
MSC711X Reference Manual
MSC7110, MSC7112, MSC7113, MSC7115, MSC7116, MSC7118,

and MSC7119

MSC711xRM
Rev. 1, November 2006

 to

n

Information in this document is provided solely to enable system and software implementers
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based o
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Document Order Number: MSC711xRM
Rev. 1
11/2006

Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005, 2006.

Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

1MSC711x Overview

2Signal Pins and Pinouts

4Extended Core

7System Control

13Reset

14Boot Program

15Event Port

19Time-Division Multiplexing (TDM) Interface

20Host Interface (HDI16)

23

BBoot Code

IIndex

Universal Asynchronous Receiver/Transmitter (UART)

SC1400 Core Overview

Memory Map

Crossbar Switch

DMA Controller

Memory Controller

Debugging

Fast Ethernet Controller (FEC)

Timers Module

I2C Software Module

General-Purpose Input/Output (GPIO)

3

5

6

8

9

16

18

21

22

24

Clocks and Power Management 11

Interrupt Processing 12

Memory Controller Interface (MCIF) 10

Programmable Address Detection 17

ASystem Usage and Tuning/Programming Reference

1MSC711x Overview

2Signal Pins and Pinouts

4Extended Core

7System Control

13Reset

14Boot Program

15Event Port

19Time-Division Multiplexing (TDM) Interface

20Host Interface (HDI16)

23

BBoot Code

IIndex

Universal Asynchronous Receiver/Transmitter (UART)

SC1400 Core Overview

Memory Map

Crossbar Switch

DMA Controller

Memory Controller

Debugging

Fast Ethernet Controller (FEC)

Timers Module

I2C Software Module

General-Purpose Input/Output (GPIO)

3

5

6

8

9

16

18

21

22

24

Clocks and Power Management 11

Interrupt Processing 12

Memory Controller Interface (MCIF) 10

Programmable Address Detection 17

ASystem Usage and Tuning/Programming Reference

1 MSC711x Overview

2 Signal Pins and Pinouts

4 Extended Core

7 System Control

13 Reset

14 Boot Program

15 Event Port

19 Time-Division Multiplexing (TDM) Interface

20 Host Interface (HDI16)

23

B Boot Code

I Index

Universal Asynchronous Receiver/Transmitter (UART)

SC1400 Core Overview

Memory Map

Crossbar Switch

DMA Controller

Memory Controller

Debugging

Fast Ethernet Controller (FEC)

Timers Module

I2C Software Module

General-Purpose Input/Output (GPIO)

3

5

6

8

9

16

18

21

22

24

Clocks and Power Management11

Interrupt Processing12

Memory Controller Interface (MCIF)10

Programmable Address Detection17

A System Usage and Tuning/Programming Reference

Contents

Contents v
 v

About This Book
Before Using This Manual—Important Note . xx
Audience and Helpful Hints . xx
Notational Conventions and Definitions. xx
Conventions for Registers . xxii
Organization of this Manual . xxiii
Other MSC711x Documentation . xxv
Further Reading. xxvi

1 MSC711x Overview
1.1 Features . 1-2
1.2 MSC711x Block Diagrams . 1-8
1.3 Bus Architecture . 1-16
1.3.1 SC1400 Core Buses . 1-16
1.3.2 Crossbar Master Port Buses. 1-16
1.3.3 Crossbar Slave Port Buses . 1-17
1.3.4 Peripheral Buses . 1-18
1.3.5 External Buses . 1-18
1.4 Extended Core. 1-19
1.4.1 SC1400 Core . 1-19
1.4.2 M1 Memory . 1-20
1.4.3 Instruction Cache . 1-21
1.4.4 Instruction Fetch Unit . 1-22
1.4.5 Extended Core Interface . 1-22
1.5 Direct Memory Access (DMA) Controller . 1-24
1.6 Crossbar Switch . 1-24
1.7 System Control . 1-25
1.8 Reset . 1-26
1.9 Boot ROM. 1-26
1.10 PLL and Clocks (PLL/Clock) . 1-26
1.11 Interrupt Scheme . 1-26
1.12 M2 Memory (Device-Specific) . 1-27
1.13 Peripherals. 1-27
1.13.1 TDM Serial Interface . 1-27
1.13.2 Host Interface (HDI16) . 1-28
1.13.3 Fast Ethernet Controller (Device-Specific) . 1-28
1.13.4 Timers . 1-29
1.13.5 Universal Asynchronous Receiver/Transmitter (UART) . 1-29
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor v

Contents
1.13.6 I2C Interface. 1-29
1.13.7 GPIO Signals . 1-29
1.13.8 Event Port . 1-30

2 Signal Pins and Pinouts
2.1 Power and Ground . 2-10
2.2 Clocks and Resets . 2-10
2.3 Memory System Interface (DDR Controller) . 2-11
2.4 TDM Interfaces . 2-12
2.5 Ethernet MAC Interface Port . 2-16
2.6 Host Interface Port . 2-20
2.7 I2C Port . 2-23
2.8 UART Port . 2-23
2.9 Event Port . 2-24
2.10 GPIO Ports . 2-25
2.11 Interrupts . 2-36
2.12 JTAG/OCE10 Enhanced On-Chip Emulator Port . 2-42
2.13 Boot Behavior of Pins . 2-43
2.14 Schmidt Triggering . 2-46
2.15 Connectivity Guidelines . 2-47

3 SC1400 Core Overview
3.1 MSC711x Architecture . 3-2
3.1.1 Address Generation Unit (AGU) . 3-2
3.1.1.1 AAUs . 3-3
3.1.1.2 Stack Pointer Registers. 3-4
3.1.1.3 Bit Mask Unit (BMU) . 3-4
3.1.2 Data Arithmetic Logic Unit (Data ALU). 3-4
3.1.2.1 Data Registers. 3-5
3.1.2.2 Multiply-Accumulate (MAC) Unit. 3-5
3.1.2.3 Bit-Field Unit (BFU) . 3-6
3.1.3 Program Sequencer Unit (PSEQ) . 3-6
3.1.4 On-Chip Emulator . 3-7
3.2 Programming Model . 3-7
3.2.1 AGU Programming Model . 3-8
3.2.2 Data Arithmetic Logic Programming Model. 3-9
3.2.3 Program Control Unit (PCU) Programming Model . 3-10
3.3 Instruction Set Overview . 3-11
3.4 Programming Considerations . 3-17

4 Extended Core
4.1 SC1400 DSP Core. 4-2
4.2 Extended Core Memory (M1). 4-2
4.2.1 Interleaving Within a Memory Group . 4-4
4.3 Extended Core Controller . 4-5
4.3.1 Memory Contention. 4-6
4.3.1.1 Detecting Contentions . 4-6
4.3.1.2 Access Priority During Memory Contention . 4-7
MSC711x Reference Manual, Rev. 1

vi Freescale Semiconductor

Contents
4.3.1.3 Allocating M1 Memory to Avoid Contention . 4-8
4.3.2 Errors, Exceptions, and Events . 4-8
4.3.2.1 Errors . 4-9
4.3.2.2 Exceptions . 4-9
4.3.2.3 Events . 4-9
4.4 Extended Core Interface (ECI) System. 4-10
4.4.1 AMEC Bus. 4-11
4.4.2 Bus Switch and Write Buffer. 4-12
4.4.2.1 Write Buffer . 4-12
4.4.3 Atomic Accesses (Read-Modify-Write) . 4-14
4.4.3.1 Coherency at the System Level, Against Interrupts . 4-14
4.4.3.2 Coherency at the System Level, Accesses Issued from the ECI . 4-14
4.4.3.3 Coherency at the System Level, Accesses to M1 Memory . 4-15
4.5 Instruction Cache (ICache) . 4-15
4.5.1 Set Associative Address Mapping . 4-17
4.5.2 MSC711x Set Associative Mapping . 4-19
4.5.3 Cache Hits and Misses. 4-19
4.5.3.1 Servicing a Miss . 4-19
4.5.3.2 Loading the Cache Array on a Miss . 4-20
4.5.3.3 Tuning the Cache to Improve Performance . 4-21
4.5.4 Cache Locking . 4-21
4.5.5 Debugging Support . 4-23
4.5.5.1 Run-time Debugging . 4-24
4.5.5.2 Cache Debug Mode Debugging . 4-24
4.5.5.2.1 Entering Cache Debug Mode . 4-24
4.5.5.2.2 ICache Structure. 4-25
4.5.5.3 Techniques for Accessing the Tag, Valid Bit, and LRU Arrays . 4-25
4.5.5.3.1 Reading the Contents of the Tag Array . 4-26
4.5.5.3.2 Reading the Contents of the Valid Bit Array . 4-27
4.5.5.3.3 Reading the LRU Registers . 4-29
4.5.5.4 Setting Breakpoints with the ICache . 4-30
4.6 Instruction Fetch Unit . 4-31
4.6.1 Cache Bursting Parameters . 4-31
4.6.1.1 Burst of 1, Primary Set Size of 1 . 4-32
4.6.1.2 Burst of 1, Primary Set Size of 2 . 4-32
4.6.1.3 Burst of 1, Primary Set Size of 4 . 4-33
4.6.1.4 Burst of 4, Primary Set Size of 4 . 4-33
4.6.1.5 Trade-offs in Setting the Burst and Primary Set Sizes . 4-34
4.6.2 Servicing a Second Cache Miss. 4-34
4.6.3 Transaction Priorities. 4-35
4.7 Configuring the Address Space Outside the Extended Core . 4-35
4.7.1 Write Buffer Data Areas . 4-35
4.7.2 Instruction Cacheable Area . 4-37
4.7.3 Data Coherency . 4-39
4.7.3.1 Global Memory Attributes . 4-39
4.7.3.2 Semaphore Support . 4-39
4.7.3.3 Program and Data Coherency. 4-39
4.8 Extended Core Programming Model . 4-40
4.8.1 ECI Registers . 4-40
4.8.2 ICache Registers . 4-45
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor vii

Contents
4.8.2.1 Commands . 4-45
4.8.2.2 Reads . 4-45
4.8.2.3 Instruction Regions. 4-45
4.8.2.4 ICache Programming Restrictions . 4-46
4.8.2.5 ICache Registers . 4-47

5 Memory Map
5.1 Register Base Addresses . 5-4
5.2 Memory-Mapped Registers. 5-5
5.3 Address Space by Type of Access . 5-31
5.4 Program Accesses . 5-31
5.4.1 SC1400 Read Data Accesses . 5-32
5.4.2 SC1400 Core and Write Buffer Data Accesses . 5-33
5.4.3 DMA Read Data Accesses. 5-33
5.4.4 DMA Write Data Accesses . 5-34
5.4.5 Ethernet MAC Read Data Accesses . 5-35
5.4.6 Ethernet MAC Write Data Accesses . 5-36
5.5 Access Restrictions . 5-37
5.5.1 Master Port Restrictions . 5-37
5.5.1.1 AMEC Port . 5-37
5.5.1.2 AMIC Port . 5-37
5.5.1.3 AMDMA Port. 5-37
5.5.1.4 AMENT Port . 5-37
5.5.2 Access Size Restrictions . 5-38
5.6 Misaligned Access Detection on AHB Masters . 5-40
5.7 Bit Field Operations and Restricted Accesses . 5-40
5.8 Big-Endian Operation . 5-40
5.9 16-bit Accesses to 32-bit Peripheral Registers . 5-41

6 Crossbar Switch
6.1 Architecture. 6-1
6.1.1 Master and Slave Ports . 6-2
6.1.2 Buses . 6-4
6.1.3 System-Level Parallelism . 6-4
6.2 Crossbar Switch Operation . 6-5
6.2.1 Arbitration . 6-5
6.2.1.1 Alternate Priority Capability . 6-5
6.2.1.2 Context Switching . 6-5
6.2.1.3 Fixed-Priority Arbitration. 6-5
6.2.1.4 Round-Robin Priority Arbitration . 6-7
6.2.2 Priority Assignment . 6-7
6.2.3 Master Port Functionality . 6-9
6.2.4 Slave Port Functionality . 6-10
6.2.4.1 Slave Port Registers . 6-11
6.2.4.2 Slave Port State Machine . 6-12
6.2.5 Halting the Crossbar Switch . 6-16
6.3 Data Throughput for Masters and Slaves . 6-17
6.3.1 Master Ports . 6-17
6.3.2 Slave Ports . 6-18
MSC711x Reference Manual, Rev. 1

viii Freescale Semiconductor

Contents
6.4 Crossbar Switch Programming Model . 6-18

7 System Control
7.1 System Protection . 7-1
7.1.1 Bus Time-Out Monitors (Slave Buses) . 7-1
7.1.2 Bus Time-Out and Error Detection (Master Buses) . 7-2
7.2 Illegal Access Detection . 7-3
7.2.1 Fixed Illegal Access Detection . 7-3
7.2.2 Programmable Access Detection . 7-4
7.2.3 Misaligned Access Detection . 7-4
7.3 Software Watchdog Timer . 7-4
7.3.1 Software Watchdog Timer Operation . 7-5
7.3.1.1 Counter . 7-5
7.3.1.2 Pause Mechanism . 7-6
7.3.1.3 Interrupt and System Reset Response . 7-6
7.3.2 Configuring the Watchdog Timer out of Reset . 7-6
7.3.3 Servicing the Watchdog Timer . 7-7
7.4 System Control Programming Model . 7-7
7.4.1 Bus Time-Out Monitor and Bus Error Registers . 7-8
7.4.2 Software Watchdog Timer Registers. 7-12
7.4.3 Device Identification and Configuration . 7-16

8 DMA Controller
8.1 Features . 8-1
8.2 DMA Architecture . 8-2
8.2.1 DMA Engine . 8-3
8.2.2 Transfer Control Descriptor (TCD) . 8-3
8.3 Data Transfer Overview . 8-5
8.3.1 Channel Assignments . 8-6
8.3.2 DMA Arbitration . 8-6
8.3.2.1 Channel Arbitration within a Group. 8-7
8.3.2.2 Prioritization through the Crossbar Switch . 8-8
8.3.3 DMA Interrupt Vectors . 8-8
8.4 Channel Operation and Data Flow . 8-9
8.4.1 Channel Operation . 8-9
8.4.2 DMA Data Flow . 8-9
8.4.2.1 Channel Activation. 8-9
8.4.2.2 Data Movement . 8-10
8.4.2.3 Field Updates . 8-11
8.4.3 Pseudo-Code Description of DMA Channel Processing . 8-12
8.5 DMA Performance . 8-16
8.6 DMA Initialization/Applications . 8-17
8.6.1 DMA Programming Errors . 8-17
8.6.2 Single-Request DMA Data Transfer Example . 8-18
8.6.3 Multiple-Request DMA Data Transfer Example. 8-19
8.6.4 TCD Status. 8-21
8.6.4.1 Minor Loop Completion. 8-21
8.6.4.2 Active Channel TCD Reads . 8-22
8.6.4.3 Preemption Status. 8-22
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor ix

Contents
8.6.5 Channel Linking . 8-23
8.6.6 Dynamic Programming . 8-24
8.7 DMA Programming Model . 8-25
8.7.1 Control Registers . 8-27
8.7.2 Transfer Control Descriptor (TCD) Registers . 8-40

9 Memory Controller
9.1 Features . 9-1
9.2 DDR Memory Controller Signal Description . 9-1
9.3 Architecture. 9-3
9.3.1 DDR SDRAM Configurations. 9-6
9.3.2 Configuration Examples . 9-7
9.3.2.1 Fan-Out and Termination . 9-8
9.4 JEDEC-Standard DDR SDRAM Interface Commands . 9-12
9.5 Operating Modes. 9-13
9.5.1 Open Page Mode . 9-14
9.5.2 Auto-Precharge Mode . 9-14
9.5.3 DDR SDRAM 2T Timing Mode . 9-15
9.5.4 Low-Power Modes. 9-15
9.6 Interface Characteristics . 9-17
9.6.1 SDRAM Interface Timing . 9-17
9.6.2 DDR Access Timings . 9-18
9.6.2.1 Adjustments to Read Timing . 9-21
9.6.2.2 DDR SDRAM Mode-Set Command Timing . 9-21
9.6.2.3 Configurable Timing Parameters . 9-22
9.6.2.4 DDR SDRAM Registered DIMM Mode . 9-22
9.6.2.5 DDR SDRAM Write Timing Adjustments . 9-23
9.6.2.6 DDR SDRAM Refresh . 9-24
9.6.2.6.1 DDR SDRAM Refresh Timing . 9-25
9.6.3 DDR SDRAM Address Multiplexing . 9-25
9.6.4 Data Beats to DDR SDRAM Devices . 9-27
9.6.5 Error Detection and Management . 9-30
9.7 Initialization and Set-Up . 9-31
9.8 DDR Memory Controller Programming Model . 9-32
9.8.1 Chip Select Registers . 9-32
9.8.2 Configuration Registers . 9-35
9.8.3 Error Handling Registers . 9-43

10 Memory Controller Interface
10.1 Features . 10-1
10.2 Architecture. 10-2
10.2.1 Write Buffer Characteristics . 10-2
10.2.2 Read Prediction Characteristics . 10-3
10.2.2.1 Program Predictive Reads . 10-3
10.2.2.2 Data Predictive Reads. 10-3
10.2.2.3 Predictive Read Hardware Disable. 10-4
10.2.3 Non-Optimized Accesses. 10-4
10.2.4 Error Detection . 10-4
10.2.5 MCIF Reset . 10-5
MSC711x Reference Manual, Rev. 1

x Freescale Semiconductor

Contents
10.3 Programming the MCIF . 10-5
10.4 MCIF Programming Model . 10-7

11 Clocks and Power Management
11.1 Timing System Architecture . 11-1
11.2 Clock Synthesis Module Operation . 11-4
11.2.1 Generating the Clocks . 11-5
11.2.2 Configuring the Clocks . 11-5
11.2.3 Selecting Clock Frequencies . 11-7
11.3 Clock Selection . 11-9
11.3.1 Resetting the Clock Synthesis Module . 11-9
11.3.2 Enabling the PLL. 11-9
11.3.3 PLL Lock Status . 11-10
11.3.4 Modifying the PLL Settings . 11-10
11.3.4.1 PLL Restart. 11-10
11.3.4.2 Bypass Clock . 11-10
11.3.5 Disabling the PLL . 11-11
11.3.6 Loss of Lock Handling . 11-11
11.4 Low-Power Operation. 11-12
11.4.1 Extended Core Low-Power Operation. 11-14
11.4.2 Clock Synthesis Module Low Power Operation . 11-15
11.4.3 AHB Subsystem Low-Power Operation . 11-16
11.4.3.1 Limited Halt of the Crossbar Switch . 11-16
11.4.3.2 Complete Halt of the Crossbar Switch . 11-17
11.4.4 Peripheral Subsystem Low Power Operation . 11-18
11.4.4.1 Complete Halt of the DDR Memory Controller. 11-18
11.4.4.2 Halt of the DDR Memory Controller in Stop Mode Only . 11-19
11.4.4.3 Complete Halt of the Ethernet MAC . 11-19
11.4.4.4 Complete Halt of the HDI16 . 11-20
11.4.4.5 Complete Halt of a TDM . 11-20
11.4.4.6 Complete Halt of the UART. 11-21
11.4.4.7 Complete Halt of the I2C . 11-21
11.4.4.8 Shutting Down One Timer in a Timer Module . 11-21
11.4.4.9 Shutting Down a Timer Module. 11-21
11.4.4.10 Selecting the Input Clock as the Source for the Timer Modules . 11-22
11.4.5 Exit from Stop Mode . 11-22
11.4.5.1 Basic Exit Operations . 11-22
11.4.5.2 STOPCTL Register-Enabled Exit Operations . 11-23
11.4.5.2.1 Direct Exit Operations . 11-23
11.4.5.2.2 Event Port Multiplexor 0 Exit Operations . 11-23
11.5 Clock Programming Model. 11-24

12 Interrupt Processing
12.1 Interrupt Controller Architecture . 12-1
12.1.1 IRQ Pins Preprocessed in GPIO Port A . 12-2
12.1.2 NMI Interrupts . 12-3
12.1.3 Operation in Debug Mode . 12-3
12.2 Interrupt Arbitration . 12-3
12.3 Interrupt Vectors . 12-5
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xi

Contents
12.4 Interrupt Sources . 12-6
12.5 Interrupt Event Selection . 12-11
12.6 Interrupt Controller Programming Model. 12-12

13 Reset
13.1 Reset Sources . 13-2
13.1.1 Power-On Reset . 13-2
13.1.2 Hard Reset . 13-3
13.1.3 Soft Reset. 13-4
13.2 Reset Timing . 13-4
13.3 Exiting Reset and Booting the Device . 13-5
13.4 Reset Programming Model . 13-6

14 Boot Program
14.1 Boot Basics . 14-1
14.1.1 Boot Procedure . 14-4
14.1.2 Boot Modes . 14-5
14.2 Boot Program Operation . 14-7
14.2.1 Boot from Power-On Reset . 14-7
14.2.2 Boot from Hard Reset . 14-7
14.2.3 Bootstrapping and the Watchdog Timer . 14-7
14.2.4 Writing Boot Data to External DDR Memory Not Supported . 14-8
14.2.5 Reserved M1 Memory for Bootstrap Program . 14-8
14.2.6 Interrupt Handling During Booting . 14-9
14.3 Booting from an External Host through the HDI16 . 14-10
14.3.1 Host Flags . 14-10
14.3.2 Host Tasks During HDI16 Boot . 14-11
14.3.3 External Host-Side Boot Load Flow . 14-11
14.3.4 Host Interface Boot Procedure. 14-13
14.3.5 HDI16 Boot Data Records. 14-15
14.3.5.1 HDI16 Boot Data Example . 14-16
14.3.6 Error Handling on Completion . 14-17
14.3.7 Broadcast Boot Facility . 14-18
14.4 Booting From an I2C Device . 14-18
14.4.1 I2C Boot Procedure . 14-19
14.4.2 I2C Boot Data Records . 14-20
14.4.2.1 I2C Boot Data Example . 14-21
14.4.3 Error Handling on Completion . 14-22
14.4.4 Example Source Program . 14-23
14.4.5 Writing to an EPROM Over the I2C Port . 14-24
14.5 Booting from an SPI-Based Serial Flash or EEPROM. 14-26
14.5.1 Main Set Pin Configuration . 14-26
14.5.2 Alternate Set Pin Configuration. 14-27
14.5.3 SPI Boot Loader Procedure . 14-28
14.5.4 SPI Boot Data Records . 14-29
14.5.4.1 Format of the Last Boot Record . 14-30
14.5.4.2 SPI Boot Data Example . 14-30
14.5.5 SPI Boot Error Handling . 14-32
14.5.6 User Access to SPI Routines . 14-32
MSC711x Reference Manual, Rev. 1

xii Freescale Semiconductor

Contents
15 Event Port
15.1 Event Port Architecture. 15-3
15.2 Multiplexer Inputs. 15-7
15.2.1 Auxiliary Input Operation . 15-7
15.2.2 Direct Connection Modes . 15-7
15.2.3 DMA Input Source Selection. 15-8
15.3 Event Multiplexer Combining Logic . 15-10
15.3.1 Restrictions on Combining via ANDing . 15-12
15.3.2 Set . 15-12
15.3.3 Set-Reset . 15-13
15.3.4 Toggle . 15-14
15.4 Event Port Actions . 15-15
15.4.1 Event Port DMA Transfers . 15-15
15.4.2 Event Port Interrupts . 15-15
15.4.3 Crossbar Switch Priority Changes . 15-16
15.4.4 Forced Exit from Stop Mode . 15-16
15.4.5 Status to an External Host . 15-16
15.4.6 Restrictions on Multiple Drivers . 15-16
15.5 Event Port and Debug Port Interaction . 15-17
15.6 Software Management of Event Multiplexers . 15-19
15.6.1 Trigger an Event Multiplexer . 15-19
15.6.2 Reset An Event Multiplexer . 15-19
15.7 Event Sequencing . 15-20
15.7.1 Sequencing Through the Event Multiplexers . 15-21
15.7.2 Sequencing from Event Multiplexer to Debug Port . 15-23
15.7.3 Sequencing from Debug Port to Event Multiplexers. 15-23
15.7.4 Instruction in a Triggering Sequence. 15-25
15.7.5 Instruction ORed with an Event in a Triggering Sequence . 15-26
15.8 Event Port Programming Model . 15-26

16 Debugging
16.1 Debugging Modes . 16-1
16.2 Emulator . 16-2
16.2.1 Emulator System-Level View . 16-3
16.2.2 Accessing the Emulator . 16-4
16.2.2.1 Access through the JTAG Port . 16-4
16.2.2.2 Access from the MSC711x Memory Map . 16-4
16.3 System-Level Debugging . 16-4
16.3.1 System-Level Emulator Signals . 16-6
16.3.2 SC1400 Emulator Instructions. 16-7
16.3.3 Halting the SC1400 Core and Entering Debug Mode . 16-7
16.3.4 Exiting SC1400 Debug Mode . 16-10
16.4 MSC711x JTAG Port . 16-10
16.4.1 Boundary Scan TAP Controller. 16-11
16.4.2 TAP Controller Operation . 16-12
16.4.3 JTAG Instruction Decoding. 16-14
16.4.3.1 Boundary Scan TAP Controller Instruction Decoding. 16-16
16.4.3.2 Debug TAP Controller Instruction Decoding. 16-18
16.4.4 JTAG Mode Restrictions . 16-21
16.5 Accessing the Emulator Through the JTAG Port . 16-21
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xiii

Contents
16.6 OCE10 On-Chip Emulator and JTAG Programming Model . 16-23
16.6.1 Emulator Registers. 16-23
16.6.2 JTAG Registers . 16-25

17 Programmable Address Detection
17.1 Extended Core Programmable Address Detection . 17-1
17.1.1 Detection Comparison Types . 17-2
17.1.2 Detection Action Types . 17-2
17.1.3 Detection Modes . 17-2
17.1.4 Extended Core Address Detection Architecture . 17-3
17.2 Peripheral Programmable Address Detection . 17-5
17.2.1 Detection Comparison Types . 17-5
17.2.2 Detection Action Types . 17-5
17.2.3 Detection Modes . 17-5
17.2.4 Peripheral Address Detection Architecture . 17-6
17.3 Address Detection Unit Programming Model . 17-8
17.3.1 Extended Core Address Detection Registers . 17-8
17.3.2 Peripheral Address Detection Registers . 17-18

18 Fast Ethernet Controller (FEC)
18.1 Features . 18-1
18.2 FEC Architecture . 18-2
18.3 FEC MAC-PHY Interface Signal Pins . 18-4
18.3.1 MII MAC-PHY Signal Pins. 18-5
18.3.2 RMII MAC-PHY Pins . 18-6
18.3.3 7-Wire MAC-PHY Interface Pins . 18-6
18.4 FEC Operation . 18-6
18.4.1 Initialization Sequence. 18-6
18.4.2 Operating Modes . 18-8
18.4.3 Buffer Descriptors . 18-8
18.4.3.1 Driver/DMA Operation with Transmit BDs. 18-9
18.4.3.2 Driver/DMA Operation with Receive BDs . 18-10
18.4.4 FEC Frame Transmission . 18-11
18.4.5 FEC Frame Reception . 18-11
18.4.6 Ethernet Address Recognition . 18-12
18.4.7 Full Duplex Flow Control . 18-17
18.4.8 Inter-Packet Gap Time. 18-18
18.4.9 Collision Handling. 18-18
18.4.10 Internal and External Loopback. 18-18
18.4.11 Ethernet Transmission Error-Handling . 18-19
18.4.12 Ethernet Reception Error Handling . 18-19
18.4.13 Reset . 18-20
18.4.14 Interrupts . 18-20
18.5 Fast Ethernet Controller Programming Model . 18-21
18.5.1 Management Information Base (MIB) Counters . 18-21
18.5.2 Ethernet Receive and Transmit BDs . 18-23
18.5.3 FEC Registers . 18-27
MSC711x Reference Manual, Rev. 1

xiv Freescale Semiconductor

Contents
19 Time-Division Multiplexing (TDM)
Interface
19.1 Features . 19-1
19.2 Halting and Restarting a TDM . 19-2
19.3 TDM Basics . 19-2
19.3.1 Common Signals for the TDM Modules . 19-5
19.3.2 Clocks . 19-5
19.3.3 TDM Clock and Frame Sync Generation . 19-6
19.3.4 TDM Configurations . 19-7
19.4 TDM Serial Interface . 19-9
19.4.1 Sync Out Configuration. 19-9
19.4.2 Sync In Configuration . 19-10
19.4.3 Serial Interface Synchronization . 19-13
19.4.4 Reverse Data Order . 19-15
19.5 Transmit and Receive Operation. 19-15
19.5.1 TDM Multi-Channel (Network) Mode . 19-17
19.5.1.1 Tx Channel Mask Register . 19-17
19.5.1.2 Rx Channel Enable Register. 19-19
19.5.2 Data Structures. 19-20
19.5.3 FIFO Configuration . 19-20
19.5.4 DMA Configuration. 19-22
19.5.5 Interrupts . 19-23
19.6 Software Programming Sequence. 19-23
19.6.1 Initialization for a Shared Operation . 19-24
19.6.2 Initialization for a Non-Shared Operation . 19-25
19.6.3 Dynamic Channel Configuration for a Shared Operation . 19-25
19.6.4 Dynamic Channel Configuration for a Non-Shared Operation . 19-26
19.6.5 Configuring a TDM for I2S Operation . 19-27
19.6.6 Powering Down a TDM. 19-27
19.6.7 Handling Synchronization Errors . 19-27
19.7 TDM Programming Model . 19-28
19.7.1 TDM APB Interface Registers. 19-28
19.7.1.1 Configuration Registers . 19-29
19.7.1.2 Control Registers . 19-39
19.7.1.3 Status Registers . 19-45
19.7.2 TDM AHB Interface Registers . 19-51

20 Host Interface (HDI16)
20.1 Features . 20-3
20.2 HDI16 Host Port Pins . 20-4
20.3 HDI16 Architecture. 20-6
20.4 HDI16 Clocking . 20-6
20.5 Configuring the Host Interface Pins (External Host Side) . 20-6
20.5.1 Host Port Chip Select Capability . 20-8
20.5.2 Data Strobe Pin Configuration. 20-8
20.5.2.1 Transfer Acknowledge Configuration . 20-9
20.5.2.2 Host Request Pin Configuration. 20-10
20.5.3 Host Data Bus Size Configuration (External Host Side). 20-11
20.6 HDI16 Data Transfer . 20-13
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xv

Contents
20.6.1 Data Transfer on the MSC711x Side. 20-13
20.6.1.1 Polling. 20-13
20.6.1.2 Interrupt-Driven Operation. 20-13
20.6.1.3 DMA Operation . 20-14
20.6.2 Data Transfer on the External Host Side . 20-15
20.6.2.1 Polled Operation (Non-DMA Mode) . 20-16
20.6.2.2 External Interrupt (Non-DMA Mode) . 20-16
20.6.2.3 Host DMA Mode . 20-17
20.7 Setting Up the HDI16 Port . 20-19
20.7.1 Non-DMA Mode Programmed from MSC711x Side (HICR = 0) . 20-19
20.7.2 Non-DMA Mode Programmed from External Host Side (HICR = 1) 20-20
20.7.3 DMA Mode Programmed from MSC711x Side (HICR = 0) . 20-21
20.7.4 DMA Mode Programmed from External Host Side (HICR = 1). 20-22
20.7.4.1 Host-Side Configuration Visible to MSC711x. 20-23
20.7.5 Data Transfer Sizes Through the HDI16 . 20-23
20.7.5.1 Non-DMA External Host Accesses . 20-24
20.7.5.2 External Host DMA Accesses . 20-25
20.7.6 Forcing DMA Rx Servicing. 20-26
20.7.7 Host Flags (HF[0–7]). 20-26
20.7.8 Command Vector. 20-27
20.7.9 Initializing the HDI16 Module . 20-27
20.8 MSC711x-Side Programming Model . 20-27
20.9 External Host-Side Programming Model . 20-37

21 Timers Module
21.1 Features . 21-1
21.2 Timer Module Signals. 21-1
21.2.1 Timer Input Signals, TIN[0–3] . 21-1
21.2.2 Timer Output Signals, TOUT[0–3] . 21-2
21.3 Timer Module Architecture . 21-2
21.3.1 Primary Clock Selection . 21-3
21.3.2 Secondary Input Selection . 21-3
21.3.3 Counter . 21-3
21.3.4 Control and Status Registers . 21-4
21.3.5 Capture Registers. 21-4
21.3.6 Compare Unit. 21-5
21.3.7 Interrupt Generation. 21-5
21.3.8 Output Generation . 21-5
21.4 Setting up Counters for Cascaded Operation . 21-6
21.4.1 Operation of the Cascaded Counter . 21-6
21.4.2 Cascading Restrictions. 21-7
21.5 Timer Operating Modes . 21-7
21.5.1 Counting Modes. 21-8
21.5.1.1 One-Shot Mode . 21-9
21.5.1.2 Pulse Output Mode . 21-10
21.5.1.3 Fixed Frequency PWM Mode . 21-10
21.5.1.4 Variable Frequency PWM Mode . 21-10
21.6 Timer Compare Functionality. 21-13
21.6.1 Compare Preload Registers . 21-13
21.6.1.1 Capture Register Use . 21-14
MSC711x Reference Manual, Rev. 1

xvi Freescale Semiconductor

Contents
21.6.1.2 Broadcast from a Master Counter. 21-14
21.7 Resets and Interrupts . 21-15
21.7.1 Timer Compare Interrupts . 21-15
21.7.2 Timer Overflow Interrupts. 21-15
21.7.3 Timer Input Edge Interrupts . 21-16
21.8 Timer Programming Model . 21-16

22 I2C Software Module
22.1 Features . 22-1
22.2 Architecture. 22-2
22.3 I2C Operation . 22-3
22.3.1 Arbitration . 22-4
22.3.2 Clock Synchronization and Stretching . 22-4
22.4 Initialization/Application . 22-5
22.4.1 Generation of START . 22-6
22.4.2 Post Transfer Software Response . 22-6
22.4.3 Generation of STOP or a Repeated START . 22-6
22.4.4 Slave Mode . 22-6
22.4.5 Arbitration Lost . 22-7
22.5 Halting and Starting the I2C Module . 22-7
22.6 I2C Programming Model. 22-9

23 Universal Asynchronous Receiver/Transmitter (UART)
23.1 UART Basics . 23-1
23.2 Halting and Restarting the UART. 23-3
23.3 UART Programming Model . 23-3

24 General-Purpose Input/Output (GPIO)
24.1 GPIO Features. 24-1
24.2 Operating Modes. 24-2
24.2.1 Software Control Mode as GPIO Pins. 24-2
24.2.2 Hardware Control Mode as Peripheral Pins . 24-2
24.2.3 Reading External Ports . 24-2
24.3 GPIO Architecture . 24-3
24.3.1 Data and Control Flow. 24-3
24.3.2 GPIO Port Assignments. 24-4
24.3.2.1 Port Configuration Out of Reset. 24-4
24.3.2.2 Port A . 24-4
24.3.2.3 Port B . 24-8
24.3.2.4 Port C . 24-9
24.3.2.5 Port D . 24-9
24.4 Interrupts . 24-11
24.4.1 Clearing Interrupts . 24-11
24.4.2 Synchronizing Interrupt Signals with the System Clock . 24-12
24.4.2.1 Interrupt Edge Detection . 24-12
24.4.2.2 Level-Sensitive Interrupts . 24-14
24.5 GPIO Programming Model . 24-15
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xvii

Contents
A System Usage and Tuning/
Programming Reference
A.1 Best Use of the System . A-1
A.1.1 Critical Settings . A-1
A.1.2 M1 and M2 Memories . A-2
A.1.3 M1 Memory: Two Different Address Ranges . A-2
A.1.4 Instruction Fetch Unit . A-3
A.1.5 Write Buffer and Write Buffer Data Areas . A-3
A.1.6 DMA Controller. A-4
A.1.6.1 Preemption with Fixed-Priority Arbitration . A-4
A.1.6.2 Preventing Master Port Time-Outs. A-5
A.1.6.3 Recommended DMA Settings . A-8
A.1.7 Crossbar Switch . A-8
A.1.7.1 Priority Elevation by the Masters . A-8
A.1.7.2 Crossbar Slave Port Capabilities . A-9
A.1.7.3 Arbitration at Crossbar Slave Ports . A-9
A.1.7.4 Slave Port Parking . A-12
A.1.7.5 High-Priority Enable Bits . A-14
A.1.7.6 Alternate Priorities . A-15
A.1.8 Programmable Bus Time-Out Monitors on Master Buses . A-15
A.1.9 Programmable Bus Time-Out Monitors on Slave Buses. A-16
A.1.10 DDR Memory Controller Interface . A-17
A.1.11 DDR Memory Controller. A-17
A.1.12 Event Port . A-17
A.2 Access Times from the SC1400 Core to Device Components . A-18
A.3 DMA Burst Times. A-19
A.4 DMA Burst Efficiency . A-20
A.5 ICache Efficiency . A-21
A.6 Handling Access Errors . A-22
A.6.1 Extended Core . A-22
A.6.2 AHB Subsystem. A-23
A.6.3 Error Detection on Both Ends of the Transfer. A-23
A.6.4 Automatic State Recovery During Error Detection. A-24
A.6.5 Configurable Priority Modification During a Chip Event . A-24
A.7 Best Use of the Development Tools . A-25

B MSC711x Boot Code

Index
MSC711x Reference Manual, Rev. 1

xviii Freescale Semiconductor

About This Book

The MSC711x family is a high-performance, cost-effective family of DSPs based on the
StarCore™ SC1400 core, which offers system solutions, flexibility with peripherals and
performance, and overall system cost savings. Devices in the MSC711x family target
high-bandwidth highly computational DSP applications and are optimized for packet telephony
applications, providing a competitive price per channel for voice over packet systems. MSC711x
is logically partitioned into three distinct blocks: the extended core, the system control modules,
and the communications peripherals.

Note: The amount of internal memory and the number and type of available external
peripheral interfaces are device-dependent. Refer to the technical data sheet for your
device to determine the memory and peripherals available. See also Chapter 1 of this
manual, which summarizes the MSC711x devices and lists their differences.

Read Chapters 1–4 for an

The extended core contains an SC1400 DSP core
with internal memory for data and program
storage. Memory includes up to 192 KB of zero
wait state SRAM and 16 KB of instruction cache
and 8 KB of boot ROM. Some devices in the
MSC711x family also include 192 KB of shared
memory (M2). Minimum code density is achieved
using a 16-bit instruction set that the compiler or
programmer groups into execution sets for high
instruction parallelism.

Extended Core
Communications

System Control

Includes up to three TDM
interfaces supporting 128
channels each, a UART, an I2C
interface, eight 16-bit timers, up
to 37 programmable GPIO
signals, an MII/RMII Ethernet
interface, a DDR memory
controller, and an external
interrupt controller. The serial
interfaces give additional
functionality and flexibility.

Supports internal and external
system-related functions. The
system control modules
include hardware such as a
direct memory access (DMA)
controller, clocks, and reset
configuration registers. It also
includes the crossbar switch
which arbitrates between four
master and six slave
controllers.

Communications System

Extended Core

Read Read Chapters 10–15 for details

Read Chapter 3 for an overview of the SC1400 extended core.

on configuration and reset,
including the system control modules
and functions.

for details on
the communications

Peripherals
Chapters 16–22

Peripherals

overview of the entire system.

Control

Also, consult the SC1000-Family Processor Core Reference Manual.

peripherals.

Read Chapters 5–9 for information
on data management and the
memory system.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xix

Before Using This Manual—Important Note

This manual describes the structure and function of the MSC711x devices. The information in
this manual is subject to change without notice, as described in the disclaimers on the title page of
this manual. As with any technical documentation, it is your responsibility as the reader to ensure
that you are using the most recent version of the documentation. For more information, contact
your sales representative.

Before using this manual, determine whether it is the latest revision and whether there are errata
or addenda. To locate any published errata or updates associated with this manual or this product,
refer to the Freescale web site. The address for the web site is listed on the back cover of this
manual.

Audience and Helpful Hints

This manual is intended for software and hardware developers and applications programmers
who want to develop products with the MSC711x devices. It is assumed that you have a working
knowledge of DSP technology and that you may be familiar with Freescale products based on the
DSP56000, DSP56300, or SC140 DSP core. Familiarity with Freescale DSP products is not
necessary.

For your convenience, the chapters of this manual are organized to make the information flow as
predictably as possible. When feasible, the information in each chapter follows this general
sequence:

� Features

� Architecture

� Operation/operating modes

� Application/Initialization

� Programming Examples

� Programming Model (registers)

In chapters that include a Programming Model section, this section is the last one in the chapter,
or module subsection for those chapters that include multiple modules, and describes all registers
for the module discussed. The Programming Model section begins with a bulleted overview of
the registers that includes the page number where the description of each register begins.

Notational Conventions and Definitions

This manual uses the following notational conventions:

mnemonics Instruction mnemonics appear in lowercase bold.
MSC711x Reference Manual, Rev. 1

xx Freescale Semiconductor

On the MSC711x devices, the SC1400 cores are 16-bit DSP processors. The following table
shows the SC1400 assembly language data types. For details, see the StarCore SC1000-Family
Processor Core Reference Manual (order number 10180).

COMMAND
names

Command names are set in small caps, as follows: GRACEFUL STOP TRANSMIT
or ENTER HUNT MODE.

italics Book titles in text are set in italics, as are cross-referenced section titles. Also,
italics are used for emphasis and to highlight the main items in bulleted lists.

0x Prefix to denote a hexadecimal number.

0b Prefix to denote a binary number.

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors appear in
uppercase text. Specific bits, fields, or numeric ranges appear in brackets. For
example, ICR[INIT] refers to the Force Initialization bit in the host Interface
Control Register.

ACTIVE HIGH
SIGNALS

Names of active high signals appear in sans serif capital letters, as follows:
TT[04], TSIZ[0–3], and DP[0–7].

ACTIVE LOW
SIGNALS

Signal names of active low signals appear in sans serif capital letters with an
overbar, as follows: DBG, AACK, and EXT_BG[2].

x A lowercase italicized x in a register or signal name indicates that there are
multiple registers or signals with this name. For example, BRCGx refers to
BRCG[1–8], and MxMR refers to the MAMR/MBMR/MCMR registers.

SC1400 Core Assembly Data Types

Name SC1400

Byte/Octet 8 bits

Half Word 8 bits

Word 16 bits

Long/Long Word/2 Words 32 bits

Quad Word/4 Words 64 bits
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xxi

The following table lists the SC140 C language data types recognized by the StarCore C
compiler. For details, see the StarCore SC100 C Compiler User’s Manual (MNSC100CC/D).

Conventions for Registers

The Programming Model section of each chapter includes a register bit table for each register in
that module, as well as a table describing each bit in the register. The register bit table not only
shows the names and positions of the bits/bit fields but also their reset value and their type
(Read/Write). The register address is shown with the register name and mnemonic. Reserved
bits/fields are indicated with a long dash (—). In the IEVENT register, notice that some of the
bits are read/write (R/W), and others are read-only (R). Though none of the IEVENT bits are
write-only (W), this is another option in the MSC711x registers. Notice also that in the MSC711x
devices, the most significant bit (MSB) is 31, whereas on the MSC8101 device, the MSB is 0.
That is, the MSC711x register bits have a big-endian order, whereas the MSC8101 register bits
have a little-endian order.

SC140 C Language Data Types and Sizes

Name Size

char/unsigned char 8 bits

short/unsigned short 16 bits

int/unsigned int 16 bits

fractional short 16 bits

long/unsigned long 32 bits

fractional short 32 bits

pointer 32 bits

EDIS Error Disabled Register 0x004

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HBERR BABR BABT GRA TFINT TXB RFINT RXB MII — LC CRL TFU —

TYPE R/W R R/W R R R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

xxii Freescale Semiconductor

Organization of this Manual

Following is a summary and brief description of the chapters in this manual:

� Chapter 1, MSC711x Overview. Features, descriptive overview of main modules,
configurations, and application examples. A block diagram of each MSX711x device is
included. A comparison table summarizes the differences between the devices in the
MSC711x family.

� Chapter 2, Signal Pins and Pinouts. For each MSC711x device, identifies the external
signals, lists signal groupings, including the number of signal connections in each group,
and describes each signal within a functional group.

� Chapter 3, SC1400 Core Overview. Target markets, features, overview of development
tools, descriptive overview of main modules.

� Chapter 4, Extended Core. Describes the structure of the extended core, which includes
the SC1400 core and its internal memory (M1). Surveys the modules of the extended core,
including the controller, extended core interface (ECI) system, the AMEC bus, ICache and
instruction fetch unit, and programming model.

� Chapter 5, Memory Map. Defines the address space for the SC1400 core and for all
MSC711x modules, including those not present on some MSC711x devices. Also
considers different types of accesses, access restrictions, and big-endian operation.

� Chapter 6, Crossbar Switch. Describes the structure and function of the crossbar switch,
which handles parallel transfers at the system level so that the various masters, including
the DMA controller and the extended core interface, can get immediate service when they
request resources.

� Chapter 7, System Control. Covers the system protection, software watchdog timer, and
device configuration features of the system control unit.

� Chapter 8, DMA Controller. Describes the architecture, operation, and configuration of
the DMA controller, which performs complex data transfers on 32 programmable
channels with minimal intervention from a host processor.

� Chapter 9, Memory Controller. Describes the memory controller, which provides a
glueless interface between the internal MSC711x bus and the external double data rate
(DDR) SDRAM memory modules. The memory controller establishes an interface
between MSC711x devices and external memories by translating internal bus accesses to
appropriate address, data, and control signals for DDR SDRAMs.

� Chapter 10, Memory Controller Interface. Describes the how the memory controller
interface works and how to program it. This interface increases the efficiency of accesses
through the DDR memory controller to external DDR memory. It processes accesses from
the crossbar switch to the DDR memory controller.

� Chapter 11, Clocks and Power Management and Power Management. Describes how to
configure and use the MSC711x clock module and how to halt various MSC711x modules
for low-power operation.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xxiii

� Chapter 12, Interrupt Processing. Covers interrupt architecture, arbitration, vectors, and
sources. The MSC711x interrupt system is optimized for real-time interrupts processing.
Eight programmable priority levels and vectored interrupt servicing speeds up the
processing.

� Chapter 13, Reset. Covers reset sources, causes, configurations, and timing.

� Chapter 14, Boot Program. Describes the bootloader program, which loads and executes
source code that initializes an MSC711x device after it completes a reset and programs its
registers for the required mode of operation. The chapter covers selection of bootloader
modes and the normal sequence of events for bootloading a source program.

� Chapter 15, Event Port. Covers the architecture, functionality, and configuration of the
event port, which works closely with the debug port (OCE10 emulator) and internal timers
to manage internal and external MSC711x events.

� Chapter 16, Debugging. Describes the structure and functionality of the OCE10 on-chip
emulator and the JTAG port to which it provides access.

� Chapter 17, Programmable Address Detection. Programmable address detection enables
you to allocate regions of memory as data and program memory. There are programmable
units for the extended core and for peripherals:

� Chapter 18, Fast Ethernet Controller (FEC). Describes the architecture and FEC
operation. The FEC supports 10/100 Mbps Ethernet as defined by IEEE 802.3. It has two
MAC-PHY interfaces: the-media independent interface (MII) and the reduced MII (RMII)
to provide MII functionality on a reduced pin count (10 instead of 18). The MSC711x
FEC does not support the 7-Wire protocol.

� Chapter 19, Time-Division Multiplexing (TDM) Interface. The Time-Division
Multiplexing Interface (TDM) is a full-duplex serial port by which DSP devices
communicate with a variety of serial devices, including industry-standard framers, codecs,
other DSPs, and microprocessors. The number of TDM modules present differs across
MSC711x devices, but the functionality of the modules is identical.

� Chapter 20, Host Interface (HDI16). Covers the architecture, functionality, and
configuration of the HDI16 interface, which is a 16-bit wide, full-duplex, double-buffered
parallel port that can directly connect to the data bus of a host processor. The HDI16
supports a variety of buses and gluelessly connects with a number of industry-standard
microcomputers, microprocessors, and DSPs

� Chapter 21, Timers Module. The Quad Timer (TMR) module contains four identical
counter/timer groups that serve as frequency dividers, clock generators, and event
counters. There are two 16-bit counter/timer groups, timer module A and timer module B.

� Chapter 22, I2C Software Module. I2C module is designed to be compatible with the
standard Phillips I2C bus protocol. This chapter details how the I2C integrates into the
MSC711x architecture. I2C is a two-wire, bidirectional serial bus that provides a simple,
efficient method of data exchange, minimizing the interconnection between devices. This
MSC711x Reference Manual, Rev. 1

xxiv Freescale Semiconductor

bus is suitable for applications requiring occasional communications over a short distance
between many devices.

� Chapter 23, Universal Asynchronous Receiver/Transmitter (UART). The universal
asynchronous receiver/transmitter (UART), also known as the serial communication
interface (SCI), provides a full-duplex port for serial communications with other
MSC711x devices, microprocessors, or DSPs.

� Chapter 24, General-Purpose Input/Output (GPIO). Discusses the four GPIO ports: A, B,
C, and D. Each signal in the I/O ports can be configured as a GPIO signal or as a dedicated
peripheral interface signal. Port A is unique because a subset of its signals can generate
interrupts to the interrupt controller.

� Appendixes:
— Appendix A, System Usage and Tuning/Programming Reference.
— Appendix B, Boot Code.

Other MSC711x Documentation

You can find the following documents on the web site listed on the back cover of this manual.

� MSC7110 Technical Data sheet (MSC7110/D). Details the signals, AC/DC
characteristics, clock configuration and signal characteristics, package and pinout, and
electrical design considerations of the MSC7110 device.

� MSC7112 Technical Data sheet (MSC7112/D). Details the signals, AC/DC
characteristics, clock configuration and signal characteristics, package and pinout, and
electrical design considerations of the MSC7112 device.

� MSC7113 Technical Data sheet (MSC7113/D). Details the signals, AC/DC
characteristics, clock configuration and signal characteristics, package and pinout, and
electrical design considerations of the MSC7113 device.

� MSC7115 Technical Data sheet (MSC7115/D). Details the signals, AC/DC
characteristics, clock configuration and signal characteristics, package and pinout, and
electrical design considerations of the MSC7115 device.

� MSC7116 Technical Data sheet (MSC7116/D). Details the signals, AC/DC
characteristics, clock configuration and signal characteristics, package and pinout, and
electrical design considerations of the MSC7116 device.

� Application Notes. Cover various programming topics related to StarCore DSP core and
the MSC711x devices.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor xxv

Further Reading

You can find the following documents on the web site listed on the back cover of this manual:

� SC1000-Family Processor Core Reference Manual (document 10180). Covers the
SC1400 core architecture, control registers, program control, and instruction set.

� OCE10 On-Chip Emulator Reference Manual (document 10055).

� StarCore SC100 Application Binary Interface Reference Manual (MSC100ABI/D).
MSC711x Reference Manual, Rev. 1

xxvi Freescale Semiconductor

MSC711x Overview 1
The MSC711x family of highly integrated DSPs targets high-bandwidth computationally
intensive DSP applications and is optimized for Enterprise class packet telephony applications.
These processors deliver enhanced performance while maintaining low power dissipation and
greatly reducing system cost.

At the heart of the system is the StarCore™ SC1400 core, providing the processing power for
intensive numeric processing. The four ALUs in the SC1400 core work together to deliver 1200
million multiply and add commands per second (MMACS) performance with an internal 300
MHz clock at 1.2 V. An extended core services the SC1400 bandwidth requirements, with high
speed zero wait state memory elements for both program and data accesses. In the extended core
is a multi-ported 256 KB Level 1 internal memory (M1) for both high speed program and data
storage. A 16 KB, 16-way instruction cache (ICache) provides an instruction stream to the core
with no wait states on cache hits. The efficiency of the ICache is greatly enhanced by an
intelligent fetch unit with advanced features for real-time processing. A 4-entry write buffer
allows the SC1400 core to continue processing while the write buffer writes to locations outside
the platform. A 192 KB Level 2 memory (M2) is also available on some MSC711x family
devices for bursting to the ICache and for accesses from the extended core.

Each device in the MSC711x family is designed for optimal data flow to/from the SC1400 core.
Wide full speed buses exactly match the busing requirements of the SC1400 core. Data is
transferred to the DSP from either the external memory interface, the Ethernet controller on some
devices, the host interface, or the TDM serial interfaces. The DMA controller transfers data
through the bus switch from any of these ports to buffers in the internal memories. The SC1400
cores and other modules interconnect via a crossbar switch that manages rapid data transfer and
storage between the MSC711x device, its internal components, and external devices. This
multi-port crossbar switch allows multiple data transfers to occur in parallel outside the extended
core. For example, the crossbar switch supports the following three operations in parallel: cache
bursting from M2 memory, DMA data transfers from MSC711x memories, and atomic accesses
by the SC1400 core to peripheral registers. The SC1400 core processes the data in the buffers and
the result is transferred back to one of the ports.

The flexible 32-channel DMA controller transfers data to and from internal memory, external
memory, peripherals, the host data interface, and the TDM interfaces. The DDR-RAM memory
controller enables the SC1400 cores to access external memory devices with glueless accesses to
DDR-RAM memory devices on the system bus.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-1

MSC711x Overview
The MSC711x architecture is optimized so that applications can efficiently use the available
1200 MMACS per second of the SC1400 core. For most applications:

� The data is accessed for a bounded number of times while the critical code runs in loops
for many cycles. DSP applications have a high degree of code locality and a low degree of
data locality.

� Different channels can share code but do not share data.

� A small portion of the code is run for most of the time (the “20–80” rule).

A typical application stores most of its program code in either M2 memory (if available) or in
external memory (such as SDRAM memory). Since the DSP core typically spends most of the
time running loops of selected routines, these time-critical routines can either be stored in the M1
memory or automatically fetched to the instruction cache. The high hit ratios achieved by the
instruction cache prevents core stalls and thus boosts overall performance. During a miss,
instructions are fetched from the M2 memory or from external memory through the crossbar
switch. Since the miss ratio is very low, the probability of a collision with SC1400 accesses to the
M2 memory or external memory is small. Therefore, the overall fetch latency is low.

1.1 Features

Table 1-1-1 lists the features that are common to all devices in the MSC711x family. Table 1-1-2
lists the features that are specific to devices in the family.

Table 1-1. MSC711x Features

Feature Description

StarCore™
SC1400 Core

• Up to 1200 million multiply-accumulates per second (MMACS) using an internal 300 MHz clock
at 1.2 V. A multiply-accumulate operation includes a multiply-add instruction with the associated
data move and pointer update.

• 4 data ALUs.
• 16 data registers, 40 bits each.
• 27 address registers, 32 bits each.
• Hardware support for fractional and integer data types.
• Very rich 16-bit wide orthogonal instruction set.
• Up to six instructions executed in a single clock cycle.
• Variable-length execution set (VLES) that can be optimized for code density and performance.
• IEEE® Std 1149.1™ JTAG port.
• On-chip emulator (OCE10) module with real-time debugging capabilities:

− 6 address breakpoint units.
− 1 data breakpoint unit.
− 8 KB trace buffer.
− 62-bit counter.
− on-chip emulator transmit and receive registers.
MSC711x Reference Manual, Rev. 1

1-2 Freescale Semiconductor

Features
Extended Core

The high performance extended core delivers up to 1200 MMACS using 4 ALUs running up to 300
MHz, including:
• SC1400 core processor.
• 256 KB multi-port SRAM (M1) accessed by the SC1400 core with no wait states.
• 16 KB, 16-way instruction cache (ICache).
• Programmable instruction fetch unit.
• Write buffer (4-entry).
• Extended core interface module.

Internal Memory

The large internal memory space totals up to 448 KB:
• Up to 256 KB of M1 memory (device-specific).
• 192 KB internal shared memory (M2), accessible from the SC1400 instruction fetch unit,

extended core interface, and DMA controller via the crossbar switch (device-specific).
• 16 KB ICache.
• 8 KB boot ROM accessible from the SC1400 core.

External Memory
Interface

• DDR memory controller:
− Byte enables for up to 32-bit external data bus.
− Glueless interface to 150 MHz 14-bit page mode DDR-RAM.
− 14-bit external address bus supporting up to 1 GB.
− 16- or 32-bit external data bus.

• Memory controller interface supports:
− Programmable buffer significantly improves efficiency through DDR memory controller.
− Independent read buffers.
− Programmable predictive read feature for each read buffer.
− Write buffer.

Crossbar Switch

AHB-Lite crossbar switch, allowing up to four parallel data transfers between four master ports
and six slave ports, where each port connects to an AHB-Lite bus:
• Fixed or round robin priority independently programmable at each slave port.
• Programmable bus parking at each slave port.
• Low-power mode.

DMA Controller

Multi-channel DMA controller:
• Up to 32 time-multiplexed channels.
• Priority-based time-multiplexing between channels using 32 internal priority levels
• Priorities can be fixed or round-robin.
• Major-minor loop structure.
• DONE or DACK protocol.

External Interfaces and
Control Modules

External interfaces and control modules managed on the advanced peripheral bus (APB),
including:
• Time-division multiplexing (TDM) modules, each supporting up to 128 channels.
• Software watchdog timer.
• 16-bit host interface (HDI16).
• System control.
• RS-232 interface/universal asynchronous receiver/transmitter (UART).
• General-purpose input/output (GPIO) signals.
• Interrupt controller to handle external interrupt functions (input and output).

IPBus

Control modules on the IPBus include:
• Programming model of the crossbar switch.
• Programming model of the DMA controller.
• Programming model of the DDR controller.
• Programming model of the Ethernet MAC.
• Clock synthesis module.
• I2C module.
• System control unit.
• Eight 16-bit timers.

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-3

MSC711x Overview
TDM Module

The MSC711x TDM module has the following features:
• Totally independent receive and transmit, each having one data line, one clock line, and one

frame sync line.
• Frame sync line and/or clock line can be shared between receive and transmit.
• Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses.
• Hardware A-law/μ-law conversion
• Up to 50 Mbps (50 MHz bit clock).
• Maximum rate of the bit clock is 1/4 the core frequency.
• Up to 128 channels.
• Each channel can be programmed to be active or inactive.
• 8- or 16-bit word widths.
• The TDM Sync Signal (TDMxTFS/TDMxRFS) can be configured as either input or output.
• The TDM clock signal (TDMxTCK/TDMxRCK) can be configured as either input or output.
• Frame sync and data signals can be programmed to be sampled either on the rising edge or on

the falling edge of the clock.
• Frame sync can be programmed as active low or active high.
• Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame.
• MSB or LSB first support.

Host Interface (HDI16)
Enhanced 16-bit wide interface provides a glueless connection to industry-standard
microcomputers, microprocessors, and DSPs. The HDI16 can also operate with an 8-bit host data
bus, making it fully compatible with the DSP56300 HDI08 from the external host side.

Ethernet MAC Interface
(Device-Specific)

• Designed to comply with IEEE® Std. 802.3™, 802.3u™, 802.3x™, and 802.3ac™.
• Internal receive and transmit FIFOs and a FIFO controller.
• Direct access to internal memories via its own DMA controller.
• Support for 10/100 Mbps and 10 Mbps media independent interfaces (MIIs) and 10/100 Mbps

reduced media independent interface (RMII).
• Support for 10Mbps 7-Wire mode.
• Full and half duplex operation.
• Programmable maximum frame length.
• Virtual local area network (VLAN) tag and priority support.
• Retransmission of transmit FIFO following collision.
• CRC generation and verification for inbound and outbound packets.
• Address recognition including promiscuous, broadcast, individual address. hash/exact match,

and multicast hash match.
• Integrated FIFO controller and integrated DMA controller.
• Ethernet statistics capturing.

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

1-4 Freescale Semiconductor

Features
Timers

Two identical quad timer modules, each with four 16-bit counter groups, have the following
features:
• Timers clocked from:

− Primary and secondary clock inputs.
− External event counting.
− Cascadable operation.

• Multiple counting modes:
− Basic counting.
− Dual-edge counting.
− Gated count.
− Quadrature count.
− Signed up/down count.
− Triggered count.

• Capture and compare capability.
• Broadcast mode.
• Maximum rate is 1/4 the core frequency.
• Tightly coupled with the event port.
• Selectable interrupts:

− Overflow.
− Edge.
− Compare, compare 1, compare 2.

UART

• Two signals for transmit data and receive data.
• No clock, asynchronous mode.
• Full-duplex operation.
• Standard mark/space non-return-to-zero (NRZ) format.
• 13-bit baud rate selection.
• Programmable 8-bit or 9-bit data format.
• Separately enabled transmitter and receiver.
• Programmable transmitter output polarity.
• Two receiver wake-up methods:
• Idle line wake-up.
• Address mark wake-up.
• Separate receiver and transmitter interrupt requests.
• Eight flags, the first five can generate interrupt request:

− Transmitter empty.
− Transmission complete.
− Receiver full.
− Idle receiver input.
− Receiver overrun.
− Noise error.
− Framing error.
− Parity error.

• Receiver framing error detection.
• Hardware parity checking.
• 1/16 bit-time noise detection.
• Maximum bit rate 5.0 Mbps.
• Single-wire and loop operations.

I2C Port

• 2-wire serial interface through GPIO.
• Filtered inputs for noise suppression.
• Compatibility with I2C bus standard up to 100 kbps for standard mode and up to 400 kbps for

Fast mode.
• Bidirectional data transfer protocol.
• Multiple-master operation that also allows any number of devices implementing the I2C master

software module to access the memory simultaneously at boot or any time.
• Compatible with the I2C-serial EEPROM access protocol, allowing memory access of up to one

MB.

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-5

MSC711x Overview
General-Purpose I/O
(GPIO) Port

Bidirectional signal lines that either serve the peripherals or act as programmable I/O ports. Each
port can be programmed separately to serve up to two dedicated peripherals. Port A lines can also
be programmed as interrupt request inputs.

Programmable Interrupt
Controller (PIC)

Consolidates maskable interrupt and non-maskable interrupt sources.

System Control

• Software watchdog timer function.
• Bus programmable time-out monitors on AHB-Lite slave buses.
• Bus error detection and programmable time-out monitors on AHB-Lite master buses.
• Address out-of-range and misaligned access detection on crossbar switch buses.

Internal PLL
Generates up to 300 MHz clock for the SC1400 core and up to 150 MHz for the crossbar switch,
DMA channels, M2 memory, and other peripherals.

Clock Synthesis
Module

• Pre-division on PLL input clock.
• Independent clocking of the internal timers and DDR module.
• Programmable operation in the SC1400 low power Stop mode.
• Independent shutdown of different regions on the device.

Reduced Power
Dissipation

• Very low power CMOS design.
• Separate power supply for internal logic and I/O.
• Low-power standby modes.
• Optimized power management circuitry (instruction-dependent, peripheral-dependent, and

mode-dependent).

fieldBIST™ Hardware
Diagnostics

Detects and provides visibility into unlikely field failures for systems with high availability. The
Freescale unique fieldBIST ensures that the device:
• Has structural integrity.
• Operates at the rated speed.
• Is free from reliability defects.
Diagnostics can report partial or complete device inoperability. fieldBIST resolution can pinpoint
the following uniquely:
• 6 memory blocks, including ROM.
• 3 logic levels (top, extended core, and peripherals).
• 1 PLL.
Simple JTAG interface allows easy integration to system firmware.

Packaging
• 400-pin MAP-BGA.
• 17 × 17 mm, 0.8 mm pitch.
• Lead-bearing or Pb-free.

Event Port

• Collects important signals on the device:
− EVNT pins
− DMA request, start, and done signals.
− Interrupt request signals.L

• Signals are combined as programmed by the user to provide triggering to on-device units such
as interrupts, breakpoints, DMA transfer requests, or wake-up from low-power stop mode.

• Units can operate independently, can be sequenced, or can be enabled by an outside source.
• Can be used independently or in conjunction with the OCE10 emulator debug port.
• Output to EVNTx pins.

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

1-6 Freescale Semiconductor

Features
Programmable Address
Detection

• Four user-programmable SC1400 core address detection units (program and data accesses).
• Four user-programmable DMA address detection units.
• Four user-programmable Ethernet MAC address detection units.
• Each detection unit supports:

− Programmable range or value detection on the unit buses.
− Optional generation of maskable/non-maskable interrupt on core detection units.
− Optional generation of event trigger.
− Status of detections captured in status register.

• Programmable out-of-range detection, patching, or user-programmable error detection.

Software Support

Real-time operating systems (RTOS) that fully supports MSC711x device architecture (multi-core,
memory hierarchy, ICache, timers, DMA, interrupts, peripherals). This operating system, called

SmartDSP OS, is bundled with CodeWarrior™:
• High-performance and deterministic, delivering predictive response time.
• Optimized to provide low interrupt latency with high data throughput.
• Preemptive and priority-based multitasking.
• Fully interrupt/event driven.
• Small memory footprint.
• Comprehensive set of APIs.
• Fully supports MSC711x DMA, interrupts, and timer schemes.
Distributed system support, enables transparent inter-task communications:
• Messaging mechanism between tasks using mailboxes and semaphores.
• Networking support; data transfer between tasks running inside and outside the device using

networking protocols.
• Includes integrated device drivers for such peripherals as TDM, UART, Ethernet, and external

buses.

Additional features:
• Incorporates task debugging utilities integrated with compilers and vendors.
• Board support package (BSP) for MSC711xADS.

CodeWarrior Integrated Development Environment (IDE):
• C/C++ compiler with in-line assembly. Enables the developer to generate highly optimized DSP

code. It translates code written in C/C++ into parallel fetch sets and maintains high code
density.

• Librarian. Enables the user to create libraries for modularity.
• C libraries. A collection of C/C++ functions for the developer’s use.
• Linker. Highly efficient linker to produce executables from object code.
• Debugger. Seamlessly integrated real-time, non-intrusive multi-mode debugger that enables

debugging of highly optimized DSP algorithms. The developer can choose to debug in source
code, assembly code, or mixed mode.

• Profiler. An analysis tool using a patented Binary Code Instrumentation (BCI) technique that
enables the developer to identify program design inefficiencies.

Boot

Booting from on-device peripherals:
• Boot from HDI16 and I2C.
• Boot also from serial SPI Flash/EEPROM devices using software in the boot ROM to access

SPI memory devices.
• Different clocking options allow for boot operation with the PLL ON/OFF, as well as with

different input frequency ranges.

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-7

MSC711x Overview
Table 1-1-2 shows the device-specific features of the MSC711x family. Notice that the devices
differ by size of internal memory, number of TDM interfaces, and whether they have an Ethernet
interface.

1.2 MSC711x Block Diagrams

This section shows the block diagrams of the MSC711x devices, which are as follows:

� MSC7110, see Figure 1-1 on page 9.

� MSC7112, see Figure 1-2 on page 10

� MSC7113, see Figure 1-3 on page 11

� MSC7115, see Figure 1-4 on page 12

� MSC7115, see Figure 1-5 on page 13

Application
Development System

(ADS) Board

• Host debug through single JTAG connector supports both processors.
• Two kinds of ADS configurations: one with the MPC8272 device as the host CPU and one

without a host CPU.
• Big Flash memory for stand-alone applications.
• Support for the following communications ports:

− 10/100Base-T.
− 155 Mbit ATM over optical.
− T1/E1 TDM interface.
− H.110.
− Voice codec.
− RS-232.
− High-density (MICTOR) logic analyzer connectors to monitor MSC711x signals.
− 6U CompactPCI form factor.

• Emulates DSP farm by connecting to three other ADS boards.

Low-Cost
General-Purpose

EVM Board

• 32 MB of DDR SDRAM memory.
• 16-bit audio codec (3.5 mm jacks).
• 256 KB I2C EEPROM.
• TDM interface.
• Fast Ethernet.
• Host port interface.
• JTAG interface.
• RS-232 interface.

Table 1-2. MSC711x Device-Specific Feature Comparison

Feature MSC7110 MSC7112 MSC7113 MSC7115 MSC7116

Size of M1 memory 64 KB 192 KB 192 KB 192 KB 192 KB

M2 memory and
memory bridge

0 0 0 192 KB 192 KB

Number of TDM
interfaces

1 2 2 3 2

Ethernet interface 0 0 RMII/MII 0 RMII/MII

Table 1-1. MSC711x Features (Continued)

Feature Description
MSC711x Reference Manual, Rev. 1

1-8 Freescale Semiconductor

MSC711x Block Diagrams
Note: The arrows on the buses describe the direction of the address flow.

Figure 1-1 shows the MSC7110 block diagram. Device-specific features of the MSC7110 device
are its M1 memory size of 64 KB, and single TDM interface. Notice that the MSC7110 device
has no M2 memory and no Ethernet interface.

Figure 1-1. MSC7110 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface
(HDI16)

External Bus

Timers

TDM

DSP
Extended

DMA

Note: The arrows show the direction of the transfer.

Interface

Port

(32 ch)
64

32

128
32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(64 KB)

64

64

128

64
A

H
B

-L
ite

 C
ro

ss
ba

r
S

w
itc

h
TDM

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

Trace
Buffer
(8 KB)

to/from OCE10

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-9

MSC711x Overview
Figure 1-2 shows the block diagram of the MSC7112 device. Device-specific features of the
MSC7112 device are its two TDM interfaces. Notice that the MSC7112 device has no M2
memory and no Ethernet interface.

Figure 1-2. MSC7112 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface

(HDI16)

External Bus

Timers

DSP
Extended

DMA

Note: The arrows show the direction of the transfer.

Interface

Port

(32 ch)
64

32

128

32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(192 KB)

64

64

128

64

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

T
M

Trace
Buffer
(8 KB)

to/from Emulator

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB

2 TDMs

TDM

M
ul

tip
le

xe
r

MSC711x Reference Manual, Rev. 1

1-10 Freescale Semiconductor

MSC711x Block Diagrams
Figure 1-3 shows the block diagram of the MSC7113 device. Device-specific features of the
MSC7113 device are its two TDM interfaces and Ethernet interface. Notice that the MSC7113
device has no M2 memory.

Figure 1-3. MSC7113 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface
(HDI16)

External Bus

Timers

DSP
Extended

DMA

Note: The arrows show the

Interface

Port

(32 ch)
64

32

128

32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(192 KB)

64

64

128

64

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

T
M

Trace
Buffer
(8 KB)

to/from OCE10

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB

2 TDMs
TDM

Ethernet
MAC

AMENT

MII/RMIIdirection of the transfer.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-11

MSC711x Overview
Figure 1-4 shows the block diagram of the MSC7115 device. Device-specific features of the
MSC7115 device are its three TDM interfaces and M2 memory. Notice that the MSC7115 device
has no Ethernet interface.

Figure 1-4. MSC7115 Block Diagram

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface
(HDI16)

External Bus

Timers

DSP
Extended

DMA

Note: The arrows show the direction of the transfer.

Interface

Port

(32 ch)
64

32

128
32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(192 KB)

64

64

64

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

T
M

Trace
Buffer
(8 KB)

to/from OCE10

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB

3 TDMs

TDM

Boot ROM
(8 KB)

128
ASM2 M2 SRAM

(192 KB)

M
ul

tip
le

xe
r

128

128

64

64
MSC711x Reference Manual, Rev. 1

1-12 Freescale Semiconductor

MSC711x Block Diagrams
Figure 1-5 shows the block diagram of the MSC7116 device. Device-specific features of the
MSC7116 device are its two TDM interfaces, Ethernet interface, and M2 memory.

Figure 1-5. MSC7116 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface

(HDI16)

External Bus

Timers

DSP
Extended

DMA

Note: The arrows show the

Interface

Port

(32 ch)
64

32

128
32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(192 KB)

64

64

128

64

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

T
M

Trace
Buffer
(8 KB)

to/from OCE10

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB

2 TDMs
TDM

Ethernet
MAC

AMENT

64

MII/RMIIdirection of the transfer.

M2 SRAM
(192 KB)

M
ul

tip
le

xe
r

128

128

64

64
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-13

MSC711x Overview
Figure 1-6 shows the block diagram of the MSC7118 device. Device-specific features of the
MSC7118 device are its three TDM interfaces and M2 memory.

Figure 1-6. MSC7118 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

M2
SRAM

Interrupts
Interrupt Control

HDI16

32

Host
Interface

(HDI16)

Ext Bus

Timers

3 TDMs

DSP
Extended

DMA

Note: The arrows show the direction of the transfer.

Interface

Port

(32 Channel)

64

32

128

32

(192 KB)

SC1400
Core

Cache

(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(256 KB)

64

64

128

64

64

System Ctrl

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

TDM

P XA XB

128
64

64

PLL/Clock
PLL/Clock

128

64

128

M
U

X
M

U
X

O
C

E
10

Trace
Buffer
(8 KB)

to/from OCE10

IB
 B

rid
ge

32 Events
32

IPBus

to DMA

to EMI

JTAGJTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

Watchdog

Event Port

BTMs

ASIB

GPIO
GPIO

Instruction

from IPBus
MSC711x Reference Manual, Rev. 1

1-14 Freescale Semiconductor

MSC711x Block Diagrams
Figure 1-7 shows the block diagram of the MSC7119 device. Device-specific features of the
MSC7119 device are its two TDM interfaces, Ethernet interface, and M2 memory.

Figure 1-7. MSC7119 Block Diagram

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

M2

SRAM

Interrupts
Interrupt Control

HDI16

32

Host
Interface

(HDI16)

External Bus

Timers

2 TDMs

DSP
Extended

Note: The arrows show the

Interface

Port

32

128

32

(192 KB)

SC1400
Core

Cache

Instruction

(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(256 KB)

64

64

128

64

64

System Ctrl

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

TDM

P XA XB

128 64

64

PLL/Clock
PLL/Clock

128

64

128

M
U

X
M

U
X

O
C

E
10

Trace
Buffer
(8 KB)

to/from OCE10

IB
 B

rid
ge

32 Events32

IPBus

to DMA

to EMI

Core

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

Watchdog

Event Port

BTMs

ASIB

GPIO
GPIO

Ethernet

MAC

AMENT

64

MII/RMIIdirection of the transfer.

DMA

(32 Channel)

64

JTAGJTAG Port AMDMA

from IPBus
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-15

MSC711x Overview
MSC711x Reference Manual, Rev. 1

1.3 Bus Architecture

The SC1400 cores and other MSC711x modules interconnect via a crossbar switch designed for
optimal data flow when data is transferred and stored between an MSC711x device, its internal
components, and external devices. The buses are grouped into the following categories:

� SC1400 core buses

� Crossbar master port buses

� Crossbar slave port buses

� Peripheral buses

� External buses

1.3.1 SC1400 Core Buses

The SC1400 core can access the M1 memory, ICache, and write buffer with zero wait states via
its internal 128-bit instruction bus and two 64-bit data buses. The SC1400 buses include:

� PAB. A 32-bit program address bus that allows the SC1400 core to specify program
addresses in the local unified memory (M1).

� PDB. A 128-bit program data bus that transfers program data from the ICache or M1
memory.

� XABA and XABB. Two 32-bit address buses to specify data locations in M1 memory for
the two DSP data streams required for MAC operations.

� XDBA and XDBB. Two 64-bit data buses to transfer data values to and from M1 memory.

1.3.2 Crossbar Master Port Buses

Following are the masters to the crossbar switch (see Figure 1-5):

� AHB master instruction cache (AMIC). A 128-bit wide, read-only, single-master bus
connecting the instruction fetch unit to the crossbar switch. The instruction fetch unit is
the master and the crossbar switch is a slave. When the instruction cache misses, the fetch
unit issues an address outside the platform to M2 memory or external memory to begin a
cache burst. Accesses are pipelined.

� AHB master extended core (AMEC). A 64-bit wide, single-master bus connecting the
extended core interface to the crossbar switch. The bus switch and write buffer within the
extended core interface are multiplexed to form a single master, and the crossbar switch is
a slave. When the SC1400 core accesses locations outside the extended core, this unit
controls the access. Accesses are pipelined.

� AHB master DMA (AMDMA). A 64-bit wide, single-master bus connecting the DMA
controller to the crossbar switch. The DMA controller is the master and the crossbar
switch is a slave. When the DMA controller initiates transfers within the DSP device, this
bus is used to transfer data. Accesses are pipelined.
1-16 Freescale Semiconductor

Bus Architecture
� AHB master Ethernet MAC (AMENT). A 32-bit wide, single-master bus connecting the
Ethernet DMA to the crossbar switch. The Ethernet controller is the master and the
crossbar switch is a slave. When the Ethernet DMA controller initiates transfers within the
DSP device, this bus is used to transfer data. Accesses are pipelined. All accesses are a
maximum of 32-bits.

Note: The master port buses run at the frequency of the AHB clock.

In addition to their connection to the APB, the HDI16 and TDM peripherals interface to the
crossbar switch for high-speed data transfers. The register files of the DMA controller and
crossbar switch are accessed through the IPBus. The register files of the ICache and extended
core interface are accessed through an internal bus within the extended core interface.

Note: The interrupt controller registers are located within the APB address space but are
accessed directly off the ASAPB bus, not the APB bus.

1.3.3 Crossbar Slave Port Buses

Following are the slaves to the crossbar switch:

� AHB slave to M1 (ASM1). A 64-bit wide, single-master bus connecting the crossbar switch
to the extended core memory (M1). The crossbar switch is the master and the memory is
the slave. The DMA channels can access M1 memory. Accesses are pipelined.

� AHB slave to M2 (ASM2). A single-master bus that accommodates 128-bit reads and
64-bit writes, s connecting the crossbar switch to the internal memory (M2) and boot
ROM. The crossbar switch is the master and the memories are the slaves. The SC1400
core can access M2 memory via normal accesses through the write buffer. The instruction
fetch unit can burst from M2 or boot ROM into the ICache. In addition, the DMA
controller accesses this memory for bursts between M2 and the M1 and external memory.
Accesses are pipelined.

� AHB slave to external memory interface (ASEMI). A 64-bit wide, single-master bus
connecting the crossbar switch to the MSC711x external memory interface. The crossbar
switch is the master and the interface is the slave. The switch accesses external devices
through this interface. Accesses are pipelined.

� AHB slave to TDM/HDI16 interfaces (ASTH). A 64-bit wide, single-master bus
connecting the crossbar switch to the HDI16 and TDM peripherals. The crossbar switch is
the master and the interface is the slave. This bus provides a high speed port for accessing
data coming through these peripherals. Accesses are pipelined.

� AHB slave to APB (ASAPB). A 32-bit wide, single-master bus connecting the crossbar
switch to the interface bridge for the APB bus. The crossbar switch is the master and the
bridge is the slave. The switch accesses peripherals on the APB bus through this bridge.
Each APB access requires two clocks. Accesses are typically pipelined.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-17

MSC711x Overview
� AHB slave to IPBus (ASSB). A 32-bit wide, single-master bus connecting the crossbar
switch to the interface bridge for the IPBus. The crossbar switch is the master and the
bridge is the slave. The switch accesses peripherals on the IPBus through this bridge.
Accesses are typically pipelined.

Note: Interrupt controller registers are located directly on the ASAPB bus and not on the
APB bus. Accesses to these registers do not pass through the bridge. The slave port
buses run at the frequency of the AHB clock.

1.3.4 Peripheral Buses
� APB. A 32-bit wide bus controlled by the master that connects the crossbar switch to

device peripherals. This bus accesses the control and status registers of the HDI16, TDM,
UART, PLL, and GPIO signals. Accesses issued by the SC1400 core pass through the
extended core interface, the crossbar switch, the APB interface bridge, and finally reach
the peripheral registers.

� IPBus. A 32-bit wide bus controlled by the master that connects the crossbar switch to
device peripherals. This bus accesses the control and the status registers of the DMA
controller, crossbar switch, system control, and timer module. Accesses issued by the
SC1400 core pass through the extended core interface, the crossbar switch, the IPBus
interface bridge, and finally reach the peripheral registers.

Note: The peripheral buses run at the frequency of the APB clock and IPBus clock,
respectively. APB accesses require two clocks per transfer.

1.3.5 External Buses

The external bus interface provides access to external DDR-RAM drivers. It is clocked at up to
100 MHz and supports 14-bit addressing, a 16-bit or 32-bit data bus, and bursting operations. The
data bus can be accessed in 8-bit, 16-bit, and 32-bit data widths. The address and data buses
support synchronous, one-level pipelined transactions.

� External data bus. A 32-bit wide bus controlled by the external memory interface that
connects the crossbar switch to the external 32-bit system bus. This bus runs at 150 MHz,
where data is transferred at double rate for DDR-SDRAM (two values per clock).

— 14-bit address bus.
— 16-bit or 32-bit data.
— Two, four or eight-beat burst transfers.
— Support for external DDR-SDRAM.

� Host data bus. A 16-bit interface to connect to the data bus of an external host processor.

— 8 or 16-bit data.
— 4-bit address for selecting HDI16 registers from the external host.
MSC711x Reference Manual, Rev. 1

1-18 Freescale Semiconductor

Extended Core
1.4 Extended Core

The extended core, shown in Figure 1-8, contains the following:

� SC1400 core

� M1 memory

� ICache

� Instruction fetch unit

� Extended core interface (including a bus switch and write buffer)

� Extended core control unit

The SC1400 core accesses locations outside the extended core through the extended core
interface.

Figure 1-8. Extended Core System

1.4.1 SC1400 Core

The SC1400 core is a flexible, programmable DSP core that handles compute-intensive
communications applications, providing high performance, low power, and code density. It

XB

AHB-Lite to

128

64

SC140

O
C

E
10

™

Extended Core
Interface

Instruction
Cache

M1
RAM

Notes: 1. The arrows show the data transfer direction.
2. The extended core interface includes a bus switch and write buffer.

Extended Core

Fetch
Unit

64 64

Crossbar Switch
AHB-Lite to

Crossbar Switch
AHB-Lite to

Crossbar Switch

XA 64
P 128

(192 KB)

Core

(Master Port) (Master Port) (Slave Port)

AMIC ASM1AMEC

Extended Core
Control

Trace
Buffer
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-19

MSC711x Overview
efficiently deploys a novel variable-length execution set (VLES) execution model, attaining
maximum parallelism by allowing multiple address generation and data arithmetic logic units to
execute multiple operations in a single clock cycle. The SC1400 core contains four ALU units,
each with a 16-bit × 16-bit MAC that results in a 40-bit wide and 40-bit parallel barrel shifter.
Each ALU performs one MAC operation per clock cycle. An address generation unit includes
two address arithmetic units and one bit mask unit. There are also 16 address registers, eight of
which can serve as base address registers.

The main reason for the high code density of the SC1400 is that its instructions are 16 bits wide.
During each clock cycle, the SC1400 core reads eight instruction words, referred to as a fetch set.
The SC1400 core identifies which instructions can be performed in parallel and runs them on the
ALUs and address generation units. In one clock cycle, up to six instructions can execute (four
ALU operations, and two address generation operations). In the rich instruction set, special
attention is given to control code, making the SC1400 core ideal for applications embedding DSP
and communications. Arithmetic operations are performed using both fractional and integer data
types, enabling the user to choose a style of code development or use coding techniques derived
from an application-specific standard. The SC1400 programming model is highly orthogonal,
and both data and instructions reside in one unified memory. The SC1400 compiler translates
code written in C/C++ into parallel fetch sets and maintains high code density and/or high
performance by taking advantage of the high code orthogonality and unified memory
architecture. For details, refer to the SC1000-Family Processor Core Reference Manual (order
number 10108).

1.4.2 M1 Memory

The 256 KB M1 memory space is a full speed, zero wait state memory supporting parallel
accesses from the SC1400 core. Up to three accesses can be performed concurrently on every
SC1400 core clock cycle, one 128-bit instruction fetch set and two 64-bit data words. In addition,
the DMA controller can simultaneously access a 64-bit word from M1 memory through the
crossbar switch.

To optimize the memory size, the M1 memory is subdivided into different groups, each with a
size of 64 KB. Each group has four ports and is implemented as a single-access memory. This
subdivision allows four accesses to be performed, in parallel, to different groups. Parallel
accesses can also occur when the two SC1400 data accesses occur to the same group. When a
collision occurs due to two or more accesses to the same memory group, the SC1400 core stalls
for one or more core clock cycles. Intelligent memory allocation significantly decreases
collisions between an SC1400 core bus and the DMA bus. For example, two accesses cannot
collide if they belong to different memory groups, which is usually the case since program code
is stored in a different group than the data. The DMA controller stores the “next” buffers in yet a
different group. Even in the same group, placing two data elements on a different module
prevents a collision between two SC1400 core buses.
MSC711x Reference Manual, Rev. 1

1-20 Freescale Semiconductor

Extended Core
The overall memory size available for one SC1400 core in internal memory and the partition
between the memories is a trade-off between chip size and the memory requirements imposed by
the bandwidth of the SC1400 core. Typically, the M1 memory contains channel data and may
also contain a few critical routines and M2 (if available) contains program code that is
automatically burst into the cache when needed.

1.4.3 Instruction Cache

The ICache is highly optimized for real-time DSP applications and minimizes miss ratios,
latencies, bus bandwidth requirements, and silicon area. The 16 KB ICache is 16-way set
associative. Each of the 16 ways contains four 256-byte lines and is divided into 16 fetch sets,
each with an associated valid bit. The 2-bit set field of the address selects one of four sets. The
line with a tag that matches the tag field of the address is the selected line. A cache miss occurs
when the fetch set accessed by the SC1400 core does not reside in the ICache, and a cache burst
is initiated to bring in the requested data. The following cache bursting parameters can be tuned
for your application:

� Burst Size. 1 or 4 fetch sets (16 or 64 bytes)

� Primary set size. 1, 2, or 4 fetch sets (16 or 64 bytes)

� Prefetch to end of line. Enable/Disable

When a cache miss occurs, the new data is fetched in bursts using one of these burst sizes. There
is also an option to fetch to the end of the line, which takes advantage of the spatial locality of the
code.

Note: The ICache does not burst in an entire line of the cache but instead bursts in only a
portion of the line, 1/16th or 1/4th of a cache line. The ICache is optimized for
real-time performance and its line size, 256 bytes, is larger than traditional
implementations. This cache has a valid bit for each group of 16 bytes instead of one
valid bit for the entire line, as in a typical cache.

When there is a need to fetch new data to the cache and the cache is full, one line of the cache is
removed using the least recently used (LRU) algorithm. The cache can be programmed so that
only part of it is thrashed. For example, if task A needs to be preempted in favor of task B, the
instructions of task A are thrashed from the instruction cache while task B runs. When task B
finishes and task A takes over, task A may not find its most recently used instructions in the
cache. To prevent such a situation, the DSP software can exclude the ways of task A from the
part of the cache that can be thrashed. Another method of guaranteeing that the critical routines
are always available for a task is to store them in the SC1400 core M1 private memory. All
ICache entries are flushed by issuing a cache flush command from the SC1400 core, which is
useful, for example, when new code is written to lines in the M2 memory that are already cached.
The ICache has run-time debug support. A counter in the emulator (OCE10) and debug module is
incremented for cache hits and misses. When the SC1400 core is in Debug mode, its fetch unit is
in Debug mode and all the cache arrays can be read.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-21

MSC711x Overview
Since different channels do not typically share data, data is located in M1 memory. The
architecture is flexible enough to store data in M2 memory as well, if M2 memory is available on
the device. In fact, the DMA controller can perform data overlays between the M2 and the M1
memories. For example, while the data for channel N is processed, the DMA controller can bring
in the data needed for channel N+1.

The SC1400 core accesses M2, external memory, and internal peripherals through the extended
core interface, which routes its request through the crossbar switch. Cache line fills are performed
through the instruction fetch unit, which also routes its request through the crossbar switch. This
separation ensures that the latencies for SC1400 core accesses to the M2 memory remain as low
as possible. Write accesses to resources with high latencies are typically routed through the write
buffer. The write buffer can store the write access, release the SC1400 core, and complete the
write operation it at a later time.

1.4.4 Instruction Fetch Unit

Program fetches to locations outside the M1 memory occur through the instruction fetch unit
(IFU). The fetch unit (FU) is triggered by a cache “miss” access. It brings the data into the
SC1400 core and continues to update the cache until the end of the burst or until the end of the
cache line. For a burst to the end of a line, if a new miss occurs, the line fill is discontinued and
the new miss is serviced. This improves the overall performance of the cache in the system. The
FU initiates cache update requests for data of consecutive addresses after every miss. The block
and burst sizes are configurable. The ability to continue bursts to the end of a cache line is also
selectable.

1.4.5 Extended Core Interface

The extended core interface connects the extended core through the crossbar switch with the rest
of the MSC711x device. The module handles the SC1400 accesses, bringing the data on the
AHB-Lite bus. Figure 1-9 shows the components of the extended core interface: a bus switch to
handle data read and write operations, a write buffer to handle data write operations, a
multiplexor for routing accesses from the write buffer and bus switch to resources outside the
extended core, and internal busing for accessing the ICache and extended core interface registers.
The write buffer and bus switch are multiplexed onto a single AHB-Lite bus. The extended core
interface is controlled by the extended core control unit.

The extended core interface is the mechanism by which the SC1400 core communicates with
modules outside the extended core. It handles the switching between the three core buses, P, XA,
and XB, the write buffer, and the AMEC (an AHB-Lite bus) that goes to the crossbar switch. It
operates at the same frequency as the SC1400 core. The memory controller within the extended
core interface handles memory contentions to the M1 memory. It snoops the activity on the buses
connected to the internal memory (M1) and, if necessary, freezes the SC1400 core and address
bus activity. It creates the atomic instruction acknowledge to the SC1400 core during the
reservation process.
MSC711x Reference Manual, Rev. 1

1-22 Freescale Semiconductor

Extended Core
The bus switch handles data accesses to locations outside the extended core: all read accesses and
write accesses when the write buffer is disabled. When the SC1400 core writes to locations
outside the extended core, stalls may occur while the core waits for the access to complete. To
prevent such stalls, all external accesses are first written to the write buffer. The write buffer
releases the SC1400 core and then completes the access when its destination becomes available.
Located on the SC1400 core buses, the write buffer is a zero wait state client with a 4-entry FIFO
that automatically handles data coherency problems. For example, if the write buffer contains
data to be written to address A, and a read access occurs before the buffer completes the write
access, the contents of the write buffer are written to the destination before the read can be
executed. Not all writes beyond the M1 memory are routed through the write buffers. Write
accesses do not use the write buffer in the following cases:

� The address of the destination belongs to a bank that is defined as immediate.

� It is an atomic operation essentially writing to a semaphore

� The write buffer is disabled.

The write buffer counts the number of clocks that elapse between the time data is written to the
write buffer and the time it is emptied. When the counter exceeds a pre-programmed value, the
contents of the write buffer are flushed to minimize the time for write accesses.

Figure 1-9. Extended Core Interface Block Diagram

64

64

64

Multiplexer

Bus Switch

Data

Address

Registers

ECI

(AHB-Lite Bus to Crossbar Switch)AMEC

XB

XA

Control from

Extended Core

64

Write Buffer

Registers

to ICache

Registers

Internal Bus

Control Unit
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-23

MSC711x Overview
Note: For details, see Chapter 4, Extended Core.

1.5 Direct Memory Access (DMA) Controller

The multi-channel DMA controller transfers data between device resources through the crossbar
switch. Data transfers occur in two phases. First, data is read from the source to a DMA internal
FIFO, and then it is written from that FIFO to its destination. Thirty-two internal DMA FIFOs
support this mode. Table 1-1-3 lists the possible DMA clients.

DMA requests are tied to up to 32 DMA channels that run concurrently. Each channel has
programmable priority levels. The DMA controller supports a flexible buffer configuration,
including simple buffers, cyclic buffers, single-address buffers (I/O device), incremental address
buffers, chained buffers, complex buffers, and buffer alignment by hardware. DMA transfers
to/from the Ethernet MAC are not performed by the DMA controller but are instead handled by a
dedicated DMA unit within the Ethernet MAC unit.

Note: For details, see Chapter 8, DMA Controller.

1.6 Crossbar Switch

Communication between modules in the MSC711x architecture is greatly facilitated by the
crossbar switch. All buses connecting to the switch are AHB-Lite 2.0.

The following modules are masters to the switch:

� Instruction fetch unit (128-bit read path)

� Extended core (64-bit read/write path)

Table 1-3. DMA Clients

DMA Client Direction Size

M1 memory Read/Write 8, 16, 32, or 64 bits

M2 memory, if available Read/Write 8, 16, 32, or 64 bits

Boot ROM Read Only 8, 16, 32, or 64 bits

External memory Read/Write 8, 16, 32, or 64 bits

Host interface (DMA port) Read/Write 8, 16, 32, or 64 bits

TDM interface (DMA port) Read/Write 8, 16, 32, or 64 bits

APB peripherals:
• Host interface
• TDM interface
• And so on

Read/Write 8, 16, or 32 bits

IPBus peripherals:
• Crossbar registers
• DMA registers

Read/Write 8, 16, or 32 bits
MSC711x Reference Manual, Rev. 1

1-24 Freescale Semiconductor

System Control
� DMA controller (64-bit read/write path)

� Ethernet MAC (32-bit read/write path)

The following modules are slaves to the switch:

� M1 memory (64-bit read/write path)

� M2 memory (128-bit read/64-bit write path)

� External memory interface (64-bit read/write path)

� TDMs/HDI16 (64-bit read/write path)

� APB peripherals (32-bit read/write path)

� IPBus peripherals (32-bit read/write path)

Each slave port is individually programmable for fixed-priority or round-robin arbitration.
Parking is also independently programmable at each slave port.

The crossbar switch makes it possible for data transfers at the system level to occur in parallel.
The matrix provides powerful capabilities, supporting up to four parallel transfers, as follows.

� Parallel transfers when cache bursting from M2 memory:

— Cache bursts in a portion of a cache line from M2 memory via the fetch unit.
— DMA bursts in new data from external memory to the DMA controller.
— Core accesses a peripheral via the extended core interface.

� Parallel transfers when cache bursting from external memory:

— Cache bursts in a portion of a cache line from external memory via the fetch unit.
— DMA bursts out new data from the DMA controller to M1 memory.
— Write buffer writes to M2 memory via the extended core interface.

The combination of the DMA controller and crossbar switch ensures that the SC1400 core can
focus on the intensive computational work while the DMA controller brings in new data buffers.
Data can be prepared in the M1 (or M2) memory in a “next” buffer while the SC1400 core
processes the current buffer. The SC1400 core can use the flexible DMA controller to transfer
large blocks of data from the external memory to the internal memory and also between the
internal memories.

Note: For details, see Chapter 6, Crossbar Switch.

1.7 System Control

The system control unit handles system start-up, initialization, monitoring, and protection. The
system timers include a software watchdog timer and hardware bus monitors to ensure that
accesses complete on important system buses. This unit also detects accesses to invalid portions
of the memory map or write accesses to ROM blocks. The system control unit controls the event
port, which takes input information from the EVNTx pins, system-level events such as DMA
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-25

MSC711x Overview
transfers, and the OCE10 breakpoint logic. The signals can be combined as desired, such as
ANDing, ORing, or sequencing, and the resulting action can be sent to the EVNTx pins, to the
OCE10 breakpoint logic, or to the timer modules. The system control unit operates independently
or in conjunction with the OCE10 debug port.

Note: For details, see Chapter 7, System Control.

1.8 Reset

Reset circuitry provides power-on reset, external hard and soft resets, software watchdog timer
reset, and bus monitor reset.

Note: For details, see Chapter 13, Reset.

1.9 Boot ROM

The 8 KB boot ROM is used for booting the device out of reset. It allows for booting from
different ports on the device. It provides execution packets on the 128-bit ASM2 bus.
Immediately after reset, the core starts executing the code from the internal boot ROM. The value
on the boot mode pins identifies the boot source and whether the PLL is enabled. Booting can
occur from the following sources:

� HDI16.

� I2C.

� SPI (using GPIO capability on the device)

Note: For details, see Chapter 14, Boot Program.

1.10 PLL and Clocks (PLL/Clock)

The clocking module clocks the entire device. An external clock is passed through a PLL
providing both frequency division and multiplication. This clock is then used to generate internal
system clocks. There is also a path for bypassing the PLL. A low frequency clock is generated
directly from the input clock for clocking the timer modules and watchdog timer. A clock out
signal can be enabled, if desired.

Note: For details, see Chapter 11, Clocks and Power Management.

1.11 Interrupt Scheme

A 120-channel interrupt controller collects interrupts from the device peripherals, external
interrupt pins, or non-maskable interrupt sources. Interrupts are treated as level sources or
captured as edge-triggered sources.
MSC711x Reference Manual, Rev. 1

1-26 Freescale Semiconductor

M2 Memory (Device-Specific)
Note: For details, see Chapter 12, Interrupt Processing.

1.12 M2 Memory (Device-Specific)

The 192 KB M2 memory is used as a secondary memory within the MSC711x devices that
contain it. It is tuned for fast cache bursting with a data bus of 128-bits, and a low latency path to
the instruction cache, significantly reducing the penalty on cache misses. M2 memory can also be
used for data storage. 128-bits of data can be read and 64-bits can be written to M2 at 150 MHz.
M2 is single ported; that is, it supports only one access at a given time. The SC1400 core accesses
this memory through the extended core interface and crossbar switch. The DMA controller also
accesses M2 memory through the crossbar switch. Enabling the DMA controller to write
program and data directly to M2 memory alleviates the load on the SC1400 core and keeps the
focus on the intensive DSP processing. An SC1400 core access to the M2 memory requires a
minimum of seven core wait states for the first access in a burst and then one data per clock
(7-1-1-1). In a typical application that carefully considers memory allocation and uses the cache
wisely, SC1400 core accesses to the M2 memory are greatly reduced.

1.13 Peripherals

The MSC711x peripherals include the TDM interface, HDI16 host interface, device-specific fast
Ethernet controller, timers, UART, device-specific I2C interface, and GPIO signals.

1.13.1 TDM Serial Interface

The TDM interface connects gluelessly to common telecommunication frame schemes, such as
T1 and E1 lines. It can connect to multiple framers, such as MVIP, SCASA, and H.110 buses.
The TDM contains up to three identical and independent engines, each configured in one of the
following options:

� Two independent receive and transmit links.

— The transmit has an input clock of up to 50 Mbps, output data and a frame sync
configured as either input or output. Up to 128 transmit channels are supported.

— The receive has an input clock of up to 50 Mbps, input data, and an input frame sync.
Up to 256 receive channels are supported.

� One receive and one transmit link share the clock and the frame sync. The input clock runs
at up to 50 Mbps, and the sync is configured as either input or output. There are up to 128
channels for the receive link and up to 128 channels for the transmit link.

� The receive and transmit links of both TDMs share one clock and one frame sync. The
input clock runs at up to 50 Mbps, and the sync is configured as either input or output.
There are up to 128 channels for the receive link and up to 128 channels for the transmit
link.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-27

MSC711x Overview
Each channel can be 8 or 16 bits wide. When the slot size is 8 bits wide, selected channels can be
defined as A-law/μ-law. These channels are converted to 13–14 bits, which are padded into 16
bits and stored as such in memory. Each receive channel and each transmit channel can be active
or not. An active channel has a buffer that can be placed into the M1, M2, or external memory via
DMA transfers through the crossbar switch. Transmit and receive operations each have their own
eight-location FIFO for buffering data between the interface and the device. The SC1400 core
empties the receive buffers while the TDM continues to fill the buffers until a second threshold
line is reached and an interrupt is generated to the SC1400 core. The TDM supports an interrupt
on frame start to the SC1400 core, which helps synchronize to the TDM system. For transmits,
the SC1400 core fills the buffers of the desired TDM interface, and the TDM empties them.

Note: For details, see Chapter 19, Time-Division Multiplexing (TDM) Interface.

1.13.2 Host Interface (HDI16)

In addition to the system bus interface, MSC711x devices feature an enhanced 16-bit parallel
host interface (HDI16) that supports a variety of standard buses and provides a glueless
connection to industry-standard microcontrollers, microprocessors, and DSPs. The host interface
can be used concurrently with the system interface. The combination of bus interfaces allows for
greater system design flexibility. MSC711x devices can communicate via the 16-bit HDI16
interface while simultaneously connecting to external memory via a 32-bit system bus. The
HDI16 can also operate with an 8-bit host data bus, making it fully compatible with the
DSP56300 HDI08 from the external host side.

Note: For details, see Chapter 20, Host Interface (HDI16).

1.13.3 Fast Ethernet Controller (Device-Specific)

The fast Ethernet controller (FEC) supports 10/100 Mbps Ethernet as defined by IEEE 802.3.
The FEC supports two MAC-PHY interfaces, the media independent interface (MII) and reduced
MII (RMII). The FEC architecture employs an Ethernet media access controller (MAC) to handle
the MII interface, FIFO, and DMA. An MII bridge (MIIGSK) module supports the RMII
interface. In addition, the FEC has a RISC microcontroller to manage DMA buffer descriptors,
minimizing processor usage. A management information base (MIB) module is employed for
tracking network activity on the MAC-PHY interface.

Note: The FEC is designated as a “device-specific” module, which means that some devices
in the MSC711x family contain the FEC while others do not. To verify whether your
MSC711x device has an Ethernet controller, study the comparisons in Table 1-2,
MSC711x Device-Specific Feature Comparison, on page 1-8.

Note: For details, see Chapter 18, Fast Ethernet Controller (FEC).
MSC711x Reference Manual, Rev. 1

1-28 Freescale Semiconductor

Peripherals
1.13.4 Timers

There are eight identical general-purpose 16-bit timers (or two 16-bit quad timers), and each can
operate independently or as part of a programmable cascade of two or three timers. Each timer
can be programmed as either one-shot or cyclic. The SC1400 cores can program the counters,
read their updated values, and also be interrupted when the timers reach a predefined value. The
timers are clocked by either the internal clock generator or one of two dedicated external signals
or from the receive and transmit TDM clocks. When a timer reaches a predefined value, it either
toggles or generates a pulse that can be directed to one of the two dedicated external signals or to
other timers. In addition, it can generate an interrupt.

Note: For details, see Chapter 21, Timers Module.

1.13.5 Universal Asynchronous Receiver/Transmitter (UART)

The UART is used mainly for debugging or booting. It provides a full-duplex port for serial
communications by transmit data (TXD) and receive data (RXD) lines. During reception, the
UART generates an interrupt request when a new character is available to the UART data
register. During transmission, the UART generates an interrupt request when its data register can
be written with new character. When accepting an interrupt request, an SC1400 core or external
host should read the UART status register to identify the interrupt source and service it
accordingly.

Note: For details, see Chapter 23, Universal Asynchronous Receiver/Transmitter (UART).

1.13.6 I2C Interface

The I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices. This bus is suitable for applications
requiring occasional communications over a short distance between many devices. The flexible
I2C allows additional devices to be connected to the bus for expansion and system development.

The interface operates up to 100 kbps with maximum bus loading and timing. The I2C system is
a true multiple-master bus including arbitration and collision detection that prevents data
corruption if multiple devices attempt to control the bus simultaneously. This feature supports
complex applications with multiprocessor control and can be used for rapid testing and alignment
of end products through external connections to an assembly-line computer.

Note: For details, see Chapter 22, I2C Software Module.

1.13.7 GPIO Signals

Up to 37 general-purpose I/O (GPIO) signals are available. Each connection in the I/O ports is
configured either as a GPIO signal or as a dedicated peripheral interface signal. Each line is
configured as an input or output (with a register for data output that is read or written at any
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 1-29

MSC711x Overview
time). In this mode, the a signal drives a zero voltage but goes to tri-state (high impedance) when
driving a high voltage. GPIO signals do not have internal pull-up resistors. Dedicated device
peripheral functions are multiplexed onto the shared external connections. The functions are
grouped to maximize connection use for the greatest number of MSC711x applications.

Note: For details, see Chapter 24, General-Purpose Input/Output (GPIO).

1.13.8 Event Port

The event port takes as input information from the EVNTx pins, system events such as DMA
transfers, and the emulator breakpoint logic. The signals can be combined as desired via
ANDing, ORing, or sequencing, and the resulting action can be sent to the EVNTx pins, to the
emulator breakpoint logic, to the timer modules, or to the interrupt controller.

The event port can be used independently or in conjunction with the MSC711x debug port
(OCE10 emulator) and internal timers to manage internal and external MSC711x events. The
event port interacts with the debug port breakpoint unit to perform a selectable event port action:
drive an EVNTx pin, handle an event port interrupt request, pass the trigger directly to the timer
module, enable a debug emulator detection module, or perform an emulator action.

Note: For details, see Chapter 15, Event Port.
MSC711x Reference Manual, Rev. 1

1-30 Freescale Semiconductor

Signal Pins and Pinouts 2
The MSC711x pins are organized into functional groups. Table 2-1 lists the functional groups,
states the number of pins in each group, and references the table that describes the multiplexed
pins in each group. Most MSC71xx external peripherals are configured through ports A–D. The
port configuration registers allow signal lines to be configured as software-controlled or
hardware-controlled. If a signal is configured as software-controlled, it can be further defined as
an input or an output. For port A, some signals configured as inputs may be configured as
general-purpose signals or as maskable interrupt lines. If a signal is configured as
hardware-controlled, it has a special function supporting one of the peripheral interfaces (for
example, the HDI16). Some signals can also have an alternate hardware function (such as the
CLKO signal). Figure 2-1 through Figure 2-8 show external signals for each device organized by
hardware-controlled and software-controlled configuration combinations for signals enabled
through ports A–D.

Note: Although the package for this devices uses ball connections, the connections are
sometimes conventionally referenced as pins.

Table 2-1. MSC711x Functional Pin Groupings

Functional Group
Number of Signal

Connections
Detailed Description

Power and Ground 221 Table 2-2 on page 2-10
Clock and Reset 3 Table 2-3 on page 2-10
Memory controller 64 Table 2-4 on page 2-11

Signals configured through ports A–D:
• TDM interfaces
• Ethernet MAC
• Host interface (HDI16)
• I2C interface
• UART interface
• Event port
• GPIO ports (mask 1L44x or mask 1M88B)
• IRQ and NMI lines

6 per interface
18
27
2
2
5

42 or 46
28

Table 2-5 on page 2-12
Table 2-6 on page 2-16
Table 2-7 on page 2-20
Table 2-8 on page 2-23
Table 2-9 on page 2-23

Table 2-10 on page 2-24
Table 2-11 on page 2-25
Table 2-12 on page 2-36

OCE10 on-chip emulator module and JTAG Test Access Port 7 Table 2-13 on page 2-42

No connect (devices with Ethernet or devices without Ethernet) 37 or 40 Do not connect any line,
component, or via to these
pins.

Notes: 1. One of the host port pins is multiplexed with one of the Ethernet MAC pins.
2. On MSC711x devices, the address and data bit ordering uses bit 0 as the least significant bit (LSB) which

differs from that of the MSC8101, MSC8102, MSC8103, MSC8122, and MSC8126 devices that use bit 0 as
the most significant bit (MSB).
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-1

Signal Pins and Pinouts
MSC7110

VDDC → 42

Power

VDDM → 49

VDDIO → 32

VDDPLL → 1

VREF → 1

GND → 95
Gnds

VSSPLL → 1

CLKIN → 1
Clock/
Reset

PORESET → 1

HRESET → 1

Hardware-Controlled
A[13–0] ← 14

Memory
Controller
(SSTL2)

Primary Alternate Reset

BA[1–0] ← 2 ↔ reserved H8BIT

D[31–0] ↔ 32

DQM[3–0] ← 4

DQS[3–0] ↔ 4

Host
Interface
(HDI16)

4 ↔ HA[3–0]

CK ← 1 8 ↔ HD[15–8]

CK ← 1 8 ↔ HD[7–0]

CKE ← 1 2 ↔ HCS[1–2]
RAS ← 1 1 ↔ HDDS

CAS ← 1 Single Strobe Dual Strobe

WE ← 1 1 ↔ HRW HRD/HRD

CS[0–1] ← 2 1 ↔ HDS/HDS HRW/HRW

Hardware- Single HREQ Dual HREQ

Controlled 1 ↔ HREQ/HREQ HTRQ/HTRQ HDSP
T0RCK ↔ 1

TDM0

1 ↔ HACK/HACK HRRQ/HRRQ

T0RFS ↔ 1

T0RD ↔ 1
I2C

1 ↔ SCL

T0TCK ↔ 1 1 ↔ SDA

T0TFS ↔ 1

T0TD ↔ 1
UART

1 ↔ URXD
1 ↔ UTXD

Event
Port

1 ↔ EVENT0

1 ↔ EVENT1 CLK0

1 ↔ EVENT2 BM0

1 ↔ EVENT3 BM1

1 ↔ EVENT4 SWTE
1 ↔ EE0/DBREQ

TEST0 → 1 Reserved NMI 1 ← NMI

TAP and
OCE

Module

1 ← TCK

Reset
(1M88B)

1 ← TDI

1 → TDO
BM3 1 ← TMS

BM2 1 ← TRST

1 ← TPSEL

Note: For software-controlled functionality, see Figure 2-2. This figure does not include the NC pins.

Figure 2-1. MSC7110 External Signals (Hardware-Controlled Functions)
MSC711x Reference Manual, Rev. 1

2-2 Freescale Semiconductor

Port Signal

Software Controlled (GPxCTL[x] = 0) Hardware Controlled (GPxCTL[x] = 1)
Reset

Configuration
(sampled at

deassertion of
PORESET only)

GPI (Default)
GPxDDR[x] = 0

GPA_INTEN[x] = 0

Interrupt
GPxDDR[x] = 0

GPA_INTEN[x] = 1
GPO

GPxDDR[x] = 1

Primary Function
CHPCFG[PAS] and CHPCFG[PDS] = 0

Alternate Function
CHPCFG[PAS] = 1
CHPCFG[PDS] = 1

PA29 GPIA29 IRQ18 GPOA29 reserved reserved
PA28 GPIA28 IRQ17 GPOA28 reserved reserved
PA27 GPIA27 IRQ16 GPOA27 reserved reserved
PA26 GPIA26 IRQ26 GPOA26 reserved
PA25 GPIA25 IRQ25 GPOA25 reserved
PA24 GPIA24 IRQ24 GPOA24 reserved
PA23 GPIA23 IRQ23 GPOA23 reserved
PA22 GPIA22 IRQ22 GPOA22 reserved
PA21 GPIA21 IRQ21 GPOA21 reserved
PA20 GPIA20 IRQ20 GPOA20 reserved
PA19 GPIA19 IRQ19 GPOA19 reserved
PA18 reserved NMI reserved Event Clock
PA17 GPIA17 IRQ13 GPOA17 EVNT1 CLKO
PA16 GPIA16 IRQ12 GPOA16 EVNT4 I2C SWTE
PA15 GPIA15 IRQ14 GPOA15 SCL
PA14 GPIA14 IRQ15 GPOA14 SDA UART
PA13 GPIA13 IRQ2 GPOA13 URXD
PA12 GPIA12 IRQ3 GPOA12 TDM0 UTXD
PA11 GPIA11 IRQ4 GPOA11 T0RCK
PA10 GPIA10 IRQ5 GPOA10 T0RFS
PA9 GPIA9 reserved GPOA9 T0RD
PA8 GPIA8 IRQ6 GPOA8 T0TCK
PA7 GPIA7 IRQ7 GPOA7 T0TFS
PA6 GPIA6 reserved GPOA6 T0TD
PA5 GPIA5 IRQ0 GPOA5 reserved
PA4 GPIA4 IRQ1 GPOA4 reserved
PA3 GPIA3 IRQ8 GPOA3 reserved
PA2 GPIA2 IRQ9 GPOA2 reserved
PA1 GPIA1 IRQ10 GPOA1 reserved
PA0 GPIA0 IRQ11 GPOA0 reserved

HDI16
PB14 reserved reserved HDDS
PB13 reserved reserved HDS or HWR
PB12 reserved reserved HRW or HRD
PB11 GPIB111 GPOB111 HCS2
PB10 reserved reserved HCS1
PB9 reserved reserved HACK or HRRQ
PB8 reserved reserved HREQ or HTRQ HDSP
PB7 reserved reserved HD7
PB6 reserved reserved HD6
PB5 reserved reserved HD5
PB4 reserved reserved HD4
PB3 reserved reserved HD3
PB2 reserved reserved HD2
PB1 reserved reserved HD1
PB0 reserved reserved HD0

PC15 GPIC15 GPOC15 EVNT3 BM1
PC14 GPIC14 GPOC14 EVNT2 BM0
PC13 reserved reserved EVNT0

PC12 reserved reserved
EE0/

DBREQ
PC11 GPIC111 GPOC111 HA3
PC10 reserved reserved HA2
PC9 reserved reserved HA1
PC8 reserved reserved HA0
PC7 GPIC7 GPOC7 HD15
PC6 GPIC6 GPOC6 HD14
PC5 GPIC5 GPOC5 HD13
PC4 GPIC4 GPOC4 HD12
PC3 GPIC3 GPOC3 HD11
PC2 GPIC2 GPOC2 HD10
PC1 GPIC1 GPOC1 HD9
PC0 GPIC0 GPOC0 HD8
PD8 GPID81 GPOD81 BM32

PD7 GPID71 GPOD71 BM22

PD6 GPID6 GPOD6 reserved reserved
PD5 GPID5 GPOD5 reserved reserved
PD4 GPID4 GPOD4 reserved reserved
PD2 reserved reserved reserved H8BIT

Notes: 1. Mask set 1M88B. For mask set 1L44X, these signals are reserved.
1. Mask set 1M88B only. For mask set 1L44X, these signals are not implemented.

Figure 2-2. MSC7110 Port A–D Signal Configuration Diagram
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-3

Signal Pins and Pinouts
MSC7112

VDDC → 42

Power

VDDM → 49

VDDIO → 32

VDDPLL → 1

VREF → 1

GND → 95
Gnds

VSSPLL → 1

CLKIN → 1
Clock/
Reset

PORESET → 1

HRESET → 1

Hardware-Controlled
A[13–0] ← 14

Memory
Controller
(SSTL2)

Primary Alternate Reset

BA[1–0] ← 2 ↔ reserved H8BIT

D[31–0] ↔ 32

DQM[3–0] ← 4

DQS[3–0] ↔ 4

Host
Interface
(HDI16)

4 ↔ HA[3–0]

CK ← 1 8 ↔ HD[15–8]
CK ← 1 8 ↔ HD[7–0]

CKE ← 1 2 ↔ HCS[1–2]

RAS ← 1 1 ↔ HDDS

CAS ← 1 Single Strobe Dual Strobe

WE ← 1 1 ↔ HRW HRD/HRD

CS[0–1] ← 2 1 ↔ HDS/HDS HRW/HRW
Hardware- Single HREQ Dual HREQ

Controlled 1 ↔ HREQ/HREQ HTRQ/HTRQ HDSP

T0RCK ↔ 1

TDM0

1 ↔ HACK/HACK HRRQ/HRRQ

T0RFS ↔ 1

T0RD ↔ 1
I2C

1 ↔ SCL

T0TCK ↔ 1 1 ↔ SDA
T0TFS ↔ 1

T0TD ↔ 1
UART

1 ↔ URXD

1 ↔ UTXD

T1RCK ↔ 1

TDM1

T1RFS ↔ 1

Event
Port

1 ↔ EVENT0

T1RD ↔ 1 1 ↔ EVENT1 CLK0
T1TCK ↔ 1 1 ↔ EVENT2 BM0

T1TFS ↔ 1 1 ↔ EVENT3 BM1

T1TD ↔ 1 1 ↔ EVENT4 SWTE

1 ↔ EE0/DBREQ

TEST0 → 1 Reserved NMI 1 ← NMI

TAP and
OCE

Module

1 ← TCK

Reset
(1M88B)

1 ← TDI
1 → TDO

BM3 1 ← TMS

BM2 1 ← TRST

1 ← TPSEL

Note: For software-controlled functionality, see Figure 2-4. This figure does not include the NC pins.

Figure 2-3. MSC7112 External Signals (Hardware-Controlled)
MSC711x Reference Manual, Rev. 1

2-4 Freescale Semiconductor

Port Signal

Software Controlled (GPxCTL[x] = 0) Hardware Controlled (GPxCTL[x] = 1)
Reset

Configuration
(sampled at

deassertion of
PORESET only)

GPI (Default)
GPxDDR[x] = 0

GPA_INTEN[x] = 0

Interrupt
GPxDDR[x] = 0

GPA_INTEN[x] = 1
GPO

GPxDDR[x] = 1

Primary Function
CHPCFG[PAS] and CHPCFG[PDS] = 0

Alternate Function
CHPCFG[PAS] = 1
CHPCFG[PDS] = 1

PA29 GPIA29 IRQ18 GPOA29 reserved reserved
PA28 GPIA28 IRQ17 GPOA28 reserved reserved
PA27 GPIA27 IRQ16 GPOA27 reserved reserved
PA26 GPIA26 IRQ26 GPOA26 reserved
PA25 GPIA25 IRQ25 GPOA25 reserved
PA24 GPIA24 IRQ24 GPOA24 reserved
PA23 GPIA23 IRQ23 GPOA23 reserved
PA22 GPIA22 IRQ22 GPOA22 reserved
PA21 GPIA21 IRQ21 GPOA21 reserved
PA20 GPIA20 IRQ20 GPOA20 reserved
PA19 GPIA19 IRQ19 GPOA19 reserved
PA18 reserved NMI reserved Event Clock
PA17 GPIA17 IRQ13 GPOA17 EVNT1 CLKO
PA16 GPIA16 IRQ12 GPOA16 EVNT4 I2C SWTE
PA15 GPIA15 IRQ14 GPOA15 SCL
PA14 GPIA14 IRQ15 GPOA14 SDA UART
PA13 GPIA13 IRQ2 GPOA13 URXD
PA12 GPIA12 IRQ3 GPOA12 TDM0 UTXD
PA11 GPIA11 IRQ4 GPOA11 T0RCK
PA10 GPIA10 IRQ5 GPOA10 T0RFS
PA9 GPIA9 reserved GPOA9 T0RD
PA8 GPIA8 IRQ6 GPOA8 T0TCK
PA7 GPIA7 IRQ7 GPOA7 T0TFS
PA6 GPIA6 reserved GPOA6 T0TD TDM1
PA5 GPIA5 IRQ0 GPOA5 T1RCK
PA4 GPIA4 IRQ1 GPOA4 T1RFS
PA3 GPIA3 IRQ8 GPOA3 T1RD
PA2 GPIA2 IRQ9 GPOA2 T1TCK
PA1 GPIA1 IRQ10 GPOA1 T1TFS
PA0 GPIA0 IRQ11 GPOA0 T1TD

HDI16
PB14 reserved reserved HDDS
PB13 reserved reserved HDS or HWR
PB12 reserved reserved HRW or HRD
PB11 GPIB111 GPOB111 HCS2
PB10 reserved reserved HCS1
PB9 reserved reserved HACK or HRRQ
PB8 reserved reserved HREQ or HTRQ HDSP
PB7 reserved reserved HD7
PB6 reserved reserved HD6
PB5 reserved reserved HD5
PB4 reserved reserved HD4
PB3 reserved reserved HD3
PB2 reserved reserved HD2
PB1 reserved reserved HD1
PB0 reserved reserved HD0

PC15 GPIC15 GPOC15 EVNT3 BM1
PC14 GPIC14 GPOC14 EVNT2 BM0
PC13 reserved reserved EVNT0

PC12 reserved reserved
EE0/

DBREQ
PC11 GPIC111 GPOC111 HA3
PC10 reserved reserved HA2
PC9 reserved reserved HA1
PC8 reserved reserved HA0
PC7 GPIC7 GPOC7 HD15
PC6 GPIC6 GPOC6 HD14
PC5 GPIC5 GPOC5 HD13
PC4 GPIC4 GPOC4 HD12
PC3 GPIC3 GPOC3 HD11
PC2 GPIC2 GPOC2 HD10
PC1 GPIC1 GPOC1 HD9
PC0 GPIC0 GPOC0 HD8
PD8 GPID81 GPOD81 BM32

PD7 GPID71 GPOD71 BM22

PD6 GPID6 GPOD6 reserved reserved
PD5 GPID5 GPOD5 reserved reserved
PD4 GPID4 GPOD4 reserved reserved
PD2 reserved reserved reserved H8BIT

Notes: 1. Mask set 1M88B. For mask set 1L44X, these signals are reserved.
1. Mask set 1M88B only. For mask set 1L44X, these signals are not implemented.

Figure 2-4. MSC7112 Port A–D Signal Configuration Diagram
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-5

Signal Pins and Pinouts
MSC7113, MSC7116, MSC7118 Hardware-Controlled

Primary Alternate
MII RMII

VDDC → 42

Power

Ethernet
Interface

1 ↔ TXD0 TXD0
VDDM → 49 1 ↔ TXD1 TXD1
VDDIO → 32 1 ↔ TXD2 reserved reserved

VDDPLL → 1 1 ↔ TXD3 reserved reserved
VREF → 1 1 ↔ RXD0 RXD0

1 ↔ RXD1 RXD1
GND → 95

Gnds
1 ↔ RXD2 reserved reserved

VSSPLL → 1 1 ↔ RXD3 reserved reserved
1 ↔ TXCLK REFCLK

CLKIN → 1
Clock/ Reset

1 ↔ TX_EN TX_EN
PORESET → 1 1 ↔ TX_ER reserved reserved

HRESET → 1 1 ↔ RXCLK reserved reserved
1 ↔ RX_DV CRS_DV
1 ↔ RX_ER RX_ER
1 ← COL reserved

A[13–0] ← 14

Memory
Controller
(SSTL2)

1 ← CRS reserved Reset

BA[1–0] ← 2 1 ↔ MDC MDC H8BIT
D[31–0] ↔ 32 1 ↔ MDIO MDIO

DQM[3–0] ← 4
DQS[3–0] ↔ 4

Host
Interface
(HDI16)

4 ↔ HA[3–0]
CK ← 1 8 ↔ HD[15–8]
CK ← 1 8 ↔ HD[7–0]

CKE ← 1 2 ↔ HCS[1–2]
RAS ← 1 1 ↔ HDDS
CAS ← 1 Single Strobe Dual Strobe
WE ← 1 1 ↔ HRW HRD/HRD

CS[0–1] ← 2 1 ↔ HDS/HDS HRW/HRW
Hardware-
Controlled

Single HREQ Dual HREQ
1 ↔ HREQ/HREQ HTRQ/HTRQ HDSP

T0RCK ↔ 1

TDM0

1 ↔ HACK/HACK HRRQ/HRRQ
T0RFS ↔ 1

T0RD ↔ 1
I2C

1 ↔ SCL
T0TCK ↔ 1 1 ↔ SDA
T0TFS ↔ 1

T0TD ↔ 1
UART

1 ↔ URXD
1 ↔ UTXD

T1RCK ↔ 1

TDM1

T1RFS ↔ 1

Event
Port

1 ↔ EVENT0
T1RD ↔ 1 1 ↔ EVENT1 CLK0

T1TCK ↔ 1 1 ↔ EVENT2 BM0
T1TFS ↔ 1 1 ↔ EVENT3 BM1

T1TD ↔ 1 1 ↔ EVENT4 SWTE
1 ↔ EE0/DBREQ

TEST0 → 1 Reserved NMI 1 ← NMI

TAP and
OCE Module

1 ← TCK
Reset

(1M88B)
1 ← TDI
1 → TDO

BM3 1 ← TMS
BM2 1 ← TRST

1 ← TPSEL

Note: For software-controlled functionality, see Figure 2-6. This figure does not include the NC pins.

Figure 2-5. MSC7113, MSC7116, and MSC7119 External Signals (Hardware-Controlled)
MSC711x Reference Manual, Rev. 1

2-6 Freescale Semiconductor

Port
Signal

Software Controlled (GPxCTL[x] = 0) Hardware Controlled (GPxCTL[x] = 1)
Reset

Configuration
(sampled at

deassertion of
PORESET only)

GPI (Default)
GPxDDR[x] = 0

GPA_INTEN[x] = 0

Interrupt
GPxDDR[x] = 0

GPA_INTEN[x] = 1
GPO

GPxDDR[x] = 1

Primary Function
CHPCFG[PAS] and CHPCFG[PDS] = 0

Alternate Function
CHPCFG[PAS] = 1
CHPCFG[PDS] = 1

Ethernet (MII or RMII)
PA29 GPIA29 IRQ18 GPOA29 RXD3 or reserved reserved
PA28 GPIA28 IRQ17 GPOA28 TX_ER or reserved reserved
PA27 GPIA27 IRQ16 GPOA27 TXD3 or reserved reserved
PA26 GPIA26 IRQ26 GPOA26 RX_ER
PA25 GPIA25 IRQ25 GPOA25 RX_DV or CRS_DV
PA24 GPIA24 IRQ24 GPOA24 TX_EN
PA23 GPIA23 IRQ23 GPOA23 TXCLK or REFCLK
PA22 GPIA22 IRQ22 GPOA22 RXD0
PA21 GPIA21 IRQ21 GPOA21 RXD1
PA20 GPIA20 IRQ20 GPOA20 TXD0
PA19 GPIA19 IRQ19 GPOA19 TXD1
PA18 reserved NMI reserved Event Clock
PA17 GPIA17 IRQ13 GPOA17 EVNT1 CLKO
PA16 GPIA16 IRQ12 GPOA16 EVNT4 I2C SWTE
PA15 GPIA15 IRQ14 GPOA15 SCL
PA14 GPIA14 IRQ15 GPOA14 SDA UART
PA13 GPIA13 IRQ2 GPOA13 URXD
PA12 GPIA12 IRQ3 GPOA12 TDM0 UTXD
PA11 GPIA11 IRQ4 GPOA11 T0RCK
PA10 GPIA10 IRQ5 GPOA10 T0RFS
PA9 GPIA9 reserved GPOA9 T0RD
PA8 GPIA8 IRQ6 GPOA8 T0TCK
PA7 GPIA7 IRQ7 GPOA7 T0TFS
PA6 GPIA6 reserved GPOA6 T0TD TDM1
PA5 GPIA5 IRQ0 GPOA5 T1RCK
PA4 GPIA4 IRQ1 GPOA4 T1RFS
PA3 GPIA3 IRQ8 GPOA3 T1RD
PA2 GPIA2 IRQ9 GPOA2 T1TCK
PA1 GPIA1 IRQ10 GPOA1 T1TFS
PA0 GPIA0 IRQ11 GPOA0 T1TD

HDI16
PB14 reserved reserved HDDS
PB13 reserved reserved HDS or HWR
PB12 reserved reserved HRW or HRD
PB11 GPIB11 GPOB11 HCS2
PB10 reserved reserved HCS1
PB9 reserved reserved HACK or HRRQ
PB8 reserved reserved HREQ or HTRQ HDSP
PB7 reserved reserved HD7
PB6 reserved reserved HD6
PB5 reserved reserved HD5
PB4 reserved reserved HD4
PB3 reserved reserved HD3
PB2 reserved reserved HD2
PB1 reserved reserved HD1
PB0 reserved reserved HD0

PC15 GPIC15 GPOC15 EVNT3 BM1
PC14 GPIC14 GPOC14 EVNT2 BM0
PC13 reserved reserved EVNT0

PC12 reserved reserved
EE0/

DBREQ
PC11 GPIC11 GPOC11 HA3
PC10 reserved reserved HA2
PC9 reserved reserved HA1
PC8 reserved reserved HA0
PC7 GPIC7 GPOC7 HD15
PC6 GPIC6 GPOC6 HD14
PC5 GPIC5 GPOC5 HD13
PC4 GPIC4 GPOC4 HD12
PC3 GPIC3 GPOC3 HD11
PC2 GPIC2 GPOC2 HD10
PC1 GPIC1 GPOC1 HD9
PC0 GPIC0 GPOC0 HD8
PD8 GPID8 GPOD8 reserved reserved BM3
PD7 GPID7 GPOD7 reserved reserved BM2
PD6 GPID6 GPOD6 RXD2 or reserved reserved
PD5 GPID5 GPOD5 RXCLK or reserved reserved
PD4 GPID4 GPOD4 TXD2 or reserved reserved
PD3 reserved reserved MDIO
PD2 reserved reserved MDC H8BIT
PD1 reserved reserved CRS or reserved
PD0 reserved reserved COL or reserved

Figure 2-6. MSC7113, MSC7116, and MSC7119 Port A–D Signal Configuration Diagram
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-7

Signal Pins and Pinouts
MSC7115, MSC7118 Hardware-Controlled

Primary Alternate
VDDC → 42

Power

TDM2

1 ↔ reserved
VDDM → 49 1 ↔ reserved
VDDIO → 32 1 ↔ reserved T2RFS

VDDPLL → 1 1 ↔ reserved T2RCK
VREF → 1 1 ↔ reserved

1 ↔ reserved
GND → 95

Gnds
1 ↔ reserved T2TD

VSSPLL → 1 1 ↔ reserved T2TFS
1 ↔ reserved

CLKIN → 1
Clock/
Reset

1 ↔ reserved
PORESET → 1 1 ↔ reserved T2RD

HRESET → 1 1 ↔ reserved T2TCK
1 ↔ reserved
1 ↔ reserved
1 ← reserved

A[13–0] ← 14

Memory
Controller
(SSTL2)

1 ← reserved Reset

BA[1–0] ← 2 1 ↔ reserved H8BIT
D[31–0] ↔ 32 1 ↔ reserved

DQM[3–0] ← 4
DQS[3–0] ↔ 4

Host
Interface
(HDI16)

4 ↔ HA[3–0]
CK ← 1 8 ↔ HD[15–8]
CK ← 1 8 ↔ HD[7–0]

CKE ← 1 2 ↔ HCS[1–2]
RAS ← 1 1 ↔ HDDS
CAS ← 1 Single Strobe Dual Strobe
WE ← 1 1 ↔ HRW HRD/HRD

CS[0–1] ← 2 1 ↔ HDS/HDS HRW/HRW
Hardware- Single HREQ Dual HREQ
Controlled 1 ↔ HREQ/HREQ HTRQ/HTRQ HDSP

T0RCK ↔ 1

TDM0

1 ↔ HACK/HACK HRRQ/HRRQ
T0RFS ↔ 1

T0RD ↔ 1
I2C

1 ↔ SCL
T0TCK ↔ 1 1 ↔ SDA
T0TFS ↔ 1

T0TD ↔ 1
UART

1 ↔ URXD
1 ↔ UTXD

T1RCK ↔ 1

TDM1

T1RFS ↔ 1

Event
Port

1 ↔ EVENT0
T1RD ↔ 1 1 ↔ EVENT1 CLK0

T1TCK ↔ 1 1 ↔ EVENT2 BM0
T1TFS ↔ 1 1 ↔ EVENT3 BM1

T1TD ↔ 1 1 ↔ EVENT4 SWTE
1 ↔ EE0/DBREQ

TEST0 → 1 Reserved NMI 1 ← NMI

Reset
(1M88B)

TAP and
OCE

Module

1 ← TCK
→ 1 1 ← TDI

BM3 → 1 1 → TDO
BM2 1 ← TMS

1 ← TRST
1 ← TPSEL

Note: For software-controlled functionality, see Figure 2-8. This figure does not include the NC pins.

Figure 2-7. MSC7115 and MSC7118 External Signals (Hardware-Controlled)
MSC711x Reference Manual, Rev. 1

2-8 Freescale Semiconductor

Port Signal

Software Controlled (GPxCTL[x] = 0) Hardware Controlled (GPxCTL[x] = 1)
Reset

Configuration
(sampled at

deassertion of
PORESET only)

GPI (Default)
GPxDDR[x] = 0

GPA_INTEN[x] = 0

Interrupt
GPxDDR[x] = 0

GPA_INTEN[x] = 1
GPO

GPxDDR[x] = 1

Primary Function
CHPCFG[PAS] and CHPCFG[PDS] = 0

Alternate Function
CHPCFG[PAS] = 1
CHPCFG[PDS] = 1

TDM2
PA29 GPIA29 IRQ18 GPOA29 reserved T2TFS
PA28 GPIA28 IRQ17 GPOA28 reserved T2RD
PA27 GPIA27 IRQ16 GPOA27 reserved T2RCK
PA26 GPIA26 IRQ26 GPOA26 reserved
PA25 GPIA25 IRQ25 GPOA25 reserved
PA24 GPIA24 IRQ24 GPOA24 reserved
PA23 GPIA23 IRQ23 GPOA23 reserved
PA22 GPIA22 IRQ22 GPOA22 reserved
PA21 GPIA21 IRQ21 GPOA21 reserved
PA20 GPIA20 IRQ20 GPOA20 reserved
PA19 GPIA19 IRQ19 GPOA19 reserved
PA18 reserved NMI reserved Event Clock
PA17 GPIA17 IRQ13 GPOA17 EVNT1 CLKO
PA16 GPIA16 IRQ12 GPOA16 EVNT4 I2C SWTE
PA15 GPIA15 IRQ14 GPOA15 SCL
PA14 GPIA14 IRQ15 GPOA14 SDA UART
PA13 GPIA13 IRQ2 GPOA13 URXD
PA12 GPIA12 IRQ3 GPOA12 TDM0 UTXD
PA11 GPIA11 IRQ4 GPOA11 T0RCK
PA10 GPIA10 IRQ5 GPOA10 T0RFS
PA9 GPIA9 reserved GPOA9 T0RD
PA8 GPIA8 IRQ6 GPOA8 T0TCK
PA7 GPIA7 IRQ7 GPOA7 T0TFS
PA6 GPIA6 reserved GPOA6 T0TD TDM1
PA5 GPIA5 IRQ0 GPOA5 T1RCK
PA4 GPIA4 IRQ1 GPOA4 T1RFS
PA3 GPIA3 IRQ8 GPOA3 T1RD
PA2 GPIA2 IRQ9 GPOA2 T1TCK
PA1 GPIA1 IRQ10 GPOA1 T1TFS
PA0 GPIA0 IRQ11 GPOA0 T1TD

HDI16
PB14 reserved reserved HDDS
PB13 reserved reserved HDS or HWR
PB12 reserved reserved HRW or HRD
PB11 GPIB11 GPOB11 HCS2
PB10 reserved reserved HCS1
PB9 reserved reserved HACK or HRRQ
PB8 reserved reserved HREQ or HTRQ HDSP
PB7 reserved reserved HD7
PB6 reserved reserved HD6
PB5 reserved reserved HD5
PB4 reserved reserved HD4
PB3 reserved reserved HD3
PB2 reserved reserved HD2
PB1 reserved reserved HD1
PB0 reserved reserved HD0

PC15 GPIC15 GPOC15 EVNT3 BM1
PC14 GPIC14 GPOC14 EVNT2 BM0
PC13 reserved reserved EVNT0

PC12 reserved reserved
EE0/

DBREQ
PC11 GPIC11 GPOC11 HA3
PC10 reserved reserved HA2
PC9 reserved reserved HA1
PC8 reserved reserved HA0
PC7 GPIC7 GPOC7 HD15
PC6 GPIC6 GPOC6 HD14
PC5 GPIC5 GPOC5 HD13
PC4 GPIC4 GPOC4 HD12
PC3 GPIC3 GPOC3 HD11
PC2 GPIC2 GPOC2 HD10
PC1 GPIC1 GPOC1 HD9
PC0 GPIC0 GPOC0 HD8
PD8 GPID8 GPOD8 BM3
PD7 GPID7 GPOD7 reserved BM2
PD6 GPID6 GPOD6 reserved T2TD
PD5 GPID5 GPOD5 reserved T2TCK
PD4 GPID4 GPOD4 reserved T2RFS
PD2 reserved reserved reserved H8BIT

Figure 2-8. MSC7115 and MSC7118 Port A–D Signal Configuration Diagram
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-9

Signal Pins and Pinouts
2.1 Power and Ground

2.2 Clocks and Resets

Table 2-2. Power and Ground Inputs

Signal Name
Number of

Pins
Description

VDDC 42 Internal Logic Power
A dedicated well-regulated power source for the device core. Provide an extremely low
impedance path to the VDDC power rail.

VDDM 49 SSTL IO Driver Power
A dedicated power source for the DDR DRAM interface buffers. Provide adequate
external decoupling capacitors.

VDDIO 32 Input/Output Power
The power source for the I/O buffers. Provide adequate external decoupling capacitors.

VDDPLL 1 System PLL Power
A dedicated well-regulated power for the system Phase Lock Loop (PLL). Provide an
extremely low impedance path to the VDDPLL power rail.

