I.MX31 PDK 1.5 Linux

Reference Manual

Document Number: 926-77210
Rev. 1.5
02/2009

2 [
z
ARMa

freescalpm

semicon ductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.

Exchange Building 23F, No. 118 Jianguo Road

Chaoyang District

Beijing 100022, China

+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150

LDCForFreescale Semiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. "Typical" parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the
property of their respective owners. ARM is the registered trademarks of ARM Limited. The ARM
logo is a registered trademark of ARM Ltd.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

@

W POWERED

ARM

freescale

semiconductor

Contents

Paragraph
Number Title
About This Book

AUAIENCE. . .o
CONVENTIONSottt e e e e e e e e e e e e e
Definitions, Acronyms, and Abbreviations
Suggested Readingot

Chapter 1

Introduction

11 SOtWAIE BaSEcceeceie ettt e enee e
12 FFEBLUIES......ceee e e e e e e

Chapter 2

Running Linux on the Hardware Boards

21 Running the i.MX LinUuX BSP.........ccoiieece e
211 Preparation —Board SEtUPcoereriiinee e
212 Terminal CONSOIE......ccceieeeee e e e
213 Programming RedBoot into Flash ..o
214 RUNNING LINUX .t s
215 BOOING LINUX ...ttt s e
22 Exchanging Fileswith the .LMX LinuX BSPcccoeiiiiiiiinccinecieeas
221 Sending Filesto the i.MX LiNUX BSPc.cocoiiiniiinieeeeeee,
222 Sending Filesto the DesKtop PC ... e
223 Exchanging Files with the Desktop PC using Ethernet
23 Building the i.MX Linux BSP from SOUICeccooeieiine i
231 The GNU TOOI ChaliN.......cccuoiiieiieie e
232 INSLAliNG tNE BSP ...
233 Kernel Modules on the Target Platform..........ccoccoeviienine i

Chapter 3

Architecture

31 Linux BSP BIOCK Di@graimcoeiererierineeiieies e
3.2 KEBIMEL ...t enee e e
321 CONFIQUIBLION ...ttt e e
322 Machine Specific Layer (MSL)ccooeiirieinineeeeee e
33 DAY
331 Character DeVICE DIVEIS........cccuiiiiereeie it
332 Image Processing Unit (1PU) Architecture............ccoeveninciinccnnne.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Page
Number

Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
333 Graphics Processing Unit (GPU) DIIVENccooiiiiiieineeieeee e 3-13
334 01100 [D LY O 3-14
335 Input Device Drivers — Keypad DIIVEN ... 3-14
3.3.6 Memory Technology Device (MTD) DIIVErS.......cociiieieieeeneee e 3-14
3.3.7 NEIWOIKING DITVELS ...ttt et st r e et e e e 3-16
338 DISK DIIVEIS.....oeeeeeeeee ettt eae st esee st e e st e et e seen e esaesseesse e e e sneenseenaeeseessens 3-16
339 USB DIIIVEIS....co ettt st saee st ese e et e seen e eseesseesse e e e s neenseenaeeseessens 3-17
3.3.10 SECUNLY DIFIVEIS ...ttt e sttt se e e er et b ene e 3-18
3311 GENEIAl DIIVEIS. .. ittt st sttt e et e e e e eneesteese e et e seenseeneesneenseeneennean 3-19
34 2 T0To B 0 7="e (= TSRS 3-23
341 FUNCtioNS Of BOOL LOBOENS........cocveiieieeie ettt et st sre e 3-23
34.2 S0 | =0 o SR PR 3-24
35 GraphiCal USEr INTEITACE.ccceieieie ettt e e 3-24
351 QUEMDEAAEA ... e e e e e 3-25
3.6 101 S 3-25
3.7 ROOL & SYSLEIM.....eee e e 3-25
371 U TTTIES. ettt ettt se et et bt eb e e st nnas 3-25
3.7.2 (@00 011 115U 3-26
3.8 Source of Linux BSP COMPONENTS........ccuiiiiiriiieiereeie e e e sees e 3-27
39 LINUX BSP APIS.....ecee ettt ettt sn e eb et e es 3-28
Chapter 4
Machine Specific Layer (MSL)
4.1 INEEITUPDES ... ettt et et e e e e e e e et e e e e e e e e e ean e e sanr e e enneeeennn s 4-1
41.1 Interrupt Hardware OPeration............cooereerereere e seee e e e s eree e 4-1
41.2 INnterrupt SOFtWare OPEraLiONcc.eeeeiiereerie e et e e sreesee e e e anee s 4-2
4.1.3 INEErTUPE REQUITEMENES ... ettt sttt erae e e e e e e eneeeneeenens 4-2
414 INterrupt SOUrce CodE SITUCTUNEeiecieeee ettt e 4-2
4.1.5 Interrupt Programming INEIfaCecooeiiiieee e 4-3
4.2 LI 0 PP UPEP PP 4-3
42.1 Timer Hardware OPEralion..........coouevereriireee e sr e sr e neas 4-3
4.2.2 Timer SOftWare OPEIaLIONccceiiieierie et e e 4-3
4.2.3 TIMEr REQUITEIMENTS......c.eiieii ettt r et 4-3
4.2.4 Timer SOUrCe COOE SITUCIUIE...........eeiuierieeeeeeeeese ettt se e se e e e e enee s 4-4
4.2.5 Timer Programming INEEITACE.ooiii i 4-4
4.3 MEMOTY IV ...t s e e sn e nree e nn e nree s 4-4
43.1 Memory Map Hardware OPEralion.coueuereereriereeeere e 4-4
4.3.2 Memory Map SOftware OPEraEiON..........coeeerereeiieeeie ettt s sr e ene e 4-4
4.3.3 Memory Map REQUITEIMENTS...........oiiii et sr e e sr e e 4-4
4.3.4 Memory Map SoUrce CoOe SITUCTUNE........ccurierieiieeeie et e e 4-4
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5
iv Freescale Semiconductor

Paragraph
Number

4.3.5
4.4

441
4.4.2
4.4.3
444
445
4.4.6
45

451
45.2
45.3
454
4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5

5.1
511
512
5.2
5.3
53.1
5.4
5.5

Contents

Page
Title Number
Memory Map Programming INEEITACE..........c.coueriirie e 4-5
TOIMUX .ttt ettt st e b e es et ee e et eb e b st e b b st eneene et eneeneeeas 4-5
[OMUX Hardware OPEIaiONcccueieeruereereeie et se e sre e sees e ese e e 4-5
[OMUX SOftWare OPEFaHIONcceeuereeeieieeeeie ettt e sr e 4-6
[OMUX REQUITEIMENTS. ...ttt ettt se e sr et et ss e sr e se e nn s 4-6
IOMUX SOUICE COUE SITUCKUI ..ottt et e e e 4-6
IOMUX Programming INEEITACE.ooiueiireeie ettt 4-6
IOMUX Control through the GPIO MOdUIE...........cccoiiiiiiieieeee s 4-6
General Purpose Input/OUtpUt (GPIO)couiiiiiiiiereeie et 4-8
GPIO SOftWare OPEIELION.ccueeiieeeiie ettt sr e e 4-8
GPIO REQUITEIMENTS......c.eiieiieieiie sttt sttt se e et sr e e 4-10
GPIO SOUICE COUE SITUCKUNE........ueeeiereeie ettt e st e e 4-10
GPIO Programming INEEITACE.ccoiiriiirie e e e 4-10
5 1 TSRS 4-10
EDIO HardWare OPEIaHIONccueieeieiririe ittt se e e s e e s neenee e 4-10
EDIO SOftWare OPEIatioNcccueoeeierierieriireeie et e e e e e e snesaeas 4-10
EDIO REQUITEIMENTS.. ...ttt sr st e e e ss e sne e ese e s e 4-11
EDIO SOUrce Code SITUCTUIE.........ooviieeiieeeiietieeeeie et 4-11
EDIO Programming INEEITACE.coe i 4-11
SPBA BUS ATDITEN ...t e e e e 4-11
SPBA Hardware OPEralion...........cuooeuereeriereseee et se e sresie s e 4-11
SPBA SOftWare OPEIaLIONccueeueieeiieieee ettt sr e e ese e 4-12
SPBA REQUITEIMENTS ...ttt ettt s se e sr et en e ene e 4-12
SPBA SOUIrCe COUE SITUCKUNE ...ttt s e 4-12
SPBA Programming INETACEcceuiieieierece et 4-12
Chapter 5

Smart Direct Memory Access (SDMA) API
OVEBIVIBIW ..ottt ettt ettt e e et eh et bt eh et es e se et en et eb et ebe e e enne e 5-1
HardWare OPEIatiON...........ooiieriiie it se e e e s e s 5-1
SOftWAIE OPEIALTON......ccueeeieieeeiie ettt ettt ettt se e sr et e s e enne e 5-1
SOUICE COUE SIIUCLUIE ...ttt sttt e sn e e en e e 5-2
CONFIGUIBLION ...ttt e e et et se e en e e e s e e 5-3
Linux Menu Configuration OPLIONSccueerieeieriere e 5-3
Programming INEEITACEooiciiee et 5-3
EXAMPIE USAGE ... e e e 5-3

Chapter 6
PMIC Protocol Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor %

Contents

Paragraph Page
Number Title Number
6.1 Key PMIC Features and Capabilities............ccoiviiiiiieiineci e 6-1
6.1.1 PMIC Register Access and ArbItrationc.ooeouerererineeieieeie e 6-3
6.1.2 INEITUPE NOLITICAEION ... 6-4
6.2 DIriVEr REQUITEIMENES.eiieitiie ettt sttt ese e se ettt se e se et sr e eb e e s e e s 6-5
6.2.1 CONEIOl SEIVICES.......ecuieieiie ettt ettt etttk e ne e et sr et bt en e e e 6-5
6.2.2 Event NOtIfiCalION SEIVICESociiirieie et 6-6
6.2.3 MisCel|aneouS REQUITEMENES..........couiii ettt s 6-6
6.3 Driver SOftWare OPEIaLiON........c..oieuereere e eeire ettt es e et sr e ere e eb e e ese e s 6-6
6.4 DIrIVEr ATCNITECIUIE......ctie ettt st b e e e e nr e 6-8
6.5 Driver Implementation DEtailS ..o e 6-9
6.5.1 Driver INITAlIZEHON.ccueieeieeie et sr e 6-9
6.5.2 Driver UNIOAOINGccuveeiuieieiie ittt ettt sn e sb e en e 6-9
6.5.3 Event NOtITICATON LiSt.......cooiiiiieciieeiee et 6-9
6.5.4 INEEITUPE HBNAIEY ... e e 6-10
6.5.5 EVENE HANAIEIS......ce e et 6-11
6.5.6 REGISIEN ACCESS.....c.eeitiie ettt sttt ettt se e st et eb et ebe et ese e e e 6-11
6.6 Driver SOUrce COUE SITUCTUIE........ccueiiieieiie ettt sr e 6-11
6.7 Driver CONFIGUIALTON.cueitereeiiee ettt ettt e e se e e e b enee e 6-12
Chapter 7
PMIC Audio Driver
7.1 PMIC AUCIO DIVES FEBIUIES.........eeuiiieiieecie sttt s 7-1
7.2 DriVEr REUITEIMENES.eiuiiitiie ettt ettt re e se ettt se e se e sn e eb e s e s 7-3
721 Audio Device Handle Management...........coooeerereiinesineeie e 7-3
7.2.2 Digital Audio Bus Selection and Configuration.............coeeereeieneeiesese e 7-3
7.2.3 Stereo DA C and Voice Codec Control and Configurationcccoceceverenenenennens 7-4
724 Audio Input Section Control and CoNfigQUIratioN.............ccueveeiereerereeneseese s 7-4
7.2.5 Audio Output Section Control and Configuration.............cceereeerreeeerene e 7-4
7.2.6 Resetting the PMIC Audio COMPONENTScueiieiiiiiieseeie st s 7-4
1.2.7 Audio-Related Interrupts and Event NOtIfiCation............ccoveiereievenc e 7-5
7.2.8 Additional Audio-related Configuration OPLIONS...........cccuereiereerenere e 7-5
7.3 SOfIWEAIE OPEIALTON ...ttt ettt se e eb e s e sn e sr e ee e e s e 7-5
7.4 DIrIVEr ATCIITECIUIE......viecteeeee ettt eb e 7-6
7.5 Driver Implementation DEtailS ... e 7-6
751 Driver INITAlIZEHON.ccueieiieeie et sr e er e 7-7
752 Driver DeINITIAlIZHONccccueiiie e s eb e 7-7
7.6 Driver SOUrCe COUE SITUCTUIE........ccuuieiie ettt ettt s er e 7-7
7.7 Driver CONFIGUIALTON.cueieiie ettt ettt se et er e eb e s s 7-7
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5
vi Freescale Semiconductor

Paragraph
Number

8.1
8.2
8.3
8.4
8.5
851
8.5.2
8.6
8.7

9.1
9.2
9.3
94
9.5
9.6
9.7

10.1
10.2
10.3
104
10.5
1051
10.5.2
10.6
10.7

111

Contents

Page
Title Number

Chapter 8

PMIC Digitizer Driver

PMIC Digitizer Driver Features and Capabilities...........ccooooerinenineciice e 8-1
DIriVEr REQUITEIMENES.eiiiitiie ettt sttt re e se ettt ne e se et sr e eb e ene e s 8-2
Driver SOftWare OPEIaLION........c..oieuereere et eie e se e et sr e ere e es e s e s 8-2
DIIVEr ATCIITECIUN ...ttt st seesre et e e e seen e eneesreenes 8-3
Driver Implementation DEtailSccooiiiiiiinie e 8-4
(D EAYI g L o LU= L= (o] o SRS 8-4
DIIVEN REMOVAEL.ottt st es e st se e e e aeeneeesaeseeeneenneanneas 8-4
Driver SOUrCe COUE SITUCTUIE........ccuiieiie ettt e sr e 8-4
Linux Menu Configuration OPLIONScoeeirerereeresiese e 8-5

Chapter 9

PMIC Power Management Driver

PMIC FEAIUIES ...ttt s ettt e aee et e st e e ss e e snbeenbeennneeseeeeeneas 9-1
DIriVEr REQUITEIMENES.eiieitiie ettt e e se ettt ne e et sr e eb e ene e s 9-1
Driver SOftWare OPEIaLION........c..oieuereerie e eeire ettt se et e sre e es e esee e s 9-1
DIIVEr ATCIITECIUNottt s e sre et e s e e s en e eneesreenes 9-2
Driver Implementation DEtailS ... e 9-3
Driver SOUrce COUE SIMUCTUIE........ccuuiieiereeie ettt e e 9-4
Driver CONFIGUIALTON.c ettt ettt se e sr e eb e ene e s 9-4

Chapter 10

PMIC Connectivity Driver

PIMIC FEBIUINES ...ttt ettt et s ettt et ne et eeene e 10-1
DriVEr REUITEIMENES.eiieitiie ettt sttt se e se et et e e e se et sr e sr e ere e e enee e 10-1
Driver SOftWare OPEIaLION........c..eriiierierie ettt ettt se e e sr e sre e sre e ese e enee e 10-2
DIIVEN ATCIITECIUNE ceee ettt et e e en e st ese e e e e neanne s 10-3
Driver Implementation DetailSccooiiiriiinie e 10-4
DGRV g N 1 (= [17= o o S PR 10-4
DIIVEN REMOVAELottt sttt ea et e st e e e e enteeneeeseeneens 10-4
Driver SOUrce COUE SITUCTUIE........ccueieieieeie ettt sttt se e se e 10-4
Driver CONFIGUIALTON.cueitieeiiee ettt se et se e e b er e ene e 10-4

Chapter 11

PMIC Battery Driver

PIMIC FEBLUIMES ...ttt ettt et ettt ettt ne b eeene 11-1

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor vii

Contents

Paragraph Page
Number Title Number
11.2 DriVEr REQUITEIMENES. ... ittt ettt se e se e se et s e e se e e ss e ebe e e es e e e anne e 11-1
11.3 Driver SOftWare OPEIaliON...........oveueieeiereeie sttt seese e se e e se e sr e see e s e nes 11-1
114 DAY QAN (@ 11 (= o (1T 11-2
115 Driver Implementation DetailS ..o 11-2
1151 (DAY R TR 4= (o] o 11-3
11.5.2 (DAY R DI TN = 4= (o] o 11-3
11.6 Driver SOUrCe COOE SLIUCTUIE.ocvveeeceieceeeie ettt et ree et ee s e e e saaeeeenneeeeans 11-3
11.7 Driver CONFIGUIBLION.ceeieeeieeieeeeeeseese et ste et seee st e e e e e eseesseesee e e e neenseeneesseeneens 11-3

Chapter 12

PMIC Light Driver

12.1 PMIC FEAIUIES ...ttt et et e et e et ee e ete e e etee e e etaeeesae e nsae e nsaeenseesnnseesnneeesnneeenans 12-1
122 DriVEr REQUITEIMENES.iieitieie ettt sttt se e se et s e ee e sn e see e ere e e enee e 12-1
1221 Backlight Control FUNCLIONS..........cc.ooiiiieiirie s s 12-1
12.2.2 LED CONtrol FUNCLIONS.cccoiuiiie ittt st te e s ste e e s ssarae e e s snbeee e s snnees 12-2
12.3 Driver SOftWare OPEIaLION........c.ueiviierierie ettt et e e e se e e se e sr e sre e ese e enee e 12-2
124 DAY AN (1= o (1T 12-2
125 Driver Implementation DetailSc.ooiiiriiinie e 12-3
125.1 (DAY R LT 4= (o] o 12-4
125.2 Driver DEINITTAlIZAHIONcoeceeeee ettt e st eb e e s saae s 12-4
12.6 Driver SOUrce CoE SLIUCIUIE.........ocuveeeeeieeeceee ettt ettt ee e e ee e eaae e eaae e eans 12-4
12.7 Driver CONFIGUIALTON.cueiteeeiiee ettt sttt se e sr e ee e b ene e 12-4

Chapter 13

PMIC Real Time Clock (RTC)

13.1 PMIC FEALUIESccvveeeetie ettt et e et e e et ee e te et ae e e eteeeesaeeesasensaeenseesnnseesaneeesnneeenans 13-1
13.2 DIriVEr REQUITEIMENES.itiitiieeiie et sttt st se et et se et sr e sr e ere e e ene e 13-1
13.3 Driver SOftWare OPEIaLION........c..oreierierie ettt sttt st sr e e se et sr e eee e ese e enee e 13-1
134 DAY AN (1= o (1T 13-2
135 Driver Implementation DEtailSc.ooiiiriiiniee s 13-2
135.1 (DAY R LT 4= (o] o 13-3
135.2 (DAY TR DI TN = T4= (o] o 13-3
13.6 Driver SOUrce CoE SLIUCIUIE.........ocuveeeceieeeceee ettt ettt e ee e eane e eaae e enns 13-3
13.7 Driver CONFIGUIALTON.cueiiieetiee ettt et se et sr e en et er e e s e 13-3

Chapter 14

i.MX31 Low-level Power Management Driver
141 (@ V7S RV =Y. R 1-1
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

vii Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
1411 HardWare OPEIatiON...........ooiueriee ittt se et se e e s e 1-1
14.1.2 SOftWAIE OPEIALTON......ccueeeiie ettt ettt se e sr et e b e s e 1-1
14.2 REQUITEIMENTS ...ttt ettt e e r et et nn s 1-1
14.3 HarOWEAIE ISSUES.......oeieeieee et ettt ettt e se et e et ente s e see e e e s e enseeneeeseesaeeeenneas 1-2
144 SOUICE COUE SITUCTUIE ...ttt ettt ese st e e e e e e enseeneeeneeneens 1-2
14.5 Programming INEEITACEooi et e e 1-2
Chapter 15
Dynamic Voltage Frequency Scaling (DVFS) Driver
151 HardWare OPEIELION........ccveieeeee e eeeerees e eeeteste et eeseee st e s e e e eseeaseesseeneesseenseeneesseessesneennens 2-1
1511 DY S S 2-1
15.1.2 SOftWEAIE OPEIALTON......ccueeeiieetiie ettt ettt se e sr et sn e ebe e enne e 2-2
15.2 SOUICE COUE SITUCTUIE ...ttt sttt en e et e e e e e enseeneeeneeneens 2-3
153 Linux Menu Configuration OPLIONScoeeirereriere s seenes 2-3
1531 Board Configuration OPLIONS............coeeeiieieieeeie et sre e 2-3
Chapter 16
Dynamic Process and Temperature Compensation (DPTC) Driver
16.1 HardWar€ OPEIELION........ccveeeeie e seeeieeee e etesee et seeesee s e e e eseeeseeseeenee s e enseeneessenssesneensens 31
16.2 SOFtWAIr€ OPEIELIONeeeeieeie et eeeee e et eaeeseeesee et e st enteeseeaseessee e asseenseeneeeseessenns 33
16.2.1 DVFS and DPTC — MCL13783 INtEraCtioNcccueveerieereeieeeie e seeseesie e seeeseesneenneas 34
16.3 REQUITEIMENTS ...ttt se et e e r et et e s e 3-4
164 SOUICE COUE SITUCTUIE ...ttt sttt n e et e e e e e e enseeneeeneeneens 34
16.5 CONFIGUIBLION ...ttt et et er et er e e et en e e e e 3-4
Chapter 17
CH7024 TV Encoder (TV-Out) Driver
171 TV-OUL DIIVEN OVEIVIEW ...t seeseees e estessaeseeeseesseesseesseeseessesseasseensesnssssenssens 4-1
1711 HardWare OPEIatiON...........ooiieriiieieiee ettt et se e e s e 4-1
17.1.2 SOftWEAIE OPEIALTON......ccueeeiieitiie ettt ettt se e sr et sr e b e enne e 4-2
17.2 Source Code Structure CONFIQUIBLTON...........ceueriieeiereeie et se e e e 4-2
17.3 Driver CONFIGUIALTON.cueetieieeeieseeie sttt e bbb e e 4-3
Chapter 18
Image Processing Unit (IPU) Drivers
181 [PU HardwWare OPEIaLIONcoveeieereeieeeiesteeseeseeeseesseeseesaeesaessesssesseesseensesssessesssesssessens 5-1
18.2 [PU SOftWare OPEIatiON.........cceireieeieeie e sieeseeseeesee s e e et sressee s e e e enaeeneesreessesneesneensens 5-1
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5
Freescale Semiconductor ix

Contents

Paragraph Page
Number Title Number
18.2.1 IPU Frame BUffer DIiVersS OVEIVIEW..........cceieeieeiesieeseeeseeseese e seeeseesseense e sseesnenns 5-2
18.2.2 [PU DACKITGNE DIIVES ...ttt e 5-4
18.2.3 Video fOr LINUX 2 (WAL 2) APIS..... e 5-5
1824 MPEGA/H.264 POSt FITEN DITVEN ...t s 5-9
18.3 IPU Source Code Structure Configurationooeouerereieneeineee e 5-10
184 IPU Linux Menu Configuration OPLIONS...........ccouerererire e 5-11
185 [PU Programming INEEITACE.........c.oieeeeie ettt 5-14

Chapter 19

MBX Driver
191 HardWare OPEIELION.........ceeieeeie e seeeiees et seeeteeseee st e s e e seeseeaseesseesee s e enseeneesseessesneensens 6-1
19.2 SOFtWAIr€ OPEIEHIONeeeeieeie e eteeeeeesee e e e steesee et e s e enseeseeaseessee e anseenseeneeesenssenns 6-1
19.3 REQUITEIMENTS ...ttt sttt et e e en e s e sse e e e s e enseeneeeseesseeneennens 6-2
194 SOUICE COUE SITUCTUIE ...ttt ettt s e et se e e e enneeneeeneeneens 6-2
195 CONFIGUIBLION ...ttt et ettt se e s et en e e 6-2
1951 Linux Menu Configuration OPLIONScccueerieeieriere e 6-2
19.5.2 MBX FIlESYSIEM SELUP......oeiieeiie ettt e 6-3
19.6 Programming INEEITACEoi it et e 6-3
196.1 USEN SPACE AP ... e 6-3

Chapter 20

Hantro VGA Video Encoder Driver

20.1 OVBIVIBIW ...ttt et e et e e e s e e e e en e es e eseese e e e e seeneeaseesseeneanneenseenseeneensenns 7-1
20.1.1 HardWare OPEIatiON...........ooiieriiie ettt st se e sr e e s e 7-2
20.1.2 SOftWAIE OPEIALION ...ttt ettt sb e eb e e s 7-2
20.2 REQUITEIMENTS ...ttt ettt et e e r et e nn s 7-2
20.3 SOUICE COUE SITUCTUIE ...ttt sttt s e st se e e e e enseeneeeneeneens 7-3
204 CONFIGUIBLION ...ttt et ettt er e e e e ne s e e 7-3
204.1 Linux Menu Configuration OPLiONScccueerieeieriere e 7-3

Chapter 21

OmniVision Camera Driver (OV2640)
211 HardWare OPEIELION........ccveeeeeie e seeesees e eeettesteeteeseeese s e e seeseesseeseeeneesneenseeneesseessesneennens 1-1
21.2 SOFtWAIr€ OPEIELIONeeeeieeie et seee e et e e s e see e st e s e enseeseeaseesse e e asseenseeneeesenssenns 1-1
213 SOUICE COUE SITUCTUIE ...ttt sttt e se e e e enseeneeeneeneens 1-1
214 Linux Menu Configuration OPLIONScoeeirerereere e e e seenes 1-2
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

X Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
Chapter 22
Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support
221 ALSA Features and COMPONENLSccueireuerrerreie et srese e ss e ssesse s e sse e esseseenes 2-1
2211 Current BSP REIEASE SUPPOIToiuiieeeie ittt ettt 2-2
22.1.2 PCM COMPONENES. ...ttt st e e sr e sr e e eseesneenn e e eneas 2-2
22.1.3 COoNtrol COMPONENES.cueieeie ittt et se e ss e se et es et sr et e be b et es e e e enee s 2-2
222 HarAWare OPEIaLiON........cuoiuiieeeieiei ettt sttt sr e se e eb e e s 2-3
22.3 SOfIWEAIE OPEIATON ...ttt sr et e st se e sn e sr e eee e enne e 2-4
2231 LTz 2 o] o TSSO 2-4
22.3.2 DEVICE OPEN ..ottt ettt e h e s et et et bt en e e 2-4
22.3.3 DIgITAl MIXING. .. eceteeeiieet ittt se e et sn e et et en e 2-5
224 SOUICE COUB SEIUCLUIE ...ttt ettt ettt sn e sr e eb e e e 2-5
Chapter 23
Digital Audio Multiplexer (AUDMUX) Driver
231 HarAWare OPEIaLiON.........c.oiuirieeeieiei ettt ettt et se et nn s 31
23.2 SOfIWEAIE OPEIALTON ...ttt ettt se e eb et se e sn e sr e eee e enne e 3-2
23.3 REQUITEIMENTS ...ttt et re e et e et et ese e nn s 3-2
234 SOUICE COUR SIIUCLUIE ...ttt ettt sttt e e e e 3-2
234.1 Linux Menu Configuration OPLIONScccueereeieriere e 3-2
235 Programming Interface (EXPOrted API) ..o e 3-3
23.6 INtErTUPE REQUITEIMENTS ...ttt e 34
Chapter 24
Synchronous Serial Interface (SSI) Driver
241 HarAWare OPEIaLiON...........oiuiie ettt sttt et nn s 4-1
24.2 SOfIWEAIE OPEIALTON ...ttt ettt et se ettt se e sn e sn e eee e s e 4-2
243 REQUITEIMENTS ...ttt et ee et et et et nn s 4-2
244 SOUICE COUE SIIUCLUIE ...ttt se ettt sn e e eb e e 4-2
2441 Linux Menu Configuration OPLIONScccueerreeieriere s 4-3
245 Programming Interface (EXPOrted API) ..o e 4-3
24.6 INtErTUPE REQUITEIMENTS ...ttt 4-6
Chapter 25
NAND Flash Memory Technology Device (MTD) Driver
251 (@Y= VT Y S SR 5-1
2511 HardWare OPEIatiON...........ooiieriiie ettt sttt e se e sb e en e e 5-1

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor Xi

Contents

Paragraph Page
Number Title Number
25.1.2 SOftWEAIrE OPEIATON......ccueeeiieieiie ettt et s er et se e sr et sr e en e enne e 5-1
25.2 REQUITEIMENTS ...ttt et se et e et b e nn s 5-2
253 SOUICE COUE SITUCTUIE ..ottt sttt n e e s e e e e enseeneesneeneens 5-2
254 CONFIGUIBLION ...ttt e ettt se et e e et s e e 5-2
254.1 Linux Menu Configuration OPLIONSccoueereeieriere et 5-2
255 Programming INEEITACEooi et e e 5-3
25.6 Device-SPECITiC INFOrMELION.oiiieecie ettt 5-3

Chapter 26

Low-Level Keypad Driver

26.1 HardWare OPEIELION.........ceeieeeie e seeeiees et seeeteeseee st e s e e seeseeaseesseesee s e enseeneesseessesneensens 6-1
26.2 SOFtWAIr€ OPEIEHIONeeeeieeie e eteeeeeesee e e e steesee et e s e enseeseeaseessee e anseenseeneeesenssenns 6-1
26.3 ReaSSIGNING KEYCOUES ..ottt sttt eneesreesee e e enne s 6-3
26.4 REQUITEIMENTS ...ttt sttt et e e en e s e sse e e e s e enseeneeeseesseeneennens 6-3
26.5 SOUICE COUE SITUCTUIE ...ttt ettt et e st e e e e e e eneesneeneens 6-3
26.6 Driver CONFIGUIALTON.cueitiie ettt sttt se e sr e b ese e s 6-4
26.7 Programming INEEITACEooi et e e 6-4
26.8 INtErTUPE REQUITEIMENTS ...t 6-4
26.9 Device-SPECifiC INFOrMELION.oiieiee ittt 6-5

Chapter 27

SMSC LAN9217 Ethernet Driver

271 HardWare OPEIELION.........ceeeeeie e seeesees e eteste e seee e e s e e e eneeeseesseenee s e enseeneesseessesneennens 1-1
27.2 SOFtWAIr€ OPEIELIONeeeeeeeie ettt see e eaeesteesee et e st anseeseeaseessee e anseenseeneessenssenns 1-2
27.3 REQUITEIMENTS ...ttt et ettt eenee s e sse e e e s e enseeneeesensaeneenneas 1-2
274 SOUICE COUE SITUCTUIE ...ttt ettt et se e e e e e e eneesneeneens 1-2
275 Linux Menu Configuration OPLIONScoeeireriereeresiise e snenes 1-2

Chapter 28

WLAN Driver
28.1 HardWare OPEIELION.........cveeeee e seeerees e eteeseeeteeseeese e s e e e eseeeseesseesee s e enseeneesseessesneennens 2-1
28111 REGISIEN ACCESS. ... ceiueeiieite et etie e st e e st eestesteesae et e st esees e aseesaee e e sneenseeseesneeseeeneenneas 2-1
28.1.2 TrANSMISSION ...ttt et e e e seeseeese e s e e seeneeeseeeseeseeaneenneenseesaeeseessenneensnns 2-1
28.1.3 RECEPLION ...t et e et e eb et en e e 2-1
28.1.4 ENcryption and DECIYPLION.........oouiiiirieiiiieieite ettt e 2-2
28.1.5 Conflicts with other PeripheralS ... 2-2
28.2 SOfIWEAIE OPEIALTON ...ttt ettt se e ee et se e sn e en e ene e enne e 2-3
28.3 CONFIGUIBLION ...ttt e et ettt se et e er e en e e 2-5
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Xii Freescale Semiconductor

Contents

Paragraph

Number Title

28.3.1 LinuxX ConfiQUIationcceouereereneineeie e
28.3.2 WPA CONfIQUIELION ..ottt
284 Programming INtEIfaCeooeeiire e e

Chapter 29
Security Drivers
291 Hardware Security MOAUIESccviiiiiiicieeceee e
29.1.1 BOOL SECUNLY ...t e
29.1.2 SCC-SECUrE RAM ...ttt e e
29.1.3 SCC—Key Encryption Module (KEM) ..o
29.1.4 SCC—Zeroizabl@ MEMOTY ..o e
29.1.5 SCC—Security Key Interface Module............cccoeiiieninccinecieee
29.1.6 SCC—Secure Memory Controller..........ccoevveeieneiesie e
29.1.7 SCC—SECUNtY MONITON ..o e
29.1.8 SCC—Secure State CoNtrollefooeeeereereiesere e
29.1.9 SCC—SECUNLY POLICY ..ot e
29.1.10 SCC—Algorithm Integrity Checker (AIC)......cccovvivieiiieereeen
290111 SCC—SECUINE TIMEN ...ttt e e
29.1.12 SCC—DebUQY DELECLONcoueeeiieeiieieeie st e
29.1.13 Random Number Generator Accelerator (RNGA)cccovvevrieenenees
29.2 Software Security MOAUIES...........ccoiiiiiereeeie e
29.2.1 SCC Common Software OPErations............ooeeeeereerereeneseeseeeeeneens
29.2.2 Random Number Generator Accelerator (RNGA)coocevvvvreennn.
29.2.3 Run-Time Integrity Checker (RTIC) ..o
29.3 REQUITEIMENTS ...t
294 SOUICE COOE SITUCLUIE ...ttt
295 (@011 110 [0 1= 1 o] o RSSO
2951 Linux Kernel Configuration Options...........cccoueieeiereneneneseneeieees
295.2 Source Code Configuration OPtioNS...........c.ooveeiereeiereene s
29.6 INtErrupt REQUITEMENTS ... e
29.7 USAgE EXAMPIE ...t e
Chapter 30
Inter-IC (12C) Driver

30.1 |2C BUS DIIVEr OVEIVIEW ...t
30.2 [2C Client DriVEr OVEIVIEWcccooiiieiiieeieneeeeie e
30.3 Hardware OPEration...........cceoeeirieieieie e
30.4 SOftWAre OPEIaiON.......coeeuieeeie et
304.1 |2C Bus Driver Software Operationccoeeverenenieseenieeeesneennene

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Page
Number

Freescale Semiconductor

Xiii

Contents

Paragraph Page
Number Title Number
30.4.2 12C Client Driver SOftware OPErationN............coerereeiereeenieeie e 1-2
30.5 REQUITEIMENTS ... e et et bt se e sr e sr e e 1-2
30.6 SOUICE COUB SITUCLUIE ...ttt ettt et bt se e e sr e 1-3
30.7 CONFIGUIBLION ...ttt e ettt se et e e et s e e 1-3
30.7.1 Linux Menu Configuration OPLIONSccoueereeieriere et 1-3
30.8 Programming INEEITACEooi et e e 1-3
30.9 INLErTUPE REQUITEMENTS ...t 1-3
30.10 Device-SPECITiC INFOrMELION. ...ttt 1-3

Chapter 31

One-Wire Driver

311 HarAWare OPEIaLiON........cueiuerieeeieieeee ettt ettt sr e se e eb e nn s 1-1
31.2 SOfWEAIE OPEIALTON ...ttt ettt er et se e sn e sn e ene e enne e 1-1
31.3 REQUITEIMENTS ...ttt ettt re et e ettt nn e 1-1
314 SOUICE COUB SEIUCLUIE ...ttt ettt sn e e b e e e 1-1
315 CONFIGUIBLION ...ttt e et ettt e s et e sr e en e e en e e 1-2
3151 Linux Menu Configuration OPLIONScccueereeieriere e 1-2

Chapter 32

Configurable Serial Peripheral Interface (CSPI) Driver

321 HarAWare OPEIaLiON........c.eiuiie ettt sttt e et nn s 2-1
32.2 SOfWEAIE OPEIALTON ...ttt ettt st sb et es e sn e se e eee e s e 2-2
3221 SPI SUD-SYSEEM 1N LINUX....cniieii st 2-2
32.2.2 [0 TY = 0] TSSOSO 2-3
32.2.3 StANAAIrd OPEIELIONS......c.eeieiieieiie ettt sttt se e sr et sr e sbe e e e 2-3
32.2.4 CSPI SynchronOUS OPEIaHIONccuerveierririeie et e e se e ere e s e e 2-4
32.2.5 PIMITC ACCESS ...ttt ettt sttt et es e em e e et e eh e nn e e nn e e e enne s 2-5
32.3 REQUITEIMENTS ...ttt et re et e e r et eb e s e 2-5
32.4 SOUICE COUB SEIUCLUIE ...ttt ettt e er ettt sn e e eb e e e e 2-5
32.5 CONFIGUIBLION ...ttt e e et et se et e sr et en e 2-5
32.6 Programming INEEITACEooeiiiee et 2-6
32.7 INtErTUPE REQUITEIMENTS ...ttt e 2-6
32.8 Device-SPECifiC INFOrMELION.oiieiee ittt 2-6

Chapter 33

MMC/SD/SDIO Host Driver
331 HarAWare OPEIaLiON........cuoiuirie ettt sttt sr e sr et nn s 31
33.2 SOfIWEAIE OPEIALTON ...ttt ettt et se ettt se e sn e sn e eee e s e 3-2
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Xiv Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
33.3 REQUITEIMENTS ...ttt et se e e r et eb e nn s 34
334 SOUICE COUR SITUCLUIE ...ttt ettt sttt sn e e er e e 3-4
335 Linux Menu Configuration OPLIONScoeeireriereeresiise e snenes 34
33.6 Programming INEEITACEcceiiiee et eree e ne e 3-5

Chapter 34

Universal Asynchronous Receiver/Transmitter (UART) Driver

34.1 UART Driver Hardware OPEIatioN.coerireeriereere s e sresie s sses e snenes 1-2
34.2 UART Driver SOftware OPEraliONceereeuirierieieseeie e se e e s sre e 1-2
34.3 UART Driver REQUITEIMENTSoiiiieieirie ettt e e e sr e ene e 1-2
34.4 UART Driver SOUrce Coae SITUCKUIEooueivireiiereese ettt 1-3
34.5 UART Driver CONfIGQUIELION.......coteueieiieieeie sttt ese st e sse e sre e sse e sn s 1-3
345.1 Linux Menu Configuration OPLiONScccueerreeieriere e 1-3
34.5.2 Source Code Configuration OPLIONS.........c..eieeirreeie e 1-4
34.6 UART Driver Programming INETACEcceiiriieiire e 1-4
34.7 UART Driver Interrupt REQUITEMENTS ..ottt 1-5
34.8 Device SPeCIfiC INFOrMELION........ooiieieiie ittt 1-5
34.8.1 UART POIES. ..ottt ettt e sane e snne e e snne e e enne e 1-5
34.8.2 Board Setup CONfIQUIBEIONcueiiire it s 1-5
34.9 Early UART SUPPOIT ...ttt sttt sn e er e ene e 1-7

Chapter 35

ARC USB driver

35.1 ATCRITECIUIal OVEIVIEW.......ceiceie ettt ettt eneesneesee e e e nne s 2-2
35.2 HarAWare OPEIaLiON........c.oiueiieieieieeee ettt ettt r e se e eb e e 2-2
35.3 SOfIWEAIE OPEIALTON ...ttt ettt st sr e sb et es e sn e sn e eee e enne e 2-3
354 REQUITEIMENTS ...ttt e et e et et e et nn s 2-3
35.5 SOUICE COUR SIIUCLUIE ...ttt ettt sn e e eb e e e 2-4
35.6 Linux Menu Configuration OPLIONScoeeirerereeresiise e snenes 2-5
35.7 Programming INEEITACEcoieieee et e e 2-7
35.7.1 N[0 =TSR P PR URRRPRRRPRRRTRIN 2-7

Chapter 36

Bluetooth Driver
36.1 HardWare OPEIELION.........ceeeeee e eeeeiees e eeete e eeteseee e e s e e e eseeaseesseenee s e enseeneesseessesneesnens 31
36.2 SOFtWAIr€ OPEIELIONeeeeeeie ettt e e e e e steesee et e s e enteeseeaseessee e anseenseeneeeseensenns 3-2
36.2.1 [IO 11 (o SRR 3-3
36.2.2 Reset and POWEr CONEIOLc..oiuiieieiiceee e 3-4
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor XV

Contents

Paragraph Page
Number Title Number
36.2.3 CONFIGUIBLION ...ttt et re et et sa e et e en e 3-4

Chapter 37

ATA Driver
37.1 HardWare OPEIELION.........cueieeeie e seeerees et ste et seee e e s e e eseeaseesseenee s e enseeneesseessesneennens 4-1
37.2 SOFtWAIr€ OPEIEHIONeoeiieeie ettt e e e e s teesee et e s e enseeseeeseeseeeeenseenseeneesseensenns 4-1
37.2.1 ATA Driver ArChITECIUIE.ottt sr e e e 4-1
37.2.2] oY N B 1Y USSR 4-2
37.3 Source Code Structure CONFIQUIEETON...........ceuerireeiereeie st seeee et sr e 4-3
3731] oY AN AN B Y= TSSO 4-3
374 Linux Menu Configuration OPLIONcc.coeeirerereere e seenes 4-3
375 Board Configuration OPLIONS..........c..ooeuereirereire et sn s 4-3

Chapter 38

Real Time Clock (RTC) Driver

38.1 HardWare OPEIELION.........cveieeeie e seeesees e eteesee et seee e e s e e e eseeeseesseenee s e enseeneessenssesneensens 1-1
38.2 SOfIWEAIE OPEIALTON ...ttt sr e eb e s e se e s sr e ere e esne e 1-1
38.3 REQUITEIMENTS ...t ettt ee et e et et nn s 1-1
38.4 SOUICE COUE SITUCTUIE ...ttt ettt n e st se e e e e e eneeeneeneens 1-2
38.5 Programming INEEITACEooi et 1-2

Chapter 39

Watchdog (WDOG) Driver

39.1 HardWare OPEIELION.........ceeeeeie et eeette et seee e e s e e e eseeaseesseenee s e enseeneesseessesneensens 2-1
39.2 SOFtWEAIr€ OPEIEIIONeeeeeeeie ettt e et e e st e see et e s e enteeseeaseessee e asseenseeneeeseensenns 2-1
39.2.1 GENEIIC WDOG AIVES ...ttt sttt enesteesee e e e s e enteesaesseeseee e enseenseenes 2-1
39.2.2 WDOG under Maching SPECITIC LAYENcoeuerireieireeiineeie e e 2-2

Chapter 40

FM Driver
40.1 FIM OVEIVIBW ...ttt st et sttt et teesee s e ss e e e e neenseenaesseeneeeeeneas 31
40.1.1 HardWare OPEIatiON...........ooiueriirieieiee ettt st se e e st en e e 31
40.1.2 SOftWEAIE OPEIALTON......ccueeeiie ittt ettt se e st sr e ene e enee e 3-2
40.2 Source Code Structure CONFIQUIBLTON...........ceuerireeiereeie et seere e sr e see e 3-3
40.3 Linux Menu Configuration OPLIONScoeeirerereere e seenes 3-3

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

XVi Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
Chapter 41
MMA7450L Accelerometer Driver
41.1 MMATASOL FEALUIESc.eeiviie ettt sttt ettt sr e en e en e 4-1
41.2 DIriVEr REQUITEIMENES.eiuiiitiie ettt sttt re e se e sttt se e e et en e eb e ene e s 4-1
41.3 DIIVEN ATCIITECIUNo it r e e e et e e enteeseesee e e eneas 4-1
41.4 Driver SOUrCe COUE SITUCTUIE........ccuieiie ettt ettt s 4-2
41.5 Driver CONFIGUIALTON. ..ottt ettt sttt se et sr e b e s e 4-2
Chapter 42
Global Positioning System (GPS) Driver
42.1 GPS DIVEN OVEIVIBWeeneeeie et eese e e steesee e e e s e enseesaesseesseaneasseenseeneessenssenns 5-1
42.2 HarAWare OPEIaLiON........c.oiuiie ittt sttt sr e sr e eb e e 5-3
42.2.1 UART POIT ..ttt et se et e bt en e e 5-3
42.2.2 L€ 1@ o 11 o] SR 5-3
42.2.3 Hardware Dependent Parameters...........oooiieiieeneee e 5-4
42.3 SOfWEAIE OPEIATON ...ttt ettt se et ee ettt se e sn e et eee e enne e 5-4
42.3.1 GLGPS CONIQUIBLION ...ttt s sre e sr et sr e see e enne e 5-4
42.3.2 Driver CONFIGUIALION.cc.eeieiie ittt ettt s sr e e e er e ene e 5-5
42.3.3 IS0 £ = 0o L= TSSO 5-6
42.3.4 LTO Feature (OPLIONaL)couerieeiie et s 5-6
42.3.5 POWEr ManagemMeNtcoiiiie e e 5-6
42.3.6 1M COMMENGS.....cceeeeeeeieieeeee ettt e e ee s e steene e e e e e eneeeseesseeneeeneeseensennes 5-7
Chapter 43
OProfile
43.1 (@72 VT SRR 6-1
43.2 FFEBIUIES.....c ettt ettt et e e e e e e e e eae e e eane e e eane e enne e enee 6-1
43.3 HarAWare OPEIaLiON........c.oiuirieeeieieiee ettt ettt sr e er e eb e e 6-1
43.4 SOfWEAIE OPEIATON ...ttt sr e eb et s e sn e se e eee e e enne e 6-2
43.4.1 Architecture SPecific COMPONENES.........couirireriereire et 6-2
43.4.2 Oprofilefs PSeUdO-FilESYStEM........c.oiiiiiece e 6-2
43.4.3 GENENIC KEIMNEI DIIVEN ...ttt er e sn et e e enes 6-3
43.4.4 The OProfil@ DaEMION.......cceee ettt st e e eneeenee e 6-3
43.4.5 POSE-Profiling TOOIS.......ccuiiiieie e e e e e 6-3
43.5 REQUITEIMENTS ...ttt e et e r et eb e eseenn s 6-3
43.6 SOUICE COUB SEIUCLUIE ...ttt ettt sn e e eb e e 6-4
43.7 CONFIGUIBLION ...ttt e e et ettt et e sr et en e er et en e 6-4
43.7.1 Linux Menu Configuration OPLiONScccueereerieriere e 6-4
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5
Freescale Semiconductor xvii

Contents

Paragraph Page
Number Title Number
43.8 Programming INEEITACEccveieee ettt e enee e ne e 6-4
43.9 INEErTUPE REQUITEMIENES ... vttt e eeee e e e se e e eneesseenee e e enneas 6-4
43.10 Device SPeCIfiC INFOrMELIONuoiieiieee et eree e ne e 6-4
Chapter 44
Frequently Asked Questions
44.1 DoWNIOadiNg @ FII€......c..oee e 7-1
44.2 Creating & JFFS2 MOUNE POINT.........coiiiiiieieiieie et 7-1
44.3 NFS-Mounting ROOt File SyStem ... 7-3
444 Error: NAND MTD Driver Flash Erase Failure.......oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 7-3
44.5 Error: NAND MTD Driver Attempt to Erase aBad BIOCKccccoeereiiiicie e 7-3
44.6 How to Use the Memory ACCESS TOOIcoueiireiiereee sttt st 7-4
447 How to Make Software Workable when JTAG isSAttachedoooevvveveeeeeeeeee e, 7-4
448 How to Use the Hardware Event Kerngl MOAUIE..........ooooo oo, 7-4
448.1 S0 U (o cY = 1 [T 7-4
44.8.2 AP e 7-4
44.8.3 Linux Menu Configuration OPLIONScccueereeieriere e 7-5
44.8.4 USEr APPIICAITON. ...ttt ettt s e e en e 7-5
i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5
Xviii Freescale Semiconductor

About This Book

The Linux board support package (BSP) represents a porting of the Linux operating system (OS) to the
i.M X processors and to their associated reference boards. The BSP supports many of the hardwarefeatures
on the platforms, aswell asmost of the Linux OS features not dependent on any specific hardware feature.

Audience

Thisdocument istargeted to individuals who will port thei.MX Linux BSP to customer-specific products.
The audience is expected to have a working understanding of the Linux 2.6 kernel internals and driver
models. An understanding of the i.MX processorsis also required.

Conventions

This document uses the following notational conventions:

 Courier nonospaced type indicate commands, command parameters, code examples, and
file and directory names.

 Italic type indicates replaceable command or function parameters.
* Bold type indicates function names.

Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface
ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous
data routing between host serial interfaces and peripheral serial interfaces.

BCD Binary Coded Decimal
bus A path between several devices through data lines.
bus load The percentage of time a bus is busy.
CODEC Coder/decoder or compression/decompression algorithm—Used to encode and decode (or

compress and decompress) various types of data.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor -XXV

Definitions and Acronyms (Continued)

Term Definition

CPU Central Processing Unit—generic term used to describe a processing core.

CRC Cyclic Redundancy Check—aBit error protection method for data communication.

CSl Camera Sensor Interface

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers.
DRAM Dynamic Random Access Memory

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program)

from all the masters in the system.

Endian Refers to byte ordering of data in memory. Little Endian means that the least significant byte of the
data is stored in a lower address than the most significant byte. In Big Endian, the order of the
bytes is reversed.

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise
interrupts at regular intervals with minimal processor intervention.

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards

published by the National Institute of Standards and Technology (NIST). NIST develops FIPS
when there are compelling Federal government requirements such as for security and
interoperability but no acceptable industry standards or solutions

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard
140-2(FIPS 140-2) is a standard that describes US Federal government requirements that IT
products should meet for Sensitive, But Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks
or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process
includes cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is
triggered by a software command.

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a
message digest, is a number generated from a string of text. The hash is substantially smaller than
the text itself, and is generated by a formula in such a way that it is extremely unlikely that some
other text will produce the same hash value.

I/0 Input/Output

ICE In-Circuit Emulation

IP Intellectual Property.

IPU Image Processing Unit —supports video and graphics processing functions and provides an

interface to video/still image sensors and displays.

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted
specifications for infrared wireless communication.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

-XXVi Freescale Semiconductor

Definitions and Acronyms (Continued)

Term Definition
ISR Interrupt Service Routine.

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of

compliant devices on a printed circuit board.

Kill Abort a memory access.

KPP KeyPad Port—a 16-bit peripheral that can be used as a keypad matrix interface or as general
purpose input/output (I/O).

line Refers to a unit of information in the cache that is associated with a tag.

LRU Least Recently Used—a policy for line replacement in the cache.

MMU Memory Management Unit—a component responsible for memory protection and address
translation.

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video
compression and audio. It is also the name of the algorithms used to compress moving pictures
and video.

MPEG There are several standards of compression for moving pictures and video.

standards * MPEG-1 is optimized for CD-ROM and is the basis for MP3.
* MPEG-2 is defined for broadcast quality video in applications such as digital television set-top
boxes and DVD.
* MPEG-3 was merged into MPEG-2.
* MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide
Web.

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations
necessary to configure radio subsystems and selected peripherals.

MSHC Memory Stick Host Controller

NAND Flash | Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other
being NOR) used in memory cards such as the Compact Flash cards. NAND is best suited to flash
devices requiring high capacity data storage. NAND flash devices offer storage space up to
512-Mbyte and offers faster erase, write, and read capabilities over NOR architecture.

NOR Flash See NAND Flash.

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that
has developed a standard for small, credit card-sized devices, called PC Cards. There are three
types of PCMCIA cards that have the same rectangular size (85.6 by 54 millimeters), but different
widths.

physical The address by which the memory in the system is physically accessed.

address

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant
phase angle (a lock) on the frequency of an input, or reference, signal.
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are
combined in various ways to create other colors. The abbreviation RGB come from the three
primary colors in additive light models.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor

-XXVil

Definitions and Acronyms (Continued)

Term Definition

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency
channel, and is unique to this color space. RGBA, like RGB, is an additive color space, so the more
of a color you place, the lighter the picture gets. PNG is the best known image format that uses
the RGBA color space.

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit
pseudo random numbers as part of the security module.

ROM Read Only Memory

ROM bootstrap |Internal boot code encompassing the main boot flow as well as exception vectors.

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access
SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking

mechanism.
SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting

low-/medium-bandwidth external devices using four wires. SPI devices communicate using a
master/slave relationship over two data lines and two control lines: Also see SS, SCLK, MISO, and

MOSI.
SRAM Static Random Access Memory
SSi Synchronous-Serial Interface—standardized interface for serial data transfer
TBD To Be Determined
UART Universal Asynchronous Receiver/Transmitter—this module provides asynchronous serial
communication to external devices.
uiD Unique ID-a field in the processor and CSF identifying a device or group of devices
USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB

1.1 specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum
transfer rate of 480 Mbps. A single USB port can be used to connect up to 127 peripheral devices,
such as mice, modems, and keyboards. USB also supports Plug-and-Play installation and hot
plugging.

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to
each other. USBOTG devices, also known as dual-role peripherals, can act as limited hosts or
peripherals themselves depending on how the cables are connected to the devices, and they also
can connect to a host PC.

word A group of bits comprising 32 bits

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

-XXVili Freescale Semiconductor

Suggested Reading

The following documents contain information that supplements this guide:
* 1.MX31 PDK Quick Sart Guide for Linux
* BSP API Document (BSP Doxygen Code Documentation)
* 1.MX31 PDK Linux User’'s Guide
* i.MX31 PDK Hardware User’s Guide
* MCIMX31 Multimedia Applications Processor s Reference Manual, (MCIMX31RM)

» [KERN] Linux kernel coding style by Linus Torvalds. Thisisincluded in Linux distributionsasthe
file Documentation/CodingStyle

* [WSAS] WSAS Coding Conventions, version 0.4
* [ASM] WSAS Assembly Code Conventions
* [DOXY] WSAS Guidelines for Writing Doxygen Comments

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor -XXiX

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

-XXX Freescale Semiconductor

Chapter 1
Introduction

Thei.MX family Linux board support package (BSP) supports the Linux operating system (OS) on the
following processors:

* i.MX31 Applications Processor

NOTE

Thefamily of all i.MX processorsisknown asthei.MX platforms. You will
see this term used in sections that apply to any of these application
processors.

