get install bison
sudo apt-get install flex

Contents

1 Overview..1

2 Preparation.. 1

3 Building the Android platform for i.MX... 2

4 Running the Android Platform with a
Prebuilt Image..................................... 8

5 Programming Images............................ 9

6 Booting...13

7 Over-The-Air (OTA) Update.................16

8 Customized Configuration................... 20

9 Revision History...................................37

AUG
Android™ User's Guide
Rev. android-10.0.0_2.4.0 — 15 July 2020 User's Guide

http://source.android.com/source/building.html
http://source.android.com/source/initializing.html

sudo apt-get install libssl-dev
sudo apt-get install gcc-multilib

Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"

• git config --global user.email "first.last@company.com"

 NOTE

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-automotive-10.0.0_2.4.0.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.

• AOSP Android public source code, which is maintained in android.googlesource.com.

• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

Assume you have i.MX Android proprietary source code package imx-automotive-10.0.0_2.4.0.tar.gz under ~/. directory. To
generate the i.MX Android release source code build environment, execute the following commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-automotive-10.0.0_2.4.0/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt in the
folder `pwd`/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX Android
release documentation.
$ export MY_ANDROID=`pwd`/android_build

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1 Getting i.MX Android release
source code).

Command source build/envsetup.sh needs to be executed to import shell functions in ${MY_ANDROID}/build/envsetup.sh.

Command lunch <ProductName-BuildMode> is used to set up the build configuration.

The Product Name is the Android device name. In the directory ${MY_ANDROID}/device/fsl/, search for the keyword
PRODUCT_NAME for the product names.

The following table lists the i.MX product names.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 2 / 39

https://www.codeaurora.org/projects/i-mx
http://android.googlesource.com
http://www.nxp.com

Table 1. Product names

Product name Description

mek_8q_car2 i.MX 8QuadMax MEK Board without EVS function enabled in the Arm Cortex-M4
CPU core

The Build Mode is used to specify what debug options are provided in the final image. The following table lists the build modes.

Table 2. Build modes

Build mode Description

user Production ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

This lunch command can be executed with an argument of ProductName-BuildMode followed, such as lunch mek_8q_car2-
userdebug. It can also be issued without an argument and a menu presents for choosing a target.

After the two commands above are executed, then the build process starts. The behaviour of the i.MX Android build system used
to be aligned with the original Android system. The command of make can start the build process and all images will be built out.
There are some differences. A shell script named imx-make.sh is provided and its symlink file can be found under the $
{MY_ANDROID} directory. ./imx-make.sh should be executed to start the build process.

The original purpose of this imx-make.sh is used to build U-Boot/kernel before building Android images.

Google puts a limit on the host tools used when compiling Android code from the Android10.0 platform. Some host tools necessary
for building U-Boot/kernel now cannot be used in Android build system, which is under the control of soong_ui, so U-Boot/kernel
cannot be built together with Android images. Google also recommends to use prebuilt binaries for U-Boot/kernel in Android build
system. It takes some steps to build U-Boot/kernel to binaries and puts these binaries in proper directories, so some specific
Android images depending on these binaries can be built without error. imx-make.sh is then added to do these steps to simplify
the build work. After U-Boot/kernel are compiled, any build commands in standard Android can be used.

imx-make.sh can also start the soong_ui with the make function in ${MY_ANDROID}/build/envsetup.sh to build the Android
images after U-Boot/kernel are compiled, so customers can still build the i.MX Android images with only one command with this
script.

i.MX Android needs some preparations to build images for the first time. The image build steps are as follows:

1. Prepare the build environment for U-Boot.

This step is mandatory because ATF needs a newer version of GCC cross-compile tool chain than the one in AOSP
codebase. In addition, the one in the AOSP codebase displays the following log indicating that this tool chain is deprecated.

Android GCC has been deprecated in favor of Clang, and will be removed from
Android in 2020-01 as per the deprecation plan in:
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/
GCC_4_9_DEPRECATION.md

An approach is provied to use the self-installed GCC cross-compile tool chain.

First, download the tool chain for the A-profile architecture on the arm Developer GNU-A Downloads page. It is
recommended to use the 8.3 version for this release. You can download the gcc-arm-8.3-2019.03-x86_64-aarch64-
elf.tar.xz or gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz. The first one is dedicated for compiling
bare-metal programs, and the second one can also be used to compile the application programs.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 3 / 39

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

Then, decompress the file into a path on local disk. For example, to /opt/, export a variable named
AARCH64_GCC_CROSS_COMPILE to point to the tool as follows:

if "gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz" is used
export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-elf/bin/aarch64-elf-
if "gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz" is used
export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/aarch64-
linux-gnu-

The preceding command can be added to /etc/profile. When the host boots up, AARCH64_GCC_CROSS_COMPILE is set
and can be directly used.

2. Prepare the build environment for the Arm Cortex-M4 image. Download the GCC tool chain from the Arm Developers
GNU-RM Downloads page. It is recommended to download the "7-2018-q2-update" version. Extract it to your installation
directory, for example, /opt. Then, export the directory as export ARMGCC_DIR=/opt/gcc-arm-none-eabi-7-2018-q2-
update and add this to /etc/profile.

Upgrade the cmake version to 3.13.0 or higher. If the cmake version on your machine is not higher than 3.13.0, you can
follow the steps below to upgrade it:

 wget https://github.com/Kitware/CMake/releases/download/v3.13.2/cmake-3.13.2.tar.gz
 tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;
 sudo ./bootstrap
 sudo make
 sudo make install

3. Change to the top level build directory.

$ cd ${MY_ANDROID}

4. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh

5. Execute the Android lunch command.

In this example, the setup is for the production image of i.MX 8QuadMax MEK Board/Platform device without EVS function
enabled in the Cortex-M4 CPU core.

$ lunch mek_8q_car2-userdebug

6. Execute the imx-make.sh script to generate the image.

$./imx-make.sh -j4 2>&1 | tee build-log.txt

The commands below can achieve the same result.

First, build U-Boot/kernel with imx-make.sh, but not to build Android images
$./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
Start the process of building Android images with "make" function
$ make -j4 2>&1 | tee -a build-log.txt

The output of make command will be written to standard output and build-log.txt. If there are errors when building the image,
error logs can be found in the build-log.txt file for checking.

To change BUILD_ID & BUILD_NUMBER changing, update build_id.mk in the ${MY_ANDROID}/device/fsl/imx8q/mek_8q/
directory. For detailed steps, check i.MX Android Frequently Asked Questions.

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/mek_8q:

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 4 / 39

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://community.nxp.com/docs/DOC-342877

• root/: root file system (including init, init.rc). Mounted at /.

• system/: Android system binary/libraries. Mounted at /system.

• recovery/: root file system when booting in "recovery" mode. Not used directly.

• dtbo-imx8qm.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK.

• dtbo-imx8qm-md.img: Board's device tree binary. It is used to support multiple-display feature for i.MX 8QuadMax MEK.

• dtbo-imx8qm-xen.img: Board's device tree binary. It is used to support Xen for i.MX 8QuadMax MEK.

• vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the LVDS-to-HDMI
display for i.MX 8QuadMax MEK.

• vbmeta-imx8qm-md.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support multiple-display
feature for i.MX 8QuadMax MEK.

• vbmeta-imx8qm-xen.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support Xen for i.MX
8QuadMax MEK.

• ramdisk.img: Ramdisk image generated from "root/". Not directly used.

• system.img: EXT4 image generated from "system/" and "root/".

• product.img: EXT4 image generated from "product/".

• partition-table.img: GPT partition table image. Used for 16 GB boot storage.

• partition-table-28GB.img: GPT partition table image. Used for 32 GB boot storage.

• spl-imx8qm.bin: a composite image includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX
8QuadMax MEK.

• spl-imx8qm-md.bin: a composite image includes Seco firmware, SCU firmware, Cortex-M4 image, and SPL for i.MX
8QuadMax MEK.

• spl-imx8qm-xen.bin: SPL for i.MX 8QuadMax MEK.

• bootloader-imx8qm.img: the next loader image after SPL. It includes the Arm Trusted Firmware, Trusty OS, and U-Boot
proper for i.MX 8QuadMax MEK.

• bootloader-imx8qm-md.img: the next loader image after SPL. It contains the Arm Trusted Firmware, Trusty OS, and U-
Boot proper for i.MX 8QuadMax MEK.

• bootloader-imx8qm-xen.img: the next loader image after SPL. It contains U-Boot proper for i.MX 8QuadMax MEK.

• u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to MMC.