VREF 1 SSTL Reference Power
A reference power level for the SSTL2 memory interface.

GND 95 System Ground
An isolated common ground for the internal processing logic, I/O buffers, and the DDR
DRAM interface buffers. Provide adequate external decoupling capacitors.

VSSPLL 1 System PLL Ground
An isolated ground for the system PLL. Provide an extremely low-impedance path to this
ground.

Table 2-3. Clock and Reset Pin Definitions

Pin
Number of

pins
Data Flow Description

CLKIN 1 Input Clock In
Primary clock input to the MSC711x PLL. This signal provides the main
clock source for the device.

PORESET 1 Input Power-On Reset
When asserted, this signal causes the MSC711x to enter the power-on
reset state.

HRESET 1 Input/Output Hard Reset
When asserted, this open-drain signal causes the MSC711x to enter the
hard reset state. An external pull-up resistor must be used on this pin.
MSC711x Reference Manual, Rev. 1

2-10 Freescale Semiconductor

Memory System Interface (DDR Controller)
2.3 Memory System Interface (DDR Controller)
Table 2-4. Memory System Interface (DDR Controller) Signals

Pin
Number of

Pins
Data Flow Description

A[13–0] 14 Output Address Bus
Address lines connected to memory devices and controlled by the
MSC711x memory controller. A0 is the LSB of the address bus. See Table
2-5.

BA[1–0] 2 Output Bank Address
Selects the SDRAM bank. BA0 is the LSB. See Table 2-5.

CS[1–0] 2 Output Chip Selects
Enables specific memory devices or peripherals connected to the bus.

D[31–0] 32 Input/Output Data Bus
In write transactions, the MSC711x drives the valid data on this bus.
In read transactions, the memory device drives the valid data on this bus.
In 16-pin mode, pins D[15–0] are used. D0 is the LSB of the data bus.

DQM[3–0] 4 Output SDRAM DQM
From the SDRAM memory controller. These pins select specific byte lanes
of SDRAM devices. In 16-pin mode, pins DQM[1–0] are used.

DQS[3–0] 4 Input/Output SDRAM DQS
From the SDRAM memory controller. These pins are the data capture
strobe of the byte lanes of SDRAM devices. In 16-pin mode, pins DQS[1–0]
are used.

CK 1 Output Clock Out
Output clock running at half the frequency of the DDR clock.

CK 1 Output Clock Out inverted
An inverted version of the CK pin.

CKE 1 Output Clock Enable
The enable of the system bus clock for the DDR SDRAM.

RAS 1 Output SDRAM RAS
From the SDRAM memory controller. Should connect to SDRAM RAS
input.

CAS 1 Output SDRAM CAS
From the SDRAM memory controller. Should connect to SDRAM CAS
input.

WE 1 Output SDRAM Write Enable
From the SDRAM memory controller. Should connect to SDRAM WE input.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-11

Signal Pins and Pinouts
2.4 TDM Interfaces
Table 2-5. TDM Interface Signals

Pin Data Flow Description

GPIA11

IRQ4

GPOA11

T0RCK

Input

Input

Output

Input/Output

General-Purpose Input A11 (default)
When configured through port A bit 11, performs as a general-purpose input.

Interrupt Request 4
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A11
When configured through port A bit 11, performs as a general-purpose output.

TDM0 Receive Clock
The receive clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA10

IRQ5

GPOA10

T0RFS

Input

Input

Output

Input/Output

General-Purpose Input A10 (default)
When configured through port A bit 10, performs as a general-purpose input.

Interrupt Request 5
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A10
When configured through port A bit 10, performs as a general-purpose output.

TDM0 Receive Frame Sync
The receive frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA9

GPOA9

T0RD

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 9, performs as a general-purpose input.

General-Purpose Output A9
When configured through port A bit 9, performs as a general-purpose output.

TDM0 Receive Data
The receive data for TDM0. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA8

IRQ6

GPOA8

T0TCK

Input

Input

Output

Input/Output

General-Purpose Input A8 (default)
When configured through port A bit 8, performs as a general-purpose input.

Interrupt Request 6
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A8
When configured through port A bit 8, performs as a general-purpose output.

TDM0 Transmit Clock
The transmit clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.
MSC711x Reference Manual, Rev. 1

2-12 Freescale Semiconductor

TDM Interfaces
GPIA7

IRQ7

GPOA7

T0TFS

Input

Input

Output

Input/Output

General-Purpose Input A7 (default)
When configured through port A bit 7, performs as a general-purpose input.

Interrupt Request 7
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A7
When configured through port A bit 7, performs as a general-purpose output.

TDM0 Transmit Frame Sync
The transmit frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA6

GPOA6

T0TD

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 6, performs as a general-purpose input.

General-Purpose Output A6
When configured through port A bit 6, performs as a general-purpose output.

TDM0 Transmit Data
The transmit data for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA5

IRQ0

GPOA5

T1RCK

Input

Input

Output

Input/Output

General-Purpose Input A5 (default)
When configured through port A bit 5, performs as a general-purpose input.

Interrupt Request 0
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A5
When configured through port A bit 5, performs as a general-purpose output.

TDM1 Receive Clock
The receive clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA4

IRQ1

GPOA4

T1RFS

Input

Input

Output

Input/Output

General-Purpose Input A4 (default)
When configured through port A bit 4, performs as a general-purpose input.

Interrupt Request 1
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A4
When configured through port A bit 4, performs as a general-purpose output.

TDM1 Receive Frame Sync
The receive frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-5. TDM Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-13

Signal Pins and Pinouts
GPIA3

IRQ8

GPOA3

T1RD

Input

Input

Output

Input/Output

General-Purpose Input A3 (default)
When configured through port A bit 3, performs as a general-purpose input.

Interrupt Request 8
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A3
When configured through port A bit 3, performs as a general-purpose output.

TDM1 Receive Data
The receive data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA2

IRQ9

GPOA2

T1TCK

Input

Input

Output

Input/Output

General-Purpose Input A2 (default)
When configured through port A bit 2, performs as a general-purpose input.

Interrupt Request 9
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A2
When configured through port A bit 2, performs as a general-purpose output.

TDM1 Transmit Clock
The transmit clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA1

IRQ10

GPOA1

T1TFS

Input

Input

Output

Input/Output

General-Purpose Input A1 (default)
When configured through port A bit 1, performs as a general-purpose input.

Interrupt Request 10
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A1
When configured through port A bit 1, performs as a general-purpose output.

TDM1 Transmit Frame Sync
The transmit frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA0

IRQ11

GPOA0

T1TD

Input

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 6, performs as a general-purpose input.

Interrupt Request 11
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A0
When configured through port A bit 0, performs as a general-purpose output.

TDM1 Transmit Data
The transmit data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-5. TDM Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-14 Freescale Semiconductor

TDM Interfaces
GPIA27

IRQ16

GPOA27

T2RCK

Input

Input

Output

Input/Output

General-Purpose Input A27 (default)
When configured through port A bit 27, performs as a general-purpose input.

Interrupt Request 16
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A27
When configured through port A bit 27, performs as a general-purpose output.

TDM2 Receive Clock
The receive clock for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPID4

GPOD4

T2RFS

Input

Output

Input/Output

General-Purpose Input D4 (default)
When configured through port D bit 4, performs as a general-purpose input.

General-Purpose Output D4
When configured through port D bit 4, performs as a general-purpose output.

TDM2 Receive Frame Sync
The receive frame sync for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA28

IRQ17

GPOA28

T2RD

Input

Input

Output

Input/Output

General-Purpose Input A28 (default)
When configured through port A bit 28, performs as a general-purpose input.

Interrupt Request 17
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A28
When configured through port A bit 28, performs as a general-purpose output.

TDM2 Receive Data
The receive data for TDM2. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPID5

GPOD5

T2TCK

Input

Output

Input/Output

General-Purpose Input D5 (default)
When configured through port D bit 5, performs as a general-purpose input.

General-Purpose Output D5
When configured through port D bit 5, performs as a general-purpose output.

TDM2 Transmit Clock
The transmit clock for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA29

IRQ18

GPOA29

T2TFS

Input

Input

Input

Input/Output

General-Purpose Input A29 (default)
When configured through port A bit 29, performs as a general-purpose input.

Interrupt Request 18
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A29
When configured through port A bit 29, performs as a general-purpose output.

TDM2 Transmit Frame Sync
The transmit frame sync for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-5. TDM Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-15

Signal Pins and Pinouts
2.5 Ethernet MAC Interface Port

The MSC7113, MSC7116, and MSC7119 devices support an FEC.

GPID6

GPOD6
‘

T2TD

Input

Output

Input/Output

General-Purpose Input D6 (default)
When configured through port D bit 6, performs as a general-purpose input.

General-Purpose Output D6
When configured through port D bit 6, performs as a general-purpose output.

TDM2 Transmit Data
The transmit data for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Note: The availability of a specific TDM interface is device dependent:
1. MSC7110 supports TDM0.
2. MSC7112 supports TDM0 and TDM1.
3. MSC7113 supports TDM0 and TDM1.
4. MSC7115 supports TDM0, TDM1, and TDM2.
5. MSC7116 supports TDM0 and TDM1.
6. MSC7118 supports TDM0, TDM1, and TDM2.
7. MCS7119 supports TDM0 and TDM1.

Table 2-6. Ethernet MAC Interface Signals

Pin Data Flow Description

GPIA19

IRQ19

GPOA19

TXD1

Input

Input

Output

Output

General-Purpose Input A19 (default)
When configured through port A bit 19, performs as a general-purpose input.

Interrupt Request 19
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A19
When configured through port A bit 19, performs as a general-purpose output.

Transmit Data 1
MII and RMII transmit data bit 1. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA20

IRQ20

GPOA20

TXD0

Input

Input

Output

Output

General-Purpose Input A20 (default)
When configured through port A bit 20, performs as a general-purpose input.

Interrupt Request 20
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A20
When configured through port A bit 20, performs as a general-purpose output.

Transmit Data 0
MII and RMII transmit data bit 0. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-5. TDM Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-16 Freescale Semiconductor

Ethernet MAC Interface Port
GPIA21

IRQ21

GPOA21

RXD1

Input

Input

Output

Input

General-Purpose Input A21 (default)
When configured through port A bit 21, performs as a general-purpose input.

Interrupt Request 21
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A21
When configured through port A bit 21, performs as a general-purpose output.

Receive Data 1
MII and RMII receive data bit 1. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA22

IRQ22

GPOA22

RXD0

Input

Input

Output

Input

General-Purpose Input A22 (default)
When configured through port A bit 22, performs as a general-purpose input.

Interrupt Request 22
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A22
When configured through port A bit 22, performs as a general-purpose output.

Receive Data 0
MII and RMII receive data bit 0. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA23

IRQ23

GPOA23

TXCLK

REFCLK

Input

Input

Output

Input

Input

General-Purpose Input A23 (default)
When configured through port A bit 23, performs as a general-purpose input.

Interrupt Request 23
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A23
When configured through port A bit 23, performs as a general-purpose output.

Transmit Clock
MII transmit clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation details.

Reference Clock
RMII reference clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation
details.

GPIA24

IRQ24

GPOA24

TX_EN

Input

Input

Output

Output

General-Purpose Input A24 (default)
When configured through port A bit 24, performs as a general-purpose input.

Interrupt Request 24
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A24
When configured through port A bit 24, performs as a general-purpose output.

Transmit Data Valid
MII and RMII transmit data valid. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-6. Ethernet MAC Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-17

Signal Pins and Pinouts
GPIA25

IRQ25

GPOA25

RX_DV

CRS_DV

Input

Input

Output

Input

Input

General-Purpose Input A25 (default)
When configured through port A bit 25, performs as a general-purpose input.

Interrupt Request 25
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A25
When configured through port A bit 25, performs as a general-purpose output.

Receive Data Valid
MII receive data valid. See the MC711x Reference Manual for operation details.

Carrier Sense/Receive Data Valid
RMII carrier sense/receive data valid. See Chapter 18, Fast Ethernet Controller (FEC)
for operation details.

GPIA26

IRQ26

GPOA26

RX_ER

Input

Input

Output

Input

General-Purpose Input A26 (default)
When configured through port A bit 26, performs as a general-purpose input.

Interrupt Request 26
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A26
When configured through port A bit 26, performs as a general-purpose output.

Receive Error
MII and RMII receive error. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Reserved

COL

Input

Input

Reserved D0 (default)
When configured through port D bit 0, a reserved signal.

Collision
MII collision. In RMII mode, this signal is reserved. See Chapter 18, Fast Ethernet
Controller (FEC) for operation details.

Reserved

CRS

Input

Input

Reserved D1 (default)
When configured through port D bit 1, a reserved signal.

Carrier Sense
MII carrier sense. In RMII mode, this signal is reserved. See Chapter 18, Fast Ethernet
Controller (FEC) for operation details.

Reserved

MDC

H8BIT

Input

Output

Input

Reserved D2 (default)
When configured through port D bit 2, a reserved signal.

Management Clock
MII and RMII management clock. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Host 8/16 Bit Mode
This pin is sampled at the deassertion of PORESET. If the line is pulled up at reset, the
HDI16 operates in 8-bit mode when enabled. If the line is pulled down at reset, the
HDI16 operates in 16-bit mode.

Table 2-6. Ethernet MAC Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-18 Freescale Semiconductor

Ethernet MAC Interface Port
Reserved

MDIO

Input

Input/Output

Reserved D3 (default)
When configured through port D bit 3, a reserved signal.

Management Data
MII and RMII management data. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA27

IRQ16

GPOA27

TXD3

Input

Input

Output

Output

General-Purpose Input A27 (default)
When configured through port A bit 27, performs as a general-purpose input.

Interrupt Request 16
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A27
When configured through port A bit 27, performs as a general-purpose output.

Transmit Data 3
MII transmit data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

GPID4

GPOD4

TXD2

Input

Output

Output

General-Purpose Input D4 (default)
When configured through port D bit 4, performs as a general-purpose input.

General-Purpose Output D4
When configured through port D bit 4, performs as a general-purpose output.

Transmit Data 2
MII transmit data bit 2. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

GPIA28

IRQ17

GPOA28

TX_ER

Input

Input

Output

Output

General-Purpose Input A28 (default)
When configured through port A bit 28, performs as a general-purpose input.

Interrupt Request 17
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A28
When configured through port A bit 28, performs as a general-purpose output.

Transmit Error
MII transmit error. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

GPID5

GPOD5

RXCLK

Input

Output

Output

General-Purpose Input D5 (default)
When configured through port D bit 5, performs as a general-purpose input.

General-Purpose Output D5
When configured through port D bit 5, performs as a general-purpose output.

Receive Clock
MII receive clock. For RMII mode, this signal is reserved. See Chapter 18, Fast Ethernet
Controller (FEC) for operation details.

Table 2-6. Ethernet MAC Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-19

Signal Pins and Pinouts
2.6 Host Interface Port

GPIA29

IRQ18

GPOA29

RXD3

Input

Input

Input

Input

General-Purpose Input A29 (default)
When configured through port A bit 29, performs as a general-purpose input.

Interrupt Request 18
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A29
When configured through port A bit 29, performs as a general-purpose output.

Receive Data 3
MII receive data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

GPID6

GPOD6

RXD2

Input

Output

Input

General-Purpose Input D6 (default)
When configured through port D bit 6, performs as a general-purpose input.

General-Purpose Output D6
When configured through port D bit 6, performs as a general-purpose output.

Receive Data 2
MII receive data bit 2. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

Table 2-7. Host Interface Signals

Pin Data Flow Description

GPIC11

GPOC11

HA3

Input

Output

Input

General-Purpose Input C11 (default)
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

General-Purpose Output C11
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Host Address 3
Host address line 3. Tie this signal to ground.

HA[2–0] Input Host Bus Address
The address lines used to address internal host registers. HA0 is the LSB of the host
address bus.

GPIC[0–7]

GPOC[0–7]

HD[8–15]

Input

Output

Input/Output

General-Purpose Inputs C7–C0 (default)
When configured through port C bits 7–0, perform as a general-purpose inputs.

General-Purpose Outputs C7–C0
When configured through port C bits 7–0, perform as a general-purpose outputs.

Host Data Bus (Upper Half)
The host data bus is used to access the internal host registers. See Chapter 20, Host
Interface (HDI16) for operation details.

Table 2-6. Ethernet MAC Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-20 Freescale Semiconductor

Host Interface Port
Reserved

HD[7–0]

Input

Input/Output

Reserved B7–B0 (default)
When configured through port B bits 7–0, reserved signals.

Host Data Bus (Lower Half)
The host data bus is used to access the internal host registers. See the MC711x
Reference Manual for operation details.

Reserved

HCS1/HCS1

Input

Input

Reserved B10 (default)
When configured through port B bit 10, reserved signal.

Host Chip Select 1
When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity
of this pin is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2
with appropriate polarity.

GPIB11

GPOB11

HCS2/HCS2

Input

Output

Input

General-Purpose Input B11 (default)
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

General-Purpose Output B11
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Host Chip Select 2
When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity
of this pin is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2
with appropriate polarity. See Chapter 20, Host Interface (HDI16) for operation details.

Reserved

HRW

HRD/HRD

Input

Input

Input

Reserved B12 (default)
When configured through port B bit 12, reserved signal.

Host Read Write
When HDI16 is configured to work in single strobe mode, this is the Read/Write input
(HRW).

Host Read Data Strobe
When HDI16 is programmed to interface a double data strobe host bus, this pin is the
Read Data Strobe input (HRD). The polarity of the data strobe is programmable.

Reserved

HDS/HDS

HWR/HWR

Input

Input

Input

Reserved B13 (default)
When configured through port B bit 13, reserved signal.

Host Data Strobe
When the HDI16 is programmed to interface a single data strobe host bus, this pin is the
Data Strobe input (HDS). The polarity of the data strobe is programmable.

Host Write Data Strobe
When the HDI16 is programmed to interface a double data strobe host bus, this pin is
the Write Data Strobe input (HWR). The polarity of the data strobe is programmable.

Reserved

HDDS

Input

Input

Reserved B14 (default)
When configured through port B bit 14, reserved signal.

Host Dual Data Strobe
When the HDI16 is enabled, this pin indicates whether to use Single or Dual Data Strobe
mode.

Table 2-7. Host Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-21

Signal Pins and Pinouts
Reserved

HREQ/HREQ

HTRQ/HTRQ

HDSP

Input

Output

Output

Input

Reserved B8 (default)
When configured through port B bit 8, reserved signal.

Host Request
When the HDI16 is programmed to interface a single host request host bus, this pin is
the Host Request output (HREQ). The polarity of the host request is programmable. The
host request may be programmed as a driven or open-drain output.
When configured for open drain, an external pull-up must be used on this pin.

Host Transmit Request
When the HDI16 is programmed to interface a double host request host bus, this pin is
the Transmit Host Request output (HTRQ). The polarity of the host request is
programmable. The host request may be programmed as a driven or open-drain output.
When configured for open drain, an external pull-up must be used on this pin.

Host Data Strobe Polarity
This pin is sampled at the deassertion of PORESET. This pin defines the polarity of host
port read-write strobes.

Reserved

HACK/HACK

HRRQ/HRRQ

Input

Input

Output

Reserved B9 (default)
When configured through port B bit 9, reserved signal.

Host Acknowledge
When the HDI16 is programmed to interface a single host request host bus, this pin is
the Host Acknowledge input (HACK). The polarity of the host acknowledge is
programmable.

Host Receive Request
When the HDI16 is programmed to interface a double host request host bus, this pin is
the Receive Host Request output (HRRQ). The polarity of the host request is
programmable. The host request may be programmed as a driven or open-drain output.

Reserved

MDC

H8BIT

Input

Output

Input

Reserved D2 (default)
When configured through port D bit 2, a reserved signal.

Management Clock
MII and RMII management clock. See the MC711x Reference Manual for operation
details.

Host 8/16 Bit Mode
This pin is sampled at the deassertion of PORESET. If the line is pulled up at reset, the
HDI16 operates in 8-bit mode when enabled. If the line is pulled down at reset, the
HDI16 operates in 16-bit mode.

Table 2-7. Host Interface Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-22 Freescale Semiconductor

I2C Port
2.7 I2C Port

2.8 UART Port

Table 2-8. I2C Interface Signals

Pin Data Flow Description

GPIA15

IRQ14

GPOA15

SCL

Input

Input

Output

Input/Output

General-Purpose Input A15 (default)
When configured through port A bit 15, performs as a general-purpose input.

Interrupt Request 14
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A15
When configured through port A bit 15, performs as a general-purpose output.

I2C Clock
The I2C clock signal. For I2C, use an external pull-up on this pin. See Chapter 22, I2C
Software Module for operation details.

GPIA14

IRQ15

GPOA14

SDA

Input

Input

Output

Input/Output

General-Purpose Input A14 (default)
When configured through port A bit 14, performs as a general-purpose input.

Interrupt Request 15
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A14
When configured through port A bit 14, performs as a general-purpose output.

I2C Data
I2C data signal. When used for I2C, use an external pull-up on this pin. See Chapter 22,
I2C Software Module for operation details.

Table 2-9. UART Interface Signals

Pin Data Flow Description

GPIA13

IRQ2

GPOA13

URXD

Input

Input

Output

Input

General-Purpose Input A13 (default)
When configured through port A bit 13, performs as a general-purpose input.

Interrupt Request 2
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A13
When configured through port A bit 13, performs as a general-purpose output.

UART Receive Data
UART receive data line. See Chapter 23, Universal Asynchronous Receiver/Transmitter
(UART) for details.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-23

Signal Pins and Pinouts
2.9 Event Port

GPIA12

IRQ3

GPOA12

UTXD

Input

Input

Output

Output

General-Purpose Input A12 (default)
When configured through port A bit 12, performs as a general-purpose input.

Interrupt Request 3
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A12
When configured through port A bit 12, performs as a general-purpose output.

UART Transmit Data
UART transmit data line. See Chapter 23, Universal Asynchronous
Receiver/Transmitter (UART) for details.

Table 2-10. Event Port Signals

Pin Data Flow Description

EVNT0 Input/Output Event 0
Provides input and output events to the system control unit event multiplexers.

GPIA17

IRQ13

GPOA17

EVNT1

CLKO

Input

Input

Output

Input/
Output

Output

General-Purpose Input A17 (default)
When configured through port A bit 17, performs as a general-purpose input.

Interrupt Request 13
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A17
When configured through port A bit 17, performs as a general-purpose output.

Event 1
Provides input and output events to the system control unit event multiplexers.

CLKO
Output clock signal when the function is enabled.

GPIC14

GPOC14

EVNT2

BM0

Input

Output

Input/
Output

Input

General-Purpose Input C14 (default)
When configured through port C bit 14, performs as a general-purpose input.

General-Purpose Output C14
When configured through port C bit 14, performs as a general-purpose output.

Event 2
Provides input and output events to the system control unit event multiplexers.

Boot Mode 0
This pin is sampled at the deassertion of PORESET. With BM1, the value of this signal
defines the boot mode of the MSC71xx. See the MC711x Reference Manual for
operation details.

Table 2-9. UART Interface Signals

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-24 Freescale Semiconductor

GPIO Ports
2.10 GPIO Ports

See Chapter 24, General-Purpose Input/Output (GPIO) for details about programming these
ports.

GPIC15

GPOC15

EVNT3

BM1

Input

Output

Input/
Output

Input

General-Purpose Input C15 (default)
When configured through port C bit 15, performs as a general-purpose input.

General-Purpose Output C15
When configured through port C bit 15, performs as a general-purpose output.

Event 3
Provides input and output events to the system control unit event multiplexers.

Boot Mode 1
This pin is sampled at the deassertion of PORESET. With BM0, the value of this signal
defines the boot mode of the MSC71xx. See the MC711x Reference Manual for
operation details.

GPIA16

IRQ12

GPOA16

EVNT4

SWTE

Input

Input

Output

Input/
Output

Input

General-Purpose Input A16 (default)
When configured through port A bit 16, performs as a general-purpose input.

Interrupt Request 12
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A16
When configured through port A bit 16, performs as a general-purpose output.

Event 4
Provides input and output events for the system control unit event multiplexers. Can be
used to indicate that the SC1400 core is in Debug mode.

Software Watchdog Timer Disable
This pin is sampled at the deassertion of PORESET. If the signal is sampled high, the
watchdog timer is enabled. If it is sampled low, the watchdog timer is disabled.

Table 2-11. GPIO Port Signals

Pin Data Flow Description

GPIA0

IRQ11

GPOA0

T1TD

Input

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 6, performs as a general-purpose input.

Interrupt Request 11
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A0
When configured through port A bit 0, performs as a general-purpose output.

TDM1 Transmit Data
The transmit data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-10. Event Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-25

Signal Pins and Pinouts
GPIA1

IRQ10

GPOA1

T1TFS

Input

Input

Output

Input/Output

General-Purpose Input A1 (default)
When configured through port A bit 1, performs as a general-purpose input.

Interrupt Request 10
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A1
When configured through port A bit 1, performs as a general-purpose output.

TDM1 Transmit Frame Sync
The transmit frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA2

IRQ9

GPOA2

T1TCK

Input

Input

Output

Input/Output

General-Purpose Input A2 (default)
When configured through port A bit 2, performs as a general-purpose input.

Interrupt Request 9
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A2
When configured through port A bit 2, performs as a general-purpose output.

TDM1 Transmit Clock
The transmit clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA3

IRQ8

GPOA3

T1RD

Input

Input

Output

Input/Output

General-Purpose Input A3 (default)
When configured through port A bit 3, performs as a general-purpose input.

Interrupt Request 8
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A3
When configured through port A bit 3, performs as a general-purpose output.

TDM1 Receive Data
The receive data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA4

IRQ1

GPOA4

T1RFS

Input

Input

Output

Input/Output

General-Purpose Input A4 (default)
When configured through port A bit 4, performs as a general-purpose input.

Interrupt Request 1
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A4
When configured through port A bit 4, performs as a general-purpose output.

TDM1 Receive Frame Sync
The receive frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-26 Freescale Semiconductor

GPIO Ports
GPIA5

IRQ0

GPOA5

T1RCK

Input

Input

Output

Input/Output

General-Purpose Input A5 (default)
When configured through port A bit 5, performs as a general-purpose input.

Interrupt Request 0
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A5
When configured through port A bit 5, performs as a general-purpose output.

TDM1 Receive Clock
The receive clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA6

GPOA6

T0TD

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 6, performs as a general-purpose input.

General-Purpose Output A6
When configured through port A bit 6, performs as a general-purpose output.

TDM0 Transmit Data
The transmit data for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA7

IRQ7

GPOA7

T0TFS

Input

Input

Output

Input/Output

General-Purpose Input A7 (default)
When configured through port A bit 7, performs as a general-purpose input.

Interrupt Request 7
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A7
When configured through port A bit 7, performs as a general-purpose output.

TDM0 Transmit Frame Sync
The transmit frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA8

IRQ6

GPOA8

T0TCK

Input

Input

Output

Input/Output

General-Purpose Input A8 (default)
When configured through port A bit 8, performs as a general-purpose input.

Interrupt Request 6
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A8
When configured through port A bit 8, performs as a general-purpose output.

TDM0 Transmit Clock
The transmit clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA9

GPOA9

T0RD

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 9, performs as a general-purpose input.

General-Purpose Output A9
When configured through port A bit 9, performs as a general-purpose output.

TDM0 Receive Data
The receive data for TDM0. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-27

Signal Pins and Pinouts
GPIA10

IRQ5

GPOA10

T0RFS

Input

Input

Output

Input/Output

General-Purpose Input A10 (default)
When configured through port A bit 10, performs as a general-purpose input.

Interrupt Request 5
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A10
When configured through port A bit 10, performs as a general-purpose output.

TDM0 Receive Frame Sync
The receive frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA11

IRQ4

GPOA11

T0RCK

Input

Input

Output

Input/Output

General-Purpose Input A11 (default)
When configured through port A bit 11, performs as a general-purpose input.

Interrupt Request 4
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A11
When configured through port A bit 11, performs as a general-purpose output.

TDM0 Receive Clock
The receive clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA12

IRQ3

GPOA12

UTXD

Input

Input

Output

Output

General-Purpose Input A12 (default)
When configured through port A bit 12, performs as a general-purpose input.

Interrupt Request 3
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A12
When configured through port A bit 12, performs as a general-purpose output.

UART Transmit Data
UART transmit data line. See Chapter 23, Universal Asynchronous
Receiver/Transmitter (UART) for details.

GPIA13

IRQ2

GPOA13

URXD

Input

Input

Output

Input

General-Purpose Input A13 (default)
When configured through port A bit 13, performs as a general-purpose input.

Interrupt Request 2
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A13
When configured through port A bit 13, performs as a general-purpose output.

UART Receive Data
UART receive data line. See Chapter 23, Universal Asynchronous Receiver/Transmitter
(UART) for details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-28 Freescale Semiconductor

GPIO Ports
GPIA14

IRQ15

GPOA14

SDA

Input

Input

Output

Input/Output

General-Purpose Input A14 (default)
When configured through port A bit 14, performs as a general-purpose input.

Interrupt Request 15
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A14
When configured through port A bit 14, performs as a general-purpose output.

I2C Data
I2C data signal. When used for I2C, use an external pull-up on this pin. See Chapter 22,
I2C Software Module for operation details.

GPIA15

IRQ14

GPOA15

SCL

Input

Input

Output

Input/Output

General-Purpose Input A15 (default)
When configured through port A bit 15, performs as a general-purpose input.

Interrupt Request 14
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A15
When configured through port A bit 15, performs as a general-purpose output.

I2C Clock
The I2C clock signal. For I2C, use an external pull-up on this pin. See Chapter 22, I2C
Software Module for operation details.

GPIA16

IRQ12

GPOA16

EVNT4

SWTE

Input

Input

Output

Input/
Output

Input

General-Purpose Input A16 (default)
When configured through port A bit 16, performs as a general-purpose input.

Interrupt Request 12
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A16
When configured through port A bit 16, performs as a general-purpose output.

Event 4
Provides input and output events for the system control unit event multiplexers. Can be
used to indicate that the SC1400 core is in Debug mode.

Software Watchdog Timer Disable
This pin is sampled at the deassertion of PORESET. If the signal is sampled high, the
watchdog timer is enabled. If it is sampled low, the watchdog timer is disabled.

GPIA17

IRQ13

GPOA17

EVNT1

CLKO

Input

Input

Output

Input/
Output

Output

General-Purpose Input A17 (default)
When configured through port A bit 17, performs as a general-purpose input.

Interrupt Request 13
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A17
When configured through port A bit 17, performs as a general-purpose output.

Event 1
Provides input and output events to the system control unit event multiplexers.

CLKO
Output clock signal when the function is enabled.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-29

Signal Pins and Pinouts
GPIA19

IRQ19

GPOA19

TXD1

Input

Input

Output

Output

General-Purpose Input A19 (default)
When configured through port A bit 19, performs as a general-purpose input.

Interrupt Request 19
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A19
When configured through port A bit 19, performs as a general-purpose output.

Transmit Data 1 (MSC7113, MSC7116, and MSC7119)
MII and RMII transmit data bit 1. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA20

IRQ20

GPOA20

TXD0

Input

Input

Output

Output

General-Purpose Input A20 (default)
When configured through port A bit 20, performs as a general-purpose input.

Interrupt Request 20
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A20
When configured through port A bit 20, performs as a general-purpose output.

Transmit Data 0 (MSC7113, MSC7116, and MSC7119)
MII and RMII transmit data bit 0. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA21

IRQ21

GPOA21

RXD1

Input

Input

Output

Input

General-Purpose Input A21 (default)
When configured through port A bit 21, performs as a general-purpose input.

Interrupt Request 21
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A21
When configured through port A bit 21, performs as a general-purpose output.

Receive Data 1 (MSC7113, MSC7116, and MSC7119)
MII and RMII receive data bit 1. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA22

IRQ22

GPOA22

RXD0

Input

Input

Output

Input

General-Purpose Input A22 (default)
When configured through port A bit 22, performs as a general-purpose input.

Interrupt Request 22
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A22
When configured through port A bit 22, performs as a general-purpose output.

Receive Data 0 (MSC7113, MSC7116, and MSC7119)
MII and RMII receive data bit 0. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-30 Freescale Semiconductor

GPIO Ports
GPIA23

IRQ23

GPOA23

TXCLK

REFCLK

Input

Input

Output

Input

Input

General-Purpose Input A23 (default)
When configured through port A bit 23, performs as a general-purpose input.

Interrupt Request 23
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A23
When configured through port A bit 23, performs as a general-purpose output.

Transmit Clock (MSC7113, MSC7116, and MSC7119)
MII transmit clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation details.

Reference Clock (MSC7113, MSC7116, and MSC7119)
RMII reference clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation
details.

GPIA24

IRQ24

GPOA24

TX_EN

Input

Input

Output

Output

General-Purpose Input A24 (default)
When configured through port A bit 24, performs as a general-purpose input.

Interrupt Request 24
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A24
When configured through port A bit 24, performs as a general-purpose output.

Transmit Data Valid (MSC7113, MSC7116, and MSC7119)
MII and RMII transmit data valid. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA25

IRQ25

GPOA25

RX_DV

CRS_DV

Input

Input

Output

Input

Input

General-Purpose Input A25 (default)
When configured through port A bit 25, performs as a general-purpose input.

Interrupt Request 25
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A25
When configured through port A bit 25, performs as a general-purpose output.

Receive Data Valid (MSC7113, MSC7116, and MSC7119)
MII receive data valid. See the MC711x Reference Manual for operation details.

Carrier Sense/Receive Data Valid (MSC7113, MSC7116, and MSC7119)
RMII carrier sense/receive data valid. See Chapter 18, Fast Ethernet Controller (FEC)
for operation details.

GPIA26

IRQ26

GPOA26

RX_ER

Input

Input

Output

Input

General-Purpose Input A26 (default)
When configured through port A bit 26, performs as a general-purpose input.

Interrupt Request 26
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A26
When configured through port A bit 26, performs as a general-purpose output.

Receive Error (MSC7113, MSC7116, and MSC7119)
MII and RMII receive error. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-31

Signal Pins and Pinouts
GPIA27

IRQ16

GPOA27

TXD3

T2RCK

Input

Input

Output

Output

Input/Output

General-Purpose Input A27 (default)
When configured through port A bit 27, performs as a general-purpose input.

Interrupt Request 16
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A27
When configured through port A bit 27, performs as a general-purpose output.

Transmit Data 3 (MSC7113, MSC7116, and MSC7119)
MII transmit data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Receive Clock (MSC7115 and MSC7118)
The receive clock for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA28

IRQ17

GPOA28

TX_ER

T2RD

Input

Input

Output

Output

Input/Output

General-Purpose Input A28 (default)
When configured through port A bit 28, performs as a general-purpose input.

Interrupt Request 17
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A28
When configured through port A bit 28, performs as a general-purpose output.

Transmit Error (MSC7113, MSC7116, and MSC7119)
MII transmit error. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Receive Data (MSC7115 and MSC7118)
The receive data for TDM2. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA29

IRQ18

GPOA29

RXD3

T2TFS

Input

Input

Input

Input

Input/Output

General-Purpose Input A29 (default)
When configured through port A bit 29, performs as a general-purpose input.

Interrupt Request 18
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A29
When configured through port A bit 29, performs as a general-purpose output.

Receive Data 3 (MSC7113, MSC7116, and MSC7119)
MII receive data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Transmit Frame Sync (MSC7115 and MSC7118)
The transmit frame sync for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-32 Freescale Semiconductor

GPIO Ports
GPIB11

GPOB11

HCS2/HCS2

Input

Output

Input

General-Purpose Input B11 (default)
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

General-Purpose Output B11
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Host Chip Select 2
When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity
of this pin is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2
with appropriate polarity. See Chapter 20, Host Interface (HDI16) for operation details.

GPIC[0–7]

GPOC[0–7]

HD[8–15]

Input

Output

Input/Output

General-Purpose Inputs C7–C0 (default)
When configured through port C bits 7–0, perform as a general-purpose inputs.

General-Purpose Outputs C7–C0
When configured through port C bits 7–0, perform as a general-purpose outputs.

Host Data Bus (Upper Half)
The host data bus is used to access the internal host registers. See Chapter 20, Host
Interface (HDI16) for operation details.

GPIC11

GPOC11

HA3

Input

Output

Input

General-Purpose Input C11 (default)
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

General-Purpose Output C11
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Host Address 3
Host address line 3. Tie this signal to ground.

GPIC14

GPOC14

EVNT2

BM0

Input

Output

Input/
Output

Input

General-Purpose Input C14 (default)
When configured through port C bit 14, performs as a general-purpose input.

General-Purpose Output C14
When configured through port C bit 14, performs as a general-purpose output.

Event 2
Provides input and output events to the system control unit event multiplexers.

Boot Mode 0
This pin is sampled at the deassertion of PORESET. With BM1, the value of this signal
defines the boot mode of the MSC71xx. See the MC711x Reference Manual for
operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-33

Signal Pins and Pinouts
GPIC15

GPOC15

EVNT3

BM1

Input

Output

Input/
Output

Input

General-Purpose Input C15 (default)
When configured through port C bit 15, performs as a general-purpose input.

General-Purpose Output C15
When configured through port C bit 15, performs as a general-purpose output.

Event 3
Provides input and output events to the system control unit event multiplexers.

Boot Mode 1
This pin is sampled at the deassertion of PORESET. With BM0, the value of this signal
defines the boot mode of the MSC71xx. See the MC711x Reference Manual for
operation details.

GPID4

GPOD4

TXD2

T2RFS

Input

Output

Output

Input/Output

General-Purpose Input D4 (default)
When configured through port D bit 4, performs as a general-purpose input.

General-Purpose Output D4
When configured through port D bit 4, performs as a general-purpose output.

Transmit Data 2 (MSC7113, MSC7116, and MSC7119)
MII transmit data bit 2. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Receive Frame Sync (MSC7115 and MSC7118)
The receive frame sync for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPID5

GPOD5

RXCLK

T2TCK

Input

Output

Output

Input/Output

General-Purpose Input D5 (default)
When configured through port D bit 5, performs as a general-purpose input.

General-Purpose Output D5
When configured through port D bit 5, performs as a general-purpose output.

Receive Clock (MSC7113, MSC7116, and MSC7119)
MII receive clock. For RMII mode, this signal is reserved. See Chapter 18, Fast Ethernet
Controller (FEC) for operation details.

TDM2 Transmit Clock (MSC7115 and MSC7118)
The transmit clock for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPID6

GPOD6

RXD2

‘

T2TD

Input

Output

Input

Input/Output

General-Purpose Input D6 (default)
When configured through port D bit 6, performs as a general-purpose input.

General-Purpose Output D6
When configured through port D bit 6, performs as a general-purpose output.

Receive Data 2 (MSC7113, MSC7116, and MSC7119)
MII receive data bit 2. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Transmit Data (MSC7115 and MSC7118)
The transmit data for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-34 Freescale Semiconductor

GPIO Ports
GPID7

GPOD7

BM2

Input

Output

Input

General-Purpose Input D7 (default)
When configured through port D bit 7, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

General-Purpose Output B11
When configured through port D bit 7, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Boot Mode 2
For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along
with BM[0–1] and BM3, the value of this signal defines the boot mode for the device. For
designs developed using the 1L44X mask set, this signal can be left unconnected.

GPID8

GPOD8

BM3

Input

Output

Input

Reserved D8 or General-Purpose Input D8 (default)
When configured through port D bit 8, a reserved signal (mask set 1L44X) or a
general-purpose input (mask set 1M88B).

Reserved D8 or General-Purpose Output D8
When configured through port D bit 8, a reserved signal (mask set 1L44X) or a
general-purpose output (mask set 1M88B).

Boot Mode 3
For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along
with BM[0–2] the value of this signal defines the boot mode for the device. For designs
developed using the 1L44X mask set, this signal can be left unconnected.

Table 2-11. GPIO Port Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-35

Signal Pins and Pinouts
2.11 Interrupts
Table 2-12. Interrupt Signals

Pin Data Flow Description

NMI Input Non-Maskable Interrupt
External device may assert this line to generate a non-maskable interrupt to the
MSC71xx device.

GPIA5

IRQ0

GPOA5

T1RCK

Input

Input

Output

Input/Output

General-Purpose Input A5 (default)
When configured through port A bit 5, performs as a general-purpose input.

Interrupt Request 0
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A5
When configured through port A bit 5, performs as a general-purpose output.

TDM1 Receive Clock
The receive clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA4

IRQ1

GPOA4

T1RFS

Input

Input

Output

Input/Output

General-Purpose Input A4 (default)
When configured through port A bit 4, performs as a general-purpose input.

Interrupt Request 1
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A4
When configured through port A bit 4, performs as a general-purpose output.

TDM1 Receive Frame Sync
The receive frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA13

IRQ2

GPOA13

URXD

Input

Input

Output

Input

General-Purpose Input A13 (default)
When configured through port A bit 13, performs as a general-purpose input.

Interrupt Request 2
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A13
When configured through port A bit 13, performs as a general-purpose output.

UART Receive Data
UART receive data line. See Chapter 23, Universal Asynchronous Receiver/Transmitter
(UART) for details.

GPIA12

IRQ3

GPOA12

UTXD

Input

Input

Output

Output

General-Purpose Input A12 (default)
When configured through port A bit 12, performs as a general-purpose input.

Interrupt Request 3
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A12
When configured through port A bit 12, performs as a general-purpose output.

UART Transmit Data
UART transmit data line. See Chapter 23, Universal Asynchronous
Receiver/Transmitter (UART) for details.
MSC711x Reference Manual, Rev. 1

2-36 Freescale Semiconductor

Interrupts
GPIA11

IRQ4

GPOA11

T0RCK

Input

Input

Output

Input/Output

General-Purpose Input A11 (default)
When configured through port A bit 11, performs as a general-purpose input.

Interrupt Request 4
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A11
When configured through port A bit 11, performs as a general-purpose output.

TDM0 Receive Clock
The receive clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA10

IRQ5

GPOA10

T0RFS

Input

Input

Output

Input/Output

General-Purpose Input A10 (default)
When configured through port A bit 10, performs as a general-purpose input.

Interrupt Request 5
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A10
When configured through port A bit 10, performs as a general-purpose output.

TDM0 Receive Frame Sync
The receive frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA8

IRQ6

GPOA8

T0TCK

Input

Input

Output

Input/Output

General-Purpose Input A8 (default)
When configured through port A bit 8, performs as a general-purpose input.

Interrupt Request 6
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A8
When configured through port A bit 8, performs as a general-purpose output.

TDM0 Transmit Clock
The transmit clock for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA7

IRQ7

GPOA7

T0TFS

Input

Input

Output

Input/Output

General-Purpose Input A7 (default)
When configured through port A bit 7, performs as a general-purpose input.

Interrupt Request 7
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A7
When configured through port A bit 7, performs as a general-purpose output.

TDM0 Transmit Frame Sync
The transmit frame sync for TDM0. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-37

Signal Pins and Pinouts
GPIA3

IRQ8

GPOA3

T1RD

Input

Input

Output

Input/Output

General-Purpose Input A3 (default)
When configured through port A bit 3, performs as a general-purpose input.

Interrupt Request 8
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A3
When configured through port A bit 3, performs as a general-purpose output.

TDM1 Receive Data
The receive data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA2

IRQ9

GPOA2

T1TCK

Input

Input

Output

Input/Output

General-Purpose Input A2 (default)
When configured through port A bit 2, performs as a general-purpose input.

Interrupt Request 9
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A2
When configured through port A bit 2, performs as a general-purpose output.

TDM1 Transmit Clock
The transmit clock for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA1

IRQ10

GPOA1

T1TFS

Input

Input

Output

Input/Output

General-Purpose Input A1 (default)
When configured through port A bit 1, performs as a general-purpose input.

Interrupt Request 10
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A1
When configured through port A bit 1, performs as a general-purpose output.

TDM1 Transmit Frame Sync
The transmit frame sync for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA0

IRQ11

GPOA0

T1TD

Input

Input

Output

Input/Output

General-Purpose Input A9 (default)
When configured through port A bit 6, performs as a general-purpose input.

Interrupt Request 11
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A0
When configured through port A bit 0, performs as a general-purpose output.

TDM1 Transmit Data
The transmit data for TDM1. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-38 Freescale Semiconductor

Interrupts
GPIA16

IRQ12

GPOA16

EVNT4

SWTE

Input

Input

Output

Input/
Output

Input

General-Purpose Input A16 (default)
When configured through port A bit 16, performs as a general-purpose input.

Interrupt Request 12
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A16
When configured through port A bit 16, performs as a general-purpose output.

Event 4
Provides input and output events for the system control unit event multiplexers. Can be
used to indicate that the SC1400 core is in Debug mode.

Software Watchdog Timer Disable
This pin is sampled at the deassertion of PORESET. If the signal is sampled high, the
watchdog timer is enabled. If it is sampled low, the watchdog timer is disabled.

GPIA17

IRQ13

GPOA17

EVNT1

CLKO

Input

Input

Output

Input/
Output

Output

General-Purpose Input A17 (default)
When configured through port A bit 17, performs as a general-purpose input.

Interrupt Request 13
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A17
When configured through port A bit 17, performs as a general-purpose output.

Event 1
Provides input and output events to the system control unit event multiplexers.

CLKO
Output clock signal when the function is enabled.

GPIA15

IRQ14

GPOA15

SCL

Input

Input

Output

Input/Output

General-Purpose Input A15 (default)
When configured through port A bit 15, performs as a general-purpose input.

Interrupt Request 14
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A15
When configured through port A bit 15, performs as a general-purpose output.

I2C Clock
The I2C clock signal. For I2C, use an external pull-up on this pin. See Chapter 22, I2C
Software Module for operation details.

GPIA14

IRQ15

GPOA14

SDA

Input

Input

Output

Input/Output

General-Purpose Input A14 (default)
When configured through port A bit 14, performs as a general-purpose input.

Interrupt Request 15
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A14
When configured through port A bit 14, performs as a general-purpose output.

I2C Data
I2C data signal. When used for I2C, use an external pull-up on this pin. See Chapter 22,
I2C Software Module for operation details.

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-39

Signal Pins and Pinouts
GPIA27

IRQ16

GPOA27

TXD3

T2RCK

Input

Input

Output

Output

Input/Output

General-Purpose Input A27 (default)
When configured through port A bit 27, performs as a general-purpose input.

Interrupt Request 16
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A27
When configured through port A bit 27, performs as a general-purpose output.

Transmit Data 3
MII transmit data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Receive Clock
The receive clock for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

GPIA28

IRQ17

GPOA28

TX_ER

T2RD

Input

Input

Output

Output

Input/Output

General-Purpose Input A28 (default)
When configured through port A bit 28, performs as a general-purpose input.

Interrupt Request 17
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A28
When configured through port A bit 28, performs as a general-purpose output.

Transmit Error
MII transmit error. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Receive Data
The receive data for TDM2. See Chapter 19, Time-Division Multiplexing (TDM) Interface
for operation details.

GPIA29

IRQ18

GPOA29

RXD3

T2TFS

Input

Input

Input

Input

Input/Output

General-Purpose Input A29 (default)
When configured through port A bit 29, performs as a general-purpose input.

Interrupt Request 18
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A29
When configured through port A bit 29, performs as a general-purpose output.

Receive Data 3
MII receive data bit 3. For RMII mode, this signal is reserved. See Chapter 18, Fast
Ethernet Controller (FEC) for operation details.

TDM2 Transmit Frame Sync
The transmit frame sync for TDM2. See Chapter 19, Time-Division Multiplexing (TDM)
Interface for operation details.

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-40 Freescale Semiconductor

Interrupts
GPIA21

IRQ21

GPOA21

RXD1

Input

Input

Output

Input

General-Purpose Input A21 (default)
When configured through port A bit 21, performs as a general-purpose input.

Interrupt Request 21
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A21
When configured through port A bit 21, performs as a general-purpose output.

Receive Data 1
MII and RMII receive data bit 1. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA22

IRQ22

GPOA22

RXD0

Input

Input

Output

Input

General-Purpose Input A22 (default)
When configured through port A bit 22, performs as a general-purpose input.

Interrupt Request 22
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A22
When configured through port A bit 22, performs as a general-purpose output.

Receive Data 0
MII and RMII receive data bit 0. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

GPIA23

IRQ23

GPOA23

TXCLK

REFCLK

Input

Input

Output

Input

Input

General-Purpose Input A23 (default)
When configured through port A bit 23, performs as a general-purpose input.

Interrupt Request 23
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A23
When configured through port A bit 23, performs as a general-purpose output.

Transmit Clock
MII transmit clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation details.

Reference Clock
RMII reference clock. See Chapter 18, Fast Ethernet Controller (FEC) for operation
details.

GPIA24

IRQ24

GPOA24

TX_EN

Input

Input

Output

Output

General-Purpose Input A24 (default)
When configured through port A bit 24, performs as a general-purpose input.

Interrupt Request 24
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A24
When configured through port A bit 24, performs as a general-purpose output.

Transmit Data Valid
MII and RMII transmit data valid. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-41

Signal Pins and Pinouts
2.12 JTAG/OCE10 Enhanced On-Chip Emulator Port

GPIA25

IRQ25

GPOA25

RX_DV

CRS_DV

Input

Input

Output

Input

Input

General-Purpose Input A25 (default)
When configured through port A bit 25, performs as a general-purpose input.

Interrupt Request 25
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A25
When configured through port A bit 25, performs as a general-purpose output.

Receive Data Valid
MII receive data valid. See the MC711x Reference Manual for operation details.

Carrier Sense/Receive Data Valid
RMII carrier sense/receive data valid. See Chapter 18, Fast Ethernet Controller (FEC)
for operation details.

GPIA26

IRQ26

GPOA26

RX_ER

Input

Input

Output

Input

General-Purpose Input A26 (default)
When configured through port A bit 26, performs as a general-purpose input.

Interrupt Request 26
One of the 27 maskable interrupts that can be configured for the MSC71xx device.

General-Purpose Output A26
When configured through port A bit 26, performs as a general-purpose output.

Receive Error
MII and RMII receive error. See Chapter 18, Fast Ethernet Controller (FEC) for
operation details.

Table 2-13. JTAG/OCE10 Port

Pin Data Flow Description

TCK Input Test Clock (JTAG)
Clock input for the MSC711x JTAG/COP controller to synchronize the test logic.

TDI Input Test Data In (JTAG)
A test data input (with an internal pull-up resistor) that is sampled on the rising edge of
TCK.

TDO Output Test Data Out (JTAG)
A data output that can be three-stated and actively driven in the shift-IR and shift-DR
controller states. TDO changes on the falling edge of TCK.

TMS Input Test Mode Select (JTAG)
A test mode select input (with an internal pull-up resistor) that is sampled on the rising
edge of TCK to sequence the TAP controllers state machine.

TRST Input Test Reset (JTAG)
The reset input to the MSC711x JTAG/COP controller (with an internal pull-up resistor).

Table 2-12. Interrupt Signals (Continued)

Pin Data Flow Description
MSC711x Reference Manual, Rev. 1

2-42 Freescale Semiconductor

Boot Behavior of Pins
2.13 Boot Behavior of Pins

When the device exits f reset, the boot program configures different pins for the boot operation.
When booting completes, these pins may be in a different state than their values immediately out
of reset. Table 2-14 shows how the pins are used during an HDI boot.

DBREQ

EE0

Input

Input/Output

Debug Request
Puts the MSC711x device into Debug mode (EE0DEF=11 in SC1400 EE_CTRL
register).

EOnCE Event Bit 0
Debug port EE0 functionality. EDCA0 indicates detection when EE0DEF = 00.
Generates an OCE10 emulator event or enables EDCA0 when EE0DEF = 10 in the
SC1400 EE_CTRL register.

Note: The selection between DBREQ and EE0 occurs in the emulator
EE_CTRL[EE0DEF]:

TPSEL Input Tap Select
When this signal is deasserted, the boundary scan TAP controller is selected, allowing
for boundary scan. When this signal is asserted, the Debug TAP controller is selected,
allowing access to the emulator.

Table 2-14. Pin Behavior During HDI Boot

Pin Name
POR

Deassert
During
Booting

Upon Exit
from Boot

Normal
Operation

Comments

Boot Mode Pins

BM3/GPIO BM3 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM2/GPIO BM2 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM1/GPIO/EVNT3 BM1 GPIO-I Remains as is GPIO/EVNT3 Sampled when PORESET is
deasserted.

BM0/GPIO/EVNT2 BM0 GPIO-I Remains as is GPIO/EVNT2 Sampled when PORESET is
deasserted.

HDSP/HTRQ/
HREQ

HDSP HTRQ/
HREQ

Remains as is HTRQ/HREQ Uses HTRQ functionality during boot
if configured for this in ICR[HDRQ].
Otherwise uses HREQ.

Table 2-13. JTAG/OCE10 Port (Continued)

Pin Data Flow Description

00 EE0 pin is configured as an output.

01 Reserved.

10 EE0 pin is configured as an input to enable
EDCA0 or generate an emulator event.

11 EE0 pin is configured as a debug request
input (also enables EDCA0 or generates an
emulator event).
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-43

Signal Pins and Pinouts
Table 2-15 shows how pins are used during an SPI boot using the main pins.

MDC/H8BIT H8BIT (input) Remains as is MDC Sampled when PORESET is
deasserted. Configured as input
during reset.

Peripheral Port Pins

HA3/GPIO — HA3 Remains as is GPIO HA3 functionality is unused.
When the device exits reset, this pin
is not configured for GPIO. If GPIO is
desired, it must explicitly be
configured.

HA[2–0] — HA[2–0] Remains as is HA[2:0] Configured by the boot program in the
GPIO.

HD[15–0] — HD[15–0] Remains as is HD[15:0] Configured by the boot program in the
GPIO.

GPIO/HCS2 — HCS2 Remains as is GPIO/HCS2 DEVCFG[HCOV] is cleared.

HCS1 — HCS1 Remains as is HCS1 —

HRD/HRW — HRD/HRW Remains as is HRD/HRW Operation set by HDDS and HDSP.

HWR/HDS — HWR/HDS Remains as is HWR/HDS Operation set by HDDS and HDSP.

HDDS — HDDS Remains as is HDDS —

HRRQ/HACK — HRRQ Remains as is HRRQ/HACK Uses HRRQ functionality during boot
if configured for this in ICR[HDRQ].
HACK is unused during boot.

HDSP/HTRQ/
HREQ

HDSP HTRQ/
HREQ

Remains as is HTRQ/HREQ Uses HTRQ functionality during boot
if configured for this in ICR[HDRQ].
Otherwise, it uses HREQ.

Note: Errors are reported through the HCR[HF7] bit. No pins are used.

Table 2-15. Pin Behavior During an SPI Boot from the Main Pins

Pin Name
POR

Deassert
During
Booting

Upon Exit
from Boot

Normal
Operation

Comments

Boot Mode Pins

BM3/GPIO BM3 GPIO-O Remains as is GPIO Sampled when PORESET is
deasserted. Then it is used as the SPI
MOSI pin.

BM2/GPIO BM2 GPIO-O Remains as is GPIO Sampled when PORESET is
deasserted. Then it is used as the SPI
SPICLK pin.

BM1/GPIO/EVNT3 BM1 GPIO-I Remains as is GPIO/EVNT3 Sampled when PORESET is
deasserted.

BM0/GPIO/EVNT2 BM0 GPIO-I Remains as is GPIO/EVNT2 Sampled when PORESET is
deasserted.

Peripheral Port Pins

HA3/GPIO — GPIO-O Remains as is GPIO Used as the SPI SEL pin.

Table 2-14. Pin Behavior During HDI Boot (Continued)

Pin Name
POR

Deassert
During
Booting

Upon Exit
from Boot

Normal
Operation

Comments
MSC711x Reference Manual, Rev. 1

2-44 Freescale Semiconductor

Boot Behavior of Pins
Table 2-16 shows how pins are used during an SPI boot using the alternate pins.

Table 2-17 shows how pins are used during an I2C boot:

HCS2/GPIO — GPIO-I Remains as is HCS2/GPIO Used as the SPI MISO pin.

BM3/GPIO BM3 GPIO-O Remains as is GPIO Sampled when PORESET is
deasserted. Then used as the SPI
MOSI pin.

BM2/GPIO BM2 GPIO-O Remains as is GPIO Sampled when PORESET is
deasserted. Then used as the SPI
SPICLK pin.

Error Reporting Pin

BM1/GPIO/EVNT3 BM1 GPIO-I or
GPIO-O

GPIO-I GPIO/EVNT3 Sampled when PORESET is
deasserted. Then it optionally signals
a failed SPI boot. Configures as a GP
output only if an error is detected.

Note: The boot program also sets the override capability in DEVCFG[HCOV] so that the HCS2 pin can be used as GPIO.

Table 2-16. Pin Behavior During An SPI Boot from the Alternate Pins

Pin Name
POR

Deassert
During

Booting
Upon Exit
from Boot

Normal
Operation

Comments

Boot Mode Pins

BM3/GPIO BM3 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM2/GPIO BM2 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM1/GPIO/EVNT3 BM1 GPIO-I Remains as is GPIO/EVNT3 Sampled when PORESET is
deasserted.

BM0/GPIO/EVNT2 BM0 GPIO-I Remains as is GPIO/EVNT2 Sampled when PORESET is
deasserted.

Peripheral Port Pins

IRQ14/GPIO/SCL — GPIO-I Remains as is IRQ14/GPIO/SCL The SPI MISO pin.

IRQ15/GPIO/SDA — GPIO-O Remains as is IRQ15/GPIO/SDA The SPI SEL pin.

IRQ2/GPIO/URXD — GPIO-O Remains as is IRQ2/GPIO/URXD The SPI SPICLK pin.

IRQ3/GPIO/UTXD — GPIO-O Remains as is IRQ3/GPIO/UTXD The SPI MOSI pin.

Error Reporting Pin

BM1/GPIO/EVNT3 BM1 GPIO-I or
GPIO-O

GPIO-I GPIO/EVNT3 Sampled when PORESET is
deasserted. Then it optionally
signals a failed SPI boot.
Configures as a GP output only if
an error is detected.

Table 2-15. Pin Behavior During an SPI Boot from the Main Pins (Continued)

Pin Name
POR

Deassert
During
Booting

Upon Exit
from Boot

Normal
Operation

Comments
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-45

Signal Pins and Pinouts
2.14 Schmidt Triggering

The input pins in Table 2-18 contain schmidt triggering circuitry.

Table 2-17. Pin Behavior During I2C Boot

Pin Name
POR

Deassert
During
Booting

Upon Exit
from Boot

Normal Operation Comments

Boot Mode Pins

BM3/GPIO BM3 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM2/GPIO BM2 GPIO-I Remains as is GPIO Sampled when PORESET is
deasserted.

BM1/GPIO/EVNT3 BM1 GPIO-I Remains as is GPIO/EVNT3 Sampled when PORESET is
deasserted.

BM0/GPIO/EVNT2 BM0 GPIO-I Remains as is GPIO/EVNT2 Sampled when PORESET is
deasserted.

Peripheral Port Pins

IRQ14/GPIO/SCL — SCL Remains as is IRQ14/GPIO/SCL For I2C transfers.

IRQ15/GPIO/SDA — SDA Remains as is IRQ15/GPIO/SDA For I2C transfers.

Note: No pins are used for error reporting.

Table 2-18. Pins with Schmidt Triggers on Inputs

Module Pin

Reset HRESET

Interrupt NMI

TDMs T0RCK
T0TCK
T1RCK
T1TCK
T2RCK
T2TCK

Ethernet MAC TXD3
RXCLK
TXCLK

HDI HRW
HDS

HACK

I2C SCL
SDA

UART URXD
MSC711x Reference Manual, Rev. 1

2-46 Freescale Semiconductor

Connectivity Guidelines
2.15 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to their
non-active value, except for the following:

� An unused GPIO pin can be disconnected. After boot, it should be programmed as an
output pin.

� Examine each pin description to locate open-drain pins requiring external pull-up resistors
(for example, the HRESET pin).

� Examine each pin description to locate pins that contain on-chip pull-up resistors (for
example, the TMS pin).

� The SWTE pin is used to configure the device and is sampled when the PORESET signal is
deasserted. Therefore, it should be tied to VSS or VDD either directly or through a pull-down
or pull-up resistor until the PORESET signal is deasserted. It can be floating afterwards.

� The BM pins are used to configure the device and are sampled when the PORESET signal is
deasserted. Therefore, they should be tied to GND or VCC either directly or through a
pull-down or a pull-up resistor.

� When they are used, the IRQx pins must be pulled up if they are not full drive.

� Pins labelled NO CONNECT must not be connected.

� The DBREQ pin should be tied to its deasserted value when it is not used.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 2-47

Signal Pins and Pinouts
MSC711x Reference Manual, Rev. 1

2-48 Freescale Semiconductor

SC1400 Core Overview 3
The SC1400 DSP core features an innovative architecture that addresses the key market needs of
next-generation DSP applications, mainly in the field of wireline and wireless infrastructure and
subscriber communication. This flexible DSP core targets compute-intensive applications,
providing high performance, low power, efficient compilation, and high code density. The
SC1400 core efficiently deploys a novel variable-length execution set (VLES) execution model,
maximizing parallelism by allowing multiple address generation and data arithmetic logic units
to execute multiple operations in a single clock cycle. This section provides an overview of the
key features and main modules of the SC1400 core, as well as the programming model and
instruction set list.

Note: The information in this chapter is based on Revision 2 of the SC1000-Family
Processor Core Reference Manual. To get the updates in later revisions of this manual,
visit the Freescale Web site shown on the back cover of this manual.

The 16-bit SC1400 core packs four data arithmetic-logic execution units (ALUs), each consisting
of a multiply-accumulate unit (MAC), a logic unit, and a bit field unit (BFU), which also serves
as a barrel shifter. In addition to the four data execution units, the core contains two address
arithmetic units (AAUs), one bit manipulation unit (BMU) and one branch unit. Overall, the
SC1400 can issue and execute up to six instructions per clock—for example, four independent
arithmetic instructions and two pointer-related instructions (such as moves or other operations on
addresses).

At a clock speed of 200 MHz (which is the speed of the MSC7110, MSC7112, MSC7113,
MSC7115, and MSC7116 devices), the SC1400 core can therefore execute 800 true DSP
MIPS—800 million multiply-accumulate operations per second (MMACS), concurrent with
associated data movement functions and pointer updates. One MMACS is the equivalent of
several RISC MIPS, the performance measure used by other DSPs. For purposes of comparison,
the SC1400 can be said to perform 2000 RISC MIPS. At a clock speed of 300 MHz (which is the
speed of the MSC7118 and MSC7119 devices), the SC1400 core performs 3000 RISC MIPS or
1200 MMACS.

The SC1400 core can sustain this high performance over time because of the flexibility of its data
execution units and ability to transfer up to 128 data bits per cycle. The four data execution units
can operate simultaneously in any combination. For example, the SC1400 core can execute four
multiply-accumulate operations in a single clock cycle, or one MAC, two arithmetic/logical
operations and one bit field operation. All four data ALUs are identical, permitting great
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-1

SC1400 Core Overview
flexibility in assigning and executing instructions and increasing the likelihood that four
execution units can be kept busy on any given cycle. Therefore, programs can take better
advantage of the SC1400 parallel architecture.

3.1 MSC711x Architecture

This section discusses the main functional modules of the SC1400 core. Figure 3-1 shows a block
diagram of the SC1400 core as used by the devices in the MSC711x family.

Figure 3-1. Block Diagram of the SC1400 Core

3.1.1 Address Generation Unit (AGU)

One of the execution units in the SC1400 core, the AGU calculates addresses using integer
arithmetic to address data operands in memory, and it contains the registers to generate the
addresses. It performs four types of arithmetic: linear, modulo, multiple wrap-around modulo, and
reverse-carry. The AGU operates in parallel with other resources to minimize address generation
overhead. The AGU also generates change-of-flow program addresses and updates the SP.
Section 3.2.1, AGU Programming Model, on page 3-8 describes the AGU registers.

X
D

B
A

X
A

B
A

Instruction Bus

P
A

B

Program
Sequencer

P
D

B

X
A

B
B

X
D

B
B

2 AAUs 4 ALUs

Data ALU
Register File

128

64643232
32128

128

BMU

Extended Core Unified Data/Program Memory (M1)

Address Generator
Register File

OCE10™
Module

SC1400 Core

See Section 2.3.

DALUAGU
MSC711x Reference Manual, Rev. 0

3-2 Freescale Semiconductor

MSC711x Architecture
Figure 3-2. AGU Block Diagram

3.1.1.1 AAUs

The two AAUs are identical. Each contains a 32-bit full adder called an offset adder and a 32-bit
full adder called a modulo adder. The offset adder performs the following operations:

� Add or subtract two AGU registers

� Add immediate value

� Increment or decrement an AGU register

� Add PC

� Add with reverse-carry

The offset adder also performs compare or test operations and arithmetic and logical shifts. The
offset values added are preshifted by 1, 2, or 3, according to the access width. In reverse-carry
mode, the carry propagates in the opposite direction. The modulo adder adds the summed result
of the first full adder to a modulo value, M or minus M, where M is stored in the selected modifier
register. In modulo mode, the modulo comparator tests whether the result is inside the buffer by
comparing the results to the B register and chooses the correct result from between the offset adder
and the modulo adder.

Program Counter (PC) Address

R0

R1

R2

R3

R4

R5

R6

R7

N0

N1

N2

N3

PABXABBXABA

NSP, ESP

MCTL

B0/R8

B1/R9

B2/R10

B3/R1

B4/R12

B5/R13

B6/R14

B7/R15

Memory Data Bus 1 (XDBA)

Memory Data Bus 2 (XDBB)

Address
Arithmetic
Unit (AAU)

M0

M1

M2

M3

Bit Mask Unit (BMU)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-3

SC1400 Core Overview
3.1.1.2 Stack Pointer Registers

To facilitate use of a software stack, two special registers with special addressing modes are
assigned to the AGU: the Normal Mode Stack Pointer (NSP) and the Exception Mode Stack
Pointer (ESP). Both the ESP and the NSP are 32-bit read/write address registers with
predecrement and post-increment updates, as well as offset with immediate values to allow
random access to the software stack. Stack instructions use the ESP when the MSC711x device is
in the Exception mode of operation, which it enters when exceptions occur. The NSP is used in
Normal mode, while there are no exceptions. The two stack pointers makes it easier to support
multitasking systems and optimizes stack usage for these systems.

3.1.1.3 Bit Mask Unit (BMU)

The BMU performs bit mask operations, such as setting, clearing, changing, or testing a
destination, according to an immediate mask operand. Data is loaded to the BMU over the data
memory buses XDBA or XDBB. The result is written back over XDBA or XDBB to the
destinations in the next cycle. All bit mask instructions typically execute in two cycles and work
on 16-bit data. This data can be a memory location, or a portion (high or low) of a register.

The BMU supports a set of bit mask instructions that operate on:

� All AGU pointers (R[0–15])

� All data ALU registers (D[0–15])

� All control registers (EMR, VBA, PCTL0, PCTL1, SR, MCTL)

� Memory locations

Note: In the MSC711x devices, the PCTL1, PCTL0 registers are unused. To ensure
compatibility with future devices, do not write to these registers.

Only a single bit mask instruction is allowed in any single execution set, since only one execution
unit exists for these instructions. A subset of the bit mask instructions (BMTSET) allows support
for hardware semaphores.

3.1.2 Data Arithmetic Logic Unit (Data ALU)

The data ALU performs arithmetic and logical operations on data operands in MSC711x devices.
The data registers can be read or written to memory over the XDBA and the XDBB as 8-bit, 16-bit,
or 32-bit operands. The 64-bit wide data buses, XDBA and XDBB, support the transfer of several
operands on a single access. The source operands for the Data ALU, which can be 16, 32, or 40
bits, originate either from data registers or from immediate data. The results of all data ALU
operations are stored in the data registers. All data ALU operations are performed in one clock
cycle. Up to four parallel arithmetic operations can be performed in each cycle. The destination of
every arithmetic operation can be used as a source operand for the operation immediately
following, without any time penalty. The components of the data ALU are as follows:
MSC711x Reference Manual, Rev. 0

3-4 Freescale Semiconductor

MSC711x Architecture
� A bank of sixteen 40-bit registers.

� Four parallel ALUs, each containing a MAC unit and a BFU with a 40-bit barrel shifter.

� Eight data bus shifter/limiter circuits to allow saturation of a 64-bit transfer over each
XDBA and XDBB bus in a single cycle.

All MAC units and BFUs can access all data ALU registers. Each register is partitioned into three
portions: two 16-bit registers (low and high portion of the register) and one 8-bit register
(extension portion). The low and high parts of each register serve either as inputs for the
arithmetic operations or as part of the 40-bit registers as output for the operation result. The two
64-bit wide data buses that connect between the data ALU register file and the memory enable a
very high data bandwidth between memory and registers. Load and store instructions use the
maximum width of the bus according to the application requirement because there are different
versions of the instructions for different bandwidths:

� MOVE.B loads or stores bytes (8-bit)

� MOVE.W or MOVE.F loads or stores integer or fractional words (16-bit)

� MOVE.2W, MOVE.2F, or MOVE.L loads or stores double-integers, double-fractions, and
long words, respectively (32-bit)

� MOVE.4W or MOVE.4F loads or stores quad-integers and quad-fractions respectively
(64-bit)

� MOVE.2L loads or stores double-long words (64-bit)

With the ability to execute any two MOVE instructions in parallel every clock cycle, a maximum
data throughput of 4.8 GBps (at 300 MHz) can be achieved between the memory and the register
file. Figure 3-3 shows the architecture of the data ALU. For information on the data registers, refer
to Section 3.2.2, Data Arithmetic Logic Programming Model, on page 3-9.

3.1.2.1 Data Registers

The Data ALU registers are read or written over the data buses (XDBA and XDBB). The source
operands for data ALU arithmetic instructions always originate from the data ALU registers. All
data ALU operations are performed in one clock cycle so that a new instruction can be initiated in
every clock, yielding a rate of up to four data ALU instructions per clock cycle. The destination
of every arithmetic operation can be used as a source operand for the operation immediately
following, without any time penalty.

3.1.2.2 Multiply-Accumulate (MAC) Unit

The MAC unit is the main arithmetic processing unit of each SC1400 core and performs all the
calculations on data operands. The MAC unit outputs one 40-bit result in the form of
[Extension:Most Significant Portion:Least Significant Portion] (EXT:MSP:LSP). The multiplier
executes 16-bit × 16-bit fractional or integer multiplication between two’s complement signed,
unsigned, or mixed operands. The 32-bit product is right-justified and added to the 40-bit
contents of one of the sixteen data registers.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-5

SC1400 Core Overview
Figure 3-3. Data ALU Architecture

3.1.2.3 Bit-Field Unit (BFU)

The BFU contains a 40-bit parallel bidirectional shifter with a 40-bit input and a 40-bit output,
mask generation unit, and logic unit. The BFU is used in the following operations:

� Multi-bit left/right shift (arithmetic or logical)

� One-bit rotate (right or left)

� Bit-field insert and extract

� Count leading bits

� Logical operations

� Sign or zero extension operations

3.1.3 Program Sequencer Unit (PSEQ)

The PSEQ fetches and dispatches instructions and controls hardware loops and exception
processing. The PSEQ implements three out of the five stages of the pipeline and controls the
different processing states of the SC1400 core. It consists of three hardware blocks:

� Program address generator (PAG). Generates the program counter (PC) for instruction
fetch operations and controls the hardware loop functionality.

� Program dispatch unit (PDU). Detects the execution set out of the fetch set and dispatches
the instructions of the execution set to their appropriate execution units.

� Program control unit (PCU). Controls overall program pipeline behavior.

Section 3.2.3, Program Control Unit (PCU) Programming Model, on page 3-10 discusses the
registers that implement the PSEQ functions.

Memory Data Bus 1 (XDBA)

Memory Data Bus 2 (XDBB)

64 64 64 64

Shifter/Limiter

Data Registers D[0–15]

40 40

40

40

4040 40 40 40 40 40

40 40 4040 40 40 40 40 40

ALU ALU ALU ALU
MSC711x Reference Manual, Rev. 0

3-6 Freescale Semiconductor

Programming Model
3.1.4 On-Chip Emulator

The emulator allows nonintrusive interaction with an MSC711x device and its peripherals so that
you can examine registers, memory, or on-chip peripherals, define various breakpoints, and read
the trace-FIFO. These interactions facilitate hardware and software development on an MSC711x
processor. The emulator interfaces with the debugging system through on-chip JTAG TAP
controller signals. For details, refer to the OCE10 On-Chip Emulator Reference Manual.

3.2 Programming Model

The three main units of the SC1400 DSP core programming model are the data AGU, data ALU,
and PSEQ (see Figure 3-4).

Figure 3-4. SC1400 Programming Model

Data Arithmetic Logic Unit

7 0 15 0 15 0

DO DO.e DO.h DO.I

D1 D1.e D1.h D1.I

D2 D2.e D2.h D2.I

D3 D3.e D3.h D3.I

D4 D4.e D4.h D4.I

D5 D5.e D5.h D5.I

D6 D6.e D6.h D6.I

D7 D7.e D7.h D7.I

D8 D8.e D8.h D8.I

D9 D9.e D9.h D9.I

D10 D10.e D10.h D10.I

D11 D11.e D11.h D11.I

D12 D12.e D12.h D12.I

D13 D13.e D13.h D13.I

D14 D14.e D14.h D14.I

D15 D15.e D15.h D15.I

Address Generation Unit

31 0

R8/B0

R9/B1

R10/B2

R11/B3

R12/B4

R13/B5

R14/B6

R15/B7

31 0

N0

N1

N2

N3

M0

M1

M2

M3

MCTL

31 0

RO

R1

R2

R3

R4

R5

R6

R7

SP (NSP, ESP)

Address Registers Base Address
Registers

Offset and
Modifier Registers

Program Control Unit

31 0

PC

31 0

SR

31 0

EMR

Program
Counter

Status
Register

Mode and Exception
Status Register

31 0

SAO

SA1

SA2

SA3

31 0

LC0

LC1

LC2

LC3

Start Address Registers Loop Counter Registers
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-7

SC1400 Core Overview
3.2.1 AGU Programming Model

The address registers can be programmed for linear, modulo (regular or multiple wrap-around),
and bit-reverse addressing. Address registers are automatically updated when address register
indirect addressing is used.

� Address Registers (R[0–15]). The sixteen 32-bit read/write address registers R[0–15]
contain addresses or general-purpose data. The 32-bit address in a selected address
register is used in calculating the effective address of an operand. The contents of an
address register point directly to data or are used as an index. R[0–15] are composed of
two separate banks, a lower bank (R[0–7]) and an upper bank (R[8–15]). The lower bank
registers can be used for linear, modulo, or bit reverse addressing. The upper bank
registers can be use in linear addressing modes only if the lower banks are not using
modulo addressing mode. In modulo addressing mode, each lower bank register Rn is
assigned a corresponding base address register Bx. Registers B[0–7] and R[8–15] are
mapped to the same physical address space, respectively. Therefore, for example, R8 is
available only if R0 is not being used in modulo addressing, since this requires the base
address register B0. For details, see Section 3.2.2, Data Arithmetic Logic Programming
Model, on page 3-9.

If an address register is updated, one of the modifier control registers (MCTL) specifies
the type of update arithmetic. Offset registers (Ni) are used for post-incrementing and
indexing by offset. Either of the two AAUs can modify the address register.

� Stack Pointer Registers (NSP, ESP). There are two stack pointer registers: the Normal
Stack Pointer (NSP) and the Exception Stack Pointer (ESP). These 32-bit registers are
used implicitly in all PUSH and POP instructions. Only one stack pointer is active at a
time, according to the mode:

— In Normal mode, the NSP is used.
— In Exception mode, the ESP is used.

The Status Register EXP bit determines the active mode. The active stack pointer (SP) is
used explicitly for memory references in the address register indirect modes. The stack
pointers point to the next unoccupied location in the stacks. They are post-incremented on
all the implicit PUSH operations and pre-decremented on all the implicit POP operations.

Note: The programmer must explicitly initialize both stack pointer registers after reset.

� Shadow Stack Pointer Registers. Both stack pointers have shadow registers that contain a
decremented value of the stack pointers. When the shadow register is not valid, the POP
instruction executes in two cycles. The first cycle decrements the stack pointer. When the
shadow register is valid, the POP instruction executes in only one cycle. When an SP is
written (by TFRA), its shadow register automatically becomes invalid. When a
PUSH/POP instruction executes, the shadow register of the active SP becomes valid. As a
result, during consecutive POPs, even in the worst case, only the first POP requires an
additional cycle.
MSC711x Reference Manual, Rev. 0

3-8 Freescale Semiconductor

Programming Model
� Offset Registers (N[0–3]). The 32-bit read/write offset registers N[0–3] contain offset
values to increment or decrement address registers in address register update calculations.
These registers are also used for 32-bit general-purpose storage. For example, the contents
of an offset register specify the offset into a table or the base of the table for indexed
addressing. An offset register can be used to step through a table at a specified rate—such
as five locations per step for waveform generation. Each address register can be used with
each offset register. For example, R0 can be used with N0, N1, N2, or N3 for offset
address calculation.

� Base Address Registers (B[0–7]). The 32-bit read/write base address registers B[0–7] are
used in modulo calculations. Each B register is associated with an R register (B0 with R0,
and so on). When the modulo addressing mode is activated, the B register contains the
lower boundary value of the modulo buffer. The upper boundary of the modulo buffer is
calculated by B+M-1, where M is the modifier register associated with the register used.
When not used for modulo accessing, these registers can function as alternative address
registers (R[8–15]). Both Rx and Bx-8 share the same physical register. For example, if R0
is not programmed for modulo addressing, the base address register B0 can serve as an
additional address register R8.

� Modifier Registers (M[0–3]). The 32-bit read/write modifier registers M[0–3] contain the
value of the modulus modifier. These registers are also used for general-purpose storage.
The address arithmetic unit (AAU) supports linear, modulo, multiple wrap-around
modulo, and reverse-carry arithmetic types for most address register indirect addressing
modes. When the modulo arithmetic is activated, the contents of Mj specify the modulus.
Each address register can be used with each modifier register, as programmed in the
MCTL register.

� Modifier Control Register (MCTL). The 32-bit read/write register to program the address
mode (AM) for each of the eight address registers (R[0–7]). The addressing mode of the
upper address register file (R[8–15]) cannot be programmed and functions in linear mode
only.

3.2.2 Data Arithmetic Logic Programming Model

The data ALU programming model is shown in Figure 3-4. Register D0 refers to the entire 40-bit
register, whereas D0.e, D0.h, D0.l refer to the extension, most significant, and least significant
portions of the D0 register, respectively. The D[0–15] data registers, referred to as Dx, give
maximum flexibility, since they are used as source operands, destination storage, or
accumulators. The registers serve as input buffer registers between the XDBA or XDBB and the
ALUs. They are used as data ALU source operands, allowing new operands to be loaded for the
next instruction while the current arithmetic instruction processes the register contents.

Each data register Dx has an additional associated flag bit, the limit tag bit Lx, to signify whether
an overflow can occur when Dx is read over XDBA and XDBB. The limit tag bit Lx is coupled
with the extension portion Dx.e, to form a 9-bit operand. The limit tag bit Lx is updated when a
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-9

SC1400 Core Overview
result is written from the ALU to the Dx register. The data registers are accessed with three types
of data width:

� A long-word access, writing or reading 32-bit operands

� A word access, writing or reading 16-bit operands

� A byte access, writing or reading 8-bit operands

The transfer of the Dx register to memory over XDBA and XDBB is protected against overflow
by substituting a limiting constant for the data being transferred. The contents of Dx are not
affected if limiting occurs. Only the value transferred over XDBA or XDBB is limited. This
process is commonly referred to as transfer saturation, and it should not be confused with the
arithmetic saturation mode. The overflow protection is performed after the contents of the
register are shifted according to the scaling mode. Shifting and limiting are performed only when
a fractional operand is specified as the source for a data move over XDBA or XDBB. When an
integer operand is specified as the source for a data move, shifting and limiting are not
performed. Automatic sign extension or zero extension of the data values into the 40-bit registers
is provided when an operand is transferred from memory to a data register. Sign extension can
occur when the Dx register is loaded from memory through XDBA and/or XDBB. If a fractional
word operand is to be written to a data register, the MSP portion of the register is written with the
word operand, the LSP portion is zero-extended, and the EXT portion is sign-extended from
MSP. When an integer operand is to be written to a data register, the LSP portion of the register is
written with the word operand, and the MSP portion and EXT are either zero-extended or
sign-extended from the LSP. Long-word operands are written into the MSP:LSP portions of the
register, and the EXT portion is sign-extended. When a byte operand is to be written to a data
register, the register’s first eight bit portion of the LSP (Dx.1[7–0]) is written with the byte
operand, and the remaining bits are either zero-extended or sign-extended from the LSP lower
byte.

3.2.3 Program Control Unit (PCU) Programming Model

Part of the PSEQ, the PCU controls the overall pipeline behavior of the program flow. The PCU
registers are as follows:

� Program Counter Register (PC)

� Status Register (SR)

� Four Start Address Registers (SA[0–3])

� Four Loop Counter Registers (LC[0–3])

� Exception and Mode Register (EMR). The EMR reflects and controls exception situations
in the core. It contains bits that reflect memory configuration, servicing of a non-maskable
interrupt, and the following exception conditions: data ALU overflow, illegal execution
set, and illegal instruction flow. The EMR[BEM] bit is set to 1 out of reset to configure the
device for big-endian operation. The value of the BEM bit is read-only; it cannot be
changed after reset. The EMR[GP] bits are loaded with a value of 0x0 out of reset.
MSC711x Reference Manual, Rev. 0

3-10 Freescale Semiconductor

Instruction Set Overview
3.3 Instruction Set Overview

The SC1400 instruction set is divided into the following functional groups:

� AGU arithmetic

� Data ALU arithmetic

� Move

� Stack support

� Bit mask

� Change-of-flow

� Program control

The following tables list the SC1400 instructions alphabetically within the appropriate functional
group.

Table 3-1. DALU Logical Instructions

Instruction Description

AND Logical AND

ASLL Multi-bit arithmetic shift left

ASLW Word arithmetic shift left (16-bit shift)

ASRR Multi-bit arithmetic shift right

ASRW Word arithmetic shift right (16-bit shift)

CLB Count leading bits

EOR Logical exclusive OR

EXTRACT Extract signed bit field

EXTRACTU Extract unsigned bit field

INSERT Insert bit field

LSLL Multi-bit logical shift left

LSR Logical shift left by one bit

LSRR Multi-bit logical shift right

LSRW Word logical shift right (16-bit shift)

NOT Logical complement

OR Logical inclusive OR

ROL Rotate one bit left through the carry bit

ROR Rotate one bit right through the carry bit

SXT.B Sign extend byte

SXT.L Sign extend long

SXT.W Sign extend word

ZXT.B Zero extend byte
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-11

SC1400 Core Overview
ZXT.L Zero extend long

ZXT.W Zero extend word

Table 3-2. DALU Arithmetic Instructions

Instruction Description

ABS Absolute value

ADC Add long with carry

ADD Add

ADD2 Add two 16-bit values

ADDNC.W Add without changing the carry bit in the status register

ADR Add and round

ASL Arithmetic shift left by one bit

ASR Arithmetic shift right by one bit

CLR Clear

CMPEQ Compare data registers for equal

CMPEQ.W Compare immediate value to data register for equal

CMPGT Compare data registers for greater than

CMPGT.W Compare data register to immediate for greater than

CMPHI Compare for higher (unsigned)

DECEQ Decrement a data register and set T if zero

DECGE Decrement a data register and set T if greater than or equal to zero

DIV Divide iteration

DMACSS Multiply signed by signed and accumulate with data register right shifted by word size

DMACSU Multiply signed by unsigned and accumulate with data register right shifted by word size

IADD Integer addition - no saturation

IMAC Signed integer multiply-accumulate

IMACLHUU Integer multiply-accumulate unsigned times unsigned; first source from lower portion second
from upper

IMACUS Integer multiply-accumulate unsigned times signed

IMPY Signed integer multiply

IMPYHLUU Integer multiply unsigned times unsigned; first source from upper portion second from lower

IMPYSU Integer multiply signed times unsigned

IMPYUU Integer multiply unsigned times unsigned

INC Increment a data register (as integer data)

INC.F Increment a data register (as fractional data)

MAC Signed fractional multiply-accumulate

Table 3-1. DALU Logical Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

3-12 Freescale Semiconductor

Instruction Set Overview
MACR Signed fractional multiply-accumulate and round

MACSU Signed/unsigned fractional multiply-accumulate

MACUS Unsigned/signed fractional multiply-accumulate

MACUU Unsigned/unsigned fractional multiply-accumulate

MAX Transfer maximum signed value

MAX2 Transfer two 16-bit maximum signed value

MAX2VIT Specialized MAX2 version for Viterbi kernel

MAXM Transfer maximum magnitude value

MIN Transfer minimum signed value

MPY Signed fractional multiply

MPYR Signed fractional multiply and round

MPYSU Signed/unsigned fractional multiply

MPYUS Unsigned/signed fractional multiply

MPYUU Unsigned/unsigned fractional multiply

NEG Negate

RND Round

SAT.F Saturate value in data register to fit in top 16 bits

SAT.L Saturate value in data register to fit in 32 bits

SBC Subtract long with carry

SBR Subtract and round

SUB Subtract

SUB2 Subtract two 16-bit values

SUBL Shift left and subtract

SUBNC.W Subtract without changing the carry bit in the status register

TFR Transfer data register to a data register

TFRF Conditional data register transfer if the T bit is clear

TFRT Conditional data register transfer if the T bit is set

TSTEQ Test for equal to zero

TSTGE Test for greater than or equal to zero

TSTGT Test for greater than zero

Table 3-3. AGU Arithmetic Instructions

Instruction Description

ADDA AGU add

ADDL1A AGU add with 1-bit left shift of source operand

ADDL2A AGU add with 2-bit left shift of source operand

Table 3-2. DALU Arithmetic Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-13

SC1400 Core Overview
ASL2A AGU arithmetic shift left by 2 bits (32-bit)

ASLA AGU arithmetic shift left (32-bit)

ASRA AGU arithmetic shift right (32-bit)

CMPEQA AGU compare for equal

CMPGTA AGU compare for greater than

CMPHIA AGU compare for higher (unsigned)

DECA AGU decrement register

DECEQA AGU decrement and set T if zero

DECGEA AGU decrement and set T if equal or greater than zero

INCA AGU increment register

LSRA AGU logical shift right (32-bit)

SUBA AGU subtract

SXTA.B AGU sign extend byte

SXTA.W AGU sign extend word

TFRA AGU register transfer

TSTEQA.L AGU test for equal on all 32 bits

TSTEQA.W AGU test for equal on lower 16 bits

TSTGEA.L AGU test for greater than or equal

TSTGTA AGU test for greater than

ZXTA.B AGU zero extend byte

ZXTA.W AGU zero extend word

Table 3-4. Move Instructions

Instruction Description

MOVE.2F Move two fractional words from memory to a register pair

MOVE.2L Move two longs to/from a register pair

MOVE.2W Move two integer words to/from a register pair

MOVE.4F Move four fractional words from memory to a register quadrant

MOVE.4W Move four integer words to/from a register quadrant

MOVE.B Move byte (sign-extended for memory reads)

MOVE.F Move fractional word to and from memory

MOVE.L Move long (sign extended for memory or register reads)

MOVE.W Move integer word (sign extended for memory reads)

MOVEF Move address register to address register, depending on T bit of SR

MOVES.F Move fractional word to memory with saturation enabled

MOVES.L Move long to memory with saturation enabled

MOVES.2F Move two fractional words to memory with saturation enabled

Table 3-3. AGU Arithmetic Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

3-14 Freescale Semiconductor

Instruction Set Overview
MOVES.4F Move four fractional words to memory with saturation enabled

MOVET Move address register to address register, depending on T bit of SR

MOVEU.B Move unsigned byte from memory

MOVEU.L Move unsigned long from memory

MOVEU.W Move unsigned integer word from memory

VSL.2F Viterbi shift left: specialized move to support Viterbi kernel

VSL.2W Viterbi shift left: specialized move to support Viterbi kernel

VSL.4F Viterbi shift left: specialized move to support Viterbi kernel

VSL.4W Viterbi shift left: specialized move to support Viterbi kernel

Table 3-5. Stack Support Instructions

Instruction Description

POP Pop a register from the software stack

POPN Pop a register from the software stack using the normal stack pointer

PUSH Push a register into the software stack

PUSHN Push a register into the software stack using the normal stack pointer

TFRA OSP Move the “other” stack pointer to/from a register, inversely defined by the
exception mode

Table 3-6. Bit Mask Instructions

Instruction Description

AND Logical AND on a 16-bit operand

AND.W Logical AND on a 16-bit immediate value

BMCHG Bit-mask change for a 16-bit operand

BMCHG.W Bit-mask change for a 16-bit operand in memory

BMCLR Bit-mask clear for a 16-bit operand

BMCLR.W Bit-mask clear for a 16-bit operand in memory

BMSET Bit-mask set for a 16-bit operand

BMSET.W Bit-mask set for a 16-bit operand in memory

BMTSET Bit mask test and set for a 16-bit operand

BMTSET.W Bit mask test and set for a 16-bit operand in memory

BMTSTC Bit-mask test if clear for a 16-bit operand

BMTSTC.W Bit-mask test if clear for a 16-bit operand in memory

BMTSTS Bit-mask test if set for a 16-bit operand

BMTSTS.W Bit-mask test if set for a 16-bit operand in memory

Table 3-4. Move Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-15

SC1400 Core Overview
EOR Logical Exclusive OR on a 16-bit operand

EOR.W Logical Exclusive OR on a 16-bit operand in memory

NOT Binary inversion of a 16-bit operand

NOT.W Binary inversion of a 16-bit operand in memory

OR Logical OR on a 16-bit operand

OR.W Logical OR on a 16-bit operand in memory

Table 3-7. Change-of-Flow Instructions

Instruction Description

BF Branch if false

BFD Branch if false (delayed)

BRA Branch

BRAD Branch (delayed)

BREAK Terminate the loop and branch to an address

BSR Branch to subroutine

BSRD Branch to subroutine (delayed)

BT Branch if true

BTD Branch if true (delayed)

CONT Jump to the start of the loop to start the next iteration

CONTD Jump to the start of the loop to start the next iteration (delayed)

DOENn Do enable - set the “nth” loop counter and enable the loop as a long loop

DOENSHn Do enable short - set the “nth” loop counter and enable the loop as a short loop

DOSETUPn Setup the “nth” hardware loop start address

JF Jump if false

JFD Jump if false (delayed)

JMP Jump

JMPD Jump (delayed)

JSR Jump to subroutine

JSRD Jump to subroutine (delayed)

JT Jump if true

JTD Jump if true (delayed)

RTE Return from exception

RTED Return from exception (delayed)

RTS Return from subroutine

RTSD Return from subroutine (delayed)

Table 3-6. Bit Mask Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

3-16 Freescale Semiconductor

Programming Considerations
3.4 Programming Considerations

Use the last 64 bytes of M2 memory for data only. Because of system pipelining, code fetches
from this area by the SC1400 core can result in an attempt to access the reserved areas beyond the
end of the M2 memory. Such fetches may cause the system to stop operation. To prevent this
occurrence, do not store instruction code in the 64 bytes of M2 memory. For example, for
MSC711x devices with 192 KB of M2 memory, the memory range 0x0102FFC0–0x0102FFFF
should be reserved for data only.

RTSTK Force restore PC from the stack, updating SP

RTSTKD Force restore PC from the stack, updating SP (delayed)

SKIPLS Test the active LC and skip the loop if LCn is equal or smaller than zero

Table 3-8. Program Control Instructions

Instruction Description

DEBUG Enter debug mode

DEBUGEV Signal debug event

DI Disable interrupts (sets the DI bit in the status register)

EI Enable interrupts (clears the DI bit in the status register)

IFA Execute current execution set or subset unconditionally

IFF Execute current execution set or subset if the T bit is clear

IFT Execute current execution set or subset if the T bit is set

ILLEGAL Trigger an illegal instruction exception

LPMARKA End-of-loop mark

LPMARKB End-of-loop mark

MARK Push the PC into the trace buffer

NOP No operation, not dispatched to an execution unit

STOP Stop processing (lowest power stand-by)

TRAP Execute a software exception

WAIT Wait for interrupt (low power stand-by)

Table 3-7. Change-of-Flow Instructions (Continued)

Instruction Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 3-17

SC1400 Core Overview
MSC711x Reference Manual, Rev. 0

3-18 Freescale Semiconductor

Extended Core 4
On the MSC711x devices, each SC1400 core is surrounded by an extended core system that
enhances its power and provides a relatively simple interface to the SC1400 core. Figure 4-1
shows the components of the extended core system, which are the subject of this chapter.

Figure 4-1. MSC711x Extended Core

XB

AHB-Lite to

128

64

SC140

O
C

E
10

Extended Core
Interface

Instruction
Cache

M1
RAM

Notes: 1. The arrows show the data transfer direction.
2. The extended core interface includes a bus switch and write buffer.

Fetch
Unit

64 64

Crossbar Switch

AHB-Lite to

Crossbar Switch

AHB-Lite to

Crossbar Switch

XA 64

P 128

Core

(Master Port) (Master Port) (Slave Port)

AMIC AMEC ASM1

Extended Core

Control

Trace
Buffer
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-1

Extended Core
4.1 SC1400 DSP Core

The SC1400 core is the CPU powering the MSC711x devices, providing high computational
bandwidth. It can execute up to six instructions per clock, issuing to six independent functional
units: 4 data-arithmetic-logic execution units (ALUs) and 2 address arithmetic units (AAUs). At
a clock speed of 300 MHz, the SC1400 can therefore execute 1200 true DSP MIPS—1200
million multiply-accumulate operations per second (MMACS), together with associated data
movement functions and pointer updates.

Note: One MMACS is the equivalent of several RISC MIPS, which is the performance
measure used by some other DSPs. For purposes of comparison, the SC1400 core can
be said to perform 3000 RISC MIPS—ten RISC operations per cycle at 300 MHz.

The peak bandwidth requirements of the SC1400 core are as follows:

� Instruction Stream. Up to 6 instructions (128-bits) can execute every core clock. Each
program access from the core is exactly 128-bits. The extended core matches the
instruction stream needs of the SC1400 core. Its extended core memory (M1) and the
instruction cache (for cache hits) provide 128-bits every core cycle via the 128-bit PDB
bus.

� Data Stream. The SC1400 core generates two 64-bit data accesses every core clock. Each
port can generate 8, 16, 32, or 64-bit accesses. The extended core meets this need with the
extended core memory (M1) that has two ports for data, each providing up to 64-bits every
core cycle via the 64-bit XDBA or 64-bit XDBB buses.

The extended core memory (Section 4.2, Extended Core Memory (M1)) is multi-ported to allow
for parallel accesses from the core. The extended core interface (Section 4.4, Extended Core
Interface (ECI) System) allows the SC1400 core to access memory blocks, peripherals, and
external memory outside the extended core. For details on the SC1400 core, see the
SC1000-Family Processor Core Reference Manual. To get updates or later revisions of this
manual, visit the web site listed on the back cover of this manual.

4.2 Extended Core Memory (M1)

M1 memory is a unified 256 KB SRAM memory for program and data within the extended core
system. It is a zero wait state memory that operates at core frequency and is four ported to support
parallel accesses. The M1 memory is divided into four memory groups of 64 KB each. Each
group is accessed through four ports and contains eight modules, as shown in Figure 4-2.
MSC711x Reference Manual, Rev. 0

4-2 Freescale Semiconductor

Extended Core Memory (M1)
Figure 4-2. M1 Memory Organization (256 KB)

Each memory group contains a wrapper with eight modules. The number of modules determines
the amount of eight interleaving (see Section 4.2.1, Interleaving Within a Memory Group, on
page 4-4). Each 64 KB module is organized as an array of 2048 32-bit rows. Figure 4-3 shows
the structure of a memory group. Four ports (XA, XB, P, AHBL) connect to each wrapper. Each
memory group has four ports, three that are accessed from the SC1400 core buses (P-bus and the
two data buses Xa and Xb) and one that is accessed from the ASM1 (AHB-Lite) bus for DMA
and Ethernet MAC transfers (see Table 4-1).

Table 4-1. M1 Memory Ports

Memory
Port

Connects to Usage Accesses Description

P PAB/PDB Program fetches Read:
128 bits only

The SC140 core uses this port to fetch the
next instruction execution set from M1
memory.

XA XABA/XDBA First data access
from the SC1400
core

Read/Write:
8, 16, 32, or 64-bits

The SC140 core uses this port in data
accesses to M1; first of two parallel buses.

XA XABB/XDBB Second data access
from the SC1400
core

Read/Write:
8, 16, 32, or 64-bits

The SC140 core uses this port in data
accesses to M1; second of two parallel
buses.

AHBL ASM1
(AHB-Lite Bus)

Transfers through
the crossbar

Read/Write:
8, 16, 32, or 64-bits

The crossbar switch uses this port in DMA
and Ethernet MAC transfers to M1 memory.

Module 0

Module 1

Module 7

WRAPPER

..

.

P

XA

AHBL

XB

Module 0

Module 1

Module 7

WRAPPER

..

.

One 64 KB
Memory Group

128

64

64

64

One 8 KB
Memory Module

One 64 KB
Memory

One 8 KB
Memory

0–64 KB 64–128 KB 192–256 KB

Module 0

Module 1

Module 7

WRAPPER

..

.

128–192 KB

Module 0

Module 1

Module 7

WRAPPER

..

.
Group

Module
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-3

Extended Core
Figure 4-3. One Memory Group

4.2.1 Interleaving Within a Memory Group

Interleaving of the modules within a memory group minimizes SC1400 data access contentions.
Figure 4-4 shows how the M1 memory interprets the different fields of the SC1400 address
(program or data):

� Upper bits. Select the M1 memory.

� Group. Selects one of three memory groups within M1 memory.

� Row. Selects one of the rows within a memory module.

� Module. Selects one of eight memory modules within a group.

� Offset. Selects the desired address within a row.

XA XB AHBLP

WRAPPER

Module 0

Module 2

Module 3

Module 4

Module 5

Module 6

Module 7

Module 1
One

Memory Module
MSC711x Reference Manual, Rev. 0

4-4 Freescale Semiconductor

Extended Core Controller
Figure 4-4. Fields of an M1 Memory Address, 64 KB Memory Groups

Interleaving is achieved by placing the module bits below the row bits (a row is a portion of a
module). The eight modules of a memory group are interleaved so that the next row of an address
is always at the next module. Interleaving increases the probability of performing two
simultaneous data accesses to a memory group. When the accesses occur to different memory
modules, there is no memory contention and the SC1400 core does not stall. The rules for
determining contention are discussed in Section 4.3.1, Memory Contention, on page 4-6. Table
4-2 demonstrates 8-way address interleaving for the 64 KB memory groups.

4.3 Extended Core Controller

The extended core control unit provides control for the extended core, as follows:

� Arbitrates between the write buffer and bus switch when internal device resources are
accessed through the extended core.

� Controls priority of SC1400 accesses through the extended core interface
to resources outside the extended core.

� Detects and handles internal memory contentions.

— Freezes the address bus.
— Freezes the SC1400 core.

� Controls priority of accesses to M1 memory.

� Handles bus access exceptions, including misaligned transfers.

� Handles atomic instruction acknowledge to the SC1400 core for accesses through the ECI.

Table 4-2. Interleaving of Addresses, 64 KB Memory Group

Module 0
Addresses
(16 LSBs)

Module 1
Addresses
(16 LSBs)

Module 2
Addresses
(16 LSBs)

...
Module 7

Addresses
(16 LSBs)

Row 0 0x0000– 0x0003 0x0004– 0x0007 0x0008– 0x000B ... 0x001C–0x001F

Row 1 0x0020–0x0023 0x0024–0x0027 0x0028–0x002B ... 0x003C–0x003F

...

Row 2048–1 0xFFE0–0xFFE3 0xFFE4–0xFFE7 0xFFE8–0xFFEB ... 0xFFFC–0xFFFF

Upper Bits Row Module Offset

14

Group

2 11 3 2

One 64 KB Group
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-5

Extended Core
4.3.1 Memory Contention

There are four ports to M1 memory (Figure 4-2) because a MSC711x device produces up to four
simultaneous requests to M1 memory: one program, two data, and one AHB access. If a memory
group cannot service all the accesses requested, this condition is called a contention.

4.3.1.1 Detecting Contentions

Memory contention is automatically detected and handled by the extended core control unit.
Contention can occur when more than one access goes to a half memory group, which consists of
modules 0–3 of a memory group or modules 4–7. Contention occurs if any of the following
conditions are true:

� All three of the following accesses occur to the same half of a memory group:

— Program access.
— DMA access
— SC1400 data access (XA and/or XB)

� Any two of the following accesses occur to the same half of a memory group:

— Program access.
— DMA access
— SC1400 data access (XA and/or XB)

� There are two SC1400 data read accesses to the same half of a memory group and:

— Both read accesses are to the same memory module.
— The read accesses are to different rows within this module.

Each SC1400 write access is captured in a dedicated late write buffer that greatly reduces the
probability of contention. In each half-memory group, there are two late write buffers, one on the
XA bus and one on the XB bus.

Following are examples of parallel accesses where memory contention occurs:

� A program access and a SC1400 data read access to the same half-memory group.

� A DMA access and a SC1400 data read access to the same half-memory group.

� Two SC1400 data read accesses to different rows within the same memory module.

Following are examples of parallel accesses with no memory contention:

� A program access and an SC1400 data access each to a different half-memory group.

� A program access and an SC1400 data access each to a different memory group.

� A DMA access and a SC1400 data access each to a different half-memory group.

� A DMA access and a SC1400 data access each to a different memory group.

� One program access, one DMA access, and two SC1400 data accesses,
each to a different half-memory group.
MSC711x Reference Manual, Rev. 0

4-6 Freescale Semiconductor

Extended Core Controller
� Two SC1400 data accesses to different modules in the same half-memory group.

� Two SC1400 data accesses to the same row of the same memory module.

Table 4-3 summarizes the possible simultaneous accesses and shows the number of stall cycles
inserted by the SC1400 core to resolve the contention. Except for dual SC1400 data accesses,
each memory module serves only one access in a cycle.

4.3.1.2 Access Priority During Memory Contention

When contention to a memory group occurs, the memory controller prioritizes the order in which
the accesses are serviced. The priority of accesses between the buses is programmable with the
ASM1 bus at the highest or lowest priority:

Table 4-3. Contention Summary Within One Half-Memory Group

Number of
Simultaneous

Accesses

Program
Access

(P)

DMA
Access
(ASM1)

Core Data
Read Access

(XA)

Core Data
Read Access

(XB)

Stall Cycles
Inserted by

SC1400 Core

0 — — — — None

1 yes — — — None

1 — yes — — None

1 — — yes — None

1 — — — yes None

2 — — yes yes None or 1*

2 yes yes — — 1

2 yes — yes — 1

2 yes — — yes 1

2 — yes yes — 1

2 — yes — yes 1

3 yes — yes yes 1 or 2*

3 — yes yes yes 1 or 2*

3 yes yes yes — 2

3 yes yes — yes 2

4 yes yes yes yes 2 or 3*

Note: The larger number of stall cycles is inserted if the XA and XB accesses are to the same memory module
within a group but to different rows within this module. Otherwise, the smaller value is used.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-7

Extended Core
Placing the DMA controller at lowest priority reduces the contention encountered by the SC1400
core, which is important in MIPs intensive applications. Placing the DMA controller at highest
priority permits higher-bandwidth transfers to the M1 memory for applications with high DMA
bandwidth to this memory.

When the ASM1 port is programmed with the lowest priority, the DMA controller may be
delayed in gaining access to the M1 memory if the SC1400 core is busy processing an algorithm.

4.3.1.3 Allocating M1 Memory to Avoid Contention

The best solution is to reduce memory contention between the ASM1 port and the SC1400 core
by placing data for each in different memory groups. Although each M1 memory group has only
two ports, intelligent allocation of memory yields a high degree of parallelism in accesses to M1.
This section gives practical guidelines for efficient M1 memory usage. Following are strategies
for reducing memory contentions:

� Place data and DMA buffers in different memory groups.

� Keep any program code located in M1 memory together in its own memory group.

� Put data to be accessed in parallel into different memory groups. If this is not feasible,
place data buffers at an offset from each other so different modules are accessed. A
suitable offset, for example, is N × 32 + 16 bytes, where N is an integer less than 1024.

4.3.2 Errors, Exceptions, and Events

The extended core controller detects contentions and errors on the internal core buses and outputs
exception signals to the interrupt controller. See Chapter 11, Interrupt Processing.

Table 4-4. M1 Memory Access Priority

ASM1 Port at Highest Priority
(GPSCTL[ASM1P] = 0)

ASM1 Port at Lowest Priority
(GPSCTL[ASM1P] = 1)

ASM1 Bus — Highest Priority Program Fetch — Highest Priority

Program Fetch XA Read

XA Read XB Read

XB Read XA Write

XA Write XB Write

XB Write — Lowest Priority ASM1 Bus — Lowest Priority
MSC711x Reference Manual, Rev. 0

4-8 Freescale Semiconductor

Extended Core Controller
4.3.2.1 Errors

Errors generate interrupts using NMI requests to the interrupt controller, as follows:

� Misaligned program. SC1400 instructions are 16 bits (two bytes) and must be aligned. If
the address on the program bus is not 16-bit aligned, a misaligned program error occurs
and an NMI request, MISAL_P, is generated.

� SC1400 core program address out-of-range. When the SC1400 core generates a program
address within the extended core address space that is not a valid address, a program
address out-of-range error occurs and an NMI request, AORP_E, is generated.

� SC1400 core data address out-of-range. When the SC1400 core generates a data address
on either XA or XB that lies within the extended core’s address space that is not a valid
address, a data address out-of-range error occurs and an NMI request, AORX_E, is
generated (see Section 5.5, Access Restrictions, on page 5-37.

No exception is detected when an atomic access by the SC1400 core to a location in M1 memory
is broken by a higher-priority access from the DMA controller. An application must architect its
software so that DMA transfers can never occur to the same location in M1 memory where an
atomic instruction may be modifying a location. In actual practice, this is typically the case.
There is no issue when an atomic access is separated by a DMA access to a different location in
M1 memory.

4.3.2.2 Exceptions

Exceptions assert the interrupt request lines of the interrupt controller and can be masked. The
contention exceptions are mainly used for debug and profiling and can be masked otherwise. The
exceptions generate the following interrupts:

� Dual data write. When accesses on the XA and XB data buses simultaneously write to the
same location or portion of a location, an exception occurs and an interrupt request,
EC_DUALWR, is generated.

� Misaligned data. When an address on either of the data buses (Xa or Xb) is misaligned
with its data size, a misaligned data exception occurs and an interrupt request, MISAL_D,
is generated.

4.3.2.3 Events

The extended core interface generates the following signals for system-level debugging:

� M1 contention. When there is a contention between any of the buses accessing M1
memory, this condition is detected and sent as an input to the event port. The signal asserts
one AHB clock for each detection of two contention cycles within the SC1400 core. For
example, for eight M1 memory contentions in a given interval of time (not necessarily
sequential), this signal asserts for four AHB clocks. Similarly, for seven M1 memory
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-9

Extended Core
contentions (the SC1400 core contention signal asserts for seven core clock cycles), this
signal asserts for 3 or 4 AHB clock cycles, depending on the previous state. This allows
the timers connected to the event port more accurately to count the number of cycles with
contention asserted (number of occurrences divided by 2).

� Instruction cache misses. When there is a miss on the instruction cache, this information is
sent to the event port. Two different types of misses are detected: any instruction cache
miss and misses only to external memory. The signal asserts one AHB clock for each
detection of two cycles where the SC1400 core is stalled by the miss. For example, if the
SC1400 core stalls for eight core clock cycles because of instruction cache misses in a
given interval of time (not necessarily sequential), this signal asserts for four AHB clocks.
For a stall of seven core clock cycles, this signal asserts for a total of 3 or 4 AHB clock
cycles, depending on the previous state. This allows the timers connected to the event port
more to count the number of stall cycles more accurately due to cache misses (number of
core clocks divided by 2).

� Interrupt service (INTSV). When the SC1400 core is about to service an interrupt, a pulse
is generated and sent to notify the event port. This signal asserts when the PAB is driven
with the address of the interrupt vector and remains asserted a total of 5 core clock cycles.

4.4 Extended Core Interface (ECI) System

The ECI enables the SC1400 core to communicate efficiently with resources outside the extended
core. The module handles the SC1400 core access requests to outside resources. Figure 4-5
shows the ECI structure. The ECI handles the switching between the core buses and the
AHB-Lite for Extended Core Master (AMEC) bus, which goes to the crossbar switch. The ECI
transfers these accesses to the AMEC. The ECI operates at the same frequency as the SC1400
core.

Note: Program accesses to non-cacheable regions of memory are handled through the
instruction fetch unit.

Different attributes of the extended core can be tuned for an application. These attributes are
programmable through the ECI and instruction cache registers, which are described in
Section 4.8, Extended Core Programming Model, on page 4-40.
MSC711x Reference Manual, Rev. 0

4-10 Freescale Semiconductor

Extended Core Interface (ECI) System
Figure 4-5. Extended Core Interface Block Diagram

4.4.1 AMEC Bus

The AMEC bus connects the extended core to the MSC711x system through a master port on the
crossbar switch. All SC1400 core data accesses outside the extended core are transferred on the
AMEC bus. It has a relatively simple protocol. The features of the AMEC bus are as follows:

� Operates at half the SC1400 core frequency.

� 32-bit address.

� 128-bit program reads to the SC1400 core.

� 64-bit data reads to the SC1400 core.

� 64-bit data writes from the SC1400 core.

� Pipeline between the address and data phases.

The ECI prioritizes simultaneous access requests for the extended core interface in the following
order (descending order):

� XA-bus read — Highest Priority

� XB-bus read

� XA-bus write immediate or immediate with no freeze

� XB-bus write immediate or immediate with no freeze

� XA-bus write

� XB-bus write — Lowest Priority

64

64

64

Multiplexer

Bus Switch
Data

Address

Registers
ECI

(AHB-Lite Bus to Crossbar Switch)AMEC

XB

XA

Control from
Extended Core Control

64

Write Buffer

Registers
to ICache
Registers

Internal Bus
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-11

Extended Core
The ECI services the addresses according to their priority. However, a write buffer flush gets the
highest priority within accesses of the same core cycle.

Note: When the SC1400 core writes two values at the same time to the ECI and the write
buffer is enabled, an XA-bus write access (not immediate) may occur before an
XB-bus write immediate or immediate with no freeze access. This is an exception to
the usual priorities.

4.4.2 Bus Switch and Write Buffer

The bus switch handles the following accesses to resources outside the extended core:

� All data read operations.

� Write operations when the write buffer is disabled.

� Atomic (read-modify-write) operations.

4.4.2.1 Write Buffer

The write buffer has a four-entry buffer that enables the SC1400 core to write out to the external
memory with no freeze. A write access to resources outside the extended core goes to the buffer
while the SC1400 core continues execution. The write buffer operates in one of the following
modes:

� Normal Operation. Writes from the SC1400 core are stored in the write buffer FIFO and
written out to the crossbar switch.

� Immediate accesses. If a write access is for an immediate memory area, as programmed in
the IMM bits in the WBDAR registers, the access bypasses all other in-buffer commands.
The write buffer halts the SC1400 core in an immediate access.

� Immediate access with no freeze. This access is handled the same way as an immediate but
with no freeze to the SC1400 core.

� Disabled. Write buffer is not in use.

These modes apply only for writes to resources outside the extended core. Different regions of
memory are configured for one of these modes using the Data Area Registers (page 4-42). The
regions can be configured for either normal, immediate access, or immediate access with no
freeze mode operation. For details on programming the Data Area Registers, see Table 4-8,
Programming the Write Buffer Data Area Base and Size, on page 4-36.

Note: The address range that contains the register files for the ECI and ICache is always
defined as a write immediate. This definition ensures in-order execution. For the exact
range of addresses, see Chapter 5, Memory Map.
MSC711x Reference Manual, Rev. 0

4-12 Freescale Semiconductor

Extended Core Interface (ECI) System
The write buffer does not handle accesses when there are atomic operations or if the WBOFF flag
is asserted (see page 4-41). The write buffer is disabled using the Write Buffer Control Register
WBOFF bit (page 4-41).

Writes using the write buffer (to a region of memory where WBDARn[IMM] == 00) do not
automatically ensure that read and write accesses are executed in the correct order of appearance.
Using any of the following ensures that the order of accesses is preserved:

� Write accesses when the write buffer is disabled.

� Execution of an atomic Read-Modify-Write instruction. For details, see Section 4.4.3,
Atomic Accesses (Read-Modify-Write), on page 4-14.

� Write accesses to regions of memory programmed for immediate access or immediate
access with no freeze

Thus, if it is necessary that read and write accesses be ordered correctly to a particular range or
set of ranges in memory, the WBDAR for these ranges should be programmed with one of the
Write-Immediate modes; that is, Write Immediate (freezes core) or Write Immediate with No
Freeze.

During normal operation and immediate access with no freeze, the write buffer transfers its
contents to the destination without further SC1400 core intervention. Exact timing of the transfer
depends on the traffic on the AHB-Lite buses. In the following cases, the write buffer stalls the
SC1400 core to protect data from running over:

� Write buffer is full. The write buffer is already full, and another write access is issued.

� Immediate access. A write to an area of memory programmed for immediate accesses
executes before all other writes in the write buffer queue and in order with the read access
(the read access in the next cycle executes after the write immediate).

� Flush of write buffer content. The write buffer elevates the ECI priority. A flush writes all
contents of the write buffer to the AMEC bus through the ECI. A flush of write buffer
content is initiated in four cases:

— Read from an address within the write buffer. To keep the logical constancy of
commands, the write operation should execute before the read from the same address.
When a read from an address held in the write buffer is detected, the write buffer
flushes all its contents and executes the read.

— Flush command in software. To activate a software flush, one should issue a read from
a pre-defined address. This address is set in hardware and is not programmable (see WB
Software Flush Register on page 4-41).

— Watchdog flush. If the write buffer attempts to transfer an access but does not get
acknowledgment, a flush is initiated to give it the highest priority on the AMEC bus.
The watchdog expiration time is programmed in the WB Control Register (see
page 4-41).

— The write buffer is turned off with the WBOFF bit while the write buffer is not empty.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-13

Extended Core
4.4.3 Atomic Accesses (Read-Modify-Write)

The SC1400 BMTSET.W instruction is useful for test-and-set operations on critical sections of
code. This instruction issues a read-modify-write operation to ensure that the bit is set and tested
in one operation. This atomic instruction ensures that the sequence is not broken.

The BMTSET.W instruction tests the destination, sets the true (T) bit if each bit with a value of 1
in the mask also has a value of 1 in the destination, and it sets every bit in the destination (register
or memory) that has a value of 1 in the mask. This operation involves both a read access while an
atomic signal is sent on the bus and a write access. Atomic operation applies only to the SC1400
core and ECI. The other masters in the device do not require and do not support atomic accesses.

The BMTSET.W instruction determines whether a resource is idle and available for access or is
currently in use by another master or process. One bit in a predetermined memory location is
allocated to specify whether a resource is free or busy.

� When the value of this bit is 0, the desired resource is free for access by any master or
process.

� When the value of this bit is 1, the resource is busy and not available to another master or
process.

When the BMTSET.W instruction finishes, the bit in the predetermined memory location is set,
regardless of whether the program has obtained access to the resource. The program now
examines the SC1400 SR[T] flag:

� If T = 0, the resource is free and the SC1400 core now owns the resource and can access it.

� If T = 1, the resource is occupied by another process or master and is not available for
access by the current program.

When a program has gained access to the resource, it uses the resource as required and then clears
this bit in memory.

4.4.3.1 Coherency at the System Level, Against Interrupts

The SC1400 BMTSET.W atomic instruction ensures that no interrupt can occur between read
and write accesses. All atomic operations to any address in the system are adequately protected
against interrupts.

4.4.3.2 Coherency at the System Level, Accesses Issued from the ECI

Any atomic access of the SC1400 core to locations outside the extended core first passes through
the crossbar switch and continues to a destination on one of the crossbar slave ports. Atomic
accesses are protected through the crossbar. After the read access is issued through the crossbar
to a particular slave port, no other master can access the same slave port until the atomic write
access completes. Thus, all atomic operations on locations outside the extended core are
MSC711x Reference Manual, Rev. 0

4-14 Freescale Semiconductor

Instruction Cache (ICache)
adequately protected, including all accesses to M2 memory, DDR memory, APB peripherals,
IPBus peripherals, or peripherals accessed on the ASTH bus.

Note: If an atomic access is performed on an address within the write buffer, the read access
first flushes the write buffer and then performs the read access. This ensures coherency
and protects all atomic accesses to locations within the write buffer. The write cycle of
the atomic instruction is always performed as a write-immediate.

4.4.3.3 Coherency at the System Level, Accesses to M1 Memory

Accesses to locations in the M1 memory can occur from either the SC1400 core or any master
performing an access through the crossbar to the ASM1 bus. Examples of the later include DMA
transfers from the MSC711x DMA controller or accesses by the Ethernet MAC. There are two
techniques for protecting atomic accesses to M1 memory:

� Program all SC1400 data accesses to M1 memory to a higher priority than accesses from
ASM1. That is, program the GPSCTL[ASM1P] bit so that ASM1 accesses have lowest
priority.

� Design your system to guarantee that no write occurs from any internal DMA controller to
a location in M1 memory that can be simultaneously accessed by the SC1400 core. The
application software must be structured so that DMA transfers can never occur to the same
location (or region) in memory where an atomic instruction may be modifying a location,
as if often the case.

Note: No exception is flagged when the read and write accesses of an atomic access by the
SC1400 core to an M1 memory location are broken by a higher-priority access from
the ASM1 bus.

4.5 Instruction Cache (ICache)

Accessing instruction code from memory areas with high access latencies (for example, external
memories, internal memories connected to slow buses, and so on) imposes timing penalties on
the SC1400 core, degrading system performance. The ICache improves system execution time by
dynamically mapping relevant memory areas to a fast 16 KB memory. ICaches allow system
designers to place a large amount of code into slower memories, yet achieve high performance as
if the code were stored in a fast internal zero-wait-state memory. The MSC711x ICache has the
following features:

� 16 KB of memory

� 16-way associativity (that is, 16-way set associative)

� Programmable burst of 1, 2, or 4 fetch-sets upon miss

� Prefetch support

� Replacement based on least-recently used (LRU) algorithm
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-15

Extended Core
� Locking data in the cache through flexible LRU boundaries, multi-task support

� Real-time debugging support with misses and hits counted through the OCE10 on-chip
emulator

� Non-real-time debugging; enable to read full cache state, clear line command for
breakpoint insertion

� Programmable cacheable regions

The key attributes of the ICache are as follows:

� Line. The smallest division of cache memory for which there is a distinct tag. The line size
is an integer number of the processor’s fetch sets. A fetch set (entry) is the number of
bytes requested by the core in a single request. A line must contain consecutive program
code.

� Set (Index). The address space of the SC1400 core is logically divided into a large number
of lines, with the size of each line determined by the size of a line in the cache. Each line
within the cacheable region of the SC1400 address space maps to a unique set within the
cache using a replacement algorithm discussed in Section 4.5.2, MSC711x Set Associative
Mapping, on page 4-19. Each line is marked by a unique number called an index,
determined by a field within the address issued by the SC1400 core (Figure 4-6).

� Way. When the program access space of an SC1400 program is mapped to a particular set,
its line can be mapped to any of 16 different places (ways) in the ICache memory array.
The number of ways indicates the degree of associativity of a cache.

� Memory address partitioning (see Figure 4-6):

— The tag field partitions the external memory into 64 KB segments.
— The SET field partitions each tag-defined area into 16 KB segments.
— The ENTRY bits partition each line into 16 fetch sets.

� TAG. Holds the upper 22 address bits for the corresponding line in the cache and is
compared with the current access address.

� Valid Bit. Each 128-bit entry in the cache line has an associated bit indicating whether the
entry contains valid cache data for the current tag. This bit is called a valid bit.

� Replacement Algorithm. An algorithm that determines which line to replace when a miss
occurs. The ICache uses the Least Recently Used (LRU) algorithm; that is, for the selected
set, the way that is marked as least-recently-used (LRU = 0) is replaced on a miss. Cache
locking modifies the operation of the replacement algorithm.

� Fetch block. Number of bytes fetched on every cache miss. A fetch block can be smaller
than a line and is associated with the burst size.
MSC711x Reference Manual, Rev. 0

4-16 Freescale Semiconductor

Instruction Cache (ICache)
4.5.1 Set Associative Address Mapping

The ICache memory optimizes access to its instruction storage area using a specialized indexing
system called set associative mapping to separate the fetch address from the SC1400 core into
different fields:

� TAG field. Holds the upper 22 address bits for the corresponding line in the cache and is
compared to the current access address.

� SET field. 2 bits

� ENTRY field. 4 bits

� LSB field. Lowest 4 bits

When the SC1400 core requests instruction code, the first 22 bits of the requested address
(A[31–10]) identify a region in external cacheable memory and form the TAG value for that
region. The next two bits of the address (A[9–8]) identify a set (index) within the tag-defined
memory region and form the SET field. Each set is further divided into 16 entries (fetch sets)
using the next four bits of the address (A[7–4]). Each entry (fetch set) is 16 bytes long and
contains its own valid bit that is initialized as 0 and changed to 1 when that block is written into
cache memory. Bits A[3-0] always have a value of 0 because the SC1400 core always exactly
128-bits on program fetches. Figure 4-6 shows the different fields.

Figure 4-6. SC1400 Program Address Fields for ICache

Within each of the four sets of the cache, there are 16 different ways (locations) where a cache
line can be stored. In contrast, a direct-mapped cache has only one location to place a cache line,
a 2-way set associative cache has only two different locations, and so on. The MSC711x 16-way
cache greatly reduces the chances of a conflict. Figure 4-7 shows the ICache structure.

After the SET field maps each program address from the SC1400 core to one of four sets, any of
the 16 ways of the set can be used. This results in a total of 64 cache lines (4 sets × 16 ways = 64),
where a line represents a fixed amount of consecutively located code. Each cache line has its own
tag. Figure 4-8 shows the structure of one cache line, which is equivalent to one of the ways in
any of the sets shown in Figure 4-7. Each entry contains 128-bits, the size of one SC1400 fetch
set. Each cache line is assigned a least-recently-used (LRU) value that specifies its LRU status
level.

Tag Bits

22

Set

2 4 4

One 256 Byte Line

Entry 0x0000
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-17

Extended Core
Figure 4-7. Structure of the 16 KB ICache

Figure 4-8. Structure of One of the 64 Cache Lines in the 16 KB ICache

Total of 4 Sets:

16 Ways
in Each Set

– 16 Ways per Set
– One Cache Line Per Way in Each Set

Set 0

Set1

Set 2

Set 3

Way 0
Way 1
Way 2
Way 3

Way 15

...

Way 0
Way 1
Way 2
Way 3

Way 15

...

Way 0
Way 1
Way 2
Way 3

Way 15

...

Way 0
Way 1
Way 2
Way 3

Way 15

...

Tag
22 128

16 Bytes per Entry

V Entry 0
V Entry 1
V Entry 2
V Entry 3
V Entry 4
V Entry 5
V Entry 6
V Entry 7
V Entry 8
V Entry 9
V Entry 10
V Entry 11
V Entry 12
V Entry 13
V Entry 14
V Entry 15

16 Entries
in One Line

LRU Status
4

MSC711x Reference Manual, Rev. 0

4-18 Freescale Semiconductor

Instruction Cache (ICache)
4.5.2 MSC711x Set Associative Mapping

The algorithm used by MSC711x for mapping addresses in the cacheable memory region to lines
in the cache is set associative mapping, which proceeds as follows:

1. Each SC1400 program fetch address is mapped into one of four sets within the
instruction cache using the SET field (Figure 4-6).

2. Within this set, the address is placed into any of the 16 ways in the selected set. The way
selected is determined by the LRU algorithm:

• If cache locking is not in use, the least recently used way is selected.

• If part of the cache is locked, the LRU algorithm is used for the remaining ways of
the cache that are not locked.

• If the entire cache is locked, the desired address cannot map to a location in the
cache.

3. The LRU status of all lines in the set is updated.

Cache locking and the LRU algorithm are discussed in Section 4.5.4. Addresses to
non-cacheable regions of the memory cannot be mapped into the ICache. These locations are
accessed directly, bypassing the cache. See Section 4.7.2 for information on configuring the
cacheable regions of memory.

4.5.3 Cache Hits and Misses

A request for code already in the cache is termed a cache hit. When the required code is not
present in the ICache memory array (termed a cache miss), the code is fetched from the slower
memories to the SC1400 core and simultaneously loaded into the ICache memory array. The
performance degradation resulting from the slower access is termed a miss penalty.

Note: The instruction cache is active only on accesses to cacheable regions of memory
(Chapter 5, Memory Map), which are defined by the instruction region registers
(Section 4.7.2, Instruction Cacheable Area, on page 4-37). This excludes all program
accesses to the M1 memory.

4.5.3.1 Servicing a Miss

The ICache is located between the SC1400 program address bus (PAB) and the AMIC bus
connected to the crossbar switch. The crossbar switch connects to the M2 or external memory.
Figure 4-9 shows the ICache in the extended SC1400 core system. When a cache miss occurs,
the ICache initiates a cache fill via the instruction fetch unit (IFU). These accesses fetch a stream
of instructions to take advantage of the benefits of burst transfers. Cache bursts occur from the
M2 or external memory to the cache array. The SC1400 core stalls for the number of clock cycles
required to fetch the required instruction into the ICache array.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-19

Extended Core
Figure 4-9. MSC711x ICache System

Cache updates are initiated by the instruction fetch unit (IFU). The amount of data transferred by
the IFU is configured in the IRCR, which defines the number of fetch sets in each burst as well as
the total number of fetch sets to transfer in a block. In addition to the basic fetch operation (called
“block transfer”), there is an optional prefetch to the end of the cache line or until a new cache
miss begins the next fetch sequence (called a “prefetch transfer”). For details on servicing cache
misses, including bursting parameters, see Section 4.6, Instruction Fetch Unit, on page 4-31.

Note: Unlike a data cache, the instruction cache depends on the fact that code does not
change during run time. If the code changes, the cache contents should be cleared
(cache flush, no coherency support).

4.5.3.2 Loading the Cache Array on a Miss

The cache array is loaded differently depending on the state of the cache and type of cache miss:

� Tag-match, valid-bit-miss. In the selected set, if the upper 22 bits of the address matches a
tag in any of the 16 ways but the VALID bit for that cache line entry is clear, the IFU
fetches code and loads it into the cache line entry and also sends it to the SC1400 core for
execution. The VALID bit for this entry is set accordingly.

� Tag-miss with available cache entry. If there is no tag match, but not all ways for the
selected set are filled, the IFU fetches code and loads it into the cache line entry in the next
available way within the set and also sends it to the SC1400 core for execution.

� Tag-miss with no available cache entry. If all sixteen ways with the selected set are filled
and there is no tag match, code is transferred to the SC1400 core and into the set’s cache

64

SC140
Core

128

128

64

AMIC

PBus

XA-Bus

XB-Bus

to Crossbar Switch

ICache

Fetch
Unit

Valid
Array

Tag
Array

ICache
Memory Register

File

Internal
Bus

to ECI
MSC711x Reference Manual, Rev. 0

4-20 Freescale Semiconductor

Instruction Cache (ICache)
line for which the LRU = 0 (lowest value). If part of the cache is locked, the value is
loaded into the unlocked line in the set with the lowest LRU value.

For all instruction fetches, the number of fetch sets written to the cache depends on the burst and
block settings configured in the IRCR. The VALID bit is set in the appropriate position for each
fetch set retrieved. If prefetch is enabled, the remainder of the fetch units specified by the cache
line are written into cache and the VALID bit is set. In addition, the LRU value for the line is set
to 0xF and the LRU values for all other lines with the same INDEX number, except for the line
for which LRU = 0, are decremented by 1.

4.5.3.3 Tuning the Cache to Improve Performance

Replacing the least-recently-used existing line with a new one is called thrashing. Frequent
thrashing indicates cache ineffectiveness. Cache effectivity is based on locality. Programs have
two locality attributes:

� Temporal locality. A parameter indicating the likelihood that the SC1400 core will often
request a given address in memory. A high temporal locality can be caused by a large
number of loops in the code.

� Spatial locality. A parameter indicating the likelihood that, given a core program request
to a certain address in memory, the SC1400 core will also request the “close by”
addresses. A high spatial locality means that the code has few change-of-flows.

Because the cacheable memory area and the burst and block sizes are configurable, you may have
to determine the optimal sizes and placement of code within the memory for your application.
Configuration allows a trade-off between efficient use of the burst capability of the system bus
and burdening the M2 and/or external memory with transactions that the SC1400 core may not
need. This trade-off is covered in detail in Section 4.6.1.

4.5.4 Cache Locking

The ICache can be unlocked, partially locked, or completely locked. The cache is locked by
programming the lower and upper boundaries of the LRU via the ICache Control Register
(ICCR). The LRU mechanism is then functional only within the programmed boundaries, while
the lines outside the boundaries are considered frozen. The Lock Mode bit in the ICCR is used for
locking the entire cache. It is recommended that the ICCR be written every time a task starts
working. Each task should change the boundaries to enable all multi-task support. The OS can
determine which tasks need fixed allocation and which tasks can work with flexible boundaries.
The boundary resolution is the size of one LRU priority level for all indexes, that is, one way.

The ICache supports multi-tasking. Allowing partial locks of the ICache, a multi-tasking
operating system can return an old task while the ICache still holds the task’s most recently used
code. Multi-task support includes both single-stack and multi-stack prioritized and preemptive
real-time operating system (RTOS) models. Upon activation, the single-stack OS model executes
to completion, but the active task can be preempted by another task with a higher priority. In the
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-21

Extended Core
multiple-stack OS model, a task can be activated and preempted at any time. When multi-tasking
is introduced, caches add non-determinism to the execution time of each task because of cache
thrashing when a task switch occurs. Figure 4-10 demonstrates the difference between flexible
boundaries and fixed allocation strategies.

With flexible boundaries, task 1 can work with all the available cache space. When task 2 arrives,
it should change only the upper boundary so the cache space of task 2 is smaller than the full
cache space. When task 1 resumes operation, it should change the upper boundary back to the
previous value so that the cache now consists of the least recently used parts of the task. This
practice helps to ensure that if the task needs to use the code already in the cache, there is no
penalty of a miss. If the upper boundary is not changed during the transition from task 1 to task 2,
some task 1 instructions may be overwritten by task 2 instructions. When task 1 resumes
execution, there may be a resulting cache miss and penalty. In the flexible boundary mechanism,
each time a higher-priority task starts operation, a smaller cache space is available.

Note: In single-stack tasks, the nested task with the higher priority must end before the
lower-priority task resumes operation.

During fixed allocation, the OS reserves a cache space for each task or group of tasks. When a
new task resumes operation, it works only with the cache space allocated for it, meaning that
each task should change the lower and upper boundaries of the cache space. In summary:

� Flexible boundaries are most suitable for the single-stack OS model.

� Fixed allocation is most suitable for the multi-stack OS model.

� Full cache shared for all tasks is the simplest technique and very powerful because of the
high number of ways in the cache.

In fixed allocation, different parts of the cache can be reserved for different tasks, almost like
having an independent cache for each group of tasks. For example, 10 ways (10 KB) of the cache
can be exclusively reserved for interrupt handlers, and the remaining 6 ways (6 KB) of the cache
can be exclusively reserved for control code. Many other scenarios are possible.
MSC711x Reference Manual, Rev. 0

4-22 Freescale Semiconductor

Instruction Cache (ICache)
Figure 4-10. Cache Support in Run-Time Multi-tasking

4.5.5 Debugging Support

The ICache can operate in one of the following modes:

� Cache Disabled

� Normal mode

� Cache Debug mode

The ICache supports two types of debugging:

� Run-time debug (ICache in Normal mode)

� Debugging via ICache Debug mode.

Flexible LRU Boundaries

Fixed Allocation

Time

Boundary

Active

Task 2 Task 3

Task 1

Cache

Boundary

Active
Cache

Task 4
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-23

Extended Core
4.5.5.1 Run-time Debugging

The event port allows run-time debugging of the ICache using the ICache_Miss and
ICache_Miss_External signals to count stall cycles. For details on OCE10 configuration, see the
SC1400 extended core header and the OCE10 On-Chip Emulator Reference Manual.

4.5.5.2 Cache Debug Mode Debugging

In Cache Debug mode, the normal usage of the ICache is not enabled so that the contents of the
ICache array, tag array, valid bit array, and LRU registers can be read out and examined. This
mode can give you a more in-depth view of ICache usage and bottlenecks (compared with the
hit/miss count) when code performance is optimized on the device. This information can also
help in devising LRU boundary allocation schemes for multi-task support.

Cache Debug mode can be useful when the device is placed into Device Debug mode (Section
16.1, Debugging Modes, on page 16-1) to examine the state of the ICache in a debug session. It
can also be used in diagnostic routines for dumping the contents of the cache when the device is
not in SC1400 Debug mode.

Note: The Cache Debug mode operates independently of the SC1400 Debug mode, so the
ICache can be in Cache Debug mode when the SC1400 core is not in Debug mode.

4.5.5.2.1 Entering Cache Debug Mode

There are two different ways to use Cache Debug mode:

� From the debugger when the SC1400 is halted in SC1400 Debug mode

� From a program executing on the SC1400 core. SC1400. All instructions executed within
this mode are located in M1 memory or in a non-cacheable region of M2 or DDR memory.

Before the contents of the cache can be accessed, the ICache must first be placed into Cache
Debug mode. When there is a read access to addresses assigned for the Cache Debug mode and
the ICache is not in Cache Debug mode, the access is discarded. The device is placed into Cache
Debug Mode by setting ICCR[DM] and enabling the cache (ICCR[ON] = 1).

Note: If a miss occurs while the cache is bringing in data to service the miss (normal or
prefetch accesses), a write to the ICCR register stalls until all accesses from the
instruction fetch unit have completed.

Entering Cache Debug mode immediately stops the ICache update mechanism (load of new data
by the instruction fetch unit), regardless of the fetch unit status. In Cache Debug mode, the
ICache does not issue any hits (as it does in Lock mode) or perform thrashes. Cache Debug mode
is only for viewing the ICache status and breakpoint support.
MSC711x Reference Manual, Rev. 0

4-24 Freescale Semiconductor

Instruction Cache (ICache)
4.5.5.2.2 ICache Structure

The ICache is structured as follows:

� Four sets

� 16 cache lines in each set, one corresponding to each of the 16 ways
(for a total of 64 cache lines)

� Sixteen 128-bit entries in each cache line (for a total of 64 cache lines × 16 entries/Line =
1024 16-byte entries = 16 KB)

For a better understanding of the procedures for reading out the ICache contents, review the
following figures:

� Figure 4-7, Structure of the 16 KB ICache, on page 4-18

� Figure 4-8, Structure of One of the 64 Cache Lines in the 16 KB ICache, on page 4-18.

All entries in the cache array are directly accessible from a 16 KB portion of the extended core
memory map beginning at the address ICARRAY_BASE (see Table 5-2 on page 5-5). Both read
and write accesses are supported.

When the ICache array is accessed in Cache Debug mode, only 64-bit read and write accesses are
permitted. The ICache array contents are accessed using data addresses of the form shown in
Figure 4-11, where the 4-bit entry field is split into two different locations in the address:

Figure 4-11. SC1400 Address for Data Accesses to Entries in the ICache

4.5.5.3 Techniques for Accessing the Tag, Valid Bit, and LRU Arrays

ICache resources such as the tag array, valid bit array, and LRU machine, have a
memory-mapped status register that holds 16 bits of the contents of the resource to which it
belongs. To read the ICache status, the SC1400 core reads from a specific memory address. The
contents of the register are sent to the SC1400 core, and that register is automatically loaded from
the next address of its resource for the next core read.

In addition, the ICCMR provides a special initialization command that simultaneously initializes
all status registers by reading the first data from each resource into the status register of that
resource.