Asthe name BSP implies, the purpose of this software package isto support Linux on thei.MX family of
integrated circuits (1Cs) and their associated platforms (3-Stack board). It provides the software necessary
to interface the standard open-source Linux kernel to thei.M X hardware. The goal of this portisto enable
Freescale customers to rapidly build products based oni.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-
specific drivers, hardware-independent software stacks, GUI components, JVM, and applicationsrequired
for aproduct. Some of these are made available in their original open-source form as part of the base
kernel.

The BSPis not intended to be used for silicon verification. While it can play arolein this, the BSP
functionality and the tests run on the BSP do not have sufficient coverage to replace traditional silicon
verification test suites.

1.1 Software Base

Thei.MX BSP isbased on version 2.6.26 of the Linux kerndl from the official Linux kernel web site
(http://www.kernel.org). It is enhanced with features provided by Freescale.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 1-1

http://www.kernel.org

Introduction

1.2 Features

Table 1-1 describes the features supported by the Linux BSP for specific platforms.
Table 1-1. Supported Features

Applicable

Features Description Chapter Source Platform

Machine Specific Layer

MSL MSL (Machine Specific Layer) supports interrupts, | Chapter 4, “Machine Specific All

Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA. | Layer (MSL)”

* Interrupts (AITC/AVIC): The Linux kernel contains
common ARM code for handling interrupts. The
MSL contains platform-specific implementations
of functions for interfacing the Linux kernel to the
ARM11 interrupt controller.

e Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high resolution
timer features, and so on. Linux defines the MSL
timer API required for the OS-tick timer and does
not expose it beyond the kernel tick
implementation.

* GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board I/O.
The 10 software module is board-specific, and
resides in the MSL layer as a self-contained set of
files. /0 configuration changes are centralized in
the GPIO module so that changes are not
required in the various drivers.

e SPBA: The Shared Peripheral Bus Arbiter (SPBA)
provides an arbitration mechanism among
multiple masters to allow access to the shared
peripherals. The SPBA implementation under
MSL defines the API to allow different masters to
take or release ownership of a shared peripheral.

SDMA API The Smart Direct Memory Access (SDMA) API driver | Chapter 5, “Smart Direct Memory |i.MX31
controls the SDMA hardware. It provides an APl to | Access (SDMA) API”
other drivers for transferring data between MCU,
DSP and peripherals. The SDMA controller is
responsible for transferring data between the MCU
memory space, peripherals, and the DSP memory
space. The SDMA API allows other drivers to
initialize the scripts, pass parameters and control
their execution. SDMA is based on a microRISC
engine that runs channel-specific scripts.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

1-2 Freescale Semiconductor

Table 1-1. Supported Features (Continued)

Introduction

Features

Description

Chapter Source

Applicable
Platform

Power Management IC (PMIC) Drivers

PMIC Protocol

The PMIC protocol driver interfaces to the IC through
the SPI driver. It manages the hardware interrupt
from the IC and provides services for all IC client
drivers. It exposes consistent APIs used by each IC
client driver to access the IC component.

Chapter 6, “PMIC Protocol Driver’

i.MX31

PMIC Audio

The audio driver is a client of the IC protocol driver. It
provides services for audio control of the IC and has
the following features:

* Supports configuration of the PMIC's Stereo DAC
and Voice CODEQC, including the 13-bit Voice
CODEC and both narrow and wide band sampling
and the 16-bit Stereo DAC with multiple sample
rates.

* Supports all input and output audio channels.

* Provides a custom API to set volume, balance,
mixer, and gain amplifiers.

* Reports an event for microphone bias detected.

* Provides a custom API for the configuration of the
PMIC-side of the SSI audio bus interface for
operating in network mode.

* Used by the higher level Alsa Driver.

Chapter 7, “PMIC Audio Driver’

i.MX31

PMIC Digitizer

This driver is a client of the PMIC's protocol driver.
It provides services for the digitizer controlled by the
PMIC. It supports the following features:

* Supports all types of digitizer input converters.

» Starts the digitizer converter.

* Reports an event when converted.

* Supports the monitor function of the PMIC's
digitizer.

* Used by touch screen component of input
sub-system and battery driver for charger/battery
current/voltage measurement.

Chapter 8, “PMIC Digitizer Driver”

i.MX31

PMIC RTC

The PMIC RTC for Linux provides access to the
PMIC’s RTC control circuits. It has the following
features

* Real-time clock control.

e Alarm events.

Chapter 13, “PMIC Real Time
Clock (RTC)”

i.MX31

PMIC Power
Management

This driver is a client of the PMIC's protocol driver.
It provides services for power management control
through PMIC. It supports the following features:

* Controls all ON/OFF switches.

* Controls all voltage regulators.

Chapter 9, “PMIC Power
Management Driver”

i.MX31

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

1-3

Introduction

Table 1-1. Supported Features (Continued)

Features

Description

Chapter Source

Applicable
Platform

PMIC Connectivity

This driver is a client of the PMIC's protocol driver. It
provides services for USB OTG and RS-232
connectivity controlled by PMIC. It supports the
following features:

* Supports an RS-232 transceiver in either DTE or
DCE modes with full hardware flow control.

* Supports a USB OTG transceiver with device
insertion/removal detection capabilities and
connection configuration using the Host Negotiation
Protocol.

Chapter 10, “PMIC Connectivity
Driver”

i.MX31

PMIC Battery

This component is a client of the PMIC's protocol
driver. It provides services for battery control. It
provides an API for battery control management.

Chapter 11, “PMIC Battery Driver’

i.MX31

PMIC Light

This driver is a client of PMIC's protocol driver. It
supports the following features:

* Supports all modes of LED control

* Supports backlight control (when the back light is
connected to the PMIC).

Chapter 12, “PMIC Light Driver”

i.MX31

Power Management Drivers

Low-level PM
drivers (including
DVFS)

The low-level power management driver is
responsible for implementing hardware-specific
operations to meet power requirements and also to
conserve power on the development platforms.
Driver implementations are often different for
different platforms. It is used by the DPM layer. This
driver implements DVFS or DFS techniques,
depending on the platform, and low-power modes.

Chapter 14, “i.MX31 Low-level
Power Management Driver”

i.MX31

DVFS

The Linux Dynamic Voltage Frequency Scaling
(DVFS) device driver monitors the current operating
point, using four reference circuits that test the IC
processing under the current ambient temperature.
The software module is comprised of a Linux driver
that allows privileged users to control and monitor
the DVFS operation. The DVFS Linux driver is
designed as a character driver.

Chapter 15, “Dynamic Voltage
Frequency Scaling (DVFS) Driver”

i.MX31

DPTC

The Dynamic Process Temperature Compensation
(DPTC) Driver manages the DPTC power
management technique. This technique reduces
power consumption by adjusting the supply voltages
according to the specific process case, chip
fabrication, and ambient temperature.

Chapter 16, “Dynamic Process and
Temperature Compensation
(DPTC) Driver”

i.MX31

Multimedia Drivers

TV-OUT

TV-OUT is a television encoder device that encodes
video signals and generates synchronization signals
for a given television standard.

Chapter 17, “CH7024 TV Encoder
(TV-Out) Driver”

i.MX31

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

1-4

Freescale Semiconductor

Introduction

Table 1-1. Supported Features (Continued)

Applicable

Features Description Chapter Source Platform

IPU The Image Processing Unit (IPU) is designed to Chapter 18, “Image Processing i.MX31
support video and graphics processing functions and | Unit (IPU) Drivers”
to interface with video/still image sensors and
displays. The IPU driver is a self-contained driver
module in the Linux kernel. It contains a custom
kernel-level API to manipulate logical channels. A
logical channel represents a complete IPU
processing flow. The IPU driver includes a
framebuffer driver, a V4L2 device driver, and
low-level IPU drivers.

GPU The Graphics Processing Unit (GPU) Driver is a Chapter 19, “MBX Driver” i.MX31
licensed core from Imagination Technologies. The
GPU is a graphics accelerator. GPU is used

synonymously with the names MBX-Lite and MBX.

V4L2 Output The Video for Linux 2 (V4L2) output driver uses the | Section 18.2.3.3, “V4L2 Output All
IPU post-processing functions for video output. The | Device”
driver implements the standard V4L2 API for output
devices.

V412 Capture The Video for Linux 2 (V4L2) capture device includes | Section 18.2.3.1, “V4L2 Capture |i.MX31
two interfaces: the capture interface and the overlay | Device”
interface. The capture interface uses IPU
pre-processing ENC channels to record the YCrCb
video stream. The overlay interface uses the IPU
pre-processing VF channels to display the preview
video to the SDC foreground panel without ARM
processor interaction.

Hantro VGA Video | An integrated hardware VGA video encoder from Chapter 20, “Hantro VGA Video i.MX31
Encoder Hantro. The encoder is operated through an Encoder Driver”
application programming interface.

Camera (OV2640) | The OV2640 Camera driver is designed under Linux | Chapter 21, “OmniVision Camera |i.MX31
V412 architecture. It implements V4L2 capture Driver (OV2640)”
interface.

Sound Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a | Chapter 22, “Advanced Linux i.MX31
sound driver that provides ALSA and OSS Sound Architecture (ALSA) Sound
compatible applications with the means to perform | Driver with PMIC Hardware

audio playback and recording functions using the Support”

audio components provided by Freescale’s PMIC
chips. ALSA has a user-space component called
ALSAlib that can extend the features of audio
hardware by emulating the same in software (user
space), such as resampling, s/w mixing, snooping,
and so on. The ASoc Sound driver supports stereo
codec playback and capture through SSI.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 1-5

Introduction

Table 1-1. Supported Features (Continued)

Features

Description

Chapter Source

Applicable
Platform

AudMux

The low level Digital Audio Multiplexer (AUDMUX)
driver provides a custom, kernel-space API to the
AUDMUX module. It supports all of the features of
the hardware module. It provides runtime audio path
configuration.

Chapter 23, “Digital Audio
Multiplexer (AUDMUX) Driver”

i.MX31

SSI

The low level synchronous serial interface (SSI)
driver provides a custom, kernel-space API to the
SSI modules. It supports all of the features of the
hardware modules including enabling/disabling of
DMA request events.

Chapter 24, “Synchronous Serial
Interface (SSI) Driver”

i.MX31

Memory Drivers

NOR MTD

The NOR MTD driver is board-specific as it depends
on the actual NOR Flash chip (Common Flash
Interface or CFl-compliant) on the board and can
have file systems, such as CRAMFS and JFFS2 on
top of it. The driver implementation supports the
lowest level operations on the Flash chip, such as
read, write and erase. The NOR MTD supports XIP
on Flash devices.

Chapter 41, “NOR Flash Memory
Technology Device (MTD) Driver”

i.MX31

NAND MTD

The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as CRAMFS and JFFS2. The driver
implementation supports the lowest

level operations on the external NAND Flash chip,
such as block read, block write and block erase as
the NAND Flash technology only supports block
access. Because blocks in a NAND Flash are not
guaranteed to be good, the NAND MTD driver is also
able to detect bad blocks and feed that information to
the upper layer to handle bad block management.

Chapter 25, “NAND Flash Memory
Technology Device (MTD) Driver”

i.MX31

Input Device Drivers

Keypad

The keypad driver interfaces Linux to the keypad
controller (KPP). The software operation of the
keypad driver follows the Linux keyboard
architecture. It supports up to an 8 x 8 external key
pad matrix of single poll switches.

Chapter 26, “Low-Level Keypad
Driver”

i.MX31

Networking Drivers

LAN9217 Ethernet

The SMSC LAN9217 Ethernet driver interfaces
SMSC LAN9217-specific functions with the standard
Linux kernel network module.

Chapter 27, “SMSC LAN9217
Ethernet Driver”

i.MX31 3-Stack

WLAN

The WLAN driver is used to drive the APM6628
module to implement Wi-Fi functionality.

Chapter 28, “WLAN Driver”

i.MX31 3-Stack

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

1-6

Freescale Semiconductor

Table 1-1. Supported Features (Continued)

Introduction

Features

Description

Chapter Source

Applicable
Platform

Security Drivers

SCC/SCC2

The Security Controller (SCC) is a part of the
Freescale Platform Independent Security
Architecture (PISA). This driver is comprised of two
modules; the Secure RAM Module and the Secure
Monitor Module.The Secure RAM module provides a
secure way of storing sensitive data in on-chip and
off-chip RAM memory. On-chip data can be cleared
if necessary to prevent un-authorized access.
Off-chip data is stored in encrypted form using an
encryption key that is unique to each device and is
accessible only through the Secure RAM module.

The SCC module will only be accessible by ARM11.

Chapter 29, “Security Drivers”

i.MX31

RNGA/RNGC

The Random Number Generator Accelerator
(RNGA) module is a digital integrated circuit capable
of generating 32-bit random numbers. It is designed
to comply with FIPS-140 standards for randomness
and non-determinism. The oscillators with their
unknown frequencies provide the required entropy
needed to create random data. An Entropy registeris
provided which serves the purpose for seeding the
Random number generator.

Section 29.1.13, “Random Number
Generator Accelerator (RNGA)”
and Section 29.2.2, “Random
Number Generator Accelerator
(RNGA)”

i.MX31

Bus Drivers

12C

The I2C bus driver is a low-level interface that is used

to interface with the 1°C bus. This driver is invoked by

the 12C chip driver; it is not exposed to the user

space. The standard Linux kernel contains a core 1’c

module that is used by the chip driver to access the

bus driver to transfer data over the I2C bus. This bus

driver supports:

* Compatibility with the 12C bus standard

* Bit rates up to 400kbps

* Standard 1°C master mode

* Power management features by suspending and
resuming I°C.

Chapter 30, “Inter-IC (12C) Driver”

i.MX31

CSPI

The low-level Configurable Serial Peripheral
Interface (CSPI) driver interfaces a custom,
kernel-space API to both CSPI modules. It supports
the following features:

* Interrupt-driven transmit/receive of SPI frames.

¢ Multi-client management.

¢ Priority management between clients.

» SPI device configuration per client.

Chapter 32, “Configurable Serial
Peripheral Interface (CSPI) Driver”

i.MX31

MMC/SD/SDIO -
SDHC

The MMC/SD/SDIO Host driver implements a
standard Linux driver interface to the MMC/Secure
Digital Host Controller (SDHC). The MMC driver
complies to the MMC specification version 4.1, SD
version 1.10 and SDIO version 1.10.

Chapter 33, “MMC/SD/SDIO Host
Driver”

i.MX31

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

1-7

Introduction

Table 1-1. Supported Features (Continued)

Features

Description

Chapter Source

Applicable
Platform

UART Drivers

MXC UART

The Universal Asynchronous Receiver/Transmitter
(UART) driver interfaces the Linux serial driver APl to
all of the UART ports. A kernel configuration
parameter gives the user the ability to choose the
UART driver and also to choose whether the UART
should be used as the system console.

Chapter 34, “Universal
Asynchronous
Receiver/Transmitter (UART)
Driver”

i.MX31

General Drivers

uSB

The USB driver implements a standard Linux driver
interface to the ARC USB-HSOTG controller.

Chapter 35, “ARC USB driver”

i.MX31

Bluetooth

The Bluetooth driver provides synchronous and
asynchronous wireless connection among multiple
devices.

Chapter 36, “Bluetooth Driver”

i.MX31 3-Stack

ATA

The ATA module is an AT attachment host interface.
Its main use is to interface with hard disk devices.
The ATA driver is compliant with the ATA-6 standard,
and supports the following protocols:

*PIOmode0, 1,2,3,and 4

e multiword DMA mode 0, 1, and 2

e Ultra DMA mode 0, 1, 2, 3, and 4and 3 with bus
clocks of 50MHz or higher

¢ Ultra DMA mode 5 with bus clock of 80MHz or
higher.

It supports the IDE and LibATA interfaces.

Chapter 37, “ATA Driver”

i.MX31

RTC

This is the integrated Real Time Clock (RTC)
module. The RTC is used to keep the time and date
while the system is turned off. Additionally, it
provides the PIE (periodic interrupt at a specific
frequency) and AIE (Wake up the system by
providing an alarm) features.

Chapter 38, “Real Time Clock
(RTC) Driver’

i.MX31

WatchDog

The Watchdog Timer module protects against
system failures by providing an escape from
unexpected hang or infinite loop situations or
programming errors. This WDOG implements the
following features.

* The WDOG module generates a reset signal if it is
enabled but not serviced within a predefined time-out
value.

* The WDOG module does not generate a reset
signal if it is serviced within a predefined time-out
value.

Chapter 39, “Watchdog (WDOG)
Driver”

i.MX31

FM (Si4702)

The FM (Si4702) driver provides the interfaces to
control Si4702 chips.

Chapter 40, “FM Driver”

i.MX31 3-Stack

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

1-8

Freescale Semiconductor

Table 1-1. Supported Features (Continued)

Introduction

Features Description Chapter Source Applicable
Platform
MMA7450L The MMA7450L is a feature-rich accelerometer Chapter 41, “MMA7450L i.MX31 3-Stack

Accelerometer

device with a flexible programming interface
exposed to the software.

Accelerometer Driver”

GPS

The communications driver provides a serial
interface to the core driver and communicates with
the external GPS chip set.

Chapter 42, “Global Positioning
System (GPS) Driver’

i.MX31 3-Stack

Bootloaders

RedBoot

RedBoot is an open source boot firmware based on
the eCos Hardware Abstraction Layer. It was
designed to be very portable, extensible, and
configurable.

i.MX31

GUI

QVE

QUE is a Graphical User Interface supported by the
Linux BSP.

i.MX31

Tools

OProfile

OProfile is a system-wide profiler for Linux systems,

capable of profiling all running code at low overhead.

Chapter 43, “OProfile”

All

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

1-9

Introduction

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

1-10 Freescale Semiconductor

Chapter 2
Running Linux on the Hardware Boards

This chapter explains how to build and test this release of thei.M X Linux BSP on ahardware board, install
and configure the development tools, and install and configure the components of thei.MX Linux BSP
release.
Specifically, this chapter describes how to:

» Exercisethe binary components of the i.MX Linux BSP release using a reference board

* Buildthei.MX Linux BSP release from source files

» Debugthei.MX Linux BSP kernel and drivers

Exercising the binary release components covers the following:
— Using RedBoot to load a Linux image and a Linux file system onto a reference board
— Using RedBoot to boot the Linux OS on a reference board

Building the release from source files covers the following:
— Installing the source files for the Linux kernel and the i.M X Linux BSP onto a Linux host

— Installing the ARM cross-compiler tool chain onto aLinux host (Done automatically with
Linux Target Image Builder)

— Building thei.MX Linux BSPimage file for an ARM target
— Building the CRAMFS or JFFS2 root file system

Debugging the kernel and the drivers covers the following:
— Configuring the ARM RealView ICE interface unit
— Downloading RedBoot and Linux images using Real View |CE
Each section in this chapter includes a table describing the resources that must be obtained to install one

of the development tools. For each resource, one of the table columns describes where the resource can be
obtained.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 2-1

Running Linux on the Hardware Boards

2.1 Running the i.MX Linux BSP

This section provides the procedures for booting the Linux OS on a hardware board.

211 Preparation — Board Setup

Table 2-1 lists the hardware resources needed for each supported platform.
Table 2-1. Hardware Resources Needed

Resource Description

i.MX31 PDK (3-stack) i.MX31 PDK containing a board, serial cable, and other accessories

2.1.2 Terminal Console

HyperTerminal (on Microsoft Windows) or Minicom (on Linux) on your PC can be used to view console
debug messages. Set the terminal to 115200 bps, 8 data bits, parity None, 1 stop bit, and no flow control.

The serial portislabeled asUART-DCE onthei.MX31 PDK board. Attach one end of the serial cable that
comes with the development kit to the serial port on the board and the other end of the cable to aseria port
of your PC.

213 Programming RedBoot into Flash

Running Linux requires a boot loader, aLinux kernel, and aroot file system. The boot |oader should be
stored in Flash memory. The kernel should run directly from SDRAM memory. The file system can be
stored in the Flash as MTD mounted root or can be stored remotely on a separate machine and be mounted
through NFS.

RedBoot is used as the bootloader to load the Linux kernel. Make sure to install the version of RedBoot
that isincluded in thisLinux BSP release even if RedBoot was previoudly stored in the Flash memory of
your board. Otherwise the Linux kernel may fail to boot.

Table 2-2. Resources Needed to Program RedBoot into Flash

Resource Description Source

redboot _200904. zi p | The RedBoot release ZIP file that | Unpacked from tarball file
contains the RedBoot binaries for
all the Freescale processors and
release documentation (the PDF
files for each platform). Refer to
these documents for instructions
on installing and using RedBoot.

Unzip the RedBoot release ZIP file and find the PDF document that matches your platform inside the
documentation folder. This document provides instructions on how to program RedBoot into Flash.

Also refer to this document for instructions on how to perform the following actions:

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-2 Freescale Semiconductor

Running Linux on the Hardware Boards
» Set up dip switches for different boot modes.
» Set up ARM RealView toolsfor the reference board including Rea View ICE firmware upgrade.

After RedBoot is successfully programmed into Flash, change the settings for the dip switchesto external
boot mode to boot from Flash. Reset the board, and the RedBoot prompt should come up. Note that if the
RedBoot prompt does not show up the first time after power on or pressing the Reset button, press“ctri
+ ¢” multiple times.

NOTES

Seethei.MX31 PDK Hardware User’'s Guide for more information about
the hardware setup and boot modes.

Ensure that boot p isenabled if you plan to obtain an IP address through
DHCP.

Pressthe “Reset” button on the board if the RedBoot prompt comes up but
no | P address was obtained through DHCP.

214 Running Linux

To run Linux, you need a Linux kernel and aroot file system.

2.1.41 Downloading the Linux Kernel and File System to SDRAM

Table 2-3. Resources Needed to Download the Kernel and Root File System to SDRAM

Resource Description Source
zI mage and Binary Linux Kernel Image and Unpacked from the tarball.
rootfs.ext2.gz ext2 image of the root file system -

QTEmbedded/Qtopia. Select the
Kernel Image based on your
platform.

The Linux kernel and Linux file system can be downloaded to SDRAM using either RedBoot or the
RealView ICE unit. Refer to the PDF files in the RedBoot release ZIP file for instructions on how to set
up ReaView ICE.

The following steps explain how to download a Linux Kernel Image or the root filesystem using Ethernet
or the seria port.

21411 Downloading the Linux Kernel and File System with Ethernet Download from
RedBoot
To download the Linux kernel and file system with Ethernet download from RedBoot:

1. Startthetftp server. Either copy thefilesto be downloaded to the directory pointed to by the server
or modify the server settings to point to the directory where the files to be downloaded reside.

Make sure boot p is enabled on the platform to obtain an | P address through DHCP or program a
static 1P address. Refer to the RedBoot documentation for instructions.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-3

Running Linux on the Hardware Boards

2. Usethe RedBoot f confi g command to configure RedBoot with your tf t p server IP address and
reset the board for the changes to take effect
fconfig bootp_server_ip 10.81.68. 96
Some of the very early boards may not have avalid MAC addressin the EEPROM. To verify that,
type*“set mac” command under RedBoot. If thereturned values areall oxrrs, then theMAC address
needsto be re-programmed. Contact the board vendor to obtain valid addresses. To reconfigure the
MAC addressin the EEPROM, use the RedBoot “set rac” command. After that, reset the board.

3. Download the Linux kernel binary to SDRAM using the command
load -r -b 0x100000 <tftp fol der>/zl mge
4. Follow theinstructionsin Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the Linux kernel to Flash memory
5. Download the root file system to SDRAM using the command:
load -r -b 0x100000 rootfs.cranfs

NOTE
Therootfs.crants fileisnot shipped with the tar ball. You must create it
prior to downloading to SDRAM. To do so, see Section 2.3.2.2, “Cresting a
CRAMFSRoot Filesystem.” Copy the CRAMFSfileto TFTPdirectory and
download it to SDRAM using the command mentioned above.

6. Follow theinstructionsin Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program thefile system to Flash memory.

21412 Downloading the Linux Kernel and File System with Serial Download from
RedBoot

To download the Linux kernel and file system with serial download from RedBoot:

1. Issue the following command under RedBoot prompt to download an image using a serial
download:
load -r -b 0x100000 - m xnodem

2. RedBoot now isready to receive data and prints out the character “c” continuously. To send afile
using HyperTerminal, click Transfer > Send File>Xmodem (under Protocol) > Browse, choose
the file to download and then click Send. Y modem can also be chosen for download.

3. Follow theinstructionsin Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the downloaded image to Flash memory.

21413 Downloading the Linux Kernel and File System with RealView ICE

To download the Linux kernel and file system with RealView |CE:
1. Stop the RedBoot execution from the RVD.

2. Typethefollowing command into the RvD command window, to download the binary file into
SDRAM with the RvD command:

readfil e, raw, gui “<PATH TO THE KERNEL | MAGE>/ zI mage" =0x100000
The command downloads the Image file into the 0x100000 memory location. Note that this
command must be modified with the proper path.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-4 Freescale Semiconductor

Running Linux on the Hardware Boards

3. Resume RedBoot from RV D by typing the command “go” in the RVD command window.

4. Follow theinstructionsin Section 2.1.4.2, “Programming Linux Kernel and Filesystem to Flash
Memory” to program the downloaded image to Flash memory.

2.1.4.2 Programming Linux Kernel and Filesystem to Flash Memory

To view the flashing procedures for the i.M X boards, see the Linux User's Guide for your board; for
example, i.MX 3-Sack Linux SDK User's Guide.

2.1.5 Booting Linux

To boot Linux, issue the following RedBoot commands:
1. Runimages from Downloaded NAND flash:

fis | oad kernel
exec -c "noinitrd consol e=ttynxc0, 115200 root=/dev/ nm dbl ock2 rw rootfstype=jffs2
i p=dhcp"
2. Runimagesfrom NFS
load -r -b 0x100000 zI mage

exec —¢ “noinitrd consol e=ttynxcO root =/ dev/ nfsroot rootfstype=nfsroot nfsroot=<the
| P address of the host nachine>:/tools/rootfs rw ip=dhcp”

NOTES

For specific instructions on how to boot Linux on your board, refer to the
Linux User's Guide for your platform. If thefi s | oad command fails, try
one of the following commands:

fis load -b 0x100000 ker nel
OR
fis del kernel

Then re-program the kernel image using the instructions in the previous
section.

The Linux prompt should appear on the terminal. The Linux logo should appear on the LCD screen. Be
aware that during kernel testing, after downloading your kernel image to SDRAM, Flashing is not
necessary. In this case, smply issue the exec command to launch the kernel.

RedBoot also allows passing command line optionsto the Linux kernel so that the default boot command
line options built into the kernel can be overridden. The following is an example (note the new command
lineisin the quotes with the - ¢ option):

exec -c "root =/dev/ nmtdblock2 rw'

A login prompt is displayed on the terminal console:
| ocal host | ogin:

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-5

Running Linux on the Hardware Boards

Use “r oot ” as user nameto login (no password is needed). Once logged in, you can issue console
commands to the sh shell.

If Qt/Embedded root file system is used, type the following command to start the Qtopia suite of
applications:

/etc/rc.d/init.d/gtopia

Thei.MX LCD screen displays the Welcome to Qtopia screen with the instruction Tap anywhere on the
screen to continue.

2.2 Exchanging Files with the i.MX Linux BSP

The files from your desktop PC can be sent to the i.MX Linux BSP running on the board using the
terminal’s Zmodem protocol. It isalso possible to use Zmodem to send filesin the opposite direction; that
is, from the board to your desktop PC. If the Ethernet interface is enabled on the board, FTP can also be
used for file transfers.

2.2.1 Sending Files to the i.MX Linux BSP

To send files to the BSP:

1. After the Linux BSP has booted up and you have logged in, type the following command in the
Linux BSP console:
#rz
The Linux BSP iswaiting to receive afile.

2. InHyperTerminal, select Send File... from the Transfer menu.
Choose Zmodem (with or without crash recovery).

4. Select the desktop file you want to transfer and click Send. A progress bar is displayed for the
transfer.

w

Oncethetransfer iscomplete, thefileisavailablein the current directory of the console session. If you use
aread-only CRAMFS file system, you can only send files to /mnt/ramfs/root and its subdirectories.

2.2.2 Sending Files to the Desktop PC

To send files to the desktop PC:
1. InHyperTerminal, select Receive File... from the Transfer menu.
2. Select the desktop PC directory where you want the file to be placed.
3. Click Receive and then click Cancel and close the notification dial og.

These steps set up the default receive directory. If these steps are skipped, then files are stored in
you default directory which is most likely your home directory.

4. Type the following command in the Linux BSP console:

sz <fil ename>
After the transfer is complete, the file is available in the destination directory on your desktop PC.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-6 Freescale Semiconductor

Running Linux on the Hardware Boards

2.2.3 Exchanging Files with the Desktop PC using Ethernet

The boards have one Ethernet interface. To assign an I P address (for example:10.10.10.10) to this
interface, issue the following command:

ifconfig ethO 10.10.10. 10

This | P address must be avalid address on your network. After this, you should be able to ping other
machines within the same subnet. To configure other parameters, such as the netmask and gateway, type
“i fconfig --hel p” for the proper instructions. Once you have done this, you can use the FTP protocol
tools such as ftpget, ftpput from your shell prompt of the board to send and receive files over the network
from another FTP server.

NOTE

To use Ethernet under the Linux kernel, avalid Ethernet M A C address must
be programmed into the EEPROM on the base board. To do this, use the
set mac command under RedBoot.

2.3 Building the i.MX Linux BSP from Source

Thei.MX Linux BSPis built on aLinux host computer using Linux Target Image Builder (LTIB), which
isatoolsframework used to manage, configure, extend, and build Linux software elementsto easily build
aLinux target image and a root filesystem.

Notethat LTIB also runson other Linux Distributions, such as Fedora Core or Susedistributions on an x86
PC running the Linux OS.

This section describes the build procedures for RedHat 9.0 Linux. This section providesinstructions for a
bash shell; certain shell commands may not work if you are using a different shell.

This BSP operates with LTIB running on a host development system with the following:
» Ethernet card

o Seria port

* 1 Gbyte of free disk space
* NFS Server

e TFTP Searver

* rsync

* Pel

2.3.1 The GNU Tool Chain

The kernel for thei.MX Linux BSP is configured and built using cross development tools. The cross
devel opment tools run on the Linux distribution of your host computer, but build ARM Linux binaries and
executables. These toolchains are installed during the LTIB install procedure described in the section
below.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-7

Running Linux on the Hardware Boards

2.3.2

Installing the BSP

You should follow the steps below toinstall LTIB on host machine. Bypassing the install script leads to
compile problems because LTIB will not be able to find the source packages it needs.

Toinstall the BSP:

1.

If the source packageis. i so, copy the .iso file to your host machine, and as root, enter the
following command:

nount —-o | oop <target-bsp.iso> <npunt point>
OR

If the source packageisa. t gz, rather than an .i so, copy thetarget t ar. gz fileto your host
machine and extract it:

tar -zxf <target-bsp.tgz>
As anon-root user, install the LTIB:

<unpacked/ nount ed target-bsp>/install
The script needs you to accept the License Agreement and to have the correct permissionsfor the
install path wherethel ti b directory will belocated. The install script aso copies source and
patches for the kernel and the root filesystem from the Bsps Conmon/ pkgs folder to an
| opt / freescal e/ pkgs folder.

There are no uninstall scripts. To uninstall LTIB, removethe/ opt / f r eescal e/ pkgs,
/opt/freescale/ltiband<install_path>/1tib directories manualy.
NOTE

To rebuild Qtopia and tslib packages from source, severa packages must be installed previously
on your host. The exact package names may vary, depending on your Linux distro.

o Zib:
rpm-based distros: install zlib and zlib-devel
debian-based distros: install zlib and zlib-dev
e libuuid:
rpm-based distros: install e2fsprogs and e2fsprogs-devel
debian-based distros: install libuuid and uuid-dev
* libjpeg:
rpm-based distros: install libjpeg
debian-based distros: install libjpeg and libjpeg-dev
* libpng:
rpm-based distros: install libpng and libpng-devel
debian-based distros: libpng and libpng-dev
For additional information, please visit the Troll Tech website at:
http://doc.trolltech.com/qtopia2.1/html/qtopia-dependencies.html

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-8

Freescale Semiconductor

http://doc.trolltech.com/qtopia2.1/html/qtopia-dependencies.html

Running Linux on the Hardware Boards

2.3.21 Running LTIB

LTIB requires that the environmental variable KBUILD_OUTPUT not be set. Also, note that if you run
LTIB asroot, it will cause compilation errors.

unset KBUI LD OUTPUT

To run LTIB, change to the directory into which you installed itand run . /1 ti b.

cd <install_path>/Itib
ltib

Thefirst time LTIB runsonamachine, anumber of host packages are built and installed that support LTIB.
The toolchains also areinstalled. This may take a few minutes.

LTIB may provide messages about the settings in your host machines' sudoer s file, giving specific
directions on how to modify your sudoer s file. This makes it possible to run r pmwith root privileges,
which LTIB needsto do.

LTIB needsr pm bui | d installed on the host machine.

Also, LTIB requires that the directory that it uses for its cache of package source and patches be on the
same machine asthel ti b directory, not mounted by nf s. This cacheis called the local package pool
(LPP)andissetinthel tib/.Itibrc file Thedefaultis/opt/freescal e/ pkgs.If/opt isannfs
mount, edit the. | ti br ¢ file and change the L PP path to something on the same machineasthel ti b
directory.

NOTE

If the kernel source package (linux-2.6.26.tar.bz2) is not included in the
release package, you must provide this package for LTIB to build correctly.
Go to www.kernel.org and look for the file1 i nux-2. 6. 26. tar. bz2, choose
one mirror and download thefile. After it is downloaded, copy it to
/opt/freescal e/ pkgs/ inyour host. You can create a checksum to validate
that the package isthe onerequired by LTIB, using the following command:

$md5sum | i nux-2.6.26.tar. bz2

You should see the following output:
3f 23ad4b69d0a552042d

Once LTIB ispast the installation phase, it pops up a configuration menu for selecting a platform. Select
FreescaleiM X reference boar ds as the platform choice. Exit after saving changes.

Another menuwill pop up to select the board. Usethe arrow keysto select <Platform type> and <Packages
Profiles>. The default profile isaminimal rootfs. Save your changes and exit. Table 2-4 lists profile
options and corresponding profilefiles.

Table 2-4. Profile Options and Corresponding Files

Profile Options Corresponding Profile files
Use packages in preconfig (Min profile) None
Minimum bootable root file system config/platforminx/mn.profile

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-9

Running Linux on the Hardware Boards

Table 2-4. Profile Options and Corresponding Files

Profile Options Corresponding Profile files
Test and Development packages config/platforminx/dev.profile
Qtopia 2 Release packages config/platforminx/rel ease.profile
Qtopia 4 Release package config/platforminx/rel ease_qt4.profile
FSL GUI release package config/platforminmk/rel ease_fsl.profile
All supported packages config/platforminx/max.profile

The next configuration menu allows you to select the kernel source to usein building the kernel, either the
patch that came from the release (default) or local kernel sources. If building with local kernel sources,
conf i g options are displayed in the menu to allow you to specify the absolute path to the kernel source
tree on your host machine.

By default the kernel isbuilt at / r oot f s/ boot / zI mage relative to the LTIB installation directory.
Another configuration option allows changing the kernel build path to be something other than that default.
To run the kernel mnenuconf i g before building the kernel, select the Configure the kernel option.

The “Package List “ submenu allows selecting the packages that will be used in building the root
filesystem. Busybox isinthat list and “ Configure busybox at build time” alowsthe user to do the Busybox
menuconfig when LTIB gets to the point that it is going to build Busybox.

The “Target System Configuration Options” submenu allows various settings including the kernel’s
default command line.

The “ Target Image Generation Options” submenu allows selecting various root filesystem deployment
options.

To modify the project configuration simply run:

./1tib —configure

Thispromptsfor the platform/board configuration. Inthe board configuration screens, change settingsand
select packages as appropriate. When you exit the configuration screen, your target image is adjusted
accordingly and LTIB begins building the kernel, modules, and root filesystem.

Ltib has a'profile’ which specifies all the rest of the packages that are expected in default rootfs. To set it,
run the command:

A1tib --profile config/platform'ink/release.profile --batch

To build using the default configuration:

J1tib --preconfig config/platform/inm/im31_3stack. cf
To switch platforms:

J1tib --selectype

When LTIB builds, the results of building are packaged as r pmfiles. Theser pmfiles are located at
I'tib/rpm RPMS/ arm When doing rebuilds, LTIB re-uses the r pmfiles it has built unless they have been
deleted or the ‘-f’ has been specified.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-10 Freescale Semiconductor

Running Linux on the Hardware Boards

Once you build your project you will get the following directory/image files (Depending on the Target
Image Generation Options selected in LTIB):

* rootfs —directory, theroot file system that is to be deployed on your board, you can use thisto
boot from NFS..

* rootfs.ext2. gz —EXT2filesystem - You can usethisto create a CRAMFS filesystem that can be
downloaded to SDRAM or flashed to your board. Note that this filesystem is more optimized in
sizethan ther oot f s directory as some unnecessary files have been deleted.

* rootfs.cranfs - LTIB-generated CRAMFSfilesystem. You can download to SDRAM or flash this
file to your board.

* rootfs.jffs2 - LTIB-generated JFFS2 filesystem. You can flash thisfile to your board.

» Refer to RedBoot documentation and the i.MX31 PDK Linux User's Guide for detailed steps on
flashing procedures.

* rootfs/boot/zl mage —kernel image that can be loaded with RedBoot

* The kernel modules have been built and copied into ther oot f s

If you want to fully re-configure and re-compile all the packages, you can do the following. (Notethat this
is generally not necessary.)
1. Clean up al the configure files and objects thoroughly:
1tib —mdistclean
2. You are prompted to confirm your choice. Type yesto perform adi st cl ean.
3. Runitib
I1tib

Make sure to set up the network parametersin LTIB if booting from NFS:
Altib -c

Set the network parametersin the following path:

Target System Configuration
Options--->
Net wor k setup
| P address
net mask
br oadcast address
gat eway address
naneserver | P address

2.3.2.2 Creating a CRAMFS Root Filesystem

To create a CRAMFS root filesystem, use ther oot f s. ext 2. gz asit has been optimized in size compared
totheroot fs or instruct LTIB to create thisfile with the option Target Image Generation Options -> Target
Image -> cramfs:

nkdir tenp
gunzip rootfs.ext2.gz

su to beroot or do sudo for this:

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-11

Running Linux on the Hardware Boards

mount -o loop -t ext2 rootfs.ext2 tenp

Now r oot f s IS mounted on temp. You can point your nfs to the temp folder. To make acrants:

rm-rf tenp/lost+found
nmkcranfs tenp rootfs.cranfs

Redboot exec command is as follows;

exec -c "noinitrd consol e=ttynxc0, 115200 root =/ dev/ nt dbl ock2 rw root fstype=cranfs
i p=dhcp"

NOTE
In some Linux distributions the mkcramfs tool is named mkfs.cramfs.

2.3.2.3 Various Useful LTIB Commands

Note that Itib will give alist of all its commands by invoking:
1tib -h

2.3.2.3.1 Changing Platforms that LTIB is Building
The platform selection is saved in the . confi g file. The following brings up the LTIB platform selection
menu.

rm-f .config
ltib

2.3.2.3.2 Compiling the Kernel and Modules using Local Source

1. Doarenuconfig to select the platform and set the path of the local Linux source directory:

./1tib -mconfig
A menu will come up.

Hit <enter> and select the platform using the up and down arrow keys.
Exit saving changes. Then another menu will appear.
Select to build the kernel from alocal Linux source directory.

Change the path of where your kernel source directory islocated to the correct absolute path like
/' home/ buf fy/ LI NUX2. 6/ | i nux. The kbui I d output directory will default to . . / kbui I d/ $pl at form
relative to your Linux folder. Or you can change it if you like.

6. Todo the kernel nenuconti g, Select the “ Configure the kernel” option. This option will get reset
once the kernel successfully builds.

7. Exit, saving changes.

a s~ DN

To do aclean kernel build, delete your kbui | d directory.

LTIB’s-p option specifies to only build one package, so you can useit to select the local kernel build:
/1tib -p kernel -f

The build zi mage ends up inr oot f s/ boot . The modulesend up inr oot fs/1i b/ modul es.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-12 Freescale Semiconductor

Running Linux on the Hardware Boards

2.3.2.33 Extracting the Kernel Source

The kernel sourceisreleased as a set of patches. To use! ti b to patch them together:
./1tib -mconfig

A menu comes up. Press <enter > and select the platform using the up and down arrow keys. Exit saving
changes.

Then another menu appears. Under “ Choose your kernel” select “kernel (Linux 2.6.26-imx)”. Exit saving
changes. Then type:

./1tib -p kernel -mprep
The kernel gets patched together and appears under <I ti b_dir >/ rpnf BUI LD/ | i nux- 2. 6. 26.

23.2.3.4 Cleaning Up

To delete everything in ther oot f s directory and clean up:

/1tib -mclean

To clean even more severely, delete the r pm directoriesthat LTIB has built.

./1tib -mdistclean

To clean up after afailed build:
rm-rf tnmp rpm BU LD * rpnm SOURCES/ *

2.3.3 Kernel Modules on the Target Platform

LTIB will build the kernel modules and install them in the root filesystem inthe/1i b/ nodul es/ 2. 6. 26-*
folder. During the LTIB build process the modules.dep file is created so that depmod does not need to be
run on the target. One of the advantages of using LTIB to build the kernel isthat it updates the modulesin
the root filesystem and the modules.dep automatically.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

Freescale Semiconductor 2-13

Running Linux on the Hardware Boards

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5, Rev. 3.3.0

2-14 Freescale Semiconductor

Chapter 3
Architecture

This chapter describesthe overall architecture of the Linux port to thei.M X family of processors. The BSP
supports al platformsin a single development environment, but not every driver is supported by all
processors. Driverscommonto al platformsarereferredto asi.M X driversand driversuniqueto aspecific

platform are referred to by the platform name.

3.1

Linux BSP Block Diagram

Figure 3-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user-space
executables, standard kernel componentsthat comefrom the Linux community, hardware-specific drivers,
and functions provided by the Freescale for the i.MX family of processors.

Applizations, Shel Utilities, Libraries GUI [T and GTK) DPM Policy Manager CODECs
System Call Interface
Memary use Use
Manager Virtual File System Function Class
Precess Security IrDA e Network
Ma Pack Stack Stack
neger CramFS RamF$ NFS B T ”i‘;"“
Resource Stack
Manager Ext2 FAT JFFS2 -
i Sound C58900
MXC UART NOR MTD Eram - iMagis Camera p.m;: USE-OTG =
16550 UERT NAND MTD Prefroc Clente FMIC Mgm
5
Keypad MM SD Sharp LCD Post-Proc 2C Bus PMIC Audio Digitizer o, IRDA
{5 1] ATA Epson SLCD Fost-Filter 58] PMIC
Y | PU/EMMA PMIC Pretocel A=E
= WPEGA/H. 264
Security &I = emmmeammmmeens e e
E Applications. Drivers 1
5 | L) i
LARMI1/ARMS | Mem Map | AITC Timer | sowa/Dma| | RTC Watchdog o ; i Komel MEL |
i 1
' Machine Speciifc Layer ! i Legend i
U | P 1

Figure 3-1. Linux BSP Block Diagram

3.2 Kernel

Thei.MX Linux port is based on the standard Linux kernel. The kernel supports many of the features

expected in most modern embedded OSes:
* Process and thread management

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

3-1

Architecture

* Memory management (memory mapping, allocation/deallocation, MMU, and L1/L 2 cache
control)

* Resource management (interrupts)

* Power management

» Filesystems (VFS, cramfs, ext2, ramfs, NFS, devfs, jffs2, fat)
* Driver model

» Standardized APIs

* Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel configuration and
machine specific layer (MSL) implementation.

3.2.1 Configuration

For thisBSP release, kernel configuration isdone through LTIB. Seethe LTIB documentation for details.
The following are some of the configuration settings apart from the standard features:
The seria port is labeled as UART-DCE on the i.M X31 PDK.

» Embedded mode

* Module loading/unloading

 ARM11

* Fileformats supported: ELF binaries, a.out and ECOFF

» Block devices: Loopback, Ramdisk

* i.MX Internal UART

* Filesystems: ext2, dev, proc, sysfs, cramfs, ramfs, jffs2, fat, pramfs

* Framebuffer

* Kernel debugging

* Automatic kernel module loading

* Power management

* Memory Technology Device (MTD) support

3.2.2 Machine Specific Layer (MSL)

The M SL provides amachine-dependent implementation asrequired by the Linux kernel, such as memory
map, interrupt, and timer. Each ARM platform hasitsown MSL directory under the ar ch/ ar mdirectory as
listed in Table 3-1.

Table 3-1. Machine Directories

Platform Directory

i.MX31 3-Stack <lItib_dir>/rpm/BUILD/linux-2.6.26/arch/arm/mach-mx3

For more information, see Chapter 4, “Machine Specific Layer (MSL).”

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-2 Freescale Semiconductor

Architecture

3.2.2.1 Memory Map

Before the kernel starts running in the virtual space, the physical-to-virtual address mapping for the IO
peripherals needs to be provided for the MMU to do the trandation for memory/register accesses. The
mapping is done through atable structure in the M SL specific to a particular platform, with each entry
specifying a peripheral’s starting address of virtual addresses, starting address of physical addresses, and
the size of the memory region and the type of the region.

3.2.2.2 Interrupts

The standard Linux kernel contains common ARM® code for handli ng interrupts. The MSL cTc“)Antai ns
platform-specific implementations of functionsfor interfacing the Linux kernel to the ARM11 vectored
interrupt controller (AVIC).
Together, they support the following capabilities:

* AVICinitialization

* AITCinitiaization

* Interrupt enable/disable control

* ISR binding

* ISR dispatch

* Interrupt chaining

» Standard Linux API for accessing interrupt functions

» Static mapping of oneinterrupt source as FIQ

Vectored interrupts and fast interrupt are not supported.

3.2.2.3 General Purpose Timer (GPT)

The GPT is set up to generate an interrupt every 10 msec to provide OSticks. Thistimer is also used by
the kernel for additional timer events. Linux definesthe M SL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick implementation. Linux facilitates timer use through various
functions for timing delays, measurement, events, and alarms. The GPT is also used as the source to
support the High Resolution Timer feature.

The timer tick interrupt is disabled when in low-power modes other than idle.

3.2.2.4 Smart Direct Memory Access (SDMA) API

The SDMA controller isresponsible for transferring data between the M CU memory space, and
peripherals. It is based on amicroRISC engine that runs channel-specific scripts. The SDMA API alows
other driversto initialize the scripts, pass parameters, and control their execution. Compl ete support for
SDMA isprovidedinthreelayers(see Figure 3-2). Thefirst layer isthel . API, the second layer isthe Linux
DMA API, and the third layer isthe TTY driver. Thefirst two layers are part of the MSL and both are
custom.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-3

Architecture

|.API isthelowest layer and it interfacesthe Linux DMA API withthe SDMA controller. The Linux DMA
API interfaces other drivers (for example: MMC/SD or Sound) with the SDMA controller through the
I.API. It supports the following features:

» Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

» Callback mechanism at the end of script execution

Figure 3-2 isablock diagram of SDMA.

MUY Daemon
Uzer Space IdavimuxX l Tdevizdmal
Kernel Space b F 9

PPP Stack/Other

i TT Line Dizcipline

N MU Driver

TTY Class
o]
" » s

I TT Line Diselpline
Driver & Driver B s
SOIMA Driver -+ e
TTV Class ~ r
L [- r
Y L L c
LINUX BSF API L » e
I S
LAF]

SOMA Controller

Figure 3-2. SDMA Block Diagram

The SDMA API ispresent on i.MX31.

3.2.2.5 Input/Output (I/0)

The Input/Output (10) component in the MSL provides an abstraction layer between the various drivers
and the configuration and utilization of the system, including GPIO, IOMUX, and external board I/O. The

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-4 Freescale Semiconductor

Architecture

1O software module is board-specific, and resides in the MSL layer as a self-contained set of files. It
provides the following features as part of a custom kernel-space AFI:

» Initialization for the default 1/0 configuration after boot

* Functionsfor configuring the various 1/O for active use

* Functionsfor configuring the various 1/0O for low power mode

» Functionsfor controlling and sampling GPIO and board 1/0

* Functions for enabling, disabling, and binding callback functions to GPIO and EDIO interrupts

* Functionsto support different priority levelsduring | SR registration for different modules; if more

than one interrupt occurs at the same time, the higher priority ISR callback gets called first
» Atomic helper functions for GPIO, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. Thisallows 1/O configuration
changes to be centralized in the GPIO module without requiring changes in the various drivers. These
functions are used by other device driversin the kernel space. User level programs do not have access to
the functionsin the GPIO module.

The exact API and implementations are different on each platform to account for the differencesin
hardware, drivers, and boards. This module is an evolving module. As more drivers are added, more
functions are required from this module.

3.2.2.6 Shared Peripheral Bus Arbiter (SPBA)

The SPBA provides an arbitration mechanism among multiple masters to have access to the shared
peripherals. The SPBA implementation under MSL defines the API to allow different masters to take or
release ownership of a shared peripheral. These functions are also exported so that they can be used by
other loadable modules.

3.3 Drivers

There are many drivers provided by Freescale that are specific to the peripherals on the i.MX family of
processors or to the devel opment platforms. Many of these drivers are common across al of the platforms.
Most can be compiled into the kernel or compiled as object modules which can be dynamically loaded
from afile system through insmod or modprobe. Modules can be |oaded automatically as required using
the kernel auto-load feature. The B SP contains a modules.dep file and modprobe.conf file that contain the
dependency information for the modules.

The i.MX multimedia applications processors have severa classes of drivers, explained in the following
sections.

3.3.1 Character Device Drivers

Thei.MX family of processors support a Universal Asynchronous Receiver/Transmitter (UART) driver.
The character device drivers, summarized in this section, are the UART Driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-5

Architecture

3.3.1.1 Universal Asynchronous Receiver/Transmitter (UART) Driver
UART driver interfaces the Linux serial driver API to all of the UART ports. It supports the following
features:

* Interrupt-driven and SDMA-driven transmit/receive of characters

» Standard Linux baud rates up to 1.5Mbps

» Transmitting and receiving characters with 7-bit and 8-bit character lengths

» Transmitting 1 or 2 stop bits

* Odd and even parity

* XON/XOFF software flow control

* CTS/RTS hardwareflow control (both interrupt-driven software controlled hardware flow control
and hardware-driven hardware flow control)

» T oomeET ioctl to read the modem control lines. Supports the constants 11 ocm cTs and Ti 0cM CAR,
TiocM R (only in bTE mode) only

» T oomseT ioctl to set the modem control lines. Supportsthe constants 1 ocm RTs and Ti ocm DTR only

* Send and receive of break characters through the standard Linux serial API

* Recognize frame and parity errors

» Ability to ignore characters with break, parity and frame errors

» Get and set UART port information through the T1 ocasseri AL and T1 ocsserI AL TTY ioctls.

» Slow IrDA (IrDA at or below 115200 baud)

* Power management features - suspends and resumes the UART ports

» Thestandard TTY layerioct! cals

* Includes console support that is needed to bring up the command prompt through one of the UART
ports

A kernel configuration parameter gives the user the ability to choose the UART driver, and also to choose
whether the UART should be used as the system console.

All the UART ports can be accessed through the devicefiles/ dev/ t t ymxco through/ dev/ ttymxcx (where
X isthemaximum UART number supported by thelC)./ dev/ t t ymxco refersto uarT 1. Autobaud detection
IS not supported.

3.3.1.2 Real-Time Clock (RTC)

TheReal-Time Clock (RTC) isthe clock that keeps the date and time while the systemisrunning and even
when the system isinactive. The RTC implementation supportsi oct | callsto read time, set time, set up
periodic interrupts, and set up alarms. Linux definesthe RTC API.

3.3.1.3 Watchdog Timer (WDOG)

The Watchdog timer protects against system failures by providing a method of escaping from unexpected
events or programming errors.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-6 Freescale Semiconductor

Architecture

The WDOG software implementation provides routines to service the WDOG timer, so that the timeout
does not occur. The WDOG is serviced (at the same time for the platforms with two WDOGS) if isalready
enabled before the Linux kernel boots (enabled by boot loader or ROM) with the service interval being
configurable. In addition, compile-time options specify whether the Linux kernel should enable the
watchdog, and if so, which parameters should be used. If the second WDOG presents (used to generate an
interrupt after the timeout occurs), the highest interrupt priority (number 16) is assigned to the WDOG
interrupt.

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported. Thisis supported under all i.MX platforms.

For the platforms that have two WDOG hardware modules, another implementation is done in the
Machine-specific Layer as part of thet i ne. ¢ file per the requirement from the customers.

3.3.1.4 SDMA API

The SDMA controller isresponsible for transferring data between the MCU memory space and the
peripherals. It is based on a microRISC engine that runs channel specific scripts. The SDMA API alows
other driversto initialize the scripts, pass parameters, and control their execution. Complete support for
SDMA isprovidedinthreelayers(see Figure 3-2). Thefirst layer isthel . API, the second layer isthe Linux
DMA API, and the third layer isthe TTY driver. The first two layers are part of the MSL and both are
custom. I.API isthe lowest layer and it is the interface between the Linux DMA API and the SDMA
controller. The Linux DMA API interfaces with other drivers (for example: MMC/SD, Sound) with the
SDMA controller through the I.API.
Functions of the SDMA API include:

» Loading channel scripts from the MCU memory space into SDMA internal RAM

» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

» Callback mechanism at the end of script execution

3.3.2 Image Processing Unit (IPU) Architecture

The Image Processing Unit (IPU) is designed to support video and graphics processing functionsin the
i.MX architecture. It also interfaces with video/still image sensors and displays.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-7

|
Architecture

The IPU driver is a self-contained driver module in the Linux kerndl. It consists of a custom kernel-level
API for the following blocks:

» Synchronous Display Controller (SDC)

» Asynchronous Display Controller (ADC)
» Display Interface (DI)

* Image DMA Controller IDMAC)

* CMOS Sensor Interface (CSl)

* Image Converter (1C)

» Post-Filter (PF)

Figure 3-3 shows the IPU architecture.