• vendor.img: vendor image, which holds platform binaries. Mounted at /vendor.

• boot.img: a composite image that includes the kernel Image, ramdisk, and boot parameters.

• rpmb_key_test.bin: prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.

• testkey_public_rsa4096.bin: prebuilt AVB public key. It is extracted from the default AVB private key.

• To build the U-Boot image separately, see Building U-Boot images.

• To build the kernel uImage separately, see Building a kernel image.

• To build boot.img, see Building boot.img.

• To build dtbo.img, see Building dtbo.img.

 NOTE

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX device
is set up, the ./imx-make.sh command is used to start the build.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 5 / 39

Table 3. i.MX device lunch examples

Description lunch command

i.MX 8QuadMax MEK Board without EVS function enabled in
the Arm Cortex-M4 CPU core

$ lunch mek_8q_car2-userdebug

3.2.2 Build mode selection
There are three types of build mode to select: eng, user, and userdebug.

To pass CTS, use user build mode.

 NOTE

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates
the security model of the platform. This makes the userdebug build with greater diagnosis capabilities.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various
optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug builds,
so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with makefile variable LOCAL_MODULE_TAGS, which can be one or more values
of optional (default), debug, eng, and tests. The value of debug and eng are being deprecated. It is recommended to use
PRODUCT_PACKAGES_ENG and PRODUCT_PACKAGES_DEBUG to specify the modules in the appropriate product makefiles.

If a module does not specify a tag with LOCAL_MODULE_TAGS, its tag defaults to optional. An optional module is installed only if
it is required by product configuration with PRODUCT_PACKAGES.

The main differences among the three modes are listed as follows:

• eng: development configuration with additional debugging tools

— Installs modules tagged with: eng and/or debug via LOCAL_MODULE_TAGS, or specified by
PRODUCT_PACKAGES_ENG and/or PRODUCT_PACKAGES_DEBUG.

— Installs modules according to the product definition files, in addition to tagged modules.

— ro.secure=0

— ro.debuggable=1

— ro.kernel.android.checkjni=1

— adb is enabled by default.

• user: limited access; suited for production

— Installs modules tagged with user.

— Installs modules according to the product definition files, in addition to tagged modules.

— ro.secure=1

— ro.debuggable=0

— adb is disabled by default.

• userdebug: like user but with root access and debuggability; preferred for debugging

— Installs modules tagged with debug via LOCAL_MODULE_TAGS, or specified by PRODUCT_PACKAGES_DEBUG.

— ro.debuggable=1

— adb is enabled by default.

There are two methods for the build of Android image.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 6 / 39

To build of Android images, an example for the i.MX 8QuadMax MEK without EVS function enabled in the Cortex-M4 CPU core
is:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh -j4

The commands below can achieve the same result:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh bootloader kernel -j4
$ make -j4

To create Android over-the-air, OTA, and package, the following make target is specified:

$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
Use the following command to generate u-boot.imx under the Android OS environment:

U-Boot image for 8QuadMax MEK board without EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh bootloader -j4

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

To build out the kernel image independently from the default Android build command:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh kernel -j4

With a successful build in the use case above, the generated kernel images are: ${MY_ANDROID}/out/target/product/
mek_8q/obj/KERNEL_OBJ/arch/arm64/boot/Image.

3.5 Building boot.img
The following commands are used to generate boot.img under the Android environment:

Boot image for i.MX 8QuadMax MEK board without EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh bootimage -j4

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 7 / 39

http://source.android.com/source/building.html

The following commands can achieve the same result:

Boot image for i.MX 8QuadMax MEK board without EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh kernel -j4
$ make bootimage -j4

3.6 Building dtbo.img
DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo.img under the Android environment:

dtbo image for i.MX 8QuadMax MEK board without EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh dtboimage -j4

The following commands can achieve the same result:

dtbo image for i.MX 8QuadMax MEK board without EVS function enabled in the Arm Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh kernel -j4
$ make dtboimage -j4

4 Running the Android Platform with a Prebuilt Image
Table 4. Image packages

Image package Description

android_automotive-10.0.0_2.4.0_image_8qm
ek2.tar.gz

Prebuilt-image and UUU script files for i.MX 8QuadMax MEK board without
EVS function enabled in the Arm Cortex-M4 CPU core, which includes NXP
extended features.

The table below shows the detailed contents of automotive-10.0.0_2.4.0_image_8qmek2.tar.gz image package.

Table 5. Images for i.MX 8QuadMax MEK

i.MX 8QuadMax MEK Images Descriptions

spl-imx8qm.bin The secondary program loader (SPL) for i.MX 8QuadMax MEK board.

spl-imx8qm-md.bin The secondary program loader (SPL) for i.MX 8QuadMax MEK board.

spl-imx8qm-xen.bin The secondary program loader (SPL) for i.MX 8QuadMax MEK board.

u-boot-imx8qm-xen-dom0.imx The bootloader flashed to SD card running in domain0.

u-boot-imx8qm-mek-uuu.imx The bootloader used by UUU for i.MX 8QuadMax MEK board. It is not
flashed to MMC.

bootloader-imx8qm.img The next loader image after SPL for i.MX 8QuadMax MEK board.

Table continues on the next page...

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 8 / 39

Table 5. Images for i.MX 8QuadMax MEK (continued)

i.MX 8QuadMax MEK Images Descriptions

bootloader-imx8qm-md.img The next loader image after SPL for i.MX 8QuadMax MEK board.

bootloader-imx8qm-xen.img The next loader image after SPL for i.MX 8QuadMax MEK board.

boot.img Boot image for to support LVDS-to-HDMI display.

partition-table.img GPT table image for 16 GB boot storage.

partition-table-28GB.img GPT table image for 32 GB boot storage.

vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board.

vbmeta-imx8qm-md.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board.

vbmeta-imx8qm-xen.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board.

system.img System image.

vendor.img Vendor image.

product.img Product image.

dtbo-imx8qm.img Device Tree Image for i.MX 8QuadMax MEK to support LVDS-to-HDMI
display.

dtbo-imx8qm-md.img Device Tree Image for i.MX 8QuadMax MEK to support multiple display
feature.

dtbo-imx8qm-xen.img Device Tree Image for i.MX 8QuadMax MEK to support XEN.

rpmb_key_test.bin Prebuilt test RPMB key, which can be used to set the RPMB key as fixed
32 bytes 0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key, which is extracted from the default AVB private key.

xen Xen firmware to support Trusty OS.

boot.img is an Android image that stores kernel Image and ramdisk together. It also stores other information such
as the kernel boot command line, machine name. This information can be configured in android.mk. It can avoid
touching the boot loader code to change any default boot arguments.

 NOTE

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, gpt
image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (eMMC) must be
programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access based on
the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read to determine
how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU to download all images.

• fastboot_imx_flashall script to download all images to the eMMC storage.

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 9 / 39

5.1 System on eMMC
The images needed to create an Android system on eMMC can either be obtained from the release package or be built from
source.

The images needed to create an Android system on eMMC are listed below:

• Secondary program loader image: spl.bin

• Android bootloader image: bootloader.img

• GPT table image: partition-table.img

• Android dtbo image: dtbo.img

• Android boot image: boot.img

• Android system image: system.img

• Android vendor image: vendor.img

• Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions
The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.

• [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata parition is used to put the unpacked codes/
data of the applications, system configuration database, etc. In normal boot mode, the root file system is mounted from the system
partition. In recovery mode, the root file system is mounted from the boot partition.

Table 6. Storage partitions

Partition type/index Name Start offset Size File system Content

N/A bootloader0 0 KB (i.MX
8QuadMax)

4 MB N/A spl.bin

1 bootloader_a 8 MB 4 MB N/A bootloader.img

2 bootloader_b Follow
bootloader_a

4 MB N/A bootloader.img

3 dtbo_a Follow
bootloader_b

4 MB N/A dtbo.img

4 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

5 boot_a Follow dtbo_b 64 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

6 boot_b Follow boot_a 64 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

7 system_a Follow boot_b 1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

Table continues on the next page...

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 10 / 39

Table 6. Storage partitions (continued)

Partition type/index Name Start offset Size File system Content

8 system_b Follow
system_a

1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

9 misc Follow
system_b

4 MB N/A For recovery storage
bootloader message, reserve

10 metadata Follow
metafooter

2 MB N/A For system slide show

11 presistdata Follow
metadata

1 MB N/A Option to operate unlock
\unlock

12 vendor_a Follow
persistdata

512 MB EXT4. Mount at /
vendor

vendor.img

13 vendor_b Follow
vendor_a

512 MB EXT4. Mount at /
vendor

vendor.img

14 product_a Follow
vendor_b

1792 MB EXT4. Mount at /
product

product.img

15 product_b Follow
product_a

1792 MB EXT4. Mount at /
product

product.img

16 userdata Follow
vendor_b

Remained
space

EXT4. Mount at /
data

Application data storage for
system application, and for
internal media partition,
in /mnt/sdcard/ dir.