Each state register is 16 bits long. The resources larger than 16 bits (the tag is 22 bits and the
LRU register is 64 bits) are read in more than one read:

Upper 18 bits of ICARRAY_BASE

18 2 4

Selects one of 1024 Cache Line Entries (each Entry is 16 bytes)

Entry[3–2] Way

2

Set

2

Entry[1–0]

3

000

1

MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-25

Extended Core
� Two reads per tag, first the LSBs and then the MSBs (zero padded)

� Four reads per LRU of a particular index, again LSB to MSB in sequential order.

4.5.5.3.1 Reading the Contents of the Tag Array

There is a total of 64 tags in the tag array, one corresponding to each cache line. These 64 tags are
not directly readable through the memory map but are instead accessed through a special-purpose
16-bit ICache register, TASR. An internal 7-bit pointer is used for reading out the tag array in
Cache Debug mode, where:

� Bits 6–3 of the pointer select the way.

� Bits 2–1 of the pointer select the set.

� Bit 0 of the pointer selects either the lowest 16 bits of the tag or the upper 10 bits of tag.

This pointer is not directly accessible through the programming model but can be reset to zero.
Table 4-5 shows how the entire tag array is read.

Table 4-5. Procedure for Reading Tag Array

SC1400 Core Action
Way

Accessed
Set

Accessed
Bits of Tag
Accessed

Comments

Write 0x8 to ICCMR[15–12] — — — Initialize internal pointers so that the first TASR
access is to Way 0, Set 0. Must already be in
Cache Debug mode.

NOP — — — One cycle delay required after pointers are reset.

Read All Tags in Way 0

Read 16 bits from TASR 0 0 [15–0] Reads tag 1 of 64 tags (lowest 16-bits of 22-bit
tag).

Read 16 bits from TASR 0 0 [21–16] Reads tag 1 of 64 tags (uppermost 10-bits of
22-bit tag, zero extended to 16-bits).

Read 16 bits from TASR 0 1 [15–0] Reads tag 2

Read 16 bits from TASR 0 1 [21–16] Reads tag 2 ...

Read 16 bits from TASR 0 2 [15–0] Reads tag 3...

Read 16 bits from TASR 0 2 [21–16] Reads tag 3...

Read 16 bits from TASR 0 3 [15–0] Reads tag 4...

Read 16 bits from TASR 0 3 [21–16] Reads tag 4...

Read All Tags in Way 1

Read 16 bits from TASR 1 0 [15–0] Reads tag 5...

Read 16 bits from TASR 1 0 [21–16] Reads tag 5...

Read 16 bits from TASR 1 1 [15–0] Reads tag 6...

Read 16 bits from TASR 1 1 [21–16] Reads tag 6...

Read 16 bits from TASR 1 2 [15–0] Reads tag 7...
MSC711x Reference Manual, Rev. 0

4-26 Freescale Semiconductor

Instruction Cache (ICache)
4.5.5.3.2 Reading the Contents of the Valid Bit Array

There is a total of 64 cache lines, each with 16 valid bits (one per entry). The valid bits are not
directly readable through the memory map but are instead accessed through a special-purpose
16-bit ICache register, VBASR. For each way within a set, there is a set of 16 valid bits that are
accessible to the SC1400 core via one move.w instruction that reads a 16-bit value. An internal
6-bit pointer is used to read out the valid bit array in Cache Debug mode:

� Bits [5–4] of the pointer select the set.

� Bits [3–0] of the pointer select the entry.

This pointer is not directly accessible through the programming model but can be reset to zero.
Table 4-6 shows how the entire valid bit array can be read.

Read 16 bits from TASR 1 2 [21–16] Reads tag 7...

Read 16 bits from TASR 1 3 [15–0] Reads tag 8...

Read 16 bits from TASR 1 3 [21–16] Reads tag 8...

Read All Tags in Way 2

(Continue as for Way 1...)

(Continue reading tags in similar manner for Ways 3, 4, 5, ..., 14)

Read All Tags in Way 15

Read 16 bits from TASR 15 0 [15–0] Reads tag 61...

Read 16 bits from TASR 15 0 [21–16] Reads tag 61...

Read 16 bits from TASR 15 1 [15–0] Reads tag 62...

Read 16 bits from TASR 15 1 [21–16] Reads tag 62...

Read 16 bits from TASR 15 2 [15–0] Reads tag 63...

Read 16 bits from TASR 15 2 [21–16] Reads tag 63...

Read 16 bits from TASR 15 3 [15–0] Reads tag 64...

Read 16 bits from TASR 15 3 [21–16] Reads tag 64...

Table 4-6. Procedure for Reading Valid Bit Array

SC1400 Core Action
Set

Accessed
Entry

Accessed
Comments

Write 0x8 to ICCMR[15–12] — — Initialize internal pointers so that the first VBASR
access is for Set 0, Entry 0. Must already be in
Cache Debug mode.

NOP — — One cycle delay required after pointers are reset.

Table 4-5. Procedure for Reading Tag Array (Continued)

SC1400 Core Action
Way

Accessed
Set

Accessed
Bits of Tag
Accessed

Comments
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-27

Extended Core
Read Valid Bit Vectors in Set 0

Read 16 bits from VBASR 0 0 Reads the first 16-bit valid bit vector (vector 1) for
Entry 0 in Set 0, where:
• MSB corresponds to Way 15
• LSB corresponds to Way 0

Read 16 bits from VBASR 0 1 Reads the second 16-bit valid bit vector (vector 2) for
Entry 1 in Set 0, where:
• MSB corresponds to Way 15
• LSB corresponds to Way 0

Read 16 bits from VBASR 0 2 Reads vector 3...

Read 16 bits from VBASR 0 3 Reads vector 4...

Read 16 bits from VBASR 0 4 Reads vector 5...

Read 16 bits from VBASR 0 5 Reads vector 6...

Read 16 bits from VBASR 0 6 Reads vector 7...

Read 16 bits from VBASR 0 7 Reads 8th vector 8...

Read 16 bits from VBASR 0 8 Reads vector 9...

Read 16 bits from VBASR 0 9 Reads vector 10...

Read 16 bits from VBASR 0 10 Reads vector 11...

Read 16 bits from VBASR 0 11 Reads vector 12...

Read 16 bits from VBASR 0 12 Reads vector 13...

Read 16 bits from VBASR 0 13 Reads vector 14...

Read 16 bits from VBASR 0 14 Reads vector 15...

Read 16 bits from VBASR 0 15 Reads vector 16...

Read All Tags in Set 1

(continue as before ...)

Read All Tags in Set 2

(continue as before ...)

Read Valid Bit Vectors in Set 3

Read 16 bits from VBASR 3 0 Reads vector 49...

Read 16 bits from VBASR 3 1 Reads vector 50...

Read 16 bits from VBASR 3 2 Reads vector 51...

Read 16 bits from VBASR 3 3 Reads vector 52...

Read 16 bits from VBASR 3 4 Reads vector 53...

Read 16 bits from VBASR 3 5 Reads vector 54...

Read 16 bits from VBASR 3 6 Reads vector 55...

Read 16 bits from VBASR 3 7 Reads vector 56...

Table 4-6. Procedure for Reading Valid Bit Array (Continued)

SC1400 Core Action
Set

Accessed
Entry

Accessed
Comments
MSC711x Reference Manual, Rev. 0

4-28 Freescale Semiconductor

Instruction Cache (ICache)
4.5.5.3.3 Reading the LRU Registers

The LRU status is not directly readable through the memory map but is instead accessed through
a special-purpose 16-bit ICache register, LRUSR. An internal 4-bit pointer is used to read out the
LRU status array in Cache Debug mode:

� Bits [3–2] of the pointer select the set.

� Bits [1–0] of the pointer select a set of four ways.

This pointer is not directly accessible through the programming model but can be reset to zero.
Table 4-7 shows how the entire LRU status array can be read.

Read 16 bits from VBASR 3 8 Reads vector 57...

Read 16 bits from VBASR 3 9 Reads vector 58...

Read 16 bits from VBASR 3 10 Reads vector 59...

Read 16 bits from VBASR 3 11 Reads vector 60...

Read 16 bits from VBASR 3 12 Reads vector 61...

Read 16 bits from VBASR 3 13 Reads vector 62...

Read 16 bits from VBASR 3 14 Reads vector 63...

Read 16 bits from VBASR 3 15 Reads vector 64...

Table 4-7. Procedure for Reading LRU Status Array

 SC1400 Core Action
Set

Accessed
Ways

Accessed
Comments

Write 0x8 to ICCMR[15–12] — — Initialize internal pointers so that the first LRUSR
access is to Set 0, Ways 0–3. Must already be in Cache
Debug mode.

NOP — — One cycle delay required after resetting pointers.

Read All LRU Status for Set 0

Read 16 bits from LRUSR 0 3-0 Reads LRU status for four cache lines:
• [3–0] for Way 0
• [7–4] for Way 1
• [11–8] for Way 2
• [15–12] for Way 3

Read 16 bits from LRUSR 0 7-4 Reads LRU status for four cache lines:
• [3–0] for Way 4
• [7–4] for Way 5
• [11–8] for Way 6
• [15–12] for Way 7

Table 4-6. Procedure for Reading Valid Bit Array (Continued)

SC1400 Core Action
Set

Accessed
Entry

Accessed
Comments
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-29

Extended Core
4.5.5.4 Setting Breakpoints with the ICache

To enable breakpoint insertion in cached code, the ICache includes a clear line command that
resets all valid bits for a specific line ({way,index}). This is not the same as a read line. The line
to be cleared can be obtained via the status reading mechanism. For detailed encodings and
addresses, see Section 4.8.2, ICache Registers, on page 4-45.

Read 16 bits from LRUSR 0 11-8 Reads LRU status for four cache lines:
• [3–0] for Way 8
• [7–4] for Way 9
• [11–8] for Way 10
• [15–12] for Way 11

Read 16 bits from LRUSR 0 15-12 Reads LRU status for four cache lines:
• [3–0] for Way 12
• [7–4] for Way 13
• [11–8] for Way 14
• [15–12] for Way 15

Read All Tags in LRU Status for Set 1

(continue as before ...)

Read All Tags in LRU Status for Set 2

(continue as before ...)

Read All LRU Status for Set 3

Read 16 bits from LRUSR 3 3-0 Reads LRU status for four cache lines:
• [3–0] for Way 0
• [7–4] for Way 1
• [11–8] for Way 2
• [15–12] for Way 3

Read 16 bits from LRUSR 3 7-4 Reads LRU status for four cache lines:
• [3–0] for Way 4
• [7–4] for Way 5
• [11–8] for Way 6
• [15–12] for Way 7

Read 16 bits from LRUSR 3 11–8 Reads LRU status for four cache lines:
• [3–0] for Way 8
• [7–4] for Way 9
• [11–8] for Way 10
• [15–12] for Way 11

Read 16 bits from LRUSR 3 15–12 Reads LRU status for four cache lines:
• [3–0] for Way 12
• [7–4] for Way 13
• [11–8] for Way 14
• [15–12] for Way 15

Table 4-7. Procedure for Reading LRU Status Array (Continued)

 SC1400 Core Action
Set

Accessed
Ways

Accessed
Comments
MSC711x Reference Manual, Rev. 0

4-30 Freescale Semiconductor

Instruction Fetch Unit
4.6 Instruction Fetch Unit

The IFU handles all accesses to external address space and conducts all ICache update activity. It
accelerates SC1400 core performance by initiating cache updates to memory outside the
extended core. The data updates consist of data needed with high probability in a sequential code
(prefetch). IFU operation supports the following types of instruction accesses:

� Cache fill. Triggered by a cache miss. The IFU initiates an access on the AMIC to bring
the data into both the SC1400 core and the ICache.

� Prefetch. Includes cache updates with data of sequential addresses following the miss. It is
triggered by the fetch and occurs in bursts for efficient use of the external memory and
associated interfaces. The burst size is programmable to 1, 2, or 4 fetch sets of 128 bits
(see Section 4.8, Extended Core Programming Model, on page 4-40). The prefetch ends
when it reaches the end of cache line or when a new “miss” access occurs. The prefetch
phase greatly improves cache performance in a system running a program with sequential
code because in the next access to the code area, the data is probably already in the cache.
The prefetch occurs in two phases:

— Prefetch of a block. The prefetch occurs in bursts on the AMIC bus following the first
miss. A block is defined as a programmable number of fetch sets (128 bits) that the
IFU brings without interference with the miss and with a high priority. It must be an
integer multiple of the burst size. A block is the minimal unit of data in the first stage
of fetch and prefetch.

— Prefetch of data to end of cache line. A cache line is 256 bytes long. The prefetch
initiates cache updates from the address following the end of phase 1 until the end of
the cache line. Accesses occur in bursts. This phase of prefetching can be turned off to
reduce IFU traffic on the crossbar switch, making way for other transfers.

� Non-cacheable accesses. Accesses to non-cacheable regions of memory are processed
through the IFU, which initiates an access on the AMIC to bring the data to the SC1400
core.

4.6.1 Cache Bursting Parameters

The ICache is designed for maximum performance in real-time applications. It has many
user-programmable features for tuning an application, as described in Section 4.8, Extended
Core Programming Model, on page 4-40. Programmable ICache parameters include the
following:

� Burst size. 1 or 4 entries, where each entry is 16 bytes (one fetch set)

� Primary set size. 1, 2, or 4 entries, where each entry is 16 bytes

� Optional prefetch to end of cache line

When a cache miss occurs, a cache fill begins. A portion of the cache line is loaded from M2
memory or external memory as a primary set of bursts composed of simple cache bursts. The IFU
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-31

Extended Core
priority is elevated during the primary set. The size of the primary set is always greater than or
equal to the burst size. For burst sizes greater than one entry, the first burst accesses its data
critical entry first, immediately bringing the instructions at the missed address to the SC1400
core. Then all other entries in the burst are loaded. When the primary set is loaded, the IFU
fetches the remainder of the cache line (the prefetch set) if this option has been selected for this
region.

4.6.1.1 Burst of 1, Primary Set Size of 1

Figure 4-12 shows an example with a burst size of 1 (that is, 1 × 128 bits), the primary set size is
1 (1 × 128 bits), and the prefetch capability is enabled. This is a non-wrapping case because the
burst size is 1.

Figure 4-12. Responding to a Cache Miss, Burst = 1and Primary Set Size = 1

4.6.1.2 Burst of 1, Primary Set Size of 2

Figure 4-13 shows an example that demonstrates how the IFU first responds to a cache miss with
a primary set of bursts of a predefined burst size, followed by an optional set of prefetch bursts.
The burst size is 1 (that is, 1 × 128 bits), the primary set size is 2 (2 × 128 bits), and the prefetch
capability is enabled using the same burst size. The IFU priority is elevated to high (H) in the
Primary Set. The IFU returns to its normal priority (L) for the prefetch set. This is a
non-wrapping case because its burst size is 1.

Address of First Cache Miss

One Cache Line (16 entries, 256 bytes)

Fetch
Prefetch Set

Primary Set

Burst

BurstBurst Burst Burst BurstBurst Burst Burst Burst

IFU Priority: H L L L L L L L L L
MSC711x Reference Manual, Rev. 0

4-32 Freescale Semiconductor

Instruction Fetch Unit
Figure 4-13. Responding to a Cache Miss, Burst = 1, Primary Set Size = 2

4.6.1.3 Burst of 1, Primary Set Size of 4

Figure 4-14 shows an example that demonstrates how the IFU first responds to a cache miss with
a primary set of bursts with a predefined burst size, followed by an optional set of prefetch bursts.
In this example, the burst size is 1 (that is, 1 × 128 bits), the primary set size is 4 (4 × 128 bits),
and the prefetch capability is enabled using the same burst size. The IFU priority is elevated to
high (H) in the primary set. The IFU returns to its normal priority (L) for the prefetch set. This is
a non-wrapping case because its burst size is 1.

Figure 4-14. Responding to a Cache Miss, Burst = 1 and Primary Set Size = 4

4.6.1.4 Burst of 4, Primary Set Size of 4

Figure 4-15 shows an example with a burst size of 4 (4 × 128 bits), a primary set size of 4 (4 ×
128 bits), and the prefetch capability enabled. For burst sizes greater than 1, data is accessed
critical entry first. In this example there are 4 entries in the primary set. The first entry fetched is
the entry where the cache miss occurred, 1. The primary set then fetches the next two sequential
entries, 2 and 3. The last entry accessed in the primary set is the entry immediately preceding the
entry containing the cache miss, 4. The prefetch set, 5 and beyond, are always accessed
sequentially.

Address of First Cache Miss

One Cache Line (16 entries, 256 bytes)

Fetch Prefetch Set

Primary SetBurst Burst

BurstBurst Burst Burst BurstBurst Burst Burst Burst

IFU Priority: H H L L L L L L L L L L L

Burst Burst

Address of First Cache Miss

One Cache Line (16 entries, 256 bytes)

Burst

Fetch Prefetch Set

Primary Set

Burst Burst Burst

BurstBurst Burst Burst BurstBurst Burst Burst Burst

IFU Priority: H H H H L L L L L L L L L
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-33

Extended Core
Figure 4-15. Responding to a Cache Miss, Burst = 4, Primary Set Size = 4

4.6.1.5 Trade-offs in Setting the Burst and Primary Set Sizes

Setting the burst size is a trade-off between using the bus efficiently in the primary set and
occupying external memories and buses with transactions that the SC1400 core may not need.
The primary set size reflects the importance given to the fetch process. The primary set is an
inseparable unit of transfer. Each miss causes a fetch + prefetch of a block at a minimum, so
setting a large block causes each miss to bring a lot of data into the cache. The SC1400 core may
not necessarily need this data, possibly delaying other operations that occur during a block, such
as a read. However, a cache miss can also bring data that the SC1400 core needs without delay by
other operations.

For instruction regions that access external DDR memory, a burst with a primary burst size of 4 is
recommended to overcome the latency associated with accessing an external DDR memory.

The bursts in the primary set remain grouped together if the priority of the IFU master is elevated
while the bursts pass through the crossbar switch. If a second master with a higher priority than
the IFU also elevates its priority, this second master can interrupt the bursts in the primary set on
a burst boundary. However, the AULB bits in the crossbar switch Master General Purpose
Control Register can ensure that the bursts in the primary set cannot be interrupted even by a
master with a higher priority. The AULB bits are applicable only when the burst size is 1, and
they are individually programmable for each master port in the crossbar switch.

4.6.2 Servicing a Second Cache Miss

When a cache miss occurs, the first entry fetched by the IFU contains the data requested by the
SC1400 core so it can resume operation. As the SC1400 core executes instructions, the remaining
entries of the block transfer are performed. If a region is programmed for prefetching to the end
of the cache line, the prefetch bursts begin when the block transfer completes. When the prefetch
bursts are loaded, the SC1400 core may request a new address that is not in the cache. In this
case, a second cache miss occurs. Following are two cases in which the IFU responds to a cache
miss:

Address of First Cache Miss

One Cache Line (16 entries, 256 bytes)

Fetch Prefetch Set

Primary Set

Burst

IFU Priority: H H H H L L L L L L L L

Burst Burst

1 2 34 5
MSC711x Reference Manual, Rev. 0

4-34 Freescale Semiconductor

Configuring the Address Space Outside the Extended Core
� Prefetch hit, continue current cache miss servicing. The IFU identifies cache misses to an
address in the IFU prefetch that is being loaded. This identification process is called a
prefetch hit. It saves an extra access on the system buses. This feature is effective when
sequential data is transferred from external memory.

� Terminate prefetch and initiate new cache miss servicing. The IFU can stop a prefetch
access before it completes. If a prefetch is executing and a new prefetch access that is a
cache miss is waiting on the SC1400 core buses, the IFU stops the prefetch operation in
progress and initiates a new cache miss operation.

4.6.3 Transaction Priorities

The IFU transfers an attribute to the system to indicate whether a transaction is a primary burst or
prefetch transaction. The crossbar switch uses this attribute to prioritize the access. During the
accesses in the primary set, the priority is high. The priority is also high during prefetch accesses
when there is a prefetch hit.

4.7 Configuring the Address Space Outside the Extended Core

Regions of memory outside the extended core can be configured for write buffer operation or a
cacheable area.

4.7.1 Write Buffer Data Areas

Four different regions of memory outside the extended core can be programmed for write buffer
operation. The four write buffer data areas are specified in the Write Buffer Data Area Registers
0–3 (WBDAR[0–3]). An area is identified by its base address and size, and any of the four data
area registers can be disabled. Attributes for these areas indicate the type of write, as follows, and
whether the write is global:

� Normal writes through the write buffer

� Immediate writes (bypassing write buffer) with no freeze

� Immediate writes with a freeze

The area base must always be a multiple of the area size, with the exception of base = 0, when the
size can be any value. The data area registers are programmed by setting the base register and
SZ256 bits. Table 4-8 summarizes the base addresses and sizes that can be programmed for a
data area. The original base column represents the 24 MSB of the base address needed for the
area definition. The 8 LSBs are not used.

In the following example, a write buffer data area is created that starts at 1 MB with a size of 256
KB. Recall the basic condition that the base address (1 MB) must be an integer multiple of the
size (256 KB). The steps in defining the example area are as follows:
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-35

Extended Core
1. According to the area size (256 KB), choose line 11 in Table 4-8.

2. Clear WBDARx[SZ256] as shown in line 11 in Table 4-8.

3. Write the upper 24-bits of the base address in binary. For a base address of 1 MB, the
value is 0b00000000 00010000 00000000.

4. Verify that this base address matches the required format in line 11:

• 00000000 00010000 00000000: Upper 24-bits of the address

• XXXXXXXX XXXXXX00 00000000: Required format for line 11 matches.

5. The 24-bit value placed into the WBDARx[BASE] field is the ORing of

• 00000000 00010000 00000000: Upper 24-bits of the address

• 00000000 00000010 00000000: Value from line 11 (x replaced with zeros).

This procedure results in base = 0x001200 or in binary form 0b00000000 00010010
00000000.

Table 4-8. Programming the Write Buffer Data Area Base and Size

Case
Size of
Region Upper 24-Bits of Desired Base Address1 Value Placed into WBDARx[BASE] Field2

Placed
into SZ256

Bit

1 256 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 1

2 512 xxxxxxxx xxxxxxxx xxxxxxx0 xxxxxxxx xxxxxxxx xxxxxxx1 0

3 1 KB xxxxxxxx xxxxxxxx xxxxxx00 xxxxxxxx xxxxxxxx xxxxxx10 0

4 2 KB xxxxxxxx xxxxxxxx xxxxx000 xxxxxxxx xxxxxxxx xxxxx100 0

5 4 KB xxxxxxxx xxxxxxxx xxxx0000 xxxxxxxx xxxxxxxx xxxx1000 0

6 8 KB xxxxxxxx xxxxxxxx xxx00000 xxxxxxxx xxxxxxxx xxx10000 0

7 16 KB xxxxxxxx xxxxxxxx xx000000 xxxxxxxx xxxxxxxx xx100000 0

8 32 KB xxxxxxxx xxxxxxxx x0000000 xxxxxxxx xxxxxxxx x1000000 0

9 64 KB xxxxxxxx xxxxxxxx 00000000 xxxxxxxx xxxxxxxx 10000000 0

10 128 KB xxxxxxxx xxxxxxx0 00000000 xxxxxxxx xxxxxxx1 00000000 0

11 256 KB xxxxxxxx xxxxxx00 00000000 xxxxxxxx xxxxxx10 00000000 0

12 512 KB xxxxxxxx xxxxx000 00000000 xxxxxxxx xxxxx100 00000000 0

13 1 MB xxxxxxxx xxxx0000 00000000 xxxxxxxx xxxx1000 00000000 0

14 2 MB xxxxxxxx xxx00000 00000000 xxxxxxxx xxx10000 00000000 0

15 4 MB xxxxxxxx xx000000 00000000 xxxxxxxx xx100000 00000000 0

16 8 MB xxxxxxxx x0000000 00000000 xxxxxxxx x1000000 00000000 0

17 16 MB xxxxxxxx 00000000 00000000 xxxxxxxx 10000000 00000000 0

18 32 MB xxxxxxx0 00000000 00000000 xxxxxxx1 00000000 00000000 0

19 64 MB xxxxxx00 00000000 00000000 xxxxxx10 00000000 00000000 0

20 128 MB xxxxx000 00000000 00000000 xxxxx100 00000000 00000000 0

21 256 MB xxxx0000 00000000 00000000 xxxx1000 00000000 00000000 0
MSC711x Reference Manual, Rev. 0

4-36 Freescale Semiconductor

Configuring the Address Space Outside the Extended Core
4.7.2 Instruction Cacheable Area

Four different regions of M2 memory or external memory can be programmed as cacheable
memory for instruction fetches (the default is non-cacheable). The cacheable regions are set up in
the Instruction Cacheable Area registers 0–3 (IRCR[0–3] and IRBSR[0–3]), where an area is
specified by its base address and size. Attributes for each area define the region and its burst
characteristics. Cacheable regions must be located at an address higher than the larger of 16 MB
or the external system base address. In a conflict, the cacheable area is always higher than 16 MB
and the external system base address.

Note: The four user-configured regions must not overlap.

The cacheable area is determined by a base address and size. The base address must always be a
multiple of the area size, with the exception of base = 0, when the size can be any value. The
cacheable area is programmed by correctly loading the Instruction Cacheable Area Base Register
(IRBSR[0-3]) and the 64KB bit in the Instruction Cacheable Area Configuration Register
(IRCR[0-3]). These 17 bits specify both the base address and size of the region.

The upper 16-bits of the base address are loaded into the IRBSR register (the lowest 16-bits of
the base address are not used). The LSBs of the base address are 0’s because the base address
must be a multiple of the region’s size. The size of the region is determined by placing a value of
1 into the IRBSR register in the correct location specified for the desired size, as specified in
Table 4-10. The steps for using this table are as follows:

1. Determine size needed for your cacheable region.

2. Consulting Table 4-9, determine the value of the IRCR[64KB] bit.

Sizes must always be a power of two and the maximum size for a region is one GB,
which is represented by a single value of 1 in the IRBSR, where the location of this 1
specifies the size. Use Table 4-9 to determine the bit where a 1 is loaded into the
IRBSR.

22 512 MB xxx00000 00000000 00000000 xxx10000 00000000 00000000 0

23 1 GB xx000000 00000000 00000000 xx100000 00000000 00000000 0

24 2 GB x0000000 00000000 00000000 x1000000 00000000 00000000 0

25 4 GB 00000000 00000000 00000000 10000000 00000000 00000000 0

Notes: 1. The base address must always be an integer multiple of (and must be greater than) the size—except when a
base address of 0 is selected.

2. In this column, the value in the x bits defines the base address of the region, and the location of the right-most
1 specifies the size of the region.

Table 4-8. Programming the Write Buffer Data Area Base and Size (Continued)

Case
Size of
Region Upper 24-Bits of Desired Base Address1 Value Placed into WBDARx[BASE] Field2

Placed
into SZ256

Bit
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-37

Extended Core
Base addresses must be an integer multiple of the size (that is, a power of 2). Therefore,
a valid base address has zeros in its N + 16 LSBs (N is shown in Table 4-9).

If a size of 64 KB is desired, the 1 is loaded into the 64KB bit of IRCR[0–3].

In the following example, a cacheable region is created that starts at 32 MB with a size of 256
KB. Recall the basic condition that the base address (32 MB) must be an integer multiple of the
size (256 KB). The steps in defining the example area are as follows:

1. Write the base address in 32-bit representation. The value of 32 MB is written as
0b00000010 00000000 00000000 00000000.

2. Based on the size (256 KB), choose Case 3 in Table 4-10. For this case, the lowest two
bits are 10 and the value of the 64KB bit is 0.

3. Determine the base bits for the IRBSR. The two lowest bits are 10 (from step 2). The
upper bits are determined according to the remaining bits of the base address [31–18],
that is, 0b00000010 000000.

This procedure results in base = 0x0202, or in binary form, 0b00000010 00000010.

Table 4-9. Programming the Base Address and Size of a Cacheable Region

Desired Size
of Cacheable

Region
N

Valid Base Addresses
for Cacheable Regions

(Upper 16 Bits)

Value in
IRCR[64KB]

Place a 1
into

IRBSR[N–1]

Upper (16–N) Bits of Base
Address Loaded into

IRBSR[15–N]

64 KB 0 BBBB BBBB BBBB BBBB 1 N/A BBBB BBBB BBBB BBBB

128 KB 1 BBBB BBBB BBBB BBB0 0 IRBSR[0] BBBB BBBB BBBB BBB1

256 KB 2 BBBB BBBB BBBB BB00 0 IRBSR[1] BBBB BBBB BBBB BB10

512 KB 3 BBBB BBBB BBBB B000 0 IRBSR[2] BBBB BBBB BBBB B100

1 MB 4 BBBB BBBB BBBB 0000 0 IRBSR[3] BBBB BBBB BBBB 1000

2 MB 5 BBBB BBBB BBB0 0000 0 IRBSR[4] BBBB BBBB BBB1 0000

4 MB 6 BBBB BBBB BB00 0000 0 IRBSR[5] BBBB BBBB BB10 0000

8 MB 7 BBBB BBBB B000 0000 0 IRBSR[6] BBBB BBBB B100 0000

16 MB 8 BBBB BBBB 0000 0000 0 IRBSR[7] BBBB BBBB 1000 0000

32 MB 9 BBBB BBB0 0000 0000 0 IRBSR[8] BBBB BBB1 0000 0000

64 MB 10 BBBB BB00 0000 0000 0 IRBSR[9] BBBB BB10 0000 0000

128 MB 11 BBBB B000 0000 0000 0 IRBSR[10] BBBB B100 0000 0000

256 MB 12 BBBB 0000 0000 0000 0 IRBSR[11] BBBB 1000 0000 0000

512 MB 13 BBB0 0000 0000 0000 0 IRBSR[12] BBB1 0000 0000 0000

1 GB 14 BB00 0000 0000 0000 0 IRBSR[13] BB10 0000 0000 0000

Notes: 1. The base address must always be an integer multiple of (and must be greater than) the size, except when a
base address of 0 is selected.

2. In this column, the value in the x bits defines the base address of the region and the location of the rightmost 1
specifies the size of the region.
MSC711x Reference Manual, Rev. 0

4-38 Freescale Semiconductor

Configuring the Address Space Outside the Extended Core
When an instruction region is disabled or its base or size is modified, portions of the address
space that were previously cacheable may no longer be cacheable. This change occurs, for
example, when the size of a region is decreased or the base of the region is moved. To ensure that
these locations are removed from the cache, flush the cache immediately after changing the
parameters. The procedure for changing a region’s parameters after the cache is enabled is
presented in Section 4.8.2.5, ICache Registers, on page 4-47.

4.7.3 Data Coherency

MSC711x is a single-core environment. Therefore, solving sharing issues between tasks that run
on the system is fairly straightforward. The only exception is that a process can intervene by
writing to the M1 memory through the DMA port, which may not be synchronized with the
activity of the SC1400 core. This problem is limited in its effect because the M1 memory is not
cacheable. This issue is well known in the DSP application field and is easily resolved.

However, a multi-core system in which MSC711x represents one core is more complicated. Such
a system may have shared high-hierarchy memory, which requires data coherency support with
the external system using software mechanisms, such as semaphores, events, and so on.

4.7.3.1 Global Memory Attributes

An external processor can manage a coherency protocol for accesses on the system bus by
snooping the addresses of all accesses. However, this is a demanding requirement that is
expensive to implement. Therefore, the assumption is that the system snoops addresses only on a
subset of the memory space, which is defined as shared in the system memory map (for example,
the area where the system global variables are stored). A data memory segment is tagged using
the global attribute. When an external MSC71xx access to this segment is identified, one or both
global attribute signals are asserted with it, thereby informing the external master to activate the
coherency logic for this access. From the MSC711x perspective, these are simple access tags.

4.7.3.2 Semaphore Support

The SC1400 Bit Mask Test and Set instruction (BMTSET.W) supports the use of semaphores.
This is a read-modify-write instruction that reads from an address, performs a test on a group of
bits in the data, and if the these bits are clear, performs a write to that address with these bits set.
If either the test or the write are not successful, it is indicated in an internal core status update (the
T bit in the SR). The read and write cycles are issued as an atomic (non-interruptible) pair with an
attribute signal. For details, see Section 4.4.3, Atomic Accesses (Read-Modify-Write), on page
4-14.

4.7.3.3 Program and Data Coherency

The SC1400 core has a unified memory map, so an address can be both a program and a data
location. This is why the M1 memory, for example, has both program and data buses routed to it.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-39

Extended Core
Most DSP applications use this feature to provide software flexibility, enabling memory usage
between tasks and applications to be changed. However, a program rarely uses this feature to
modify itself. That is a program rarely uses data writes to change the contents of the code to be
used as program instructions by that same program.

The hardware does not ensure coherency between the instruction and data caches. The program
and data fetch paths are completely diverged. If data is written to an address already fetched into
the ICache, it is not reflected by the hardware. The software should flush the relevant area in the
ICache so that it can be reloaded with the modified program. For completeness, the SC1400 core
should perform a change-of-flow instruction to flush its internal fetch pipe and reload new fetch
sets from the change-of-flow destination.

4.8 Extended Core Programming Model

The extended core can be configured to fit the needs of the system architecture and the
application. The extended core registers are accessed from an internal bus. All registers are
memory-mapped. The registers are accessed via data accesses from the SC1400 core that are the
same size as the register. For example, if the register size is 16 bits, the command is MOVE.W. If
the register size is 32 bits, the command is MOVE.L. If a write is initiated to a register with a
logical influence, the new value is valid according to the unit that is affected by the register.
Changes in registers that affect the write buffer are valid, as follows:

� WBCR[9-0] Watch Dog. If the write buffer is empty, the new value is ready on the next
core cycle after the write to the register. If the write buffer is not empty, the new value is
valid at the next restart of the watch dog, that is, at flush or when the write buffer ends all
accesses.

� WBCR[12] wb_off. Valid at the next core cycle after the write to the register.

� WBFR software flush. Valid at the next core cycle after the read from the register.

� WBDARx memory areas. Valid at the next core cycle after the write to the register.

4.8.1 ECI Registers

Following is the list of ECI registers and the pages on which they are discussed. For the value of
the base address of this register file, ECI_BASE, see Table 5-1 on page 5-3:

� WB Control Register (WBCR), page 4-41.

� WB Software Flush Register (WBFR), page 4-41.

� WB Data Area Register (WBDAR[0–3], page 4-42.

� Version Register (VR), page 4-44.

� General-Purpose System Control Register (GPSCTL), page 4-44.

� General-Purpose Register 0, page 4-44.
MSC711x Reference Manual, Rev. 0

4-40 Freescale Semiconductor

Extended Core Programming Model
WBCR configures the write buffer attributes.

A read access to this register causes a software flush of the write buffer.

WBCR WB Control Register ECI_BASE + 0x04

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — WBOFF — — WD[9–0]

TYPE R/W

RESET 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1

Table 4-10. WBCR Bit Descriptions

Name Reset Description Settings

—
15–13

0 Reserved. Write to zero for future compatibility.

WBOFF
12

1 Enable WB
Enables/disables the write buffer. When the write
buffer is disabled, all write accesses are
performed through the BS.

0 Enable write buffer operation.

1 Disable write buffer operation.

—
11–10

0 Reserved. Write to zero for future compatibility.

WD
9–0

0x3FF Watchdog Count
Value for the watch dog count, which is specified
in the SC1400 core clocks.

Only counts between 0x80 to 0x3FF
are permitted. Values smaller than
0x80 are not allowed.

WBFR WB Software Flush Register ECI_BASE + 0x00

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TYPE R

RESET
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-41

Extended Core
WBDAR configures the base address and size of a write buffer data area.

WBDAR[0–3] WB Data Area Register 0–3 (WBDAR0) ECI_BASE + 0x40
(WBDAR1) ECI_BASE + 0x44
(WBDAR2) ECI_BASE + 0x48
(WBDAR3) ECI_BASE + 0x4C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASE

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE SZ256 IMM — — EN — GBL

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-11. WBDARx Bit Descriptions

Name Reset Description Settings

BASE
31–8

 0 Base Address/Size
Specifies the upper 24-bits of the data area base
address and size.

See Section 4.7.1, Write Buffer Data Areas,
on page 4-35.

SZ256
7

0 Size Indication
Indicates whether the size is 256 bytes or not.

0 Size is other than 256 bytes.

1 Size = 256 bytes.

IMM
6–5

00 Immediate
Define immediate access to that area. This will force
in-order execution of writes. The write can be with or
without freeze to the core.

00 Regular write through write buffer.

01 Write immediate.

10 Write immediate with no freeze.

11 Reserved.

—
4–3

0 Reserved. Write to zero for future compatibility.

EN
2

0 Enable Operation
Enables/disables this area register operation.

0 Disable operation.

1 Enable operation.

—
1

0 Reserved. Write to zero for future compatibility.

GBL
0

0 Global
Determines whether a memory area is non-global or
global. This bit is usually used for data cache
coherency.

NOTE: This bit is active on read or write accesses. It
is not asserted if EN = 0 or if it does not match the
region. It is not affected by the WBCR[WBOFF] bit.

0 Non-global.

1 Global.
MSC711x Reference Manual, Rev. 0

4-42 Freescale Semiconductor

Extended Core Programming Model
GPSCTL is for system-level control. This register can be accessed even when the AHB
subsystem is shut down or when the AHB clock is turned off and the crossbar switch is powered
down. This register is useful for shutting down and restarting the AHB subsystem as described in
Section 11.4.3, AHB Subsystem Low-Power Operation. Under normal operation, the XHRQ bit
is cleared, and this bit can be set for low-power operation.

GPSCTL General-Purpose System Control Register ECI_BASE + 0x30

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ASM1P — INDBG — XHACK XHRQ

TYPE R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-12. GPSCTL Bit Descriptions

Name Reset Description Settings

—
15–7

0 Reserved. Write to zero for future compatibility.

ASM1P
6

0 ASM1 Priority
Specifies priority of ASM1 bus for M1 accesses.

0 ASM1 has highest priority.

1 ASM1 has lowest priority.

—
5

0 Reserved. Write to zero for future compatibility.

INDBG
4

0 In Device Debug Mode
The development tools set this bit when the device first
enters Debug mode, which keeps the remainder of the
device in Debug mode until the debugging session ends.
It ensures that the following modules remain in Device
Debug mode:
• Software watchdog timer
• DMA controller
• Interrupt controller
The development tools clear INDBG when the device
exits a debugging session. This bit can be modified only
when the SC1400 is in a Debug processing state. You
should not modify this bit. It is reserved for use by the
development tools.

0 Device is not necessarily in Device
Debug mode.

1 Device remains in Device Debug
mode as long as this bit is set.

—
3–2

0 Reserved. Write to zero for future compatibility.

XHACK
1

0 Crossbar Halt Acknowledge
Status bit indicating whether the module is currently
halted. Writing to this bit has no effect.

0 Module is not currently halted.

1 Module is currently halted.

XHRQ
0

0 Crossbar Halt Request
Requests a crossbar halt, which uses the halt capability
of the crossbar switch. This bit is automatically reset if a
system-level non-maskable interrupt request occurs.

0 No request for halt.

1 Request halt from module.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-43

Extended Core
VR specifies the versions associated with the MSC711x device.

GPR0 provides general-purpose I/O signals out of the extended core. These bits are reserved for
use by the factory. User applications must not write to these bits.

VR Version Register ECI_BASE + 0x10

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRVER ECVER

TYPE R

RESET 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

Table 4-13. VR Bit Descriptions

Name Reset Description

PRVER
15–8

0x01 Process Version
Contains a different number for each process version.

ECVER
7–0

0x42 Extended Core Version
Contains a different number for each extended core version.

GPR0 General-Purpose Register 0 ECI_BASE + 0x20

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GPRx

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPRx

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-14. GPRx Bit Descriptions

Name Reset Description

GPR0
31–0

0 General-Purpose Bits
Output from the extended core.
MSC711x Reference Manual, Rev. 0

4-44 Freescale Semiconductor

Extended Core Programming Model
4.8.2 ICache Registers

ICache programming refers to all memory accesses that can occur to the memory-mapped
registers of the ICache. This section summarizes the different accesses, their functionality in the
ICache, and restrictions. The cache is programmed and read through the extended core internal
bus from the ECI. It can be accessed as a zero-wait-state slave and always has an immediate
attribute, thus preventing ICache commands and mode changes from being randomly delayed by
the write buffer and taking effect at unexpected times. Through the programming interface, you
can set cache modes, send commands to the ICache, and read ICache registers.

4.8.2.1 Commands

All instructions are implemented by writes to a memory-mapped command register, the ICache
Command Register (ICCMR). There are two types of ICache commands: run-time commands
and Cache Debug Mode commands. The run-time commands are as follows:

� Flush cache. Reset all valid bit array and tag array.

� Flush cache between boundaries. Clear all valid bits and tags in the ways that are
currently inside the LRU boundaries, partial flush.

The Cache Debug mode commands (performed only in Cache Debug mode) are as follows:

� Clear line. Clear all valid bits for a one cache line (see Figure 4-8)
(line = {way[3–0],index[1–0]}, unlike lines for reads). Useful for breakpoint insertion.

� Initialize status registers. Perform an initial load to the different cache status registers.

4.8.2.2 Reads

You can read the ICache state and mode information in the following four ICache registers:

� Read the tag array state (Cache Debug mode only): Tag Array Status Register, page 4-52.

� Read the LRU State (Cache Debug Mode only): LRU Status Register (LRUSR),
page 4-51.

� Read the valid bit array state (Cache Debug mode only): Valid Bit Array Status Register
(VBASR), page 4-52.

� Read the cache control register (cache mode and LRU boundaries): ICache Control
Register (ICCR), page 4-49.

4.8.2.3 Instruction Regions

The instruction region registers define the base address and size of one of four instruction
regions, as well as configuring the attributes for each region. You can access the information for
one instruction region in the IRBSRx and IRCRx registers using two 16-bit accesses to access
each register individually or with a single 32-bit access to access both registers simultaneously.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-45

Extended Core
When any instruction region parameter changes (for example, prefetch enable, region base
address or size, burst size, primary burst size, and so on), the following procedure is required:

1. Disable the region via the IRCRx[EN] bit.

2. Execute 32 NOP instructions.

3. Modify the desired parameter(s) in the IRBSRx or IRCRx register(s).

4. Re-enable the region via the IRCRx[EN] bit.

The code to perform this sequence must not be located in the region where the parameter(s) are to
be modified. If parameters are modified after the ICache is enabled, it is recommended that this
code be located in M1 memory.

4.8.2.4 ICache Programming Restrictions

Following are the restrictions/issues on ICache programming:

� The steps described in Section 4.8.2.3 are one of the ICache programming restrictions.
These steps are required when any instruction region parameter changes.

� Changes in registers that affect the IFU (IRCR[0–3], IRBSR[0–3]) are valid at the next
fetch miss after the write to the register. Changing the registers during prefetch does not
affect the prefetch. For example, turning the prefetch off (see the IRCR) does not stop the
current prefetch but disables prefetching after the next fetch miss.

� Data newly written to a control register can be read only in the second execution set
following the write. There should be at least one execution set between the read and the
write of the register so that the new data can be observed.

� Before you enable a disabled cache in any way (either by setting the on bit, resetting the
lock or Cache Debug mode bits, or returning the lower LRU boundary to be less or equal
to the upper boundary) the code must be preceded and followed by two no operation
(NOP) execution sets, as illustrated in the following code example.

move.l #$0000f001,d1
nop
nop
move.w d1,($<ICCR_ADDRESS>)
nop
nop

� When a run-time command runs parallel with a control register write and if a flush
between boundaries runs parallel with a boundary change, the new boundaries are used.
However, if any flush command runs parallel with a cache disable (cache off, Cache
Debug mode, and so on), the flush is performed.

� Cache run-time commands cause SC1400 core stall penalties.

� Cache run-time commands are performed in lock mode.
MSC711x Reference Manual, Rev. 0

4-46 Freescale Semiconductor

Extended Core Programming Model
� If a flush command is paralleled with a flush between boundaries command, the full cache
flush is performed, yet the timing penalty is of the flush between boundaries (the longer
penalty of the two).

� Debug commands and read state registers are served in Cache Debug mode only or else
they are discarded (an exception flag is raised). One execution must be set at least between
turning on the Cache Debug mode bit and the first debug command/debug read. Similarly,
there must be at least one execution set between the last debug command and an exit from
Cache Debug mode.

� No Cache Debug mode command can be paralleled with an ICCR write, causing the
ICache to exit Cache Debug mode.

� Debug commands must be at least one execution set apart from any run-time command.

� The first read status command must be at least one execution set apart from an initialize
debug command.

4.8.2.5 ICache Registers

Following is the list of ICache registers and the pages on which they are described. For the value
of the base address for this register file, IC_BASE, see Table 5-1 on page 5-3:

� Instruction Region Base/Size Register (IRBSR[0–3]), page 4-47.

� Instruction Region Configuration Register (IRCR[0–3]), page 4-48.

� ICache Control Register (ICCR), page 4-49.

� ICache Command Register (ICCMR), page 4-50.

� LRU Status Register (LRUSR), page 4-51.

� Tag Array Status Register (TASR), page 4-52.

� Valid Bit Array Status Register (VBASR), page 4-52.

IRBSR configures the base address and size of a cacheable region. Addresses between
0x00000000–0x00FFFFFF are always defined as not cacheable. When the size of a region is 64
KB, set the IRCR 64KB bit. Writes to this register when an IFU access is in progress freeze the
SC1400 core until all accesses for the current cache miss are completed.

IRBSR[0–3] Instruction Region Base/Size Register (IRBSR0) IC_BASE + 0x82
(IRBSR1) IC_BASE + 0x86
(IRBSR2) IC_BASE + 0x8A
(IRBSR3) IC_BASE + 0x8E

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RBAS

TYPE R/W

RESET 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-47

Extended Core

IRCR configures the attributes for a region of cacheable memory. Writes to this register when an
IFU access is in progress freeze the SC1400 core until all accesses for the current cache miss are
completed.

Table 4-15. IRBSR Bit Descriptions

Name Reset Description

RBAS
15–0

0x0080 Region Base Address and Size
Specifies the base address and size for the area defining the cacheable area (see
Section 4.7.2, Instruction Cacheable Area, on page 4-37).

IRCR[0–3] Instruction Region Configuration Register (IRCR0) IC_BASE + 0x80
(IRCR1) IC_BASE + 0x84
(IRCR2) IC_BASE + 0x88
(IRCR3) IC_BASE + 0x8C

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64KB — — — — EN — — — — — PFE — SIZE

TYPE R/W

RESET 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Table 4-16. IRCR Bit Descriptions

Name Reset Description Settings

64KB
15

0 Size Indication
Sets the size to the 64 KB minimum or
sets it to a different size.

0 Size is other than 64 KB.

1 Size is 64 KB.

—
14–11

0 Reserved. Write to zero for future compatibility.

EN
10

1 Enable Area Operation
Enables/disables caching for the region.

0 Caching disabled.

1 Caching enabled.

—
9–5

0 Reserved. Write to zero for future compatibility.

PFE
4

1 Prefetch Enable
Enables/disables Prefetch mode.

0 Prefetch mode enabled.

1 Prefetch mode disabled.

—
3

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

4-48 Freescale Semiconductor

Extended Core Programming Model
ICCR configures the ICache modes and specifies upper and lower boundaries for locking and
flushing. The ICache operates in the following modes:

� On/Off. When the ICache is turned off, all caching-related machines and the command and
status mechanisms are OFF (clocks turned OFF). Only the control register periphery
remains ON.

� Cache Debug mode. Enables the ICache non-real-time debug commands. All ICache
updates are disabled except the flush commands.

� Lock mode. Locks data in the ICache with no updates permitted (thrashing/new valid bit
setting). Hits are served in Lock mode, so all tag match LRU updates can take effect. All
commands work in Lock mode, including flushes. The cache also enters Lock mode if the
upper boundary has a value that is less than the value of the lower boundary. That is, when
there is an attempt to read the register, the Lock mode bit is set. The ICache does not enter
Lock mode if it is OFF or set to Cache Debug mode (mode bit is read as 0).

SIZE
2–0

000 Burst and Primary Set Size
Sets the burst size as well as the size of
the number of bursts in the primary set.

ICCR ICache Control Register IC_BASE + 0x00

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UB LB — — — — DM — LM ON

TYPE R/W

RESET 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Table 4-17. ICCR Bit Descriptions

Name Reset Description Value

UB
15–12

0xF Upper Boundary Value
Selects the upper boundary (way number) for
LRU consideration.

Table 4-16. IRCR Bit Descriptions (Continued)

Name Reset Description Settings

SIZE[2–0]
Primary Set

Size
Burst Size

000 1 1

001 2 1

010 4 1

101 4 4
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-49

Extended Core

LB
11–8

0 Lower Boundary Value
Selects the lower boundary (way number) for
LRU consideration. If LB > UB, the cache is
locked. Values outside the range LB to UB are
considered frozen.

—
7–4

0 Reserved. Write to zero for future compatibility.

DM
3

0 Cache Debug Mode
Specifies whether the ICache is in Normal or
Debug mode.This bit reads as a 1 only when
both the DM and ON bits are programmed to a
value of 1. Cache Debug mode enables the
cache non-real-time debug commands. All
ICache updates are disabled in Cache Debug
mode (except the flush commands). The
ICache does not enter Cache Debug mode if it
is set to off (mode bit is read as 0).

0 Cache in Normal mode.

1 Cache in Debug mode.

—
2

0 Reserved. Write to zero for future compatibility.

LM
1

0 Cache Lock Mode
Specifies whether the ICache is locked. This bit
reads as a 1 only when the ON bit is
programmed to a 1 and the cache is fully

locked1 and the DM is programmed with a
value of 0. Lock mode locks data in the ICache,
with no updates permitted (thrashing/new valid
bit setting). Hits are served in lock mode so all
tag match LRU updates can take effect. All
commands work in Lock mode, including
flushes. The cache also enters lock mode if the
upper boundary is set to be less than the lower
boundary. When there is an attempt to read the
register, the lock mode bit is on. The ICache
does not enter Lock mode if it is off or set to
Cache Debug mode (mode bit is read as 0).

0 Cache not locked.

1 Cache locked.

ON
0

1 On/Off Bit
Enables/disables the ICache.

0 Cache disabled.

1 Cache enabled.

Note: The cache is fully locked when all ways are locked. The ICache is fully locked either by programming DM bit with a
value of 1 or programming the LB bits with a value larger than that of the UB bits.

ICCMR ICache Command Register IC_BASE + 0x04

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C[3–0] — — — — — — DA[5–0]

TYPE W

RESET

Table 4-17. ICCR Bit Descriptions (Continued)

Name Reset Description Value
MSC711x Reference Manual, Rev. 0

4-50 Freescale Semiconductor

Extended Core Programming Model
ICCMR flushes portions of the cache or the entire cache and clears a line of the cache. Writes to
this register when an IFU access is in progress freeze the SC1400 core until all accesses for the
current cache miss are completed. This ensures that the flush completes before the SC1400 core
resumes execution with the instructions that follow.

LRUSR reads the LRU status of the ICache.

Table 4-18. ICCMR Bit Descriptions

Name Reset Description

C
15–12

Commands Bits:
0000: Flush cache
0001: Flush cache between boundaries
1000: Initialize state registers
1001: Clear line (Line to clear in the DA bits)
Other Combinations reserved

—
11–6

Reserved. Write to zero for future compatibility.

DA
5–0

Destination Address Field
Defines a line to clear (00000 = Way 0, Index 0 to 11111 = Way 15, Index 3)

LRUSR LRU Status Register IC_BASE + 0x10

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LS[15–0]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-19. LRUSR Bit Descriptions

Name Reset Description

LS
15–0

0x0000 LRU Status Register Contents
An LRU status bit for each line that shares an index number. A register value is stored for
each index. The individual values are accessed via a sequential read. The first read by the
SC1400 core returns the value for Index = 0x0. A second read returns the value for Index =
0x1. A third read returns the value for Index = 0x2. A fourth read returns the value for Index =
0x3. For each bit, a 0 indicates that the line is not the LRU for the specified index and a 1
indicates that the line is the LRU for that index.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 4-51

Extended Core
TASR reads the tag array status of the ICache.

VBASR reads the VALID bit array status of the ICache.

TASR Tag Array Status Register IC_BASE + 0x14

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TS[15–0]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-20. TASR Bit Descriptions

Name Reset Description

TS
15–0

0x0000 Tag State Register
A TAG status bit for each line that shares an index number. A register value is stored for each index.
The individual values are accessed via a sequential read. The first read by the SC1400 core returns
the value for Index = 0x0. A second read returns the value for Index = 0x1. A third read returns the
value for Index = 0x2. A fourth read returns the value for Index = 0x3. For each bit, a 0 indicates that
the TAG is not in use. A 1 indicates that a TAG value exists for the cache line.

VBASR Valid Bit Array Status Register IC_BASE + 0x18

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VS[15–0]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4-21. VBASR Bit Descriptions

Name Reset Description

VS
15–0

0x0000 Valid Bit Array Line Content
The array line content for each line and bit position. The individual values are accessed via a
sequential read. The first read by the SC1400 core returns the value for Index = 0x0, position
0. A second read returns the value for Index = 0x0, position 1. A third read returns the value for
Index = 0x0, position 2, and so forth for each index up to position 15, and then for each index
and position up to Index = 0x3, position 15. For each bit, a 0 indicates that memory location is
not cached. A 1 indicates that the memory location is cached.
MSC711x Reference Manual, Rev. 0

4-52 Freescale Semiconductor

Memory Map 5
The MSC711x device uses a unified system memory and device map. Internal module locations
are fixed. and most registers and memory blocks have a single address region within the map.
The exception is the M1 memory and the HDI16 module, which have two addressable regions.
The MSC711x devices have several different bus controllers within the system. Along with the
SC1400 core, these devices address specified regions within the memory map, shown in
Figure 5-1.

The address space for the M1 memory depends on which master is accessing it. When the
SC1400 core access M1 memory, the address space begins at 0x00000000. When AHB masters
access M1 memory, the address space begins at 0x01800000. Address regions within the memory
map are categorized as follows:

� SC1400 core internal address space. The SC1400 core accesses M1 memory and the
OCE10 registers using the core P, XA, and XB buses.

� The extended core address space on the master port, both within and outside the system is
as follows:

— Extended core internal address space. The SC1400 core accesses the registers of the
extended core interface (ECI), instruction cache (ICache), and interrupt controller
through an internal bus that taps off the AMEC bus.

— Extended core external address space. The SC1400 core accesses external resources
through the AMEC bus, which passes through the crossbar switch and provides access
to all system resources.

� The address space of master controller ports is organized as follows:

— AMIC address space. The ICache fetch unit services cache misses and accesses to
non-cacheable regions of memory by accesses to M2 memory, external memory, and
the boot ROM through the crossbar switch via the AMIC bus.

— AMDMA address space. The DMA controller accesses external resources through the
AMDMA bus, which passes through the crossbar switch and provides access to all
system resources. The DMA controller can also access internal M1 memory at
addresses available to the DMA controller beginning at 0x01800000.

— AMENT address space. The dedicated DMA located within the Ethernet MAC can
access resources outside the platform through the AMENT bus which passes through
the crossbar switch and provides access to all system resources. It can also access the
M1 memory at addresses available to the crossbar ports beginning at 0x01800000.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-1

Memory Map
� The address space of the slave ports is organized as follows:

— ASM1 address space. Accesses M1 memory through the crossbar switch via the ASM1
bus. Although this memory is located within the extended core, it is accessed by the
crossbar switch in a portion of the address map located outside the extended core’s
address space.

— ASM2 address space. Accesses M2 memory and the Boot ROM through the crossbar
switch via the ASM2 bus.

— ASEMI address space. Accesses external memory through the crossbar switch via the
ASEMI bus.

— ASTH address space. Accesses the high speed ports of the TDM and HDI16
peripherals through the crossbar switch via the ASTH bus.

— ASAPB address space. Accesses peripherals located on the APB through the crossbar
switch via the ASAPB bus.

— ASSB address space. Accesses peripherals located on the IPBus through the crossbar
switch via the ASSB bus.

Note: Although they are located in the APB address space, the interrupt control and interrupt
priority registers are accessed through the ASAPB bus directly. They are not accessed
through the APB.
MSC711x Reference Manual, Rev. 1

5-2 Freescale Semiconductor

Figure 5-1. MSC711x Memory Map

0x0000 0000

0x00EF FFFF

0x00F0 0000

0x00FF FFFF

0x0100 0000

0x017F FFFF

0x01800000

0xFFFFFFFF

0x01F80000

0x03FFFFFF

0x08000000

APB Peripherals

OCE10 Regs

M1 Memory

M2 Memory

Boot ROM

ICache Regs

ECI Regs

Within
Extended Core

(P, XA, XB)

(AMEC)

Outside
Extended Core

(AMIC)

(AMEC)

(AMDMA)

M1 Memory
(for AMDMA, AMENT)

0x06000000

0x07FFFFFF

TDM/HDI16

(High speed port)

via
ASEMIConfigurable as

Cacheable memory

Configurable as
cacheable memory.

WB not used.
Accesses
via XA, XB

Write always via
Write Immediate

(zero ws)

Programmable
WB Operation

Write Accesses Program Accesses

ICache not used.
Accesses via
P Bus to M1.

Data fetches only.

Program fetches
generate an

0x01F7FFFF

IPBus Peripherals

ICache Array

(AMENT)

via
ASM2

via
ASM1

via ASTH

via ASSB

via ASAPB

0x04000000

0x05FFFFFF

External
Address
Space

error condition.

Data fetches only.

Program fetches
generate an

error condition.
Core Addr Detection

Within
Extended Core
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-3

Memory Map
5.1 Register Base Addresses

The MSC711x module registers and memory blocks are all defined with respect to the base
addresses listed in Table 5-1. There is no ENETAHB_BASE because the Ethernet data (stored in
internal FIFOs) is accessed directly by the internal DMA controller and transferred out to the
system.

Table 5-1. Summary — Base Addresses for MSC711x Register Files

Location in
Memory Map

Base Name Description Address

Extended Core EONCE_BASE EOnCE Registers 0x00EF F000

ECI_BASE Extended Core Interface Registers 0x00F0 0000

IC_BASE Instruction Cache Registers 0x00F0 0100

CAD_BASE Core Address Detection Registers 0x00F0 0300

ICARRAY_BASE Instruction Cache Array Contents 0x00F2 0000

IPBus
Peripherals

— (Reserved) 0x0400 0000

TMRA_BASE Timer A Registers (1st Quad Timer Module) 0x0400 1000

TMRB_BASE Timer B Registers (2nd Quad Timer Module) 0x0400 2000

XBAR_BASE Crossbar Switch Registers 0x0400 3000

DMA_BASE DMA Registers 0x0400 4000

— (Additional space reserved for DMA Registers) 0x0400 5000

ENET_BASE Ethernet MAC Registers 0x0400 6000

— (Reserved) 0x0400 7000

DDR_BASE DDR Memory Controller Registers 0x0400 8000

I2C_BASE I2C Registers 0x0400 9000

BTM_BASE Bus Timeout Monitor Registers 0x0400 A000

EV_BASE Event Port Registers 0x0400 B000

CLK_BASE Clock Control and Reset Registers 0x0400 C000

PAD_BASE Peripheral Address Detection Registers 0x0400 D000

MCIF_BASE Memory Controller Interface Registers 0x0400 E000
MSC711x Reference Manual, Rev. 1

5-4 Freescale Semiconductor

Memory-Mapped Registers
5.2 Memory-Mapped Registers

Table 5-3 summarizes the MSC711x memory map. Refer to the individual device technical data
sheet or product brief to determine the peripherals and memory supported by a specific device. If
an individual device does not include a specified peripheral or memory, the respective
memory/device address is reserved in that device.

APB Peripherals — (Reserved) 0x0600 0000

SWT_BASE Software Watchdog Timer Registers 0x0600 1000

— (Reserved) 0x0600 2000

— (Reserved) 0x0600 3000

TDM0_BASE TDM0 Registers — Accessed via APB 0x0600 4000

TDM1_BASE TDM1 Registers — Accessed via APB 0x0600 5000

TDM2_BASE TDM2 Registers — Accessed via APB
(for devices which have this TDM)

0x0600 6000

HDI16_BASE HDI16 Registers — Accessed via APB 0x0600 7000

UART_BASE UART Registers 0x0600 8000

GPIO_BASE GPIO Registers 0x0600 9000

ICTL_BASE Interrupt Controller Registers 0x0600 A000

IPL_BASE Interrupt Priority Level Registers 0x0600 B000

Peripherals
accessible on

the ASTH
(AHB-Lite) Bus

TDM0AHB_BASE TDM0 Registers — Accessed via ASTH bus 0x01F8 4000

TDM1AHB_BASE TDM1 Registers — Accessed via ASTH bus 0x01F8 5000

TDM2AHB_BASE TDM2 Registers — Accessed via ASTH bus
(for devices which have this TDM)

0x01F8 6000

HDI16AHB_BASE HDI16 Registers — Accessed via ASTH bus 0x01F8 7000

Table 5-2. MSC711x Detailed Memory Map

Address Register/Memory Region Acronym
Size

in
Bytes

0x00000000–0x0000FFFF M1 Memory Lowest 64 KB for core access M1MEML 64K

0x00010000–0x0002FFFF M1 Memory Highest 128 KB for core access M1MEMH 128K

0x00030000–0x00EFFDFF Reserved

0x00EFF000 Emulator Status Register ESR 4

0x00EFF004 Emulator Monitor and Control Register EMCR 4

0x00EFF008 Emulator Receive Register (LSBs) ERCV 4

0x00EFF00C Emulator Receive Register (MSBs) ERCV 4

Table 5-1. Summary — Base Addresses for MSC711x Register Files

Location in
Memory Map

Base Name Description Address
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-5

Memory Map
0x00EFF010 Emulator Transmit Register (LSBs) ETRSMTL 4

0x00EFF014 Emulator Transmit Register (MSBs) ETRSMTH 4

0x00EFF018 EE Signals Control Register EE_CTRL 2

0x00EFF01C Exception PC Register PC_EXCP 4

0x00EFF020 PC of Next Execution Set PC_NEXT 4

0x00EFF024 PC of Last Execution Set PC_LAST 4

0x00EFF028 PC Breakpoint Detection Register PC_DETECT 4

0x00EFF02C–0x00EFF039 Reserved

0x00EFF040 EDCA0 Control Register EDCA0_CTRL 2

0x00EFF044 EDCA1 Control Register EDCA1_CTRL 2

0x00EFF048 EDCA2 Control Register EDCA2_CTRL 2

0x00EFF04C EDCA3 Control Register EDCA3_CTRL 2

0x00EFF050 EDCA4 Control Register EDCA4_CTRL 2

0x00EFF054 EDCA5 Control Register EDCA5_CTRL 2

0x00EFF058–0x00EFF05F Reserved

0x00EFF060 EDCA0 Reference Value A EDCA0_REFA 4

0x00EFF064 EDCA1 Reference Value A EDCA1_REFA 4

0x00EFF068 EDCA2 Reference Value A EDCA2_REFA 4

0x00EFF06C EDCA3 Reference Value A EDCA3_REFA 4

0x00EFF070 EDCA4 Reference Value A EDCA4_REFA 4

0x00EFF074 EDCA5 Reference Value A EDCA5_REFA 4

0x00EFF078–0x00EFF07F Reserved

0x00EFF080 EDCA0 Reference Value B EDCA0_REFB 4

0x00EFF084 EDCA1 Reference Value B EDCA1_REFB 4

0x00EFF088 EDCA2 Reference Value B EDCA2_REFB 4

0x00EFF08C EDCA3 Reference Value B EDCA3_REFB 4

0x00EFF090 EDCA4 Reference Value B EDCA4_REFB 4

0x00EFF094 EDCA5 Reference Value B EDCA5_REFB 4

0x00EFF098–0x00EFF0BF Reserved

0x00EFF0C0 EDCA0 Mask Value EDCA0_MASK 4

0x00EFF0C4 EDCA1 Mask Value EDCA1_MASK 4

0x00EFF0C8 EDCA2 Mask Value EDCA2_MASK 4

0x00EFF0CC EDCA3 Mask Value EDCA3_MASK 4

0x00EFF0D0 EDCA4 Mask Value EDCA4_MASK 4

0x00EFF0D4 EDCA5 Mask Value EDCA5_MASK 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-6 Freescale Semiconductor

Memory-Mapped Registers
0x00EFF0D8–0x00EFF0DF Reserved

0x00EFF0E0 Event Detection Channel n Register EDCD_CTRL 2

0x00EFF0E4 EDCD Reference Value Register EDCD_REF 4

0x00EFF0E8 EDCD Mask Value Register EDCD_MASK 4

0x00EFF0EC–0x00EFF0FF Reserved

0x00EFF100 Event Counter Control Register ECNT_CTRL 2

0x00EFF104 Event Counter Value ECNT_VAL 4

0x00EFF108 Event Counter Extension Value ECNT_EXT 4

0x00EFF10C–0x00EFF11F Reserved

0x00EFF120 Event Selector Control Register ESEL_CTRL 1

0x00EFF124 Event Selector Mask Debug Mode ESEL_DM 2

0x00EFF128 Event Selector Mask Debug Exception ESEL_DI 2

0x00EFF12C–0x00EFF12F Reserved

0x00EFF130 Event Selector Mask Enable Trace Buffer ESEL_ETB 2

0x00EFF134 Event Selector Mask Disable Trace Buffer ESEL_DTB 2

0x00EFF138–0x00EFF13F Reserved

0x00EFF140 Trace Buffer Control Register TB_CTRL 1

0x00EFF144 Trace Buffer Read Pointer TB_RD 2

0x00EFF148 Trace Buffer Write Pointer TB_WR 2

0x00EFF14C Trace Buffer TB_BUFF 4

0x00EFF150–0x00EFF1F7 Reserved

0x00EFF1F8 Core Command Register CORE_CMD 6

0x00EFF1FE–0x00EFFFFF Reserved

0x00F00000 WB Software Flush Register WBFR 2

0x00F00002–0x00F00003 Reserved

0x00F00004 WB Control Register WBCR 2

0x00F00006–0x00F0000F Reserved

0x00F00010 Version Register VR 2

0x00F00012–0x00F0001F Reserved

0x00F00020 General-Purpose Register 0 GPR0 4

0x00F00024–0x00F0002F Reserved

0x00F00030 General-Purpose System Control Register GPSCTL 2

0x00F00032–0x00F0003F Reserved

0x00F00040 WB Data Area 0 Register WBDAR0 4

0x00F00044 WB Data Area 1 Register WBDAR1 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-7

Memory Map
0x00F00048 WB Data Area 2 Register WBDAR2 4

0x00F0004C WB Data Area 3 Register WBDAR3 4

0x00F00050–0x00F000FF Reserved

0x00F00100 ICache Control Register ICCR 2

0x00F00102–0x00F00103 Reserved

0x00F00104 ICache Command Register ICCMR 2

0x00F00106–0x00F0010F Reserved

0x00F00110 LRU Status Register LRUSR 2

0x00F00112–0x00F00113 Reserved

0x00F00114 Tag Array Status Register TASR 2

0x00F00116–0x00F00117 Reserved

0x00F00118 Valid Bit Array Status Register VBASR 2

0x00F0011A–0x00F0017F Reserved

0x00F00180 Instruction Region 0 Configuration Register IRCR0 2

0x00F00182 Instruction Region 0 Base/Size Register IRBSR0 2

0x00F00184 Instruction Region 1 Configuration Register IRCR1 2

0x00F00186 Instruction Region 1 Base/Size Register IRBSR1 2

0x00F00188 Instruction Region 2 Configuration Register IRCR2 2

0x00F0018A Instruction Region 2 Base/Size Register IRBSR2 2

0x00F0018C Instruction Region 3 Configuration Register IRCR3 2

0x00F0018E Instruction Region 3 Base/Size Register IRBSR3 2

0x00F00190–0x00F002FF Reserved

0x00F00300 Extended Core Address Detection Control Register 0 CADCTL0 4

0x00F00304 Extended Core Address Detection Control Register 1 CADCTL1 4

0x00F00308 Reserved

0x00F0030C Extended Core Address Detection Status Register CADSR 4

0x00F00310 Reserved

0x00F00314 Extended Core Address Detection PAB Lower bound
Register 0

CADLWRP0 4

0x00F00318 Extended Core Address Detection PAB Lower bound
Register 1

CADLWRP1 4

0x00F0031C Extended Core Address Detection PAB Lower bound
Register 2

CADLWRP2 4

0x00F00320 Extended Core Address Detection PAB Lower bound
Register 3

CADLWRP3 4

0x00F00324–0x00F0032B Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-8 Freescale Semiconductor

Memory-Mapped Registers
0x00F0032C Extended Core Address Detection PAB Upper bound
Register 0

CADUPRP0 4

0x00F00330 Extended Core Address Detection PAB Upper bound
Register 1

CADUPRP1 4

0x00F00334 Extended Core Address Detection PAB Upper bound
Register 2

CADUPRP2 4

0x00F00338 Extended Core Address Detection PAB Upper bound
Register 3

CADUPRP3 4

0x00F0033C–0x00F00343 Reserved 4

0x00F00344 Extended Core Address Detection XAB Lower
Bound Register 0

CADLWRX0 4

0x00F00348 Extended Core Address Detection XAB Lower
Bound Register 1

CADLWRX1 4

0x00F0034C Extended Core Address Detection XAB Lower
Bound Register 2

CADLWRX2 4

0x00F00350 Extended Core Address Detection XAB Lower
Bound Register 3

CADLWRX3 4

0x00F00354–0x00F0035B Reserved

0x00F0035C Extended Core Address Detection XAB Upper
Bound Register 0

CADUPRX0 4

0x00F00360 Extended Core Address Detection XAB Upper
Bound Register 1

CADUPRX1 4

0x00F00364 Extended Core Address Detection XAB Upper
Bound Register 2

CADUPRX2 4

0x00F00368 Extended Core Address Detection XAB Upper
Bound Register 3

CADUPRX3 4

0x00F0036C–0x00F00373 Reserved

0x00F00374 Extended Core Address Detection Capture Program
Address Register

CADCPTP 4

0x00F00378 Extended Core Address Detection Capture XA
Address Register

CADCPTXA 4

0x00F0037C Extended Core Address Detection Capture XB
Address Register

CADCPTXB 4

0x00F00380–0x00F1FFFF Reserved

0x00F20000–0x00F23FFF ICache Array Contents IARRAY 16 K

0x00F24000–0x00FFFFFF Reserved

0x01000000–0x0102FFFF M2 Memory M2MEM 192 K

0x01030000–0x013FFFFF Reserved

0x01400000–0x01401FFF Boot ROM (VBA points to 01401000–0xinitial ISR
address)

BOOTROM 4 K

0x01402000–0x017FFFFF Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-9

Memory Map
0x01800000–0x0180FFFF M1 Memory Lowest 64 KB from outside core M1MEML 64 K

0x01810000–0x0182FFFF M1 Memory Upper 128 KB from outside core M1MEMH 128 K

0x1830000–0x01F83FFF Reserved

0x01F84000 TDM0 Receive Data Register TDM0RDR 8

0x01F84008 TDM0 Transmit Data Register TDM0TDR 8

0x01F84010–0x01F84FFF Reserved

0x01F85000 TDM1 Receive Data Register TDM1RDR 8

0x01F85008 TDM1 Transmit Data Register TDM1TDR 8

01F85010–0x01F85FFF Reserved

0x01F86000 TDM2 Receive Data Register TDM2RDR 8

0x01F86008 TDM2 Transmit Data Register TDM2TDR 8

0x01F86010–0x04000FFF Reserved

0x04001000 Timer Channel 0 Compare Register 1 TMR0CMP1 2

0x04001002–0x04001003 Reserved

0x04001004 Timer Channel 0 Compare Register 2 TMR0CMP2 2

0x04001006–0x04001007 Reserved

0x04001008 Timer Channel 0 Capture Register TMR0CAP 2

0x04001002–0x04001003 Reserved

0x0400100C Timer Channel 0 Load Register TMR0LOAD 2

0x04001002–0x04001003 Reserved

0x04001010 Timer Channel 0 Hold Register TMR0HOLD 2

0x04001002–0x04001003 Reserved

0x04001014 Timer Channel 0 Counter Register TMR0CNTR 2

0x04001002–0x04001003 Reserved

0x04001018 Timer Channel 0 Control Register TMR0CTL 2

0x04001002–0x04001003 Reserved

0x0400101C Timer Channel 0 Status and Control Register TMR0SCTL 2

0x04001002–0x04001003 Reserved

0x04001020 Timer Channel 0 Compare Load Register 1 TMR0CMPLD1 2

0x04001002–0x04001003 Reserved

0x04001024 Timer Channel 0 Compare Load Register 2 TMR0CMPLD2 2

0x04001002–0x04001003 Reserved

0x04001028 Timer Channel 0 Comparator Status and Control
Register

TMR0COMSC 2

0x0400102A–0x0400103F Reserved

0x04001040 Timer Channel 1 Compare Register 1 TMR1CMP1 2

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-10 Freescale Semiconductor

Memory-Mapped Registers
0x04001002–0x04001003 Reserved

0x04001044 Timer Channel 1 Compare Register 2 TMR1CMP2 2

0x04001002–0x04001003 Reserved

0x04001048 Timer Channel 1 Capture Register TMR1CAP 2

0x04001002–0x04001003 Reserved

0x0400104C Timer Channel 1 Load Register TMR1LOAD 2

0x04001002–0x04001003 Reserved

0x04001050 Timer Channel 1 Hold Register TMR1HOLD 2

0x04001002–0x04001003 Reserved

0x04001054 Timer Channel 1 Counter Register TMR1CNTR 2

0x04001002–0x04001003 Reserved

0x04001058 Timer Channel 1 Control Register TMR1CTL 2

0x04001002–0x04001003 Reserved

0x0400105C Timer Channel 1 Status and Control Register TMR1SCTL 2

0x04001002–0x04001003 Reserved

0x04001060 Timer Channel 1 Compare 1 Load Register TMR1CMPLD1 2

0x04001002–0x04001003 Reserved

0x04001064 Timer Channel 1 Compare 2 Load Register TMR1CMPLD2 2

0x04001002–0x04001003 Reserved

0x04001068 Timer Channel 1 Comparator Status and Control
Register

TMR1COMSC 2

0x0400106A–0x0400107F Reserved

0x04001080 Timer Channel 2 Compare Register 1 TMR2CMP1 2

0x04001002–0x04001003 Reserved

0x04001084 Timer Channel 2 Compare Register 2 TMR2CMP2 2

0x04001002–0x04001003 Reserved

0x04001088 Timer Channel 2 Capture Register TMR2CAP 2

0x04001002–0x04001003 Reserved

0x0400108C Timer Channel 2 Load Register TMR2LOAD 2

0x04001002–0x04001003 Reserved

0x04001090 Timer Channel 2 Hold Register TMR2HOLD 2

0x04001002–0x04001003 Reserved

0x04001094 Timer Channel 2 Counter Register TMR2CNTR 2

0x04001002–0x04001003 Reserved

0x04001098 Timer Channel 2 Control Register TMR2CTL 2

0x04001002–0x04001003 Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-11

Memory Map
0x0400109C Timer Channel 2 Status and Control Register TMR2SCTL 2

0x04001002–0x04001003 Reserved

0x040010A0 Timer Channel 2 Compare 1 Load Register TMR2CMPLD1 2

0x04001002–0x04001003 Reserved

0x040010A4 Timer Channel 2 Compare 2 Load Register TMR2CMPLD2 2

0x04001002–0x04001003 Reserved

0x040010A8 Timer Channel 2 Comparator Status and Control
Register

TMR2COMSC 2

0x040010AA–0x040010BF Reserved

0x040010C0 Timer Channel 3 Compare Register 1 TMR3CMP1 2

0x04001002–0x04001003 Reserved

0x040010C4 Timer Channel 3 Compare Register 2 TMR3CMP2 2

0x04001002–0x04001003 Reserved

0x040010C8 Timer Channel 3 Capture Register TMR3CAP 2

0x04001002–0x04001003 Reserved

0x040010CC Timer Channel 3 Load Register TMR3LOAD 2

0x04001002–0x04001003 Reserved

0x040010D0 Timer Channel 3 Hold Register TMR3HOLD 2

0x04001002–0x04001003 Reserved

0x040010D4 Timer Channel 3 Counter Register TMR3CNTR 2

0x04001002–0x04001003 Reserved

0x040010D8 Timer Channel 3 Control Register TMR3CTL 2

0x04001002–0x04001003 Reserved

0x040010DC Timer Channel 3 Status and Control Register TMR3SCTL 2

0x04001002–0x04001003 Reserved

0x040010E0 Timer Channel 3 Compare 1 Load Register TMR3CMPLD1 2

0x04001002–0x04001003 Reserved

0x040010E4 Timer Channel 3 Compare 2 Load Register TMR3CMPLD2 2

0x04001002–0x04001003 Reserved

0x040010E8 Timer Channel 3 Comparator Status and Control
Register

TMR3COMSC 2

0x040010EA–0x040010FF Reserved

0x04002000 Timer Channel 4 Compare Register 1 TMR4CMP1 2

0x04001002–0x04001003 Reserved

0x04002004 Timer Channel 4 Compare Register 2 TMR4CMP2 2

0x04001002–0x04001003 Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-12 Freescale Semiconductor

Memory-Mapped Registers
0x04002008 Timer Channel 4 Capture Register TMR4CAP 2

0x04001002–0x04001003 Reserved

0x0400200C Timer Channel 4 Load Register TMR4LOAD 2

0x04001002–0x04001003 Reserved

0x04002010 Timer Channel 4 Hold Register TMR4HOLD 2

0x04001002–0x04001003 Reserved

0x04002014 Timer Channel 4 Counter Register TMR4CNTR 2

0x04001002–0x04001003 Reserved

0x04002018 Timer Channel 4 Control Register TMR4CTL 2

0x04001002–0x04001003 Reserved

0x0400201C Timer Channel 4 Status and Control Register TMR4SCTL 2

0x04001002–0x04001003 Reserved

0x04002020 Timer Channel 4 Compare 1 Load Register TMR4CMPLD1 2

0x04001002–0x04001003 Reserved

0x04002024 Timer Channel 4 Compare 2 Load Register TMR4CMPLD2 2

0x04001002–0x04001003 Reserved

0x04002028 Timer Channel 4 Comparator Status and Control
Register

TMR4COMSC 2

0x0400202A–0x0400203F Reserved

0x04002040 Timer Channel 5 Compare Register 1 TMR5CMP1 2

0x04001002–0x04001003 Reserved

0x04002044 Timer Channel 5 Compare Register 2 TMR5CMP2 2

0x04001002–0x04001003 Reserved

0x04002048 Timer Channel 5 Capture Register TMR5CAP 2

0x04001002–0x04001003 Reserved

0x0400204C Timer Channel 5 Load Register TMR5LOAD 2

0x04001002–0x04001003 Reserved

0x04002050 Timer Channel 5 Hold Register TMR5HOLD 2

0x04001002–0x04001003 Reserved

0x04002054 Timer Channel 5 Counter Register TMR5CNTR 2

0x04001002–0x04001003 Reserved

0x04002058 Timer Channel 5 Control Register TMR5CTL 2

0x04001002–0x04001003 Reserved

0x0400205C Timer Channel 5 Status and Control Register TMR5SCTL 2

0x04001002–0x04001003 Reserved

0x04002060 Timer Channel 5 Compare 1 Load Register TMR5CMPLD1 2

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-13

Memory Map
0x04001002–0x04001003 Reserved

0x04002064 Timer Channel 5 Compare 2 Load Register TMR5CMPLD2 2

0x04001002–0x04001003 Reserved

0x04002068 Timer Channel 5 Comparator Status and Control
Register

TMR5COMSC 2

0x0400206A–0x0400207F Reserved

0x04002080 Timer Channel 6 Compare Register 1 TMR6CMP1 2

0x04001002–0x04001003 Reserved

0x04002084 Timer Channel 6 Compare Register 2 TMR6CMP2 2

0x04001002–0x04001003 Reserved

0x04002088 Timer Channel 6 Capture Register TMR6CAP 2

0x04001002–0x04001003 Reserved

0x0400208C Timer Channel 6 Load Register TMR6LOAD 2

0x04001002–0x04001003 Reserved

0x04002090 Timer Channel 6 Hold Register TMR6HOLD 2

0x04001002–0x04001003 Reserved

0x04002094 Timer Channel 6 Counter Register TMR6_CNTR 2

0x04001002–0x04001003 Reserved

0x04002098 Timer Channel 6 Control Register TMR6CTL 2

0x04001002–0x04001003 Reserved

0x0400209C Timer Channel 6 Status and Control Register TMR6SCTL 2

0x04001002–0x04001003 Reserved

0x040020A0 Timer Channel 6 Compare 1 Load Register TMR6CMPLD1 2

0x04001002–0x04001003 Reserved

0x040020A4 Timer Channel 6 Compare 2 Load Register TMR6CMPLD2 2

0x04001002–0x04001003 Reserved

0x040020A8 Timer Channel 6 Comparator Status and Control
Register

TMR6COMSC 2

0x040020AA–0x040020BF Reserved

0x040020C0 Timer Channel 7 Compare Register 1 TMR7CMP1 2

0x04001002–0x04001003 Reserved

0x040020C4 Timer Channel 7 Compare Register 2 TMR7CMP2 2

0x04001002–0x04001003 Reserved

0x040020C8 Timer Channel 7 Capture Register TMR7CAP 2

0x04001002–0x04001003 Reserved

0x040020CC Timer Channel 7 Load Register TMR7LOAD 2

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-14 Freescale Semiconductor

Memory-Mapped Registers
0x04001002–0x04001003 Reserved

0x040020D0 Timer Channel 7 Hold Register TMR7HOLD 2

0x04001002–0x04001003 Reserved

0x040020D4 Timer Channel 7 Counter Register TMR7CNTR 2

0x04001002–0x04001003 Reserved

0x040020D8 Timer Channel 7 Control Register TMR7CTL 2

0x04001002–0x04001003 Reserved

0x040020DC Timer Channel 7 Status and Control Register TMR7SCTL 2

0x04001002–0x04001003 Reserved

0x040020E0 Timer Channel 7 Compare 1 Load Register TMR7CMPLD1 2

0x04001002–0x04001003 Reserved

0x040020E4 Timer Channel 7 Compare 2 Load Register TMR7CMPLD2 2

0x04001002–0x04001003 Reserved

0x040020E8 Timer Channel 7 Comparator Status and Control
Register

TMR7COMSC 2

0x040010EA–0x04002FFF Reserved

0x04003000 Master Priority Register 0 MPR0 4

0x04003004 Alternate Master Priority Register 0 AMPR0 4

0x04003008–0x0400300F Reserved

0x04003010 Slave General-Purpose Register 0 SGPCR0 4

0x04003014 Alternate Slave General-Purpose Register 0 ASGPCR0 4

0x04003018–0x040030FF Reserved

0x04003100 Master Priority Register 1 MPR1 4

0x04003104 Alternate Master Priority Register Port 1 AMPR1 4

0x04003108–0x0400310F Reserved

0x04003110 Slave General-Purpose Register 1 SGPCR1 4

0x04003114 Alternate Slave General-Purpose Register 1 ASGPCR1 4

0x04003118–0x040031FF Reserved

0x04003200 Master Priority Register 2 MPR2 4

0x04003204 Alternate Master Priority Register Port 2 AMPR2 4

0x04003208–0x0400320F Reserved

0x04003210 Slave General-Purpose Register 2 SGPCR2 4

0x04003214 Alternate Slave General-Purpose Register 2 ASGPCR2 4

0x04003218–0x040032FF Reserved

0x04003300 Master Priority Register 3 MPR3 4

0x04003304 Alternate Master Priority Register 3 AMPR3 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-15

Memory Map
0x04003308–0x0400330F Reserved

0x04003310 Slave General-Purpose Register 3 SGPCR3 4

0x04003314 Alternate Slave General-Purpose Register 3 ASGPCR3 4

0x04003318–0x040033FF Reserved

0x04003400 Master Priority Register 4 MPR4 4

0x04003404 Alternate Master Priority Register 4 AMPR4 4

0x04003408–0x0400340F Reserved

0x04003410 Slave General-Purpose Register 4 SGPCR4 4

0x04003414 Alternate Slave General-Purpose Register 4 ASGPCR4 4

0x04003418–0x040034FF Reserved

0x04003500 Master Priority Register 5 MPR5 4

0x04003504 Alternate Master Priority Register 5 AMPR5 4

0x04003508–0x0400350F Reserved

0x04003510 Slave General-Purpose Register 5 SGPCR5 4

0x04003514 Alternate Slave General-Purpose Register 5 ASGPCR5 4

0x04003518–0x04003FFF Reserved

0x04004000 DMA Control Register DMACR 4

0x04004004 DMA Error Status DMAES 4

0x04004008–0x0400400B Reserved

0x0400400C DMA Enable Request DMAERQ 4

0x04004010–0x04004023 Reserved

0x04004024 DMA Enable Error Interrupt DMAEEI 4

0x04004018 DMA Set Enable Request DMASERQ 1

0x04004019 DMA Clear Enable Request DMACERQ 1

0x0400401A DMA Set Enable Error Interrupt DMASEEI 1

0x0400401B DMA Clear Enable Error Interrupt DMACEEI 1

0x0400401C DMA Clear Interrupt Request DMACINT 1

0x0400401D DMA Clear Error DMACERR 1

0x0400401E DMA Set Start Bit DMASSRT 1

0x0400401F DMA Clear DONE Status Bit DMACDNE 1

0x04004020–0x04004023 Reserved

0x04004024 DMA Interrupt Request DMAINT 4

0x04004028–0x0400402B Reserved

0x0400402C DMA Error Register DMAERR 4

0x04004030–0x040040FF Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-16 Freescale Semiconductor

Memory-Mapped Registers
0x04004100 DMA Channel 0 Priority DCHPRI0 1

0x04004101 DMA Channel 1 Priority DCHPRI1 1

0x04004102 DMA Channel 2 Priority DCHPRI2 1

0x04004103 DMA Channel 3 Priority DCHPRI3 1

0x04004104 DMA Channel 4 Priority DCHPRI4 1

0x04004105 DMA Channel 5 Priority DCHPRI5 1

0x04004106 DMA Channel 6 Priority DCHPRI6 1

0x04004107 DMA Channel 7 Priority DCHPRI7 1

0x04004108 DMA Channel 8 Priority DCHPRI8 1

0x04004109 DMA Channel 9 Priority DCHPRI9 1

0x0400410A DMA Channel 10 Priority DCHPRI10 1

0x0400410B DMA Channel 11 Priority DCHPRI11 1

0x0400410C DMA Channel 12 Priority DCHPRI12 1

0x0400410D DMA Channel 13 Priority DCHPRI13 1

0x0400410E DMA Channel 14 Priority DCHPRI14 1

0x0400410F DMA Channel 15 Priority DCHPRI15 1

0x04004110 DMA Channel 16 Priority DCHPRI16 1

0x04004111 DMA Channel 17 Priority DCHPRI17 1

0x04004112 DMA Channel 18 Priority DCHPRI18 1

0x04004113 DMA Channel 19 Priority DCHPRI19 1

0x04004114 DMA Channel 20 Priority DCHPRI20 1

0x04004115 DMA Channel 21 Priority DCHPRI21 1

0x04004116 DMA Channel 22 Priority DCHPRI22 1

0x04004117 DMA Channel 23 Priority DCHPRI23 1

0x04004118 DMA Channel 24 Priority DCHPRI24 1

0x04004119 DMA Channel 25 Priority DCHPRI25 1

0x0400411A DMA Channel 26 Priority DCHPRI26 1

0x0400411B DMA Channel 27 Priority DCHPRI27 1

0x0400411C DMA Channel 28 Priority DCHPRI28 1

0x0400411D DMA Channel 29 Priority DCHPRI29 1

0x0400411E DMA Channel 30 Priority DCHPRI30 1

0x0400411F DMA Channel 31 Priority DCHPRI31 1

0x04004120–0x04004FFF Reserved

0x04005000 Transfer Control Descriptor 0 TCD0 32

0x04005020 Transfer Control Descriptor 1 TCDx-1 32

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-17

Memory Map
0x04005040 Transfer Control Descriptor 2 TCDx-2 32

0x04005060 Transfer Control Descriptor 3 TCDx-3 32

0x04005080 Transfer Control Descriptor 4 TCDx-4 32

0x040050A0 Transfer Control Descriptor 5 TCDx-5 32

0x040050C0 Transfer Control Descriptor 6 TCDx-6 32

0x040050E0 Transfer Control Descriptor 7 TCDx-7 32

0x04005100 Transfer Control Descriptor 8 TCDx-8 32

0x04005120 Transfer Control Descriptor 9 TCDx-9 32

0x04005140 Transfer Control Descriptor 10 TCDx-10 32

0x04005160 Transfer Control Descriptor 11 TCDx-11 32

0x04005180 Transfer Control Descriptor 12 TCDx-12 32

0x040051A0 Transfer Control Descriptor 13 TCDx-13 32

0x040051C0 Transfer Control Descriptor 14 TCDx-14 32

0x040051E0 Transfer Control Descriptor 15 TCDx-15 32

0x04005200 Transfer Control Descriptor 16 TCDx-16 32

0x04005220 Transfer Control Descriptor 17 TCDx-17 32

0x04005240 Transfer Control Descriptor 18 TCDx-18 32

0x04005260 Transfer Control Descriptor 19 TCDx-19 32

0x04005280 Transfer Control Descriptor 20 TCDx-20 32

0x040052A0 Transfer Control Descriptor 21 TCDx-21 32

0x040052C0 Transfer Control Descriptor 22 TCDx-22 32

0x040052E0 Transfer Control Descriptor 23 TCDx-23 32

0x04005300 Transfer Control Descriptor 24 TCDx-24 32

0x04005320 Transfer Control Descriptor 25 TCDx-25 32

0x04005340 Transfer Control Descriptor 26 TCDx-26 32

0x04005360 Transfer Control Descriptor 27 TCDx-27 32

0x04005380 Transfer Control Descriptor 28 TCDx-28 32

0x040053A0 Transfer Control Descriptor 29 TCDx-29 32

0x040053C0 Transfer Control Descriptor 30 TCDx-30 32

0x040053E0 Transfer Control Descriptor 31 TCDx-31 32

0x04005400–0x04005FFF Reserved

0x04006000 FEC Identification Register FECID 4

0x04006004 Interrupt Event Register IEVENT 4

0x04006008 Interrupt Enable Register IMASK 4

0x0400600C Descriptor Ring Poll Control Register DRPC 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-18 Freescale Semiconductor

Memory-Mapped Registers
0x0400600D–0x0400600F Reserved

0x04006010 Receive Descriptor Active Register RDA 4

0x04006014 Transmit Descriptor Active Register TDA 4

0x04006018–0x04006023 Reserved

0x04006024 Ethernet Control Register ECTL 4

0x04006028–0x0400603F Reserved

0x04006040 MII Management Frame Register MIIDATA 4

0x04006044 MII Speed Control Register MIISPEED 4

0x04006048–0x04006063 Reserved

0x04006064 MIB Control Register MIBCTL 4

0x04006068–0x04006083 Reserved

0x04006084 Receive Control Register RCTL 4

0x04006088 Receive Hash RHASH 4

0x0400608C–0x040060C3 Reserved

0x040060C4 Transmit Control Register TCTL 4

0x040060C8–0x040060E3 Reserved

0x040060E4 Physical Address Low Register PADDRL 4

0x040060E8 Physical Address High Register PADDRH 4

0x040060EC Opcode/Pause Duration Register OPPAUSE 4

0x040060F0–0x04006117 Reserved

0x04006118 Descriptor Individual Address 1 IADDR1 4

0x0400611C Descriptor Individual Address 2 IADDR2 4

0x04006120 Descriptor Group Address 1 GADDR1 4

0x04006124 Descriptor Group Address 2 GADDR2 4

0x04006128–0x0400613F Reserved

0x04006140 FIFO ID Register FIFOID 4

0x04006144 FIFO Transmit Watermark Register TWMRK 4

0x04006148–0x0400614B Reserved

0x0400614C FIFO Receive Bound Register FRBND 4

0x04006150 FIFO Receive Start Register FRST 4

0x04006154–0x0400617F Reserved

0x04006180 Receive Descriptor Ring Start Register RDESST 4

0x04006184 Transmit Descriptor Ring Start Register TDESST 4

0x04006188 Receive Buffer Size Register RBSZ 4

0x0400618C–0x040061F3 Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-19

Memory Map
0x040061F4 DMA Control Register DMACTL 4

0x040061F8–0x040061FF Reserved

0x04006200 RMON Transmit Frames Dropped RMON_T_DROP 4

0x04006204 RMON Transmit Packet Count RMON_T_PACKETS 4

0x04006208 RMON Transmit Broadcast Packets RMON_T_BC_PKT 4

0x0400620C RMON Transmit Multicast Packets RMON_T_MC_PKT 4

0x04006210 RMON Transmit Packets with CRC/Alignment Error RMON_T_CRC_ALIGN 4

0x04006214 RMON Transmit Packets Undersized RMON_T_UNDERSIZE 4

0x04006218 RMON Transmit Packets Oversized RMON_T_OVERSIZE 4

0x0400621C RMON Transmit Packets Fragmented RMON_T_FRAG 4

0x04006220 RMON Transmit Packets Tabber RMON_T_JAB 4

0x04006224 RMON Transmit Packet Collision Count RMON_T_COL 4

0x04006228 RMON Transmit Packets 64 Bytes RMON_T_P64 4

0x0400622C RMON Transmit Packets 65–0x127 Bytes RMON_T_P65TO127 4

0x04006230 RMON Transmit Packets 128–0x255 Bytes RMON_T_P128TO255 4

0x04006234 RMON Transmit Packets 256–0x511 Bytes RMON_T_P256TO511 4

0x04006238 RMON Transmit Packets 512–0x1023 Bytes RMON_T_P512TO1023 4

0x0400623C RMON Transmit Packets 1024–0x2047 Bytes RMON_T_P1024TO2047 4

0x04006240 RMON Transmit Packets 2048 Bytes RMON_T_PGTE2048 4

0x04006244 RMON Transmit Octets RMON_T_OCTETS 4

0x04006248 Frames Not Transmitted Correctly IEEE_T_DROP 4

0x0400624C Frames Transmitted OK IEEE_T_FRAME_OK 4

0x04006250 Frames Transmitted with Single Collision IEEE_T_1COL 4

0x04006254 Frames Transmitted with Multiple Collisions IEEE_T_MCOL 4

0x04006258 Frames Transmitted after Deferral Delay IEEE_T_DEF 4

0x0400625C Frames Transmitted with Late Collision IEEE_T_LCOL 4

0x04006260 Frames Transmitted with Excessive Collision IEEE_T_EXCOL 4

0x04006264 Frames Transmitted with Transmit FIFO Underrun IEEE_T_MACERR 4

0x04006268 Frames Transmitted with Carrier Sense Error IEEE_T_CSERR 4

0x0400626C Frames Transmitted with SQE Error IEEE_T_SQE 4

0x04006270 Flow Control Pause Frames Transmitted T_FDXFC 4

0x04006274 Frames Transmitted without Error Octet Count IEEE_T_OCTETS_OK 4

0x04006278–0x0400627F Reserved

0x04006280 RMON Receive Frames Dropped RMON_R_DROP 4

0x04006284 RMON Receive Packet Count RMON_R_PACKETS 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-20 Freescale Semiconductor

Memory-Mapped Registers
0x04006288 RMON Receive Broadcast Packets RMON_R_BC_PKT 4

0x0400628C RMON Receive Multicast Packets RMON_R_MC_PKT 4

0x04006290 RMON Receive Packets with CRC/Alignment Error RMON_R_CRC_ALIGN 4

0x04006294 RMON Receive Packets Undersized RMON_R_UNDERSIZE 4

0x04006298 RMON Receive Packets Oversized RMON_R_OVERSIZE 4

0x0400629C RMON Receive Packets Fragmented RMON_R_FRAG 4

0x040062A0 RMON Receive Packets Jabber RMON_R_JAB 4

0x040062A4 RMON Receive Packet Collision Count RMON_R_COL 4

0x040062A8 RMON Receive Packets 64 Bytes RMON_R_P64 4

0x040062AC RMON Receive Packets 65–0x127 Bytes RMON_R_P65TO127 4

0x040062B0 RMON Receive Packets 128–0x255 Bytes RMON_R_P128TO255 4

0x040062B4 RMON Receive Packets 256–0x511 Bytes RMON_R_P256TO511 4

0x040062B8 RMON Receive Packets 512–0x1023 Bytes RMON_R_P512TO1023 4

0x040062BC RMON Receive Packets 1024–0x2047 Bytes RMON_R_P1024TO2047 4

0x040062C0 RMON Receive Packets 2048 Bytes RMON_R_PGTE2048 4

0x040062C4 RMON Receive Octets RMON_R_OCTETS 4

0x040062C8 Frames Not Received Correctly IEEE_R_DROP 4

0x040062CC Frames Received OK IEEE_R_FRAME_OK 4

0x040062D0 Frames Received with CRC Error IEEE_R_CRC 4

0x040062D4 Frames Received with Alignment Error IEEE_R_ALIGN 4

0x040062D8 Receive FIFO Overflow Count IEEE_R_MACERR 4

0x040062DC Flow Control Pause Frames Received R_FDXFC 4

0x040062E0 Frames Received without Error Octet Count IEEE_R_OCTETS_OK 4

0x040062E4–0x040063FF Reserved

0x04006400 MIIGSK Configuration Register MIIGSKCFG 4

0x04006404–0x04006407 Reserved

0x04006408 MIIGSK Enable Register MIIGSKEN 4

0x0400640C–0x04007FFF Reserved

0x04008000 Chip Select 0 Memory Bounds Register CSBR0 4

0x04008004–0x04008007 Reserved

0x04008008 Chip Select 1 Memory Bounds Register CSBR1 4

0x0400800C–0x0400807F Reserved

0x04008080 Chip Select 0 Configuration CS0CFG 4

0x04008084 Chip Select 1 Configuration CS1CFG 4

0x04008088–0x04008107 Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-21

Memory Map
0x04008108 DDR SDRAM Timing Configuration Register 1 TCFG1 4

0x0400810C DDR SDRAM Timing Configuration Register 2 TCFG2 4

0x04008110 DDR SDRAM Control Configuration Register SCFG 4

0x04008114–0x04008117 Reserved

0x04008118 DDR SDRAM Mode Configuration Register SMCFG 4

0x0400811C–0x04008123 Reserved

0x04008124 DDR SDRAM Interval Configuration Register SICFG 4

0x04008128 Reserved

0x04008130 DDR SDRAM Clock Configuration Register SCLKCFG 4

0x04008134–0x04008E3F Reserved

0x04008E40 Memory Error Detect Register MERRD 4

0x04008E44–0x04008E47 Reserved

0x04008E48 Memory Error Interrupt Enable Register ERRINT 4

0x04008E4C Memory Error Attributes Capture Register MEAC 4

0x04008E50 Memory Error Address Capture Register MEADDC 4

0x04008E54 Memory Error Extended Address Capture Register MEEAC 4

0x04008E58–0x04008FFF Reserved

0x04009000 I2C Address Register I2AR 2

0x04009002–0x04009003 Reserved

0x04009004 I2C Frequency Divider Register I2FR 2

0x04009006–0x04009007 Reserved

0x04009008 I2C Control Register I2CTLR 2

0x0400900A–0x0400900B Reserved

0x0400900C I2C Status Register I2SR 2

0x0400900E–0x0400900F Reserved

0x04009010 I2C Data Register I2DR 2

0x04009012–0x04009FFF Reserved

0x0400A000 Bus Time-Out Control Register BTMCTL 4

0x0400A004 Reserved

0x0400A008 Bus Error Control Register BERRCTL 4

0x0400A00C–0x0400A07F Reserved

0x0400A080 Device Configuration Register DEVCFG 4

0x0400A084–0x0400AFFF Reserved

0x0400B000 Event Port Registers EV_BASE

0x0400B000 Event 0 Input Selection Register EVIN0

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-22 Freescale Semiconductor

Memory-Mapped Registers
0x0400B008 Event 1 Input Selection Register EVIN1

0x0400B010 Event 2 Input Selection Register EVIN2

0x0400B018 Event 3 Input Selection Register EVIN3

0x0400B020 Event 4 Input Selection Register EVIN4

0x0400B028 Event 5 Input Selection Register EVIN5

0x0400B030 Event 6 Input Selection Register EVIN6

0x0400B038 Event 7 Input Selection Register EVIN7

0x0400B040 Event A 0 Output Register EVOUT0

0x0400B048 Event A 1 Output Register EVOUT1

0x0400B050 Event A 2 Output Register EVOUT2

0x0400B058 Event A 3 Output Register EVOUT3

0x0400B060 Event A 4 Output Register EVOUT4

0x0400B068 Event A 5 Output Register EVOUT5

0x0400B070 Event A 6 Output Register EVOUT6

0x0400B078 Event A 7 Output Register EVOUT7

0x0400B0C0 Event Port Control EVCTL

0x0400B0C4–0x0400BFFF Reserved

0x0400C000 Clock Control Register CLKCTL 4

0x0400C004–0x0400C007 Reserved

0x0400C008 Stop Mode Control Register STOPCTL 4

0x0400C00C–0x0400C00F Reserved

0x0400C010 Halt Request Register HLTREQ 4

0x0400C014–0x0400C017 Reserved

0x0400C018 Halt Acknowledge Status Register HLTACK 4

0x0400C01C–0x0400C03F Reserved

0x0400C040 Reset Status Register RSR 4

0x0400C044–0x0400CFFF Reserved

0x0400D000 Peripheral Address Detection Control Register 0 PADCTL0 4

0x0400D004 Peripheral Address Detection Control Register 1 PADCTL1 4

0x0400D008 Reserved

0x0400D00C Peripheral Address Detection Status Register PADSR 4

0x0400D010 Reserved

0x0400D014 Peripheral Address Detection AMDMA Lower bound
Register 0

PADLWRD0 4

0x0400D018 Peripheral Address Detection AMDMA Lower bound
Register 1

PADLWRD1 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-23

Memory Map
0x0400D01C Peripheral Address Detection AMDMA Lower bound
Register 2

PADLWRD2 4

0x0400D020 Peripheral Address Detection AMDMA Lower bound
Register 3

PADLWRD3 4

0x0400D024–0x0400D02B Reserved

0x0400D02C Peripheral Address Detection AMDMA Upper bound
Register 0

PADUPRD0 4

0x0400D030 Peripheral Address Detection AMDMA Upper bound
Register 1

PADUPRD1 4

0x0400D034 Peripheral Address Detection AMDMA Upper bound
Register 2

PADUPRD2 4

0x0400D038 Peripheral Address Detection AMDMA Upper bound
Register 3

PADUPRD3 4

0x0400D03C–0x0400D043 Reserved

0x0400D044 Peripheral Address Detection AMENT Lower Bound
Register 0

PADLWRE0 4

0x0400D048 Peripheral Address Detection AMENT Lower Bound
Register 1

PADLWRE1 4

0x0400D04C Peripheral Address Detection AMENT Lower Bound
Register 2

PADLWRE2 4

0x0400D050 Peripheral Address Detection AMENT Lower Bound
Register 3

PADLWRE3 4

0x0400D054–0x0400D05B Reserved

0x0400D05C Peripheral Address Detection AMENT Upper Bound
Register 0

PADUPRX0 4

0x0400D060 Peripheral Address Detection AMENT Upper Bound
Register 1

PADUPRE1 4

0x0400D064 Peripheral Address Detection AMENT Upper Bound
Register 2

PADUPRE2 4

0x0400D068 Peripheral Address Detection AMENT Upper Bound
Register 3

PADUPRE3 4

0x0400D06C–0x0400D073 Reserved

0x0400D074 Peripheral Address Detection Capture AMDMA
Address Register

PADCPTD 4

0x0400D078 Peripheral Address Detection Capture AMENT
Address Register

PADCPTE 4

0x0400D07C–0x0400DFFF Reserved

0x0400E000 MCIF Control Register MCIFCTL 4

0x0400E004 Reserved

0x0400E008 DMA Read Buffer Channel Select Register DCHSEL 4

0x0400E00C Reserved

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-24 Freescale Semiconductor

Memory-Mapped Registers
0x0400E010 Alternate Read Buffer Channel Select Register ACHSEL 4

0x0400E014 Reserved

0x0400E018 MCIF Status Register MCIFSTAT 4

0x0400E01C–0x6000FFF Reserved

0x06001000 SWT Control Register SWTCTL 4

0x06001004 SWT Time-Out Range Register SWTTOR 4

0x06001008 SWT Current Counter Value Register SWTCCV 4

0x0600100C SWT Counter Restart Register SWTCR 4

0x06001010 SWT Interrupt Status Register SWTSTA 4

0x06001014 SWT End-of-Interrupt Register SWTEOI 4

0x06001018–0x06003FFF Reserved

0x06004000 TDM0 General Interface Register TDM0GIR 4

0x06004004 TDM0 Receive Interface Register TDM0RIR 4

0x06004008 TDM0 Transmit Interface Register TDM0TIR 4

0x0600400C TDM0 Receive Frame Parameters Register TDM0RFP 4

0x06004010 TDM0 Transmit Frame Parameters TDM0TFP 4

0x06004014–0x0600401F Reserved

0x06004020 TDM0 Receive Channel 0 Enable Register TDM0RCEN0 4

0x06004024 TDM0 Receive Channel 1 Enable Register TDM0RCEN1 4

0x06004028 TDM0 Receive Channel 2 Enable Register TDM0RCEN2 4

0x0600402C TDM0 Receive Channel 3 Enable Register TDM0RCEN3 4

0x06004030–0x0600403F Reserved

0x06004040 TDM0 Transmit Channel 0 Enable Register TDM0TCEN0 4

0x06004044 TDM0 Transmit Channel 1 Enable Register TDM0TCEN1 4

0x06004048 TDM0 Transmit Channel 2 Enable Register TDM0TCEN2 4

0x0600404C TDM0 Transmit Channel 3 Enable Register TDM0TCEN3 4

0x06004050–0x0600405F Reserved

0x06004060 TDM0 Transmit Channel 0 Mask Register TDM0TCMA0 4

0x06004064 TDM0 Transmit Channel 1 Mask Register TDM0TCMA1 4

0x06004068 TDM0 Transmit Channel 2 Mask Register TDM0TCMA2 4

0x0600406C TDM0 Transmit Channel 3 Mask Register TDM0TCMA3 4

0x06004070–0x0600407F Reserved

0x06004080 TDM0 Receive Control Register TDM0RCR 4

0x06004084 TDM0 Transmit Control Register TDM0TCR 4

0x06004088 TDM0 Receive Interrupt Enable Register TDM0RIER 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-25

Memory Map
0x0600408C TDM0 Transmit Interrupt Enable Register TDM0TIER 4

0x06004090–0x0600409F Reserved

0x060040A0 TDM0 Receive Event Register TDM0RER 4

0x060040A4 TDM0 Transmit Event Register TDM0TER 4

0x060040A8 TDM0 Receive Status Register TDM0RSR 4

0x060040AC TDM0 Transmit Status Register TDM0TSR 4

0x060040B0–0x06004FFF Reserved

0x06005000 TDM1 General Interface Register TDM1GIR 4

0x06005004 TDM1 Receive Interface Register TDM1RIR 4

0x06005008 TDM1 Transmit Interface Register TDM1TIR 4

0x0600500C TDM1 Receive Frame Parameters TDM1RFP 4

0x06005010 TDM1 Transmit Frame Parameters TDM1TFP 4

0x06005014–0x0600501F Reserved

0x06005020 TDM1 Receive Channel 0 Enable Register TDM1RCEN0 4

0x06005024 TDM1 Receive Channel 1 Enable Register TDM1RCEN1 4

0x06005028 TDM1 Receive Channel 2 Enable Register TDM1RCEN2 4

0x0600502C TDM1 Receive Channel 3 Enable Register TDM1RCEN3 4

0x06005030–0x0600503F Reserved

0x06005040 TDM1 Transmit Channel 0 Enable Register TDM1TCEN0 4

0x06005044 TDM1 Transmit Channel 1 Enable Register TDM1TCEN1 4

0x06005048 TDM1 Transmit Channel 2 Enable Register TDM1TCEN2 4

0x0600504C TDM1 Transmit Channel 3 Enable Register TDM1TCEN3 4

0x06005050–0x0600505F Reserved

0x06005060 TDM1 Transmit Channel 0 Mask Register TDM1TCMA0 4

0x06005064 TDM1 Transmit Channel 1 Mask Register TDM1TCMA1 4

0x06005068 TDM1 Transmit Channel 2 Mask Register TDM1TCMA2 4

0x0600506C TDM1 Transmit Channel 3 Mask Register TDM1TCMA3 4

0x06005070–0x0600507F Reserved

0x06005080 TDM1 Receive Control Register TDM1RCR 4

0x06005084 TDM1 Transmit Control Register TDM1TCR 4

0x06005088 TDM1 Receive Interrupt Enable Register TDM1RIER 4

0x0600508C TDM1 Transmit Interrupt Enable Register TDM1TIER 4

0x06005090–0x0600509F Reserved

0x060050A0 TDM1 Receive Event Register TDM1RER 4

0x060050A4 TDM1 Transmit Event Register TDM1TER 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-26 Freescale Semiconductor

Memory-Mapped Registers
0x060050A8 TDM1 Receive Status Register TDM1RSR 4

0x060050AC TDM1 Transmit Status Register TDM1TSR 4

0x060050B0–0x06005FFF Reserved

0x06006000 TDM2 General Interface Register TDM2GIR 4

0x06006004 TDM2 Receive Interface Register TDM2RIR 4

0x06006008 TDM2 Transmit Interface Register TDM2TIR 4

0x0600600C TDM2 Receive Frame Parameters TDM2RFP 4

0x06006010 TDM2 Transmit Frame Parameters TDM2TFP 4

0x06006014–0x0600601F Reserved

0x06006020 TDM2 Receive Channel 0 Enable Register TDM2RCEN0 4

0x06006024 TDM2 Receive Channel 1 Enable Register TDM2RCEN1 4

0x06006028 TDM2 Receive Channel 2 Enable Register TDM2RCEN2 4

0x0600602C TDM2 Receive Channel 3 Enable Register TDM2RCEN3 4

0x06006030–0x0600603F Reserved

0x06006040 TDM2 Transmit Channel 0 Enable Register TDM2TCEN0 4

0x06006044 TDM2 Transmit Channel 1 Enable Register TDM2TCEN1 4

0x06006048 TDM2 Transmit Channel 2 Enable Register TDM2TCEN2 4

0x0600604C TDM2 Transmit Channel 3 Enable Register TDM2TCEN3 4

0x06006050–0x0600605F Reserved

0x06006060 TDM2 Transmit Channel 0 Mask Register TDM2TCMA0 4

0x06006064 TDM2 Transmit Channel 1 Mask Register TDM2TCMA1 4

0x06006068 TDM2 Transmit Channel 2 Mask Register TDM2TCMA2 4

0x0600606C TDM2 Transmit Channel 3 Mask Register TDM2TCMA3 4

0x06006070–0x0600607F Reserved

0x06006080 TDM2 Receive Control Register TDM2RCR 4

0x06006084 TDM2 Transmit Control Register TDM2TCR 4

0x06006088 TDM2 Receive Interrupt Enable Register TDM2RIER 4

0x0600608C TDM2 Transmit Interrupt Enable Register TDM2TIER 4

0x06006090–0x0600609F Reserved

0x060060A0 TDM2 Receive Event Register TDM2RER 4

0x060060A4 TDM2 Transmit Event Register TDM2TER 4

0x060060A8 TDM2 Receive Status Register TDM2RSR 4

0x060060AC TDM2 Transmit Status Register TDM2TSR 4

0x060060B0–0x06006FFF Reserved

0x06007000 Host Control Register HCR 2

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-27

Memory Map
0x06007002–0x0600701F Reserved

0x06007020 Host Port Control Register HPCR 2

0x06007022–0x0600703F Reserved

0x06007040 Host Status Register HSR 2

0x06007042–0x0600705F Reserved

0x06007060 Host Command Vector Register HCVR 2

0x06007062–0x0600707F Reserved

0x06007080 Host Transmit Data Register HOTX 8

0x06007088–0x0600709F Reserved

0x060070A0 Host Receive Data Register HORX 8

0x060070A8–0x06008003 Reserved

0x06008004 Baud-Rate Divider Register BRDR 1

0x06008005–0x06008007 Reserved

0x06008008 Interrupt Identity Register IIR 1

0x06008009–0x0600800B Reserved

0x0600800C Line Control Register LCR 1

0x0600800D–0x06008013 Reserved

0x06008014 Line Status Register LSR 1

0x06008015–0x0600801B Reserved

0x0600801C Scratchpad Register SCR 1

0x0600801D–0x06008FFF Reserved

0x06009000 Port A Data Register GPADR 4

0x06009004 Port A Data Direction Register GPADDR 4

0x06009008 Port A Control Register GPACTL 4

0x0600900C Port B Data Register GPBDR 4

0x06009010 Port B Data Direction Register GPBDDR 4

0x06009014 Port B Control Register GPBCTL 4

0x06009018 Port C Data Register GPCDR 4

0x0600901C Port C Data Direction Register GPCDDR 4

0x06009020 Port C Control Register GPCCTL 4

0x06009024 Port D Data Register GPDDR 4

0x06009028 Port D Data Direction Register GPDDDR 4

0x0600902C Port D Control Register GPDCTL 4

0x06009030 Port A Interrupt Enable Register GPAIEN 4

0x06009034 Port A Interrupt Mask Register GPAIMSK 4

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

5-28 Freescale Semiconductor

Memory-Mapped Registers
0x06009038 Port A Interrupt Detection Type Register GPAITYP 4

0x0600903C Port A Interrupt Polarity Register GPAIPOL 4

0x06009040 Port A Interrupt Status Register GPAISR 4

0x06009044 Port A Interrupt Raw Status Register GPAIRSR 4

0x06009048–0x0600904B Reserved

0x0600904C Clear Interrupt Register GPAICLR 4

0x06009050 Port A External Port Register GPAEXPR 4

0x06009054 Port B External Port Register GPBEXPR 4

0x06009058 Port C External Port Register GPCEXPR 4

0x0600905C Port D External Port Register GPDEXPR 4

0x06009060 Interrupt Synchronous Level Sensitive PAISLS 4

0x06009064–0x06009FFF Reserved

0x0600A000 Non-Maskable Interrupt Pending Register NMIPR 4

0x0600A004–0x0600A007 Reserved

0x0600A008 Maskable Interrupt Pending Register MIPR 4

0x0600A00C–0x0600AFFF Reserved

0x0600B000 Interrupt Priority Level Register 0 IPLR0 4

0x0600B004 Interrupt Priority Level Register 1 IPLR1 4

0x0600B008 Interrupt Priority Level Register 2 IPLR2 4

0x0600B00C Interrupt Priority Level Register 3 IPLR3 4

0x0600B010 Interrupt Priority Level Register 4 IPLR4 4

0x0600B014 Interrupt Priority Level Register 5 IPLR5 4

0x0600B018 Interrupt Priority Level Register 6 IPLR6 4

0x0600B01C Interrupt Priority Level Register 7 IPLR7 4

0x0600B020 Interrupt Priority Level Register 8 IPLR8 4

0x0600B024 Interrupt Priority Level Register 9 IPLR9 4

0x0600B028 Interrupt Priority Level Register 10 IPLR10 4

0x0600B02C Interrupt Priority Level Register 11 IPLR11 4

0x0600B030 Interrupt Priority Level Register 12 IPLR12 4

0x0600B034 Interrupt Priority Level Register 13 IPLR13 4

0x0600B038 Interrupt Priority Level Register 14 IPLR14 4

0x0600B03C–0x1FFFFFFF Reserved

0x20000000–0xFFFFFFFF External DDR Memory

Table 5-2. MSC711x Detailed Memory Map (Continued)

Address Register/Memory Region Acronym
Size

in
Bytes
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-29

Memory Map
Table 5-3 summarizes the MSC711x memory map and shows the valid ranges for the different
sizes of M1 memory on different MSC711x devices.

Table 5-3. Summary — MSC711x Memory Map

Address Range Description Size

Extended Core Memory (M1)

064 KB: 0x00000000–0x0000FFFF
192 KB: 0x00000000–0x0002FFFF
256 KB: 0x00000000–0x0003FFFF

M1 memory when accessed by the SC1400 core 192 KB

064 KB: 0x00010000–0x00EFEFFF
192 KB: 0x00030000–0x00EFEFFF
256 KB: 0x00040000–0x00EFEFFF

Reserved

Extended Core Registers, ICache Array

 0x00EFF000–0x00EFFFFF OCE10 emulator registers 4 KB

0x00F00000–0x00F1FFFF ICache registers
Extended core interface registers
Core address detection registers

—

0x00F20000–0x00F23FFF ICache array contents 16 KB

0x00F24000–0x00FFFFFF Reserved

Internal Memory (M2, Boot ROM)

0x0100000–0x0102FFFF M2 Memory (for devices with M2 memory) 192 KB

0x01030000–0x013FFFFF Reserved

0x01400000–0x01401FFF Boot ROM 8 KB

0x01402000–0x017FFFFF Reserved

Extended Core Memory (M1)— Accessible from Masters on the Crossbar Switch

064 KB: 0x01800000–0x0180FFFF
192 KB: 0x01800000–0x0182FFFF
256 KB: 0x018000000–0x0183FFFF

M1 memory when accessed by the DMA controller via the AMDMA
bus or the Ethernet MAC via the AMENT bus.

192 KB

064 KB: 0x01810000–0x01F7FFFF
192 KB: 0x01830000–0x01F7FFFF
256 KB: 0x01840000–0x01F7FFFF

Reserved

Peripherals

0x01F80000–0x03FFFFFF TDM/HDI16 high speed ports (via ASTH bus) —

0x04000000–0x05FFFFFF IPBus peripheral registers (via ASSB bus) 32 MB

0x06000000–0x07FFFFFF APB peripheral registers (via ASAPB bus) 32 MB

External Address Space

0x08000000–0x1FFFFFFF Reserved

0x20000000–0xFFFFFFFF External DDR memory (via ASEMI bus) —
MSC711x Reference Manual, Rev. 1

5-30 Freescale Semiconductor

Address Space by Type of Access
5.3 Address Space by Type of Access

The address space accessible by each type of master port access is shown in the following:

� Section 5.4, Program Accesses, on page 5-31

� Section 5.4.1, SC1400 Read Data Accesses, on page 5-32

� Section 5.4.2, SC1400 Core and Write Buffer Data Accesses, on page 5-33

� Section 5.4.3, DMA Read Data Accesses, on page 5-33

� Section 5.4.4, DMA Write Data Accesses, on page 5-34

� Section 5.4.5, Ethernet MAC Read Data Accesses, on page 5-35

� Section 5.4.6, Ethernet MAC Write Data Accesses, on page 5-36

5.4 Program Accesses

Program accesses can be generated by the SC1400 or by the cache instruction fetch unit. Program
fetches to the memory map occur as follows:

Cacheable regions are determined by the IRBSR and IRCR registers (see Section 4.7.2,
Instruction Cacheable Area, on page 4-37). Note that when the SC1400 core accesses an address

Table 5-4. Program Fetches from MSC711x Memory Map

Address Range Description

064 KB: 0x00000000–0x0000FFFF
192 KB: 0x00000000–0x0002FFFF
256 KB: 0x00000000–0x0003FFFF

SC1400 fetches from M1 RAM.
Non-cacheable, zero wait states.

064 KB: 0x00010000–0x00EFEFFF
192 KB: 0x00030000–0x00EFEFFF
256 KB: 0x00040000–0x00EFEFFF

Accesses not permitted. Generates an AORP_E NMI interrupt.

0x00F00000–0x00FFFFFF Accesses not permitted. Generates an AORP_E NMI interrupt.

0x01000000–0x0102FFFF Cacheable: IFU bursts from M2 RAM to ICache on cache misses.
Non-cacheable: SC1400 fetches from M2 RAM through the IFU.
For devices without M2 memory, this generates an AORP_AMIC NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x01400000–0x01401FFF Cacheable: IFU bursts from Boot ROM to ICache on cache misses.
Non-cacheable: SC1400 fetches from Boot ROM through the IFU.

0x01402000–0x017FFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x01800000–0x01F7FFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x01F80000–0x03FFFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x04000000–0x05FFFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x06000000–0x07FFFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORP_AMIC NMI interrupt.

0x20000000–0xFFFFFFFF Cacheable: IFU bursts from external memory to ICache on cache misses.
Non-cacheable: SC1400 core fetches from external memory through the IFU.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-31

Memory Map
in a cacheable region, the ICache processes the access. If the desired location is already in the
cache, its value is provided to the SC1400 core. If the location is not in the cache, the IFU
initiates an access to the correct location within a cacheable region. This is the reason why the
SC1400 core does not directly access cacheable regions of the memory map. However, the
SC1400 core can access any regions programmed as non-cacheable.

Note: Locations 0x01401800–0x01401BFF of the boot ROM are reserved for use by
development tools.

5.4.1 SC1400 Read Data Accesses

Table 5-5 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices.

Table 5-5. SC1400 Data Reads from MSC711x Memory Map

Address Range Description

064 KB: 0x00000000–0x0000FFFF
192 KB: 0x00000000–0x0002FFFF
256 KB: 0x00000000–0x0003FFFF

SC1400 reads value from M1 RAM. Zero wait states.

064 KB: 0x00010000–0x00EFEFFF
192 KB: 0x00030000–0x00EFEFFF
256 KB: 0x00040000–0x00EFEFFF

Accesses not permitted. Generates an AORX_E NMI interrupt.

0x00EFF000–0x00EFFFFF SC1400 core reads the value from OCE10 emulator registers. Zero wait states.

0x00F00000–0x00FFFFFF SC1400 core reads the value from selected peripheral registers. Zero wait states.

0x01000000–0x0102FFFF SC1400 core reads the value from M2 memory through the ECI. For devices without
M2 memory, this generates an AORX_AMEC NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01400000–0x01401FFF SC1400 core reads the value from Boot ROM through the ECI.

0x01402000–0x017FFFFF • Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01800000–0x01F7FFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01F80000–0x01F83FFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01F84000–0x01F87FFF SC1400 core reads the value from a TDM/HDI16 High Speed Port through the ECI

0x01F88000–0x03FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x04000000–0x0400EFFF SC1400 core reads the value from a IPBus peripheral register through the ECI.

0x0400F000–0x05FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x06000000–0x0600BFFF SC1400 core reads the value from an APB peripheral register through the ECI.

0x0600C000–0x07FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x20000000–0xFFFFFFFF SC1400 core reads the value from external memory through the ECI.
MSC711x Reference Manual, Rev. 1

5-32 Freescale Semiconductor

Program Accesses
5.4.2 SC1400 Core and Write Buffer Data Accesses

Table 5-6 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices. Writes outside the extended core are either directly performed by the SC1400
core through the bus switch or indirectly performed when the SC1400 core writes to the write
buffer and the write buffer completes the access.

5.4.3 DMA Read Data Accesses

Table 5-7 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices.

Table 5-6. SC1400 and WB Data Writes to MSC711x Memory Map

Address Range Description

064 KB: 0x00000000–0x0000FFFF
192 KB: 0x00000000 –0x0002FFFF
256 KB: 0x00000000–0x0003FFFF

SC1400 core writes the value to M1 RAM. Zero wait states.

064 KB: 0x00010000–0x00EFEFFF
192 KB: 0x00030000–0x00EFEFFF
256 KB: 0x00040000–0x00EFEFFF

Accesses not permitted. Generates an AORX_E NMI interrupt.

0x00EFF000–0x00EFFFFF SC1400 core writes the value to the OCE10 emulator registers. Zero wait states.

0x00F00000–0x00FFFFFF SC1400 core writes the value to selected peripheral registers. Zero wait states.

0x01000000–0x0102FFFF SC1400 core writes the value to M2 memory through the ECI. For devices without M2
memory, this generates an AORX_AMEC NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01400000–0x01401FFF Accesses not permitted. Generates an ROM_WR NMI interrupt.

0x01402000–0x017FFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01800000 –0x01F7FFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01F80000–0x01F83FFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x01F84000–0x01F87FFF ECore writes the value to a TDM/HDI16 high speed port through the ECI.

0x01F88000–0x03FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x04000000–0x0400DFFF ECore writes the value to an IPBus peripheral register through the ECI.

0x0400E000–0x05FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x06000000–0x0600BFFF ECore writes the value to an APB peripheral register through the ECI.

0x0600C000–0x07FFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMEC NMI interrupt.

0x20000000–0xFFFFFFFF ECore writes the value to external memory through the ECI.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-33

Memory Map
5.4.4 DMA Write Data Accesses

Table 5-8 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices.

Table 5-7. DMA Reads from MSC711x Memory Map

Address Range Description

0x00000000–0x00FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.
The DMA controller accesses M1 memory in a different address range.

0x01000000–0x0102FFFF DMA controller reads the value from M2 memory through the crossbar switch. For
devices without M2 memory, this generates an AORX_AMDMA NMI interrupt.

0x01030000–013FFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01400000–01401FFF DMA controller reads the value from boot ROM through the crossbar switch.

0x01402000–017FFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

064 KB: 0x01800000–0x0180FFFF
192 KB: 0x01800000–0x0182FFFF
256 KB: 0x01800000–0x0183FFFF

DMA controller reads the value from M1 RAM through the crossbar switch.

064 KB: 0x01810000–0x01F7FFFF
192 KB: 0x01830000–0x01F7FFFF
256 KB: 0x01840000–0x01F7FFFF

Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01F80000–0x01F83FFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01F84000–0x01F87FFF DMA controller reads the value from a TDM/HDI16 high speed port through the
crossbar switch.

0x01F88000–0x03FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x04000000–0x0400DFFF DMA controller reads value from IPBus peripheral register through the crossbar
switch.

0x0400E000–0x05FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x06000000–0x0600BFFF DMA controller reads value from APB peripheral register through the crossbar switch.

0x0600C000–0x07FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x20000000–0xFFFFFFFF DMA controller reads value from external memory through the crossbar switch.

Table 5-8. DMA Writes to MSC711x Memory Map

Address Range Description

0x00000000–0x00FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.
The DMA controller accesses M1 memory in a different address range.

0x01000000–0x0102FFFF DMA controller writes the value to M2 Memory through the crossbar switch. For
devices without M2 memory, this generates an AORX_AMDMA NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01400000–0x01401FFF Accesses not permitted. Generates an ROM_WR NMI interrupt.

0x01402000–0x017FFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.
MSC711x Reference Manual, Rev. 1

5-34 Freescale Semiconductor

Program Accesses
5.4.5 Ethernet MAC Read Data Accesses

Table 5-9 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices.

064 KB: 0x01800000–0x0180FFFF
192 KB: 0x01800000–0x0182FFFF
256 KB: 0x01800000–0x0183FFFF

DMA controller writes the value to M1 RAM through the crossbar switch.

064 KB: 0x01810000–0x01F7FFFF
192 KB: 0x01830000–0x01F7FFFF
256 KB: 0x01840000–0x01F7FFFF

Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01F80000–01F83FFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x01F84000–01F87FFF DMA controller writes the value to a TDM/HDI16 High Speed Port through the
crossbar switch.

0x01F88000–03FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x04000000–0400DFFF DMA controller writes the value to IPBus peripheral register through the crossbar
switch.

0x0400E000–05FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x06000000–0600BFFF DMA controller writes the value to APB peripheral register through the crossbar
switch.

0x0600C000–07FFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMDMA NMI interrupt.

0x20000000–0xFFFFFFFF DMA controller writes the value to external memory through the crossbar switch.

Table 5-9. Ethernet MAC DMA Reads from MSC711x Memory Map

Address Range Description

0x00000000–0x00FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.
The Ethernet accesses M1 memory in a different address range.

0x01000000–0x0102FFFF The Ethernet DMA reads the value from M2 memory through the crossbar switch. For
devices without M2 memory, this generates an AORX_AMENT NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01400000–0x01401FFF The Ethernet DMA reads the value from boot ROM through the crossbar switch.

0x01402000–0x017FFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

064 KB: 0x01800000–0x0180FFFF
192 KB: 0x01800000–0x0182FFFF
256 KB: 0x01800000–0x0183FFFF

The Ethernet DMA reads the value from M1 RAM through the crossbar switch.

064 KB: 0x01810000–0x01F7FFFF
192 KB: 0x01830000–0x01F7FFFF
256 KB: 0x01840000–0x01F7FFFF

Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01F80000–0x01F83FFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01F84000–0x01F87FFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

Table 5-8. DMA Writes to MSC711x Memory Map (Continued)

Address Range Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-35

Memory Map
5.4.6 Ethernet MAC Write Data Accesses

Table 5-10 shows valid address ranges for the different sizes of M1 memory on different
MSC711x devices.

0x01F88000–0x03FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x04000000–0x0400DFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x0400E000–0x05FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x06000000–0x0600BFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x0600C000–0x07FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x20000000–0xFFFFFFFF The Ethernet DMA reads value from external memory through the crossbar switch.

Table 5-10. Ethernet MAC DMA Writes to MSC711x Memory Map

Address Range Description

0x00000000–0x00FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.
The Ethernet accesses M1 memory in a different address range.

0x01000000–0x0102FFFF The Ethernet DMA writes value to M2 Memory through the crossbar switch. For
devices without M2 memory, this generates an AORX_AMENT NMI interrupt.

0x01030000–0x013FFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01400000–0x01401FFF Accesses not permitted. Generates an ROM_WR NMI interrupt.

0x01402000–0x017FFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

064 KB: 0x01800000–0x0180FFFF
192 KB: 0x01800000–0x0182FFFF
256 KB: 0x01800000–0x0183FFFF

The Ethernet DMA writes value to M1 RAM through the crossbar switch.

064 KB: 0x01810000–0x01F7FFFF
192 KB: 0x01830000–0x01F7FFFF
256 KB: 0x01840000–0x01F7FFFF

Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01F80000–0x01F83FFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01F84000–0x01F87FFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x01F88000–0x03FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x04000000–0x0400DFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x0400E000–0x05FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x06000000–0x0600BFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x0600C000–0x07FFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x08000000–0x1FFFFFFF Accesses not permitted. Generates an AORX_AMENT NMI interrupt.

0x20000000–0xFFFFFFFF The Ethernet DMA writes value to external memory through the crossbar switch.

Table 5-9. Ethernet MAC DMA Reads from MSC711x Memory Map (Continued)

Address Range Description
MSC711x Reference Manual, Rev. 1

5-36 Freescale Semiconductor

Access Restrictions
5.5 Access Restrictions

There are restrictions on accesses allowed within MSC711x:

� Each master port may have restrictions on which slave ports it can access

� Each slave port may have restrictions on the size of accesses performed

This section shows permitted accesses and permitted access sizes throughout the system.

5.5.1 Master Port Restrictions

This section covers accesses that are restricted on MSC711x devices. Restricted accesses are
detected by the illegal access detection blocks, which generate address out of range NMI
requests. See Section 7.2, Illegal Access Detection, on page 7-3.

5.5.1.1 AMEC Port

The extended core interface port cannot access the ASM1 slave port. Instead, core accesses to M1
are more efficiently performed through the P, XA, and XB buses. The AMEC master cannot be
used to access locations within the extended core, because these accesses reach the AMEC only if
they are valid accesses. Invalid accesses to addresses within the extended core generate the
AORP_E or the AORX_E exception. See Table 5-5, SC1400 Data Reads from MSC711x
Memory Map, on page 5-32 and Table 5-6, SC1400 and WB Data Writes to MSC711x Memory
Map, on page 5-33 for the complete set of addresses which cannot be accessed.

5.5.1.2 AMIC Port

The instruction fetch unit port may not access the following slave ports: ASM1, ASTH, ASAPB,
and ASSB. Cache bursts are supported only from the components that would store program code:
M2 memory and external memory. The AMIC master cannot be used to access locations within
the extended core, because these accesses only reach the AMIC if they are valid accesses. Invalid
program accesses to addresses within the extended core generate the AORP_E exception. See
Table 5-4, Program Fetches from MSC711x Memory Map, on page 5-31 for the complete set of
addresses that cannot be accessed.

5.5.1.3 AMDMA Port

The are no restrictions on the slave ports the DMA port can access. See Table 5-7, DMA Reads
from MSC711x Memory Map, on page 5-34 and Table 5-8, DMA Writes to MSC711x Memory
Map, on page 5-34 for the complete set of addresses that cannot be accessed. The DMA
controller must not access addresses within the extended core (0x00000000–0x00FFFFFF).
Invalid accesses generate an AORX_AMDMA exception.

5.5.1.4 AMENT Port

The Ethernet MAC unit port cannot access the following slave ports: ASTH, ASAPB, and ASSB.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-37

Memory Map
Allowed access ranges are covered in Section 5.4.5, Ethernet MAC Read Data Accesses, on page
5-35 and Section 5.4.6, Ethernet MAC Write Data Accesses, on page 5-36. The Ethernet MAC
must not access addresses within the extended core (0x00000000—0x00FFFFFF). Invalid
accesses generate an AORX_AMENT exception.

5.5.2 Access Size Restrictions

Table 5-11 shows the allowed accesses and their allowed sizes for each block within MSC711x.
The table is organized according to each of the AHB-Lite slave buses out of the crossbar switch.

Table 5-11. Permitted Accesses to MSC711x Blocks via Device-Level Buses

Block
Size of
Block’s

Data Bus

IFU Bursts Data Accesses: ECI, DMA, Ethernet MAC
Comments

128-Bit 64-Bit 32-Bit 16-Bit 8-Bit

ASM1 Accesses4

M1 SRAM 64-bits [AORP] Yes3 Yes Yes Yes —

ASM2 Accesses5

M2 SRAM 128-bit Read-Only Yes3 Yes Yes Yes —

Boot ROM 128-bit Read-Only Read-

Only3
Read-
Only

Read-
Only

Read-
Only

Read-only accesses
permitted.

ASEMI Accesses5

DDR Controller 128-bit Read-Only Yes3 Yes Yes Yes —

ASTH Accesses2

HDI16 64-bits [AORP] Yes8 Yes8 Yes8 Yes8 —

TDMx 64-bits [AORP] Yes [ND] Yes Yes 32-byte DMA bursts not
allowed.

ASAPB Accesses2

HDI16 16-bits [AORP] [ISZ_PF] [ND]1 Yes [ND] —

TDMx 32-bits [AORP] [ISZ_PF] Yes Yes7 [ND] —

Interrupt
controller: IPL

registers

32-bits [AORP] [ISZ_PF] Yes [ND] [ND] Registers using IPL_BASE.

Interrupt
controller: All other

32-bits [AORP] [ISZ_PF] Yes Yes [ND] Registers using ICTL_BASE.

Watchdog timer 32-bits [AORP] [ISZ_PF] Yes [ND] [ND] Watchdog registers.

UART 8-bits [AORP] [ISZ_PF] [ND]1 [ND]1 Yes —

GPIO: Port A
registers

32-bits [AORP] [ISZ_PF] Yes Read-
Only

[ND] Includes GPIO interrupt regs.
MSC711x Reference Manual, Rev. 1

5-38 Freescale Semiconductor

Access Restrictions
Table 5-12 shows the sizes of accesses permitted to each block using MSC711x platform-level
buses.

GPIO: All other 32-bits [AORP] [ISZ_PF] Yes Yes [ND] Port B, C, and D registers.

ASSB Accesses2

Crossbar 32-bits [AORP] [ISZ_PF] Yes [ND] [ND] —

DMA controller 32-bits [AORP] [ISZ_PF] Yes Yes Yes —

DDR controller 32-bits [AORP] [ISZ_PF] Yes Read
-Only

[ND] [ND] on 16-bit write accesses.

Ethernet MAC 32-bits [AORP] [ISZ_PF] Yes Yes6 [ND] —

Timer modules 16-bits [AORP] [ISZ_PF] [ND]1 Yes [ND] —

I2C 16-bits [AORP] [ISZ_PF] [ND]1 Yes [ND] —

System control 32-bits [AORP] [ISZ_PF] Yes Yes [ND] All except watchdog registers.