Camera App Yidao Conf App Madia Playar Application
App {User Mode)
o =

-‘.\"'l-;_"__\-‘—\\-\-\-‘
GStraamar Wl GStraamer V4L H2G64 GStraamear GStreamar MPEGH
Viden Src Video Sink Decoder "--'lde-:u Sink HM Encoder
¥ L L v W
WS VAL M V4L PPIPF FrameBul | FrameBuf MPEGS Encoder
Capture Dnver Cutput Driver Dirivar Diriver 4 Dirnegar 0 Dirivar
1ME012
Camera Driver
L 3 w w ¥ h
12C 5l | IPU Common AR | sDC ADC |
2T | PRPENC T PRPVF [PP | PF | Kernel Mode
UVIRGE ¥ ¥ Hardware
Camera csl PRE FRPEn: [snc FG] [SDC BG] MPEGS
Enc Ratate Encoder
FRIFPVF FRFVF
Rotate ==
Ratate
—— IDMA chiannel transfer — Other Data Flow
=== Optional —— Control Calls

Figure 3-3. IPU Architecture

3.3.2.1 IPU Driver

The IPU driver abstracts the IPU hardware. The IPU driver provides a kernel-level API to manipulate
logical channels. A logical channel represents a complete IPU processing flow. For example, a complete

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-8 Freescale Semiconductor

Architecture

IPU processing flow (logica channel) might consist of reading a'Y UV buffer from memory, performing
post-processing, and writing an RGB buffer to memory. A logical channel maps to between one and three
IDMA channels and mapsto either zero or one IC tasks. A logical channel can have one input, one outpui,
and one secondary input IDMA channel. The IPU API consists of aset of common functions for all
channels. Its functions are to initialize channels, to set up buffers, to enable and disable channels, to link
channels for auto frame synchronization, and to set up interrupts.

Logical channelsinclude:

CSl Direct to Memory

CSl to Viewfinder Pre-processing to Memory or ADC
Memory to Viewfinder Pre-processing to Memory or ADC
Memory to Viewfinder Rotation to Memory

CSl to Encoder Pre-processing to Memory

Memory to Encoder Pre-processing to Memory
Memory to Encoder Rotation to Memory

Memory to Post-processing to Memory or ADC
Memory to Post-processing Rotation to Memory
Memory to Post Filter (Y buffer) to Memory

Memory to Post Filter (U buffer) to Memory

Memory to Post Filter (V buffer) to Memory

Memory to SDC Background

Memory to SDC Foreground

Memory to SDC Mask

Memory to ADC System Channel 1

Memory to ADC System Channel 2

The IPU API has some additional functions that are not common across al channels, and are specific to
an 1PU sub-module. The types of functions for the IPU sub modules are listed below:

SDC Functions

— Panel interface initialization
— Set foreground and background plane positions
— Set global alphaand color key
— Set backlight level

CSl Functions

— Sensor interface initialization
— Set sensor clock

— Set capture size

ADC Functions

— Panel interface initialization
— Send commands to panel

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-9

Architecture

The higher level drivers are responsible for memory allocation, chaining of channels, and providing
user-level API.

3.3.2.2 Synchronous Display Controller (SDC) Framebuffer Driver

The Synchronous Display Controller (SDC) Framebuffer screen driver implements a Linux standard
framebuffer driver API for synchronous or memory-lessLCD panels. The SDC Framebuffer screen driver
isthe top level kernel video driver that interacts with kernel and user-level applications. The SDC
Framebuffer driver is enabled by selecting the Framebuffer option under the graphics parametersin the
kernel configuration. To supplement the framebuffer driver, the kernel builder may also include support
for fonts and a startup logo. This depends on the VT console for switching from serial to graphics mode.

Except for physical memory allocation and LCD panel configuration, the common kernel video AP is
utilized for setting colors, pal ette registration, image blitting, and memory mapping. ThelPU readstheraw
pixel datafrom the frame buffer memory and sendsit to the panel for display.

The framebuffer driver supports different panels as a kernel configuration option. Support for new panels
can be added by defining new valuesfor astructure of panel settings. The framebuffer driver supportsthe
Sharp QVGA and Epson VGA panels.
The SDC Framebuffer screen driver interacts with the IPU Driver using custom APIs:

» Initiaization of panel interface settings

» Initialization of IPU channel settings for LCD refresh

» Control of IPU SDC PWM for backlight control

» Changing the frame buffer address for double buffering support

The following features are supported:

» Support for Sharp QVGA and EPSON VGA panels

» Configurable screen resolution

» Configurable RGB 16, 24 or 32 hits per pixel framebuffer

» Configurable panel interface signal timings and polarities

» Palette/color conversion management

* Power management

» LCD Power off/on

» Backlight control
User applications utilize the generic video API (the standard Linux framebuffer driver API) to perform
functions with the frame buffer. These include:

» Obtaining screen information, such as the resolution or scan length

» Allocating user space memory using map for performing direct blitting operations

A second framebuffer driver supports a second video/graphics plane

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-10 Freescale Semiconductor

Architecture

3.3.2.3 Asynchronous Display Controller (ADC) Framebuffer Driver

The Asynchronous Display Controller (ADC) Framebuffer screen driver implements a Linux standard
framebuffer driver API for asynchronousor smart LCD panels. The ADC Framebuffer screen driver isthe
top level kernel video driver that interacts with the kernel and user level applications. The ADC
Framebuffer driver is enabled by selecting the Framebuffer option under the graphics parametersin the
kernel configuration. To supplement the framebuffer driver, the kernel builder may also include support
for fonts and a startup logo. This depends on the VT console for switching from serial to graphics mode.
The framebuffer interacts with the IPU Driver using custom APIs:

» Initiaization of panel interface settings for serial or parallel mode

» Initialization of IPU channel settings for ADC commands and data

» Control of 1PU bus snooping for automatic update of panel memory

The following features are supported:

» Support for Epson L2F50032T00 dual mode 176x220 panel

» Configurable RGB 16, 24 or 32 hits per pixel framebuffer

» Configurable panel interface signal timings and polarities

» Palette/color conversion management

* Power management

* LCD Power off/on

» Backlight control
User applications utilize the generic video API (the standard Linux framebuffer driver API) to perform
functions with the frame buffer. These include:

» Obtaining screen information, such as the resolution or scan length

» Allocating user space memory using mmap for performing direct blitting operations

3.3.2.4 V4L2 Camera Driver

The V4L 2 cameradriver isaplug-in to the V4L 2 framework that enables support for the |PU camera and
preprocessing functions. The V4L 2 camera driver implements support for all camera related functions.
The V4L 2 cameradriver usestheiMagic or OmniVision sensor driver (or other sensor) and the [PU driver.
The features supported by the VAL 2 driver are:

« Direct preview to SDC foreground overlay plane (no ARM® processor intervention and
synchronized to LCD refresh)

» Direct preview to graphicsframe buffer (no ARM processor intervention, but NOT synced to LCD
refresh)

» Support for color keying alpha blending of frame buffer and overlay planes
» Simultaneous preview and capture

» Streaming (queued) capture from IPU encoding channel

» Direct (raw Bayer) till capture (sensor dependent)

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-11

Architecture

* Programmable pixel format, size, frame rate for preview and capture
» Programmable rotation and flipping using custom AP
» Support for RGB 16-bit, 24-bit, and 32-bit preview formats

» Support for raw Bayer (still only, sensor dependent), RGB 16, 24, and 32 bit, YUV 4:2:0and 4:2:2
planar, YUV 4:2:2 interleaved, and JPEG (TBD) formats for capture

» Control of sensor propertiesincluding exposure, white-balance, brightness, contrast, and so on
» Support for plug-in of different sensor drivers

An example of the data flow for camerawith capture to MPEG4 is shown in Figure 3-4. The example
includes rotation of viewfinder and encode channels using automatic |PU frame synchronization.

MXC IPU Camera Preview and Encoding with Rotation

Camera App Applicati
(User M c

A 4
GStreamer V4L »(GStreamer MPEG4 Middlew
Video Src J L H/W Encoder (User M«
A 4 A
MXC V4L MXC V4L PP/PF FrameBuf FrameBuf MPEG4 Encoder
Capture Driver Output Driver Driver Driver 1 Drivier 0 Driver
IM8012 Kernel Mo
Camera Driver
v \ 4 v v A
12C csi | IRY Common API SDG | apc]
Dri
river | PrPeENc [\QRPVF T PP T PF DI
AN
YUV/RGB \ A y Hardw:

PRPENc
Rotate

Camera SDC BG MPEG4
Encoder

PP

— IDMA channel transfer — Other Data Flow
——-» Optional — Control Calls

Figure 3-4. Camera Preview and Encoding

3.3.2.5 V4L2 Output Driver

The V4L 2 Output driver usesthe IPU post-processing functions for video output. The driver implements
the standard V4L 2 API for output devices. The V4L 2 features supported by the driver are:

» Direct output to SDC foreground overlay plane (no ARM processor intervention and synchronized
to LCD refresh)

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-12 Freescale Semiconductor

Architecture

» Support for color keying alpha blending of frame buffer and overlay planes

» Support for linking post-processing resize and CSC, rotation, and display |PU channels for no
ARM processing of intermediate steps

» Streaming (queued) input buffer

» Double buffering of overlay and intermediate (rotation) buffers
» Configurable 3+ buffering of input buffers

* Programmable input and output pixel format and size

* Programmable scaling and frame rate

» Support for RGB 16, 24, and 32 bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved input
formats

» Support for TV output

The features are supported using custom APIs:

» Output to user buffer instead of overlay display
* Programmable rotation

3.3.2.6 MPEG4/H.264 Post-Filtering Driver
The Post-filtering driver provides a custom user API for IPU post-filtering functions. The features
supported by the driver are:
» Support for MPEG4 ordering and/or deblock
» Support for H264 deblock
» Support for intra-frame pause and resume (H.264 only)
» Synchronous and asynchronous operation (async depends on time required to process a frame)
» Support for driver alocated or user alocated buffers

3.3.3 Graphics Processing Unit (GPU) Driver

The GPU oni.M X3l isalicensed core from Imagination Technologies. In thei.M X31 documentation, the
name GPU is used synonymously with the names MBX-Liteand MBX. The GPU is an accelerator for
Graphics.
The OpenGL ES Driver Development Kit (DDK) has been ported for the i.MX31 architecture from the
base drop provided by Imagination Technologies. The driver provides the following features:

» Utilize MBX-Lite 3D capabilities for hardware acceleration of graphics.

» Expose OpenGL-ES API to applications.

* UsePVR2D asmall loadable module for 2D on MBX-Lite. This module works with Power VR
Services which provide the correct interaction with the OpenGL ESdriver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-13

Architecture

3.3.4 Sound Driver

The components of the audio subsystem are applications, the Advanced Linux Sound Architecture
(ALSA), theaudio driver, and the hardware. Applicationsinterfacewith ALSA, and ALSA interfaceswith
the audio driver, which in turn controls the hardware of the audio subsystem. For more information about
ALSA, see www.alsa-project.org.

The sound driver runs on the ARM11 processor. Digital audio datais carried over the digital audio link
interface to the codec hardware. Thisis managed by the audio driver. There may be one or more audio
streams, depending on the codec, such as voice or stereo DAC. The audio driver also configures sample
rates, audio MUXing, formats, and audio clocks. The audio driver also manages the setup and control of
the CODEC, DMA, and audio accessories, such as headphones and microphone detection. Stream mixing
may also be supported, depending on the codec.

3.3.5 Input Device Drivers — Keypad Driver

The keypad driver interfaces Linux to the keypad controller (KPP) inthei.MX architecture. The software
operation of the keypad driver follows the Linux keyboard architecture.
It supports the following features:

» Supportsup to 8 x 8 external key pad matrix of single poll switches. The keypad matrix can be
configured

* Any pins not used for keypad are available as general purpose I/O throughi oct 1 call

» Thekeypad driver supports two modes of interface to the upper layer. The modes are raw mode
and map mode (xlate mode)

* Thekeypad driver isimplemented as a single driver.
* When configured in raw mode the scancode of keys pressed and rel eased are sent to the upper layer

* When configured in map mode the mapcode (key mapping) of keys pressed and released are sent
to the upper layer. Scancodes are converted into mapcodes from the keymap lookup table

» Dynamic configuration of keymap trandlation table (static default) throughii oct | call
» The keypad mode can be set using kpskBvoDE i oct | call

» Supports multiple key presses (with required keypad design)

» Along key press can be configured to generate multiple key press events

» Supports key press detection in standby mode

» Thekeypad driver follows the standard Linux Keyboard API

» Key chording handled by users of thisdriver (GUI)

3.3.6 Memory Technology Device (MTD) Drivers

Memory Technology Devices (MTDs) in Linux cover all memory devices, such as RAM, ROM, and
different kinds of Flashes. As each memory device hasits own idiosyncrasiesin terms of read and write,
the MTD subsystem provides a unified and uniform access to the various memory devices.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-14 Freescale Semiconductor

http://www.opensound.com

Architecture

[Kernel Virtual Filesystem Layer]

[Disk-Style Filesystem]
' ™
MTD "User Modules™

() () (o) ermoe) (o) (G) (o)

Memory Technolegy Devices “glue logic™

.\
e
-

"

MTD chip drivers

[Diskﬂnthip] Elncacheil R.ﬂ.l'vﬂ [RAM, ROM]

[Virtual] [Block]
. Memo i
[CFI-Comlllmm flash] [Hon-DiskOnChip HAND flash] v HENIEE

Wirtual devices for testing and evalustion

[Memory Device Hardware]

Figure 3-5. MTD Architecture

Figure 3-5 is excerpted from the Building Embedded Linux Systems book, which describesthe MTD
subsystem. The “user modules’ should not be confused with kernel modules or any sort of user-land
software abstraction. The term “MTD user module” refers to software modules within the kernel that
enable accessto the low-level MTD chip drivers by providing recognizable interfaces and abstractions to
the higher levels of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
propertiesin the nt d_i nf o argument to the add_nt d_devi ce() function. The callbacksan MTD driver has
to provide are called by the MTD subsystem to carry out operations, such as erase, read, write, and sync.

3.3.6.1 NAND MTD Driver

The NAND MTD driver interfaces with the integrated NAND controller on the i.MX processors. It can
support variousfile systems, such as CRAMFS and JFFS2. The driver implementation supportsthe lowest
level operations on the external NAND Flash chip, such as block read, block write and block erase as the
NAND Flash technology only supports block access. Because blocksinaNAND Flash are not guaranteed
to be good, the NAND MTD driver isalso able to detect bad blocks and feed that information to the upper
layer to handle bad block management. This driver is part of the kernel image.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-15

Architecture

3.3.7 Networking Drivers

The networking drivers are described in the next sections.

3.3.7.1 SMSC LAN9217 Ethernet Driver

The SMSC LAN9217 Ethernet Driver interfaces SMSC L AN9217-specific functions with the standard
Linux kernel network module. The LAN9217 is afull-featured, single-chip 10/100 Ethernet controller
designed for embedded applications where performance, flexibility, ease of integration, and system cost
control arerequired. The LAN9217 has been specifically designed to provide the highest performance
possible for any 16-bit application. The LAN9217 isfully IEEE 802.3 10BASE-T and 802.3u
100BASE-TX compliant, and supports HP Auto-MDI X.
The SMSC LAN9217 Ethernet Driver has the following features:

» The efficient PacketPage Architecture can operate in 1/0 and memory space, and as aDMA slave

» Supports full duplex operation

» Supports on-chip RAM buffers for transmission and reception of frames

* Supports programmable transmit features like automatic retransmission on col lision and automatic
CRC generation

» EEPROM support for configuration
* Supports MAC address setting
» Supports obtaining statistics from the device, such as transmit collisions
This network adapter can be accessed through thei f confi g command with interface name (et ho). The

probe function of this driver isdeclared in dri ver s/ net / Space. ¢ to probe for the device and to initialize
it during boot.

3.3.8 Disk Drivers
The disk driversinclude the ATA driver.

3.3.8.1 ATA Disk Driver
The ATA moduleis an AT attachment host interface. 1ts main useis to interface with hard disk devices.

The ATA driver is compliant to the ATA-6 standard, and supports the following protocols:
* PIOmode0, 1, 2,3,and 4
* multiword DMA mode0, 1, and 2
* UltraDMA mode0, 1, 2, 3, and 4 with bus clocks of 50MHz or higher
» UltraDMA mode 5 with bus clock of 80MHz or higher

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-16 Freescale Semiconductor

Architecture

3.3.9 USB Drivers

It relies on the existing USB host stack in Linux and is combined with the Belcarra device stack with
enhancements to support OTG. The solution is comprised of severa drivers as shown in Figure 3-6.

network_fcd usb-storage

/

Figure 3-6. USB-OTG SW Block Diagram

The solution uses the following USB host modules from the standard Linux kernel:
* USB Host Stack (usbh)
* USB Mass Storage Class Driver (ush-storage)
» USB ACM Class Driver (acm)

The USB host stack ismodified by Belcarrato support USB-OTG,

The following drivers are provided from Belcarra's standard product:
» USB Device Stack (ushd)
» Mass Storage Function Driver (msc_fd)
* ACM Function Driver (acm_fd)
» Network Function Driver combined with Network Class Driver (network_fcd)

With USB-OTG, the Network Function and Network Class driver have been combined into asingledriver
in order to provide seamless service during arole reversal.

To support USB-OTG, Belcarrahas defined anew driver known asthe OTG Manager. The OTG Manager
implements the administrative control required by user space.

The portions of the USB stack specific to the TDI OTG module are integrated into asingle driver. This
driver encompasses the functionality typically available in the PCD and HCD driversaswell as OTG
coordination and transceiver control. Thisdriver isimplemented in alayered approach in order to allow a
significant portion of the driver to be portable to other devices.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-17

Architecture

3.3.10 Security Drivers

Thei.MX processors support many hardware and software security modules, discussed in the following
sections.

3.3.10.1 Security Controller Module (SCC) Driver

The security layer iscomprised of two modules, the Secure RAM Modul e and the Secure Monitor Module.
The Secure RAM module provides a secure way of storing sensitive data in on-chip and off-chip RAM
memory. On-chip data can be cleared if necessary to prevent un-authorized access. Off-chip datais stored
in encrypted form using an encryption key that is unique to each device and is accessible only through
Secure RAM module. The Security Controller (SCC) is apart of the Freescale platform independent
security architecture (PISA). The SCC module will only be accessible by the ARM11. It supports the
following features:

* Anautonomous hardware security state controller with debug inputs that are tied to all platform
test access detection signals to trigger a security shutdown
» Controlsto ensure supervisory mode only configuration access

» Controlsto ensurethat high assuranceinternal boot isthe only mechanism to reach the Secure state
after Reset

* Anautonomous hardware security state controller with “debug” inputsthat aretied to all platform
test access detection signals to trigger shutdown

» A salf-clearing (zeroizing) 2KB RAM block, which clearsitself upon command and can therefore
be used to store security sensitive Red data (that is, security sensitive plain text), such as
cryptographic keys

» A Security Timer which is an independent security watchdog timer whose time-out triggers a
security violation

* AnAlgorithm Sequence Checker (ASC) which can be used by software to force software
synchronization to the ASC'sinternal linear feedback shift register (LFSR) asa software assurance
check

* A *“Bit Bank” counter that can be used with the ASC to ensure that a scrambler function uses the
same number of algorithm bits as traffic bits to ensure that no traffic datais “accidentally” leftin
the clear

» A Plaintext/Ciphertext comparator that may be used to ensure that a cryptographic agorithm
scrambler has not been replaced with a simple pattern EXOR function

» Some portion of the SCC is used during initial boot-up from the iROM

» Some portion is used as a security measure during runtime, for example, tampering of the
hardware. Thisis used to clear the secure data either in the internal RAM or externally encrypted
data RAM.

+ Power management

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-18 Freescale Semiconductor

Architecture

3.3.10.2 Random Number Generator Accelerator (RNGA) Driver

The Random Number Generator Accelerator (RNGA) module is adigital integrated circuit capable of
generating 32-bit random numbers. It is designed to comply with FIPS-140 standards for randomness and
non-determinism. The oscillators with their unknown frequencies provide the required entropy needed to
create random data. An Entropy register is provided which serves the purpose for seeding the Random
number generator.
The RNGA includes the following features:

* Generates Random numbers

* Interface for user to enter initial seed value for generating random numbers

« 16x32FIFO

* Secure mode

* Power saving mode

3.3.11 General Drivers

General drivers discussed in the following sections, include the following:
* MultimediaCard (MMC)/SD driver
* PCMCIA driver
« 12C Client and Bus drivers
» Digital Audio Multiplexer (AUDMUX) driver
» Synchronous Seria Interface (SSI) driver
» Graphics Processing Unit (GPU) driver
» Dynamic Power Management (DPM) driver

3.3.11.1 Multimedia Card (MMC)/SD Driver

The Multimedia Card (MMC)/SD driver implements a standard Linux sot driver aswell asablock driver
interface to the MM C/SDHC controller. Theinterface to the upper layer followsthe standard Linux driver
APIL.

* SDHC module supports MM C and SD cards

* MMC version 3.0 spec is supported. SD Memory Card spec 1.0 and SD 1/O card spec 1.0 are
supported.

» Hardware contains 32x16 bit data buffer built in

* Plug and play support

* 100 Mbps Maximum hardware data rate in 4-bit mode

* 1/4bit operation

» For SD card access, only SD bus mode is supported. SPI mode is not supported.
» Supports card insertion and removal events

* Supports the standard MM C/SD/SDIO commands

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-19

Architecture

* Supports Power management
* Supports set/reset of password or card lock/unlock commands
* Power management

3.3.11.2 Inter-IC (I2C) Bus Driver

The I2C busdriver isalow-level interface that is used to interface with the 1°C bus. Thisdriver isinvoked
by the 1%C chip driver; it is not exposed to the user space. The standard Linux kernel contains a core 1°C
module that is used by the chip driver to accessthe bus driver to transfer data over the 12C bus. The chi p
driver uses astandard kernel space API that is provided in the Linux kernel to accessthe corel 2C module.
The standard 12C kernel functions are documented in the files available under bocurent ati on/i 2c in the
kernel source tree. This bus driver supports the following features:

« Compatibility with the 1%C bus standard

» Supports bit rates up to 400kbps

» Start and stop signal generation/detection

» Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer

« Supports standard 12C master mode

* Supports power management features by suspending and resuming 1°C

The 1°C slave mode is not supported by thisdriver.

3.3.11.3 Digital Audio Multiplexer (AUDMUX) Driver

The low level Digital Audio Multiplexer (AUDMUX) driver provides a custom, kernel-space API to the
AUDMUX module. It supports all of the features of the hardware module.

3.3.11.4 Synchronous Serial Interface (SSI) Driver

The low-level synchronous serial interface (SSI) driver provides a custom, kernel-space API to the SS|
modules. It supports all of the features of the hardware modul es including enabling/disabling of DMA
request events. Drivers configure DMA channels through the SDMA API.

3.3.11.5 Configurable Serial Peripheral Interface (CSPI) Driver
The low-level Configurable Serial Peripheral Interface (CSPI) driver interfaces a custom, kernel-space
API to the CSPI modules. It supports the following features:

* Interrupt-driven transmit/receive of SPI frames

* Multi-client management

* Priority management between clients

» SPI device configuration per client

DMA is not supported.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-20 Freescale Semiconductor

Architecture

3.3.11.6 Dynamic Power Management (DPM) Driver

Dynamic Power Management (DPM) refersto power management schemesimplemented while programs
arestill running. DPM focuses on system wide energy consumption while it is running. In any CPU-
intensive application, lowering bus frequencies from their maximum performance points can result in
system wide energy savings.
DPM implementation includes the following data structures:

* Operating Points

* Operating States

» Policies

* Policy manager

3.3.11.7 Policy Architecture

A DPM policy isanamed datastructureinstalled in the DPM implementation within the operating system,
and managed by the policy manager, which may be outside of the operating system. Once aDPM system
isinitialized and activated, the system is always executing a particular DPM policy.

3.3.11.8 Operating Points

At any given point in time, asystem is said to be executing at a particular operating point. The operating
point is described using hardware parameters, such as core voltage, CPU and bus frequencies, and the
states of peripheral devices. A DPM system could properly be defined as the set of rules and procedures
that move the system from one operating point to another as events occur.

3.3.11.9 Operating States

As aready mentioned, the system supports multiple operating points. Some rules and mechanisms are
required to move the system from one operating point to another. Each operating state is associated with
an operating point. The system at a particular operating point is said to be in an operating state.

3.3.11.10 Policy Managers

A policy mapseach operating state to acongruence class of operating points. The system supports multiple
operating states and hence multiple operating points. At any point in time, the system operates using a
single policy. For example, a power management strategy contains at least one policy, and may specify as
many different policies as necessary for different situations. If multiple policies are needed, then a policy
manager must exist in the system to coordinate the activation of different policies.

Figure 3-7 shows the high level design for DPM.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-21

Architecture

Low-Lewel PM driver

|

CRM/CSM

Figure 3-7. DPM High Level Design

Figure 3-8 specifies the DPM architecture block diagram.

Power mgmt
Requirements

Request

Operating/task
State change

Software
Hardware

Sets operating points, Changing

power-performance
levels | PLLO | | PLL1 | | PLL2 |
Low-level PM driver | Raise or lower New Voltage
Performance Frequency CRM
levels

Figure 3-8. DPM Architecture Block Diagram

3.3.11.11 Low-Level Power Management Driver

Thelow-level power management driver isresponsible for implementing hardware-specific operationsto
meet power requirements, and also to conserve power. Driver implementation may be different for
different platforms. It is used by the DPM (Dynamic Power Management) layer. This driver implements
dynamic voltage and frequency scaling (DVFS) or dynamic frequency scaling (DFS) techniques,
depending on the platform, and low-power modes. The DVFS or DFS driver is used to change the
frequency/voltage or frequency only when the DPM layer decides to change the operating point to meet
the power requirements. Thisis done when the system isin RUN mode which helpsin conserving power
while the system is running. Low-power modes, such as WAIT and STOP are also implemented to save
power. In all these cases, power consumption is achieved by reducing the voltage/frequency and the
severity of clock gating.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-22 Freescale Semiconductor

Architecture

3.3.11.12 Dynamic Voltage and Frequency Scaling (DVFS) Driver

The DVFSdriver isresponsible for varying the frequency and voltage of the ARM core. Other software
modulesinterfaceto it through acustom, kernel-space API. The mode can be controlled manually through
the APl and automatically on those processors with the required monitor hardware.

3.3.11.13 Dynamic Process and Temperature Compensation (DPTC) Driver

The dynamic process and temperature compensation (DPTC) driver isresponsible for varying the voltage
of the system based on the speed of the actual silicon, which varies depending on temperature and where
the specific IC device falls within the allowable process variation. It requiresno API.

3.4 Boot Loaders

A boot loader isa small program that runsfirst after a CPU powers up. A boot loader is required to boot
an ARM Linux system. The boot loader for ARM Linux serves two purposes:

» Setsupthesystem, suchasthe AHB Lite P Interface (AIPS) and the M ulti Layer CrossBar Switch
(MAX), memory, and different clocks

» Obtains proper information for the Linux kernel before jumping to it.

NOTE
Not all boot loaders are supported on all boards.

3.4.1 Functions of Boot Loaders

A boot loader provides the functions outlined in the following steps:
1. SetupAlIPSand MAX
Set up Phase-Locked Loop (PLLSs) for various system clocks
Set up and initialize the RAM
Initialize one serial port (optional)
Detect the machine type
Set up the kernel tagged list
7. Jump to the kernel image (either the | mage file or the zi nage file for compressed kernel)

o 0k N

The first step, setting up AIPS and MAX, isarequired step for a boot loader to get access to proper
peripherals, such as Timer and UART. The MAX should also be set up properly for different bus master
priorities.

The second step, setting up the PLLSs, is necessary because default PLL settings may not be optimal. The
boot loader should tune the settings before trying to execute the image to set up the desired clocks.

For more information about steps three to seven, see the following directory:
<l tib_dir>/rpm BU LD/l inux-2.6.26/ Docurrent ati on/ ar nl Boot i ng

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-23

Architecture

Notethat in thelast, jump to the kernel image, the boot loader callsthe kernel image directly regardless of
whether the kernel is compressed. For acompressed kernel (z1 mage), the expansion is done by the code
surrounding kernel image during the kernel build.

The following boot |oaders are provided in the BSP:
* RedBoot

RedBoot is the boot loader with the most features. RedBoot downloads images using either serial or
Ethernet connections, handles image decompression, scripting and stores the image into Flash. RedBoot
ismainly used for software devel opment.

NOR Flashiscontrolled by the EIM module, whilethe NAND Fash is controlled by theintegrated NAND
Flash controller. NAND Flash is a sequential access device appropriate for mass storage of code and
applications, while NOR Flash is arandom access device appropriate for storage as well as execution of
code and applications. Code stored on NAND Flash must be loaded into RAM for execution. For more
information about these two Flash technologies, see http://www.linux-mtd.infradead.org/.

3.4.2 RedBoot

RedBoot isan open source boot firmware based on the eCos Hardware Abstraction Layer. It was designed
to be very portable, extensible, and configurable. Some of the features are:

* Host connectivity through RS-232 or Ethernet

* Command line interface through RS-232 or Telnet

* Image downloads through HTTP, TFTP, X-Modem, or Y-Modem
» Support for compressed images (download and Flash load)

» Flash Image System for managing multiple Flash images

* Flash stored configuration

» Boot time script execution

» GDB (for debugging)

» BOOTP (for network booting)

» Watchdog servicing

RedBoot supports awide variety of architectures and is very well documented. It is generally used for
software development. For more information on RedBoot, see http://sources.redhat.com/redboot/.

LCD display is not supported.

3.5 Graphical User Interface

The GUI resides in the user-level application space and interacts with the Video drivers transparently.
However, there are certain parts of the GUI that need to be ported, such as the touch screen driver and
keypad driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-24 Freescale Semiconductor

http://www.linux-mtd.infradead.org/

Architecture

3.5.1 Qt/Embedded

The following are the components of Qt/Embedded as a windowing manager:
* Qt/Embedded v2.3.10
* Qtopiav4.3

Qtopia

QtAPI

QtEmbedded

Frame buffer

Linux Kernel

Figure 3-9. Qt/Embedded

3.6 Tools

GCC ARM cross-compiler tool chains are used for compiling the kernel, associated drivers, libraries, and
applications. The pre-built tool chains are available in this release as described in Chapter 2, “Running
Linux on the Hardware Boards’ and in ther eadme. ht ni . The tool chain runs on the Linux Host PC.

ARM ADS s used for kernel level debugging and GDB for application level debugging.

For more information, see Chapter 2, “Running Linux on the Hardware Boards” for more information.

3.7 Root File System

The Root file system isbuilt asacranfs or JFFS2 image. cranf s isaLinux filesystem designed to be
simple, small, and to compressthingswell. It isused on anumber of embedded systemsand small devices.
To know more on deploying cr anf s, See Section 2.1.5, “Booting Linux.”

RAM ismounted asarants. Thisisused for / t np, / var and/hore. Thereis also support for r andi sk and
j ffs2filesystems. Inafuturerelease, the/ var region may be mounted as;j f f s2 S0 asto provide persistent
storage for user data files.

Therelease aso containsat ar file containing the root file system binaries.

3.7.1 Utilities

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-25

Architecture

Thecr anf s isaread-only file system, so unlike other file systemsit must be created along with its contents.
The mker anf s utility isused to construct acr anf s image which later can be written to Flash/ROM and
mounted:

nkcranfs dir ing.cranfs

wheredi r isthename of adirectory containing thefilesand subdirectoriesto be added to thecr anf s image,
and i ny. cranf s isthe name of thefileto store the cranf s image.

mker anfs runson Linux 2.6. It is available on a standard Linux distribution. In some distributionsit is
named nkf s. crantf s.

3.7.2 Contents

Pre-built binariesfor the standard applications and libraries available in the file system provided by LTIB.
These include:

» base-files: This contains the basic root file system and configuration files
* busybox: Core of the system

* libc6: The C libraries from the latest stable arm-linux GNU tools release
* modutils: Linux kernel module support

* procps. / prooc support utilities

» tinylogin

The binaries for the GUI are built from source. Qt/Embedded sources and can be obtained from
http://www.trolltech.com.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-26 Freescale Semiconductor

http://www.armdevzone.com

Architecture

3.8 Source of Linux BSP Components

Figure 3-10 shows the source of the code for each of the Linux BSP components.

Figure 3-10. Linux BSP Source Diagram

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 3-27

Architecture

3.9

Linux BSP APIs

Figure 3-11 shows a high level view of the Linux BSP components.

GUI (QT and GTK)

DPM Policy Manager

System Call Interface

Security
Package
Sound
AudMux Atlas
Atlas Audio Digitizer
SSl
Atlas Protocol
SPI

Applications, Shell Utilities, Libraries
Memory
Manager Virtual File System
Process
Wenager CramFS RamFS NFS
Resource
Manager Ext2 FAT JFFS2
MXC UART NOR MTD iMagic Camera
Framebuffer
16550 UART NAND MTD Pre-Proc 12C Client
Keypad MMC/SD Sharp LCD Post-Proc 12C Bus
MU ATA Epson SLCD Post-Filter
SDMA TTY IPU
Security MPEG4 Encoder
: "" A
| ARMIT AviC Timer SDMA RTC
i Machine Specific Layer

Figure 3-11. Linux BSP API Diagram

CODECs
USB USB
Function Class
Network
USB sBHost Stack
Device Stack
Stack
CS8900
USB-OTG Ether
Fast
IrDA
[T H
' Standard i
1
' Custom i
1
1 1
I Legend E

Table 3-2 lists the types of APIsthat are exported by each of the Linux BSP components.
Table 3-2. List of Linux BSP Component APIs

SW Component Kernel API User API Comment
MSL
Interrupts X Linux Std
Timer X Linux Std
SDMA(DMA) API X FSL Custom
IOMUX X FSL Custom
GPIO X FSL Custom
SPBA X FSL Custom
Character Device Drivers
16552 UART X Linux Std
MXC UART X Linux Std
Watchdog X Linux Std
RTC X Linux Std

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-28

Freescale Semiconductor

Table 3-2. List of Linux BSP Component APIs (Continued)

SW Component Kernel API User API Comment
Graphics Drivers
Framebuffer X Linux Std with FSL Extensions
Sharp LCD FSL Custom
Epson SLCD FSL Custom
IPU FSL Custom
VPU X FSL Custom
Multimedia
iMagic Camera X V4L2 with FSL Extensions
Video Post-Processing
Video Pre-Processing
Video Post-Filtering
MPEG4 VGA Encoder
MPEG4/H.264 D1 CODEC X FSL Custom
MC13783
MC13783 Protocol X FSL Custom
MC13783 Audio X FSL Custom
MC13783 Digitizer X FSL Custom
MC13783 RTC X FSL Custom
MC13783 Power X FSL Custom
Management
MC13783 Connectivity FSL Custom
MC13783 Battery FSL Custom
MC13783 Light FSL Custom
Sound Drivers
Sound X ALSA with FSL Extensions
Input Device Drivers
Keypad X FSL Custom
MTD Drivers
NOR MTD Linux Std
NAND MTD Linux Std
Networking Drivers
CS8900A Ethernet X Linux Std
Fast IrDA Linux Std

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Architecture

Freescale Semiconductor

3-29

Architecture

Table 3-2. List of Linux BSP Component APIs (Continued)

SW Component Kernel API User API Comment
Disk Drivers
ATA
USB Drivers
USB Host Stack Linux Std
USB Device Stack Belcarra
USB Class Drivers Linux Std
USB Function Drivers Belcarra
USB-OTG (TDI) Linux Std/Belcarra
USB-OTG (ARC) Linux Std/Belcarra
Security Drivers
SCC FSL Custom
RNGA FSL Custom
RTIC FSL Custom
General Drivers
MMC/SD Linux Std
PCMCIA Linux Std
Memory Stick TBD
12C Bus Linux Std
12C Client FSL Custom
SDMATTY X FSL Custom
AUDMUX FSL Custom
SSI FSL Custom
SPI FSL Custom
Power Management
Power Management X DPM with FSL Extensions
DVFS X FSL Custom
DPTC No API
GUI
QtE QVE
GTK GTK

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

3-30

Freescale Semiconductor

Chapter 4
Machine Specific Layer (MSL)

The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-dependent
components:

* Interruptsincluding GPIO and EDIO (only on certain platforms)

o Timer

* Memory map

» Genera purpose input/output (GPIO) including IOMUX on certain platforms
» Shared peripheral bus arbiter (SPBA)

* Smart direct memory access (SDMA)

These modules are normally available in the following directory:
<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arni pl at - nxc

The header files are implemented under the following directory:
<l tib_dir>/rpm BU LD/ I i nux-2.6.26/include/asm arni ar ch- nxc

The MSL layer contains not only the modules common to all the boards using the same processor, such as
theinterrupts and timer, but it aso contains modul es specific to each board, such asthe memory map. The
foll owing sections describe the basi ¢ hardware and software operation and the software interfacesfor M SL
layer modules. First, the common modules, such as Interrupts and Timer are discussed. Next, the board-
specific modules, such as Memory Map and general purpose input/output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, itsdesign isexplained in
a separate chapter.

Each of the following sections contains an overview of the hardware operation. For more information, see
the corresponding |C Specification document.

4.1 Interrupts

The following sections explain the hardware and software operation of interrupts on the IC.

4.1.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 64 internal and external interrupt sources.
Each source can be enabled or disabled by configuring the Interrupt Enable Register or using the Interrupt
Enable/Disable Number Registers. When an interrupt source is enabled and the corresponding interrupt
source is asserted, the Interrupt Controller asserts a normal or afast interrupt request depending on the
associated Interrupt Type Register setting.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-1

Machine Specific Layer (MSL)

Interrupt Controller registers can only be accessed in supervisor mode. TheInterrupt Controller’ sinterrupt
requests are prioritized in the order of fast interrupts, and normal interruptsin order of highest priority
level, then highest source number with the same priority. There are sixteen normal interrupt levelsfor all
interrupt sources, with level zero being the lowest priority. The interrupt levels are configurable through
eight normal interrupt priority level registers. Those registers, along with the Normal Interrupt Mask
Register, support software-controlled priority levels for normal interrupts and priority masking.

4.1.2 Interrupt Software Operation

For ARM-based processors, normal interrupt and fast interrupt are two different exception types. The
exception vector addresses can be configured to start at low address (0x0) or high address (oxFFFF0000).
ARM Linux implementation chooses the high vector address model.
The following file has a description of the ARM interrupt architecture.

<lItib_dir>/rpm BU LD/ | i nux-2.6.26/ Docunentation/arm Interrupts

The software provides a processor-specific interrupt structure with callback functions defined in the
i rqchi p structure and exports one initialization function, which is called during system startup.

4.1.3 Interrupt Requirements

The interrupt implementation meets the following requirements:
» Theinterrupt module implements the Interrupt Controller interrupt disable and enable functions.

* The interrupt module implements all the functions required by the Linux interrupt architecture as
defined in the standard ARM interrupt source code (mainly the
<l tib_dir>/rpm BUI LD | i nux-2.6.26/ arch/ arn kernel /irq.c fil€).

4.1.4 Interrupt Source Code Structure

The interrupt module isimplemented in the following file:
<Itib_dir>/rpm BU LD/ I i nux-2.6.26/arch/arm plat-nxc/irqg.c

There are also two header files:
<lItib_dir>/rpm BU LD/ I i nux-2.6.26/include/asm arni ar ch-nmxc/ hardware. h
<l tib_dir>/rpm BU LD/ | i nux-2.6.26/include/asmarnifarch-nmxc/irgs.h

Table 4-1 lists the source files for interrupt.
Table 4-1. Interrupt Files List

File Description
har dwar e. h register descriptions
irgs.h declarations for number of interrupts supported
irg.c actual interrupt functions

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-2 Freescale Semiconductor

Machine Specific Layer (MSL)

4.1.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function. This function initializes the
Interrupt Controller hardware and registers functions for interrupt enable and disable from each interrupt
source. Thisis done within the structure global i r q_desc of typestruct irqdesc. After theinitialization,
the interrupt can be used by the drivers through the r equest _i rq() function to register device-specific
interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the number of interruptsis
also expanded to support GPIO interrupt and EDIO (on some platforms only) interrupts. This allows
driversto use standard interrupt interface supported by ARM Linux, such asrequest _i rq() and
free_irqg() functions,

4.2 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system timer (which
generates periodic interrupts) and the dynamic timers (to schedul e events). Oncethe system timer interrupt
occurs, it does the following:

» Updates the system uptime.
* Updatesthe time of day.
* Reschedules anew processif the current process has exhausted its time slice.
* Runsany dynamic timers that have expired.
» Updates resource usage and processor time statistics.
The timer hardware on i.M X platforms consists of either Enhanced Periodic Interrupt Timer (EPIT) or

genera purposetimer (GPT) or both. GPT isconfigured to generate aperiodic interrupt at acertaininterval
(every 10 milliseconds) and is used by the Linux kernel.

4.2.1 Timer Hardware Operation

The Genera Purpose Timer (GPT) has a 32 bit up-counter. The timer counter value can be captured in a
register using an event on an external pin. The capture trigger can be programmed to be arising or falling
edge. The GPT can aso generate an event on i pp_do_cnpout pIiNs, or can produce an interrupt when the
timer reaches a programmed value. It has a 12 bit prescaler providing a programmable clock frequency
derived from multiple clock sources.

4.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the
proper clock source, interrupt mode and interrupt interval. The timer then registersits interrupt service
routine and startstiming. The interrupt service routine is required to service the OS for the purposes
mentioned in Section 4.2, “Timer.” Another function provides the time elapsed as the last timer interrupt.

4.2.3 Timer Requirements

The timer implementation meets the following requirements:

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-3

Machine Specific Layer (MSL)

* Thetimer module implements all the functions required by Linux to provide the system timer and
dynamic timers.

* Thetimer isset up to generate an interrupt every 10 ms.

4.2.4 Timer Source Code Structure

Thetimer moduleisimplementedinar ch/ arm pl at - mxc/ ti ne. ¢ file. Thesourcefilefor thetimeristinme. ¢
and it describes timer function implementation.

4.2.5 Timer Programming Interface

All the timer functions required for the Linux port are implemented in theti re. ¢ file.

4.3 Memory Map

AstheLinux kernel isrunning under the virtual address space with the M emory Management Unit (MMU)
on, apredefined virtual to physical memory map table is required for the device drivers to access to the
device registers.

4.3.1 Memory Map Hardware Operation

The MMU (Memory Management Unit) as part of the ARM core provides the virtual to physical address
mapping defined by the page table. For more information, see the ARM Technical Reference Manual
(TRM) from ARM Limited.

4.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory isimplemented for i.M X platformsasdefinedin
the<ltib_dir>/rpm BU LD/ | i nux- 2. 6. 26/ ar ch/ ar f mach- mx3/ nm cfile.

4.3.3 Memory Map Requirements

The Memory Map implementation should meet the requirement where the Memory Map module creates
the physical to virtual memory map for al the I/O modules.

4.3.4 Memory Map Source Code Structure

The Memory Map module implementation isin nm ¢ under the platform-specific MSL directory. The
<I'tib_dir>/rpm BUI LD/ | i nux-2.6.26/incl ude/ asm arm ar ch- nxc/ har dwar e. h _header fileis used to

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-4 Freescale Semiconductor

Machine Specific Layer (MSL)

provide macrosfor all the |O module physical and virtual base addresses and physical to virtual mapping
macros. Table 4-2 lists the source file for the Memory Map.
Table 4-2. Memory Map File List

File Description
mx31. h Header files for the 10 module physical addresses.
mm c Memory map definition file

4.3.5 Memory Map Programming Interface

The Memory Map isimplemented in the mm ¢ file to provide the map between physical and virtual
addresses. It just defines an initialization function to be called during system startup.

4.4 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes. The IOMUX
module controlsapin’s usage so that the same pin can be configured for different purposes and can be used
by different modules. Thisisacommon way to reduce the pin count while meeting the requirements from
various customers.

Patforms that do not have the IOMUX hardware module do pin muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be configured either asa
functional pin or asa GPIO pin. A functional pin can be subdivided into either a primary function or
alternate functions. The pin’'s operation is controlled by a specific hardware module. A GPIO pin, is
controlled by the user through software with further configuration through the GPIO module. For example,
the Txo1 pin might have the following functions:

* TXD1— internal UART1 Transmit Data. Thisis the primary function of this pin.

* UART2 DTR-- dternate mode 3

e LCDC_CLS -- aternate mode 4

e GPlOM[22] --dternate mode5

* SLCDC DATA[8] -- alternate mode 6
If the hardware modes are chosen at the system integration level, this pinis dedicated only to that purpose
and cannot be changed by software. Otherwise, the [OMUX module needs to be configured to serve a
particular purposethat is dictated by the system (board) design. If the pinisconnected to an external UART
transceiver and therefore to be used as the UART data transmit signal, it should be configured as the
primary function. If the pin is connected to an external Ethernet controller for interrupting the ARM core,
then it should be configured as GPIO input pin with interrupt enabled. Again, be aware that the software

does not have control over what function a pin should have. The software only configures a pin’s usage
according to the system design.

4.4.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware module.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-5

Machine Specific Layer (MSL)
The IOMUX controller registers are briefly described here. For detailed information, refer to the pin mul-

tiplexing section of the IC Reference Manual.

* SW_MUX_CTL -- Selectsthe primary or aternate function of apin. Also enables |oopback mode
when applicable.

e SW_SELECT_INPUT -- Controls a pin'sinput path. This register isonly required when multiple
pads drive the same internal port.

SW_PAD_CTL -- Used to control apad's: dew rate, driver strength, pull-up/down resistance, etc.

4.4.2 IOMUX Software Operation

The iomux software implementation provides an API to setup apin’s functionality and pad features.

44.3 IOMUX Requirements

The iomux implementation should meet the requirements where the iomux module implements all the
functions to configure the pins that are supported by the hardware.

4.4.4 IOMUX Source Code Structure

The following table lists the source files for the iomux module. Thefiles are in the directory:
<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arnm mach- nx*/

(where"*" stands for a specific CPU).

Table 4-3 lists the source files for the iomux.
Table 4-3. IOMUX File List

File Description
i omux. c iomux function implementation
mx* _pins. h pin definitions in the iomux_pins enum

4.4.5 IOMUX Programming Interface

All the iomux functions required for the Linux port are implemented in the i onux. c file.

4.4.6 IOMUX Control through the GPIO Module

The following discussion applies to those platforms that control the muxing of a pin through the general
purpose input/output (GPIO) module.

For amulti-purpose pin, the GPIO controller provides the multiplexing control so that each pin may be
configured either as afunctional pin (which can be subdivided into either major function or one alternate
function) whose operation is controlled by a specific hardware module, or it can be configured asa GPIO
pin, in which case, the pin is controlled by the user through software with further configuration through

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-6 Freescale Semiconductor

Machine Specific Layer (MSL)

the GPIO module. In addition, there are some special configurations for a GPIO pin (which can be
subdivided into not only output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT or
B_OUT).

If the hardware modes are chosen at the system integration level, this pinis dedicated only to that purpose
which can not be changed by software; otherwise, the GPIO module needs to be configured properly to
serve a particular purpose that is dictated with the system (board) design: if this pin is connected to an
external UART transcelver, it should be configured as the primary function; if this pin is connected to an
external Ethernet controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. Again, be aware that the software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

4.4.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub modules. The
following sections briefly describe the hardware operation and for detailed information, refer to the
relevant | C spec.

44.6.1.1 Muxing Control

The GPIO In Use Registers control a multiplexer in the GPIO module. The settings in these registers
choose if apinis utilized for a peripheral function or for its GPIO function. One 32-bit general purpose
register is dedicated to each GPI O port. Theseregisters may be used for software control of IOMUX block
of the GPIO.

44.6.1.2 PULLUP control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control every pin of that
port.

4.4.6.2 GPIO Software Operation

The GPIO software implementation provides an API to setup a pin’s functionality and pad features.

4.4.6.3 GPIO Requirements

The GPIO implementation should meet the requirement where the GPIO module implements all the
functions to configure the pins that are supported by the hardware.

4.4.6.4 GPIO Source Code Structure

The GPIO moduleisimplemented in gpi o_nux. ¢ fileunder therelevant MSL directory. The header fileto
define the pin names is under:

<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arm mach- nx*/
Table 4-4 lists the source files for the OMUX.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-7

Machine Specific Layer (MSL)

Table 4-4. IOMUX File List

File Description

mx3_3st ack_gpi 0. c iomux function implementation

mx* _pins. h pin name definitions

4.4.6.5 GPIO Programming Interface

All the GPIO muxing functions required for the Linux port are implemented in the gpi o_nux. ¢ file.

4.5 General Purpose Input/Output (GPIO)

The GPIO modul e provides general-purpose pinsthat can be configured as either inputs or outputs. When
configured as an output, apin’s state (high or low) can be controlled by writing to an internal register; when
configured as an input, a pin’s input state can be read from an interna register.

4.5.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX processor’s
external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly accessing the GPIO
registers. The GPIO interrupt implementation contains functions, such as the interrupt service routine
(ISR) registration/un-registration and | SR dispatching once an interrupt occurs. All driver-specific GPIO
setup functions should be made during deviceinitialization in the MSL layer to provide better portability
and maintainability. This GPIO interrupt isinitialized automatically during the system startup.

If apinisconfigured as GPIO by the IOMUX, the state of the pin should also be set sinceit will not be
initialized by a dedicated hardware module. Setting the pad's pull-up, pull-down, slew rate, etc. with the
pad control function may be required as well.

4.5.1.1 API for GPIO

The GPIO implementation has the following features:

* AnAPI for registering an interrupt service routine to a GPIO interrupt. Thisis made possible as
the number of interrupts defined by NR_I Rgs has been expanded to accommodate all the possible
GPIO pinsthat are capable of generating interrupts.

* Functionsto request and free an IOMUX pin. If apinisused as GPIO, another set of request/free
function calls are provided. The user should check the return value of the “request” callsto seeif
the pin has already been reserved before modifying the pin’sstate. The “free” function calls should
be made when the pin is not needed. See the API document for more details.

» Aligned parameter passing for both IOMUX and GPIO function calls. In thisimplementation the
same enumeration for i onux_pi ns isused for both IOMUX and GPIO calls and the user does not
have to figure out in which bit position apinislocated in the GPIO module.

* Minimal changes required for the public drivers such as Ethernet and UART drivers as no special
GPIO function call is needed for registering an interrupt.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-8 Freescale Semiconductor

Machine Specific Layer (MSL)

The following sub-sections shows examples of using this API.

45.1.2 IOMUX/GPIO APl Usage—Example 1

To configure mx31_pi N_GPI 01_3 for an MC13783 interrupt: gpi o_nc13783_act i ve() from
<l tib_dir>/rpm BUI LD | i nux- 2. 6. 26/ ar ch/ ar m mach- mx3/ nx31ads_gpi o. ¢ configures the pin as GPIO,
setsits direction to be input and enables the interrupt at the rising edge of the signal.
/*1
* This function configures the | Ovux block for MC13783 standard operations.

*/
voi d gpio_ntl3783_active(void)
{
mxc_request _i omux(MX31_PI N _GPI O1_3, OUTPUTCONFI G_GPI O,
I NPUTCONFI G_GPI O) ;
mxc_set _gpio_direction(MX31_PIN GPIOL_3, 1);
mxc_set _gpi o_edge_ctrl (MX31_PIN_GPIO1_3, GPIO_|I NT_RI SE_EDCE);

To register an interrupt service routine, it could call:

ret = request_irgq(PM C_INT_LINE, ncl13783_irq_handler, 0, 0, 0);

and PMIC_INT_LINE would be defined as:

#define PM C_I NT_LI NE I OMUX_TO | RQ(MX31_PI N_GPI OL_3)

In this example, the same IOMUX pin name is used for both IOMUX calls and the GPIO calls, and the
standard r equest _i r q() function for registering an interrupt handler is called. The interrupt number when
calling thisfunction hasto be converted with thel OMUX_TO_| RQmacro as shown above. Idedly, if this
pinis not used when the driver is unloaded, mxc_f r ee_i onmux() should be called to free the pin,
otherwise awarning will be displayed when another driver tries to make use of this pin when it calls
nxc_request _iomux().

45.1.3 IOMUX/GPIO API Usage—Example 2
To configure the RXD1 pin for the functional mode used by the UART driver, gpi o_uart_active() cals:

mxc_r equest _i omux(MX31_PI N_RXDL, OUTPUTCONFI G FUNC, | NPUTCONFI G_FUNC) ;

In the gpi o_uart_i nactive() function (which will be called when the driver is shutdown) these two calls
are needed to put this pin in the GPIO input mode and then release the ownership of this pin:

mxc_request _gpi o(MX31_PI N_RXD1) ;
mxc_free_i omux(MX31_PI N_RXD1, OUTPUTCONFI G_GPI O

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-9

Machine Specific Layer (MSL)

4.5.2 GPIO Requirements

This GPIO implementation should meet the following requirements:
* Implements the functions for accessing the GPIO hardware modules.
* Provides away to control GPIO signal direction and GPIO interrupts.