17 fbmisc Follow
userdata

1 MB N/A For storing the state of lock
\unlock

18 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

19 vbmeta_b Follow
vbmeta_a

1 MB N/A For storing the verify boot's
metadata

To create these partitions, use UUU described in the Android™ Quick Start Guide (AQSUG).

5.1.2 Downloading images with UUU
UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading images. See
Android™ Quick Start Guide (AQSUG) for a detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script
UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode firstly,
and make the board enter boot mode once flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System Image into board. It requires
the target board be able to enter fastboot mode and the device is unlocked. There is no need to change the boot mode with this
fastboot_imx_flashall script.

The table below lists the fastboot_imx_flashall scripts.

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 11 / 39

Table 7. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fasboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one by one manually. These
scripts will automatically flash all images with only one line of command.

Fastboot can be built with Android build system. Based on Section 3, which describes how to build Android images, perform the
following steps to build fastboot:

 $ cd ${MY_ANDROID}
 $ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

• Linux version binary file: ${MY_ANDROID}/out/host/linux-x86/bin/

• Windows version binary file: ${MY_ANDROID}/out/host/windows-x86/bin/

The way to use these scripts is follows:

• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>

• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size Optional setting: 28
 If it is not set, use partition-table.img (default).
 If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
 Make sure that the corresponding file exists on your platform.
 -m Flashes the Cortex-M4 image.
 -u uboot_feature Flashes U-Boot or SPL&bootloader images with "uboot_feature" in their names.
 For Standard Android:
 If the parameter after "-u" option contains the string of "dual", the
SPL&bootloader image is flashed;
 otherwise, U-Boot image is flashed.
 For Android Automative:
 Only dual-bootloader feature is supported. By default, SPL&bootloader
image is flashed.
 -d dtb_feature Flashes dtbo, vbmeta, and recovery image file with "dtb_feature" in their names.
 If it is not set, use the default dtbo, vbmeta, and recovery image.
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images, it does not need to
use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need to use this option

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 12 / 39

• -f option is mandatory. SoC name can be imx8qm.

• For images with Xen support:

— Boot the device to U-Boot fastboot mode in domainU, and then execute these scripts. The device should
be unlocked first.

— In domainU, the USB 2.0 port on mother board is used for fastboot.

— These sdripts can only flash the Android Automotive images to eMMC, and Yocto images cannot be
flashed with this script.

 NOTE

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -u xen -d xen -a -e -D /imx_android-10.0/mek_8q_car/

Option explanations:

• -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.

• -u xen: Flashes the image of "bootloader-imx8qm-xen.img".

• -d xen: Flashes the image of "dtbo-imx8qm-xen.img" and "vbmeta_imx8qm-xen.img".

• -a: Only flashes slot a.

• -e: Erases user data after all image files are flashed.

• -D /imx_android-10.0/mek_8q_car/: Images to be flashed are in the directory of /imx_android-10.0/mek_8q_car/.

6 Booting
This chapter describes booting from MMC.

6.1 Booting from SD

6.1.1 Booting from SD on the i.MX 8QuadMax MEK board
The following tables list the boot switch settings to control the boot storage.

Table 8. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadMax boot switch download Mode (UUU mode) eMMC boot SD boot

SW2 Boot_Mode (1-6 bit) 001000 000100 001100

Boot from SD

Change the board Boot_Mode switch to 001100 (1-6 bit) for i.MX 8QuadMax.

The default environment in boot.img is booting from eMMC. The default environment in boot.img is booting from eMMC. To use
the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

bootargs is an optional setting for boota. The boot.img includes a default bootargs, which will be used if there is
no bootargs defined in U-Boot.

 NOTE

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 13 / 39

6.2 Boot-up configurations
This section describes some common boot-up configurations, such as U-Boot environments, kernel command line, and DM-
verity configuartions.

6.2.1 U-Boot environment
• bootcmd: the first variable to run after U-Boot boot.

• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line
(bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs
environment variable, it uses the default bootargs inside the image. If you have the environment variable, it is then used.

To use the default environment in boot.img, use the following command to clear the bootargs environment variable.

> setenv bootargs

If the environment variable append_bootargs is set, the value of append_bootargs is appended to bootargs automatically.

• boota:

boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" variable in your U-Boot environment).

To boot the system, execute the following command:

U-Boot=> boota

To boot into recovery mode, execute the following command:

U-Boot=> boota recovery

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 9. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0 i.MX 8QuadMax MEK with Xen support uses
console=hvc0.

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel. i.MX 8QuadMax MEK
with Xen support uses
androidboot.console=hvc0.

cma CMA memory
size for GPU/VPU
physical memory
allocation.

cma=1184M@0x960M-0xe00
M

Start address is 0x96000000 and end
address is 0xDFFFFFFFF. The CMA size
can be configured to other value, but
cannot exceed 1184 MB, because the

Table continues on the next page...

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 14 / 39

Table 9. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

Cortex-M4 core will also allocate memory
from CMA and Cortex-M4 cannot use the
memory larger than 0xDFFFFFFFF.

androidboot.selinux Argument to
disable selinux
check. For details
about selinux, see
Security-
Enhanced Linux
in Android.

androidboot.selinux=permissiv
e

Setting this argument enables console serial
input, which will violate the CTS
requirement.

Setting this argument will also bypass all the
selinux rules defined in Android system. It is
recommended to set this argument for
internal developer.

androidboot.fbTileSupport It is used to
enable
framebuffer super
tile output.

androidboot.fbTileSupport=ena
ble

-

firmware_class.path It is used to set
the Wi-Fi firmware
path.

firmware_class.path=/vendor/
firmware

-

androidboot.wificountrycod
e=CN

It is used to set
Wi-Fi country
code. Different
countries use
different Wi-Fi
channels.

For details, see
the i.MX Android
Frequently Asked
Questions.

androidboot.wificountrycode=C
N

-

transparent_hugepage It is used to
change the sysfs
boot time defaults
of Transparent
Hugepage
support.

transparent_hugepage=never/
always/madvise

-

galcore.contiguousSize It is used to
configure the
GPU reserved
memory.

galcore.contiguousSize=33554
432

It is 128 MB by default. i.MX 8QuadMax
automatically configures it to 32 MB to
shorten the GPU driver initialization time.

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from running
unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system, vbmeta) will
make the board unbootable. Disabling DM-verity provides convience for developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

1. Unlock the device.

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 15 / 39

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877

a. Boot up the device.

b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.

c. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader

d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock

e. Wait until the unlock process is complete.

2. Disable DM-verity.

a. Boot up the device.

b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update
This section provides an example for the i.MX 8QuadMax MEK Board without EVS function enabled in the Arm Cortex-M4 CPU
core to build and implement OTA update.

For other platforms, use "lunch " to set up the build configuration. For detailed build configuration, see Section 3.2 "Building
Android images".

7.1 Building OTA update packages
The OTA package includes dtbo image, which stores board's dtb. There may be many dts for one board, for example, in $
{MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk:

TARGET_BOARD_DTS_CONFIG := imx8qm:imx8qm-mek-car2-a72.dtb
TARGET_BOARD_DTS_CONFIG += imx8qm-md:imx8qm-mek-car2-md-a72.dtb
TARGET_BOARD_DTS_CONFIG += imx8qm-xen:imx8qm-mek-car2-domu.dtb

There is one variable to specify which dtbo image is to be built into the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qm.img

Therefore, the default OTA package can only be applied for i.MX 8QuadMax MEK board without Xen support. To generate an
OTA package for i.MX 8QuadMax MEK board with XEN support , modify this BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-imx8qm-xen.img

The OTA package includes bootloader image, which is specified by the following variable in ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.mk:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/bootloader-imx8qm.img

To generate OTA package for i.MX 8QuadMax MEK board with Xen support, modify BOARD_OTA_BOOTLOADERIMAGE as
follows:

BOARD_OTA_BOOTLOADERIMAGE := out/target/product/mek_8q/obj/UBOOT_COLLECTION/bootloader-imx8qm-xen.img

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 16 / 39

7.1.1 Building target files
You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/mek_8q_car/obj/PACKAGING/target_files_intermediates/mek_8q_car-
target_files-${date}.zip

7.1.2 Building a full update package
A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is contained in the package.

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car2-userdebug
$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/proudct/mek_8q_car/mek_8q_car2-ota-**.zip

mek_8q_car2-ota-**.zip includes payload.bin and payload_properties.txt. The two files are used for full update.