Event port 32-bits [AORP] [ISZ_PF] Yes Yes [ND] —

PLL/Clock 32-bits [AORP] [ISZ_PF] Yes Yes [ND] Also contains reset registers.

Notation:

• [AORP] - Illegal access detected and AORP_AMIC exception asserted.
• [ISZ_PF] - Illegal access detected and ISZ_PF exception asserted.

• [ND] - Illegal access not detected.

Notes: 1. The data buses within the block limit the maximum size of the transfer.

2. ENET MAC cannot access the ASTH, ASAPB, or ASSB buses.
3. The largest access performed by the Ethernet MAC DMA is 32-bits.

4. ECI does not access M1 memory through the ASM1 bus but instead through the core buses.
5. IFU can only access ASM2 and ASEMI buses.
6. 16-bit accesses permitted to the IEVENT and IMASK registers only.

7. 16-bit accesses permitted to the TDMxRIER, TDMxTIER, TDMxRER, TDMxTER, TDMxRSR, and TDMxTSR
registers only.

8. HDI16 8-bit mode supports 8, 16, and 32-bits. 16-bit mode supports 16, 32, and 64-bits.
If 8 or 16 bits are accessed in 8-bit mode, the external host processor must also access the same size.
If 16 or 32 bits are accessed in 16-bit mode, the external host processor must also access the same size.

Table 5-12. Permitted Accesses to MSC711x Blocks via System-Level Buses

Block
Program Accesses Data Accesses — SC1400

Comments
128-bit 64-bit 32-Bit 16-Bit 8-Bit

P Accesses (on SC1400’s PDB bus)

M1 SRAM Read-Only N/A N/A N/A N/A SC1400 program accesses.

Table 5-11. Permitted Accesses to MSC711x Blocks via Device-Level Buses (Continued)

Block
Size of
Block’s

Data Bus

IFU Bursts Data Accesses: ECI, DMA, Ethernet MAC
Comments

128-Bit 64-Bit 32-Bit 16-Bit 8-Bit
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-39

Memory Map
5.6 Misaligned Access Detection on AHB Masters

Misaligned accesses are detected on all of the AHB-Lite master buses: AMEC, AMIC,
AMDMA, and AMENT. Upon detection, an appropriate non-maskable interrupt is generated (see
Table 12-3, MSC711x Non-Maskable Interrupt Sources from the SC1400 Core, on page 12-6).

5.7 Bit Field Operations and Restricted Accesses

The SC1400 core has a set of bit field instructions for testing, clearing, setting, or changing bits
within a location. These instructions are useful for programming peripherals. These instructions
perform 16-bit accesses to memory so they can only be used on blocks listed in Table 5-11 that
allow 16-bit accesses.

For blocks that allow only 32-bit accesses, these instructions cannot be performed on the
locations directly. When bit field instructions are desired on these blocks, it is recommended that:

1. The 32-bit value is first read from its location into a SC1400 data register.

2. The bit field instruction is performed on the value the SC1400 data register.

3. The 32-bit value is then stored back to its original location.

5.8 Big-Endian Operation

MSC711x devices are built for big-endian operation:

XA, XB Accesses (on SC1400 Core XDBA, XDBB buses)

M1 SRAM N/A Yes Yes Yes Yes SC1400 data accesses.

OCE10
Registers

N/A [ND] Yes Yes Yes SC1400 data accesses.

Internal Bus1 Accesses

ECI Registers N/A [ND] Yes2 Yes Yes SC1400 data accesses.

ICache
Registers

N/A [ND] Yes Yes [ND] SC1400 data accesses.

ICache Array N/A Yes Yes Yes Yes —

Notes: 1. The Internal bus is a dedicated bus used for accessing ECI and ICache registers, as shown in
Figure 4-5, Extended Core Interface Block Diagram, on page 4-11.

2. The 16-bit IRBSRx and IRCRx registers can be accessed as a 32-bit pair using move.l instructions
as noted in Section 4.8.2, ICache Registers, on page 4-45.

Table 5-12. Permitted Accesses to MSC711x Blocks via System-Level Buses

Block
Program Accesses Data Accesses — SC1400

Comments
128-bit 64-bit 32-Bit 16-Bit 8-Bit
MSC711x Reference Manual, Rev. 1

5-40 Freescale Semiconductor

16-bit Accesses to 32-bit Peripheral Registers
� All programs should be assembled/compiled for big-endian operation.

� All data is stored in the M1, M2, or DDR memories in big-endian format.

� The SC1400 core BEM bit within the EMR register is set to 1.

Note: For details on endian operation for the SC1400 core, see the SC1000-Family Processor
Core Reference Manual.

Big-endian operation can also have an effect on how peripherals are accessed. Specifically, when
a peripheral’s registers are not the full size of the bus they are located on, attention must be paid
to endian operation. For example, the HDI16 has a set of 16-bit registers accessible through the
32-bit APB bus. The address offsets in the HDI16 are already correctly specified for access in a
big-endian system. Also, the UART has a set of 8-bit registers that are accessible through the
32-bit APB bus.

A different type of example is the event port, which supports both 16- and 32-bit accesses. The
address offsets for 32-bit accesses are specified in the event port chapter. For accesses to a 16-bit
portion of the 32-bit register, however, the correct address offset must be used for the upper or
lower portion, as described in the next section.

5.9 16-bit Accesses to 32-bit Peripheral Registers

When performing 16-bit accesses to 32-bit peripheral registers within MSC711x, it is important
to use the correct offset when accessing the upper or lower portion of the register. The correct
offset is determined by what is required within a big endian system. 16-bit read-write accesses to
32-bit registers is possible in the following peripheral blocks:

� DMA controller

� Clock synthesis module

� Reset module

� Interrupt controller; all registers except the IPL registers

� TDM — APB port (only to a subset of registers)

� Ethernet MAC

� System control (all except the watchdog timer)

� Event port

� GPIO: port B, C, and D registers

16-bit read-only accesses to 32-bit registers are possible in the following peripheral blocks:

� DDR controller

� GPIO: port A and interrupt registers

When a program needs to access the upper 16-bits, big endian operation requires that the offset to
access the register be the same as for 32-bit accesses. When a program needs to access the lower
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 5-41

Memory Map
16-bits, big endian operation requires that the offset used to access the register be the value for
32-bit accesses plus 2.
MSC711x Reference Manual, Rev. 1

5-42 Freescale Semiconductor

Crossbar Switch 6
The MSC711x extended core and DMA controller connect to the internal resources through the
multi-layer AHB crossbar switch. The crossbar switch handles parallel transfers at the system
level so that the various masters, including the DMA controller and the extended core interface,
can get immediate service when they request resources. The crossbar switch ensures that the
SC1400 core executes efficiently within the MSC711x extended core without long stalls while
the system waits for cache lines to be filled or data to be processed. All buses connecting to the
switch are AHB-Lite. The crossbar switch also facilitates communication between MSC711x
modules and ensures that the SC1400 core can focus on the intensive computational work while
the DMA controller brings in data for processing. The following features promote flexibility in
the crossbar switch:

� Four master ports supporting up to four parallel data transfers.

� Six slave ports, each independently programmable for:

— Fixed-priority or round-robin arbitration.
— Dynamically configurable master port priorities.
— Programmable parking.

� Automatic resizing when source and destination bus widths for a transfer differ.

� Low power park mode.

� Error detection capabilities:

— Address out-of-range detection on each master port access.
— Bus error detection units on each master port bus.
— Bus time-out units on each slave port bus.

6.1 Architecture

Figure 6-1 shows a block diagram of the crossbar switch, associated buses, ports, and
multiplexes. The connections of the crossbar switch and hardware bus monitors to the APB are
required for accessing its programmable registers.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-1

Crossbar Switch
Figure 6-1. Block Diagram of Crossbar Switch System

6.1.1 Master and Slave Ports

The following four MSC711x modules are masters to the crossbar switch:

� Instruction fetch unit (128-bit read path)

� Extended core interface (64-bit read/64-bit write path)

� DMA controller (64-bit read/write path)

� Ethernet MAC (64-bit read/write path)

Table 6-1 shows the master port assignments on MSC711x. You can change these priorities by
programming new priorities via the crossbar MPRx registers.

APB

A
P

B
 B

rid
ge

SC1400
Extended 128

64

64

64

128

64

64

A
H

B
-L

it
e
 C

ro
s
s
b

a
r

S
w

it
c
h

128

64

128
AMIC

AMEC

ASM1*

ASEMI*

ASAPB*

ASM2*

ASTH*

DMA Controller
(32 Channel)

(Master)

(Master)

(Slave)

AMDMA
(Master)

(Slave)

(Slave)

(Slave)

(Slave)

M
U

X
M

U
X

(Programmed

to M2 Memory

to Boot

to HDI16

to TDM1

to TDM0

IPBus
IP

B
us

 B
rid

ge
64

ASSB*
(Slave)

128
to EMI

ROM

Note: The arrows show the direction of the transfer.

* Each crossbar switch master bus has a bus error detection unit with a time-out.

Core

through IPBus)

64

64:32

128:64

64:32

(programmed
through IPBus)

Ethernet
MAC

64
AMENT

to TDM2

to Interrupt
 Controller

(Master)

* Each crossbar switch slave bus has a dedicated time-out monitor.
MSC711x Reference Manual, Rev. 1

6-2 Freescale Semiconductor

Architecture
The following modules are slaves to the crossbar switch, each with a dedicated AHB-Lite bus:

� M1 memory (64-bit read/write path)

� M2 memory (128-bit read/64-bit write path)

� External memory interface (64-bit read/write path)

� TDMs/HDI16 (64-bit read/write path)

� APB peripherals (32-bit read/write path)

� IPBus peripherals (32-bit read/write path)

Table 6-2 shows the slave port assignments on MSC711x devices.

Downsizers match master ports with a defined bus width to a slave port with a smaller bus width.
There are downsizers on the following MSC711x buses:

� ASEMI. Supports 128-bit program accesses on the 64-bit ASEMI bus.

� ASAPB. Converts a 64-bit bus width from the crossbar into 32 bits for the ASAPB bus.

� ASSB. Converts a 64-bit bus width from the crossbar into 32 bits for the ASSB bus.

The crossbar switch routes bus transactions initiated on the master ports to the appropriate slave
ports. There are no provisions for routing transactions initiated on the slave ports to other slave
ports or to master ports. Simply put, the slave ports do not support the bus request/bus grant
protocol, and the crossbar switch assumes it is the sole master of each slave port. The crossbar
switch does not support the bus request/bus grant protocol, so multiple masters are not supported.

Table 6-1. Master Ports on the Crossbar Switch

Master
Master Port

AHB-Lite Bus
Size:

Read Path
Size:

Write Path
Crossbar Port

Priority from
Reset

Extended core interface AMEC 64 bits 64 bits 0 Highest

DMA AMDMA 64 bits 64 bits 1 —

Instruction fetch unit AMIC 128 bits — 2 —

Ethernet MAC AMENT 32 bits 32 bits 3 Lowest

Table 6-2. Slave Ports on the Crossbar Switch

Slave
Slave Port

AHB-Lite Bus
Size:

Read Path
Size:

Write Path
Crossbar

Port
Comments

M1 memory ASM1 64 bits 64 bits 0 —

M2 memory ASM2 128 bits 64 bits 1 128-bit path supports full sized
accesses from the instruction fetch
unit (IFU).

External memory interface ASEMI 64 bits 64 bits 2 —

TDM/HDI data port ASTH 64-bits 64-bits 3 Bus for reading/writing data values to
the peripheral. Peripherals are
configured using ASAPB or ASSB.

IPBus peripherals ASSB 32 bits 32 bits 4 —

APB peripherals ASAPB 32 bits 32 bits 5 —
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-3

Crossbar Switch
Each master and slave port fully complies with AHB-Lite + AMBA extensions. The ports are not
fully AHB-compliant because the crossbar switch does not support SPLITs or RETRYs.

6.1.2 Buses

Bus time-out monitors on all AHB-Lite slave buses provide the following advantages:

� Quicker response to a time-out.

� Monitoring is active only after arbitration in the crossbar switch.

� The time-out value can be programmed separately for each slave port. This is significant
because different slaves often have different response characteristics. Placing the monitors
on the slave buses manages the system latencies more efficiently.

� Bus error monitors detect an AHB ERROR condition on the bus and generate a
non-maskable interrupt. Illegal access detection helps trap incorrect system operation.

Bus error monitors on all AHB-Lite master buses detect an AHB error condition on the bus and
generate a non-maskable interrupt. Also, a time-out value is associated with each master bus.

Multiplexers on the ASM2 bus allow both the M2 memory and boot ROM to connect to a single
slave port on the crossbar switch. Multiplexers on the ASTH bus allow both the TDMs and the
host port high-speed port to connect to a single slave port on the crossbar switch.

6.1.3 System-Level Parallelism

Because the crossbar switch is a multi-layer switch, system-level transfers can occur in parallel.
MSC711x devices support four master ports with a corresponding four-layer switch so that the
following transfers can occur in parallel:

� Cache fills from M2 memory or external memory initiated by the instruction fetch unit.

� One DMA access (read or write).

� Accesses from the SC1400 core through the ECI or writes from the extended core write
buffer to system-level resources such as the MSC711x device peripherals.

� One DMA access from the Ethernet MAC.

Following are examples of system-level parallelism. Figure 6-2 shows a view of the crossbar
switch in the MSC711x system to illustrate the various interfaces to the switch.

� Cache bursting from M2 memory:

— ICache bursts in a portion of a cache line from M2 memory via the instruction fetch
unit.

— DMA bursts of new data from external memory to M1 memory.
— SC1400 core accesses a peripheral via the extended core interface.

� Cache bursting from external memory:

— Cache bursts in a portion of a cache line from external memory via the fetch unit.
MSC711x Reference Manual, Rev. 1

6-4 Freescale Semiconductor

Crossbar Switch Operation
— DMA bursts of new data from the TDM to M1 memory.
— Write buffer writes to M2 via the extended core interface

� Cache bursting from external memory:

— Cache bursts in a portion of a cache line from external memory via the fetch unit.
— Ethernet MAC DMA bursts in new data to M1 memory.
— Write buffer writes to M2 memory via the extended core interface.

� Transfers on all masters:

— Cache bursts in a portion of a cache line from M2 via the fetch unit.
— Ethernet MAC DMA bursts in new data to M1 memory.
— DMA writes a value to external memory.
— Write buffer writes to a HDI16 control register via the extended core interface.

6.2 Crossbar Switch Operation

This section describes the functionality of the crossbar switch, including arbitration, priority
assignment (including alternate priority), master port functionality, slave port functionality, and
halting the crossbar switch.

6.2.1 Arbitration

The crossbar switch supports both fixed-priority and round-robin arbitration, which is
independently programmable for each slave port. Alternate priority capability is also supported.

6.2.1.1 Alternate Priority Capability

Alternate priority capability is triggered from the event port. When the event port trigger arrives,
all slave ports on the crossbar switch are switched to the priorities in the alternate register set. The
alternate priorities remain in effect until the event port signal is deasserted. See Section A.1.7.6,
Alternate Priorities, on page A-15.

6.2.1.2 Context Switching

A hardware input per slave port selects the registers from which the master priority levels and
general-purpose control bits are taken, either the MPR and SGPCR or the AMPR and the
ASGPCR. This hardware input is useful for context switching because you do not have to rewrite
the MPR or SGPCR if a particular slave port would temporarily benefit from modifying the
master priority levels or functions affected by the bits in the SGPCR.

6.2.1.3 Fixed-Priority Arbitration

In fixed-priority mode, each master is assigned a unique priority level in the Master Priority
Register (MPR) and the Alternate Master Priority Register (AMPR). If two masters request
access to a slave port, the master with the highest priority in the selected priority register gains
control over the slave port.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-5

Crossbar Switch
Figure 6-2. View of the Crossbar Switch in the MSC711x System (MSC7116 Device)

When a master makes a request to a slave port, the slave port verifies whether the requesting
master’s priority level is higher than that of the master currently in control of it (unless the slave
port is in a parked state). The slave port performs an arbitration check at every clock edge to
ensure that the proper master (if any) has control of it. If the new requesting master’s priority
level is higher than that of the current master, the requesting master is granted control over the
slave port at the next clock edge. However, if the current master is running a fixed-length burst
transfer or a locked transfer, the requesting master must wait until the end of the transfer before it
is granted control of the slave port. If the current master is running a burst transfer of undefined
length, the requesting master must wait until an arbitration point in the transfer before it is
granted control of the slave port.

Boot ROM
(8 KB)

RS-232

APB

A
P

B
 B

rid
ge

64

UART

External
Memory

InterruptsInterrupt

HDI16

32

Host
Interface

(HDI16)

External Bus

Timers

DSP
Extended

DMA

Note: The arrows show the

Interface

Port

(32 ch)
64

32

128
32

SC1400
Core

Cache
(16 KB)

Extended
Core

Interface

Unit
Fetch

M1
SRAM

(192 KB)

64

64

128

64

A
H

B
-L

ite
 C

ro
ss

ba
r

S
w

itc
h

P XA XB

128
64 64

PLL/Clock
PLL/Clock

M
ul

tip
le

xe
r

O
C

E
10

T
M

Trace
Buffer
(8 KB)

to/from OCE10

IP
 B

rid
ge

32

Events
32

IPBus

to DMA

to EMI

JTAG
JTAG Port

Core

AMDMA

AMIC

AMEC

ASM1

ASM2

ASEMI

ASTH

ASAPB

from
IPBus

I2C
I2C

ASSB

GPIO
GPIO

Instruction

from IPBus

Watchdog

Event Port

to Crossbar

System Control

Control
32

ASAPB

2 TDMs
TDM

Ethernet
MAC

AMENT

64

MII/RMIIdirection of the transfer.

M2 SRAM
(192 KB)

M
ul

tip
le

xe
r

128

128

64

64
MSC711x Reference Manual, Rev. 1

6-6 Freescale Semiconductor

Crossbar Switch Operation
If the requesting master’s priority level is lower than that of the current master, the requesting
master must wait until the current master either runs an IDLE cycle or runs a non-IDLE cycle to a
location other than the current slave port.

6.2.1.4 Round-Robin Priority Arbitration

In round-robin mode, each master is assigned a relative priority based on the master number. This
relative priority is compared with the ID of the last master to perform a transfer on the slave bus.
The highest-priority requesting master becomes owner of the slave bus as the next transfer
boundary (accounting for locked and fixed-length burst transfers). Priority is based on how far
ahead the ID of the requesting master is to the ID of the last master (ID is defined by master port
number).

After it is granted access to a slave port, a master can perform as many transfers as desired to that
port until another master makes a request to the same slave port. The next master in line is
granted access to the slave port at the completion of the current transfer, or possibly on the next
clock cycle if the current master has no pending access request. For example, if the last master of
the slave port was master 1, and master 0, 2, and 3 make simultaneous requests, they are serviced
in the order 2, 3, and then 0.

Parking can be used in a round-robin mode, but it does not affect the round-robin pointer unless
the parked master actually performs a transfer. Hand-off occurs to the next master in line after
one cycle of arbitration. If the slave port is put into low power park mode, the round-robin pointer
is reset to point at master port 0, giving it the highest priority.

Each master port has a high-priority input that can be enabled by writing the correct data to the
SGPCR or ASGPCR. If a master’s high-priority input is enabled for a slave port programmed for
round-robin mode, that master can force the slave port into fixed-priority mode by asserting its
high priority input. While that (or any enabled) master’s high-priority input is asserted, the slave
port remains in fixed-priority mode. After that (or any enabled) master’s high-priority input is
negated, the slave port reverts to round-robin priority mode, and the pointer is set on the last
master to access the slave port.

6.2.2 Priority Assignment

Each master port must be assigned a unique 3-bit priority level in the MPR and AMPR. If an
attempt is made to program multiple master ports with the same priority level, the crossbar switch
responds with an error and the registers are not updated.

A hardware input per master port can temporarily elevate the master’s priority level on all slave
ports. In this case, the master port automatically has a higher priority than all other master ports,
regardless of the priority levels programmed in the MPR and AMPR. If multiple master ports
have their priority elevated, they have higher priority than all master ports that do not. The MPR
or AMPR priority level determines which master port of elevated priority has the highest priority
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-7

Crossbar Switch
on a per slave port basis. This functionality is useful because it allows you automatically to
elevate a master port’s priority level throughout the crossbar switch in order to perform
temporary tasks such as servicing interrupts quickly. The HPEx bits must be set in the slave port
SGPCR or ASGPCR to elevate the priority of a master. The priority of the IFU, DMA, and ECI
masters can be elevated. Priority elevation for the Ethernet MAC is not supported.

See Section 4.6.1, Cache Bursting Parameters, on page 4-31 for information on elevating the
IFU priority. ECI priority is elevated in the following cases:

� Any read access through the ECI

� A write immediate access (freezes the SC1400 core)

� A write immediate access with no freeze

� The write buffer is flushed

� A write access when the write buffer is disabled

� Atomic operations

The ECI returns to its normal programmed priority when the SC1400 core writes to the write
buffer (when no flush occurs) or the write buffer performs writes to locations outside the platform
but not in response to a flush.

The priority of the DMA controller can be elevated when the bandwidth control field in the TCDs
specifies that the priority should be elevated for this transfer. Table 6-3 shows the priorities of
crossbar switch slave port out of reset. You can reorder the priority among the four master ports,
if desired, by programming the slave port SGPCRx register. The settings out of reset are not
recommended for best performance.

Table 6-4 shows an example of a recommended settings for the ASEMI slave port for
fixed-priority arbitration. This setting helps to ensure that the SC1400 core does not freeze for a
long time.

Table 6-3. Crossbar Switch Master Port Priorities

Crossbar Master
Port

Priority Elevated? Priority Comments

ECI yes Highest Elevated on write buffer flushes.

DMA controller yes — Elevated when selected in the TCD.

IFU yes — Bursts in primary set on initial cache miss.

Ethernet MAC yes — Elevated if DEVCDF[ENTP] is set.

ECI no — —

DMA controller no — Normal use.

IFU no — Used for prefetch bursts for the cache.

Ethernet MAC no Lowest Used when DEVCFG[ENTP] is cleared.
MSC711x Reference Manual, Rev. 1

6-8 Freescale Semiconductor

Crossbar Switch Operation
6.2.3 Master Port Functionality

Each master port consists of two decoders, a capture unit, a register slice, a multiplex, and a small
state machine, which controls all aspects of the master port, including which slave port is to
receive a request when that request is made. It also has information about whether the slave port
is ready to accept an access from the master port. Therefore, it can determine whether the slave
port will immediately take the request from the master or whether the master port must capture
the master’s request and queue it at the slave port boundary.

The state machine has six states:

� Busy. The master runs a BUSY cycle to the master port. The master port maintains its
request to the slave port if it currently owns the slave port; however, if it loses control of
the slave port it no longer maintains its request. It is not allowed to make another request
to the slave port until it runs a NSEQ or SEQ cycle. No master generates this state on an
MSC711x device.

� Idle. The master runs a valid IDLE cycle to the master port. The master port makes no
requests to the slave ports (disables the slave port decoder) and terminates the IDLE cycle.

� Waiting. The master is running valid cycles to a local slave other than the crossbar switch.
In this case, the crossbar switch disables the slave port decoder.

� Stalled. The master makes a request to a slave port that is not immediately ready to receive
the request. The state machine directs the capture unit to send out the captured address and
control signals and enables the slave port decoder to indicate a pending request to the
appropriate slave port.

� Steady state. The master and slave ports are in fully asynchronous mode, making the
crossbar switch completely transparent in the access. The state machine selects the
appropriate slave’s signals to pass back to the master.

Table 6-4. ASEMI Recommended Master Port Priorities

Crossbar Master
Port

Priority Elevated? Priority Comments

IFU yes Highest Bursts in primary set on initial cache miss.
The SC1400 core can freeze during these accesses

ECI yes — The SC1400 core can freeze during these accesses.

DMA controller yes — Elevated when selected in the TCD.

Ethernet MAC yes — Elevated if DEVCFG[ENTP] is set.

IFU no — Used for prefetch bursts for the cache.

ECI no — —

DMA controller no — Normal use.

Ethernet MAC no Lowest Used when DEVCFG[ENTP] is cleared.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-9

Crossbar Switch
� First cycle error response and second cycle error response. These states are self
explanatory. The crossbar switch responds with an error response to the master if the
master tries to access an unavailable memory location.

The main goal of the master-side state machine is to handle the move of a master from one slave
port access to another slave port access, while minimizing or eliminating any extra clock cycles
that might be inserted into the access during the switch. The state machine does not allow the
master to request access to another slave port until the current access terminates. This prevents a
single master from owning two slave ports at the same time. The state machine also maintains
watch on the slave port the master is accessing as well as the slave port targeted for the next
access. If the targeted slave port is parked on the master, then the master can make the switch
without incurring any delays. The termination of the current access also acts as the launch of the
new access on the new slave port. If the new slave port is not parked on the master, there is a
minimum of one clock delay before the master can launch its access on the targeted slave port.

The same holds true for switching from the busy, idle or waiting states to actively accessing a
slave port. If the slave port is parked on the master, the state machine goes to the steady state, and
the access begins immediately. If the slave port is not parked on the master because it is serving
another master, parked on another master, or in low-power park mode, the state machine
transitions to the stalled state, and at least a one clock penalty must be paid.

6.2.4 Slave Port Functionality

The state machine handles the main slave port arbitration. It determines which master is in
control of the slave port and which master is to control the slave port in the next bus cycle. Figure
6-3 shows a block diagram of a slave port, ASEMI, which is useful in understanding the
capabilities of the crossbar switch. On the left are the buses from each master on an MSC711x
device. These buses are arbitrated separately on each slave port. The arbitration parameters are
specified for each slave port on the crossbar.
MSC711x Reference Manual, Rev. 1

6-10 Freescale Semiconductor

Crossbar Switch Operation
Figure 6-3. Detailed View of One Crossbar Slave Port, ASEMI

6.2.4.1 Slave Port Registers

A register control block at the same level as the master and slave port instantiations in the
crossbar switch ensures that all accesses are 32-bit supervisor accesses before it passes them on to
the master and slave ports. The registers in a slave port are only those associated with that
particular slave port. The read and write interface for the registers is not a full IPBus interface at
this level because not all the IPBus signals are routed this deep in the design. The register outputs
directly connect to the slave state machine, and an internal slave port input signal notifies the
crossbar switch to use the AMPR rather than the MPR and the ASGPCR rather than the SGPCR
to define priority levels, halt priority values, and pass the arbitration algorithm and parking
control bits to the state machine. The registers can be read from an unlimited number of times.

64

AMEC

to Extended Core Interface

Multiplexer

ASEMI

64

128

to DDR
64

64

AMDMA

to DMA Controller

64

32

AMENT

to Ethernet

32

AMIC
to Instruction Fetch Unit

128

Arbitration

Parking

ENET Elevation

IFU Elevation
ECI Elevation
DMA Elevation

Halt Priority Options at this Port:
— Halt is at Highest Priority
— Halt is at Lowest Priority

Registers

SGPCRx
ASGPCRx

MPRx
AMPRx

Parking Options at this Port:
— Park on Specified Master
— Park on Last Master
— Park on No Master

Arbitration Options at this Port:
— Round Robin
— Fixed Priority

(Priorities are chosen for each
master in the MPRx registers)

Halt Request
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-11

Crossbar Switch
The registers can be written only as long as the RO bit has a value of 0 in the SGPCR. After a
value of 1 is written to this bit, only a hardware reset can allow the registers to be written again.

6.2.4.2 Slave Port State Machine

At the heart of the slave port is the state machine, which requires only four states: steady state,
transition state, transition hold state, and hold state. Either the slave port is owned by the same
master that owned it in the last clock cycle (either by active use or by parking), it is transitioning
to a new master (either for active use or parking), it is transitioning to a new master during wait
states, or it is held on the same master pending a transition to a new master.

The main task of the state machine is the arbitration to determine which master port is to control
the slave port in the next clock cycle. Each master is programmed with a fixed 3-bit priority level.
A fourth priority bit is derived from the input signal on each master port that notifies the crossbar
switch to elevate the master port’s priority above that of all other masters. Effectively, each
master’s priority level is a 4-bit field with the priority elevation as the MSB. The crossbar switch
uses these bits in to determine priority levels when it is programmed for fixed-priority arbitration
or when one of the enabled priority elevation inputs is asserted.

Arbitration occurs on a clock edge, but only when a change in mastership does not violate
AHB-Lite protocols. Valid arbitration points include any clock cycle in which a slave indicates it
is ready (if the master is not performing a burst or locked cycle) and any wait state in which the
master owning the bus indicates a transfer type of IDLE (if the master is not performing a locked
cycle). Since arbitration can occur on every clock cycle, the slave port masks off all master
requests if the current master is performing a locked transfer or a protected burst transfer,
guaranteeing that no matter how low its priority level, the master can finish its locked or
protected portion of a burst sequence.

When it is programmed for fixed-priority arbitration, a slave port switches masters only when a
higher-priority master makes a request or the current master has the highest priority and it gives
up the slave port by either running and IDLE cycle to the slave port or running a valid access to a
location other than the slave port. If the current master loses control of the slave port because a
higher-priority master takes it, the slave port does not incur any wasted cycles. The slave port
terminates the current cycle of the current master port at the same time it recognizes the new
master’s address and control information. This transition is seamless to the slave port.

If the current master is wait stated when the higher-priority master makes its request, the current
master is allowed to make one more transaction on the slave bus before giving it up to the new
master. Figure 6-4 illustrates the effect of a higher-priority master taking control of the bus when
the slave port is programmed for a fixed priority mode of operation.
MSC711x Reference Manual, Rev. 1

6-12 Freescale Semiconductor

Crossbar Switch Operation
Figure 6-4. Low to High Priority Mastership Change

If the current master gives up the slave port, the master with the next highest priority gains
control of the slave port. If the current access incurs any wait states, the transition is seamless,
and no bandwidth is lost. However, if the current transaction terminates without wait states, the
crossbar switch forces one IDLE cycle onto the slave bus before the new master takes control. If
no other master is requesting the bus, the crossbar switch runs IDLE cycles, but no bandwidth is
lost. Figure 6-5 illustrates the effect of a higher-priority master giving up control of the bus.

Figure 6-5. High to Low Priority Mastership Change

1 2 3 4 5 6 7 8 9

Master 3 Master 3 Master 2 Master 1 Master 0 Master 1 Master 2 None

Switch Master 3 Master 3 Master 0 Master 1 Master 2 Switch

IDLE NSEQ NSEQ NSEQ NSEQ NSEQ IDLE

System Clock

M2 Request

M3 Request

M4 Request

M5 Request

Transfer Type

Transfer Done

Requester
Priority

Highest

Address/Control
Owner

10

1 2 3 4 5 6 7 8 9

Master 0 Maste1 2 None Maste24 None

Switch Master 0 Switch Master 1 Switch Maste2 4 Switch

IDLE NSEQ IDLE NSEQ IDLE NSEQ IDLE

System Clock

M0 Request

M2 Request

M4 Request

Highest

Address/Control

Transfer Type

Transfer Done

Priority
Requester

Owner
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-13

Crossbar Switch
When the slave port is programmed for round-robin arbitration, the slave port switches masters
any time more than one master makes a request to the slave port. This happens because any
master other than the one with current control of the bus is considered to have higher priority.
Figure 6-6 shows an example of round-robin arbitration.

Figure 6-6. Round-Robin Mastership Change

If no master requests access to the slave port, the slave port is parked. It parks in one of four
places, dictated by the PCTL and PARK bits in the GPCR or AGPCR and the locked state of the
last master to access it. If the last master to access the slave port ran a locked cycle and continues
to run locked cycles even after leaving the slave port, the slave port parks on that master without
regard to the bit settings in the GPCR or to pending requests from other masters. Therefore, the
master can run a locked transfer to the slave port, leave it, and return to it and be guaranteed that
no other master has accessed it, if the master maintains all transfers as locked transfers. If locking
is not an issue for parking, the GPCR bits indicate the parking method.

If the PCTL bits are set for a low-power park, the slave port does not recognize any master as in
control of it and it does not select any master signals to pass to the slave bus. All slave bus
activity effectively halts because all slave bus signals driven from the crossbar switch have a
value of 0. The result can be a significant power savings if the slave port is not in use for some
time. However, there is a penalty of a one clock cycle delay when a master does make a request
to the slave port because it must arbitrate to acquire ownership of the slave port.

If the PCTL bits are set to park on last mode, the slave port parks on the last master to access it,
passing all the master signals to the slave bus. The crossbar switch asynchronously forces internal

1 2 3 4 5 6 7 8 9 10

Master 1 Master 2 Master 0 Master 2 Master 3 None

Switch Master 1 Master 2 Master 3 Master 0 Master 2 Master 3 Switch

IDLE NSEQ NSEQ NSEQ NSEQ NSEQ NSEQ IDLE

System Clock

M0 Request

M1 Request

M4 Request

M5 Request

Highest

Address/Control

Transfer Type

Transfer Done

Priority
Requester

Owner

Master 3
MSC711x Reference Manual, Rev. 1

6-14 Freescale Semiconductor

Crossbar Switch Operation
signals to 0 for all access that the master does not run to the slave port. When that master accesses
the slave port again, it does not pay any arbitration penalty. However, if any other master
accesses the slave port, an arbitration penalty of one clock cycle is imposed.

If the PCTL bits are set to use PARK/APARK mode, the slave port parks on the master
designated by the PARK bits. The behavior here is the same as for park on last mode, with the
exception that the slave port parks on a specific master instead of the last master to access it. If
the master designated by the PARK bits accesses the slave port, it does not pay an arbitration
penalty. However, any other master must pay a penalty of one clock cycle. Figure 6-7 illustrates
parking on a specific master.

Figure 6-7. Parking on a Specific Master

Figure 6-8 illustrates parking on the last master. Notice that in cycle 6 simultaneous requests are
made by master 1 and master 2. Although master 1 has a higher priority, the slave bus is parked
on master 2, so master 2’s access is taken first. The slave port parks on master 1 when it gives
control to master 1. This same situation can occur for parking on a specific master.

1 2 3 4 5 6 7 8 9

Master 2

Master 0 None Master 1 None Master 2 None Master 1 None

Switch Master 0 Master 1 Switch Switch Master 2 Master 1 Switch

IDLE NSEQ NSEQ IDLE IDLE NSEQ NSEQ IDLE

System Clock

M0 Request

M2 Request

M4 Request

Park

Highest

Address/Control

Transfer Type

Transfer Done

Priority
Requester

Owner
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-15

Crossbar Switch
Figure 6-8. Parking on Last Master

6.2.5 Halting the Crossbar Switch

The crossbar switch is halted using the technique described in Section 11.4.3, AHB Subsystem
Low-Power Operation, on page 11-16. There must first be a request for a halt via the
HLTREQ[XBRHRQ] bit. This signal is passed to each slave port in the crossbar switch where it
must arbitrate for control of the slave port based on the priority programmed in the slave port via
its SGPCR[HLP] bit. All slave ports must successfully arbitrate for the halt request before the
crossbar switch halts. This procedure promotes a graceful shut down so that the system clock can
be stopped for low power mode.

If the halt request input is asserted, the slave port eventually halts all slave bus activity and enters
halt mode, which is almost identical to low-power park mode. In halt mode no master is selected
to own the slave port, so all the outputs of the slave port are set to 0. The GPCR[HLP] bit controls
the priority level of the halt request. If the HLP bit is cleared, the halt requestor has the highest
priority of any master and gains control of the slave port at the next arbitration point, which is
probably the next bus cycle unless the current master is running a locked or fixed-length burst
transfer. If the HLP bit is set, the slave port waits until no masters are actively making requests
before moving to halt mode.

Regardless of the state of the HLP bit, when the slave port enters halt mode as a result of a halt
request, it remains in halt mode until the halt request is negated, regardless of the priority level of
any masters that may make requests.

1 2 3 4 5 6 7 8 9

Last Master Master 0 Master 2 Master 1

Master 0 None Master 2 None Master 1 None

Switch Master 0 Switch Master 2 Switch Master 2 Master 1 Switch

IDLE NSEQ IDLE NSEQ IDLE NSEQ NSEQ IDLE

System Clock

M0 Request

M2 Request

M4 Request

Park

Highest

Address/Control

Transfer Type

Transfer Done

Priority
Requestor

Owner
MSC711x Reference Manual, Rev. 1

6-16 Freescale Semiconductor

Data Throughput for Masters and Slaves
6.3 Data Throughput for Masters and Slaves

The main goal of the crossbar switch interface is to increase overall system performance by
allowing multiple masters to communicate in parallel with multiple slaves. To maximize data
throughput, arbitration delays must be kept to a minimum. This section examines data throughput
from the point of view of masters and slaves, detailing when the crossbar switch interface stalls
the masters or inserts extra clock cycles on the slave side.

6.3.1 Master Ports

Master accesses receive one of the following responses from the crossbar switch:

� Ignored. A master access is ignored if the switch select input of the crossbar switch is not
asserted. The crossbar switch responds to IDLE transfers when the switch select input is
asserted but does not allow the access to pass through it.

� Terminated. A master access terminates if the switch select input of the crossbar switch is
asserted and the transfer type is IDLE. The crossbar switch terminates the access and it is
not allowed to pass through the crossbar switch.

� Taken. A master access is accepted if the switch select input of the crossbar switch is
asserted, the transfer type is non-IDLE, and the slave port to which the access decodes is
either servicing the master or is parked on the master. The crossbar switch is completely
transparent, the master access appears immediately on the slave bus, and no arbitration
delays are incurred.

� Stalled. A master access stalls if the switch select input of the crossbar switch is asserted,
the transfer type is non-IDLE, and the access decodes to a slave port that is busy serving
another master, parked on another master, or in low-power park mode. The crossbar
switch indicates to the master that the address phase of the access is accepted and queued
to the appropriate slave port. If the slave port is parked on another master or in low-power
park mode and no other master is requesting access to the slave port, only one clock of
arbitration penalty is incurred. If the slave port is serving another master of a lower
priority and the master has a higher priority than all other requesting masters, the master
gains control over the slave port as soon as the data phase of the current access completes
(burst and locked transfers excluded). If the slave port is servicing another master of a
higher priority, the requesting master gain control of the slave port once the other master
releases control, if no other higher-priority master is also waiting for the slave port.

� Error response terminated. A master access gets an error response if the switch select
input of the crossbar switch is asserted, the transfer type is non-IDLE, and the access
decodes to a location not occupied by a slave port. This is the only time the crossbar
switch issues an error response. All other error responses received by the master are the
slave port error responses passed through the crossbar switch.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-17

Crossbar Switch
6.3.2 Slave Ports

A goal of the crossbar switch interface is to keep the slave ports 100 percent saturated when
masters are actively making requests. To achieve this goal, the crossbar switch must not insert
any extra clock cycles onto the slave bus unless absolutely necessary.

However, the crossbar switch forces a bubble onto the slave bus when a higher-priority master
has control of the slave port and runs single clock (zero wait state) accesses while a lower-priority
master is stalled and waiting for control of the slave port. When the higher-priority master either
leaves the slave port or runs an IDLE cycle to the slave port, the crossbar switch takes control of
the slave bus and runs a single IDLE cycle before giving the slave port to the lower-priority
master.

In addition, the crossbar switch takes control of the slave port when the crossbar switch halts or
when no masters request access to the slave port and the crossbar switch is forced either to park
the slave port on a specific master or to put the slave port into low-power park mode.

Usually, when the crossbar switch has control of the slave port, it indicates IDLE for the transfer
type, negates all control signals, and indicates ownership of the slave bus. One exception occurs
when a master running locked cycles leaves the slave port but continues to run locked cycles. The
crossbar switch controls the slave port and indicates IDLE for the transfer type but it does not
affect any other signals.

Note: When a master runs a locked cycle through the crossbar switch, the master is
guaranteed ownership of all slave ports it accesses for one cycle beyond when it
finishes running locked cycles.

6.4 Crossbar Switch Programming Model

Four IPBus-compliant registers reside in each slave port of the crossbar switch, and one register
resides in each master port. Figure 6-9 and Figure 6-10 show the programming model at each
master port and slave port, respectively. Read and write transfers require two IPBus clock cycles.
The registers can be read and written only in Supervisor mode and in 32-bit accesses. The
registers are fully decoded and an error response is returned if an unavailable location is accessed
within the crossbar switch. Since the content of the registers has a real-time effect on the crossbar
switch operation, it is important to keep in mind that any register modifications take effect as
soon as the register is written. The values of the registers do not track with slave port related
AHB accesses but instead track only with IPBus accesses.
MSC711x Reference Manual, Rev. 1

6-18 Freescale Semiconductor

Crossbar Switch Programming Model
Figure 6-9. Programming Model at Each Master Port

Figure 6-10. Programming Model at Each Slave Port

The slave registers also feature a bit that, when written with a 1, prevents the registers from being
written again. The registers are still readable, but write attempts have no effect and terminate with
an error response. Following is the list of ECI registers and the pages on which they are
discussed:

� Master Priority Register x (MPR[0–5]), page 6-20.

� Alternate Master Priority Register x (AMPR[0–5], page 6-20.

� Slave General-Purpose Control Register x (SGPCR[0–5]), page 6-22.

� Alternate Slave General-Purpose Control Register x (ASGPCR[0–5]), page 6-22.

32

IPBus 32

MGPCRx
31 0

Control Signals to
Arbitration State Machines MGPCRx: Master General-Purpose Control Register

32

IPBus
32

MPRx

31 0

Control Signals to
Arbitration State Machines

AMPRx

32

SGPCRx

31 0

Control Signals to
Arbitration State Machines

ASGPCRx

MPRx: Master Priority Register

AMPRx: Alternate Master Priority Register

SGPCRx: Slave General-Purpose Control Register

ASGPCRx: Alternate Slave General-Purpose Control Register

Alternate Priority
Select Signal
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-19

Crossbar Switch
MPR sets the priority of each master port on a per slave port basis and resides in each slave port.
MPR can be accessed only in Supervisor mode with 32-bit accesses. When a read-only bit is set
in the slave General-Purpose Control Register, the MPR can only be read. Attempts to write to it
have no effect on the MPR and result in an error response. Additionally, no two available master
ports can be programmed with the same priority level. Attempts to do so result in an error
response, and the MPR is not updated. See Table 6-5 for bit descriptions.

A

MPRx Master Priority Register
MPR0 0x000
MPR1 0x100
MPR2 0x200
MPR3 0x300

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MSTR3 — MSTR2 — MSTR1 — MSTR0

TYPE R R/W R R/W R R/W R R/W

RESET 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

AMPRx Alternate Master Priority Register
AMPR0 0x004
AMPR1 0x104
AMPR2 0x204
AMPR3 0x304

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MSTR3 — MSTR2 — MSTR1 — MSTR0

TYPE R R/W R R/W R R/W R R/W

RESET 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0
MSC711x Reference Manual, Rev. 1

6-20 Freescale Semiconductor

Crossbar Switch Programming Model
AMPR sets the alternate priority of each master port on a per slave port basis. The functionality
of the AMPR is identical to that of the MPR. The purpose of the AMPR is to allow you to set up
an alternate set of priorities for context switching. A hardware input to the crossbar switch
controls, on a per slave port basis, whether the slave port uses the MPR or the AMPR. See Table
6-5 for definitions of the AMPR bits. AMPRx can be accessed only in Supervisor mode with
32-bit accesses. When the read-only bit is set in the General-Purpose Control Register, the
AMPRx can only be read. Attempts to write to it have no effect on the AMPRx, and they result in
an error response. Additionally, no two available master ports can be programmed with the same
priority level. Attempts to do so result in an error response, and the AMPR is not be updated.

Table 6-5. MPRx and AMPRx Bit Descriptions

Name Reset Description Settings

—
31–15

0 Reserved. Write to zero for future compatibility.

MSTR3
14–12

0b011 Master 3 Priority
Sets the arbitration priority for master port 3 on
the associated slave port. These bits are
initialized by hardware reset.

000 Highest priority when accessing the
slave port.

011 Lowest priority when accessing the
slave port.

—
11

0 Reserved. Write to zero for future compatibility.

MSTR2
10–8

0b010 Master 2 Priority
Sets the arbitration priority for master port 2 on
the associated slave port. These bits are
initialized by hardware reset.

000 Highest priority when accessing the
slave port.

011 Lowest priority when accessing the
slave port.

—
7

0 Reserved. Write to zero for future compatibility.

MSTR1
6–4

0b001 Master 1 Priority
Sets the arbitration priority for master port 1 on
the associated slave port. These bits are
initialized by hardware reset.

000 Highest priority when accessing the
slave port.

011 Lowest priority when accessing the
slave port.

—
3

0 Reserved. Write to zero for future compatibility.

MSTR0
2–0

0x000 Master 0 Priority
Sets the arbitration priority for master port 0 on
the associated slave port. These bits are
initialized by hardware reset.

000 Highest priority when accessing the
slave port.

011 Lowest priority when accessing the
slave port.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-21

Crossbar Switch
SGPCR controls several features of each slave port. The SGPCR can be accessed only in
supervisor mode with 32-bit accesses. When the RO (Read Only) bit is set, the SGPCR can only
be read. Attempts to write to it have no effect on the SGPCR and result in an error response.

ASGPCR controls several features of each slave port. The function of ASGPCR is identical to
that of the SGPCR, with the notable exception that it lacks the Read Only (RO) bit. The purpose
of the ASGPCR is to allow you to set up an alternate set of general control fields for context
switching. A hardware input to the crossbar switch controls, on a per slave port basis, whether the

SGPCRx Slave General-Purpose Register
SGPCR0 0x010
SGPCR1 0x110
SGPCR2 0x210
SGPCR3 0x310

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RO HLP — HPE3 HPE2 HPE1 HPE0

TYPE R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ARB — PCTL — PARK

TYPE R R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ASGPCRx Alternate Slave General-Purpose Register
ASGPCR0 0x014
ASGPCR1 0x114
ASGPCR2 0x214
ASGPCR3 0x314

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— HLP — HPE3 HPE2 HPE1 HPE0

TYPE R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ARB — PCTL — PARK

TYPE R R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

6-22 Freescale Semiconductor

Crossbar Switch Programming Model
slave port uses the SGPCR or ASGPCR. See Table 6-6 for descriptions of the bit fields in the
ASGPCR because they are identical except for the RO bit. The ASGPCR can be accessed only in
Supervisor mode with 32-bit accesses. When the SGPCR[RO] bit is set, the ASGPCR can only
be read. Attempts to write to it have no effect on the ASGPCR, and they result in an error
response.

Table 6-6. SGPCRx and ASGPCRx Bit Descriptions

Name Reset Description Setting

RO
31

0 Read Only
Prevents any registers associated with this slave
port from being written after they are set. You can
write this bit with a value of 0 as many times as you
want, but after you write a value of 1 to it, only a
reset condition allows it to be written again.

Note: The ASGPCR does not have an RO bit.
Otherwise, the functionality of ASGPCR
is identical to that of SGPCR.

0 All this slave port’s registers can be
written.

1 All this slave port’s registers are
read-only and cannot be written
(attempted writes have no effect and
result in an error response).

HLP
30

0 Halt Low Priority
Sets the initial arbitration priority of the halt request
input. This bit is initialized by a hardware reset.
Setting this bit does not prevent the halt request
from attaining highest priority when it has control of
the slave ports.

0 The halt request input has the highest
priority for arbitration on this slave port.

1 The halt request input has the lowest
initial priority for arbitration on this slave
port.

—
29–20

0 Reserved. Write to zero for future compatibility.

HPEx
19–16

0 High Priority Enable
Enables the high priority inputs for the respective
master. These bits are initialized by hardware
reset.

0 The high priority input is disabled on this
slave port.

1 The high priority input is enabled on this
slave port.

—
15–10

Reserved. Write to zero for future compatibility.

ARB
9–8

0b00 Arbitration Mode
Selects the arbitration policy for the slave port.
These bits are initialized by hardware reset.

00 Fixed priority.

01 Round robin (rotating) priority.

10 Reserved.

11 Reserved.

—
7–6

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-23

Crossbar Switch
PCTL
5–4

0b00 Parking Control
Determines the parking control used by this slave
port. That is, PCTL determines how the slave port
parks when no master is actively making a
request. The available options are to park on the
master defined by the PARK bits, park on the last
master to use the slave port, or go into a
low-power park mode to force all the outputs of the
slave port to inactive states when no master is
requesting an access. The low-power park feature
can result in a power savings if the slave port is not
saturated. However, it forces an extra clock cycle
of latency when any master tries to access it while
it is not in use because it is not parked on any
master. These bits are initialized by hardware
reset.

00 Parks the slave port on the master
port defined by the PARK bit field.

01 Parks the slave port on the last
master to be in control of the slave
port.

10 Parks the slave port on no master
and drives all outputs to a constant
safe state.

11 Reserved.

—
3

0 Reserved. Write to zero for future compatibility.

PARK
2–0

0b000 Park
Determines which master port this slave port parks
on when no masters are actively making requests
and the PCTL bits are set to 00. These bits are
initialized by hardware reset.

000 Park on Master Port 0.

001 Park on Master Port 1.

010 Park on Master Port 2.

011 Park on Master Port 3.

Table 6-6. SGPCRx and ASGPCRx Bit Descriptions (Continued)

Name Reset Description Setting
MSC711x Reference Manual, Rev. 1

6-24 Freescale Semiconductor

Crossbar Switch Programming Model
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 6-25

Crossbar Switch
MSC711x Reference Manual, Rev. 1

6-26 Freescale Semiconductor

System Control 7
The MSC711x system control unit provides system-level control and protection, as well as
high-level device configuration, as follows:

� System protection:

— Bus time-out monitors
— Bus error detection
— Illegal access detection

� Software watchdog timer

� Device configuration:

— Selecting between secondary and additional pin usage for GPIO pins in port D
— Software watchdog timer enable via SWTE pin
— Selecting 16- or 32-pin operation for the DDR controller

� Device identification

7.1 System Protection

This section covers all aspects of system protection, including bus time-out monitors, bus error
detection, and illegal access detection.

7.1.1 Bus Time-Out Monitors (Slave Buses)

The bus time-out monitors check all AHB-Lite buses connected to the slave ports of the crossbar
switch and detect cases where an access takes too long. When a monitor detects that an access has
not been serviced correctly, the AHB-Lite transaction terminates with an error response and an
NMI interrupt is generated. Table 7-1 shows a block diagram of one bus time-out monitors.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-1

System Control
Figure 7-1. Bus Time-out Monitor Block Diagram

The counter is reset to 0x7FF. When active, the counter is programmed for a count value of 31,
127, 511, or 2047 clock ticks. When a bus time-out occurs, an AHB error response is generated
according to the standard two-cycle protocol and an NMI is asserted. The time-out steps occur are
outlined as follows:

1. A bus master begins a transaction.

2. The transaction passes through the crossbar switch to a slave.

3. The slave accepts the transaction and holds the transaction via internal signals that enter
the bus time-out monitor.

4. The bus time-out monitor passes these signals back to the master through the crossbar
switch. In addition, the bus time-out monitor begins down-counting to zero.

5. The slave never responds and the counter in the monitor reaches zero.

6. The bus time-out monitor generates an AHB-Lite error response, which terminates the
transaction and asserts the internal ready again. An NMI is generated as well.

7. The transaction at the slave is terminated.

7.1.2 Bus Time-Out and Error Detection (Master Buses)

The MSC711x AHB-Lite buses and IPBus can return error responses for an access, such as an
access to an invalid memory location. A set of bus error detection units on each AHB master port
(AMEC, AMIC, AMDMA, and AMENT) responds to these conditions. When an error response
is detected on an AHB-Lite bus, a dedicated non-maskable interrupt is asserted to determine
which master port caused the incorrect access. The bus error interrupts are listed in Table 12-5,
MSC711x Maskable Interrupt Sources, on page 12-8.

An error response on the IPBus passes to the ASSB bus. The response is then passed back to the
original master port, which flags the error. The bus error interrupt also asserts if there is a
time-out on an AHB master bus, which occurs if an access is not serviced after a preprogrammed
number of AHB clock cycles. For example, a bus error interrupt occurs when a master is locked
out of the crossbar switch for a long time by the other device masters.

Error
Programmable Counter

HREADY_INResponse
HRESP_IN

HREADY_OUT

HRESP_OUT

NMI

Enable Reset

AHB CLOCK

Count

BUS MONITOR RESET
MSC711x Reference Manual, Rev. 0

7-2 Freescale Semiconductor

Illegal Access Detection
Any non-maskable interrupt asserts the device-level DEVCFG[CNMI] bit, which ensures that the
SC1400 core can gain access to the crossbar switch, with all other masters having lower priority.
In this case, the AHB error condition terminates the access to the master that timed out. This
master can then issue subsequent transfers, which assert as HREADY due to the time-out. The
master treats these transactions as having succeeded, but the transactions are discarded by the
system. Recovery occurs through servicing the NMI interrupt.

7.2 Illegal Access Detection

Illegal accesses to restricted areas in the MSC711x memory map are detected and generate NMI
interrupt requests. Illegal accesses are categorizes as follows:

� Program accesses:

— Address out-of-range from SC1400 core (PBus) and IFU (AMIC bus)
— Programmable address out-of-range detection on the SC1400 P bus, ASM2, and

ASEMI
— Misaligned accesses from: SC1400 core (PBus) and IFU (AMIC bus)

� Data accesses:

— Address Out-of-Range from:

• SC1400 XA or XB buses

• ECI (AMEC bus)

• DMA controller (AMDMA bus)

• Ethernet MAC DMA (AMENT bus)

— Programmable address out-of-range detection on:

• SC1400 XA and XB buses

• ASM2

• ASEMI

— Misaligned accesses from:

• SC1400 XA or XB buses

• ECI (AMEC bus)

• DMA controller (AMDMA bus)

• Ethernet MAC DMA (AMENT bus)

— Writes to the boot ROM

7.2.1 Fixed Illegal Access Detection

The fixed detection units detect address out-of-range and misaligned accesses on each master
port bus. Address out-of-range detection on each master port is described in Section 5.3, Address
Space by Type of Access, on page 5-31. For example, if the instruction fetch unit attempts to
access the APB peripheral space, this attempt is detected as an illegal access. For details on
illegal access interrupts, see Table 12-3 on page 12-6.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-3

System Control
7.2.2 Programmable Access Detection

For effective debugging and system recovery, you can define invalid access regions on important
MSC711x buses. The access detection units provide protection beyond that of the fixed address
out-of-range access detection hardware so that you can define illegal accesses ranges on the basis
of how the M1, M2, and DDR memories are partitioned in an application for program code,
read-only data, and read-write data. These units also provide a mechanism for a ROM patch
capability for the device. For details on the programmable access detection units, see Chapter
17, Programmable Address Detection.

7.2.3 Misaligned Access Detection

Misaligned accesses from the SC1400 core are discussed in Section 4.3.2, Errors, Exceptions,
and Events, on page 4-8. Also, there is misaligned detection logic on all AHB master buses.

7.3 Software Watchdog Timer

The software watchdog timer (SWT) prevents system lock if the software becomes trapped in
loops with no controlled exit. Hardware protects this timer from corruption, ensuring that
time-outs are correctly detected. The SWT requires a special service sequence to execute
periodically. Without the periodic servicing, the SWT times out and issues a reset or a
non-maskable interrupt. The SWT is programmed either to reset the MSC711x device or to
generate a dedicated non-maskable interrupt. SWT features are as follows:

� Disabled out of reset. Manually enabled by the user (SWTCTL[WDEN] = 1).

� 32-bit watchdog counter.

� Programmable time-out range (period).

� Counter counts down from a pre-set value to zero to indicate a time-out.

� If a time-out occurs, the watchdog timer can be programmed for one of the following
operations:

— Generate a system reset.
— Generate an interrupt, which the service routine must clear by the time a second

time-out occurs or a system reset is generated.

� Accidental restart of the SWT counter is prevented.

� Accidental disabling of the SWT is prevented.

� Pause mode with the use of external pause enable signal:

— Optional pause upon entering the SC1400 core stop mode.
— Pause upon entering SC1400 Debug mode or pause for single-stepping through

SC1400 instructions.

� SWT can be disabled via an external pin.
MSC711x Reference Manual, Rev. 0

7-4 Freescale Semiconductor

Software Watchdog Timer
7.3.1 Software Watchdog Timer Operation

The SWT is an APB slave peripheral that can prevent system lock-up caused by conflicting
modules or programs in an MSC711x device. The SWT is composed of the following
sub-modules:

� APB slave interface.

� Register file with read coherency for the current count register.

� Reset detection logic.

� 32-bit decrementing counter.

� Interrupt/system reset generation block.

Figure 7-2 shows the SWT block diagram.

7.3.1.1 Counter

The SWT counts from a preset time-out value in descending order to zero. When the counter
reaches zero, depending on the output response mode selected, either a system reset or an
interrupt occurs. The counter wraps to the selected time-out value and continues to decrement.
You can also restart the counter to its initial value by writing to the restart register at any time. As
a safety feature to prevent accidental restarts, a value of 0x76 must be written to the SWT Current
Counter Value Register (SWTCCV) (see page 7-14).

Figure 7-2. Software Watchdog Timer Block Diagram

32-bit Watchdog Counter

32 APB

SWT Reset

(to Reset Controller)

Interface
APB

Detection
Reset

File
Register

Interrupt/System Reset

Control

SWT NMI

(to Interrupt Controller)

32

Stop Mode
Input Clock

Pause
Clock

Debug Mode
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-5

System Control
7.3.1.2 Pause Mechanism

The SWT supports a pause mechanism which “freezes” the watchdog counter while the system is
being paused. The SWT begins running when it is enabled via the SWTCTL[WDEN] bit. It is
clocked with MSC711x watchdog clock. The SWT counter is paused and counting is suspended
when the device enters Debug mode. Optionally, the SWT can be paused when the device enters
Stop mode via the STPDIS5 or PLLSTP bits in the CLKCTL0 register (Section 11.5, Clock
Programming Model, on page 11-24). Also, the development tools can pause the SWT by setting
the ECI GPSCTL[INDBG] bit.

Figure 7-3. Watchdog Timer Pause Circuitry

When the SWT enters pause mode, the counter is normally not at zero, so the counter simply
resumes counting when the pause is removed, and no interrupt or system reset is generated. If the
counter is frozen at the zero count, no interrupt or system reset is generated. When the pause is
removed, the interrupt or system reset is asserted on the next rising edge of the clock.

7.3.1.3 Interrupt and System Reset Response

The SWT can be programmed via the SWTCL[RMOD] bit discussed on page 7-12 to generate
an interrupt and then a system reset when a time-out occurs. The first time the watchdog counter
expires, the SWT generates an interrupt. If it is not cleared by the time a second time-out occurs,
then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches
zero, an interrupt is not generated.

When the SWTCL[RMOD] bit is cleared, the software watchdog timer generates a system reset
when a time-out occurs. If a restart occurs when the watchdog counter reaches zero, a system
reset is not generated.

7.3.2 Configuring the Watchdog Timer out of Reset

The SWT comes out of power-on reset in a disabled state. When power-on reset is deasserted, the
DEVCFG[SWTS] bit (page 7-17) captures the value of the SWTE signal. If this bit is set, normal
SWT operation occurs when the SWT is properly enabled via the SWTCTL[WDEN] bit
(page 7-14). If the SWTS bit is cleared, the SWT remains disabled even if the WDEN enable bit
is set. The SWTS bit can be written only on the deassertion of power-on reset.

Pause

CLK

Pre-load Values

32-Bit SWT Counter

InterruptPause
GPSCTL[INDBG]

Watchdog Clock Reset

DEVCFG[SWTS]

SWTTOR[TOP]

Interrupt

System Reset

[0xFFFF, 0x1FFFF, ... , 0xFFFFFFFF]

EnWDEN

OCE10 Debug
MSC711x Reference Manual, Rev. 0

7-6 Freescale Semiconductor

System Control Programming Model
Before the SWT is enabled, you must configure it for desired operation in the SWT Control
Register (SWTCTL) (page 7-12) and SWT Time-out Range (SWTTOR) register (page 7-13).

When the SWT is configured via the SWTCL[RMOD] bit to generate a system reset, the SWT
must be serviced before its counter reaches zero. If the SWT times out, a hard reset occurs. When
the SWT is configured via the SWTCL[RMOD] bit to generate a non-maskable interrupt, the
SWT must either be serviced or the SWTEOI[CLRI] bit (page 7-15) must be read to clear the
interrupt before the counter reaches zero. If the SWT times out, a non-maskable interrupt is
asserted. If a second time-out occurs before the interrupt is cleared, a hard reset occurs.

7.3.3 Servicing the Watchdog Timer

Normal SWT operation requires an application to restart the watchdog counter periodically to
prevent watchdog counter time-out. To restart the watchdog counter, the program must write a
value of 0x76 to the SWTCR register. The software watchdog timer can be configured in the
SWTTOR register to have a user-defined time-out period range.

7.4 System Control Programming Model

The system control registers are listed as follows, along with the number of the page where each
is discussed:

� Bus time-out monitor and error registers:

— Bus Time-Out Control Register (BTMCTL), page 7-8.
— Bus Error Control Register (BERRCTL), page 7-10.

� Software watchdog timer registers:

— SWT Control Register (SWTCTL), page 7-12.
— SWT Time-Out Range Register (SWTTOR), page 7-13.
— SWT Current Counter Value Register (SWTCCV), page 7-14.
— SWT Counter Restart Register (SWTCR), (page 7-14).
— SWT Interrupt Status Register (SWTSTA), page 7-15.
— SWT Interrupt Clear Register (SWTEOI), page 7-15.

� Device identification and configuration registers:

— Device ID Register (DEVID), page 7-16
— Device Configuration Register (DEVCFG), page 7-17.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-7

System Control
7.4.1 Bus Time-Out Monitor and Bus Error Registers

BTMCTL controls the time-out period for different buses.

BTMCTL Bus Time-Out Control Register BTM_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSTEN — TMDASM1 — TMDASM2

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TMDASEMI — TMDASTH — TMDASAPB — TMDASSB

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7-1. BTMCTL Bit Descriptions

Bit Reset Description Description

RSTEN
31

0 Reset Enable
Select action for all BTMs.

0 Bus time-out asserts non-maskable
interrupt.

1 Bus time-out asserts bus monitor reset.

—
30–23

0 Reserved. Write to zero for future compatibility.

TMDASM1
22–20

0 Time-out Delay for ASM1 Bus 000 Detection after 31 ticks.

001 Detection after 127 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.

—
19

0 Reserved. Write to zero for future compatibility.

TMDASM2
18–16

0 Time-out Delay for ASM2 Bus 000 Detection after 31 ticks.

001 Detection after 127 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.
MSC711x Reference Manual, Rev. 0

7-8 Freescale Semiconductor

System Control Programming Model
—
15

0 Reserved. Write to zero for future compatibility.

TMDASEMI
14–12

0 Time-out Delay for ASEMI Bus
The DDR memory controller is an
exceptional case. When the DDR is disabled,
any subsequent writes to the DDR would
normally time out on ASEMI. However, the
MCIF peripheral captures up to eight
subsequent writes to the DDR in its write
buffer, with no time-outs occurring. A
time-out occurs only when there are more
than eight writes.

000 Detection after 511 ticks.

001 Detection after 511 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.

—
11

0 Reserved. Write to zero for future compatibility.

TMDASTH
10–8

0 Time-out Delay for ASTH Bus 000 Detection after 31 ticks.

001 Detection after 127 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.

—
7

0 Reserved. Write to zero for future compatibility.

TMDASAPB
6–4

0 Time-out Delay for ASAPB Bus 000 Detection after 31 ticks.

001 Detection after 127 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.

—
3

0 Reserved. Write to zero for future compatibility.

TMDASSB
2–0

0 Time-out Delay for ASSB Bus 000 Detection after 31 ticks.

001 Detection after 127 ticks.

010 Detection after 511 ticks.

011 Detection after 2047 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Disable detection.

Note: A time-out of 31 or 127 ticks is not supported on the ASEMI bus because 31 or 127 ticks is not long enough to
process all possible cases.

Table 7-1. BTMCTL Bit Descriptions (Continued)

Bit Reset Description Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-9

System Control

B

R

R

ERRCTL Bus Error Control Register BTM_BASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved TMEL_AMIC TMNE_AMIC TMEL_AMEC TMNE_AMEC

TYPE R/W

ESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TMEL_AMDMA TMNE_AMDMA TMEL_AMENT TMNE_AMENT

TYPE R/W

ESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7-2. BERRCTL Bit Descriptions

Bit x Reset Description Description

—
31–28

0 Reserved. Write to zero for future compatibility.

TMEL_AMIC[2–0]
27–25

0 Time-out Delay for AMIC Bus
When priority is elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

TMNE_AMIC
24–22

0 Time-out Delay for AMIC Bus
When priority is not elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

TMEL_AMEC
21–19

0 Time-out Delay for AMEC Bus
When priority is elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.
MSC711x Reference Manual, Rev. 0

7-10 Freescale Semiconductor

System Control Programming Model
TMNE_AMEC
18–16

0 Time-out Delay for AMEC Bus
When priority is not elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

—
15–12

0 Reserved. Write to zero for future compatibility.

TMEL_AMDMA
11–9

0 Time-out Delay for AMDMA Bus
When priority is elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

TMNE_AMDMA[2:0]
8–6

0 Time-out Delay for AMDMA Bus
When priority is not elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

TMEL_AMENT
5–3

0 Time-out Delay for AMENT Bus
When priority is elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

TMNE_AMENT[2:0]
2–0

0 Time-out Delay for AMENT Bus
When priority is not elevated.

000 Disable detection.

001 Detection after 256 ticks.

010 Detection after 1024 ticks.

011 Detection after 4096 ticks.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

Table 7-2. BERRCTL Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-11

System Control
7.4.2 Software Watchdog Timer Registers

The value of the base address for this SWT file, SWT_BASE, is provided in
Section 5.1, Register Base Addresses, on page 5-4.

SWTCTL configures the watchdog timer.

SWTCTL Watchdog Control Register SWT_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RMOD WDEN

TYPE R/W

RESET 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 7-3. SWTCTL Bit Descriptions

Name Reset Description Settings

—
31–2

0x0 Reserved. Write to zero for future compatibility.

RMOD
1

1 Output Response Mode
Selects the action performed at watchdog counter
time-out.

0 Generate a reset.

1 Generate a non-maskable interrupt. If
not cleared by the time a second
time-out occurs, generate a reset.

WDEN
0

0 Watchdog Timer Enable
Enables the watchdog timer when it is properly
configured. When this bit is enabled, it can be cleared
only by a system reset.

0 Watchdog timer disabled.

1 Watchdog timer enabled.
MSC711x Reference Manual, Rev. 0

7-12 Freescale Semiconductor

System Control Programming Model
SWTTOR specifies the preload value of the watchdog counter.

SWTTOR Watchdog Time-out Range Register SWT_BASE + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TOP

TYPE R/W

RESET 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7-4. SWTTOR Bit Descriptions

Name Reset Description Settings

—
31–4

0x0 Reserved. Write to zero for future compatibility.

TOP
3–0

 0x0 Time-out Period Count
Preload value for watchdog counter.

TOP 32-bit Preload Value

0000 0x0000 FFFF

0001 0x0001 FFFF

0010 0x0003 FFFF

0011 0x0007 FFFF

0100 0x000F FFFF

0101 0x001F FFFF

0110 0x003F FFFF

0111 0x007F FFFF

1000 0x00FF FFFF

1001 0x01FF FFFF

1010 0x03FF FFFF

1011 0x07FF FFFF

1100 0x0FFF FFFF

1101 0x1FFF FFFF

1110 0x3FFF FFFF

1111 0x7FFF FFFF
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-13

System Control
SWTCCV reads the current value of the watchdog counter.

SWTCR triggers the watchdog timer, which restarts the watchdog counter.

SWTCCV Watchdog Current Counter Value Register SWT_BASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCVR

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCVR

TYPE R/W

RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7-5. SWTCCV Bit Descriptions

Name Reset Description Settings

CCVR
31–0

0x0000FFFF Current Counter Contents
Reading this register gives the current value of the
internal watchdog counter.

SWTCR Watchdog Counter Restart Register SWT_BASE + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RSTVAL

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7-6. SWTCR Bit Descriptions

Name Reset Description Settings

—
31–8

0x0 Reserved. Write to zero for future compatibility.

RSTVAL
7–0

0x0 Restart Value
Writing the value of 0x76 to this field restarts the
watchdog counter. This field is read as 0x00.
MSC711x Reference Manual, Rev. 0

7-14 Freescale Semiconductor

System Control Programming Model
SWTSTA indicates whether a watchdog interrupt has occurred.

SWTEOI clears a pending watchdog interrupt.

SWTSTA Watchdog Interrupt Status Register SWT_BASE + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— STAT

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7-7. SWTSTA Bit Descriptions

Name Reset Description Settings

—
31–1

0x0 Reserved. Write to zero for future compatibility.

STAT
0

0 Time-out Interrupt
Reads as a 1 when a non-maskable interrupt
occurs upon watchdog counter time-out.

0 No interrupt.

1 Interrupt.

SWTEOI Watchdog End of Interrupt Register SWT_BASE + 0x14

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— CLRI

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-15

System Control

7.4.3 Device Identification and Configuration

DEVID provides information to identify the particular MSC711x device.

Table 7-8. SWTEOI Bit Descriptions

Name Reset Description Settings

—
31–1

0x0 Reserved. Write to zero for future compatibility.

CLRI
0

0 Clear Time-out Interrupt
Reading this register clears the watchdog time-out
interrupt. This bit reads as a zero.

DEVID Device ID Register BTM_BASE + 0x88

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VER FSLID DEVNBR

Type R

Reset

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEVNBR FSLMFRID 1

Type R

Reset Device-Dependant 0 0 0 0 0 0 0 0 1 1 1 0

Table 7-9. DEVID Bit Descriptions

Name Reset Description

VER
31–28

xxxx????? xxxx Version
Contains the version number for the device.

FSLID
27–22

0x21 Freescale Design Center ID
Specifies design center within Freescale: 100001

DEVNBR
21–12

0x21 Device Number
Identifies the device among the different family members:
• MSC7110 = 0x3
• MSC7112 = 0x7
• MSC7113 = 0x6
• MSC7115 = 0x1
• MSC7116 = 0x2
• MSC7118 = 0x9
• MSC7119 = 0xA

FSLMFRID
11–1

0x01B Manufacturer Identity
Freescale = 0b 00000001110.

—
0

1 This bit is hardwired to a value of 1.
MSC711x Reference Manual, Rev. 0

7-16 Freescale Semiconductor

System Control Programming Model

DEVCFG Device Configuration Register BTM_BASE + 0x80

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — HCOV ENTP CNMI — SWTS DDR — PAS — — PDS

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0

* These bits are sampled from MSC711x pins at power-on reset and loaded here.

Table 7-10. DEVCFG Bit Descriptions

Name Reset Description Settings

—
31–11

0 Reserved. Write to zero for future compatibility.

HCOV
10

0 HCS2 Override
Determines whether the HDI module uses the HCS2
pin. When this bit is cleared, the host port is selected
via both the HCS[1–2] pins.When this bit is set, the
host port is selected with only the HCS1 pin. The HDI
port ignores the value on the HCS2 pin.

0 HCS2 pin is available to the HDI
port.

1 HCS2 pin is not available to the HDI
port.

ENTP
9

0 Ethernet MAC Priority Level
Control bit for raising the access priority for all
Ethernet MAC accesses through the crossbar switch.

0 Priority is not elevated on all
accesses from the Ethernet MAC.

1 Priority is elevated on all accesses
from the Ethernet MAC.

CNMI
8

0 Device NMI Detected
Indicates a device-level non-maskable interrupt. When
this bit is set, the priority elevation signals on the
AMEC and AMIC buses are forced to an asserted
state, while the priority elevation signal on all other
master buses is forced to a deasserted state. Software
cannot set this bit, but it can be cleared by writing it
with a value of 0. CNMI must be cleared only after all
device non-maskable interrupt requests are cleared in
the NMIPR.

0 No device-level NMI detected.

1 Device-level NMI detected.

—
7

0 Reserved. Write to zero for future compatibility.

SWTS
6

0 SWTE Pin Status
Contains the value of the SWTE signal when sampled
at power-on reset. SWTS is used to disable the
software watchdog timer, as described in Section
7.3.2, Configuring the Watchdog Timer out of Reset,
on page 7-6. This bit can be loaded only when
power-on reset is deasserted on exit from power-on
reset.

0 Signal deasserted.

1 Signal asserted.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 7-17

System Control
The PAS and PDS bits affect only a subset of the signals for each port, as listed in Table 7-11.
Signals not listed in this table are always configured for secondary functions when they are not
configured as GPIO. Similarly, signals that are always sampled out of reset (SWTE, BM1, BM0, and
H8BIT) are not affected.

DDR
5

0 DDR Number of Pins Select
A write-once bit that determines whether the DDR
interface is configured for 16- or 32-pin operation.
When this bit is set after reset, it can no longer be
reset.

0 Selects 16-pin DDR Interface.

1 Selects 32-pin DDR Interface.

—
4

0 Reserved. Write to zero for future compatibility.

PAS
3

0 Port A Select
When the signal is not configured as GPIO, this bit
selects between the secondary and additional
functions of the pin. PAS affects only a subset of the
port pins. For a listing of pins affected by PAS, see
Table 7-11. PAS does not affect the CLKO pin, which
is selected when it is enabled in the Clock Control
Register and overrides the value of this bit. Refer to
Section 24.3.2.2, Port A, on page 24-4 and to Table
24-1, Port A GPIO Signal Pin Assignments for Devices
With Ethernet MAC, on page 24-6.

0 Selects the secondary function of the
signal.

1 Selects the additional multiplexing
function of the signal.

—
2–1

0 Reserved. Write to zero for future compatibility.

PDS
0

0 Port D Select
When the pins are not configured as GPIO, this bit
selects between the secondary and additional
functions of the signals. PDS affects only a subset of
the port pins. For a listing of pins affected by PDS, see
Table 7-11. Refer to Section 24.3.2.5, Port D, on
page 24-9 and to Table 24-5, Port D GPIO Signal Pin
Assignments for Devices With an Ethernet MAC, on
page 24-10.

0 Selects the secondary function of the
signal.

1 Selects the additional multiplexing
function of the signal.

Table 7-11. Pins Affected

Control Bit Port
Affected

Bits
Settings

PAS A 29–27 0 Selects MII functionality of signals: RXD3, TX_ER, TXD3.

1 Selects TDM2 functionality of signals: T2TFS, T2RD, T2RCK.

PDS D 6–4 0 Selects MII functionality of signals: RXD2, RXCLK, TXD2.

1 Selects TDM2 functionality of signals: T2TD, T2TCK, T2RFS.

Table 7-10. DEVCFG Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

7-18 Freescale Semiconductor

DMA Controller 8
The DMA controller performs complex data transfers on 32 programmable channels with
minimal intervention from a host processor. The hardware micro-architecture includes a DMA
engine that calculates the source and destination addresses and moves the data and a local
memory containing the transfer control descriptors (TCD) for the channels. This SRAM-based
implementation minimizes overall module size. For best use of the DMA controller, you should
read not only this chapter but also Section A.1.6, DMA Controller, on page A-4.

8.1 Features

Features of the DMA controller are as follows:

� A 64-bit data path.

� All data movement via dual-address transfers: read from source, write to destination. The
source, destination addresses, transfer size are programmable, and there is support for
enhanced addressing modes.

� TCD to handle two-deep, nested transfer operations:

— An inner data transfer loop defined by a minor byte transfer count
— An outer data transfer loop defined by a major iteration count

� Channel activation via one of three methods, all of which require one activation per
execution of the minor loop:

— Explicit software initiation.
— Initiation via a channel-to-channel linking mechanism for continuous transfers

(independent channel linking at the end of the minor loop and/or major loop).
— Peripheral-initiated hardware requests, one per channel.

� Fixed-priority and round-robin channel arbitration.

� Channel completion reported via optional interrupt requests:

— One interrupt per channel, optionally asserted at completion of major iteration count
— Error termination is optionally enabled per channel and logically summed together to

form a small number of error interrupt outputs.

� Optional scatter/gather DMA processing.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-1

DMA Controller
8.2 DMA Architecture

The DMA controller is for applications in which the size of the data transfer is statically known
and is not defined within the data packet itself (see Figure 8-1). The DMA hardware supports:

� Connections to the AMDMA-AHB crossbar switch for bus mastering the data movement
and to the IPBus interface for programming the module.

� 32-byte TCD per channel stored in local memory.

� 32 bytes of data registers to store data temporarily for burst transfers.

Throughout this chapter, data sizes are defined as byte (8-bit), half word (16-bit), word (32-bit)
and double word (64-bit).

Figure 8-1. DMA Controller Block Diagram

j

j+1

15

SRAM
Transfer
Control
Descriptor (TCD)

DMA Engine

Address

Data Path

DMA Controller

IPBus

AMDMA (AHB-Lite) DREQ[31–0]
DINT[31–0]

0

C
o
n
t
r
o
l

Programming Model/

32-Bit Write Data

32-Bit Read

AHB Master Port

AHB Master Port

AHB Address (32-Bit)

64

DDONE[31–0]

32

64

Path

Channel ArbitrationRead Data (64- or 32-Bit)

Write Data (64- or 32-Bit)

Data

Address
MSC711x Reference Manual, Rev. 0

8-2 Freescale Semiconductor

DMA Architecture
8.2.1 DMA Engine

The DMA engine is partitioned into an address path, a data path, a module for the programming
model and channel arbitration, and control functions.

The address path contains registered versions of two channel transfer control descriptors: channel
x and channel y, and calculates the master bus addresses. All channels provide the exact same
functionality. The data transfers in one channel can be preempted after a read/write sequence
completes if a higher-priority channel is activated while the first channel is active. Therefore, a
large data move operation can be preempted to minimize the time another channel is blocked
from execution (optionally enabled by DCHPRIx[ECP] (see Table 8-22, DCHPRIx Bit
Descriptions, on page 8-39). When any channel is activated, the contents of its TCD are read
from local memory. When execution of the inner minor loop completes, the new values of the
TCD registers are written back into the local memory. If the major iteration count is exhausted,
additional processing is performed, including the final address pointer updates, reloading the
TCDx-5[CITER] field, and a possible fetch of the next TCDx from memory as part of a
scatter/gather operation.

The bus master read/write data path includes 32 bytes of register storage to match the maximum
transfer size and the necessary multiplex logic to support any required data alignment. The
AMBA-AHB read data bus is the primary input, and the AHB write data bus is the primary
output. The address and data path modules directly support the 2-stage pipelined AMBA-AHB
bus. The address path represents the first stage of the bus pipeline, and the data path is the second
stage of the pipeline.

The programming model registers are connected to the IPBus. The DREQ register inputs and
DINT register outputs also connect to this module via the control logic. The control module
provides the control functions for the DMA engine. For data transfers with equal source and
destination sizes, the DMA engine performs a series of source read, destination write operations
until the number of bytes specified in the inner minor loop byte count are transferred. For
descriptors of unequal sizes, multiple accesses to the smaller data are required for each reference
of the larger size. For example, if the source size references 16-bit data and the destination is
32-bit data, two reads are performed, followed by one 32-bit write.

8.2.2 Transfer Control Descriptor (TCD)

TCD local memory includes a memory controller and a memory array. The dual-ported memory
controller handles accesses from both the DMA engine as well as references from the IPBus. For
simultaneous accesses, the DMA engine has priority, and the IPBus transaction stalls. The TCD
memory array is a single-ported, synchronous compiled RAM memory array.

The structure of the DMA transfer control descriptor is fundamental to the operation of the DMA
module. It is defined as follows in a C pseudo-code specification. int refers to a 32-bit variable
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-3

DMA Controller
unless noted otherwise, and short is a 16-bit variable. To compile these structures, change any
periods (.) in the variable name to underscores (_).

typedef union {

 struct { /* CITERE = 1 */

 unsigned short CITERH:6; /* link channel number, */

 unsigned short citer:9; /* current (“major”) iteration count */

 } minor_link_enabled; /* channel link at end of the minor loop */

 struct { /* CITERE = 0 */

 unsigned short citer:15; /* current (“major”) iteration count */

 } minor_link_disabled; /* no linking at end of the minor loop */

} t_minor_link_citer;

typedef union {

 struct { /* BITERE = 1 */

 unsigned short BITERH:6; /* link channel number, */

 unsigned short biter:9; /* beginning (“major”) iteration count */

 } init_minor_link_enabled; /* channel link at end of the minor loop */

 struct { /* BITERE = 0 */

 unsigned short biter:15; /* beginning (“major”) iteration count */

 } init_minor_link_disabled; /* no linking at end of the minor loop */

} t_minor_link_biter;

typedef struct {

unsigned int saddr; /* source address */

unsigned int smod:5; /* source address modulo */

unsigned int ssize:3; /* source transfer size */

unsigned int dmod:5; /* destination address modulo */

unsigned int dsize:3; /* destination transfer size */

short soff; /* signed source address offset */

unsigned int nbytes; /* inner (“minor”) byte count */

int slast; /* last source address adjustment */

unsigned int daddr; /* destination address */

unsigned short CITERE:1; /* enable channel linking on minor loop */

t_minor_link_citer minor_link_citer; /* conditional current iteration count */

short doff; /* signed destination address offset */

int dlast_sga; /* last destination address adjustment, or

 scatter/gather address (if ESG = 1) */

unsigned short BITERE:1; /* beginning channel link enable */

t_minor_link_biter minor_link_biter; /* beginning (“major”) iteration count */

unsigned int bwc:2; /* bandwidth control */

unsigned int LCNUM:6; /* link channel number */

unsigned int done:1; /* channel done */

unsigned int active:1; /* channel executing */

unsigned int CLE:1; /* enable channel linking on major loop*/

unsigned int ESG:1; /* enable scatter/gather descriptor */

unsigned int DREQ:1; /* disable ipd_req when done */

unsigned int INTH:1; /* interrupt on citer = (biter >> 1) */
MSC711x Reference Manual, Rev. 0

8-4 Freescale Semiconductor

Data Transfer Overview
unsigned int INTM:1; /* interrupt on major loop completion */

unsigned int start:1; /* explicit channel start */

} tcd /* transfer_control_descriptor */

8.3 Data Transfer Overview

The DMA controller performs single transfers of 8, 16, 32, or 64 bits. Bursts are 4 beats of 64 bits
(32 bytes). The DMA controller requires correct alignment in order to initiate a transfer. This
applies to the addresses and offsets of both the source and destination. Table 8-1 summarizes this
alignment requirement for the different types of data transfers.

If a transfer is not correctly aligned as described in Table 8-1, the DMA issues one of the
following errors, which are indicated in the DMA Error Status Register (DMAES) (see Table
8-9, DMAES Bit Descriptions, on page 8-29):

� Source address error

� Source offset error

� Destination address error

� Destination offset error

The range of addresses used by the DMA controller to access M1 memory over the AMDMA bus
differs from the range of addresses used by the SC1400 core to access these same locations. For
example, an SC1400 core access to address 0x0000 0000 accesses the same location that the
DMA accesses at address 0x0180 0000. See Table 5-1, Summary — Base Addresses for
MSC711x Register Files, on page 5-4, which demonstrates this difference, and Table 5-2,
MSC711x Detailed Memory Map, on page 5-5, which shows the correct address ranges.

Table 8-1. DMA Alignment Requirements

Transfer Size
AHB

Burst Type
Address or Offset:

Must be aligned on a
Comments

8 bits Single Byte boundary —

16 bits Single 2 byte boundary —

32 bits Single 4 byte boundary —

64-bits Single 8 byte boundary —

4 × 64-bits
(32 bytes)

WRAP4 32 byte boundary Although a WRAP4 is issued, wrapping is not
supported. MSC711x devices require the start
address to be aligned to the total number of bytes in
the burst. Therefore, although the DMA controller
issues a WRAP4 burst attribute, this is equivalent to
an INCR4 burst attribute.

Note: This table presents all legal transactions permitted on the MSC711x DMA controller.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-5

DMA Controller
8.3.1 Channel Assignments

Table 8-2 shows the MSC711x channel assignments.

Note: DMA transfers to/from the Ethernet MAC are not performed by this DMA controller
but are instead handled by a dedicated DMA unit within the Ethernet MAC.

8.3.2 DMA Arbitration

The 32 DMA channels are organized into the following groups:

� Group 0: Channels 0 through 15

� Group 1: Channels 16 through 31

There is a group arbitration scheme and a channel arbitration scheme. Group arbitration is
selected with the DMACR[ERGA] bit (see Table 8-8, on page 8-27). Group arbitration is
handled as either fixed-priority or round robin-priority. The priority of a group programmed for
fixed-priority arbitration is set with the DMACR[GRPxPRI] bit (see Table 8-8, on page 8-27).
Each group must be programmed with a unique priority. Different groups cannot have the same
priority level.

Table 8-2. DMA Channel Assignments

Group 0 Channels Group 1 Channels

DMA
Channel

Assigned to Channel
DMA

Channel
Assigned to Channel

0 TDM0 TX 16 Available for memory transfers

1 TDM0 RX 17 Available for memory transfers

2 TDM1 TX 18 Available for memory transfers

3 TDM1 RX 19 Available for memory transfers

4 HDI16 TX 20 Available for memory transfers

5 HDI16 RX 21 Available for memory transfers

6 Available for memory transfers 22 Available for memory transfers

7 Available for memory transfers 23 Available for memory transfers

8 Available for memory transfers 24 Available for memory transfers

9 Available for memory transfers 25 Available for memory transfers

10 Available for memory transfers 26 Available for memory transfers

11 Available for memory transfers 27 Available for memory transfers

12 TDM2 TX 28 Available for memory transfers

13 TDM2 RX 29 Available for memory transfers

14 EVDMA0 30 Available for memory transfers

15 EVDMA1 31 Available for memory transfers
MSC711x Reference Manual, Rev. 0

8-6 Freescale Semiconductor

Data Transfer Overview
8.3.2.1 Channel Arbitration within a Group

When the arbiter selects a group, the channel arbitration scheme is selected with the
DMACR[ERCA] bit (see Table 8-8, on page 8-27). For fixed-priority arbitration, one of 16
priority levels is assigned to each channel in the DMA Channel Priority Registers (DCHPRIx)
discussed on page 8-39. Each channel must be programmed with a unique priority. Different
channels cannot have the same priority level. When all channels are programmed for
fixed-priority arbitration via the DMACR[ERCA] bit, each channel can be individually
programmed to enable or disable preemption by a higher-priority channel. If preemption is
enabled, a request from a higher-priority channel preempts the current active channel and
switches to the new one. If preemption is disabled, higher priority channels gain control only
upon completion of the current channel’s minor loop. Nested preemption is not permitted. That
is, a DMA channel that has preempted another channel cannot be preempted. Preemption is
available only in fixed-priority mode. It is not available in round-robin mode. Table 8-3 shows
the permitted scenarios for configuring DMA arbitration.

Table 8-3. Arbitration Capabilities

Scenario
Group

Arbitration
Channel

Arbitration
Preemption
Allowed?

Description

1 Round robin Fixed priority No When there are one or more DMA requests from one or more
groups, the channel with the highest priority from a specific
group is serviced first. Groups are serviced from the highest
group number to the lowest group number. After a channel
request is serviced, the group round-robin algorithm selects the
highest pending request from the next group in the round-robin
sequence. Servicing continues round robin, always servicing
the highest priority channel in the next group in the sequence,
or just skipping a group if it has no pending requests. If a
channel requests service at a rate that equals or exceeds the
round-robin service rate, that channel is always serviced before
lower-priority channels in the same group, and the lower-priority
channels may never receive service. The advantage of this
scenario is that no one group can consume all the DMA
bandwidth. The highest-priority channel selection latency is
potentially greater than that for fixed/fixed arbitration. However,
excessive request rates on high-priority channels could prevent
servicing of lower-priority channels in the same group.

2 Round robin Round robin No Groups are serviced as in scenario 1, except that channels are
serviced in channel number order. Only one channel is serviced
from each requesting group for each round robin pass through
the groups. Within each group, channel service starts at the
highest channel number and rotates through to the lowest
channel number without regard to channel priority levels. Any
channel that generates DMA requests more quickly than a
combination of the group round-robin service rate and the
channel service rate for its group does not prevent the servicing
of other channels in its group. Any DMA requests not serviced
are simply lost, but at least one channel is serviced. All
channels are treated equally. Priority levels are not used in
round robin/round robin mode. This scenario guarantees that all
channels get service at some point, regardless of the request
rates. However, the potential latency could be quite high.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-7

DMA Controller
8.3.2.2 Prioritization through the Crossbar Switch

The DMA controller also has a programmable priority for accessing the crossbar switch. Each
slave port of the switch individually programs the DMA priority via the AMDMA bus (see
Section 6.4, Crossbar Switch Programming Model, on page 6-18). The DMA controller uses
these programmable priorities for normal DMA transactions on the AMDMA bus through the
switch. The DMA controller can elevate its priority through the switch for a particular TCD
within a DMA channel by programming the bandwidth control bits for the desired TCD as shown
in Table 8-32, TCDx-7 Bit Descriptions, on page 8-49. Elevating the priority raises the
AMDMA master above all other crossbar master ports with no elevated priorities. Each time a
DMA channel is activated by reloading its parameters from the DMA local memory, the first
transaction does not have elevated priority for the first cycle while the DMA loads the priority
field from the TCD memory. In some cases, an additional cycle may be required before priority
elevation occurs. Then, the priority of all subsequent cycles for the specific channel is elevated.

8.3.3 DMA Interrupt Vectors

The MSC711x architecture allocates interrupt vectors differently for different DMA channels.
This may be important when DMA channels are allocated within an application:

� Channels 0–7. Each has its own dedicated interrupt vector.

� Channels 8–16. Each shares an interrupt vector with one other DMA channel.

� Channels 16–31. All of these channel share a single interrupt vector

3 Fixed priority Round robin No The highest-priority group with a request is serviced. Lower
priority groups are serviced if no pending requests exist in the
higher priority groups. Within each group, channel service
starts with the highest channel number and rotates through to
the lowest channel number, without regard to channel priority
levels assigned within the group. This scenario can cause the
same bandwidth consumption problem as indicated in scenario
1, but all the channels in the highest-priority group get service.
Service latency is short on the highest-priority group, but it can
increase as the group priority decreases.

4 Fixed priority Fixed priority Yes The channel service request from the highest-priority channel in
the highest-priority group is selected to execute. If the DMA is
programmed so that channels within one group use fixed
priorities and that group is assigned the highest fixed priority of
all groups, that group can take all the bandwidth of the DMA
controller. That is, no other groups are serviced if there is
always at least one DMA request pending on a channel in the
highest priority group when the controller arbitrates the next
DMA request. The advantage of this scenario is that latency
can be small for channels that need quick service. Preemption
is available only in this scenario.

Table 8-3. Arbitration Capabilities (Continued)

Scenario
Group

Arbitration
Channel

Arbitration
Preemption
Allowed?

Description
MSC711x Reference Manual, Rev. 0

8-8 Freescale Semiconductor

Channel Operation and Data Flow
8.4 Channel Operation and Data Flow

This section covers channel operation and overall DMA data flow.

8.4.1 Channel Operation
1. A channel is initialized when software loads the transfer control descriptor (TCD) into

the DMA programming model, which is memory-mapped through the IPBus space and
implemented as local memory.

2. The channel is activated either explicitly by software, by a peripheral request, or by
channel linking.

One iteration of the major loop is executed per activation. One iteration of the major
loop is equal to the complete execution of the minor loop. The number of iterations in
the minor loop varies and can be computed by dividing the value of the
TCDx-2[NBYTES] field by the larger of the TCDx-1[SSIZE, DSIZE] field values. For
example, transferring 16 bytes, source size is byte, destination size is word:

minor loop iterations = 16 bytes/larger[1 byte, 4 bytes] = 4 iterations of the sequence
[byte read, byte read, byte read, byte read → word write].

3. The contents of the TCD for the activated channel are read from local memory and
loaded into the DMA engine registers.

4. The DMA engine executes the data transfer defined by the inner minor loop, reading
from the source and writing to the destination.

5. After the minor loop executes, certain TCD fields are restored in local memory.

Steps 2–5 repeat until the outer major loop iteration count is exhausted. Then additional
processing steps are completed, such as the optional assertion of an interrupt request signaling the
transfer’s completion, final adjustments to the source and destination addresses, and so on. For
more information, see Section 8.4.3, Pseudo-Code Description of DMA Channel Processing, on
page 8-12 and Section 8.7, DMA Programming Model, on page 8-25.

8.4.2 DMA Data Flow

The flow of a DMA data transfer is partitioned into channel activation, data movement, and field
updates.

8.4.2.1 Channel Activation

As Figure 8-2 shows, a peripheral sets the TCDx-7[START] or DREQ bit to activate a channel.
In the next cycle, channel arbitration is performed, either fixed-priority or round-robin. Then the
activated channel number is sent through the address path and converted into the required address
to access TCD local memory. When TCD memory is accessed, the TCD for the activated channel
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-9

DMA Controller
is read from local memory and loaded into the DMA engine channel registers. TCD memory is
64-bits wide to minimize the time needed to fetch and load the activated channel’s descriptor.

Figure 8-2. Channel Activation

8.4.2.2 Data Movement

Figure 8-3 shows the modules associated with the data transfer sequence through the required
source reads and destination writes to move the data. The source reads are initiated and the
fetched data is temporarily stored in the data path module until it is gated onto the AMBA-AHB
bus during the destination write. This source read/destination write processing continues until it
reaches the end of the inner minor byte count.

j

j+1

15

SRAM
Transfer
Control
Descriptor (TCD)

DMA Engine

Address

Data Path

DMA Controller

IPBus

AMDMA (AHB-Lite) DREQ[31–0]

DINT[31–0]

0

C
o
n
t
r
o
l

Programming Model/

32-Bit Write Data

32-Bit Read

AHB Master Port

AHB Master Port

AHB Address (32-Bit)

64

32

64

Path

Channel ArbitrationRead Data (64-Bit)

Write Data (64--Bit)

Data

Address

DDONE[31–0]
MSC711x Reference Manual, Rev. 0

8-10 Freescale Semiconductor

Channel Operation and Data Flow
Figure 8-3. Data Movement

8.4.2.3 Field Updates

The final phase of the DMA data flow is the required updates to certain fields in the channel’s
TCD, for example, the TCD0[SADDR], TCDx-4[DADDR], and TCDx-5[CITER] fields
described in Section 8.7.2, Transfer Control Descriptor (TCD) Registers, on page 8-40. If the
outer major iteration count is exhausted, additional operations are performed, including final
address adjustments and updating the TCDx-5[CITER] field. Additionally, an optional interrupt
request is asserted, as well as a possible fetch of a new TCD from main memory using the
scatter/gather address pointer in the descriptor. Updates to TCD memory and the assertion of an
interrupt request are shown in Figure 8-4.

j

j+1

15

SRAM
Transfer
Control
Descriptor (TCD)

DMA Engine

Address

Data Path

DMA Controller

IPBus

AMDMA (AHB-Lite) DREQ[31–0]
DINT[31–0]

0

C
o
n
t
r
o
l

Programming Model/

32-Bit Write Data

32-Bit Read

AHB Master Port

AHB Master Port

AHB Address (32-Bit)

64

DDONE[31–0]

32

64

Path

Channel ArbitrationRead Data (64-Bit)

Write Data (64-Bit)

Data

Address
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-11

DMA Controller
Figure 8-4. Field Updates

8.4.3 Pseudo-Code Description of DMA Channel Processing

The pseudo-code in this section describes channel processing in detail. This simplified example
represents the basic data transfers. Detailed processing associated with the error handling is
omitted.

/* the given DMAchannel is requesting service by the software assertion of the
 tcd[channel].start bit, the assertion of an enabled ipd_req from a device, or
 the implicit assertion of a channel-to-channel link */

/* begin by reading the transfer control descriptor from the local RAM
 into the local dma_engine registers */
dma_engine = read_from_local_memory [channel];
dma_engine.active = 1; /* set active flag */
dma_engine.done = 0; /* clear done flag */

j

j+1

15

SRAM
Transfer
Control
Descriptor (TCD)

DMA Engine

Address

Data Path

DMA Controller

IPBus

AMDMA (AHB-Lite) DREQ[31–0]
DINT[31–0]

0

C
o
n
t
r
o
l

Programming Model/

32-Bit Write Data

32-Bit Read

AHB Master Port

AHB Master Port

AHB Address (32-Bit)

64

DDONE[31–0]

32

64

Path

Channel ArbitrationRead Data (64-Bit)

Write Data (64-Bit)

Data

Address
MSC711x Reference Manual, Rev. 0

8-12 Freescale Semiconductor

Channel Operation and Data Flow
/* check the transfer control descriptor for consistency */
if (dma_engine.config_error == 0) {

/ * begin execution of the inner “minor” loop transfers */
 while (dma2_engine.nbytes > 0) {
 dma2_engine.active = 1; /* set active flag */
 dma2_engine.done = 0; /* clear done flag */

 /* convert the source transfer size into a byte count */
 switch (dma_engine.ssize) {
 case 0: /* 8-bit transfer */
 src_xfr_size = 1;
 break;
 case 1: /* 16-bit transfer */
 src_xfr_size = 2;
 break;
 case 2: /* 32-bit transfer */
 src_xfr_size = 4;
 break;
 case 3: /* 64-bit transfer */
 src_xfr_size = 8;
 break;
 case 4: /* 16-byte burst transfer */
 src_xfr_size = 16;
 break;
 case 5: /* 32-byte burst transfer */
 src_xfr_size = 32;
 break;
 }

 /* convert the destination transfer size into a byte count */
 switch (dma_engine.dsize) {
 case 0: /* 8-bit transfer */
 dest_xfr_size = 1;
 break;
 case 1: /* 16-bit transfer */
 dest_xfr_size = 2;
 break;
 case 2: /* 32-bit transfer */
 dest_xfr_size = 4;
 break;
 case 3: /* 64-bit transfer */
 dest_xfr_size = 8;
 break;
 case 4: /* 16-byte burst transfer */
 dest_xfr_size = 16;
 break;
 case 5: /* 32-byte burst transfer */
 dest_xfr_size = 32;
 break;
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-13

DMA Controller
 }

 /* determine the larger of the two transfer sizes, this value reflects */
 /* the number of bytes transferred per read->write sequence. */
 /* number of iterations of the minor loop = nbytes / xfer_size */
 if (dma_engine.ssize < dma_engine.dsize)
 xfr_size = dest_xfer_size;
 else
 xfr_size = src_xfer_size;

 /* process the source address, READ data into the buffer*/

 /* read “xfr_size” bytes from the source */
 /* if the ssize < dsize, do multiple reads to equal the dsize */
 /* if the ssize => dsize, do a single read of source data */
 number_of_source_reads = xfer_size / src_xfer_size;

 for (number_of_source_reads) {
 dma_engine.data = read_from_amba-ahb (dma_engine.saddr, src_xfr_size);

 /* generate the next-state source address */
 /* sum the current saddr with the signed source offset */
 ns_addr = dma_engine.saddr + (int) dma_engine.soff; }

 /* if enabled, apply the power-of-2 modulo to the next-state addr */
 if (dma_engine.smod != 0)
 address_select = (1 << dma_engine.smod) - 1; }
 else
 address_select = 0xffff_ffff;

 dma_engine.saddr = ns_addr & address_select

 | dma_engine.saddr & ~address_select; }
 }

 /* process the destination address, WRITE data from buffer */

 /* write “xfr_size” bytes to the destination */
 /* if the dsize < ssize, do multiple writes to equal the ssize */
 /* if the dsize => ssize, do a single write of dest data */
 number_of_dest_writes = xfer_size / dest_xfer_size;

 for (number_of_dest_writes) {
 write_to_amba-ahb (dma_engine.daddr, dest_xfr_size) = dma_engine.data;

 /* generate the next-state destination address */
 /* sum the current daddr with the signed destination offset */
 ns_addr = dma_engine.daddr + (int) dma_engine.doff;

 /* if enabled, apply the power-of-2 modulo to the next-state dest addr */
 if (dma_engine.dmod != 0)
 address_select = (1 << dma_engine.dmod) - 1;
MSC711x Reference Manual, Rev. 0

8-14 Freescale Semiconductor

Channel Operation and Data Flow
 else
 address_select = 0xffff_ffff;

 dma_engine.daddr = ns_addr & address_select

 | dma_engine.daddr & ~address_select;
 }

 /* check for a higher priority channel to service if: */
 /* 1) preemption is enabled */
 /* 2) in fixed arbitration mode */
 /* 3) a higher priority channel is requesting service */
 /* 4) not already servicing a preempting channel */
 if ((DCHPRIn.ecp = 1) & fixed_arbitration_mode
 higher_pri_request & ~current_channel_is_preempt)
 service_preempt_channel;

 /* the bandwidth control field determines when the next read/write occurs */
 if (dma_engine.bwc > 1)
 stall_dma_engine (1 << dma_engine.bwc);

 /* decrement the minor loop byte count */
 dma_engine.nbytes = dma_engine.nbytes - xfr_size;

 } /* end of minor inner loop */

 dma_engine.citer--; /* decrement major loop iteration count */

 /* if the major loop is not yet exhausted, update certain TCD values in the RAM */
 if (dma_engine.citer != 0) {
 write_to_local_memory [channel].saddr = dma_engine.saddr;
 write_to_local_memory [channel].daddr = dma_engine.daddr;
 write_to_local_memory [channel].citer = dma_engine.citer;

 /* if minor loop linking is enabled, make the channel link */
 if (dma_engine.citer.e_link)
 TCD[citer.linkch].start = 1; /* specified channel service req */

 /* check for interrupt assertion if half of the major iterations are done */
 if (dma_engine.int_half && (dma_engine.citer == (dma_engine.biter >> 1)))
 generate_interrupt (channel);

 dma_engine.active = 0; /* clear the channel busy flag */

 }
 else { /* major loop is complete, dma_engine.citer == 0 */
 /* since the major loop is complete, perform the final address adjustments */

 /* sum the current {src,dst} addresses with “last” adjustment */
 write_to_local_memory [channel].saddr = dma_engine.saddr + dma_engine.slast;
 write_to_local_memory [channel].daddr = dma_engine.daddr + dma_engine.dlast;
 /* restore the major iteration count to the beginning value */
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-15

DMA Controller
 write_to_local_memory [channel].citer = dma_engine.biter;

 /* check for interrupt assertion at completion of the major iteration */
 if (dma_engine.int_maj)
 generate_interrupt (channel);

 /* check if the ipd_req is to be disabled at completion of the major iteration */

 if (dma_engine.d_req)

 DMAERQ [channel] = 0;

 /* check for a scatter/gather transfer control descriptor */
 if (dma_engine.e_sg) {
 /* load new transfer control descriptor from the address defined by dlast_sga */
 write_to_local_memory [channel] =
 read_from_amba-ahb(dma_engine.dlast_sga,32);
 }
 if (dma_engine.major.e_link)
 TCD[major.linkch].start = 1; /* specified channel service req */

 dma_engine.active = 0; /* clear the channel busy flag */
 dma_engine.done = 1; /* set the channel done flag */

}
else { /* configuration error detected, abort the channel */
 dma_engine.error_status = error_type; /* record the error */
 dma_engine.active = 0; /* clear the channel busy flag */
 /* check for interrupt assertion on error */
 if (dma_engine.int_err)
 generate_interrupt (channel);

}

8.5 DMA Performance

Obtaining optimal performance requires that the DMA is properly set up for the application. The
different aspects of setting up the DMA optimally for an application are covered in Section
A.1.6, DMA Controller, on page A-4. The crossbar switch can also have a considerable effect on
DMA performance so this too must be configured as needed by the application as discussed in
Section A.1.7, Crossbar Switch, on page A-8.

Examples of transfer times possible with the DMA between sources and destinations on the
device are presented in Section A.3, DMA Burst Times, on page A-19 for reference. It can also be
helpful to see Section A.4, DMA Burst Efficiency, on page A-20.
MSC711x Reference Manual, Rev. 0

8-16 Freescale Semiconductor

DMA Initialization/Applications
8.6 DMA Initialization/Applications

The DMA initialization sequence proceeds as follows:

1. Write to the DMACR if a configuration other than the default is desired.

2. Write the channel priority levels into the DCHPRIx registers if a configuration other
than the default is desired.

3. Enable error interrupts in the DMAEEI registers if so desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the DMAERQ register.

6. Request channel service by setting the TCDx-7[START] bit.

When a channel requests service, it is selected for execution based on the arbitration and priority
levels written into the programmer’s model. The DMA engine reads the entire TCD for the
selected channel into its internal address path module. As the TCD is read, the first transfer is
initiated on the AHB bus unless a configuration error is detected. Transfers from the source (as
defined by the source address, TCD0[SADDR]) to the destination (as defined by the destination
address, TCDx-4[DADDR]) continue until the specified number of bytes (TCDx-2[NBYTES])
have been transferred. Then the DMA engine’s local TCD0[SADDR], TCDx-4[DADDR], and
TCDx-5[CITER] are written back to the main TCD memory, and any minor loop channel linking
is performed, if enabled. If the major loop is exhausted, further post processing is executed, such
as interrupts, major loop channel linking, and scatter/gather operations, if enabled.

8.6.1 DMA Programming Errors

The DMA controller performs various tests on the TCD to verify consistency in the descriptor
data. Most programming errors are reported on a per channel basis with the exception of two
errors, Group Priority Error and Channel Priority Error, GPE and CPE bits in the DMAES
register, respectively.

For all error types other than group or channel priority errors, the channel number causing the
error is recorded in the DMAES register. If the error source is not removed before the next
activation of the problem channel, the error is detected and recorded again.

The typical application enables error interrupts for all channels, so you may see an error interrupt
for which the channel number for the DMAERR register and the error interrupt request line are
wrong because they reflect the selected channel. Channel priority errors are identified within a
group when that group is selected as the active group, as shown in the following example:

1. The DMA is configured for fixed-group and fixed-channel arbitration modes.

2. Group0 has the highest priority, and all channels are unique in that group.

3. Group1 has the next highest priority and has two channels with the same priority level.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-17

DMA Controller
4. If Group0 has any service requests, those requests are executed.

5. Once all of Group0 requests complete, Group1 is the next active group.

6. If Group1 has a service request, an undefined channel in Group1 is selected and a
channel priority error occurs.

7. This process repeats until all Group1 requests are removed or a higher-priority Group0
request occurs.

A group priority error is global, and any request in any group causes a group priority error. If
priority levels are not unique, the highest (channel/group) priority with an active request is
selected, but the lowest numbered (channel/group) with that priority is selected by arbitration and
executed by the DMA controller. The hardware service request handshake signals, error
interrupts, and error reporting are associated with the selected channel.

8.6.2 Single-Request DMA Data Transfer Example

To transfer n bytes of data with one activation, set the major loop to one (TCDx-5[CITER] =
TCDx-7[BITER] = 1). The data transfer begins after the channel service request is acknowledged
and the channel is selected to execute. When the transfer completes, the TCDx-7[DONE] bit is
set and an interrupt is generated, if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The DMA
controller is programmed for one iteration of the major loop transferring 16 bytes per iteration.
The source memory has a byte-wide memory port at address 0x1000. The destination memory
has a word-wide port at address 0x2000. The address offsets are programmed in increments to
match the size of the transfer, one byte for the source and four bytes for the destination. The final
source and destination addresses are adjusted to return to their beginning values. Following are
the TCD parameters for the data transfer, with the page number of the register in which this bit is
defined.

Table 8-4. TCD Parameters for a Single-Request Data Transfer

TCD Bit/Field Value Page

TCDx-5[CITER] = TCDx-7[BITER] 1 page 8-46 (CITER),
page 8-48 (BITER)

TCDx-2[NBYTES] 16 page 8-44

TCD0[SADDR] 0x1000 page 8-42

TCDx-1[SOFF] 1 page 8-42

TCDx-1[SSIZE] 0 page 8-42

TCDx-3[SLAST] –16 page 8-44

TCDx-4[DADDR] 0x2000 page 8-45

TCDx-5[DOFF] 4 page 8-46

TCDx-1[DSIZE] 2 page 8-42

TCDx-6[DLAST] –16 page 8-47
MSC711x Reference Manual, Rev. 0

8-18 Freescale Semiconductor

DMA Initialization/Applications
These values generate the following sequence of events:

1. An IPBus write to the TCDx-7[START] bit requests channel service.

2. The arbiter selects the channel for servicing.

3. The DMA engine writes TCDx-7[DONE] = 0, TCDx-7[START] = 0,
TCDx-7[ACTIVE] = 1.

4. The DMA engine reads channel TCD data from local memory to the internal register
file.

5. The source-to-destination transfers execute as follows:

a. read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003).

b. write_word(0x2000) → First iteration of the minor loop.

c. read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007).

d. write_word(0x2004) → Second iteration of the minor loop.

e. read_byte(0x1008), read_byte(0x1009), read_byte(0x100A), read_byte(0x100B).

f. write_word(0x2008) → third iteration of the minor loop

g. read_byte(0x100C), read_byte(0x100d), read_byte(0x100E), read_byte(0x100F).

h. write_word(0x200C) → Last iteration of the minor loop → major loop complete.

6. The DMA engine writes TCD0[SADDR] = 0x1000, TCDx-4[DADDR] = 0x2000,
TCDx-5[CITER] = 1 (TCDx-7[BITER]).

7. The DMA engine writes TCDx-7[ACTIVE] = 0, TCDx-7[DONE] = 1, DMAINTx = 1.

8. The DMA channel retires.

The DMA controller goes idle or services the next channel.

8.6.3 Multiple-Request DMA Data Transfer Example

The multiple-request data transfer example is the same as that for a single request, with the
exception that 32 bytes are transferred via two hardware requests. The only fields that change are
the major loop iteration count and the final address offsets. The DMA controller is programmed
for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s

TCDx-7[INTM] 1 page 8-48

TCDx-7[START] 1 page 8-48

All other TCD fields 0

Note: TCDx-7 should be written last, after all other fields are initialized.

Table 8-4. TCD Parameters for a Single-Request Data Transfer (Continued)

TCD Bit/Field Value Page
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-19

DMA Controller
hardware requests is enabled in the DMAERQ register, channel service requests are initiated by
the slave device, with the values shown in Table 8-5.

These values generate the following sequence of events:

1. The first hardware request for channel service occurs.

2. The arbiter selects the channel for servicing.

3. The DMA engine writes TCDx-7[DONE] = 0, TCDx-7[START] = 0,
TCDx-7[ACTIVE] = 1.

4. The DMA engine reads channel TCD data from local memory to the internal register
file.

5. The source-to-destination transfers execute as follows:

a. read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003).

b. write_word (0x2000) → First iteration of the minor loop.

c. read_byte (0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007).

d. write_word (0x2004) → Second iteration of the minor loop.

e. read_byte (0x1008), read_byte(0x1009), read_byte(0x100A), read_byte(0x100B).

f. write_word (0x2008) → Third iteration of the minor loop.

g. read_byte (0x100C), read_byte(0x100D), read_byte(0x100E), read_byte(0x100F).

h. write_word (0x200C) → Last iteration of the minor loop.

6. The DMA engine writes TCD0[SADDR] = 0x1010, TCDx-4[DADDR] = 0x2010, and
TCDx-5[CITER] = 1.

7. The DMA engine writes TCDx-7[ACTIVE] = 0.

8. The channel retires → One iteration of the major loop.

The DMA controller goes idle or services the next channel, as follows:

1. The second hardware request for channel service occurs.

2. The arbiter selects the channel for servicing.

3. The DMA engine writes TCDx-7[DONE] = 0, TCDx-7[START] = 0,
TCDx-7[ACTIVE] = 1.

Table 8-5. TCD Parameters for a Multiple-Request Data Transfer

TCD Bit/Field Value Page

TCDx-5[CITER] = TCDx-7[BITER] 2 page 8-46 (CITER)
page 8-48 (BITER)

TCDx-3[SLAST] –32

TCDx-7[DLAST] –32
MSC711x Reference Manual, Rev. 0

8-20 Freescale Semiconductor

DMA Initialization/Applications
4. The DMA engine reads channel TCD data from local memory to the internal register
file.

5. The source-to-destination transfers execute as follows:

a. read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013).

b. write_word(0x2010) → First iteration of the minor loop.

c. read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017).

d. write_word(0x2014) → Second iteration of the minor loop.

e. read_byte(0x1018), read_byte(0x1019), read_byte(0x101A), read_byte(0x101B).

f. write_word(0x2018) → Third iteration of the minor loop.

g. read_byte(0x101C), read_byte(0x101D), read_byte(0x101E), read_byte(0x101F).

h. write_word(0x201C) → Last iteration of the minor loop → Major loop complete.

6. The DMA engine writes TCD0[SADDR] = 0x1000, TCDx-4[DADDR] = 0x2000, and
TCDx-5[CITER] = 2 (TCDx-7[BITER]).

7. The DMA engine writes TCDx-7[ACTIVE] = 0, TCDx-7[DONE] = 1, DMAINT[n] =
1.

8. The channel retires → major loop complete.

The DMA controller goes idle or services the next channel.

8.6.4 TCD Status

This section discusses how to check TCD status in terms of loop completion, true TCD values,
and preemption.

8.6.4.1 Minor Loop Completion

For software-initiated service requests, there are two ways to test for minor loop completion. The
first is to read the TCDx-5[CITER] field and test for a change. The second is to test the
TCDx-7[START] bit and the TCDx-7[ACTIVE] bit. The minor loop complete condition is
indicated when both bits read zero after the TCDx-7[START] bit is written with a value of one.
Polling the TCDx-7[ACTIVE] bit can be inconclusive because the active status can be missed if
channel execution time is short. The TCD status bits execute the following sequence for a
software-activated channel:

1. TCDx-7[START] = 1, TCDx-7[ACTIVE] = 0, TCDx-7[DONE] = 0 (channel service
request via software).

2. TCDx-7[START] = 0, TCDx-7[ACTIVE] = 1, TCDx-7[DONE] = 0 (channel is
executing).

3. TCDx-7[START] = 0, TCDx-7[ACTIVE] = 0, TCDx-7[DONE] = 0 (channel has
completed the minor loop and is idle) or TCDx-7[START] = 0, TCDx-7[ACTIVE] = 0,
TCDx-7[DONE] = 1 (channel has completed the major loop and is idle).
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-21

DMA Controller
For hardware-initiated service requests, the best way to test for minor loop completion is
to read the TCDx-5[CITER] field and test for a change. The hardware request and
acknowledge handshakes signals are not visible in the programmer’s model. The TCD
status bits execute the following sequence for a hardware activated channel:

4. A hardware request for channel service occurs.

5. TCDx-7[START] = 0, TCDx-7[ACTIVE] = 1, TCDx-7[DONE] = 0 (channel is
executing).

6. TCDx-7[START] = 0, TCDx-7[ACTIVE] = 0, TCDx-7[DONE] = 0 (channel has
completed. the minor loop and is idle) or TCDx-7[START] = 0, TCDx-7[ACTIVE] = 0,
TCDx-7[DONE] = 1 (channel has completed the major loop and is idle).

For both activation types, the major loop complete status is explicitly indicated via the
TCDx-7[DONE] bit. The TCDx-7[START] bit is cleared automatically when the channel begins
execution regardless of how the channel was activated.

8.6.4.2 Active Channel TCD Reads

The DMA controller reads back the true TCD0[SADDR], TCDx-4[DADDR], and
TCDx-2[NBYTES] values if a read occurs while a channel is executing. The true values are the
values the DMA engine is currently using in its internal register file and not the values in the
TCD local memory for that channel. The addresses (SADDR and DADDR) and NBYTES
decrement to zero as the transfer progresses) can indicate the progress of the transfer. All other
values are read back from TCD local memory.

8.6.4.3 Preemption Status

Preemption is available only when fixed arbitration is selected for both group and channel
arbitration modes. Preemption becomes possible when a preempt-enabled channel is running and
a higher-priority request becomes active. When the DMA engine is not operating in fixed group,
fixed channel arbitration mode, the relative priority of the actively running and the outstanding
requests become undefined. Channel and/or group priorities are treated as equal (or more exactly,
constantly rotating) when round-robin arbitration mode is selected.

The TCDx-7[ACTIVE] bit for the preempted channel remains asserted throughout the
preemption. The preempted channel is temporarily suspended while the preempting channel
executes one iteration of the major loop. Two TCDx-7[ACTIVE] bits set at the same time in the
overall TCD map indicates that a higher-priority channel is actively preempting a lower-priority
channel.

The worst-case latency during a switch to a preempting channel is the summation of the
following:

� Arbitration latency (2 cycles).

� Bandwidth control stalls, if enabled.
MSC711x Reference Manual, Rev. 0

8-22 Freescale Semiconductor

DMA Initialization/Applications
� The time to execute two read/write sequences, including AHB bus holds. This is a system
dependency driven by the slave devices or the crossbar switch.

8.6.5 Channel Linking

Channel linking (or chaining) occurs when one channel sets the TCDx-7[START] bit of another
channel (or itself) to initiate a service request for that channel. The DMA engine automatically
performs this operation at the end of the major or minor loop, when properly enabled, or after one
iteration of the major loop.

The TCDx-5[CITERE] field is used to determine whether a minor loop link is requested. When
enabled, the channel link is made after each iteration of the major loop, except for the last. When
the major loop is exhausted, only the major loop channel link fields are used to determine
whether a channel link should be made. For example, Table 8-6 shows the initial fields for
executing loops.

These values result in execution of the following sequence:

1. Minor loop done → set channel 12 TCDx-7[START] bit.

2. Minor loop done → set channel 12 TCDx-7[START] bit.

3. Minor loop done → set channel 12 TCDx-7[START] bit.

4. Minor loop done, major loop done → set channel 7 TCDx-7[START] bit.

When minor loop linking is enabled (TCD[CITERE] = 1), the TCDx-5[CITER] field uses a 9-bit
vector to form the current iteration count. When minor loop linking is disabled
(TCDx-5[CITERE] = 0), the TCDx-5[CITER] field uses a 15-bit vector to form the current
iteration count. The bits associated with the TCDx-5[CITERH] field are concatenated onto the
CITER value to increase the range of the CITER.

Note: The TCDx-5[CITERE] bit and the TCDx-7[BITERE] bit must be equal, in order to
calculate the major loop halfway done interrupt point, or a configuration error is
reported by setting DMAES[NCE] = 1.

Table 8-6. Example TCD Field Values for Loop Execution

TCD Bit/Field Value Page

TCDx-5[CITERE] 1 page 8-46

TCDx-5[CITERH] 0xC page 8-46

TCDx-5[CITER] 0x4 page 8-46

TCDx-7[CLE] 1 page 8-48

TCDx-7[LCNUM] 0x7 page 8-48
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-23

DMA Controller
8.6.6 Dynamic Programming

The following two options are recommended for dynamically changing channel priority levels:

1. Switch to round-robin channel arbitration mode, change the channel priorities, then
switch back to fixed arbitration mode.

2. Disable all the channels within a group, change the channel priorities within that group
only, then enable the appropriate channels.

The following two options are available for dynamically changing group priority levels:

1. Switch to round-robin group arbitration mode, change the group priorities, then switch
back to fixed arbitration mode.

2. Disable all channels, change the group priorities, then enable the appropriate channels.

Dynamic channel linking and dynamic scatter/gather is the process of changing the values of the
TCDx-7[CLE] or TCDx-7[ESG] bits during channel execution. These bits are read from the TCD
local memory at the end of channel execution so that you can enable either feature during channel
execution.

If you were to attempt to execute a dynamic channel link by enabling the TCDx-7[CLE] bit at the
same time the DMA engine is retiring the channel, the bit would be set in the programmer’s
model, but it would be unclear whether the actual link occurred before the channel retired.
Therefore, the following coherency model is recommended when you execute a dynamic channel
link or dynamic scatter/gather request:

1. Set the TCDx-7[CLE] bit.

2. Read back the TCDx-7[CLE] bit.

3. Test the TCDx-7[CLE] request status:

a. If the bit is set, the dynamic link attempt was successful.

b. If the bit is cleared, the attempted dynamic link did not succeed because the
channel was already retiring.

This coherency model holds true for dynamic scatter/gather operations. For both dynamic
requests, after the channel’s TCDx-7[DONE] bit is set to indicate that the major loop is complete,
the TCD local memory controller forces the TCDx-7[CLE] and TCDx-7[ESG] bits to zero on any
writes to a channel’s TCDx-7 register.

Note: You must clear the TCDx-7[DONE] bit before writing the TCDx-7[CLE] or
TCDx-7[ESG] bits. The DMA engine automatically clears the TCDx-7[DONE] bit
when a channel begins execution.
MSC711x Reference Manual, Rev. 0

8-24 Freescale Semiconductor

DMA Programming Model
8.7 DMA Programming Model

The DMA programming model is partitioned into two sections, both mapped into the IPBus
address space. The first section defines control registers, and the second defines the local TCD
memory. For all unused or reserved register bits: reads return zeroes, and writes are ignored. The
DMA module does not include any access control. Rather, standard access control is provided by
the IPBus controller. Table 8-7 shows a 32-bit view of the DMA memory map.

Table 8-7. DMA 32-Bit Memory Map

DMA Offset Register

0x0000 DMA Control Register (DMACR)

0x0004 DMA Error Status (DMAES)

0x0008 Reserved

0x000C DMA Enable Request (DMAERQ)

0x0010 Reserved

0x0014 DMA Enable Error Interrupt (DMAEEI)

0x0018
DMA Set Enable

Request
(DMASERQ)

DMA Clear Enable
Request

(DMACERQ)

DMA Set Enable Error
Interrupt

(DMASEEI)

DMA Clear Enable
Error Interrupt
 (DMACEEI)

0x001C
DMA Clear Interrupt

Request
(DMACINT)

DMA Clear Error
(DMACERR)

DMA Set Start Bit,
Activate Channel

(DMASSRT)

DMA Clear Done
Status Bit (DMACDNE)

0x0020 Reserved

0x0024 DMA Interrupt Request (DMAINT)

0x0028 Reserved

0x002C DMA Error (DMAERR)

0x0030–0x00FC Reserved

0x0100
DMA Channel 0

 Priority (DCHPRI0)
DMA Channel 1

 Priority (DCHPRI1)
DMA Channel 2

 Priority (DCHPRI2)
DMA Channel 3

 Priority (DCHPRI3)

0x0104
DMA Channel 4

 Priority (DCHPRI4)
DMA Channel 5

 Priority (DCHPRI5)
DMA Channel 6

 Priority (DCHPRI6)
DMA Channel 7

 Priority (DCHPRI7)

0x0108
DMA Channel 8

 Priority (DCHPRI8)
DMA Channel 9

 Priority (DCHPRI9)
DMA Channel 10

 Priority (DCHPRI10)
DMA Channel 11

 Priority (DCHPRI11)

0x010C
DMA Channel 12

 Priority (DCHPRI12)
DMA Channel 13

 Priority (DCHPRI13)
DMA Channel 14

 Priority (DCHPRI14)
DMA Channel 15

 Priority (DCHPRI15)

0x0110
DMA Channel 16

 Priority (DCHPRI16)
DMA Channel 17

 Priority (DCHPRI17)
DMA Channel 18

 Priority (DCHPRI18)
DMA Channel 19

 Priority (DCHPRI19)

0x0114
DMA Channel 20

 Priority (DCHPRI20)
DMA Channel 21

 Priority (DCHPRI21)
DMA Channel 22

 Priority (DCHPRI22)
DMA Channel 23

 Priority (DCHPRI23)

0x0118
DMA Channel 24

 Priority (DCHPRI24)
DMA Channel 25

 Priority (DCHPRI25)
DMA Channel 26

 Priority (DCHPRI26)
DMA Channel 27

 Priority (DCHPRI27)

0x011C
DMA Channel 28

Priority (DCHPRI28)
DMA Channel 29

 Priority (DCHPRI29)
DMA Channel 30

 Priority (DCHPRI30)
DMA Channel 31

 Priority (DCHPRI31)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-25

DMA Controller
The DMA registers are listed as follows, along with the number of the page on which each
register is discussed:

� Control registers:

— DMA Control Register (DMACR), page 8-27.
— DMA Error Status Register (DMAES), page 8-28.
— DMA Enable Request Register (DMAERQ), page 8-31.
— DMA Enable Error Interrupt (DMAEEI), page 8-32.
— DMA Set Enable Request Register (DMASERQ), page 8-32.
— DMA Clear Enable Request Register (DMACERQ), page 8-33.
— DMA Set Enable Error Interrupt Register (DMASEEI), page 8-33.
— DMA Clear Enable Error Interrupt Register (DMACEEI), page 8-34.
— DMA Clear Interrupt Request Register (DMACINT), page 8-34.
— DMA Clear Error Register (DMACERR), page 8-35.
— DMA Set Start Register (DMASSRT), page 8-36.
— DMA Clear Done Status Register (DMACDNE), page 8-36.
— DMA Interrupt Request Register (DMAINT), page 8-37.
— DMA Error Register (DMAERR), page 8-38.
— DMA Channel Priority (DCHPR[0–31]), page 8-39.

� Each of the thirty-two DMA channels is controlled by eight Transfer Control Descriptor
Words (TCD) that are defined in the following set of 32-bit registers:

— Transfer Control Descriptor Word 0 (TCD[0–31]-0), page 8-42.
— Transfer Control Descriptor Word 1 (TCD[0–31]-1), page 8-42.
— Transfer Control Descriptor Word 2 (TCD[0–31]-2), page 8-44.
— Transfer Control Descriptor Word 3(TCD[0–31]-3), page 8-44.
— Transfer Control Descriptor Word 4 (TCD[0–31]-4), page 8-45.
— Transfer Control Descriptor Word 5 (TCD[0–31]-5), page 8-46.
— Transfer Control Descriptor Word 6 (TCD[0–31]-6), page 8-47.
— Transfer Control Descriptor Word 7 (TCD[0–31]-7), page 8-48.

0x0120-0x0ffc Reserved

0x1000-0x11fc TCD00-TCD15

0x1200-0x13fc TCD16-TCD31

0x1400-0x1800 Reserved

Table 8-7. DMA 32-Bit Memory Map (Continued)

DMA Offset Register
MSC711x Reference Manual, Rev. 0

8-26 Freescale Semiconductor

DMA Programming Model
8.7.1 Control Registers

DMACR defines the basic operating configuration of the DMA controller. When multiple
channels are activated at the same time, the DMA controller arbitrates channel execution using
either fixed mode or round robin. In fixed-mode arbitration, the activated channel with the
highest priority is executed. In round robin arbitration, the activated channels are cycled through
without regard to priority.

DMACR DMA Control Register DMA_Base + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— GRP1PRI — GRP0PRI — ERGA ERCA EDBG EBW

TYPE R R/W R/W R R/W

RESET 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Table 8-8. DMACR Bit Descriptions

Name Reset Description Setting

—
31–11

0 Reserved. Write to zero for future compatibility.

GRP1PRI
10

1 Channel Group 1 Priority
Priority level when fixed-priority group
arbitration is enabled.

0 Group priority is level 0 (lowest priority).

1 Group priority is level 1 (highest priority).

—
9

0 Reserved. Write to zero for future compatibility.

GRP0PRI
8

0 Channel Group 0 Priority
Priority level when fixed priority group
arbitration is enabled.

0 Group priority is level 0 (lowest priority).

1 Group priority is level 1 (highest priority).

—
7–4

0 Reserved. Write to zero for future compatibility.

ERGA
3

0 Enable Round Robin Group Arbitration
Specifies whether fixed arbitration or round
robin arbitration is used among the groups.

0 Fixed priority arbitration is used for selection

 among the groups.

1 Round robin arbitration is used for selection

 among the groups.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-27

DMA Controller
DMAES provides information on the last recorded channel error. Channel errors can be caused
by a configuration error, which is an illegal setting in the TCD or an illegal priority register
setting in fixed-arbitration mode, or an error termination to a bus master read or write cycle. A
configuration error occurs when the starting source or destination address, source or destination
offsets, minor loop byte count and the transfer size represent an inconsistent state. The addresses
and offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count
must be a multiple of the source and destination transfer sizes. All source reads and destination
writes must be configured to the natural boundary of the programmed transfer size.

In fixed arbitration mode, a configuration error is caused when any two channel priorities are
equal. All channel priority levels must be unique when fixed arbitration mode is enabled. If a
scatter/gather operation is enabled at channel completion, a configuration error is reported if the

ERCA
2

0 Enable Round Robin Channel Arbitration
Specifies whether fixed arbitration or round
robin arbitration is used among the channels in
a group.

0 Fixed priority arbitration is used for channel

 selection within each group.

1 Round robin arbitration is used for channel

 selection within each group.

EDBG
1

0 Enable Debug
Enables/disables DMA debug mode. When this
bit is set, the DMA controller stalls the start of a
new channel.
Executing channels are allowed to complete.
Channel execution resumes when either the
internal debug input is negated or the EDBG bit
is cleared.

0 No Debug mode.

1 DMA debug mode.

EBW
0

0 Enable Buffered Writes
Enables/disables buffered writes.

0 No buffered write during AMBA AHB writes.

1 Buffered on all AMBA AHB writes except for
the last write sequence.

DMAES DMA Error Status Register DMA_Base + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VLD —

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GPE CPE — ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-8. DMACR Bit Descriptions (Continued)

Name Reset Description Setting
MSC711x Reference Manual, Rev. 0

8-28 Freescale Semiconductor

DMA Programming Model
scatter/gather address is not aligned on a 32-byte boundary. If minor loop channel linking is
enabled at channel completion, a configuration error is reported when the link is attempted if the
TCDx-5[CITERE] bit does not equal the TCDx-7[BITERE] bit. All configuration error
conditions except scatter/gather and minor loop link error are reported as the channel is activated
and asserts an error interrupt request if enabled. A scatter/gather configuration error is reported
when the scatter/gather operation begins at major loop completion when properly enabled. A
minor loop channel link configuration error is reported when the link operation is serviced at
minor loop completion.

If a system bus read or write terminates with an error, the data transfer stops and the appropriate
bus error flag is set. The DMA controller updates the state of the channel’s TCD with the current
source address, destination address, and iteration count at the point of the fault. When a system
bus error occurs, the channel terminates after completion of the read or write transaction already
pipelined. If a bus error occurs on the last read before the write sequence, the write uses the data
captured during the bus error. If a bus error occurs on the last write before the read sequence, the
read sequence executes before the channel is terminated due to the destination bus error.

Any type of error causes the DMA controller to stop immediately, the appropriate channel bit in
the DMA Error Register is asserted, and the details of the error condition are loaded into the
DMAES register. The normal DMA channel completion indicators, setting the transfer control
descriptor done flag and the possible assertion of an interrupt request, are not affected when an
error is detected.

Table 8-9. DMAES Bit Descriptions

Name Reset Description Setting

VLD
31

0 Logical OR of DMAERRH and DMAERRL Status
Indicates whether DMA error bits are set.

0 No DMAERR bits are set.

1 At least one DMAERR bit is set, indicating
a valid error that has not been cleared.

—
30–16

0 Reserved. Write to zero for future compatibility.

GPE
15

0 Group Priority Error
Indicates whether there is a group priority error.

0 No group priority error.

1 The last recorded error was a
configuration error among the group
priorities. All group priorities are not
unique.

CPE
14

0 Channel Priority Error
Indicates whether there is a channel priority error.
Channel priority errors are identified within a group
when that group is selected as the active group.

0 No channel priority error.

1 The last recorded error was a
configuration error in the channel
priorities. All channel priorities are not
unique.

—
13

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-29

DMA Controller
ERRCHN
12–8

0 Error Channel Number
The channel number of the last recorded error,
excluding GPE and CPE errors.

SAE
7

0 Source Address Error
Indicates whether there is a source address
configuration error. When this bit is set,
TCD0[SADDR] is inconsistent with TCDx-1[SSIZE].
See Section 8.7.2, Transfer Control Descriptor
(TCD) Registers, on page 8-40.

0 No source address configuration error.

1 The last recorded error was a
configuration error detected in the
TCD[SADDR] field.

SOE
6

0 Source Offset Error
Indicates whether there is a source offset error.
When this bit is set, TCDx-1[SOFF] is inconsistent
with TCDx-1[SSIZE].

0 No source offset configuration error.

1 The last recorded error was a
configuration error detected in the
TCD[SOFF] field.

DAE
5

0 Destination Address Error
Indicates whether there is a destination address
error. If this bit is set, TCDx-4[DADDR] is
inconsistent with TCDx-1[DSIZE].

0 No destination address configuration error.

1 The last recorded error was a
configuration error detected in the
TCDx-4[DADDR]field.

DOE
4

0 Destination Offset Error
Indicates whether there is a destination offset error.
If this bit is set, TCDx-5[DOFF] is inconsistent with
TCDx-1[DSIZE].

0 No destination offset configuration error.

1 The last recorded error was a
configuration error detected in the
TCDx-5[DOFF] field.

NCE
3

0 NBYTES/CITER Configuration Error
Indicates whether there is an error caused by a
disparity in the TCDx-2[NBYTES] and the
TCDx-5[CITER] fields. If this bit is set, one of the
following conditions applies:

• TCDx-2[NBYTES] is not a multiple of
TCDx-1[SSIZE] and TCDx-1[DSIZE]

• TCDx-5[CITER] bit is equal to zero

• TCDx-5[CITERE] is not equal to
TCDx-7[BITERE].

0 No NBYTES/CITER configuration error.

1 The last recorded error was a
configuration error detected in the
TCDx-2[NBYTES] or TCDx-5[CITER]
fields.

SGE
2

0 Scatter/Gather Configuration Error
Indicates whether there is a scatter/gather
configuration error. The TCDx-6[DLAST] field is
checked at the beginning of a scatter/gather
operation after a major loop executes if
TCDx-7[ESG] is enabled. TCDx-6[DLAST] is not on
a 32-byte boundary.

0 No scatter/gather configuration error.

1 The last recorded error was a
configuration error detected in the
TCDx-6[DLAST] field.

SBE
1

0 Source Bus Error
Indicates whether there is a bus error on a source
read.

0 No source bus error.

1 The last recorded error was a bus error on
a source read.

DBE
0

0 Destination Bus Error
Indicates whether there is a bus error on a
destination write.

0 No destination bus error.

1 The last recorded error was a bus error on
a destination write.

Table 8-9. DMAES Bit Descriptions

Name Reset Description Setting
MSC711x Reference Manual, Rev. 0

8-30 Freescale Semiconductor

DMA Programming Model

R

R

DMAERQ provide a bit mapping to enable the request signal for each channel. The state of any
given channel enable is directly affected by writes to this register. The state is also affected by
writes to the DMASERQ and DMACERQ registers, which handle the request enable for a single
channel without the need to perform a read-modify-write sequence to DMAERQ. Both the DMA
request input signal and this enable request flag must be asserted before a channel is activated.
The state of the DMA enable request flag does not affect a channel activated through an explicit
software initiation or a linked channel request. As a given channel finishes processing its major
iteration count, a flag in the TCD may affect the ending state of the DMAERQ bit for that
channel. If the TCDx-7[DREQ] bit is set, the corresponding DMAERQ bit is cleared, disabling
the DMA request. If the DREQ bit is cleared, the state of the DMAERQ bit is unaffected.

DMAERQ DMA Enable Request Register DMA_Base + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ERQ31 ERQ30 ERQ29 ERQ28 ERQ27 ERQ26 ERQ25 ERQ24 ERQ23 ERQ22 ERQ21 ERQ20 ERQ19 ERQ18 ERQ17 ERQ16

TYPE R/W

ESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERQ15 ERQ14 ERQ13 ERQ12 ERQ11 ERQ10 ERQ9 ERQ8 ERQ7 ERQ6 ERQ5 ERQ4 ERQ3 ERQ2 ERQ1 ERQ0

TYPE R/W

ESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-10. DMAERQ Bit Descriptions

Name Description Setting

ERQ[31–0]
31–0

Enable DMA Request
Enables/disables the DMA request
signal for each channel.

0 The DMA request signal for channel n is disabled.

1 The DMA request signal for channel n is enabled.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-31

DMA Controller
DMAEEI provides a bit mapping to enable the error interrupt signal for each channel. The state
of any channel’s error interrupt enable is directly affected by writes to this register. The state is
also affected by writes to the DMASEEI and DMACEEI registers, which handle the error
interrupt enable for a single channel without the need to perform a read-modify-write sequence to
the DMAEEI register. Both the DMA error indicator and this error interrupt enable flag must be
asserted before an error interrupt request for a given channel is asserted.