4.5.3 GPIO Source Code Structure

All of the GPIO module source code isin the MSL layer, in the following file:
<ltib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arn pl at-nmxc/ gpio.c

Includes are available in the following files:

<l tib_dir>/rpm BU LD/l i nux-2.6.26/include/asm arni arch-nxc/ gpi o. h
<I'tib_dir>/rpm BU LD/ | i nux- 2. 6. 26/ arch/ ar mf mach- mx*/ mx* _pi ns. h (where* standsfor a

specific CPU)
Table 4-5. GPIO File List
File Description
mx* _pins. h GPIO private header file
gpio. h GPIO public header file
gpi o.c Function implementation

4.5.4 GPIO Programming Interface

For more information, see the APl documents for the programming Interface.

4.6 EDIO
Not al platforms have the EDIO hardware module. This section applies only to those that do.

The EDIO module provides externa interrupt capability to the processors.

4.6.1 EDIO Hardware Operation

The interrupt (EDIO) modul e recognizes the external asynchronous signal as an interrupt source. When it
matches the selected criteria, low level or edge (rising, falling or both edges), it assertsan interrupt request
to the processor’s interrupt controller. This module can handle eight such interrupts simultaneously with
selectable configurations for each incoming signal reaching EDIO.

4.6.2 EDIO Software Operation

The EDIO interrupt has been integrated into the generic platform level interrupt implementation asin
irg.cinthe<itib_dir>/ rpm BUI LD/ | inux-2.6.26/arch/arn pl at - mxc directory. For driversthat need to
set up the interrupt attributes, such asinterrupt edges or levels, the set _irq_type() can becalled. The
interrupt clearing that is needed for the EDIO interrupts is hidden from the driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-10 Freescale Semiconductor

Machine Specific Layer (MSL)

4.6.3 EDIO Requirements

This EDIO implementation should meet the following requirement where the EDIO module provides a
method to set the EDIO interrupt attributes provided by the hardware.

4.6.4 EDIO Source Code Structure

All of the EDIO module source codeisintheirq. c isunder the
<l tib_dir>/rpm BUI LD | inux-2.6.26/ arch/arm pl at-nxc/ directory and the har dwar e. h is under the
<l tib_dir>/rpm BUI LD | i nux-2. 6. 26/ i ncl ude/ asm arnf ar ch- mxc/ directory.

Table 4-6. EDIO File List

File Description

platformh EDIO interrupt defines

irg.c Common functions for various boards

4.6.5 EDIO Programming Interface

For more information, see the APl documents for the programming Interface.

4.7 SPBA Bus Arbiter

Notethat not al platforms have the SPBA hardware module. Therefore, this section may only apply to the
platforms with SPBA module in them.

The SPBA busarbiter provides arbitration mechanism among multiple mastersto have accessto the shared
peripherals.

4.7 .1 SPBA Hardware Operation

The SPBA is athree-to-one |P Sky-Blue line interface (1P-Bus) arbiter, with aresource locking
mechanism. The masters can access up-to thirty-one shared peripherals through the SPBA. It has the
following features:

* Multi-master bus arbiter
» 32-bit data access
» Supports up to 31 shared peripherals, each consuming 16 KB of address space

« Can be considered as the 32" peripheral, used for resource ownership and access control
mechanism to the 31 peripherals

* Provides 31 sets of Out of Band Steering Control signals to the off-module steering logic
* Operating frequency up to 67 MHz,
» Clocks: ipg_clk, ipg_clk_s(mcu clock domain).

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 4-11

Machine Specific Layer (MSL)

4.7.2 SPBA Software Operation

Functions are provided to allow different masters to take/release ownership of a shared peripheral. These
functions are also exported to be used by other loadable modules.

4.7.3 SPBA Requirements

This SPBA implementation should meet the following requirements where:
» The SPBA moduleprovidesan API to alow different mastersto take/rel ease ownership of ashared
peripheral.

* The SPBA module conforms to the Linux coding standard as documented in the Coding
Conventions chapter.

4.7.4 SPBA Source Code Structure
All of the SPBA module source codeisin the MSL layer.

The following files are available within the directories indicated:

<l tib_dir>/rpm BU LD/ I i nux-2.6.26/arch/arn pl at-nxc/spba.c
<l tib_dir>/rpm BU LD/ | i nux-2.6.26/include/asm arni ar ch-nxc/ spba. h

Table 4-7. SPBA File List

File Description

spba. h SPBA public header file

spba. c Common SPBA functions

4.7.5 SPBA Programming Interface

For more information, see the APl documents for the programming interface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

4-12 Freescale Semiconductor

Chapter 5
Smart Direct Memory Access (SDMA) API

5.1 Overview

SDMA API driver controlsthe SDMA hardware. It provides an API to other drivers for transferring data
between MCU memory space, DSP memory space and peripherals. It supports the following features:

» Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

» Callback mechanism at the end of script execution

5.1.1 Hardware Operation

The SDMA controller isresponsible for transferring data between the MCU memory space, the DSP
memory space, and peripherals.

» Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels

» Powered by a 16-bit Instruction-Set microRISC engine

» Each channel executes specific script

» Very fast context-switching with 2-level priority based preemptive multi-tasking

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common utilities that can

be referenced by RAM-located scripts

» 8-Kbyte RAM areaisdivided into a processor context area and a code space area used to store
channel scripts that are downloaded from the system memory.

5.1.2 Software Operation

The driver provides an API for other driversto control SDMA channels. SDMA channels run dedicated

scripts, according to periphera and transfer types. The SDMA API driver isresponsible for loading the

scriptsinto SDMA memory, initialization of the channel descriptors, controlling the buffer descriptorsand
SDMA registers.

Complete support for SDMA is provided in three layers (see Figure 3-2). Thefirst layer isthe |.API, the
second layer isthe Linux DMA API and the third layer isthe TTY driver or DMA-capable drivers, such
as ATA, SSI and the UART driver. Thefirst two layers are part of the MSL and customized for each

platform. I.API isthe lowest layer and it interfaces with the Linux DMA API with the SDMA controller.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 5-1

Smart Direct Memory Access (SDMA) API

The Linux DMA API interfaces other drivers (for example, MMC/SD, Sound) with the SDMA controller
through the | .API.

Table 5-1 provides alist of driversthat use SDMA and the number of SDMA physical channels used by
eachdriver. A driver can specify the SDMA channel number that it wishesto use (static channel allocation)
or can have the SDMA driver provide afree SDMA channel for the driver to use (dynamic channel
allocation). For dynamic channel allocation, the list of SDMA channelsis scanned from channel 32 to
channel 1. On finding afree channel, that channel is alocated for the requested DMA transfers.

Table 5-1. SDMA Channel Usage

Driver Name No. of SDMA Channels SDMA Channel Used
SDMA TTY 8 Static Channel allocation -- uses SDMA
channels 1,2, 3,4,5,6,7,8
Sound 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
MMC 1 per device Dynamic channel allocation
Fast IR (FIRI) 2 per device Dynamic channel allocation
DVFS 1 Dynamic channel allocation

5.2 Source Code Structure

The sourcefile, sdma. h (header file for SDMA API) is availablein the directory
/<Itib_dir>/rpm BU LD/|inux-2.6.26/include/asm arni ar ch-nxc.

Table 5-2 lists the source files available in the directory,
/<Itib_dir>/rpm BU LD/|inux-2.6.26/arch/arm pl at-nxc/sdna.

Table 5-2. SDMA API Source Files

File Description
sdma. ¢ SDMA API functions
sdma_nal | oc. c SDMA functions to get DMA’able memory
i api/ iAPI source files

Table 5-3 lists the header files available in the directory,
/<Itib_dir>/rpm BU LD/|inux-2.6.26/arch/arm mach-nx3/.

Table 5-3. SDMA Script Files

File Description

sdma_scri pt_code. h SDMA RAM scripts for SDMA ROM Pass 1

sdnma_scri pt _code_pass2. h | SDMA RAM scripts for SDMA ROM Pass 2

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

5-2 Freescale Semiconductor

Smart Direct Memory Access (SDMA) API

5.3 Configuration

5.3.1 Linux Menu Configuration Options

In order to get to the SDMA configuration use thecommand . /1tib -c whenlocated inthe<itib dir>.
In the screen select confi gure kernel , exit and a new screen will appear.

CONFIG_MXC_SDMA_API - Thisisthe configuration option for the SDMA API driver. In
menuconfi g, thisoptionisavailable under Syst em t ype >Freescal e MXC

i npl ement at i ons. By default, thisoptionisY for al architectures.

5.4 Programming Interface

The module implements custom API and partially standard DMA API. Custom API is needed for
supporting non-standard DMA features like loading scripts, interrupts handling and DV FS control.
Standard API is supported partially. It can be used along with custom API functions only. Refer to the AP
document for more information on the methods implemented in the driver.

5.5 Example Usage
Refer to one of the drivers from Table 5-1 that uses the SDMA API driver for ausage example.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 5-3

A
Smart Direct Memory Access (SDMA) API

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

5-4 Freescale Semiconductor

Chapter 6
PMIC Protocol Driver

This chapter describesthe Power Management Integrated Circuit (PMIC) protocol devicedriver for Linux
that provides the low-level read/write access to the PMIC's hardware control registers.

Onekey objective of the PMIC protocol driver and the other PMIC-related driversisto provide acomplete
API interface to all supported PMIC chips, despite differences in hardware design and implementation.
Thisis necessary to minimize the effort to design, implement, test, and support PMIC device drivers.

With asingle API interface, asingle application can be reused without any changes across al supported
PMIC chips. Such an application, however, must either restrict itself to a core set of features supported by
all PMIC chips, or detect at runtime which PMIC chip isinstalled before performing any PMIC-specific
operations.

This chapter describes the requirements, design, implementation, and client API that is provided for
accessing PMIC hardware. Additional information about the PMIC device driver APIs, especially
programming-related details, can also be located in the Doxygen-generated HTML documentation that is
provided with the Linux BSP distribution. As shown in Figure 6-1, the PMIC protocol driver handles all
low-level communications between many other Linux device drivers and the PMIC hardware. The PMIC
protocol driver uses one of the available SPI buses to communicate with the PMIC chip.

NOTE

The PMIC protocol driver isintended only for use with the MCU core and
the Linux OS. An equivalent PMIC driver for the DSP core within adual
core platform is beyond the scope of this document.

6.1 Key PMIC Features and Capabilities
The PMIC protocol typically provides hardware to support the following functions for Freescale’'s
i.MX-based platforms:

» Audio playback and recording

» Power supply control, battery charging, and power management support

* Anaog-to-digital conversion (including touchpanel support)

* External RS-232 and USB OTG connectivity

* LED and LCD backlight control

* Real-timeclock (RTC) support

» Event notification through the use of hardware interrupts

These functions are all selected and configured through the PMIC control registers, which are accessible
through two separate SPI interfaces. The Primary SPI interface initially has full read/write access to the

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-1

PMIC Protocol Driver

PMIC control registers, while the Secondary SPI interfaceinitially hasonly read access but can be granted
selective read/write access. When used with dual core platforms, the PMIC can be controlled by both the
MCU and the DSP through their respective SPI interfaces. Depending upon the actual system
requirements, either the M CU or the DSP can be designated as the Primary Processor and connected to the
PMIC through the Primary SPI bus. The other processor would then be designated as the Secondary
Processor and be connected to the PMIC through the Secondary SPI bus. For single core platforms, only
the Primary SPI interface to the PMIC istypically used.

Figure 6-1 shows the main functional blocks provided by the PMIC.

Battery Analog-to-Digital Control
Charger Converters Logic
Power Supply Hardware
and Regulator Tosuchpa:el Interrupt
Control uppo Control
Power LCD Backlight Primary To Primary
Management SPI Bus Processor
Control Control Interface
g Voice CODEC Secondary To Secondary
USE&ES&T\Z 232 (Audio Recording SPI Bus Processor
Y and Playback) Interface
Tri-Color LED Stereo DAC
Control (Audio Playback)

Microphone BIAS

Real-Time Clock Circuits

Figure 6-1. PMIC Block Diagram

Note that not all of the functions can be used at the same time because of hardware constraints. For
example, some of thel/O pinsare shared between the USB OTG and RS-232 transceivers. Therefore, USB
OTG and RS-232 connectivity cannot be used at the same time, although it is certainly possible to switch
between the two modes. For the sake of simplicity, only the SPI businterfaces are shownin Figure 6-2 and
all of the other PMIC data buses and external 1/0 connections have been omitted.

Table 6-1 provides a brief description of the PMIC functional blocks for which Linux device drivers have
already been implemented. Additional information about the device drivers for each of these PMIC
functional blocks can be located in this reference manual.

Table 6-1. Summary of all Available PMIC Client Device Drivers

PMIC Device Driver Functions

Power Management Driver » Battery charger interface for wall charging and USB charging.
* Regulators with internal and external pass devices.

¢ Power up and power down control.

Analog-to-Digital Conversion | * 10-bit ADC for battery monitoring and other readout functions.
(ADC) Driver e Touch screen interface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-2 Freescale Semiconductor

PMIC Protocol Driver

Table 6-1. Summary of all Available PMIC Client Device Drivers

PMIC Device Driver Functions

Audio Driver Audio input amplifier selection and gain control.

Microphone bias circuit control.

Audio output amplifier selection and gain control.

Audio output hardware mixing and mono adder control.

13-bit Voice CODEC supporting playback and recording at either 8 kHz or 16 kHz
sampling rates.

* 13-bit Stereo DAC supporting playback at multiple sample rates.

RTC Driver * Real-time clock support (MC13783 PMIC only).
Backlight and LED Driver * Manages the LCD backlight level and each of the Red, Green, and Blue LEDs.
Connectivity Driver e USB OTG and RS-232 transceiver control.

* USB OTG device insert/removal detection and notification.
* USB OTG connection negotiation and voltage level control.

Battery Driver » Configures the battery control/monitoring interface.

6.1.1 PMIC Register Access and Arbitration

The main purpose of the PMIC protocol driver is to provide the necessary read/write access to the PMIC
control registersusing the SPI businterfacesto support all of the higher-level PMIC client driversthat are
shownin Figure 6-1 and are briefly described in Table 6-1. There are two possible techniquesfor accessing
the PMIC control registers: exclusive sharing and logic sharing. For each PMIC control register, choose
either of the following techniques:

» Exclusive Sharing—One processor has exclusive control. The processor connected to the primary
SPI bus interface determines which processor has control by setting the appropriate arbitration
control bits. Only the designated processor can modify the register. By default, only the primary
SPI has read/write access to the PMIC control registers, while the secondary SPI has only read
access. However, some of the PMIC control registers and settings cannot be accessed at all from
the secondary SPI, regardless of the arbitration bit settings. See the appropriate PMIC detailed
technical specifications (DTS) document for complete information about primary versus
secondary SPI bus access to the control registers.

» Logic Sharing—Control is determined by analyzing logical expressions. Values of both the
primary and secondary control register settings are logically ANDed or ORed to create the final
resource control value. Logic Sharing of aresource, through either asingle bit or amulti-bit vector,
can also be selected by setting the appropriate arbitration bit values through the primary SPI
interface.

Immediately following a Power up or Reset event, the processor that is connected to the Primary SPI
interface can modify the PMIC control registersto configure the desired access modefor control registers.
The specific registers that need to be updated and the appropriate arbitration bit values can be located in
the Detailed Technical Specifications document for the PMIC.

PMIC register access and arbitration settings are not issues on platforms where Linux is running on the
primary processor. However, where Linux isrunning on the secondary processor (on adual-core platform),

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-3

PMIC Protocol Driver

additional steps must be taken to provide the required level of access to the PMIC registers from the
secondary SPI interface. The following options may be used to resolve thisissue:

* Modify the platform or the PMIC hardware to swap the primary and secondary processor
connections.

* Implement additional software on the primary processor (which isnot running Linux in this case)
to grant the secondary processor the required access rights to the PMIC control registers.

The second option istypically the preferred solution. However, in situations where additional software
development on the primary processor (usually DSP core, but note that the i.MX31 does not use an extra
DSP core) is not practical in the short-term, then a possible interim solution is to modify the PMIC
hardware so that both the primary and secondary SPI interfaces are connected to a secondary processor
running Linux (for example, by connecting both CSPI1 and CSPI2 from the ARM core to the PMIC). A
single function can be implemented that will be called during the Linux boot process and use the primary
SPI interfaceto reconfigure the PMIC arbitration bitsasrequired. Thisalowstherest of the Linux system
to operate properly using only the secondary SPI interface, after the boot process has been compl eted.

Note that thisis strictly an interim solution for getting Linux to run properly on the secondary processor
with full PMIC functionality. This hardware change to the PMIC SPI interfaces completely disconnects
the DSP core from the PMIC and, therefore, cannot be used as a true solution to the arbitration problem.
Ultimately, implementing the appropriate software on the primary processor to reconfigure the PMIC
arbitration settings is the only appropriate solution when Linux is running on the secondary processor.

6.1.2 Interrupt Notification

Events are reported to either the primary or secondary processor through the use of a PMIC-generated
hardware interrupt. A single interrupt signal can indicate one or more events. The PMIC protocol driver
first receivesthe interrupt signal and then checksthe PMIC’sinterrupt status register to determine exactly
which eventsare being signaled. Finally any client-registered callback functions are called to complete the
handling of the event. If no callback functions are currently registered, then the event isignored.

Table 6-2 lists al events that the MC13783 PMIC protocol driver supports.
Table 6-2. MC13783 PMIC Hardware Interrupt Events

Event Description
ADC has finished requested ON1B event
conversions
Touchscreen wake up ON2B event
ADC reading above high limit ONB3B event
ADC reading below low limit System reset
Charger attach SW1A low setting stabilized
Charger over voltage detection SW1A high setting stabilized
Charger path reverse current SW1B low setting stabilized
Charger path short circuit SW1B high setting stabilized

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-4 Freescale Semiconductor

PMIC Protocol Driver

Table 6-2. MC13783 PMIC Hardware Interrupt Events (Continued)

Event Description
BP regulator in regulation SW2A low setting stabilized
Dual path selection SW2A high setting stabilized
End of trickle charge SW2B low setting stabilized
End of life / low battery detect SW2B high setting stabilized
USB 4V detect Thermal warning
USB 2V detect Power cut event
USB 1V detect Warm start event
Microphone bias 2 detect Memory hold event
Headset attach Clock source change
Stereo headset detect Semaphore cleared
Thermal shutdown Asp ICTEST state
Short circuit on Ahs outputs CHRGMOD state
1 Hz time tick USBMOD state
Time of day alarm BOOQOT state
Wake up event SW1A and SW1B joined

6.2 Driver Requirements
The PMIC protocol driver module (also called the “core” driver in the Linux sourcetree) isresponsible
for providing two types of servicesfor al of the PMIC client driver components:

* Control Services

» Event Notification Services
The PMIC protocol driver may be built as a Linux loadable kernel module and manually loaded following
system boot. However, the protocol driver istypically configured to be built into the Linux kernel image
itself, because the PMIC card is not intended to be dynamically added or removed once the system has

been powered on. Also, some of the Linux power management functions require that the PMIC protocol
driver be properly loaded and fully operational.

6.2.1 Control Services

The key control services provided by the protocol device driver are:
* The ability to configure the SPI bus driver to communicate with the PMIC.

* The ability to read the current value of any PMIC hardware control register, by initiating the
appropriate SPI bus transaction.

» Theabhility towrite new valuesto any PMIC hardware control register, by initiating the appropriate
SPI bus transaction.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-5

PMIC Protocol Driver

» Asthe SPI bustransactions are asynchronous in nature, the PMIC protocol driver must not disable
interrupts or be operating in an atomic context when making callsto the SPI driver.

Note that both the read and write capabilities may be affected by the Primary and Secondary SPI bus
arbitration settings.

6.2.2 Event Notification Services

The PMIC protocol device driver must support the following event notification services:
1. Register adefault interrupt handler to handle all PMIC-related hardware interrupt events.

2. Allow other PMIC client drivers to subscribe and unsubscribe to one or more PMIC events and to
specify an appropriate “ callback” function.

3. Call al previoudly registered callback functions when the corresponding PMIC event has been
received.

4. The ability to properly set the PMIC interrupt event mask register to selectively control which
hardware events are enabled or disabled.

5. Theability to query the PMIC interrupt status register to determinewhich eventsare being signaled
by the current hardware interrupt.

6.2.3 Miscellaneous Requirements
In addition to the specific services-related requirements given above, the PMIC protocol driver must also
satisfy the following additional requirements:

* Beableto properly reconfigure the PMIC arbitration settings (if required) to support the
functionality that is expected by the rest of the Linux system.

» Conform to the Linux coding standards.

6.3 Driver Software Operation

The PMIC protocol driver controlsthe PMIC by reading and writing the PMIC hardware control registers.
Both read and write access to the PMIC hardware control registers is done through the SPI driver. The
PMIC protocol driver requires the SPI driver to perform all of the following functions:

» Create the proper data packets for transmission on the SPI bus. This includes putting the proper
destination address for accessing a specific PMIC control register.

* Send the data packet and verify its transmission status.
* Receive and decode any data packets that were sent by the PMIC.
* Return any data received from the PMIC hardware back to the PMIC protocol driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-6 Freescale Semiconductor

4
PMIC Protocol Driver

Figure 6-2 shows the relationship between the PMIC protocol driver and all of the other related device
driversin the system as well as the interaction between them.

=3
Frac
Cighal ! Interface
Aucio Diivers

;
:

et Bepsrting
EMIC Harchkmre
ClientE"s Fare

BHIC Dovice Drlvecs

ik

Figure 6-2. PMIC Device Driver

The hardwareinterrupt signal that can be generated by the PMIC isfirst received and handled by the PMIC
protocol driver. The PMIC protocol driver determines events that are being signaled by the PMIC by
examining the PMIC'sinterrupt status register. Finally, all PMIC interface drivers that have previously
registered for the currently active events are signaled through their respective callback functions.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-7

PMIC Protocol Driver

6.4 Driver Architecture

Figure 6-3 shows the overall architecture and external interfaces for the PMIC protocol driver.

4
PMIC Client Drivers Interface IOCTL Interface :
Read Write | Subscribe | o pseribe | Check Get All IOCTL Handler | &
PMIC PMIC to an . 3 ’ H
.) to an Event Sense Bit Sense Bits (Test and Debugging Only) | u
Register Register Event H
E Invoke
3 Callback
L s Functions
PMIC Arbitration H
Settings :
Configuration H
yv :
1 Management of
Callback
vy v v Functions
e Module REME] M(_:dule SPI Send Frame Interrupt Handler
Loading Unloading
Kernel Module Management Interface SPI Driver Interface rp el
Interface

Figure 6-3. PMIC Protocol Driver Architecture and Interfaces

The key components are as follows:

* Read/Write interfaces for the PMIC control registers, subscribing/unsubscribing to PMIC events,
and checking on one or more of the PMIC sense hits.

* PMIC deviceinterface supporting the Linux IOCTL interface, for use with/ dev/ pm c device.
* Interface for sending and receiving SPI data packets to and from the PMIC.

» AP for hardware interrupt notifications and which will then invoke the appropriate event callback
functions.

* API supporting the Linux kernel module, loading/unloading operations and device driver
initialization requirements.

» Internal function, called only during device driver initialization, that reconfigures the arbitration
bits on the PMIC, if necessary, to support proper operation from the secondary processor.

Each of these main device driver components will be described in greater detail, including any
implementation-specific issues, in the following section.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-8 Freescale Semiconductor

PMIC Protocol Driver

6.5 Driver Implementation Details

This section describes implementation-specific detail s associated with the PMIC protocol driver. The
device driver source files should also be consulted to fully understand the implementation of the PMIC
protocol driver. The CSPI driver documentation and sources should aso be consulted if required.

6.5.1 Driver Initialization

The PMIC protocol driver performs the following operations when it is first loaded/initialized:

* Createeither a/ dev/ pm c character device entry, depending on which version of the driver is
actually being loaded, and register the new device with the kernel.

» Perform any required PMIC arbitration fixes (see Section 6.1.1, “PMIC Register Access and
Arbitration™)

» Initialize the PMIC registersto a known state (optionally done here; or can be done by the
individual PMIC client drivers on a component-by-component basis).

» Initialize al driver-specific global variables.

* Enable the PMIC hardware interrupt line and bind it to the top half interrupt handler (see
Section 6.5.4.1, “Top Half Interrupt Handler”).

6.5.2 Driver Unloading

The following operations are performed when unloading/deinitializing the PMIC protocol driver:
* Removethe/ dev/ pm c device entry and tell the kernel to deregister this device.
» Disablethe PMIC hardware interrupt line to prevent any further interrupts from occurring.

6.5.3 Event Notification List

The PMIC protocol driver uses astatic array of 1i st _head to manage the event notification list. The
subscript of the array corresponds to a specific event 1D, and each array element is actually the head of a
linked list. Each element of the linked list contains all the information needed to invoke a callback
function. Initially the array of 1i st _head isinitialized to indicate that all of the linked lists are currently
empty and that no callback functions are currently registered.

Whenever an event callback function isto be registered, anew linked list element consisting of astructure
with the following fieldsis allocated:

* A pointer to acalback function that takes a single (void *) argument and which does not return
anything.

* A (void*) field that holds that argument that is to be used when invoking the callback function.

* A pointer to the next callback data structure for the same event.

This structure element is then initialized with the proper values and added to the appropriate linked list in
the array of event notification lists.

When a PMIC-generated hardware interrupt arrives, theinterrupt handler starts by examining the PMIC’s
interrupt status register to determine the currently active events. The corresponding elementsin the array

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-9

PMIC Protocol Driver

of event notification lists are then examined to seeif any callback functions have been registered and, if
S0, they are al invoked in the same order that they were registered.

De-registering a callback function simply involves removing the callback data structure by adjusting the
linked list pointers and then deall ocating the memory for the callback data structure.

The only important thing to keep in mind with the handling of the event notification list is that it must
alwaysbekept in aconsistent state and that any possible race conditions must be prevented. Thisbasically
means that all of the following scenarios must be properly handled:

* Registration and deregistration of callback functions must always be performed in a critical
section, so that the array of pointers and the associated linked lists are aways kept in a consistent
state. This aso avoids any possible memory leaks during allocation and deallocation of the
memory required for thelinked list elements. Aspart of the callback registration and deregistration
process, calls to the SPI driver must be made to update the PMIC’s interrupt mask register. When
calls are made to the SPI driver, interrupts must be enabled, which eliminates atomic contexts.
Therefore, the critical section must be implemented using only amutex and not a spinlock.

» Cadlback function registration, deregistration, and the interrupt handler must all use a critical
section when accessing the array of pointers and the linked list of callback data structures. Asthe
interrupt handler isinvolved here, spinlocks must be used to implement the critical section.
Fortunately, the interrupt handler itself does not require making any calls to the SPI driver, so
running in an atomic context does not cause any problems.

These two requirements specify that a mutex must be used to guard against race conditions between
callback registration and deregistration operations. Furthermore, within the mutex critical section, a
spinlock must be used to guard against race conditions when the contents of anything in the event
notification list (either the array of pointers or the associated linked lists) are used or modified. However,
the spinlock can be rel eased as soon as modifying the event notification list is no longer required, and the
mutex can be used to perform any operation that is not directly associated with or impacted by theinterrupt
handler.

6.5.4 Interrupt Handler

The PMIC interrupt handler is divided into two parts. The “top half” is called directly by the Linux kernel
when the hardware interrupt isfirst raised, and al interrupts are disabled while the “top half” interrupt
handler is executing. The “top half” acknowledges and handles the interrupt.

However, if handling the interrupt also requires significant processing or other, possibly time-consuming
operations, then all such operations should be deferred to a separate “lower half” interrupt handler that can
be executed at alower priority and with hardware interrupts re-enabl ed.

6.5.4.1 Top Half Interrupt Handler

The top half interrupt handler in the PMIC protocol driver performs the following operations:
1. Acknowledges and clear the hardware interrupt condition.
2. Schedules awork gqueue task to complete the handling of the interrupt event.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-10 Freescale Semiconductor

PMIC Protocol Driver

Note that PMIC-related interrupts typically do not have any hard real-time requirements. Therefore, it is
perfectly acceptable to defer much of the interrupt handling to a separate work queue task.

6.5.4.2 The Lower Half Interrupt Handler

Thelower half interrupt handler for the PMIC protocol driver isimplemented asawork queue. Scheduling
is done by the top half whenever a hardware interrupt is received. The lower half handler does the work
that is required to handle the PMIC interrupt. The steps are as follows:

1. Read the current value of the PMIC’sinterrupt status register to determine the list of currently
active events.

2. Clear thePMICinterruptsthat will be handled by the PMIC devicedrivers. Notethat if no callback
functions have been registered yet for an event, the PMIC protocol driver will just silently ignore
the event.

3. Invoke any callback functions that have been registered for the currently active events.

As already noted in the previous section, the interrupt handler must use a spinlock to implement acritical
section around any code that accesses the event notification list. Thisis needed to ensure that the event
notification list remains in a consistent state while the interrupt handler is running.

6.5.5 Event Handlers

Event handlers are callback functions that a device driver may use to be notified by the PMIC interrupt
handler that a particular event has just occurred. The device driver that is registering a callback function
may also specify asingle (void *) argument that will be returned later when the callback isinvoked. This
argument can be used to identify a specific instance of the callback function or be used to access any
context-specific data. No return value is expected from the event handler.

6.5.6 Register Access

The PMIC protocol driver exports APIs that allow other device driversto read and write to PMIC control
registers. The PMIC control registers are accessed using one of the two available SPI interfaces. Either the
Primary or Secondary SPI interface is used, depending upon the specific design for the hardware
connections between the platform and the PMIC. As previously described in Section 6.1.1, “PMIC
Register Access and Arbitration,” there are significant operational differences between register access by
the primary and secondary SPI businterfaces. However, the PMIC protocol driver isimplemented in such
away that all these differences are taken care within the PMIC protocol driver. Externally, the PMIC
protocol driver ssimply provides APIsto read and write to the PMIC control registers.

A separate |OCTL-based interface using the/ dev/ pm ¢ device to read and write to the PMIC control
registers has also been implemented as a separate test module. However, thisinterface isintended only for
debugging and testing, and is not intended for general use.

6.6 Driver Source Code Structure

The source filesfor the PMIC protocol driver are available in the drivers directory,

<lI'tib_dir> rpm BU LD |'i nux-2.6.26/drivers/nmxc/pmnic/core.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-11

PMIC Protocol Driver

Table 6-3 provides a brief description of each of the device driver source files.
Table 6-3. PMIC Protocol Driver Sources File List

File Description

pmi c_core_spi.c Main function of the module, register access function

pm c_event.c Event notification function.

pm c_external . c This files contains client APl implementation, define SPI
interface.

pm c-dev. ¢ This provides / dev interface to the user-space programs.

pmc.h Declaration of all the functions whose implementation differs
from PMIC chip to PMIC chip.

ncl1l3783. ¢ This file contains PMIC specific code (implementation of
functions in pmic.h)

Note that in addition to the driver-specific source files, there a'so existsaKconf i g filethat isused to
define the device driver’s build configuration (see Section 6.7, “Driver Configuration”) andaMakef i | e
that is used during the Linux kernel image build process.

6.7 Driver Configuration

The PMIC protocol driver is configured using the same mechanisms that are provided to configure the
Linux kernel image. That is, aKconf i g file within the source files directory is used to select whether or
not the device driver isto beincluded in the kernel build process and whether it isto be built asaloadable
kernel module or not. Any of the standard kernel configuration tools, such asmenuconf i g, can be used
to select and configure the PMIC protocol driver.

The following Linux kernel configuration options are provided for the PMIC protocol driver. In order to
enter the configuration screens, use the following command. You should be located in the Itib directory.

/<Itib dir>/.1tib -c:

» DeviceDrivers->MXC Support Drivers->MXC PMIC Support -> MXC PMIC device Interface
- Choose this to provide /dev interface to PMIC. This makesit possible to have user-space
programs use or control PMIC and for notification of PMIC events to user space.

» Device Drivers-> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers -
Used by all MC13783 clients - Used to enable the PMIC client drivers. Some of the MC13783
client driversthat can be selected are:

— MC13783 ADC support

— MC13783 Audio support

— MC13783 Rea Time Clock (RTC) support
— MC13783 Light and Backlight support

— MC13783 Battery APl support

— MC13783 Connectivity API support

— MC13783 Power API support

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-12 Freescale Semiconductor

4
PMIC Protocol Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 6-13

|
PMIC Protocol Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

6-14 Freescale Semiconductor

Chapter 7
PMIC Audio Driver

This chapter describesthe PMIC audio devicedriver for Linux. The PMIC audio driver provides|ow-level
control of the PMIC audio playback and recording devices.

The PMIC audio device driver usesthe PMIC protocol driver (Chapter 6, “PMIC Protocol Driver”) to
control the audio playback and recording components of the PMIC.

71 PMIC Audio Driver Features

Figure 7-1 shows the key audio-related components that are provided by the MC13783 Power and Audio
Management |C.

Arbitration Audio Input -
Logic Source A“g"ec\’/i':g’”t
Selection
Amplifiers
Interrupt Signals | . Interrth - 2 . e
Signal Control Microphone Bias
Voice
CODEC
Data Bus 1 Data Bus — Audio
Selection High-pass Filter Output [Audio Output
And Destination Device
Configuration Selection
Data Bus 2 g Stereo - = =
DAC
Mixer
Amplifiers
PLL/Clock Mixer
Clock Signals Selection Mono Adder
and
Control

Figure 7-1. PMIC Audio Hardware Components

Even though each specific power management |C may have some unique capabilities and features, they
all share the following common components and general capabilities:

» Stereo DAC—Provides both |eft and right channel audio output with sampling ratesfrom 8 kHz to
96 kHz (in the case of MC13783). The stereo DAC also has an optional internal mixer that can be
used to mix together two separate input stereo audio streams to produce a single stereo output
stream.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 7-1

PMIC Audio Driver

Voice or tel ephone codec—Provides both mono playback and recording capabilitieswith either an
8 kHz or 16 kHz sampling rate. The voice codec on certain power management |Cs may also
support stereo recording but this feature is platform-specific. The voice codec also includes an
optional high-pass filter that can be used to filter the input or output audio streams.

Data Bus Selection and Configuration section—Controls the connections between the audio data
buses and the voice codec and stereo DAC components. The data buses can be configured to
operate either in astandard M SB-aligned mode, network mode, or 1°C mode. Each databus can be
routed to either the voice codec or the stereo DA C and both databuses can be active simultaneously
along with the voice codec and stereo DAC.

Audio output control section—Determines which devices or audio output connectors will be used
aswell as the gain settings on the various output amplifiers. The output control section may also
include an additional mixer for mixing together the outputs from the voice codec and the stereo
DAC and amono adder for converting the stereo DAC output to asingle mono channel. However,
whether the availablity of these components and their exact capabilities are specific to each power
management |1C.

Audio input control section—Used to select an appropriate audio recording signal source as well
to configure the various input amplifiers and microphone bias circuits. The output of this section
isfed directly to the voice codec which then performs the anal og-to-digital conversion at either an
8 kHz or 16 kHz sampling rate.

PLL or clock control section—Internally generates the clock signals to drive the data buses and
thereby act as a bus master. Alternatively, the internal clock generator can be disabled and the
power management | C operated as a dlave device using an external clock source. Itis
recommended that the power management |C always be configured as the bus master to ensure that
the correct clock frequencies needed to support the various audio playback and recording sampling
rates are generated. Thisavoidshaving torely on external clock sourcesthat may haveto be shared
with other system devices and which may not be operating at exactly the correct frequency thereby
possibly causing distortion in both audio playback and recording.

Interrupt signal control section—Determines which hardware interrupts are enabled. The exact
number and type of interrupts that may be generated is specific to each power management IC but
they may include events, such as the insertion of a microphone or headset.

Arbitration control block—Determines the level of access to the audio-related hardware registers
that is provided to both the primary and secondary processors. Various combinations of read-write
or read-only access can be configured as required. However, the audio API does not include any
access to the arbitration control block because this component is expected to be properly
configured during device power-up and there is currently no operating scenario which would
require reconfiguring the arbitration settings while the device is running.

As shown in Figure 7-1, the audio components of the power management IC connect with the processor
core and other peripheral devices through the data buses, interrupt signals, and clock signals. However,
Figure 7-1 does not show the SPI businterfaces that are used to access the hardware control registers
(including the audio-rel ated registers) on the power management IC. The SPI bus interface and associated
APIs are described in more detail in Chapter 6, “PMIC Protocol Driver.”

Finally, the external audio devices, such as headsets, loudspeakers, and microphones are connected to the
voice codec or stereo DAC through the appropriate audio jacks and plugs. The exact type and placement

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

7-2

Freescale Semiconductor

PMIC Audio Driver

of these jacks and plugs is implementation and device design-dependent. Therefore, while the current
implementation does allow access to all of the available audio input and output ports provided by the
power management | C, the actual device schematics or design documentation must be used to determine
which ports are available and what type of connector is being used. The result of trying to use a port or
external audio device which is not available or disconnected is undefined.

The power management ICs all shareasimilar set of components and featuresin terms of audio recording
and playback functions. However, each power management | C also has its own unique set of features and
capabilities beyond what has been described thus far. The documentation for the specific IC should be
consulted to fully understand al of the audio-related components, features, and functions provided by a
specific power management 1C.

The audio API includes the ability to make use of both common and device-specific audio features as
required. For example, it is possible to perform mono audio recording using the voice codec on the
MC13783 power management | C. However, the API a so provides stereo recording through the M C13783
voice codec, asthat is supported through the MC13783 power management 1C.

7.2 Driver Requirements

The PMIC audio driver providesfull accessto all of the featuresthat are supported by the PM1C hardware.
The API must beidentical for all ICs. Attempting to use a feature or select a configuration option that is
not supported by the PMIC that is being used returns PMIC_NOT_SUPPORTED. Successful operations
aways return PMIC_SUCCESS, while any supported operations that failed due to an error condition
return PMIC_ERROR.

7.21 Audio Device Handle Management

The PMIC audio device driver must provide an APl to support the following operations:

» Obtain adevice handle for accessing the stereo DAC, voice codec, or external stereo inpuit.

* Release aprevioudy acquired device handle.
Higher-level device driversthat wish to access the PMIC audio components must first request and receive
avalid device handle. This ensures that there will never be a conflict over accessto and control of a

particular audio component. Separate device handles have been defined for the stereo DAC, the voice
codec, and the external stereo input.

7.2.2 Digital Audio Bus Selection and Configuration
After successfully acquiring the appropriate device handle, another set of APIsmust be provided to allow
for the selection and configuration of the digital audio bus:

» Select the digital audio data bus to be used.

» Configure the operating mode, timesl ot selection, and timing signal parameters for the selected
digital audio data bus.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 7-3

PMIC Audio Driver

Note that both the voice codec and the stereo DA C can be connected to either of the two available digital
audio buses but only to one busat atime. Furthermore, asingle digital audio bus cannot be simultaneously
connected to both the voice codec and the stereo DAC.

The digital audio bus must be able to operate in either master or slave modes at al of the permissible
sampling rates.

7.2.3 Stereo DAC and Voice Codec Control and Configuration
An API interface must be provided for directly controlling the voice codec and the stereo DAC audio
components. The required functionality includes the following:

» Enable/disable the audio device

» Enable/disable the available hardware mixing devices

» Perform adigital filter reset

724 Audio Input Section Control and Configuration
An APl must be provided to configure the PMIC’s audio input section to support using the voice codec to
record an audio stream. The required functionality includes the following:

» Select the desired audio input source and recording mode (stereo or mono)

» Enable/disable the audio input source

» Select the desired input amplifier gain level

» Enable/disable the appropriate microphone bias circuit

7.25 Audio Output Section Control and Configuration
An APl must be provided to configure the PMIC’s audio output section to support playback using either
the voice codec or the stereo DAC. The required functionality includes the following:

» Select thedesired audio sourcefor output (for example, voice codec, stereo DAC, or external stereo

input)

» Select the desired output amplifier gain and balance levels

» Enable/disable the available hardware mixing devices

» Enable/disable the phantom ground circuit

7.2.6 Resetting the PMIC Audio Components

An APl must be provided to allow partial or complete resetting of the PMIC audio components. Thiswill
provide a means to ensure that audio components are in a consistent state and to recover from any errors
that might occur. The required functionality includes the following:

* Reset only the voice codec or stereo DAC settings to their respective power-on settings
* Resetdl PMIC audio-related settingsin al registersto their respective power-on settings

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

7-4 Freescale Semiconductor

PMIC Audio Driver

7.2.7 Audio-Related Interrupts and Event Notification

An APl must be provided to allow other devicedrivers (for example, the OSS sound driver) to register for
and to receive notification of audio-related events. The PMIC audio driver will first receive and handle all
audio-related interrupts as required but it must also allow higher-level drivers and applications access to
the event notification and any associated data so that they too can respond as required. The required
functionality includes the following:

* Register an event callback function

» Deregister an event callback function

» Enable/disable headset detection

» Enable/disable microphone bias detection notification (MC13783 PMIC only)

7.2.8 Additional Audio-related Configuration Options

An APl must be provided to support some additional audio driver-related functions that do not necessarily
fit into any of the functional categoriesthat have already been given. The required functionality includes
the following:

» Ability to query for which PMIC chip and driver is currently being used

» Ability to control the power consumption of the audio components by completely or selectively
powering up and powering down specific audio circuits and devices

» Enable/disable the anti-pop circuitry

* Provideafully decoded PMIC audio control register dump (for debugging/testing purposes only)
driver

7.3 Software Operation

The PMIC audio driver makes calls to the PMIC protocol driver to reconfigure the PMIC’s control
registersto the desired setting. All higher-level audio configuration and operation requests are converted
to the appropriate PMIC control register settings and then the PMIC’s hardware state is updated through
the SPI businterface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 7-5

PMIC Audio Driver

7.4 Driver Architecture

Figure 7-2 shows the basic architecture of the PMIC audio driver and the interfaces to the higher-level
Linux OSS sound driver as well as the underlying PMIC hardware.

Linux ©5Z Sudia Driver

FLaS Audia Driver -

PG Audia Criver
Initalization D & nibali=at an
FKamsgl 2Fl Infadfacs
PRIC Audie Driver
|nitalizationiDamnitializatian

PIAIC Audia Driver API
nierace

PIIC Audio Driver

!

PMIC Pratocal Driver |

!

SPI Drivar ‘

L 3

SZPl Eus Intefacs :Illr:t”.?lr:.rr
I | '
| | ' | }

Audin
Qulput Headsal Datection
Saction

PHRIC Hardwars

AUdk
In gt
Saction

COCEC

Wiice Er
‘ Steraa DAC

Figure 7-2. PMIC Audio Driver Architecture

7.5 Driver Implementation Details

A structure defines the fields within each of the PMIC’s audio-related control registers. Each element of
the structure definesthe size and offset of the register field. This enablesthe use of simple macrosto access
each register field.

Note that the PMIC’s hardware registers are not exported outside the device driver. There is no need to
provide external low-level access to the PMIC's registers. This also helps to ensure the maintenance of
complete control over the PMIC hardware state.

Another structure keeps track of the current PMIC hardware state. This data structure always mirrors
exactly how the hardware has been configured, and avoids the possibility of conflicting or invalid
configurations. It is also possible to easily return the current state of the PMIC audio hardware without
using extra SPI bus transactions to directly query the hardware.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

7-6 Freescale Semiconductor

PMIC Audio Driver

7.5.1 Driver Initialization

Nothing special needs to be done during the initialization phase for this device driver. The higher-level
OSS sound driver makes calls to this driver only through the exported API and no other access method
needs to be supported.

7.5.2 Driver Deinitialization

When deinitializing thisdriver, make surethat any still-opened device handles are properly closed and that
the PMIC hardware isrestored to the default power on state. Thiswill help to ensurethat the PMIC isnever
left in an inconsistent state and that it will never signal an interrupt event when there is nothing registered
to properly handleit.

7.6 Driver Source Code Structure

Table 7-1 lists the MC13783-specific source files that are available in the device driver directory,
<Itib_dir>/rpm BU LD |i nux-2.6.26/drivers/mc/pm c/ nmcl13783/.

Table 7-1. MC13783 Audio Driver Source Files

File Description
pm c_audio. c Implementation of the MC 13783 audio PMIC client driver.
pm c_audi 0. h Header file for the MC13783 audio client driver.

The header file for PMIC audio driversis
<lItib_dir>rpm BU LD |i nux-2.6.26/include/asm arnf arch-nxc/ pm c_audi o. h.

7.7 Driver Configuration
This module can be selected using the Itib menu options.

TogettothePMIC ADC driver, usethecommand ./ 1 ti b -c whenlocatedinthe<itib di r>. Onthescreen
displayed, select Configurethekernel and exit. When the next screen appears select the following option
to enable the PMIC ADC driver.

* Device Drivers> MXC Support Drivers > MXC PMIC Support > MC13783 Audio support
Thisis the configuration option to choose the MC13783-specific audio driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 7-7

|
PMIC Audio Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

7-8 Freescale Semiconductor

Chapter 8
PMIC Digitizer Driver

This chapter describes the PMIC digitizer driver for Linux that provides low-level accessto the PMIC's
analog-to-digital converters (ADC).

The PMIC digitizer driver controls the analog-to-digital converter (ADC) components of the PMIC. This
capability includes taking measurements of the X-Y coordinates and contact pressure from an attached
touchpanel. Thisdevice driver uses the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to
access the PMIC hardware control registers that are associated with the ADC.

8.1 PMIC Digitizer Driver Features and Capabilities

The PMIC digitizer driver is used to provide access to and control the anal og-to-digital converter (ADC)
that is available with the PMIC. Multiple input channels are available for the ADC, and some of these
channels have dedicated functions for various system operations. For example:

» Sampling the voltages on the touchpanel interfaces to obtain the (X,Y) position and pressure
measurements.

» Battery voltage level monitoring.

» Measurement of the voltage on the USB ID lineto differentiate between mini-A and mini-B plugs.

Note that some of these functions (for example, the battery monitoring and USB ID functions) are handled
separately by other PMIC device drivers.

The PMIC ADC has a 10-bit resolution and supports either a single channel conversion or automatic
conversion of all input channelsin succession. The conversion can aso be triggered by issuing acommand
or by detecting the rising edge on a special signal line.

A hardware interrupt can be generated following the completion of an ADC conversion. A hardware
interrupt can also be generated if the ADC conversion results are outside of previously defined high and
low level thresholds.

Some PMI C chipsalso provide apulse generator that is synchronized with the ADC conversion. The pulse
generator can enable or drive external circuitsin support of the ADC conversion process.

The PMIC ADC components are subject to arbitration rules as documented in the documentation for each
PMIC. These arbitration rules determine how requests from both primary and secondary SPI interfacesare
handled.

SPI bus arbitration configuration and control is not part of thisdriver, because the platform has configured
arbitration settings as part of the normal system boot procedure. There is no need to dynamically
reconfigure the arbitration settings after the system has been booted.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 8-1

PMIC Digitizer Driver

8.2 Driver Requirements

The PMIC digitizer driver isaclient of the PMIC protocol driver. The PMIC protocol driver provides
hardware control register reads and writes through the SPI businterface, and also register/deregister event
notification callback functions. The PMIC protocol driver requires access to ADC-specific event
notifications.
The following are the requirements for supporting a touchpanel device:

* Must be ableto select either asingle ADC input channel or an entire group of input channelsto be

converted.
* Must be able to specify high and low level thresholds for each ADC conversion.
* Must be ableto start an ADC conversion by issuing the appropriate start conversion command.

* Must be able to start an ADC conversion immediately following the rising edge of the ADTRIG
input line or after a predefined delay following the rising edge.

* Must be able to enable/disable hardware interrupts for all ADC-related event notifications.

* Provideaninterrupt handler routine that receives and properly handlesall ADC end-of-conversion
or exceeded high/low level threshold event notifications.

» Other device drivers must be able to register/deregister additional callback functions to provide
custom handling of all ADC-related event notifications.

» Provide aread-only device interface for passing touchpanel (X,Y) coordinates and pressure
measurements to applications.

* Provide the ability to read out one or more ADC conversion results.
» Implement the appropriate input scaling equations so that the ADC results are correct.

* Must be able to specify the delay between successive ADC conversion operations, if supported by
the PMIC. For PMIC chips that do not support thisfeature, the device driver should return a
NOT_SUPPORTED gtatus.

* Provide support for a pulse generator that is synchronized with the ADC conversion. For PMIC
chipsthat do not support this feature, return aNOT_SUPPORTED status.

* Provide acomplete IOCTL interface to initiate an ADC conversion operation and to return the
conversion results.

» Provide support for a polling method to detect when the ADC conversion has been completed.

Note that this digitizer driver isnot responsible for any additional ADC-related activities, such as battery
level or USB ID handling. Such functions are handled by other PMIC-related device drivers.

Also, as previoudly indicated, this device driver is not responsible for SPI bus arbitration configuration.
The appropriate arbitration settings that are required for this device driver to work properly are expected
to have been set during the system boot process.

8.3 Driver Software Operation

Most of the required operations for this device driver smply involve writing the correct configuration
settingsto the appropriate PMIC control registers. This can be done using the APIsthat are provided with
the PMIC protocol driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

8-2 Freescale Semiconductor

PMIC Digitizer Driver

Once an ADC conversion has been started, the calling thread should be suspended until the conversion has
been completed. A busy loop should be avoided asthiswill negatively impact processor and overall system

performance. Instead, the use of await queue offers a much better solution. Therefore, any potentially

time-consuming operations resultsin the calling thread being placed into await queue until the operation

is completed.

8.4 Driver Architecture

Figure 8-1 shows the basic architecture for the PMIC digitizer driver. The PMIC protocol driver and the

platform’s SPI driver provides the necessary interface to read and write the PMIC's hardware control

registers.
Linux fdew/mx13T83_ts
Device
FPMIC Digitizer Driver 1

PMIC Digitizer Driver
IOCTL Interface

PMIC Digitizer Driver

!

FMIC Protocol Driver

il

PMIC Digitizer Driver
Initialization/Deinitialization
Kernal AP| Interface

PMIC Digitizer Driver
Initialization/Deinitialization

$

SPl Driver

£ 3

w

PMIC Harcware
SPl Bus Interface

|

ADC Control

Interrupt Controller

Figure 8-1. PMIC Digitizer Driver Architecture

The PMIC'sinterrupt controller generates interrupts for the following events:

 ADC end-of-conversion
» High/low level threshold exceeded

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

8-3

PMIC Digitizer Driver

8.5 Driver Implementation Details

The PMIC ADC conversion can take asignificant amount of time. The delay between astart of conversion
request and a conversion completed event may even be open ended, if the conversion is not started until
the appropriate external trigger signal isreceived. Therefore, all ADC conversion requests must be placed
inawait queue until the conversion is complete. Once the ADC conversion has completed, the calling
thread can be removed from the wait queue and reawakened.

Avoid the use of any polling loops or other thread delay tactics that would negatively impact processor
performance. Also, avoid doing anything that prevents hardware interrupts from being handled, because
the ADC end-of-conversion event is typically signaled by a hardware interrupt.

8.5.1 Driver Initialization

NOTE
This section does not apply to the i.MX31 3-Stack Board.

The PMIC digitizer driver must also create the appropriate / dev character device entry to allow
applications to obtain the touchpanel (X,Y) coordinates and pressure measurements. The touchpanel
device is only required to support aread operation.

The MC13783— / dev/ nc13783_t s device is created.

A device-independent softlink, / dev/ t s, which references the PMIC-specific touchpanel device nameis
also created, but thisis part of a Linux boot script and is not handled by this device driver.

8.5.2 Driver Removal

The PMIC digitizer driver must removethe/ dev device entry that was created when the driver was |oaded.

8.6 Driver Source Code Structure

Table 8-1 lists the source files for the MC13783-specific version of this driver. These are available in the
directory, <l ti b_di r>/rpm BUI LD/ | i nux- 2. 6. 26/ dri vers/ mxc/ pm ¢/ nt13783.

Table 8-1. MC13783 Digitizer Driver Source Files

File Description
pm c_adc. c Implementation of the MC13783 ADC client driver.
pm c_adc_defs. h Hardware definitions and internal functions for the ADC client driver.

The header file for PMIC adc driversis
<lI'tib_dir>/rpm BU LD | i nux-2.6.26/include/ asm arnm arch-nxc/ pm c_adc. h.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

8-4 Freescale Semiconductor

PMIC Digitizer Driver

8.7 Linux Menu Configuration Options

The following Linux kernel configuration is provided for this module. In order to get to the PMIC ADC
configuration usethecommand. /1 ti b - c whenlocatedinthe<i ti b di r>. Inthe screen, select Configure
Kernel, exit, and a new screen appears.

» Device Drivers-> MXC Support Drivers -> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 ADC support

Chooses the MC13783 (MC13783) — Speific digitizer driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 8-5

A ——
PMIC Digitizer Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

8-6 Freescale Semiconductor

Chapter 9
PMIC Power Management Driver

The PMIC power management device driver for Linux provides enabling and disabling of various
low-power modes. The MC13783 regulator driver provides the low-level control of the power supply
regulators and selection of voltage levels.

This driver has been deprecated. It has been replaced by the MC13783 regulator driver. It is still used
internally by some other drivers but once they have been changed to use the regulator driver, thisdriver
will be removed.

This device driver makes use of the PMIC protocol driver (see Chapter 7, “PMIC Protocol Driver”) to
access the PMIC hardware control registers.

9.1 PMIC Features

Using the PMIC chip in aproduct potentially provides a complete power control and power management
strategy. The PMIC chips have built-in switching power supplies and linear voltage regulators that can be
configured to power the rest of the platform. These power supplies may also be selectively
enabled/disabled, and the voltage levels may be dynamically adjusted to control power consumption.

In addition, there is an internal state machine that can provide automatic power-cut functions and
transparent transitions between various |low-power operating modes. Full shutdown and automatic restart
based on possible external eventsis also supported.