7.1.3 Building an incremental update package
An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result in
considerably smaller update packages:

• Files that have not changed do not need to be included.

• Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding of
the differences between the two files. You can install the incremental update package only on a device that has the old or
source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:

• PREVIOUS-target_files.zip: one old package that has already been applied on the device.

• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-target_files.zip
incremental_ota_update.zip

${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two files are used
for incremental update.

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 17 / 39

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform
update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports updating system from a remote
server or board's storage.

To update the system from a remote server, perform the following steps:

1. Copy ota_update.zip or incremental_ota_update.zip (generated on 7.1.2 and 7.1.3) to the HTTP server (for example,
192.168.1.1:/var/www/).

2. Unzip the packages to get payload.bin and payload_properties.txt.

3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=

• FILE_SIZE=379074366

• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=

• METADATA_SIZE=46866

4. Input the following command on the board's console to update:

update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to reboot" in
the logcat.

To update the system from board's storage, perform the following steps:

1. Unzip ota_update.zip or incremental_ota_update.zip (Generated on 7.1.2 and 7.1.3) to get payload.bin and
payload_properties.txt.

2. Push payload.bin to board's /sdcard dir: adb push payload.bin /sdcard/.

3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=

• FILE_SIZE=379074366

• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=

• METADATA_SIZE=46866

4. Input the following command in board's console to update:

update_engine_client --payload=file:///sdcard/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to reboot" in the
logcat.

Make sure that the -- header equals to the exact content of payload_properties.txt. No more "space" or "return"
character.

 NOTE

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 18 / 39

7.2.2 Using a customized application to update the Android platform
Google provides a reference OTA application (named as SystemUpdaterSample) under ${MY_ANDROID}/bootable/recovery/
updater_sample, which can do OTA job. Perform the following steps to use this application:

1. Generate a json configuration file from the OTA package.

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip

And you can use the following command to generate an incremental OTA json file:

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip

http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold your OTA package.

 NOTE

2. Set up the HTTP server (e.g., lighttpd, apache).

You need one HTTP server to hold OTA packages.

scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}

• server_ota_folder is one folder on your remote server to hold OTA packages.

• full-ota.zip and incremental-ota.zip are built from Building a full update package and Building an
incremental update package.

 NOTE

3. Push json files to the board.

Use the following command to push json files to the board:

adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp

Then use the following command to move json files to the private folder of the SystemUpdaterSample application:

su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/configs
cp /data/local/tmp/*.json /data/user/0/com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/*.json

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 19 / 39

http://192.168.1.1:10888/full-ota.zip

If you use the Android Automative system, move json files to the user/10 folder as follows:

su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/com.example.android.systemupdatersample/
files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/configs/
*.json

 NOTE

4. Open the SystemUpdaterSample OTA application.

There are many buttons on the UI. Their brief description is as follows:

Reload - reloads update configs from device storage.
View config - shows selected update config.
Apply - applies selected update config.
Stop - cancel running update, calls UpdateEngine#cancel.
Reset - reset update, calls UpdateEngine#resetStatus, can be called only when update is not
running.
Suspend - suspend running update, uses UpdateEngine#cancel.
Resume - resumes suspended update, uses UpdateEngine#applyPayload.
Switch Slot - if ab_config.force_switch_slot config set true, this button will be enabled after
payload is applied, to switch A/B slot on next reboot.

First, choose the desired json configuration file, and then click the APPLY button to do the update.

After the update is complete, you can see "SUCCESS" in the Engine error text field, and "REBOOT_REQUIRED" in the
Updater state text field. Then, reboot the board to finish the whole OTA update.

For detailed information about A/B OTA updates see https://source.android.com/devices/tech/ota/ab/.

For information about the SystemUpdaterSample application, see https://android.googlesource.com/platform/bootable/
recovery/+/refs/heads/master/updater_sample/.

8 Customized Configuration

8.1 Camera configuration
Exterior View System (EVS) is supported in i.MX Android Automotive release. This feature supports fastboot camera, which starts
camera within 1 second when the board is powered on.

This section describes how this feature is implemented and how the interfaces are used to control the EVS function. This can
help customers to do customization work on the EVS function.

8.1.1 Interfaces to control the EVS function

Starting the EVS function with images in automotive-10.0.0_2.4.0_image_8qmek2.tar.gz

With images in automotive-10.0.0_2.4.0_image_8qmek2.tar.gz, the EVS function is realized on Android Automotive running on
the Cortex-A core.

i.MX 8QuadMax MEK supports single-rearview camera. To start single-rearview camera:

1. Connect the camera as described in i.MX Android Quick Start Guide (AQSUG).

2. Open the Cortex-A core console.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 20 / 39

https://source.android.com/devices/tech/ota/ab/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/

Input su && start evs_app on the Cortex-A console to start evs_app. You can also start the rearview camera with echo
2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The display should be rear camera view.
Input stop evs_app on the Cortex-A console to stop the rearview camera EVS function.

i.MX 8QuadMax MEK can also support multiple EVS cameras.

The relationship between the orientation of cameras and hardware connection is show as follows.

Table 10. Relationship between the orientation of cameras and hardware connection

Hardware connection Camera orientation

IN0 Rear

IN1 Front

IN2 Right

IN3 Left

The logic to handle the vehicle information is shown with the following pseudo code:

 if (gear state == reverse)
 show rear camera view
 else if (turn signal == right)
 show right camera view
 else if (turn signal == left)
 show left camera
 else if (gear state == park)
 show all cameras' view
 else
 show no camera veiw

The meaning of commands input on the Cortex-A core console is as follows.

Table 11. Meaning of commands input on the Cortex-A core console

Command Meaning

echo 0 > sys/devices/platform/vehicle-dummy/turn Not turn

echo 1 > sys/devices/platform/vehicle-dummy/turn Turn right

echo 2 > sys/devices/platform/vehicle-dummy/turn Turn left

echo 1 > sys/devices/platform/vehicle-dummy/gear Park

echo 2 > sys/devices/platform/vehicle-dummy/gear Reverse

echo 4 > sys/devices/platform/vehicle-dummy/gear Drive

To start multiple-EVS-camera function:

1. Input su && start evs_app on the Cortex-A console to start evs_app. You can also start rearview camera with echo 2
> sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The display should be rear camera view.

2. Input echo 1 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. It shows all cameras' views on
display as follows.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 21 / 39

Figure 1. All cameras' views on the display

3. Input echo 1 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows right camera view on
the display.

4. Input echo 2 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows left camera view on the
display.

5. Input echo 0 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows all cameras' views on
the display.

6. Stop EVS with stop evs_app on the Cortex-A console.

8.1.2 EVS related code
Directory of EVS related code running on the Cortex-A core is listed as follows:

• EVS hal: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs

• EVS service: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs_service

• EVS kernel driver: ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/drivers/mxc/vehicle

• EVS application: ${MY_ANDROID}/packages/services/Car/evs/app/

After modifying the Cortex-A core source code, build the whole system to update Android Automotive images.

8.1.3 Delay of camera/display module probe
The RVC is occupied by the Cortex-M4 core in early stage when booting up in an Android car. AP needs to separate camera/
display resource in boot stage. There are two resources that need to pay attention in AP boot stage: clock and power domain.

1. Separate clock in boot stage.

a. Add CONFIG_VEHICLE_CLK_POST_INIT, which does not register camera/display related CLK in clk-imx8qm.c.

b. Add clk-post-imx8qm.c, which is probed in notice_evs_released.

2. Separate power domain in boot stage.

SC_R_CSI_0/SC_R_LVDS_1/SC_R_DC_1/SC_R_ISI_CH0 are used in Cortex-M4 side. The related power domain used
in DTS needs to be removed under the DTS node vehicle_rpmsg_m4.

• The node whose power domain is pd_dc1 needs to be moved into vehicle_rpmsg_m4.

• The node whose power domain is under pd_dc1 (such as pd_mipi1/pd_lvds1/pd_mipi1_i2c0/..) needs to be moved
into the DTS node vehicle_rpmsg_m4.

• The node whose power domain is pd_isi_ch0 needs to be moved into the DTS node vehicle_rpmsg_m4.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 22 / 39

• The node whose power domain is under pd_isi_ch0 (such as: pd_csi0/pd_csi1/..) needs to be moved into the DTS
node vehicle_rpmsg_m4.