DMASERQ provides a simple memory-mapped mechanism to set a given bit in the DMAERQ
registers to enable the DMA request for a given channel. The data value on a register write causes
the corresponding bit in the DMAERQ register to be set. A data value of 64 to 127 provides a
global set function, forcing the entire contents of DMAERQ to be asserted. Reads of this register
return all zeroes.

DMAEEI DMA Enable Error Interrupt Register DMA_Base + 0x24

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EE31 EE30 EE29 EE28 EE27 EE26 EE25 EE24 EE23 EE22 EE21 EE20 EE19 EE18 EE17 EE16

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERQ15 EE14 EE13 EE12 EE11 EE10 EE9 EE8 EE7 EE6 EE5 EE4 EE3 EE2 EE1 EE0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-11. DMAEEI Bit Descriptions

Name Description Setting

EEI[31–0]
31–0

Enable Error Interrupt
Specifies whether the error signal for a
channel generates an error interrupt.

0 The error signal for the channel does not generate
an error interrupt.

1 The assertion of the error signal for the channel
generates an error interrupt request.

DMASERQ DMA Set Enable Request Register DMA_Base + 0x18

BIT 7 6 5 4 3 2 1 0

— SAER — SERQ

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

8-32 Freescale Semiconductor

DMA Programming Model
DMACERQ provides a simple memory-mapped mechanism to clear a given bit in the DMAERQ
to disable the DMA request for a given channel. The data value on a register write causes the
corresponding bit in the DMAERQ to be cleared. A data value of 64 to 127 provides a global
clear function, forcing the entire contents of the DMAERQ to zero, disabling all DMA request
inputs. Reads of this register return all zeroes.

DMASEEI provides a simple memory-mapped mechanism to set a given bit in the DMAEEI
register to enable the error interrupt for a given channel. The data value on a register write causes
the corresponding bit in the DMAEEI register to be set. A data value of 64 to 127 provides a

Table 8-12. DMASERQ Bit Descriptions

Name Description Setting

SAER
6

Set All Enable Requests
Sets all the enable bits in the DMAERQ.

0 Set the specified bit in DMAERQ.

1 Set all bits in DMAERQ.

SERQ
4–0

Set Enable Request
Sets each enable bit in the DMAERQ.

0–31 Set the corresponding bit in DMAERQ

DMACERQ DMA Clear Enable Request Register DMA_Base + 0x19

BIT 7 6 5 4 3 2 1 0

— CAER — CERQ

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0

Table 8-13. DMACERQ Bit Descriptions

Name Description Setting

CAER
6

Clear All Enable Requests
Clears all bits in the DMAERQ.

0 Clear the specified bit in DMAERQ.

1 Clear all bits in DMAERQ.

CERQ
4–0

Clear Enable Request
Clears the corresponding bit in the
DMAERQ.

0–31 Clear the corresponding bit in DMAERQ

DMASEEI DMA Set Enable Error Interrupt Register DMA_Base + 0x1A

BIT 7 6 5 4 3 2 1 0

— SAEE — SEE

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-33

DMA Controller
global set function, forcing the entire contents of DMAEEI to be asserted. Reads of this register
return all zeroes.

DMACEEI provides a simple memory-mapped mechanism to clear a given bit in the DMAEEI
register to disable the error interrupt for a given channel. The data value on a register write causes
the corresponding bit in the DMAEEI register to be cleared. A data value of 64 to 127 (regardless
of the number of channels) provides a global clear function, forcing the entire contents of the
DMAEEI to zero, disabling all DMA request inputs. Reads of this register return all zeroes.

Table 8-14. DMASEEI Bit Descriptions

Name Description Setting

SAEE
6

Set All Enable Error Interrupts
Sets all bits in the DMAEEI.

0 Set the specified bit in DMAEEI.

1 Set all bits in DMAEEI.

SEEI
4–0

Set Enable Error Interrupt
Sets the corresponding bit in the DMAEEI.

0–31 Set the corresponding bit in DMAEEI

DMACEEI DMA Clear Enable Error Interrupt Register DMA_Base + 0x1B

BIT 7 6 5 4 3 2 1 0

— CAEE — CEE

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0

Table 8-15. DMACEEI Bit Descriptions

Name Description Value

CAEE
6

Clear All Enable Error Interrupts
Clears all the bits in the DMAEEI register.

0 Clear the specified bit in DMAEEI.

1 Clear all bits in DMAEEI.

CEEI
4–0

Clear Enable Error Interrupt
Clears the corresponding bit in the
DMAEEI register.

0–31 Clear the corresponding bit in DMAEEI.

DMACINT DMA Clear Interrupt Request Register DMA_Base + 0X1C

BIT 7 6 5 4 3 2 1 0

— CAIR — CINT

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

8-34 Freescale Semiconductor

DMA Programming Model
DMACINT provides a simple memory-mapped mechanism to clear a given bit in the DMAINT
registers to disable the interrupt request for a given channel. The given value on a register write
causes the corresponding bit in the DMAINT register to be cleared. A data value of 64 to 127
(regardless of the number of channels) provides a global clear function, forcing the entire
contents of the DMAINT register to zero, disabling all DMA interrupt requests. Reads of this
register return all zeroes.

DMACEER provides a simple memory-mapped mechanism to clear a given bit in the DMAERR
registers to disable the error condition flag for a given channel. The given value on a register
write causes the corresponding bit in the DMAERR register to be cleared. A data value of 64 to
127 (regardless of the number of channels) provides a global clear function, forcing the entire
contents of the DMAERR to be zeroed, clearing all channel error indicators. Reads of this
register return all zeroes.

Table 8-16. DMACINT Bit Descriptions

Name Description Value

CAEE
6

Clear All Enable Error Interrupts
Clears all bits in the DMAINT register.

0 Clear the specified bit in DMAINT.

1 Clear all bits in DMAINT.

CINT
4–0

Clear Interrupt Request
Clears the corresponding bit in the
DMAINT register.

0–31 Clear the corresponding bit in DMAINT.

DMACERR DMA Clear Error DMA_Base + 0X1D

BIT 7 6 5 4 3 2 1 0

— CAER — CERR

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0

Table 8-17. DMACERR Bit Descriptions

Name Description Setting

CAER
6

Clear All Error Indicators
Clears all bits in the DMAERR to disable
the error condition flags.

0 Clear the specified bit in DMAERR.

1 Clear all bits in DMAERR.

CERR
4–0

Clear Error Indicator
Clears the corresponding bit in the
DMAERR.

0–31 Clear the corresponding bit in DMAERR.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-35

DMA Controller
DMASSRT provides a simple memory-mapped mechanism to set the TCDx-7[START] bit in the
TCD of the given channel. The data value on a register write causes the START bit in the
corresponding TCD to be set. A data value of 64 to 127 (regardless of the number of channels)
provides a global set function, forcing all START bits to be set. Reads of this register return all
zeroes.

DMACDNE provides a simple memory-mapped mechanism to clear the DONE bit in the TCD of
the given channel. The data value on a register write causes the DONE bit in the corresponding
TCD to be cleared. A data value greater than 63 (regardless of the number of channels) provides
a global clear function, forcing all DONE bits to be cleared. Reads of this register return all
zeroes.

DMASSRT DMA Set Start DMA_Base + 0X1E

BIT 7 6 5 4 3 2 1 0

— SAST — SSRT

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0

Table 8-18. DMA Set START Bit Register (DMASSRT) Field Descriptions

Name Description Value

SAST
6

Set All START Bits
Activates all the channels.

0 Set the specified channel’s TCDx-7[START]

1 Set all TCDx-7[START] bits

SSRT
4–0

Set START Bit (Activate Channel)
Activates only the specified channel.

0–31 Set the corresponding channel’s TCDx-7[START]

DMACDNE DMA Clear Done Status Register DMA_Base + 0X1F

BIT 7 6 5 4 3 2 1 0

— CADN — CDNE

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

8-36 Freescale Semiconductor

DMA Programming Model
DMAINT provides a bit mapping to signal the presence of an interrupt request for each channel.
The DMA controller sets the appropriate bit in this register to signal a programmed interrupt
when a data transfer completes, as defined in the TCD. The outputs of this register are directly
routed to the interrupt controller. During the execution of the interrupt service routine associated
with any given channel, software must clear the appropriate bit, negating the interrupt request.
Typically, a write to the DMACINT register in the interrupt service routine is used for this
purpose. The state of any given channel’s interrupt request is directly affected by writes to this
register. The state is also affected by writes to the DMACINT register. During writes to the
DMAINT, a one in any bit position clears the corresponding channel’s interrupt request. A zero
in any bit position has no affect on the corresponding channel’s current interrupt status. The
DMACINT register handles the interrupt request for a single channel without the need to perform
a read-modify-write sequence to DMAINT.

Table 8-19. DMACDNE Field Descriptions

Name Description Value

CADN
6

Clear All DONE Status Bits
Clears the TCDx-7[DONE] bits for all
channels.

0 Clear the specified channel’s TCDx-7[DONE] bit.

1 Clear all TCDx-7[DONE] bits.

CDNE
4–0

Clear DONE Status Bit
Clears the TCDx-7[DONE] bit of the
corresponding channel.

0–31 Clear the corresponding channel’s
TCDx-7[DONE] bit.

DMAINT DMA Interrupt Request Register DMA_Base + 0x24

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INT31 INT30 INT29 INT28 INT27 INT26 INT25 INT24 INT23 INT22 INT21 INT20 INT19 INT18 INT17 INT16

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERQ15 INT14 INT13 INT12 INT11 INT10 INT9 INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-20. DMAINT Bit Descriptions

Name Description Value

INT[31–0]
31–0

DMA Interrupt Request
Activates an interrupt request for a specified
channel.

0 The interrupt request for the specified channel is
cleared.

1 The interrupt request for the specified channel is
active.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-37

DMA Controller
DMAERR provides a bit mapping to signal the presence of an error for each channel. The DMA
controller signals an error condition by setting the appropriate bit in this register. The outputs of
this register are enabled by the contents of the DMAEEI register, then logically summed across
all 32 channels to form a single error interrupt request that is routed to the interrupt controller.
During the execution of the interrupt service routine associated with any DMA errors, software
must clear the appropriate bit, negating the error interrupt request. Typically, a write to the
DMACERR in the interrupt service routine is used for this purpose. The normal DMA channel
completion indicators, setting the TCD done flag and the possible assertion of an interrupt
request, are not affected when an error is detected.

The contents of this register can also be polled. A non-zero value indicates the presence of a
channel error, regardless of the state of the DMAEEI register. The state of any given channel’s
error indicators is affected by writes to this register. The state is also affected by writes to the
DMACERR. During writes to DMAERR, a one in any bit position clears the corresponding
channel’s error status. A zero in any bit position has no effect on the corresponding channel’s
current error status. The DMACERR register is provided so that the error indicator for a single
channel can easily be cleared.

DMAERR DMA Error Register DMA_Base + 0x2C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ERR31 ERR30 ERR29 ERR28 ERR27 ERR26 ERR25 ERR24 ERR23 ERR22 ERR21 ERR20 ERR19 ERR18 ERR17 ERR16

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERQ15 ERR14 ERR13 ERR12 ERR11 ERR10 ERR9 ERR8 ERR7 ERR6 ERR5 ERR4 ERR3 ERR2 ERR1 ERR0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-21. DMAERR Bit Descriptions

Name Description Value

ERR[31–0]
31–0

DMA Error
Indicates whether an error has occurred in
the specified channel.

0 An error in the specified channel has not occurred.

1 An error in the specified channel has occurred.
MSC711x Reference Manual, Rev. 0

8-38 Freescale Semiconductor

DMA Programming Model
411

When fixed-priority channel arbitration is enabled (DMACR[ERCA] = 0), the contents of these
registers define the unique priorities of each channel. The channel priorities are evaluated by
numeric value, that is, 0 is the lowest priority, 1 is the next priority, then 2, 3, and do on. Software
must program the channel priorities with unique values. Otherwise, a configuration error is
reported. The range of the priority value is limited to the values of 0 through 15.

Channel preemption is enabled on a per channel basis when the DCHPRI[ECP] bit is set.
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in
favor of starting a higher-priority channel. Once the preempting channel completes all of its
programmed minor loop transfers, the preempted channel is restored and resumes execution.
After the restored channel completes one read/write sequence, it is eligible to be preempted again
if any higher-priority channel is activated. Multiple ECP bits can be set, but the DMA controller
does not perform nested preemption (attempt to preempt a preempting channel). Once a
preempting channel begins execution, it cannot be preempted. Preemption is available in fixed
arbitration mode only.

DCHPRI[0–31] DMA Channel Priority Registers 0–31 DMA_Base + 0x100–0x11F

BIT 7 6 5 4 3 2 1 0

ECP 0 0 GRPPRI CHPRI

TYPE R/W R R/W

RESET 0 0 Defaults to Channel n After Reset

Table 8-22. DCHPRIx Bit Descriptions

Name Description Value

ECP
7

Enable Channel Preemption
Enables/disables suspension of a specified
channel by activating a channel with a
higher priority.

0 The specified channel cannot be suspended by
activation of a higher-priority channel.

1 The specified channel can be temporarily suspended
by activation of a higher-priority channel.

0
6–5

Reserved. Write to zero for future compatibility.

GRPPRI
4

Channel Current Group Priority
Group priority assigned to this channel
group when fixed-priority arbitration is
enabled.

CHPRI
3–0

Channel n Arbitration Priority
Channel priority when fixed-priority
arbitration is enabled.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-39

DMA Controller
8.7.2 Transfer Control Descriptor (TCD) Registers

Each channel requires a 32-byte TCD for defining the desired data movement operation. The
channel descriptors are stored in the local memory in sequential order: channel[0–31]. The
definitions of the TCD are presented as eight 32-bit values. Table 8-23 shows a 32-bit view of
the basic TCD structure.

Note: TCDx-1 is the mnemonic for the TCD for channel x, word 1, where x is the channel
number from 0–31.

Table 8-24 shows this TCD information organized by functionality.

Table 8-23. DMA Channel x Priority (DCHPRIx) Field Descriptions

DMA Offset TCDx Field

0x1000 + (32 × x) + 0x00 Source Address (SADDR)

0x1000 + (32 × x) + 0x04 Transfer Attributes
(SMOD, SSIZE, DMOD, DSIZE)

Signed Source Address Offset (SOFF)

0x1000 + (32 × x) + 0x08 Inner Minor Byte Count (NBYTES)

0x1000 + (32 × x) + 0x0c Last Source Address Adjustment (SLAST)

0x1000 + (32 × x) + 0x10 Destination Address (DADDR)

0x1000 + (32 × x) + 0x14 Current Major Iteration Count (CITER) Signed Destination Address Offset (DOFF)

0x1000 + (32 × x) + 0x18 Last Destination Address Adjustment/Scatter Gather Address (DLAST)

0x1000 + (32 × x) + 0x1C Beginning Major Iteration Count (BITER) Channel Control/Status

Table 8-24. TCD Information Organized by Function

Field Field Name Field Size
TCDx
Word

TCDx
Offset

Description

Source Transfer Fields

Source Address SADDR 32 0 0x00 Address for DMA read accesses.

Source Address Offset SOFF 16 1 0x04 Updates source address once per minor
loop.

Source Transfer Attributes SMOD,
SSIZE

5, 3 1 0x04 Modulo capability and source data
transfer size.

Source Final Addr Adjust SLAST 32 3 0x0C For final update of source address when
last iteration of major loop completes.

Destination Transfer Fields

Destination Address DADDR 32 4 0x10 Address for DMA write accesses.

Destination Address Offset DOFF 16 5 0x14 Updates the destination address once
per minor loop.

Destination Transfer Attributes DMOD,
DSIZE

5, 3 1 0x04 Modulo capability and destination data
transfer size.
MSC711x Reference Manual, Rev. 0

8-40 Freescale Semiconductor

DMA Programming Model
Destination Final Addr Adjust DLAST 32 6 0x18 For final update of the source address
when last iteration of the major loop
completes. Alternatively, it provides the
address of the next TCD to load for a
scatter-gather.

Major / Minor Looping Fields

Minor Loop Byte Count NBYTES 32 2 0x08 The largest value should be 0x1FFF
FFFF.

Major Loop Begin Count BITER 15 7 0x1C Used in two different ways:
• If linking, provides 9-bit major loop

beginning count and 6-bit number of
minor loop linked channel.

• If not linking, provides 15-bit major loop
beginning count.

Major Loop Current Count CITER 15 5 0x14 Used in two different ways:
• If linking, provides 9-bit major loop

current count and 6-bit number of
minor loop linked channel.

• If not linking, provides 15-bit major loop
current count.

Channel Control Fields

Channel Start START 1 7 0x1C Activates a channel

Bandwidth Control BWC 2 7 0x1C Allows following for channel:
• Priority elevation.
• Optional stalls.

Enable Major Loop Linking CLE 1 7 0x1C Enables channel linking on competion of
major loop.

Major Loop Link Channel LCNUM 6 7 0x1C Channel linked to when major loop
linking is enabled.

Enable Scatter-Gather ESG 1 7 0x1C Enable for scatter-gather capability.

Disable Request DREQ 1 7 0x1C Enables auto-clearing of the DMAERQ
bit when the other major loop completes.

Interrupt Control Fields

Interrupt: Major Counter Half
Complete

INTH 1 7 0x1C Enables interrupts for the associated
channel when the major loop counter
reaches its halfway point.

Interrupt: Major Counter
Complete

INTM xx-bits 7 0x1C Enables interrupts for the associated
channel when the major loop counter
reaches zero.

Channel Status Fields

Channel Active ACTIVE 1 7 0x1C Flag indicating that this channel is
currently in execution.

Channel Done DONE 1 7 0x1C Flag indicating that this channel has
completed.

Table 8-24. TCD Information Organized by Function (Continued)

Field Field Name Field Size
TCDx
Word

TCDx
Offset

Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-41

DMA Controller
TCD0 defines the source address of the DMA transfer.

TCDx-1 defines such aspects of the DMA transfer as the source and destination address modulo,
the size of the source data transfer, size of the destination data transfer, and source address signed
offset.

TCDx-0 Transfer Control Descriptor Word 0 DMA_Base + 0x1000 + (32 × n) + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SADDR

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SADDR

TYPE R/W

RESET Undefined

Table 8-25. TCD0 Bit Descriptions

Name Description Value

SADDR
31–0

Source Address
Memory address pointing to the source data.

TCDx-1 Transfer Control Descriptor Word 1 DMA_Base + 0x1000 + (32 × n) + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SMOD SSIZE DMOD DSIZE

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SOFF

TYPE R/W

RESET Undefined
MSC711x Reference Manual, Rev. 0

8-42 Freescale Semiconductor

DMA Programming Model
Table 8-26. TCDx-1 Field Descriptions

Name Description Setting

SMOD
31–27

Source Address Modulo
Defines a specific address bit that is selected to be either
the value after a SADDR + SOFF calculation or the
original register value. This feature makes it easy to
implement a circular data queue. For data queues
requiring power-of-2 size bytes, the queue should be
based at a 0-modulo-size address and the SMOD field
set to the appropriate value to freeze the upper address
bits. The bit select is defined as ((1 << SMOD) – 1),
where a resulting 1 in a bit location selects the next state
address for the corresponding address bit location and a
0 selects the original register value for the corresponding
address bit location. For this application, SOFF is
typically set to the transfer size to implement
post-increment addressing with SMOD constraining the
addresses to a 0-modulo-size range.

0 Source address modulo feature is
disabled.

SSIZE
26–24

Source Data Transfer Size
Specifies the size of the source data transfer.

000 8-bit.

001 16-bit.

010 32-bit.

011 64-bit.

100 Reserved.

101 32-byte (if supported by the platform).

110 Reserved.

111 Reserved.

DMOD
23–19

Destination Address Modulo
See the SMOD definition.

0 Destination address modulo feature is
disabled.

DSIZE
18–16

Destination Data Transfer Size
See the SSIZE definition.

SOFF
15–0

Source Address Signed Offset
Sign-extended offset applied to the current source
address to form the next-state value as each source read
is completed.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-43

DMA Controller
TCDx-2 Transfer Control Descriptor Word 2 DMA_Base + 0x1000 + (32 × n) + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NBYTES

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NBYTES

TYPE R/W

RESET Undefined

Table 8-27. TCDx-2 Bit Descriptions

Name Description Value

NBYTES
31–0

Inner Minor Byte Transfer Count
Number of bytes to transfer in each activation of the
channel. As a channel is activated, the contents of the
appropriate TCD are loaded into the DMA controller,
and the appropriate reads and writes are performed
until the complete byte transfer count is transferred.
This operation cannot be stalled or halted. Once the
minor count is exhausted, the current values of the
SADDR and DADDR are written back into local
memory, and the major iteration count is
decremented and restored to the local memory. If the
major iteration count is completed, additional
processing is performed.

The NBYTES value 0x0000_0000 is interpreted
as 0x1_0000_0000, thus specifying a 4 GB
transfer.

TCDx-3 Transfer Control Descriptor Word 3 DMA_Base + 0x1000 + (32 × n) + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SLAST

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SLAST

TYPE R/W

RESET Undefined
MSC711x Reference Manual, Rev. 0

8-44 Freescale Semiconductor

DMA Programming Model
1

Table 8-28. TCDx-3 Bit Descriptions

Name Description Setting

SLAST
31–0

Last Source Address Adjustment
The adjustment value added to the source
address at the completion of the outer major
iteration count. This value can be applied to
restore the source address to the initial value or
to adjust the address to reference the next data
structure.

TCDx-4 Transfer Control Descriptor Word 4 DMA_Base + 0x1000 + (32 × n) + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DADDR

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DADDR

TYPE R/W

RESET Undefined

Table 8-29. TCDx-4 Bit Descriptions

Name Description Setting

DADDR
31–0

Destination Address
Memory address pointing to the destination data.

.

MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-45

DMA Controller
TCDx-5 Transfer Control Descriptor Word 5 DMA_Base + 0x1000 + (32 × n) + 0x14

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CITERE CITERH CITER

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DOFF

TYPE R/W

RESET Undefined

Table 8-30. TCDx-5 Bit Descriptions

Name Description Value

CITERE
31

Channel-to-Channel Link Enable
As the channel completes the inner minor loop, this flag
enables the linking to another channel, defined by
CITERH. The link target channel is activated by an
internal mechanism that sets the TCDx-7[START] bit of
the specified channel. If channel linking is disabled, the
CITER value is extended to 15 bits in place of a link
channel number. If the major loop is exhausted, this link
mechanism is suppressed in favor of the CLE channel
linking. The value of this bit must be equal to that of the
BITERE bit. Otherwise, a configuration error is reported.

0 Channel-to-channel linking is disabled.

1 Channel-to-channel linking is enabled.

CITERH
30–25

Current Iteration Count or Link Channel Number
If CITERE = 0, the CITERH bits form bits 14–9 appended
with CITER to create a 15-bit CITER field. Otherwise,
after the minor loop is exhausted, the DMA controller
activates the channel defined by CITERH by setting that
channel’s TCDx-7[START] bit. The value in CITERH must
not exceed the number of channels.

0 No channel-to-channel linking (or chaining)
is performed after the inner minor loop is
exhausted.
MSC711x Reference Manual, Rev. 0

8-46 Freescale Semiconductor

DMA Programming Model
CITER
24–16

Current Major Iteration Count
This 9 or 15-bit count (if CITERE = 1, append CITERH to
CITER) represents the current major loop count for the
channel. It decrements each time the minor loop
completes and updates in the transfer control descriptor
memory. Once the major iteration count is exhausted, the
channel performs a number of operations (for example,
final source and destination address calculations),
optionally generating an interrupt to signal channel
completion before reloading the CITER field from the
beginning iteration count (BITER) field.

When software initially loads CITER, it must be set to the
same value as that contained in the TCDx-7[BITER] field.
If the channel is configured to perform a single activation,
the initial value of BITER and CITER should be 0x0001.

DOFF
15–0

Destination Address Signed Offset
Sign-extended offset applied to the current destination
address to form the next-state value as each destination
write completes.

TCDx-6 Transfer Control Descriptor Word 6 DMA_Base + 0x1000 + (32 × n) + 0x18

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DLAST

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DLAST

TYPE R/W

RESET Undefined

Table 8-30. TCDx-5 Bit Descriptions

Name Description Value
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-47

DMA Controller
Table 8-31. TCDx-6 Bit Descriptions

Name Description Setting

DLAST
31–0

Last Destination Address
The last destination address adjustment or the memory address
for the next TCD to be loaded into the channel (scatter/gather). If
(TCD.ESG = 0), DLAST is the adjustment value added to the
destination address at the completion of the outer major iteration
count. This value can be applied to restore the destination
address to the initial value or to adjust the address to reference
the next data structure.

Otherwise, this address points to the beginning of a 0-modulo-32
region containing the next TCD to be loaded into the channel. This
channel reload is performed as the major iteration count
completes. The scatter/gather address must be 0-modulo-32.
Otherwise, a configuration error is reported.

TCDx-7 Transfer Control Descriptor Word 7 DMA_Base + 0x1000 + (32 × n) + 0x1C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BITERE BITERH BITER

TYPE R/W

RESET Undefined

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BWC LCNUM DONE ACTIVE CLE ESG DREQ INTH INTM START

TYPE R/W

RESET Undefined 0 0 Undefined 0
MSC711x Reference Manual, Rev. 0

8-48 Freescale Semiconductor

DMA Programming Model
Table 8-32. TCDx-7 Bit Descriptions

Name Reset Description Setting

BITERE
31

Undefined Channel-to-Channel Link Enable
As the channel completes the inner minor loop, this
flag enables linking to another channel defined by
BITERH. The link target channel is activated by an
internal mechanism that sets the TCDx-7[START] bit
of the specified channel. If channel linking is
disabled, the BITER value is extended to 15 bits in
place of a link channel number. If the major loop is
exhausted, this link mechanism is suppressed in
favor of CLE channel linking. The value of this bit
must be equal to that of the CITERE bit. Otherwise, a
configuration error is reported.

0 Channel-to-channel linking is
disabled.

1 Channel-to-channel linking is
enabled.

BITERH
30–25

Undefined Major Iteration Count or Link Channel Number
If BITERE = 0, no channel-to-channel linking (or
chaining) is performed after the inner minor loop is
exhausted. The BITERH bits form bits 14–9
appended with BITER to create a 15-bit BITER field.
Otherwise, after the minor loop is exhausted, the
DMA controller activates the channel defined by
BITERH by setting that channel’s TCDx-7[STRAR]
bit. The value in BITERH must not exceed the
number of channels.

BITER
24–16

Undefined Beginning Major Iteration Count
This 9 or 15-bit count (if BITERE = 1, append
BITERH to BITER) represents the beginning of the
major loop count for the channel. Once the major
iteration count is exhausted, the channel performs a
number of operations (for example, final source and
destination address calculations), optionally
generating an interrupt to signal channel completion
before reloading the CITER field from the BITER
field. When software initially loads BITER, it must be
set to the same value as that contained in the
TCDx-5[CITER] field.

BWC
15–14

Undefined Bandwidth Control
Provides a mechanism to throttle the amount of bus
bandwidth consumed by the DMA controller. In
general, as the DMA controller processes the inner
minor loop, it continuously generates read/write,
read/write sequences until the minor count is
exhausted. BWC forces the DMA controller to stall
after completing each read/write access to control
the bus request bandwidth as it appears to the
crossbar switch.To minimize start-up latency,
bandwidth control stalls are suppressed for the first
two AHB bus cycles and after the last write of each
minor loop. The dynamic priority elevation setting
elevates the priority of the DMA controller as it
appears to the crossbar switch arbitrator for the
executing channel. Dynamic priority elevation is
suppressed during the first two AHB bus cycles.

00 No DMA controller stalls.

01 Dynamic priority elevation.

10 DMA controller stalls for 4 cycles
after each read/write.

11 DMA controller stalls for 8 cycles
after each read/write.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-49

DMA Controller
LCNUM
13–8

Undefined Link Channel Number
If TCDx-7[CLE] = 0, no channel-to-channel linking
(or chaining) is performed after the outer major loop
counter is exhausted. Otherwise, after the major loop
counter is exhausted, the DMA controller activates
the channel defined by LCNUM by setting that
channel’s TCDx-7[START] bit. The value in LCNUM
must not exceed the number of implemented
channels.

DONE
7

0 Channel Done
This flag indicates that the DMA controller has
finished processing the outer major loop. The DMA
controller sets this bit as the CITER count reaches
zero. Software or hardware clears this bit when the
channel is activated.

0 The channel is not done.

1 The channel is done.

ACTIVE
6

0 Channel Active
This flag signals that the channel is currently
executing. This bit is set as each inner minor loop
starts to execute, and the DMA controller clears it as
the inner minor loop completes or a configuration
error is detected

0 The channel is not active.

1 The channel is active.

CLE
5

Undefined Channel-to-Channel Linking
As a channel completes the outer major loop, this
flag enables the linking to another channel, defined
by LCNUM. The link target channel is activated by an
internal mechanism that sets the TCDx-7[START] bit
of the specified channel. This field cannot be
modified when the TCDx-7[DONE] bit is set.

0 The channel-to-channel linking is
disabled.

1 The channel-to-channel linking is
enabled.

ESG
4

Undefined Enable Scatter/Gather Processing
As the channel completes the outer major loop, this
flag enables scatter/gather processing in the current
channel. If this bit is enabled, the DMA controller
uses TCDx-6[DLAST] as a memory pointer to a
0-modulo-32 address containing a 32-byte data
structure that is loaded as the TCD into local
memory. This field cannot be modified when the
TCDx-7[DONE] bit is set.

0 The current channel’s TCD has the
normal format.

1 The current channel’s TCD specifies
a scatter/gather format.

DREQ
3

Undefined Disable Request
If this flag is set, the DMA hardware automatically
clears the corresponding DMAERQ bit when the
current major iteration count reaches zero.

0 The channel’s DMAERQ bit is not
affected.

1 The channel’s DMAERQ bit is
cleared when the outer major loop
completes.

Table 8-32. TCDx-7 Bit Descriptions (Continued)

Name Reset Description Setting
MSC711x Reference Manual, Rev. 0

8-50 Freescale Semiconductor

DMA Programming Model
INTH
2

Undefined Half-Point Interrupt
Enables/disables an interrupt when the major
counter is half complete. If this flag is set, the
channel generates an interrupt request by setting the
appropriate bit in the DMAINT register when the
current major iteration count reaches the halfway
point. Specifically, the comparison performed by the
DMA controller is (CITER == (BITER >> 1)). This
halfway point interrupt request supports
double-buffered schemes or other types of data
movement in which the processor needs an early
indication of the transfer’s progress. The halfway
complete interrupt is disabled when the BITER
values are less than two.

0 The half-point interrupt is disabled.

1 The half-point interrupt is enabled.

INTM
1

Undefined Interrupt Major
Enables/disables an interrupt when the major
iteration count completes. If this flag is set, the
channel generates an interrupt request by setting the
appropriate bit in the DMAINT register when the
current major iteration count reaches zero.

0 The end-of-major loop interrupt is
disabled.

1 The end-of-major loop interrupt is
enabled.

START
0

0 Channel Start
If this flag is set, the channel is activated. The DMA
hardware automatically clears this flag bit after the
channel is active.

0 The channel is not explicitly started.

1 The channel is explicitly activated.

Table 8-32. TCDx-7 Bit Descriptions (Continued)

Name Reset Description Setting
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 8-51

DMA Controller
MSC711x Reference Manual, Rev. 0

8-52 Freescale Semiconductor

Memory Controller 9
The memory controller provides a glueless interface between the internal MSC711x bus and the
external double data rate (DDR) SDRAM memory modules. The memory controller establishes
an interface between MSC711x devices and external memories by translating internal bus
accesses to appropriate address, data, and control signals for DDR SDRAMs. This fully
programmable DDR SDRAM controller supports most JEDEC standard x8 or x16 DDR
memories available today, including buffered and unbuffered DIMMs (although mixing
unbuffered and registered DIMMS in the same system is not supported). Dynamic power
management and auto-precharge modes simplify memory system design.

9.1 Features

The DDR memory controller includes these distinctive features:

� Glueless interface to JEDEC-compliant first generation DDR SDRAMs (x8, x16, or x32
devices).

� 16-bit or 32-bit SDRAM data bus, configured by the DEVCFG[DDR] bit as described in
Section 7.4.3, Device Identification and Configuration, on page 7-16.

� Clock ratio of 2:1 between the memory controller clock frequency and SDRAM clock.

� Programmable settings for all SDRAM timing parameters.

� 14-bit SDRAM address.

� Two chip selects for up to two physical banks.

� Support for unbuffered and registered DIMMs.

� Single access or bursting.

� Data mask signals and read-modify-write.

� Open page management (dedicated entry for each sub-bank).

� Optional auto-precharge mode.

� Sleep power management mode.

� Two-entry input request queue.

9.2 DDR Memory Controller Signal Description
This section summarizes the DDR memory controller external signals. For detailed descriptions
of these signals, consult Section 2.3, Memory System Interface (DDR Controller), on page 2-11.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-1

Memory Controller
Table 9-1 lists the signals of the DDR memory controller, showing how the signals are grouped.

Note: A bar over a signal name indicates that the signal is active low, such as RAS (row
address strobe). Active-low signals are referred to as asserted (active) when they are
low and deasserted when they are high. Signals that are not active low are referred to
as asserted when they are high and deasserted when they are low.

Table 9-2 shows the mapping from the DDR memory controller address pins to the JEDEC
standard.

Table 9-1. DDR Memory Interface Pin Summary

Name Function/Description Reset Pins I/O

Address and Chip Selects

A[13:0] Address bus All zeros 14 O

BA[1:0] Logical bank address All zeros 2 O

CS[1–0] Chip selects All ones 2 O

Data

D[31–0] Data bus All zeros 32 I/O

Data Strobes and Masks

DQS[3–0] Data strobes All zeros 4 I/O

DQM[3–0] Data mask All zeros 4 O

Memory Control

RAS Row address strobe Deasserted 1 O

CAS Column address strobe Deasserted 1 O

WE Write enable Deasserted 1 O

Clocking

CKE Clock enable Deasserted 1 O

CK DDR clock — 1 —

CK DDR Clock — Inverted Sense — 1 —
MSC711x Reference Manual, Rev. 1

9-2 Freescale Semiconductor

Architecture
The manner in which an address from the MSC711x device maps to a multiplexed DDR address
and then drives these pins is covered in Section 9.6.3, DDR SDRAM Address Multiplexing, on
page 9-25.

9.3 Architecture

The DDR SDRAM memory controller controls processor and I/O interactions with system
memory. It supports JEDEC-compliant first generation dual-data rate DDR SDRAMs. Within the
memory system, a wide range of memory devices can be mapped to any arbitrary chip select.
However, registered DIMMs cannot be mixed with unbuffered DIMMs.

Figure 9-1 shows an example system-level view of an MSC711x device connected to a single
x16 DDR device. The MSC711x masters access the memory controller through the crossbar
switch and the memory controller interface (MCIF). See Chapter 10, Memory Controller
Interface, which directly controls the DDR pins. All accesses to the DDR memory controller
occur from AHB masters through the crossbar switch and the MCIF.

Table 9-2. Memory Address Signal Mappings

Signal Name
(Outputs)

JEDEC DDR DIMM Signals (Inputs)

SDRAM 168–Pin DIMM

MSB A13 A13

A12 A12

A11 A11

A10 A10(AP)

A9 A9

A8 A8

A7 A7

A6 A6

A5 A5

A4 A4

A3 A3

A2 A2

A1 A1

A0 A0

BA1 BA1

LSB BA0 BA0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-3

Memory Controller
Figure 9-1. System-Level View of the DDR Memory Controller

The DDR SDRAM interface supports two physical banks of 32 bit-wide memory. A physical
bank is a portion of the address map assigned to a memory controller chip select, and a logical
bank is one of the banks within a DDR SDRAM device, which is specified by a bank address.
Figure 9-2 shows a block diagram of the memory controller.

DQ[15–0]

CK

A[12–0]

DQS[3–0]

DQM[3–0]

CK

CKE

RAS

CAS

CS[0–1]

WE

Data Out Data In
Register Register

Memory Device: 8M × 16

BANK 0
BANK 0

BANK 0
Logical

Multiplex, Mask
Read Data Latch

BA[1–0]

C
on

tr
ol

 L
og

ic

MSC711x

Device

M
em

or
y

C
on

tr
ol

le
r

ASEMI[63–0]

C
ro

ss
ba

r
S

w
itc

h

Bank 0

M
em

or
y

C
on

tr
ol

le
r

In
te

rf
ac

e

MSC711x Reference Manual, Rev. 1

9-4 Freescale Semiconductor

Architecture
Figure 9-2. DDR Memory Controller Block Diagram

a

The memory controller processes accesses from the MSC711x device as follows:

1. Receives requests from the internal mastering device.

2. Decodes the address to generate the physical bank, logical bank, row, and column
addresses.

3. Loads the transaction into the input staging queue with the decoded information.

4. Compares the two entries of the input queue with values in the open row table to
determine whether the address maps to an open page.

5. If the address from either entry does not map to an open page, issues an ACTIVATE

command for the entry, and the lowest entry has priority over the next lowest.
Commands are always issued from the lowest entry in the input queue.

Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected
location and continue for a programmed number of higher locations (2, 4, or 8) in a programmed
sequence, (sequential or interleaved).

Access

DDR SDRAM

Data from

Data from

DDR SDRAM

Data Signals

RMW

Address

RowPhysical Bank,

FIFO

SDRAM

Address

Open Row

Address

EN

EN

Data Qualifiers

Clocks

A[13–0]
BA[1–0]

CS[0–1]
CAS
RAS
WE

DQM[3–0]
CKE

DQS[3–0]

DQ[31–0]

CK

Decode Control

OpenLogical Bank,
Row

Table Control

Input
Staging
Queue

Memory Array

Memory Control

Request

SDRAM

master

CK

Delay Chain

SDRAM
Control

ClockingDDR Clock

from
MSC711x

Memory Select
Interrupt

Device
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-5

Memory Controller
9.3.1 DDR SDRAM Configurations

The DDR memory controller supports many different DDR SDRAM configurations, according
to the following characteristics:

� Number of physical banks (that is, number of chip selects used): 1 or 2

� Data path size: 16-pin or 32-pin

� Number of data pins on the DDR SDRAM device(s): x8, x16, or x32

Physical bank sizes range from 8 MB to 512 MB. SDRAMs of different sizes can be used in the
same system. Device densities range from 64 Mbit to 1 Gbit and are specified by 14 multiplexed
address signals and two logical bank select signals. The DDR SDRAM physical banks can be
built from standard memory modules or directly-attached memory devices. Byte lane selection
for memory accesses is provided by 4 data qualifier (DQM) signals.

Note: An 8-bit DDR SDRAM device has a DQM signal and eight data signals (DQ[7–0]). A
16-bit DDR SDRAM device has two DQM signals associated with specific halves of the
sixteen data signals (DQ[15–8] and DQ[7–0]).

Although the DDR memory controller multiplexes the row and column address bits onto 14
memory address signals and two logical bank select signals, individual physical banks can be
implemented with memory devices requiring fewer than 28 address bits. Each physical bank may
be individually configured to provide from 12 to 14 row address bits, plus two logical bank-select
bits and from eight to eleven column address bits. Table 9-3 shows different configurations of
the DDR memory controller in 16-pin mode.

Table 9-3. Configurations in 16 Data Pin Mode

SDRAM
Device Size

(in Bits)

Device
Configuration

Row × Column Bits
Number of

Devices per
Physical Bank1

Size (in MB) of
One Physical

Bank1

Size (in MB) of
Two Physical

Banks2

64 Mb 8 M × 8 12 × 9 2 16 32

64 Mb 4 M × 16 12 × 8 1 8 16

128 Mb 16 M × 8 12 × 10 2 32 64

128 Mb 8 M × 16 12 × 9 1 16 32

256 Mb 32 M × 8 13 × 10 2 64 128

256 Mb 16 M × 16 13 × 9 1 32 64

512 Mb 64 M × 8 13 × 11 2 128 256

512 Mb 32 M × 16 13 × 10 1 64 128

1 Gb 128 M × 8 14 ×11 2 256 512

1 Gb 64 M × 16 14 × 10 1 128 256

Notes: 1. One physical bank corresponds to a set of devices that share a single chip select.

2. Two physical banks correspond to two sets of devices, where each set has a single chip select.
MSC711x Reference Manual, Rev. 1

9-6 Freescale Semiconductor

Architecture
Table 9-4 shows the different configurations of the DDR memory controller in 32-pin mode.

If a transaction request is issued to the DDR memory controller and the address does not lie
within a programmed address range for an enabled chip select, a memory select error is flagged.
Errors are described in detail in Section 9.6.5, Error Detection and Management, on page 9-30.

If the starting and ending addresses of a disabled bank overlap with the address space of an
enabled bank, there may be system memory corruption in the overlapping address range. The
starting and ending addresses of unused memory banks should be mapped to unused memory
space.

Using a memory-polling algorithm at power-on reset or querying the JEDEC serial presence
detect capability of memory modules, system firmware configures the DDR memory controller
to map the size of each bank in memory using the memory-boundary registers. The memory
controller uses its bank map to assert the appropriate CSn signal for memory accesses according
to the provided bank starting and ending addresses. The memory banks are not required to be
mapped to a contiguous address space.

9.3.2 Configuration Examples

The examples presented in this section demonstrate the capabilities of the DDR memory
controller. Figure 9-3 shows a typical byte-wide DDR device; its internal organization is shown
in Figure 9-4.

Table 9-4. Supported Configurations, 32 Data Pin Mode

SDRAM
Device Size

(in bits)

Device
Configuration

Row x Column Bits
Number of

Devices per

Physical Bank1

Size (in MB) of

One Physical Bank1
Size (in MB) of

Two Physical Banks2

64 Mb 8 M × 8 12 × 9 4 32 64

64 Mb 4 M × 16 12 × 8 2 16 32

128 Mb 16 M × 8 12 × 10 4 64 128

128 Mb 8 M × 16 12 × 9 2 32 64

256 Mb 32 M x 8 13 x 10 4 128 256

256 Mb 16 M × 16 13 × 9 2 64 128

512 Mb 64 M × 8 13 × 11 4 256 512

512 Mb 32 M × 16 13× 10 2 128 256

1 Gb 128 M × 8 14 × 11 4 512 1 GB

1 Gb 64 M × 16 14 × 10 2 256 512

Notes: 1. One physical bank corresponds to a set of devices that share a single chip select.

2. Two physical banks correspond to two sets of devices, where each set has a single chip select.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-7

Memory Controller
Figure 9-3. Typical DDR SDRAM Device

Figure 9-4. Typical Dual Data Rate SDRAM Internal Organization

Different configurations may require buffering of certain address and control lines. Analysis of
the device’s AC timing specifications, desired memory operating frequency, capacitive loads, and
board routing loads can assist you in determining signal buffering requirements. While the DDR
memory controller drives 14 address pins, the following examples use only 12 bits.

9.3.2.1 Fan-Out and Termination

Fan-out and termination depends on the MSC711x controller drive strength, output slew rate, and
board topology. The typical drive on a single signal is up to six devices. Some stacked modules
drive up to eight loads, although careful simulation is required.

A[12–0]

Write Enable

DQ[7–0]

DQS

64 M × 1 Byte

CK

Command
Bus

512 Mbit

BA[1–0]

Data

Data

8
ADDR

RAS

CAS

WE

CS

DQM

CKE

CK

CK

13

2SUB
BANK ADDR

Strobe

Logical
Bank0

Logical
Bank1

Logical
Bank2

Logical
Bank3

Multiplex, MASK,
Read Data Latch

Data-out Registers Data-in Registers

Data Bus

ADDR

COMMAND:

DQS

BA1, BA0

CKE, CK, CK

CS, RAS, CAS, WE

Control

SDRAM

DQM
MSC711x Reference Manual, Rev. 1

9-8 Freescale Semiconductor

Architecture
Keep the following points in mind when setting up your system to interface with DDR SDRAM
devices:

� If there are several SDRAM devices, use zero-delay PLL clock buffers (JEDEC-JESD82
standard). These buffers are designed for DDR applications.

� The CK/CK signal pair typically drives no more than six devices.

� PCB traces for DDR clock signals should be short and all on the same layer.

� There should be an effective 100–120 ohms of termination between CK and CK. It may be
useful to add a small compensating capacitor between CK and CK.

� DDR SDRAM manufacturers provide detailed information on PCB layout/termination.

It is important to simulate the design of the MSC711x and DDR devices. Fan-out and termination
is high speed and sensitive. Specialized termination is required. See the Technical Data sheet and
design checklist application note for details on termination. Figure 9-5 shows a simple DDR
SDRAM configuration with a single physical bank containing one 8 M × 16 DDR module for a
total of 16 MB of system memory. The memory controller is configured for 16-pin operation.

Figure 9-5. Simple 16-Pin DDR SDRAM Configuration (16 MB)

CAS

CS

RAS

WE
CKE
CK

DQM[1–0]

A[11–0]

8 M × 16 SDRAM

DQ[15–0]

BA[1–0]

1–0

DQ[15–0]

RAS

CAS

WE

CKE

CK

CS[0–1]

BA[1–0]

A[13–0]

D[15–0]

DQM[1–0]

To pins of
the SDRAM
Device

Memory Data Bus and Strobes

DQS[1–0]DQS

DQS[3–0]

2. CK is not shown on the device but must be connected.

1. All signals are connected in common (in parallel) except for the DQM signals.

CK

CS0

DDR
Controller

Physical Bank 0:
8 M × 16
16 MB
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-9

Memory Controller
Figure 9-6 shows a simple DDR SDRAM configuration with a single physical bank containing
one 4M × 32 DDR module for a total of 16 MB of system memory. The memory controller is
configured for 32-pin operation.

Figure 9-6. Simple 32-Pin DDR SDRAM Configuration (16 MB)

Figure 9-7 shows a DDR SDRAM configuration with two physical banks, each composed of two
8 M × 16 DDR modules for a total of 64 MB of system memory. The memory controller is
configured for 32-pin operation.

CAS

CS

RAS

WE
CKE
CK

DQM[3–0]

A[11–0]

4 M × 32 SDRAM

DQ[31–0]

BA[1–0]

1–0

DQ[31–0]

RAS

CAS

WE

CKE

CK

CS[0–1]

BA[1–0]

A[13–0]

D[31–0]

DQM[3–0]

To pins of
the SDRAM
Device

Memory Data Bus and Strobes

Physical Bank 0:
4 M × 32
16 MB

DQS[3–0]
DQS

DQS[3–0]

2. CK is not shown on the memory device but must be connected.
1. All signals are connected in common (in parallel) except for the DQM signals.

CK

CS0

DDR
Controller
MSC711x Reference Manual, Rev. 1

9-10 Freescale Semiconductor

Architecture
Figure 9-7. Example Two-Bank 64 MB DDR SDRAM Configuration

CAS

CS

RAS

CKE
CLK

DQM[1–0]

A[0-11]
2Mx8 SDRAM

DQ[0-7]

BA[0-1]CAS

CS

RAS

WE
CKE

DQM[1–0]

A[11–0]

8M × 16 SDRAM

DQ[15–0]

BA[1–0]

3–2

DQ[31–16]
DQ[15–0]

1–0

3–2

DQ[31–16]

1–0

RAS

CAS

WE

CKE

CK

CS[0–1]

BA[1–0]

A[13–0]

D[31–0]

DQM[3–0]

To all SDRAM
Devices in
Common

Memory Data Bus and Strobes

Physical Bank 0:
8M × 32
32 MB

CAS

CS

RAS

CKE
CLK

DQM[1–0]

A[0-11]

2Mx8 SDRAM

DQ[0-7]

BA[0-1]
CAS

CS

RAS

CKE
CK

DQM[1–0]

A[11–0]

8M x 16 SDRAM

DQ[15–0]

BA[1–0]

DQ[15–0]

and the data bus signals.

DQS[3–2]

DQS

DQS[3–2]
DQS

DQS[3–0]

4. CK is not shown on the these memory devices but must be connected.
3. Buffering may be needed for large memory arrays.
2. Each chip select signal corresponds to a separate physical bank of memory.

1. All signals are connected in common (in parallel) except for CS0 and CS1, the DQM signals,

CK

WE

CS0 CS1

Physical Bank 1:
8M × 32
32 MB

DQS[1–0] DQS[1–0]DDR
Controller
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-11

Memory Controller
9.4 JEDEC-Standard DDR SDRAM Interface Commands

The DDR memory controller performs all read or write accesses to DDR SDRAM using
JEDEC-standard DDR SDRAM interface commands. The SDRAM device samples command
and address inputs on rising edges of the memory clock; data is sampled using both the rising and
falling edges of DQS. Data read from the DDR SDRAM is also sampled on both edges of DQS.

The DDR SDRAM interface commands are sent from the MSC711x memory controller to the
DDR SDRAM devices. The ACTIVATE command (row activate) opens a row for a new access to
the SDRAM device. The PRECHARGE command closes a row after accesses to the row are
complete. The commands are listed here and summarized in Table 9-5. All actions for these
commands are described from the perspective of the SDRAM device.

� ROW ACTIVATE. Latches row address and initiates a memory read of that row. Row data is
latched in SDRAM sense amplifiers and must be restored by a PRECHARGE command before
another row activate occurs.

� PRECHARGE. Restores data from the sense amplifiers to the appropriate row. Also initializes
the sense amplifiers in preparation for reading another row in the memory array,
(performing another activate command). Precharge must occur after a read or write, if the
row address changes on the next Open Page mode access.

� READ. Latches the column address and transfers data from the selected sense amplifier to
the output buffer as determined by the column address. During each succeeding clock
edge, additional data is driven without additional read commands. The amount of data
transferred is determined by the burst size, which defaults to 4.

� WRITE. Latches the column address and transfers data from the data pins to the selected
sense amplifier as determined by the column address. During each succeeding clock edge,
additional data is transferred to the sense amplifiers from the data pins without additional
write commands. The amount of data transferred is determined by the burst size, which is
set to four by the DDR memory controller.

� REFRESH (similar to CAS before RAS). Causes a row to be read in all logical banks (JEDEC
SDRAM) as determined by the refresh, row address counter. This refresh row address
counter is internal to the SDRAM. After it is read, the row is automatically rewritten in the
memory array. All logical banks must be in a precharged state before a refresh executes.

� MODE REGISTER SET (for configuration). Sets DDR SDRAM options, which are CAS latency,
burst type, and burst length. CAS latency can be chosen as provided by the preferred
SDRAM. Some SDRAMs provide CAS latency {1,2,3}, some provide CAS latency
{1,2,3,4}, and so on. Burst type is always sequential. Although some SDRAMs provide
burst lengths of 1, 2, 4, 8, and page size, this memory controller supports only a burst
length of 4.

The mode register set command is performed during system initialization. Software sets
parameters such as mode register data, CAS latency, burst length, and burst type in
MSC711x Reference Manual, Rev. 1

9-12 Freescale Semiconductor

Operating Modes
SMCFG[SDMOD] and the DDR memory controller transfers them to the SDRAM array
after SCFG[MEMEN] is set.

� SELF REFRESH (for long periods of standby). Automatically generates internal refresh cycles
to keep the data in all memory banks refreshed. Before this command executes, all logical
banks are in a precharged state.

9.5 Operating Modes

The DDR memory controller runs in Open Page mode and an Auto-Precharge mode. In Open
Page mode, there are up to 8 open pages, one for each of the four logical banks associated with
each of the two chip selects. In Auto-Precharge mode, pages are closed after the read or write
access. Accesses to closed pages start with the an ACTIVATE command (RAS signal assertion)
followed by a READ or WRITE command (CAS assertion). Accesses to open pages eliminate the need
for the ACTIVATE command. Instead, the access starts with a READ or WRITE command (CAS
assertion). The address bits registered coincident with the READ or WRITE READ or WRITE
command (CAS signal) specify the logical bank and starting column for the burst access.

Table 9-5. SDRAM Command Table

Operation CS
CKE

Previous
CKE

Current RAS CAS WE BA A10 A

Precharge and Activate Commands

Activate L H H L H H Logical bank
select

Row Row

Precharge select
logical bank

L H H L H L Logical bank
select

L X

Precharge all logical
banks

L H H L H L X H X

Read and Write Commands

Read L H H H L H Logical bank
select

L Column

Read with auto
precharge

L H H H L H Logical bank
select

H Column

Write L H H H L L Logical bank
select

L Column

Write with auto
precharge

L H H H L L Logical bank
select

H Column

Mode and Refresh Commands

Mode register set L H H L L L Opcode Opcode Opcode
and mode

Auto refresh L H H L L H X X X

Self refresh L H L L L H X X X

No Operation (NOP) L H H H H H X X X
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-13

Memory Controller
The address bits registered coincident with the ACTIVATE command (RAS signal) specifies the
logical bank and row to be accessed. The address coincident with the READ or WRITE command
(CAS signal) specifies the logical bank and starting column for the burst access.

9.5.1 Open Page Mode

Page mode allows efficient accesses. After the DDR memory controller opens a page, subsequent
accesses no longer need to issue an ACTIVATE command. This mode is most efficient in bursting
and is commonly used instead of Auto-Precharge mode. When the DDR memory controller
operates in Open Page mode, it retains the currently active SDRAM page by not issuing a
PRECHARGE command. The page remains opens until one of the following conditions occurs:

� Refresh interval is attained.

� The user-programmable value controlled by SICFG[REFINT] is exceeded.

� Another transaction is issued to the same physical bank and logical bank but to a different
row.

The amount of time (in DDR clock cycles) that each pages remain open is programmable via
SICFG[REFINT].

9.5.2 Auto-Precharge Mode

In Auto-Precharge mode, the memory controller issues a PRECHARGE command to a logical bank
after every read or write transaction. Auto-Precharge mode can be selected for all chip selects for
a global auto precharge by clearing SICFG[PI] to 0, or it can be set individually on physical
banks using CSxCFG[APxEN].

This mode is useful only when most accesses to the DDR are not bursted and the accesses occur
over many different rows. It is less efficient than Page mode for bursting. In Auto-Precharge
mode, an application sometimes configures one portion of the DDR address space (that is, one
chip select) for Page mode for efficient bursting, and another portion for Auto-precharge mode.

In closed page mode, the DDR memory controller uses the auto-precharge feature so that the
SDRAM automatically closes the page after the read or write access. An automatic close uses
A[10] of the address during the command phase of the access to enable Auto-Precharge mode.
Auto-Precharge is non-persistent in that it is either enabled or disabled for each individual read or
write command. However, it can be enabled or disabled separately for each chip select. This
mode is for applications in which many random accesses are performed to the DDR memory and
the accesses occur over many different rows.

Open Page mode can dramatically reduce access latencies for page hits. Depending on the
memory system design and timing parameters, using page mode can save two to three clock
cycles for subsequent burst accesses that hit in an active page. Also, better performance can be
obtained by using more banks, especially in systems with many different channels.
MSC711x Reference Manual, Rev. 1

9-14 Freescale Semiconductor

Operating Modes
9.5.3 DDR SDRAM 2T Timing Mode

For heavily loaded systems, the 2T Timing mode is available. In this mode, the address and
control signals are held for two full cycles for every DRAM command used. For example, if two
unbuffered DIMMs are used, there can be 36 loads on the address, resulting in very slow slew
rates and delay on these signals. The board design must be very carefully managed to ensure that
this configuration meets all DDR SDRAM specifications. Another option is to enable 2T timing
to give the address and control more margin. The chip selects are still asserted for only one cycle,
but each chip select has at most 9 loads.

9.5.4 Low-Power Modes

Modes for reducing power consumption are:

� Normal operation: Dynamic Power Management mode

� Stop mode operation: Self Refresh or No Refresh modes

In normal operation, the DDR memory controller can reduce power consumption by negating the
SDRAM CKE signal when no transactions are pending to the SDRAM. The dynamic
power-saving mode uses the CKE DDR SDRAM pin to power down dynamically when there is no
system memory activity. The CKE pin is deasserted when both no memory refreshes and no
memory accesses are scheduled. CKE is reasserted when a new access or refresh is scheduled or
the dynamic power mode is disabled. This mode is controlled with SCFG[DPWR]. Dynamic
power management mode gives you tight control of the power consumption by trading power for
performance using SICFG[REFINT]. Powering up the DDR SDRAM when a new memory
reference is scheduled causes a latency penalty of one clock, as shown in Figure 9-8.

Figure 9-8. DDR SDRAM Power-Down Mode

In normal operation, the DDR memory controller supplies the normal auto refresh to SDRAM. In
Stop mode, the DDR memory controller can be configured to take advantage of self-refreshing
SDRAMs or to provide no refresh support. Self-refresh support is enabled with the SCFG[SREN]
bit. In the absence of refresh support, system software must first preserve DDR SDRAM data,
such as by copying the data to disk, before it enters power-saving mode. When the system enters
Debug mode, the memory controller continues to refresh the DDR SDRAM devices. It is not
affected by SCFG[SREN]. Figure 9-9 and Figure 9-10 show the entry and exit timing for
self-refreshing SDRAMs.

Memory Bus Clock

NOP NOPCommand ACT

CKE
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-15

Memory Controller
Figure 9-9. DDR SDRAM Self-Refresh Entry Timing

Figure 9-10. DDR SDRAM Self-Refresh Exit Timing

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

(high impedance)

CKE

0 1 2 3 4 5 6 7 8 9 10 11 12

(high impedance)

200 cycles

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

0 1 2 3 4 5 6 7 8 9 10 11 12
MSC711x Reference Manual, Rev. 1

9-16 Freescale Semiconductor

Interface Characteristics
9.6 Interface Characteristics

The DDR memory controller is clocked with the DDR clock, which is converted with a 2:1 ratio
to the frequency required for the DDR clock pins. The data interface is source synchronous, so
the data source provides a clocking signal to synchronize data reception. These bidirectional data
strobes (DQS[3–0]) are inputs to the controller during reads and are outputs during writes. The
DDR SDRAM specification requires the data strobe signals to be centered within the data tenure
during writes and to be offset by the controller to the center of the data tenure during reads.
Therefore, there are delay chains for the data strobe signals during reads and a delay chain on the
data multiplexer select during writes.

Note: The DQS signals should not be intentionally delayed on the board. Memory controller
circuitry already handles this function.

9.6.1 SDRAM Interface Timing

There are four-beat bursts to SDRAM. For single-beat reads, the DDR memory controller
performs a four-beat burst read, but ignores the last three beats, as shown in the first row of Table
9-10 and Table 9-11. Single-beat writes are performed by masking the last three beats of the
four-beat burst using the data mask signals (DQM). In 16-pin mode, writes smaller than 16-bits are
performed by appropriately activating the data mask. In 32-pin mode, writes smaller than 32-bits
are performed by appropriately activating the data mask.

Note: If a second read or write is pending, reads shorter than four beats are not terminated
early, even when some of the data is irrelevant.

To accommodate available memory technologies across a wide spectrum of operating
frequencies, the DDR memory controller allows the setting of the intervals defined in Table 9-6
with a granularity of one memory clock cycle, except for CASLAT, which can be programmed
with half clock granularity.

Table 9-6. DDR SDRAM Interface Timing Intervals

Timing Intervals Definition

ACTACT The number of clock cycles from an active command to a logical bank until another active command is
allowed for any logical bank within that bank. This interval is listed in the SDRAM AC specifications.

ACTPRE The number of clock cycles from an activate command until a precharge command is allowed. This
interval is listed in the SDRAM AC specifications.

ACTRW The number of clock cycles from an activate command until a read or write command is allowed. This
interval is listed in the SDRAM AC specifications.

PI The number of DDR clock cycles to maintain a page open after an access. A subsequent access can
generate a page hit during this interval. A page hit reloads the PI counter. When the interval expires, a
precharge is issued to the page as soon as possible, closing the associated row on the DDR SDRAM
device.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-17

Memory Controller
Note: Also, see the TCFG2[CPO] field, which adjusts parameter timing.

The value of the parameters in Table 9-6 (in whole DDR clock cycles) must be programmed into
the appropriate registers by boot code at system start-up. At reset, system software must
optimally configure the SDRAM timing parameters, for both read and write timing. The
configuration process must be completed and the DDR SDRAM initialized before any accesses
to SDRAM are attempted.

9.6.2 DDR Access Timings

This section shows the timing for different memory controller accesses to SDRAM. All signal
transitions occur on the rising edge of the memory bus clock. All waveforms use 1T timing,
which is programmed in the SCFG[2TEN] field.

Figure 9-11 shows a case in which two single-beat read operations are requested. The memory
controller issues an ACTIVATE command, indicated by the assertion of RAS, and opens the page in
the appropriate logical bank of the DDR SDRAM device, if the page is not already open. Next, it
issues two read commands because it is requesting two read accesses. These commands are
indicated by the assertion of CAS. A preamble of one DDR clock cycle occurs after the first
request, which is the first assertion of CAS, in which the DQS pins are driven low from their

CASLAT The READ latency (CASLAT) is the delay, in clock cycles, between the SDRAM registration of a
READ command and the availability of the first piece of output data. If a READ command is registered

at clock edge n, and the latency is m clocks, the data is available nominally coincident with clock edge
n + m.

PREACT The number of clock cycles from a precharge command until an activate or a refresh command is
allowed. This interval is listed in the SDRAM AC specifications.

REFINT Refresh interval. The number of memory bus clock cycles between refresh cycles. One row is
refreshed in each SDRAM bank during each refresh cycle. The value of REFINT depends on the
specific SDRAMs used and the frequency of the interface.

REFREC The number of clock cycles from the refresh command until an activate command is allowed. This can
be calculated by referring to the SDRAM AC specification, which indicates a maximum refresh to
activate the interval in nanoseconds.

WRDD Provides different options for the timing between a write command and the write data strobe.
Therefore, write data can be sent later than the nominal time to meet the SDRAM timing requirement
between the registration of a write command and the reception of a data strobe associated with the
write command. The specification states that the data strobe cannot be received earlier than 75
percent of a cycle or later than 125 percent of a cycle from the registration of a write command. This
parameter is not defined in the SDRAM specification. It is implementation-specific, defined for the
DDR memory controller in TCFG2.

WRREC The number of clock cycles from the last beat of a write until a precharge command is allowed. This
interval, write recovery time, is listed in the SDRAM AC specifications.

WRRD Last write pair to read command issue for DDR and DDRII. Controls the number of clock cycles from
the last write data pair to the subsequent read command to the same bank.

Table 9-6. DDR SDRAM Interface Timing Intervals (Continued)

Timing Intervals Definition
MSC711x Reference Manual, Rev. 1

9-18 Freescale Semiconductor

Interface Characteristics
tri-state condition. After this preamble, the first data is read from the DDR SDRAM device using
the delay specified by the TCFG1[CASLAT] bit.

Since this example demonstrates two read requests, the waveform in Figure 9-5 shows two
4-beat bursts issued back-to-back. These are single read requests instead of bursts, so only the
first beat of each 4-beat burst (D0 and D4) contains the desired data. The remaining beats are
ignored. Note that single-beat read operations are identical to burst reads, except that the
remaining beats are not ignored in the burst. After the last data is transferred, the DQS signals
return to their tri-state condition after a short postamble. The DQM pins are not used in read
operations, so they are not shown in this figure.

Figure 9-11. DDR SDRAM Burst Read Timing—ACTRW = 3, CAS Latency = 2

Figure 9-12 shows a single-beat write operation. The memory controller issues an ACTIVATE
command, indicated by the assertion of RAS, which opens the page in the appropriate logical bank
of the DDR SDRAM device, if the page is not already open. Next is a single WRITE command,
indicated by the assertion of CAS, since the memory controller is requesting one write access. The
preamble is not shown in Figure 9-12. The first data is then immediately written to the DDR
SDRAM device (the CASLAT parameter applies only to reads).

Because this example demonstrates a single write request, the waveform in Figure 9-12 shows
one 4-beat burst. Since these are single access requests instead of bursts, only the first beat of the
4-beat burst (D0) contains the desired data. The remaining beats are ignored. Single-beat write
operations are identical to burst writes, except that the remaining beats are not ignored in a burst.
The DQM signals indicate which bytes for each contain valid data. This example shows the write
of a 4-byte value because the DQM[3–0] signals are all asserted on the first beat, D0. On all other
beats, the DQM signals indicate that the data is not valid.

ACTRW

ROW COL

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

COL

D1 D2 D3 D5 D6D4 D7D0

0 1 2 3 4 5 6 7 8 9 10 11 12

CASLAT
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-19

Memory Controller
After the write, the DDR SDRAM device issues a PRECHARGE command to close the page. In Open
Page mode, this may occur after many accesses and clocks, as programmed in SICFG[REFINT]).
Figure 9-12 shows the fastest time that a page can be closed in Auto-Precharge mode.

Figure 9-12. DDR SDRAM Single-Beat (Double Word) Write Timing—ACTRW = 3

In Figure 9-13, four 4-beat bursts are issued. All bytes in all beats contain valid data, as indicated
by the DQM[3–0] signals, which are all asserted on every beat.

Figure 9-13. DDR SDRAM 8-Beat Burst Write Timing—ACTRW = 4

ACTRW

ROW COL

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

D0 D1 D2 D3

0DQM[3–0]

WRREC

A10=0

PRECHARGE

PREACT

ROW

0 1 2 3 4 5 6 7 8 9 10 11 12

FF F

ROW COL

SDRAM Clock

CS0

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

DQM[3–0] 0

COL

CS1

ROW’ COL’ COL’

D1 D2 D3 D5 D6D4 D7D0 D1 D2 D3 D5 D6D4 D7D0

0 1 2 3 4 5 6 7 8 9 10 11 12

ACTRW
MSC711x Reference Manual, Rev. 1

9-20 Freescale Semiconductor

Interface Characteristics
9.6.2.1 Adjustments to Read Timing

Figure 9-14 shows a read timing adjusted with TCFG2[CPO]. This is the same as the timing
diagram in Figure 9-11 but with additional detail to show how the CPO parameter can be
tweaked for more reliable read operations. The memory controller issues an ACTIVATE command
followed by two READ commands. The SDRAM device recognizes the CAS and drives the DQS
and DQ pins after the specified latency (CASLAT). The DQS pins are driven from their previous
tri-state with a preamble of one DDR clock cycle, and the first read data is driven onto the pins of
the SDRAM device. There can be some delay before these signals arrive at the pins of the
MSC711x device, as shown for the “DQ at Chip” and “DQS at Chip” waveforms. The DQS signals
are further delayed by 1/4 DDR clock before they arrive at the memory controller to ensure that
the data at the MSC711x pins is sampled at its center. The CPO parameter indicates to the
memory controller when it should begin using the DQS signals for sampling the DQ data. The
CPO must be adjusted so that the DQS is enabled in the middle of the one cycle preamble on the
DQS pins, as shown in Figure 9-14.

Figure 9-14. Read Timing Adjustments—ACTRW = 3, CAS Latency = 2, CPO = 0

9.6.2.2 DDR SDRAM Mode-Set Command Timing

The DDR memory controller transfers the extended mode register data SMCFG[ESDMOD] and
the base mode register data SMCFG[SDMOD] to the SDRAM array by issuing two mode-set

ACTRW

ROW COL

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0] at DDR Device

WE

RAS

DQS at DDR Device

COL

D1 D2 D3 D5 D6D4 D7D0

0 1 2 3 4 5 6 7 8 9 10 11 12

CASLAT

CPO = CASLAT+1

DQ[31–0] at Chip

DQS at Chip

D1 D2 D3 D5 D6D4 D7D0

DQS at Memory Controller

1/4 Cycle Delay
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-21

Memory Controller
commands separated by two SDRAM clock periods. Figure 9-15 shows the timing of the
mode-set command. The first transfer corresponds to the ESDMOD code, and the second one
corresponds to the SDMOD code. Commands that follow must wait two SDRAM cycles.

Figure 9-15. DDR SDRAM Mode-Set Command Timing

9.6.2.3 Configurable Timing Parameters

Table 9-7 shows the pins on which timing is configurable and can be adjusted in increments of
the DDR fast clock for complete flexibility in tuning a system for robustness. The DDR fast clock
is the clock labelled “DDR clock” in Figure 11-2, Clock Generation, on page 11-6. It runs at the
frequency of the core clock.

9.6.2.4 DDR SDRAM Registered DIMM Mode

To reduce loading, registered DIMMs latch the DDR SDRAM control signals internally before
they are used to access the array. Enabling the registered DIMM mode (SCFG[RDEN] = 1)
compensates for this delay on the DIMM control bus by delaying the data and data mask writes

Table 9-7. Adjusting Edges on DDR Pins

Pins Adjustable by: Adjusted in: More Information

CK, CK 0, 1, 2, or 3 DDR fast
clocks

SCLKCTL[SHFT] —

CS, RAS, CAS,
A[13–0], WE

0 or 1 DDR fast
clocks

TCFG2[ACSM] —

DQ, DQS (outputs) 0, 1/2, 1, 3/2, or 2
DDR fast clocks

TCFG2[WRDD] Section 9.6.2.5, DDR SDRAM Write Timing
Adjustments, on page 9-23

DQS (inputs) 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, or 10 DDR fast
clocks

TCFG2[CPO] Section 9.6.2.1, Adjustments to Read
Timing, on page 9-21

Code Code

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

0x1 0x0BA[1–0]

0 1 2 3 4 5 6 7 8 9 10 11 12

RAS
MSC711x Reference Manual, Rev. 1

9-22 Freescale Semiconductor

Interface Characteristics
on SDRAM buses by one additional SDRAM clock cycle. Enabling registered DIMM mode has
no effect on bus timing for DDR reads. Figure 9-16 shows the registered DDR SDRAM DIMM
single-beat write timing.

Figure 9-16. Registered DDR SDRAM DIMM Burst Write Timing

9.6.2.5 DDR SDRAM Write Timing Adjustments

The DDR memory controller provides a write timing adjustment parameter, write data delay
(TCFG2[WRRD]), for data and DQS. The DDR SDRAM specification requires DQS to be
received no sooner than 75 percent of an SDRAM clock period, and no later than 125 percent of
a clock period, from the capturing clock edge of the command/address at the SDRAM. The write
data delay (WRRD) parameter can be used to meet this timing requirement for a variety of
system configurations, ranging from a system with one DIMM to a fully populated system with
DIMMs. TCFG2[WRRD] specifies how much to delay the launching of DQS and data from the
first clock edge one SDRAM clock cycle after the command is launched. The delay increment
step sizes are in quarter SDRAM clock periods, starting with the default value of a one fourth
period delay. Figure 9-17 shows the use of the TCFG2[WRRD] write data delay parameter.

ACTRW

ROW COL

SDRAM Clock

CS

CAS

A[13–0]

DQ[31–0]

WE

RAS

DQS

DQM[3–0] 00

COL

D1 D2 D3 D5 D6D4 D7D0

0 1 2 3 4 5 6 7 8 9 10 11 12
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-23

Memory Controller
Figure 9-17. Write Timing Adjustments Example

9.6.2.6 DDR SDRAM Refresh

The DDR memory controller supports auto-refresh and self-refresh. Auto refresh is used during
normal operation and is controlled by the value stored in SICFG[REFINT]. Self-refresh is used
only when the DDR memory controller is set to enter a sleep power management state or a
soft-stop state. The value in SICFG[REFINT] represents the number of memory bus clock cycles
between refresh cycles. It is the value allowed for outstanding transactions to complete before a
refresh request is sent to the memory after the SICFG[REFINT] value is reached. If a memory
transaction is in progress, the refresh cycle waits for the transaction to complete. In the worst
case, the refresh cycle must wait the number of bus clock cycles required by the longest
programmed access. To ensure that the latency caused by a memory transaction does not violate
the device refresh period, it is recommended that the programmed value of SICFG[REFINT] be
less than that required by the SDRAM. When a refresh cycle is required, the DDR memory
controller performs the following actions:

1. Completes all current memory requests.

2. Closes all open pages with a PRECHARGE-ALL command to each DDR SDRAM bank
with an open page (as indicated by the row open table).

3. Issues an auto-refresh command to each DDR SDRAM bank (as identified by its chip
select) to refresh one row in each of the logical banks in the selected physical bank.

ACTRW

ROW COL

SDRAM clock

CS

CAS

A[13–0]

WE

RAS

00

DQ[31–0]

DQS

DQM[3–0]

1/4 Delay

COL

DQ[31–0]

DQS

DQM[3–0]

1/2 Delay

0 1 2 3 4 5 6 7 8 9 10 11 12

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

00
MSC711x Reference Manual, Rev. 1

9-24 Freescale Semiconductor

Interface Characteristics
The auto-refresh commands are staggered across the banks to reduce the system’s instantaneous
power requirements. Three sets of auto refresh commands should be issued on consecutive cycles
when the memory is fully populated with DIMMs. The initial PRECHARGE-ALL commands are
staggered in three groups for convenience. When self-refresh mode starts, only one refresh
command is issued simultaneously to all physical banks. CKE is deasserted at this time, so it is not
possible to stagger two more refresh commands. For this entire refresh sequence, no cycle
optimization occurs for the usual case where fewer than four banks are installed. After the refresh
sequence completes, any pending memory request is initiated after an inactive period specified
by TCFG1 [REFREC].

9.6.2.6.1 DDR SDRAM Refresh Timing

The refresh timing for DDR SDRAM is controlled by the programmable timing parameter
TCFG1 [REFREC], which specifies the number of memory bus clock cycles from the refresh
command until a logical bank activate command is allowed. The DDR memory controller
implements bank staggering for refreshes, as shown in Figure 9-18 (TCFG1 [REFREC] = 10 in
this example). At reset, system software must configure TCFG1[REFREC]. Configuration must
be completed before any DDR SDRAM accesses are attempted.

Figure 9-18. DDR SDRAM Bank Staggered Auto Refresh Timing

9.6.3 DDR SDRAM Address Multiplexing

Table 9-8 shows the address bit encodings for each DDR SDRAM configuration, where A0 refers
to the least-significant bit on the address pins of the device.

SDRAM Clock

CS0, CS3

CAS

RAS

CS1

CS2

A[13–0] ROW

CKE

REFREC

0 or 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-25

Memory Controller
Note: A10 is used as the auto-precharge bit for reads and writes, so the column address can
never use A10. Notice that for the N × 11 configurations in Table 9-8, the lowest 11
address pins for the column address are numbered as 11,9,8,...,0, skipping A10.

Table 9-8. DDR SDRAM Address Multiplexing in 16-Pin Mode

Row
×

Column

MSB ASEMI Address from MSC711x Device LSB

31–
30

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

14
×

11

RAS 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 11 9 8 7 6 5 4 3 2 1 0

14
×

10

RAS 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

13
×

11

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 11 9 8 7 6 5 4 3 2 1 0

13
×

10

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

13
×
9

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 8 7 6 5 4 3 2 1 0

12
×

10

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

12
×
9

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 8 7 6 5 4 3 2 1 0

12
×
8

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 7 6 5 4 3 2 1 0
MSC711x Reference Manual, Rev. 1

9-26 Freescale Semiconductor

Interface Characteristics
Note: A10 is the auto-precharge bit for reads and writes, so the column address can never use
A10. Notice that for the N × 11 configurations in Table 9-9, the lowest 11 address pins
used for the column address are numbered as 11,9,8,...,0, skipping A10.

9.6.4 Data Beats to DDR SDRAM Devices

Transfers between the DDR memory controller and the DDR SDRAM devices are always
performed in four-beat bursts. In 16-pin mode, this corresponds to 8 bytes, and in 32-pin mode,
this corresponds to 16 bytes. For transfer sizes smaller than four beats, the data transfers are still
operated as four-beat bursts. The data mask pins (DQM) prevent writing of unwanted data to

Table 9-9. DDR SDRAM Address Multiplexing in 32-Pin Mode

Row
×

Column

MSB ASEMI Address from MSC711x Device LSB

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1–0

14
×
11

RAS 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 11 9 8 7 6 5 4 3 2 1 0

14
×

10

RAS 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

13
×
11

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 11 9 8 7 6 5 4 3 2 1 0

13
×

10

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

13
×
9

RAS 12 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 8 7 6 5 4 3 2 1 0

12
×

10

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 9 8 7 6 5 4 3 2 1 0

12
×
9

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 8 7 6 5 4 3 2 1 0

12
×
8

RAS 11 10 9 8 7 6 5 4 3 2 1 0

BA 1 0

CAS 7 6 5 4 3 2 1 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-27

Memory Controller
SDRAM. Data masks prevent all unintended beats from writing to SDRAM. For example, if a
16-bit write transaction is desired in 16-pin mode (as shown in first row of Table 9-10), the write
is performed on the first of 4 beats. The second, third, and fourth beats of data are not written to
DRAM but instead are masked with the data mask signals (DQM).

In 16-pin mode, writes smaller than 16-bits are performed by appropriately activating a subset of
the DQM[1–0] pins on the appropriate beat. In 32-pin mode, writes smaller than 32-bits are
performed by appropriately activating a subset of the DQM[3–0] pins on the appropriate beat.

Table 9-10 and Table 9-11 demonstrate the sequencing capabilities of the data beats on transfers
between the DDR SDRAM and the memory controller data queues. All are non-wrapping bursts
except the last and the valid start addresses of the burst are indicated by the column with a portion
of the address bits. These addresses, in turn, are directly tied to accesses on the MSC711x
architecture in Table 9-12 and Table 9-13.

Table 9-10. Data Beat Ordering to DDR Pins in 16-Pin Mode

Requested
Transfer

Size

Address
Bits
[3–1]

Wrapping
Burst?

Desired Burst(s)
 Actual Sequence
of Bursts to/from

DRAM and Queues1
Comments

1 × 16-bits 000*
001*
010*
011*
100*
101*
110*
111*

N
N
N
N
N
N
N
N

0
1
2
3
4
5
6
7

0 - [1 - 2 - 3]
1 - [2 - 3 - 0]
2 - [3 - 0 - 1]
3 - [0 - 1 - 2]
4 - [5 - 6 - 7]
5 - [6 - 7 - 4]
6 - [7 - 4 - 5]
7 - [4 - 5 - 6]

Needed:
Number issued:

1 Beat.
4 Beats

2 × 16-bits 000*
001
010*
011
100*
101
110*

N
N
N
N
N
N
N

0 - 1
1 - 2
2 - 3
3 - 4
4 - 5
5 - 6
6 - 7

0 - 1 - [2 - 3]
1 - 2 - [3 - 0]
2 - 3 - [0 - 1]

3 - [0 - 1 - 2] - 4 - [5 - 6 - 7]
4 - 5 - [6 - 7]
5 - 6 - [7 - 4]
6 - 7 - [4 - 5]

Needed:
Number issued:

2 Beats.
4 or 8
Beats

3 × 16-bits 000
001
010
011
100
101

N
N
N
N
N
N

0 - 1 - 2
1 - 2 - 3
2 - 3 - 4
3 - 4 - 5
4 - 5 - 6
5 - 6 - 7

0 - 1 - 2 - [3]
1 - 2 - 3 - [0]

2 - 3 - [1 - 2] - 4 - [5 - 6 - 7]
3 - [0 - 1 - 2] - 4 - 5 - [6 - 7]

4 - 5 - 6 - [7]
5 - 6 - 7 - [0]

Needed:
Number issued:

3 Beats.
4 or 8
Beats

4 × 16-bits 000*
001
010
011
100*

N
N
N
N
N

0 - 1 - 2 - 3
1 - 2 - 3 - 4
2 - 3 - 4 - 5
3 - 4 - 5 - 6
4 - 5 - 6 - 7

0 - 1 - 2 - 3
1 - 2 - 3 - [0] - 4 - [5 - 6 - 7]
2 - 3 - [0 - 1] - 4 - 5 - [6 - 7]
3 - [0 - 1 - 2] - 4 - 5 - 6 - [7]

4 - 5 - 6 - 7

Needed:
Number issued:

4 Beats.
4 or 8
Beats

5 × 16-bits 000
001
010
011

N
N
N
N

0 - 1 - 2 - 3 - 4
1 - 2 - 3 - 4 - 5
2 - 3 - 4 - 5 - 6
3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - [5 - 6 - 7]
1 - 2 - 3 - [0] - 4 - 5 - [6 - 7]
2 - 3 - [0 - 1] - 4 - 5 - 6 - [7]
3 - [0 - 1 - 2] - 4 - 5 - 6 - 7

Needed:
Number issued:

5 Beats.
8 Beats
MSC711x Reference Manual, Rev. 1

9-28 Freescale Semiconductor

Interface Characteristics
6 × 16-bits 000
001
010

N
N
N

0 - 1 - 2 - 3 - 4 - 5
1 - 2 - 3 - 4 - 5 - 6
2 - 3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - 5 - [6 - 7]
1 - 2 - 3 - [0] - 4 - 5 - 6 - [7]
2 - 3 - [0 - 1] - 4 - 5 - 6 - 7

Needed:
Number issued:

6 Beats.
8 Beats

7 × 16-bits 000
001

N
N

0 - 1 - 2 - 3 - 4 - 5 - 6
1 - 2 - 3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - 5 - 6 - [7]
1 - 2 - 3 - [0] - 4 - 5 - 6 - 7

Needed:
Number issued:

7 Beats.
8 Beats

8 × 16-bits 000*
001
010
011
100*
101
110
111

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6

Needed:
Number issued:

8 Beats.
8 Beats

Notes: 1. In the Actual Sequence column, there is never a transition from 3 to 4 or from 7 to 8.

2. The wrapping burst must always be aligned on a 16-bit boundary, that is, Bit 0 = 0.
The non-wrapping bursts can begin on any byte address.

3. Only accesses marked with an asterisk (*) are valid on the MSC711x architecture because of alignment
requirements.

Table 9-11. Data Beat Ordering to DDR Pins in 32-Pin Mode

Requested
Transfer Size

Address
Bits
[4–2]

Wrapping
Burst?

Desired Burst(s)
Actual Sequence
of Bursts to/from

DRAM and Queues1
Comments

1 × 32-bits 000*
001*
010*
011*
100*
101*
110*
111*

N
N
N
N
N
N
N
N

0
1
2
3
4
5
6
7

0 - [1 - 2 - 3]
1 - [2 - 3 - 0]
2 - [3 - 0 - 1]
3 - [0 - 1 - 2]
4 - [5 - 6 - 7]
5 - [6 - 7 - 4]
6 - [7 - 4 - 5]
7 - [4 - 5 - 6]

Needed:
Number issued:

1 Beat.
4 Beats

2 × 32-bits 000*
001
010*
011
100*
101
110*

N
N
N
N
N
N
N

0 - 1
1 - 2
2 - 3
3 - 4
4 - 5
5 - 6
6 - 7

0 - 1 - [2 - 3]
1 - 2 - [3 - 0]
2 - 3 - [0 - 1]

3 - [0 - 1 - 2] - 4 - [5 - 6 - 7]
4 - 5 - [6 - 7]
5 - 6 - [7 - 4]
6 - 7 - [4 - 5]

Needed:
Number issued:

2 Beats.
4 or 8
Beats

3 × 32-bits 000
001
010
011
100
101

N
N
N
N
N
N

0 - 1 - 2
1 - 2 - 3
2 - 3 - 4
3 - 4 - 5
4 - 5 - 6
5 - 6 - 7

0 - 1 - 2 - [3]
1 - 2 - 3 - [0]

2 - 3 - [1 - 2] - 4 - [5 - 6 - 7]
3 - [0 - 1 - 2] - 4 - 5 - [6 - 7]

4 - 5 - 6 - [7]
5 - 6 - 7 - [0]

Needed:
Number issued:

3 Beats.
4 or 8
Beats

Table 9-10. Data Beat Ordering to DDR Pins in 16-Pin Mode (Continued)

Requested
Transfer

Size

Address
Bits
[3–1]

Wrapping
Burst?

Desired Burst(s)
 Actual Sequence
of Bursts to/from

DRAM and Queues1
Comments
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-29

Memory Controller
9.6.5 Error Detection and Management

Memory select errors are accesses to addresses that lie outside the valid chip select regions. The
status of the error is captured in the MERRD[MSE] bit, and interrupts can be enabled using the
ERRINT[MSEE] bit. In addition to the status bit, the address that caused the memory select error
is captured in the Memory Error Address Capture Register (MEADDC), and the attributes of the
access are captured in the Memory Error Attributes Capture Register (MEAC).

The DDR memory controller can detect a memory select error, which causes the DDR memory
controller to log the error and generate a machine check or critical interrupt. This error is detected
if the address from the memory request does not fall into any of the enabled, programmed chip
select address ranges.

For all memory select errors, the DDR memory controller does not issue any transactions onto
the pins after sample points are used for sampling (the first read has returned data strobes). If the
DDR memory controller is not using sample points, a dummy transaction is issued to DDR

4 × 32-bits 000*
001
010
011
100*

N
N
N
N
N

0 - 1 - 2 - 3
1 - 2 - 3 - 4
2 - 3 - 4 - 5
3 - 4 - 5 - 6
4 - 5 - 6 - 7

0 - 1 - 2 - 3
1 - 2 - 3 - [0] - 4 - [5 - 6 - 7]
2 - 3 - [0 - 1] - 4 - 5 - [6 - 7]
3 - [0 - 1 - 2] - 4 - 5 - 6 - [7]

4 - 5 - 6 - 7

Needed:
Number issued:

4 Beats.
4 or 8
Beats

5 × 32-bits 000
001
010
011

N
N
N
N

0 - 1 - 2 - 3 - 4
1 - 2 - 3 - 4 - 5
2 - 3 - 4 - 5 - 6
3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - [5 - 6 - 7]
1 - 2 - 3 - [0] - 4 - 5 - [6 - 7]
2 - 3 - [0 - 1] - 4 - 5 - 6 - [7]
3 - [0 - 1 - 2] - 4 - 5 - 6 - 7

Needed:
Number issued:

5 Beats.
8 Beats

6 × 32-bits 000
001
010

N
N
N

0 - 1 - 2 - 3 - 4 - 5
1 - 2 - 3 - 4 - 5 - 6
2 - 3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - 5 - [6 - 7]
1 - 2 - 3 - [0] - 4 - 5 - 6 - [7]
2 - 3 - [0 - 1] - 4 - 5 - 6 - 7

Needed:
Number issued:

6 Beats.
8 Beats

7 × 32-bits 000
001

N
N

0 - 1 - 2 - 3 - 4 - 5 - 6
1 - 2 - 3 - 4 - 5 - 6 - 7

0 - 1 - 2 - 3 - 4 - 5 - 6 - [7]
1 - 2 - 3 - [0] - 4 - 5 - 6 - 7

Needed:
Number issued:

7 Beats.
8 Beats

8 × 32-bits 000*
001
010
011
100*
101
110
111

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
1 - 2 - 3 - 4 - 5 - 6 - 7 - 0
2 - 3 - 4 - 5 - 6 - 7 - 0 - 1
3 - 4 - 5 - 6 - 7 - 0 - 1 - 2
4 - 5 - 6 - 7 - 0 - 1 - 2 - 3
5 - 6 - 7 - 0 - 1 - 2 - 3 - 4
6 - 7 - 0 - 1 - 2 - 3 - 4 - 5
7 - 0 - 1 - 2 - 3 - 4 - 5 - 6

Needed:
Number issued:

8 Beats.
8 Beats

Notes: 1. In the Actual Sequence column, there is never a transition from 3 to 4 or from 7 to 8.

2. The wrapping burst must always be aligned on a 16-bit boundary, that is, Bit 0 = 0.
The non-wrapping bursts can begin on any byte address.

3. Only accesses marked with an asterisk (*) are valid on the MSC711x architecture because of alignment
requirements.

Table 9-11. Data Beat Ordering to DDR Pins in 32-Pin Mode

Requested
Transfer Size

Address
Bits
[4–2]

Wrapping
Burst?

Desired Burst(s)
Actual Sequence
of Bursts to/from

DRAM and Queues1
Comments
MSC711x Reference Manual, Rev. 1

9-30 Freescale Semiconductor

Initialization and Set-Up
SDRAM with the first enabled chip select. The source port on the pins is forced to 0x1F to show
that the transaction is not real. Table 9-12 shows the errors with their descriptions.

It is recommended that the memory select error be set up to generate a non-maskable interrupt to
the MSC711x device if an access is performed incorrectly. An error interrupt is enabled via the
ERRINT[MSEE] bit. If this error interrupt does occur, the interrupt must be serviced by clearing
the MERRD[MSE] bit so that it can detect subsequent memory select errors.

When the DDR controller is disabled, it flags errors on accesses to its address space, as follows:

� Burst read or write access. Bus time-out and bus error.

� Single read access. Bus time-out and bus error.

� Single write access:

— No error detected on this access.
— If the next access to the DDR is a read or write burst, the result is a bus time-out and

bus error.
— If the next access to the DDR is a single read, the result is a bus time-out and bus error.
— If next access to the DDR is a single write, no error is detected, and any subsequent

access (read or write) to the DDR address space results in a bus time-out and bus error.

9.7 Initialization and Set-Up

System software must configure the DDR memory controller using a memory polling algorithm
at system start-up to map the size of each bank in memory correctly. Then the DDR memory
controller uses its bank map to assert the appropriate CS[0–1] signal for memory accesses
according to the provided bank depths. System software must also configure the DDR memory
controller to multiplex appropriately the row and column address bits for each bank. At system
reset, initialization software must set up the programmable parameters in the memory interface
configuration registers described in Section 9.8.2, Configuration Registers, on page 9-35.

After all parameters are configured, system software must set the memory controller
SCFG[MEMEN] bit to enable the memory interface. Setting this bit asserts the CKE signal. The
DDR memory controller then automatically performs the initialization sequence to prepare the
JEDEC-compliant DDR SDRAM array for accesses.

Table 9-12. Memory Controller Errors

Category Error Description(s) Action Detect Register

Access error Memory select
error

Read, or write, address does not fall
within the address range of any of
the memory banks.

The error is reported via
machine check or critical
interrupt if enabled.

The error control
register logs only read
versus write, not full
type
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-31

Memory Controller
9.8 DDR Memory Controller Programming Model

The DDR memory controller registers are accessed via the IPBus interface. These registers
configure the memory controller. The value of the base address for this register file,
DDR_BASE, is found in Table 5-3, Summary — MSC711x Memory Map, on page 5-30. There
are three sets of registers in the DDR memory controller programming model:

� Chip-select registers

� Configuration registers

� Error handling registers

The DDR address space is located between 0x2000 0000 and 0xFFFF FFFF, as shown in Table
5-1, Summary — Base Addresses for MSC711x Register Files, on page 5-4. Two chip selects are
available within this range.

9.8.1 Chip Select Registers

The memory controller chip-select registers are as follows:

� Chip-Select Memory Bounds Registers (CSBRx), page 9-32.

� Chip-Select Configuration (CSxCFG), page 9-34.

CSBRx defines the starting and ending addresses of the memory space that corresponds to the
individual chip selects. This register is configured differently, depending on whether the memory
controller is configured for 16- or 32-pin operation.

CSBRx Chip Select Memory Bounds Register, 16-Pin Operation
CSBR0 DDR_BASE + 0x000
CSBR1 DDR_BASE + 0x008

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— SAx

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— EAx

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

9-32 Freescale Semiconductor

DDR Memory Controller Programming Model
Table 9-13. CSBRx Bit Descriptions, 16-Pin Operation

Bits Reset Description

—
31–26

0 Reserved. Write to zero for future compatibility.

SAx
25–16

0 Starting Address
Specifies the starting address for chip select (bank) n. This value is
compared against the most significant 10 bits of the 32-bit address.

—
15–10

0 Reserved. Write to zero for future compatibility.

EAx
9–0

0 Ending Address
Specifies the ending address for chip select (bank) n. This value is
compared against the most significant 10 bits of the 32-bit address.

CSBRx Chip Select Memory Bounds Register, 32-Pin Operation
CSBR0 DDR_BASE + 0x000
CSBR1 DDR_BASE + 0x008

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— SAx

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— EAx

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-14. CSBRx Bit Descriptions, 32-Pin Operation

Bits Reset Description

—
31–25

0 Reserved. Write to zero for future compatibility.

SAx
24–16

0 Starting Address
Specifies the starting address for chip select (bank) x. This value is
compared against the most significant 9 bits of the 32-bit address.

—
15–9

0 Reserved. Write to zero for future compatibility.

EAx
8–0

0 Ending Address
Specifies the ending address for chip select (bank) x. This value is
compared against the most significant 9 bits of the 32-bit address.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-33

Memory Controller
CSxCFG enable the DDR chip selects and set the number of row and column bits used for each
chip select. CSxCFG should be loaded with the correct number of row and column bits for each
physical bank of SDRAM devices. Because address multiplexing is established by the bits in
these registers, you must take great care to set these values correctly.

CSxCFG Chip Select Configuration Registers
CS0CFG DDR_BASE + 0x080
CS1CFG DDR_BASE + 0x084

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CSxEN — APxEN —

TYPE R/W R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RBCSx — CBCSx

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-15. CSxCFG Field Descriptions

Bits Reset Description Settings

CSxEN
31

0 Chip Select x Enable
Enables/disables chip select.

0 Chip select x is not active.

1 Chip select x is active and assumes the
state set in CSBRx.

—
30–24

0 Reserved. Write to zero for future compatibility.

APxEN
23

0 Chip Select x Auto-Precharge Enable
Specifies when auto-precharge is enabled.

0 Chip select x is auto-precharged only if
global auto-precharge mode is enabled
(REFINT = 0).

1 Chip select x always issues an
auto-precharge for read and write
transactions.

—
22–11

0 Reserved. Write to zero for future compatibility.

RBCSx
10–8

0 Number of Row Bits for SDRAM
Specifies the number of SDRAM row bits on
chip select x.

000 12 row bits.

001 13 row bits.

010 14 row bits.

011–111 Reserved.
MSC711x Reference Manual, Rev. 1

9-34 Freescale Semiconductor

DDR Memory Controller Programming Model
9.8.2 Configuration Registers

The DDR memory controller configuration registers are as follows:

� DDR SDRAM Timing Configuration Register 1 (TCFG1), page 9-35.

� DDR SDRAM Timing Configuration Register 2 (TCFG2), page 9-38.

� DDR SDRAM Control Configuration Register (SCFG), page 9-39.

� DDR SDRAM Mode Configuration Register (SMCFG), page 9-41.

� DDR SDRAM Interval Configuration Register (SICFG), page 9-42.

� DDR SDRAM Clock Configuration Register (SCLKCFG), page 9-43.

Keep in mind that the chip select registers must be initialized. See Section 9.8.1, Chip Select
Registers, on page 9-32.

TCFG1 sets the number of clock cycles between various SDRAM control commands.

—
7–3

0 Reserved. Write to zero for future compatibility.

CBCSx
2–0

0 Number of column bits for SDRAM on chip
select x.

000 8 column bits.

001 9 column bits.

010 10 column bits.

011 11 column bits.

100–111 Reserved.

TCFG1 DDR SDRAM Timing Configuration Register 1 DDR_BASE + 0x108

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— PREACT ACTPRE — ACTRW — CASLAT

TYPE R R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REFREC — WRREC — ACTACT — WRRD

TYPE R/W R R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-15. CSxCFG Field Descriptions (Continued)

Bits Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-35

Memory Controller
Table 9-16. TCFG1 Bit Descriptions

Bits Reset Description Settings

—
31

0 Reserved. Write to zero for future compatibility.

PREACT
30–28

0 Precharge to Activate Interval (tr p)
Determines the number of clock cycles from a
precharge command until an activate or refresh
command is allowed.

000 Reserved.

001 1 clock.

010 2 clocks.

011 3 clocks.

100 4 clocks.

101 5 clocks.

110 6 clocks.

111 Reserved.

ACTPRE
27–24

0 Activate to precharge interval (tr a s)
Determines the number of clock cycles from an
activate command until a precharge command is
allowed.

0000 Reserved

0001 1 clocks

0010 2 clocks

0011 3 clocks

.

.

.

1110 14 clocks

1111 15 clocks

—
23

0 Reserved. Write to zero for future compatibility.

ACTRW
22–20

0 Activate to Read/Write Interval for SDRAM (tr c d)
Controls the number of clock cycles from an activate
command until a read or write command is allowed.

000 Reserved.

001 1 clock.

010 2 clocks.

011 3 clocks.

100 4 clocks.

101 5 clocks.

110 6 clocks.

111 7 clocks.

—
19

0 Reserved. Write to zero for future compatibility.

CASLAT
18–16

0 CAS Latency From Read Command
Specifies read latency. The read latency is the delay,
in clock cycles, between the time the SDRAM
registers a READ command and time the first output
data is available. If a READ command is registered at
clock edge n, and the latency is m clocks, the data is
available nominally coincident with clock edge
n + m. This value must also be programmed into the
DDR SDRAM at initialization (via the DDR SDRAM
mode register described on page 9-41.

000 Reserved.

001 1 clock.

010 1.5 clocks.

011 2 clocks.

100 2.5 clocks.

101 3 clocks.

110 3.5 clocks.

111 4 clocks.
MSC711x Reference Manual, Rev. 1

9-36 Freescale Semiconductor

DDR Memory Controller Programming Model
REFREC
15–12

0 Refresh Recovery Time (t r f c)
Controls the number of clock cycles from a refresh
command until an activate command is allowed.
Refresh recovery time is equal to eight plus the value
entered into this field.

0000 24 clocks.

0001 9 clocks.

0010 10 clocks.

0011 11 clocks.

.

.

.

1110 22 clocks.

1111 23 clocks.

—
11

0 Reserved. Write to zero for future compatibility.

WRREC
10–8

0 Last Data to Precharge Minimum Interval (twr)
Determines the number of clock cycles from the last
data associated with a write command until a
precharge command is allowed.

000 Reserved.

001 1 clock.

010 2 clocks.

011 3 clocks.

100 4 clocks.

101 5 clocks.

110 6 clocks.

111 7 clocks.

—
7

0 Reserved. Write to zero for future compatibility.

ACTACT
6–4

0 Activate to Activate Interval (t r r d)
Specifies the number of clock cycles from an activate
command until another activate command is allowed
for a different logical bank within the same physical
bank (chip select).

000 Reserved.

001 1 clock.

010 2 clocks.

011 3 clocks.

100 4 clocks.

101 Reserved.

110 Reserved.

111 Reserved.

—
3

0 Reserved. Write to zero for future compatibility.

WRRD
2–0

0 Last Write Data Pair to Read Command Interval
(tw t r)
Determines the number of clock cycles between the
last write data pair and the subsequent read
command to the same physical bank.

000 Reserved.

001 1 clock.

010 2 clocks.

011 3 clocks.

100 4 clocks.

101 5 clocks.

110 6 clocks.

111 7 clocks.

Table 9-16. TCFG1 Bit Descriptions (Continued)

Bits Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-37

Memory Controller
TCFG2 sets the amount of clock delay to data for writes. The CPO and ACSM fields allow
system designers to tweak designs for more reliable operation.

TCFG2 DDR SDRAM Timing Configuration Register 2 DDR_BASE + 0x10C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— CPO — ACSM —

TYPE R R/W R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— WRDD —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-17. TCFG2 Register Bit Descriptions

Bits Reset Description Settings

—
31–28

0 Reserved. Write to zero for future compatibility.

CPO
27–24

CAS to Preamble Override
Allows software to override the default value for
CAS to preamble. This defines the number of
DRAM cycles between the time a read is issued
and the time the corresponding DQS preamble
is valid for the memory controller. This
parameter affects only read accesses.

0000 Default. CAS to preamble is
defined as ⎯|CASLAT⎤ + 1.

0001 |CASLAT⎤.
0010 |CASLAT⎤ + 1/2.

0011 ICASLAT⎤ + 1.

0100 |CASLAT⎤ + 3/2.

0101 |CASLAT⎤ + 2.

0110 |CASLAT⎤ + 5/2.

0111 |CASLAT⎤ + 3.

1000 |CASLAT⎤ + 7/2.

1001 |CASLAT⎤ + 4.

1010 |CASLAT⎤ + 9/2.

1011 |CASLAT⎤ + 5.

1100 –1111: Reserved.

—
23–20

0 Reserved. Write to zero for future compatibility.

ACSM
19

0 Address and Control Shift Mode
Enables/disables address and control shift
mode.

0 The DRAM address and control
buses are output in the default
mode.

1 The DRAM address and control
buses are shifted by half a DRAM
cycle before they are driven onto
the pins.

—
18–13

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

9-38 Freescale Semiconductor

DDR Memory Controller Programming Model
SCFG enables the interface logic and specifies operating features such as self refreshing, error
checking and correcting, registered DIMMS, and dynamic power management.

WRDD
12–10

0 Write Command to Write Data Strobe Timing
Adjustment
Controls the amount of delay applied to the data
and data strobes for writes. If a value of 0 clock
delay is chosen, the memory controller
automatically adds an extra turn-around cycle
between reads and writes to avoid violating the
write preamble requirement.

000 0 clock delay .

001 2/8 clock delay (recommended).

010 4/8 clock delay.

011 6/8 clock delay.

100 1 clock delay.

101 Reserved.

.

.

.

111 Reserved.

—
9–0

0 Reserved. Write to zero for future compatibility.

SCFG DDR SDRAM Control Configuration Register DDR_BASE + 0x110

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEMEN SREN — RDEN — — STYPE — — DPWR — — — NCAP —

TYPE R/W R R/W R R/W R R/W R R/W R

RESET 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2TEN —

TYPE R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-18. SCFG Bit Descriptions

Bit Reset Description Setting

MEMEN
31

0 DDR SDRAM Interface Logic Enable
Enables/disables SDRAM interface logic. This bit
must not be set until all other memory
configuration parameters are appropriately
configured by initialization code.

0 SDRAM interface logic is disabled.

1 SDRAM interface logic is enabled.

SREN
30

0 Self Refresh Enable
Enables/disabled SDRAM self refresh. When self
refresh is disabled, the system must preserve the
integrity of SDRAM.

0 SDRAM self refresh is disabled during
sleep or soft-stop mode.

1 SDRAM self refresh is enabled during
sleep or soft-stop

Table 9-17. TCFG2 Register Bit Descriptions (Continued)

Bits Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-39

Memory Controller
—
29

0 Reserved. Write to zero for future compatibility.

RDEN
28

0 Registered DIMM Enable
Specifies the type of DIMM used in the system
(see Section 9.6.2.4, DDR SDRAM Registered
DIMM Mode).

0 Unbuffered DIMMs.

1 Registered DIMMs.

—
27–26

Reserved. Write to zero for future compatibility.

STYPE
25–24

10 Type of SDRAM Device
Specifies the type of SDRAM.

00 Reserved.

01 Reserved.

10 DDR SDRAM.

11 Reserved.

—
23–22

0 Reserved. Write to zero for future compatibility.

DYNPWR
21

0 Dynamic Power Management Mode
Enables/disables dynamic power management
mode. The dynamic power-saving mode uses the
CKE DDR SDRAM pin to power down dynamically
when there is no system memory activity. When
DYNPWR is enabled, if there is no ongoing
memory activity, the SDRAM CKE signal is
deasserted. See Section 9.5.4, Low-Power
Modes, on page 9-15.

0 Dynamic power management mode is
disabled.

1 Dynamic power management mode is
enabled.

—
20–18

0 Reserved. Write to zero for future compatibility.

NCAP
17

0 Non-Concurrent Auto-Precharge
Specifies whether the SDRAM devices support
concurrent auto-precharge. See Section 9.5.2,
Auto-Precharge Mode, on page 9-14.

0 DDR SDRAMs support concurrent
auto-precharge.

1 DDR SDRAMs do not support
concurrent auto-precharge.

—
16

0 Reserved. Write to zero for future compatibility.

2TEN
15

0 2T Timing Enable
Specifies whether 1T or 2T timing is used on
address and control signals. When 2TEN is set,
chip selects still assert for only one cycle.

0 1T timing is used on address and
control signals.

1 2T timing is used on address and
control signals.

—
14–0

0 Reserved. Write to zero for future compatibility.

Table 9-18. SCFG Bit Descriptions (Continued)

Bit Reset Description Setting
MSC711x Reference Manual, Rev. 1

9-40 Freescale Semiconductor

DDR Memory Controller Programming Model
SMCFG sets the values loaded into the DDR mode registers.

SMCFG DDR SDRAM Mode Configuration Register DDR_BASE + 0x118

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ESDMOD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMMOD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-19. SMCFG Bit Descriptions

Bits Reset Description

ESDMOD
31–16

0 Extended SDRAM Mode
Specifies the initial value loaded into the DDR SDRAM Extended Mode Register. The range of
legal values and the meaning of each is specified by the DDR SDRAM manufacturer.
When this value is driven onto the address bus during the DDR SDRAM initialization sequence,
A0 presents the least significant bit of ESDMOD, which, in the big-endian convention shown in
Figure 25 corresponds to bit 31 of the ESDMOD field. The most significant bit of the SDRAM
extended mode register value must be stored at bit 16 of the ESDMOD field.

SDMOD
15–0

 0 SDRAM Mode
Specifies the initial value loaded into the DDR SDRAM mode register. The range of legal values
and the meaning of each is specified by the DDR SDRAM manufacturer.
When this value is driven onto the address bus during the DDR SDRAM initialization sequence,
A0 presents the least significant bit of SDMOD, which, in the big-endian convention
corresponds to bit 15 in the SDMOD field. The most significant bit of the SDRAM extended
mode register value must be stored at bit 16 of the ESDMOD field. Because the memory
controller forces SDMOD[13–8] to certain values depending upon the state of the initialization
sequence (for resetting the SDRAM DLL), the memory controller ignores the corresponding bits
of this field.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-41

Memory Controller
SICFG sets the number of DRAM clock cycles between bank refreshes issued to the DDR
SDRAM devices. In addition, it specifies the number of DRAM cycles to maintain a page after it
is accessed.

SICFG DDR SDRAM Interval Configuration Register DDR_BASE + 0x124

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— — REFINT

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PI

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-20. SICFG Bit Descriptions

Bits Reset Description

—
31–30

0 Reserved. Write to zero for future compatibility.

REFINT
29–16

0 Refresh Interval
Represents the number of memory bus clock cycles between refresh cycles. One row is
refreshed in each DDR SDRAM physical bank during each refresh cycle. The value for
REFINT depends on the specific SDRAMs used and the interface clock frequency.

—
15–14

0 Reserved. Write to zero for future compatibility.

PI
13–0

0 Precharge Interval
Sets the duration (in memory bus clocks) that a page is retained as an open page after a DDR
SDRAM access. If REFINT is cleared, the DDR memory controller uses auto-precharge read
and write commands rather than Open Page mode. This is referred to as global
auto-precharge mode. See Section 9.5, Operating Modes, on page 9-13.
MSC711x Reference Manual, Rev. 1

9-42 Freescale Semiconductor

DDR Memory Controller Programming Model
SCLKCFG provides a source synchronous option and a 1/2 cycle clock adjustment.

9.8.3 Error Handling Registers

The DDR memory controller error handling registers are as follows:

� Memory Error Detect Register (MERRD), page 9-44.

� Memory Error Interrupt Enable Register (ERRINT), page 9-44.

� Memory Error Attributes Capture Register (MEAC), page 9-45.

� Memory Error Address Capture Register (MEADDC), page 9-46.

SCLKCFG DDR SDRAM Clock Configuration Register DDR_BASE + 0x130

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SSEN — SHFT ADJUST —

TYPE R/W R R/W R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-21. SCLKCFG Bit Descriptions

Bits Reset Description Settings

SSEN
31

0 Source Synchronous Enable
Specifies whether the address and command are sent
to the DDR SDRAMs source synchronously.

0 Reserved.

1 Command sent synchronously.

—
30–27

0 Reserved. Write to zero for future compatibility.

SHFT
26–25

0 Clock Shift
Specifies when the clock is started in relationship to the
address/command.

00 Clock start is aligned with the
address/command.

01 Clock starts one DDR fast clock
after the address/command.

10 Clock starts two DDR fast clocks
after the address/command.

11 Clock starts three DDR fast clocks
after the address/command.

ADJUST
24

0 Clock Adjust
Allows you to adjust the clock shift to make it an extra
DDR fast clock later.

0 Clock does not start an extra DDR
fast clock later.

1 Clock starts an extra DDR fast
clock later.

—
23–0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-43

Memory Controller
� Memory Error Extended Address Capture Register (MEEAC), page 9-47.

MERRD stores the detection bits for multiple memory errors and memory select errors. A bit is
cleared by writing a high value to it. System software can determine the type of memory error by
examining the contents of this register. If an error is disabled with ERR_DISABLE, the
corresponding error is never detected and captured in MERRD.

ERRINT enables memory select error interrupts.

MERRD Memory Error Detect Register DDR_BASE + 0xE40

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MSE

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-22. MERRD Field Descriptions

Bits Name Description Settings

—
31–1

0 Reserved. Write to zero for future compatibility.

MSE
0

0 Memory Select Error
Indicates whether a memory select error has been
detected. This bit is cleared when software writes a
value of 1 to it.

0 No memory select error.

1 Memory select error.

ERRINT Memory Error Interrupt Enable Register DDR_BASE + 0xE48

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MSEE

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

9-44 Freescale Semiconductor

DDR Memory Controller Programming Model
MEAC captures the attributes of the transaction that caused the error.

Table 9-23. ERRINT Bit Descriptions

Bits Reset Description Settings

—
31–1

0 Reserved. Write to zero for future compatibility.

MSEE
0

0 Memory Select Error Interrupt Enable
Enables/disables interrupts when memory
select errors occur.

0 Memory select errors do not cause
interrupts.

1 Memory select errors generate interrupts.

MEAC Memory Error Attributes Capture Register DDR_BASE + 0xE4C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— TSIZ —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TTYP VLD

TYPE R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-24. MEAC Bit Descriptions

Bits Reset Description Settings

—
31–27

0 Reserved. Write to zero for future compatibility.

TSIZ
26–24

0 Transaction Size for the Error
In 16-pin mode, TSIZ captures the transaction size in
N × 16-bit transfers. (See the leftmost column of
Table 9-10, Data Beat Ordering to DDR Pins in
16-Pin Mode, on page 9-28).

In 32-pin mode, TSIZ captures the transaction size in
N × 32-bit transfers. (See the leftmost column of
Table 9-11, Data Beat Ordering to DDR Pins in
32-Pin Mode, on page 9-29).

—
23–14

0 Reserved. Write to zero for future compatibility.

TTYP
13–12

0 Transaction Type for the Error
Specifies the error transaction type; that is, whether it
is a read or a write.

00 Reserved.
01 Write.
10 Read.
11 Reserved.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-45

Memory Controller
MEADDC holds the least significant bits of the address when an error is detected. It captures the
address differently, depending on whether the memory controller is configured for 16- or 32-pin
operation.

—
11–1

0 Reserved. Write to zero for future compatibility.

VLD
0

0 Valid
Set when valid information is captured in the error
capture registers.

MEADDC Memory Error Address Capture Register, 16-Pin Operation DDR_BASE + 0xE50

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CADDR

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CADDR T L

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-25. MEADDC Bit Descriptions, 16-Pin Operation

Bits Reset Description

CADDR
31–3

0 Capture Address
Captures bits [29–1] of the transaction address when an error is detected.

T
2–1

0 Capture Access Size
Captures 11 if the access size is less than 16-bits. Otherwise, it captures 00.

L
0

0 LSB of Captured Address
Captures bit 0 of the transaction address when an error is detected.

Table 9-24. MEAC Bit Descriptions (Continued)

Bits Reset Description Settings
MSC711x Reference Manual, Rev. 1

9-46 Freescale Semiconductor

DDR Memory Controller Programming Model
MEEAC holds the most significant transaction bits of the address when an error is detected. It
captures the address differently, depending on whether the memory controller is configured for
16- or 32-pin operation.

MEADDC Memory Error Address Capture Register, 32-Pin Operation DDR_BASE + 0xE50

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CADDR

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CADDR T L

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-26. MEADDC Bit Descriptions, 32-Pin Operation

Bits Reset Description

CADDR
31–3

0 Capture Address
Captures bits [30–2] of the transaction address when an error is detected.

T
2

0 Capture Access Size
Captures 1 if the access size is less than 32-bits. Otherwise, it captures 0.

L
1–0

0 LSBs of Captured Address
Captures bits [1–0] of the transaction address when an error is detected.

MEEAC Memory Error Extended Address Capture Register, 16-Pin Operation
DDR_BASE + 0xE54

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— CEADDR

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 9-47

Memory Controller
Table 9-27. MEEAC Bit Descriptions, 16-Pin Operation

Bits Reset Description

—
31–2

0 Reserved. Write to zero for future compatibility.

CEADDR
1–0

0 Capture Extended Address
Captures the most significant two bits of the transaction address, bits 31–30, when an error is
detected.

MEEACMemory Error Extended Address Capture Register, 32-Pin Operation
DDR_BASE + 0xE54

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— CEADDR

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 9-28. MEEAC Bit Descriptions, 32-Pin Operation

Bits Reset Description

—
31–1

0 Reserved. Write to zero for future compatibility.

CEADDR
0

0 Capture Extended Address
Captures the most significant bit of the transaction address, bit 31, when an error is detected.
MSC711x Reference Manual, Rev. 1

9-48 Freescale Semiconductor

Memory Controller Interface 10
The memory controller interface (MCIF) increases the efficiency of accesses through the DDR
memory controller to external DDR memory. It processes accesses from the crossbar switch to
the DDR memory controller as shown in Figure 10-1

Figure 10-1. System View of Memory Controller Interface

10.1 Features

The features of the MCIF are as follows:

� 8-location write buffer to reduce latency on ASEMI write accesses.

� 4-location IFU program read buffer.

� 4-location DMA data read buffer.

� 4-location configurable-master alternate data read buffer.

� 2-location ECI data read buffer.

� Programmable predictive read capability.

� Interface is tuned for the following accesses:

— DMA. WRAP4 (aligned, non-wrapping) of 64-bit read/write data.
— IFU. WRAP4 (aligned, wrapping) of 128-bit program read data.
— ECI. SINGLE of 64, 32, 16, and 8-bit read data.
— Ethernet. WRAP4 (aligned, non-wrapping) of 32-bit read/write data.

� Performs optionally-enabled predictive read accesses on:

Crossbar
Switch

DDR
Controller

MCIF

ECI

IFU

DMA

FEC

AMEC

AMIF

AMDMA

AMENT

ASEMI
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-1

Memory Controller Interface
— IFU SINGLE and WRAP4 128-bit program read data.
— DMA WRAP4 64-bit read data.
— ECI SINGLE 64,32,16, or 8-bit data.
— Ethernet WRAP4 32-bit read data.

� Data read buffer coherency checking and resolution.

� Error detection for unsupported AHB data and program accesses.

10.2 Architecture

Figure 10-2 shows the interface between the crossbar switch and the DDR memory controller.

Figure 10-2. Memory Controller Interface

10.2.1 Write Buffer Characteristics

A 64-bit 8-location write buffer improves write access performance on ASEMI. This buffer is
always enabled. It performs zero wait-state ASEMI write accesses when it is not full. It accepts
eight 64-bit write accesses before stalling the ASEMI bus. The write buffer can accept up to eight

ECI Read Buffer

DMA Read Buffer

Alternate Read Buffer

Crossbar
Switch

DDR
Controller

Write

128

State
Machine

A
S

E
M

I S
la

ve
 P

or
t

MCIF

64

IPBus

IFU Read Buffer

MCIFCTL

DCHSEL

ACHSEL

8-Location Write Buffer

Data

Read
Data
MSC711x Reference Manual, Rev. 1

10-2 Freescale Semiconductor

Architecture
SINGLE accesses, two WRAP4 write accesses, or a combination of SINGLES and a WRAP4
before stalling the ASEMI bus. Each SINGLE or WRAP4 beat stored in the write buffer occupies
a full buffer location and is serviced in the order it is accepted.

10.2.2 Read Prediction Characteristics

The MCIF can perform predictive reads for important program and data accesses. The following
four dedicated read buffers allow read buffering and predictive read capability from different
masters:

� IFU read buffer

� DMA read buffer

� ALT read buffer

� ECI read buffer

10.2.2.1 Program Predictive Reads

To optimize ASEMI accesses issued from the IFU, the MCIF can perform predictive reads and
store the data in the 128-bit 4-location IFU read buffer. This read buffer accepts SINGLE and
WRAP4 128-bit IFU accesses:

� Program predictive read:

— Configurable enable that is hardware-controlled, always enabled, disabled (default).
— Disabled when a DDR chip-select boundary can be crossed.

� Hardware-controlled predictive read enable mode:

— Enabled on primary-set and pre-fetch accesses.
— Disabled when a cache-line boundary (16 × 16 bytes) can be crossed.

10.2.2.2 Data Predictive Reads

To optimize ASEMI accesses from the ECI, DMA controller, and FEC, the MCIF can perform
predictive reads and store the data in one of three data read buffers:

� ECI data read buffer:

— 2 locations by 64 bits.
— Configurable predictive read enable (disabled by default).

� DMA data read buffer:

— 4 locations by 64 bits.
— Non-configurable master selection (DMA).
— Configurable DMA channel selection and enable (0–5 channels can be selected).
— Configurable predictive read enable (disabled by default).

� Alternate data read buffer

— 4 locations by 64-bits.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-3

Memory Controller Interface
— Configurable master selection (DMA or FEC).
— Default master selection = FEC.
— Configurable DMA channel selection and enable (optional when DMA is selected).
— Configurable predictive read enable (disabled by default).

� Data predictive read that is disabled when a DDR chip-select boundary can be crossed.

10.2.2.3 Predictive Read Hardware Disable

A predictive read is not enabled if it could cross a DDR chip-select boundary and cause an
undesirable NMI because of illegal MCIF accesses to illegal memory space. The DDR memory
chip select regions are programmable via the DDR Chip Select Memory Bounds Registers
(CSBRx). For 32-bit DDR configuration, the upper nine address bits are compared with the SAn
and EAn fields; for 16-bit configuration the upper ten address bits are compared. A predictive
read is disabled if it would cross a 222 or 221 address boundary for 32-bit and 16-bit DDR
configurations, respectively.

10.2.3 Non-Optimized Accesses

For the following non-critical data and program accesses, optimization may not be enabled or is
not supported:

� ECI SINGLE read accesses when a predictive read is disabled.

� DMA SINGLE read accesses.

� FEC SINGLE read accesses.

� IFU SINGLE read accesses when a predictive read is disabled.

10.2.4 Error Detection

Error detection for ASEMI accesses is accomplished via MCIF error detection logic, crossbar
master bus monitors, and the DDR memory controller:

� MCIF performs ASEMI illegal access type detection and generates an ASEMI bus error in
response. See Table 10-1.

� MCIF detects misaligned WRAP4 32-bit and 64-bit accesses and generates an ASEMI bus
error in response.

� AMIF, AMDMA, AMENT, and AMEC bus monitors detect misaligned accesses that
would affect ASEMI, and they generate NMIs.

� ASEMI accesses to non-selected DDR memory are detected by the DDR memory
controller, which generates the DDR_ER NMI.
MSC711x Reference Manual, Rev. 1

10-4 Freescale Semiconductor

Programming the MCIF
10.2.5 MCIF Reset

The MCIF has two reset sources: peripheral module reset and AHB disable. Peripheral module
reset is the primary reset source for the MCIF and is described in Chapter 13, Reset. This reset
forces all MCIF sequential elements to their reset state. AHB disable asserts when the ASEMI
bus time-out monitor detects an error condition, and all MCIF sequential elements are reset,
excluding the configuration registers described in Section 10.4, MCIF Programming Model, on
page 10-7.

10.3 Programming the MCIF

The MCIF optimally serves DDR accesses when the MSC711x device is configured as described
in the following procedure for read accesses. No MCIF configuration is needed for write accesses
because the write buffer serves all write accesses.

1. Set MCIFCTL[IPRE] = 01 to enable IFU predictive reads.

2. If the ECI is used to stream data sequentially from the DDR, enable predictive reads for
the ECI read buffer by setting MCIFCTL[EPRE] = 1.

Table 10-1. ASEMI Illegal Access Type Detection

MASTER HBURST HSIZE HWRITE
ASEMI

Bus Error
Comment

AMIC SINGLE 128-bit R N Access accepted by MCIF.

WRAP4 128-bit R N Access accepted by MCIF.

All other access types. Y Access rejected by MCIF resulting in an ASEMI bus error.

AMDMA SINGLE 8-bit
16-bit
32-bit
64-bit

R/W N Access accepted by MCIF.

WRAP4 64-bit R/W N Access accepted by MCIF.

All other access types. Y Access rejected by MCIF resulting in an ASEMI bus error.

AMENT SINGLE 32-bit R/W N Access accepted by MCIF.

WRAP4 32-bit R/W N Access accepted by MCIF.

All other access types. Y Access rejected by MCIF resulting in an ASEMI bus error.

AMEC SINGLE 8-bit
16-bit
32-bit
64-bit

R/W N Access accepted by MCIF.

All other access types. Y Access rejected by MCIF resulting in an ASEMI bus error.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-5

Memory Controller Interface
3. To optimize DMA read accesses, use both the DMA and alternate read buffers as
needed. These buffers should be configured to serve DMA channels that stream data
from the DDR. Since each read buffer supports five DMA channels, you may find that
using only the DMA read buffer is adequate.

DMA accesses using the DMA read buffer:

a. Enable DMA predictive reads (MCIFCTL[DPRE] = 1).

b. Enable the DMA channel select operation (MCIFCTL[DCOE] = 1).

c. Set DMA channel select fields in the DCHSEL register to correspond with DMA
channels that stream data from DDR memory.

d. Use a DMA transfer size of 32 bytes (64-bit WRAP4).

DMA accesses using the alternate read buffer (as needed):

a. Select the alternate read buffer (MCIFCTL[AMSEL] = 0001).

b. Enable alternate predictive reads (MCIFCTL[APRE] = 1).

c. Enable the DMA channel select operation (MCIFCTL[ACOE] = 1).

d. Set DMA channel select fields in the ACHSEL register to correspond with DMA
channels that stream data from DDR memory.

e. Use a DMA transfer size of 32 bytes (64-bit WRAP4).

4. To optimize FEC read accesses, use the alternate read buffer. Give alternate read buffer
service preference to the DMA controller if more than five DMA channels are used for
DDR streaming. Otherwise, the alternate buffer should be enabled to serve the FEC.

a. Select the alternate read buffer to serve the FEC (default) (MCIFCTL[AMSEL] =
0011).

b. Enable alternate predictive reads (MCIFCTL[APRE] = 1).

For an application that uses code overlays, the source data is usually in DDR memory and the
destination for the overlay code is in M2 memory. When an application performs code overlays
with the source data in M1, M2, or DDR memory and the destination for the overlay code in
DDR memory, you must ensure that there are no coherency issues. This case is uncommon but is
documented here for completeness. To address this case, use the following sequence:

1. Leave the IFU predictive read turned on.

2. Jump to a section of code in DDR memory outside the overlay region that contains a
sequence of 80 NOPs.

3. Execute these NOPs from this location.

4. Return to the desired location.

Jumping to a location outside the overlay space fills the read buffer with the new instructions,
effectively flushing out the old read buffer contents.
MSC711x Reference Manual, Rev. 1

10-6 Freescale Semiconductor

MCIF Programming Model
10.4 MCIF Programming Model

The MCIF registers are listed as follows and discussed in this section:

� MCIF Control Register (MCIFCTL), page 10-7.

� DMA Read Buffer Channel Select Register (DCHSEL), page 10-8.

� Alternate Read Buffer Channel Select Register (ACHEL), page 10-10.

� MCIF Status Register (MCIFSTAT), page 10-11.

The value of the base address for this register file, MCIF_BASE, is listed in Table 5-1, Summary
— Base Addresses for MSC711x Register Files, on page 5-4.

MCIFCTL configures the MCIF module.

MCIFCTL MCIF Control Register MCIF_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— IPRE EPRE DPRE APRE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— DCOE DMSEL — ACOE AMSEL

TYPE R/W R R/W

RESET 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

Table 10-2. MCIFCTL Bit Descriptions

Name Reset Description Settings

—
31–29

0x0 Reserved. Write to zero for future compatibility.

IPRE
28–27

0x0 IFU Predictive Read Enable
Enables the MCIF to generate predictive reads
on program accesses. If IFU predictive reads
are enabled and the IFU is configured to have
burst size = 1, the DDR address regions must
be configured to be cacheable.

00 IFU predictive read disabled.

01 IFU predictive read always enabled.

10 IFU predictive read dynamically enabled by
hardware.

11 Reserved.

EPRE
26

 0x0 ECI Predictive Read Enable
Enables the MCIF to generate predictive reads
on ECI accesses.

0 ECI predictive read disabled.

1 ECI predictive read enabled.

DPRE
25

0 DMA Predictive Read Enable
Enables the MCIF to generate predictive reads
on DMA accesses.

0 DMA predictive read disabled.

1 DMA predictive read enabled.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-7

Memory Controller Interface
APRE
24

0 Alternate Predictive Read Enable
Enables the MCIF to generate predictive reads
on alternate master accesses.

0 Alternate predictive read disabled.

1 Alternate predictive read enabled.

—
23–13

0x0 Reserved. Write to zero for future compatibility.

DCOE
12

0x0 DMA Channel Select Operation Enable
Enables DMA channel-based operation in
which predictive reads are issued for the
channel(s) selected by the DCHSEL register.
When disabled, the MCIF issues predictive
reads based on DMA accesses, regardless of
the channel.

0 DMA channel select operation disabled.

1 DMA channel select operation enabled.

DMSEL
11–8

0x1 DMA Read Buffer Master Select
Selects the crossbar master to service with the
DMA read buffer.

This read-only field always reads as 0b0001,
which corresponds to “DMA controller selected.”

—
7–5

0x0 Reserved. Write to zero for future compatibility.

ACOE
4

0 Alternate Channel Select Operation Enable
Enables DMA channel-based operation in
which predictive reads are issued for the
channel(s) selected by the DCHSEL register.
When disabled, the MCIF issues predictive
reads based on DMA accesses, regardless of
the channel. For this bit to be used, AMSEL
must be set to select the DMA as the alternate
read buffer master.

0 Alternate channel select operation disabled.

1 Alternate channel select operation enabled.

AMSEL
3–0

 0x3 Alternate Read Buffer Master Select
Selects the crossbar master to service with the
alternate read buffer.

0000 Reserved.

0001 DMA controller.

0010 Reserved.

0011 Fast Ethernet controller.

Other Reserved.

DCHSEL DMA Read Buffer Channel Select Register MCIF_BASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DCHE DCHD DCHC —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCHB DCHA DCEE DCDE DCCE DCBE DCAE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10-2. MCIFCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

10-8 Freescale Semiconductor

MCIF Programming Model
DCHSEL selects specific DMA channels for service by the DMA read buffer when the DMA
channel select operation is enabled (MCIFCTL[DCOE] = 1).

Table 10-3. DCHSEL Bit Descriptions

Name Reset Description Settings

DCHE
31–27

 0 DMA Channel Select E
Selects a DMA channel to be serviced by the DMA
read buffer. This selection is enabled by
DCHSEL[DCEE]. DMA channel select operation is
enabled by MCIFCTL[DCOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

DCHD
26–22

 0 DMA Channel Select D
Selects a DMA channel to be serviced by the DMA
read buffer. This selection is enabled by
DCHSEL[DCDE]. DMA channel select operation is
enabled by MCIFCTL[DCOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

DCHC
21–17

 0 DMA Channel Select C
Selects a DMA channel to be serviced by the DMA
read buffer. This selection is enabled by
DCHSEL[DCCE]. DMA channel select operation is
enabled by MCIFCTL[DCOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

—
16

0x0 Reserved. Write to zero for future compatibility.

DCHB
15–11

 0 DMA Channel Select B
Selects a DMA channel to be serviced by the DMA
read buffer. This selection is enabled by
DCHSEL[DCBE]. DMA channel select operation is
enabled by MCIFCTL[DCOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

DCHA
10–6

 0 DMA Channel Select A
Selects a DMA channel for service by the DMA read
buffer. This selection is enabled by DCHSEL[DCAE].
DMA channel select operation is enabled by
MCIFCTL[DCOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

DCEE
5

0 DMA Channel Select E Enable
Enables the DCHSEL[DCHE] field to select a DMA
channel to service.

0 Channel select E disabled.

1 Channel Select E enabled,

DCDE
4

0 DMA Channel Select D Enable
Enables the DCHSEL[DCHD] field to select a DMA
channel to service.

0 Channel Select D disabled,

1 Channel Select D enabled.

DCCE
3

0 DMA Channel Select C Enable
Enables the DCHSEL[DCHC] field to select a DMA
channel to service.

0 Channel Select C disabled.

1 Channel Select C enabled.

DCBE
2

0 DMA Channel Select B Enable
Enables the DCHSEL[DCHB] field to select a DMA
channel to service.

0 Channel Select B disabled.

1 Channel Select B enabled.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-9

Memory Controller Interface
.

ACHSEL selects specific DMA channels for service by the alternate read buffer when the
alternate channel select operation is enabled (MCIFCTL[ACOE] = 1), and the alternate read
buffer master is configured for DMA operation (MCIFCTL[AMSEL] = DMA).

DCAE
1

0 DMA Channel Select A Enable
Enables DCHSEL[DCHA] field to select a DMA
channel to service.

0 Channel Select A disabled.

1 Channel Select A enabled.

—
0

0x0 Reserved. Write to zero for future compatibility.

ACHSEL Alternate Read Buffer Channel Select Register MCIF_BASE + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ACHE ACHD ACHC —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACHB ACHA ACEE ACDE ACCE ACBE ACAE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10-4. ACHSEL Bit Descriptions

Name Reset Description Settings

ACHE
31–27

 0 Alternate Channel Select E
Selects a DMA channel to be serviced by the
alternate read buffer. This selection is enabled by
ACHSEL[ACEE]. Alternate channel select operation
is enabled by MCIFCTL[ACOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

ACHD
26–22

 0 Alternate Channel Select D
Selects a DMA channel to be serviced by the
alternate read buffer. This selection is enabled by
ACHSEL[ACDE]. Alternate channel select operation
is enabled by MCIFCTL[ACOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

ACHC
21–17

 0 Alternate Channel Select C
Selects a DMA channel to be serviced by the
alternate read buffer. This selection is enabled by
ACHSEL[ACCE]. Alternate channel select operation
is enabled by MCIFCTL[ACOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

Table 10-3. DCHSEL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

10-10 Freescale Semiconductor

MCIF Programming Model
—
16

0x0 Reserved. Write to zero for future compatibility.

ACHB
15–11

 0 Alternate Channel Select B
Selects a DMA channel to be serviced by the
alternate read buffer. This selection is enabled by
ACHSEL[ACBE]. Alternate channel select operation
is enabled by MCIFCTL[ACOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

ACHA
10–6

 0 Alternate Channel Select A
Selects a DMA channel to be serviced by the
alternate read buffer. This selection is enabled by
ACHSEL[ACAE]. Alternate channel select operation
is enabled by MCIFCTL[ACOE].

00000 DMA channel 0 selected.

00001 DMA channel 1 selected.

.

.

11111 DMA channel 31 selected.

ACEE
5

0 Alternate Channel Select E Enable
Enables ACHSEL[ACHE] field to select a DMA
channel to service.

0 Channel Select E disabled.

1 Channel Select E enabled.

ACDE
4

0 Alternate Channel Select D Enable
Enables ACHSEL[ACHD] field to select a DMA
channel to service.

0 Channel Select D disabled.

1 Channel Select D enabled.

ACCE
3

0 Alternate Channel Select C Enable
Enables ACHSEL[ACHC] field to select a DMA
channel to service.

0 Channel Select C disabled.

1 Channel Select C enabled.

ACBE
2

0 Alternate Channel Select B Enable
Enables ACHSEL[ACHB] field to select a DMA
channel to service.

0 Channel Select B disabled.

1 Channel Select B enabled.

ACAE
1

0 Alternate Channel Select A Enable
Enables ACHSEL[ACHA] field to select a DMA
channel to service.

0 Channel Select A disabled.

1 Channel Select A enabled.

—
0

0x0 Reserved. Write to zero for future compatibility.

MCIFSTAT MCIF Status Register MCIF_BASE + 0x18

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCTLWD DCHWD ACHWD —

TYPE R

RESET 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 10-4. ACHSEL Bit Descriptions

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 10-11

Memory Controller Interface
MCIFSTAT provides information on MCIF status.

Table 10-5. MCIFSTAT Bit Descriptions

Name Reset Description Settings

MCTLWD
31

0x1 MCIFCTL Register Write Access Done
Indicates that a write access to the MCIFCTL
register is done (has taken affect). A write
access to MCIFCTL will not take affect until the
MCIF becomes idle.

0 MCIFCTL register was written but has not
taken effect because the MCIF is not idle.

1 Write access to MCIFCTL register is done.

DCHWD
30

0x1 DCHSEL Register Write Access Done
Indicates that a write access to the DCHSEL
register is done (has taken affect). A write
access to DCHSEL will not take affect until the
MCIF becomes idle.

0 DCHSEL register was written but has not
taken effect because the MCIF is not idle.

1 Write access to DCHSEL register is done.

ACHWD
29

0x1 ACHSEL Register Write Access Done
Indicates that a write access to the ACHSEL
register is done (has taken affect). A write
access to ACHSEL will not take affect until the
MCIF becomes idle.

0 ACHSEL register was written but has not
taken effect because the MCIF is not idle.

1 Write access to ACHSEL register is done.

—
28–0

0x0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

10-12 Freescale Semiconductor

Clocks and Power Management 11
This chapter describes the MSC711x clocking module, low-power modes of operation, and
programming model.

11.1 Timing System Architecture

The MSC711x timing system, shown in Figure 11-1, has the clock synthesis module at its core.
This module is composed of the following blocks:

� Phase lock loop (PLL) with associated multipliers and dividers.

� Bus clock divider.

� Timer clock multiplex.

� Wake-up control to wake the MSC711x device out of its low-power modes.

� Control registers for programming the clock synthesis module. The SC1400 PCTL0 and
PCTL1 registers are not used on the MSC711x architecture.

Together, these blocks generate the clock signals used for core and peripheral clocking:

� An external input clock provides a reference clock for the system.

� The core clock is obtained by dividing the input clock and multiplying the frequency in the
PLL.

� The AHB clock is generated much like the core clock but with an additional division
stage.

� The IPBus clock is generated from the AHB clock.

� The APB clock is generated from the AHB clock.

� The timer clock is derived from the external input clock or from the IPBus clock.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-1

Clocks and Power Management
Figure 11-1. MSC711x Timing System

Watchdog Timer

1

Device Resources

Timers

Timer Module

DSP Extended Core

Input
Clock

Timer Clock
4

1 Clocks can be disabled in Stop mode. Disables PLL, core clock, ECore clock, AHB clock, IPBus clock, and

2 Clocks can be disabled at this point in Stop mode. Disables ECore clock, AHB clock, IPBus clock, and APB clock.
3 Clocks are disabled at this point in Wait and Stop modes. Disables the ECore clock.
4 Clocks can be disabled at this point in Stop mode. Disables the input clock used in timer clock generation.

HLTACK

32-bit

IPBus

CLKIN

AHB Clock

to Crossbar Switch, DMA,

to 32-Bit Watchdog Timer

TDM Peripheral

to TDM Clock, Frame Sync

EVNT Event
Port

M
U

X

MUX

UART

to UART Tx, Rx

M2 Memory, Boot ROM

CPU
3

SC1400 Core

DIV
(/1 to /25)

MULT
(x1 to x28)

PLL

MUX
CLKOUT

Wake-up
Control

APB Clock

CLKO
IPBus Clock / 2
Timer Clock / 2

/24 /1 to /216

M
U

X

External Memory Interface

to External. Memory. Controller
to DDR Clock Pins

Clock Synthesis
Module

Timer B
Outputs

Timer A
Outputs

Debug
Port

I2C

to Serial

M
U

X/22, ..., /3840

Ethernet MAC

to Ethernet MAC

/2, /4,.../126

MDC
AHB
Clock RX_CLK

TX_CLK

5 Clocks can be disabled at this point in Stop mode. Disables the watchdog timer clock.

IPBus Clock

AHB DIV
(/2)

2

ECore clock
Core Clock

DDR Clock
6

HLTREQ
STOPCTL
CLKCTL

5

Watchdog Clock

/2

6 Clocks can be disabled at this point in Stop mode. Disables the DDR clock.

AHB
Clock

IPBus
Clock

/2

/26

Timer

Bit Clock

Generator

Clock

APB Clock.
MSC711x Reference Manual, Rev. 1

11-2 Freescale Semiconductor

Timing System Architecture
Table 11-1. MSC711x Clocking by Module

Block
Primary Clock

for
Data Transfers

Secondary
Clock for

Register Access

Baud-Rate Clock or
Clock Generation

by the Module
Comments

Extended Core Modules

SC1400 Core Core clock — N/A —

Instruction
Cache

ECore clock AHB clock N/A AHB clock to access the array.