The IC documentation should be consulted for full details about what power supplies are provided, how
they can be configured, and how the internal power control logic isimplemented.

9.2 Driver Requirements
The MC13783 PMIC regulator driver isaclient of the PMIC protocol driver and regulator core driver. It
provides services for regulator control of the PMIC component.

» Switch ON/OFF all voltage regulators.

» Setthevaluefor all voltage regulators.

» Get the current value for all voltage regulators.

9.3 Driver Software Operation

The PMIC power management driver and the MC13783 PMIC regulator client driver perform operations
by reconfiguring the PMIC hardware control registers. Thisis done by calling protocol driver APIswith
the required register settings.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 9-1

PMIC Power Management Driver

Some of the PMIC power management operations depend on the system design and configuration. For
example, if the system is powered by a power source other than the PMIC, then turning off or adjusting
the PMIC’s voltage regulators has no effect. Conversely, if the system is powered by the PMIC, then any
changes that use the power management driver and the regulator client driver can affect the operation or
stability of the entire system.

9.4 Driver Architecture

Figure 9-1 shows the basic architecture of the MC13783 regulator driver. Figure 9-2 shows the basic
architecture of the PMIC power management driver, aswell asits higher-level interfaces and the
connections to the underlying PMIC hardware.

Figure 9-1. MC13783 Regulator Driver Architecture

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

9-2 Freescale Semiconductor

PMIC Power Management Driver

Linux Power Linux /dev/atlas_power
Management or /dev/pmic_power
Device Driver Device Entries
A A
PMIC Power Management Driver 2 v
PMIC Power PMIC Power PMIC Power Mgmt. Driver
Management Driver | Management Driver Initialization/Deinitialization
API Interface IOCTL Interface Kernel APl Interface

PMIC Power Mgmt. Driver

EMICIRowerManagsmentriver Initialization/Deinitialization

{

PMIC Protocol Driver

{

Driver

a

SP

;A

PMIC Hardware v

SPI Bus Interface Interrupt Controller

a

Regulator Control

Figure 9-2. PMIC Power Management Driver Architecture

9.5 Driver Implementation Details

The accessto the PMIC power management driver and the MC13783 regulator are provided through a set
of exported APIs. The exported APIs are meant for use by other kernel-mode device drivers. The IOCTL
interface is not provided for general use. An example of how it should work can be found in the unit test
module. All IOCTL calls are trandated into corresponding internal API calls to perform the requested
operation.

All of the power management functions are handled by setting the appropriate PMIC hardware register
values. Thisis done by calling the PMIC protocol driver APIsto access the PMIC's hardware registers.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 9-3

PMIC Power Management Driver

9.6 Driver Source Code Structure

The MC13783-specific source files for the power management driver and MC13783 regulator driver are
available in the device driver directories:

<I'tib_dir>/rpnm BUI LD/ |inux-2.6.26/drivers/mxc/pnic/mc13783 and

<lI'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/regul at or/ nc13783.

Table 9-1. MC13783 Power Management Driver Source Files

File Description

reg-mc13783.c Implementation of the MC 13783 regulator
client driver

pmic_power.c Implementation of the MC13783 power
management client
driver

pmic_power_defs.h |Internal header for MC13783 power
management client driver.

The header file for PMIC Power driversis
<lI'tib_dir>/ rpm BU LD |i nux-2.6.26/include/asm arm arch-mxc/ pni c_power. h.

9.7 Driver Configuration
This module is selected using the Itib menu configuration options.

In order to get to the PMI1Cpower configuration, use thecommand ./1tib -c whenlocatedinthe<itib
di r>. On the screen that is displayed select Configurethe K er nel then exit. When the next screen appears
select the following options to use the MC13783 regulator and power management drivers.

» Device Drivers > Voltage and Current regulator >MC13783 Regulator Support
* Device Drivers> MXC Support Drivers >SMXC PMIC Support > MC13783 Power API support

Then exit and Itib will build the kerndl with these drivers enabled.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

9-4 Freescale Semiconductor

Chapter 10
PMIC Connectivity Driver

The MC13783 PMIC connectivity driver for Linux provides support for external connectivity of the
following types:

« RS232
« USBOTG
« CEA936

The MC13783 PMIC Connectivity Driver is based on the MC13783 DTS 3.0 specification and the
Freescale MC13783 board.

This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to
access the PMIC hardware control registers.

10.1 PMIC Features

The PMIC includestransceiversto support both RS-232 and USB On-the-Go (OTG) external connectivity.
The MC13783 PMIC aso includes support for the CEA936 specification. Due to the limited number of
available pin connections, only one of these external connectivity modes can be used at any onetime. In
the case of the USB OTG transceiver, the specific connectionsthat are made betweenthe PMIC transcelver
and the host platform may also affect which USB OTG operating modes are supported.

The PMIC documentation should aso be consulted for details about the configuration and use of the
RS-232 and USB OTG transceivers.

10.2 Driver Requirements

The PMIC connectivity driver isaclient of the PMIC protocol driver and uses it to provide access to the
PMIC'’s hardware control registers. The PMIC connectivity driver, in turn, must provide a suitable API
interface for the Linux UART and USB OTG drivers to support both RS-232 and USB OTG connectivity.
The required functionality includes the following:

* Acquisition and release of a connectivity device handle—The current owner of the device handle
is granted exclusive access to the PMIC's transceivers as long as the handle is being held. Any
attemptsto access or use the connectivity hardware without first successfully acquiring the device
handle result in the return of PMIC_ERROR.

» Selection of one of the supported operating modes—For example, RS-232, USB OTG, or
CEA-936. Attempting to use an unsupported mode resultsin aNOT_SUPPORTED return.

NOTE
The list of supported modes may differ from PMIC to PMIC.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 10-1

PMIC Connectivity Driver

» Registration and removal of an event handler callback function—Any attempts to register a
callback for an unsupported event resultsin aNOT_SUPPORTED return.

» Invocation of al registered callback functions—When the matching event has been signaled by the
PMIC protocol driver.

» Configuration of the PMIC USB transceiver—ASs required to communicate with the platform’s
USB controller. Thisincludes, for example, configuring the operating speed and the transceiver’s
power supply.

» Configuration of the PMIC USB transceiver—ASs required to support the additional USB OTG
requirements. Thisincludes, for example, setting the Data Line Pulse duration and performing a
Host Negotiation Protocol sequence.

» Configuration of the PMIC RS-232 transceiver—As required to support an RS-232 connection.

» Configure the PMIC hardware to support the CEA-936 operating mode— Attempting to use the
CEA-936 mode when it is not supported by the underlying PMIC hardware resultsin a
NOT_SUPPORTED return.

NOTE
Currently, thismode is only supported by the MC13783 PMIC.

» Ability to explicitly reset the PMIC’s connectivity-related hardware componentsto their default or
power-on state—Thisfunction is useful to reinitialize the connectivity hardware to a known state.

* Automatic RS-232 to USB OTG mode switch—As supported by the PMIC, whenever a USB
device is attached while idle in RS-232 mode.

The specific hardware register settings that are required to configure the PMIC connectivity components
are located in the documentation for each PMIC chip.

10.3 Driver Software Operation

Most of the operations that must be performed by the PMIC connectivity driver involve setting the
appropriate values in the PMIC hardware control registers using the APIs that are provided by the PMIC
protocol driver. Specific settings for each PMIC can be located within the documentation for each PMIC
chip.

Event handler callback functions, if any, are registered using PMIC protocol driver APIs. The PMIC
protocol driver interrupt handler automatically invokes all registered callback functions whenever the
associated event is signaled by the PMIC hardware.

NOTE
Thisdevicedriver isnot responsiblefor handling the actual RS-232 or USB
OTG data transfer operations.

Higher-level UART or USB OTG drivers handle the transfers, as well as the configuration of the UART
and USB OTG controllers. The PMIC chipsonly providethetransceiver components, an event notification
capability, and the connections to any external connectors. The PMIC connectivity driver’sroleis
restricted to transceiver configuration and event notification.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

10-2 Freescale Semiconductor

PMIC Connectivity Driver

10.4 Driver Architecture

Figure 10-1 showsthe basic architecture of the PMIC connectivity driver, aswell asitsrelationship to the
Linux UART and USB OTG drivers and the PMIC hardware components. The UART driver configures
the RS-232 transceiver, whilethe USB OTG driver handlesthe USB OTG transceiver. Only one of these
transceivers can be active at any one time.

Linux UART Driver Linux USE OTG Driver

F 1 F

FMIC Connectivity Driver h 4

PMIC Connectivity
Driver APl Interface

PMIC Connectivity Driver
Initialization/Deinitialization
Kernel ARPI Interface
PMIC Connectivity PMIC Connectivity Driver

Diriver Initialization/Deinitialization

!

PMIC Protocel Driver .
SPI Driver
'y
PMIC Hardware b 4
5P| Bus Interface Interrupt Controller
RS-232 USE OTG Use 08V, 2.0V, and
Transceiver Transceiver 4 .4V Detection

Figure 10-1. PMIC Connectivity Driver Architecture

The only events that are typically reported to the PMIC connectivity driver involve the detection of
USB-related state changes. In particular, the voltage level that is measured on the USB signal linesisused
to indicate the insertion or removal of a device, the requested operating speed, and whether it operates as
ahost or a periphera (for USB OTG devices). Details about the signaling and correct handling of the
various USB-related events can be located in the USB specification and the USB OTG supplement.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 10-3

PMIC Connectivity Driver

10.5 Driver Implementation Details

The PMIC connectivity device driver uses a single data structure to track the current state of the device
handleand all available PMIC configuration options. All APIsthat modify the PMIC hardware also update
the data structure, so the device driver state always matches that of the hardware.

A mutex is used to ensure that the state of the device driver and the PMIC hardware are always kept in a
consistent state. A mutex is used whenever the system is not operating in an atomic or interrupt context
within this driver. In the limited places where the system is operating in an atomic or interrupt context, a
spinlock isalso acquired. The spinlock isreleased at the earliest possible time to minimize interrupt
handling latencies.

A task isused to perform most of the event handling operations, so asto minimize the time actually spent
in the low-level interrupt handling routine.

10.5.1 Driver Initialization

The device driver initialization sequence continues as normal with no special provision for the PMIC
connectivity devicedriver.
NOTE

No device nameis created within the/dev directory, because this driver does
not support any IOCTL interfaces.

10.5.2 Driver Removal

If the device handleisstill being held when thisdriver isremoved, then the handle must beforcibly closed
and the PMIC connectivity components must be restored to default power-on state, before the
deinitialization sequence is completed.

10.6 Driver Source Code Structure

The MC13783-specific sourcefile, pmi c_convi ty. c, for thisdevicedriver, isavailablein the device driver
directory, <l ti b_di r>/rpm BUI LD/ | i nux- 2. 6. 26/ dri ver s/ mxc/ pni ¢/ mc13783. The source file describesthe
function for MC13783 USB/RS232 connectivity client. The header file for PMIC connectivity driversis
<l tib_dir>/rpm BU LD Ii nux-2.6.26/include/asm arm arch-nmxc/pm c_convity. h.

10.7 Driver Configuration
This module can be selected using the Itib menu options.

To get to the PMIC Connectivity driver, usethecommand . /1tib -c whenlocatedinthe<itib dir>. On
the screen displayed, select Configurethe kernel and exit. When the next screen appears, select the
following options to enable the PMIC Connectivity driver.

» Device Drivers->MXC Support Drivers-> MXC PMIC Support -> MC13783 Client Drivers ->
MC13783 Connectivity APl Support

Chooses the M C13783—specific connectivity driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

10-4 Freescale Semiconductor

4
PMIC Connectivity Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 10-5

A ——
PMIC Connectivity Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

10-6 Freescale Semiconductor

Chapter 11
PMIC Battery Driver

The PMIC battery device driver for Linux provides support for controlling the PMIC battery interface
circuits. This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol
Driver”) to access the PMIC hardware control registers.

11.1 PMIC Features

PMIC chipsinclude circuits to automatically detect the presence of a charger and to recharge the system
battery. Additional circuits are provided to detect and prevent overcharging. Additional capabilities
include:

» Support for USB chargers
» Support for a coin cell charger

Battery voltage levels can also be monitored using the analog-to-digital converter and low voltage or
battery end-of-life conditions can be signaled through the use of hardware interrupts.

11.2 Driver Requirements

Thismoduleisaclient of the PMIC protocol driver and usesit to provide accessto the PMIC’'s hardware
control registers. The PMIC battery driver, in turn, must provide an IOCTL interface that applications can
use to control and monitor the state of the battery and charger circuits. The required functionality includes
the following:

» AP for battery charger control including selecting the appropriate charger path

» Configure the charging mode (for example, the charge current level)

» Configure the battery voltage and current level monitoring and end-of-life functions.

The specific hardware register settings that are required to configure the battery control circuits can be
located in the documentation for each PMIC chip.

11.3 Driver Software Operation

The PMIC battery driver provides an IOCTL interface through the / dev/ pmi c_bat t ery device.
Applications use this driver to access the PMIC battery control registers and circuits. The battery driver
actually uses the PMIC protocol driver’'s APIs to perform the necessary hardware control register
read/write operations.

The PMIC protocol driver’'s APIs are also used to register/deregister event handler callback functions.
Event handlers can be registered for any of the supported battery-related event notifications, for example,
abattery end-of-life condition, detection of a charger being attached, or a charger over voltage condition.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 11-1

PMIC Battery Driver

11.4 Driver Architecture

Figure 11-1 showsthe basic architecture of the PM I C battery devicedriver along with the associated PMIC
hardware components.

Linux /dev/atlas_battery
or /dev/pmic_battery
Device

1

PMIC Battery Driver 1

PMIC Battery Driver
IOCTL Interface

PMIC Battery Driver
Initialization/Deinitialization
Kernel API Interface

PMIC Battery Driver
Initialization/Deinitialization

PMIC Battery Driver

!

PMIC Protocol Driver [«

!

SPI Driver

A

PMIC Hardware h 4

SPI Bus Interface Interrupt Controller

| : :

Coincell Battery Battery Overvoltage,
Charger Charger End-of-Life, and Charger
Control Control Insert Detection

Figure 11-1. PMIC Battery Device Driver Architecture

11.5 Driver Implementation Details

The implementation of the PMIC battery driver isrelatively straightforward and involves providing the
appropriate IOCTL interface to support the / dev/ pni c_bat t ery device. Internally, each IOCTL call is
translated to the appropriate PMIC hardware control register operations, which are then performed with
the aid of the PMIC protocol and SPI drivers.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

11-2 Freescale Semiconductor

PMIC Battery Driver

Event handler callback functions are registered directly with the PMIC protocol driver. The registered
event handler isinvoked when the corresponding event is detected and the hardware interrupt is received
by the PMIC protocol driver.

11.5.1 Driver Initialization

During initialization, register a/ dev/ pni c_bat t ery device to allow application-level access to the device
driver using the IOCTL interface.

11.5.2 Driver Deinitialization

The previously registered / dev/ pni c_bat t ery device entry must be removed when the device driver is
unloaded.

11.6 Driver Source Code Structure

Table 11-1 lists the source files for this driver that are available in the directory,
/<l tib_dir>/ rpm BU LD/ | inux-2.6.26/drivers/nxc/pni ¢/ nc13783.

Table 11-1. MC13783 Battery Driver Source Files

File Description

pm c_battery.c Implementation of the PMIC battery client driver.

pm c_battery_defs. h Define hardware registers for the PMIC battery driver.

The header file for PMIC battery driversis
/<Itib_dir>/rpm BU LD/Ilinux-2.6.26/include/ asm arni arch-nxc/ pmi c_battery.h.

11.7 Driver Configuration
This module can be selected using the Itib menu options.

To get to the PMIC Battery device driver, usethecommand . /1 tib -c whenlocatedinthe<itib dir>.In
the screen displayed, select Configure Kernel and exit. When the next screen appears, select the following
options to enable the PMIC Battery device driver.

From the menu option, Device Drivers> MXC Support DriverssSM XC PMIC Support in MC13783
Client Drivers select MC13783 Battery API support, and choose the M C13783-specific version of the
battery device driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 11-3

A ——
PMIC Battery Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

11-4 Freescale Semiconductor

Chapter 12
PMIC Light Driver

The MC13783 PMIC Light Driver for Linux provides access to the PMIC’s backlight and LED control
circuits. This device driver makes use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol
Driver”) to access the PMIC hardware control registers.

12.1 PMIC Features

The PMIC chip includes circuits to control the following external components:
* Backlight (for LCD or keypads)
» Color LEDs
The current level and duty cycle can be controlled as required to satisfy awide variety of operating

requirements. The color LEDs can also be configured to flash in anumber of different patterns. Complete
information about the backlight and LED controls are located in the documentation for each PMIC.

12.2 Driver Requirements

The PMICllight driver providesaccessto all of the PMIC backlight and LED control circuits. Thisincludes
configuring the current levels, duty cycle, and flashing modes. Note that the actual external devices that
are attached to the PMIC differ from platform to platform. Therefore, while the light driver must provide
accessto all of the PMIC supported features, it cannot make any assumptions about the actual nature of
the external devices (for example, the color of the LEDsthat are attached) and whether they actually exist
or not.

Note that the PMIC light driver interface may include functions that are not supported by all PMIC chips.
Attempting to use a configuration that is not supported by the current PMIC hardware returns
NOT_SUPPORTED.

12.2.1 Backlight Control Functions
The PMIC backlight circuits are intended to support the control of the backlight level for an LCD display
and/or the keypad. The device driver supports the following operations:

» Enable/disable the backlight

» Set/get the backlight current level

» Set/get the backlight duty cycle

» Set/get the backlight cycle time

» Configure the backlight ramp up and ramp down settings

» Configure the backlight strobe settings

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 12-1

PMIC Light Driver

12.2.2 LED Control Functions

The LED control circuits supplement the backlight circuits by providing the ability to control additional
light sources for signaling purposes and for other specia effects. The LED channels are labeled as being
R, G and B because one typical application would be to attach red, green, and blue LEDs, respectively, to
each channel. However, thisis not a required configuration, and other types of LEDs may be used with
these circuits. The device driver supports the following operations:

» Enable/disable each individual colored LED circuit

» Select either colored LED or funlight operating modes
» Set/get the colored LED current level

» Set/get the colored LED blink pattern

» Set/get the funlight current level

» Set/get the funlight duty cycle

o Set/get the funlight cycletime

» Configure the funlight ramp settings

» Configure the funlight strobe settings

» Enable/disable audio modulation

12.3 Driver Software Operation

The operation of the PMIC light driver isfairly ssimple, and only involves configuring the PMIC hardware
control registers as required. Access to the PMIC hardware control registers uses the PMIC protocol
driver, which in turn, uses the SPI driver.

As no standard Linux device driver existsto control backlight and external LEDs, applications must use
the documented |OCTL interface to access the PMIC light driver. Note, however, that not all of the
available backlight and LED control functions are supported by a specific PMIC chip. The device driver
returns NOT_SUPPORTED if an attempt is made to use a configuration or function that is not supported
by the underlying PMIC hardware.

The PMIC-specific control register settings that are required to configure the various backlight and LED
control circuits are located in the documentation for each PMIC.

NOTE
No interrupt or notification events are associated with the PMIC light driver.

12.4 Driver Architecture

Figure 12-1 shows the basic PMIC light driver architecture along with the PMIC hardware components
that are being used.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

12-2 Freescale Semiconductor

PMIC Light Driver

Linux /fdevime1 3783 _light
Device

. h
PMIC Light Driver PMIC Light Driver

ITE::CTI['?.:LS::? Initialization/Deinitialization
Kernel APl Interface

0 PMIC Light Driver
PMIC Light Driver Initlalization/Delnitialization

}

PMIC Protocal Driver

!

SPI Driver

F 3

PMIC Hardware ¥
SPl Bus Interface

! }

Backlight Control LED Control

Figure 12-1. PMIC Light Driver Architecture

12.5 Driver Implementation Details

Configuring the PMIC light driver includes configuring parameters, such as duty cycle, current level,
ramp-up/ramp-down profiles, and so on, for the various backlight and LED circuits. The appropriate
control register settings are located in the documentation for the PMIC chip.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 12-3

PMIC Light Driver

12.5.1 Driver Initialization

To initialize this driver, openthe/ dev/ pni c_l i ght deviceto allow application-level accessto the device
driver using the IOCTL interface.

12.5.2 Driver Deinitialization

When the device driver is unloaded, removethe/ dev/ pni c_I i ght device.

12.6 Driver Source Code Structure

Table 12-1 lists the source files for the MC13783-specific version of thisdriver that are availablein the
device driver directory, /<Itib_dir>/rpm BU LD/ | i nux-2. 6. 26/ dri vers/ mc/ pmi c/ nc13783.

Table 12-1. MC13783 Light Driver Source Files

File Description

pmic_light.c Implementation of the MC 13783 light client driver.

pm c_light_defs.h Definitions for the MC13783 light client driver.

The header file for PMIC Light driversis as follows:
/<Itib_dir>/rpm BU LD/|linux-2.6.26/include/asm arni arch-nxc/ pmc_|ight.h.

12.7 Driver Configuration
This module can be selected using the Itib menu options.

Togettothe PMIC Light driver usethecommand./1tib -c whenlocatedinthe<i ti b dir>. Onthescreen
displayed, select Configure the kernel and exit. When the next screen appears select the following
options to enable the PMIC Light driver.

» Device Drivers> MXC Support Drivers> MXC PMIC Support > MC13783 Client Drivers >
MC13783 Light and Backlight support

Choose the MC13783—-specific version of the light driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

12-4 Freescale Semiconductor

Chapter 13
PMIC Real Time Clock (RTC)

The PMIC RTC for Linux provides access to the PMIC’'s RTC control circuits. This device driver makes
use of the PMIC protocol driver (see Chapter 6, “PMIC Protocol Driver”) to access the PMIC hardware
control registers.

13.1 PMIC Features

The PMIC chipis used for the following functions:
* Real-time clock control
* Wait alarm event

13.2 Driver Requirements

The PMIC RTC driver isaclient of the PMIC protocol driver. It provides services for real time clock
control of PMI1C component.

13.3 Driver Software Operation

The PMIC RTC driver performs operations by reconfiguring the PMIC hardware control registers. Thisis
done by calling protocol driver APIs with the required register settings.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 13-1

A
PMIC Real Time Clock (RTC)

13.4 Driver Architecture

Figure 24-1 shows the basic PMIC RTC driver architecture aong with the PMIC hardware components
that are being used.

Linux RTC Linux /dev/pmic_RTC
Device Driver Device Entries

A A

=

PMIC RTC

PMIC
Hardware

Figure 13-1. PMIC RTC Driver Architecture

13.5 Driver Implementation Details

The device driver supports the following operations:
» Settimeof day and day value
» Get time of day and day value
* Settimeof day darm and day alarm value
» Get time of day alarm and day alarm value
* Report alarm event to the client

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

13-2 Freescale Semiconductor

PMIC Real Time Clock (RTC)

13.5.1 Driver Initialization

To initialize this driver, open the /dev/ pni c_rt ¢ device to alow application-level access to the device
driver using the IOCTL interface.

13.5.2 Driver Deinitialization

When the device driver is unloaded, removethe/ dev/ pnic_rtc device.

13.6 Driver Source Code Structure

Table 13-1 lists the source files for the MC13783-specific version of thisdriver that are availablein the
device driver directory, /<l tib_di r>/rpm BU LD/ | i nux- 2. 6. 26/ dri ver s/ mxc/ pmi ¢/ mc13783.

Table 13-1. MC13783 RTC Driver Source Files

File Description
pmc_rtc.c Implementation of the MC13783 RTC client driver.
pmc_rtc_defs.h Definitions for the MC13783 RTC client driver.

The header file for PMIC RTC driversis asfollows:
l'i nux/include/<ltib_dir>/rpm BU LD/|inux-2.6.26/include/asmarniarch-nxc/pnic_rtc.h.

13.7 Driver Configuration
This module can be selected using the Itib menu options.

To get tothe PMIC RTC driver usethecommand./1tib -c whenlocatedinthe<itib dir>. Onthescreen
displayed, select Configure the kernel and exit. When the next screen appears select the following
options to enable the PMIC RTC driver.

» Device Drivers> MXC Support Drivers> MXC PMIC Support > MC13783 Client Drivers >
MC13783 Real Time Clock (RTC) support

Thisis the configuration option to choose the MC13783-specific version of the RTC driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 13-3

A
PMIC Real Time Clock (RTC)

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

13-4 Freescale Semiconductor

Chapter 14
1.MX31 Low-level Power Management Driver

The low-level Power Management (PM) driver implements dynamic frequency scaling (DFS) techniques
and low-power modes. Dynamic voltage and frequency scaling (DVFS) is described in Chapter 15,
“Dynamic Voltage Frequency Scaling (DVFS) Driver.”

14.1 Overview

DFSis used to change the frequency when the Dynamic Power Management (DPM) level decidesto
change the operating point to meet the power requirements. Thisis done when the systemisin RUN mode
to conserve power. Low-power modes, such as WAIT, DOZE, and STOP are implemented to save power.
In all these cases, power consumption is achieved by reducing the frequency and increasing the severity
of clock gating.

14.1.1 Hardware Operation

The DFS operation and low-power modes on the MCU side are controlled by software using the clock
controller module (CCM). The features of CCM are as follows:
* PLL control
* Dynamic frequency change (DFS) — Using dividers to change core frequency on the fly and PLL
scaling to lock PLL
» Clock gating for various modules during low-power modes
* Low-power modes

14.1.2 Software Operation

For DFS operation, software is responsible for setting the desired frequency of ARM, AHB (MAX clock)
and IPusing either PLL scaling or using integer scaling (dividers). Core frequency dependson MAX clock
and the PLL clock. For changing frequency using dividers, software should set the desired divider values
in the divider register to enable frequency change. For PLL scaling, software should set the desired
frequency value using PDF, MFD, and MFN registersin the CCM. For WAIT, DOZE, STOP and DSM
low-power modes, software should disable interrupts before executing a wait-for-interrupt (WFI)
instruction and re-enable interrupts afterwards.

14.2 Requirements

The Low-level PM driver API requires DPM to make the appropriate calls and pass the required
arguments. The MCU clock domain is partitioned into four synchronous clocks and two sub-domains. The
main clock of thisdomain is called ncu_mai n_cl k, and it is the output of the MCU clock switch unit.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 14-1

i.MX31 Low-level Power Management Driver

* mcu_clk (i pg_cl k_ar m) isthe clock of the ARM platform. The target frequency of thisclock is
532 MHz. Thisclock isgenerated from MCU BRM with adivision factor asdefined by the BRMM
bitsin PDRO.

» max_clk sub-domain (i pg_cl k_ahb) isthe clock domain of theinternal ARM platform peripherals
like the cross bar switch and chip modules. Clocks in this domain are generated from the max
postdivider with adivision factor asdefined by the MAX_PDF bitsin PDRO register. These clocks
should be an integer multiple (value of between 1 and 8) of the mcu_main_clk. Maximum target
frequency of these clocksis 133 MHz.

* hsp_clk isthe clock for the IPU. This clock is generated from the hsp postdivider with a division
factor as defined by the HSP_PDF bitsin PDRO register. These clocks should be an integer
multiple (value of between 1 and 8) of the mcu_main_clk. Maximum target frequency of thisclock
iS133 MHz for 1.2V supply.

* ipg_clk sub-domain isthe clock domain of certain parts of the IP peripheras. These clocks are
generated from theipg postdivider with adivision factor defined by the IPG_PDF bitsin the PDRO
register. These clocks should be an integer multiple (either 1 or 2) of the max_clk. Maximum target
frequency of these clocksis 62.5 MHz.

» nfc_clk (i pg_cl k_nfc_20m) isthe clock for Nand Flash controller. This clock isgenerated from the
nfc postdivider with adivision factor as defined by the NFC_PDF bits in the PDRO register.

» ckil_mcu_sync ipgisthe clock for the periphera modules. They require a 32 KHz clock

* ipg_clk_gacc mbx_clk isthe clock for the MBX module. It is 1/2 of theipg_ahb_clk, whichis
66 MHz.

14.3 Hardware Issues
i.MX31 silicon does support DSM, but there is no driver available on SDK1.3.

14.4 Source Code Structure

Table 14-1 lists the sourcefiles for i.MX 31 available in the directory
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/arch/arn mach- mx3/

Table 14-1. PM Driver Source Files

File Description

mxc_pm c Source file with all the implementation

crmregs. h |Header File with all register and bit definitions for CCM module

The header file, mc_pm h (PM header filethat containsthe API declaration), associated with low-level PM
driver isavailablein <itib_dir>/rpnf BU LD | i nux-2. 6. 26/ i ncl ude/ asm ar nf ar ch- mxc/ .

14.5 Programming Interface

The following set of APIs are currently provided for frequency scaling and low-power modes:
* mxc_pm_intscale

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

14-2 Freescale Semiconductor

i.MX31 Low-level Power Management Driver

— Performsall the steps required to enable scaling on the fly using PCDRO divider
— DPM passes the required Core, AHB, and IPG frequency
* mxc_pm_pllscale
— Performsall the steps required to enable PLL scaling
— DPM passes the required Core, AHB, and IPG frequency
* mxc_pm_lowpower
— Implements all the steps required to put the system under STOP, DOZE, or WAIT mode

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 14-3

i.MX31 Low-level Power Management Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

14-4 Freescale Semiconductor

Chapter 15
Dynamic Voltage Frequency Scaling (DVFS) Driver

The Linux Dynamic Voltage Frequency Scaling (DVFS) (designed as part of the CCM module) device
driver alows smple W dynamic voltage frequency scaling. The frequency of the MCU clock domain
and voltage of the chip can be changed on the fly with al modules, including MCU, continue running. The
voltage of the chip can be changed by setting of DV SO and DV S1 pins connected to the MC13783 Power
and Audio Management IC (PMIC). The frequency of MCU clock domain can be changed by switching
to alternate PLL clock (MCU or SR PLL'’s) with previous locking to required frequency or just changing
post dividers division factors.

The software module is comprised of aLinux driver that allows privileged users to control and monitor
the DVFS operation.

15.1 Hardware Operation

15.1.1 DVFS

The DFVSmodule is a power management module designed as part of the CCM module. The purpose of
the DFV S moduleisto detect the appropriate operation frequency for the I C, considering the frequency of
idle mode in the ARM core and considering other signals, using weights for such signals set by the user.
The DFV Smodulegeneratesan ARM interrupt or SDMA event when the frequency must be changed. The
DFV S module records alog buffer for power patterns analysis and can generate an ARM interrupt or
SDMA event each predefined time quantum for frequency change according to the log buffer.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 15-1

Dynamic Voltage Frequency Scaling (DVFS) Driver

dvfs_cnt_rst o
. dvfs_
avfs_w_sig / »| Sig_wt extr_w_ld
16 LTBRI[0:1]
-
—
5
Id_add freq_pa
b dvfs_
Y 6 thresh)_ \
cmp .
ccm_arm_stdb | dvfs stdb_smpl | dvfs_ pref avg_ld] dvfs_ dvfs_ [ema_lp UP*thJei g:’f S—hﬂ
— | stdb_ »| pre_ »| Id_add || ema_ ¢ fest 1
smpl avg 5 avg 6 dw_th_res | COUNL | g0y gw
— —
div_3 clk
ipg_clk_arm

resetb — p

LTROreg—4——p
32

LTR1reg—F—»
32

PMCROreg——+

32
Figure 15-1. DVFS Load Tracking Module Block Diagram

Thedvfs_stdb_snpl block sasmplestheccm ar m st db signal (ARM11 STANDBY WFI signal -
idle stateindicating) by i pg_cl k_ar m(ARM11 system clock). Thedvf s_pr e_avg block performs
smple, non-overlapping averaging, reducing the sampling clock frequency and provide a level-based
average index of the tracked CPU load. Thedvf s_si g_wt block samplesthe 16 genera purpose load
signals, multiply each one of them by appropriate weight and sum products. Thedvfs_| d_add block
sumsthe CPU load, tracked by idle/non-idle signal and the load, detected from the additional load signals,
weighted by si gnal _wei ght i ng block. Thedvf s_emnma_avg (EMA - Exponential Moving Average)
block cal culates an exponential moving average of thetracked CPU load. Thedvf s_t hr es_cnp block
compares the CPU load value to programmable threshold levels. Thedvf s_t hr es_count block
counts consecutive threshold overflowsof dw_t h_res andup_t h_r es (outputs of

t hr eshol d_conp block).

15.1.2 Software Operation

The DVFS devicedriver is designed to monitor and control the DV FS hardware module, and perform the
transitions between 1C working points.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

15-2 Freescale Semiconductor

Dynamic Voltage Frequency Scaling (DVFS) Driver

15.2 Source Code Structure

Table 15-1 lists the source files and headers available in the following directory:

<lI'tib_dir>/rpm BU LD |i nux-2.6.26/arch/arn mach- mx3/
Table 15-1. Source Code Files

File Description

dvfs_v2.c Linux DVFS functions.

15.3 Linux Menu Configuration Options
None, DVFSisincluded by default.

15.3.1 Board Configuration Options

There are no board configuration options for the Linux DV FS device driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 15-3

A
Dynamic Voltage Frequency Scaling (DVFS) Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

15-4 Freescale Semiconductor

Chapter 16
Dynamic Process and Temperature Compensation (DPTC)
Driver

The Dynamic Process Temperature Compensation (DPTC) Driver managesthe DPTC power management
technique. This technique reduces power consumption by adjusting the supply voltages according to the
specific process case, chip fabrication and ambient temperature.

The DPTC hardware module (designed as part of the CCM module) monitors the current operating point
using four reference circuits that test the chip process under the current ambient temperature.

The software module isaLinux driver that allows privileged users to control and monitor the DPTC
operation.

16.1 Hardware Operation

The DPTC module is a power management module designed as part of the CCM module. The purpose of
the DPTC module is to detect the minimum operation voltage for the IC, regarding process corner case
and temperature for a given frequency. The DPTC module receives predefined values for process speed
performance measurement and generates an interrupt if a supply voltage value update is required.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 16-1

Dynamic Process and Temperature Compensation (DPTC) Driver

Figure 16-1 shows a block diagram of the DPTC hardware operation.

placed on chip level

ref_cir_0 ref_cir_1 ref_cir_2 ref_cir_3
t | |
4
. DPTC 0T count [3. . 0] ref_clk_[3. . Q] .
comp_logic
V#V V blocks .| upper
: -1 . : limit
control bits PMCR | : sys_clk ref clk — | UP. limit
- p{| _counter - lower
: . reset counter . limit
ipg_clk . | - | low. limit >
] » FSM :-:_mstrg.
- imi
reset_b : read_clk ref_cir | emg. limit I
' - - register |||
| .
K ' | couter_out
* compare_cl 111 bit)
DCVRO:3 ./ E o
e —

Figure 16-1. DPTC Hardware Module Design

The DPTC module containsfour reference circuits (ref_cir_0 - ref_cir_3), control module (FSM module),
counter and a comparison block.

The FSM modul e manages the operation of the DPTC module. On DPTC module enable, FSM selectsone
reference circuit (each circuit tests a different process parameter). The selected reference circuit then
produces aclock signal (r ef _cl k), whichiscounted by ther ef _cl k_count er. After the
measurement is completed, ther ef _cl k_count er valueis compared with three threshold values:
upper limit, lower limit and emergency limit. If one of the thresholds isexceeded, aninterrupt istriggered.

Onreceiving an interrupt, the DPTC driver checks which of the thresholds was exceeded and changesthe
|C voltage and DPTC thresholds accordingly.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

16-2 Freescale Semiconductor

Dynamic Process and Temperature Compensation (DPTC) Driver

Figure 16-2 shows the FSM control |oop.

One of reference circuits

Mezxt reference circuit iz enabled by count

¥

ref_clk_courter reset

zelect * ol
0ol 25— signa
F
Comparizan betvween
external performance | Mext reference circut |
limits and measured N zelect N
(ref_cir_register_wvalue)

Figure 16-2. FSM Control Loop

16.2 Software Operation

The DPTC device driver is designed to monitor and control the DPTC hardware module, and it performs
the transitions between | C working points. Figure 16-3 showsthe DPTC driver high level software design.

ConTi) rations, Conti) rations
=ik DPTES Bk andl threshokk

Mext referance circuit
] ref_clk_counter reset

select
O e 2 3 "

ref_clk_counter reset

F 1

Change
WOkl Poit

el DPTS Tabk

Mety wolke

¥

Hew inttee
MAC1Z7ES Driver i [[y perg =3c

Figure 16-3. DPTC Driver Software Design

Driver operations are as follows:
1. DPTC user space software enables the DPTC driver.
2. Thedriver configures and enables the DPTC controller.

3. The DPTC controller measures the current |C working point and signals an interrupt if thereisa
need to move to another working point.

4. Onreceiving an interrupt, the DPTC driver calculates the new working point.

5. Using the DPTC lookup table, the driver cal culates the new IC voltage and updates the current IC
voltage through the MC13783 driver.

6. Thedriver writes new thresholds to the DPTC controller.
7. The DPTC controller starts a new measurement.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 16-3

Dynamic Process and Temperature Compensation (DPTC) Driver

16.2.1 DVFS and DPTC — MC13783 Interaction
The DVFS and DPTC drivers use MC13783 to change the voltage of the chip.
On a DPTC working point change request, the driver sets values for four different voltages on the
MC13783:

* SWIA SW setting

* SWI1A DVF setting

* SWI1B DVS setting

* SWIB STANDBY setting
The change is done using MC13783 Power API functions, through SPI. After the voltage change, the
DPTC is enabled when it gets a power-ready interrupt from MC13783. This signal comes from the

PWRRDY pin of the MC13783, and it is connected to the GPIO1_5 pin of the multimedia application
processor.

On a DVFS frequency change request, the driver selects one of the four voltages according to the new
frequency. The changeis done by writing to the DV SUP[0-1] bits of the CCM PM CRO register. These bits
are connected to the DVFS0 and DV FS1 output pins of the multimedia application processor, and these
pins are connected to the DV SSW1A and DV SSW1B pins of the MC13783.

16.3 Requirements

The DPTC driver implements the following requirements:

* [R-DPTC-1] TheDPTCdriver alowsaprivileged user to control the DPTC operation and contains
the following features:
— Enable/Disable module

» [R-DPTC-2] On DPTC interrupt, the driver updates the current |C voltage according to the DPTC
controller measurements.

16.4 Source Code Structure

Table 16-1 lists the source files and headers available on the following locations:

<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arnm mach- nx3/
<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arni pl at - mxc

Table 16-1. Source Code Files

File Description

mach-mx3/dptc. c DPTC table

pl at-nxc/dptc.c DPTC driver

16.5 Configuration
DPTC driver isincluded by default.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

16-4 Freescale Semiconductor

Chapter 17
CH7024 TV Encoder (TV-Out) Driver

The CH7024 isaTV encoder device targeting handheld, portable video applications, such as digital still
cameras and similar portable embedded systems. The deviceis able to encode the video signals and
generate synchronization signals for NTSC and PAL standards. Supported TV output formats are
NTSC-M, NTSC-J, NTSC-433, PAL-B/D/G/A/l, PAL-M, PAL-N, and PAL-60.

17.1 TV-Out Driver Overview

The CH7024 takesin digital graphicsinput, which is the output of the IPU Synchronous Display
Controller (SDC), and convertsit to TV output. In the IPU SDC controller, only one set of synchronous
display signals can be output at the same time. The i.MX platform puts the LCD and CH7024 signal
control and data pinstogether, therefore, the framebuffer cannot be displayed on both the LCD and TV-out
simultaneously. There needs to be a dynamic switch between the LCD and TV-out display output devices.
The CH7024 registers get configured through its 1°C port. At present the driver only supports
PAL-B/D/G/A/l and NTSC-M output formatsin SDTV mode.

CH7024 supportstwo operating modes, SDTV encoder (NTSC/PAL) with non-interlaced input and SDTV
encoder (NTSC/PAL) with interlaced input. In the first mode CH7024 can take non-interlaced data from
graphics controller and encode it to analog NTSC and PAL waveforms. In the second mode it can take
interlaced data from sources and perform SDTV encoding. The driver supports the first operating mode
with non-interlaced input.

The TV-out driver implements an 12C client driver and a framebuffer driver in the Linux kernel. The 1°C
client driver implements the configurations to CH7024 registers through the 1°C interface. The
framebuffer driver implements IPU SDC configurations and the digital graphicsinput to CH7024.

The driver is enabled by selecting the tvout option under the graphics parametersin the kernel
configuration.

17.1.1 Hardware Operation

The CH7024 providesadigital interfaceto most GCCs(Ini.M X, itisthe synchronousL CDC, for example,
IPU SDC). It accepts computer-generated digital graphics input in RGB or Y CrCb format. The CH7024
receives initialization and basic configuration information through its I2C-compati ble SIO port with
simpleregister Read/Write commands. Thevalid outputsare SDTV (PAL/NTSC). Thedriver implements
the SDTV (PAL/NTSC).

There is no specific hardware operation for CH7024 hardware.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 17-1

CH7024 TV Encoder (TV-Out) Driver

17.1.2 Software Operation
The driver implements the TV-Encoder SDTV output format configuration (NTSC or PAL).

The driver switches the current display output device from LCD to TV-out (power off the LCD panel,
disable the current SDC output, setup the CH7024 and reconfigure the SDC to output appropriate signal
to CH7024). Then the TV-Out framebuffer device is used by applications.

CH7024 registers are accessed through the 12C interface. The driver uses the common kernel 1°C client
driver to configure the CH7024 registers. The 1°C client driver can not be accessed directly in user space.

The TV-out architecture diagram is shown in Figure 17-1.

Application .
TV -Out Application
I
""'"'"""'"'I'_'_"_';'_':'_'I:'_"_'_"_';'_';'l """""""""
A 4 v
Kernel Framebuffer | . CH7024
Driver Driver
H :
IPU SDC l
Driver !
I |
_________________ X D
v H
Hardware SDCLCD > CH7024
Controller

Figure 17-1. TVout Driver in the Architecture

17.2 Source Code Structure Configuration

Table 17-1 describesthe sourcefiles associated with the TV-out driver, which are availablein the directory
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/video/ nmxc.
Table 17-1. TV-Out Driver Source File

File Description

ch7024.c Source file for CH7024 TV-Out driver

Table 17-2 describes the source files associated with the framebuffer drivers which use TV-out driver are
available in the directory <I ti b_dir>/rpm BU LD/ | i nux-2. 6. 26/ dri vers/ vi deo/ nxc.
Table 17-2. Framebuffer Driver Source Files

File Description

mxcfb.c Source file for LCD framebuffer driver. Provides SDC
LCD disable/enable interface to mxcfb_tvout module
for output device switching.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

17-2 Freescale Semiconductor

CH7024 TV Encoder (TV-Out) Driver

17.3 Driver Configuration

This module can be selected using the Itib menu options.

To get to the CH7024 TV Out Encoder driver usethecommand. /i tib -c whenlocatedinthe<itib dir>.
On the screen displayed, select Configure the kernel and exit. When the next screen appears select the
following options to enable the CH7024 TV Out Encoder driver.

» Device Drivers > Graphics support > CH7024 TV Out Encoder
Chooses the CH7024 TV Out Encoder driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 17-3

A ——
CH7024 TV Encoder (TV-Out) Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

17-4 Freescale Semiconductor

Chapter 18
Image Processing Unit (IPU) Drivers

The image processing unit (IPU) is designed to support video and graphics processing functionsin the
MXC architecture and to interface with video and still image sensors and displays.

18.1 IPU Hardware Operation
The detailed hardware operation of the IPU is discussed in the hardware documentation.

18.2 IPU Software Operation
Figure 18-1 depicts the interaction between the different graphics/video drivers and the PU.

camera App Widao Cont Apg : Mg.jua F"i.;rynr | Application
App (Ulzer Dodle)
e]]
¥ ‘,-'r’f . r
GStreamar WL | | GStreamar VAL H2ea (55t er GEtreamar MEEGS Maddlewre
Wideo S0 L Wichad Sanle Do Widea Sinl HA Encadier {User Mode)
¥ l L ¥ 9
IR AL BARC WAL | PEIFE FrameBul | FraireBul MPESd Encodar
Caplure Diiver Chupnet Cvevar . Cirrvies Dirver 1 Cirrger 0 Cxvar
r
—1‘_ ;
TPETEE: Eemel Mode
Camera Crrivar
- I B L 4 - -
[l:.’S; IPU sarmman AF T S0C T ADC
Drrver |
| "ﬂr‘._NG | PrPVE | PP | PE |]
TLVRGE + * Hardhware

A A FRFEnC SOCFG =0 PG WMFEGA
= o (Ee) S EEe e
) (B
Raotata 5
- Rofate
=D

— [T A channel transfer = {Hlier Data Flow
=== Cpitional = Control Calls

Figure 18-1. Graphics/Video Drivers Software Interaction

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-1

Image Processing Unit (IPU) Drivers

The IPU drivers are sub-divided as follows;

» Devicedrivers—include the frame buffer driver for SDC, the frame buffer driver for Epson LCD,
V4L 2 capturedriversfor |PU pre-processing and the V4L 2 output driver for |PU post-processing.
The frame buffer device drivers are available in the
<l tib_dir>/rpm BUI LD | i nux-2.6.26/drivers/video/ mxc directory of the Linux kernel.

The V4L 2 device drivers are available in the
<l tib_dir>/rpm BUI LD | i nux-2.6.26/drivers/medi a/ vi deo directory of the Linux kernel.

* Low-level library routines —interfaces to the IPU hardware registers. They take input from the
high-level device drivers and communicate with the IPU hardware. The Low-level libraries are
availableinthe <l tib_dir>/rpnf BUI LD/ | i nux-2. 6. 26/ dri vers/ mxc/ i pu directory of the Linux
kernel.

18.2.1 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents the frame buffer
of video hardware, and allows application software to access the graphi cs hardware through awell-defined
interface, so that the software is not required to know anything about the low-level hardware registers.

The driver is enabled by selecting the Frame buffer option under the Graphics parametersin the kernel
configuration. To supplement the Frame buffer driver, the kernel builder may also include support for
fonts and a startup logo. This device depends on the virtual terminal (VT) console to switch from serial to
graphics mode.

The device is accessed through special device nodes, usually located in the/ dev directory, for example,
/ dev/ f b,

Other than the physical memory allocation and LCD panel configuration, the common kernel video AP
isutilized for setting colors, palette registration, image blitting, and memory mapping. The IPU reads the
raw pixel datafrom the frame buffer memory and sendsit to the panel for display.

18.2.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the |PU hardware driver module.

18.2.1.2 IPU Frame Buffer Software Operation

A frame buffer device is amemory device, such as/ dev/ rem, and it has features similar to a memory
device. Userscanreadit, writetoit, seek to somelocationinit, and mep() it (themain use). Thedifference
is that the memory that appears in the specia file is not the whole memory, but the frame buffer of some
video hardware.

/ dev/ f b* also interacts with severa ioctls, which allows usersto query and set information about the
hardware. The color map is also handled through ioctls. For more information on what ioctls exist and
which data structures they use, see<i tib_dir>/rpn BU LD/ | i nux-2. 6. 26/ i ncl ude/ | i nux/fb. h. The
following are afew of theioctl functions:

* Request general information about the hardware, such as name, organization of the screen memory
(planes, packed pixels, and so on), and address and length of the screen memory.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-2 Freescale Semiconductor

Image Processing Unit (IPU) Drivers

* Request and change variable information about the hardware, such asvisible and virtual geometry,
depth, color map format, timing, and so on. The driver suggests values to meet the hardware's
capabilities (the hardware returns EINVAL if that is not possible) if thisinformation is changed.

* Get and set parts of the color map. Communication is 16 bits-per-pixel (valuesfor red, green, blue,

transparency) to support all existing hardware. The driver does all the calculations required to
apply the options to the hardware (round to fewer bits, possibly discard transparency value).

All this hardware abstraction makes the implementation of application programs easier and more portable.
The Qt/Embedded server works completely on/ dev/ f b* and thusisnot required to know, for example, the
organization of the color registers of the hardware. The only thing that must be built into the application
programsis the screen organization (bitplanes or chunky pixels, and so on), because it works on the frame
buffer image data directly.

The MXC frame buffer driver (<I tib_dir>/rpnf BU LD/ | i nux-2. 6. 26/ dri vers/ vi deo/ mxc/ mxcf b. c)
interacts tightly with the generic Linux frame buffer driver
(<I tib_dir>/rpm BU LD/ | i nux-2.6.26/drivers/video/fbmem c).

18.2.1.3 SDC Frame Buffer Driver

The SDC Frame buffer screen driver implements a Linux standard Frame buffer driver API for
synchronous LCD panels or those without memory. The SDC Frame buffer screen driver is the top level
kernel video driver that interacts with kernel and user level applications. Thisis enabled by selecting the
frame buffer option under the graphics parameters in the kernel configuration. To supplement the Frame
buffer driver, the kernel builder may also include support for fonts and a startup logo. This depends on the
VT console for switching from serial to graphics mode.

Except for physical memory allocation and LCD panel configuration, the common kernel video AP is
utilized for setting colors, pal ette registration, image blitting and memory mapping. The IPU readstheraw
pixel datafrom the frame buffer memory and sendsit to the panel for display.

The Frame buffer driver supportsdifferent panelsas akernel configuration option. Support for new panels
can be added by defining new values for a structure of panel settings. By default, the frame buffer driver
supports the Sharp QVGA panel.
The Frame buffer interacts with the IPU Driver using custom APIs:

» Initidization of panel interface settings

» Initialization of IPU channel settings for LCD refresh

» Changing the frame buffer address for double buffering support

The following features are supported:

» Support for Sharp QVGA, Sharp/NEC/EPSON/CH7024-TVEncoder VGA panelsand CLAA
WV GA panels

» Configurable screen resolution

» Configurable RGB 16(VGA/WV GA only support 16), 24 or 32 bits per pixel frame buffer
» Configurable panel interface signal timings and polarities

» Palette/color conversion management

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-3

Image Processing Unit (IPU) Drivers

* Power management

* LCD Power off/on
User applications utilize the generic video API (the standard Linux frame buffer driver API) to perform
functions with the Frame buffer. These include the following:

» Obtaining screen information, such as the resolution or scan length

» Allocating user space memory using mrap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

18.2.1.4 ADC Frame Buffer Driver

The ADC Frame buffer screen driver implements a Linux standard Frame buffer driver API for
asynchronous or smart LCD panels. The ADC Frame buffer screen driver isthe top level kernel video
driver that interacts with the kernel and user level applications. Thisis enabled by selecting the frame
buffer option under the graphics parameters in the kernel configuration. To supplement the Frame buffer
driver, the kernel builder may also include support for fonts and a startup logo. This depends on the VT
console for switching from serial to graphics mode.
The Frame buffer interacts with the IPU Driver using custom APIs:

» Initialization of panel interface settings for serial or paralel mode

 Initialization of IPU channel settings for ADC commands and data

» Control of 1PU auto-refresh and/or bus snooping for automatic update of panel memory

The following features are supported:

» Support for Epson L2F60012P00 dual mode 176x220 panel

» Configurable RGB 16, 24 or 32 bits per pixel frame buffer

» Palette/color conversion management

* Power management

* LCD Power off/on
User applications utilize the generic video API (the standard Linux frame buffer driver API) to perform
functions with the Frame buffer. These include the following:

» Obtaining screen information, such as the resolution or scan length

» Allocating user space memory using mrap for performing direct blitting operations

18.2.2 IPU backlight Driver

The I1PU backlight driver implements IPU PWM backlight control for SDC and ADC panel. It exportsa
syscontrol fileunder / sys/ cl ass/ backl i ght/ mxc_i pu_bl . 0/ bri ght ness t0 user space. The max backlight
intensity value is 255 with default of 127.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-4 Freescale Semiconductor

Image Processing Unit (IPU) Drivers

18.2.3 Video for Linux 2 (V4L2) APIs

Video for Linux Two (V4L2) isaLinux standard. The API Specification is available at
http://v4l 2spec.bytesex.org/spec/.
The V4L 2 capture device includes two interfaces:
» Captureinterface uses IPU pre-processing ENC channels to record the Y CrCb video stream
* Ovelay interface uses the IPU pre-processing VF channels to display the preview video to the
SDC foreground panel without ARM processor interaction.

The driver implementsthe standard V4L 2 API for capture and overlay devices. The command nodpr obe
mxc_v4l 2_capt ur e must be run before using these functions.

The V4L 2 Output driver usesthe IPU post-processing functions for video output. The driver implements
the standard V4L 2 API for output devices.

18.2.3.1 V4L2 Capture Device

V4L 2 capture support can be selected during kernel configuration. The driver includestwo layers. Thetop
layer is the common Video for Linux driver, which contains chain buffer management, stream APl and
otheri oct | interfaces. Thefilesfor this device arelocated in

<lI'tib_dir>/rpm BU LD |i nux-2.6.26/driver/ medi a/vi deo/ nxc/ capture/.

The V4L 2 Capture device driver isin the mxc_v4l 2_capt ure. ¢ file. The lowest layer isin the
i pu_prp_enc.c file.