• The camera node needs to be moved into the DTS node vehicle_rpmsg_m4.

8.2 Audio configuration

8.2.1 Routing audio stream to different sound cards
In Android Automotive, different autio streams route to different sound cards. When configured, the route is statically decided,
unlike the dynamically routed in standard Android image.

In the Android Automotive release, the route is configured as follows: Alarm, notification, and system sounds are played from the
audio jack on the CPU board. Other sounds such as music are played from the extended audio board. The following are steps
to change the route. For example, music and navigation go through the extended audio board, and others go through the audio
jack on the CPU board.

Figure 2. Routing audio stream to different sound cards

1. Map the context to bus index in ${MY_ANDROID}/vendor/nxp-opensource/imx/audiocontrol/AudioControl.cpp.

static int sContextToBusMap[] = {
 -1, // INVALID
 0, // MUSIC_CONTEXT
 0, // NAVIGATION_CONTEXT
 1, // VOICE_COMMAND_CONTEXT
 1, // CALL_RING_CONTEXT
 1, // CALL_CONTEXT
 1, // ALARM_CONTEXT
 1, // NOTIFICATION_CONTEXT
 1, // SYSTEM_SOUND_CONTEXT
};

2. Map the bus index to bus address in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/audio_policy_configuration_car.xml The
bus index "0/1" is parsed from the tagName.

<devicePort tagName="bus0_media_out" role="sink" type="AUDIO_DEVICE_OUT_BUS"
 address="bus0_media_out">

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 23 / 39

 <gains>
 <gain name="" mode="AUDIO_GAIN_MODE_JOINT"
 minValueMB="-3200" maxValueMB="600" defaultValueMB="0" stepValueMB="100"/>
 </gains>
</devicePort>
<devicePort tagName="bus1_system_sound_out" role="sink" type="AUDIO_DEVICE_OUT_BUS"
 address="bus1_system_sound_out">
 <gains>
 <gain name="" mode="AUDIO_GAIN_MODE_JOINT"
 minValueMB="-3200" maxValueMB="600" defaultValueMB="0" stepValueMB="100"/>
 </gains>
</devicePort>

3. Bind the bus address to a specific sound card in ${MY_ANDROID}/vendor/nxp-opensource/imx/alsa.

In config_cs42888.h, cs42888_card.bus_name = "bus0_media_out".

In wm8960.h, wm8960_card.bus_name = "bus1_system_sound_out".

4. Build the image.

8.3 Display configuration

8.3.1 Configuring the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application resources.
Device implementations must report one of the following logical Android framework densities:

• 120 dpi, known as 'ldpi'

• 160 dpi, known as 'mdpi'

• 213 dpi, known as 'tvdpi'

• 240 dpi, known as 'hdpi'

• 320 dpi, known as 'xhdpi'

• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical density
of the screen, unless that logical density pushes the reported screen size below the minimum supported.

The default display density value is defined in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk as shown below:

BOARD_KERNEL_CMDLINE += androidboot.lcd_density=240

The display density value can be changed by modifying the related lines mentioned above in ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.mk and recompile the code or set in U-Boot command line as bootargs during boot-up.

8.3.2 Starting the cluster display
Cluster display is supported in the i.MX Android Automotive release package. With this feature, two displays connected to the
board can display different content.

To do customization work on this function, you need to know how this function can be started and controled.

To start the cluster display, connect two i.MX mini SAS cables with LVDS-to-HDMI adapter and MIPI-DSI to HDMI adapter
respectively to the "LVDS0" and "MIPI-DSI0" ports on the board. ports of the board. After the system boots into Android launcher,
different content is displayed on the two displays connected to the board.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 24 / 39

The following two commands can be executed on the board console to simulate key input to select the menu on the cluster display:

dumpsys activity service android.car.cluster.sample/.SampleClusterServiceImpl injectKey 22
dumpsys activity service android.car.cluster.sample/.SampleClusterServiceImpl injectKey 21

8.3.3 Enabling the multiple-display function
i.MX 8QuadMax MEK supports two displays when running Android Automotive with Xen support.

Table 12. Displays supported by different boards

Board Number of displays Display port

i.MX 8QuadMax MEK 2 LVDS0_CH0 and MIPI_DSI0

8.3.3.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/etc/input-port-
associations.xml is used to do this work when the system is running, but the input device location and display-id vary with the
connection forms of these ports with corresponding input and display devices, which means that the input location and display-
id need to be retrieved before the connection is fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the ${MY_ANDROID}/device/fsl/
directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

dumpsys SurfaceFlinger --display-id
Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=DEL displayName="DELL P2314T"

2. Use the following commands to get the touch input location:

getevent -i | grep location
location: "usb-xhci-cdns3-1.3.4/input0"
location: "usb-xhci-cdns3-1.2.4/input0"

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be modified according
to the actual connection. One display port can be bound with multiple input ports.

<ports>
 <port display="0" input="usb-xhci-cdns3-1.1.4/input0" />
 <port display="1" input="usb-xhci-cdns3-1.2.4/input0" />
 <port display="0" input="usb-xhci-cdns3-1.4/input0" />
 <port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</ports>

To make the modifications take effect, you can modify the source file under the ${MY_ANDROID}/device/fsl/ directory and re-
build the images. Keep the connection of diplay devices and input devices unchanged and reflash the images. You can also
disable dm-verity on the board and then use the "adb push" command to push the file to the vendor partition to overwrite the
original one.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 25 / 39

8.3.3.2 Enabling multi-client input method

Only multi-client IMEs support typing at the same time with different displays. The following is the way to enable the pre-installed
multi-client IME.

Enable multi-client IME for the side-loaded sample multi-client IME
adb root
adb shell setprop persist.debug.multi_client_ime
com.example.android.multiclientinputmethod/.MultiClientInputMethod
adb reboot

To disable multi-client IME on non-supported devices, clear persist.debug.multi_client_ime as follows. Then, reboot the system
to make it take effect.

Disable multi-client IME again
adb root
adb shell "setprop persist.debug.multi_client_ime ''"
adb reboot

The pre-installed multi-client IME in the system is a sample multi-client IME from AOSP. The performance is not as good as the
default Google Input Method Editor. To develop multi-client IME, see the document in source code (${MY_ANDROID}/frameworks/
base/services/core/java/com/android/server/inputmethod/multi-client-ime.md).

8.3.3.3 Launching applications on different displays

To launch an application to a display, select the Home application (MultiDisplay or Quickstep). The MultiDisplay is the new
launcher for multi-display feature. The Quickstep is the original launcher of Android system. If Quickstep is selected as the Home
application, you can also tap the "MD Launcher" application to get multi-display home screen. Select different display ports on
the top of the popup menu, the selected application is displayed on the specific display port.

8.3.4 Configuring the primary display resolution
The whole Android UI stack needs a display resolution to be defined before Android framework boots up.

In normal Android and car2 build, the display resolution is obtained when enumerating "/dev/dri/cardX" in display HAL. The system
selects the best aligned resolution when the "ro.boot.displaymode" property is set, or select the default "1080p60" when the
property is not set.

In car build, the predefined resolution is defined by the "ro.boot.fake.ui_resolution" property and it should be aligned with physical
display device. When the physical display is ready, the PollFileThread gets the event and enumerates the "/dev/dri/cardX" again
to configure the physical display.

8.4 HVAC configuration
HVAC is short for "Heating, Ventilation and Air Conditioning". This section describes the interfaces to control the HVAC system.
It helps customers to do customization work on HVAC.

8.4.1 Interfaces to control the HVAC system
For images in automotive-10.0.0_2.4.0_image_8qmek2.tar.gz built with the lunch target "mek_8q_car2-userdebug", see the
following table to control the HVAC system.

Table 13. HVAC test items for automotive-10.0.0_2.4.0_image_8qmek2.tar.gz

AP-> dummy vehicle driver Cortex-M4 -> dummy vehicle
driver

comments

Table continues on the next page...

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 26 / 39

Table 13. HVAC test items for automotive-10.0.0_2.4.0_image_8qmek2.tar.gz (continued)

AC ON AP Console has the following print
when AC is off/on: set fan AC on with
value 0/1

echo 0/1 > sys/devices/
platform/vehicle-dummy/
ac_on

AC on the panel is close/open.