IFU ECore clock AHB clock N/A AHB clock to interface with the AMIC bus
and access the IFU registers.

ECI ECore clock AHB clock N/A AHB clock to interface with the AMEC
bus and access the ECI registers.

Data Transfer Modules

DMA AHB clock IPBus clock N/A —

Crossbar Switch AHB clock IPBus clock N/A Primary clock for state machines,
arbitration logic, and latching signals
when the slave port is busy.

Memory Modules

M1 SRAM ECore clock — N/A Values on the 64-bit ASM1 bus are
written at the AHB clock frequency.

M2 SRAM AHB clock — N/A —

Boot ROM AHB clock — N/A —

Peripheral Modules

External memory
interface

AHB clock IPBus clock DDR clock DDR clock generated by this module at
1:2, 1:4, or 1:8 ratio of the ECore clock.

Ethernet MAC AHB clock IPBus clock TX_CLK: from pin
RX_CLK: from pin
MDC: from AHB clock

MDC baud clock generated internally
from the AHB clock via a divider.

HDI16 AHB clock APB clock N/A Note: The state machines for the HDI
clock are clocked off ECore
clock.

TDMs AHB clock APB clock Timer B or TDM Pins Baud clock received from external
sources (TDM pins) or generated
internally via Timer B outputs.

Interrupt
Controller

AHB clock AHB clock N/A Registers accessed from the ASAPB bus.
Edge detection circuitry for non-maskable
interrupts is clocked off the ECore clock.

I2C — IPBus clock IPBus clock Serial bit clock received from the SCL pin
or generated internally from the IPBus
clock via a divider.

UART — APB clock APB clock Serial bit clock generated internally from
the APB clock via a divider.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-3

Clocks and Power Management
11.2 Clock Synthesis Module Operation

The clock synthesis module generates the following clocks, which are used throughout the
MSC711x device:

� Clocks at maximum frequency: core clock, ECore clock, and DDR clock. The core clock
provides clocking for the SC1400 core, and the ECore clock provides clocking for the
extended core, including M1 memory, ICache, instruction fetch unit (IFU), and the
extended core interface (ECI).

� Clocks at half of maximum frequency: AHB clock, IPBus clock, APB clock, and watchdog
clock. For bus operation and register access, the AHB clock provides clocking for the
AHB-Lite subsystem, including the DMA controller, crossbar switch, M2 memory, boot
ROM, and the interrupt controller.

� Other clocks: timer clock. The timer clock provides clocking for the timer module. See
Section 11.4.4.10, Selecting the Input Clock as the Source for the Timer Modules, on page
11-22 for restrictions when the input clock is selected as the source of this clock. The
timer module can also be clocked from the EVNT[3–0] pins or other system events through
event multiplexes within the system control block (see Chapter 15, Event Port). The
watchdog clock provides clocking for the software watchdog timer.

Timer Modules (The feedback loop in the timer modules is used for cascaded counter operation.)

Timer Module — IPBus clock Timer clock
or clocked by the

event port

Timers are clocked by various sources
(see Figure 21-1, Timer Module Block
Diagram, One of Four Channels, on page
21-2)

Watchdog Timer — Watchdog clock Watchdog clock Watchdog timer is clocked by a gated
version of the APB clock.

Clocking Modules

PLL/clock — IPBus clock Generates device
clocks

Generates the following clocks:
• Core clock
• ECore clock
• AHB clock

• APB clock
• IPBus clock
• DDR clock

• Timer clock
• Watchdog clock

Event Port — IPBus clock Can provide clocks to Timer Modules.

Note: A single source is used for the following clocks so that they are synchronous with each other and run at the same
frequency: AHB clock (for AHB-Lite subsystem), APB clock, and IPBus clock.

Table 11-1. MSC711x Clocking by Module (Continued)

Block
Primary Clock

for
Data Transfers

Secondary
Clock for

Register Access

Baud-Rate Clock or
Clock Generation

by the Module
Comments
MSC711x Reference Manual, Rev. 1

11-4 Freescale Semiconductor

Clock Synthesis Module Operation
Clock generation for internal peripherals is as follows:

� The IPBus clock for the IPBus peripherals.

� The APB clock for the APB peripherals.

� The DDR clock for the DDR memory controller.

When clocks are internally generated for the TDMs, the desired baud rate is generated by timer(s)
in timer module B. All scaling of the frequency occurs within timer module B. The TDMs can
also receive external clocks on their RCLKx and TCLKx pins. The correct baud rate for the I2C is
generated from the IPBus clock, with appropriate scaling within the I2C module. The correct
baud rate for the UART is generated from the APB clock, with appropriate scaling within the
UART.

A multiplex is provided for selecting a clockout signal that is output on the EVNT1 pin. The
sources for this clock can be the IPBus clock /2 or the timer clock /2. This clock can also be
disabled, which is its default configuration out of reset. When the clockout feature is not disabled
by the CLKO bits, it overrides all other functionality on the EVNT1 signal and provides the desired
output clock. When it is disabled, the EVNT1 signal is controlled by the system control unit.

To enable the CLKO bits, perform the following steps:

1. Set the CLKCTL[CLK0] bits to select the desired source clock out (IPBus/2 or timer).

2. Set DEVCFG[PAS] = 1 to select the additional multiplexing function.

3. Set GPACTL[CTL17] = 1 for hardware control.

11.2.1 Generating the Clocks

MSC711x devices use the PLL for the primary clock generation. The CLKOUT signal, the internal
core clock, AHB clock, IPBus clock, and APB clock are generated as a function of the FIN and
PLL clock out signals (see Figure 11-2). FIN is clocked from an external clock source and is fed
to the PLL that divides and multiplies its frequency according to the PLLDVF and the PLLMLT
fields of the Clock Control Register (CLKCTL). The PLLDVF field is a software controllable
input division factor that divides the reference clock frequency FIN by a 6-bit value. The
PLLMLTF field multiplies the frequency according to its 8-bit value in the CLKCTL register.

11.2.2 Configuring the Clocks

The CLKCTL register settings determine the PLL clockout frequency as well as the CLKIN, AHB
clock, APB clock, and CORE clock frequency ratios. The following factors can be configured:

� PLL input division factor (PLLDVF)

� PLL multiplication factor (PLLMLTF)

� Clock select bits (CKSEL)

� Range bit (RNG)
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-5

Clocks and Power Management
Figure 11-2. Clock Generation

The equations for the different frequencies are as follows:

FLoop = FIN * ((PLLMLTF+1)/(PLLDVF+1))

Fvco = FLoop/2 RNG = 0 --low freq chip operation
= FLoop RNG = 1 --high freq chip operation

Fout = FIN CKSEL = 00

= 0 CKSEL = 01 --while waiting for 1st lock
= Fvco/2 CKSEL = 01 --once the PLL has locked

FIN

PLLMLTF

Division by
PLLDVF+1

Multiplication

PLLMLTF+1
by

M
ul

tip
le

x

AHB Clock

ECore

FOUT

CKSELPLLDVF

Clock Synthesis Module

APB Clock

PLL

IPBus

Lock
Detect

P
llL

oc
k

Clock Module
Registers

G
at

e

P
LL

M
LT

F
P

LL
D

V
F

P
LL

E
N

Lo
ss

 o
f L

oc
k

Lock Signal
(to Event Port)

Timer

PLLSTP

STPDIS2

Sticky
Bit

Core

/2

DDR

DDRCK

Watchdog

STPDIS5

/2

Wait or Stop Mode

IPBus Clock

(to Timer

/26

RNG

Loss of Lock
(to Event Port)

/2

FLoop Fvco

Fvco/2

FIN

/2

STPDIS4

MUX
Clock

Clock

Clock

Clock

Clock

Clock

Multiplex)

PLLDVF: Input Division Factor

PLLMLTF: Multiplication Factor
MSC711x Reference Manual, Rev. 1

11-6 Freescale Semiconductor

Clock Synthesis Module Operation
= 0 CKSEL = 11 --while waiting for 1st lock
= Fvco CKSEL = 11 --once the PLL has locked

FCore = Fout

FAHB = FAPB = FIPBus = Fout / 2

There are restrictions on the frequencies permitted at the input of the multiplication portion of the
PLL. Specifically, the frequency at this node must fall within a particular range of frequencies.
Similarly, there are restrictions on the minimum and maximum frequencies at the output of the
multiplication block. Refer to the device data sheet for details. Table 11-2 summarizes the
equations for the frequency of the clocks.

\

11.2.3 Selecting Clock Frequencies

Two restrictions that must be met for correct usage of the PLL are as follows:

� The allowed range for the input frequency to the PLL, which is the output of the input
divider, is 10–25 MHz.

� The allowed range for the output frequency of the PLL, which is the output of the
multiplier, is 266–532 MHz.

The output frequencies are programmed via the PLLDVF, PLLMLTF, and RNG fields of the
Clock Control Register (CLKCTL). The restriction on the input divider output results in the
allowed ranged for the device input clock listed in Table 11-3.

Table 11-2. Summary of Device Frequency Equations

RNG CKSEL
Frequency of

Core and ECore Clock
AHB, APB, and

IPBus Clock
Comments

0 00 = FIN Core Clock / 2 Uses bypass clock.

0 01 = FIN * [(PLLMLTF+1) / (PLLDVF+1)] / 4 Core Clock / 2 See Note below.

0 11 = FIN * [(PLLMLTF+1) / (PLLDVF+1)] / 2 Core Clock / 2 See Note below.

1 00 = FIN Core Clock / 2 Uses bypass clock.

1 01 = FIN * [(PLLMLTF+1) / (PLLDVF+1)] / 2 Core Clock / 2 See note.

1 11 = FIN * [(PLLMLTF+1) / (PLLDVF+1)] Core Clock / 2 See note.

Note: Depends on PLL lock. See Section 11.3.4.2, Bypass Clock, on page 11-10 and Section 11.3.4, Modifying the PLL
Settings, on page 11-10.

Table 11-3. Allowed Division Factors and Frequency Ranges for CLKIN

PLLDVF Field Input Divide Factor Allowed Range at CLKIN Pin Comments

0x00 1 10–25 MHz Input division by 1

0x01 2 20–50 MHz Input division by 2

0x02 3 30–75 MHz Input division by 3

0x03 4 40–100 MHz Input division by 4

0x04 5 50–100 MHz Input division by 5
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-7

Clocks and Power Management
The restriction on the output of the multiplier results in the allowed ranges for the device input
clock listed in Table 11-4.

As Table 11-5 shows, the frequency delivered to the SC1400 core, extended core, and
peripherals depends on the value of the CLKCTL[RNG] bit (see page 11-25).

Both the CLKCTL[RNG, CKSEL] bits determine the final permitted frequency range of the core
clock, as shown in Table 11-6.

0x05 6 60–100 MHz Input division by 6

0x06 7 70–100 MHz Input division by 7

0x07 8 80–100 MHz Input division by 8

0x08 9 90–100 MHz Input division by 9

0x09 10 100 MHz Input division by 10

Note: The maximum frequency allowed on the CLKIN pin is 100 MHz. As a result, only division factors from 1 to 10 are
allowed.

Table 11-4. Allowed Multiplication Factors

Allowed Range at Output of VCO
Minimum Permitted

Multiplier
Maximum Permitted

Multiplier

266 <= [Input Divided Clock * (PLLMLTF+1)] <= 532 MHz 266/input divided clock 532/input divided clock

Notes: 1. This table results from the allowed range for FLoop.

2. The minimum and maximum multiplication factors depend on the frequency of the input divided clock.

Table 11-5. Fvco Allowed Frequency Ranges

CLKCTRL[RNG] Allowed Range of Fvco

1 266 <= Fvco <= 532 MHz

0 133 <= Fvco <= 266 MHz

Note: This table results from the allowed range for Fvco, which is FLoop
modified by CLKCTRL[RNG].

Table 11-6. Resulting Ranges Permitted for the Core Clock

CLKCTRL[CKSEL] CLKCTRL[RNG]
Resulting

Division Factor
Allowed Range
of Core Clock

Comments

11 1 1 266 <= Core_Clk <= 300 MHz Limited by maximum
frequency of the core

11 0 2 133 <= Core_Clk <= 266 MHz Limited by range of PLL

01 1 2 133 <= Core_Clk <= 266 MHz Limited by range of PLL

01 0 4 66.5 <= Core_Clk <= 133 MHz Limited by range of PLL

Note: This table results from the allowed range for FOUT, which depends on clock selected via CLKCTRL[CKSEL].

Table 11-3. Allowed Division Factors and Frequency Ranges for CLKIN

PLLDVF Field Input Divide Factor Allowed Range at CLKIN Pin Comments
MSC711x Reference Manual, Rev. 1

11-8 Freescale Semiconductor

Clock Selection
The permitted range of the core clock is also affected by the allowed frequency range of the DDR
devices in the system, which are listed in Table 11-7.

11.3 Clock Selection

This section describes important considerations for selecting clocking frequencies. Refer to the
data sheet for details on selecting the clocking frequency.

11.3.1 Resetting the Clock Synthesis Module

The clock synthesis module is reset during power-on reset, as follows:

1. The CLKCTL register is reset, which disables the PLL

2. Bypass clock is selected.

3. PLL clock is gated off.

4. The sticky bit for clock gating is reset, as shown in Figure 11-2.

See Table 13-2, Reset Actions for Each Reset Source, on page 13-2 to see how the remainder of
the clock synthesis module is affected by reset.

11.3.2 Enabling the PLL

When the application sets up the PLL for initial use or if the PLL is disabled, it performs the
following steps:

1. An SC1400 instruction writes values to the fields of the CLKCTL register (see Table
11-8, CLKCTL Bit Descriptions, on page 11-25):

• The desired multiplication factor is written to PLLMLTF.

• The desired division factor is written to PLLDVF.

• A value of 00 is written to CKSEL (01 or 11 is also permitted).

• A value of 1 is written to RSTRT and PLLEN.

2. The bypass clock drives the Fout clock so that SC1400 instructions can execute while
waiting for lock.

3. To use the PLL clock for the device, the CLKCTL[CKSEL] field is written with a value
of 01 or 11 (which can be done in step 1, if desired). When the PLL clock is used:

Table 11-7. Core Clock Ranges When Using DDR

DDR Type
Allowed Frequency

Range for DDR CK pin
Corresponding Range

for the Core Clock
Comments

DDR 200 (PC-1600) 83–100 MHz 166 <= Core_Clk <= 200 MHz Core limited to 2 x Max DDR frequency

DDR 266 (PC-2100) 83–133 MHz 166 <= Core_Clk <= 266 MHz Core limited to 2 x Max DDR frequency

DDR 333 (PC-2600) 83–166 MHz 166 <= Core_Clk <= 333 MHz Core limited to 2 x Max DDR frequency
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-9

Clocks and Power Management
• If the PLL is already locked, Fout immediately switches to the PLL clock.

• If the PLL is not locked, Fout remains on the bypass clock until lock occurs. Then
the clock source is automatically changes to the PLL clock.

4. When the PLL acquires lock, its LOCK status bit is set.

This behavior ensures that if the PLL is still acquiring lock, it is driven with the bypass clock and
waits until lock is acquired. Then it automatically switches to the PLL clock.

11.3.3 PLL Lock Status

A status bit, CLKCTL[LCK], reflects the state of the PLL lock and can be polled during the wait
for the PLL to lock. This signal is also sent to the event port where it can be used for event port
triggering.

11.3.4 Modifying the PLL Settings

When the PLL is already running, there are two techniques for modifying the settings:

� PLL restart

� Bypass clock

When the PLL is first enabled or the PLL frequency is modified using one of these techniques,
you should place the segment of code for modifying the PLL settings into internal memory. If
this code executes from DDR memory, the DDR clocking frequency may change to a value
outside its permitted range.

11.3.4.1 PLL Restart

The RSTRT bit must be set in any instruction that writes a new value to the PLLMLTF or
PLLDVF fields. The PLL restart technique applies only when the PLL is selected as the current
clock, CLKCTRL[CKSEL] = 01 or 11. The steps for a PLL restart are as follows:

1. An SC1400 instruction writes a new value to the PLLMLTF and/or PLLDVF field(s)
and writes a value of 1 to the RSTRT bit.

2. The clock module automatically switches to the bypass clock while the PLL acquires
lock with the new ratios.

3. When the PLL acquires lock, the circuit automatically switches to the PLL clock, using
the source determined by CLKCTL[CKSEL].

11.3.4.2 Bypass Clock

An application runs off the bypass clock while the PLL acquires lock, as follows:
MSC711x Reference Manual, Rev. 1

11-10 Freescale Semiconductor

Clock Selection
1. An application selects the bypass clock by executing an instruction to modify the
CLKCTL[CKSEL] field.

2. A new SC1400 instruction writes a new value to the PLLMLTF and/or PLLDVF field(s)
and writes a value of 1 to the RSTRT bit. This instruction must not be grouped with the
instruction in the previous step. That is, it must execute after the first instruction.

3. The bypass clock drives the Fout clock so SC1400 instructions can still execute during
the wait for lock.

4. An SC1400 instruction can be used to select the new PLL clock even before it has
acquired lock. The bypass clock continues to drive Fout.

5. When the PLL acquires lock, the circuit automatically gates the PLL clock onto Fout,
providing a system clock at the new frequency.

11.3.5 Disabling the PLL

The clock must be set to the bypass clock via the CLKCTL[CKSEL] field before the PLL is
disabled using the CLKCTL[PLLEN] bit. To re-enable the PLL, follow the steps in Section
11.3.2, Enabling the PLL, on page 11-9.

11.3.6 Loss of Lock Handling

The MSC711x PLL is robust and remains locked except in cases of loss of lock due to a
temporary board-level disturbance in the power supply or input reference clock. The MSC711x
lock detection circuit detects a loss of lock. This information is latched in the LSLK sticky bit
within the CLKCTL register, and a signal is sent to the event port, where it can be used for event
port triggering. The stickiness of this bit ensures that the loss of lock condition remains captured
even if the loss of lock occurred for a small number of clock cycles.

Figure 11-3 illustrates the operation of the lock and loss-of-lock status bits:

1. The PLL is enabled as described in Section 11.3.2, Enabling the PLL, on page 11-9.

2. The system is disturbed by a power bounce, a drift in the reference clock, or a heavy
noise, causing a loss of PLL lock.

3. This event is captured in the Loss of Lock status bit. When this sticky bit is set, it
remains set.

4. Minor disturbances quickly relock. Clocks are continually sent to the system; that is, the
clock gating signal remains asserted. Large disturbances require longer to relock.

5. When the PLL is disabled, it loses lock, clearing the lock and loss-of-lock status bits.
The gating circuit disables the PLL clock, or the PLL is disabled on when the system
enters Stop mode.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-11

Clocks and Power Management

L

The system should be designed so that these disturbances do not occur and do not cause loss of
lock. However, this example demonstrates how the MSC711x clock module responds to
disturbances, such as might occur during initial board development.

11.4 Low-Power Operation

Effective low-power operation give complete user control over power reduction throughout the
system. MSC711x devices allow individual power control over the clock synthesis module,
extended core, AHB subsystem, and the peripheral subsystem, as shown in Figure 11-4.

Figure 11-3. Demonstrating PLL Locking and Clock Gating

Actual lock state
of PLL

ock Status Bit

PLL Clock

 - LOCKED -

Minor Shift in Frequency:
Quickly Reacquires Lock

 (Reacquires Lock)

 - LOCKED -

 (First Acquires Lock)

Large Disturbance in PLL:
Long Time to Reacquire Lock

Gating signal

Loss of Lock
Status Bit

PLL First Turned ON

PLL is
Turned

OFF
MSC711x Reference Manual, Rev. 1

11-12 Freescale Semiconductor

Low-Power Operation
Figure 11-4. MSC711x Region-Based Low-Power Operation

HLTACK

CLKIN

MUX
CLKOCLKO

Clock Synthesis Module

CLKCTL

HLTREQ

Extended
Core

1

3

S
C

14
00

 W
ai

t o
r

S
to

p
M

od
e

SC1400
Core

AHB
SubSystem

DMA

M2
Memory

Boot
ROM

Crossbar
Switch

2

Extended

ICache/
IFU

M1
Memory

DMA
Ethernet Bridges

Crossbar Halt
Request/Acknowledge

Peripheral Subsystem

Peripheral

Peripheral

Peripheral

Peripheral Halt Request/Clock Disable

Peripheral Halt Acknowledge

...

Timer Clock
Watchdog Clock

4

5

Clock
Generation

STOPCTL

ECore
Clock

Core
Clock

AHB
Clock

/2

Core
Interface
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-13

Clocks and Power Management
The techniques for lowering the operating power of an MSC711x device include:

� Individually enable or shut down important MSC711x clocks
(some clocks can be programmed to be shut down in the SC1400 Stop mode).

� Shut down the SC1400 core via the Wait or Stop modes.

� Use different available techniques to shut down the PLL.

� Freeze or shut down the AHB subsystem.

� Individually enable or shut down each peripheral.

11.4.1 Extended Core Low-Power Operation

The SC1400 core can be placed into either Stop or Wait mode, and the extended core can be
placed into Stop mode. The extended core enters Wait mode when it issues the wait instruction.
In Wait mode, the SC1400 core consumes minimal power because its clocks are frozen. The
clocks of other modules inside the extended core do not stop, so the crossbar switch and interrupt
controller are functional. The PLL is not affected. The SC1400 core exits Wait mode under the
following conditions:

� Reception of a maskable interrupt request with a priority greater than the current core
priority level.

� Reception of a non-maskable interrupt request, independent of the state of the SC1400
EMR[NMID] bit.

� Power-on reset, any hard reset, any soft reset.

� Any request to enter the SC1400 Debug mode.

The non-maskable and maskable interrupt request signals from the interrupt controller can wake
the device from Wait mode. These signals are first synchronized in the clock controller when the
device wakes up from Wait mode.

The SC1400 core and extended core enter Stop mode when the core issues the stop instruction. In
Stop mode, the SC1400 core consumes minimal power because its clock is frozen. Stop mode is
also used to shut down chip-level modules and subsystems. In Stop mode, the ECore clock is
frozen and the system clocks behave as follows:

� Core clock is frozen.

� AHB, IPBus, APB and ECore clocks are not frozen unless selected by the STDIS2 bit.

� Timer clock is not frozen unless selected by the STDIS4 bit.

� Watchdog clock is not frozen unless selected by the STDIS5 bit.

� PLL is not frozen unless selected by the PLLSTP bits.

� DDR is not frozen unless selected by the DDRCK bits.
MSC711x Reference Manual, Rev. 1

11-14 Freescale Semiconductor

Low-Power Operation
In Stop mode, the different interrupt request sources are handled as follows:

� Non-maskable chip-level requests are not masked and can optionally be programmed to
bring the SC1400 core out of Stop mode (see Section 11.4.5, Exit from Stop Mode).

� Software can clear or mask the IRQ pins in the GPIO module before entry into Stop mode,
and IRQ status can also be read (if IRQ requests are pending).

� Interrupt requests from device peripherals are handled in one of the following ways before
entry into Stop mode:

— A peripheral module is disabled, removing any pending interrupt requests.
— Pending interrupt requests are removed by clearing interrupt enable bits in the

peripheral.
— Pending interrupt requests are removed by setting their associated IPLs within the

interrupt controller to disabled.
— Requests from peripherals are simply ignored in Stop mode.

When the stop instruction executes, there must be no changes to the STOPCTL register
(page 11-26) in any of the three preceding instructions. If a write instruction is used to modify
the STOPCTL register before entry into Stop mode, it must be a Write-Immediate No Freeze or,
if not, the following conditions apply:

� A Write-Immediate must occur at least eight cycles before the stop instruction executes.

� Before a write to STOPCTL through the write buffer, the write buffer must be flushed at
least eight cycles before the stop instruction executes.

11.4.2 Clock Synthesis Module Low Power Operation

The clock synthesis module generates clocking for an MSC711x device. In applications requiring
minimum power consumption, you can use the following techniques to lower the power
consumption via the clocks in the clock synthesis module:

� PLL operation:

— PLL disabled.
— In SC1400 Stop mode, power-down PLL digital circuitry (input divider not affected).
— In SC1400 Stop mode, power-down entire PLL (input divider also powered down).
— PLL normal operation continues in SC1400 Stop mode.

� Timer clock operation:

— Timer clock disabled.
— In SC1400 Stop mode, the timer clock is shut down.
— Timer clock operation continues in SC1400 Stop mode, except when the IPBus clock

is selected as the timer clock and STDIS2 is set. It is disabled via the IPBus clock.

� Watchdog clock operation:

— Watchdog clock disabled.
— In SC1400 Stop mode, the watchdog clock is shut down.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-15

Clocks and Power Management
— Watchdog clock normal operation continues in SC1400 Stop mode.

� DDR clock operation:

— DDR clock disabled.
— In SC1400 Stop mode, the DDR clock is shut down, with the result that the external

DDR memory chips are not refreshed.
— DDR clock normal operation continues in SC1400 Stop mode.

� Turn off the CLKO pin when it is not in use.

Normally Stop mode affects SC1400 core and extended core operation, but on MSC711x
devices, the detection of entry into Stop mode is fed into the clock synthesis module so that
selected chip-level regions can be programmed to shut down automatically in this mode and be
re-enabled when the SC1400 exits Stop mode.

The PLL takes advantage of its automatic switching at PLL lock for fast Stop mode wake-up—
unless it is programmed to be unaffected by Stop mode. However, when Stop mode powers down
all or part of the PLL:

� If it is programmed for bypass clock in Stop mode, it remains with the bypass clock upon
exit.

� If it is programmed for PLL clock upon entry into Stop, it exits Stop mode using the
bypass clock.

� If the PLL acquires lock, it automatically switches from the bypass clock to the PLL clock
upon acquiring lock.

11.4.3 AHB Subsystem Low-Power Operation

The AHB subsystem can continue to operate so that DMA activity can continue. The subsystem
can also be frozen or powered down quickly. A freeze occurs independently of the SC1400 Stop
mode and halts the crossbar switch though it does not halt the clock to the crossbar. A shutdown
of the AHB subsystem used the SC1400 Stop mode and halts the crossbar switch and also the
clock to the crossbar. Correctly halting the crossbar switch before entering Stop mode can be
very important for data integrity in an application because it helps to ensure that the clocks are
not gated off in the middle of a system-level transfer. The crossbar HLTREQ[XBRHRQ] bit is
used to request a halt from the switch, and the switch in turn provides an acknowledge of its halt
with the crossbar HLTACK[XBRSTA] bit.

11.4.3.1 Limited Halt of the Crossbar Switch

To halt the crossbar switch for low power consumption, use the following procedure:

1. Ensure that HLTREQ[ITCCD] is cleared so that clocks to the interrupt controller are
enabled.

2. Flush the extended core write buffer by reading the Write Buffer Flush Register
(WBFR).
MSC711x Reference Manual, Rev. 1

11-16 Freescale Semiconductor

Low-Power Operation
3. Enable the AMEC and AMIC bus error detection units, which monitor the master buses
for time-outs (see Table 7-2, BERRCTL Bit Descriptions, on page 7-10).

4. Disable the AMDMA and AMENT Bus Error Detection Units, which monitor the
master buses for time-outs (see Table 7-2, BERRCTL Bit Descriptions, on page 7-10).

5. Set the ECI GPSCTL[XHRQ] bit to request a halt of the crossbar switch (see Table
4-12, GPSCTL Bit Descriptions, on page 4-43.).

6. Wait for an acknowledge by polling the crossbar switch GPSCTL[XHACK] bit. The
crossbar asserts this bit when all slave ports have arbitrated for the halt and have
completed all other activity so each slave port has halted.

To restart the crossbar switch:

1. Clear the ECI GPSCTL[XHRQ] bit to remove the halt request.

2. Re-enable the bus error detection units.

Note: If the interrupt vector table is in DDR, then the DDR must remain on when the
crossbar is powered down. It may be desirable that the HLTREQ[EPCD] bit remain
enabled when the crossbar is powered down.

11.4.3.2 Complete Halt of the Crossbar Switch

To halt the crossbar switch completely for lowest power consumption, use the following
procedure:

1. Ensure that HLTREQ[ITCCD] is cleared so that clocks to the interrupt controller are
enabled.

2. Flush the extended core write buffer by reading the Write Buffer Flush Register
(WBFR).

3. Enable the AMEC and AMIC bus error detection units, which monitor the master buses
for time-outs (see Table 7-2, BERRCTL Bit Descriptions, on page 7-10).

4. Disable the AMDMA and AMENT Bus Error Detection Units, which monitor the
master buses for time-outs (see Table 7-2, BERRCTL Bit Descriptions, on page 7-10).

5. Set the ECI GPSCTL[XBRHRQ] bit to request a halt from the crossbar switch.

6. Wait for an acknowledge by polling the crossbar GPSCTL[XBRHAK] bit. The crossbar
switch asserts this bit when all slave ports arbitrate for the halt and completes all other
activity so each slave port halts.

7. Set the STOPCTL[STDIS2] bit to shut down the AHB, APB, ECore clock, and IPBus
clocks in the SC1400 Stop mode for lowest power consumption.

8. Execute a stop instruction from the SC1400 core.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-17

Clocks and Power Management
To restart the crossbar switch, use any of the valid mechanisms for exiting the SC1400 Stop
mode, which re-enables the system clock to the module. Clear the ECI GPSCTL[XBRHRQ] bit
to remove the halt request. Then re-enable the bus error detection units.

When halting the crossbar, take care to ensure that desired modules can still be accessed
correctly. When the crossbar is halted, there is no access to peripherals through the APB or IPBus
bridges or through the ASTH bus. In addition, there is no access to the M2 memory, boot ROM,
or DDR controller. Therefore, the crossbar halt request and halt acknowledge bits are in the
ECore, which is accessible even when the crossbar is halted, rather than in the clock synthesis
module.

Also, M2 memory, the DDR memory controller are unavailable and ICache misses can no longer
be serviced when the crossbar is halted. Therefore, code should be executed from M1 memory
when the crossbar is halted.

11.4.4 Peripheral Subsystem Low Power Operation

For greatest power reduction, you can individually halt the MSC711x peripherals with the Halt
Request Control Register. Once halted, these modules must not be accessed until they are
re-enabled. The interrupt controller uses its halt request bit to stop its clocks in a sequence. It
keeps pending interrupts and handles them, but it does not detect new interrupts. It signals a halt
acknowledge only when there are no more enabled pending interrupts.

11.4.4.1 Complete Halt of the DDR Memory Controller

To halt the memory controller completely, use the following procedure:

1. Set up the DDR memory controller self refresh and dynamic power management as
desired in the SCFG register.

2. Set the HLTREQ[DDRHRQ] bit to request a halt.

3. Wait for an acknowledge by polling the HLTACK[DDRHAK] bit. The memory
controller asserts this bit when all accesses have completed.

4. Set the STOPCTL[DDRCK] bits to a value of 01 to shut down the DDR clock for lowest
power consumption.

To restart the memory controller:

1. Set the STOPCTL[DDRCK] bits to 00 or 10 to re-enable the DDR clock to the module.

2. Clear the HLTREQ[DDRHRQ] bit to remove the halt request.
MSC711x Reference Manual, Rev. 1

11-18 Freescale Semiconductor

Low-Power Operation
11.4.4.2 Halt of the DDR Memory Controller in Stop Mode Only

To halt the memory controller in Stop mode, use the following procedure:

1. Before enabling the DDR memory controller, set the STOPCTL[DDRCK] bits to 10 to
shut down the DDR clock in Stop mode.

2. Set up the DDR memory controller as needed, including self refresh and dynamic power
management.

3. Enable the DDR controller.

4. Set the HLTREQ[DDRHRQ] bit to request a halt from the memory controller.

5. Wait for an acknowledge by polling the HLTACK[DDRHAK] bit. The memory
controller asserts this bit when all accesses have completed.

6. Execute a stop instruction from the SC1400 core.

To restart the memory controller and exit from Stop mode, use any valid mechanism for exiting
the SC1400 Stop mode and automatically re-enable the clock to the module (see Section 11.4.5,
Exit from Stop Mode, on page 11-22).

11.4.4.3 Complete Halt of the Ethernet MAC

To halt the Ethernet MAC completely, use the following procedure:

1. Set the Ethernet MAC TCTL[GTS] bit to request a graceful stop of transmit data.

2. Poll the Ethernet MAC IEVENT[GRA] bit until this bit is set. The Ethernet MAC
asserts this bit when all transmits in progress have completed. Alternatively, use the
Ethernet MAC summary interrupt, which requires that the IMASK[GRAEN] bit be set.

3. Shut down the MII bridge by clearing the MIIENR[MIIEN] bit.

4. Optionally, to empty values still in the ENET Rx buffer more rapidly, raise the priority
of the AMENT master at all slave ports in the crossbar that allow transfers from the
AMENT bus.

5. Use a GP timer or software delay loop to wait an appropriate number of clocks to ensure
that all the values in the ENET Rx buffer (up to 128 32-bit values) successfully transfer
out to their appropriate destinations. The value of this count depends on the crossbar
arbitration technique (fixed-priority versus round-robin), the programmed priority of the
AMENT master at each crossbar slave port, as well as accesses from other AHB masters
to slave ports with higher priority than the AMENT bus. A safe value is 10 ms.

6. Clear the Ethernet MAC ECTL[ETHEN] bit to shut down the module. Reception
immediately stops, and transmission stops after a bad CRC is appended to any frame
being transmitted.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-19

Clocks and Power Management
7. Optionally set the HLTREQ[ENETCD] bit to shut down the system clock to the
module.

Restart the Ethernet MAC as follows:

1. Clear the HLTREQ[ENETCD] bit to re-enables the system clock to the module.

2. Set the Ethernet MAC ECTL[ETHEREN] bit to re-enables the module.

3. Clear the TCTL[GTS] bit to remove the graceful stop request.

11.4.4.4 Complete Halt of the HDI16

To halt the HDI16 completely, use the following procedure:

1. If the HDI16 is serviced by the MSC711x DMA controller rather than by polling or
interrupts, optionally mask new DMA requests from the HDI16, HDI16 TX and HDI16
RX, in the DMA DMAERQ register.

2. Optionally, poll the HDI16 HSR[HTFE] and HSR[HRFNE] bits to ensure that the
FIFOs are empty. Service the HDI16 as appropriate until these bits are cleared. Omitting
this step can result in transmission or reception of invalid data.

3. Clear the HDI16 HPCR[HEN] bit to shut down the module.

4. Set the HLTREQ[HDICD] bit to shut down the system clock to the module for lowest
power consumption.

To restart the HDI16, use the following procedure:

1. Clear the HLTREQ[HDICD] bit to re-enable the system clock to the module.

2. If the on-device DMA controller services the HDI16, re-enable requests in the
DMAERQ register.

3. Set the HDI16 HPCR[HEN] bit to re-enable the module.

11.4.4.5 Complete Halt of a TDM

To halt the TDM completely, use the following procedure:

1. Follow the shutdown procedure in Section 19.6, Software Programming Sequence, on
page 19-23. To verify that the TDM has shut down correctly, poll its status bits
(TDMxRSR[RENS] and TDMxTSR[TENS]).

2. Set the HLTREQ[TDMxCD] bit to shut down the system clock to the module.

To restart the TDM, use the following procedure:
MSC711x Reference Manual, Rev. 1

11-20 Freescale Semiconductor

Low-Power Operation
1. Clear the HLTREQ[TDMxCD] bit to re-enable the system clock to the module.

2. Follow the TDM start-up procedure in Section 19.6, Software Programming Sequence,
on page 19-23.

11.4.4.6 Complete Halt of the UART

To halt the UART completely, use the following procedure:

1. Optionally, poll the UART’ LSR[TEMT] bit to ensure that the UART is not transmitting
data. Omitting this step can result in transmission of invalid data.

2. Set the HLTREQ[UARTCD] bit to shut down the system clock to the module. Asserting
this bit during transmission or reception can result in invalid data.

To restart this block, clear the HLTREQ[UARTCD] bit to re-enable the system clock to the
module.

11.4.4.7 Complete Halt of the I2C

To halt the I2C module completely, use the following procedure:

1. Optionally, poll the I2C I2SR[ICF] to ensure that no transfer is in progress. Omitting
this step can result in transmission or reception of invalid data.

2. Clear the I2CTLR[IEN] bit to shut down the module.

3. Set the HLTREQ[I2CCD] bit to shut down the system clock to the module.

To restart this the I2C module, use the following procedure:

1. Clear the HLTREQ[I2CCD] bit to re-enable the system clock to the module.

2. Set the I2CTLR[IEN] bit to re-enable the module.

11.4.4.8 Shutting Down One Timer in a Timer Module

To shut down one of the timers in a timer module, clear the TMRxCTL[CM] bits to 000.

11.4.4.9 Shutting Down a Timer Module

To halt the timer module completely, use the following procedure:

1. Clear the TMRxCTL[CM] bits to 000, for each timer in the module.

2. Set the HLTREQ[TMRxCD] bit for the appropriate module to shut down the system
clock to the module.

To restart this the timer module:
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-21

Clocks and Power Management
1. Clear the HLTREQ[TMRxCD] bit for the appropriate module to re-enable the system
clock to the module.

2. Re-enable the individual timers as appropriate.

11.4.4.10 Selecting the Input Clock as the Source for the Timer Modules

For very low power operation in Stop mode, the IPBus clock can be shut off via the STDIS2 bit.
The timer modules can still operate from the device input clock or scaled input clock and use it to
exit Stop mode after a predetermined delay. The procedure is as follows:

1. Complete any remaining accesses required to registers in any of the two timer modules
and then set the input clock in the CLKCTL[TMUX] bits. The programming models of
all timer modules are not accessible.

2. Set the desired behavior of the clock in Stop mode via the STOPCTL[STDIS4] bit.

3. Execute the SC1400 stop instruction when Stop mode desired.

4. Change the timer clock back to the IPBus clock for register access.

When the input or scaled input clock is selected as the timer clock, the timer module registers
become inaccessible. When there is a switch from the input clock or scaled input clock to the
IPBus clock as the source for the timer clock, accesses to the registers or functionality of the
timer module are permitted only after four clock periods of the original clock source.

11.4.5 Exit from Stop Mode

Two sets of operations cause the MSC711x to exit from Stop mode.

� Basic Exit Operations

� STOPCTL Register-Enabled Exit Operations

— Direct Exit Operations
— Event Port Multiplexor 0 Exit Operations

11.4.5.1 Basic Exit Operations

The Basic Exit operations do not need to be enabled through the STOPCTL register. Each of the
following Basic Exit operations cause the MSC711x to exit from Stop mode.

� Power-on reset, any hard reset, soft reset

� Debug request via a JTAG command

� Debug request via assertion on the DBREQ/EE0 pin, when programmed as DBREQ

� Software watchdog timer configured to generate a non-maskable interrupt on a time-out:

— The watchdog timer must receive a clock when the MSC711x is in Stop mode.
— When programmed for generating a reset, the watchdog timer also brings the

MSC711x out of Stop mode.
MSC711x Reference Manual, Rev. 1

11-22 Freescale Semiconductor

Low-Power Operation
— The watchdog time must not be configured to pause in Stop mode.

11.4.5.2 STOPCTL Register-Enabled Exit Operations

In addition to the Basic Exit operations, the following operations can be used to exit the
MSC711x from Stop mode by programming the associated enable bits of the the STOPCTL
register. Direct Exit operations cause exit from Stop mode independent of the Event Port, while
Event Port Mulitiplexor 0 Exit operations require appropriate Event Port configuration.

11.4.5.2.1 Direct Exit Operations
� Assertion of the EVNT4 pin:

Does not require HLTREQ[ITCCD] or STOPCTL[STPDIS2] to be cleared.

� Any chip-level non-maskable interrupt:

— Requires that the ECore clock continue in Stop mode, which is accomplished by
ensuring that both HLTREQ[EIRQHR] (see page 11-28) and STOPCTL[STDIS2]
(see page 11-26) are cleared.

— Requires clocking to the GPIO if desired on the NMI pin.

� Timer overflow detection (channel 0 in timer module A only). Timer module A must
receive a clock in Stop mode.

� Timer compare detection (channel 1 in timer module A only). Timer module A must
receive a clock in Stop mode.

11.4.5.2.2 Event Port Multiplexor 0 Exit Operations

When the Event Port Multiplexer 0 event is enabled to cause Stop mode exit via setting
STOPCTL[WMX0], the following input sources can cause a Stop mode exit.

� Any Ethernet MAC interrupts. Requires the FEC to receive a running clock in Stop mode
by ensuring both HLTREQ[ENETCD] and STOPCTL[STPDIS2] are cleared.

� EVNT4 signal . Requires EVNT4 synchronization clock to run in Stop mode by ensuring
both HLTREQ[ITCCD] and STOPCTL[STPDIS2] are cleared.

� EVNT3 signal. Requires EVNT3 synchronization clock to run in Stop mode by ensuring both
HLTREQ[ITCCD] and STOPCTL[STPDIS2] are cleared.

� Timer A TOUT[3–0] signals. Requires Timer module A to receive a running clock in Stop
mode.

� DMA sources. Requires the DMA to receive a running clock in Stop mode by ensuring
that STOPCTL[STPDIS2] is cleared. Note that if a hardware initiated DMA request (for
example, from the HDI or TDM) is used then the request initiator must receive a running
clock in Stop mode.

� TDM0 or TDM1 Rx interrupts. For TDM0 and TDM1 Rx interrupts, TDM0 and TDM1
are required to receive a running clock in Stop mode by ensuring that
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-23

Clocks and Power Management
HLTREQ[TDM0CD] and HLTREQ[TDM1CD], respectively, are cleared. Additionally,
STOPCTL[STPDIS2] must be cleared.

� NMICHP. The arbitrated non-maskable interrupt received by the SC1400 core from the
Interrupt Controller. Requires the Interrupt Controller to receive a running clock in Stop
mode by ensuring both HLTREQ[ITCCD] and STOPCTL[STPDIS2] are cleared.

Note: When using Event Port Multiplexor 0 to exit Stop mode, the following rules apply for
Event Port Multiplex 0:

� Combine bits must be set for an OR function.

� Enable bits must be set as always enabled.

� Invert capability can be used.

� Clocks must be enabled (STOPCTL[STPDIS2] cleared) for using the event port to exit
Stop mode except for when a timer is selected as an input source. For this exception, the
Timer module must receive a running clock in Stop mode.

11.5 Clock Programming Model

The MSC711x clock registers include clock configuration registers, stop configuration registers,
and reset configuration registers. The value of the base address for this register file, CLK_BASE,
is in Table 5-1, Summary — Base Addresses for MSC711x Register Files, on page 5-4. The
clock configuration registers are as follows:

� Clock Control Register (CLKCTL), page 11-24.

� Stop Mode Control Register (STOPCTL), page 11-26.

� Halt Request Register (HLTREQ), page 11-28.

� Halt Acknowledge Status Register (HLTACK), page 11-29.

CLKCTL Clock Control Register CLK_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TMUX — RNG CLKO LCK LSLK PLLMLTF

TYPE R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— PLLDVF PLLEN RSTRT CKSEL —

TYPE R R/W R

RESET 0 0 0x0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

11-24 Freescale Semiconductor

Clock Programming Model
CLKCTL is the register for configuring the clock module. There are restrictions on the
frequencies permitted at the input of the multiplication portion of the PLL. Specifically, the
frequency at this node must fall within a particular range of frequencies. Restrictions on the
minimum and maximum frequencies at the output of the multiplication block can affect the
values chosen for the PLLDVF and PLLMLTF fields. Refer to the device data sheet for details.

Table 11-8. CLKCTL Bit Descriptions

Name Reset Description Settings

TMUX
31–30

 0x0 Timer Clock Multiplex
Selects the clock source for the timer clock. The timer
module registers are not accessible when the input clock
or scaled input clock is selected. See Section 11.4.4.10,
Selecting the Input Clock as the Source for the Timer

Modules, on page 11-22. The 26 divider is enabled only
when selected. Otherwise, it is disabled to reduce power.

00 Disabled.

01 Input clock.

10 Input clock / 26.

11 APB clock.

—
29

0x0 Reserved. Write to zero for future compatibility.

RNG
28

0 PLL Frequency Range.
Divides the output of the PLL loop by two. When RNG is
used, take care to ensure that FLOOP meets the range
specified in the device data sheet.

0 FVCO = FLOOP / 2.

1 FVCO = FLOOP.

CLKO
27–26

 0x0 Clock Out MUX
Selects the clock source for clock out.

00 Disabled.

01 IPBus clock/2.

10 Timer clock/2.

11 Reserved.

LCK
25

0 PLL Lock.
Status bit indicating the state of PLL lock.

0 PLL is out of lock.

1 PLL is in lock.

LSLK
24

0 PLL Loss of Lock.
Sticky bit indicating whether the PLL has lost lock after
successfully acquiring lock. Writing a 1 to this bit clears
the bit. The value of this bit is an input to the event port.

0 PLL has not lost lock.

1 PLL has lost lock.

PLLMLTF
23–16

0x0 PLL Multiplication Factor
Specifies the multiplication factor for the PLL. The
multiplication factor is PLLMLTF + 1.
See the note on allowed frequency ranges immediately
following this table.

—
15–14

 0x0 Reserved. Write to zero for future compatibility.

PLLDVF
13–8

0x0 PLL Input Division Factor
Specifies the PLL division factor. The division takes
place before the multiplication. The division factor is
PLLDVF + 1.

PLLEN
7

0 PLL Enable
Enables or fully powers down the PLL circuitry.

0 PLL disabled.

1 PLL enabled.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-25

Clocks and Power Management
STOPCTL programs clock module operation during SC1400 Stop mode. It can also disable the
DDR clock.

RSTRT
6

0 PLL Restart
Restarts the PLL when the multiplication or division
factor is modified. This bit must be written with a 1 when
either of these fields is modified. It is written with a 0 in all
other cases. This bit always reads as a 0.

0 No effect.

1 Restarts the PLL. Required when the
multiplication or division factor
changes.

CKSEL
5–4

 0x0 Core Clock Select
Selects the clock source for the ECore clock.
When 00 is selected, the clock immediately switches to
the bypass clock. When any other mode is selected, the
clock controller uses the bypass clock until the PLL is
locked. See Section 11.3.4.2, Bypass Clock, on page
11-10).

00 Input clock (bypass clock).

01 Fvco / 2 (PLL clock).

10 Reserved.

11 FVCO (PLL clock).

—
3–0

 0x0 Reserved. Write to zero for future compatibility.

STOPCTL Stop Mode Control Register CLK_BASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— WMX0 WTA1 WTA0 WEV4 WNMI

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLLST DDRCK — STDIS5 STDIS4 STDIS2

TYPE R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11-9. STOPCTL Bit Descriptions

Name Reset Description Settings

—
31–21

0x0 Reserved. Write to zero for future compatibility.

WMX0
19

 0 Wake Up on Event Multiplex 0
Enables wake-up on the event selected in Event
Multiplex 0.

0 Disable Stop wake-up.

1 Enable Stop wake-up.

WTA1
19

 0 Wake Up on Channel 1 of Timer Module A
Enables wake-up on a compare detection for this
channel.

0 Disable Stop wake-up.

1 Enable Stop wake-up.

Table 11-8. CLKCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

11-26 Freescale Semiconductor

Clock Programming Model
WTA0
18

 0 Wake Up on Channel 0 of Timer Module A
Enables wake-up on an overflow detection for this
channel.

0 Disable Stop wake-up.

1 Enable Stop wake-up.

WEV4
17

 0 Wake Up on EVNT4 Pin
For enabling wake-up on any assertion of this pin.

0 Disable Stop wake-up.

1 Enable Stop wake-up.

WNMI
16

 0 Wake Up on Non-Maskable Interrupt Request
For enabling wake-up on any system-level non-maskable
interrupt. The non-maskable sources can be seen in the
NMIPR register (see Section 12.6, Interrupt Controller
Programming Model, on page 12-12)

0 Disable Stop wake-up.

1 Enable Stop wake-up.

PLLSTP1

15–14

 0x0 PLL Stop Modes
Selects how PLL is affected when the SC1400 core
enters Stop mode.

00 PLL unaffected by Stop mode.

01 Power down PLL digital only in Stop
mode (input divider remains active).

10 Power down entire PLL in Stop mode
(including input divider).

11 Reserved.

DDRCK
13–12

 0x0 DDR Clock Modes
Selects operation of the DDR clock and how it is affected
when the SC1400 core enters Stop mode.
See Section 11.4.4.1, Complete Halt of the DDR
Memory Controller and Section 11.4.4.2, Halt of the
DDR Memory Controller in Stop Mode Only.

00 DDR clock enabled.

01 DDR clock disabled.

10 DDR clock disabled in Stop mode.

11 Reserved.

—
11–3

0x0 Reserved. Write to zero for future compatibility.

STDIS5
2

 0 Stop Disable 5
Disables the watchdog clock in SC1400 Stop mode.

0 Watchdog clock runs in Stop mode.

1 Watchdog clock disabled in Stop
mode.

STDIS4
1

 0 Stop Disable 4
Disables CLKIN to the timer multiplex in SC1400 Stop
mode.

0 Clock runs in Stop mode.

1 Clock disabled in Stop mode.

STDIS21

0

 0 Stop Disable 2
Disables the AHB, IPBus, ECore clock, and APB clocks
in SC1400 Stop mode.

0 Clocks run in Stop mode.

1 Clocks disabled in Stop mode.

Note: There is no Stop Disable 3 because the Core clock is automatically gated off by the execution of a Stop or Wait
instruction. There is no Stop Disable 1 because the function is handled by the PLLSTP bits.

Table 11-9. STOPCTL Bit Descriptions

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-27

Clocks and Power Management
HLTREQ allows individual shutdown of peripherals using one of two different techniques,
disabling the clock to the peripheral or using a peripheral’s built-in request for halt capability. To
power down a specific peripheral, set the appropriate bit in the HLTREQ register. You should
clear this bit when normal operation is desired.

HLTREQ Halt Request Register CLK_BASE + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— EIRQHR TDM2CD TDM1CD TDM0CD ENETCD EPCD HDICD TMBCD TMACD DDRHQ ITCCD — I2CCD UARTCD

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11-10. HLTREQ Bit Descriptions

Name Reset Description Settings

—
31–14

0 Reserved. Write to zero for future compatibility.

EIRQHR
13

0 External Interrupt Pin Halt Request
A global disable of all external IRQ pins in the GPIO
block for power reduction.

0 External IRQ pins are enabled.

1 External IRQ pins are disabled.

TDM2CD
12

0 TDM 2 Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

TDM1CD
11

0 TDM 1 Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

TDM0CD
10

0 TDM 0 Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

ENETCD
9

0 Ethernet MAC Clock Disable
Gates clock to the module for power reduction.
See Section 11.4.4.3, Complete Halt of the Ethernet
MAC, on page 11-19

0 Clocks are enabled.

1 Clocks are disabled.

EPCD
8

0 Event Port Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

HDICD
7

0 HDI16 Clock Disable
Gates clock to the module for power reduction. When
this bit is set, it disables both the fast and slow clocks to
this block.

0 Clocks are enabled.

1 Clocks are disabled.

TMRBCD
6

0 Timer Module B Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.
MSC711x Reference Manual, Rev. 1

11-28 Freescale Semiconductor

Clock Programming Model
Note: See Section 11.4.4, Peripheral Subsystem Low Power Operation, on page 11-18 for
correct usage of these bits.

HLTACK provides a halt acknowledge from the individual peripherals. When a halt is requested
of a peripheral and the peripheral is ready to shut down, the appropriate bit in the HLTACK
register is set. When the halt or clock disable is removed from the individual peripheral, its
corresponding acknowledge bit is cleared.

TMRACD
5

0 Timer Module A Clock Disable
Gates clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

DDRHRQ
13

0 DDR Halt Request
Requests a DDR halt, which uses the halt capability of
the DDR controller.

0 No request for halt.

1 Request halt from module.

ITCCD
3

0 Interrupt Controller Clock Disable
Gates the clock to the module for power reduction.
This bit can affect wake-up from Stop mode during a
wake-up from NMI. See Section 11.4.5, Exit from Stop
Mode, on page 11-22.
Note: This bit must be cleared if you are using an

EVNT signal as an input.

0 Clocks are enabled.

1 Clocks are disabled.

—
2

0 Reserved. Write to zero for future compatibility.

I2CCD
1

0 I2C Clock Disable
Gates the clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

UARTCD
0

0 UART Clock Disable
Gates the clock to the module for power reduction.

0 Clocks are enabled.

1 Clocks are disabled.

HLTACK Halt Acknowledge Status Register CLK_BASE + 0x18

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— DDRHAK —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11-10. HLTREQ Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 11-29

Clocks and Power Management
Note: See Section 11.4.4, Peripheral Subsystem Low Power Operation, on page 11-18 for
correct usage of these bits.

Table 11-11. HLTACK Bit Descriptions

Name Reset Description Settings

—
31–5

0 Reserved. Read returns zero.

DDRHAK
4

0 DDR Halt Acknowledge
Status bit indicating if the module is currently halted.

0 Module is not currently halted.

1 Module is currently halted.

—
3–0

0 Reserved. Read returns zero.
MSC711x Reference Manual, Rev. 1

11-30 Freescale Semiconductor

Interrupt Processing 12
The MSC711x interrupt system is optimized for real-time interrupt processing for up to 120
interrupt input channels. Eight programmable priority levels and vectored interrupt servicing
speeds up the processing. MSC711x interrupts can arrive from many different sources:

� Interrupt pins.

� Peripherals such as TDMs, timers, and the DMA controller; one peripheral can generate
more than one interrupt request.

� Non-maskable error conditions such as bus time-outs and illegal accesses.

The MSC711x interrupt controller works with the SC1400 core to handle prioritized, nestable,
vectored interrupts. Most sources are processed as level-sensitive, but edge triggering is used
where appropriate.

The interrupt controller register file contains registers programmed by software to handle
different priority levels for the different sources.

12.1 Interrupt Controller Architecture

The MSC711x interrupt controller collects maskable and non-maskable interrupt requests from
all device resources (with the exception of SC1400 core interrupt requests), arbitrates among all,
and consolidates them to two interrupt requests signals that are sent to the SC1400 Maskable
Interrupt Request and Auto-NMI Request. Figure 12-2 shows the a block diagram of the
interrupt controller.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-1

Interrupt Processing
Figure 12-1. Interrupt Controller Block Diagram

12.1.1 IRQ Pins Preprocessed in GPIO Port A

The external interrupt request signals received on the IRQ pins are preprocessed in the GPIO port
A interrupt logic. Interrupts can be detected as level-sensitive active high/low or edge-triggered
on the falling/rising edge. Edge-triggered and level-sensitive signals are synchronized at port A
via the ECore clock to reduce interrupt latency. Interrupts at these pins are individually enabled
or disabled via control bits within the GPIO. The value of each interrupt pin can be read before or
after this masking. The pre-processed signals are then sent to the Maskable Interrupt Controller.

Interrupt

64

Controller

AMEC

Maskable Interrupt Controller

IPLRx
Registers

ASAPB

32

Decoders and Event
3 × 120

Output Latches

ch
 1

10
 r

eq
ch

 1
11

 r
eq

ch
 1

19
 r

eq

...
...

ECore Clock

to SC1400 Interrupt Controller Interface

Device IRQ
Sources

IRQx Sources
from Pins

GPIO Port A

(to channels)(to channels)

Edge / Level detection and
Polarity for IRQ pins
is programmable in GPIO port A.

Device NMI
Sources

NMIPR

NMI signal

ch
 0

 r
eq

ch
 1

 r
eq

ch
 2

 r
eq

ch
 1

12
 r

eq

Channel inputs
are all active high,
level sensitive
at this point.

46

OR

Edge Detect

After Synchronizers

Extended Core
Clock

Debug
Mode

Selection Logic

INTEVx
Registers

Device

A
ut

o-
N

M
I R

eq
ue

st

M
as

k
In

te
rr

up
t R

eq
ue

st

V
A

B
[5

–0
]

3

V
A

B
E

N

IN
T

E
V

[4
–0

]

IP
L[

2–
0]

to
Event Port
MSC711x Reference Manual, Rev. 1

12-2 Freescale Semiconductor

Interrupt Arbitration
For details, see Section 24.4, Interrupts, on page 24-11. A block diagram of the preprocessing
logic is shown in Figure 24-2.

12.1.2 NMI Interrupts

The signal from the NMI pin is first passed through the logic in GPIO port A where it is
synchronized. GPAIEN[18] must be set to enable this interrupt. You must then explicitly set up
the NMI in the GPIO for level-sensitive (synchronized) operation. The output of the synchronizer
is sent to the interrupt controller where it is edge detected, using the logic for all device-level
non-maskable interrupt requests.

The NMI non-maskable interrupt request signal received on the NMI pin is edge triggered on the
falling edge. It is synchronized via the core clock. This request is cleared by writing a value of 1
to the appropriate bit in the Non-Maskable Interrupt Pending Register (NMIPR) (page 12-12).

12.1.3 Operation in Debug Mode

When the SC1400 core enters Debug mode, maskable and non-maskable interrupt requests are
optionally masked using MIPR[DDBG] (page 12-15) until the SC1400 core exits Debug mode.

12.2 Interrupt Arbitration

All maskable interrupt sources are programmable at any of the eight priority levels (Table 12-1).
System critical maskable sources have their own dedicated interrupt vector. Other resources
share an interrupt vector with one other source, and the least critical sources share a single vector.

The maskable interrupt sources are generated by the SC1400 core or the SC1400 OCE10 port, or
they are generated by system-level resources that share the default autovector, Auto-NMI. The
maskable sources can have their own dedicated interrupt vector (channels 0, 2, 4, ..., 60, 62),
share an interrupt vector (Channels 64–111), or share the default autovector, Auto-Maskable
(channels 112–119). The maskable sources are separated into different types because the SC1400
core supports only 64 interrupt vectors. Because there are more than 64 interrupt sources on an
MSC711x device, some sources must share a vector. The MSC711x interrupt controller has 120
channels for maskable sources, which are then combined to fit within the 64 available vectors.
The non-maskable sources are handled differently within the controller.

Table 12-1. Programming the Priorities of Maskable Interrupt Sources

IPL Enabled?
Request

Priority Level
Comments

000 No — Interrupt requests disabled from this interrupt source.

001 Yes 1 Interrupts enabled from this source at lowest priority.

010 Yes 2 Interrupts enabled from this source at next highest priority.

011 Yes 3 Interrupts enabled from this source at next highest priority.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-3

Interrupt Processing
Interrupt input channels are individually enabled or disabled by programming the maskable
priority for each channel. All maskable interrupts can be simultaneously disabled with the
SC1400 DI instruction, which sets the DI bit in the SC1400 core Status Register (SR). No
interrupts are serviced after the DI instruction executes. As a result, the code following the DI
instruction does not need to take into account any possible pipeline effects caused by interrupts.
The EI instruction re-enables all unmasked interrupts and clears the DI bit in the SR.

Non-maskable interrupt sources are arbitrated with a higher priority than all maskable sources
and are selected independently of the priority level in the SC1400 core Status Register.
Therefore, the non-maskable exceptions are not affected by the DI instruction. Non-maskable
sources are disabled when the non-maskable interrupt disable (NMID) bit is set in the Exception
and Mode Register (EMR) within the SC1400 core.

All interrupt requests arrive at the interrupt controller already synchronized and are arbitrated
there. Outputs from the interrupt controller are then latched and sent to the SC1400 core.
Interrupts are arbitrated with the order of priorities shown in Table 12-2.

100 Yes 4 Interrupts enabled from this source at next highest priority.

101 Yes 5 Interrupts enabled from this source at next highest priority.

110 Yes 6 Interrupts enabled from this source at next highest priority.

111 Yes 7 Interrupts enabled from this source at highest maskable priority.

Table 12-2. Interrupt Arbitration Priorities

Maskable/Non-Maskable Sources Rule

All non-maskable sources There is arbitration between non-maskable sources only if more than one
non-maskable request occurs simultaneously, in the following order of priorities:

1. TRAP

2. ILLEGAL

3. Debug port

4. Overflow

5. Device-level non-maskable sources

All maskable sources at IPL7 • If only one source requests an interrupt, it is selected.
• If more than once source requests an interrupt, the source with the lowest

interrupt input channel number is selected.
All maskable sources at IPL6

All maskable sources at IPL5

All maskable sources at IPL4

All maskable sources at IPL3

All maskable sources at IPL2

All maskable sources at IPL1

Table 12-1. Programming the Priorities of Maskable Interrupt Sources (Continued)

IPL Enabled?
Request

Priority Level
Comments
MSC711x Reference Manual, Rev. 1

12-4 Freescale Semiconductor

Interrupt Vectors
Only interrupts with a request IPL greater than the core IPL (in the SC1400 core Status Register)
are serviced. Maskable sources programmed at IPL 0 are disabled.

The interrupt channel inputs are directly arbitrated without latching, each is compared against its
associated programmed priority level, and the source with the highest arbitrated priority is
selected. The results are then latched in the output latches, as follows:

� Mask. An interrupt request signal indicates to the SC1400 core that a maskable interrupt is
pending.

� VAB provides the vector offset for the source, which is added to the base address (VBR)
when the SC1400 core services the interrupt.

� VABEN indicates that the value on the VAB is valid.

� IPL provides the priority level of the highest-priority maskable interrupt that is pending.

12.3 Interrupt Vectors

The vector base address resides in the VBA register of the SC1400 core. The 64 vector addresses
of the SC1400 core are allocated as follows:

� 56 for maskable sources (input channels 0 through 111). The interrupt controller drives the
vector address (VAB field).

� 1 for maskable sources that use the SC1400 interrupt autovector capability
(input channels 112 through 119 and the device-level NMI). The SC1400 core provides
the address.

� 1 for device-level non-maskable sources (uses autovector for non-maskable interrupts).

� 6 for core-generated non-maskable sources.

Figure 12-2 shows the address that the SC1400 core drives onto the PAB.

Figure 12-2. Forming the Interrupt Vector Address

The vector base address resides in the VBA register of the SC1400 core. The vector address
(VAB field) is driven by the interrupt controller for channels 0–111. Separate autovectors are
provided for the maskable and non-maskable channels. Each interrupt vector is allocated and
separated by 26 = 64 bytes.

Vector Base Address

20 6

Vector Offset

VAB

6

0x00
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-5

Interrupt Processing
12.4 Interrupt Sources

Separate autovectors are provided for the maskable and non-maskable channels. Each interrupt
vector is allocated and separated by 64 bytes. Non-maskable sources from the SC1400 core are
arbitrated in the core and thus do not use any interrupt input channels. The SC1400 core provides
the address offsets for these sources—except for the auto-NMI sources and auto-maskable
sources. All non-maskable sources generated by device-level resources use the auto-NMI source.
These are ORed together into a single NMI channel, and all share a common interrupt vector
provided by the SC1400 core with an offset of 0x180. The auto-maskable sources are arbitrated
by the interrupt controller and use channels 112 through 119. These sources share a common
interrupt vector provided by the SC1400 with an offset of 0x1C0.

Interrupt input channels 1, 3, 5, 7, ..., 59, 61, and 63 are not used because each group of two
channels shares one interrupt vector. For higher-priority interrupt sources, only one of these two
channels is used so that the interrupt source has its own dedicated vector. As a result, many of the
120 available interrupt channels are not used on MSC711x.

Table 12-3 lists the non-maskable interrupt sources from the core and Table 12-4 lists the
chip-level non-maskable interrupt sources.

The non-maskable interrupt sources from the SC1400 core are defined in the documentation for
the SC1400 core. Note that the DALU overflow non-maskable interrupt can be selectively
enabled with the SC1400 core SR[OVE] bit. All non-maskable device-level requests are detected
with edge triggering and are latched in the Non-Maskable Interrupt Pending register. They are
then ORed together and sent as one signal to the SC1400 interrupt controller. This signal
overrides the operation of the Maskable Interrupt Controller. The detection of a device-level
non-maskable interrupt also sets DEVCFG[CNMI], which elevates the priority of the SC1400

Table 12-3. MSC711x Non-Maskable Interrupt Sources from the SC1400 Core

Interrupt
Input Channel

Exception
Address Offset

Source Description

Non-Maskable Sources from the SC1400 Core

— 0x000 TRAP TRAP Instruction

— 0x040 — Reserved

— 0x080 ILLEGAL Illegal execution set, illegal instruction

— 0x0C0 Debug port Debug exceptions generated by the OCE10 port

— 0x100 Overflow DALU Overflow

— 0x140 — Reserved

— 0x180 Auto-NMI Default vector for NMI sources (autovector). See non-maskable
sources from device-level resources in the discussion that follows.

— 0x1C0 Auto-maskable Default vector for maskable interrupt sources (autovector). See
maskable sources from device-level resources (Table 12-5).
MSC711x Reference Manual, Rev. 1

12-6 Freescale Semiconductor

Interrupt Sources
core during instruction accesses, ensuring that it can service the NMI. Detection of a device-level
non-maskable interrupt also clears the GPSCTL[XHRQ] bit in the extended core (page 4-43),
forcing the crossbar switch out of a halt state.

Edge-triggered interrupt requests are reset by writing a 1 to the bit associated with a particular
source, indicating to the interrupt controller that the SC1400 core has acknowledged the
corresponding edge-triggered source. The edge detection circuitry is then re-enabled for this
source.

Table 12-4. MSC711x Device-Level Non-Maskable Interrupt Sources

Interrupt
Input Channel

Exception
Address Offset

Source Description

Non-Maskable Sources from Device-Level Resources

NMI_ch 0x180 NMI NMI signal

NMI_ch 0x180 WDTEX Watchdog timer expiration

NMI_ch 0x180 HDI_NMI HDI16 Host NMI

NMI_ch 0x180 MISAL_P Extended Core misaligned program access

NMI_ch 0x180 MISAL_D Extended Core misaligned data access

NMI_ch 0x180 MISAL_AMEC Misaligned access on AMEC bus

NMI_ch 0x180 MISAL_AMIC Misaligned access on AMIC bus

NMI_ch 0x180 MISAL_AMDMA Misaligned access on AMDMA bus

NMI_ch 0x180 MISAL_AMENT Misaligned access on AMENT bus

NMI_ch 0x180 BE_AMEC Bus error detected on AMEC bus

NMI_ch 0x180 BE_AMIC Bus error detected on AMIC bus

NMI_ch 0x180 BE_AMDMA Bus error detected on AMDMA bus

NMI_ch 0x180 BE_AMENT Bus error detected on AMENT bus

NMI_ch 0x180 BT_ASM1 Bus time-out on ASM1 bus

NMI_ch 0x180 BT_ASM2 Bus time-out on ASM2 bus

NMI_ch 0x180 BT_ASEMI Bus time-out on ASEMI bus

NMI_ch 0x180 BT_ASTH Bus time-out on ASTH bus

NMI_ch 0x180 BT_ASAPB Bus time-out on ASAPB bus

NMI_ch 0x180 BT_ASSB Bus time-out on ASSB bus

NMI_ch 0x180 AORP_AMIC Program address out of range on AMIC bus

NMI_ch 0x180 AORX_AMEC Data address out of range on AMEC bus

NMI_ch 0x180 AORX_AMDMA DMA address out of range on AMDMA bus

NMI_ch 0x180 AORX_AMENT Ethernet MAC address out of range on AMENT bus (only on
devices with an Ethernet MAC)

NMI_ch 0x180 AORP_E Program address out of range, access at system level

NMI_ch 0x180 AORX_E Data address out of range, access at system level
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-7

Interrupt Processing
All internal maskable interrupt requests are tied to the 120 channels of the maskable interrupt
controller, arriving as active high, level-sensitive values (although the pins may have already
been detected as edge triggered within the GPIO), and are connected to the 120 available input
channels as mapped in Table 12-5.

NMI_ch 0x180 ROM_WR Write to ROM

NMI_ch 0x180 ISZ_PF Access of illegal size to peripherals

NMI_ch 0x180 DDR_ER DDR error interrupt

NMI_ch 0x180 CADNMI Core address detection (non-maskable)

NMI_ch 0x180 PADNMI Peripheral address detection (non-maskable)

Table 12-5. MSC711x Maskable Interrupt Sources

interrupt
input

channel

Exception
Address

Offset
Source Description

Maskable Sources — from Chip Level Resources

0 0x200 Tx0 TDM 0 transmit

2 0x240 Rx0 TDM 0 receive

4 0x280 Tx1 TDM 1 transmit

6 0x2C0 Rx1 TDM 1 receive

8–14 0x300–0x3C0 — Reserved

16 0x400 IRQ0 IRQ0 signal

18 0x440 IRQ1 IRQ1 signal

20 0x480 IRQ2 IRQ2 signal

22 0x4C0 IRQ3 IRQ3 signal

24 0x500 DMA0 DMA channel 0

26 0x540 DMA1 DMA channel 1

28 0x580 DMA2 DMA channel 2

30 0x5C0 DMA3 DMA channel 3

32 0x600 DMA4 DMA channel 4

34 0x640 DMA5 DMA channel 5

36 0x680 DMA6 DMA channel 6

38 0x6C0 DMA7 DMA channel 7

40 0x700 TMR_A0 Timer A interrupt, channel 0

Table 12-4. MSC711x Device-Level Non-Maskable Interrupt Sources (Continued)

Interrupt
Input Channel

Exception
Address Offset

Source Description
MSC711x Reference Manual, Rev. 1

12-8 Freescale Semiconductor

Interrupt Sources
42 0x740 TMR_A1 Timer A interrupt, channel 1

44 0x780 TMR_A2 Timer A interrupt, channel 2

46 0x7C0 TMR_A3 Timer A interrupt, channel 3

48–62 0x800–0x9C0 — Reserved

64 0xA00 ENTRxF Ethernet receive frame (only on devices with an Ethernet MAC)

65 0xA00 ENTTxF Ethernet transmit frame (only on devices with an Ethernet MAC)

66 0xA40 ENTSMRY Ethernet summary interrupt (only on devices with an Ethernet MAC)

67 0xA40 HDICMD HDI16 host command vector

68 0xA80 HDIRxF HDI16 receive data FIFO full

69 0xA80 HDIRxNE HDI16 receive data not empty

70 0xAC0 HDITxE HDI16 transmit data FIFO empty

71 0xAC0 HDITxNF HDI16 transmit data FIFO not full

72 0xB00 Tx2 TDM 2 transmit (only on devices with TDM2)

73 0xB00 Rx2 TDM 2 receive (only on devices with TDM2)

74 0xB40 TDM0ERR TDM 0 error interrupts

75 0xB40 TDM12ERR TDM 1, 2 error interrupts

76 0xB80 EVINT0 Event port request 0

77 0xB80 IRQ4 IRQ4 signal

78 0xBC0 EVINT1 Event port request 1

79 0xBC0 IRQ5 IRQ5 signal

80 0xC00 IRQ6 IRQ6 signal

81 0xC00 IRQ7 IRQ7 signal

82 0xC40 IRQ8, IRQ12 IRQ8 signal or IRQ12 signal

83 0xC40 IRQ9, IRQ13 IRQ9 signal or IRQ13 signal

84 0xC80 IRQ10, IRQ14 IRQ10 signal or IRQ14 signal

85 0xC80 IRQ11, IRQ15 IRQ11 signal or IRQ15 signal

86 0xCC0 CADINT0 Core address detection 0

87 0xCC0 — Reserved

88 0xD00 CADINT1 Core address detection 1

89 0xD00 — Reserved

90 0xD40 DMA8 DMA channel 8

91 0xD40 DMA9 DMA channel 9

Table 12-5. MSC711x Maskable Interrupt Sources (Continued)

interrupt
input

channel

Exception
Address

Offset
Source Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-9

Interrupt Processing
Note: Although two interrupt sources often share an interrupt vector, it is useful to place
these sources on different interrupt channels because each channel can be individually
disabled or enabled with its own priority level.

92 0xD80 DMA10 DMA channel 10

93 0xD80 DMA11 DMA channel 11

94 0xDC0 DMA12 DMA channel 12

95 0xDC0 DMA13 DMA channel 13

96 0xE00 DMA14 DMA channel 14

97 0xE00 DMA15 DMA channel 15

98 0xE40 TMR_B0 Timer B interrupt, channel 0

99 0xE40 TMR_B1 Timer B interrupt, channel 1

100 0xE80 TMR_B2 Timer B interrupt, channel 2

101 0xE80 TMR_B3 Timer B interrupt, channel 3

102–109 0xEC0–0xF80 — Reserved

110 0xFC0 I2C I2C interrupt

111 0xFC0 UART UART Tx and Rx interrupt

112 0x1C0 — Reserved. Uses SC1400 core autovector capability.

113 0x1C0 DMAREM All Remaining DMA channels (16 through 31) use SC1400 core
autovector capability

114 0x1C0 DMA_ERROR DMA error. Uses SC1400 core autovector capability.

115 0x1C0 — Reserved. Uses SC1400 core autovector capability.

116 0x1C0 EC_DUALWR Extended core dual write, uses SC1400 core autovector capability

117 0x1C0 — Reserved. Uses SC1400 core autovector capability.

118 0x1C0 IRQPINS For IRQ16 through IRQ26 pins, uses SC1400 core autovector
capability

119 0x1C0 — Reserved. Uses SC1400 core autovector capability.

Table 12-5. MSC711x Maskable Interrupt Sources (Continued)

interrupt
input

channel

Exception
Address

Offset
Source Description
MSC711x Reference Manual, Rev. 1

12-10 Freescale Semiconductor

Interrupt Event Selection
12.5 Interrupt Event Selection

The interrupt controller can send user-selected interrupt request signals to the event port for
triggering. The interrupt event selection logic is shown in Figure 12-3. Interrupt event selection
is performed as follows:

1. The user selects the desired maskable and non-maskable interrupt requests for event port
triggering by programming the INTEV and INTEVNM registers.

2. When interrupt requests arrive, they are enabled via the corresponding register bit.

3. Each group of requests is ORed together and latched for triggering the event port.

4. The INTEV trigger, which must also be enabled in the event port EVINx register(s),
performs the action programmed in the event port.

Figure 12-3. Interrupt Event Selection Logic

AMEC

Interrupt Request

IN
T

E
V

0
ch

 2
9

re
q

...

to Event Port

ch
 0

 r
eq

ch
 1

 r
eq

ch
 2

 r
eq

Masking

32

OR

Latch

E
na

bl
ed

 fr
om

IN
T

E
V

0
R

eg
is

te
r

AMEC

Interrupt Request

IN
T

E
V

1
ch

 5
9

re
q

...

ch
 3

0
re

q
ch

 3
1

re
q

ch
 3

2
re

q

Masking

32

OR

Latch

E
na

bl
ed

 fr
om

IN
T

E
V

1
R

eg
is

te
r

AMEC

Interrupt Request

IN
T

E
V

2
ch

 8
9

re
q

...

ch
 6

0
re

q
ch

 6
1

re
q

ch
 6

2
re

q

Masking

32

OR

Latch

E
na

bl
ed

 fr
om

IN
T

E
V

2
R

eg
is

te
r

AMEC

Interrupt Request

IN
T

E
V

3
ch

 1
19

 r
eq

...
ch

 9
0

re
q

ch
 9

1
re

q
ch

 9
2

re
q

Masking

32

OR

Latch

E
na

bl
ed

 fr
om

IN
T

E
V

3
R

eg
is

te
r

AMEC

Interrupt Request

IN
T

E
V

N
M

0
N

P
31...

N
P

0
N

P
1

N
P

2

Masking

32

OR

Latch
E

na
bl

ed
 fr

om
IN

T
E

V
N

M
0

R
eg

is
te

r

MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-11

Interrupt Processing
12.6 Interrupt Controller Programming Model

The interrupt controller registers reside in the ASAPB address space. These registers individually
set the priority level for each of the 120 available interrupt channels. Table 5-1, Summary —
Base Addresses for MSC711x Register Files, on page 5-4 lists the value of the base address for
the ICTL_BASE register file and the value of the base address for the IPL_BASE register file.
The Vector Base Address Register (VBA) is discussed in the documentation for the SC1400 core
and only briefly covered here. In addition, the interrupt controller registers are as follows:

� Non-Maskable Interrupt Pending Register (NMIPR), page 12-12.

� Maskable Interrupt Pending Register (MIPR), page 12-15.

� Interrupt Priority-Level Registers (IPLRx), page 12-16.

� Interrupt Event Selection Register (INTEVx),

� Non-maskable Interrupt Event Selection Register (INTEVNMx),

VBA Vector Base Address Register

VBA specifies the base address for the interrupt vector table. This register is located within the
SC1400 core, not in the interrupt controller. At reset, the value of the 20-bit wide VBA Register
is set to zero. The offset for each exception vector is predefined. There are 64 possible exception
vector locations. The spacing between two exception vectors is 64 bytes (four full execution
sets).

NMIPR resets edge-triggered interrupts from all pending device-level non-maskable interrupt
sources:

� Each bit is set when its associated non-maskable interrupt request arrives.

� Each bit can only be cleared by writing a value of 1 to the bit.

� These bits cannot be set by writing to the register.

NMIPR Non-Maskable Interrupt Pending Register ICTL_BASE + 0x000

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— NP30 NP29 NP28 — NP26 NP25 NP24 NP23 NP22 NP21 NP20 NP19 NP18 NP17 NP16

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NP15 NP14 NP13 NP12 NP11 NP10 NP9 NP8 NP7 NP6 NP5 NP4 NP3 NP2 NP1 NP0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

12-12 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-6. NMIPR Bit Descriptions

Name Reset Description Settings

—
31

 0 Reserved. Write to zero for future compatibility.

NP30
30

0 Status of NMI Input 30, Core Address Detection
(Non-Maskable)
Address out-of-range detected on one of the SC1400
buses.

0 No interrupt pending.

1 Interrupt pending.

NP29
29

0 Status of NMI Input 30, Peripheral Address
Detection (Non-Maskable)
Address out-of-range detected on one of the
AHB-Lite master buses.

0 No interrupt pending.

1 Interrupt pending.

NP28
28

0 Status of NMI Input 28
Misaligned data access.

0 No interrupt pending.

1 Interrupt Pending.

NP27
27

0 Reserved. Write to zero for future compatibility.

NP26
26

0 Status of NMI Input 26, DDR Error
Flags memory select errors from the DDR controller.

0 No interrupt pending.

1 Interrupt pending.

NP25
25

0 Status of NMI Input 25
Misaligned P access.

0 No interrupt pending.

1 Interrupt pending.

NP24
24

0 Status of NMI Input 24
Misaligned AMEC bus access.

0 No interrupt pending.

1 Interrupt pending.

NP23
23

0 Status of NMI Input 23
Misaligned AMIC bus access.

0 No interrupt pending.

1 Interrupt pending.

NP22
22

0 Status of NMI Input 22
Misaligned AMDMA bus access.

0 No interrupt pending.

1 Interrupt pending.

NP21
21

0 Status of NMI Input 21
Misaligned AMENT bus access.

0 No interrupt pending.

1 Interrupt pending.

NP20
20

0 Status of NMI Input 20
Illegal 64-bit access to peripheral on APB or IPBus.

0 No interrupt pending.

1 Interrupt pending.

NP19
19

0 Status of NMI Input 19
Address out of range on a program access within the
extended core address space.

0 No interrupt pending.

1 Interrupt pending.

NP18
18

0 Status of NMI Input 18
Address out of range on a data access (on XA or XB)
within the extended core address space.

0 No interrupt pending.

1 Interrupt pending.

NP17
17

0 Status of NMI Input 17
NMI signal.

0 No interrupt pending.

1 Interrupt pending.

NP16
16

0 Status of NMI Input 16
HDI16 NMI.

0 No interrupt pending.

1 Interrupt pending.

NP15
15

0 Status of NMI Input 15
Watchdog time-out.

0 No interrupt pending.

1 Interrupt pending.

NP14
14

0 Status of NMI Input 14
Bus error: AMENT.

0 No interrupt pending.

1 Interrupt pending.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-13

Interrupt Processing
NP13
13

0 Status of NMI Input 13
Bus error: AMEC.

0 No interrupt pending.

1 Interrupt pending.

NP12
12

0 Status of NMI Input 12
Bus error: AMIC.

0 No interrupt pending.

1 Interrupt pending.

NP11
11

0 Status of NMI Input 11
Bus error: AMDMA.

0 No interrupt pending.

1 Interrupt pending.

NP10
10

0 Status of NMI Input 10
Bus time-out: ASMI.

0 No interrupt pending.

1 Interrupt pending.

NP9
9

0 Status of NMI Input 9
Bus time-out: ASM2.

0 No interrupt pending.

1 Interrupt pending.

NP8
8

0 Status of NMI Input 8
Bus time-out: ASEMI.

0 No interrupt pending.

1 Interrupt pending.

NP7
7

0 Status of NMI Input 7
Bus time-out: ASTH.

0 No interrupt pending.

1 Interrupt pending.

NP6
6

0 Status of NMI Input 6
Bus time-out: ASAPB.

0 No interrupt pending.

1 Interrupt pending.

NP5
5

0 Status of NMI Input 5
Bus time-out: ASSB.

0 No interrupt pending.

1 Interrupt pending.

NP4
4

0 Status of NMI Input 4
Address out of range on IFU access AMIC bus.

0 No interrupt pending.

1 Interrupt pending.

NP3
3

0 Status of NMI Input 3
Address out of range on Ethernet DMA access on
AMENT bus.

0 No interrupt pending.

1 Interrupt pending.

NP2
2

0 Status of NMI Input 2
Address out of range on SC1400 data access on
AMEC bus.

0 No interrupt pending.

1 Interrupt pending.

NP1
1

0 Status of NMI Input 1
Address out of range on DMA access on AMDMA
bus.

0 No interrupt pending.

1 Interrupt pending.

NP0
0

0 Status of NMI Input 0
Write to the boot ROM.

0 No interrupt pending.

1 Interrupt pending.

Table 12-6. NMIPR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-14 Freescale Semiconductor

Interrupt Controller Programming Model
MIPR masks or enables interrupt sources in Debug mode.

The IPLRx registers, discussed in the remainder of this chapter, individually program the priority
level of each interrupt channel. Each 3-bit field has an associated write disable. When this write
disable bit is cleared to zero, writes to the corresponding 3-bit field are enabled. An application
can easily change the priority level of a single interrupt source without the need to read the
register, modify it, and then write the new value back. For the interrupt source with the IPL to be
modified, this bit is cleared to zero, whereas the WD bits for all other fields in the register are set
to a value of one. The WD bit for each source always reads as a zero.

MIPR Maskable Interrupt Pending Register ICTL_BASE + 0x008

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DDBG —

TYPE R/W R

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

Table 12-7. MIPR Bit Descriptions

Name Reset Description Settings

DDBG
31

0 Disable Debug
Determines whether the maskable interrupt request
and non-maskable interrupt request signals are
recognized or disabled in debug mode.

0 While the device is in Device Debug
mode, interrupts are disabled; that is,
requests are masked.

1 Device Debug mode does not mask
interrupt requests.

—
30–0

 0x0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-15

Interrupt Processing
IPLR0 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

IPLR0 Interrupt Priority Level Register 0 IPL_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD7 IPL7 WD6 IPL6 WD5 IPL5 WD4 IPL4

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD3 IPL3 WD2 IPL2 WD1 IPL1 WD0 IPL0

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-8. IPLR0 Bit Descriptions

Name Reset Description Settings

WD7
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL7
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD6
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL6
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD5
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL5
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD4
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL4
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD3
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL3
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD2
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL2
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4
MSC711x Reference Manual, Rev. 1

12-16 Freescale Semiconductor

Interrupt Controller Programming Model
IPLR1 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD1
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL1
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD0
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL0
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

IPLR1 Interrupt Priority Level Register 1 IPL_BASE + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD15 IPL15 WD14 IPL14 WD13 IPL13 WD12 IPL12

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD11 IPL11 WD10 IPL10 WD9 IPL9 WD8 IPL8

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-9. IPLR1 Bit Descriptions

Name Reset Description Settings

WD15
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL15
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD14
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL14
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD13
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL13
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

Table 12-8. IPLR0 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-17

Interrupt Processing
IPLR2 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD12
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL12
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD11
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL11
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD10
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL10
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD7 0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL9
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

WD8
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL8
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-2, Interrupt
Arbitration Priorities, on page 12-4

IPLR2 Interrupt Priority Level Register 2 IPL_BASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD23 IPL23 WD22 IPL22 WD21 IPL21 WD20 IPL20

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD19 IPL19 WD18 IPL18 WD17 IPL17 WD16 IPL16

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-9. IPLR1 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-18 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-10. IPLR2 Bit Descriptions

Name Reset Description Settings

WD23
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

—
30–28

0x0 Reserved. Write to zero for future compatibility.

WD22
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL22
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

WD21
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

—
22–20

0x0 Reserved. Write to zero for future compatibility.

WD20
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL20
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

WD19
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

—
14–12

0x0 Reserved. Write to zero for future compatibility.

WD18
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL18
10–8

0x0 Maskable Priority Level
Specifies the priority level for this
interrupt input channel.

WD17
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

—
6–4

0x0 Reserved. Write to zero for future compatibility.

WD16
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL16
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-19

Interrupt Processing
IPLR3 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

IPLR3 Interrupt Priority Level Register 3 IPL_BASE + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD31 IPL31 WD30 IPL30 WD29 IPL29 WD28 IPL28

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD27 IPL27 WD26 IPL26 WD25 IPL25 WD24 IPL24

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-11. IPLR3 Bit Descriptions

Name Reset Description Settings

WD31
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL31
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD30
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL30
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD29
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL29
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD28
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL28
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD27
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL27
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD26
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL26
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

12-20 Freescale Semiconductor

Interrupt Controller Programming Model
IPLR4 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD25
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL25
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD24
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL24
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR4 Interrupt Priority Level Register 4 IPL_BASE + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD39 IPL39 WD38 IPL38 WD37 IPL37 WD36 IPL36

TYPE W R/W W R/W W R/R W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD35 IPL35 WD34 IPL34 WD33 IPL33 WD32 IPL32

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-12. IPLR4 Bit Descriptions

Name Reset Description Settings

WD39
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL39
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD38
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL38
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD37
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL37
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

Table 12-11. IPLR3 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-21

Interrupt Processing
IPLR5 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD36
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL36
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD35
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL35
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD34
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL34
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD33
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL33
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD32
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL32
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR5 Interrupt Priority Level Register 5 IPL_BASE + 0x14

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD47 IPL47 WD46 IPL46 WD45 IPL45 WD44 IPL44

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD43 IPL43 WD42 IPL42 WD41 IPL41 WD40 IPL40

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-12. IPLR4 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-22 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-13. IPLR5 Bit Descriptions

Name Reset Description Settings

WD47
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL47
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD46
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL46
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD45
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL45
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD44
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL44
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD43
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL43
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD42
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL42
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD41
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL41
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD40
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL40
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-23

Interrupt Processing
IPLR6 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

IPLR6 Interrupt Priority Level Register 6 IPL_BASE + 0x18

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD55 IPL55 WD54 IPL54 WD53 IPL53 WD52 IPL52

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD51 IPL51 WD50 IPL50 WD49 IPL49 WD48 IPL48

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-14. IPLR6 Bit Descriptions

Name Reset Description Settings

WD55
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL55
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD54
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL54
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD53
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL53
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD52
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL52
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD51
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL51
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD50
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL50
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

12-24 Freescale Semiconductor

Interrupt Controller Programming Model
IPLR7 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD49
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL49
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD48
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL48
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR7 Interrupt Priority Level Register 7 IPL_BASE + 0x1C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD63 IPL63 WD62 IPL62 WD61 IPL61 WD60 IPL60

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD59 IPL59 WD58 IPL58 WD57 IPL57 WD56 IPL56

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-15. IPLR7 Bit Descriptions

Name Reset Description Settings

WD63
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL63
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD62
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL62
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD61
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL61
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

Table 12-14. IPLR6 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-25

Interrupt Processing
IPLR8 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD60
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL60
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD59
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL59
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD58
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL58
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD57
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL57
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD56
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL56
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR8 Interrupt Priority Level Register 8 IPL_BASE + 0x20

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD71 IPL71 WD70 IPL70 WD69 IPL69 WD68 IPL68

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD67 IPL67 WD66 IPL66 WD65 IPL65 WD64 IPL64

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-15. IPLR7 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-26 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-16. IPLR8 Bit Descriptions

Name Reset Description Settings

WD71
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL71
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD70
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL70
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD69
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL69
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD68
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL68
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD67
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL67
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD66
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL66
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD65
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL65
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD64
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL64
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-27

Interrupt Processing
IPLR9 sets the interrupt priority levels for eight different maskable interrupt channels. See Table
12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

IPLR9 Interrupt Priority Level Register 9 IPL_BASE + 0x24

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD79 IPL79 WD78 IPL78 WD77 IPL77 WD76 IPL76

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD75 IPL75 WD74 IPL74 WD73 IPL73 WD72 IPL72

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-17. IPLR9 Bit Descriptions

Name Reset Description Settings

WD79
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL79
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD78
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL78
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD77
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL77
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD76
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL76
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD75
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL75
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD74
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL74
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

12-28 Freescale Semiconductor

Interrupt Controller Programming Model
IPLR10 sets the interrupt priority levels for eight different maskable interrupt channels. See
Table 12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD73
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL73
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD72
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL72
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR10 Interrupt Priority Level Register 10 IPL_BASE + 0x28

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD87 IPL87 WD86 IPL86 WD85 IPL85 WD84 IPL84

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD83 IPL83 WD82 IPL82 WD81 IPL81 WD80 IPL80

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-18. IPLR10 Bit Descriptions

Name Reset Description Settings

WD87
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL87
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD86
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL86
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD85
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL85
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

Table 12-17. IPLR9 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-29

Interrupt Processing
IPLR11 sets the interrupt priority levels for eight different maskable interrupt channels. See
Table 12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD84
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL84
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD83
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL83
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD82
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL82
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD81
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL81
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD80
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL80
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR11 Interrupt Priority Level Register 11 IPL_BASE + 0x2C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD95 IPL95 WD94 IPL94 WD93 IPL93 WD92 IPL92

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD91 IPL91 WD90 IPL90 WD89 IPL89 WD88 IPL88

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-18. IPLR10 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-30 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-19. IPL11 Bit Descriptions

Name Reset Description Settings

WD95
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL95
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD94
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL94
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD93
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL93
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD92
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL92
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD91
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL91
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD90
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL90
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD89
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL89
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD88
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL88
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-31

Interrupt Processing
IPLR12 sets the interrupt priority levels for eight different maskable interrupt channels. See
Table 12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

IPLR12 Interrupt Priority Level Register 12 IPL_BASE + 0x30

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD103 IPL103 WD102 IPL102 WD101 IPL101 WD100 IPL100

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD99 IPL99 WD98 IPL98 WD97 IPL97 WD96 IPL96

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-20. IPLR12 Bit Descriptions

Name Reset Description Settings

WD103
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL103
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD102
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL102
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD101
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL101
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD100
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL100
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD99
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL99
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD98
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL98
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

12-32 Freescale Semiconductor

Interrupt Controller Programming Model
IPLR13 sets the interrupt priority levels for eight different maskable interrupt channels. See
Table 12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD97
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL97
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD96
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL96
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR13 Interrupt Priority Level Register 13 IPL_BASE + 0x34

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD111 IPL111 WD110 IPL110 WD109 IPL109 WD108 IPL108

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD107 IPL107 WD106 IPL106 WD105 IPL105 WD104 IPL104

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-21. IPLR13 Bit Descriptions

Name Reset Description Settings

WD111
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL111
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD110
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL110
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD109
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL109
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

Table 12-20. IPLR12 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-33

Interrupt Processing
IPLR14 sets the interrupt priority levels for eight different maskable interrupt channels. See
Table 12-1, Programming the Priorities of Maskable Interrupt Sources, on page 12-3.

WD108
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL108
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD107
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL107
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD106
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL106
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD105
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL105
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD104
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL104
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

IPLR14 Interrupt Priority Level Register 14 IPL_BASE + 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WD119 IPL119 WD118 IPL118 WD117 IPL117 WD116 IPL116

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WD115 IPL115 WD114 IPL114 WD113 IPL113 WD112 IPL112

TYPE W R/W W R/W W R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-21. IPLR13 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

12-34 Freescale Semiconductor

Interrupt Controller Programming Model
Table 12-22. IPLR14 Bit Descriptions

Name Reset Description Settings

WD119
31

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL119
30–28

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD118
27

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL118
26–24

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD117
23

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL117
22–20

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD116
19

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL116
18–16

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD115
15

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL115
14–12

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD114
11

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL114
10–8

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD113
7

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL113
6–4

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.

WD112
3

0 Write Disable
Write disable for the associated channel.

0 Write access enabled.

1 Write access disabled.

IPL112
2–0

0x0 Maskable Priority Level
Specifies the priority level for this interrupt input channel.

See Table 12-1 on page 12-3.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-35

Interrupt Processing
INTEV0 enables interrupt requests to be ORed together and create a trigger for the event port.

Note: Channels that currently do not have an associated interrupt request should always be
disabled (see Table 12-5, MSC711x Maskable Interrupt Sources, on page 12-8).

INTEV1 enables interrupt requests to be ORed together and create a trigger for the event port.

INTEV0 Interrupt Event Register 0 ICTL_BASE + 0x40

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— — EN29 EN28 EN27 EN26 EN25 EN24 EN23 EN22 EN21 EN20 EN19 EN18 EN17 EN16

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN15 EN14 EN13 EN12 EN11 EN10 EN9 EN8 EN7 EN6 EN5 EN4 EN3 EN2 EN1 EN0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-23. INTEV0 Bit Descriptions

Name Reset Description Settings

—
31–30

 0x0 Reserved. Write to zero for future compatibility.

EN[29–0]
29–0

0 Interrupt Select Enable
Enables an individual interrupt channel (channels
29-0) for ORing into event port input.

0 Disabled for interrupt channel i.

1 Enabled for interrupt channel i.

INTEV1 Interrupt Event Register 1 ICTL_BASE + 0x44

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— — EN59 EN58 EN57 EN56 EN55 EN54 EN53 EN52 EN51 EN50 EN49 EN48 EN47 EN46

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN45 EN44 EN43 EN42 EN41 EN40 EN39 EN38 EN37 EN36 EN35 EN34 EN33 EN32 EN31 EN30

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

12-36 Freescale Semiconductor

Interrupt Controller Programming Model
Note: Channels that currently do not have an associated interrupt request should always be
disabled (see Table 12-5, MSC711x Maskable Interrupt Sources, on page 12-8).

INTEV2 enables interrupt requests to be ORed together and create a trigger for the event port.

Note: Channels that currently do not have an associated interrupt request should always be
disabled (see Table 12-5, MSC711x Maskable Interrupt Sources, on page 12-8).

Table 12-24. INTEV1 Bit Descriptions

Name Reset Description Settings

—
31–30

 0x0 Reserved. Write to zero for future compatibility.

EN[59–30]
29–0

0 Interrupt Select Enable
Enables an individual interrupt channel (channels
59–30) for ORing into event port input.

0 Disabled for Interrupt Channel i.

1 Enabled for Interrupt Channel i.

INTEV2 Interrupt Event Register 2 ICTL_BASE + 0x48

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— — ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-25. INTEV2 Bit Descriptions

Name Reset Description Settings

—
31–30

 0x0 Reserved. Write to zero for future compatibility.

ENi
29–0

0 Interrupt Select Enable
Enables an individual interrupt channel (channels
89–60) for ORing into event port input.

0 Disabled for Interrupt Channel i.

1 Enabled for Interrupt Channel i.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-37

Interrupt Processing
INTEV3 enables interrupt requests to be ORed together and create a trigger for the event port.

Note: Channels that currently do not have an associated interrupt request should always be
disabled (see Table 12-5, MSC711x Maskable Interrupt Sources, on page 12-8).

INTEVNM0 enables interrupt requests to be ORed together and create a trigger for the event
port.

INTEV3 Interrupt Event Register 3 ICTL_BASE + 0x4C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— — ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi ENi

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 12-26. INTEV3 Bit Descriptions

Name Reset Description Settings

—
31–30

 0x0 Reserved. Write to zero for future compatibility.

ENi
29–0

0 Interrupt Select Enable
Enables an individual interrupt channel (channels
119-90) for ORing into event port input.

0 Disabled for Interrupt Channel i.

1 Enabled for Interrupt Channel i.

INTEVNM0 Interrupt Event Non-Maskable Register 0 ICTL_BASE + 0x60

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NP31 NP30 NP29 NP28 NP27 NP26 NP25 NP24 NP23 NP22 NP21 NP20 NP19 NP18 NP17 NP16

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NP15 NP14 NP13 NP12 NP11 NP10 NP9 NP8 NP7 NP6 NP5 NP4 NP3 NP2 NP1 NP0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

12-38 Freescale Semiconductor

Interrupt Controller Programming Model
Channels that currently do not have an associated interrupt request should always be disabled
(see Table 12-5, MSC711x Maskable Interrupt Sources, on page 12-8).

Table 12-27. INTEVNM0 Bit Descriptions

Name Reset Description Settings

NPi
31–0

0 Non-Maskable Interrupt Select Enable
Enables an individual interrupt channel
(NP0-28) for ORing into event port input.

0 Disabled for Interrupt Channel i.

1 Enabled for Interrupt Channel i.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 12-39

Interrupt Processing
MSC711x Reference Manual, Rev. 1

12-40 Freescale Semiconductor

Reset 13
All MSC711x reset sources are fed into the reset controller, which takes different actions
depending on the source of the reset. Table 13-1 describes the reset sources.

Table 13-1. Reset Sources

Name
Pin

Direction
Description

Power-on reset
(PORESET)

Input Initiates the power-on reset flow that resets the MSC711x devices and
configures various attributes of the MSC711x. On PORESET, the entire
MSC711x device is reset. PLL and clock synthesis states are reset, HRESET is
driven, the SC1400 extended core is reset, and system configuration is sampled.
The configuration pins are configured only at the deassertion of PORESET.

External hard reset
(HRESET)

I/O Initiates the hard reset flow that configures various attributes of the MSC711x
device. HRESET is an open-drain output. Upon hard reset, HRESET is driven.

Software watchdog reset When the MSC711x watchdog count reaches zero, a software watchdog reset is
signalled. The enabled software watchdog event then generates an internal hard
reset sequence. This reset also asserts the HRESET signal.

Bus monitor reset When the MSC711x bus monitor count reaches zero, a bus monitor hard reset is
asserted. The enabled bus monitor event then generates an internal hard reset
sequence. This reset also asserts HRESET.

JTAG Commands:
EXTEST, CLAMP, or HIGHZ

When one of the EXTEST, CLAMP, or HIGHZ JTAG commands executes, JTAG
logic asserts the JTAG reset signal and an internal soft reset sequence is
generated.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 13-1

Reset
Table 13-2 summarizes the reset actions that occur as a result of the different reset sources.

13.1 Reset Sources

This section covers power-on reset, hard reset, and soft reset.

13.1.1 Power-On Reset

Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at
least 16 input clock cycles after MSC711x external power reaches at least 2/3 VCC. Table 13-3
shows the MSC711x configuration signals. These signals are sampled on the third rising edge of
the input clock after the deassertion (rising edge) of PORESET, and they determine different
MSC711x configuration features.

Table 13-2. Reset Actions for Each Reset Source

Reset Action

Reset Source

External Power-On
Reset

External Hard Reset1,
Software Watchdog,

Bus Monitor

Soft Reset
JTAG Commands:

EXTEST, CLAMP, or HIGHZ

Configuration signals sampled
(See Section 13.1)

Yes No No

PLL and clock synthesis states
Reset

Yes No No

HRESET driven Yes Yes No

Software watchdog and bus
time-out monitor registers

Yes Yes No

Clock synthesis module
STOPCTRL, HLTREQ, and
HLTACK registers are reset

Yes Yes Yes

Extended core reset Yes Yes Yes

Peripheral modules reset.
Does not include the extended core
and PLL/clocking units.

Yes Yes Yes

Note: A hard reset can be caused via the External Hard Reset pin (HRESET), a watchdog time-out,
or detection by any of the bus time-out monitors.
MSC711x Reference Manual, Rev. 0

13-2 Freescale Semiconductor

Reset Sources
On the third rising edge of the input clock after the deassertion (rising edge) of PORESET, one
additional pin is sampled, DBREQ/EE0. The SC1400 core can be immediately placed into Debug
mode if the DBREQ pin is asserted when reset is exited. Therefore, you can place the device into
Debug mode immediately out of reset, if desired. This pin is not captured in the Reset Status
Register (RSR).

13.1.2 Hard Reset
A hard reset sequence is initiated either externally when HRESET is asserted or internally from a
software watchdog timer reset or a bus time-out monitor reset. The source of the reset controls
the direction of the pin. Normally, a hard reset is configured as an input for external resets via the
HRESET signal. However, this open-drain signal is driven by the MSC711x reset controller when
an internal resource initiates a hard reset sequence. In both cases, the MSC711x continuously
asserts HRESET throughout the hard reset sequence. After the MSC711x asserts HRESET for 521
bus clock cycles, it releases this signal and exits the hard reset sequence. An external pull-up
resistor should deassert the signal. Then there is a 16 input clock cycle wait before testing for an
external hard reset begins.

Table 13-3. External Configuration Signals Sampled on Power-On Reset

Signal Description Settings

BM[3–0] Boot Mode
Input lines sampled at the rising edge of PORESET and
loaded into the RSR. These lines determine the MSC711x
boot mode. The value of these pins is latched into the RSR
register.

See definition in Section 14-2, Boot Mode Source
Selection, on page 14-5.

SWTE Software Watchdog Timer Enable
Input line sampled at the rising edge of PORESET. This bit
can override the software watchdog timer functionality. Its
value is loaded into the DEVCFG register when sampled.
The value of this pin is latched into the DEVCFG register.

0 Watchdog timer operation disabled.

1 Watchdog timer operation enabled.

HDSP Host Data Strobe Polarity
Input line sampled at the rising edge of PORESET. This bit
configures the strobes on the HD16 port for positive or
negative polarity. Immediately out of power-on reset,
HPCR[HDSP] reflects the sampled value of this pin.
However, this bit can be modified on future accesses.

0 Active low.

1 Active high.

H8BIT Host 8-Bit Mode
Input line sampled at the rising edge of PORESET. This bit
configures the HDI16 port for either 8 or 16-bit modes of
operation. Immediately out of power-on reset,
HPCR[H8BIT] reflects the sampled value of this pin.
However, this bit can be modified on future accesses.

0 16-bit operation.

1 8-bit operation.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 13-3

Reset
13.1.3 Soft Reset

A soft reset sequence is initiated externally when the MSC711x detects a cause to start the soft
reset sequence (JTAG commands: EXTEST, CLAMP, or HIGHZ). While a soft reset is in
progress, internal hardware is reset, but HRESET is not asserted.

Note: The main difference between hard reset and soft reset is that the HRESET pin is not
driven during soft reset.

13.2 Reset Timing

Figure 13-1 shows the timing for power-on reset on a MSC711x device. During power-on reset:

� The external PORESET signal must be asserted for a minimum of 16 cycles of CLKIN.

� The MSC711x device drives the HRESET signal.

� The following modules in the MSC711x device are reset:

— Clock synthesis module is reset and the PLL is disabled.
— SWT is reset as disabled.
— Other MSC711x peripherals are reset.
— Bus time-out monitors are reset.
— The extended core is reset.

� The device is clocked with the bypass clock.

� On the third rising edge of the input clock after PORESET is deasserted, the pins listed in
Table 13-3 are sampled.

� The HRESET signal is driven for an additional 521 clock cycles (CLKIN cycles).

� The device exits the reset state.

� The device does not sample the HRESET pin for the next 16 clock cycles (CLKIN cycles).

Figure 13-1. MSC711x Power-On Reset Timing

PORESET

PORESET
 Internal

HRESET

Input

External PORESET is

of 16 CLKIN

Output (I/O)

Configuration pins

HRESET is extended for
521 clocks (CLKIN), respectively,
from the deassertion of
PORESET

are sampled

asserted for a minimum
MSC711x Reference Manual, Rev. 0

13-4 Freescale Semiconductor

Exiting Reset and Booting the Device
Figure 13-2 shows the timing for a hard reset on a MSC711x device. During a hard reset:

� An external device asserts the HRESET signal (power-on reset is not asserted).

� Modules within the MSC711x device are reset:

— The SWT is reset as disabled.
— The other MSC711x peripherals are reset.
— The bus time-out monitors are reset.
— The extended core is reset.

� The device can be clocked with either the PLL or the bypass clock.

� No pins are sampled.

� The HRESET signal remains driven for an additional 521 bus clock cycles.

� The device exits the reset state.

� The device does not sample the HRESET pin for the next 16 bus clock cycles.

Figure 13-2. MSC711x Hard Reset Timing

13.3 Exiting Reset and Booting the Device

MSC711x devices begin program execution at an appropriate reset vector within the boot ROM
when exiting the reset processing state. Each reset vector has 64 bytes allocated for it. Figure
13-3 shows the address that the SC1400 core drives onto the PAB when it exits reset. The 23-bit
field providing the boot ROM base can be determined from the upper 23-bits of the boot ROM
starting address (see Table 5-3, Summary — MSC711x Memory Map, on page 5-30).

PORESET

PORESET
 Internal

HRESET

Input

Output (I/O)

Configuration pins

HRESET is extended for
521 clocks (bus clock), respectively,
from the deassertion of
PORESET

are not sampled
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 13-5

Reset
Figure 13-3. Interrupt Vector Address

The reset vector selected depends on the source of the reset and is one of those listed in Table
13-4.

If multiple resets occur simultaneously, the highest-priority address as shown in Table 13-4 is the
vector used.

13.4 Reset Programming Model

This section describes the Reset Status Register (RSR). The value of the base address for this
register file, CLK_BASE, is listed in Table 5-1, Summary — Base Addresses for MSC711x
Register Files, on page 5-4.

Table 13-4. MSC711x Reset Sources

Reset Source Priority
Reset Address

Offset
Description

Power-on reset Highest - 1 0x000 Power-on reset signal asserted.

Hard reset 2 0x040 External source asserts the external hard reset signal.

Software watchdog
reset

3 0x080 Software watchdog timer expiration.

Bus time-out
monitor reset

4 0x0C0 Bus time-out on any AHB-Lite bus.

JTAG command
reset

Lowest - 5 0x100 Upon executing a JTAG command that causes an internal reset.

— — 0x140 Reserved

— — 0x180 Reserved

— — 0x1C0 Reserved

Note: Addresses 0x1C0–0x1FF are reserved for the last reserved reset vector.

Boot ROM Base

23 3

Reset Address Offset

Reset Source

6

0x00
MSC711x Reference Manual, Rev. 0

13-6 Freescale Semiconductor

Reset Programming Model
RSR records the values of pins sampled at reset as well as reset events. For example, when a
software watchdog expiration generates a hard reset, RSR[SWRS] is set. All bits are cleared by
writing a 1 (writing zero has no effect).

RSR Reset Status Register CLK_BASE + 0x40

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BM3 BM2 BM1 BM0 — JTRS — SWRS BMRS — EHRS

TYPE R/W

RESET 0 0 ** ** 0 0 0 0 0 0 * 0 * * 1 *

* These bits are set appropriately based on the type of reset.

** These bits are sampled from MSC711x pins on the deassertion of power-on reset and loaded here.

Table 13-5. RSR Bit Descriptions

Name Reset Description Settings

—
31–16

0 Reserved. Write to zero for future compatibility.

BM3
15

0 BM3 Pin Status
Contains the value of the boot mode pin when it is
sampled on the deassertion of power-on reset.

0 Signal deasserted.

1 Signal asserted.

BM2
14

BM2 Pin Status
Contains the value of the boot mode pin when it is
sampled on the deassertion of power-on reset.

0 Signal deasserted.

1 Signal asserted.

BM1
13

**1 BM1 Pin Status
Contains the value of the boot mode pin when it is
sampled at the deassertion of power-on reset.

0 Signal deasserted.

1 Signal asserted.

BM0
12

**1 BM0 Pin Status
Contains the value of the BM0 signal when it is
sampled at the deassertion of power-on reset.

0 Signal deasserted.

1 Signal asserted.

—
11–6

0 Reserved. Write to zero for future compatibility.

JTRS
5

*2 JTAG Reset Status
When a host reset command is written, through JTAG
logic (JTAG reset request), JTRS is set and remains
set until software clears it.

0 No host reset command through JTAG.

1 Host reset command through JTAG.

—
4

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 13-7

Reset
SWRS
3

*2 Software Watchdog Reset Status
When a software watchdog expire event (which
causes a reset) is detected, the SWRS bit is set and
remains set until the software clears it.

0 No software watchdog reset event.

1 Software watchdog reset event.

BMRS
2

*2 Bus Monitor Reset Status
When a bus monitor expire event (which causes a
reset) is detected, BMRS is set and remains set until
the software clears it.

0 No bus monitor reset event.

1 Bus monitor reset event.

—
1

0 Reserved. Write to zero for future compatibility.

EHRS
0

*2 External hard reset status
When an external hard reset event is detected, EHRS
is set and it remains set until software clears it. If the
HRESET pin is asserted in response to a software
watchdog time-out or bus monitor event, this bit is not
asserted.

0 No external hard reset event.

1 External hard reset event.

Notes: 1. At power-on reset, the BM bits are loaded from pins, and the JTRS, SWRS, BMRS, and EHRS are all reset to
zero.

2. On other resets, the BM bits are not affected, and the JTRS, SWRS, BMRS, and EHRS are set to values that
reflect the type of the reset. If multiple resets occur simultaneously, the corresponding status bits of all
recognized sources are set.

Table 13-5. RSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

13-8 Freescale Semiconductor

Boot Program 14
The boot program, which resides in the internal ROM, initializes the MSC711x device after it
completes a reset sequence. MSC711x devices can boot through the ports listed in Table 14-1.

This chapter describes the boot process. It begins with booting basics, including the default
values programmed by the boot program and interrupt handling during the boot process. Then it
considers different ways to boot the device.

14.1 Boot Basics

Immediately upon exiting power-on reset or a hard reset, the SC1400 core begins executing the
boot program, which performs the following tasks:

1. Start executing instructions from the boot ROM. Instructions execute with the
instruction cache (ICache) disabled.

2. To determine which port is used for booting, examine the BM[3–0] bits in the Reset
Status Register (discussed on page 13-7).

3. To determine the clocking used when the boot code runs, examine the BM[3–0] bits. If
the PLL is used, appropriately set up the PLL in the clock synthesis module. The boot
program waits for lock before continuing.

4. Begin loading the user’s program through the appropriate port. The user’s data must be
formatted according to the boot data record for that port (shown later in this chapter).

5. When the last record is processed, jump to the address specified by the user in one of the
boot records.

Table 14-1. Available Boot Sources

Boot Port PLL Comments

HDI16 Enabled or
Disabled

Can boot with either HDI8 or HDI16 functionality.
PLL operation is determined by the BM[3–0] pins.

I2C Disabled —

SPI Enabled or
Disabled

SPI is implemented in boot ROM software via one of two different sets of GPIO
pins:
• BM3, BM2, HA3, HCS2 (PLL enabled or disabled)
• UTXD, URXD, SCA, SCL (PLL disabled)
PLL operation is specified by the BM[3–0] signal pins.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-1

Boot Program
Figure 14-1 shows a basic flowchart of the boot program.

Figure 14-1. Boot Program Flow Diagram

When the SC1400 core begins executing instructions from the boot ROM, it fetches them
through the instruction fetch unit and the crossbar switch. The ICache is disabled. Figure 14-2
shows the flow for accessing the boot ROM instructions.

The data booted into the MSC711x device (that is, the data loaded into the MSC711x memories)
is stored in a record format. The SC1400 core reads the data from the designated peripheral and
then writes data from the data records to the address location specified by the data record. Figure
14-2 shows the paths by which the boot program reads data from a peripheral and writes the data
to memories.

See Figure 14-6 See Figure 14-7

Initializes SP to a Location in Reserved

RSR[BM3–0] Loaded from Pins on POR.

Space in M1 memory.

Power-On Reset
or Hard Reset

If Power-On Reset, Sample Boot
Pins on Deassertion

Begin Executing Boot Program.
(ICache is disabled.)

Initialize Stack Pointer. Set VBA
to 0x01401000.

Boot Program Reads
RSR[BM[3–0] to Select

Go to HDI Loader.

Set Up PLL and
Wait for Lock, If

Needed. Then Load
the User Program

Through the HDI Port.

Go to I2C Loader.

Load the User Program
Through the I2C Port.

(Never uses PLL.)

Go to SPI Loader.

Set Up PLL and
Wait for Lock, If

Needed. Then Load
the User Program

Through the GPIO Pins.

the Boot Port.

(RSR[BM3–0] Unchanged on Hard Reset).
MSC711x Reference Manual, Rev. 1

14-2 Freescale Semiconductor

Boot Basics
Figure 14-2. Boot Program and Data Flow Program

The source program to be loaded into the device can be organized into several blocks, each of
which is placed into a boot data record (see Figure 14-3). Each block can be either a data block
or an instruction block, and it is loaded to a specified destination. A checksum method ensures
correct data loading. The boot records are loaded through the peripheral and processed by the
boot program. The boot data record is different for each peripheral, but in general a boot record
contains the following information:

� Size of the boot data record

� Address where the data in the boot data record is to be stored

� Boot data contained within the boot data record

� Optional checksum to verify correct loading of data

Program Flow: SC1400 Core Path to Access Boot Program Instructions

Data Flow: Reading Boot Data from a Boot Peripheral (HDI16, I2C, or SPI)

Data Flow: Writing Boot Data to Memory (M1 or M2)

SC1400 Core
IFU (ICache
Disabled)

Crossbar
Switch

M2/ROM
Multiplex Boot ROM

SC1400 Core ECI
Crossbar
Switch

SC1400 Core ECI

Crossbar
Switch

Crossbar
Switch

M1 Memory

M2 Memory

TDM/HDI
Multiplex

M2/ROM
Multiplex

HDI16

IPBus
Bridge I2C

APB
Bridge GPIO (for SPI)

Note: Writing boot data to the DDR memory is not supported. However, a user boot program can
correctly configure the DDR port and then load boot data directly to DDR memory.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-3

Boot Program
Figure 14-3. Boot Code Stream Structure

14.1.1 Boot Procedure

When an MSC711x device exits reset, there is no user code yet for it to execute. Booting loads
the data, usually executable code, from an external source (device or memory) into the memory
areas in the MSC711x memory map. Control then transfers from the MSC711x boot program to
the newly-loaded user application code.

When an MSC711x device boots, a small user boot program is usually loaded first through one of
the valid boot ports into the M1 memory. Code from this user boot program loads a much larger
user program into the other memory areas of the MSC711x memory map. Loading a user boot
program provides more flexibility for booting large programs into MSC711x because a user boot
program can be better configured to address the needs of a particular system. Also, a user boot
program can speed up boot time, first enabling the ICache and then loading the boot data. The
steps in loading a user boot program are summarized as follows:

1. Reset the MSC711x device.

2. Exit from reset into the MSC711x boot program.

3. The boot program loads a user boot program.

4. Jump to the user boot program when it is loaded.

5. Use the user boot program to load the user application code.

6. Jump to this application code when it is loaded.

A user boot program is useful if you want to boot from a peripheral that is not a valid boot source.
You would first boot from a valid boot source, loading your user boot program to configure the
MSC711x peripheral for user booting. Program control switches to this new program, and the

Block 1

Block 2

.

.

.

Block x

Boot End Block
MSC711x Reference Manual, Rev. 1

14-4 Freescale Semiconductor

Boot Basics
application code for the program is booted through this newly selected peripheral. For example,
to boot over the Ethernet (FEC), first boot from the I2C module, get the MAC address from the
user boot program, and then boot over the Ethernet. Although it is useful to load a user boot
program, it is not necessary. The application code can be directly loaded from one of the boot
sources available on an MSC711x device.

14.1.2 Boot Modes

The boot operating mode is set by the BM pins, which are sampled on the rising edge of PORESET.
Table 14-2 shows the different booting options and the frequency ranges for the PLL. Consult
Section 11.2.2, Configuring the Clocks, on page 11-5 to determine how these multiplications are
calculated for the PLL.

Table 14-2. Boot Mode Source Selection

BM[3–0]
Boot
Port

Input Clock
Frequency

Clock
Divide

PLL CKSEL
RNG
Bit

Core Clock
Frequency

Comments

HDI Boot Modes

0000 HDI16 < Fmax N/A N/A 00 0 < Fmax Not clocked by the PLL.
Can boot as 8- or 16-bit
HDI.

0101 HDI16 22.2-25 MHz 1 12 11 1 266–300 MHz Can boot as 8- or 16-bit
HDI.

0010 HDI16 25-33.3 MHz 2 32 01 1 200–266 MHz

0111 HDI16 33-66 MHz 3 12 11 1 132–264 MHz

0100 HDI16 44.3-50 MHz 2 12 11 1 266–300 MHz

SPI Boot Modes - Using HA3, HCS2, BM3, BM2 Pins

1000 SPI (SW) < Fmax N/A N/A 00 0 < Fmax The boot program
automatically determines
whether EEPROM or Flash
memory.

1001 SPI (SW) 15.6-25 MHz 1 17 11 0 133–212.5 MHz

1010 SPI (SW) 33-50 MHz 2 16 11 0 132–200 MHz

1011 SPI (SW) 44.3-75 MHz 3 18 11 0 133–225 MHz

SPI Boot Modes - Using URXD, UTXD, SCL, SDA Pins

1100 SPI (SW) < Fmax N/A N/A 00 0 < Fmax Boots through different set
of pins.

I2C Boot Modes

0001 I2C < 100 MHz N/A N/A 00 0 < 100 MHz Not clocked by the PLL.
I2C is limited to a maximum
bit rate of 400 Kbps. With a
clock divider of 128, this
limits the maximum input
clock frequency to 100 MHz.

Reserved

0011 Reserved — — — — — — —
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-5

Boot Program
Table 14-3 shows examples of these boot modes for several important CLKIN frequencies.

1111 Reserved — — — — — — —

0110 Reserved — — — — — — —

1101 Reserved — — — — — — —

1110 Reserved — — — — — — —

Notes: 1. The clock divider determines the value used in the clock module CLKCTRL[PLLDVF] field.

2. The clock multiplier determines the value used in the clock module CLKCTRL[PLLMLTF] field.
3. Fmax is determined by the maximum frequency of the peripheral and of the SC1400 core as specified in the data

sheet.

Table 14-3. Booting — Examples of Different CLKIN Frequencies

CLKIN
Frequency

Boot Port BM[3–0]
Clock

Divider
PLL

Multiplier
Post

Division
Core Clock
Frequency

Comments

HDI Boot Modes

< Fmax HDI16 0000 N/A N/A N/A CLKIN —

25 MHz HDI16 0010 2 32 2 200 MHz —

25 MHz HDI16 0101 1 12 1 300 MHz —

33 MHz HDI16 0111 3 12 1 132 MHz —

33 MHz HDI16 0010 2 32 2 264 MHz —

50 MHz HDI16 0111 3 12 1 200 MHz —

50 MHz HDI16 0100 2 12 1 300 MHz —

66 MHz HDI16 0111 3 12 1 264 MHz —

SPI Boot Modes - Using HA3, HCS2, BM3, BM2 Pins

< Fmax SPI (SW) 1000 N/A N/A N/A CLKIN —

16.384 MHz SPI (SW) 1001 1 17 2 139.3 MHz —

25 MHz SPI (SW) 1001 1 17 2 212.5 MHz —

33 MHz SPI (SW) 1010 2 16 2 132 MHz —

50 MHz SPI (SW) 1011 3 18 2 150 MHz —

50 MHz SPI (SW) 1010 2 16 2 200 MHz —

66 MHz SPI (SW) 1011 3 18 2 198 MHz —

SPI Boot Modes - Using URXD, UTXD, SCL, SDA Pins

< Fmax SPI (SW) 1000 N/A N/A N/A CLKIN Limited by the maximum
frequency of the SPI
implementation.

I2C Boot Modes

< Fmax I2C 0001 N/A N/A N/A CLKIN Limited by the maximum
frequency of the I2C.

Table 14-2. Boot Mode Source Selection (Continued)

BM[3–0]
Boot
Port

Input Clock
Frequency

Clock
Divide

PLL CKSEL
RNG
Bit

Core Clock
Frequency

Comments
MSC711x Reference Manual, Rev. 1

14-6 Freescale Semiconductor

Boot Program Operation
14.2 Boot Program Operation

This section describes the correct way to boot an MSC711x device in different scenarios.

14.2.1 Boot from Power-On Reset

The MSC711x device is configured as follows out of power-on reset when the boot program
executes:

� The ICache is disabled.

� Clocking is determined by the boot mode.

� The software watchdog timer is disabled.

� Execution begins with the power-on reset vector in the boot ROM
(see Section 13.1.1, Power-On Reset, on page 13-2).

� Maskable interrupts are disabled.

� Non-maskable interrupts are active.

See Table 13-2, Reset Actions for Each Reset Source, on page 13-2 for a summary of the state of
the device after power-on reset.

14.2.2 Boot from Hard Reset

The MSC711x device is configured as follows out of hard reset when the boot program executes:

� The ICache is disabled.

� The device is clocked the same way it was clocked before the hard reset.

� The software watchdog timer is disabled.

� Execution begins with the hard reset vector in the boot ROM
(see Section 13.1.2, Hard Reset, on page 13-3).

� Maskable interrupts are disabled.

� Non-maskable interrupts are enabled.

For a summary of the state of the device after hard reset, see Table 13-2, Reset Actions for Each
Reset Source, on page 13-2.

14.2.3 Bootstrapping and the Watchdog Timer

Because the software watchdog timer is disabled during power-on reset or hard reset, it is not
active during the bootloading process. For details on the software watchdog, refer to Section 7.3,
Software Watchdog Timer, on page 7-4. The watchdog timer is not disabled by soft reset, so take
care to ensure that the watchdog does not expire.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-7

Boot Program
14.2.4 Writing Boot Data to External DDR Memory Not Supported

For the boot program to write data to the DDR, the DDR memory controller must first be
initialized. This is not supported on the MSC711x device. Therefore, to write boot data to DDR
memory, you must create a user boot program as described in Section 14.1.1, Boot Procedure, on
page 14-4 to initialize the DDR memory controller for specific DDR SDRAM devices, including
all timing characteristics, and so on. Then the user boot program can write boot data to DDR
memory.

14.2.5 Reserved M1 Memory for Bootstrap Program

Bootstrapping uses a small portion of M1 memory, as shown in Table 14-4. These locations are
reserved, and you must never write data to them.

During bootstrapping, some reserved M1 memory locations in Table 14-4 are used to store boot
variables that reflect the state of the device. Table 14-5 shows these boot variables and their
corresponding locations in M1 memory.

Table 14-4. M1 Memory Use During Boot

Device M1 Memory Size Reserved Locations Used During Boot Comments

MSC7110 64 KB 0x0000FE00–0x0000FFFF Last 512 bytes.

MSC7112,
MSC7113,
MSC7115,
MSC7116

192 KB 0x0002FE00–0x0002FFFF

MSC7118,
MSC7119

256 KB 0x0003FE00–0x0003FFFF

Table 14-5. Boot Program Variables

Boot
Variable

Variable
Size

Address of Boot Variables in Reserved Area

Comments
MSC7110

MSC7112, MSC7113,
MSC7115, MSC7116

MSC7118,
MSC7119

NMITYPE

NMI Type

8 bits 0x0000FF66 $0002FF66 0x0003FF66 Indicates what type of NMI occurred:

–1 None.

0 Trap.

1 Reserved.

2 ILLEGAL.

3 DEBUG.

4 Reserved.

5 Auto-NMI.

6 Reserved.

For auto-NMI, see also the CNMIPR
variable in this table.
MSC711x Reference Manual, Rev. 1

14-8 Freescale Semiconductor

Boot Program Operation
14.2.6 Interrupt Handling During Booting

The boot program executes in response to a power-on reset or hard reset, so all maskable
interrupts are disabled and only non-maskable interrupts are recognized. The MSC711x boot
program initializes the interrupt handler table base address (VBA register of the SC1400 core) at
its first instruction execution. Until this base address is initialized, no non-maskable interrupt
(NMI) is allowed. The vector base address is initialized to the value of the boot ROM base
address + 0x1000.

If a non-maskable interrupt occurs, the service routine captures its type in the NMITYPE boot
program variable and then returns to the original code. However, if an auto-NMI is received, it is
not only marked as an auto-NMI but also the value of the NMIPR is saved in the CNMIPR boot
memory variable. See Table 14-6.

RSTSRC

Reset
Source

8 bits 0x0000FF67 0x0002FF67 0x0003FF67 Indicates the type of reset:

0 Power-on reset.

1 External hard reset.

2 Software watchdog timer.

3 Bus time-out reset.

4 JTAG Internal reset.

CNMIPR

Captured
NMIPR

32 bits 0x0000FF7C 0x0002FF7C 0x0003FF7C This variable contains a value only if a
non-maskable auto-NMI occurs. Then
this register captures the value of the
NMIPR register in the auto-NMI
interrupt service routine.

Useful for debugging if a
non-maskable interrupt occurs during
booting. Shows the source of the
interrupt.

Table 14-6. Boot Program Recording of Non-Maskable Interrupts

Non-Maskable
Interrupt Source

NMITYPE CNMIPR Comments

None –1 Undefined Normal operation.

TRAP 0 Undefined Trap instruction executed.

ILLEGAL 2 Undefined Illegal instruction or execution set executed.

DEBUG 3 Undefined Debug exception.

OVERFLOW 4 Undefined Overflow exception.

AUTO-NMI 6 Value of the NMIPR
register in the interrupt
handler.

Auto-NMI exception. This includes all exceptions generated
within the device but outside the SC1400 core. Examples
include the NMI pin and the bus time-outs.

Table 14-5. Boot Program Variables (Continued)

Boot
Variable

Variable
Size

Address of Boot Variables in Reserved Area

Comments
MSC7110

MSC7112, MSC7113,
MSC7115, MSC7116

MSC7118,
MSC7119
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-9

Boot Program
14.3 Booting from an External Host through the HDI16

For booting through the HDI16 interface, the boot program configures the HDI16 as follows:

� Operates in non-DMA mode.

� Operates in Polled mode on the device side.

� Operates in Polled mode on the external host side.

� The external host must write four 16-bit values at a time from the boot data record:

— TX0 contains first word.
— TX1 contains second word.
— TX2 contains third word.
— TX3 contains fourth word.

TX0 is the most significant half word, and TX3 is the least significant half word. For booting from
a power-on reset, the HDI16 is additionally configurable as follows:

� 8 or 16-bit mode as specified by the device H8BIT signal.

� Data strobe as specified by the device HDDS and HDSP pins
(see Section 20.5, Configuring the Host Interface Pins (External Host Side), on page
20-6).

This configuration applies to boot from power-on reset because these pins are sampled only on
the deassertion of power-on reset. During a boot from hard reset, these signals remain configured
as they were during the last power-on reset.

14.3.1 Host Flags

The HDI16 host flags facilitate communication between the MSC711x boot program and a host
processor during booting:

� ICR[HF3] is set by the host to indicate that the checksums should be compared. This
function is optional and is user-programmable (see page 20-39).

� HCR[HF4] is set by the SC1400 core to indicate that all blocks are loaded (see
page 20-28).

� HCR[HF7] is set by the SC1400 core to indicate an error during loading since the
checksums do not match. This bit is sticky, so if it is set for one block, it remains set until
the end of the code transfer. The host can ascertain whether errors occurred during code
transfer by reading the ISR[HF7] bit.

The use of these bits to provide status and error handling is described in Section 14.3.6, Error
Handling on Completion.
MSC711x Reference Manual, Rev. 1

14-10 Freescale Semiconductor

Booting from an External Host through the HDI16
14.3.2 Host Tasks During HDI16 Boot

When a host boots an MSC711x device, it waits for the MSC711x boot program to finish its
default initialization and then initializes the device by loading code and data to the internal
memory. The host polls a valid bit through the HDI16 host flags. A second valid bit is set when
the MSC711x boot code finishes the default initialization and the host can access the internal
resources, including internal memory. When the host finishes initialization, it should notify the
MSC711x by asserting a host port bit for the SC1400 core to read. In summary, the user boot
program running on the host typically operates as follows:

1. Waits for the assertion of the valid bit within the HDI16.

2. Loads code and data to internal RAM.

3. Signals the SC1400 core to initiate a jump to the address provided by the final record.

14.3.3 External Host-Side Boot Load Flow

The host performs these steps when an MSC711x device is booted through the host interface:

1. Writes the boot code in blocks conforming to the format described in Section 14.3.5,
HDI16 Boot Data Records, on page 14-15.

2. Specifies pointers for the ISR, ICR, and Tx registers.

3. Resets the MSC711x device.

4. Waits for a predetermined number of clocks to ensure that the HDI16 can receive data.
Then the data is transferred to the Tx register 64 bits at a time. After each transfer, the
host polls the ISR[TXDE] bit, receives the data, and transfers the next 64 bits.

The MSC711x device sets the ISR[HF4] bit when all bits are transferred. If checksum calculation
and verification is required, the host sets the ICR[HF3] bit. When the checksum function is used,
the host checks the ISR[HF7] bit to detect checksum errors at the end of the code transfer.
Figure 14-4 presents a flow diagram of the host-side boot flow.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-11

Boot Program
Figure 14-4. External Host Procedure During HDI16 Boot

No

Yes
No

No

No

Yes

No

Yes

Yes

No

Initialize External
Host Settings

Initialize Pointers to
MSC711x HDI TX

Register

Transfer Data to TX
Register (64 Bits)

End of Data?

Load
Competed?

Check
ISR[HF4]

Initialize Pointers to
MSC711x ISR, ICR

Registers

Prepare Boot Code
Blocks

Reset MSC711x
Device

HDI Ready
to Get Data?

Yes

Checksum
Required?

Yes

Set ICR[HF3]

HDI Ready to
Get Data?

Checksum
Required?

Checksum
Ok? Check
ISR[HF7].

Boot Code Loading
Completed.

Jump to User Boot
Code in M1 or M2

Memory.
MSC711x Reference Manual, Rev. 1

14-12 Freescale Semiconductor

Booting from an External Host through the HDI16
14.3.4 Host Interface Boot Procedure

The boot program first initializes the HDI port:

1. The bootloader routine enables the HDI16 port by setting the HPCR[HEN] bit and
checks the value of HPCR[H8BIT] to determine which port size the host is using.

2. The external host initializes the HDI16 when it is ready to start the boot source code
transfer by setting the ICR[INIT] bit.

Figure 14-5 shows the flow for checking the host port size.

Figure 14-5. Host Port Loader

After the HDI port is initialized, the boot program loads the boot data records, stores the boot
data at a given address, and performs error checking via checksums. Figure 14-6 shows the flow
of the host interface load procedure for both HDI8 and HDI16 functionality.

NoYes

Configure Pins as HDI Pins
in the GPIO Block

See Figure 14-6 See Figure 14-6

Boot Through
HDI16 Interface

Set GPIO GPBCTL[14–0]
Set GPIO GPCCTL[11–0]

Set HPCR[HEN]
Set HCR[HICR]

Set HPCR[H8BIT]

HPCR[H8BIT] = 1?

Execute Loader With
HDI6 Functionality

Execute Loader With
HDI16 Functionality
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-13

Boot Program
Figure 14-6. Bootloading Through HDI With 8- or 16-Bit Data Bus

Yes

Yes

No

No

Yes

No

Load Block Size

Set HCR[HF7]
Sticky Bit to Flag Error

Yes

Yes

No

No

Calculate checksum

Wait for External Host Input

Calculate checksum

Size = 0?

Load Destination Address

Wait For Host Input

Load Code Word

Calculate checksum

Block Size = 4

End of Block?

Load checksum
and checksum

Calculated
= Loaded?

HDI Loader

Jump to Target Address

Load Destination
Address

checksum
needed?

Set HCR[HF4] Flat to
Indicate End of Load

HCR[HF7]
Stick Bit

Set?

(Sz==2?)
MSC711x Reference Manual, Rev. 1

14-14 Freescale Semiconductor

Booting from an External Host through the HDI16
14.3.5 HDI16 Boot Data Records

Each HDI16 boot data record contains the fields listed in Table 14-7. You must organize the boot
data into records beforehand so that the boot program receives the data correctly through the
HDI16 port.

The record structure does not indicate the total number of records. Instead, the end of the data
records is indicated by a special final record with a 32-bit block size of 0x00000000. Table 14-8
shows the structure of this final record.

Table 14-7. HDI Boot Record Fields (in order received by HDI)

Field Name Size Description

Block size 32 Bits Contains the number of 16-bit boot data entries, N, within this record. The last two words
are reserved for the final checksum values. The block size N must satisfy the following
equation (where M is an integer): N = 4*M+2. This rule applies because the boot program
always receives data from the HDI in 64-bit quantities.

Note: The minimum number of data entries in a record is 2
(for the case where M = 0).

Load address 32 Bits Specifies where the boot data is to be loaded in its destination memory. This value must
be aligned on a 16-byte boundary.

Boot data entries N x 16-bits Contains the actual data values that are loaded into the destination memory. The number
of values loaded, N, is the block size. These values usually contain the desired user
program that is booted into the MSC711x device.

Note: This data must be organized in Big-Endian format. That is, the most significant
portion is loaded at the lower-order address.

Checksum 16 Bits Contains the expected value for the one’s complement of the checksum.

Checksum 16 Bits Contains the expected checksum for the boot record to be compared against the
checksum calculated as described in Section 14.3.6, Error Handling on Completion, on
page 14-17. The block size and load address are used in the checksum calculation.

Checksum comparison enable:
• Enabled by the ICR[HF3] host flag.
• See Section 14.3.6, Error Handling on Completion, on page 14-17.

Table 14-8. Structure of the Final Record

Word Description

1 0x0000

2 0x0000

3 Target Address — jump to this location when boot completes (most significant 16-bits)

4 Target Address — jump to this location when boot completes (least significant 16-bits)

5 Checksum—XOR including address

6 Checksum—XOR including address
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-15

Boot Program
14.3.5.1 HDI16 Boot Data Example

Table 14-9 shows three records containing boot data followed by a final record to indicate the
end of the HDI16 boot data records. An application can contain any number of records as long as
there is at least one record. The example in Table 14-9 shows a generalized size for record 1, a
block size of 2 for record 2, and a block size of 6 for record 3. The final record’s target address
indicates the address at which the program execution continues when the boot process completes.
This address must be aligned on a 16-byte boundary.

7 0x0000

8 0x0000

Table 14-9. Record Structure of Boot Data Received Through HDI16 Port

Record Word1 Description

1 1 Size of record 1 (most significant 16-bits)

2 Size of record 1 (least significant 16-bits)

3 Load address where data from record 1 is to be loaded (most significant 16-bits)

4 Load address where data from record 1 is to be loaded (least significant 16-bits)

5 Boot data: First 16-bit word

... ...

n Boot data: Last 16-bit word

n+1 Checksum—XOR for record 1

n+2 Checksum—XOR for record 1

2 1 Size of record 2 (most significant 16-bits)

2 Size of record 2 (least significant 16-bits)

3 Load address where data from record 2 is to be loaded (most significant 16-bits)

4 Load address where data from record 2 is to be loaded (least significant 16-bits)

5 Boot data: first 16-bit word

6 Boot data: second 16-bit word

7 Checksum—XOR for record 2

8 Checksum—XOR for record 2

Table 14-8. Structure of the Final Record (Continued)

Word Description
MSC711x Reference Manual, Rev. 1

14-16 Freescale Semiconductor

Booting from an External Host through the HDI16
When more than one code block is included in the source program data stream, word n + 5
contains the address of the second block, as shown in Table 14-9. The sequence repeats for
subsequent blocks until the final block in the data stream arrives.