Thiscode (i pu_prp_enc. ¢) interfaceswith the IPU ENC hardware, whilei pu_pr p_vf _sdc_bg. ¢ interfaces
with the IPU VF hardware, and i pu_sti I | . ¢ interfaces with the IPU CSI hardware. Sensor frame rate
control ishandled by VIDIOC_S PARM i oct | . Beforetheframerateis set, the sensor has turned on the
AE and AWB turn on. The frame rate may change, depending on light sensor samples.
Currently, the memory map stream API is supported. Supported V4L 2 ioctls include the following:

« VIDIOC_QUERYCAP

« VIDIOC G FMT

« VIDIOC S FMT

« VIDIOC_REQBUFS

« VIDIOC_QUERYBUF

« VIDIOC QBUF

« VIDIOC DQBUF

 VIDIOC _STREAMON

 VIDIOC _STREAMOFF

 VIDIOC OVERLAY

« VIDIOC G FBUF

« VIDIOC_S FBUF

« VIDIOC G CTRL

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-5

http://v4l2spec.bytesex.org/spec

Image Processing Unit (IPU) Drivers

« VIDIOC_S CTRL

* VIDIOC_CROPCAP

* VIDIOC_G_CROP

* VIDIOC_S CROP

« VIDIOC_S PARM

« VIDIOC_G_PARM

 VIDIOC ENUMSTD

« VIDIOC G STD

« VIDIOC_ S STD

 VIDIOC ENUMOUTPUT

* VIDIOC_G _OUTPUT

* VIDIOC_S OUTPUT
V4L 2 control code has been extended to provide support for rotation. Theid is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0—Normal operation

* 1—Vertical flip

» 2—Horizontal flip

* 3—180 degreerotation

* 4—90 degreerotation clockwise

* 500 degree rotation clockwise and vertical flip

* 6—90 degree rotation clockwise and horizontal flip

» 7—90 degree rotation counter-clockwise

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-6 Freescale Semiconductor

Image Processing Unit (IPU) Drivers

Figure 18-2 shows a block diagram of V4L 2 Capture API interaction.

Application (Eg., mxc_wdl2_test.c)

|User Space

Kernel Space

Common Yideo for linux 2 Driver

Poll VWait | mxc_wdl_camera_ops

Chain of buffers

Singnal the
Setup the EBA of IDMA Palling function Stream OnfOff, Open/Close
Channels according to the when frame
buffer Queued. ready

ISR mc_vdl_camera_ops

Lawer level MXC Driver

Figure 18-2. Video4Linux2 Capture API Interaction

18.2.3.2 Use of the V4L2 Capture APIs

A sample V4L 2 capture process is shown in the following procedure:

1.
2.
3.

o

The application sets the capture pixel format and sizeby i oct| VIDIOC_S FMT.
The application sets the control information by i oct | VIDIOC_S CTRL for rotation usage.

The application requests abuffer usingi oct | VIDIOC_REQBUFS. The common V4L 2 driver
creates a chain of buffers (currently the maximum number of framesis 3).

The application memory maps the buffer to its user space.
The application queues buffers using theioctl command VIDIOC_QBUF.

The application starts the stream using thei oct | VIDIOC_STREAMON. Thisi oct | enables
the IPU tasks and the IDMA channels. When the processing is completed for aframe, the driver

switches to the buffer that is queued for the next frame. The driver also signals the semaphore to
indicate that a buffer is ready.

The application takes the buffer from the queueusing thei oct | VIDIOC_DQBUF. Thisi oct |
blocks until it has been signaled by the ISR driver.

The application stores the buffer toa Ycrcb file.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-7

Image Processing Unit (IPU) Drivers

9. The application replaces the buffer in the queue of the V4L 2 driver by executing VIDIOC_QBUF
again.
V4L 2 still image capture:
1. The application sets the capture pixel format and size by executing thei oct| VIDIOC_S FMT.
2. The application reads one frame still image with YUV 422.

V4L 2 overlay support use case:
1. Application set the overlay window by i oct| VIDIOC_S FMT.
2. Application turn on overlay task by i oct| VIDIOC_OVERLAY.
3. Application turn off overlay task by i oct | VIDIOC_OVERLAY.

18.2.3.3 V4L2 Output Device

V4L 2 output device support can be selected during kernel configuration. The driver is available at
<l tib_dir>rpm BU LD |inux-2.6.26/drivers/ medial/video/ nxc/out put/nxc_v4l 2_out put. c.
The following V4L 2 features are supported by the driver:

» Direct output to the SDC foreground overlay plane (no ARM processor intervention, and
synchronized to LCD refresh)

» Support for color keying apha blending of the frame buffer and overlay planes

» Support for linking post-processing resize and CSC, rotation, and display |PU channels for no
ARM processing of intermediate steps

» Streaming (queued) input buffer

» Double buffering of overlay and intermediate (rotation) buffers
» Configurable 3+ buffering of input buffers

* Programmable input and output pixel format and size

* Programmable scaling and frame rate

» Support for RGB 16, 24, and 32 bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved input
formats

» Support for TV output (features TBD)

These features are supported using custom APIs:
» Output to user buffer instead of overlay display
* Programmable rotation

Currently, the memory map stream API is supported. Supported V4L 2 ioctls include the following:
« VIDIOC_QUERYCAP
« VIDIOC_REQBUFS
« VIDIOC G FMT
« VIDIOC S FMT
« VIDIOC_QUERYBUF
« VIDIOC _QBUF

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-8 Freescale Semiconductor

Image Processing Unit (IPU) Drivers

VIDIOC_DQBUF
VIDIOC_STREAMON
VIDIOC_STREAMOFF
VIDIOC_G_CTRL
VIDIOC_S CTRL
VIDIOC_CROPCAP
VIDIOC_G_CROP
VIDIOC_S CROP
VIDIOC_S PARM
VIDIOC_G_PARM

The V4L 2 control code has been extended to provide support for rotation. For thisuse, theidis
V4L2 CID_PRIVATE_BASE. Supported values include the following:

0O—Normal operation

1—Verticd flip

2—Horizontal flip

3—Horizontal and vertical flip

4—090 degree rotation

5—90 degreerotation and vertical flip

6—90 degree rotation and horizontal flip

7—90 degree rotation with horizontal and vertical flip

18.2.3.4 Use of the V4L2 Output APIs
The following procedure shows a sample V4L 2 capture use case that uses the V4L 2 output APIs:

1.
2.
3.

O N O O A

The application sets the capture pixel format and sizeusingi oct| VIDIOC_S FMT.
The application sets the control information usingi oct | VIDIOC_S CTRL, for rotation.

The application requests abuffer usingi oct | VIDIOC_REQBUFS. The common V4L 2 driver
creates a chain of buffers (currently the maximum number of framesis 3).

The application memory maps the buffer to its user space.

The application executesthei oct | VIDIOC_DQBUF.

The application passes the data that requires post-processing to the buffer.

The application queues the buffer using thei oct | command VIDIOC_QBUF.
The application starts the stream by executingi oct | VIDIOC_STREAMON.

18.2.4 MPEGA4/H.264 Post Filter Driver

The Post-filtering driver provides a custom user API for IPU post-filtering functions. The following
features are supported by the driver:

Support for MPEG4 dering and/or deblock

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-9

Image Processing Unit (IPU) Drivers

» Support for H264 deblock

» Support for intra-frame pause and resume (H.264 only)
» Synchronous and asynchronous operation

» Support for driver-allocated or user-allocated buffers

The post-filter driver implements ioctls for initialization, release, buffer allocation, and beginning the
processing for aframe.

18.3 IPU Source Code Structure Configuration

Table 18-1 lists the source files associated with the IPU, Sensor, V4L 2 and Panel drivers. Thesefiles are
available in the following directories:

<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/nmxc/ipu
<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/video/ nmkc
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/ medial/video/ nxc
<lI'tib_dir>rpm BU LD |i nux-2.6.26/drivers/video/backlight

Different ioctls for both Display panels will be provided in future releases.
Table 18-1. IPU Source and Header File List

File Description
drivers/nmxc/ipu/ipu_adc.c ADC configuration driver
dri vers/nmxc/ipu/ipu_common. c Configuration functions for ADC and SDC
drivers/nmxc/ipu/ipu_csi.c CMOS sensor interface functions
drivers/nmxc/ipu/ipu_ic.c IPU library functions
drivers/nmxc/ipu/ipu_sdc.c SDC configuration driver
drivers/nmxc/ipu/ipu_device.c IPU driver device interface and fops functions.
dri vers/ medi a/ vi deo/ nxc/ capt ur e/ nt521da. c Camera sensor driver for sMC521DA
dri vers/ medi a/ vi deo/ nxc/ capt ur e/ov2640.c Camera sensor driver for OV2640
dri vers/ medi a/ vi deo/ nxc/ capture/nt9v1il.c Camera sensor driver for MT9V111
dri vers/ medi a/ vi deo/ nxc/ capt ure/i pu_prp_enc.c Pre-processing encoder driver
dri vers/ medi a/ vi deo/ nxc/ capt ure/i pu_prp_vf_adc.c Pre-processing view finder (adc) driver.
dri vers/ medi a/ vi deo/ nxc/ capt ure/i pu_prp_vf_sdc.c Pre-processing view finder (sdc foreground) driver.
dri vers/ medi a/ vi deo/ nxc/ capt ur e/ i pu_prp_vf_sdc_bg. c |Pre-processing view finder (sdc background) driver.
drivers/ medi a/ vi deo/ nxc/ capture/ipu_still.c Pre-processing still image capture driver
drivers/mxc/ipu/ pf/mc_pf.c Post filtering driver
drivers/video/ mxc/ mxcfb.c Framebuffer driver for SDC
dri vers/video/ nxc/ mxcf b_epson. ¢ Framebuffer driver for ADC
dri vers/video/ mxc/ mkcf b_epson_qgvga. c Framebuffer driver for ADC QVGA
dri vers/video/ mxc/ mkcf b_epson_vga. ¢ Framebuffer driver for SDC VGA

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-10 Freescale Semiconductor

Image Processing Unit (IPU) Drivers

Table 18-1. IPU Source and Header File List(Continued)

File Description
dri vers/video/ mkc/ mkcfb_cl aa_wga. c Framebuffer driver for SDC WVGA
drivers/video/ nxc/ mxcf b_nodedb. c Parameter settings for Framebuffer devices

dri vers/ medi a/ vi deo/ nxc/ capt ur e/ nxc_v4l 2_capture.c |V4L2 capture device driver

dri vers/ medi a/ vi deo/ nxc/ out put / nxc_v4l 2_out put. c V4L2 output device driver

dri vers/video/ backlight/nxc_ipu_bl.c IPU backlight control driver

Table 18-2 lists the global header files associated with the IPU and Panel drivers. Thesefilesare available
in the following directories:
<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/nmxc/ipu

<lI'tib_dir>/rpm BU LD |i nux-2.6.26/include/asm arm arch-nxc
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/ medial/video/ nxc

Table 18-2. IPU Global Header File List

File Description
drivers/nxc/ipu/ipu_parammem h Helper functions for IPU parameter memory access
drivers/nxc/ipu/ipu_prv.h Header file for Pre-processing drivers
drivers/nxc/ipu/ipu_regs.h IPU register definitions
dri vers/ medi a/ vi deo/ mxc/ capture/ nt9v111. h Header file for MT9V111 sensor driver
i ncl ude/ asm arm arch- mxc/ nxc_pf. h Header file for Post filtering driver
i ncl ude/ asm arnf arch-mxc/ nkcfb. h Header file for framebuffer driver for SDC
dri vers/ medi a/ vi deo/ mxc/ capture/ipu_prp_sw h Header file for IPU PRP use case driver.
dri vers/ medi a/ vi deo/ mxc/ capt ur e/ nxc_v4l 2_capt ur e. h | Header file for V4L2 capture device driver
dri vers/ medi a/ vi deo/ mxc/ out put / nxc_v4l 2_out put. h Header file for V4L2 output device driver

18.4 IPU Linux Menu Configuration Options

Thefollowing Linux kernel configuration options are provided for the |PU module. To get to these options
usethecommand./1tib -c whenlocated inthe<itib dir>. Onthe screen displayed, select Configure
the kernel and exit. When the next screen appears select the options to configure.

* CONFIG_MXC_IPU—Includes support for the Image Processing Unit. Innmenuconfi g, this
option is available under:
Devi ce Drivers > MXC support drivers > I mage Processing Unit Driver
By default, thisoptionisY for all architectures.

* CONFIG_MXC_CAMERA_MICRON_111—Option for both the Micron mt9v111 sensor driver
and the use case driver. Thisoption is dependent on the MXC_IPU option. In menuconf i g, this
option is available under:

Device Drivers > Multinmedia Drivers > Video capture adapters > MXC Vi deo For Linux
Canera > MXC Canera/ V4L2 PRP Features support > Mcron n9v11l Canera support

Only one sensor should be installed at atime.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-11

Image Processing Unit (IPU) Drivers

CONFIG_MXC_CAMERA_QV2640—Option for both the OV 2640 sensor driver and the use
case driver. This option is dependent on the MXC_IPU option. In menuconf i g, thisoption is
available under:

Device Drivers > Multinmedia Drivers > Video capture adapters > MXC Vi deo For Linux
Canera > MXC Canera/ V4L2 PRP Features support > Omi Vi si on ov2640 camera support

Only one sensor should beinstalled at atime. By default, this option is M for i.MX31 platforms.

CONFIG_MXC_IPU_PRP VF_SDC—Option for the | PU:

CSl >1C> MEMMEM > | C (PRP VF) > MEM
Use case driver for dumb sensor or

CSI > I C(PRP VF) >MEM
for smart sensors. In menuconfi g, thisoption is available under:

Mul ti medi a devices > Video capture adapter > MXC Video For Linux Canera > MXC
Caner a/ VAL2 PRP Features support > Pre-Processor VF SDC |library

By default, thisoptionisY for all.
CONFIG_MXC_IPU_PRP_VF_ADC—Optionsfor the | PU:

Use case driver for the rotation

Csl >1C> MEMMEM > | C (ROT) > MEM MEM > ADC
or for smart sensors

CSI > 1 C > ADC.
Inmenuconfi g, this option isavailable under:

Device Drivers > Multinmedi a Devices > Video capture adapters > MXC Vi deo For Linux
Canera > MXC Caner a/ V4L2 PRP Features support > Pre-Processor VF SDC library

By default, thisoptionisY for all.
CONFIG_MXC_IPU_PRP_ENC—Option for the | PU:

Use case driver for dumb sensors

CSI > 1C> MMMEM > I C (PRP ENC) > MEM
or for smart sensors

CSI > I C(PRP ENC) > MEM
Inmenuconfi g, this option isavailable under:

Device Drivers > Multinmedi a Devices > Video capture adapters > MXC Vi deo For Linux
Canera > MXC Caner a/ V4L2 PRP Features support > Pre-processor Encoder library

By default, thisoptionissetto Y for all.
CONFIG_MXC_IPU_PF—Thisis configuration option for MXC MPEG4/H.264 Post Filter
Driver. Thisoptionisdependent on“MXC_IPU” option. Inmenuconf i g, thisoptionisavailable
under:

Device Drivers > MXC support drivers > MXC MPEGA/ H. 264 Post Filter Driver
By default, thisoptionis'Y for all.
CONFIG_VIDEO_MXC_CAMERA—Thisisconfiguration option for V4L 2 capture Driver. This
option is dependent on the following expression:

VI DEO DEV && MXC_| PU && MXC_| PU_PRP_VF_SDC && MXC_| PU_PRP_ENC
Innmenuconfi g, this option isavailable under:

Device Drivers > Multinmedi a devices > Video capture adapters > MXC Vi deo For Linux
Caner a

By default, this optionisM for all.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-12

Freescale Semiconductor

Image Processing Unit (IPU) Drivers

* CONFIG_VIDEO MXC_OUTPUT—Thisis configuration option for V4L 2 output Driver. This
option is dependent on “VIDEO_DEV && MXC_IPU” option. Innmenuconf i g, thisoption is
available under:

Device Drivers > Multimedi a devices >Video capture adapters > MXC Vi deo for Linux
Vi deo CQut put

By default, thisoptionisY for all.

» CONFIG_FB—Thisisthe configuration option to include frame buffer support in the Linux
kernel. In menuconf i g, thisoption is available under:

Device Drivers > Graphics support > Support for Frame buffer devices
By default, thisoptionisY for all architectures.

* CONFIG_FB_MXC—Thisisthe configuration option for the MXC Frame buffer driver. This
option is dependent on the “CONFIG_FB” option. In menuconf i g, thisoption isavailable
under:

Device Drivers > Graphics support > MXC Franme buffer support
By default, thisoptionisY for all architectures.

* CONFIG_FB_MXC_SYNC_PANEL-Thisisthe configuration option that chooses the
synchronous panel framebuffer. This option is dependent on the “CONFIG_FB_MXC” option. In
menuconf i g, thisoption is available under:

Device Drivers > Graphics support > MXC Frane buffer support > Synchronous Panel
Framebuf fer

By default thisoption is'Y for al architectures.

* CONFIG_FB_MXC _EPSON_VGA_SYNC_PANEL -Thisisthe configuration option that
chooses the Epson VGA panel. This option is dependent on
“CONFIG_FB_MXC_SYNC_PANEL” option. Inmenuconf i g, thisoption is available under:

Device Drivers > Graphics support > MXC Frane buffer support > Synchronous Panel
Framebuffer > Epson VGA Panel

* CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL —Thisisthe configuration option that
choosesthe CLAA WV GA panel. This option is dependent on
“CONFIG_FB_MXC_SYNC_PANEL” option. Inmenuconf i g, thisoption is available under:

Device Drivers > Graphics support > MXC Franme buffer support > Synchronous Panel
Framebuffer > CLAA W/GA Panel .

» CONFIG_FB_MXC_TVOUT_CH7024 —This configuration option selectsthe CH7024 TVOUT
encoder. This option is dependent on the “CONFIG_FB_MXC_SYNC_PANEL” option. In
menuconf i g, thisoption is available under:

Device Drivers >Gaphics support >MXC Frame buffer support > Synchronous Panel
Framebuffer >CH7024 TV Qut Encoder

* CONFIG_FB_MXC_TVOUT —This configuration option selects the FS453 TVOUT encoder.
This option is dependent on “CONFIG_FB_MXC_SYNC_PANEL” option. In menuconfi g,
this option is available under:

Device Drivers > Graphics support > MXC Franme buffer support > Synchronous Panel
Framebuffer > FS453 TV CQut Encoder

» CONFIG_FB_MXC_ASYNC_PANEL-This configuration option selects the asynchronous panel
framebuffer. This option is dependent on “CONFIG_FB_MXC” option. Innmenuconf i g, this
option is available under:

Device Drivers > Graphics support > MXC Franme buffer support > Asynchronous Panel s

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 18-13

Image Processing Unit (IPU) Drivers

By default, thisoption isN for all architectures.

* CONFIG_FB_MXC_EPSON_PANEL—This configuration option selects the Epson panel. This
option is dependent on “CONFIG_FB_MXC_ASYNC_PANEL” option. Inmenuconf i g, this

option is available under
Device Drivers > Graphics support > MXC Frane buffer support > Asynchronous Panel s >
Asynchronous Panel Type > Epson 176x220 Panel
By default this option is N for al architectures.
18.5 IPU Programming Interface

For more information, see the V4L2 Specification and the APl Documents for the programming interface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

18-14 Freescale Semiconductor

Chapter 19
MBX Driver

MBX refersto an integrated 3D graphics accelerator-the ARM MBX R-S accelerator. A base driver for
the MBX isprovided by ARM Inc. and has been ported by Freescale. Various documents on the user-API
for the MBX driver are available. The link to these documentsis provided in this chapter.

19.1 Hardware Operation

The MBX R-S 3D Graphics Core has the following features:
» Deferred texturing
» Screentiling
* Flat and Gouraud shading
» Perspective correct texturing
* Specular highlights
» Floating-point Z-buffer
» 32-bit ARGB internal rendering and layer buffering
* Full tile blend buffer
* Z-load and store mode
* Per-vertex fog
» 16-bit RGB textures, 1555, 565, 4444, 8332, 88
» 32-bit RGB textures, 8888
* YUV 422 textures
* PVR-TC compressed textures
* One-bit textures for text acceleration
» Point, bilinear, trilinear, and anisotropic filtering
» Full range of OpenGL and Direct3D (D3D) blend modes
» Dot3 bump mapping
* Alphatest
» Zero-cost full-scene anti-aliasing
» 2Dvia3D

19.2 Software Operation

The MBX drivers are based on proprietary code and can be released only as kernel modules. These kernel
modules are a part of the filesystem released aong with the Linux BSP and can be loaded using a script

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 19-1

MBX Driver

that has been provided. The MBX driver supportsthe OpenGLES 1.1 standard. An SDK and other related
documentation is available for developers from http://www.imgtec.com/powervr/insider/sdkdownl cads/.
The PowerVR OpenGL ES SDK provides a set of documentation, source code and utilities that help
developers create applications using the OpenGL ES graphics library on PowerVR platforms.

19.3 Requirements

ThisMBX driver conforms with the OpenGL ES Application Programmer Interface (API) for user space
applications

19.4 Source Code Structure

The MBX module driver source code is not available as part of the standard Linux BSP release. Contact
Freescale support to access source code for the driver.

The following header files are needed to build the OpenGL ES application:

ht t p: / / ww. khr onos. or g/ opengl es/ headers/1_1/egl . h
http://ww. khronos. org/registry/gles/api/1.1/gl.h
http://ww. khronos. org/registry/gles/api/1l. 1/ gl platformh

Table 19-1 lists the modules and libraries associated with MBX.

Table 19-1. MBX Related File List

File Description

libclcdc.so, MBX related libraries that are part of the Linux BSP filesystem.

libGLES_CM.so, These libraries are located in /usr/lib/

libpvrmmap.so,

libsrv_um.a,

libswcamera.so

pvr.ko, Kernel level modules for the MBX driver and the display driver.

clcdc.ko These modules are located in
/lib/modules/2.6.26-*/kernel/drivers/char/

rc.pvr Initialization script to load the MBX drivers. The scriptis presentin
/etc/rc.d/init.d/.

services_test, Test binaries for MBX driver. Theses are located in /usr/local/bin/

egl _test

19.5 Configuration

19.5.1 Linux Menu Configuration Options
This module can be selected using the Itib menu options.

To get to the MBX usethe command . /1tib -c whenlocated inthe <itib dir>.
» Package list > mbx-bin

This package provides proprietary binary kernel modules, libraries, and test code built from the MBX
OpenGL ES (GX200) DDK.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

19-2 Freescale Semiconductor

MBX Driver

For the MBX demo to work correctly, the kernel framebuffer depth needs to be set to 16 bpp and the
overlay framebuffer should not be selected.

19.5.2 MBX Filesystem Setup

The MBX can beinitialized using therc. pvr scriptinthe/etc/rc. d/init.d/ directory. To load the
drivers, type/etc/rc.d/init.d/rc.pvr start ontheterminal console. To unload the driver, type
/etc/rc.d/init.d/rc.pvr stop.

19.6 Programming Interface

19.6.1 User Space API

Refer to the API related documents from the PowerV R devel oper’s site (http://www.pvrdev.com/) and the
Khronos site (http://www.khronos.org/) for other OpenGL resources.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 19-3

http://www.pvrdev.com/
http://www.khronos.org/

|
MBX Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

19-4 Freescale Semiconductor

Chapter 20

Hantro VGA Video Encoder Driver

20.1 Overview

The integrated hardware VGA video encoder isfrom Hantro. The encoder is operated through an
Application Programming Interface (API). The encoder APl usage can be seen graphically in Figure 20-1.

Imiftalize MPEGS Erncoder

Adjnst Encoder parameters

Srart MPEGH stream

MPEG4
User Application

MP4API_Encoderinit()

MPEG4
Codec (API)

Pointer to Encoder imstance

MPSAP|_EncoderConfig()

Status of changes (OF/Failed)

MPLAP|_EncoderStartSineam)

New video frame
From camera

Gar new video frame
Jfrom camara

;f)|

Encode video frame

Status and length of generated stream

MPLAPI_Encode()

Encode of MPEGS
Fideo Packat

irie Vid, [TR
inte video packers I;.l' : stracm Bugfer
} ’
! i
[.
| §
| ! Senid encoded Srean
:. , fvidea packerl
i W
b= Newspides Fideo
'l.III packet frame
%
!
b
.,
~

Ny more video frames io
ercode == End stream

Shuitdown Encoder

Morg video

framaz 7

Encode status (Video Packet ready /
Wideo frame ready / Emor)
and length of generated stream

MFP44PI_EncoderEmndStraami)

Status and length of generated stream

MP4AR|_EncoderShutdown()

Staus

Figure 20-1. Encoder API Usage

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

20-1

Hantro VGA Video Encoder Driver

Figure 20-1 is acombination of the message sequence chart and the flow chart showing a standard
operation sequence.

20.1.1 Hardware Operation

The internal registers of Hantro Encoder are mapped to the user space, which are accessed by the AP
provided from Hantro.

20.1.2 Software Operation

Asshown in Figure 20-2, The encoder kernel moduleis a character driver which isloaded into the kernel
to use Hantro Encoder API library. The static library (Encoder API) provided by Hantro uses this kernel
module to get device data. The kernel module allocates memory and maps the internal registers and
memory buffersto user space.

Application

A

A 4
Hantro Encoder API
Library

4

MPEG4 Encoder kernel
Module Driver.
A

Linux Kerndl

\ 4

Hantro MPEG4 HW
Encoder

Data: N
Control: _ _— _ _ _ !

Figure 20-2. Block Diagram of Encoder

20.2 Requirements

The following requirements have been met in the Encoder driver:

» Thedriver supports MPEG4 API version 3.1 for H.263 Encoder (reference from User Manual
version 1.0, Hantro products, 2004).

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

20-2 Freescale Semiconductor

Hantro VGA Video Encoder Driver

* ThisMPEG4 Encoder kernel driver module is used by Encoder library provided by Hantro
(libmeg4enc.a).
» The example application provided with Hantro Encoder API manual works.

20.3 Source Code Structure

Table 20-1 lists the source files available in the source directory,
<l'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/ mc/hnpde.

Table 20-1. FIRI File List

File Description
mxc_hnp4e. h Header file for Encoder driver
mxc_hnpde. ¢ Encoder driver source

20.4 Configuration

The Encoder driver is accessed by the following interface:
$/ dev/ hnp4e

MPEG4 Encoder menory map : Base address: 53FC8000 to 53FCBFFF.
MPEG4 Encoder | RQ pin no : 5.

MPEG4 Encoder 10O size : (35 * 4) bytes.

MPEG4 Encoder Buffer size : 1048576 bytes.

20.4.1 Linux Menu Configuration Options

The Linux kernel configuration, CONFI G_MXC_HVMP4E, is provided for this module. Thisisthe
configuration option for the Hantro Encoder driver. Inthe menuconf i g this option is available under
Device Drivers > MXC support drivers > MXC MPEG4/H.264 Post Filter Driver.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 20-3

|
Hantro VGA Video Encoder Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

20-4 Freescale Semiconductor

Chapter 21
OmniVision Camera Driver (OV2640)

The OV2640FSL is an on-board camera sensor and lens module designed for mobile applications where
low power consumption and small size are of the utmost importance. The camera driver islocated under
the Linux V4L 2 architecture. It implements the V4L 2 capture interfaces.

Applications cannot use the camera driver directly. Instead, the applications use the V4L 2 capture driver
to open and close the camerafor preview and image capture, controlling the camera, getting images from
camera, and starting the camera preview.

21.1 Hardware Operation

The OV 2640FSL uses the serial camera control bus (SCCB) interface to control the sensor operation. It
works as an I%C client, and CSl interface of 1PU works as the 12C master, which uses 12C bus to control
camera's operation.

The CSl interface of IPU also provides the sensor clock to the camera when the camerais working so that
IPU can get image data from camera through CSl interface. The pixel clock, horizontal reference output
and vertical synchronization output generated from camera are used by CSI interface to get image data
from camera.

Refer to OV 2640 and OV 2640FSL datasheet to get more information on the sensor. Refer to the datasheet
for the platform to get more information on CSI and |PU.

21.2 Software Operation

The camera driver implements V4L 2 capture interface, and applications use V4L 2 capture interface to
operate the camera. The supported operations of V4L 2 capture are preview, capture stream mode, capture
still mode, rotation, and resize.

The supported picture formats are RGB565, RGB24, BGR24, RGB32, BGR32, YUV422P, UY VY, and
Y UV420.

21.3 Source Code Structure

Table 21-1 lists the camera driver source files availablein the
<l tib_dir>/rpm BUI LD | i nux-2.6.26/ drivers/medi a/ vi deo/ mxc/ capt ur e directory.

Table 21-1. Camera File List

File Description

ov2640. c camera driver implementation

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 21-1

OmniVision Camera Driver (OV2640)

21.4 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_MXC_CAMERA_0OV 2640, isprovided for themodule.
Thisis the configuration option for the OV 2640 cameradriver. In menuconfig, this option is available
under Device Drivers > Multimedia device > Video For Linux > Video Capture Adapter > MXC
Cameral/V4L 2 PRP Features support. This option is dependent on the
CONFIG_VIDEO_MXC_IPU_CAMERA option. By default, thisoptionis M.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

21-2 Freescale Semiconductor

Chapter 22
Advanced Linux Sound Architecture (ALSA) Sound Driver
with PMIC Hardware Support

This section explains the Advanced Linux Sound Architecture (ALSA) driver. Additional documentation
on AL SA can be found at www.al sa-project.org.
ALSA has the following components:

* ALSA utils (aplay. arecord, al sam xer)— open source utilitiesthat invoke APIs of the ALSA
user space library to access the kernel drivers and hardware.

* User space ALSA library (1 i basound)

» Kernel drivers— hardware abstractions that directly map to some hardware entity. Anything else
that can be donein software (such as resampling, mixing, snooping, and so on) is handled in user
space as plug-ins.

ALSA can work in the following modes:

* Native or ALSA mode in which the applications go through a user space library. Here the
applications do not perform operations on the device files directly.

* OSS emulation mode in which the kernel ALSA driver emulates OSS for al practical purposes.
OSS compatible applications can directly perform operations on the device files. In this case the
compatibility between OSS style and ALSA is completely handled by the ALSA middle layer.

ALSA provides following types of interfaces to user space:

* Operational interface through / dev/ snd/ (PCM components for capture and playback, control
components, MIDI devices, sequencer devices and atimer)

» Status and configuration interface through / pr oc/ asound

22.1 ALSA Features and Components

The sections below describe the AL SA sound driver as applicableto Linux platforms based on Freescale's
i.MX family of processors. This audio driver was ported to provide ALSA and OSS compatible
applications with the means to perform audio playback and recording functions using the audio
components provided by Freescale’s PMIC chips.
The operational interfaces exported through / dev/ snd/ in thisrelease of BSP are as follows:

* PCM interfaces for playback (2)

* PCM interface for recording (1)

» Control interface for mixer operations (1)

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 22-1

www.alsa-project.org

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

22.1.1 Current BSP Release Support

» 8KkHz through 96 kHz Stereo and Mono playback on / dev/ snd/ pcnmcobop in native mode and
/ dev/ sound/ dsp in OSS emulation mode

* 8KkHz and 16 kHz mono playback on / dev/ snd/ pcrcobD1p in native mode
* 8KkHz and 16 kHz mono recording on / dev/ snd/ pcncoboc in native mode

* Mixer operations to control input/output devices, playback/recording gains, balance and mono
adder configurationson / dev/ snd/ control CO

» Playback Stream Mixing, that is, mixing of two audio streams during playback. The audio driver
supports mixing of two audio streams. Mixing can be achieved in two ways:

— Analog Mixing —mixing the two streams in the analog domain after the DAC or the CODEC
that is, after the streams have been decoded and before being passed to the outpui.

— Digital Mixing —mixing thetwo streams (mono) before they are decoded when they arestill in
digital format. The two audio streams are mixed in the SSI and then the combined stream is
routed to the VCODEC for playback.

22.1.2 PCM Components

ALSA exportsPCM devices: pcmCO0DOp, pcmCO0DOc, pcmCOD1p, and pcmCOD2p (if mixing is enabl ed)
in/dev/snd and dsp and adsp in/ dev/ sound for OSS compatibility.)
* COindicates sound card O

* DOor D1indicates PCM device ID (There can be multiple PCM devices attached to one sound
card)

Please note that these device filesin/ dev/ snd and / dev/ sound map to the same hardware but are exported
differently as per ALSA native and OSS emulation requirements.

Each PCM component maps to PCM device in the kernel that can have one playback and one capture
stream. Each stream can have multiple substreams.

In cases where the audio chip supports four identical DACs, they can be represented as one playback
stream with four substreams and all ocating a substream upon device open is handled by the ALSA middle

layer.

22.1.3 Control Components

ALSA exports one control component in dev/ snd as controlCO. The same control can be reached in OSS
emulation mode with the help of /dev/mixer device.

Controls are registered with asound card as a linked list of Kcontr ol structures identified by index, name
and interface. These control components can be accessed with ani xer and al sani xer utilities. Currently
controls have been provided to vary playback volume, recording gain, playback balance, mono adder
configuration, output device selection and input device selection.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

22-2 Freescale Semiconductor

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

22.2 Hardware Operation

The ALSA sound driver provides interfaces between audio applications that run in user mode and the
hardware. The platform components that are used by the ALSA sound driver include the following:

» TheDigital Audio MUX —selectsthe path for transferring the digital audio stream to and from the
PMIC. Reconfiguring the Digital Audio MUX can direct adigital audio stream to either the Voice
CODEC or the Stereo DAC. The Digital Audio MUX can aso be used to select an audio stream
from either the ARM or DSP cores, but this feature is not currently implemented.

* TheDMA controller —transfersthe digital audio data between a user-supplied data buffer and the
Synchronous Serial Interface (SSI) FIFO while minimizing any additional CPU overhead. The
ALSA sound driver internally alocates and manages the DMA channels, aswell as handling all
DMA-related interrupt events.

» The SSI controller — transmits and receives digital audio data in conjunction with the PMIC. The
SSI can be configured to operate in master mode, and the PMIC in slave mode, or vice versa. The
difference isthat the master device generates appropriate clock signalsto control the flow of data.
Using the PMIC in master mode and the SSI in slave mode is recommended, because then the
PMIC can generate the necessary clock signals using its own on-board clock sources, without any
dependenciesor concerns about possible side-effects on other components that may be sharing the
same clock signal. Also PMIC generated clocks are more precise.

At least one SPI interface provides the ARM core with read/write access to the PMIC’s control registers.
In terms of the PMIC, the following audio-related components are configured and used by the OSS sound
driver:

* The Voice CODEC — Provides both playback and recording capabilities.

* The Stereo DAC — Provides a playback capability.
Various output devices and phantom ground circuits can be used to select and configure appropriate output

path. Various input devices and microphone bias circuits can be used to select and configure appropriate
input path.

The on-board PLL and clock source are used to generate appropriate clock signals for the SSI bus when
the PMIC is configured in master mode.
Gain settings for voice codec and stereo DAC:

» Baancegainto beappliedto L and R channels

* Mono adder configuration to keep L and R separate or added or phase inverted with respect to one
another

For the hardware connection on i.MX31 3-Stack board, only one SSI busis connected to PMIC audio
hardware. So Voice CODEC and Stereo DAC share one SSI bus. Thus audio recording and playback can
not be executed simultaneously.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 22-3

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

22.3 Software Operation

In brief, the software performs the following steps:

22.3.1 Initialization

Allocate sound card instance

Create two PCM devicesto support playback on ST-DAC (stereo DAC), playback on voice codec
and recording on voice codec

Pre allocate buffers for PCM components and set playback and capture operations as applicable
Initialize the control components
Enable clocks and power management functions

Finally, register the sound card with all added components with ALSA driver. At this point access
to all devicefilesisenabled

ALSA middlelayer expectsthefollowing ops (something like Linux fops) to beimplemented by the audio
chip abstraction layer

Open (Opensasubstream for playback or recording. Heregenerally the low level hardware devices
are also opened. ALSA aso assigns a substream for the required operation at this stage)

Close

IOCTL

Hardware params (Typically audio hardware configuration in terms of DMA is done over here)
Hardware free

Prepare (The low level audio chip, such as SSI and DAM are configured and made ready for
playback or recording)

Trigger (The operation is started for the first time over here. If the driver supports pause/resume
operation, it isimplemented as part of this function)

Pointer (This function is expected to return the current position of the DMA pointer)

22.3.2 Device Open

ALSA dlocates a free substream for the operation to be performed
Open the low level hardware device

Assign the hardware capabilitiesto AL SA runtimeinformation. (Runtime structure containsall the
hardware, DMA, software capabilities of an opened substream)

Configure DMA read or write channel for operation
Configure SSI and DAM hardware
Configure PMIC audio hardware

» Trigger the transfer
After triggering for the first time, the subsequent DMA reads and writes are configured by the DMA
callback.
i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5
22-4 Freescale Semiconductor

Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

22.3.3 Digital Mixing

Digital Mixing involves mixing the two streams by configuring SSI to use two channel mode so that data
is transmitted alternately from FIFO 0 and FIFO 1. One stream is written to TXFIFOO and other to
TXFIFOL. Sothetwo streamscan be mixed asthe SSI TX fetchesdataalternately from FIFO O and FIFO 1
in two channel mode. Thisis routed to VCODEC for playback.

22.4 Source Code Structure

Table 22-1 shows the PMIC-independent source files that are used to build the ALSA sound driver. In
addition, these source files define the audio features, capabilities, and sound card interface that isto be
supported by the underlying audio hardware. A particular sound card need not support all of the features
and capabilities that are defined and there are means available to query the underlying sound card driver
for exactly what is supported. All of the source files listed in Table 22-1 are available in the

<l tib_dir>/rpm BU LD | i nux- 2. 6. 26/ sound/ ar mdirectory in the Linux kernel sourcetree.

Table 22-1. PMIC Independent Source Files

File Description

mxc-al sa-pm c.c Main file that abstracts PMIC audio hardware from ALSA
and implements all ALSA callback functions

nmxc- al sa-m xer.c Implements and manages control components

nxc- al sa-common. h Common APIs and enums used between
mxc- al sa-pm c. c and nxc- al sa-m xer.c

nmxc-al sa-pmic. h Header File

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 22-5

A
Advanced Linux Sound Architecture (ALSA) Sound Driver with PMIC Hardware Support

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

22-6 Freescale Semiconductor

Chapter 23
Digital Audio Multiplexer (AUDMUX) Driver

The digital audio multiplexer (AUDMUX) driver provides multiple and simultaneous interfaces between
internal/external ports and peripherals. With AUDMUX, resources do not need to be hard-wired and can
be effectively shared in different configurations. The AUDMUX interconnections allow multiple,
simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint
configurations.

AUDMUX includes two types of interfaces. Internal ports connect to the processor serial interfaces and
external ports connect to off-chip audio devices and serial interfaces of other processors. A desired
connectivity is achieved by configuring the appropriate internal and external ports.

23.1 Hardware Operation

The Digital Audio Multiplexer (AUDMUX) Driver module configures and deals with the hardware
registers for the AUDMUX module.

* Atmost threeinternal ports

* Four external ports

» Full 6-wire SSl interfaces for asynchronous receive and transmit

» Configurable 4-wire (synchronous) or 6-wire (asynchronous) peripheral interfaces

* Independent Tx/Rx Frame sync and clock direction selection for host or peripheral

» Eachhost interface can be connected to any other host or peripheral interface in a point-to-point or
point-to-multipoint (network mode)

» Transmit and Receive Data switching to support external network mode
» CE Bus network mode to provide synchronous switching on RxD

For more information, see the chapter on Audio Multiplexer in the documentation for the multimedia
applications processor.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 23-1

Digital Audio Multiplexer (AUDMUX) Driver

23.2 Software Operation

The AUDMUX driver is a hardware abstraction located between its client (the audio driver) and the
multimedia applications processor registers. The purpose of thislow level API isonly to set and read
registers. Figure 23-1 shows the block diagram for AUDMUX driver interactions.

Audio driver

'
'

AUDMUX low level driver

Iy

MXC AUDMUX Hardware Registers

Figure 23-1. AUDMUX Driver Interactions

23.3 Requirements

The AUDMUX modul€'s implementation meets the following requirements:

The AUDMUX module implements each of the functions required by such a module to interface
to Linux and configure all hardware registers related to this module.

23.4 Source Code Structure

Table 23-1 lists the source files available in the device directory:

<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/mc/dam
Table 23-1. AUDMUX Source Files

File Description
dam h Header file providing external API
dam ¢ AUDMUX version 2 registers access implementation
damyvl.c AUDMUX version 1 registers access implementation

23.4.1 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_MXC_DAM isprovided for thismodule. In order to get
to the dam configuration, use the command . /1ti b -c when located in the <Itib dir>. In the screen, select
Configure Kernel, exit, and anew screen will appear.

This configuration option isfor the Digital Audio Multiplexer (AUDMUX) Driver. In menuconfig, this
option is available under Device Drivers > MXC support drivers > MXC Digital Audio Multiplexer
support > DAM support.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

23-2 Freescale Semiconductor

Digital Audio Multiplexer (AUDMUX) Driver

23.5 Programming Interface (Exported API)

The AUDMUX exported API allows the user to process standard AUDMUX operations.
Table 23-2. AUDMUX Exported Functions

Function

Description

dam sel ect _node()

This function selects the operation mode of the port.

dam sel ect _RxCl k_direction()

This function controls Receive clock signal direction
for the port.

dam sel ect _RxCl k_source()

This function controls Receive clock signal source for
the port.

dam sel ect _RxD _source()

This function selects the source port for the RxD data.

dam sel ect _RxFS_direction()

This function controls Receive Frame Sync signal
direction for the port.

dam sel ect _RxFS_source()

This function controls Receive Frame Sync signal
source for the port.

dam sel ect _TxCl k_direction()

This function controls Transmit clock signal direction
for the port.

dam sel ect _TxCl k_source()

This function controls Transmit clock signal source for
the port.

dam sel ect _TxFS_direction()

This function controls Transmit Frame Sync signal
direction for the port.

dam sel ect _TxFS_source()

This function controls Transmit Frame Sync signal
source for the port.

dam set _i nt ernal _net wor k_node_mask ()

This function sets a bit mask that selects the port from
which of the RxD signals are to be ANDed together
for internal network mode. Bit 6 represents RxD from
Port7 and bit0 represents RxD from Port1. 1 excludes
RxDn from ANDing. 0 includes RxDn for ANDing.

dam set _synchronous()

This function controls whether or not the port is in
synchronous mode. When the synchronous mode is
selected, the receive and the transmit sections use
common clock and frame sync signals. When the
synchronous mode is not selected, separate clock
and frame sync signals are used for the transmit and
the receive sections. The default value is the
synchronous mode selected.

dam swi t ch_Tx_Rx()

This function swaps transmit and receive signals from
(Da-TxD, Db-RxD) to (Da-RxD, Db-TxD). This default
signal configuration is Da-TxD, Db-RxD.

dam reset_register()

This function resets the two registers of the selected
port.

The exact description of this APl is available in the generated doxygen api _out put directory. The whole
API documentation, including internal functions, is available in the generated doxygen f ul | _out put
directory.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 23-3

Digital Audio Multiplexer (AUDMUX) Driver

23.6 Interrupt Requirements
No interrupts are generated by the digital audio multiplexer.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

23-4 Freescale Semiconductor

Chapter 24
Synchronous Serial Interface (SSI) Driver

The synchronous serial interface (SSI) driver manages afull-duplex serial port that allows the multimedia
applications processor to communicate with a variety of serial devices. These seria devices can be
standard CODECSs, digital signal processors (DSPs), microprocessors, peripherals, and popular industry
audio codecs that implement the inter-1C sound bus standard (12S) and Intel AC97 standard.

The SSI istypically used to transfer samples in a periodic manner. The SSI consists of independent
transmitter and receiver sectionswith independent clock generation and frame synchronization. It supports
the configuration of all SSI block registers.

24.1

Hardware Operation

SSI includes the following features:

Independent (asynchronous) or shared (synchronous) transmit and receive sections with separate
or shared internal/external clocks and frame syncs, operating in Master or Slave mode.

Normal mode operation using frame sync.

Network mode operation allowing multiple devices to share the port with as many as thirty-two
time slots.

Gated Clock mode operation requiring no frame sync.

Two sets of Transmit and Receive FIFOs. Each of the four FIFOs is 8x24 bits. The two sets of
Tx/Rx FIFOs can be used in Network mode to provide two independent channels for transmission
and reception.

Programmeable data interface modes such as 12S, LSB, MSB aligned.
Programmable word length (8, 10, 12, 16, 18, 20, 22, or 24 bits).
Program options for frame sync and clock generation.

Programmable | 2S modes (Master, Slave or Normal). Oversampling clock ccm ssi _cl k available
as output from SRCK in I2S Master mode.

AC97 support.

Completely separate clock and frame sync selections for the receive and transmit sections. In the
AC97 standard, the clock is taken from an external source and frame sync is generated internally.

External ccm ssi _cl k input for usein 12S Master mode. Programmable oversampling clock
(sys_cLk/ ccm ssi _cl k) of the sampling frequency available as output in master mode at SRCK,
when operated in sync mode.

Programmable internal clock divider.
Time Slot Mask Registers for reduced CPU overhead for both Tx and Rx.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 24-1

Synchronous Serial Interface (SSI) Driver

» SSI power-down feature.
* Programmable wait states for CPU accesses.
* |IPInterface for register accesses, compliant to SRS 3.0.2 standard.

For more information, see the chapter on SSI in the multimedia applications processor documentation.

24.2 Software Operation

The SSI driver is a hardware abstraction located between its client (Audio driver) and the multimedia
applications processor registers.

The purpose of thislow level API isonly to set and read registers. Figure 24-1 shows a block diagram of
the software interaction.

Audio driver

A

SSI low level driver

IOMux Control MXC SSI Hardware
Registers Registers

Figure 24-1. SSI Driver Interactions

24.3 Requirements

The SSI module implements each of the functions required by an SSI module to interface to Linux and
configure all hardware registers related to this module.

24.4 Source Code Structure

Table 24-1 lists the source files available in the device's directory:

<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/nmxc/ssi.
Table 24-1. SSI Source File List

File Description
registers.h MXC registers definition header file
ssi _types. h Header file providing SSI specific types
ssi.h Header file providing external API
ssi.c SSI registers access implementation

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

24-2 Freescale Semiconductor

Synchronous Serial Interface (SSI) Driver

24.41

The Linux kernel configuration option, CONFIG_MXC_SSI, is provided for this module. In order to get
to the ssi configuration, use the command . /1ti b -c when located in the <Itib dir>. In the screen, select
Configure Kernel, exit, and a new screen will appear.

Linux Menu Configuration Options

This configuration option is for the multimedia applications processor SSI driver used for the MXC SS|
ports. In nenuconf i g, thisoption is available under Device Drivers > MXC support drivers> MXC SS|
support > SS| support.

24.5 Programming Interface (Exported API)

The SSI Exported API allows the user to process standard SSI operations. The exact description of this
APl isavailablein the generated doxygen api _out put directory. Thewhole APl documentation, including
internal functions, is available in the generated doxygen f ul | _out put directory.

Table 24-2. SSI Exported Functions

Function

Description

ssi _ac97_frame_rate_di vi der ()

This function controls the AC97 frame rate divider.

ssi_ac97_get _comand_address_regi ster()

This function gets the AC97 command address
register.

ssi_ac97_get _command_dat a_regi ster()

This function gets the AC97 command data register.

ssi_ac97_get _tag_register()

This function gets the AC97 tag register.

ssi_ac97_node_enabl e()

This function controls the AC97 mode.

ssi_ac97_tag_in_fifo()

This function controls the AC97 tag in FIFO behavior.

ssi _ac97_read_conmand()

This function controls the AC97 read command.

ssi _ac97_set _command_address_regi ster ()

This function sets the AC97 command address
register.

ssi_ac97_set _comand_dat a_regi ster()

This function sets the AC97 command data register.

ssi_ac97_set _tag_register()

This function sets the AC97 tag register.

ssi_ac97_vari abl e_node ()

This function controls the AC97 variable mode.

ssi_ac97_write_conmmand()

This function controls the AC97 write command.

ssi_clock_idle_state()

This function controls the idle state of the transmit
clock port during SSI internal gated mode.

ssi_clock_of f()

This function turns off/on the ccm_ssi_clk to reduce
power consumption.

ssi _enabl e()

This function enables/disables the SSI module.

ssi _get _data()

This function gets the data word in the Receive FIFO
of the SSI module.

ssi_get _status()

This function returns the status of the SSI module
(SISR register) as a combination of status.

ssi _i 2s_node()

This function selects the 12S mode of the SSI module.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor

24-3

Synchronous Serial Interface (SSI) Driver

Table 24-2. SSI Exported Functions (Continued)

Function

Description

ssi _i nterrupt_di sabl e()

This function disables the interrupts of the SSI
module.

ssi _i nterrupt_enabl e()

This function enables the interrupts of the SSI
module.

ssi _net wor k_node()

This function enables/disables the network mode of
the SSI module.

ssi _receive_enabl e()

This function enables/disables the receive section of
the SSI module.

ssi _rx_bit0()

This function configures the SSI module to receive
data word at bit position 0 or 23 in the Receive shift
register.

ssi _rx_clock_direction()

This function controls the source of the clock signal
used to clock the Receive shift register.

ssi_rx_cl ock_divide_by_two()

This function configures the divide-by-two divider of
the SSI module for the receive section.

ssi _rx_clock_polarity()

This function controls which bit clock edge is used to
clock in data.

ssi_rx_cl ock_prescal er ()

This function configures a fixed divide-by-eight clock
pre-scaler divider of the SSI module in series with the
variable pre-scaler for the receive section.

ssi_rx_early_frane_sync()

This function controls the early frame sync
configuration.

ssi_rx_fifo_counter()

This function gets the number of data words in the
Receive FIFO.

ssi _rx_fifo_enable()

This function enables the Receive FIFO.

ssi_rx_fifo_full _watermark()

This function controls the threshold at which the RFFx
flag will be set.

ssi_rx_flush_fifo()

This function flushes the Receive FIFOs.

ssi_rx_frane_direction()

This function controls the direction of the Frame Sync
signal for the receive section.

ssi_rx_frame_rate()

This function configures the Receive frame rate
divider for the receive section.

ssi_rx_frame_sync_active()

This function controls the Frame Sync active polarity
for the receive section.

ssi _rx_frane_sync_Il ength()

This function controls the Frame Sync length (one
word or one bit long) for the receive section.

ssi _rx_mask_time_slot()

This function configures the time slot(s) to mask for
the receive section.

ssi _rx_prescal er _nmodul us()

This function configures the prescale divider for the
receive section.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

24-4

Freescale Semiconductor

Synchronous Serial Interface (SSI) Driver

Table 24-2. SSI Exported Functions (Continued)

Function

Description

ssi_rx_shift_direction()

This function controls whether the MSB or LSB will be
received first in a sample.

ssi _rx_word_|l ength()

This function configures the Receive word length.

ssi _set _data()

This function sets the data word in the Transmit FIFO
of the SSI module.

ssi_set_wait_states()

This function controls the number of wait states
between the core and SSI.

ssi _synchr onous_node()

This function enables/disables the synchronous
mode of the SSI module.

ssi _system cl ock()

This function allows the SSI module to output the
SYS_CLK at the SRCK port.

ssi _transmt _enabl e()

This function enables/disables the transmit section of
the SSI module.

ssi _two_channel _node()

This function allows the SSI module to operate in the
two channel mode.

ssi _tx_bit0()

This function configures the SSI module to transmit
data word from bit position 0 or 23 in the Transmit shift
register.

ssi _tx_clock_direction()

This function controls the direction of the clock signal
used to clock the Transmit shift register.

ssi_tx_cl ock_divide_by_two()

This function configures the divide-by-two divider of
the SSI module for the transmit section.

ssi _tx_clock_polarity()

This function controls which bit clock edge is used to
clock out data.

ssi _tx_cl ock_prescaler()

This function configures a fixed divide-by-eight clock
prescaler divider of the SSI module in series with the
variable prescaler for the transmit section.

ssi_tx_early_frame_sync()

This function controls the early frame sync
configuration for the transmit section.

ssi_tx_fifo_counter()

This function gets the number of data words in the
Transmit FIFO.

ssi_tx_fifo_enpty_watermark()

This function controls the threshold at which the TFEx
flag will be set.

ssi _tx_fifo_enable()

This function enables the Transmit FIFO.

ssi_tx_flush_fifo()

This function flushes the Transmit FIFOs.

ssi_tx_frane_direction()

This function controls the direction of the Frame Sync
signal for the transmit section.

ssi_tx_frame_rate()

This function configures the Transmit frame rate
divider.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor

24-5

Synchronous Serial Interface (SSI) Driver

Table 24-2. SSI Exported Functions (Continued)

Function

Description

ssi _tx_frane_sync_active()

This function controls the Frame Sync active polarity
for the transmit section.

ssi _tx_frane_sync_Il ength()

This function controls the Frame Sync length (one
word or one bit long) for the transmit section.

ssi _tx_mask_time_slot()

This function configures the time slot(s) to mask for
the transmit section.

ssi _tx_prescal er _nmodul us()

This function configures the prescale divider for the
transmit section.

ssi_tx_shift_direction()

This function controls whether the MSB or LSB will be
transmitted first in a sample.

ssi _tx_word_|l ength()

This function configures the Transmit word length.

24.6 Interrupt Requirements

The SSI module generates interrupts but this driver is only a hardware abstraction. The interrupt
requirements depend on the client which will use the API.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

24-6

Freescale Semiconductor

Chapter 25
NAND Flash Memory Technology Device (MTD) Driver

25.1 Overview

The NAND Flash Memory Technology Device (MTD) driver isfor theNAND Flash Controller (NFC) on
thei.M X series processor. For the NAND MTD driver to work, only the hardware specific layer hasto be
implemented. The rest of the functionality, such as Flash read/write/erase, is automatically taken care of
by the generic layer provided by the Linux MTD subsystem for NAND devices.

25.1.1 Hardware Operation

NAND Fash is a non-volatile storage device used for embedded systems. It does not support random
access of memory asin the case of RAM or NOR Flash. Reading or writing to NAND Flash hasto be
through the NFC in the i.M X processors. It uses a multiplexed 1/0 Interface with some additional control
pins. It isasequential access device appropriate for mass storage applications. Code stored on NAND
Flash can't be executed from there. It must be loaded into RAM memory and executed from there.