Fan direction Set fan direction with value 8

Typical value: 0x1 (to face) 0x2 (to
floor) 0x03 (to face & floor) 0x06 (to
floor & defrost)

N Google APK issue for not
support Cortex-M4-> dummy
vehicle driver

Fan speed Set fan speed with value 8

Typical value: 0x00(off)/
0x01/0x02/0x03/0x04/0x05/0x06(MAX
)

echo 1/2/3/4/5/6 > sys/
devices/platform/vehicle-
dummy/fan_speed

It sets the fan speed.

HVAC power on HVAC on: Android control:
HVAC_POWER_ON, on/off

N Google APK issue for not
support Cortex-M4-> dummy
vehicle driver

AUTO ON Set auto on with value 0/1

Set auto off/on

echo 0/1 > sys/devices/
platform/vehicle-dummy/
auto_on

AUTO on the panel is cloase/
open

Defrost Left one: set defroster index 1 with
value 0/1

Right one: set defroster index 2 with
value 0/1

Left one: echo 0/1 > sys/
devices/platform/vehicle-
dummy/defrost_right

defrost on the panel is close/
open.

Right one: echo 0/1 > sys/
devices/platform/vehicle-
dummy/defrost_right

defrost on the panel is close/
open.

Temperature Left temp +-: set temp index 49 with
value 1097859072

Right temp +-: set temp index 68 with
value 1100422258

echo 1095528903 > sys/
devices/platform/vehicle-
dummy/temp_left

The left HVAC temp bar
changes to 55.

You can calculate the
Fahrenheit temp as follows:

Fahrenheit = 32 + 1.8 *
Centigrade

Fahrenheit: the num shown in
HVAC

Centigrade: 1095528903 is
the float of Centigrade. You
can use the following tool to
convert:http://
www.23bei.com/tool-23.html#

Table continues on the next page...

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 27 / 39

http://www.23bei.com/tool-23.html
http://www.23bei.com/tool-23.html

Table 13. HVAC test items for automotive-10.0.0_2.4.0_image_8qmek2.tar.gz (continued)

RECIRC Recirc on: set recirc on with value 0/1 echo 0/1 > sys/devices/
platform/vehicle-dummy/
recirc_on

RECIRC on the panel is
close/open

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax MEK
There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax MEK board. Because U-Boot can support only one USB gadget
driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable it and disable the
USB 3.0 gadget driver.

For i.MX 8QuadMax MEK, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under ${MY_ANDROID}/
vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 9ceb9d58f1..a54766eb6a 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -101,13 +101,11 @@ CONFIG_SPL_DM_USB_GADGET=y
 CONFIG_USB=y

 CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x0525
 CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_SPL_USB_GADGET=y
@@ -124,7 +122,7 @@ CONFIG_FSL_FASTBOOT=y
 CONFIG_FASTBOOT_BUF_ADDR=0x98000000
 CONFIG_FASTBOOT_BUF_SIZE=0x19000000
 CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0
 CONFIG_BOOTAUX_RESERVED_MEM_BASE=0x88800000
 CONFIG_BOOTAUX_RESERVED_MEM_SIZE=0x02000000

diff --git a/include/configs/imx8qm_mek_android_auto.h b/include/configs/imx8qm_mek_android_auto.h
index 793530c61a..5bef17b451 100644
--- a/include/configs/imx8qm_mek_android_auto.h
+++ b/include/configs/imx8qm_mek_android_auto.h
@@ -51,7 +51,6 @@
 #define CONFIG_SYS_MALLOC_LEN (64 * SZ_1M)
 #endif

-#define CONFIG_FASTBOOT_USB_DEV 1
 #define CONFIG_ANDROID_RECOVERY

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 28 / 39

 #define CONFIG_CMD_BOOTA

More than one defconfig file are used to build U-Boot images for one platform. Make the same changes on defconfig files as
above to enable USB 2.0 for other U-Boot images. You can use the following command under the ${MY_ANDROID}/vendor/nxp-
opensource/uboot-imx/ directory to list all related defconfig files:

ls configs | grep "imx8q.*android.*"

U-Boot used by UUU is compiled with "imx8qm_mek_android.h", not the "imx8qm_mek_android_auto.h" listed
above.

 NOTE

8.6 Trusty OS/security configuration
Trusty OS firmware is used in the i.MX Android 10 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports i.MX 8QuadMax MEK Board. This section describes some
basic configurations to make Trusty OS work on

Create a directory for Trusty OS code and enter into this directory
$ repo init -u https://source.codeaurora.org/external/imx/imx-manifest.git -b imx-android-10 -m imx-
trusty-automotive-10.0.0_2.4.0.xml
$ repo sync
$ source trusty/vendor/google/aosp/scripts/envsetup.sh
$ make imx8qm_a72 #i.MX 8QuadMax MEK
$ cp ${TRUSTY_REPO_ROOT}/build-imx8qm/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/
imx8q_car/tee-imx8qm.bin

EVK/MEK boards. For more configurations about security related features, see the i.MX Android Security User's Guide (ASUG).

Customers can modify the Trusty OS code to make different configurations and enable different features. First, use the following
commands to fetch code to build the target Trusty OS binary.

Then build the images, and the tee-imx8qm.bin is integrated into bootloader-imx8qm.img. Flash the spl-imx8qm.bin and
bootloader-imx8qm.img files to the target device.

• ${TRUSTY_REPO_ROOT} is the root directory of the Trusty OS codebase.

• ${MY_ANDROID} is the root directory of the Android 10 codebase.

 NOTE

8.6.1 Initializing the secure storage for Trusty OS
Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC chip. RPMB needs
to be initialized with a key, and the default execution flow of images does not make this initialization.

Initializing the RPMB with specified key or random key are both supported. Note that the RPMB key cannot be changed once it
is set.

• To set a specified key, perform the following steps:

Make your board enter fastboot mode, and execute the following commands on the host side:

— fastboot stage < path-to-your-rpmb-key >

— fastboot oem set-rpmb-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 29 / 39

— The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.

— A prebuilt rpmb_key_test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated with the following shell commands:

◦ touch rpmb_key.bin

◦ echo -n "RPMB" > rpmb_key.bin

◦ echo -n -e
'\x00'
>> rpmb_key.bin

The '\xHH' means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above with the key you want to set.

 NOTE

• To set a random key, perform the following steps:

Make your board enter fastboot mode, and execute the following commands on the host side:

— fastboot oem set-rpmb-random-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

The random key is generated on device and is invisible to anyone. Your device may no longer boot up if the RPMB
key message is destroyed.

 NOTE

8.6.2 AVB key provision
The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the vbmeta image. The
public key is used by AVB to authenticate the vbmeta image. The following figure shows the relationship between the AVB key
and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot. With Trusty OS, it is saved in the secure storage.

Figure 3. Relationship between AVB key and vbmeta

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 30 / 39

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to
generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb supports such commands.
You can get the public key test_rsa4096_public.bin with the following commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_ANDROID}/
external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the BOARD_AVB_ALGORITHM and
BOARD_AVB_KEY_PATH to use different algorithm and private key:

 BOARD_AVB_ALGORITHM := <algorithm-type>
 BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM) can help
accelerate the hash calculation. The Android build system signs the vbmeta image with the private key above and stores one
copy of the public key in the signed vbmeta image. During AVB verification, the U-Boot validates the public key first and then use
the public key to authenticate the signed vbmeta image.

8.6.2.2 How to set the vbmeta public key

The public key must be stored in Trusty OS backed RPMB for Android system when Trusty OS is enabled. Perform the following
steps to set the public key.

Make your board enter fastboot mode, and execute the following commands on host side:

fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private key is specified, set the
public key as prebuilt testkey_public_rsa4096.bin, which is extracted form the default private key testkey_rsa4096.pem.

8.6.3 Key attestation
The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-backed, what the
properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the corresponding certificate chains
to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse the "keybox"
and provision the keys and certificates to secure storage. Both keys and certificates should be Distinguished Encoding Rules
(DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure storage is properly
initialized for Trusty OS:

• Set RSA private key:

fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key

• Set ECDSA private key:

fastboot stage <path-to-ecdsa-private-key>
fastboot oem set-ec-atte-key

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 31 / 39

• Append RSA certificate chain:

fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert

This command may need to be executed multiple times to append the whole certificate chain.

 NOTE

• Append ECDSA certificate chain:

fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert

This command may need to be executed multiple times to append the whole certificate chain.

 NOTE

After provisioning all the keys and certificates, the keystore attestation feature should work properly. Besides, secure provision
provides a way to prevent the plaintext attestation keys and certificates from exposure. For more details, see the i.MX Android
Security User's Guide (ASUG).