14.3.6 Error Handling on Completion

The SC1400 core calculates the checksum using data received for each block. The checksum is
calculated by XORing the current word bit by bit with the result of XORing previous words. The
value of bit i of the current result is equal to XORing bit i of the current word with bit i of the
previous result. After the entire block is loaded, the calculated checksum is compared with the
loaded checksum. When all blocks are loaded, the SC1400 core sets HCR[HF4] to notify the
host. If the calculated checksum is not equal to the received checksum, the SC1400 core sets the
HCR[HF7] bit. This bit is sticky. The ICR[HF3] bit indicates whether the result of the checksum
check should be ignored.

3 1 Size of record 3 (most significant 16-bits)

2 Size of record 3 (least significant 16-bits)

3 Load address where data from record 3 is to be loaded (most significant 16-bits)

4 Load address where data from record 3 is to be loaded (least significant 16-bits)

5 Boot data: First 16-bit word

6 Boot data: Second 16-bit word

7 Boot data: Third 16-bit word

8 Boot data: Fourth 16-bit word

9 Boot data: Fifth 16-bit word

10 Boot data: Sixth 16-bit word

11 Checksum—XOR for record 3

12 Checksum—XOR for record 3

Final
Record

1 0x0000

2 0x0000

3 Target address — jump to this location when boot completes (most significant 16-bits)

4 Target Address — jump to this location when boot completes (least significant 16-bits)

5 Checksum—XOR for last record

6 Checksum—XOR for last record

7 0x0000

8 0x0000

Notes: 1. Each word represents 16 bits.

Table 14-9. Record Structure of Boot Data Received Through HDI16 Port (Continued)

Record Word1 Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-17

Boot Program
The check procedure is as follows:

� If ICR[HF3] is set, HSR[HF3] is set and the SC1400 core checks the status of the
HCR[HF7] sticky bit when the end of the block is reached:

— If the HF7 bit is cleared, the loaded code is correct and the core jumps to the target
address in the final boot record to execute the loaded code.

— If the HF7 bit is set, the code is corrupted and should be reloaded. The core returns to
the beginning of the routine and waits for the host to reload the boot routine. The flags
are reset after the HDI16 reads the FIFO for the first time after reloading.

� If ICR[HF3] is cleared, the checksum check is not needed, and the SC1400 core ignores
HCR[HF7] and jumps to the target address in the final boot record to execute the code.

14.3.7 Broadcast Boot Facility

The MSC711x broadcast boot facility is useful in a system when the host must boot several
devices in the same way. The broadcast chip-select pin is ORed with the chip-select pin. To
broadcast the commands to all devices, the host asserts the broadcast chip-select pin
simultaneously for all MSC711x devices. To access a single MSC711x, the relevant chip-select
pin is asserted. Refer to Section 20.5.1, Host Port Chip Select Capability, on page 20-8.

14.4 Booting From an I2C Device

When an MSC711x device is configured to boot from the I2C port, the boot program configures
GPIO pins as I2C pins. Then the MSC711x device initiates accesses to the I2C module,
downloading data to the MSC711x device. The I2C port is configured as follows:

� PLL is disabled and bypassed so that the I2C module is clocked with the IPBus clock.

� I2C interface operates in master mode and polling is used.

� EPROM operates in slave mode.

� Clock divider is set to 128.

� Address of slave during boot is 0xA0.

The IPBus clock is internally divided to generate the bit clock, as follows:

� CLKIN must be <= 100 MHz

� PLL is bypassed.

� IPBus clock = CLKIN/2 <= 50 MHz.

� I2C bit clock:

— <= IPBus clock/I2C clock divider
— <= 50 MHz (max)/128
— <= 390.6 KHz

This satisfies the maximum clock rate requirement of 400 kbps for the I2C interface.
MSC711x Reference Manual, Rev. 1

14-18 Freescale Semiconductor

Booting From an I2C Device
14.4.1 I2C Boot Procedure

When an MSC711x device boots through the I2C port, the boot data must be contiguous. That is,
all I2C boot data records must be organized sequentially. The next record address feature is not
supported. Figure 14-7 shows the procedure used by the I2C boot code.

Figure 14-7. I2C Boot Load Procedure

Block Size = 0?

Checksum Enabled?

Checksum OK?

Prepare Next Block
Address

First Error?

ERROR: Stop Boot

Boot from Serial EPROM

Execute Boot Code

N

Y

Y

N

Y

N
Y

N

Calculate Table Address

Get First Four Words

Calculate Checksum

Read Block

Read Final Record

Enable I2C Peripheral

Set Clock Divider to 128
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-19

Boot Program
14.4.2 I2C Boot Data Records

Each I2C boot data record contains the fields listed in Table 14-10. You must organize the boot
data into records beforehand so that the boot program receives the data correctly through the I2C
port.

When booting from the I2C port, the first boot record is read from address 0x00.

The record structure does not indicate the total number of records. Instead, the end of the data
records is indicated by a special final record with a 16-bit block size of 0x0000. Table 14-11
shows the structure of this final record.

Table 14-10. I2C Boot Record Fields In The Order Received by I2C Module

Field Name Size Description

Block size 16 Bits The lowest 15 bits of this 16-bit value contains the number of bytes in the boot data
entries, N, within this record. The block size includes four additional bytes used by the
expected checksum fields. The block size must always be a multiple of 2. The MSB of
this field is used to enable the checksum comparison. If this bit is set, the comparison is
performed.

Note: The minimum number of data entries in a record is 1. A record size of zero
indicates the final record. The maximum block size is 32 KB.

Next record
address

16 Bits This field must always be set to 0x0000. The blocks must all be placed in sequential
order. That is, the next record address feature is not supported.

Load address 32 Bits Specifies where the boot data is to be loaded in destination memory. This value must be
aligned on a 16-bit boundary.

Boot data entries N × 16-bits Contains the actual data values that are loaded into the destination memory beginning at
the load address. These values usually contain the desired user program that is booted
into the MSC711x device.

Note: This data must be organized into big-endian format. That is, the most significant
portion is loaded at the lower-order address.

checksum 16 Bits Contains the expected checksum for this boot record, which is to be compared with the
checksum calculated. The expected checksum is a bit-wise XOR of each boot data entry
with the result of the XOR of the previous entries in the block.

Note: The block size and load address are also included in the checksum calculation.
Checksum comparison is disabled by clearing the record size field MSB.

checksum 16 Bits Contains the expected value for the one’s complement of the checksum.

Note: Checksum comparison is enabled by the MSB of the 16-bit record size entry.

Table 14-11. Structure of the Final Record

Word Description

1 0x0000

2 0x0000

3 Target Address — jump to this location when booting completes (most significant 16-bits)

4 Target Address — jump to this location when booting completes (least significant 16-bits)
MSC711x Reference Manual, Rev. 1

14-20 Freescale Semiconductor

Booting From an I2C Device
14.4.2.1 I2C Boot Data Example

Table 14-12 shows three records containing boot data followed by a final record to indicate the
end of the I2C boot data records. An application can contain any number of records as long as
there is at least one record. The example in Table 14-12 shows a generalized size for record 1, a
block size of 2 for record 2, and a block size of 6 for record 3. The final record’s target address
indicates the address at which the program execution continues when booting completes. This
address must be aligned on a 16-byte boundary.

5 0x0000

6 0x0000

7 checksum—XOR for final record

8 checksum—XOR for final record

Table 14-12. Record Structure of Boot Data Received Through the I2C Port

Record Word1 Description

1 1 Size of record 1 (size in lowest 15 bits, MSB is the checksum enable)

2 0x0000

3 Load address where data from record 1 is to be loaded (most significant 16-bits)

4 Load address where data from record 1 is to be loaded (least significant 16-bits)

5 Boot data: First 16-bit word

... ...

n Boot data: Last 16-bit word

n+1 checksum—XOR for record 1

n+2 checksum—XOR for record 1

2 1 Size of record 2 (size in lowest 15 bits, MSB is the checksum enable)

2 0x0000

3 Load address where data from record 2 is to be loaded (most significant 16-bits)

4 Load address where data from record 2 is to be loaded (least significant 16-bits)

5 Boot data: first 16-bit word

6 Boot data: second 16-bit word

7 Checksum—XOR for record 2

8 Checksum—XOR for record 2

Table 14-11. Structure of the Final Record (Continued)

Word Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-21

Boot Program
When more than one block is included in the source program data stream, word n + 5 contains the
address of the second block, as shown in Table 14-12. The sequence repeats for subsequent
blocks until the final block in the data stream arrives.

14.4.3 Error Handling on Completion

The SC1400 core calculates the checksum using data received for each block. The checksum is
calculated by XORing the current word bit by bit with the result of XORing previous words. The
value of bit i of the current result is equal to XORing bit i of the current word with bit i of the
previous result. After the entire block is loaded, the calculated checksum is compared with the
loaded checksum. If a checksum comparison is enabled and a checksum error occurs:

� On the first failure within a record, reload the record.

� On the second failure within the same record, proceed as follows:

— Program the BM1/GPIO/EVNT3 pin as a general-purpose output pin rather than a
general-purpose input.

— Toggle this pin in an infinite loop.

3 1 Size of Record #3 (size in lowest 15-bits, MSB is the Checksum Enable)

2 0x0000

3 Load address where data from record 3 is to be loaded (most significant 16-bits)

4 Load address where data from record 3 is to be loaded (least significant 16-bits)

5 Boot data: first 16-bit word

6 Boot data: second 16-bit word

7 Boot data: third 16-bit word

8 Boot data: fourth 16-bit word

9 Boot data: fifth 16-bit word

10 Boot data: sixth 16-bit word

11 Checksum—XOR for record 3

12 Checksum—XOR for record 3

Final
record

1 0x0000

2 0x0000

3 Target address — jump to this location when booting completes (most significant 16-bits)

4 Target Address — jump to this location when booting completes (least significant 16-bits)

5 0x0000

6 0x0000

7 checksum—XOR for last record

8 checksum—XOR for last record

Note: Each word represents 16 bits.

Table 14-12. Record Structure of Boot Data Received Through the I2C Port (Continued)

Record Word1 Description
MSC711x Reference Manual, Rev. 1

14-22 Freescale Semiconductor

Booting From an I2C Device
When no error occurs, the BM1/GPIO/EVNT3 pin is at a stable value because an external
pull-up/pull-down resistor is required for this pin’s default BM1 functionality.

14.4.4 Example Source Program

Figure 14-7 shows an example source program in the serial EPROM. The opcodes at the left of
the instructions can either be generated by an S-record utility or extracted from a program listing
file. The code moves the data 0xAAAA1111, 0xBBBB1111, 0xCCCC1111, and 0xDDDD1111
to addresses 0x8000, 0x8004, 0x8008, and 0x800C, respectively. During the boot process, the
source program words are downloaded from the serial EPROM to the MSC711x device, starting
at memory location 0x00001100.

The source program is divided into three source blocks. The first program block is 0x18 or 24
bytes long, and checksum comparison is enabled. The block size includes the source program and
the two checksum values, so the first word is 0x8018. The second word is 0x0030, which
indicates the address of the next block in the EPROM. This block is loaded at address
0x00001100 in the MSC711x, and this address is specified in the third and fourth words of the
source block. Twenty bytes of the source program are followed by the checksum values 0x7532
and 0x8CAD for a total block size of 24 bytes.

The second source program block is also 24 bytes long, and checksum comparison is enabled as
indicated in the first word with a value of 0x8018. The next block in the EPROM is located at
address 0x0050. This block is loaded at address 0x00001114 in the MSC711x. Twenty bytes of
source program are followed by the checksum values 0x6233 and 0x9DCC for a total block size
of 24 bytes.

The third source program block is 0x30 or 48 bytes long, and checksum comparison is also
enabled. The next block in the EPROM is located at address 0x0088. This block is loaded at
address 0x00001128 in the MSC711x. The 44 bytes of source program are followed by the
checksum values 0x8E35 and 0x71CA for a total block size of 48 bytes.

The end block specifies that no more source program blocks are to be sent. The first two words
are zero to indicate that this block is the last one. After the program is downloaded, the MSC711x
jumps to address 0x00001100 to start program execution The next two words also have a value of
zero. Finally, the last two words are the checksum values.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-23

Boot Program
Figure 14-8. Example Source Program Blocks

14.4.5 Writing to an EPROM Over the I2C Port

Writing to the serial EPROM requires additional addressing information that must be sent with
the data. In the example discussed here, it is the EPROM device address, followed by two 8-bit
addresses and the data words. Figure 14-9 shows an example connection between an MSC711x
device and a serial EPROM

The write operation is shown in Figure 14-10. A start condition indicated by a logic 1 on the SDA
line enables the EPROM for a read or write operation. Next is the 8-bit device address that
consists of a mandatory 1, 0, 1, 0 for the most significant part, followed by the device address bits
and the read/write bit for the least significant part. The address bits allow multiple EPROM
devices to be connected on the same bus. These bits are compared with their corresponding
hardwired input pins. If the EPROM address pins A2, A1, and A0 are hardwired to logic 1, the
address bits must also be set to logic 1. A read operation is initiated if the least significant bit of
the device address is set while a write operation is initiated if this bit is cleared. Since the
MSC711x device is writing to the EPROM to program the device, the R/W bit is cleared. The
EPROM returns an acknowledgement of logic 0 when the device address is compared.

90C0
3980 2000 8000
3110 3111 AAAA
90C0
4191
90C0

nop
move.l #$8000,r1
move.l #$AAAA1111,d1
nop
move.l d1,(r1)
nop

90C0
3980 2004 8000
3110 3111 BBBB
90C0
4191
90C0

nop
move.l #$8004,r1
move.l #$BBBB1111,d1
nop
move.l d1,(r1)
nop

3980 200C 8000
3118 3111 9DDD
90C0
4191
90C0

move.l #$800C,r1
move.l #$DDDD1111,d1
nop
move.l d1,(r1)
nop

90C0
3980 2008 8000
3118 3111 8CCC
90C0
4191
90C0

nop
move.l #$8008,r1
move.l #$CCCC1111,d1
nop
move.l d1,(r1)
nop

90C0 nop
debug9E70

8018 0000 0000 1100
90C0 3980 2000 8000
3110 3111 AAAA 90C0
4191 90C0 7362 8C9D

Source Program Block 1

8018 0000 0000 1114
90C0 3980 2004 8000
3110 3111 BBBB 90C0
4191 90C0 6263 9D9C

8030 0000 0000 1128
90C0 3980 2008 8000
3118 3111 8CCC 90C0
4191 90C0 3980 200C
8000 3118 3111 9DDD
90C0 4191 90C0 90C0
9E70 90C0 8E35 71CA

nop 90C0 0000 0000 0000 1100
0000 0000 1100 EEFF

End Block

Source Program Block 2

Source Program Block 3

org p:$1100

Source Program
MSC711x Reference Manual, Rev. 1

14-24 Freescale Semiconductor

Booting From an I2C Device
Figure 14-9. MSC711x to EPROM Connection

Following the device address, a write operation requires two 8-bit addresses. The first 8-bit
address is the most significant part of the EPROM address, and the second is the least significant
part. These two bytes are concatenated to indicate the address in the EPROM where the data is
stored. The EPROM outputs a logic 0 on the SDA line after the first and second byte addresses.
The data byte follows the first and second byte addresses. The EPROM acknowledges receipt of
the data byte with a logic 0 on the SDA line. The EPROM address automatically increments after
each data byte is received. Up to 63 more data words can be written to the EPROM. If more than
64 data bytes are transmitted, the data byte address rolls over, and previous data is overwritten.
Therefore, to write more than 64 bytes, the device address and the first and second byte addresses
must be reinitialized. The write sequence terminates with a stop condition, which is a logic 1 on
the SDA line after the MSC711x device receives an acknowledgement that the EPROM received
the last data byte.

Figure 14-10. Write Operation

MSC711x Device Serial EPROM

SCL

SDA DATA

CLK

A0
A1
A2

VDD

S
T
A
R
T

Device Address

A
C
K

First Byte Address Second Byte Address Data 0 Data 63

~ ~

S
T
O
P

A
C
K

A
C
K

A
C
K

A
C
K

R/WA0A1A20101

R = 1

W = 0Device Address

SDA Line
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-25

Boot Program
14.5 Booting from an SPI-Based Serial Flash or EEPROM

This section describes bootstrapping from serial peripheral interface (SPI) devices using GPIO
pins and software routines in the boot ROM. When the SPI routines run in the boot ROM, the
MSC711x is always configured as the SPI master. Booting through the SPI is supported for serial
EEPROM devices and serial Flash devices. When a READ_ID instruction is issued to the serial
memory device and the device returns a value of 0x00 or 0xFF, the routines for accessing a serial
EEPROM are used, at a maximum frequency of 4 Mbps. Otherwise, the routines for accessing a
serial Flash are used, and they can run at faster speeds. Booting is performed through one of two
sets of pins:

� Main set: BM[2–3], HA3, and HCS2, which allow use of the PLL.

� Alternate set: UTXD, URXD, SDA, and SCL, which cannot be used with the PLL.

In either configuration, an error during SPI boot is flagged on the EVNT3 pin.

Note: During an SPI boot operation, the first 64 bytes of serial memory are reserved. The
first block of boot data resides in address 0x40.

14.5.1 Main Set Pin Configuration

When booting through the SPI, the boot program configures several MSC711x pins as GPIO. See
Table 14-13.

If the SPI boot completes without error, the boot program reconfigures the pins as shown in
Table 14-14 before jumping to the specified user address.

Table 14-13. Main Pin Set for SPI Boot Functionality

SPI
Functionality

Pin Input/Output Comments

MOSI BM3/GPIO Output —

MISO HCS2/GPIO Input —

SPICLK BM2/GPIO Output —

SEL HA3/GPIO Output Connects to the SS pin of the serial ROM device.

— EVNT3/GPIO Output Indicates whether an error occurred during the boot process.
This functionality is enabled/disabled in the first boot record.

Table 14-14. Pin Functionality Upon Completion of a Successful Boot

Pin After Boot Input/Output

BM3/GPIO GPIO Input

HCS2/GPIO HCS2 Input

BM2/GPIO GPIO Input

HA3/GPIO GPIO Input

EVNT3/GPIO GPIO Input
MSC711x Reference Manual, Rev. 1

14-26 Freescale Semiconductor

Booting from an SPI-Based Serial Flash or EEPROM
14.5.2 Alternate Set Pin Configuration

One boot mode boots the MSC711x device from an SPI memory device through an alternate set
of pins, as shown in Table 14-15.

If the SPI boot completes without error, the boot program reconfigures the pins as shown in
Table 14-16 before jumping to the specified user address.

Table 14-15. Pins Used for Software SPI Functionality — Alternate Pin Set

SPI Functionality Pin Input/Output Comments

MOSI UTXD/GPIO Output —

SEL SDA/GPIO Output Connects to the SS pin of the serial ROM device.

SPICLK URXD/GPIO Output —

MISO SCL/GPIO Input —

— EVNT3/GPIO Output Indicates whether an error occurred during the boot process.
This functionality is enabled/disabled in the first boot record.

Table 14-16. Pin Functionality Upon Completion of a Successful Boot

Pin After Boot Input/Output Comments

UTXD/GPIO GPIO Input —

SDA/GPIO GPIO Input —

URXD/GPIO GPIO Input —

SCL/GPIO GPIO Input —

EVNT3/GPIO GPIO Input —
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-27

Boot Program
14.5.3 SPI Boot Loader Procedure

As Figure 14-11 shows, the procedure for SPI booting is similar to the I2C procedure.

Figure 14-11. SPI Boot Load Procedure

Block Size = 0?

Checksum Enabled?

Checksum OK?

Prepare Next Block
Address

First Error?

ERROR: Stop Boot

Boot from SPI

Execute Boot Code

N

Y

Y

N

Y

N
Y

N

Get First 2 Bytes

Calculate Checksum

Read Block

Read Final Record

Setup GPIO Pins

Determine if device is

Serial Flash or EEPROM

BM pins, sampled out of POR, determine which set

of GPIO pins is used for the SPI boot.
MSC711x Reference Manual, Rev. 1

14-28 Freescale Semiconductor

Booting from an SPI-Based Serial Flash or EEPROM
14.5.4 SPI Boot Data Records

The source program that is downloaded from the serial Flash/EEPROM to the MSC711x device
must be organized as a set of records. Each SPI boot data record contains the following
information:

� Size of the boot data record (16-bits):

— Checksum comparison enable in bit 15.
— Lowest 15 bits specify the number of bytes in the boot data record.

� Next record address that specifies the address of the next boot record (32 bits).

� Load address where the data in the boot data record is to be stored (32 bits).

� Boot data entries containing the data to load into the device (N × 16-bits).

� Checksums to verify correct loading of data (two 16-bit checksums).

Organizing the data into this record structure ensures that the boot program knows which 16-bit
values contain block size, destination address, etc. Table 14-17 shows how boot data must be
organized into records beforehand by the user to be received correctly by the boot program
through the SPI port. The fields of the boot record are described in detail in Table 14-17:

When booting from the SPI port, the first boot record is read from address 0x40.

Table 14-17. SPI Boot Record Fields (in order received by SPI)

Field Name Size Description

Block size 16 bits The lowest 15 bits of this 16-bit value contain the number of bytes in the boot data
entries, N, within this record. The block size includes the number of bytes in the
Boot data entries, N, within this record as well as the four additional bytes used by
the expected checksum fields. The MSB of this field enables the Checksum
comparison. If this bit is set, the comparison is performed. The minimum number
of data entries in a record is 2 (where N = 0). The Maximum block size is 32 KB.

Next record address 32 bits If set to 0x0000, the next boot record follows sequentially. Otherwise, this field
provides the address of the next record.

Load address 32 bits Specifies where the boot data is to be loaded in destination memory. This value
must be aligned on a 32-bit boundary.

Boot data entries N × 8 bits Contains the actual data values that are loaded into the destination memory. The
number of values loaded, N, is the block size. These values usually contain the
user program that is booted into the MSC711x device. This data must be
organized in big-endian format. That is, the most significant portion is loaded at
the lower-order address.

Checksum 16 bits Contains the expected checksum for this boot record to be compared against the
calculated checksum. The expected checksum is a bit-wise XOR of each boot
data entry with the result of the XOR of the previous entries in the block. The block
size and load address are used in the checksum calculation. Checksum
comparison is disabled when the MSB of the record size field is cleared.

Checksum 16 bits Contains the expected value for the one’s complement of the Checksum (see
above).

Note: Checksum comparison is enabled by the MSB of the 16-bit record size entry.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-29

Boot Program
14.5.4.1 Format of the Last Boot Record

The total number of records is never indicated by the record structure. Instead, the end of the data
stream is indicated by a final record with a 16-bit block size of 0x0000. This special final record
is structured as shown in Table 14-18.

14.5.4.2 SPI Boot Data Example

This example in Table 14-19 shows three records containing boot data followed by a final record
to indicate the end of the SPI boot data records. An application must contain at least one record
and can contain any number of records (1, 2, 3, ...). The example in Table 14-19 shows a
generalized size of (n – 5) × 2 bytes for Record 1, a block size of 4 bytes for Record 2, and a
block size of 12 bytes for Record 3. The final record’s target address is the address at which
program execution continues when booting completes. This address must be aligned on a 16-byte
boundary.

Table 14-18. Structure of the Final Record

Word Description

1 0x0000

2 0x0000

3 Target Address — jump to this location upon completing boot (most significant 16-bits)

4 Target Address — jump to this location upon completing boot (least significant 16-bits)

5 0x0000

6 0x0000

7 Checksum—XOR including address

8 Checksum—XOR including address

Table 14-19. Record Structure of Boot Data Received Through Software SPI

Record Word1 Description

1 1 Size of Record 1 (size in lowest 15-bits, MSB is the checksum enable)

2 Next block address (most significant 16 bits)

3 Next block address (least significant 16 bits)

4 Load address where data from Record 1 is to be loaded (most significant 16 bits)

5 Load address where data from Record 1 is to be loaded (least significant 16 bits)

6 Boot data: First 16-bit word

... ...

n Boot Data: Last 16-bit word

n+1 Checksum—XOR for Record 1

n+2 Checksum—XOR for Record 1
MSC711x Reference Manual, Rev. 1

14-30 Freescale Semiconductor

Booting from an SPI-Based Serial Flash or EEPROM
Note: This boot record format is different than the format for the SPI and HDI16 ports.

The bootloader routine expects at least one code block. When more than one block is included in
the source program data stream, words 2 and 3 contain the address of the second block, as shown
in Table 14-9. The sequence repeats for subsequent blocks until the final block in the data
stream.

2 1 Size of Record 2 (size in lowest 15 bits, MSB is the checksum enable)

2 Next block address (most significant 16 bits)

3 Next block address (least significant 16 bits)

4 Load address where data from Record 2 is to be loaded (most significant 16 bits)

5 Load address where data from Record 2 is to be loaded (least significant 16 bits)

6 Boot data: first 16-bit word

7 Boot data: second 16-bit word

8 Checksum—XOR for Record 2

9 Checksum—XOR for Record 2

3 1 Size of Record 3 (size in lowest 15 bits, MSB is the checksum enable)

2 Next block address (most significant 16 bits)

3 Next block address (least significant 16 bits)

4 Load address where data from Record 3 is to be loaded (most significant 16 bits)

5 Load address where data from Record 3 is to be loaded (least significant 16 bits)

6 Boot data: first 16-bit word

7 Boot data: second 16-bit word

8 Boot data: third 16-bit word

9 Boot data: fourth 16-bit word

10 Boot data: fifth 16-bit word

11 Boot data: sixth 16-bit word

12 Checksum—XOR for Record 3

13 Checksum—XOR for Record 3

Final
Record

1 0x0000

2 0x0000

3 Target Address — jump to this location upon completing boot (most significant 16-bits)

4 Target Address — jump to this location upon completing boot (least significant 16-bits)

5 0x0000

6 0x0000

7 Checksum—XOR for last record

8 Checksum—XOR for last record

Note: Each word represents 16 bits.

Table 14-19. Record Structure of Boot Data Received Through Software SPI (Continued)

Record Word1 Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 14-31

Boot Program
14.5.5 SPI Boot Error Handling

If a checksum comparison is not enabled, the entire record is processed as if no error has
occurred. If checksum comparison is enabled and a checksum error occurs:

� On the first failure within a record, reload the record.

� On the second failure within the same record:

— Program the BM1/GPIO/EVNT3 pin as a general-purpose output pin rather than as a
general-purpose input.

— Toggle this pin in an infinite loop

When no error occurs, the BM1/GPIO/EVNT3 pin is at a stable value because of an external
pull-up/pull-down resistor required for this pin’s BM1 functionality.

14.5.6 User Access to SPI Routines

After booting completes, an application can call the SPI emulation routines within the boot
ROM. The MSC711x device must operate as the SPI master. Both serial Flash and serial
EEPROM devices are accessible in this mode.
MSC711x Reference Manual, Rev. 1

14-32 Freescale Semiconductor

Event Port 15
The event port manages different levels of events on an MSC711x device, including SC1400
core-level, device-level, and external events. The event port interacts with the debug port
breakpoint unit in the OCE10 on-chip emulator and the internal timers to manage external events
on the EVNT pins or internal events such as DMA activity or ICache misses. The event port
performs the following tasks:

� Selects events to output on the EVNT pins:

— Directly output event onto a pin.
— Set a value on a pin.
— Toggle the value on a pin.
— Set/Reset operation on a pin.

� Selects events to send to the debug port to:

— Enable an SC1400 breakpoint unit.
— Generate an emulator event.

� Selects events to send to the timer module for:

— Event counting.
— Gated counting.
— Delaying an event for further use by the event port.

� Uses the EVNTx pins to:

— Clock the timer module.
— Output a clock from timer module A.

� Triggers on a preprogrammed sequence of events.

� Selects events for generating interrupts or DMA requests.

As Figure 15-1 shows, inputs are gathered from various places, combined as programmed, and
result in a desired action such as an interrupt, DMA transfer, or halt of the core.

.

Figure 15-1. Event Port Operation

Core Events

Device Events

External Events

SC1400 Core Trigger

Device Trigger

EVNTx Pins

Combining
Unit

Sequence
Unit

Action
Unit
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-1

Event Port
Following are examples of event port capabilities:

� Timer operations using the timer module described in Chapter 21, Timers Module:

— Count transitions on an EVNT pin.
— Measure the width of a pulse on an EVNT pin.
— Drive a counter output onto an EVNT pin.
— Count the number of ICache misses.
— Count the time spent servicing ICache misses.
— Set the EVNT4 pin when a timer expires or a TDM Rx interrupt is received.
— Use one-shot capabilities on an internal chip signal or EVNT pin.
— Measure the time required to lock the PLL.

� Peripheral interaction:

— Toggle an EVNT pin on a TDM Tx interrupt or a DMA transfer on a particular channel.

� DMA interaction:

— Assert a signal when DMA service is requested and deassert the signal when DMA
service completes.

— Count the number of cycles that a DMA channel is preempted.
— Count the number of cycles from a DMA channel service request until the requested

service completes.
— Trigger if the number of cycles that a DMA channel is preempted above a threshold.
— Assert the EVNT3 pin and then the EVNT2 pin to initiate a DMA transfer.
— Generate an event port interrupt when a DMA transfer on channels 3 or 17 completes.
— Measure the time between the completion of DMA channel 2 and the start of

channel 6.

� Debug unit (emulator) interaction:

— Use an EVNT pin to enable a breakpoint unit.
— Enter Debug mode when a DMA data transfer completes.
— Delay an input event using a timer and pass the delayed event to the debug unit

breakpoint logic. This action requires two event multiplexers.
— Use one event to enable trace buffer capture within the emulator and a second event to

disable it.
— Set an EVNT pin upon an HDIRxF interrupt and clear it upon an emulator breakpoint.

� Operations with an external host:

— Initiate a DMA transfer by writing a value of 1 to a particular bit.
— Assert an EVNT pin and write a value of 1 to a bit to halt the SC1400 core.

� Miscellaneous operations:

— When the rising edge of the EVNT2 pin is detected, set a sticky bit for software to read.
— Generate an interrupt or halt the SC1400 core if the PLL loses lock.
— Switch the crossbar to its alternate priority register set if the PLL loses lock.
— Wake up the SC1400 core from Stop mode when a DMA data transfer completes.
— Wake up the SC1400 core from Stop mode when a TDM Rx interrupt occurs.
MSC711x Reference Manual, Rev. 1

15-2 Freescale Semiconductor

Event Port Architecture
MSC711x Reference Manual, Rev. 1

15.1 Event Port Architecture

The event port consists of eight event multiplexers that connect in a cascade, as shown in Figure
15-2. Each multiplexer can work independently, with up to eight independent event detections
and actions, or the multiplexers can trigger in a sequence, each receiving a trigger from the
preceding multiplexer and passing a trigger to the next one in the cascade.

Figure 15-2. System-Level View of the Event Port

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA2

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA3

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

Event Port

Debug Port (Emulator)

EE2

EC0

EDCA[5–0] Detect

EE[5–0], EED

EDCD Detect

Debug Int Request
Debug Mode

Trace Buffer
Trace Buffer Enable

Event Counter

EDCA0
EE0

EDCA0 Detect

Breakpoint Unit

EDCA1
EE1

EDCA1 Detect

EDCA2
EE2

EDCA2 Detect

EDCA3
EE3

EDCA3 Detect

EDCA4
EE4

EDCA4 Detect

EDCA5
EE5

EDCA5 Detect

EDCD
EED

EDCD Detect

Timer Module B
(Four 16-Bit Timers)

DBREQ

Timer Module A
(Four 16-Bit Timers)

EVNT[4–0]

Internal Events:
- DMA Ch Request
- DMA Ch Start
- DMA Ch Done

- TDMx Rx Int.
- Chip Level NMIs

- DHIGH Priority

- ICache Miss
- ICache Miss,

Interrupts

Interrupts

TIN[3–0]

TOUTA[3–0]

EC0

EE[5–1]
EED

EE0

EE1

EE2

EE3

EE4

EE5

EED

EVINT0 INT REQ
EVINT1 INT REQ to Interrupt Controller

EE4 Output from
Debug Port

From Multiplexer 0

Ethernet Interrupts
PLL Loss of Lock

EVDMA0 DMA REQ
EVDMA1 DMA REQ to DMA

Change Priorities of Crossbar Switch
STOP Mode Wake-up

PLL Lock

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

From Multiplexer 0

EV ALT PRIORITY
EV STOP WAKEUP

Addr Detect Units

S
el

ec
tiv

e
S

ig
na

l I
nv

er
t

HTRQ, HRRQ

EVGP0
EVGP1 to HDI16

EE0 OR

Pin

Host Cmd Vector

0

1

2

3

4

5

6

7

Event
Selection

Disable

External
Freescale Semiconductor 15-3

Event Port
The event multiplexers manage interaction between device-level timers, the SC1400 debug unit,
and the EVNTx pins—all of which can send inputs to or receive outputs from the multiplexers.
This section describes how the event port works at a system level, interacting with the debug port
(emulator), EVNT pins, timer modules, interrupt controller, DMA controller, and the HDI16 host
port. Figure 15-3 shows the structure of one event multiplexer, which receives the signals of
device-level events from various MSC711x modules and combines these signals as programmed
in the application: performing OR, AND, set, invert, toggle, or set-reset operations on the
selected signals. The event multiplexer performs a selectable event port action using a trigger:

� Drives one of the EVNTx pins.

� Generates an event port interrupt request.

� Passes the trigger directly to the timer module.

� Enables an emulator detection module.

� Performs an emulator action.

The event multiplexers can be configured so that an external host can trigger them via the HDI16
Command Vector Register (CVR) (see page 20-46). CVR[EVIN1] provides the first trigger, and
CVR[EVIN0] provides a second. Therefore, an external host can trigger events such as DMA
data transfers in an MSC711x device.

Each event multiplexer has an associated EVCTL[EMUX] bit (page 15-27) to provide status on
whether an event multiplexer has triggered or forced a trigger to occur. The EMUX bits are
described in Section 15.8, Event Port Programming Model, on page 15-26.

Figure 15-3. Block Diagram of One Event Multiplexer

Combining
Logic

Action
Select

Invert

Result

Drive EVNT Pins
Drive TINx Signals
Drive OCE10 Signals:

Detection From Previous Event Multiplexer

INV

EVOUTx[COMB]

ACT[14–0]

TDM Rx Interrupts
Timer Outputs

ICache Miss, M1CONT

EVNT Pins

EE[5–0] Signals
EED Signal

EC0, EEx, EED

Interrupt

to next
Event Multiplexer

AUX[4–0]

ENABLE[3–0]

OR

S
R

Write of 1 to EMUX[i]
Write of 0 to EMUX[i] or REN

S
RREN or

EMUX[i]

Interrupt Signals

Reset

RequestRREN or
Reset

S

Signal From Previous

DMA
RequestR

DMA_Done,
REN, or Reset

S

Stop Mode Wake-up
Crossbar Alternate Priority

D

S
R

REN or Reset

M
U

X

Enable Trigger

Always Enabled

DMA Signals Logic

Sync

Signals

AUX
Muxes

(5)

Other Inputs EVGP (Gen-Purpose Output)D

Event Multiplexer

See Figure 14-4.

or Reset

(Optional)
MSC711x Reference Manual, Rev. 1

15-4 Freescale Semiconductor

Event Port Architecture
Table 15-1, Table 15-2, and Table 15-3 summarize the input, output, and enable signals
associated with each event multiplexer.

Table 15-1. Inputs Associated with Each Event Multiplexer

Event
Multiplexer

Event Multiplexer Inputs

EVNT
Pins

DMA
Channels

Timer Outputs
(General Case)

Timer Outputs
(Direct Connect)

Previous Event
Multiplexer

Other Signals

Multiplexer 0 All 0–31 TOUT[3–0]
from timer module A

TOUT0 from
timer module A

Multiplexer 1 See notes.

Multiplexer 1 All 0–31 TOUT[3–0]
from timer module A

TOUT1 from
timer module A

Multiplexer 2 See notes.

Multiplexer 2 All 0–31 TOUT[3–0]
from timer module A

TOUT2 from
timer module A

Multiplexer 3 See notes.

Multiplexer 3 All 0–31 TOUT[3–0]
from timer module A

TOUT3 from
timer module A

Multiplexer 4 See notes.

Multiplexer 4 All 0–31 TOUT[3–0]
from timer module A

TOUT0 from
timer module A

Multiplexer 5 See notes.

Multiplexer 5 All 0–31 TOUT[3–0]
from timer module A

TOUT1 from
timer module A

Multiplexer 6 See notes.

Multiplexer 6 All 0–31 TOUT[3–0]
from timer module A

TOUT2 from
timer module A

Multiplexer 7 See notes.

Multiplexer 7 All 0–31 TOUT[3–0]
from timer module A

TOUT3 from
timer module A

Multiplexer 0 See notes.

Notes: 1. Other Inputs to the Event Multiplexers include:

– Request to initiate a DMA transfer on a selected DMA channel.
– Start of a selected DMA channel.
– Completion of a selected DMA channel.
– Preemption during execution of a selected DMA channel.
– EE4 signal from the OCE10 emulator.
– M1 contention signal.
– Cache miss signal; Cache miss to external memory signal.
– Non-maskable request generated from a source outside the SC1400 core.
– Interrupt signals selectable in the interrupt controller.
– Interrupt signals from TDM0, TDM1, and Ethernet MAC.
– Address detection signals.
– Bits 15 and 14 of the HDI16 Host Command Vector Register (HCVR).

2. When any EVNT pin is used as an input, the signal first passes through a synchronizer, introducing a delay of up
to two core clocks. When a previous event multiplexer is used as an event multiplexer input, the signal first
passes through a latch, delaying the signal by one AHB clock.

3. When the output of a previous event multiplexer is used as an event multiplexer input, the output first passes
through a latch, delaying the signal by one AHB clock.

Table 15-2. Outputs Associated with Each Event Multiplexer

Event
MUX

Event MUX Outputs

EVNT
Pins

Event Port
Interrupts

Event Port
DMA

Transfers

Event Port
General-Purpose

Outputs

Timer Inputs
(General Case)

Timer Inputs
(Direct

Connect)

OCE10 Input
Signals

Multiplexer 0 All All All All TIN[3–0] TIN0 to both
timer modules

EE[5–0], EC0

Multiplexer 1 All All All All TIN[3–0] TIN1 to both
timer modules

EE[5–0], EED
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-5

Event Port
Multiplexer 2 All All All All TIN[3–0] TIN2 to both
timer modules

EE[5–0],EC0

Multiplexer 3 All All All All TIN[3–0] TIN3 to both
timer modules

EE[5–0], EED

Multiplexer 4 All All All All TIN[3–0] TIN0 to both
timer modules

EE[5–0],EC0

Multiplexer 5 All All All All TIN[3–0] TIN1 to both
timer modules

EE[5–0], EED

Multiplexer 6 All All All All TIN[3–0] TIN2 to both
timer modules

EE[5–0], EC0

Multiplexer 7 All All All All TIN[3–0] TIN3 to both
timer modules

EE[5–0], EED

Notes: 1. Other outputs from the event multiplexers include:

– Wake up the SC1400 core from Stop mode (multiplexer 0 only).
– Switch the crossbar to alternate priority.
– Outputs are readable by an external host in bits 15 and 14 of the HDI16 ISR via the general-purpose outputs.

Table 15-3. Enable Signals Associated with Each Event Multiplexer

Event
Multiplexer

Event Multiplexer Enables

Commentsfrom
Multiplexers

Emulator
Outputs

Qualified Emulator
Outputs

Multiplexer 0 Multiplexer 1 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 1 Multiplexer 2 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 2 Multiplexer 3 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 3 Multiplexer 4 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 4 Multiplexer 5 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 5 Multiplexer 6 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 6 Multiplexer 7 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED —

Multiplexer 7 Multiplexer 0 EE0, EE1, EE2,
EE3, EE4, EE5

EE[0–5] && with EED When sequencing from an event
multiplexer, receives its enable from
event multiplexer 0

Table 15-2. Outputs Associated with Each Event Multiplexer (Continued)

Event
MUX

Event MUX Outputs

EVNT
Pins

Event Port
Interrupts

Event Port
DMA

Transfers

Event Port
General-Purpose

Outputs

Timer Inputs
(General Case)

Timer Inputs
(Direct

Connect)

OCE10 Input
Signals
MSC711x Reference Manual, Rev. 1

15-6 Freescale Semiconductor

Multiplexer Inputs
15.2 Multiplexer Inputs

Inputs enter the event port directly into the event multiplexer, or they are preprocessed as a set of
auxiliary multiplexers and then sent to the event multiplexer. When signals from the device first
enter the event port, they can optionally be inverted before the event port uses them. This
optional inversion is individually selectable for each input via the EVSELINV register (see
Table 15-8, EVSELINV Bit Descriptions, on page 15-30. This section covers topics pertaining to
the multiplexer inputs, including restrictions on usage.

15.2.1 Auxiliary Input Operation

The EVCTL[AUX] bits provide two additional user-configurable inputs to all eight event
multiplexers, and these inputs are selectable from several different sources. Figure 15-4 shows
the generation of the AUX[4–0] signals shared by all the event multiplexers. The selection is
programmed in the EVCTL register.

Figure 15-4. Generating the AUX[4–0] Input Signals

The PLL lock signal comes from the CLKCTL[LCK] bit, and the loss of lock signal is sent to the
event port. When the EE4 signal is used as an input, the HLTREQ[ITCCD] bit must be cleared.

15.2.2 Direct Connection Modes

For highest frequency operation, the event multiplexers allow direct connections between a
peripheral such a timer and event pins, bypassing much of an event multiplexer’s logic, as
follows:

� Directly connect an event pin, EVNT[0–4], to a timer input, TINx.

EE4 Signal from OCE10 Emulator
Ethernet Interrupt Signals

PLL Lock, Loss of Lock

M
U

X AUX4

AUX1

HTRQ, HRRQ, Address Detection

AUX0

...
D

D

HCVR[EVINx]

M
U

X
M

U
X

Note:

2. HTRQ, HRRQ, ADU signals are clocked with IPBus clock

Invert

EVSELINV[AUXEN4]

EVSELINV[AUXEN1]

EVSELINV[AUXEN0]

to Event
Multiplexers

1. EE4 signal is clocked with EIRQ clock

(Optional)

Invert

(Optional)

Invert

(Optional)
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-7

Event Port
� Directly connect a timer output, TOUTx, to an event pin, EVNTx.

When timer modules and the EVNTx pins are directly connected, each connection uses one event
multiplexer. There are restrictions on which signals can be connected to which pins, and which
multiplexer is used for the connection. Table 15-4 and Table 15-5 summarize the allowed
combinations.

The direct connect modes are programmed via the EVOUTx[DEVNT] bits (page 15-34), and
they take precedence over all other programming for an event multiplexer’s input sources and
output actions. If an event multiplexer is programmed for one of the direct connect modes, no
other input sources are selected/used and no other output actions are selected/performed. For
information on connecting the EVNTx signals to the debug port EE0, EED, and EC0 signals, see
Section 15-6, Combining Logic in an Event Multiplexer, on page 15-11.

When used as an input to the event port, each EVNT pin is synchronized with a two-stage
synchronizer clocked off EIRQ clock, which runs at the frequency of the core clock. This
synchronizer can introduce a delay on these pins of up to two core clocks. Also, when the EVNT
pins are used as inputs, the HLTREQ[ITCCD] bit must be reset (page 11-28).

15.2.3 DMA Input Source Selection

Each event multiplexer can specify one DMA input source to monitor use of the
EVINx[DMACH] bits (page 15-32). When a DMA channel is selected, it is also necessary to

Table 15-4. EVNTx Pin → TINx Signal

Input Pin (Source) Timer Signal (Destination) Must be programmed in:

EVNT0 TIN0 Event multiplexer 0 or 4

EVNT1 TIN1 Event multiplexer 1 or 5

EVNT2 TIN2 Event multiplexer 2 or 6

EVNT3 TIN3 Event multiplexer 3 or 7

Note: Applies to timer modules A and B.

Table 15-5. TOUTAx Signal → EVNTx Pin

 Timer Signal (Source) Output Pin (Destination) Must be programmed in:

TOUT0 EVNT0 Event multiplexer 0 or 4

TOUT1 EVNT1 Event multiplexer 1 or 5

TOUT2 EVNT2 Event multiplexer 2 or 6

TOUT3 EVNT3 Event multiplexer 3 or 7

Note: Applies to timer module A only.
MSC711x Reference Manual, Rev. 1

15-8 Freescale Semiconductor

Multiplexer Inputs
specify, via the EVINx[DMATYP] bits (page 15-32), which type of DMA event is selected as an
input source:

� DMA channel request, which is asserted when the selected channel requests service from
the DMA controller.

� DMA channel start, which is asserted when the selected channel begins operation in the
DMA controller.

� DMA channel completed, which is asserted when the selected DMA channel finishes the
data transfer.

� DMA channel deprioritization, which is asserted when the selected DMA channel loses
priority. This signal indicates the amount of time the channel is preempted.

In all cases, the DMAEN bit must be set in the corresponding event multiplexer. For example, in
Figure 15-5, the desired channel is DMA channel 3, and DMA channels 1 and 0 have a higher
priority than channel 3:

1. DMA channel 0 is transferring data.

2. Channel 3 issues a DMA channel request (EVINx[DMATYP] = 000).

3. Channel 0 completes (DMATYP = 010), and channel 3 begins (DMATYP = 001).

4. Channel 1 preempts channel 3 (DMATYP = 011).

5. Channel 1 completes (DMATYP = 010) and channel 3 resumes (DMATYP = 001).

6. Channel 1 preempts channel 3 (DMATYP = 011).

7. Channel 1 completes (DMATYP = 010) and channel 3 resumes (DMATYP = 001).

8. Channel 3 completes (DMATYP = 010).

Figure 15-5. DMA Event Types

The pulses generated for channel request and channel start are asserted when the event is detected
and deasserted one IPBus clock after channel completion is detected. The channel completion
pulse is two IPBus clocks wide. It is often useful to measure the duration of the DMA transfer
from beginning to end by sending the channel request or channel start waveform to a timer. It can

DMA Channel 3 Request

DMA Channel 3 Start

DMA Channel 3 Deprioritization

Active DMA Channel

DMA Channel 3 Completion

Ch 0 Ch 3

1 2 3

Ch 1 Ch 3 Ch 1 Ch 3 Idle

4 5 6 7 8
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-9

Event Port
also be useful to measure the time the channel is preempted by sending the DMA channel
deprioritization signal to a timer.

The different DMA event types (channel request, start, completed, and deprioritization) are
available for both hardware and software-initiated DMA channels. For hardware-initiated
channels, the event multiplexer uses signals from the requesting source: DREQ, DACK, and DDONE.
However, for software-initiated channels, no signals indicate the request, start, and completion of
the channel. Therefore, you must explicitly signal to an event multiplexer when the request for
the channel occurs (the DMA channel start and DMA channel completion conditions are
automatically determined by the event port logic):

� Program the desired DMA channel in the EVINx[DMACH] bits.

� Write a 1 to the EVINx[SWDRQ] bit, which signals a software-initiated request for a
DMA channel to the event port.

The SWDRQ bit should be set when the application notifies the software-initiated channel to
begin. Either the SC1400 instruction that sets this bit can execute immediately after the
instruction that initiates the DMA channel, or these two instructions can be paired in a single
SC1400 execution set so that they execute in parallel. The former is the recommended technique.
If the first technique is used, the two instructions should be preceded by a DI instruction and
followed by an EI instruction, as shown here:

Setting the SWDRQ bit not only internally signals the DMA channel request, but also internally
generates the DMA channel start and DMA channel completion conditions.

15.3 Event Multiplexer Combining Logic

The combining logic takes many different sources and allows them to be combined in different
ways for advanced system-level triggering. All input sources to an event multiplexer are
combined as programmed by the user. Figure 15-6 shows the combining logic within each event
multiplexer.

; Use this code for signalling the event port
; when starting a software-initiated DMA channel.
; (assumes that the event port has already programmed the DMAEN, DMACH,
; and DMATYP bits for one of its event multiplexers)

di ; Disable maskable interrupts.
move.l $xxxx,<DMA_REG>; Start a software-initiated DMA channel.
bmset $0040,EVINx ; Set the EVINx[SWDRQ] bit (bit 22 of EVINx)
ei ; Re-enable maskable interrupts
MSC711x Reference Manual, Rev. 1

15-10 Freescale Semiconductor

Event Multiplexer Combining Logic
Figure 15-6. Combining Logic in an Event Multiplexer

Following are different ways to configure the combining logic:

� OR together all enabled input sources to provide a level-sensitive trigger for an event
multiplexer.

� AND together any enabled input sources to provide a level-sensitive trigger for an event
multiplexer. Restrictions on the sources allowed for the ANDing are covered in Section
15.3.1, Restrictions on Combining via ANDing.

� XOR together all enabled input sources to provide a level-sensitive trigger for an event
multiplexer.

� Set operation. After the event multiplexer is enabled, an assertion on any enabled input
source sets the sticky bit, which remains asserted until it is explicitly cleared.

� Set-reset operation:

— Sets the trigger on the rising edge of a trigger from MUX i+1.
— Resets the trigger on the rising edge of the ORing of all enabled input sources for

MUX i.

Set-reset mode can be used in sequences, but the event multiplexer that is programmed for
set-reset combining (that is, the multiplexer that generates the reset) must be enabled by
the previous multiplexer in the sequence (the multiplexer that generates the set). This is
accomplished by EVOUTx[ENABLE] = 1110.

� Toggle operation: Toggle the trigger for MUX i on the rising edge of either of the
following:

— ORing of all enabled input sources within this event multiplexer, MUX i.
— Any trigger from MUX i+1.

The toggle mode cannot be used in sequences.

The rising edge detectors, sticky bit, toggle flop, and flop after the set-reset logic are clocked with
the IPBus clock and cleared at reset or when the EVOUTx[REN] bit is set.

Result to Optional
Invert Logic

EVOUTx[COMB]

OR

Sticky

All Event Multiplexer

Restricted Set

AND
of Sources

Bit

Toggle
Flop

1

1

1

1
OR

1
Trigger from

Event Multiplexer i+1

Sources

Set
Reset

1

S

R

1

1

Flop

Event Multiplexer Enabled
AND Multiplexer
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-11

Event Port
15.3.1 Restrictions on Combining via ANDing

Only a subset of signals is permitted for the ANDing operation. The EVOUTx[COMB] bits can
be programmed for an ANDing operation only when all input signals used in the AND operation
belong to the following subset:

� TOUT[3–0]
� AUX[4–0]

� TDM0 Rx, TDM1 Rx

� NMICHP
� EVNT[0–4]

� Selected DMA event (see Section 15.2.3, DMA Input Source Selection, on page 15-8)

� DHIGH signal from the DMA controller

� INTSV signal from the SC1400 core

� Interrupt signals from the interrupt controller

When any of these signals are used in the ANDing operation, they must be enabled appropriately
via their corresponding bits in the EVINx and EVOUTx registers.

15.3.2 Set

The event port can be configured so that a set of conditions performs a set operation. Combined
with the inversion capability, a set operation allows the event port to create waveforms similar to
those shown in Figure 15-7, which can be sent to the timers, pins, and so on.

Figure 15-7. Set Function Using One Event Multiplexer

A set operation is programmed as follows:

1. Program the event multiplexer to detect the set:

a. Set the EVOUTx[REN] bit (page 15-34) to a value of 1 to reset the multiplexer and
prevent accidental triggering.

b. Enable the desired inputs and auxiliary inputs for the set operation.

c. Program the combine logic for a set operation (EVOUTx[COMB] = 010). If
multiple input sources are enabled, they are ORed to provide the set condition.

d. Program the EVOUTx[ENABLE] bits as desired. If a simple set function is
desired, program it as always enabled. If the set operation is enabled by another
event on the device, set the enable bits to enable the event multiplexer accordingly.

Input(s) to Multiplexer i

Generated Waveform (INV==0)

Generated Waveform (INV==1)
MSC711x Reference Manual, Rev. 1

15-12 Freescale Semiconductor

Event Multiplexer Combining Logic
2. Clear the REN bit on event MUX i.

The set logic is now operational. The generated waveform in Figure 15-7, either high true or
inverted, comes from event MUX i. The value of the event MUX i INV bit determines whether it
is inverted.

15.3.3 Set-Reset

The event port can be configured so that one set of conditions performs a set operation and a
second set of conditions performs a reset of a triggering signal. Combined with the inversion
capability, set-reset allows the event port to create waveforms similar to those shown in Figure
15-8, which can be sent to the timers, pins, and so on.

Figure 15-8. Set-Reset Waveforms (Uses two Event Multiplexers)

A set-reset operation requires two adjacent event multiplexers. Event MUX i+1 detects the set
operation, and event MUX i detects the reset operation:

1. Event MUX i+1 detects the set operation and is programmed as follows:

a. Set the EVOUTx[REN] bit (page 15-34) to a value of 1 to reset the multiplexer and
prevent accidental triggering.

b. Enable the desired inputs and auxiliary inputs for the set operation.

c. The combine logic is programmed for OR, AND, or SET as desired. It cannot be
programmed for a toggle or set-reset operation.

d. Enable bits are programmed as desired. If a simple set-reset function is desired, use
the always enabled value (EVOUTx[ENABLE] = 1111). If the set-reset operation
is enabled by another event on the chip, the enable bits can be set so the set-reset
unit built from the two event multiplexers is enabled accordingly.

2. Event MUX i detects the reset and is programmed as follows:

a. Set the EVOUTx[REN] bit (page 15-34) to a value of 1 to reset the multiplexer and
prevent accidental triggering.

b. Enable the desired inputs and auxiliary inputs for the set operation.

c. Program the combine logic for set-reset (EVOUT[COMB] = 111).

d. Program the INV bit to get a high-true or inverted waveform (EVOUTx[INV] = 1).

Set Detect Occurs in MUX i+1

Reset Detect Occurs in MUX i

Generated Waveform (INV==0)

Generated Waveform (INV==1)
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-13

Event Port
e. Program the enable bits as either always enabled (EVOUTx[ENABLE] = 1111) or
enabled by MUX i+1 (EVOUTx[ENABLE] = 1110).

There is a difference between these two only if the INV bit is set for this
multiplexer. If INV is set and always enabled, a 1 is output before the first set
occurs. If INV is set and enabled by MUX i + 1, a 0 is output before the first set.

3. The REN bit is cleared on event MUX i.

4. The REN bit is cleared on event MUX i + 1.

At this point, the set-reset logic is operational. Keep in mind that for a set-reset operation, the
event multiplexer that generates the final signal must be programmed with EVOUTx[ENABLE]
= 1111. The generated waveform shown in Figure 15-8, either high true or inverted, comes from
event MUX i, although the output from Event MUX i+1 can also be used. The value of the event
MUX i INV bit determines whether the waveform is inverted.

15.3.4 Toggle

The event port can be configured to toggle on the rising edges of two different triggering signals.
Two adjacent event multiplexers are required, and they are set up as follows:

1. Program event MUX i+1:

a. Set the EVOUTx[REN] bit (page 15-34) to a value of 1 to reset the multiplexer and
prevent accidental triggering.

b. Enable the desired inputs and auxiliary inputs for the set operation.

c. Program the combine logic for OR, AND, or SET as desired. It cannot be
programmed for a toggle or set-reset operation.

d. The enable bits are typically programmed as always enabled, but you can program
them with a different value for a more complex operation.

2. Event MUX i detects the reset and is programmed as follows:

a. Set the EVOUTx[REN] bit (page 15-34) to a value of 1 to reset the multiplexer and
prevent accidental triggering.

b. Enable the desired inputs and auxiliary inputs for the set operation.

c. Program the combine logic for a toggle operation (EVOUTx[COMB] = 011).

d. The INV bit is typically cleared.

e. The enable bits are typically programmed as always enabled (EVOUTx[ENABLE]
= 1111), but you can program them with a different value for a more complex
operation.

3. Clear the REN bit event MUX i.

4. Clear the REN bit on event MUX i+1.

At this point, the toggle logic is operational.
MSC711x Reference Manual, Rev. 1

15-14 Freescale Semiconductor

Event Port Actions
When an event multiplexer is configured for a toggle operation, the REN bit must be set:

� If the event multiplexer INV bit is cleared:

— The output of the multiplexer while REN is still set is a 0.
— When the REN bit is cleared to enable the multiplexer, the output remains a 0 until the

first toggle is detected.
— The first toggle detected can be one cycle after the REN bit is cleared.

� If the event multiplexer INV bit is set:

— The output of the multiplexer while REN is still set is a 0.
— When the REN bit is cleared to enable the multiplexer, the output remains a 0 for one

clock cycle and then switches to a 1 to reflect the state of the toggle flop.
— The first toggle detected can be one cycle after the REN bit is cleared.

When the toggle logic becomes operational, a detection of a toggle is immediately reflected on
the output of the event multiplexer.

15.4 Event Port Actions

When a trigger is detected in an event multiplexer, the multiplexer can take one of the following
actions:

� Request a DMA data transfer.

� Generate an interrupt.

� Send a trigger to an EVNT pin.

� Switch the crossbar to alternate priority registers.

� Wake up the SC1400 core from Stop mode. Event multiplexer 0 can be used to force an
exit from Stop mode. This capability is available only for event multiplexer 0 and is
covered in detail in Section 11.4.5, Exit from Stop Mode, on page 11-22.

� Provide status to an external host through the HDI16 port.

15.4.1 Event Port DMA Transfers

Each event multiplexer initiates DMA data transfers using the EVDMA0 request, the EVDMA1
request, or both. If more than one event multiplexer is configured to drive a particular EVDMAx
signal, the triggers from each source (that is, the outputs of the optional invert blocks) are ORed
together to form a single request. Software can determine which event multiplexer caused the
DMA transfer by examining the EVCTL[EMUX] bits of the event multiplexers programmed to
generate interrupts. When an event multiplexer triggers, its corresponding EMUX bit is set.

15.4.2 Event Port Interrupts

Each event multiplexer can generate an interrupt request on the EVINT0 signal, the EVINT1 signal,
or both signals. When an event multiplexer is programmed to generate interrupts, it asserts the
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-15

Event Port
EVINTx request signal as a high true, edge-triggered value. This value is captured and latched
within each event multiplexer. The latched interrupt request remains asserted until it is explicitly
cleared in the interrupt handler by setting the REN bit of the multiplexer that generated the
interrupt request. Note that this action clears the edge detect latch only for this particular event
multiplexer. An interrupt handler identifies the event multiplexer that caused the interrupt by
examining the EVCTL[EMUX] bits. When an event multiplexer triggers, its corresponding
EMUX bit is asserted. If more than one event multiplexer is configured to drive a particular
EVINTx signal, the triggers from each source (that is, the outputs of the optional invert block) are
ORed together to form a single request.

15.4.3 Crossbar Switch Priority Changes

When an event multiplexer is configured to drive the signal to switch the crossbar to alternate
priority when the trigger occurs, the crossbar is switched to a new set of priorities via its alternate
priority registers. The crossbar switch uses this alternate set of priorities as long as the signal is
asserted. If the signal is a pulse, it may be useful to use the set capability within the combining
logic so that the alternate priorities remain in use. Normal usage is restored when the REN bit of
the appropriate event multiplexer is set.

If more than one event multiplexer is configured to switch the crossbar to alternate priority, the
triggers from each source (that is, the outputs of the optional invert block) are ORED together to
form a single request.

15.4.4 Forced Exit from Stop Mode

Only event multiplexer 0 can force an exit from Stop mode. See Section 11.4.5, Exit from Stop
Mode, on page 11-22.

15.4.5 Status to an External Host

The event multiplexers can be configured so that a host processor can read their output in the
HDI16 ISR register. The output of one multiplexer is read in ISR[EV1] and the output of a
second is read in ISR[EV0]. Therefore, an external host can view any data visible through the
event port. The outputs are latched by the IPBus clock before the signals are sent outside the
event port.

15.4.6 Restrictions on Multiple Drivers

Each event multiplexer can independently drive any of the following signals:

� One of the TINx signals (TIN[0–3])

� One of the OCE10 on-chip emulator signals (EE[0–5], EED, EC0)

� One of the event pins (EVNT[0–4])

� One of the event general-purpose outputs
MSC711x Reference Manual, Rev. 1

15-16 Freescale Semiconductor

Event Port and Debug Port Interaction
Problems would occur if multiple sources simultaneously attempt to drive a single signal.
Therefore, the event port must be configured so that only one event multiplexer can drive one of
these signals at a given time. For example, one multiplexer can drive EVNT2 while another drives
EVNT3, but two different multiplexers cannot both drive EVNT3 at the same time. Any ORing
operations should use the event multiplexer ORing capability.

15.5 Event Port and Debug Port Interaction

The event multiplexers detect system events such as interrupts, DMA activity, and timer events,
whereas the SC1400 debug port contains event detection channels that detect instruction-based
events, such as program addresses and data values written to a particular address.

Event multiplexer sequencing uses both on-chip events entering the event port and the debug port
EDCA and EDCD breakpoint units, which can enable multiplexers via the EEx and EED signals.

The event port and the debug port communicate with each other through the OCE10 on-chip
emulator EE[5–0], EED, and EC0 signals. Each EE signal and the EED signal can be individually
configured as an input or output signal. A signal is selected by programming the EE_CTRL
register in the emulator. When the emulator uses them as inputs, the EE[5–0] and EED signals are
synchronized as they enter the emulator port. The EC0 signal is synchronized outside the emulator
port with the core clock and can run at rates up to the core frequency. At reset, the EE signals are
configured as inputs. An EE input signal can also be configured to perform more than one
function. For example, the EE2 signal can enable both EDCA2 and the event counter and generate
an emulator event.

Each EEx signal (or the EED signal) can be configured as an input to the breakpoint logic, which
can enable an address (EDCAx) or data detection channel (EDCD):

� EED enables EDCD.

� EE0 enables EDCA0.

� EE1 enables EDCA1.

� EE2 enables EDCA2.

� EE3 enables EDCA3.

� EE4 enables EDCA4.

� EE5 enables EDCA5.

Each EEx signal (or the EED signal) can generate an emulator event (selected via the SC1400 core
emulator Event Selector registers):

� Enter Debug mode.

� Generate a non-maskable debug exception.

� Enable/disable trace buffer capture.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-17

Event Port
Each EEx signal can also be configured as an output to indicate internal emulator events to
devices outside the SC1400 core. They can signal a detection by an event detection channel
(EDCAx or EDCD). An event is signalled by toggling the appropriate terminal:

� EED signals a detection by EDCD.

� EE0 signals a detection by EDCA0.

� EE1 signals a detection by EDCA1.

� EE2 signals a detection by EDCA2.

� EE3 signals a detection by EDCA3.

� EE4 signals a detection by EDCA4.

� EE5 signals a detection by EDCA5.

Via a logic analyzer, the EEx signals can be configured to measure the time between two events
detected by event detection channels.

The special capabilities of each signal are as follows:

� EC0 is an input to the 31/62-bit emulator event counter.

� EE0 can bring the SC1400 core into Debug mode directly from reset or during normal
execution.

� EE1 can indicate that the SC1400 is currently in Debug mode.

� EE2 can enable the emulator 31/62-bit event counter.

� EE3 can indicate that the ERCV register is full.

� EE4 can indicate that data is available in the ETRSMT register.

Note: When programmed as an output, EE5 can be used only to enable its address detection
channel. It cannot be used to generate an emulator event.

The debug port can drive the EE[5–0] and EED signals as outputs to the event port to trigger an
event multiplexer. When the EE[5–0] signals are configured as emulator outputs, only the EE4
signal, can connect to an EVNTx pin through an event multiplexer. You can view another emulator
output signal indirectly by programming an event multiplexer to trigger from the desired EEx pin
with the corresponding EMUX[i] bit set. As soon as the EEx signal asserts, the value of the
EMUX[i] bit is set to perform an event port action. From the emulator port, the EE0 signal can be
viewed on the EE0 pin. This EE0 connection is routed directly from the emulator to the pin,
bypassing the event port. When the EE0 pin is configured as an input, its signal goes directly to
the emulator port, ORed with the EE0 signal output from the event port.

You can also connect the EVNTx pins through an event multiplexer to the debug port EE[0–5], EED,
and EC0 signals. You can connect an emulator output, EE4, through an event multiplexer to an
EVNTx pin. When an EVNT pin is used as a timer input, its signal first passes through a
synchronizer, introducing a delay of up to two core clocks. There is an additional synchronizer
within the emulator port on the EEx, EED, and EC0 signals.
MSC711x Reference Manual, Rev. 1

15-18 Freescale Semiconductor

Software Management of Event Multiplexers
15.6 Software Management of Event Multiplexers

The event port multiplexers respond not only to incoming signals that trigger event port actions
but also to software triggers. Each event multiplexer is accessible through the device
programming model:

� Trigger an event multiplexer from an SC1400 instruction

� Read an event multiplexer to determine whether it has triggered. Use the EVCTL[EMUX]
bits to check the status of the event multiplexers and generate triggers from a program
through an event multiplexer when it is enabled.

� Reset an event multiplexer via the EVOUTx[REN] bit.

15.6.1 Trigger an Event Multiplexer

You can trigger an event multiplexer action by writing to its corresponding EVCTL[EMUX] bit
via a bit set instruction in a program. That is, instructions in a program can be treated as events to
be handled by the event port. Therefore, you can trigger an event multiplexer sequence either by
a device-level event or a particular location in a program. In Figure 15-3, Block Diagram of One
Event Multiplexer, on page 15-4, notice the connection to the OR gate immediately after the
combining logic.

Writing a value of 1 to an EMUX bit sets the bit, and the action passes through the OR and
optional invert functions and generates a trigger for the multiplexer. If the trigger is enabled, an
event port sequence can advance to the next multiplexer in the sequence and/or cause an event
port action to occur for the particular multiplexer. Writing a value of 0 clears the EMUX bit,
removing the trigger condition for the multiplexer. However, writing a 0 does not affect the value
of the EMUX[i] bit when the EVCTL register is read. The EMUX bit is also reset to zero when
the multiplexer EVOUTx[REN] bit is set The EMUX bits are also useful for checking the trigger
status of a multiplexer because they are set only when an enabled trigger occurs and remain set
until it is cleared.

15.6.2 Reset An Event Multiplexer

The EVOUTx[REN] bit resets an event multiplexer. The REN bit is set when an event
multiplexer is not in use or while it is programmed for operation. When an event multiplexer is
disabled by setting its REN bit, the corresponding outputs for the event multiplexer are
immediately disabled. No other bit values in the EVOUTx register should be modified. A
BMSET.W instruction is used to ensure that no other fields in the EVOUTx register are
modified, or you can write a value to the EVOUTx register that is equal to its current contents
with the exception of setting the REN bit. Enabling an event multiplexer by clearing its REN bit
takes effect one IPbus clock cycle later. There is a delay of one IPBus clock cycle before the
output of the optional invert block is passed through the action select block. The direct
connection modes in which the EVNTx pins directly connect to the timer module are unaffected by
the REN bit. See Section 15.2.2, Direct Connection Modes, on page 15-7.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-19

Event Port
Table 15-6 summarizes the different capabilities of the REN bit in each event multiplexer.

15.7 Event Sequencing

Events can be sequenced through the event multiplexers with actions triggered at the appropriate
location in the sequence. The EVOUTx[REN] bit ensures that an event multiplexer does not
accidentally trigger before it is ready. For sequenced operations, the registers are programmed as
follows:

1. Set the REN bit of the first multiplexer in the sequence.

2. Set the REN bit of the second multiplexer in the sequence.

3. Set the REN bit of the last multiplexer in the sequence.

4. Program the EVOUT register for the first multiplexer in the sequence and ensure that its
REN bit is set.

5. Program the EVOUT register for the second multiplexer in the sequence and ensure that
its REN bit is set.

Table 15-6. REN Bit Usage

Operation Conditions Description REN Bit Definition Cross Reference

Clear sticky bit in
the combine logic.

EVOUTx[COMB]
= 010

Set up an event multiplexer for
the set mode of operation in the
combine logic.

0 Bit not affected.

1 Clear sticky bit.

Section 15.2.3, DMA Input
Source Selection, on page
15-8.

Clear toggle flop
in the combine
logic.

EVOUTx[COMB]
= 011

Set up an event multiplexer for
the toggle mode of operation in
the combine logic.

0 Bit not affected.

1 Clear toggle bit.

Section 15.2.3, DMA Input
Source Selection, on page
15-8.

Clear set-reset
flop in the
combine logic.

EVOUTx[COMB]
= 111

Set up an event multiplexer for
the set-reset mode of operation
in the combine logic.

0 Bit not affected.

1 Reset bit.

Section 15.2.3, DMA Input
Source Selection, on page
15-8.

Inhibit event
multiplexer
triggering

— Set up an event multiplexer to
prevent accidental triggering.
Especially useful in sequenced
triggering.

0 Event multiplexer
can trigger.

1 Event multiplexer
cannot trigger.

Section 15.7, Event
Sequencing, on page
15-20.

Clear EMUX[i]
status bits.

— Clear an EMUX[i] bit, which
indicates whether a particular
event multiplexer has triggered.
Also clears the EMUX[i] bit that
is an input to the OR gate
immediately following the
combining logic.

0 EMUX[i] bit not
affected.

1 Clear EMUX[i] bit.

See page 15-27 for details
on the Event Port Control
(EVCTL) register.

Clear event port
interrupt request,
EVINTx.

EVINTx signal is
asserted.

Used by an interrupt handler to
clear an event port interrupt
request.

0 Interrupt request
not affected.

1 Interrupt request
is cleared.

Section 15.4.1, Event Port
DMA Transfers, on page
15-15.

Clear event port
DMA request,
EVDMAx

internal EVDMAx
signal is
asserted.

Software clears the DMA
request.

0 DMA request not
affected.

1 DMA request is
cleared.

Section 15.4.1, Event Port
DMA Transfers, on page
15-15.
MSC711x Reference Manual, Rev. 1

15-20 Freescale Semiconductor

Event Sequencing
6. Continue until the last multiplexer in the sequence is programmed and its REN bit is set.

7. Clear the REN bit of the last multiplexer in the sequence using a bit clear instruction.

8. Continue clearing the REN bits of each multiplexer in the sequence until the REN bit of
the first multiplexer is cleared.

Steps 1–3 prevent the multiplexers from triggering early. Steps 4–6 clear the REN bit in order
from the last to the first multiplexer to ensure that none of the units accidentally triggers during
the set-up process. At this point, the sequence is enabled and ready.

15.7.1 Sequencing Through the Event Multiplexers

The following example presents three consecutive multiplexers (4, 3, and 2). The highest
numbered one triggers first and the lowest numbered one triggers last. The last multiplexer
trigger is programmed to toggle the EVNT2 pin.

1. Multiplexer 4: Trigger on the assertion of the EVNT3 or EVNT4 signal.

2. Multiplexer 3: Trigger on the start of DMA channel 2.

3. Multiplexer 2: Trigger on the assertion of the EVNT1 signal and drive the EVNT2 signal.

The desired sequencing is represented as: (EVNT3 || EVNT4) → DMA Channel 2 Start → EVNT1 →
EVNT2. This sequence is programmed on three event multiplexers, MUX4, MUX3, and MUX2,
as follows:

1. Set the EVOUT[REN] bit of MUX4 in the sequence.

2. Set the REN bit of MUX3 in the sequence.

3. Set the REN bit of MUX2 in the sequence.

4. Set up MUX4:

a. Set the EVIN4[EVNT3] and EVIN4[EVNT4] bits.

b. Combine these signals with an OR operation (EVOUTx[COMB] = 000).

c. MUX4 is always enabled (EVOUT[ENABLE] = 1111).

d. EVOUT[REN] = 1.

5. Set up MUX3:

a. Select DMA Channel Start for DMA channel 2 (EVIN2[DMATYP] = 001).

b. Use the OR for the combining operation (EVOUTx[COMB] = 000).

c. MUX3 to be enabled by MUX i+1 (EVOUT[ENABLE] = 1110).

d. EVOUT[REN] = 1.

6. Set up MUX2:

a. EVNT1 bit set.

b. Use OR for the combining operation (EVOUTx[COMB] = 000).
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-21

Event Port
c. Set up MUX2 to be enabled by MUX i+1 (EVOUT[ENABLE] = 1110).

d. EVOUT[REN] = 1.

e. Program MUX2 to toggle EVNT2.

7. Clear the REN bit for MUX2, MUX3, and MUX4, respectively.

At this point, these multiplexers are ready. The sequence triggering is shown in Figure 15-9.

Figure 15-9. Event Multiplexer Sequencing

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Event Port

Debug Port (Emulator)

EE2

EC0

EDCA[5–0] Detect

EE[5–0], EED

EDCD Detect

Debug Int Request
Debug Mode

Trace Buffer
Trace Buffer Enable

Event Counter

EDCA0
EE0

EDCA0 Detect

Breakpoint Unit

EDCA1
EE1

EDCA1 Detect

EDCA2
EE2

EDCA2 Detect

EDCA3
EE3

EDCA3 Detect

EDCA4
EE4

EDCA4 Detect

EDCA5
EE5

EDCA5 Detect

EDCD
EED

EDCD Detect

Timer Module B
(Four 16-Bit Timers)

DBREQ

Timer Module A
(Four 16-Bit Timers)

EVNT[4–0]

Internal Events

Interrupts

Interrupts

TIN[3–0]

EC0

EE[5–1]
EED

EE0

EE1

EE2

EE3

EE4

EE5

EED

EVINT0 INT REQ
EVINT1 INT REQ to Interrupt Controller

From Multiplexer 0

EVDMA0 DMA REQ
EVDMA1 DMA REQ to DMA

Change Priorities of Crossbar Switch
STOP Mode Wake-upMultiplexer

Multiplexer

From Multiplexer 0

EV ALT PRIORITY
EV STOP WAKEUP

EVGP0
EVGP1 to HDI16

EE0 OR

Pin

0

1

2

3

4

5

6

7

Event
Selection

Disable

EVINT1

DMA Channel
2 Start

EE4 Output

EVINT3, 4

EVINT2
MSC711x Reference Manual, Rev. 1

15-22 Freescale Semiconductor

Event Sequencing
15.7.2 Sequencing from Event Multiplexer to Debug Port

You can use event port sequences to enable a sequence within the debug port breakpoint unit.
Consecutive multiplexers must be used for sequencing events in the event port, although this is
not required for sequences in the debug port. In the example shown here, a sequence of two
events is created using multiplexers 3 and 2. When the second event is detected, a sequence of
two breakpoints within the debug port is enabled, which, once detected, halts the SC1400 core.
The desired triggering sequence (shown in Figure 15-10) is represented as: DMA Channel 15
Start → EVNT1 → (PAB== 0x00C00000) → (PAB==0x00000100) → Debug mode:

1. Trigger on the start of DMA channel 15.

2. Trigger on the assertion of the EVNT1 signal.

3. Upon detecting the last event in the sequence, enable the debug port breakpoint EDCA1
unit, which looks for a program address of 0x00C0 0000.

4. Upon detecting this first breakpoint, enable the debug port breakpoint EDCA0 unit
which looks for a program address of 0x0000 0100.

5. Upon detecting this second breakpoint, place the SC1400 core into Debug mode.

15.7.3 Sequencing from Debug Port to Event Multiplexers

You can use a breakpoint sequence within the debug port breakpoint unit to enable an event port
sequence. In the example shown here, a sequence of two breakpoints within the debug port is
enabled. When the second breakpoint is detected, the event sequence is enabled and initiated,
which generates an interrupt when the event sequence completes.

The desired triggering sequence is as follows:

1. The debug port breakpoint EDCA1 unit checks for a program address of 0x00C0 0000.

2. When this first breakpoint is detected, the debug port breakpoint EDCA0 unit is
enabled, and it checks for a program address of 0x0000 0100.

3. When this second breakpoint is detected, the event port MUX3 is enabled, which
triggers on a DMA channel request on channel 15.

4. MUX2 triggers on the assertion of the EVNT1. Upon detection, generate an interrupt.

The desired sequencing can be represented as: (PAB==0x00C00000) → (PAB==0x00000100)
→ DMA Channel 15 Request → EVNT1 → Generate Interrupt. This sequence triggering is shown
in Figure 15-11.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-23

Event Port
Figure 15-10. Event Multiplexer to Debug Port Sequencing

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Event Port

Debug Port (Emulator)

Debug Int Request
Debug Mode

Trace Buffer
Trace Buffer Enable

Event Counter

EDCA0
EE0

EDCA0 Detect

Breakpoint Unit

EDCA1
EE1

EDCA1 Detect

EDCA2
EE2

EDCA2 Detect

EDCA3
EE3

EDCA3 Detect

EDCA4
EE4

EDCA4 Detect

EDCA5
EE5

EDCA5 Detect

EDCD
EED

EDCD Detect

Timer Module B
(Four 16-Bit Timers)

Timer Module A
(Four 16-Bit Timers)

EVNT[4–0]

Internal Events

Interrupts

Interrupts

TIN[3–0]

EC0

EE[5–0]

EED

EE0

EE1

EE2

EE3

EE4

EE5

EED

EVINT0 INT REQ
EVINT1 INT REQ to Interrupt Controller

From Multiplexer 0

EVDMA0 DMA REQ
EVDMA1 DMA REQ to DMA

Change Priorities of Crossbar Switch
STOP Mode Wake-upMultiplexer

Multiplexer

From Multiplexer 0

EV ALT PRIORITY
EV STOP WAKEUP

EVGP0
EVGP1 to HDI16

0

1

2

3

4

5

6

7

Event
Selection

Disable

EVINT1

DMA Channel
15 Start

EE4 Output

EVINT3, 4

0x00000100

0x00C00000
MSC711x Reference Manual, Rev. 1

15-24 Freescale Semiconductor

Event Sequencing
Figure 15-11. Debug Port to Event Multiplexer Sequencing

15.7.4 Instruction in a Triggering Sequence

A sequencing event can be an SC1400 instruction. The example presented here uses three
consecutive multiplexers. MUX3 is triggered by the execution of an instruction.
The instruction, located at 0x00C90004, is a BMTSET.W instruction that sets the EMUX3 bit in

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Multiplexer

Event Port

Debug Port (Emulator)

Debug Int Request
Debug Mode

Trace Buffer
Trace Buffer Enable

Event Counter

EDCA0
EE0

EDCA0 Detect

Breakpoint Unit

EDCA1
EE1

EDCA1 Detect

EDCA2
EE2

EDCA2 Detect

EDCA3
EE3

EDCA3 Detect

EDCA4
EE4

EDCA4 Detect

EDCA5
EE5

EDCA5 Detect

EDCD
EED

EDCD Detect

Timer Module B
(Four 16-Bit Timers)

Timer Module A
(Four 16-Bit Timers)

EVNT[4–0]

Internal Events

Interrupts

Interrupts

TIN[3–0]

EC0

EE[5–0]

EED

EE0

EE1

EE2

EE3

EE4

EE5

EED

EVINT0 INT REQ
EVINT1 INT REQ to Interrupt Controller

From Multiplexer 0

EVDMA0 DMA REQ
EVDMA1 DMA REQ to DMA

Change Priorities of Crossbar Switch
STOP Mode Wake-upMultiplexer

Multiplexer

From Multiplexer 0

EV ALT PRIORITY
EV STOP WAKEUP

EVGP0
EVGP1 to HDI16

0

1

2

3

4

5

6

7

Event
Selection

Disable

EVINT1

DMA Channel
15 Request

EE4 Output

EVINT3, 4

0x00000100

0x00C00000
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-25

Event Port
the EVCTL[EMUX] register, explicitly triggering an event multiplexer. The last multiplexer
trigger is programmed to toggle the EVNT2 signal.

1. MUX4: Trigger on the assertion of the EVNT4 pin

2. MUX3: Trigger on any instruction that sets the EMUX3 bit

3. MUX2: Trigger on the assertion of the EVNT1 pin and drive the EVNT2 pin.

The desired sequencing is represented as: EVNT4 → (EMUX3 set by a SC1400 instruction) →
EVNT1 → EVNT2.

15.7.5 Instruction ORed with an Event in a Triggering Sequence

In the example presented here, one of the sequencing events is a SC1400 instruction, there are
three consecutive multiplexers, and MUX3 is triggered by the execution of an instruction or a
trigger from Timer 1 in timer module A. Instructions at 0x00C90004, 0x00401004, and
0x0000A700 are BMTSET.W instructions that set the EVCTL[EMUX3] bit. They explicitly
trigger an event multiplexer. The last multiplexer trigger is programmed to toggle EVNT2.

1. MUX4: Trigger on a DMA transfer completion on channel 5.

2. MUX3: Trigger on any instruction that sets the EMUX3 bit OR a time-out on Timer 1.

3. MUX2: Trigger on the assertion of the EVNT1 signal and drive the EVNT2 signal.

The desired sequencing is represented as: DMA Channel 5 Completed → (EMUX3 set by a
SC1400 instruction -OR- TOUT1) → EVNT1 → EVNT2.

15.8 Event Port Programming Model

The event port registers, which configure the event selection multiplexers, are listed as follows,
along with the number of the page where each register is discussed:

� Event Port Control Register (EVCTL), page 15-27.

� Event Port Selective Invert (EVSELINV), page 15-30.

� Event Input Selection Register (EVINx), page 15-32.

� Event Output Selection 0, 2, 4 (EVOUT[0, 2, 4, 6]), page 15-34.

� Event Output Selection 1, 3, 5 (EVOUT[1, 3, 5, 7]), page 15-37.

For the value of the base address for the EV_BASE register file, see Table 5-1, Summary —
Base Addresses for MSC711x Register Files, on page 5-4. In addition to the input sources
selected in the EVINx registers, the EVCTL register and the corresponding EVOUTx registers
also provide input sources for the event multiplexers. There is only a minor difference between
the EVOUT registers for multiplexers 0,2,4,6 versus those for multiplexers 1,3,5, 7. The first set
drives the emulator EC0 signal, and the second set drives the emulator EED signal.
MSC711x Reference Manual, Rev. 1

15-26 Freescale Semiconductor

Event Port Programming Model
EVCTL provides the status and allows triggering of each event multiplexer via an SC1400
instruction. This register also provides additional bits for input selection. When any signal is
selected via the AUX bits, the corresponding capability must be enabled in the EVINx[AUXEN]
bits. The inputs come from different MSC711x peripherals. The CADEV and PADEV signals are
from the address detection units, the HTRQ and HRRQ signals and signals from the HCVR
register are from the HDI16. The PLL, OCE10 emulator, and Ethernet MAC (if present on the
device) also provide inputs.

EVCTL Event Port Control Register EV_BASE + 0xC0

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— AUX4 EMUX

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AUX3 AUX2 AUX1 AUX0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15-7. EVCTL Bit Descriptions

Bit x Reset Description Description

—
31–28

0 Reserved. Write to zero for future compatibility.

AUX4
27–24

0 AUX4 Signal Selection
Selects a signal as an extra input to the event multiplexers.

0000 Disabled. AUX signal not
driven.

0001 EE4 signal.

0010 Ethernet Tx frame interrupt.

0011 Ethernet Rx frame interrupt.

0100 Ethernet summary interrupt
signal.

0101 PLL loss of lock signal.

0110 PLL lock signal.

0111 Reserved.

1000 CADEV0 signal.

1001 CADEV1 signal.

1010 PADEV0 signal.

1011 PADEV1 signal.

1100 HTRQ signal.

1101 HRRQ signal.

1110 HCVR[EVIN0] bit.

1111 HCVR[EVIN1] bit.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-27

Event Port
EMUX
23–16

0 Event Multiplexer Bits 7–0
This field checks the status of event multiplexers 7–0 and
generates triggers from a program through an event
multiplexer, when enabled. EMUX is reset to zero when the
multiplexer’s REN bit is set. EMUX allows instructions in a
program to be treated as events to be handled by the event
port—for example, to trigger on the completion of a DMA
channel or a program instruction. Program instructions can
also be used to advance an event port sequence. Therefore,
device-level events can not only be used for sequencing, but
sequencing can also trigger on a particular location in a
program. Setting EMUX sets an internal flop (shown in
Figure 15-3, Block Diagram of One Event Multiplexer, on page
15-4) that passes through the OR and optional invert functions
and can generate a trigger for the multiplexer. If the trigger is
enabled, it can advance an event port sequence to the next
multiplexer in the sequence and/or cause an event port action
to occur for the specified multiplexer. Clearing this bit clears the
internal flop and removes the trigger condition for the
multiplexer. However, writing a 0 does not affect the value of
the EMUX when the EVCTL register is read. Note that the
internal flop is set by the detection of a write of a 1 to an EMUX
bit, and not simply whether the value of the EMUX bit is 1.

0 Reads the status of the
designated event multiplexer.

1 Reads the status of the
designated event multiplexer.
Writing a 1 to a bit in this field
causes the event multiplexer to
trigger.

AUX3
15–12

0 AUX3 Signal Selection
Selects a signal as an extra input to the event multiplexers

0000 Disabled. AUX signal not
driven.

0001 EE4 signal.

0010 Ethernet Tx frame interrupt.

0011 Ethernet Rx frame interrupt.

0100 Ethernet summary interrupt
signal.

0101 PLL loss of lock signal.

0110 PLL lock signal.

0111 Reserved.

1000 Internal extended core event
output 0 signal.

1001 Internal extended core event
output 1 signal.

1010 Internal peripheral extended
core output 0 signal.

1011 Internal peripheral extended
core output 1 signal. signal.

1100 HTRQ signal.

1101 HRRQ signal.

1110 HCVR[EVIN0] bit.

1111 HCVR[EVIN1] bit.

Table 15-7. EVCTL Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

15-28 Freescale Semiconductor

Event Port Programming Model
AUX2
11–8

AUX2 Signal Selection
Selects a signal as an extra input to the event multiplexers

0000 Disabled. AUX signal not
driven.

0001 EE4 signal.

0010 Ethernet Tx frame interrupt.

0011 Ethernet Rx frame interrupt.

0100 Ethernet summary interrupt
signal.

0101 PLL loss of lock signal.

0110 PLL lock signal.

0111 Reserved.

1000 CADEV0 signal.

1001 CADEV1 signal.

1010 PADEV0 signal.

1011 PADEV1 signal.

1100 HTRQ signal.

1101 HRRQ signal.

1110 HCVR[EVIN0] bit.

1111 HCVR[EVIN1] bit.

AUX1
7–4

0 AUX1 Signal Selection
Selects a signal as an extra input to the event multiplexers.
Before an AUX1 selected signal can be used, this capability
must also be enabled in the EVINx register AUXEN1 bit.

0000 Disabled. AUX signal not
driven.

0001 EE4 signal.

0010 Ethernet Tx frame interrupt.

0011 Ethernet Rx frame interrupt.

0100 Ethernet summary interrupt
signal.

0101 PLL loss of lock signal.

0110 PLL lock signal.

0111 Reserved.

1000 CADEV0 signal.

1001 CADEV1 signal.

1010 PADEV0 signal.

1011 PADEV1 signal.

1100 HTRQ signal.

1101 HRRQ signal.

1110 HCVR[EVIN0] bit.

1111 HCVR[EVIN1] bit.

Table 15-7. EVCTL Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-29

Event Port
EVSELINV contains bits that bits allow event port input signals to be selectively inverted before
the event multiplexers use them. Each bit enables one source for this event multiplexer. If
multiple sources are selected, they are combined as specified in the corresponding output action
register.

AUX0
3–0

0 AUX0 Signal Selection
Selects a signal as an extra input to the event multiplexers.
Before an AUX0 selected signal can be used, this capability
must also be enabled in the EVINx register AUXEN0 bit.

0000 Disabled. AUX signal not
driven.

0001 EE4 signal.

0010 Ethernet Tx frame interrupt.

0011 Ethernet Rx frame interrupt.

0100 Ethernet summary interrupt
signal.

0101 PLL loss of lock signal.

0110 PLL lock signal.

0111 Reserved.

1000 CADEV0 signal.

1001 CADEV1 signal.

1010 PADEV0 signal.

1011 PADEV1 signal.

1100 HTRQ signal.

1101 HRRQ signal.

1110 HCVR[EVIN0] bit.

1111 HCVR[EVIN1] bit.

EVSELINV Event Selective Invert Register(Multiplexer 0) EV_BASE + 0xC8

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRVM DHIGH IMISS IMISSE TDM0 TDM1 NMICH M1CON — — DMA AUXEN4 AUXEN3 AUXEN2 AUXEN1 AUXEN0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUT EVNT — INTSV INTEV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15-8. EVSELINV Bit Descriptions

Bit x Reset Description Description

PRVM
31

0 Previous Multiplexer 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

Table 15-7. EVCTL Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

15-30 Freescale Semiconductor

Event Port Programming Model
DHIGH
30

0 DMA Priority Elevation 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

IMISS
29

0 ICache Miss All Cases 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

IMISSE
28

0 ICache Miss to External Memory 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

TDM0
27

0 Receive Interrupt Request 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

TDM1
26

0 Receive Interrupt Request 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

NMICH
25

0 NMI Interrupt Request 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

M1CON
24

0 Contention at M1 Memory 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

—
23–22

0 Reserved. Write to zero for future compatibility.

DMA
21

0 DMA Event 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

AUXEN4
20

0 AUX4 Input Enable 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

AUXEN3
19

0 AUX3 Input Enable 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

AUXEN2
18

0 AUX2 Input Enable 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

AUXEN1
17

0 AUX1 Input Enable 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

Table 15-8. EVSELINV Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-31

Event Port

AUXEN0
16

0 AUX0 Input Enable 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

TOUT[3:0]
15–12

0 Timer Output Signals
(timer 3 — 0 from Timer Module
A)

0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

EVNT[4:0]
11–7

0 EVNT Pin Enables 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

—
6

0 Reserved. Write to zero for future compatibility.

INTSV
5

0 Interrupt Service 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

INTEV
4–0

0 Interrupt Event Signals 0 Input is not inverted when used by all event
multiplexers.

1 Input is inverted when used by all event
multiplexers.

EVINx Event Multiplexer Input Selection Register
EVIN0 (Multiplexer 0) EV_BASE + 0x00
EVIN1 (Multiplexer 1) EV_BASE + 0x08
EVIN2 (Multiplexer 2) EV_BASE + 0x10
EVIN3 (Multiplexer 3) EV_BASE + 0x18
EVIN4 (Multiplexer 4) EV_BASE + 0x20
EVIN5 (Multiplexer 5) EV_BASE + 0x28
EVIN6 (Multiplexer 6) EV_BASE + 0x30
EVIN7 (Multiplexer 7) EV_BASE + 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRVMX DMACH DMATYP SWDRQ DMAEN AUXEN3 AUXEN3 AUXEN2 AUXEN1 AUXEN0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUT EVNT — INTSV INTEV INTEVM

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15-8. EVSELINV Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

15-32 Freescale Semiconductor

Event Port Programming Model
EVINx contains bits that, along with their corresponding bits in the EVOUTx register, select the
active event(s) for the specified event multiplexer. Each bit enables one source for this event
multiplexer. If more than one source is selected, they are combined as specified in the
corresponding output action register. Additional input selection is available in the EVCTL and
EVOUTx registers.

Table 15-9. EVINx Bit Descriptions

Bit Reset Description Description

PRVMX
31

0 Previous Event Multiplexer
Uses the output from the previous event
multiplexer in the cascade. The output passes
through a latch before it is used as an input.

0 Disable detection of the previous
multiplexer signal.

1 Enable detection of the previous
multiplexer signal.

DMACH
30–26

0 DMA Channel
Selects one of the 32 DMA channels.

DMATYP
25–23

0 DMA Type
Specifies which signal from the DMA channel is
selected as an input to this event multiplexer.
See Section 15.2.3, DMA Input Source
Selection, on page 15-8.

000 DMA channel request.

001 DMA channel start.

010 DMA channel completed.

011 DMA channel deprioritization.

100 Reserved.

101 Reserved.

110 Reserved.

111 Reserved.

SWDRQ
22

0 Software DMA Request
Setting this bit notifies the event multiplexer of a
software-initiated DMA channel request. Setting
SWDRQ is required for event port triggering on
any DMATYP setting for software-initiated
channels. Setting this bit is not required for DMA
channels initiated by hardware events.

0 Inactive.

1 Signals a request for a
software-initiated DMA channel.

DMAEN
21

0 DMA Event Enable
Enables the event multiplexer DMA input signal.

0 Disable detection of selected DMA
signal.

1 Enable detection of selected DMA
signal.

AUXEN4
20

0 AUX4 Input Enable
An enable for the AUX4 signal.

0 Event multiplexer ignores the AUX4
signal.

1 Event multiplexer uses the AUX4
signal.

AUXEN3
19

0 AUX3 Input Enable
An enable for the AUX4 signal.

0 Event multiplexer ignores the AUX3
signal.

1 Event multiplexer uses the AUX3
signal.

AUXEN2
18

0 AUX2 Input Enable
An enable for the AUX4 signal.

0 Event multiplexer ignores the AUX2
signal.

1 Event multiplexer uses the AUX2
signal.

AUXEN1
17

0 AUX1 Input Enable
An enable for the AUX1 signal.

0 Event multiplexer ignores the AUX1
signal.

1 Event multiplexer uses the AUX1
signal.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-33

Event Port
EVOUTx selects how sources are combined and programs the resulting action(s) for event
multiplexers 0, 2, 4 and 6. Bits 22 through 16 are for input selection, not output action. More than
one action is permitted at a time. For details, see Section 15.4.6, Restrictions on Multiple
Drivers, on page 15-16.

AUXEN0
16

0 AUX0 Input Enable
An enable for the AUX0 signal.

0 Event multiplexer ignores the AUX0
signal.

1 Event multiplexer uses the AUX0
signal.

TOUT
15–12

0 Timer Output Signals
For timers 3–0 from timer module A.

0 Disable detection for the designated
timer.

1 Enable detection for the designated
timer.

EVNT[4–0]
11–7

0 EVNT Signals
Enables/disables detection for signals from the
EVNT[4–0] pins.

0 Disable detection for the specified
event pin.

1 Enable detection for the specified
event pin.

—
6

0 Reserved. Write to zero for future compatibility.

INTSV
5

0 Interrupt Service
Generates a pulse when the SC1400 core is
servicing an interrupt.

0 Disable detection for interrupt service.

1 Enable detection for interrupt service.

INTEV
4

0 Interrupt Event Signals
Enables/disables signals for non-maskable
interrupt events.

0 Disable detection for interrupt event i.

1 Enable detection for interrupt event i.

INTEVM
3–0

0 Interrupt Event Signals Masked
Enables/disables signals for maskable interrupt
events.

0 Disable detection for interrupt event i.

1 Enable detection for interrupt event i.

EVOUTx Event Output Register
EVOUT0 EV_BASE + 0x40
EVOUT2 EV_BASE + 0x50
EVOUT4 EV_BASE + 0x60
EVOUT6 EV_BASE + 0x70

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INV ENABLE REN COMB DHIGH IMSS IMSSE TDM0 TDM1 NMID M1C

TYPE R/W

RESET 0 0xF 1 0x0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— DTIN DEVNT GEVIN1 GEVIN0 DEC0 DEE GDRACP

TYPE R/W

RESET 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

Table 15-9. EVINx Bit Descriptions (Continued)

Bit Reset Description Description
MSC711x Reference Manual, Rev. 1

15-34 Freescale Semiconductor

Event Port Programming Model
Table 15-10. EVOUTx Bit Descriptions

Bit x Reset Description Description

INV
31

0 Invert Result
Specifies whether an invert operation is performed on
the signal or set of signals.

0 Result not inverted.

1 Result inverted.

ENABLE
30–27

0xF Event Enable
Determines whether the event multiplexer operates
independently (always enabled) or in a cascaded
sequence. In the sequence, this multiplexer is enabled
by a signal from either the emulator or the next event
multiplexer. When an event multiplexer is enabled, it
remains enabled until a reset occurs or its REN bit is
set. The REN bit overrides the enable.

0000 Enabled by the EE0 signal.

0001 Enabled by the EE1 signal.

0010 Enabled by the EE2 signal.

0011 Enabled by the EE3 signal.

0100 Enabled by the EE4 signal.

0101 Enabled by the EE5 signal.

0110–0111 Reserved.

1000 By EED ANDed with EE0.

1001 By EED ANDed with EE1.

1010 By EED ANDed with EE2.

1011 By EED ANDed with EE3.

1100 By EED ANDed with EE4.

1101 By EED ANDed with EE5.

1110 Enabled by MUX i + 1.

1111 Always enabled.

REN
26

1 Reset Enable
Resets the enable sequences. The full functionality of
the REN bit is described in Table 15-6. When the REN
bit is cleared, there is a delay of one IPBus clock cycle.
The procedure for setting this bit correctly is described
in Section 15.6.2, Reset An Event Multiplexer, on page
15-19.

0 Normal operation of enable.

1 Resets the enable; the event
multiplexer cannot trigger or pass
any event through.

COMB
25–23

0 Combination Selection
Combines the input sources to an event multiplexer.
See Section 15.3, Event Multiplexer Combining Logic,
for a description of signal combining and the operation
of these bits.

000 Sources are ORed together.

001 Sources are ANDed together.

010 Set operation.

011 Toggle operation.

100 Sources are XORed together.

101 Reserved.

110 Reserved.

111 Set-reset operation.

DHIGH
22

0 DMA Priority Elevation
Detects a DMA priority elevation of transfer control
descriptors (TCDs).

0 Disable detection.

1 Enable detection.

IMSS
21

0 ICache Miss All Cases
Detects an ICache miss that is not a prefetch hit.

0 Disable detection.

1 Enable detection.

IMSSEX
20

0 ICache Miss to External Memory
Detects an ICache miss to external memory
that is not a prefetch hit.

0 Disable detection.

1 Enable detection.

TDM0
19

0 Receive Interrupt Request
Detects a receive interrupt request for TDM0.

0 Disable detection.

1 Enable detection.

TDM1
18

0 Receive Interrupt Request
Detects a receive interrupt request for TDM1.

0 Disable detection.

1 Enable detection.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-35

Event Port
NMID
17

0 NMI Interrupt Request
ORs device-level NMI requests.

0 Disable detection.

1 Enable detection.

M1C
16

0 Contention at M1 Memory
Detects an M1 memory contention.

0 Disable detection.

1 Enable detection.

—
15

0 Reserved. Write to zero for future compatibility.

DTIN
14–12

0 Drive TINx Pins
Drives the timer input pins by the detected result.
Drives the inputs for all timer modules.

000 Disabled. TINx signals not driven.

001 Reserved.

010 Reserved.

011 Reserved.

100 Drive TIN0 signal with result.

101 Drive TIN1 signal with result.

110 Drive TIN2 signal with result.

111 Drive TIN3 signal with result.

DEVNT
11–9

0x7 Drive EVNT Pins
Drives the EVNT pins either by the detected result or by
a direct connection between an EVNT pin and a timer.
The timer connections provide a direct path for high-
speed counter operation.

000 Drive EVNT0 signal with result.

001 Drive EVNT1 signal with result.

010 Drive EVNT2 signal with result.

011 Drive EVNT3 signal with result.

100 Drive EVNT4 signal with result.

101 Directly connects TOUTx to
EVNTx:
− TOUT0, EVNT0 for MUX0.
− TOUT2, EVNT2 for MUX2.
− TOUT0, EVNT0 for MUX4.
− TOUT2, EVNT2 for MUX6.

Note: TOUTx from timer module A
only.

110 Directly connects EVNTx to TINx:
− EVNT0, TIN0 for MUX0.
− EVNT2, TIN2 for MUX2.
− EVNT0, TIN0 for MUX4.
− EVNT2, TIN2 for MUX6.

111 Disabled. EVNT pins not driven.

GEVIN1
8

0 Generate EVINT1 Request
Requests interrupt servicing.

0 Interrupt request not driven.

1 Interrupt request driven.

GEVIN0
7

0 Generate EVINT0 Request
Requests interrupt servicing.

0 Interrupt request not driven.

1 Interrupt request driven.

DEC0
6

0 Drive EC0 Signal
Specifies whether the emulator receives EC0 from the
event multiplexer.

0 Signal not driven.

1 Drive emulator signal with result.

Table 15-10. EVOUTx Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

15-36 Freescale Semiconductor

Event Port Programming Model
EVOUTx select how sources are combined and programs the resulting action(s) for event
multiplexers 1, 3, 5, and 7. This register provides additional bits for input selection. Bits 22
through 16 are used for input selection, not output action. More than one action is permitted at a
time. For details, see Section 15.4.6, Restrictions on Multiple Drivers, on page 15-16.

DEE
5–3

0x7 Drive EE[0–5] Signals
Drives the emulator EEx signals when a trigger is
detected.

000 Drive EE0 signal with result.

001 Drive EE1 signal with result.

010 Drive EE2 signal with result.

011 Drive EE3 signal with result.

100 Drive EE4 signal with result.

101 Drive EE5 signal with result.

110 Reserved.

111 Disabled. EEx signals not
asserted.

GDRACP
2–0

0x0 Generate DMA Requests, Alternate Crossbar
Priority
Request a DMA transfer or switch to the crossbar
switch alternate priority register set.

The value of the EVGP0 signal is latched in the HDI16
ISR[EV0] bit. The value of the EVGP1 signal is latched
in the HDI16 ISR[EV1] bit.

000 Disabled. No requests are driven.

001 Switch crossbar to alternate
priority.

010 Drive the DMA EVDMA0 request.

011 Drive the DMA EVDMA1 request.

100 Reserved.

101 Reserved.

110 Drive EVGP0 request.

111 Drive EVGP1 request.

EVOUTx Event Output Register
EVOUT1 EV_BASE + 0x48
EVOUT3 EV_BASE + 0x58
EVOUT5 EV_BASE + 0x68
EVOUT7 EV_BASE + 0x78

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INV ENABLE REN COMB DHIGH IMSS IMSSE TDM0 TDM1 NMID M1C

TYPE R/W

RESET 0 0xF 1 0x0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— DTIN DEVNT GEVIN1GEVIN0 DEED DEE GDRACP

TYPE R/W

RESET 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

Table 15-10. EVOUTx Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-37

Event Port
.

Table 15-11. EVOUTx Bit Descriptions

Bit x Reset Description Description

INV
31

0 Invert Result
Specifies whether an invert operation is performed
on the signal or set of signals.

0 Result not inverted.

1 Result inverted.

ENABLE
30–27

0xF Event Enable
Determines whether the event multiplexer
operates independently (always enabled) or in a
cascaded sequence. In the sequence, this
multiplexer is enabled by a signal from either the
emulator or the next event multiplexer. When an
event multiplexer is enabled, it remains enabled
until a reset occurs or its REN bit is set. The REN
bit overrides the enable.

0000 Enabled by the EE0 signal.

0001 Enabled by the EE1 signal.

0010 Enabled by the EE2 signal.

0011 Enabled by the EE3 signal.

0100 Enabled by the EE4 signal.

0101 Enabled by the EE5 signal.

0110–0111 Reserved.

1000 By EED ANDed with EE0.

1001 By EED ANDed with EE1.

1010 By EED ANDed with EE2.

1011 By EED ANDed with EE3.

1100 By EED ANDed with EE4.

1101 By EED ANDed with EE5.

1110 Enabled by MUX i + 1.

1111 Always enabled.

REN
26

1 Reset Enable
Resets the enable sequences. The functionality of
the REN bit is described in Table 15-6, REN Bit
Usage, on page 15-20. The procedure for setting
this bit correctly is described in Section 15.6.2,
Reset An Event Multiplexer, on page 15-19.

0 Normal operation of enable.

1 Resets the enable; the event multiplexer
cannot trigger or pass any event through.

COMB
25–23

0 Combination Selection
Combines the input sources to an event
multiplexer. See Section 15.3, Event Multiplexer
Combining Logic, for a description of signal
combining and the operation of these bits.

000 Sources are ORed together.

001 Sources are ANDed together.

010 Set operation.

011 Toggle operation.

100 Sources are XORed together.

101 Reserved.

110 Reserved.

111 Set-reset operation.

DHIGH
22

0 DMA Priority Elevation
Detects a DMA priority elevation of transfer control
descriptors (TCDs).

0 Disable detection.

1 Enable detection.

IMSS
21

0 ICache Miss - All Cases
Detects an ICache miss that is not a prefetch hit.

0 Disable detection.

1 Enable detection.

IMSSEX
20

0 ICache Miss to External Memory
Detects an ICache miss to external memory
that is not a prefetch hit.

0 Disable detection.

1 Enable detection.

TDM0
19

0 Receive Interrupt Request
Detects a receive interrupt request for TDM0.

0 Disable detection.

1 Enable detection.

TDM1
18

0 Receive Interrupt Request
Detects a receive interrupt request for TDM1.

0 Disable detection.

1 Enable detection.

NMID
17

0 NMI Interrupt Request
ORs device-level NMI requests.

0 Disable detection.

1 Enable detection.
MSC711x Reference Manual, Rev. 1

15-38 Freescale Semiconductor

Event Port Programming Model
M1C
16

0 Contention at M1 Memory
Detects an M1 memory contention.

0 Disable detection.

1 Enable detection.

—
15

0 Reserved. Write to zero for future compatibility.

DTIN
14–12

0 Drive TINx Pins
Drives the timer input pins by the detected result.
Drives the inputs for all timer modules.

000 Disabled. TINx signals not driven.

001 Reserved.

010 Reserved.

011 Reserved.

100 Drive TIN0 signal with result.

101 Drive TIN1 signal with result.

110 Drive TIN2 signal with result.

111 Drive TIN3 signal with result.

DEVNT
11–9

0x7 Drive EVNT Pins
Drives the EVNT pins either by the detected result
or by a direct connection between an EVNT pin
and a timer. The timer connections provide a
direct path for high-speed counter operation.

000 Drive EVNT0 signal with result.

001 Drive EVNT1 signal with result.

010 Drive EVNT2 signal with result.

011 Drive EVNT3 signal with result.

100 Drive EVNT4 signal with result.

101 Directly connects TOUTx to EVNTx:
− TOUT1, EVNT1 for MUX1.
− TOUT3, EVNT3 for MUX3.
− TOUT1, EVNT1 for MUX5.
− TOUT3, EVNT3 for MUX7.

Note: TOUTx from timer module A only.

110 Directly connects EVNTx to TINx:
− EVNT1, TIN1 for MUX1.
− EVNT3, TIN3 for MUX3.
− EVNT1, TIN1 for MUX5.
− EVNT3, TIN3 for MUX7.

111 Disabled. EVNT pins not driven.

GEVIN1
8

0 Generate EVINT1 Request
Requests interrupt servicing.

0 Interrupt request not driven.

1 Interrupt request is driven.

GEVIN0
7

0 Generate EVINT0 Request
Requests interrupt servicing.

0 Interrupt request not driven.

1 Interrupt request is driven.

DEED
6

0 Drive EED Signal
Specifies whether the emulator receives EED from
multiplexer.

0 EED signal not driven.

1 Drive emulator signal with result.

DEE
5–3

0x7 Drive EE[0–5] Signals
Drives the OCE10 on-chip emulator EEx signals
when a trigger is detected.

000 Drive EE0 signal with result.

001 Drive EE1 signal with result.

010 Drive EE2 signal with result.

011 Drive EE3 signal with result.

100 Drive EE4 signal with result.

101 Drive EE5 signal with result.

110 Reserved.

111 Disabled. EEx signals not asserted.

Table 15-11. EVOUTx Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 15-39

Event Port
GDRACP
2–0

0x0 Generate DMA Requests, Alternate Crossbar
Priority
Request a DMA transfer or switch to the crossbar
switch alternate priority register set.

The value of the EVGP0 signal is latched in the
HDI16 ISR[EV0] bit. The value of the EVGP1
signal is latched in the HDI16 ISR[EV1] bit.

000 Disabled. No requests are driven.

001 Switch crossbar to alternate priority.

010 Drive the DMA EVDMA0 request.

011 Drive the DMA EVDMA1 request.

100 Reserved.

101 Reserved.

110 Drive EVGP0 request.

111 Drive EVGP1 request.

Table 15-11. EVOUTx Bit Descriptions (Continued)

Bit x Reset Description Description
MSC711x Reference Manual, Rev. 1

15-40 Freescale Semiconductor

Debugging 16
The MSC711x dedicated user-accessible test access port (TAP) is fully compatible with the
IEEE® Std 1149.1™ standard test access port and boundary scan architecture. Problems
associated with testing high-density circuit boards led to development of this standard under the
sponsorship of the test technology committee of IEEE and the Joint Test Action Group (JTAG).
The MSC711x supports circuit-board test strategies based on this standard. This chapter covers
aspects of JTAG that are specific to the MSC711x. It includes the items that the standard requires
to be defined, with additional information specific to the MSC711x. For details on the standard,
refer to the IEEE Std 1149.1 documentation.

The JTAG port also provides access to the OCE10 on-chip emulator module, a dedicated block
for debugging applications. This on-chip emulator module is simply referred to as the “emulator”
in the remainder of this chapter, which presents information on registers and functionality of the
emulator that are specific to the MSC711x. For details on emulator functionality, consult the
OCE10 On-Chip Emulator Reference Manual, which is available at the web site listed on the
back of this manual.

The SC1400 core emulator interfaces with the SC1400 core and its peripherals non-intrusively so
that you can examine registers, memory, or on-device peripherals, thus facilitating hardware and
software development on the SC1400 core-based devices. Special circuits and dedicated signals
on the SC1400 core protect user-accessible internal resource. As the DSP applications grow in
both size and complexity, the emulator breakpoints, conditional breakpoints, breakpoints on
data-bus values, and event detection offer you non-intrusive access to peripherals, variety in
profiling, a program tracing buffer, and real-time access to memory. 1KB of the boot ROM is
reserved for use by the development tools.

16.1 Debugging Modes

It is important to understand the different debugging modes on an MSC711x device:

� SC1400 Debug mode. The SC1400 core is halted during a debug session by breakpoints,
single stepping, and so on. For details, see Section 16.2, Emulator, on page 16-2 for
details.

� Device Debug mode. Portions of the MSC711x device are halted during a debug session
initiated by entry into SC1400 Debug mode. For example, you can optionally hold off
operations in the following modules in Device Debug mode:

— Interrupt controller (see Section 12.1.3, Operation in Debug Mode, on page 12-3)
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-1

Debugging
— DMA controller via the DMACR[EDBG] bit (see page 8-27)
— Software watchdog timer (see Section 7.3.1.2, Pause Mechanism, on page 7-6)

� Cache Debug mode. For accessing the contents of the ICache array, tag array, and valid bit
array. This mode is independent of the SC1400 core and device Debug modes. That is, this
mode can be used when the SC1400 core is in the normal processing state or in the debug
processing state. For details, see Section 4.5.5, Debugging Support, on page 4-23.

16.2 Emulator

The emulation and debug capability on the MSC711x devices eliminates the need for expensive
and complicated stand-alone in-circuit emulators (ICEs). This section describes the emulation
environment for use in debugging real-time embedded applications. You can use the emulator to
perform the following tasks:

� Examine or modify the contents of any SC1400 core or memory-mapped peripheral
register.

� Examine and modify program or data memory.

� Step at full speed on one or more instructions.

� Save a programmable change-of-flow instruction capture to the trace buffer.

� Display the contents of the real-time instruction trace buffer.

� Transfer data in real time between the SC1400 core and an external host using
peripheral-mapped transmit and receive registers.

� Access emulator registers and programming model:

— From the programming model of the MSC711x device (via SC1400 code).
— Through the development system that accesses the resources through the JTAG port.

� Provide status of emulator events in a status register or on an output pin from the SC1400
core.

� Perform event counting.

� Enter debug mode via:

— Execution of a SC1400 instruction.
— The actions of the emulator.
— The core JTAG port.
— A special debug request input pin to the SC1400 core.

� Interrupt or break into debug mode on program memory addresses (fetch, read, write, or
read and write access).

� Interrupt or break into debug mode on accesses to data memory or on-device peripheral
registers (read, write, or read and write access) and for byte, word, or long data type
accesses.

� Save or restore the current state of the device pipeline.
MSC711x Reference Manual, Rev. 1

16-2 Freescale Semiconductor

Emulator
� Return to normal user mode from Debug mode.

Note: For details on the emulator features, consult the OCE10 On-Chip Emulator Reference
Manual.

16.2.1 Emulator System-Level View

As Figure 16-1 shows, the emulator can be viewed as a separate module that acts concurrently
with the SC1400 core. Alternatively, SC1400 software can directly program, control, and
communicate with the emulator.

Figure 16-1. SC1400 Device with Debug Port

After it is properly initialized and programmed for breakpoint triggering and associated actions,
the emulator operates in parallel with the SC1400 core. As the SC1400 core executes
instructions, the emulator performs the following tasks:

� Receive new emulator commands.

� Read/Write emulator registers through the JTAG interface (also accessible through the
SC1400 core system buses).

� Monitor SC1400 buses for breakpoint conditions.

� Capture SC1400 program addresses in the trace buffer.

� Generate an emulator interrupt request.

� Halt the SC1400 core upon a certain debug event so it enters the Debug processing state.

Program
Memory

ECI Internal Bus

Data
Memory

Extended

Core Interface

SC1400

Core

JTAG

Trace
Buffer

SC1400 Buses

JTAG
Pins

Emulator
Control

Breakpoint
Units

AMEC bus

Emulator
Counter

to
Interrupt
Controller

from/to
Event
Port

(6 Addr, 1 Data)

EE[5–0], EED
EC0

(for Emulator register access)

TX/RX
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-3

Debugging
When the SC1400 core is halted during Debug processing, the emulator can still receive new
commands and read or write any emulator register.

16.2.2 Accessing the Emulator

Resources in the emulator are accessed either through the JTAG port or under software program
control through the MSC711x programming model. Therefore, debugging activity can be
controlled either by a host development system or by a program executing on the MSC711x
device.

16.2.2.1 Access through the JTAG Port

Development and debugging systems control emulator debugging actions by communicating
with the emulator through the JTAG port. All emulator resources are available serially through
the normal JTAG access protocol. While they are interacting, the MSC711x JTAG and emulators
are tightly coupled, and the JTAG port handles the interface for both modules, communicating
with the host software development and debug systems. The emulator uses the JTAG external
serial interface to send and receive debugging commands and data. Figure 16-2 shows a block
diagram of the JTAG/emulators and the JTAG terminals used in the external interface. The JTAG
port can also act as a completely independent module. When it is disabled, it has no impact on the
function of the SC1400 core.

Note: For details on accessing the emulator from the JTAG port, see Section 16.5, Accessing
the Emulator Through the JTAG Port, on page 16-21.

16.2.2.2 Access from the MSC711x Memory Map

The SC1400 core and other MSC711x masters can access the emulator through the MSC711x
programming model as memory-mapped registers, independently of the JTAG port. All emulator
resources are available through the memory-mapped registers, allowing access to the port via
normal instruction execution. The SC1400 core can initialize the emulator, use its resources, and
monitor its actions under program control. Data is uploaded or downloaded between the SC1400
core and each emulator sub-module. Both polled and interrupt driven communications can occur
between the SC1400 core and the emulator.

16.3 System-Level Debugging

The emulator port and the event port work closely together to provide system-level debugging.
The emulator port gives access to SC1400 core resources within the extended core. Using the
emulator, you can perform the following tasks:

� Set hardware breakpoints.

� Capture information in the trace buffer.

� Halt the SC1400 core and enter Debug mode on debug-related events.
MSC711x Reference Manual, Rev. 1

16-4 Freescale Semiconductor

System-Level Debugging
� Generate a debug exception on debug-related events.

� Use the full speed event counter (can clock at the core frequency).

� Enable or view emulator events via pins on the MSC711x device.

As a centralized location for processing debug information, the event port works closely with the
emulator debug port, EVNTx pins, timer modules, interrupt controller, and clock controller.

Figure 16-2. JTAG/OCE10 On-Chip Emulator Interface Block Diagram

The event port collects system events, such as DMA activity, system interrupts, or loss of PLL
lock, combines this information as specified by the user, and sends the resulting signal to the
appropriate module. Because the emulator is interlocked with the event port, it can:

� Enable or disable the trace buffer.

� Enable the emulator event counter.

Test
Access

Port
Controller

Emulator

Status and Control

PAB

XABA

Emulator

JTAG

Breakpoint Logic

Trace Buffer

Emulator

Queue

Step Counter

Step Logic

Command

Instruction

TDI

TDO

TMS

TCK

TRST

Event Counter

Transmit Register

Receive Register

TX/RX Logic

PAB

PAB

ECI Internal Data Bus

XABB

Select Logic
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-5

Debugging
� Force entry into Debug mode.

Breakpoint activity can be sequenced in the emulator, as can events in the event port, so you can
set up triggering sequences using both emulator and event port resources. For examples, see
Section 15.7, Event Sequencing, on page 15-20.

Figure 16-3. Centralized Debugging with the MSC711x Event and Debug Ports

Figure 16-4 presents a system-level view of the event port within an MSC711x device. This
diagram shows how the event port interacts with the debug port (emulator), the EVNTx pins, timer
modules, and interrupt controller. The close connectivity between the event port and the emulator
gives the emulator debugger access to the following resources that are available to the event port:

� EVNTx pins (input or output)

� General-purpose timers

� Sequencing hardware withint the event port

� Trigger signals in the event port

� Event port interrupts

16.3.1 System-Level Emulator Signals

The emulator communicates with the rest of the MSC711x device via its EEn, EED, and EC0
signals, which pass through the event port to provide direct communication between the emulator
and the MSC711x EVNT[0–5] pins. The event port has access to many different system-level
signals to indicate DMA data transfers and other activity, as well as access to system-level
resources such as the timers or EVNT[4–0] pins. The EE[0–5] and EED signals are used as follows:

Event Port
Pins

EE[5–0], EED
EC0

Event
Port

Debug
Port

(EOnCE)

SC1400
Core

Timer
Module

TINn, TOUTn

Interrupt
Controller

EP Interrupt

DMA
Controller

EP DMA Requests

Interrupt Requests
DMA

Events

Requests

Clock
Controller

Exit STOP

DMA Events
MSC711x Reference Manual, Rev. 1

16-6 Freescale Semiconductor

System-Level Debugging
� Configured as inputs:

— Enable the emulator breakpoint unit.
— Generate an emulator action.
— Directly enter Debug mode (EE4 signal).

� Configured as outputs:

— Enable an event port multiplexer.
— Serve as an input to the event port multiplexers (EE4 signal only).

The EC0 signal is used only as an input to the emulator for counting event port (system-level)
events or events occurring on the EVNT[4–0] pins.

16.3.2 SC1400 Emulator Instructions

Certain SC1400 instructions trigger actions within the emulator:

� DEBUGEV. Software breakpoint trigger.

� DEBUGHLT. Halt SC1400 core and enter Debug mode.

� MARK. Mark value in trace buffer.

DEBUGEV and DEBUGHLT trigger actions in the emulator. The MARK instruction explicitly
updates the trace buffer when an SC1400 program is running.

16.3.3 Halting the SC1400 Core and Entering Debug Mode

The SC1400 core enters Debug mode in response to an emulator event, which halts all activity on
the core. Debug mode is one of the processing states of the SC1400 core. When SC1400
instructions are single-stepped, the SC1400 core returns to Debug mode after executing each
instruction. Debug has the following system-level effects:

� The watchdog clock to the software watchdog timer pauses, preventing an accidental
time-out.

� Maskable and non-maskable interrupt requests can be optionally gated off, via the
MIPR[DDBG] bit, so that interrupts do not accumulate during the many clock cycles the
MSC711x device is in Debug mode (see Section 12.1, Interrupt Controller Architecture,
on page 12-1).

� The DMA controller can optionally be configured, via the DMACR[EDBG] bit, to halt
after completion of the current channel’s minor loop.

� All of these halt events are initiated when the emulator controller successfully halts the
SC1400 core, and they remain in effect until the SC1400 core leaves Debug mode and
returns to normal instruction processing. This is true when the SC1400 single-steps
through lines of assembly code, except when stepping over a jsr statement, which results
in the execution of an entire subroutine.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-7

Debugging
Figure 16-4. System-Level View of MSC711x Event Port

However, setting breakpoints on source-level code or single-stepping through lines of C code
uses a different mechanism than is used for single-stepping assembly instructions. In these cases,
chip-level events resume operation. For example, when single stepping through lines of a C
program using the SC1400 development environment, these events resume activity while one
line of C source code executes.

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA2

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA3

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

Event Port

Debug Port (Emulator)

EE2

EC0

EDCA[5–0] Detect

EE[5–0], EED

EDCD Detect

Debug Int Request
Debug Mode

Trace Buffer
Trace Buffer Enable

Event Counter

EDCA0
EE0

EDCA0 Detect

Breakpoint Unit

EDCA1
EE1

EDCA1 Detect

EDCA2
EE2

EDCA2 Detect

EDCA3
EE3

EDCA3 Detect

EDCA4
EE4

EDCA4 Detect

EDCA5
EE5

EDCA5 Detect

EDCD
EED

EDCD Detect

Timer Module B
(Four 16-Bit Timers)

DBREQ

Timer Module A
(Four 16-Bit Timers)

EVNT[4–0]

Internal Events:
- DMA Ch Request
- DMA Ch Start
- DMA Ch Done

- TDMx Rx Int.
- Chip Level NMIs

- DHIGH Priority

- ICache Miss
- ICache Miss,

Interrupts

Interrupts

TIN[3–0]

TOUTA[3–0]

EC0

EE[5–1]
EED

EE0

EE1

EE2

EE3

EE4

EE5

EED

EVINT0 INT REQ
EVINT1 INT REQ to Interrupt Controller

EE4 Output from
Debug Port

From Multiplexer 0

Ethernet Interrupts
PLL Loss of Lock

EVDMA0 DMA REQ
EVDMA1 DMA REQ to DMA

Change Priorities of Crossbar Switch
STOP Mode Wake-up

PLL Lock

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA0

Multiplexer

EED,EE[5–0]

EVNT[4–0]
Device Events

TOUTA1

From Multiplexer 0

EV ALT PRIORITY
EV STOP WAKEUP

Addr Detect Units

S
el

ec
tiv

e
S

ig
na

l I
nv

er
t

HTRQ, HRRQ

EVGP0
EVGP1 to HDI16

EE0 OR

Pin

Host Cmd Vector

0

1

2

3

4

5

6

7

Event
Selection

Disable

External
MSC711x Reference Manual, Rev. 1

16-8 Freescale Semiconductor

System-Level Debugging
The crossbar switch remains active in Debug mode so that the debugger can access peripheral
registers and memory locations throughout the system. The SC1400 core supports six processing
states, as shown in Table 16-1.

When a breakpoint is set on a line of source code, the applications runs until it reaches the
breakpoint in the line, and the MSC711x halts upon reaching it. In the Debug state, breakpoints
and other resources are initialized and set up for debugging, and MSC711x registers and memory
locations are examined and modified. The device is often placed into the Debug state to initialize
the emulator for a debug system. Also, the SC1400 core can enter the Debug state immediately
upon exiting reset to set up a debug session before it begins executing instructions. Any of the
following actions can put the SC1400 core into the Debug state:

� Hardware reset with JTAG DEBUG_REQUEST in the JTAG Instruction Register (IR).

� JTAG DEBUG_REQUEST placed into the JTAG IR during STOP mode or WAIT mode
or wait states.

� Execution of the DEBUGHLT instruction while the emulator is powered up.

� The step counter expires while configured for a debug request.

� The trace buffer is full and configured for a debug request.

� A breakpoint trigger occurs when programmed for debug request.

The SC1400 core can be in any of processing states listed in Table 16-1 when a request to enter
Debug mode arrives. However, you do not have to place the SC1400 core into the Debug
processing state to initialize the module. Alternatively, you can set up the desired emulator
resources and enable them through the JTAG port or through SC1400 core access via set-up
routines in an application, typically executed in the normal processing state.

Table 16-1. SC1400 Core Processing States

State Description

Normal The state of the SC1400 core when instructions execute normally.

Reset The SC1400 core is forced into a known reset state. The first program instruction is fetched when the SC1400
core exits this state.

Exception The state of interrupt processing. The SC1400 core transfers program control from its current location to an
interrupt service routine using the interrupt vector table.

Wait A low-power state in which the SC1400 core is shut down but the peripherals and the interrupt machine
remain active.

Stop A low-power state in which the SC1400 core, the interrupt machine, and most (if not all) of the peripherals are
shut down. Care must be taken when the SC1400 core is in Stop state. All core clocks are disabled and the
emulator is inaccessible. The device status is polled through the JTAG interface (sampled in the capture-IR
state). The core JTAG TAP brings the SC1400 core out of Stop or Wait modes when DEBUG_REQUEST is
decoded in the TAP IR. A small amount of additional power above the minimum possible is expended by the
core TAP logic if the core TAP is used in Stop mode.

Debug The SC1400 core halts and all emulator registers are accessible for program debug.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-9

Debugging
The emulator can also generate interrupt requests in response to debug events. When the
emulator exception trap detects a debug event, an interrupt can be generated and the program can
initiate the appropriate handler routine. The SC1400 core performs many different actions in
response to Debug events without halting while an event is serviced by a dedicated interrupt
service routine.

Note: Take care when the SC1400 core operates in the Stop processing states. The core clock
is disabled and the emulator is inaccessible. The JTAG interface is used to poll the
device status (sampled in the capture-IR state). The core JTAG TAP brings the
SC1400 out of Stop or Wait mode when DEBUG_REQUEST is decoded in the TAP
IR. The SC1400 core TAP logic expends a small amount of power above the minimum
if the SC1400 core TAP is used in Stop mode.

16.3.4 Exiting SC1400 Debug Mode

When the SC1400 core enters Debug mode, its emulator EE0 signal is masked, preventing further
debug requests. The status of the SC1400 core is updated in the Debug Instruction Register
CORES field (Table 16-3), which is accessible through the JTAG port.

When an SC1400 core exits Debug mode, the EE0 internal signal is unmasked, enabling further
debug requests. A GO instruction restarts the SC1400 core. No retriggering occurs through EE0.
For stepping, the same arrangement is used with the STEP instruction. The SC1400 core is
enabled via the CHOOSE_EONCE command, and then a STEP instruction is scanned into the
SC1400 core. When the scan is complete, the update launches the SC1400 core. No retriggering
occurs through EE0.

16.4 MSC711x JTAG Port

The JTAG test access port (TAP) provides boundary scan for the MSC711x device as well as an
interface for accessing the emulators through the device JTAG pins. Table 16-2 lists the test
access port (TAP) signals.

Table 16-2. TAP Signals

Signal Description

TCK A test clock input to synchronize the test logic.

TMS A test mode select input (with an internal pull-up resistor) that is sampled on the rising edge of TCK to sequence
the TAP controller state machine.

TDI A test data input (with an internal pull-up resistor) that is sampled on the rising edge of TCK.

TDO A data output that can be tri-stated and actively driven in the SHIFT-IR and SHIFT-DR controller states. TDO
changes on the falling edge of TCK.

TRST An asynchronous reset (with an internal pull-up resistor) that initializes the TAP controller and other logic required
by the standard.
MSC711x Reference Manual, Rev. 1

16-10 Freescale Semiconductor

MSC711x JTAG Port
There are two TAP controllers on MSC711x devices: a boundary scan TAP controller and a
debug TAP controller. The TAP controller accessed through the JTAG pins on the MSC711x
device is selected via the TPSEL pin. The capabilities of each controller are covered in Section
16.4.3, JTAG Instruction Decoding, on page 16-14.

16.4.1 Boundary Scan TAP Controller

The boundary scan TAP consists of five dedicated signal lines, a 16-state TAP controller, and
three test data registers. The test logic, which uses static logic design, is independent of the
device system logic. The MSC711x JTAG module performs the following tasks:

� Bypass the MSC711x for a given circuit board test by effectively reducing the Boundary
Scan Register (BSR) to a single cell.

� Provide access to the OCE10 emulator controller and its circuits to control a target system.

� Provide direct entry to the SC1400 core Debug mode.

� Query identification information (manufacturer, technology process, part, and version
numbers) from an MSC711x-based device.

� Force test data onto the outputs of an MSC711x-based device while replacing its BSR in
the serial data path with a single-bit register.

Note: Take precautions to ensure that the IEEE 1149.1-like test logic does not interfere with
non-test operation.

The JTAG port consists of a serial communications interface, a command decoder and
interpreter, and a device ID register (see Figure 16-5).

The serial interface provides the communication link between the core and the host development
or debug system. All JTAG data is sent over this interface. Emulator commands and data from
the host system can also be sent over this interface if they are accessed via JTAG. This interface
is a serial interface that minimizes the number of external pins used on the device. For a full
description of the interface signals, consult the user’s manual for the specific device.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-11

Debugging
Figure 16-5. Test Logic Block Diagram, Boundary Scan Controller

The command decoder decodes and processes commands sent to the JTAG module. Commands
for the JTAG port are completely independent of the SC1400 instruction set and execute in
parallel. The JTAG device identification register provides a unique ID for each revision of each
MSC711x device. This register enables a development system to determine the manufacturer,
process technology, part, and revision numbers of a device through the JTAG port. To access the
JTAG registers, shift the appropriate command into the JTAG instruction register and then shift
the required value into the register. See Section 16.4.3 for a discussion of the JTAG instructions.
Figure 16-5 shows the 30-bit boundary scan controller JTAG Instruction Register and the
following test registers:

� 1-bit Bypass Register

� 32-bit Device Identification Register (DEVID)

� 32-bit JTAG General-Purpose Register (JGPR)

� 32-bit Parallel Input Register (PIREG)

16.4.2 TAP Controller Operation

The TAP controller is a sixteen state synchronous finite state machine that sequences the JTAG
port through its valid operations:

� Serially shift in or out via a JTAG instruction.

JTAG Instruction Register

TDO

TDI

TMS

TCK

TRST

12

TAP Controller

3

Bypass Register

Identification Register

0

M
U
X

General-Purpose Register

4

u
l
t
i
p
l
e
x

Parallel-Input Register

Instruction Apply and Decode Register

OCE10 Module Logic

M

e
r

MSC711x Reference Manual, Rev. 1

16-12 Freescale Semiconductor

MSC711x JTAG Port
� Update (and decode) the JTAG Instruction Register.

� Serially output the ID code.

� Serially shift in or out and update the emulator registers.

The JTAG port oversees the shifting of data to and from the emulator port through the TDI and
TDO pins. The shifting is guided by the same tap controller that shifts JTAG Instruction Register
(IR) information. The TAP controller (shown in Figure 16-6) is a synchronous state machine to
control the operation of the JTAG logic. For a description of the TAP controller states, refer to
the IEEE 1149.1 documentation. Transitions from one state to another occur on the rising edge
of TCK. The TAP controller interprets the sequence of logical values on the TMS signal. The value
shown adjacent to each state transition in Figure 16-6 represents the value of the TMS signal at
the rising edge of TCK. There are two paths through the 16-state machine. The Shift-IR_Scan path
captures and loads JTAG instructions into the JTAG IR. The Shift-DR_Scan path captures and
loads data into the other JTAG registers. The TAP controller provides direct access to the JTAG
IR through the Select-IR_SCAN state. However, the other JTAG registers must be individually
selected by the JTAG IR before the data registers are accessed through the Select-DR_SCAN
state.

The TAP controller executes the last instruction decoded until a new instruction is entered in the
Update-IR state or until it enters the Test-Logic-Reset state. When emulator registers are
accessed through the JTAG port, accesses are first enabled by shifting the ENABLE_EOnCE
instruction into the JTAG IR. The emulator registers and commands are read and written through
the JTAG pins using the Shift-DR_Scan path. From any TAP controller state, you can return to
the Test Logic Reset state by asserting the TMS signal. When TMS is asserted, the state machine
transitions through its different states back to the reset state.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-13

Debugging
Figure 16-6. TAP Controller State Machine

16.4.3 JTAG Instruction Decoding

Each TAP controller on an MSC711x device supports a different set of JTAG instructions. Each
TAP controller contains an instruction register (IR) without parity, consisting of a shift register
with five parallel outputs. Data transfers from the shift register to the parallel outputs during the
UPDATE-IR controller state. The instruction register bits are decoded to select one of the unique
instructions for that TAP controller. All other encodings are reserved for future enhancements
and are decoded as BYPASS. Figure 16-7 shows the structure of a JTAG IR. In the

Test Logic
Reset

Run-Test/Idle

Select-DR_SCAN

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR_SCAN

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0 0

0

0

1

1

1

0 0

0

0

1

111

1

0

0

1

1

11

1

0

1

0

0 0

0

0

1

=> Transitions are labelled with the value of the TMS pin when sampled by TCK

Test Logic Reset State

Idle State

JTAG Data Register Access JTAG Instruction Register Access
MSC711x Reference Manual, Rev. 1

16-14 Freescale Semiconductor

MSC711x JTAG Port
test-logic-reset controller state, the parallel output of the IR in each TAP controller is reset to
0b00010, which is equivalent to the IDCODE instruction.

Figure 16-7. Instruction Register (IR) Configuration

During the CAPTURE-IR controller state, the parallel inputs to the 30-bit boundary scan instruction
shift register are loaded with the value of 01 in the least significant bits, as required by the
standard. The upper bits of this IR capture status information from the SC1400 core. The most
significant bits are loaded with the values UPD_ACK, CORES, as shown in Table 16-3. Two
bits of the GPR are configured to select an SC1400 core, whose status is output from the
multiplexer. The SC1400 core can be viewed from the PIREG. For details, refer to the SC1400
DSP Core Reference Manual.

JDIR is unique among the JTAG registers because it is the only register accessible using the IR
path through the state machine (Figure 16-6, TAP Controller State Machine, on page 16-14). All
other JTAG registers are accessed through the DR path of the state machine. The instruction
register for the boundary scan controller is not shown.

JDIR JTAG Debug Instruction Register JTAG port access only

Bit 4 3 2 1 0

UPD_ACK CORES 0 1

TYPE R/W

RESET 0 0 0 0 1

Parallel

From TDI Clock-IR

C

D
1

1
Multiplex

G1

C

D

Parallel
Input

Update-IR

Shift-IR

Output

To Next Cell or TDO
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-15

Debugging
16.4.3.1 Boundary Scan TAP Controller Instruction Decoding

The boundary scan TAP controller has three mandatory public instructions: EXTEST,
SAMPLE/PRELOAD, and BYPASS. The optional instructions defined by IEEE 1149.1 are
CLAMP and HIGHZ. Table 16-4 describes the 30-bit instructions supported by the Boundary
Scan Instruction Register:

Table 16-3. JDIR Bit Descriptions

Name/bits Description Settings

UPD_ACK
4

Update Acknowledge
Indicates whether the selected SC1400 emulator
has executed the last instruction dispatched to it.

0 Emulator has executed the last instruction.

1 Emulator has not executed the last instruction.

CORES
3–2

Core Status
Reflects the status of the SC1400 core.

00 Core is executing instructions.

01 Core is in WAIT or STOP mode.

10 Core is waiting for bus.

11 Core is in debug mode.

—
1–0

Contains a value required by the JTAG standard. Read-only.

Table 16-4. JTAG Instruction Decoding for the Boundary Scan TAP Controller

Bits 30-0 Instruction Description

00000 EXTEST Selects the Boundary Scan Register (BSR). EXTEST also asserts internal reset
for the MSC711x system logic to force a predictable internal state while external
boundary scan operations are performed. Using the TAP, the register can:

• Scan user-defined values into the output buffers

• Capture values presented to inputs
• Control the direction of bidirectional signals
• Control the output drive of tri-statable outputs

For details on the function and use of EXTEST, refer to the IEEE 1149.1
documentation.

00001 SAMPLE/PRELOAD Initializes the BSR output cells prior to the selection of EXTEST. This initialization
ensures that known data appears on the outputs when an EXTEST instruction is
entered. SAMPLE/PRELOAD also provides a means to obtain a snapshot of
system data and control signals.

Note: There is no internal synchronization between the TCK and CLKOUT.
Therefore, to achieve meaningful results, you must provide some form of
external synchronization between the JTAG operation at TCK frequency
and the system operation CLKOUT frequency.
MSC711x Reference Manual, Rev. 1

16-16 Freescale Semiconductor

MSC711x JTAG Port
00010 IDCODE Selects the ID Register. This public instruction allows the manufacturer, part
number, and version of a component to be determined through the TAP. The ID
Register configuration is as follows:

• Bits 31–28: Version Information
• Bits 27–12: Customer Part Number

• Bits 11–1: Manufacturer Identity
One application of the ID Register is to distinguish the manufacturer(s) of
components on a board when multiple sourcing is used. As more components
emerge that conform to the IEEE 1149.1 standard, it is desirable to allow for a
system diagnostic controller unit to interrogate a board design blindly and
determine the type of each component in each location. This information is also
available for factory process monitoring and for failure mode analysis of
assembled boards.