The NFC in the i.MX processors implements the interface to standard NAND Flash devices. It provides
accessto both 8-bit and 16-bit NAND Flash. The NAND Flash Control block of the NFC generates all the
control signalsthat control the NAND Flash.

The NFC hardware versions vary across i.MX platforms. For details, see Section 25.6, “ Device-Specific
Information.”

25.1.2 Software Operation

The MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of NOR and
NAND Flash devices. The MTD subsystem provides a unified and uniform access to the various memory
devices.
There are three layers of NAND MTD drivers:

e MTD driver

* Generic NAND driver

» Hardware specific driver

The MTD driver provides a mount point for the file system. It can support various file systems, such as
YAFFS2, UBIFS, CRAMFS and JFFS2.

The hardware specific driver interfaceswith theintegrated NFC on thei.MX processors. It implementsthe
lowest level operations on the external NAND Flash chip, such asread and write. It defines the static

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 25-1

NAND Flash Memory Technology Device (MTD) Driver

partitions and registers it to the kernel. This partition information is used by the upper filesystem layer. It
initializes the nand_chi p structure to be used by the generic layer.

The generic layer provides al functions, which are necessary to identify, read, write and erase NAND
Flash. It supports bad block management, because blocksinaNAND Flash are not guaranteed to be good.
The upper layer of the filesystem uses this feature of bad block management to manage the data on the
NAND Hash.

NAND MTD driver is part of the kernel image.

For detailed information on the NAND MTD driver architecture and the NAND API documentation refer
to http://www.linux-mtd.infradead.orgy/.

25.2 Requirements

ThisNAND Flash MTD driver implementation should meet the following requirements:
* Provide necessary hardware-specific information to the generic layer of the NAND MTD driver.
* Provide software Error Correction Code (ECC) support.
» Support both 16-bit and 8-bit NAND Flash
» Conform to the Linux coding standard.

25.3 Source Code Structure

Table 25-1 lists the source files available for the NAND MTD driver. These files are under the
<l tib_dir>/rpm BUI LD | i nux-2.6.26/drivers/ntd/nand directory.

Table 25-1. NAND MTD File List

File Description
mxc_nd. c Hardware-specific layer for NAND MTD driver for NFC version 1.
mxc_nd. h Register declaration for NFC version 1

mxc_nd2. ¢ | Hardware-specific layer for NAND MTD driver for NFC version 2 and above

mxc_nd2. h | Register declaration for NFC version 2 and above

25.4 Configuration

The NAND MTD driver has the following Linux menu configuration options.

25.4.1 Linux Menu Configuration Options

In themenuconfi g the following options are available under verory Technol ogy Device (MID) support ->
NAND Devi ce Support -> MXC NAND Support .

* CONFIG_MTD_NAND_MXC - Thisisthe configuration option for the NAND MTD driver for
thei.MX processors having NFC hardware version 1.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

25-2 Freescale Semiconductor

http://www.linux-mtd.infradead.org/

NAND Flash Memory Technology Device (MTD) Driver

* CONFIG_MTD_NAND_MXC V2 - Thisisthe configuration option for the NAND MTD driver
for thei.M X processors having NFC hardware version 2.

25.5 Programming Interface

The generic NAND driver nand_base. ¢ provides all functionsthat are necessary to identify, read, write,

and erase NAND Flash. The hardware-dependent functions are provided by the hardware driver

mxc_nd. ¢/ mc_nd2. ¢ depending on the NFC version. It mainly provides the hardware access information

and functions for the generic NAND driver.

Refer to the API documents for the programming interface.

25.6 Device-Specific Information

For moreinformation on NFC hardware, refer to the L3 specifications of i.MX processors.Table 25-2 lists
the NFC hardware version on different i.MX platforms.

Table 25-2. NFC Hardware Version across i.MX platforms

NFC
Version

Platforms/SoC

1

i.MX31

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor

25-3

A ——
NAND Flash Memory Technology Device (MTD) Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

25-4 Freescale Semiconductor

Chapter 26
Low-Level Keypad Driver

The low-level keypad driver interfaces with the keypad port hardware (KPP) in the i.MX application
processors. The keypad driver isimplemented as a standard Linux 2.6 keyboard driver, modified for the
i.MX application processors.
The keypad driver supports the following features:

* Interrupt-driven scan code generation for keypress and release on a keypad matrix.

* Thekeypad is supported as a standard input device.

The keypad driver can be accessed through the/ dev/ i nput / event 0 devicefile. The numbering of the event
node depends on whether the other input devices are loaded or not.

26.1 Hardware Operation

Thei.MX application processors keypad device supports a keypad matrix with as many as 8 rows and 8
columns. Any pinsthat are not being used for the keypad are available as general purpose input/output
pins.

The keypad port interfaces with akeypad matrix. On akeypress, the intersecting row and column lines are
shorted together. The keypad has two mode of operation, Run mode and L ow Power mode. In both modes
the KPP detects any key press event, but in Low power mode it is done even when thereisno MCU clock.

26.2 Software Operation

The keypad driver generates scan-codes for keypress and rel ease on the keypad matrix. The operation is
asfollows:

1. When akey is pressed on the keypad, the keypad interrupt handler is called.

2. Inthekeypad interrupt handler, the mxc_kpp_scan_mat ri x function is called to scan for
keypresses and rel eases.

3. The keypad scan timer function is called every 10ms to scan for any keypress or release on the
keypad.

4. Thescancodefor the keypressor releaseisgenerated by thenxc_kpp_scan_mat ri x function.

5. The generated scancodes are converted to input device keycodesusing themxckpd_keycodes
array.
Every keypress or release follows the debounce state machine which is shown in Figure 26-1. The
mxc_kpp_scan_mat ri x functioniscalled for every keypress and release interrupt.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 26-1

Low-Level Keypad Driver

K State First Down

Data=0
Add Down Event

Data=1

Add Up Event
Data=1

Figure 26-1. Keypad Driver State Machine

The keypad driver registers the input device structure within the __i ni t function by calling
i nput _regi st er_devi ce(&mxckbd_dev) .

The driver setsinput bit fields and conveys to other parts of the input systems all the events that can be
generated by this input device. The keypad driver can generate only Ev_key type events. This can be
indicated using __set _bit (EV_KEY, mxckbd_dev. evbit) .

The keypress keycodes are reported by calling i nput _event () . The reported key press/release events are
passed to the event interface (/ dev/i nput / event 0). This event interface is created when the evdev. ¢
executable, located in <I ti b_dir>/rpm BUI LD/ | i nux-2. 6. 26/ dri vers/input, IScompiled. The event
interface is a generic input event interface. It passes the events generated in the kernel to the user space
with timestamps. Blocking reads and non-blocking reads and also sel ect () can be done on

/dev/i nput/eventO.

The structure of i nput _event isasfollows:

struct input_event {
struct timeval tine;
unsi gned short type;
unsi gned short code;
unsi gned int val ue;

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

26-2 Freescale Semiconductor

Low-Level Keypad Driver

where:
* ‘time isthetimestamp at which the key event happened,
* ‘code i.MX keycode for keypress or release,
* ‘value' equals O for key releaseand ‘1’ for key press.
The functions mentioned in this section are implemented as a low-level interface between the Linux OS
and the KPP hardware. They cannot be called from other drivers or from a user application.
The keypress and release scancodes can be derived using the following formula,

scancode (press)
scancode (rel ease)

(row x 8) + col;
(row x 8) + col + 128;

Refer to the Device-Specific Information section Table 26-3 for mapcodes and scancodes.

26.3 Reassigning Keycodes

The keypad driver takes advantage of the input subsystem'’s ability to remap keycodes. A user space
application can use the EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on the device node (for
example/ dev/ i nput/ event 0) to get and set keycodes. Applications such as keyfuzz and input-kbd (from
the input-utils package) use these ioctls which the input subsystem handles. See the kernel
Documentati on/i nput/input-programming.txt for details on remapping codes.

26.4 Requirements

The keypad driver meets the following requirements:
* Rreturnstheinput keycode for every key that is pressed or released.
* Implements support for an interrupt driver for keypress or release.
» Implements support for blocking and non-blocking reads.
* Isimplemented as a standard input device.

26.5 Source Code Structure

The source filesare availableinthe <i ti b_di r>/ rpm BUI LD/ | i nux-2. 6. 26/ dri vers/ i nput/keyboar d
directory, the<i tib_dir>/rpnf BU LD/ | i nux-2. 6. 26/ i ncl ude/ | i nux directory, and the

<l tib_dir>/rpm BUI LD | i nux-2. 6. 26/ ar ch/ ar mf mach- mx* directorieswhere* isthe platform desired. Itis
3fori.MX31.

The source code is comprised of the following files:

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 26-3

Low-Level Keypad Driver

Table 26-1. Source Code

File Description

driversinput/keyboard/mxc_keyb.c |low-level driver implementation

drivers/input/keyboard/mxc_keyb.h | driver structures, control register
address definitions

include/linux/input.h generic Linux keycode
definitions

arch/arm/mach-mx3/mx3_3stack.c | contains the platform-specific
keymapping[] keycode array

26.6 Driver Configuration

The following Linux kernel configuration options are provided for this module. To get to these options,
usethe./Itib -c command when located inthe<itib dir>. On the screen displayed, select Configure
the Kernel and exit. When the next screen appears, select the following options to enable this module:

* CONFIG_MXC_KEYBOARD—MXC Keypad driver used for the MXC Keypad port (KPP). In
menuconf i g this option is available under
Devi ce Drivers -> Input device support -> Keyboards -> MXC Keypad Driver.

* CONFIG_INPUT_EVDEV—Enabling this option createsthe devicenode / dev/i nput/ event 0. In
menuconfi g, thisoptionisavailable under
Devi ce Drivers-> Input device support-> Event interface.
The following source code configuration options are available for this module:

» Matrix config: The keypad matrix can be configured for up to 8 rows and 8 columns. The keypad
matrix configuration can be done by changing the r owmax and col max membersin the
keypad_pl at _dat a Structure in the platform specific file (see Table 26-1).

» Debounce delay: The user can configure the debounce delay by changing the variable
KScanRat e defined in nxc_keyb. ¢

26.7 Programming Interface

User space applications can get information about the keypad driver through the standard proc and sysfs
filessuch as / proc/ bus/i nput / devi ces and the filesunder /sys/ cl ass/i nput/event 0/ .

26.8 Interrupt Requirements
Table 26-2 lists the keypad interrupt timer requirements.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

26-4 Freescale Semiconductor

Low-Level Keypad Driver

Table 26-2. Keypad Interrupt Timer Requirements

Parameter Equation Typical Worst-Case
Key scanning interrupt (X number of instruction/MHz) X 64 (X/MHz) X 64 (X/MHz) X 64
Alarm for key polling None 10 msec 10 msec

26.9 Device-Specific Information

Table 26-3 shows key connections, key scancodes, and key mapcodes of the keys on the keypad for a
specific platform.

Table 26-3. Key Connections for Keypad

Key Row Column Scancode Linux Key Code Platform
upP 0 0 0 KEY_UP i.MX31 3-stack
DOWN 0 1 1 KEY_DOWN i.MX31 3-stack
RIGHT 1 0 8 KEY_RIGHT i.MX31 3-stack
LEFT 1 1 9 KEY_LEFT i.MX31 3-stack
ENTER 1 2 10 KEY_ENTER i.MX31 3-stack
MENU1 2 0 16 KEY_F6 (APP1) i.MX31 3-stack
MENU2 2 1 17 KEY_F8 (APP2) i.MX31 3-stack
MENU3 2 2 18 KEY_F9 (APP3) i.MX31 3-stack
MENU4 2 3 19 KEY_F10 (APP4) i.MX31 3-stack

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 26-5

Low-Level Keypad Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

26-6 Freescale Semiconductor

Chapter 27
SMSC LAN9217 Ethernet Driver

The SMSC LAN9217 Ethernet driver interfaces SMSC LAN9217-specific functions with the standard
Linux kernel network module. The LAN9217 is afull-featured, single-chip 10/100 Ethernet controller
designed for embedded applications where performance, flexibility, ease of integration, and system cost
control arerequired. The LAN9217 has been specifically architected to provide the highest performance
possible for any 16-bit application. The LAN9217 isfully IEEE 802.3 10BASE-T and 802.3
100BASE-TX compliant, and supports HP Auto-MDI X.

The SMSC LAN9217 Ethernet driver has the following features:
» Efficient PacketPage Architecture can operate in 1/0 and memory space, and asaDMA save.
» Supports full duplex operation.
» Supports on-chip RAM buffers for transmission and reception of frames.

» Supports programmable transmit features like automatic retransmission on col lision and automatic
CRC generation.

» EEPROM support for configuration.
* Supports MAC address setting.
» Supports obtaining statistics from the device, such as transmit collisions.
This network adapter can be accessed through thei f confi g command with interface name (et ho). The

probe function of thisdriver isdeclared in<i tib_di r>/rpm BU LD/ | i nux- 2. 6. 26/ dri ver s/ net/ Space. ¢ tO
probe for the device and to initialize it during boot.

27.1 Hardware Operation

The SMSC LAN9217 Ethernet controller interfaces the system to the LAN network.

A brief overview of the device functionality is provided here. For details, see LAN9217 Ethernet
Controller Data Sheet.

The LAN9217 includes an integrated Ethernet MAC and PHY with a high-performance SRAM-like dave
interface. The smple, yet highly functional host bus interface provides glue-less connection to most
common 16-bit microprocessors and microcontrollers as well as 32-bit microprocessors with a 16-bit
external bus. The LAN9217 includeslarge transmit and receive data FI FOs to accommodate high latency
applications. In addition, the LAN9217 memory buffer architecture allows the most efficient use of
memory resources by optimizing packet granularity.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 27-1

SMSC LAN9217 Ethernet Driver

27.2 Software Operation

The SMSC LAN9217 Ethernet Driver has the functions listed below.
* Module initialization—Initializes the modul e with the device specific structure
» Driver entry points—Provides standard entry points for transmission
* Interrupt servicing routine
* Miscellaneous routines—Setting and programming MAC address

27.3 Requirements

The Ethernet driver meets the following requirements:
* Themodule provides all the entry points to interface with the Linux kernel 2.6 net module.

» This Ethernet driver implements the default data configuration function to set the MAC address
and interface mediaused in case of EEPROM failure.

» Thismodule follows Linux kernel coding style by Linus Torvalds. Thisisincluded in Linux
distributions as the file Documentation/CodingStyle.

27.4 Source Code Structure

Table 27-1 lists the source files available in the <i ti b_di r>/r pm BUI LDV | i nux- 2. 6. 26/ dr i ver s/ net
directory:

Table 27-1. Ethernet File List

File Description
smsc911x. h Header file defining registers.
snmsc911x. c Linux driver for Ethernet LAN controller.

27.5 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_SMSC911X, is provided for thismodule. Thisisthe
Ethernet driver used for the SMSC LAN9117 chip. In menuconfi g, this option is located under

Device Drivers -> Network Device Support -> Ethernet 10 or 100 Mt -> SMSC LAN911x/LAN921x
fam |ies enbedded ethernet support.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

27-2 Freescale Semiconductor

Chapter 28
WLAN Driver

The APM6628 is afull-featured Wi-Fi 802.11b/g and Bluetooth v2.0+EDR combo module that
simultaneously provides Wi-Fi and Bluetooth connections.

The WLAN driver isused to drivethe APM 6628 modul e to implement Wi-Fi functionality. The APM 6628
module adopts the CSR UniFi V5 solution. The UniFi chip is connected to SDHC2 controller of i.MX31.

The UniFi driver implementsthe Wi-Fi module of the APM6628. Thisdriver provides accessto anetwork
using an access point (AP), which is a standard Ethernet interface in Linux. The user level tools
communicate with the UniFi driver using the Linux Wireless Extension. The user can use the Linux
Wireless Tools (WT) to configure Wi-Fi.

28.1 Hardware Operation

The APM 6628 provides the Wi-Fi functionality needed to interface the system to a LAN network. In the
I.MX31 3-Stack board, it isinterfaced to the i.MX application processor through SDHC controller. The
SDHC port is SDHC2.

28.1.1 Register Access

The APM 6628 accesses its registers using two methods: SDIO and SPI. Thei.MX boards use SDIO to
access the APM 6628 with the CM D52 command channel and the CM D53 data channel as follows:

» For APM6628 register access, the driver uses the CM D52 access to each of the on-chip registers
and memory locations directly.

» For APM 6628 data access, the driver usesthe CMD53 to transfer blocks of datadirectly to or from
the on-chip MMU buffers.

28.1.2 Transmission
The driver uses the CMD52/53 to transfer packets to the device.

28.1.3 Reception

The driver uses the CMD52/53 to receive packets from the device.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 28-1

WLAN Driver

28.1.4 Encryption and Decryption

There are two phases of encryption or decryption. Inthefirst phase, the driver uses CMD52/53 to transmit
original datato the device. Inthe second phase, the driver uses CMD52/53 to read back the data which has

been transmitted.

Figure 28-1 illustrates system architecture.

Figure 28-1. Wi-Fi System Architecture

2,4GHz RF IN/OUT 4—| Radio

Host
Interface <_:>

sSDIO

UniFi-1 Portable b/g System Architecture

MAC
Accelerator
OFDM
Modem
MUX
MMU
CCK
Modem
Encryption
Accelerator
MAC PHY
MCU MCU
Shared
RAM
RAM RAM J
XTAL

28.1.5 Conflicts with other Peripherals

Wi-Fi shares one reset pin with the Bluetooth module in the i.MX31 3-Stack board. Normally, the Wi-Fi
module starts prior to the Bluetooth module, and resets the entire APM 6628 chip upon startup.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

GPIO

28-2

Freescale Semiconductor

WLAN Driver
28.2 Software Operation

The CSR UniFi driver implements the Wi-Fi module of the APM6628. This driver provides accessto a
network using an access point (AP), which simulates a standard Ethernet interface in Linux. The software

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 28-3

WLAN Driver

operates the Wi-Fi device using Linux Wireless Extension, and configures Wi-Fi using Linux Wireless
Tools (WT). Figure 28-2 illustrates the software architecture.

Figure 28-2. Software Architecture

Linux Network config scripts and |
‘Applications IWGonfig
IWConfig
Linux Net_device Wireless
Extensions
Linioe/Wireless Exlensions Driver
Upper Edge Interface . o
UniFi Signal Structures

Abstraction
APl

Lower Edge Interface

Freescale-SCIC-driver AP

MAMIC Core / 5DIO Core

Qscaﬂe: 5 host D

~ SDID Cantrolar
 Hardwere

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

28-4

Freescale Semiconductor

WLAN Driver

The main component is the miniport driver. The driver provides the means to configure the UniFi device
for connecting to awireless network to send and receive data. A suitable wireless client, such as Microsoft
Wireless Zero Configuration can:

» Actively scan for wireless networks in the local area.

» Connect to an unsecured or WEP-enabled infrastructure or ad-hoc network.
» Connect to WPA-enabled networks using pre-shared key (PSK).

» Start an unsecured or WEP-enabled ad-hoc network (IBSS).

The device driver conforms to the following:

» TheNDIS5.1 specification (defined by the IEEE 802.11 Network Adapter Design Guidelines for
Windows XP) for integration into the Windows operating system.

* The UniFi Host Interface Protocol Specification for the exchange of signa primitives with the
UniFi WLAN card.

» Network connections are set up using awireless LAN client. The client issues a set of NDIS
defined 802.11 Ol Dsto the miniport driver so that it can configure the UniFi device appropriately.
28.3 Configuration

There are two configurations: kernel configuration and WPA configuration.

28.3.1 Linux Configuration

The following Linux kernel configuration options are provided for the driver:
* Networking > Wireless> Generic | EEE 802.11 Networking Stack
* Networking > Wireless > Wireless extensions

Select these options for wireless support. By default, these options are enabled for al architectures.

28.3.2 WPA Configuration

The following configurations are provided for the WPA supplicant:

CONFI G W RELESS_EXTENSI ON=y
CONFI G_| EEE8021X_EAPOL=y
CONFI G_EAP_PSK=y

CONFI G_CTRL_| FACE=y

CONFI G_L2_PACKET=l i nux

28.4 Programming Interface

The Freescale SDI O structure exports an interface to get the mmc_host structure pointer to the UniFi driver.
The UniFi driver uses this structure to issue the process of discovery of the SDIO card, and adds code to
enable or disable the power supply.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 28-5

|
WLAN Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

28-6 Freescale Semiconductor

Chapter 29
Security Drivers

The security drivers provide several APIsthat facilitate accessto various security featuresin the processor.
The secure controller (SCC) consistsof two modules, a secure RAM modul e and asecure monitor module.
The SCC's key encryption module (KEM) has a security feature of storing encrypted datain the on-chip
RAM (Red data = plain text, Black data = encrypted), with atotal size of 2 kBytes. Thismoduleis needed
in cases where data must be stored securely in external memory in encrypted form. This module has a
feature of clearing the secure RAM during intrusion. The system also includes:

* Random Number Generator (RNGA), which generates random numbers
* Run-Time Integrity Checker (RTIC), which hashes the data during run-time

The security design covers the following modules:
* Boot Security
» SCC (Secure RAM, Secure Monitor)
» Algorithm Integrity Checker
» Security Timer
» Key Encryption Module (KEM), Zeroization module
* RNGA
« RTIC

29.1 Hardware Security Modules

The platform has several different security blocks, and the details of the individual blocks are mentioned
in the following sections.

29.1.1 Boot Security

During boot, the boot pins must be set to enable the processor to boot internally. The SCC module must
be enabled by blowing specific fuses. By booting in this manner, the datain the Flash (kernel image) can
be assured of integrity. Any violation in the dataintegrity raises an alarm.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-1

Security Drivers

29.1.2 SCC-Secure RAM

Figure 29-1 shows the SCC-Secure RAM and its modules. Individual modules are described in the
following sections.

, Security Key Key
Security Key | > Security Key
Interface
Inhibit Key «
Key Siuck | =
-t == Y ' ' =
) , Er0IZE Fall
Security Monitor | [zeroize Done
& TAternar Error
[Tleqal Access
[Er0IZE -
Block Access -
g [ONE |
s , Secure
Beag o —m= Memory KEM
Vrite =1 Controller Start
Bus Interface Addr - [Params ™|
Din] nit vec
- =
<« RQ
TA
: TEA
Dot
l———————
E
| m L=]
= = b b
2 g 3 32
Din
— P . KEM Din
Dout | Zeroizable
et Memory =g KEM Dout
Clock ol
-

Figure 29-1. Secure RAM Block Diagram

29.1.3 SCC—Key Encryption Module (KEM)

The key encryption module (KEM) uses the 3DES a gorithm and a 168-bit key for encryption of data. The
key isprogrammed during manufacture and isaccessible only to the encryption module. It isnot accessible
on any bus external to the secure memory module. The datain the external RAM is stored in an encrypted
format. The datais encrypted using 3DES algorithm so that it can be decoded only using the SCC module.

29.1.4 SCC—Zeroizable Memory

The memory module can be multiplexed in and out of the RAM to allow the memory controller to switch
paths according to the Secure RAM state and the host read and write accesses. When zeroing sections of
memory, only the memory controller has access. When encrypting or decrypting, only the KEM module

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-2 Freescale Semiconductor

Security Drivers

has access. When the Secure RAM isin the Idle state, then the host can access the memory. The Zeroize
Donesignal isalso used to reset the encryption modul e and the memory controller. Whilethe Zeroize Done
signal islow, any attempted access by the host isignored. When the Zeroize signal is asserted, or when the
Zeroize Memory bit in the Interrupt Control register is set, not only isthe Red and Black memory
initialized, but most of theregistersarealso reset. The Red Start, Black Start, Length, Control, Error Status,
Init Vector O, and Init Vector 1 registers are cleared. The encryption engine is also reset. The Zeroization
takes place whenever there isa security violation like external busintrusion. The Red and Black memory
areais usually cleared during system boot-up.

29.1.5 SCC—Security Key Interface Module

The Security Key Interface module uses a 168-bit encryption key. The physical structures for the
encryption key reside elsewhere. The Secret Key Interface contains a key mux to select between the
encryption key and the default key and test the logic to determine the validity of the encryption key. Inthe
Secure state the encryption key is used. In the Non-Secure state, the default key prevents unauthorized
access to SCC-encrypted data and is useful for test purposes.

29.1.6 SCC—Secure Memory Controller

The Secure Memory controller implements an internal datahandler that movesdatain and out of the KEM,
amemory clear function, and all of the supervisor-accessible Control and Status registers.

29.1.7 SCC—Security Monitor

The Security Monitor (SMN) is acritical component of security assurance for the platform. Specifically,
it determines when and how Secure RAM resources are available to the system, and it also provides
mechanisms for verifying software algorithm integrity. This block ensures that the system is running in
such amanner as to provide protection for the sensitive data that isresident in the SCC. The Security
Monitor consists of five main sub-blocks: The Secure State Controller, the Security Policy, the Algorithm
Integrity Checker (A1C), the Security Timer, and the Debug Detector.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-3

Security Drivers

Figure 29-2 shows a block diagram of the SMN.

To Secure RAM

!

Secure RAM Interface
[|

Security
Policy Debug]
Detector [-
il m
AIC T o
Q@
\ Secure D' | e
ity o .
State |=eme| SECUY — | Debug/
Controller Timer = | Test Signals
A)
L
il

Figure 29-2. Security Monitor Block Diagram

29.1.8 SCC—Secure State Controller
The Secure State Controller, shown in Figure 29-3, is a state machine that controls the security states of

the chip.

System Reset

External
Boot
Internal
Boot
Zeroize' Security Policy Error or Scan Exit
RAM Timer Error or
AIC Error ar Software Alarm or
Debug Active Timer Stop or Tamper
Detection.

Scan Exit or
Security Policy
Error or SW Alarm

AIC or Timer Ermror
or Debug Aclive or
Timer Stop

Scan Exit or
Errors or
Software Alarm

Security Policy Error or Software Alarm or Scan Exit

Figure 29-3. Secure State Controller State Diagram

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-4

Freescale Semiconductor

Security Drivers

29.1.9 SCC—Security Policy

The Security Policy block uses state information from the Secure State Controller along with inputs from
the Secure RAM to determine what access to the Secure RAM is allowed based on the policy table, which
isavailablein the corresponding platform’s L3 specification document.

29.1.10 SCC—Algorithm Integrity Checker (AIC)

The Algorithm Integrity Checker (A1C) isused in conjunction with software to provide assurance that
critical software (such as a software encryption algorithm) operates correctly. It isalso an integral part of
the power-up procedure as it must be used to achieve a secure state.

29.1.11 SCC—Secure Timer

The Secure Timer isa32-bit programmabletimer. It isused in conjunction with the Secure State Controller
during power-up to ensure that the transition to the Secure state happensin the appropriate amount of time.
After power-up, the timer can be used as awatchdog timer for any time-critical routines or algorithms. If
thetimer is allowed to expire, it generates an error.

29.1.12 SCC—Debug Detector

The debug detector monitors the various debug and test signals and informs the status to the Secure state
controller. The secure state controller gets an alert when debug modes, such as JTAG and scan are active.
The debug detector status register can be read by the host processor to determine which debug signalsare
currently active. Refer to the SCC section in the corresponding platform’s L3 spec of the hardware
documentation for more information on the SCC-Debug Detector.

29.1.13 Random Number Generator Accelerator (RNGA)

The RNGA module is used to generate 32-bit random numbers. This module is designed to comply with
the FIPS-140 standards for randomness and non-determinism. The random bits are generated by clocking
shift registers with clocks derived from ring oscillators. The configuration of the shift registers ensures
statistically good data (that is, data that |ooks random). The oscillators, with their unknown frequencies,
provide the required entropy needed to create random data. There are different modes of operation of the
RNGA:

* Normal Mode
» SecureMode
* Verification Mode
* Oscillator Frequency Test Mode
* Sleep Mode
» Scan Mode
These modes can be achieved by setting appropriate bitsin the RNGA set of registers. Secure Modeis

functionally equivalent to normal mode. It is provided for applications requiring higher assurance. For
details about how to enter the different modes, refer to the RNGA chapter in the |C documentation.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-5

Security Drivers

29.1.13.1 Run-Time Integrity Checker (RTIC)

RTIC is used to ensure the integrity of the peripheral memory contents and to assist with boot
authentication. This module has the ability to check the memory contents during system boot and during
run-time execution. If the memory contents at run-time fail to match the hash signature, an error in the
security monitor istriggered. The RTIC communicates over two interfaces: the IP Skyblue (slave) and
AHB-Lite (master). The IP-dave interface is used to read/write to the RTIC address space. The RTIC
containsa DMA controller to perform reads of the peripheral memory block(s) on the AHB bus. For more
information about the RTIC, refer to the RTIC chapter in the appropriate platform’s L3 spec.

29.2 Software Security Modules

Besides the hardware security modules, there is optional, specialized software that helpsto deliver
security. Thisincludes the RNGA (Random Number Generator) and the RTIC (Run-Time Integrity
Checker) modules.

29.21 SCC Common Software Operations

The SCC driver isonly available to other kernel modules. That is, thereisno nodefilein/ dev. Thus, it
is not possible for a user-mode program to access the driver, and it is not possible for a user program to
access the device directly.

With the exception of scc_monitor_security_failure(), all routines are synchronous, which meansthey will
not return to their caller until the requested action completes, or failsto complete. Some of these functions
could take some time to perform, depending upon the request.
Routines are provided to:

* Encrypt or decrypt secrets—scc_crypt ()

» Trigger a security-violation alarm—scc_set _sw_al ar n{()

» Get configuration and version information—scc_get _confi gurati on()

e Zero areas of Memory—scc_zer oi ze_nmenori es()

* Work on wrapped and stored secret values—scc_al | oc_sl ot (), scc_deal | oc_sl ot (),
scc_l oad_sl ot (), scc_decrypt_slot(),scc_encrypt_slot(), and scc_get _slot _info()

* Monitor the Security Failure darm—scc_noni tor _security_fail ure()
* Stop monitoring Security Failure alarm—scc_st op_noni tori ng_security_failure()
* Writeregisters of the SCC—scc_write_register()
* Read registers of the SCC—scc_read_regi ster()
The driver does not allow storage of datain either the Red or Black memories. Any decrypted information

isreturned to the user. If the user wants to use the information at a later point, the encrypted form must
again be passed to the driver, and it must be decrypted again.

The SCC encryptsand decryptsusing Triple DESwith aninternally stored key. When the SCCisin Secure
mode, it uses its secret, unique-per-chip key. When it isin Non-Secure mode, it uses a default key. This
ensures that secrets stay secret if the SCC is not in Secure mode.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-6 Freescale Semiconductor

Security Drivers

Not all functions that could be provided in a'high level' manner have been implemented. Among the
missing areinterfacesto the ASC/AIC components and the timer functions. These and other features must
be accessed through scc_read register() and scc_write_register(), using the #define values provided.

29.2.2 Random Number Generator Accelerator (RNGA)

* TheFSL SW API isprovided in both user mode and kernel mode.

» Blocking calls and callback and non-callback non-blocking support are provided.

» Random number support alows the generation of an arbitrary number of bytes of random data, as
well asthe addition of additional entropy to the hardware random number generator.

* Noother cryptographic functions (hashing, symmetric encryption, and so on) are supported by this
driver.

» Thereisadebug-only interface to read/write RNG registers.

29.2.3 Run-Time Integrity Checker (RTIC)

The Run-Time Integrity Checker is intended to serve as a Hash accelerator. It has the ability to verify the
memory contents during system boot (Hash-Once) and during run time (Run-Time) execution. The
contents of both contiguous and non-contiguous memory blocks can be checked using the RTIC module.

The following APIs can be used to access RTIC module:

* rtic_configure_mode—Configures the mode of operation of the RTIC; that is, Run-Time or
Hash-Once. The parameter specifying which memory blocks need to be enabled must also be
passed; that is, Memory A,B,C,D. RTIC does not support enabling multiple memory blocks that
are not grouped together (that is, you cannot enable only memory blocks A and C without enabling
memory B).

* rtic_start_hash—Starts the hashing process of either Run-Time or Hash-Once. If the Run-Time
mode is selected then Run-Time memory registers need to be enabled before the start of hashing
or vice-versa.

* rtic_configure_mem_blk—Enables the configuration of the start address and block length of the
memory content to be hashed. Start address indicates the starting location from where the datain
the memory is to be hashed. The start address and block length should be aligned to a 4-byte
boundary. The number of blocksthat need to be hashed isloaded in the block count register. There
arefour memory blocksavailable. The user can configure any one of these four memory blocks by
passing their appropriate address and block length to be hashed.

* rtic_hash_result—Reads the 160-bit hash result from the RTIC memory blocks A, B, C, D Hash
Result Register.

* rtic_get status—Reads the status register of the RTIC.

* rtic_get_control—Reads the control register of the RTIC.

* rtic_configure_interrupt—Enables or disables the interrupt for the RTIC module.
* rtic_get faultaddress—Reads the fault address register of the RTIC.

If the RTIC is selected for non-interrupt based configuration (polling mode), then other operations are
blocked during hashing until the hashing is done. If the RTIC isin HASH ONCE mode, it becomesidle

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-7

Security Drivers

after hashing isdone. If RTICisin RUN TIME CHECK mode, the RTIC Control register cannot be
changed while the RTIC is busy. Thus, the Suspend and Resume functions are not implemented in RUN
TIME CHECK mode.

29.3 Requirements

Requirements for SCC:

SCC provides aninterface to check whether the SCC fuseis blown or not (SCC Disabled/Enabl ed).

It provides interface to configure the Red & Black memory area addresses and number of blocks
to be encrypted/decrypted.

SCC provides an interface to load the data to be encrypted.

SCC provides an interface to load the data to be decrypted.

SCC provides an interface to start the Ciphering mechanism.

SCC provides an interface to report back the status of the KEM module.

SCC provides an interface to zero blocks in the Red/Black memory area.

SCC provides an interface to check for the boot type, that is, Internal or External.

SCC provides an interface to raise a software alarm.

SCC provides an interface to report back the status of the Zeroize module.

SCC provides an interface to configure the AIC’s start and end algorithm sequence number.
SCC provides an interface to check the sequence of the algorithm.

SCC provides an interface to find the next sequence number given the current sequence number.
SCC provides an interface to configure the Security Timer.

SCC provides an interface to report back the status of the Security Timer module.

Requirements for RNGA:

Provides an interface to configure the RNGA module.

Provides an interface to enter the initial seed number to the RNGA module.
Provides an interface to read the random number generated from the RNGA module.
Provides an interface to report back the status of the RNGA module.

Requirements for RTIC:

Provides an interface to configure the RTIC module.

Provides an interface to data during run-time mode.

Provides an interface to hash data during one-time mode.

Provides an interface to report back the status of the RTIC module.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-8

Freescale Semiconductor

Security Drivers

29.4 Source Code Structure

This section contains the various files that implement the Security modules. Table 29-1 lists the headers
and some source files associated with the security driver.

* The C sourcefiles are available in the directory,
<l tib_dir>/rpm BUI LD | i nux-2.6.26/drivers/mxc/security directory.
» Header filesare availablein the directory,
<lI'tib_dir>/rpm BU LD | i nux-2.6.26/include/ asm arnm arch-nxc.
* The RNG driver aso depends on the header files in the directory,
<lItib_dir> rpm BU LD |i nux-2.6.26/drivers/mxc/security/sahara2/include.

Table 29-1. SCC File List

File Description
Makefil e Used to compile, link and generate the final binary image.
rng/rng_driver.c Contains the core driver.
rng/ shw driver.c Contains the shwAPI.
mxc_scc_driver.h Header file related to SCC module interface.

mxc_scc_i nternal s. h |Header file which contains definitions needed by the SCC
driver. This is intended to be the file that contains most or all of
the code or changes needed to port the driver.

mxc_scc2_driver.h Header file related to SCCV2 module interface.
scc2_internals.h Header file with SCCV2 driver-related definitions.
rng/incl ude/ Contains the include files.

29.5 Configuration

This section provides the configurations required to execute the security system during boot-up.

29.5.1 Linux Kernel Configuration Options

The following Linux kernel configurations are provided for this module. In order to get to the security
configuration, use the command . /1ti b -c when located in the <Itib dir>. In the screen select configure
kernel, exit and anew screen will appear.

e CONFIG_MXC SECURITY_SCC—Use the SCC module. In menuconfi g, itisavailable under
Device Drivers > MXC Support drivers ->MXC Security Drivers >MXC_SCC Driver. By default,
thisoptionisY for platform.

e CONFIG_ MXC SECURITY_RNGA—Usethe RNGA module core API’s. In nmenuconfig, itis
available under pevi ce Drivers > MXC Support drivers ->MXC Security Drivers >
MXC_RNG Dri ver. By default, thisoptionisY for platform.

» CONFIG_RNGA_TEST_DRIVER—Debug the RNGA module. In nenuconfi g, itisavailable
under Devi ce Drivers > MXC Support drivers > MXC Security Drivers > MXC RNG Driver > MXC
RNG debug regi ster. By default, thisoptionisN for platform. Please note that this configuration

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-9

Security Drivers

should be enabled for rnga_read register() andrnga wite_register() functionsto be defined
and exported. This may affect inserting the test driver modules, which might assume the
availability of these functions.

CONFIG_MXC_SECURITY_RTIC—Use the RTIC module core API’s. Innenuconfi g, itis
available under Devi ce Drivers > MXC Support drivers > MXC Security Drivers > MXC RTIC
driver. By default, thisoptionisY for platform.
CONFIG_RTIC_TEST_DEBUG—Debug the RTIC module. In menuconfi g, itisavailable
under pevi ce Drivers > MXC Support drivers > MXC Security Drivers > MXC RTI C driver > MXC
RTI C nodul e debuggi ng. By default, thisoption isN for platform.

29.5.2 Source Code Configuration Options

29.5.2.1

NOTE

This section does not apply for the i.MX31 3-Stack Board.

Board Configuration Option

To Configure the SCC, perform the following steps:
Install Icepick and point it to licensefile.

2. Blow thefollowing fusesto SCC key 0 - SCC Key 20. Please refer to the |C documentation for
register details.

1.

SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC
SCC

KeyO
Key1l
Key?2
Key3
Key4
Key5
Key6
Key7
Key8
Key9
Key10
Keyll
Key12
Key13
Keyl4
Key15
Key16
Keyl7
key18
Key19
Key20

0x77
oxf f
Ox3a
0x76
0x02
0xb0
Ox0a
oxod
0x90
0x76
Oxf 8
0x07
0x13
0x9e
0x36
0xd3
Oxfa
0x00
0x00
0x9d
Oxfe

Follow the instructions below to program the SCC key using | cepick:

1.

2.
3.
4.

Run Icepick

openSocket <IP Address of ICE>

initZas

source util_fuse_<platform>.tcl

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-10

Freescale Semiconductor

Security Drivers

5. init_iim
6. blow_fusebank row bit
Step 6 command will write desired fuse. Here, the parameters passed to blow_fuse are bank, row
and bit. For information about parameters to be passed refer to the appropriate platform’s L3
specification.
Example: The following example shows how to program the value 0x77 into SCC KeyO.
bl ow fuse 1 1 0
blow fuse 1 1 1
bl ow fuse 1 1 2
bl ow fuse 1 1 4
bl ow fuse 1 1 5
bl ow fuse 1 1 6
7. sense_fuse bank row bit
The command in Step 7 will read the desired fuse value.
8. Write the following ASC Sequence in the debugger script (init_sdram.txt)
set mem /32 0x53FADO08 =0x00005CAA
set mem /32 0x53FADOOC =0x00002E55
set mem /32 0x53FADO10 =0x00002E55
9. Configure the boot mode pins SW7-1 and SW7-2 to Internal Boot.
29.6 Interrupt Requirements
There are no interrupt requirements in this module, asit provides only an API interface to underlying
hardware.
29.7 Usage Example

RTIC:

To hash the data from memory during run-time or one time.

To hash data in contiguous or non-contiguous Flash memory locations.

1.

For Run-Time hashing of datain the memory, do the following:
rtic_runtine_hash(start_address, bl ock_I ength)

{
/* Pass the paranmeter for start_address as physical address */
rtic_config_memblk(start_address, block_|length, MemBl ock=A/B/C/D); [/* Set
the addr, length
* and mem bl ock */
rtic_configure_node(nmode = Run-Tinme, Mem Bl ock=A/B/C/D);/* Configure the
RTI C for node, Run-Time or Hash-Once.*/
rtic_configure_interrupt(irqg_enable);/* Configure the RTIC for interrupt
enabl e/ di sabl e*/
rtic_start_hash(start hash);/* Start hashing of data*/
while (rtic_status() != RTIC_STAT_HASH ERR);/* check the status for any
error occurrence */
if(rtic_get_status == RTI C_STAT_HASH DONE)
/* HAshing for RUN-TIME is success */
rtic_hash_result(* hash_result);/* Read the 160 bit hash data fromthe
register*/

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 29-11

Security Drivers

}
2. For One-Time hashing of data in the memory, do the following:

rtic_oneti ne_hash(start_address, bl ock_I| ength)
{
/* Pass the paraneter for start_address as physical address */
rtic_config_nemblk(start_address, block_|length, MemBlock = AAB/CD); [/*

Configure start addr,
bl ock | ength*/

rtic_config_node(node = one_tine);/* Configure to one time hash node*/

rtic_config_interrupt(irg_enable);/* Configure the RTIC for interrupt
enabl e*/

rtic_start_hash(start_hash);/* Start the hashing of data*/

while (rtic_get_status()!=HASH DONE);/* check the status for any error
occurrence (if done for polling node)*/

rtic_hash_result(* hash_result);/* Read the 160 bit hash data fromthe
register*/

}

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

29-12 Freescale Semiconductor

Chapter 30
Inter-IC (I°C) Driver

The MXC I%C driver for Linux has two parts: an 1°C bus driver and an 1°C chip driver. The 1°C bus driver
isalow level interface that is used to talk to the I2C bus, while the 12C chip driver acts as an interface
between other device drivers and the 1°C bus driver.

1°C is atwo-wire, bidirectional serial bus that provides a smple, efficient method of data exchange,
minimizing the interconnection between devices.

30.1 12C Bus Driver Overview

The 1°C bus driver isinvoked only by the MXC 1%C chip driver; it is not exposed to the user space. The
standard Linux kernel containsacore |°C modulethat isused by the chip driver to accessthel 2C busdriver
to transfer data over the I2C bus. The chip driver uses a standard kernel space API that is provided in the
Linux kernel to access the core 1°C module. The standard 1°C kernel functions are documented in the files
available under Docurent ati on/i 2c in the kernel source tree. This bus driver supports the following
features:

« Compatibility with the 1%C bus standard

» Supports bit rates up to 400 kbps

» Startsand stops signal generation/detection
» Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer
« Supports standard 12C master mode

The 1°C slave mode may be supported by a separate driver.

30.2 I2C Client Driver Overview

The 12C client driver implements all the Linux 1°C data structures that are required to communicate with
the 1%C bus driver. It exposes a custom kernel space API to the other device driversto transfer datato their
device that is connected to the 1°C bus. Internally these API functions use the standard 1%C kernel space
API to call the 1°C core module. The 1°C core module looks up the MXC 12C bus driver and calls the
appropriate function in the 12C bus driver to do the data transfer. This driver provides the following
functions to other device drivers:

* A read function to read the device registers

* A write function to write to the device registers

The camera driver would use the APIs provided by thisdriver to interact with the camera.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 30-1

Inter-IC (12C) Driver

30.3 Hardware Operation

The 1°C module provides the functionality of a standard 1°C master and slave. Itis designed to be
compatible with the standard Philips 1°C bus protocol. The module supports up to 64 different clock
frequencies that can be programmed by setting a value to the frequency divider register (IFDR). It aso
generates an interrupt when one of the following occurs:

* One byte transfer is completed.
* Anaddressisreceived that matches its own specific address in slave-receive mode.
* Arbitrationislost.

30.4 Software Operation

The MXC 12C driver for Linux has two parts: an 12C bus driver and an 1°C chip driver.

30.4.1 I2C Bus Driver Software Operation

The 12C bus driver is described by a structure called i 2c_adapt er. The most important field in this
structureiSstruct i2c_algorithm*algo. Thatfieldisapointer tothei 2c_al gorit hmstructure that
describes how data is transferred over the MXC I%C bus. The algorithm structure contains a pointer to a
function that is called whenever the I2C chip driver wants to communicate with an 1°C device.

On startup, the MXC 1%C bus adapter is registered with the 1°C core when the driver is loaded. Certain
MXC architectures have more than one I2C module. If so, the driver registers separate i 2c_adapt er
structures for each 1°C module with the 1°C core. These adapters are unregistered (removed) when the
driver is unloaded.

After transmitting each packet, the 1C bus driver waits for an interrupt indicating the end of adata
transmission before transmitting the next byte. It times out and returns an error if the transfer complete
signal isnot received. Because the 12C bus driver uses wait gueues for its operation, other device drivers
should be careful not to call the 1°C API methods from an interrupt mode.

30.4.2 I2C Client Driver Software Operation

The MXC 12C chip driver controls an individual 1°C device that lives on the MXC 12C bus. A structure,
i 2c_dri ver, describes the 1°C chip driver. Thefields of interest in this structure are f 1 ags and
attach_adapter. Thefl ags field isset to avalue | 2c_brF_NoTi Fy so that the chip driver can be notified of
any new I2C devices, after the driver isloaded. Theat t ac h_adapt er callback function iscalled whenever
anew 12C bus driver isloaded in the system. When the MX C 1°C bus driver is |oaded, this driver stores
thei 2c_adapt er structure associated with this bus driver so that it can use the appropriate methods to
transfer data

30.5 Requirements

The MXC I2C driver meets the followi ng requirements:
* Supportsthe 12C communication protocol.
* Supportsthe 12C master mode of operation.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

30-2 Freescale Semiconductor

Inter-IC (12C) Driver

» Does not support the 1%C slave mode of operation.

30.6 Source Code Structure

Table 30-1 lists the 1°C bus driver source files available in the directory,
<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/i2c/busses.

Table 30-1. I2C Bus Driver Files

File Description

nmxc_i 2c. ¢ [2C bus driver source file

30.7 Configuration

30.7.1 Linux Menu Configuration Options

In order to get to the 1°C configuration, use the command . /1tib -c whenlocated inthe<itib dir>.In
the screen, select confi gure Kernel , exit, and a new screen will appear.

The12c_mxc Linux kernel configuration is provided for thismodule. Thisoptionisavailable under Devi ce
Drivers >12C support > |2C Hardware Bus support > MXC | 2C support.

30.8 Programming Interface

The 12C device driver could use the standard SMBusinterface to read and write the registersof the device
connected to the MXC 12C bus. For more information, see
<lI'tib_dir>rpm BU LD |i nux-2.6.26/include/linux/iZ2c.h.

30.9 Interrupt Requirements

The 1°C module generates many kinds of interrupts. The highest interrupt rate is associated with the
transfer complete interrupt.

Table 30-2. 12C Interrupt Requirements

Parameter Equation Typical Worst-Case
Rate Transfer Bit Rate/8 25,000/sec 50,000/sec
Latency 8/Transfer Bit Rate 40us 20us

The typical value of the transfer bit-rate is 200 kbps. The worst-case is based on a baud rate of 400 kbps
(the maximum supported by the 1°C interface).

30.10 Device-Specific Information

The x in 12Cx denotes the individual 12C number.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 30-3

Inter-IC (12C) Driver

Table 30-3. Default Configuration

Option

1 2C_NR

1 2C1_FRQ DI V

1 2C2_FRQ DI V

1 2C3_FRQ DI V

i.MX31

1

0x17

N A

N A

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

30-4

Freescale Semiconductor

Chapter 31
One-Wire Driver

Each MXC processor has an integrated One-Wire interface. The driver isimplemented as a character
driver and provides a custom user space API that allows a user space application to interact with it.

31.1 Hardware Operation

The One-Wire interface provides the communication line to a 1 kbit Add-Only Memory (DS2502). The
interface can send or receive one bit at atime. The protocol for accessing the DS2502 is defined by Dallas
Semiconductors. The DS2502 holds battery characteristicsinformation. The 1-wireis a peripheral device
to the Core and communicates with it through the IP interface.

31.2 Software Operation

The One-Wire modul€’s software implementation is through a One-Wire (OWire) driver.

31.3 Requirements

This OWire implementation meets the following requirements:

» Supports a single OWire memory device connected to the MXC OWire peripheral for read/write
bit and read/write byte operations. (For instance, amodule serving as adata-link layer.)

» Supports the OWire peripheral in the MXC product for single device detection and selection.
(Module serving as a network layer.)

* Interfacesto the OWire peripheral inthe MXC at the read/write block and read/write page level.
(Module serving as the transport layer.)

» Exposes the single connected OWire device through existing Linux device interface(s).
» Supports open, close, read and write operations.

31.4 Source Code Structure

The OWire module isimplemented in
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/drivers/wl/ nasters/nxc_wl.c.

Table 31-1. Owire File List

File Description
mxc_wl. ¢ OWIRE function implementations

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 31-1

One-Wire Driver

31.5 Configuration

31.5.1 Linux Menu Configuration Options

The Linux kernel configuration option, CONFIG_W1_MXC, is provided for thismodule. In order to get
to the one-wire configuration, usethe command . /1ti b -c whenlocatedinthe<iti b dir>. Inthe screen,
select Configure Kernel, exit, and anew screen will appear.

This s the configuration option for the MXC OWire driver used for the MXC 1-Wireinterface. In the
menuconf i g, thisoption is available under the following:

» DeviceDivers> Dallas's 1-wire support > 1-wire bus master > Freescae’'s MXC driver for 1-wire
* DeviceDivers> Dalas's1-wire support > 1-wire Slaves > 4kb EEPROM family support (DS2433)

Options conrl G va and conFl G wa_Ds2433 should also be selected.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

31-2 Freescale Semiconductor

Chapter 32
Configurable Serial Peripheral Interface (CSPI) Driver

The configurable serial periphera interface (CSPI) driver implements a standard Linux driver interfaceto
MXC CSPI Controllers. It is based on SPI Framework by David Brownell. It supports the following
features:

* Interrupt- and SDMA-driven transmit/receive of bytes
» Supports multiple master controller interface

» Supports multiple slaves select

» Supports multi-client requests

32.1 Hardware Operation

CSPI isused for fast data communication with fewer software interrupts than conventional serial
communications. Each CSPI is equipped with data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master or save devices.
The primary features of the CSPIsinclude:

» Master/slave-configurable

» Two chip selects allowing maximum of 4 different slaves each for master mode operation

» Upto 32-hit programmable data transfer

* 8by 32-bit FIFO for both Tx and Rx data

» Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK) are configurable

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 32-1

Configurable Serial Peripheral Interface (CSPI) Driver

32.2 Software Operation

32.2.1 SPI Sub-System in Linux

The CSPI driver layer islocated between the client layer (PMIC and SPI Flash are examples of the clients)
and the MXC hardware access layer. Figure 32-1 shows the block diagram for SPI subsystem in Linux.

PMIC driver

Client#2 driver

1l

1]

Client#3 driver

1l

SPI Subsystem

1L

CSPI Hardware

zlectrical Interfac

v

v

PMIC

Client#2

Figure 32-1. SPI Sub-system

i

Client#3

SPI requests always go into 1/0 queues. Requests for a given SPI device are always executed in FIFO
order, and complete asynchronoudly through completion callbacks. There are also some simple
synchronous wrappers for those calls, including ones for common transaction types like writing a

command and then reading its response.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

32-2

Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

All SPI clients must have a protocol driver associated with them. And those must all be sharing the same
controller driver. Only the controller driver can interact with the underlying SPI hardware module.
Figure 32-2 shows how the different SPI drivers are layered in the SPI subsystem.

~

SPI Client Driver , SPIslave driver

Client Driver {} J
Interface {}
~

SPI Core Driver \. SPI core driver

Zontroller Driver {} J
Interface
4 L <

Freescale SPI . CSPI Host
driver (mxc_spi.c) CSPI Controller Driver "~ Controller Driver

5 J
L

CSPI Controller

7T
g

SPI Slave PMIC(MC13783)
(PMIC)

3PI Bus Interface

llectrical Interface

Figure 32-2. Layering of SPI Drivers in SPI subsystem

32.2.2 Limitations

* It doesnot have SPI Slave logic implementation yet.
* It does not support asingle client connected to multiple masters.

» It presently does not implement the user space interface with the help of the device node entry but
supports “sysf s” interface.

32.2.3 Standard Operations

The CSPI driver isresponsible for implementing standard entry points for init, exit, chip select and
transfer. The driver implements the following functions:

1. Theinit function mxc_spi _init()—Registersthedevice_dri ver structure.

2. The probe function mxc_spi _probe()—Performsinitialization and registration of the SPI device
specific structure with SPI core driver. The driver probes for memory and IRQ resources.
Configures the IOMUX to enable CSPI 1/0 pins, requests for IRQ and resets the hardware.

3. The chip select function mxc_spi _chi psel ect () —Configures the hardware CSPI for the current
SPI device. Sets the word size, transfer mode, datarate for this device.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 32-3

Configurable Serial Peripheral Interface (CSPI) Driver

SPI transfer function mxc_spi _transfer()—Handles data transfers operations.

SPI setup function mxc_spi _set up() —Initializes the current SPI device.

SPI driver ISR mxc_spi _i sr()—Called when the data transfer operation is completed and an

interrupt is generated.

32.2.4 CSPI Synchronous Operation

Figure 32-3 shows how CSPI provides synchronous read/write operations.