8.7 SCFW configuration
SCFW is a binary stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into bootloader.

To customize the SCFW, download the SCFW porting kit on the i.MX Software and Development Tools page. For this release,
click "Linux -> Linux 5.4.24_2.1.0 -> SCFW Porting Kit" to download the porting kit. Then, decompress the file with the following
commands:

 tar -zxvf imx-scfw-porting-kit-1.5.0.tar.gz
 cd packages
 chmod a+x imx-scfw-porting-kit-1.5.0.bin
 ./imx-scfw-porting-kit-1.5.0.bin
 cd imx-scfw-porting-kit-1.5.0/src
 tar -zxvf scfw_export_mx8qm_b0.tar.gz # for i.MX 8QuadMax MEK

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration file, taking i.MX
8QuadMax MEK as an example, it is the scfw_export_mx8qm_b0/platform/board/mx8qm_mek/board.c. Based on this file,
some changes are made for Android Automotive and the file is stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-
firmware/imx8q_car/board-imx8qm.c.

You can copy board-imx8qm.c from vendor/nxp/fsl-proprietary to the SCFW porting kit, modify it, and then build the SCFW.

The following are steps to build SCFW (taking i.MX 8QuadMax as example):

1. Download the GCC tool from the arm Developer GNU-RM Downloads page. It is recommended to download the version
of "6-2017-q2-update" as it is verified.

2. Unzip the GCC tool to /opt/scfw_gcc.

3. Export TOOLS="/opt/scfw-gcc".

4. Copy the board configuration file from ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-
imx8qm.c to the porting kit.

cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-imx8qm.c
scfw_export_mx8qm_b0/platform/board/mx8qm_mek/board.c

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 32 / 39

https://www.nxp.com/imx6tools
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

5. Build SCFW.

cd scfw_export_mx8qm_b0 # enter the directory just uncompressed for i.MX 8QuadMax
make clean
make qm R=B0 B=mek

6. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qm_b0/scfw_tcm.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/
mx8qm-scfw-tcm.bin

7. Build the bootloader.

cd ${MY_ANDROID}
./imx-make.sh bootloader -j4

8.8 Power state configuration
Android automotive power HAL supports power request property, which can be used to control the system power state: ON, OFF,
or suspend.

It is assumed that the power state of the Cortex-A core is controlled by separate power controller. In the following use case, MCU
and dummy vehicle driver play the role of power controller in the car and car2 image accordingly.

Connect the board to a BT device to better show the system power state.

Table 14. Power state configuration

Power control
from car MCU
console

Power control from car2 AP
console

Comment

shutdown now power 1 1 echo "1 1" > /sys/devices/
platform/vehicle-dummy/
power_req

The system shuts down right now. Then, long press
the power-on key to wake up the system.

suspend power 1 2 echo "1 2" > /sys/devices/
platform/vehicle-dummy/
power_req

The system disconnects from BT, waits for all tasks
to be done, and then enter suspend mode. Press
the power-on key to wake up the system. BT is
connected again. Sometimes the system wakes up
by itself.

shutdown
postpone

power 1 3 echo "1 3" > /sys/devices/
platform/vehicle-dummy/
power_req

The system waits for all tasks to be done, and then
shuts down.

cancel power 2 0 echo "2 0" > /sys/devices/
platform/vehicle-dummy/
power_req

Cancel the shutdown and suspend command if it
has not been executed. First, enter "power 1 3" for
car image or echo "1 3" to power_req for car2
image. The system disconnects from the BT, turns
off the display, and prepares for shutdown. Before
the system shuts down, enter "power 2 0" for car
image or echo "2 0" to power_req for car2 image,
the system cancels shutdown command, turns on
the display, and connects BT.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 33 / 39

8.9 Boot time tuning

8.9.1 Boot time overview
In this document, the boot time is the duration from the time the hardware is started from cold boot to that the Android Automotive
Launcher UI is showed on the display screen when the hardware is not in the first time boot from factory. Because the very first
successfully boot sets up the accelerating software executing environment, it costs a longer time to boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug efficiency, some debug
purpose modules and interfaces are kept in the release. Before the product is ready to ship, these modules and interfaces can
be configured to save the boot time and make the boot time performance best in the final product.

8.9.2 What NXP did to tune the boot time
To make Android Automotive boot faster, lots of changes were made on different modules to achieve better performance. The
following changes impact the boot time:

• Removed the debug command in U-Boot and Linux kernel to save its initialization time and image size.

• Built Linux kernel as zImage to save the image size.

• Removed unused driver in U-Boot and Linux kernel.

• Make some drivers as kernel module, and load them when Android boot is completed so that the connectivity devices and
camera driver are initialized after the Android Automotive Launcher UI is shown on the display. This makes the Android
Automotive Launcher UI show earlier.

• Removed unused device from Android Framework, such as Ethernet, Sensors.

• Refined Android Verify Boot procedure.

• Optimized Android Framework to make service executed on different CPUs.

• Delayed some non-critical services for SystemUI module of Android after boot is completed.

• Delayed Zygote32 to when UI is shown.

• Delayed Bluetooth service to when UI is shown.

• Removed some unused service in Android Framework.

• Booted from the Cortex-A72 core instead of Cortex-A53 (only for i.MX 8QuadMax MEK).

All the changes above do not impact any of the functions and the performance except the boot time.

8.9.3 How to get the shorter boot time
For debug and development purpose, the U-Boot boot delay and Linux kernel dmesg are enable by default. The Linux kernel
dmesg is printed by UART. In field measurement, the Linux kernel dmesg costs about 1.15 seconds during the boot process
because UART is the slow device. Therefore, before the final product, remove the U-Boot delay and Linux kernel dmesg by the
following operations:

• Set CONFIG_BOOTDELAY=-2 in the U-Boot defconfig file, imx8qm_mek_androidauto_trusty_defconfig for i.MX 8QuadMax
MEK in ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/configs.

• Modify the Linux bootargs in build system. See Section 8.1. Appending loglevel=0 to it will prevent the dmesg to be printed
to console during the boot.

• By default, the images are built by userdebug build. When it is changed to user build, about 0.5 seconds boot time is saved.

When setting loglevel=0, the debug message is not displayed directly to the console. To check it, however,
you can use the $dmesg command in the shell to output it.

 NOTE

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 34 / 39

8.9.4 How to build system.img with squashfs files system type
The default file system of system.img is ext4. After the system.img file system type is changed to squashfs, the system.img size
can be reduced to about 50%. Samller storage size costs more CPU resource but less eMMC IO operation, so this is a balanced
option between IO and CPU loading. By default, this is not enabled. If the target device have storng CPU but weak eMMC,
squashfs is an option for boot time tuning.

To change the default file system type to squashfs, perform the following steps:

1. Add the following Linux kernel macro in ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/arch/arm64/configs/
android_car_config:

• CONFIG_SQUASHFS=y

• CONFIG_SQUASHFS_LZ4=y

• CONFIG_SQUASHFS_XATTR=y

• CONFIG_SQUASHFS_DECOMP_MULTI=y

2. Add the following configurationsg in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk:

BOARD_SYSTEMIMAGE_FILE_SYSTEM_TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX 8QuadMax MEK Board.

8.10 Configuration for the load orders of driver modules

8.10.1 Why does Android Automotive have driver load orders
As the boot time performance of Android Automotive is important, make Linux kernel boot as soon as possible to enable some
critical services eailier. Therefore, some drivers that are not critical for the Android Automotive booting are not loaded during the
early boot stage. The set of drivers are build into kernel modules during build time and are loaded and probed after the Android
Automotive key service boots successfully. This makes the display and UI ready earlier.

In this release, the following module related drivers are probe before the initialization process starts:

• Rfkill

• USB

• Wi-Fi

8.10.2 How does the non-critical driver load
In i.MX Android Automotive, all kernel driver modules are loaded in init.rc by the script named init.insmod.sh. Based on the
priorities of the driver modules, the load operations is described in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/
setup.core.car2.cfg and ${MY_ANDROID}/device/fsl/imx8q/mek_8q/setup.main.car2.cfg. These two fils are input of
init.insmod.sh.

For mek_8q_car2 , it has no "core" driver modules to be loaded and probed during boot process, so there is nothing in
setup.core.car2.cfg. As all necessary camera driver modules are built-in inside of the kernel image. The "main" drivers are
rfkill for Bluetooth, USB, and Wi-Fi. The driver load and probe are triggered when sys.boot_completed property is set to 1. This
is handled in init.rc.