Client
Driver

SPI Core
Driver

SPI Controller
Driver

spi_read/write

CSPI
Hardware

[

A

return

A

spi_transfer

[
P

spi_enable_rx_intr_|
L

spi_load_TxFifo |

spi_init_exchange _|

spi_getBxData

_ callback after
- transfter completion

Figure 32-3. CSPI Synchronous Operation

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

32-4

Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

32.2.5 PMIC Access
Figure 32-4 shows the how PMIC can be accessed through the SPI subsystem.

MC13783 MC13783 SPI Master
Client Drivers Core SPI Core Controller Driver

pmic_read_reg() N
pmic_write_reg J/
Frame message N

spi_sync()

master->transfer() D

/I—

K Callback after tranfer
Get the reply frame/
Discard if write
~ E)Iecoae to gefreg_val

Figure 32-4. PMIC Access through SPI

32.3 Requirements

The CSPI modul e meets the following requirements:
» Implements each of the functions required by a CSPI module to interface to Linux.
* Provides support for multiple SPI master controllers.
* Provides support to handle multi-client synchronous requests.

32.4 Source Code Structure

Table 32-1 lists the source files avail able in the devices directory:
<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/spi/.
Table 32-1. CSPI Source File List

File Description

MKC_Spi . c Freescale SPI Master Controller driver

32.5 Configuration

The following Linux kernel configurations are provided for this module. In order to get to the spi
configuration, usethe command. /1 tib -c whenlocated in the <Itib dir>. In the screen, select Configure
Kernel, exit, and a new screen will appear.

* CONFIG_sPI : Build support for the SPI core. In menuconfig, this option is available under Device
Drivers> SPI Support > SPI Support.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 32-5

Configurable Serial Peripheral Interface (CSPI) Driver

* CONFI G BI TBANG: Thisislibrary code, and is automatically selected by drivers that need it.
SPI_MXC selectsit. In menuconfig, this option is available under
Device Drivers > SPI Support > Bitbanging SPI master

* CONFI G _sPl_mxc: Thisimplementsthe SPI master mode for MXC CSPI. In menuconfig, thisoption
is available under Device Drivers > SPlI Support>MXC CSPI controller as SPI Master.

* CONFI G SPI_MXC_SELECTn: Thisisto select the CSPI hardware modulesinto the build (wheren=1,
2, or 3). In menuconfig, this option is available under Device Drivers > SPl Support > CSPIn.

* CONFI G SPI_MXC TEST_LOoPBACK: Thisisto select the enable testing of CSPIsin loop back mode. In
menuconfig, this option is available under Device Drivers > SPI Support > LOOPBACK Testing
of CSPIs. By default thisisdisabled asit isintended to use only for testing purposes.

* CONFIG_SPI_MXC_DMA: Thisisto select the enable DMA function of CSPI. In menuconfig,
thisoption isavailable under Device Drivers> SPI Support > MXC CSPI controller as SPI Master.
By default thisis disabled.

32.6 Programming Interface

Thisdriver implements all the functions that are required by the SPI core to interface with the CSPI
hardware. For more information, see the APl document generated by Doxygen.

32.7 Interrupt Requirements

The SPI interface generates interrupts. CSPI interrupt requirements are listed in Table 32-2.
Table 32-2. CSPI Interrupt Requirements

Parameter Equation Typical Worst-Case
BaudRat e / (BaudRate / (TransferLength)) * (1/ Rxtl) |[31250 1500000
Transfer
Lengt h

Thetypical values are based on abaud rate of 1 Mbpswith areceiver trigger level (Rxtl) of 1 and a32-bit
transfer length. The worst-case is based on a baud rate of 12 Mbps (max supported by the SPI interface)
with a 8-hits transfer length.

32.8 Device-Specific Information

Table 32-3 lists the number of CSPI controllersin different i.MX family platforms.
Table 32-3. CSPI Controllers in i.MX Family Platforms

Platforms No. of CSPI
(soC) Controllers
i.MX31 3

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

32-6 Freescale Semiconductor

Chapter 33
MMC/SD/SDIO Host Driver

The MM C/SD/SDIO Host driver implementsastandard Linux driver interfaceto the MM C/Secure Digital
Host Controller (SDHC) or the enhanced MM C/SD host controller (eSDHC). The host driver is part of the
Linux kernel’s MMC framework.

Table 33-1. Available Platforms

module name Available platforms

SDHC i.MX31

The MMC driver has the following features:
* 1-bit or 4-bit operation
» Supports card insertion and removal events
» Supports the standard MM C commands
* PIO and DMA datatransfers
* Power management

33.1 Hardware Operation

The MM C communication is based on an advanced 7-pin serial bus designed to operate in alow voltage
range. The SDHC or eSDHC modul e supports MMC along with SD memory and 1/O functions. The
SDHC or eSDHC controls the MM C, SD memory, and 1/O cards by sending commands to cards and
performing data accesses to and from the cards. The SD memory card system defines two alternative
communication protocols: SD and SPI. The SDHC or eSDHC only supports the SD bus protocol.

For the SDHC module, the SDHC command number and the SDHC command argument register allows a
command to be issued to the card. The SDHC command and data control register allows the usersto
specify the format of the data and the response, and to control the read wait cycle.

The block length register definesthe number of bytesin ablock (block size). Asthe Stream mode of MMC
is not supported, the block length must be set for every transfer.

For SDHC, thereis an 8-bit x16-bit FIFO to store the response from the card in the SDHC. The SDHC
Response FIFO Access register is used to access this FIFO. The SDHC uses two 64-byte data buffers.
These buffers are used as temporary storage for data being transferred between the host system and the
card, and vice versa. The SDHC data buffer access register bits hold 32-bit data upon aread or write
transfer. For reception, follow these steps:

1. The SDHC controller generates an SDMA request when the FIFO isfull.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 33-1

MMC/SD/SDIO Host Driver

2. Upon receiving this request, SDMA starts transferring data from the SDHC FIFO to system
memory by reading the data buffer access register.
To transmit data, follow these steps:
1. The SDHC controller generates an SDMA request whenever the transmit FIFO is empty.
2. Upon receiving thisrequest, the SDMA starts moving data from the system memory to the SDHC
FIFO by writing to the Data Buffer Access Register for anumber of pre-defined bytes.

The read-only SDHC Status Register provides SDHC operations status, application FIFO status, error
conditions, and interrupt status.

For both SDHC and eSDHC modules, when certain events occur in the module, then all have the ability
to generate an interrupt as well as setting corresponding Status Register bits. The SDHC interrupt control
register and eSDHC interrupt status enable and signal enable registers allow the user to control whether
these interrupts should occur.

33.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols. The MM C block
driver handlesthefile system read/write calls and uses the low level MMC host controller interface driver
to send the commands to SDHC or eSDHC.

Figure 33-1 shows how the MM C-related drivers are layered.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

33-2 Freescale Semiconductor

File System (Ext2fs/FAT driver) SDIO APP

Application/Server interface f

<

block.c: block N i
driver for Block Client Driver (Storage)
peripheral media. \ Client Driver interface
core.c, sd.c, _ _ Etc sd, mmc,
Kinds of Bus Protocol Drivers dio. ce-ata
Host controller Driver interface f and soon.

Freescale MM C driver

mx_sdhci.c or L ocal Bus Interface
mXC_mmc.c
Host Controller
Slot Electrical interface f
15 MM C/SD/SD
MM C/SD/SDIO/CE-ATA Devices |O/CE-ATA
Devices

Figure 33-1. Layering of MMC drivers

Thei.MX MMC driver is responsible for implementing standard entry points for init, exit, request, and
set_ios. The driver implements the following functions:

For SDHC:

1. Theinit function mcnci _i ni t () —Registersthe device_driver structure.

2. The probe function mxcnti _probe() —Performsinitialization and registration of the MMC device
specific structure with MMC bus protocol driver. The driver probes for memory and IRQ
resources. Configuresthe IOMUX to enable SDHC I/O pins and resets the hardware. Requests for
IRQ and allocates DMA channel along with transfer completion routine mxcnti _dma_i rq() -

3. mxcnti _set _i os() —Sets bus width, voltage level, and clock rate according to core driver
requirements.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 33-3

MMC/SD/SDIO Host Driver

4. mxcenti _request () —Handles both read and write operations. Sets up the number of blocks and

block length. It configures an DMA channel, allocates safe DMA buffer and starts the DMA
channel. It configures the SDHC command number register and SDHC command argument
register to issue a command to the card. This function starts the SDMA and starts the clock.
MMC driver ISR mxcnci _gpi o_i rq() —Called when the MMC card is detected or removed.

MMC driver ISR mxcnei _i rq() — Interrupt from SDHC called when command is done or errors
like CRC or buffer underrun or overflow occurs.

DMA completion routine mxcnci _dma_i r q() —Called after completion of a DMA transfer. It informsthe
MMC core driver of arequest completion by calling mr_r equest _done() API.

33.3 Requirements

Provides support for multiple SDHC modules.

Provides all the entry points to interface with the Linux MMC core driver.
Supports MM C and SDcards.

Recognizes data transfer errors like command time outs and CRC errors.
Supports power management.

Conformsto the Linux coding standards.

33.4 Source Code Structure

Table 33-2 lists the SDHC source files available in the source directory
<lItib_dir>rpm BU LD |i nux-2.6.26/drivers/mct/host/.

Table 33-2. SDHC Driver File List

File Description
mxc_mt. h Header file defining registers
nmXc_mt. ¢ SDHC driver

33.5 Linux Menu Configuration Options

In order to get to the mmc configuration, use the command ./1tib -c when located inthe <Itib dir>. In
the screen, select Configure Kernel, exit, and a new screen will appear.

The following Linux kernel configurations are provided for this module:

CONFIG_MMC—Build support for the MMC bus protocol. In menuconf i g, thisoptionis
available under Device Drivers > MMC/SD Card support. By default, thisoptionisY for all
architectures.

CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to
mount thefile system. Innmenuconf i g, thisoption isavailable under Device Drivers > MMC/SD
Card Support > MM C block device driver support. By default, thisoptionisY for all architectures.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

33-4

Freescale Semiconductor

MMC/SD/SDIO Host Driver

* CONFIG_MMC_MXC—i.MX MMC driver used for thei.MX SDHC ports. Inmenuconf i g,
this option is available under Device Drivers > MMC/SD Card Support > Freescale MXC
Multimedia Card Interface support. Thisoption is available for thei.MX31 platforms.

33.6 Programming Interface

Thisdriver implements the functions required by the MM C bus protocol to interface with thei.MX SDHC
and eSDHC modules. For additional information, see the BSP APl Document.

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

Freescale Semiconductor 33-5

|
MMC/SD/SDIO Host Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev. 1.5

33-6 Freescale Semiconductor

Chapter 34
Universal Asynchronous Receiver/Transmitter (UART)
Driver

The low-level universal asynchronous receiver transmitter (UART) driver interfaces the Linux serial
driver API to all the UART ports. It has the following features:

* Supportsinterrupt-driven and SDMA-driven transmit/receive of characters.

» Supports standard Linux baud rates up to 4 Mbps.

» Supports transmitting and receiving characters with 7-bit and 8-bit character lengths.
* Supports transmitting 1 or 2 stop bits.

* Supports TI OCMGET i oct | to read the modem control lines. Only supports the constants
TI OCM_CTS and TI OCM_CAR, plus TI 0CM_RI in DTE mode only.

* Supports TI OCMSET i oct | to set the modem control lines. Supports the constants TI occM RTS and
TI OCM _DTR only.

» Supports odd and even parity.

» Supports XON/X OFF software flow control. Serial communication using software flow control is
reliable when communication speeds are not too high and the probability of buffer overrunsis
minimal.

* Supports CTS/RTS hardware flow control (both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow).

» Send and receive break characters through the standard Linux serial API.

» Recognize frame and parity errors.

» Ability to ignore characters with break, parity and frame errors.

* Get and set UART port information through the TI OCGSSERI AL and TI OCSSERI AL TTY ioctls.
Some programs like set seri al and di p usethis feature to make sure that the baud rate was set
properly and to get general information on the device. While doing this the user should specify the
UART typeto be 52. Thisis defined intheseri al _core. h header file.

» Seria IrDA support.
» Supports power management feature by suspending and resuming the UART ports
» Supportsthe standard TTY layer i oct!| calls.
All the UART ports can be accessed through the devicefiles / dev/t t ymxc0 through/ dev/ ttynxc4,

where/ dev/ t t ymxcO refersto UART 1. The number of available UART ports varies from device to
device.

Autobaud detection is not supported.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 34-1

Universal Asynchronous Receiver/Transmitter (UART) Driver

34.1 UART Driver Hardware Operation

Refer to the | C/Hardware Specification to determine the number of UART modulesavailableinthe device.
Each UART hardware port is capable of standard RS-232 serial communication and has support for
IrDA 1.0. Each UART contains a 32-byte transmitter FIFO and a 32-half-words deep receiver FIFO. Each
UART also supports a variety of maskable interrupts when the data level in each FIFO reaches a
programmed threshold level and when there isa change in state in the modem signals. Each UART can be
programmed to be in DCE or DTE mode.

34.2 UART Driver Software Operation

The Linux OS contains a core UART driver that handles many of the seria operations that are common
across UART driversfor various platforms. The low-level UART driver isresponsible for supplying
information such asthe UART port information and a set of control functions to this core UART driver.
These functions are implemented as alow-level interface between the Linux OS and the UART hardware.
They cannot be called from other drivers or from a user application. The control functions used to control
the hardware are passed to the core driver through a structure called uar t _ops, and the port information
is passed through a structure called uar t _port . Thelow level driver isaso responsible for handling the
various interrupts for the UART ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer. These configuration options are provided
inthemxc_uar t . h header file. The user can specify the size of the DM A receive buffer. The minimum size
of this buffer is512 bytes. The size should be amultiple of 256. The driver breaksthe DM A receive buffer
into smaller sub-buffers of size 256 bytes and registers these buffers with the DMA system. The DMA
transmit buffer sizeisfixed at 1024 bytes. Thesizeislimited by the size of the Linux UART transmit buffer
(1024).

The driver requests two DMA channels for the UARTSs that need DMA transfer. On areceive transaction,
the driver copies the data from the DMA receive buffer to the TTY Flip Buffer.

While using DMA to transmit, the driver copies the datafrom the UART transmit buffer to the DMA
transmit buffer and sends this buffer to the DMA system. The user should use hardware-driven hardware
flow control when using DMA data transfer. For more information, see the Linux documentation on the
serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow control and
hardware-driven hardware flow control. The hardware flow control method can be configured using the
options provided in the header file. The user hasthe capability to de-assert the CTSline using the available
IOCTL calls. If the user wishes to assert the CTS line then control is transferred back to the receiver, as
long as the driver has been configured to use hardware-driven hardware flow control.

34.3 UART Driver Requirements

The UART driver meets the following requirements:
» Supports baud rates up to 4 Mbps.

» Recognizes frame and parity errorsonly in interrupt-driven mode. The UART driver does not
recognize these errorsin DMA-driven mode.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

34-2 Freescale Semiconductor

Universal Asynchronous Receiver/Transmitter (UART) Driver

* Sends, receives and appropriately handles break characters.
* Recognizes the modem control signals.
» Ignores characters with frame, parity and break errors if requested to do so.

* Implements support for software and hardware flow control (software-controlled and
hardware-controlled).

* Isableto get and set the UART port information. Certain flow control count information is not
available in hardware-driven hardware flow control mode.

* Implements support for Serial IrDA.
* Supports power management.
» Supportsinterrupt-driven and DMA-driven data transfer.

34.4 UART Driver Source Code Structure

Table 34-1 lists the source files associated with the UART driver that are available in the directory,
<Itib_dir>rpm BU LD |i nux-2.6.26/drivers/serial.

Table 34-1. UART Source And Header File List

File Description
mxc_uart.c UART low level driver
serial _core.c Core UART driver that is included as part of standard Linux
mxc_uart_reg. h UART file for the register values

Table 34-2 lists the header files associated with the UART driver.
Table 34-2. UART Global Header File List

File Description

<l tib_dir>/rpm BU LD/ | i nux-2.6.26/include/ |UART header that contains UART configuration
asm arnf ar ch- nxc/ nxc_uart . h data structure definitions

<l tib_dir>/rpm BU LD/ | i nux-2.6.26/arch/arm | Holds some UART board specific configuration
/ mach- mx3/ boar d- nx3_3st ack. h options

Thesourcefiles, seri al . c/serial . h, areassociated with the UART driver that isavailablein the directory,
<l tib_dir>/rpm BU LD | i nux-2. 6. 26/ ar ch/ ar mf mach- mx3. The source file contains UART configuration
data and callsto register the device with the platform bus.

34.5 UART Driver Configuration

This section discusses configuration options associated with Linux, chip configuration options, and board
configuration options.

34.5.1 Linux Menu Configuration Options

The following Linux kernel configuration settings are provided for this module:

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 34-3

Universal Asynchronous Receiver/Transmitter (UART) Driver

* CONFIG_SERIAL_MXC—This configuration option is used for the UART driver for the UART
ports. In menuconfi g, thisoptionisavailable under Device Drivers > Character devices > Serid
drivers> MXC Internal serial port support. By default, thisoptionis'Y for al architectures.

» CONFIG_SERIAL_MXC_CONSOLE—This configuration option chooses the Internal UART to
bring up the system console. This option is dependent on the “CONFIG_SERIAL_MXC” option.
In the nenuconf i g this option is available under Device Drivers> Character devices > Serial
drivers> MXC Internal serial port support > Support for consoleon aMXC/MX27/MX 21 Internal
seria port. By default, thisoption is'Y for all architectures.

34.5.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

34.5.2.1 Chip Configuration Options
The following chip-specific configuration options are provided in mxc_uart . h:

Thex in UARTx denotestheindividual UART number. The default configuration for each individual UART
number is listed in Table 34-5.

34.5.2.2 Board Configuration Options

The following board-specific configuration options for the driver can be set within boar d. h:
* UART Mode (uaRTx_MoDE)—Specifies whether the UART is configured to bein DTE or DCE
mode.
* UART IR Mode (UARTx_I R)—Specifies whether the UART port isto be used for IrDA.

* UART Enable/ Disable (UARTx_ENABLED)—Enable or disable aparticular UART port. If disabled,
the UART is not registered in the file system and the user can not accessiit.

« MAX_UART_BAUDRATE—Specifies the maximum baud rate to support on the board. Any
value up to 1500000 can be specified.

The x in UARTX denotes the individual UART number. The default configuration for each individual
UART number is shown in Table 34-5.

34.6 UART Driver Programming Interface

The UART Driver implementsall the methods required by the Linux serial API tointerface withthe UART
port. The driver implements and provides a set of control methods to the Linux core UART driver. For
more information about the methods implemented in the driver, see the APl document.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

34-4 Freescale Semiconductor

Universal Asynchronous Receiver/Transmitter (UART) Driver

34.7 UART Driver Interrupt Requirements

The UART Driver interface generates many kinds of interrupts. The highest interrupt rate is associated
with transmit and receive interrupt. The system requirements are listed in Table 34-3.
Table 34-3. UART Interrupt Requirements

Parameter Equation Typical Worst-Case
Rate (BaudRate/(10))*(1/Rxtl + 1/(32-Txtl)) 5952/sec 300000/sec
Latency 320/BaudRate 5.6ms 213.33us

The baud rateisset inthe mxcuart _set _term os function. Thetypical values are based on a baud rate
of 57600 with areceiver trigger level (Rxtl) of 1 and atransmitter trigger level (Txtl) of 2. The worst-case
is based on a baud rate of 1.5 Mbps (max supported by the UART interface) with an Rxtl of 1 and a Txtl
of 31. There is also an undetermined number of handshaking interrupts that are generated but the rates
should be an order of magnitude lower.

34.8 Device Specific Information

34.8.1 UART Ports

The UART ports can be accessed through the devicefiles / dev/t tymxco, / dev/ tt ynxc1, €tc. where
I dev/ ttymxco refersto UART 1. The number of UART portson a particular platform are listed in Table
34-4.

34.8.2 Board Setup Configuration

Table 34-4. UART General Configuration

Platform UART_NR MAX BAUDRATE

i.MX31 5 1500000 (1.5 Mbps)

Table 34-5. UART Active/lnactive Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX31 1 1 1 0 0

Table 34-6. UART IRDA Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART6

i.MX31 NO_IRDA NO_IRDA NO_IRDA NO_IRDA NO_IRDA

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 34-5

Universal Asynchronous Receiver/Transmitter (UART) Driver

Table 34-7. UART Mode Configuration

Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 MODE_DCE | MODE_DCE | MODE_DTE | MODE_DTE | MODE_DTE --
Table 34-8. UART Shared Peripheral Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 -1 -1 SPBA_UART3 -1 -1 --
Table 34-9. UART Hardware Flow Control Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 1 0 1 1 1 --
Table 34-10. UART DMA Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 0 0 1 0 0 --
Table 34-11. UART DMA RX Buffer Size Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 1024 512 1024 512 512 --
Table 34-12. UART UCR4_CTSTL Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 16 -1 16 16 16 --
Table 34-13. UART UFCR_RXTL Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 16 16 16 16 16 --
Table 34-14. UART UFCR_TXTL Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 16 16 16 16 16 --
Table 34-15. UART Interrupt Mux Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 INTS_MUXED | INTS_MUXED | INTS_MUXED | INTS_MUXED | INTS_MUXED --

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

34-6

Freescale Semiconductor

Table 34-16. UART Interrupt 1 Configuration

Universal Asynchronous Receiver/Transmitter (UART) Driver

Platform UART1 UART2 UART3 UART4 UART5 UART®6
i.MX31 INT_UART1 INT_UART2 INT_UARTS3 INT_UART4 INT_UART5 -
Table 34-17. UART Interrupt 2 Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 -1 -1 -1 -1 -1
Table 34-18. UART interrupt 3 Configuration
Platform UART1 UART2 UART3 UART4 UART5 UART6
i.MX31 -1 -1 -1 -1 -1

34.9 Early UART Support

The kernel starts logging messages on a serial console when it knows where the device is. This happens
whenthe driver enumeratesall the serial devices, which can happen aminute or more after the kernel starts
booting.

Linux kernel 2.6.10 and later kernels have an “early UART” driver that works very early in the boot
process. The kernel immediately starts logging messages, if the user supplies an argument as follows:
“consol e=nxcuart, Oxphy_addr, 115200n8”

Where phy_addr represents the physical address of the UART on which the console is to be used and
115200n8 represents the baud rate supported.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 34-7

Universal Asynchronous Receiver/Transmitter (UART) Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

34-8 Freescale Semiconductor

Chapter 35
ARC USB driver

The universal seria bus (USB) driver implements a standard Linux driver interface to the ARC USB-HS
OTG controller. The USB provides a universal link that can be used across a wide range of
PC-to-telephone interconnects. It features ease-of-use; for example, it supports plug-and-play, port
expansion, and any new USB peripheral uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. ThisUSB driver hasthe
following features:

Full Speed/ Low Speed Host Only core (HOST 1)

High Speed / Full Speed / Low Speed Host Only core (HOST?2)

High speed and Full Speed OTG core

Host mode: Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP (Still
Image) drivers

Peripheral mode: Supports MSC, MTPR, and CDC (Communication Devices Class) drivers
Embedded DMA controller

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 35-1

ARC USB driver

35.1 Architectural Overview

A USB host system is composed of a number of hardware and software layers. Figure 35-1 illustrates a
conceptual block diagram of the building block layersin ahost system that work in concert to support USB

2.0.
Host
R I
| |
I Client SW |
Y |

Interconnect Physical Device

b —

Function

Function Layer

USE Logical

USE Device

Actual communications flow
Logical communications flow
Implementation Focus Area

Figure 35-1. Block Diagram

35.2 Hardware Operation

USE System
SW ‘ Device
Layer
USB Host USB Bus USB Bus
Controller Interface Interface Layer

For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at
http://www.usb.org/devel opers/docy .

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

35-2

Freescale Semiconductor

http://www.usb.org/developers/docs/

ARC USB driver

35.3 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only
implements the hardware specified initialization functions. For the USB peripheral, it implements the
gadget framework.

static struct usb_ep_ops fsl_ep_ops = {
.enable = fsl _ep_enabl e,
.di sable = fsl_ep_disabl e,

.alloc_request = fsl_alloc_request,
.free_request = fsl_free_request,

.queue = fsl_ep_queue,
.dequeue = fsl_ep_dequeue,

.set_halt = fsl_ep_set_halt,

.fifo_status = arcotg_fifo_status,

.fifo_flush = fsl_ep_fifo_flush, [* flush fifo */
b

static struct usb_gadget _ops fsl_gadget_ops = {
.get_franme = fsl_get_frane,
.wakeup = fsl_wakeup,
/* .set_sel fpowered = fsl_set_sel fpowered, */ /* Always sel fpowered */
.vbus_session = fsl_vbus_sessi on,
.vbus_draw = fsl_vbus_draw,
.pullup = fsl_pull up,

* fsl_ep_enabl e() —configures endpoint, making it usable.

* fsl_ep_disabl e()—specifies endpoint is no longer usable

* fsl_alloc_request () —allocates arequest object to use with this endpoint.

* fsl_free_request ()—freesarequest object.

* arcotg_ep_queue() —queues (submits) an I/O request to an endpoint.

* arcotg_ep_dequeue() —dequeues (cancels, unlinks) an I/O request from an endpoint

* arcotg_ep_set_hal t ()—Sets the endpoint halt feature.

* arcotg_fifo_status()—get thetotal number of bytesto be moved with this transfer descriptor.

For OTG, an OTG finish state machine (FSM) is implemented.

35.4 Requirements

The USB stack meets the following requirements:
» Supports USB device mode
* Supports mass storage device profile — subclass 8-1. (RBC set)
* Supports USB host mode

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 35-3

ARC USB driver

» Supports HID host profile — subclasses 3-1-1 and 3-1-2. (USB mouse and keyboard)
» Supports mass storage host profile — subclass 8-1
» Supports Ethernet USB profile — subclass 2

» Supports DC PTP transfer
* Supports MTP device mode

35.5 Source Code Structure

Table 35-1 lists the source files available in the source directory,
<lI'tib_dir>/rpm BU LD/ | i nux-2.6.26/drivers/usb.

Table 35-1. USB Driver File List

File

Description

host/ ehci - hed. ¢

host driver source file.

host/ ehci-arc.c

host driver source file.

host/ ehci -nmemiram

host driver source file for IRAM support

host / ehci - hub. c

hub driver source file.

host/ ehci - nem ¢

memory management for host driver data structures.

host/ ehci-q.c

ehci host queue manipulation.

host/ ehci-qg-iram

host driver source file for IRAM support

gadget/ arcot g_udc. c

peripheral driver source file.

gadget/ arcot g_udc. h

USB peripheral/endpoint management registers

otg/fsl_otg.c

OTG driver source file.

otg/fsl_otg.h

OTG driver header file.

otg/otg fsmec

OTG FSM implement source file.

otg/otg_fsmh

OTG FSM header file.

Table 35-2 lists the platform related source filesin the directory,
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/include/ asm arn arch-nxc.

Table 35-2. USB Platform Source File List

File

Description

arc_otg.h

USB register define.

Table 35-3 lists the platform-related source files in the directories:
<lI'tib_dir> rpm BU LD |'i nux-2.6.26/arch/arn mach- mx3/

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

35-4

Freescale Semiconductor

ARC USB driver

Table 35-3. USB Platform Header File List

File Description
usb_dr.c Platform-related initialization
usb_h1.c Platform-related initialization
usb_h2.c Platform-related initialization

Table 35-4 lists the common platform source files in the directory,
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/arch/arni pl at - mxc.

Table 35-4. USB Common Platform File List

File Description
isp1301xc.c ISP1301 USB driver
isp1504xc.c ISP1504 USB driver
mc13783_xc.c mc13783 USB driver
utmixc.c internal utmi transceiver driver
serialxc.c internal serial transceiver driver
usb_common.c common platform related part of USB driver

35.6 Linux Menu Configuration Options

The following Linux kernel configurations are provided for this module:

CONFIG_USB_EHCI_HCD—-Build support for USB host driver. In menuconfig, this option is
available under Device drivers > USB support > EHCI HCD (USB 2.0) support. By default, this
optionis M.

CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In menuconfig,
thisoption isavailable under Devicedrivers> USB support > Support for Freescale controller. By
default, thisoptionis.

CONFIG_USB_EHCI_ARC_H1—Build support for selecting the USB Host1. In menuconfig, this
option is available under Device drivers > USB support > Support for Host1 port on Freescale
controller. By default, thisoption is N.

CONFIG_USB_EHCI_ARC_H2—Build support for selecting the USB Host2. In menuconfig, this
option is available under Device drivers > USB support > Support for Host2 port on Freescale
controller. By default, thisoptionis'.

CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In
menuconfig, this option is available under Device drivers > USB support > Support for Host-side
USB > EHCI HCD (USB 2.0) support > Support for Freescale controller. By default, thisoptionis
Y.

CONFIG_USB_STATIC_IRAM—Build support for selecting the IRAM usage for host. In
menuconfig, this option is available under Device drivers > USB support > Use IRAM for USB.
By default, thisoption is N.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 35-5

ARC USB driver

CONFIG_USB_EHCI_ROOT_HUB_TT—-Build support for OHCI or UHCI companion. In
menuconfig, this option is available under Device drivers > USB support > Root Hub Transaction
Translators. By default, thisoptionisY selected by USB_EHCI_FSL & & USB_SUPPORT.
CONFIG_USB_STORAGE—BUild support for USB mass storage devices. In menuconfig, this
option is available under Device drivers > USB support > USB Mass Storage support. By default,
thisoptionis'.

CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is
available under Devicedrivers> HID Devices> USB Human Interface Device (full HID) support.
By default, thisoption is M.

CONFIG_USB_HIDINPUT—Build support for USB HID input devices. In menuconfig, this
option is available under Device drivers > HID devices. By default, thisoptionis'.
CONFIG_USB_GADGET—BUuild support for USB gadget. In menuconfig, this option is
available under Devicedrivers> USB support > USB Gadget Support > Support for USB Gadgets.
By default, thisoptionis*.

CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this
optionisavailable under Devicedrivers > USB support > USB Gadget Support > Support for USB
Gadgets > USB Peripheral Controller > Freescale USB Device Controller. By default, this option
isY.

CONFIG_USB_GADGET_ARC_OTG—-Build support for the USB OTG port in HS/FS
peripheral mode. In menuconfig, this option is available under Device Drivers > USB support >
USB Gadget Support > OTG support. By default, thisoptionis'Y.

CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, thisoption is available
under Devicedrivers> USB support > USB Gadget Support > Support for USB Gadgets > Ethernet
Gadget. By default, thisoptionis*.

CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDI'S protocol. In menuconfig, this
optionisavailable under Devicedrivers > USB support > USB Gadget Support > Support for USB
Gadgets > Ethernet Gadget > RNDI S support (EXPERIMENTAL). By default, thisoptionis'Y.
CONFIG_USB_FILE_STORAGE—BuIild support for Mass Storage gadget. In menuconfig, this
optionisavailable under Devicedrivers > USB support > USB Gadget Support > Support for USB
Gadgets > File-backed Storage Gadget. By default, thisoptionis*.
CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is
available under Device drivers > USB support > USB Gadget Support > Support for USB Gadgets
> Serial Gadget. By default, thisoption is*.

CONFIG_USB_EHCI_FSL_1504—Build support for selecting | SP1504 transceiver for OTG port
host mode. In menuconfig, this option is available under Device drivers > USB support > Select
transceiver for DR port > Philips | SP1504.

CONFIG_USB_GADGET_FSL_1504—Build support for selecting | SP1504 transceiver for OTG
port gadget mode. This option is available under Device drivers > USB support > USB Gadget
Support > Select transceiver for DR port -> Philips 1SP1504.
CONFIG_USB_EHCI_FSL_1301—Build support for selecting | SP1301 transceiver. In
menuconfig, this option is available under Device drivers> USB support > Select transceiver for
DR port > Philips 1SP1301.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

35-6

Freescale Semiconductor

ARC USB driver

» CONFIG_USB_GADGET_FSL_1301—Build support for selecting | SP1301 transceiver for OTG
port gadget mode. In menuconfig, this option is available under Device drivers> USB support >
USB Gadget Support > Select transceiver for DR port > Philips | SP1301.

* CONFIG_USB _EHCI_FSL_MC13783—Build support for selecting M C13783 transceiver for
Host. In menuconfig, this option is availabe under Device drivers > USB support > Select
transceiver for DR port > Freescale MC13783.

» CONFIG_USB_GADGET_FSL_MC13783—Build support for selecting MC13783 transceiver
for OTG gadget mode. In menuconfig, thisoption isavailable under Device drivers> USB support
> USB Gadget Support > Select transceiver for DR port > Freescale MC13783.

35.7 Programming Interface

Thisdriver implements all the functions that are required by the USB bus protocol to interface with the
i.MX USB ports. For more information, see the BSP APl document.

35.7.1 Notes
Table 35-5. Default USB Settings
Default value OTG HS OTG FS Host1 Host2(HS) Host2(FS)
i.MX31 3-Stack enabled N/A N/A enabled N/A

IC typeisi pr74cBTLV3257Q. All these resistor packs are 0 Ohm.

The USB Host2 port: pin conflictswith NAND Flash. If Host2 isto be used, removethe NAND Flash card
from board.

For thei.MX31 3-Stack board, only OTG HS and Host2(HS) are available. The transceiver of OTG HSis
|SP1504; the transceiver of Host2(HS) is USB3317.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 35-7

|
ARC USB driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

35-8 Freescale Semiconductor

Chapter 36
Bluetooth Driver

The Bluetooth driver provides synchronous and asynchronous wireless connection among multiple
devices. The synchronous oriented channel providesvoice transmission. The asynchronous channel allows
more time delay in data transmission. The synchronous and asynchronous data transfer between the host
and Bluetooth chip is performed by different hardware interfaces. The SSI interface is used to transfer
voice from the host to the Bluetooth chip. UART or USB is used for asynchronous data communication.

Based on the wireless connection, many services can be supported by profiles defined by the Bluetooth
Group. On thei.MX platform, the A2DP and AVRCP profileis used to play music (mp3, wav, and so
forth). The FTP profile provides access to the file system on another device. The SPP profile emulates a
seria cableto provide a simply implemented wireless replacement for the existing RS-232 based serial
communications applications. The handset profileis reserved for future support, so the SSI interfaceis
reserved. The UART interface is used for communication between the host and the Bluetooth chip.

36.1 Hardware Operation

The platform usesthe APM 6628, which is aBluetooth and Wi-Fi combination modul e that integrates CSR
Bluetooth and the Wi-Fi chip. The Bluetooth/Wi-Fi chip in the APM 6628 module works independently.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 36-1

Bluetooth Driver

Figure 36-1 illustrates the hardware interface between i.MX 31 3-Stack and the APM6628 module.
Bluetooth and Wi-Fi share one reset signal. UART 2 is used for data communication.

APM6628
UART
-t -
BT
-
i.MX31 RESET
> Wi-Fi
SDIO
-t |

Figure 36-1. Bluetooth Hardware Interface for i.MX31 Platform

36.2 Software Operation
BlueCore™ Host Software (BCHS) is a Bluetooth protocol provided by athird-party company,
Cambridge Silicon Radio (CSR). The porting of BCHS to Linux is divided into:

* A user space port, in which the BCHS protocol stack runsin user space together with the
application.

* A kernel space port, in which the BCHS protocol stack runsin kernel space and the application
runsin user space.
There are two ways to set up the user space port:
» The application and the BCHS protocol stack are running within the same process.
» The application and the BCHS protocol stack are running in two different processes.

Ini.MX platform, the BCHS protocol stack runsin user space. And the application runsin the same
process, as shown in Figure 36-2.

Encoding is used to minimize the bandwidth required for transferring the audio data. Thus, the encoding
compresses the audio before transmission over the air. The A2DP profile mandates support for SBC
encoding, and other codecs, such as MP3 and WMA, are optional. The A2DP source checks the
capabilities of sink and then configures sink to select the dedicated codec.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

36-2 Freescale Semiconductor

Host

User Space |

I_A'Ep

Scheduler

Application

BCHS Inteface Libg

A
Y

BCHS

A
Y

Core Stack

A
Y

BCSP/H4DS

v

Serid Port Interface

lication and BCHS Process

3

Kernel Space

Device Driver

A
Y

Serid Port

A

v

Chip

Figure 36-2. BCHS Protocol Stack

UART Control

For user space porting, first configure the universal asynchronous receiver transmitter (UART). On the
i.MX platforms, UART2 is used for communication between the CPU chip and the Bluetooth chip. The
BCHS protocol opens/ dev/ttymxc1 and configures the device according to profile requirements.

The minimum baud rate for the AD2P profile is 460.8 kbps; 921.6 kbps baud isrecommended. Table 36-1
maps the relationship between the UART baud rate and maximum SBC bit rate.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Bluetooth Driver

Freescale Semiconductor

36-3

Bluetooth Driver

Table 36-1. UART Mapping
Baud Rate (kbps) | Max SBC bit rate (kbps)
115.2 75
230.4 150
460.8 300
600.0 400

The following table describes the UART configuration files.
Table 36-2. Bluetooth UART configuration files

File Description Platform
<lItib_dir>/rpm BU LD |i nux-2.6.26/arch Disable IRDA, Enable UART2 i.MX31
[ar ml mach- nx3/ boar d- nk3_3st ack. h
<lItib_dir>/rpm BU LD |i nux-2.6.26/arch Set UART operation mode i.MX31
/arm mach- mx3/ nx3_3st ack_gpi 0. c

36.2.2 Reset and Power control
Besides BCHS and UART, the power control and reset for BT chip is aso required. Table 36-3 liststhe

file for thedriver.

Table 36-3. Bluetooth Driver File

File

Description

<Itib_dir>/rpm BU LD |inux-2.6.26/driv
ers/ mxc/ bt/ mxc_bt.c

bluetooth kernel driver

36.2.3 Configuration

The CONFIG_MXC_BLUETOOTH Linux kernel configuration is provided. This is the configuration

option for the bluetooth driver for the MXC processors. In the menuconfig this option is available under
Device Drivers > M X C support drivers> M X C Bluetooth support > MXC Bluetooth support. By default,
thisoption is M for all architectures.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

36-4

Freescale Semiconductor

Chapter 37
ATA Driver

The ATA moduleisan AT attachment host interface mainly used to interface with hard disk devices. The
ATA driver is compliant to the ATA-6 standard, and supports the following protocols:

« PIOmode0, 1, 2, 3,and 4

* multi-word DMA mode0, 1, and 2

* UltraDMA mode0, 1, 2, 3, and 4 with bus clocks of 50MHz or higher
» UltraDMA mode 5 with bus clock of 80MHz or higher

* LibATA interfaces

37.1 Hardware Operation
The detailed hardware operation of ATA is described in the hardware documentation.

37.2 Software Operation

37.2.1 ATA Driver Architecture

Figure 37-1 shows ATA driver architecture. File systems are built upon the block device. The integrated
external DMA engine, which assiststhe ATA controller hardwarein the DMA transfer modes, is accessed
through the Linux SDMA Driver. The DMA engine used depends on chip capability. See Table 37-1 for
detailed information.

Table 37-1. DMA engine

DMA Engine Type Available Platform

external DMA MX31

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 37-1

ATA Driver
/mnt/... /dev/sda*
User Space
Kernel Space
ATA Controller Driver Optional and decided
by the HW
Optional and

decided by the HW

Software

Hardware

ATA interface

Figure 37-1. ATA Driver Layers

37.2.2 LibATA Driver

LibATA isalibrary used inside the Linux kernel to support ATA host controllers and devices. [ibATA

provides an ATA driver AP, class transports for ATA and ATAPI devices, and SCSI <-> ATA trandation
for ATA devices according to the T10 SAT specification driver. Hard disk is exposed to the application in
user space by the /dev/sdainterface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

37-2 Freescale Semiconductor

ATA Driver

37.3 Source Code Structure Configuration

37.3.1 LibATADriver

Table 37-2 lists the source file avail able in the directory,
<I'tib_dir>/rpm BUI LD |inux-2.6.26/drivers/ata

Table 37-2. LibATA Driver File List

File Description

pata_fsl.c | ATA Driver Implementation file

37.4 Linux Menu Configuration Option

Enablethese kernel configuration optionsaseither modules (M) or built-into thekernel (Y). These options
are all under “Device Drivers> Serial ATA (prod) and Parallel ATA (experimental) drivers > Freescale
on-chip PATA support”:

For ATA device support, enable these options: Device Drivers> SCSI device support > SCSI disk support.

37.5 Board Configuration Options
Table 37-3 lists the hardware configurations for 3-Stack boards:

Table 37-3. Hardware configuration for 3-Stack boards

Platform Hardware configuration

MX31 * Ensure R189 is removed and R190 is populated
e The ATA connector is at the back of the Personality card.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 37-3

|
ATA Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

37-4 Freescale Semiconductor

Chapter 38
Real Time Clock (RTC) Driver

Each i.MX processor has an integrated real time clock (RTC) module. The RTC is used to keep the time
and date while the system is turned off. The driver can also do the following:

* Provide periodic interrupt at certain frequency (PIE)

» Wake up the system by providing the alarm feature (AIE)

38.1 Hardware Operation

The RTC prescaler converts the incoming crystal reference clock to a1 Hz signal, which is used to
increment seconds, minutes, hours, and days Time-Of-Day (TOD) counters. The alarm functions, when
enabled, generate RTC interrupts when the TOD settings reach programmed values. The sampling timer
generates fixed-frequency interrupts, and the minutes stopwatch allows efficient interrupts on minute
boundaries.

38.2 Software Operation

The RTC module’s software implementation is through a RTC driver. Besides the initialization function,
it providesi oct | functionsto set up the RTC timer, interrupt, and so on. The periodic interrupt is
supported at fixed frequencies of 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz, 128 Hz, 256 Hz, and 512 Hz
given the clock input of 32.768 kHz (Other clock input frequencies are not supported by the driver.) The
1 Hz periodic interrupt is also called update interrupt (UIE).

NOTE

Thei.MX RTC driver implementation follows what is stated in the
<Itib_dir>/rpm/BUILD/linux-2.6.26/Documentation/rt c. t xt file under
Linux kernel Docurent at i on directory that “ Programming and/or enabling
interrupt frequencies greater than 64 Hz is only allowed by root.”

38.3 Requirements

This RTC implementation meets the following requirements:

* The RTC module implements all the functions required by Linux to provide the real time clock,
alarm interrupt and periodic interrupt.

* The RTC module conforms to the Linux coding standard as documented in the Coding
Conventions chapter.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 38-1

Real Time Clock (RTC) Driver

38.4 Source Code Structure

Table 38-1 shows the RTC module files.
Table 38-1. RTC Driver File List

File

Description

rtc-mxc.c

rtc driver implementation file

The sourcefile, mxc_rtc. c, for the RTC specifies the RTC function implementations.

38.5 Programming Interface

All the Linux RTC functions areimplemented inthe t i me. c file.

Theincl ude/ i nux/ rtc. h file specifiesal theioctls for RTC.

NOTE

The following RTC ioctls are supported on i.MX platforms.

colum (1) =
colum (2) =
(1) (2
RTC_U E_ON
RTC Ul E_CFF
RTC_RD _TI ME
RTC_SET_TIME
RTC_ALM READ
RTC_ALM SET
RTC_WKALM RD
RTC_WKALM SET
RTC_ Al E_ON
RTC_Al E_CFF
RTC_ WE_ON
RTC_ W E_COFF
RTC_| RQP_READ
RTC | RQP_SET
RTC PIE_ON
RTC Pl E_CFF
RTC_EPOCH_READ
RTC_EPOCH_SET
RTC PLL_GET
RTC PLL_SET

<< << << <<=

K<< <L << < << <<
<< <<

See the API documentation for the detailed programming interface.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

IOCTLs listed in include/linux/rtc.h
Supported by MXC pl atform RTC driver.

“Y” means supported.

38-2

Freescale Semiconductor

Chapter 39
Watchdog (WDOG) Driver

The Watchdog Timer module protects against system failures by providing an escape from unexpected
hang or infinite loop situations or programming errors. Some platforms may have two WDOG modules
with one of them having interrupt capability.

39.1 Hardware Operation

Once the WDOG timer is activated, it must be serviced by software on a periodic basis. If servicing does
not take place in time, WDOG times out. Upon a time-out, WDOG either asserts the wdog_b signal or a
wdog_r st _b System reset signal, depending on software configuration. The watchdog module can not be
deactivated once it is activated.

39.2 Software Operation

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific platform to be
supported. For the platformsthat have two WDOG hardware modules, another implementation isdone in
the machine-specific layer as part of theti ne. ¢ file. The following sections describe both
implementations.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.

39.2.1 Generic WDOG driver

Thisisimplemented inthe<i tib_dir>/rpn BU LD/ | i nux-2. 6. 26/ dri ver s/ wat chdog/ mxc_wdt . ¢ file. It
essentially provides functions for various IOCTLs and read/write calls from the user level program to
control the WDOG.

39.2.1.1 Requirements

This WDOG implementation meets the following requirements:
» Generatesthereset signal if it isenabled but not serviced within a predefined timeout value.
» Does not generate the reset signal if it is serviced within a predefined timeout val ue.
* Provides IOCTL/read/write required by the standard WDOG subsystem.

39.2.1.2 Source Code Structure

The WDOG source codeisin<itib_dir>/rpm BU LD/ | i nux- 2. 6. 26/ dri ver s/ wat chdog/ mxc_wdt . ¢ and
mxc_wdt . h.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 39-1

Watchdog (WDOG) Driver

Table 39-1 lists the source files for WDOG.

Table 39-1. WDOG File List

File

Description

mxc_wdt . ¢

WDOG function implementations

mxc_wdt . h

header file for WDOG implementation

39.2.1.3 Programming Interface

For more information, see the APl documentation for the detailed programming interface.

39.2.2 WDOG under Machine Specific Layer

The WDOG software implementation provides routines to service WDOG so that the timeout never

occurs. If the WDOG timer is enabled before the Linux kernel boots (enabled by boot loader or ROM) it
isautomatically serviced, with the service interval being configurable. In addition, compile-time options
gpecify if the Linux kernel should enable the watchdog, and if so the parametersto be used. If the second
WDOG presents (it is used to generate an interrupt after the timeout occurs), the highest interrupt priority

(16) is assigned to thisinterrupt

Figure 39-1 shows the flow chart for the operation. It appliesto all platforms with two WDOGs.

WDOG

Setupand |
enable WDOGx

Do Nothing

enabled in
HW?

Module init

WDOG_SERVICE_PERIOD
defined?

Service based on
WDOG_SERVICE_PERIOD

Service every OS tick

Figure 39-1. WDOG Software Operation Flow Chart

39.2.2.1 Requirements

This WDOG implementation meets the following requirements:
* Generatesthe reset signal if it isenabled but not serviced within a predefined timeout value.
» Does not generate the reset signal if it is serviced within a predefined timeout val ue.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

39-2

Freescale Semiconductor

Watchdog (WDOG) Driver

* The second WDOG (when present) generates an interrupt if it is enabled but not serviced within a
predefined timeout value.

39.2.2.2 Source Code Structure

The WDOG modul e implementation is embedded inside the timer modul e as described above. The source
codeisavalableinthetime. ¢ file under the MSL directory
<lI'tib_dir>/rpm BU LD |i nux-2.6.26/arch/arni pl at - mxc.

The source filesfor WDOG isti ne. ¢, which specifies WDOG function implementations.

39.2.2.3 Programming Interface
The following DEFINES are provided:

WDOG1_ENABLE /* not defined by default */
WDOG2_ENABLE /* not defined by default */

WDOGL_TI MEQUT /* WDOGL tinmeout in ns */

WDOGE2_TI MEOQUT /* WDOBE2 timeout in ns */

WDOG_SERVI CE_PERI OD /* time interval in ns to service WDOG */

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 39-3

A
Watchdog (WDOG) Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

39-4 Freescale Semiconductor

Chapter 40
FM Driver

Si4702 is used as the FM chip on the board. The Si4702 extends Silicon Laboratories Si4700 FM tuner
family and further increases the ease and attractiveness of adding FM radio reception to mobile devices
through small size and board area, minimum component count, flexible programmability. Headset cable
is used for antenna on the board.

40.1 FM Overview

The device offers significant programmability and caters to the subjective nature of FM listeners and
variable FM broadcast environments world-wide through a simplified programming interface and mature
functionality.

Power management is aso smplified with an integrated regulator allowing direct connection to a2.7 to
5.5V battery. The features of the FM module are as follows:

* Worldwide FM band support (76-108 MHz)

» Digital low-IF receiver

» Seek tuning

» Automatic frequency control (AFC)

» Automatic gain control (AGC)

» Signal strength measurement

» Adaptive noise suppression

* Volume control

o 32768 kHz reference clock

* 2-wire and 3-wire control interface

» 271055V supply voltage

* Integrated LDO regulator allows direct connection to battery

* Integrated crystal oscillator

40.1.1 Hardware Operation

Si4702 supports both three-wire control and two-wire control. Two-wire control ischosen by driving SEN
pin high during boot up.

For two-wireoperation, atransfer beginswith the START condition. The control word islatched internally
onrising SCLK edges and is eight bitsin length: a seven bit device address equal to 0010000b and a
read/write bit (write = 0 and read = 1). The device acknowledges the address by setting SDIO low on the
next falling SCLK edge.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 40-1

FM Driver

For write operations, the device acknowledge is followed by an eight bit data word latched internally on
rising edges of SCLK. The device always acknowledges the data by setting SDI1O low on the next falling
SCLK edge. An internal address counter automatically increments to allow continuous data byte writes,
starting with the upper byte of register 02h, followed by the lower byte of register 02h, and onward until
thelower byte of thelast register isreached. Theinternal address counter then automatically wraps around
to the upper byte of register 00h and proceeds from there until continuous writes cease. Data transfer
ceases with the STOP command. After every STOP command, the internal address counter is reset.

For read operations, the device acknowledge is followed by an eight bit data word shifted out on falling
SCLK edges. Aninternal address counter automatically increments to allow continuous data byte reads,
starting with the upper byte of register OAh, followed by the lower byte of register OAh, and onward until
thelower byte of thelast register isreached. Theinternal address counter then automatically wraps around
to the upper byte of register 00h and proceeds from there until continuous reads cease. After each byte of
dataisread, the controller IC should return an acknowledge if an additional byte of dataisrequested. Data
transfer ceases with the STOP command. After every STOP command, the internal address counter is
reset.

FM analog signal's connect directly to the audio chip which routes them out to headset.

40.1.2 Software Operation

| Application |
User space ioctl()
Kernel space Y
¥ | FM driver
#&egister access
| 12C framework | Hardware control
Hardware Register access ¢

| S14702 |

Figure 40-1. Software Operation

The FM driver serves as an interface between kernel and user space. The driver can control hardware
directly (for example, areset operation) but most of the functional operation comes from the 1°C
framework, which is especially convenient in the 2-wire control case.

The main software operation is as follows:

1. Ininitialization stage, register device in character sub-system, and then register it to 1°C
framework.

2. In open operation, reset the chip, and initialize the register on the chip.
In release operation, shutdown the chip.

4. Inioctl operation, handle all the commands from user space, execute them and then feed back
information if there isany.

w

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

40-2 Freescale Semiconductor

40.2 Source Code Structure Configuration

Table 40-1 lists the source files associated with the FM driver that are available in the directory,

<ltib_dir>/rpm BU LD/ | i nux-2.6.26/driver s/ char/.

Table 40-1. FM Driver Source and Header File List

FM Driver

File

Description

mxc_si 4702. c

Source file for SI4702 FM driver

<lItib_dir>/ rpm BU LD/ I inux-2.6.26/include/linux/mc_si4702.h

Header file for S14702 FM driver

40.3 Linux Menu Configuration Options

The Linux kernel configurations are provided for this module. CONFIG_FM_SI4702 is the configuration
option for the FM driver. By default, thisoption is M.

To load the FM drivers use the command:

i nsnod nxc_si 4702. ko

Itislocated in/!ib/nodul es/ 2. 6. 26-*/ ker nel / dri vers/ char.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor

40-3

|
FM Driver

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

40-4 Freescale Semiconductor

Chapter 41
MMA7450L Accelerometer Driver

The MMA7450L isafeaturerich accelerometer device with aflexible programming interface exposed to
the software. It can be used on many applications, such asimage stability, freefall detection, motion
dialing, e-compass, and so forth.

41.1 MMA7450L Features
* Digital Output (12C/SPI) - 10-Bit at 8g Mode
e 3mm x 5mm x Imm LGA-14 Package
* Low Current Consumption: 400 pA
o Self Test for Z-Axis
* Low Voltage Operation: 2.4V - 3.6V
» Customer Assigned Registers for Offset Calibration
* Programmable Threshold Interrupt Output
» Level/Pulse Detection for Motion Recognition (shock, vibration, freefall)
» Click Detection for Single or Double Click Recognition
» High Sensitivity (64 LSB/g at 2g and at 8g in 10-Bit Mode)
» Selectable Sengtivity (+2g, +49, +80)
o Self Test for Z-Axis
* Robust Design, High Shocks Survivability (10,000 g)
* RoHS Compliant
* Environmentally Preferred Product
* Low Cost

41.2 Driver Requirements

MMAT7450L driver is based on a1%C driver and makes use of hardware monitor system and input poll
device system; therefore, the user must enable this support in the Linux kernel.

41.3 Driver Architecture

Figure 41-1 shows the software architecture. The MMA7450L provides two methods of register access,
12C and SPI. This driver uses the 1°C. At driver initial phase, al°C client is registered to the 1°C system
and isused during the process of MM A7450L operations. The MM A7450L registersitself tothe hardware
monitor system and the input poll device system that provide user access facilities.

i.MX31 PDK 1.5 Linux Reference Manual, Rev 1.5

Freescale Semiconductor 41-1

MMA7450L Accelerometer Driver

User application

User space
Kernel space v v
Hwmon system Input poll device system

! Yegister] fegister §
MMAT7450L driver

v
[2C interface

]
v

HARDWARE

Figure 41-1. Driver Architectur