8.10.3 How to change driver load orders
Generally, the driver follows the priority below to be loaded:

• Built-in

• Listed in setup.core.car2.cfg

• Listed in setup.main.car2.cfg

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 35 / 39

In each cfg file, the drivers are loaded one by one. To change the driver load orders, in setup.core.car2.cfg or
setup.main.car2.cfg, just change the text list order. If some built-in drivers need to be loaded in low priority, follow the
changes below:

• In the kernel defconfig file, mark specific CONFIG to be m instead of y .

• Modify the BOARD_VENDOR_KERNEL_MODULES in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/SharedBoardConfig.mk to
copy the specific .ko files to the target image.

• Add the driver module name in setup.core.car2.cfg or setup.main.car2.cfg based on its loading priority.

8.11 Dual-bootloader configuration

8.11.1 Dual-bootloader layout
Dual-bootloader feature splits the default u-boot.imx into two parts: spl.bin and bootloader.img. The spl.bin goes to the
bootloader0 partition, which is managed by U-Boot itself. The bootloader.img goes to the bootloader_a/bootloader_b partitions,
which are managed by GPT and thus gets a chance to be updated.

The layout of dual-bootloader is as follows (taking i.MX 8Quad as an example):

The bootloader.img contains U-Boot proper, Arm Trusted Firmware, and Trusty OS. All of them can be updated easily through
OTA to fix some power or security issues.

8.11.2 Configuring dual-bootloader
Dual-bootloader feature is enabled for Android Automotive by default. It is enabled by configuring CONFIG_DUAL_BOOTLOADER in
U-Boot. Take i.MX 8Quad as an example:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 82ec5ca..e0b210e 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -170,4 +170,4 @@ CONFIG_APPEND_BOOTARGS=y
 CONFIG_LIBAVB=y
 CONFIG_SHA256=y
 CONFIG_SPL_MMC_WRITE=y
+CONFIG_DUAL_BOOTLOADER=y

Then, imx-mkimage needs to pack spl.bin and bootloader.img separately. Taking i.MX 8QuadMax as an example, two targets
are used to handle the dual-bootloader image generation without Cortex-M4 images in imx-mkimage:

i.MX 8QuadMax: flash_b0_spl_container_m4_0_1_trusty_a72

When Trusty OS is enabled, bootloader rollback index can be used to prevent rollback attack. For more details to set the
bootloader rollback index, see Section 2.3.5 in the i.MX Android Security User's Guide (ASUG).

Besides, after enabling dual-bootloader, the steps to sign images with the CST tool are different. For more information, see
Section 2.1 in the i.MX Android Security User's Guide (ASUG).

8.12 Miscellaneous configuration

8.12.1 Changing boot command line in boot.img
After boot.img is used, the default kernel boot command line is stored inside this image. It packages together during Android build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the ${MY_ANDROID}/device/fsl/imx8q/mek_8q/
BoardConfig.mk file.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 36 / 39

8.12.2 Changing the partition size
Partition name and size is defined in partition-table.img, which is built from ${MY_ANDROID}/device/fsl/common/
partition/device-partitions.bpt. Follow the patch below in ${MY_ANDROID}/device/fsl to adjust the partition size (taking
the system partition as an example, change its size from 1536 MB to 1792 MB):

diff --git a/common/partition/device-partitions-13GB-ab.bpt b/common/partition/device-partitions-13GB-
ab.bpt
index 1af4c201b..0ef52552b 100644
--- a/common/partition/device-partitions-13GB-ab.bpt
+++ b/common/partition/device-partitions-13GB-ab.bpt
@@ -22,7 +22,7 @@
 {
 "ab": true,
 "label": "system",
- "size": "1536 MiB",
+ "size": "1792 MiB",
 "guid": "auto",
 "type_guid": "0f2778c4-5cc1-4300-8670-6c88b7e57ed6"
 },
diff --git a/imx8q/BoardConfigCommon.mk b/imx8q/BoardConfigCommon.mk
index 5419510cd..d5a3f8602 100644
--- a/imx8q/BoardConfigCommon.mk
+++ b/imx8q/BoardConfigCommon.mk
@@ -186,7 +186,7 @@ else
 ifeq ($(IMX_NO_PRODUCT_PARTITION),true)
 BOARD_SYSTEMIMAGE_PARTITION_SIZE := 2952790016
 else
- BOARD_SYSTEMIMAGE_PARTITION_SIZE := 1610612736
+ BOARD_SYSTEMIMAGE_PARTITION_SIZE := 1879048192

 BOARD_PRODUCTIMAGE_PARTITION_SIZE := 1879048192
 endif

The following table lists the minimum requirement of the partition size:

Table 15. Minimum requirement of the partition size

Partition name Partition size with GAS built-in Partition size without GAS built-in

system 1.6 GB 1.2 GB

vendor 512 MB 512 MB

product 350 MB 350 MB

9 Revision History
Table 16. Revision history

Revision number Date Substantive changes

O8.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

O8.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

Table continues on the next page...

NXP Semiconductors
Revision History

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 37 / 39

Table 16. Revision history (continued)

Revision number Date Substantive changes

P9.0.0_2.1.0-AUTO-ga 04/2019 i.MX 8QuadXPlus/8QuadMax Automotive GA release

P9.0.0_2.1.0-AUTO-ga 08/2019 Updated the location of the SCFW porting kit

automotive-10.0.0_1.1.0 03/2020 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0)
GA release

android-10.0.0_2.2.0-AUTO 06/2020 i.MX 8QuadXPlus/8QuadMax MEK GA release

android-10.0.0_2.4.0 07/2020 i.MX 8QuadMax MEK GA release

NXP Semiconductors
Revision History

Android™ User's Guide, Rev. android-10.0.0_2.4.0, 15 July 2020
User's Guide 38 / 39

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2018-2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 July 2020
Document identifier: AUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 Preparation
	2.1 Setting up your computer
	2.2 Unpacking the Android release package

	3 Building the Android platform for i.MX
	3.1 Getting i.MX Android release source code
	3.2 Building Android images
	3.2.1 Configuration examples of building i.MX devices
	3.2.2 Build mode selection

	3.3 Building U-Boot images
	3.4 Building a kernel image
	3.5 Building boot.img
	3.6 Building dtbo.img

	4 Running the Android Platform with a Prebuilt Image
	5 Programming Images
	5.1 System on eMMC
	5.1.1 Storage partitions
	5.1.2 Downloading images with UUU
	5.1.3 Downloading images with fastboot_imx_flashall script

	6 Booting
	6.1 Booting from SD
	6.1.1 Booting from SD on the i.MX 8QuadMax MEK board

	6.2 Boot-up configurations
	6.2.1 U-Boot environment
	6.2.2 Kernel command line (bootargs)
	6.2.3 DM-verity configuration

	7 Over-The-Air (OTA) Update
	7.1 Building OTA update packages
	7.1.1 Building target files
	7.1.2 Building a full update package
	7.1.3 Building an incremental update package

	7.2 Implementing OTA update
	7.2.1 Using update_engine_client to update the Android platform
	7.2.2 Using a customized application to update the Android platform

	8 Customized Configuration
	8.1 Camera configuration
	8.1.1 Interfaces to control the EVS function
	8.1.2 EVS related code
	8.1.3 Delay of camera/display module probe

	8.2 Audio configuration
	8.2.1 Routing audio stream to different sound cards

	8.3 Display configuration
	8.3.1 Configuring the logical display density
	8.3.2 Starting the cluster display
	8.3.3 Enabling the multiple-display function
	Binding the display port with the input port
	Enabling multi-client input method
	Launching applications on different displays

	8.3.4 Configuring the primary display resolution

	8.4 HVAC configuration
	8.4.1 Interfaces to control the HVAC system

	8.5 USB configuration
	8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax MEK

	8.6 Trusty OS/security configuration
	8.6.1 Initializing the secure storage for Trusty OS
	8.6.2 AVB key provision
	Generating the AVB key to sign images
	How to set the vbmeta public key

	8.6.3 Key attestation

	8.7 SCFW configuration
	8.8 Power state configuration
	8.9 Boot time tuning
	8.9.1 Boot time overview
	8.9.2 What NXP did to tune the boot time
	8.9.3 How to get the shorter boot time
	8.9.4 How to build system.img with squashfs files system type

	8.10 Configuration for the load orders of driver modules
	8.10.1 Why does Android Automotive have driver load orders
	8.10.2 How does the non-critical driver load
	8.10.3 How to change driver load orders

	8.11 Dual-bootloader configuration
	8.11.1 Dual-bootloader layout
	8.11.2 Configuring dual-bootloader

	8.12 Miscellaneous configuration
	8.12.1 Changing boot command line in boot.img
	8.12.2 Changing the partition size

	9 Revision History