The Freescale manufacturer identity number is 0b00000001110. The customer
part number consists of two parts: design center number (bits 27–22) and a
sequence number (bits 21–12). The design center number is 0b000110.

When the IDCODE instruction is decoded, it selects the 32-bit ID Register. The
Bypass Register loads a logic zero at the start of a scan cycle, whereas the ID
Register loads a logic 1 into its least significant bit. Consequently, examination of
the first bit of data shifted out of a component during a test data scan sequence,
immediately following exit from test-logic-reset controller state, shows whether
such a register is included in the design.

As required by the IEEE 1149.1 standard, the operation of the test logic has no
effect on the operation of the internal system logic when the IDCODE instruction
is selected.

00011 CLAMP Optional in the IEEE 1149.1 standard. This public instruction selects the one-bit
Bypass Register as the serial path between TDI and TDO, while allowing signals
driven from the component to be determined from the Boundary Scan Register.
During testing of ICs on PCBs, it may be necessary to place static guarding
values on signals that control operation of logic not involved in the test. The
EXTEST instruction could be used for this purpose, but since it selects the BSR,
the required guarding signals would be loaded as part of the complete serial data
stream shifted in, both at the start of the test and each time a new test pattern is
entered. Since the CLAMP instruction allows guarding values to be applied using
the BSR of the appropriate ICs while selecting their Bypass Registers, it allows
much faster testing than EXTEST. Data in the boundary scan cell remains
unchanged until a new instruction is shifted in.

The CLAMP instruction also asserts internal reset for the MSC711x system logic
to force a predictable internal state while external boundary scan operations are
performed.

00100 HIGHZ Optional in the IEEE 1149.1 standard. It is a manufacturer’s public instruction to
prevent back-drive of the outputs during circuit-board testing. When HIGHZ is
invoked, all output drivers, including the two-state drivers, are turned off (that is,
high impedance). The HIGHZ instruction selects the Bypass Register. It also
asserts internal reset for the MSC711x system logic to force a predictable internal
state while external boundary scan operations are performed.

00101 — Reserved

00110 — Reserved

00111 — Reserved

Table 16-4. JTAG Instruction Decoding for the Boundary Scan TAP Controller (Continued)

Bits 30-0 Instruction Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-17

Debugging
16.4.3.2 Debug TAP Controller Instruction Decoding

The debug TAP controller supports the debug port with the following public instructions used by
the JTAG port:

� ENABLE_EONCE. Enables the EOnCE circuitry.

� DEBUG_REQUEST. Forces the SC1400 core into Debug mode.

� CHOOSE_EONCE. Selects an emulator port.

For a better understanding of how to access the emulator through the JTAG port using the debug
TAP controller, see Section 16.5, Accessing the Emulator Through the JTAG Port, on page
16-21. Table 16-4 describes the 5-bit instructions supported by the Debug IR.

01000 — Reserved

01001 — Reserved

01010 — Reserved

01011 — Reserved

01100 — Reserved

01101 — Reserved

01110 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

01111 — Reserved

... ... Reserved

11100 --- Reserved

11101 — Reserved

11110 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

11111 BYPASS Selects the single-bit Bypass Register, which creates a shift-register path from
TDI to the Bypass Register and finally to TDO, circumventing the 573-bit BSR
register. This instruction enhances test efficiency when a component other than
the MSC711x-based device is under test. When the current instruction selects the
Bypass Register, the shift-register stage is set to a logic zero on the rising edge of
TCK in the CAPTURE-DR controller state. Therefore, the first bit to be shifted out
after the Bypass Register is selected is always a logic zero.

Table 16-4. JTAG Instruction Decoding for the Boundary Scan TAP Controller (Continued)

Bits 30-0 Instruction Description
MSC711x Reference Manual, Rev. 1

16-18 Freescale Semiconductor

MSC711x JTAG Port
Table 16-5. JTAG Instruction Decoding for the Debug TAP Controller

Bits 4-0 Instruction Description

00000 — Reserved

00001 — Reserved

00010 IDCODE Selects the ID Register. This instruction is a public instruction to allow the
manufacturer, part number and version of a component to be determined through
the TAP. The ID Register configuration is as follows:

• Bits 31–28: Version Information

• Bits 27–12: Customer Part Number
• Bits 11–1: Manufacturer Identity

One application of the ID Register is to distinguish the manufacturer(s) of
components on a board when multiple sourcing is used. As more components
emerge that conform to the IEEE 1149.1 standard, it is desirable to allow for a
system diagnostic controller unit to interrogate a board design blindly and
determine the type of each component in each location. This information is also
available for factory process monitoring and for failure mode analysis of
assembled boards.

Freescale’s manufacturer identity number is 0b00000001110. The customer part
number consists of two parts: design center number (bits 27–22) and a sequence
number (bits 21–12). The design center number is 0b000110.

When the IDCODE instruction is decoded, it selects the 32-bit ID Register. The
Bypass Register loads a logic zero at the start of a scan cycle, whereas the ID
Register loads a logic one into its least significant bit. Consequently, examination
of the first bit of data shifted out of a component during a test data scan sequence,
immediately following exit from test-logic-reset controller state, shows whether
such a register is included in the design.

As required by the IEEE 1149.1 standard, the operation of the test logic has no
effect on the operation of the internal system logic when the IDCODE instruction
is selected.

00011 — Reserved

00100 — Reserved

00101 — Reserved

00110 ENABLE_EONCE Not included in the IEEE 1149.1 standard. This public instruction allows you to
perform system debug functions. When the ENABLE_EONCE instruction is
decoded, TDI and TDO connect directly to the EOnCE registers. The EOnCE
controller selects the specific EOnCE register connected between TDI and TDO,
depending on the EOnCE instruction being executed. All communication with the
EOnCE controller occurs through the SELECT-DR-SCAN path of the JTAG TAP
Controller. Before the ENABLE_EONCE instruction is selected, the
CHOOSE_EONCE instruction should be executed to define which EOnCE is to
be activated.

00111 DEBUG_REQUEST Not included in the IEEE 1149.1 standard. This public instruction allows you to
generate a debug request signal to the MSC711x. When the DEBUG_REQUEST
instruction is decoded, TDI and TDO connect to the EOnCE registers. In addition,
ENABLE_EONCE is active and forced to request Debug mode from the
MSC711x, in order to perform system debug functions. Before the
DEBUG_REQUEST instruction is selected, the CHOOSE_EONCE instruction
should be executed to define which EOnCE is to be selected for
DEBUG_REQUEST.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-19

Debugging
01000 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

01001 CHOOSE_EONCE Not included in the IEEE 1149.1 standard. This instruction enables selected
SC1400 emulators. All instructions executed after this one target only the
selected emulator set. Therefore, this instruction always executes, regardless of
the selected emulator set.

01010 — Reserved

01011 — Reserved

01100 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

01101 LOAD_GPR Not included in the IEEE 1149.1 standard: LOAD GPR

Note: When programming the GPR, use only the bits permitted in Table 16-8.

01110 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

01111 — Reserved

... ... Reserved

11100 --- Reserved

11101 READ_PIREG Not included in the IEEE 1149.1 standard: read Parallel Input Register (PIREG).

Note: Use only the bits specified in Table 16-9. Other bits should be
disregarded.

11110 PRIVATE Manufacturer’s private instruction.

Note: Selecting this instruction many cause unpredictable operation of the
device.

11111 BYPASS Selects the single-bit Bypass Register, which creates a shift-register path from
TDI to the Bypass Register and finally to TDO, circumventing the 573-bit BSR
register. This instruction enhances test efficiency when a component other than
the MSC711x-based device is under test. When the current instruction selects the
Bypass Register, the shift-register stage is set to a logic zero on the rising edge of
TCK in the CAPTURE-DR controller state. Therefore, the first bit to be shifted out
after the Bypass Register is selected is always a logic zero.

Table 16-5. JTAG Instruction Decoding for the Debug TAP Controller (Continued)

Bits 4-0 Instruction Description
MSC711x Reference Manual, Rev. 1

16-20 Freescale Semiconductor

Accessing the Emulator Through the JTAG Port
16.4.4 JTAG Mode Restrictions

The control afforded by the output enable signals using the BSR and the EXTEST instruction
requires a compatible circuit board test environment to avoid device-destructive configurations.
You must avoid situations in which the MSC711x output drivers are enabled into actively driven
networks. There are two constraints on the JTAG interface.

� The TCK input does not include an internal pull-up resistor and, to preclude mid-level
inputs, should not be left unconnected.

� There are two methods to ensure that the JTAG test logic does not conflict with the system
logic by forcing TAP into the test-logic-reset controller state. During power-up, TRST must
be externally asserted to force the TAP controller into this state. After power-up, TMS must
be sampled as a logic one for five consecutive TCK rising edges. If TMS either remains
unconnected or is connected to VCC, the TAP controller cannot leave the test-logic-reset
state, regardless of the state of TCK.

The SC1400 core enters a low-power stop mode when it executes a STOP instruction. Since
device clocks are selectively disabled in Stop mode, the JTAG interface allows polling of device
status (sampled in the capture-IR state). The JTAG TAP brings the SC140 core out of Stop or
Wait modes when DEBUG_REQUEST is decoded in the TAP IR. A small amount of additional
power above the minimum possible is expended if the TAP is used in Stop mode. Save power in
Low-Power Stop mode when JTAG is not in use, as follows:

� The TAP controller must be in the test-logic-reset state. Leaving the TAP controller
test-logic-reset state negates the ability to achieve low power but does not otherwise affect
device functionality.

� The TCK input is not blocked. To consume minimal power, the TCK input should externally
connect to VCC or ground.

� TMS and TDI include internal pull-up resistors. These two signals should remain either
unconnected or connected to VCC to achieve minimal power consumption.

16.5 Accessing the Emulator Through the JTAG Port

When the emulator is accessed through the JTAG port, the debug TAP controller instruction
register must be loaded correctly so that the emulator can be controller through the JTAG pins.
Table 16-6 shows how JTAG must be configured to access the emulator registers.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-21

Debugging
After the command is shifted in, the JTAG TAP state machine must enter the UPDATE-DR state.
The data shifted via the TDI is sampled into the ECR. If, for example, the command written into
the ECR is Write EDCA0_CTRL, the host must again enter the JTAG into SHIFT-DR and shift the
required data, which is to be written into the EDCA0_CTRL, via TDI. If the command is read
some register, the DR chain must be passed again and the contents of the register are shifted out
through the TDO output signal. When JTAG shifts data to the emulator, the LSB of the data is
shifted first. See Figure 16-8.

Figure 16-8. Reading and Writing Emulator Registers Via the JTAG TAP

Table 16-6. JTAG Instruction Decoding for the Boundary Scan TAP Controller

 Task
JTAG Instruction Placed into
Debug Instruction Register

Issue a debug request to an emulator to halt the SC1400 core. DEBUG_REQUEST

Write an emulator command to the EOnCE Command Register (ECR). DEBUG_REQUEST or ENABLE_EOnCE

Read or write any of the emulator registers through the JTAG port. DEBUG_REQUEST or ENABLE_EOnCE

Emulator is connected to the TDO.
Emulator is ready to get command in ECR.

Write the command into ECR register via shift-dr or update-dr.

Execute the ENABLE_EONCE instruction in JTAG

The register is selected.

Write/read data into the selected register via shift-dr or update-dr.

The chosen register is written/read.

Bits 0–6 = address of the chosen register.
Bits 7–8 = 00

Bit 9 = 0 for a write command and 1 for a read command
MSC711x Reference Manual, Rev. 1

16-22 Freescale Semiconductor

OCE10 On-Chip Emulator and JTAG Programming Model
16.6 OCE10 On-Chip Emulator and JTAG Programming Model

This section lists the emulator registers and describes the JTAG registers, which are available
only through the JTAG signal pins.

16.6.1 Emulator Registers

For the emulator registers accessed as memory-mapped registers, the value of the base address
for the register file, EONCE_BASE, is listed in Table 5-1, Summary — Base Addresses for
MSC711x Register Files, on page 5-4. Table 16-7 lists the emulator registers, which are
discussed in detail in the OCE10 On-Chip Emulator Reference Manual. The Register Number
column of the table provides the value for accessing the register through the Emulator Command
Register REGSEL field when the emulator registers are accessed through the JTAG port.

Table 16-7. Emulator Registers

Name
Address
Offset

Register
Number

Description

Control and Status

Emulator Command Register (ECR) — — Control register when the emulator is accessed
through the JTAG port.
Note: This register is accessible only through

the JTAG port.

Emulator Status Register (ESR) 0x000 0x00 Status register providing status for the emulator
and the associated core.
Note: This register is read only.

Trace Buffer

Trace Buffer Control (TB_CTRL) 0x140 0x50 Control register for the trace buffer.

Trace Buffer Read Pointer (TB_RD) 0x144 0x51 Accesses the read pointer, which points to the next
value to read from the trace buffer.

Trace Buffer Write Pointer (TB_WR) 0x148 0x52 Accesses the write pointer, which points to the next
value to write to the trace buffer.

 Trace Buffer (TB_BUFF) 0x14C 0x53 Reading this register returns the next value to be
read from the trace buffer.
Note: This register is read only.

Emulator Event Counter

Event Counter Control (ECNT_CTRL) 0x100 0x40 Selects events to be counted and enables the
counter.

Event Counter Value (ECNT_VAL) 0x104 0x41 Value of the 31-bit event counter. When the
counter is cascaded, provides the lower 31-bits of
the counter.

Event Counter Extension Value (ECNT_EXT) 0x108 0x42 When the counter is cascaded, provides the upper
31-bits of the counter. Not used if counters are not
cascaded.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-23

Debugging
Hardware Breakpoints — Address Breakpointing

Event Detection Channel n (EDCAn_CTRL) 0: 0x040
1: 0x044
2: 0x048
3: 0x04C
4: 0x050
5: 0x054

0: 0x10
1: 0x11
2: 0x12
3: 0x13
4: 0x14
5: 0x15

Control register for an address hardware
breakpoint unit.

EDCAn Reference Value A
(EDCAn_REFA)

0: 0x060
1: 0x064
2: 0x068
3: 0x06C
4: 0x070
5: 0x074

0: 0x18
1: 0x19
2: 0x1A
3: 0x1B
4: 0x1C
5: 0x1D

Holds a 32-bit reference value to be compared
when breakpoints are detected.

EDCAn Reference Value B
(EDCAn_REFB)

0: 0x080
1: 0x084
2: 0x088
3: 0x08C
4: 0x090
5: 0x094

0: 0x20
1: 0x21
2: 0x22
3: 0x23
4: 0x24
5: 0x25

Holds a 32-bit reference value to be compared
when breakpoints are detected.

EDCAn Mask Value
(EDCAn_MASK)

0: 0x0C0
1: 0x0C4
2: 0x0C8
3: 0x0CC
4: 0x0D0
5: 0x0D4

0: 0x30
1: 0x31
2: 0x32
3: 0x33
4: 0x34
5: 0x35

Mask applied to the address before a comparison.

Hardware Breakpoints — Data Breakpointing

Event Detection Channel n
(EDCD_CTRL)

0x0E0 0x38 Control register for an address hardware
breakpoint unit.

EDCD Reference Value (EDCD_REF) 0x0E4 0x39 Holds a 32-bit reference value to be compared
when breakpoints are detected.

EDCD Mask Value
(EDCD_MASK)

0x0E8 0x3A Mask applied to the address before a comparison.

 Event Selector

Event Selector Control (ESEL_CTRL) 0x120 0x48 Selects whether sources are ORed or ANDed
together.

Event Selector Mask: Debug Mode
(ESEL_DM)

0x124 0x49 Select sources to place the SC1400 core into
Debug mode when asserted.

Event Selector Mask: Debug Exception
(ESEL_DI)

0x128 0x4A Select sources to generate a debug exception
when asserted.

Event Selector Mask: Enable Trace Buffer
(ESEL_ETB)

0x130 0x4C Select sources to enable trace buffer operation
when asserted.

Event Selector Mask Disable Trace Buffer
(ESEL_DTB)

0x134 0x4D Select sources to disable trace buffer operation
when asserted.

Table 16-7. Emulator Registers (Continued)

Name
Address
Offset

Register
Number

Description
MSC711x Reference Manual, Rev. 1

16-24 Freescale Semiconductor

OCE10 On-Chip Emulator and JTAG Programming Model
16.6.2 JTAG Registers

The JTAG boundary scan registers are accessible only through the JTAG pins of the device when
the boundary scan TAP is selected. All of these registers are accessible via the DR path through
the state machine (see Figure 16-6, TAP Controller State Machine, on page 16-14). These
registers are listed as follows, along with the number of the page where each register is discussed:

� JTAG Identification Register (JTAGID), page 16-26.

� Boundary Scan Register (BSR), page 16-27.

� Bypass Register (JBYP), page 16-29.

Emulator Data Transfer Unit (ETX / ERX)

Emulator Monitor and Control Register
(EMCR)

0x004 Status register providing status for the emulator
and the associated core.

Emulator Receive Register (ERCV) 0x008 0x02 Lowest 32-bits of the Emulator Receive register.
This register is read only.

Emulator Receive Register (ERCV) 0x00C Highest 32-bits of the Emulator Receive register.
This register is write only.

Emulator Transmit Register (ETRSMT) 0x010 0x04 Lowest 32-bits of the EOnCE Data Transmit
register. This register is write only.

Emulator Transmit Register (ETRSMT) 0x014 Highest 32-bits of the EOnCE Data Transmit
register. This register is read only.

Emulator EEn Signal Control

EE Signals Control Register (EE_CTRL) 0x018 Defines EE[5–0] and EED pins as inputs or
outputs. Also enables special capabilities for
individual signals.

Program Counter Registers

Exception VLES PC Register (PC_EXCP) 0x01C 0x07 Enables you to determine which VLES caused an
internal exception. It is a read-on register that is
accessed through the JTAG port or by core
software.

Next VLES PC Register (PC_NEXT) 0x020 0x08 A 32-bit register that stores the address of the
VLES to be executed next. It is a read-only register
that is read through the JTAG port.

Last VLES PC Register (PC_LAST) 0x024 0x09 Contains the program counter (PC) of the last
executed VLES. It is used in debug mode to define
which PC triggered a PC breakpoint. It is a
read-only register that is read through the JTAG
port.

PC Breakpoint Detection Register
(PC_DETECT)

0x028 0x0A Captures the program counter (PC) of the first
VLES that caused an entry into debug mode based
on a data-memory event in EDCA or EDCD.

Table 16-7. Emulator Registers (Continued)

Name
Address
Offset

Register
Number

Description
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-25

Debugging
� Identification Register (JID), page 16-30.

The JTAG debug registers are accessible only through the JTAG pins of the device when the
debug TAP is selected. These registers are listed as follows, along with the number of the page
where each register is discussed:

� JTAG Identification Register (JTAGID), page 16-26.

� Bypass Register (JBYP), page 16-29.

� Identification Register (JID), page 16-30.

� JTAG General-Purpose Register (JGPR), page 16-30.

� Parallel Input Register (PIREG), page 16-31.

Note: The JTAG instruction register, not listed here, is accessible only through the IR path
through the state machine. This register is described on page 16-15.

JTAGID is a read-only factory-programmed register that distinguishes the device on a board
according to the IEEE 1149.1 standard.

� Version information corresponds to the revision number. The first version number for the
MSC711x family of devices is 0b0000.

� The design center number is 0b100001.

� The sequence number is the device ID, which differs for each device in the MSC711x, as
follows:

— MSC7110: 0b0011
— MSC7112: 0b0111
— MSC7113: 0b0110
— MSC7115: 0b0001
— MSC7116: 0b0010
— MSC7118: 0b1001

JTAGID JTAG Identification (ID) Register JTAG Port Access Only

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Version Design Center Sequence Number

TYPE R

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sequence Number Manufacturer Identity 1

TYPE R 1

RESET
MSC711x Reference Manual, Rev. 1

16-26 Freescale Semiconductor

OCE10 On-Chip Emulator and JTAG Programming Model
— MSC7119: 0b1010

� The Freescale manufacturer identity is 0b00000001110.

� The final 1 is required by the IEEE Std. 1149.1.

� The total JTAGID value for each member of the MSC711x family is as follows:

— MSC7110: 0x0840301D
— MSC7112: 0x0840701D
— MSC7113: 0x0840601D
— MSC7115: 0x0840101D
— MSC7116: 0x0840201D
— MSC7118: 0x
— MSC7119: 0x

BSR Boundary Scan Register

BSR contains bits for most device signals and control signals. All MSC711x bidirectional signals
have two registers for boundary scan data and are controlled by an associated control bit in the
BSR. The boundary scan bit definitions vary according to the specific device implementation of
the MSC711x and are described in the BSDL file on the product web site. Figure 16-12 through
Figure 16-12 show various BSR cell types.

Figure 16-9. Output Signal Cell (O.PIN)

1

1
MUX

1

1
MUX

G1

C

D

C
D

From Last Cell Clock DR Update DR

Shift DR1 — EXTEST or CLAMP

Data from
To Output

Buffer

0 — Otherwise

Logic
System

To Next Cell

G1
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-27

Debugging
Figure 16-10. Observe-Only Input Signal Cell (I.OBS)

Figure 16-11. Output Control Cell (IO.CTL)

1

1
MUX

G1

C

D

From Last Cell

Clock DR

Data to
System
Logic

Input
Pin

Shift DR

To Next Cell

1

1
MUX

G1

1

1
MUX

G1

C

D

C
D

From Last Cell Clock DR Update DR

Shift DR1 — EXTEST or CLAMP

To Output
Buffer

0 — Otherwise

To Next Cell

Output Control

Logic
from System
MSC711x Reference Manual, Rev. 1

16-28 Freescale Semiconductor

OCE10 On-Chip Emulator and JTAG Programming Model
Figure 16-12. General Arrangement of Bidirectional Signal Cells

The control bit value controls the output function of the bidirectional signal. One or more
bidirectional data cells can be serially connected to a control cell. Bidirectional signals include
two scan cells for data (IO.Cell), as shown in Figure 16-12, and these bits are controlled by the
cell shown in Figure 16-11. It is important to know the boundary scan bit order and signals
associated with them. The BSDL file on the product web site describes the boundary scan serial
string. The three MSC711x cell types described in this file are depicted in Figure 16-9 through
Figure 16-11.

JBYP Bypass Register

JBYP is a single-bit shift register (see Figure 16-13) that creates a shift-register path of one bit
from TDI to TDO. When JBYP is selected, the shift-register stage is set to a logic zero on the rising
edge of TCK in the CAPTURE-DR controller state.

Figure 16-13. Bypass Register Configuration

I/O
Pin

From Last Cell

Output Data

Input Data

Output Enable

I.OBS

EN

from System Logic

O.PIN

I/O.CTL

To Next Pin Pair
To Next Cell

1

1

MUX

G1

C

D To TDO

From TDI

0

Shift-DR

Clock-DR
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-29

Debugging
JID Identification Register

JID sets the shift-register stage to a logic value equal to IDCODE on the rising edge of TCK in the
CAPTURE-DR controller state. It is then shifted out in the SHIFT-DR controller state. See Figure
16-14.

Figure 16-14. Identification Register Configuration (JID)

During a shift in of any JTAG instruction, the bits shifted out reflect the status of the SC1400
core (see Table 16-3, JDIR Bit Descriptions, on page 16-16). Two bits in the JTAG GPR select
the SC1400 core to which these bits belong. The GPR shifts in from TDI and out to TDO. The
GPR[ISRSEL] bits select which emulator and SC1400 core status bits are reflected in the capture
of any JTAG instruction. All other encodings are reserved and should be written with a value of
0. Writing a 1 to any of these bits may result in improper operation.

JGPR JTAG General-Purpose Register JTAG Port Access Only

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ISRSEL1 ISRSEL0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

MUX

C

D

G

Parallel Input

Serial Input

Serial Output

Clock-DR

Shift-DR
MSC711x Reference Manual, Rev. 1

16-30 Freescale Semiconductor

OCE10 On-Chip Emulator and JTAG Programming Model
PIREG enables you to observe the status of the SC1400 core by programming the JGPR and
shifting in a JTAG instruction four times. To select PIREG, execute the READ PIREG command
and shift out 32 bits from PIREG. The bits shifted out reflect the status of the SC1400 core.

Table 16-8. GPR Bit Descriptions

Name Reset Description Settings

—
31–10

0 Reserved. Write to zero for future compatibility.

ISRSEL
1–0

0 Instruction Status Core Select
Defines the SC1400 core to which the bits output
during instruction register shifts belong.

00 Core 0.

01 Reserved.

10 Reserved.

11 Reserved.

PIREG JTAG Parallel Input Register JTAG Port Access Only

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— COREST CORACK

TYPE R

RESET 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0

Table 16-9. PIREG Bit Descriptions

Number Reset Description Settings

—
31–19

0 Reserved.

COREST
18–17

0 Core 0 Core Status
Reflects the status of core 0.

00 Core is executing instructions.

01 Core is in Wait or Stop mode.

10 Core is waiting for bus.

11 Core is in debug mode.

CORACK
16

0 Core 0 Update Acknowledge
Indicates whether the SC1400 core 0 emulator has
executed the last instruction dispatched to it.

0 Emulator has executed the last
instruction dispatched to it.

1 Emulator has not executed the last
instruction dispatched to it.

—
15–0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 16-31

Debugging
MSC711x Reference Manual, Rev. 1

16-32 Freescale Semiconductor

Programmable Address Detection 17
The programmable address detection units provide system protection, debug, and patch
capability through user-programmable memory regions. This functionality goes beyond the
“fixed” illegal access detection that causes interrupts based on attempted accesses to reserved
memory regions. Programmable address detection enables you to allocate regions of memory as
data and program memory. There are programmable units for the extended core and for
peripherals:

The set for the extended core connects to the SC1400 core program address (PAB) and data
address (XABA, XABB) buses and is programmed through the extended core QBus. The second
set connects to the peripheral subsystem on the AMENT and AMDMA AHB master ports and is
programmed through the IPBus. The high-level features for both sets of units are as follows:

� Range-based illegal access detection

� Range- or value-based event generation

� Value-based ROM patching

� Capture of status and detected addresses

17.1 Extended Core Programmable Address Detection

The fixed illegal-access detection in the extended core detects misaligned and fixed out-of-range
addresses. The programmable units are far more powerful, allowing you to specify not only the
modes of address detection but also the capture and resultant actions such as maskable and
non-maskable interrupts and events. Since fixed out-of-range detection already protects against
accesses to reserved areas of memory, the programmable units can define ranges based on how
M1, M2 and DDR memories are partitioned into the application for program code, read-only
data, and read-write data. You can define a data access to a program region as “illegal.” Detection
occurs on the following address buses:

� SC1400 P bus (program accesses) with four independent program detection units

� SC1400 XA and XB buses (data accesses) with four independent data detection units,
each containing an XA and XB detector

� The units are disabled out of reset
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-1

Programmable Address Detection
17.1.1 Detection Comparison Types

Based on the operating mode, the comparators in each detection unit performs either a range
comparison or a value comparison:

� Range comparison:

— A successful compare means that the address falls within the range specified by
ADUPRx and ADLWRx:

— ADLWRx <= Address <= ADUPRx.

� Value comparison:

— A successful compare means that the address equates with either of the range values.
— (Address == ADLWRx) || (Address == ADUPRx).

17.1.2 Detection Action Types

Depending on the operating mode, each detection unit can cause the following actions:

� Interrupts. Both maskable and non-maskable (NMI). Upon a successful detection, either
CADSR[AOR] or CADSR[AVAL] is set. These status bits connect directly to
non-maskable and maskable interrupts, respectively. Interrupts are cleared when you write
a 1 to the appropriate status bit. Interrupts are available only in the non-event based modes

� Events. Events can be tied to a particular detection unit through masking. Event triggering
is available only in the event modes. The event signal pins are EVNT[0–4].

17.1.3 Detection Modes

A mode in the detection units is a particular combination of comparison type, capture
mechanism, and actions taken. The available modes are as follows:

� Disabled. No detection occurs.

� Address out of range.

� Value

� Event: address range.

� Event: value.

These modes are described in the context of comparison/capture/action in Table 17-1. The mode
is selected through the CADCTL[0–1] registers.
MSC711x Reference Manual, Rev. 1

17-2 Freescale Semiconductor

Extended Core Programmable Address Detection
c

17.1.4 Extended Core Address Detection Architecture

Figure 17-1 shows the system architecture of extended core address detection. Notice the
following:

� The control logic sends control signals to all the comparator units and multiplexes (P, XA,
XB).

� Interrupts are not generated from the detection units. Instead, the status bits are set to
generate either maskable or non-maskable interrupts. Interrupts are cleared when the
appropriate status register bits are cleared.

� For event-based modes, eight event sources must be reduced to two outputs. This
reduction is achieved via the masking register fields CADCTL0[EVME] and
CADTCL0[EVMO].

� For maskable interrupts, there can be up to eight sources.

Table 17-1. Detection Unit Modes/Configurations

Detection Type Capture Action Comments

Disabled — — —

Address out-of-range PAB,
XA,
XB

Non-maskable
interrupt

Detects invalid accesses in a range of addresses
and generates a non-maskable interrupt. XA and XB
are captured only if there are valid accesses on
these buses at the moment of detection.
CADCTL1[DATx] has no effect on capture rules.

Value No Maskable interrupt Detects accesses to a particular program or data
addresses and generates a maskable interrupt.
Addresses are not captured in this mode

Event: address range Bus with
detection only

Event port trigger Detects any accesses within an address range and
triggers an event in the event port.
Captures only the bus with a range match.

Event: value No Event port trigger Detects accesses to a particular program or data
addresses and triggers an event in the event port.
Addresses are not captured in this mode

Notes: 1. Capture registers CADCPTP, CADCPTXA, CADCPTXB and the status register CADSR are updated with the
capture address/status on the core cycle following the detection. The detection occurs on the core address
phase cycle.

2. When CADSR[AOR] is set, the capture registers CADCPTP, CADCPTXA, and CADCPTXB are not updated
until CADSR[AOR] is cleared.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-3

Programmable Address Detection
Figure 17-1. Extended Core Programmable Address Detection

CADCTL

CADSR

CADCPTP

CADLWRPx

CADUPRPx

P
A

B
QBus (0 Wait State)

Program Detection Unitx

CADLWRXx

CADUPRXx

CADCPTXA

CADCPTXB

X
A

B
A

X
A

B
B

Data Detection Unitx

CADUPRPx

CADLWRPx

CADUPRXx

CADUPRXx

CADLWRXx

CADLWRXx

com
parators

C
om

parators
C

om
parators

Match Up

Value

Capture/Detection
Control Logic

PAB

XABA

XABB

32

32

32

32

32

32

32

32

32

32

32

32 32 32

D
etection R

esult

Range

Match Low

Match Up

Value

Range

Match Low

Match Up

Value

Range

Match Low

D
etection R

esult
D

etection R
esult

16-/32-Bit Access

Decoders

Capture and
Status Control

Output 32

Generator
MSC711x Reference Manual, Rev. 1

17-4 Freescale Semiconductor

Peripheral Programmable Address Detection
17.2 Peripheral Programmable Address Detection

The peripheral address detection units perform much like those of the extended core, but they
provide detection on the FEC (AMENT) and DMA (AMDMA) master AHB ports. Since fixed
out-of-range detection already protects against access to reserved areas of memory, the
programmable units can define ranges based on how M1, M2 and DDR memories are partitioned
into an application for program code, read-only data, and read-write data as defined in the context
of Ethernet and DMA accesses. You can define a DMA access to an Ethernet region as “illegal”.
The detection occurs on the following address buses:

� DMA AMDMA AHB master bus with four independent program/data detection units

� Ethernet AMENT AHB master bus with 4 independent program/data detection units

� The units are disabled out of reset

17.2.1 Detection Comparison Types

Depending on the operating mode, the comparators in each detection unit performs a range
comparison or a value comparison:

� Range comparison:

— A successful compare means that the address falls within the range specified by
ADUPRx and ADLWRx:

— ADLWRx <= Address <= ADUPRx

� Value comparison:

— A successful compare means that the address equates with either of the range values
— (Address == ADLWRx) || (Address == ADUPRx)

17.2.2 Detection Action Types

Depending on the operating mode, each detection unit can cause the following actions:

� Non-maskable interrupts (NMI). Upon a successful out-of-range detection, PADSR[AOR]
is set. This status bit connects directly to the non-maskable interrupt request PADNMI.
Interrupts are cleared when the appropriate status bit is cleared. Interrupts are available
only in the non-event based modes.

� Events. Events can be tied to a particular detection unit through masking. Event triggering
is available only in the event modes.

17.2.3 Detection Modes

A mode is a particular combination of comparison type, capture mechanism, and actions taken.
The available modes are as follows:

� Disabled. No detection occurs.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-5

Programmable Address Detection
� Address out of range

� Event: address range

� Event: value

Table 17-2 describes these modes in the context of comparison/capture/action. The mode is
selected through the PADCTL0 and PADCTL1 registers.
c

17.2.4 Peripheral Address Detection Architecture

Figure 17-2 shows the system architecture for peripheral address detection. Notice the following:

� The control logic sends control signals to all the comparator units and multiplexes
(AMENT, AMDMA).

� Interrupts are not generated from the detection units. Instead, the PADSR[AOR] bit is set
to generate an NMI. Interrupts are cleared when the appropriate status register bits are
cleared.

� For event-based modes, eight event sources must be reduced to two outputs. This
reduction is achieved via the masking register PADCTL0[EVME] and
PADTCL0[EVMO] bits.

Table 17-2. Peripheral Detection Unit Modes/Configurations

Detection Type Capture Action Comments

Disabled — — —

Address out-of-range Bus with detection Non-maskable
interrupt

Detects invalid accesses in a range of
addresses and generates a non-maskable
interrupt.

Event: address range Bus with detection Event port trigger Detects any accesses within an address range
and triggers an event in the event port.
Captures only the bus with a range match.

Event: value No Event port trigger Detects accesses to particular program or data
addresses and triggers an event in the event
port. Addresses are not captured in this mode

Notes: 1. Capture registers PADCPTD, PADCPTE, and the status register PADSR are updated with the capture
address/status on the AHB cycle following the detection. The detection occurs on the AHB address phase
cycle.

2. When PADSR[AOR] is set, the capture registers PADCPTD and PADCPTE do not update until PADSR[AOR].
is cleared.
MSC711x Reference Manual, Rev. 1

17-6 Freescale Semiconductor

Peripheral Programmable Address Detection
Figure 17-2. Peripheral Programmable Address Detection

PADCPTD

A
M

D
M

A
IPBus (0 Wait State)

AMDMA Detection Units

A
M

E
N

T

AMENT Detection Units

PADUPRDx

PADLWRDx

PADUPREx

PADLWREx

C
om

parators
com

parators

Match Low

Value

Capture/Detection

Control

AMDMA

AMENT

32

32

32

32

32

32

32

32 32

D
etection R

esult

Range

Match Up

Match Up

Value

Range

Match Low

D
etection R

esult

16b/32b/byte access

Decoders

Capture and
Status Control

Output

PADCPTE

32

PADCTL

PADLWRPx

PADUPRPx

PADLWRXx

PADUPRXx

PADSR
NMI

Generator
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-7

Programmable Address Detection
17.3 Address Detection Unit Programming Model

There are two sets of registers for the address detection unit, one for the extended core and one
for the peripherals. The values of the base addresses for the extended core address detection
register file, CAD_BASE, and the peripheral address detection register file, PAD_BASE are
listed in Section 5-1, Summary — Base Addresses for MSC711x Register Files, on page 5-4.

Note: You can access information in the address detection registers using 16-bit or 32-bit
accesses from the SC1400 core.

17.3.1 Extended Core Address Detection Registers

The extended core address detection registers are as follows:

� Extended Core Address Detection Control Register 0 (CADCTL0), page 17-9.

� Extended Core Address Detection Control Register 1 (CADCTL1), page 17-10.

� Extended Core Address Detection Status Register (CADSR), page 17-11.

� Extended Core Address Detection PAB Lower Bound Register (CADLWRPx),
page 17-14.

� Extended Core Address Detection PAB Upper Bound Register (CADUPRPx),
page 17-15.

� Extended Core Address Detection XAB Lower Bound Register (CADLWRXx),
page 17-15.

� Extended Core Address Detection XAB Upper Bound Register (CADUPRXx),
page 17-16.

� Extended Core Address Detection Capture Program Address Register (CADCPTP),
page 17-17.

� Extended Core Address Detection Capture XA Address Register (CADCPTXA),
page 17-17.

� Extended Core Address Detection Capture XB Address Register (CADCPTXB),
page 17-18.

Note: When you are using the program detection units from the upper bound registers
(CADUx), be aware that the SC1400 core performs a read of three fetch sets ahead
from M1 memory. Otherwise, you may experince unexpected NMIs.
MSC711x Reference Manual, Rev. 1

17-8 Freescale Semiconductor

Address Detection Unit Programming Model
CADCTL0 programs general settings for both units (event port multiplexing) and the mode
settings for the program unit.

CADCTL0 Extended Core Address Detection Control Register 0 CAD_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— EVME EVMO

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MP3 MP2 MP1 MP0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-3. CADCTL0 Bit Descriptions

Name Reset Description Settings

31–24 0x00 Reserved. Write to zero for future compatibility.

EVME
23–20

0x0 Event Mask for Even Detection Units
Event mask for generation of CADEV0:
• Bit 23 Data unit 2 enable/disable.
• Bit 22 Data unit 0 enable/disable.
• Bit 21 Program unit 2 enable/disable.
• Bit 20 Program unit 0 enable/disable
This field has no effect in non-event modes

0 Detection unit does not trigger

1 Detection unit triggers.

EVMO
19–16

0x0 Event Mask for Odd Detection Units
Event mask for generation of CADEV1:
• Bit 19 Data unit 3 enable/disable.
• Bit 18 Data unit 1 enable/disable.
• Bit 17 Program unit 3 enable/disable.
• Bit 16 Program unit 1 enable/disable.
This field has no effect in non-event modes.

0 Detection unit does not trigger.

1 Detection unit triggers.

15-12 0x00 Reserved. Write to zero for future compatibility.

MP[3–0]
11–0

000 Mode Select — Program Unit x
Specifies the mode/configuration for detection.

000 Detection unit disabled.

001 Address out of range.

010 Value.

011 Event address range.

100 Event value.

101–

111 Reserved
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-9

Programmable Address Detection
CADCTL1 programs mode settings for the data unit.

CADCTL1 Extended Core Address Detection Control Register 1 CAD_BASE + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— DAT3 DAT2 DAT1 DAT0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MD3 MD2 MD1 MD0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-4. CADCTL1 Bit Descriptions

Name Reset Description Settings

31-24 0x00 Reserved. Write to zero for future compatibility.

DAT[3–0]
23–16

00 Data Detection Unit x Access Type
Controls the conditions for detection of data
accesses. This setting does not affect XA or XB
capture during a program address out-of-range
detect.

00 Detect on access.

01 Reserved.

10 Detect only on reads.

11 Detect only on writes.

15-12 0x00 Reserved. Write to zero for future compatibility.

MD[3–0]
11–0

000 Mode Select, Data Unit x
Specifies the mode/configuration for detection per
Table 17-1.

000 Detection unit disabled.

001 Address out of range.

010 Value.

011 Event: address range.

100 Event: value.

101– Reserved.

111
MSC711x Reference Manual, Rev. 1

17-10 Freescale Semiconductor

Address Detection Unit Programming Model
CADSR reports status information for the extended core address detection units. Both the user
and the internal control unit of the ADU can write to the CADSR. When both the user and the
control unit write to ADSR, the user write has higher priority.

� Each bit is set when its associated detection occurs; these bits cannot be set by writing to
the register.

� The control unit cannot clear the CADSR bits. Only the user program can clear them.

� Each bit can only be cleared by writing a 1 to the bit, which indicates an active mask for
clearing. For example, if you want to clear the AOR and DDU3 bits, you would write a
value of 0x8000_8000 to CADSR.

� The update behavior of the CPTXA and CPTXB bits follows the capture behavior of the
CADCPTXA and CADCPTXB capture registers. For an address-out-of-range detection,
the values of the CPTXA and CPTXB bits remains (sticky) regardless of further detects
until the user program clears the AOR bit.

� The AVAL, EVAR, EVVAL bits and bits DDU3–PD0 continue to update even after the
AOR bit is set. These fields accumulate each cycle (if detections occur), and only the user
program clears them.

CADSR Extended Core Address Detection Status Register CAD_BASE + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AOR AVAL1 AVAL0 EVAR EVVAL — CPTXA CPTXB —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DDU3 DD3 DDU2 DD2 DDU1 DD1 DDU0 DD0 PDU3 PD3 PDU2 PD2 PDU1 PD1 PDU0 PD0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-5. CADSR Bit Descriptions

Name Reset Description Settings

AOR
31

0 Address Out of Range Detection
Captures the status of detection for the program and data
detection units.

0 No detection.

1 Detection.

AVAL1
30

0 Address Value Detection 1
Captures the status of detection for the even-numbered program
and data detection units where the UPRx matched the value.

0 No detection.

1 Detection.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-11

Programmable Address Detection
AVAL0
29

0 Address Value Detection 0
Captures the status of detection for the odd-numbered program
and data detection units, where the UPRx matches the value and
all units where the value matches LWRx.

0 No detection.

1 Detection.

EVAR
28

0 Event Address Range Detection
Captures the status of detection for all the program and data
detection units.

0 No detection.

1 Detection.

EVVAL
27

0 Event Value Detection
Captures the status of detection for all the program and data
detection units.

0 No detection.

1 Detection.

—
26

0 Reserved. Write to zero for future compatibility.

CPTXA
25

0 Capture on XA
A status bit that indicates whether a valid XA access occurred at
the time of capture.

0 No detection.

1 Detection.

CPTXB
24

0 Capture on XB
A status bit that indicates whether a valid XB access occurred at
the time of capture.

0 No detection.

1 Detection.

—
23–16

0 Reserved. Write to zero for future compatibility.

DDU3
15

0 Data Detect Upper, Unit 3
Captures the status of the detection for the corresponding data
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRXx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

DD3
14

0 Data Detect, Unit 3
Captures status of detection for the corresponding data address
detection unit. If the unit is configured for range detection, it
captures whether a detection occurred in the specified range.
If unit is configured for value detection, it captures whether a
detection occurred in the LWRPx register.

0 No detection.

1 Detection.

DDU2
13

0 Data Detect Upper, Unit 2
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRXx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

DD2
12

0 Data Detect, Unit 2
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If the unit is configured for value detection, it
captures whether a detection occurred in the LWRPx register.

0 No detection.

1 Detection.

DDU1
11

0 Data Detect Upper, Unit 1
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRXx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

Table 17-5. CADSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

17-12 Freescale Semiconductor

Address Detection Unit Programming Model
DD1
10

0 Data Detect, Unit 1
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If unit is configured for value detection, it
captures whether a detection occurred on the LWRPx register.

0 No detection.

1 Detection.

DDU0
9

0 Data Detect Upper, Unit 0
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRXx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

DD0
8

0 Data Detect, Unit 0
Captures the status of detection for the corresponding data
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If the unit is configured for value detection, it
captures whether a detection occurred on the LWRPx register.

0 No detection.

1 Detection.

PDU3
7

0 Program Detect Upper, Unit 3
Captures status of detection for the corresponding program
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRPx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

PD3
6

0 Program Detect, Unit 3
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If unit is configured for value detection, it
captures whether a detection occurred in the LWRPx register.

0 No detection.

1 Detection.

PDU2
5

0 Program Detect Upper, Unit 2
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRPx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

PD2
4

0 Program Detect, Unit 2
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If the unit is configured for value detection, it
captures whether a detection occurred in the LWRPx register.

0 No detection.

1 Detection.

PDU1
3

0 Program Detect Upper, Unit 1
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred on the
UPRPx register. No action is taken if the unit is programmed for
range detection.

0 No detection.

1 Detection.

Table 17-5. CADSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-13

Programmable Address Detection

CADLWRPx specifies the lowest address program detection region. It can also specify one of
two value addresses.

PD1
2

0 Program Detect, Unit 1
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If the unit is configured for value detection, it
captures whether a detection occurred in the LWRPx register.

0 No detection.

1 Detection.

PDU0
1

0 Program Detect Upper, Unit 0
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for value
detection, it captures whether a detection occurred in the UPRPx
register. No action is taken if the unit is programmed for range
detection.

0 No detection.

1 Detection.

PD0
0

0 Program Detect, Unit 0
Captures the status of detection for the corresponding program
address detection unit. If the unit is configured for range
detection, it captures whether a detection occurred in the
specified range. If the unit is configured for value detection, it
captures whether a detection occurred in the LWRPx register.

0 No detection.

1 Detection.

CADLWRPx Extended Core Address Detection PAB Lower Bound Register
CADLWRP0 CAD_BASE + 0x14
CADLWRP1 CAD_BASE + 0x18
CADLWRP2 CAD_BASE + 0x1C
CADLWRP3 CAD_BASE + 0x20

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LWRP

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LWRP

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-6. CADLWRPx Bit Descriptions

Name Reset Description

LWRP
31–0

0 Lower Bound, PAB
In normal operation, specifies the lowest address used in PAB address detection for one of the
P-address detection regions. When the detection unit is used in value mode, this register provides
one of the two value addresses available in each detection region.

Table 17-5. CADSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

17-14 Freescale Semiconductor

Address Detection Unit Programming Model
CADUPRPx specifies the highest address in a program detection region. It can also specify one
of two value addresses.

CADUPRPx Extended Core Address Detection PAB Upper Bound Register
CADUPRP0 CAD_BASE + 0x2C
CADUPRP1 CAD_BASE + 0x30
CADUPRP2 CAD_BASE + 0x34
CADUPRP3 CAD_BASE + 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPRP

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPRP

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-7. CADUPRPx Bit Descriptions

Name Reset Description

UPRP
31–0

0 Upper Bound, PAB
In normal operation, specifies the highest address used in PAB address detection for one of the
P-address detection regions. When the detection unit is used in value mode, this register provides
one of the two value addresses available in each detection region.

CADLWRX Extended Core Address Detection XAB Lower Bound Register
CADLWRX0 CAD_BASE + 0x44
CADLWRX1 CAD_BASE + 0x48
CADLWRX2 CAD_BASE + 0x4C
CADLWRX3 CAD_BASE + 0x50

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LWRX

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LWRX

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-15

Programmable Address Detection
CADLWRXx specifies the lowest address in a data detection region. It can also specify one of
two value addresses.

CADUPRXx specifies the highest address in a data detection region. It can also specify one of
two value addresses.

Table 17-8. CADLWRXx Bit Descriptions

Name Reset Description

LWRX
31–0

0 Lower Bound, XAB
In normal operation, specifies the lowest address used in XAB address detection for one of the
data address detection regions. When the detection unit is used in value mode, this register
provides one of the two value addresses available in each detection region.

CADUPRX Extended Core Address Detection XAB Upper Bound Register
CADUPRX0 CAD_BASE + 0x5C
CADUPRX1 CAD_BASE + 0x60
CADUPRX2 CAD_BASE + 0x64
CADUPRX3 CAD_BASE + 0x68

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPRX

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPRX

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-9. CADUPRXx Bit Descriptions

Name Reset Description

UPRX
31–0

0 Upper Bound, XAB
In normal operation, specifies the highest address used in XAB address detection for one of the
data address detection regions. When the detection unit is used in value mode, this register
provides one of the two value addresses available in each detection region.
MSC711x Reference Manual, Rev. 1

17-16 Freescale Semiconductor

Address Detection Unit Programming Model
CADCPTP captures the PAB address when a range detection occurs.

CADCPTXA captures the XABA address when a range detection occurs.

CADCPTP Extended Core Address Detection PAB Capture CAD_BASE + 0x74

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPTP

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPTP

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-10. CADCPTP Bit Descriptions

Name Reset Description

CPTP
31–0

0 Capture Address, PAB
The value of the PAB address is captured in this register when an address detection occurs. This
register captures values only for a range detection between a lower and upper value. It does not
capture the address when one of the units is programmed in value mode, so only a value mode
detection occurs.

CADCPTXA Extended Core Address Detection XABA Capture CAD_BASE + 0x78

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPTXA

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPTXA

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-17

Programmable Address Detection

CADCPTXB captures the XABB address when a range detection occurs.

17.3.2 Peripheral Address Detection Registers

The extended core address detection registers are as follows:

� Peripheral Address Detection Control Register 0 (PADCTL0), page 17-19.

� Peripheral Address Detection Control Register 1 (PADCTL1), page 17-20.

� Peripheral Address Detection Status Register (PADSR), page 17-21.

� Peripheral Address Detection AMDMA Lower Bound Register (PADLWRDx),
page 17-24.

� Peripheral Address Detection AMDMA Upper Bound Register (PADUPRDx),
page 17-25.

Table 17-11. CADCPTXA Bit Descriptions

Name Reset Description

CPTXA
31–0

0 Capture Address, XABA
The value of the XABA address is captured in this register when an address detection occurs. This
register captures values only for a range detection between a lower and upper value. It does not
capture the address when one of the units is programmed in value mode, so only a value mode
detection occurs.

CADCPTXB Extended Core Address Detection XABB Capture CAD_BASE + 0x7C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPTXB

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPTXB

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-12. CADCPTXB Bit Descriptions

Name Reset Description

CPTXB
31–0

0 Capture Address, XABB
The value of the XABB address is captured in this register when an address detection occurs. This
register captures values only when a range detection occurs between a lower and upper value. It
does not capture the address when one of the units is programmed in value mode, so only a value
mode detection occurs.
MSC711x Reference Manual, Rev. 1

17-18 Freescale Semiconductor

Address Detection Unit Programming Model
� Peripheral Address Detection AMENT Lower Bound Register (PADLWREx),
page 17-25.

� Peripheral Address Detection AMENT Upper Bound Register (PADUPREx), page 17-26.

� Peripheral Address Detection Capture AMDMA Address Register (PADCPTD),
page 17-27.

� Peripheral Address Detection Capture AMENT Address Register (PADCPTE),
page 17-27.

PADCTL0 programs general settings for both the extended core and peripheral address detection
units (event port multiplexing) and for the AMDMA unit.

PADCTL0 Peripheral Address Detection Control Register 0 PAD_BASE + 0x00

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DAT3 DAT2 DAT1 DAT0 EVME EVMO

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— MD3 MD2 MD1 MD0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-13. PADCTL0 Bit Descriptions

Name Reset Description Settings

DAT3–DAT0
31–24

00 AMDMA Detection Unit x Access Type
Controls the conditions in which detection takes
place for AMDMA accesses.

00 Detect on access.

01 Reserved.

10 Detect only on reads.

11 Detect only on writes.

EVME 23–20 0000 Event Mask for Even Detection Units
Event mask for generation of even-numbered
address detection units.
• Bit 23 AMENT unit 2 enable/disable.
• Bit 22 AMENT unit 0 enable/disable.
• Bit 21 AMDMA unit 2 enable/disable.
• Bit 20 AMDMA unit 0 enable/disable.
This field has no effect in non-event modes.

0 Detection unit does not trigger.

1 Detection unit triggers.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-19

Programmable Address Detection
PADCTL1 programs the AMENT unit.

EVMO 19–16 0000 Event Mask for Odd Detection Units
Event mask for generation of odd-numbered
detection units.
• Bit 19 AMENT unit 3 enable/disable.
• Bit 18 AMENT unit 1 enable/disable.
• Bit 17 AMDMA unit 3 enable/disable.
• Bit 16 AMDMA unit 1 enable/disable.
This field has no effect in non-event modes.

0 Detection unit does not trigger.

1 Detection unit triggers.

15–12 0x0 Reserved. Write to zero for future compatibility.

MD3–MD0
11–0

000 Mode Select, AMDMA Unit x
Specifies the mode/configuration for detection.

000 Detection unit disabled.

001 Address out of range.

010 Reserved.

011 Event: adress range.

100 Event: value.

101–111 Reserved.

PADCTL1 Peripheral Address Detection Control Register 1 PAD_BASE + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EAT3 EAT2 EAT1 EAT0 —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ME3 ME ME1 ME0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-14. PADCTL1 Bit Descriptions

Name Reset Description Settings

EAT3–EAT0
31–24

00 AMENT Detection Unit x Access Type
Controls the condition under which detection
takes place for AMENT accesses.

00 Detect on access.

01 Reserved.

10 Detect only on reads.

11 Detect only on writes.

Table 17-13. PADCTL0 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

17-20 Freescale Semiconductor

Address Detection Unit Programming Model
PADSR reports status information for the peripheral address detection units.

� Each bit is set when its associated detection occurs; these bits cannot be set by writing to
the register.

� The control unit cannot clear the PADSR bits. Only the user program can clear them.

� Each bit can only be cleared by writing a 1 to the bit, which indicates an active mask for
clearing. For example, if you want to clear AOR and EDU3 bits, you would write a value
of 0x8000_8000 to PADSR.

� Both the user and the internal control unit can write to the PADSR. When both the user
and the control unit write to PADSR, the user write always has higher priority.

� The EVAR and EVVAL bits and bits DDU3–PD0 continue to update even after the AOR
bit is set. These fields accumulate each cycle (if detections occur) and only the user
program clears them.

23-16 0x00 Reserved. Write to zero for future compatibility.

ME3–ME0
11–0

000 Mode Select, AMENT Unit x
Specifies the mode/configuration for detection.

000 Detection unit disabled.

001 Address out of range.

010 Reserved.

011 Event: address range.

100 Event: value.

101–

111 Reserved.

PADSR Peripheral Address Detection Status Register PAD_BASE + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AOR — EVAR EVVAL —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EDU3 ED3 EDU2 ED2 EDU1 ED1 EDU0 ED0 DDU3 DD3 DDU2 DD2 DDU1 DD1 DDU0 DD0

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-14. PADCTL1 Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-21

Programmable Address Detection
Table 17-15. PADSR Bit Descriptions

Name Reset Description Settings

AOR
31

0 Address Out of Range Detection
Captures the status of detection for all AMDMA and AMENT
detection units.

0 No detection.

1 Detection.

—
30

0 Reserved. Write to zero for future compatibility.

EVAR
29

0 Event Address Range Detection
Captures the status of detection for all AMDMA and AMENT
detection units.

0 No detection.

1 Detection.

EVVAL
28

0 Event Value Detection
Captures the status of detection for all AMDMA and AMENT
detection units.

0 No detection.

1 Detection.

—
27-16

0 Reserved. Write to zero for future compatibility.

EDU3
15

0 Data Detect Upper, Unit 3
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRXx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

ED3
14

0 Data Detect, Unit 3
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

EDU2
13

0 Data Detect Upper, Unit 2
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRXx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

ED2
12

0 Data Detect, Unit 2
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

EDU1
11

0 Data Detect Upper, Unit 1
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRXx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

ED1
10

0 Data Detect, Unit 1
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.
MSC711x Reference Manual, Rev. 1

17-22 Freescale Semiconductor

Address Detection Unit Programming Model
EDU0
9

0 Data Detect Upper, Unit 0
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRXx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

ED0
8

0 Data Detect, Unit 0
Captures the status of detection for the corresponding AMENT
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

DDU3
7

0 Program Detect Upper, Unit 3
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRPx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

DD3
6

0 Program Detect, Unit 3
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

DDU2
5

0 Program Detect Upper, Unit 2
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRPx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

DD2
4

0 Program Detect, Unit 2
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range. If
the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

DDU1
3

0 Program Detect Upper, Unit 1
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRPx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

DD1
2

0 Program Detect, Unit 1
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range. If
the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

Table 17-15. PADSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-23

Programmable Address Detection
PADLWRD specifies the lowest address program detection region. It can also specify one of two
value addresses.

DDU0
1

0 Program Detect Upper, Unit 0
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for value detection, it
captures whether a detection occurred on the UPRPx register. No
action is taken if the unit is programmed for range detection.

0 No detection.

1 Detection.

DD0
0

0 Program Detect, Unit 0
Captures the status of detection for the corresponding AMDMA
address detection unit. If the unit is configured for range detection,
it captures whether a detection occurred in the specified range.
If the unit is configured for value detection, it captures whether a
detection occurred on the LWRPx register.

0 No detection.

1 Detection.

PADLWRD Peripheral Address Detection AMDMA Lower Bound Register
PADLWRD0 PAD_BASE + 0x14
PADLWRD1 PAD_BASE + 0x18
PADLWRD2 PAD_BASE + 0x1C
PADLWRD3 PAD_BASE + 0x20

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LWRD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LWRD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-16. PADLWRDx Bit Descriptions

Name Reset Description

LWRD
31–0

0 Lower Bound, AMDMA
In normal operation, specifies the lowest address used in AMDMA address detection for one of the
AMDMA address detection regions. When the detection unit is used in value mode, this register
provides one of the two value addresses available in each detection region.

Table 17-15. PADSR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

17-24 Freescale Semiconductor

Address Detection Unit Programming Model
PADUPRDx specifies the highest address in a AMDMA detection region. It can also specify one
of two value addresses.

PADUPRD Peripheral Address Detection AMDMA Upper Bound Register
PADUPRD0 PAD_BASE + 0x2C
PADUPRD1 PAD_BASE + 0x30
PADUPRD2 PAD_BASE + 0x34
PADUPRD3 PAD_BASE + 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPRD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPRD

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-17. PADUPRDx Bit Descriptions

Name Reset Description

UPRD
31–0

0 Upper Bound — AMDMA
In normal operation, specifies the highest address used in AMDMA address detection for one of
the AMDMA address detection regions. When the detection unit is used in value mode, this
register provides one of the two value addresses available in each detection region.

PADLWRE Peripheral Address Detection AMENT Lower-Bound Register
PADLWRE0 PAD_BASE + 0x44
PADLWRE1 PAD_BASE + 0x48
PADLWRE2 PAD_BASE + 0x4C
PADLWRE3 PAD_BASE + 0x50

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LWRE

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LWRE

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-25

Programmable Address Detection
PADLWREx specifies the lowest address in the AMENT detection region. It can also specify one
of two value addresses.

PADUPREx specifies the highest address in the AMENT detection region. It can also specify one
of two value addresses.

Table 17-18. PADLWREx Bit Descriptions

Name Reset Description

LWRE
31–0

0 Lower Bound — AMENT
In normal operation, specifies the lowest address used in AMENT address detection for one of the
AMENT address detection regions. When the detection unit is used in value mode, this register
provides one of the two value addresses available in each detection region.

PADUPRE Peripheral Address Detection AMENT Upper Bound Register
PADUPRE0 PAD_BASE + 0x5C
PADUPRE1 PAD_BASE + 0x60
PADUPRE2 PAD_BASE + 0x64
PADUPRE3 PAD_BASE + 0x68

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPRE

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPRE

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-19. PADUPREx Bit Descriptions

Name Reset Description

UPRE
31–0

0 Upper Bound — AMENT
In normal operation, specifies highest address used in AMENT address detection for one of the
AMENT address detection regions. When the detection unit is used in ‘value mode’, this register
provides one of the two value addresses available in each detection region.
MSC711x Reference Manual, Rev. 1

17-26 Freescale Semiconductor

Address Detection Unit Programming Model
PADCPTD captures the AMDMA address when a range detection occurs.

PADCPTE captures the XABA address when a range detection occurs.

PADCPTD AMDMA Capture Register PAD_BASE + 0x74

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPTD

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPTD

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 17-20. PADCPTD Bit Descriptions

Name Reset Description

CPTD
31–0

0 Capture Address, AMDMA
The value of the AMDMA address is captured in this register when an address detection occurs.
This register captures values only for a range detection between a lower and upper value. It does
not capture the address when one of the units is programmed in value mode, so only a value
mode detection occurs.

PADCPTE AMENT Capture Register PAD_BASE + 0x78

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPTE

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPTE

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 17-27

Programmable Address Detection

Table 17-21. PADCPTE Bit Descriptions

Name Reset Description

CPTE
31–0

0 Capture Address, AMENT
The value of the AMENT address is captured in this register when an address detection occurs.
This register captures values only for a range detection between a lower and upper value. It does
not capture the address when one of the units is programmed in value mode, so only a value mode
detection occurs.
MSC711x Reference Manual, Rev. 1

17-28 Freescale Semiconductor

Fast Ethernet Controller (FEC) 18
The FEC supports 10/100 Mbps Ethernet as defined by IEEE Std. 802.3. It has two MAC-PHY
interfaces: the-media independent interface (MII) and the reduced MII (RMII) to provide MII
functionality on a reduced pin count (10 instead of 18), and a 7-Wire Interface mode. The media
access controller (MAC) handles the MII interface FIFOs and DMA functionality. An MII gasket
(MIIGSK) module supports the RMII interface. An FEC RISC microcontroller manages DMA
buffer descriptors (BDs), minimizing processor usage. Also, a management information base
(MIB) module tracks network activity on the MAC-PHY interface.

Note: Not all MSC711x devices have an FEC. To determine whether your device includes
this module, consult Table 1-2, MSC711x Device-Specific Feature Comparison, on
page 1-8.

18.1 Features

FEC features are as follows:

� Designed to comply with IEEE Std. 802.3, 802.3u™, 802.3x™, and 802.3ac™.

� Internal receive and transmit FIFOs and a FIFO controller.

� Direct access to internal MSC711x memories via its own DMA controller.

� Support for the 10/100 Mbps media independent interface (MII)

� Support for the 10/100 Mbps reduced media independent interface (RMII).

� Support for the 10 Mbps 7-wire interface.

� Full duplex (200 Mbps throughput with a minimum system clock rate of 25 MHz) and half
duplex operation (100 Mbps throughput).

� Programmable maximum frame length supports IEEE Std. 802.1™ VLAN tags and
priority.

� Retransmission from transmit FIFO following a collision.

� CRC generation and verification for inbound and outbound packets.

� Automatic internal flushing of the receive FIFO for runt receive frames and receive frames
rejected by address recognition.

� IEEE Std. 802.3 full duplex flow control.

� Address recognition including promiscuous, broadcast, individual address. hash/exact
match, and multicast hash match:
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-1

Fast Ethernet Controller (FEC)
— frames with broadcast address can be always accepted or always rejected
— exact match for single 48-bit individual (unicast) address
— 64-bit hash check of individual (unicast) addresses.
— 64-bit hash check of group (multicast) addresses.

It is important to note that the range of addresses used by the Ethernet MAC as a master on the
crossbar switch to access M1 memory over the AMENT bus differs from the range of addresses
used by the SC1400 core to access these same locations. See Table 5-1, Summary — Base
Addresses for MSC711x Register Files, on page 5-4 and Table 5-2, MSC711x Detailed Memory
Map, on page 5-5, which shows the correct address ranges.

18.2 FEC Architecture

Figure 1 shows the FEC block diagram, with the network depicted at the bottom of the diagram.
The IPBus and interrupt interfaces comply with V2 of the IPBus specification, and the AHB
master interface connected to the AMENT bus complies with Rev. 2.0 of the AHB-Lite
specification. The external Ethernet interfaces comply with industry and IEEE 802.3 standards.

The RISC-based descriptor controller, shown in Figure 1, performs the following functions:

� Initializes the internal registers not initialized by the user or hardware.

� Controls the DMA channels at a high level, initiating DMA data transfers.

� Interprets buffer descriptors (BDs).

� Provides address recognition for receive frames.

� Generates random numbers for the transmit collision back-off timer.

The RAM is the focal point of all FEC data flow. The RAM is divided into transmit and receive
FIFOs with a boundary that is programmed in the FIFO Receive Start Register (FRST) register
discussed on page 18-49. User data flows to/from the DMA unit from/to the receive/transmit
FIFOs. Transmit data flows from the transmit FIFO into the transmit block, and receive data
flows from the receive block into the receive FIFO.

The bus controller selects the TBus master on each clock. All modules receive their control
information over the TBus and provide status information over the TBus.

The user controls the FEC by writing through the slave interface (SIF) module into control
registers in each block. The control and status registers provide global control, such as Ethernet
reset and enable and interrupt handling.

The MII block provides a serial channel for control/status communication with the external
physical layer device (transceiver). This serial channel consists of the MDC (clock) and MDIO
bidirectional data lines of the MII interface.
MSC711x Reference Manual, Rev. 0

18-2 Freescale Semiconductor

FEC Architecture
The multiple-channel DMA unit allows transmit data, transmit descriptor, receive data and
receive descriptor accesses to run independently.

Figure 17-1. FEC Block Diagram

The transmit and receive blocks provide the Ethernet MAC functionality. Internal to these blocks
are clock domain boundaries between the system clock and the network clocks.

The management information base (MIB) maintains counters for a variety of network events and
statistics. It is not necessary for FEC operation but provides valuable counters for network
management. The counters are the remote monitoring (Rmon) RFC 1757 Ethernet Statistics
group and some IEEE 802.3 counters.

The MII gasket (MIIGSK) converts the data path portion of the MII interface to the RMII
interface, reducing the MII data path pin count from 16 to 8 pins.

SIF

Control/Status
RAM Interface

FIFO

DMA
Descriptor
Controller

MII

ReceiveTransmit

Bus

AHB (Master)

Controller

Controller

TBus

IPBus (Slave)

MIB

RAM

MIIGSK

MIB RAM

FIFO

Interrupts

Ethernet

Transceiver (PHY)

Fast Ethernet

Controller

MII/RMII/7-wire PHY Configuration
MSC711x Device

Registers
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-3

Fast Ethernet Controller (FEC)
18.3 FEC MAC-PHY Interface Signal Pins

Table 18-1 summarizes the MAC-PHY interface signal pins for each physical interface mode.
All the pins, as shown in Table 18-1, are used for MII operation, and subsets of these pins are
used for RMII and 7-Wire operation. For descriptions of the individual FEC MAC-PHY interface
pins, see Section 2.5, Ethernet MAC Interface Port, on page 2-16.

Table 18-1. FEC MAC-PHY Interface Pins

Pin Direction MII RMII 7-Wire Description

TXCLK Input TXCLK REF_CLK TXCLK MII/7-Wire: transmit clock
RMII: shared reference clock

TXD3 Output TXD3 — — MII: transmit data bit 3

TXD2 Output TXD2 — — MII: transmit data bit 2

TXD[1] Output TXD1 TXD1 — MII/RMII: transmit data bit 1

TXD[0] Output TXD0 TXD0 TXD0 MII/RMII/7-Wire: transmit data bit 0

TX_EN Output TX_EN TX_EN TX_EN MII/RMII/7-Wire: transmit enable

TX_ER Output TX_ER — — MII: transmit error

RXCLK Input RXCLK — RXCLK MII/7-Wire: receive clock

RXD3 Input RXD3 — — MII: receive data bit 3

RXD2 Input RXD2 — — MII: receive data bit 2

RXD[1] Input RXD1 RXD1 — MII/RMII: receive data bit 1

RXD[0] Input RXD0 RXD0 RXD0 MII/RMII/7-Wire: receive data bit 0

RX_DV Input RX_DV CRS_DV RX_DV MII/7-Wire: receive data valid
RMII: carrier sense, receive data valid

RX_ER Input RX_ER RX_ER — MII/RMII: receive error

COL Input COL — COL MII/7-Wire: collision

CRS Input CRS — — MII: carrier sense

MDC Output MDC MDC — MII/RMII: PHY configuration clock

MDIO Input/
Output

MDIO MDIO — MII/RMII: PHY configuration data

18 Pins — 18 Pins 10 Pins 7 Pins
MSC711x Reference Manual, Rev. 0

18-4 Freescale Semiconductor

FEC MAC-PHY Interface Signal Pins
18.3.1 MII MAC-PHY Signal Pins

The MII MAC-PHY interface uses eighteen signal pins. The transmit and receive functions
require seven pins each: four data signals, a delimiter, error, and clock. Additionally, two pins
indicate the status of the media: one indicates the presence of a carrier, and the second indicates a
collision. The remaining two pins provide a management interface for configuring the Ethernet
PHY. Each MII signal is described in Table 18-2.

Table 18-2. MII MAC-PHY Pins

Signal Description

TX_CLK Input clock that provides a timing reference for TX_EN, TXD[3–0], and TX_ER.

TXD[3–0] Represents a nibble of valid data when TX_EN is asserted. When TX_EN is de-asserted, TXD
has no meaning.

TX_EN Indicates that valid data is being presented on TXD. This pin asserts with the first nibble of the
preamble and is negated prior to the first TX_CLK rising edge following the final nibble of the
frame.

TX_ER Assertion of this pin for one or more clock cycles while TX_EN is asserted causes the PHY to
transmit one or more illegal symbols. Asserting TX_ER has no affect at 10 Mbps or when
TX_EN is deasserted. TX_ER asserts due to a transmit FIFO underflow, deassertion of
Ethernet enable (ECTL[EEN]) during frame transmission, or a forced append of a bad CRC to
a transmit frame (set TxBD [ABC]).

RX_CLK Input clock that provides a timing reference for RX_DV, RXD[3–0], and RX_ER.

RXD[3–0] Represents a nibble of valid data to be transferred from the PHY to the MAC when RX_DV is
asserted. When RX_DV is not asserted, RXD has no meaning.

RX_DV This input pin indicates a valid nibble on RXD[3–0] when the PHY asserts it. This pin remains
asserted from the first recovered nibble of the frame through the last nibble. Assertion of
RX_DV must start no later than the SFD.

RX_ER Indicates PHY detection of an error when asserted with RX_DV. When RX_DV is not asserted,
RX_ER has no effect. RX_ER assertion during frame reception sets the CRC error or non-octet
aligned error in the corresponding RxBD depending on whether the frame is octet aligned.

CRS Indicates that the transmit or receive medium is not idle. CRS remains asserted through the
duration of a collision. This pin is not required to transition synchronously with TX_CLK or
RX_CLK.

COL Indicates detection of a collision in half-duplex operation. The behavior of this signal is not
specified in full-duplex mode. This signal is not required to transition synchronously with
TX_CLK or RX_CLK.

MDC This output pin provides a timing reference to the PHY for data transfers on the MDIO pin.

MDIO Transfers control/status information between the PHY and FEC synchronously with MDC. The
MDIO pin is bidirectional.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-5

Fast Ethernet Controller (FEC)
18.3.2 RMII MAC-PHY Pins

The RMII provides the functionality of the MII interface on a total of 10 pins instead of 18. The
MDC and MDIO pins of the MII interface are used with RMII just as with MII. The 8 RMII data
path pins are defined in Table 18-3.

18.3.3 7-Wire MAC-PHY Interface Pins

The 7-Wire MAC-PHY interface provides 10 Mbps operation on seven pins. The pin descriptions
for this interface are the same as those in Section 18.3.1 except that TXD[3–1], RXD[3–1], TX_ER,
RX_ER, CRS, MDC, and MDIO are unused.

18.4 FEC Operation

This section describes the FEC software initialization sequence and the software (Ethernet driver)
interface for transmitting and receiving frames, as well as other FEC functionality.

18.4.1 Initialization Sequence

This section describes which registers are reset due to hardware reset, which are reset by the FEC
descriptor controller, and which locations you must initialize before you enable the FEC.
Hardware resets some FEC registers, specifically those that generate interrupts and cause outputs
to be asserted. Other registers are reset when the ECTL[EEN] enable bit is cleared, disabling the
FEC. To halt operation, ECTL[EEN] is cleared by a hard reset or by software. When
ECTL[EEN] is cleared, the configuration control registers such as TCTL and RCTL are not reset,
but the entire data path is reset, as summarized in Table 18-4..The procedure for shutting down
the FEC is described in Section 11.4.4.3, Complete Halt of the Ethernet MAC, on page 11-19.

Table 18-3. RMII MAC-PHY Pins

Signal Description

REF_CLK Continuous input clock that provides a timing reference for CRS_DV, RXD[1–0], TX_EN,
TXD[1–0], and RX_ER. The PHY also has an input corresponding to this clock.

TXD[1–0] Valid transmit data when TX_EN is asserted. When TX_EN is deasserted, TXD has no
meaning. When TX_EN is asserted, the PHY accepts TXD[1–0] for transmission.

TX_EN This output indicates that the data on TXD[1–0] is valid and should be accepted by the PHY.
TX_EN asserts at the frame preamble and remains asserted during the frame transmission.

RXD[1–0] Valid receive data when CRS_DV is asserted. For each clock period in which CRS_DV is
asserted, RXD[1–0] transfers two bits of recovered data from the PHY.

CRS_DV The PHY asynchronously asserts this input pin, carrier sense/receive data valid, when the
receive medium is non-idle (carrier detected). When the carrier is lost, this pin deasserts
synchronously to REF_CLK. This pin toggles at 25 MHz in100 Mbps mode if the PHY has
additional data to transfer after the carrier is lost. This behavior allows for recovery of carrier
sense and receive data valid.

RX_ER This input pin indicates that the PHY has detected an error in the current frame.
MSC711x Reference Manual, Rev. 0

18-6 Freescale Semiconductor

FEC Operation
You must initialize portions the FEC before you set the ECTL[EEN] bit to enable the FEC. The
exact values depend on the application. The sequential order is not important. FEC registers
requiring initialization are listed in Table 18-5.

After setting ECTL[EEN], you can set up the buffer/frame descriptors and write to the Receive
Descriptor Active (RDA) and Transmit Descriptor Active (TDA) registers. If continuous buffer

Table 18-4. Effect on FEC of ECTL[EEN] = 0

Register/Machine Reset Value

Transmit block Transmission aborts and a bad CRC is appended.

Receive block Receive activity is aborted.

Descriptor controller Halts and resets to the initialization sequence.

 Receive Control Descriptor Active (RDA), page 18-34. Cleared.

 Transmit Control Descriptor Active (TDA), page 18-35. Cleared.

DMA unit All DMA activity terminates, and the control logic and AHB
interfaces are reset.

Table 18-5. Registers to Initialize Before ECTL[EEN] = 1

Register Page

Initialize the Interrupt Enable Register (IMASK). page 18-31

Clear the Interrupt Event Register (IEVENT) by writing a value of 0xFFFF_FFFF to it. page 18-29

Initialize the Transmit FIFO Watermark Register (TWMRK) (Optional). page 18-47

Initialize Descriptor Individual Address Registers 1 and 2 (IAADR1/IADDR2). page 18-45

Initialize Descriptor Group Address Registers 1 and 2 (GADDR1/GADDR2). page 18-46

Initialize the Descriptor Physical Address Low Register (PADDRL) and the Descriptor Physical
Address High Register (PADDRH).

page 18-44
page 18-44

Initialize the Opcode/Pause Duration Register (OPPAUSE) (needed only for FDX flow control) page 18-45

Initialize the Receive Control Register (RCTL). page 18-40

Initialize the MIIGSK Configuration Register (MIIGSKCFG) (needed only for RMII). page 18-51

Initialize the Transmit Control Register (TCTL). page 18-42

Initialize the MII Speed Register (MIISPEED) (optional) page 18-38

Clear MIBRAM (at locations 200–2FC).

Initialize the FIFO Receive Start Register (FRST) (optional) page 18-49

Initialize the Receive Buffer Size Register (RBSZ). page 18-50

Initialize the Receive Descriptor Ring Start Register (DMARDST). page 18-49

Initialize the Transmit Descriptor Ring Start Register (DMATDST). page 18-50

Initialize the DMA Control Register (DMACTL). page 18-51

Initialize (Empty) the Transmit Descriptor Ring.

Initialize the MIIGSK Enable Register (MIIGSKEN). page 18-52
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-7

Fast Ethernet Controller (FEC)
descriptor polling is desired, configure the RDCP and TDCP fields of the Descriptor Ring Poll
Control Register before writing to the RDA and TDA registers. Keep in mind that the use of these
bits can result in a significant increase in system loading.

18.4.2 Operating Modes

Table 18-6 lists the FEC operating modes.

18.4.3 Buffer Descriptors

The data for FEC frames must reside in memory external to the FEC. The data for a frame is
placed into one or more buffers, each with an associated BD that contains a starting address
(pointer) and the data length for the buffer. The most significant bit of the BD is an ownership bit
that defines the current state of the buffer. Other bits in the BD communicate status/control
information between the Ethernet MAC and the driver (see the definition of RxBD on

Table 18-6. FEC Operating Modes

Mode Description

Full Duplex and Half Duplex Full duplex operation is selected when the TCTL[FDEN] bit is set. Full
duplex mode is for use on point-to-point links between switches or end
node to switch. Half duplex mode is used in connections between an end
node and a repeater or between repeaters.

Full duplex flow control can be enabled in full duplex mode. Refer to the
TCTL[RFCP, TFCP] bits and the RCTL[FCE] bit, and Section 18.4.7, Full
Duplex Flow Control, on page 18-17.

10 Mbps and 100 Mbps MII mode The MAC-PHY interface operates in Media-Independent Interface (MII)
mode when the RCTL[MIIM] bit is set. The speed of operation is
determined by the TXCLK and RXCLK signals driven by the transceiver.
The transceiver either auto-negotiates the speed or software controls the
speed via the serial management interface to the transceiver (MDC/MDIO
pins). Refer to the MIIDATA and MIISPEED register descriptions as well as
the section on the MII for a description of how to read and write registers in
the transceiver via this interface.

10 Mbps and 100 Mbps RMII mode The MAC-PHY interface operates in Reduced Media-Independent Interface
(RMII) mode when the MIICFG[RMII] bit is set. The MIICFG[FCTL] bit
determines the speed of operation. The reference clock for RMII is always
50 MHz, but this clock can be divided by 10 within the MIIGSK to support
10 Mbps operation. The PHY must be configured accordingly.

10 Mbps 7-Wire Interface mode The MAC-PHY interface operates in 7-Wire Interface mode when the
RCTL[MIIM] bit is cleared. The speed of operation is determined by the
TXCLK and RXCLK signals driven by the transceiver. The FEC supports
only 10 Mbps 7-Wire Interface mode.

Address recognition The address recognition options are set in the Receive Control Register
(RCTL), which is described on page 18-40. See also
Section 18.4.6, Ethernet Address Recognition, on page 18-12.

Internal Loopback mode Internal Loopback mode is selected via the RCTL[LOOPB] bit (see
page 18-40).
MSC711x Reference Manual, Rev. 0

18-8 Freescale Semiconductor

FEC Operation
page 18-23). To permit maximum user flexibility, the BDs reside in external memory and are
read by the FEC DMA engine.

Software produces buffers by allocating/initializing memory and initializing BDs. Setting the
R/E (ownership) bit in the most significant word of the transmit (receive) BD produces the
buffer. Writing to either the TDA and RDA (transmit/receive active) registers, software notifies
the FEC that a buffer has been placed into external memory for the transmit or receive data
traffic, respectively. The hardware reads the BDs and consumes the buffers after they have been
produced. After the DMA data transfer completes and the DMA engine writes the BD status bits,
hardware clears the R(E) bit to signal that the contents of the buffer have been emptied. Software
either polls the BDs to detect when the buffers are emptied or relies on the buffer/frame
interrupts. The driver can then process these buffers and return them to the free list.

The ECTL[EEN] bit acts as a reset to the BD/DMA logic. When ECTL[EEN] is cleared, the
DMA engine BD pointers are reset to point to the starting transmit and receive BDs. During reset,
hardware does not initialize the BDs. Software must initialize at least one transmit and receive
BD (write 0x00000000 to the most significant word of the BD) before the ECTL[EEN] bit is set.

The BDs operate as two separate rings. RDESST defines the starting address for receive BDs and
TDESST defines the starting address for transmit BDs. The last BD in each ring is defined by the
Wrap (W) bit. When set, W indicates that the next descriptor in the ring is at the location to which
the RDESST and TDESST registers point for the receive and transmit rings, respectively. BD
rings must start on a 32-bit boundary.

18.4.3.1 Driver/DMA Operation with Transmit BDs

Typically, a transmit frame is divided between multiple buffers. For example, an application
could place an application payload in one buffer, the TCP header in a second buffer, the IP
header in a third buffer, and the Ethernet/802.3 header in a fourth buffer. The Ethernet MAC does
not prepend the Ethernet header, which contains the destination address, source address,
length/type field(s), and so on. The driver must provide this header in one of the transmit buffers.
The Ethernet MAC can append the Ethernet CRC to the frame. The TC bit in the transmit BD,
which is set by the driver, determines whether the CRC is appended by the MAC or by the driver.

In an end station application, the value of the TC bit is always 1. For a switch/router application,
the TC bit can have a value of 1 or 0, depending on the type of port on which the frame arrives
and whether the frame contents are modified. The Append Bad CRC (ABC) bit has a value of 0
unless an error, such as a data parity error during a DMA transfer, results in data corruption.

The driver should set up Tx BDs to present a complete transmit frame to the hardware at once. If
a transmit frame consists of three buffers, the BDs should be initialized with pointer, length and
control (W, L, TC, ABC) and then the ownership (R) bits should be set = 1 in reverse order (third,
second, first BD) to ensure that the complete frame is ready in memory before the DMA transfer
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-9

Fast Ethernet Controller (FEC)
begins. If the TxBDs are set up in order, the DMA controller can transfer the first BD before the
second is made available, potentially causing a transmit FIFO underrun.

The driver notifies the FEC DMA controller that new transmit frame(s) are available by writing
to the TDESST register. The FEC descriptor controller notifies the DMA controller to read the
next transmit BD in the ring. The transmit BDs are read and interpreted in order, and the DMA
controller transfers the associated buffers until a transmit BD is encountered with the R bit = 0.
The FEC polls this BD one more time. If the R bit = 0 the second time, the descriptor controller
stops the transmit descriptor read process until software sets up another transmit frame and writes
to TDESST.

After each buffer is transmitted, the DMA controller writes back to the BD to clear the R
(ownership) bit, indicating that hardware is finished with the buffer. A second driver task (Tx BD
software consumer) processes the transmit descriptor ring and returns buffers consumed by the
hardware to the free list. Setting up a transmit BD ring with a single BD is not advised. A BD ring
as such can result in multiple transmissions of the same frame before BD closure because the
DMA controller processes it in a pipeline. For frame transmission via a single BD, a ring of at
least two BDs should be set up.

18.4.3.2 Driver/DMA Operation with Receive BDs

The length of the receive frame is unavailable to the driver ahead of time. Therefore, the driver
must set a variable to define the length of all receive buffers. This variable is written to the RBSZ
register.

The driver sets up some number of empty buffers for the Ethernet by initializing the address field
and the E and W bits of the associated receive BDs. The DMA controller consumes these buffers
by filling them with data as frames are received. It clears the E bit and writes to the L bit (1
indicates last buffer in frame), the frame status bits (if L = 1), and the length field.

If a receive frame spans multiple receive buffers, the L bit is set only for the last buffer in the
frame. For the other buffers, the DMA controller writes the length field in the receive BD with
the default receive buffer length value when the E bit is cleared. For end-of-frame buffers the
receive BD is written with L = 1. Additionally, the status bits (M, BC, MC, LG, NO, SH, CR,
OV, TR) are updated with frame status. Some of the status bits are error indicators that are set to
indicate the receive frame should be discarded and not given to higher layers.

The length field for the end-of-frame buffer is written with the length of the entire frame, not just
the length of the last buffer. For simplicity the driver may assign a default receive buffer length
large enough to contain an entire frame, keeping in mind that a malfunction could result in giant
frames. The FEC truncates frames of 2k (2048) bytes or larger at 2047 bytes, so software is
guaranteed never to receive a frame larger than 2047 bytes.

The FEC polls the receive descriptor ring after the driver sets up receive BDs and writes to the
Receive Descriptor Active Register (RDA). As frames are received, the FEC fills receive buffers
MSC711x Reference Manual, Rev. 0

18-10 Freescale Semiconductor

FEC Operation
and updates the associated BDs, then reads the next BD in the ring. If the FEC reads a receive BD
and finds the E bit = 0, it polls this BD once more. If the BD = 0 a second time, the FEC stops
reading receive BDs until the driver writes to RDA.

18.4.4 FEC Frame Transmission

The Ethernet transmitter works with almost no software intervention. When ECTL[EEN] is set
and data is read into the transmit FIFO, the Ethernet MAC can transmit onto the network.

The Ethernet controller transmits bytes least significant bit first. When the transmit FIFO fills to
the watermark defined in the Transmit FIFO Watermark Register (TWMRK), the MAC transmit
logic asserts TXEN and starts transmitting the preamble sequence, the start frame delimiter, and
the frame information from the FIFO. However, the controller defers the transmission if the
network is busy (that is, carrier sense is asserted). Before transmitting, the controller waits for
carrier sense to become inactive for 60 bit times. Then the transmission begins after a further wait
of 36 bit times, for a total of 96 bit times after carrier sense became inactive.

In Half Duplex mode, if a collision occurs during frame transmission, the Ethernet controller
follows the specified back-off procedures and attempts to retransmit the frame until the retry limit
threshold is reached. The transmit FIFO stores at least the first 64 bytes of the transmit frame so
that they do not have to be retrieved from system memory in case of a collision. This practice
improves bus usage and latency.

When all frame data is transmitted, the FCS (32-bit CRC) bytes are appended if the TC bit is set
in the transmit frame control word. If the ABC bit is set in the transmit frame control word, a bad
CRC is appended to the frame data, regardless of the TC bit value. After the CRC is transmitted,
the Ethernet controller writes the frame status information to the MIB. Short frames are
automatically padded if the TC bit in the transmit BD for the end of frame buffer = 1.

Both buffer and frame interrupts can be generated as determined by the settings in the IMASK
register. Transmit error interrupts are HBERR, BABT, LATE_COL, COL_RETRY_LIM, and
XFIFO_UN. If the transmit frame length exceeds RCTL[MAXFL] bytes, the BABT interrupt is
asserted. However, the entire frame is transmitted (no truncation).

To pause transmission, set the Graceful Transmit Stop (GTS) bit in the TCTL register. When the
GTS is set, the FEC transmitter stops immediately if transmission is not in progress; otherwise, it
continues transmission until the current frame either finishes or terminates with a collision. After
the transmitter stops, the GRA interrupt is asserted. If GTS is cleared, the FEC resumes
transmission with the next frame.

18.4.5 FEC Frame Reception

The FEC receiver works with almost no intervention from the host and can perform address
recognition, CRC checking, short frame checking and maximum frame length checking.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-11

Fast Ethernet Controller (FEC)
When the driver sets the ECTL[EEN] bit to enable the FEC receiver, it immediately starts
processing receive frames. When RXDV asserts, the receiver first checks for a valid PA/SFD
header. If the PA/SFD is valid, it is stripped and the receiver processes the frame. If a PA/SFD is
not available, the frame is ignored.

In MII mode, the receiver checks for at least one byte matching the SFD. Zero or more PA bytes
may occur, but if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored. After
the first 6 bytes of the frame are received, the FEC performs address recognition on the frame.
When a collision window (64 bytes) of data is received and if address recognition has not
rejected the frame, the receive FIFO is signalled that the frame is accepted and can be passed on
to the DMA controller. If the frame is a fragment due to collision or is rejected by address
recognition, the receive FIFO is notified to reject the frame. Thus, no collision fragments are
presented to the user, except late collisions, which indicate serious LAN problems.

Receive buffer (RXB) and frame (RFINT) interrupts can be generated if enabled by the IMASK
register. Receive error interrupts are BABR. Receive frames are not truncated if they exceed the
RCTL[MAXFL] byte length; however, the BABR interrupt occurs and the LG bit in the RxBD is
set.

When the receive frame is complete, the FEC sets the L-bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E-bit. The Ethernet controller next generates a maskable
interrupt (IEVENT[RFINT], maskable by IMASK[RFIEN]), indicating that a frame has been
received and is in memory. The Ethernet controller then waits for a new frame.

18.4.6 Ethernet Address Recognition

The FEC filters the received frames based on destination address (DA) type: individual (unicast),
group (multicast), or broadcast (all-ones group address). The difference between an individual
address and a group address is determined by the I/G bit in the destination address field. A
flowchart for address recognition on receive frames is presented in Figure 18-1 and Figure 18-2.

Address recognition is accomplished through the use of the receive block and the code running
on the SC1400 core. The flowchart in Figure 18-1 illustrates the address recognition decisions
made by the receive block, and Figure 18-2 illustrates the decisions made by the SC1400 core.

If the DA is a broadcast address and broadcast reject, RCTL[BFR], is cleared, then the frame is
accepted unconditionally. If the DA is a group (multicast) address and flow control is disabled, a
group hash table look-up uses the 64-entry hash table programmed in the Descriptor Group
Address 1 and 2 Registers (GADDR1 and GADDR2). If a hash match occurs, the receiver
accepts the frame.

If the DA is the individual (unicast) address, an individual exact match comparison is performed
between the DA and 48-bit physical address that the user programs in the Physical Address Low
(PADDRL) and Physical Address High (PADDRH) registers. If there is not an exact match, an
MSC711x Reference Manual, Rev. 0

18-12 Freescale Semiconductor

FEC Operation
individual hash table look-up is performed using the 64-entry hash table programmed in registers,
IADDR1 and IADDR2. If there is a hash table match, the receiver accepts or rejects the frame
based on PAUSE frame detection. Detected PAUSE frames are rejected. When a frame is
rejected, it is flushed from the FIFO. If neither a hash match nor an exact match occurs, then the
Promiscuous mode setting determines frame acceptance or rejection. If Promiscuous mode is
enabled (RCTL[PROM] = 1), the frame is accepted and the RxBD[MISS] bit is set. Otherwise,
the frame is rejected and the MISS bit is cleared.

Similarly, if the DA is a broadcast address, broadcast reject (RCTL[BFR) is set, and Promiscuous
mode is enabled, the frame is accepted and the RxBD[MISS] bit is set. Otherwise, the frame is
rejected and the MISS bit is cleared.

Figure 18-1. Ethernet Address Recognition, Decisions on the Receive Side

Accept/Reject

Broadcast Addr
?

?

PROM = 1
?

Receive
Address

True

NOTES:

BFR is a field in the RCTL register (Broadcast Frame Reject)

FalseTrue

False

BFR = 1
?

Frame

Hash Match

?
Exact Match

?
Pause Frame

False

False

False

False

True

True

True

True

Receive Frame Receive Frame

Receive Frame Receive Frame

Reject Frame

Reject Frame

PROM is a field in the RCTL register (Promiscuous Mode).

Pause frame queries whether a valid PAUSE frame is received.

Set RxBD[BC] Bit Set RxBD[MC] Bit if Multi-cast

Set RxBD[M] (Miss) Bit
Set RxBD[MC] Bit if Multi-cast
Set RxBD[BC] Bit if Broadcast

Flush from FIFO

Flush from FIFO

Recognition
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-13

Fast Ethernet Controller (FEC)
The hash table algorithm used in group and individual hash filtering operates as follows. The
48-bit destination address is mapped into one of 64 bits, which are represented by 64 bits stored
in GADDR1,2 (group address hash match) or IADDR1,2 (individual address hash match). This
mapping is performed by passing the 48-bit address through the internal 32-bit CRC generator
and selecting the six most significant bits of the CRC-encoded result to generate a number
between 0 and 63. The MSB of the CRC result selects GADDR1 (MSB = 1) or GADDR2 (MSB
= 0). The least significant 5 bits of the hash result select the bit within the selected register. If the
CRC generator selects a bit that is set in the hash table, the frame is accepted; otherwise, it is
rejected.

Figure 18-2. Ethernet Address Recognition, Decisions on the Microcode Side

For example, if eight group addresses are stored in the hash table and random group addresses are
received, the hash table prevents roughly 56/64 (or 87.5 percent) of the group address frames
from reaching memory. The processor further filters those that do reach memory to determine

Receive Address

I/G Address
?

Exact Match
?

Hash Search
Group Table

Match
?

Hash Search
Individual Table

False

Match
?

False False

True
True

True

Notes:

FCE is a field in the RCTL Register (flow control enable).
I/G is the Individual/Group bit in destination address (least significant bit in first byte received in the MAC frame).

IndividualGroup

Exact Match Detected
No Hash Match

True

No Exact Match
Hash Match Detected

False

True

False

?
Pause Address

FCE
?

No Exact Match
Hash Match Detected

No Exact Match
No Hash Match

Recognition

No Exact Match
No Hash Match

Exact Match Detected
No Hash Match
MSC711x Reference Manual, Rev. 0

18-14 Freescale Semiconductor

FEC Operation
whether they truly contain one of the eight desired addresses. The effectiveness of the hash table
declines as the number of addresses increases.

You must initialize the hash table registers. You can compute the hash for a particular address in
software and use it to program the FEC hash table registers. The CRC32 polynomial to use in
computing the hash is as follows:

Table 18-7 shows example destination addresses and corresponding hash values.

Table 18-7. Destination Address to 6-Bit Hash

48-Bit Destination Address
6-Bit Hash

(Hexadecimal)
Hash Decimal Value

65:ff:ff:ff:ff:ff 0x0 0

55:ff:ff:ff:ff:ff 0x1 1

15:ff:ff:ff:ff:ff 0x2 2

35:ff:ff:ff:ff:ff 0x3 3

b5:ff:ff:ff:ff:ff 0x4 4

95:ff:ff:ff:ff:ff 0x5 5

d5:ff:ff:ff:ff:ff 0x6 6

f5:ff:ff:ff:ff:ff 0x7 7

db:ff:ff:ff:ff:ff 0x8 8

fb:ff:ff:ff:ff:ff 0x9 9

bb:ff:ff:ff:ff:ff 0xA 10

8b:ff:ff:ff:ff:ff 0xB 11

0b:ff:ff:ff:ff:ff 0xC 12

3b:ff:ff:ff:ff:ff 0xD 13

7b:ff:ff:ff:ff:ff 0xE 14

5b:ff:ff:ff:ff:ff 0xF 15

27:ff:ff:ff:ff:ff 0x10 16

07:ff:ff:ff:ff:ff 0x11 17

57:ff:ff:ff:ff:ff 0x12 18

77:ff:ff:ff:ff:ff 0x13 19

f7:ff:ff:ff:ff:ff 0x14 20

c7:ff:ff:ff:ff:ff 0x15 21

97:ff:ff:ff:ff:ff 0x16 22

a7:ff:ff:ff:ff:ff 0x17 23

99:ff:ff:ff:ff:ff 0x18 24

X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X 1+ + + + + + + + + + + + + +
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-15

Fast Ethernet Controller (FEC)
b9:ff:ff:ff:ff:ff 0x19 25

f9:ff:ff:ff:ff:ff 0x1A 26

c9:ff:ff:ff:ff:ff 0x1B 27

59:ff:ff:ff:ff:ff 0x1C 28

79:ff:ff:ff:ff:ff 0x1D 29

29:ff:ff:ff:ff:ff 0x1E 30

19:ff:ff:ff:ff:ff 0x1F 31

d1:ff:ff:ff:ff:ff 0x20 32

f1:ff:ff:ff:ff:ff 0x21 33

b1:ff:ff:ff:ff:ff 0x22 34

91:ff:ff:ff:ff:ff 0x23 35

11:ff:ff:ff:ff:ff 0x24 36

31:ff:ff:ff:ff:ff 0x25 37

71:ff:ff:ff:ff:ff 0x26 38

51:ff:ff:ff:ff:ff 0x27 39

7f:ff:ff:ff:ff:ff 0x28 40

4f:ff:ff:ff:ff:ff 0x29 41

1f:ff:ff:ff:ff:ff 0x2A 42

3f:ff:ff:ff:ff:ff 0x2B 43

bf:ff:ff:ff:ff:ff 0x2C 44

9f:ff:ff:ff:ff:ff 0x2D 45

df:ff:ff:ff:ff:ff 0x2E 46

ef:ff:ff:ff:ff:ff 0x2F 47

93:ff:ff:ff:ff:ff 0x30 48

b3:ff:ff:ff:ff:ff 0x31 49

f3:ff:ff:ff:ff:ff 0x32 50

d3:ff:ff:ff:ff:ff 0x33 51

53:ff:ff:ff:ff:ff 0x34 52

73:ff:ff:ff:ff:ff 0x35 53

23:ff:ff:ff:ff:ff 0x36 54

13:ff:ff:ff:ff:ff 0x37 55

3d:ff:ff:ff:ff:ff 0x38 56

0d:ff:ff:ff:ff:ff 0x39 57

5d:ff:ff:ff:ff:ff 0x3A 58

7d:ff:ff:ff:ff:ff 0x3B 59

fd:ff:ff:ff:ff:ff 0x3C 60

Table 18-7. Destination Address to 6-Bit Hash (Continued)

48-Bit Destination Address
6-Bit Hash

(Hexadecimal)
Hash Decimal Value
MSC711x Reference Manual, Rev. 0

18-16 Freescale Semiconductor

FEC Operation
18.4.7 Full Duplex Flow Control

Full-duplex flow control allows you to transmit pause frames and to detect received pause
frames. When a pause frame is detected, MAC data frame transmission stops for a specified
pause duration. To enable pause frame detection, the FEC must operate in Full-Duplex mode
(TCTL[FDEN] = 1) with flow control enabled (RCTL[FCE] = 1). The FEC detects a pause frame
when the fields of the incoming frame match the pause frame specifications, as shown in
Table 18-8. In addition, the receive status associated with the frame should indicate that the
frame is valid.

When a pause frame is detected, the FEC asserts a graceful transmit stop internally. When
transmission pauses, the Graceful Stop Complete interrupt is asserted and the pause timer begins
to increment. The receive flow control pause (TCTL[RFCP]) status bit is set while the transmitter
pauses due to a pause frame. To transmit a pause frame, the FEC must operate in Full-Duplex
mode and flow control pause must be asserted (TCTL[TFCP] = 1). The transmitter asserts
graceful transmit stop internally. After GRA assertion, the pause frame is transmitted. When
pause frame transmission completes, flow control pause (TCTL[TFCP]) and the graceful
transmit stop are deasserted internally.

During pause frame transmission, the transmit hardware places data into the transmit data stream
from the registers shown Table 18-9. You must specify the desired pause duration in the
OPPAUSE register (see page 18-45).

dd:ff:ff:ff:ff:ff 0x3D 61

9d:ff:ff:ff:ff:ff 0x3E 62

bd:ff:ff:ff:ff:ff 0x3F 63

Table 18-8. Pause Frame Field Specification

48-Bit Destination Address 0x0180_c200_0001 or Physical Address

48-bit source address Any

16-bit type 0x8808

16-bit opcode 0x0001

16-bit PAUSE duration 0x0000–0xFFFF

Table 18-7. Destination Address to 6-Bit Hash (Continued)

48-Bit Destination Address
6-Bit Hash

(Hexadecimal)
Hash Decimal Value
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-17

Fast Ethernet Controller (FEC)
When the transmitter is paused because of receiver pause frame detection, transmit flow control
pause (TCTL[TFCP]) can still be asserted and cause the transmission of a single pause frame. In
this case, the GRA interrupt is not asserted.

18.4.8 Inter-Packet Gap Time

The minimum inter-packet gap time for back-to-back transmission is 96 bit times. After a
transmission or after the back-off algorithm completes, the transmitter waits for carrier sense to
be negated before starting its 96 bit time IPG counter. Frame transmission can begin 96 bit times
after carrier sense is negated if it stays negated for at least 60 bit times. If carrier sense asserts
during the last 36 bit times, it is ignored and a collision occurs. The receiver receives
back-to-back frames with a minimum spacing of at least 28 bit times. If an inter-packet gap
between receive frames is less than 28 bit times, the receiver may discard the next frame.

18.4.9 Collision Handling

If a collision occurs during frame transmission, the Ethernet controller continues the transmission
for at least 32 bit times, transmitting a JAM pattern consisting of 32 ones. If the collision occurs
during the preamble sequence, the JAM pattern is sent after the preamble sequence ends. If a
collision occurs within 64 byte times, the retry process is initiated. The transmitter waits a
random number of slot times. A slot time is 512 bit times. If a collision occurs after 64 byte times,
no retransmission is performed and the end of frame buffer is closed with an LC error indication.

18.4.10 Internal and External Loopback

In internal and external Loopback mode, both of the FIFOs are used and the FEC operates in full
duplex. Both internal and external loopback are configured using combinations of the
RCTL[LOOPB, DRT] bits and the TCTL[FDEN] bit. For both internal and external loopback, set
FDEN = 1.

For internal loopback, set LOOPB = 1 and DRT = 0. TXEN and TXER do not assert during internal
loopback. During internal loopback, the transmit/receive data rate is higher than normal because
the transmit and receive blocks use the internal system clock instead of the clocks from the
external transceiver. This causes an increase in the required system bus bandwidth for transmit
and receive data transferred via the DMA controller to/from external memory. It may be

Table 18-9. Transmit Pause Frame Registers

Pause Frame Fields FEC Register Register Contents

48-bit source address PADDRL[0–31], PADDRH[0–15] Physical address

16-bit type PADDRH[16–31] 8808

16-bit opcode OPPAUSE[0–15] 0001

16-bit pause duration OPPAUSE[16–31] 0x0000–0xFFFF
MSC711x Reference Manual, Rev. 0

18-18 Freescale Semiconductor

FEC Operation
necessary to pace the frames on the transmit side and/or limit the size of the frames to prevent
transmit FIFO underrun and receive FIFO overflow.

For external loopback set LOOPB = 0, DRT = 0 and configure the external transceiver for
loopback.

18.4.11 Ethernet Transmission Error-Handling

The Ethernet controller reports frame reception and transmission error conditions using the FEC
receive BDs, the IEVENT register, and the MIB counters. Table 18-10 lists the Ethernet
transmission errors.

18.4.12 Ethernet Reception Error Handling

The Ethernet controller reports frame reception and transmission error conditions using the FEC
receive BDs, the IEVENT register, and the MIB counters. Table 18-11 lists the Ethernet
reception errors.

Table 18-10. Ethernet Transmission Errors

Error Description

Transmitter Underrun

If this error occurs, the FEC sends 32 bits that ensure a CRC error
and stops transmitting. All remaining buffers for the frame are flushed
and closed. The FEC continues to the next transmit BD and begins
transmitting the next frame. If the IMASK[TFUEN] bit is set, an
interrupt is enabled.

Carrier Sense Lost During Frame Transmission
When this error occurs and no collision is detected in the frame, the
frame is transmitted normally. No retries are performed as a result of
this error. No interrupt is generated as a result of this error.

Retransmission Attempts Limit Expired

When this error occurs, the FEC terminates transmission. All
remaining buffers for the frame are then flushed and closed. The FEC
then continues to the next transmit BD and begins transmitting the
next frame. If the IMASK[CLREN] bit is set, an interrupt is generated.

Late Collision

When a collision occurs after the slot time (512 bits starting at the
preamble), the FEC terminates transmission. All remaining buffers for
that frame are then flushed and closed. The FEC then continues to
the next transmit BD and begins transmitting the next frame. If the
IMASK[LCEN] bit is set, an interrupt is generated.

Heartbeat

Some transceivers have a self-test feature called heartbeat or signal
quality error (SQE). To signify a good self-test, the transceiver must
indicate a collision to the FEC within 10 cycles (4 microseconds for 10
Mbps operation) after the Ethernet controller transmits a frame. This
collision indication does not imply a real collision error on the network,
but is rather an indication that the transceiver still seems to be
functioning properly. This is called the heartbeat condition.
If the TCTL[HBC] bit is set and the FEC does not detect the heartbeat
condition after a frame transmission, a heartbeat error occurs. The
FEC closes the buffer and generates the IEVENT[HBERR] interrupt if
it is enabled in IMASK[HBEEN].
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-19

Fast Ethernet Controller (FEC)
18.4.13 Reset

An FEC hard reset occurs when the peripheral modules reset asserts as described in Chapter 13,
Reset or when the ECTL[RESET] bit is set. A soft reset occurs when the ECTL[EEN] bit is set.
Hardware automatically clears ECTL[RESET] after the internal soft reset signal is asserted for
eight clock cycles. The ECTL[EEN] bit allows software to reset internal data path control logic
without resetting the internal mode control bits. This bit is cleared following a hard reset, and
software should set it only after the FEC registers are initialized. During operation, this bit can be
cleared if a soft error condition requires the data path to be reset prior to restarting transmission
and reception.

18.4.14 Interrupts

When an interrupt event occurs, a bit is set in the IEVENT register. Bits in the IEVENT register
are set by the initial occurrence of the event and remain set until software clears them. If a bit in
the IEVENT register is set and the corresponding bit is set in the IMASK register, the
corresponding interrupt asserts. Software clears individual interrupts by writing a 1 to the
corresponding bit in the IEVENT register. For information on the different types of interrupts on
MSC711x devices, see IEVENT on page 18-29. Even though two requests may share an
interrupt vector, the requests can be programmed for different interrupt priorities and can be
separately enabled.

Table 18-11. Ethernet Transmission Errors

Error Description

Overrun Error

If the receive block has data for the receive FIFO but the receive
FIFO is full, the FEC sets the OV bit in the receive status word. All
subsequent data in the frame is discarded and subsequent frames
may also be discarded until the DMA controller services the receive
FIFO and space is made available. At this point, the receive
frame/status word is written into the FIFO with the OV bit set. The
driver must discard this frame.

Non-Octet Error (Dribbling Bits)

The Ethernet controller handles up to seven dribbling bits when the
receive frame terminates nonoctet aligned, and it checks the CRC of
the frame on the last octet boundary. If there is a CRC error, the
frame nonoctet aligned (NO) error is reported in the RxBD. If there is
no CRC error, no error is reported.

CRC Error

When a CRC error occurs with no dribble bits, the FEC closes the
buffer and sets the CR bit in the RxBD. CRC checking cannot be
disabled, but the CRC error can be ignored if checking is not
required.

Frame Length Violation
When the receive frame length exceeds RCTL[MAXFL] bytes, the
BABR interrupt is generated and the LG bit in the end of frame RxBD
is set. The frame is not truncated.

Truncation
When the receive frame length exceeds 2047 bytes the frame is
truncated and the TR bit is set in the RxBD.
MSC711x Reference Manual, Rev. 0

18-20 Freescale Semiconductor

Fast Ethernet Controller Programming Model
18.5 Fast Ethernet Controller Programming Model

The FEC programming model includes the management information base (MIB) counters, the
Ethernet receive and transmit BDs, and the FEC registers.

18.5.1 Management Information Base (MIB) Counters

Table 18-12 defines the MIB counters memory map, which defines the locations in the MIB
RAM space where hardware-maintained counters reside. These counters fall into the
0x200–0x3FC address offset range. The counters are divided into two groups, RMON counters
and IEEE counters.

The RMON counters are the Ethernet statistics counters defined in RFC 1757. In addition to the
counters defined in the Ethernet Statistics group, a counter is included to count truncated frames
because the FEC supports only frame lengths up to 2047 bytes. The RMON transmit and receive
counters are independent to ensure accurate network statistics in full duplex mode.

The IEEE counters support the mandatory and recommended counter packages defined in
section 5 of ANSI/IEEE Std. 802.3 (1998 edition). The FEC supports the IEEE Basic Package
objects, which do not require counters in the MIB block. In addition, some of the recommended
package objects supported do not require MIB counters. Counters for transmit and receive full
duplex flow control frames are included as well.

Table 18-12. MIB Counters (Address 0x0200–0x03FF)

Address Mnemonic Description

0200 RMON_T_DROP Count of frames not counted correctly

0204 RMON_T_PACKETS RMON Tx packet count

0208 RMON_T_BC_PKT RMON Tx broadcast packets

020C RMON_T_MC_PKT RMON Tx multicast packets

0210 RMON_T_CRC_ALIGN RMON Tx packets with CRC/align error

0214 RMON_T_UNDERSIZE RMON Tx packets < 64 bytes, good CRC

0218 RMON_T_OVERSIZE RMON Tx packets > MAX_FL bytes, good CRC

021C RMON_T_FRAG RMON Tx packets < 64 bytes, bad CRC

0220 RMON_T_JAB RMON Tx packets > MAX_FL bytes, bad CRC

0224 RMON_T_COL RMON Tx collision count

0228 RMON_T_P64 RMON Tx 64 byte packets

022C RMON_T_P65TO127 RMON Tx 65–127 byte packets

0230 RMON_T_P128TO255 RMON Tx 128–255 byte packets

0234 RMON_T_P256TO511 RMON Tx 256–511 byte packets

0238 RMON_T_P512TO1023 RMON Tx 512–1023 byte packets

023C RMON_T_P1024TO2047 RMON Tx 1024–2047 byte packets
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-21

Fast Ethernet Controller (FEC)
0240 RMON_T_P_GTE2048 RMON Tx packets with > 2048 bytes

0244 RMON_T_OCTETS RMON Tx octets

0248 IEEE_T_DROP Count of frames not counted correctly

024C IEEE_T_FRAME_OK Frames transmitted OK

0250 IEEE_T_1COL Frames transmitted with single collision

0254 IEEE_T_MCOL Frames transmitted with multiple collisions

0258 IEEE_T_DEF Frames transmitted after deferral delay

025c IEEE_T_LCOL Frames transmitted with late collision

0260 IEEE_T_EXCOL Frames transmitted with excessive collisions

0264 IEEE_T_MACERR Frames transmitted with Tx FIFO underrun

0268 IEEE_T_CSERR Frames transmitted with carrier sense error

026C IEEE_T_SQE Frames transmitted with SQE error

0270 T_FDXFC Flow control pause frames transmitted

0274 IEEE_T_OCTETS_OK Octet count for frames transmitted without error

0278–027C Reserved Reserved

0284 RMON_R_PACKETS RMON Rx packet count

0288 RMON_R_BC_PKT RMON Rx broadcast packets

028C RMON_R_MC_PKT RMON Rx multi-cast packets

0290 RMON_R_CRC_ALIGN RMON Rx packets with CRC/align error

0294 RMON_R_UNDERSIZE RMON Rx packets < 64 bytes, good CRC

0298 RMON_R_OVERSIZE RMON Rx packets > MAX_FL bytes, good CRC

029C RMON_R_FRAG RMON Rx packets < 64 bytes, bad CRC

02A0 RMON_R_JAB RMON Rx packets > MAX_FL bytes, bad CRC

02A4 RMON_R_RESVD_0 Reserved

02A8 RMON_R_P64 RMON Rx 64 byte packets

02AC RMON_R_P65TO127 RMON Rx 65–127 byte packets

02B0 RMON_R_P128TO255 RMON Rx 128–255 byte packets

02B4 RMON_R_P256TO511 RMON Rx 256–511 byte packets

02B8 RMON_R_P512TO1023 RMON Rx 512–1023 byte packets

02BC RMON_R_P1024TO2047 RMON Rx 1024–2047 byte packets

02C0 RMON_R_P_GTE2048 RMON Rx packets with > 2048 bytes

02C4 RMON_R_OCTETS RMON Rx octets

02C8 IEEE_R_DROP Count of frames not counted correctly

02CC IEEE_R_FRAME_OK Frames received OK

02D0 IEEE_R_CRC Frames received with CRC Error

02D4 IEEE_R_ALIGN Frames received with alignment error

02D8 IEEE_R_MACERR Receive FIFO overflow count

Table 18-12. MIB Counters (Address 0x0200–0x03FF) (Continued)

Address Mnemonic Description
MSC711x Reference Manual, Rev. 0

18-22 Freescale Semiconductor

Fast Ethernet Controller Programming Model
18.5.2 Ethernet Receive and Transmit BDs

The Ethernet receive and transmit BDs are as follows:

� Ethernet Receive Buffer Descriptor (RxBD), page 18-23.

� Ethernet Transmit Buffer Descriptor (TxBD), page 18-26.

RxBD reports information on the received data for each buffer. In the RxBD, you initialize the E
and W bits in the first word and the pointer in second word. When the DMA controller transfers
the buffer contents, the Ethernet controller modifies the E, L, M, BC, MC, LG, NO, CR, OV, and
TR bits and writes the length of the used portion of the buffer into the first word. The Ethernet
controller modifies the M, BC, MC, LG, NO, CR, OV, and TR bits in the first word of the BD are
only when the L bit is set. The first word of the RxBD contains control and status bits. Its format
is detailed in Table 18-13.

02DC R_FDXFC Flow control pause frames received

02E0 IEEE_R_OCTETS_OK Octet count for frames received without error

02E4–03FC Reserved Reserved

RxBD Fast Ethernet Receive Buffer Descriptor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0x0 E RO1 W RO2 L — — M BC MC LG NO — CR OV TR

Offset + 0x2 Data Length (DL)

Offset + 0x4 Rx Data Buffer Pointer, A[31–16]

Offset + 0x6 Rx Data Buffer Pointer, A[15–0]

Table 18-12. MIB Counters (Address 0x0200–0x03FF) (Continued)

Address Mnemonic Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-23

Fast Ethernet Controller (FEC)
Table 18-13. RxBD Bit Descriptions

Offset Name Description Settings

0x0 E
15

Empty
Indicates whether the buffer associated with this RxBD is
empty. The SC1400 core can read any fields of this
RxBD. When E = 1, the SC1400 core should not write
any fields of this RxBD. When this bit is cleared, the
status and length fields are updated as required. Any
time the software driver sets an E bit in one or more
receive descriptors, the driver should follow that with a
write to RDA.

0 The buffer associated with this RxBD is
full or reception terminated due to an
error.

1 The associated buffer is empty, or
reception is in progress.

RO1
14

Receive Software Ownership
Reserved for use by software. Hardware does not use or
modify this bit.

W
13

Wrap (final BD in RxBD ring)
Indicates that the BD is the final one in the RxBD ring
and the next BD is at the location defined by RDESST.
The number of RxBDs in this table is programmable and
determined only by the W bit. The RxBD ring must
contain more than one BD.

0 The next BD is in the consecutive
location.

1 The next BD is at the location defined
in RDESST (see page 18-49).
MSC711x Reference Manual, Rev. 0

18-24 Freescale Semiconductor

Fast Ethernet Controller Programming Model
0x0
cont.

RO2
12

Receive Software Ownership
Reserved for use by software. Hardware does not use or
modify this bit.

L
11

Last in Frame
Set by the Ethernet controller when this buffer is the last
in a frame.

0 Not the last buffer in a frame.

1 Last buffer in a frame.

—
10–9

Reserved. Write to zero for future compatibility.

M
8

Miss
Set by the Ethernet controller for frames that are
accepted in Promiscuous mode but are flagged as a
miss by the internal address recognition. Thus, in
Promiscuous mode, use the miss bit to determine quickly
whether the frame is destined for this station. Valid only if
RxBD[L] and RCTL[PROM] bits are set.

0 The frame is received because the
address is recognized.

1 The frame is received because of
Promiscuous mode (address is not
recognized).

BC
7

Broadcast Address
Set is the destination address is broadcast
(FF-FF-FF-FF-FF-FF). Valid only for the last buffer in a
frame (RxBD[L] = 1).

MC
6

Multicast Address
The received frame address is a multicast address other
than a broadcast address. Valid only for the last buffer in
a frame (RxBD[L] = 1).

LG
5

Rx Frame Length Violation
A frame length greater than the RCTL[MAXFL]
(maximum frame length) defined for this FCC is
recognized. The FEC sets this bit only if the L-bit is set.
The receive data is not altered in any way unless the
length exceeds 2047 bytes.

NO
4

Rx Nonoctet Aligned Frame
A frame containing a number of bits not divisible by eight
is received and the CRC check at the preceding byte
boundary generates an error. This bit is valid only if the
L-bit is set. If this bit is set, the CR bit is not set.

—
3

Reserved. Write to zero for future compatibility.

CR
2

Rx CRC Error
This frame contains a CRC error and is an integral
number of octets long. This bit is valid only if the L-bit is
set. This bit is written by the FEC.

OV
1

Overrun
A receiver overrun occurred during frame reception. If
this bit is set, the other status bits, M, LG, NO, SH, CR,
and CL lose their normal meaning and have a value of
zero. This bit is valid only if the L-bit is set.

TR
0

Truncated Frame
Set if the receive frame is truncated (frame length > 2047
bytes). If the TR bit is set, the frame should be discarded
and the other error bits should be ignored because they
may be incorrect.

Table 18-13. RxBD Bit Descriptions (Continued)

Offset Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-25

Fast Ethernet Controller (FEC)
Data is arranged in buffers referenced by the TxBDs and presented to the FEC for transmission.
The Ethernet controller confirms transmission by clearing an ownership bit (R bit) when DMA
transfer of the buffer is complete. In the TxBD, you initialize the R, W, L, and TC bits and the
length (in bytes) in the first word and the buffer pointer in the second word. The FEC clears the R
bit = 0 in the first word of the BD when the DMA controller has transferred the buffer contents.
Status bits for the buffer/frame are not included in the transmit BDs. Transmit frame status is
indicated via individual interrupt bits (error conditions) and in statistic counters in the MIB.

When the software driver has set up the buffers for a frame, it should set up the corresponding
BDs. The last step in the set-up is to set the R bit in the first BD for the frame. The driver should
follow this step with a write to TDA to trigger the FEC to poll the next BD in the ring.

TxBD Fast Ethernet Transmit Buffer Descriptor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Offset + 0x0 R TO1 W TO2 L TC ABC

Offset + 0x2 Data Length (DL)

Offset + 0x4 Rx Data Buffer Pointer, A[31–16]

Offset + 0x6 Rx Data Buffer Pointer, A[15–0]

Table 18-14. TxBD Bit Descriptions

Offset Name Description Settings

0x0 R
15

Ready
Both the FEC and the user write to this bit. When this bit
is cleared, you are free to manipulate this BD or its
associated data buffer. The FEC clears this bit after the
buffer has been transmitted or after an error condition is
encountered. You must not write to this BD after this bit
is set.

0 The data buffer associated with this BD
is not ready for transmission.

1 The data buffer, prepared by the user
for transmission, has not been
transmitted or is being transmitted.

TO1
14

Transmit Software Ownership Bit
Reserved for use by software. Hardware does not use or
modify this bit.

W
13

Wrap
This bit is written by the user and indicates the location
for the next BD in the ring. The TxBD ring must contain
more than one BD.

0 The next BD is in the consecutive
location.

1 The next BD is at the location defined in
TDESST (see page 18-50).

TO2
12

Transmit Software Ownership Bit
Reserved for use by software. Hardware does not use or
modify this bit.

L
11

Last in Frame
This bit is written by the user and indicates that the buffer
is the last in the transmit frame.

0 The buffer is not the last in the transmit
frame.

1 The buffer is the last in the transmit
frame.
MSC711x Reference Manual, Rev. 0

18-26 Freescale Semiconductor

Fast Ethernet Controller Programming Model
18.5.3 FEC Registers

The FEC is programmed by a combination of control/status registers and BDs. The control/status
registers are used for mode control, interrupts, and extraction of status information. The
descriptors pass data buffers and related buffer or frame information between the hardware and
software. All accesses (via IPBus) to and from the registers must be via 32-bit accesses, with the
exception of the IEVENT and IMASK registers, which also support 16-bit accesses. The FEC
registers are listed as follows, along with the number of the page where the discussion of each
register begins:

� FEC Identification Register (FECID), page 18-28.

� Interrupt Event Register (IEVENT), page 18-29.

� Interrupt Enable Register (IMASK), page 18-31.

� Descriptor Ring Poll Control Register (DRPC), page 18-33.

� Receive Descriptor Active Register (RDA), page 18-34.

� Transmit Descriptor Active Register (TDA), page 18-35.

� Ethernet Control Register (ECTL), page 18-35.

� MII Management Frame Register (MIIDATA), page 18-37.

� MII Speed Control Register (MIISPEED), page 18-38.

� MIB Control/Status Register (MIBCTL), page 18-39.

� Receive Control Register (RCTL), page 18-40.

� Receive Hash Register (RHASH), page 18-41.

� Transmit Control Register (TCTL), page 18-42.

� Physical Address Low Register (PADDRL), page 18-44.

� Physical Address High Register (PADDRH), page 18-44.

� Opcode/Pause Duration Register (OPPAUSE), page 18-45
� Descriptor Individual Address 1 (IADDR1), page 18-45.

� Descriptor Individual Address 2 (IADDR2), page 18-46.

0x0 TC
10

Transmit CRC
This bit is written by the user and allows the CRC
sequence to be appended to the transmit frame. Valid
only if L = 1.

0 End transmission immediately after the
last data byte.

1 Transmit the CRC sequence after the
last data byte.

ABC
9

Append Bad CRC
This bit is written by the user and enables a bad CRC
sequence to be appended to the transmit frame.

0 No effect.

1 Transmit the CRC sequence inverted
after the last data byte, regardless of
the TC value.

—
8–0

Reserved. Write to zero for future compatibility.

Table 18-14. TxBD Bit Descriptions (Continued)

Offset Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-27

Fast Ethernet Controller (FEC)
� Descriptor Group Address 1 (GADDR1), page 18-46.

� Descriptor Group Address 2 (GADDR2), page 18-47.

� FIFO ID Register (FIFOID), page 18-47.

� FIFO Transmit Watermark Register (TWMRK), page 18-47.

� FIFO Receive Bound Register (FRBND), page 18-48.

� FIFO Receive Start Register (FRST), page 18-49.

� Receive Descriptor Ring Start Register (RDESST), page 18-49.

� Transmit Descriptor Ring Start Register (TDESST), page 18-50.

� Receive Buffer Size Register (RBSZ), page 18-50.

� DMA Control Register (DMACTL), page 18-51.

� MIIGSK Configuration Register (MIIGSKCFG), page 18-51.

� MIIGSK Enable Register (MIIGSKEN), page 18-52.

FECID is a read-only register that identifies the FEC and its revision.

FECID FEC Identification Register ENET_BASE + 0x000

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FECID

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— DMA FIFO — FECREV

TYPE R

RESET 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 18-15. FECID Bit Descriptions

Name Reset Description Settings

FECID
31–16

0 FEC Identification
Unique value identifying the FEC (10/100 Ethernet
MAC).

—
15–11

0 Reserved. Write to zero for future compatibility.

DMA
10

1 DMA Present
Indicates whether DMA functionality is available in the
FEC.

0 No DMA function.

1 DMA function present.
MSC711x Reference Manual, Rev. 0

18-28 Freescale Semiconductor

Fast Ethernet Controller Programming Model
IEVENT contains bits that cause interrupts to be generated when they are set. When an event
occurs that sets a bit in IEVENT, an interrupt is generated if the corresponding bit in the interrupt
enable register (IMASK) is also set. The bit in IEVENT is cleared if a one is written to that bit
position. A write of zero has no effect. This register is cleared upon hardware reset.

These interrupts can be divided into operational interrupts, transceiver/network error interrupts,
and internal error interrupts. Interrupts that can occur in normal operation are GRA, TFINT,
TXB, RFINT, RXB, and MII. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and CRL. The TFU interrupt results from a
transmit FIFO underrun, and the ROV interrupt results from a receiver overrun. Some error
interrupts are independently counted in the MIB block counters. Software can mask these
interrupts since these errors are visible to network management via the MIB counters.

FIFO
9

1 FIFO Present
Indicates whether FIFO functionality is included in the
FEC.

0 No FIFO.

1 FIFO functionality present.

—
8

0 Reserved. Write to zero for future compatibility.

FECREV
7–0

0 FEC Revision
Value identifies the revision of the FEC.

IEVENT Interrupt Event Register ENET_BASE + 0x004

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HBERR BABR BABT GRA TFINT TXB RFINT RXB MII — LC CRL TFU ROV —

TYPE R/W R R/W R R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-15. FECID Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-29

Fast Ethernet Controller (FEC)
Table 18-16. IEVENT Bit Descriptions

Name Reset Description Settings

HBERR
31

0 Heartbeat Error
If the CTL[HBC] bit is set and the FEC does not detect a
collision within the heartbeat window, a heartbeat error
occurs. The FEC closes the buffer and generates the
HBERR interrupt if it is enabled. The heartbeat condition
is checked only in Half Duplex mode.

0 Heartbeat error disabled.
1 Heartbeat error enabled.

BABR
30

0 Babbling Receive Error
Indicates a frame received with a length in excess of
RCTL[MAXFL], which specifies the maximum frame
length, in bytes.

0 No interrupt.

1 Babbling receive error interrupt.

BABT
29

0 Babbling Transmit Error
Indicates a frame transmitted with a length in excess of
RCTL[MAXFL]. This condition is usually caused when a
frame that is too long is placed into the transmit data
buffer(s). Truncation does not occur.

0 No interrupt.

1 Babbling transmit error interrupt.

GRA
28

0 Graceful Stop Complete
Graceful stop means that the transmitter is put into a
pause state after completion of the frame being
transmitted.This interrupt is asserted for one of three
reasons.

1. A graceful stop initiated by setting the
TCTL[GTS] bit is now complete.

2. A graceful stop initiated by setting the
TCTL[FCP] bit is now complete.

3. A graceful stop initiated by the reception of a
valid full duplex flow control pause frame is now
complete. Refer to Section 18.4.7, Full Duplex
Flow Control, on page 18-17.

0 No interrupt.

1 Graceful stop complete interrupt.

TFINT
27

0 Transmit Frame Interrupt
Indicates that a frame has been transmitted and that the
last corresponding buffer descriptor (BD) has been
updated. This interrupt is generated when the transmit
block generates status for the just completed frame.

0 No interrupt.

1 Transmit frame completed
interrupt.

TXB
26

0 Transmit Buffer Interrupt
Indicates that a transmit BD has been updated. This
interrupt is generated when a DMA transfer of a transmit
buffer is complete.

0 No interrupt.

1 Transmit buffer interrupt.

RFINT
25

0 Receive Frame Interrupt
Indicates that a frame has been received and that the
last corresponding BD has been updated.
This bit is set after the last receive buffer in a frame has
been transferred via DMA.

0 No interrupt.

1 Receive frame interrupt.

RXB
24

0 Receive Buffer Interrupt
Indicates that a receive BD has been updated that was
not the last in the frame. This bit is set upon completion
of a DMA transfer of a receive buffer that is not the last in
the frame.

0 No interrupt.

1 Receive buffer interrupt.
MSC711x Reference Manual, Rev. 0

18-30 Freescale Semiconductor

Fast Ethernet Controller Programming Model
IMASK controls which interrupt events can generate an actual interrupt. This register is cleared
upon a hardware reset. If the corresponding bits in both the IEVENT and IMASK registers are

MII
23

0 MII Interrupt
Indicates that the MII has completed the requested data
transfer. This bit is set if the transceiver register
read/write operation controlled by the MIIDATA and
MIISPEED registers is complete.

0 No interrupt.

1 MII interrupt.

—
22

0 Reserved. Write to zero for future compatibility.

LC
21

0 Late Collision
Indicates a collision beyond the collision window (slot
time) in half duplex mode. The frame is truncated with a
bad CRC. and the remainder of the frame is discarded.
In Full Duplex mode, the collision input is ignored.

0 No interrupt.

1 Late collision interrupt.

CRL
20

0 Collision Retry Limit
Indicates a collision on each of 16 successive attempts
to transmit the frame. The frame is discarded without
being transmitted, and transmission of the next frame
commences. This interrupt can occur only in Half Duplex
mode.

0 No interrupt.

1 Collision retry limit interrupt.

TFU
19

0 Transmit FIFO Underrun
Indicates that the transmit FIFO emptied before the
complete frame was transmitted. A bad CRC is
appended to the frame fragment, and the remainder of
the frame is discarded.

0 No interrupt.

1 Transmit FIFO underrun interrupt.

ROV
18

0 Receiver Overrun
Indicates that the receiver is full and has dropped frame
data during reception. The OV bit in the corresponding
RxBD is set, indicating that the frame should be
discarded.

0 No interrupt.

1 Receiver overrun interrupt.

—
17–0

0 Reserved. Write to zero for future compatibility.

IMASK Interrupt Enable Register ENET_BASE + 0x008

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HBEEN BREN BTEN GRAEN TFIEN TBIEN RFIEN RBIEN MIIEN — LCEN CRLEN TFUEN ROVEN —

TYPE R/W R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TFAC — RFAC —

TYPE R R/W R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-16. IEVENT Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-31

Fast Ethernet Controller (FEC)
set, the interrupt is signalled to the SC1400 core. The interrupt signal remains asserted until a
value of 1 is written to the IEVENT bit (write 1 to clear) or a 0 is written to the IMASK bit.

Additionally, IEVENT contains TFAC and RFAC so that TFINT and RFINT can be
automatically cleared. With these bits, an interrupt can be generated for several frames using the
event port and a timer configured to detect TFINT and/or RFINT rising edges.

Table 18-17. IMASK Bit Descriptions

Name Reset Description Settings

HBEEN
31

0 Heartbeat Error Enable
.

0 Not enabled.

1 Heartbeat error interrupt enabled.

BREN
30

0 Babbling Receive Interrupt Enable
.

0 Not enabled.

1 Babbling receive interrupt enabled.

BTEN
29

0 Babbling Transmitter Interrupt Enable 0 Not enabled.

1 Babbling transmitter interrupt enabled.

GRAEN
28

0 Graceful Stop Interrupt Enable 0 Not enabled.

1 Graceful stop interrupt enabled.

TFIEN
27

0 Transmit Frame Interrupt Enable 0 Not enabled.

1 Transmit frame interrupt enabled.

TBIEN
26

0 Transmit Buffer Interrupt Enable 0 Not enabled.

1 Transmit buffer interrupt enabled.

RFIEN
25

0 Receive Frame Interrupt Enable 0 Not enabled.

1 Receive frame interrupt enabled.

RBIEN
24

0 Receive Buffer Interrupt Enable 0 Not enabled.

1 Receive buffer interrupt enabled.

MIIEN
23

0 MII Interrupt Enable 0 Not enabled.

1 MII interrupt enabled.

—
22

0 Reserved. Write to zero for future compatibility.

LCEN
21

0 Late Collision Enable 0 Not enabled.

1 Late collision interrupt enabled.

CRLEN
20

0 Collision Retry Limit Enable 0 Not enabled.

1 Collision retry limit interrupt enabled.

TFUEN
19

0 Transmit FIFO Underrun Enable 0 Not enabled.

1 Transmit FIFO underrun interrupt
enabled.

ROVEN
18

Receiver Overrun Enable 0 Not enabled.

1 Receiver overrun interrupt enabled.

—
17–12

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

18-32 Freescale Semiconductor

Fast Ethernet Controller Programming Model
DRPC is a programmable control register that enables the FEC to poll the RxBD and TxBD rings
continuously. Therefore, you do not have to update RDA and TDA registers when servicing the
RxBD and TxBD rings. However, both RDA and TDA must be set one time initially. DRPC
prevents the FEC from automatically clearing receive descriptor active (RDA[RDA]) and
transmit descriptor active (TDA[TDA]).This register is cleared not only at reset but also when the
ECTL[EEN] bit is cleared.

TFAC
11

0 Transmit Frame Interrupt Automatic Clear
Enables automatic clearing of the transmit
frame interrupt after one cycle of assertion.
TFAC allows an interrupt to be generated for
several transmit frames using the event port
and a timer configured to detect TFINT rising
edges.

0 No automatic clear of TFINT.

1 Enable automatic clear of TFINT.

—
10

0 Reserved. Write to zero for future compatibility.

RFAC
9

0 Receive Frame Interrupt Automatic Clear
Enables automatic clearing of the receive
frame interrupt after one cycle of assertion.
RFAC allows an interrupt to be generated for
several receive frames using the event port
and a timer configured to detect RFINT rising
edges.

0 No automatic clear of RFINT.

1 Enable automatic clear of RFINT.

—
8–0

0 Reserved. Write to zero for future compatibility.

DRPC Descriptor Ring Poll Control Register ENET_BASE + 0x00C
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RDCP TDCP

TYPE R R/W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-17. IMASK Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-33

Fast Ethernet Controller (FEC)
Table 18-18. DRPC Bit Descriptions

Name Reset Description Settings

—
31–2

0 Reserved. Write to zero for future compatibility.

RDCP
1

0 Receive Descriptor Ring Continuous Poll
Enables the FEC to poll the RxBD ring continuously
after RDA is set one time. RDCP prevents the FEC
from automatically clearing the receive descriptor active
(RDA[RDA]) bit. Set this bit with caution because it
results in increased system loading.

0 Disables RxBD ring continuous
polling.

1 Enables RxBD ring continuous
polling.

TDCP
0

0 Transmit Descriptor Ring Continuous Poll
Enables the FEC to poll the TxBD ring continuously
after TDA is set one time. TDCP prevents the FEC from
automatically clearing the transmit descriptor active
(TDA[TDA]) bit. Set this bit with caution because it
results in increased system loading.

0 Disables TxBD ring continuous
polling.

1 Enables TxBD ring continuous
polling.

RDA Receive Descriptor Active Register ENET_BASE + 0x010

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— RDA —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-19. RDA Bit Descriptions

Name Reset Description Settings

—
31–25

0 Reserved. Write to zero for future compatibility.

RDA
24

0 Receive Descriptor Active

—
23–0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

18-34 Freescale Semiconductor

Fast Ethernet Controller Programming Model
ECTL is a user-programmable register, though some fields can be altered by hardware. The
ECTL register enables/disables the FEC.

TDA Transmit Descriptor Active Register ENET_BASE + 0x014

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— TDA —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-20. TDA Bit Descriptions

Name Reset Description Settings

—
31–25

0 Reserved. Write to zero for future compatibility.

TDA
24

0 Transmit Descriptor Active

—
23–0

0 Reserved. Write to zero for future compatibility.

ECTL Ethernet Control Register ENET_BASE + 0x024

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TAG3 TAG2 TAG1 TAG0 — TMD —

TYPE R/W R R/W R

RESET 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— EEN RESET

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-35

Fast Ethernet Controller (FEC)
Table 18-21. ECTL Bit Descriptions

Name Reset Description Settings

TAG[3–0]
31–28

0b1111 Tags 3–0
Programs and reads the TBus tag bits. This field, which is used
for debug/test only, is composed of two separate 4-bit
registers, tags-in and tags-out. A write from the IPBus to this
field is written to tags-in. During a write cycle to any FEC
register other than ECTL, the tags-in value is driven onto the
TBus data bus tag field. During a read cycle, the TBus tag field
bits are latched and saved in the tags-out register. When the
ECTL register is read from the IPBus interface, the value from
tags-out appears in the TAG[3–0] field.

—
27

0 Reserved. Write to zero for future compatibility.

TMD
26

0 Test Mode

—
25–2

0 Reserved. Write to zero for future compatibility.

EEN
1

0 Ethernet Enable
Enables/disables the FEC. When this bit is set, the Ethernet
can receive and transmit data. When this bit is cleared,
reception immediately stops, and transmission stops after a
bad CRC is appended to any frame being transmitted. The
BD(s) for an aborted transmit frame are not updated following
deassertion of EEN. When EEN is deasserted, the DMA
controller, BD, and FIFO control logic is reset, including BD
and FIFO pointers. When software writes a value of 1 to
ECTL[RESET] or an AHB bus error is detected, the hardware
clears EEN. The procedure for halting the FEC is described in
Section 11.4.4.3, Complete Halt of the Ethernet MAC, on page
11-19.

0 Ethernet disabled.
1 Ethernet enabled.

RESET
0

0 Ethernet Controller Reset
When this bit is set, the equivalent of a hardware reset is
performed but it is local to the FEC. EEN is cleared, and all
other FEC registers take their reset values. Also, any
transmission/reception in progress is abruptly aborted.
Hardware automatically clears this bit during the reset
sequence, which requires approximately eight clock cycles
after RESET is written with a 1.

Note: Before using the RESET bit to reset the FEC, shut
down the FEC as described in Section 11.4.4.3,
Complete Halt of the Ethernet MAC, on page 11-19

0 Normal operation.
1 Reset the FEC.
MSC711x Reference Manual, Rev. 0

18-36 Freescale Semiconductor

Fast Ethernet Controller Programming Model
MIIDATA is a user-programmable register that communicates with the attached MII-compatible
PHY device(s), providing read/write access to their MII registers. A write to MIIDATA causes a
management frame to be sourced unless the MIISPEED register is programmed to 0. If
MIISPEED = 0 and is then written to a non-zero value, an MII frame is generated with the data
previously written to the MIIDATA register. MIIDATA and MIISPEED can therefore be
programmed in either order if MIISPEED is currently zero.

To generate an 802.3-compliant MII management interface write frame (write to a PHY register)
you must write {01 01 PA RA 10 DATA} to MIIDATA. In response, the control logic shifts
out the data in the MIIDATA register after a preamble generated by the control state machine.
The contents of MIIDATA alter as they are serially shifted, and they are unpredictable if you read
them. When the write management frame operation completes, the MII configuration interrupt is
generated, and the contents of MIIDATA now match the original value written.

To generate an MII management interface read frame (read a PHY register) you must write {01
10 PHYAD REGAD 10 XXXX} to MIIDATA (the contents of the DATA field do not matter). In
response, the control logic shifts out the data in MIIDATA after a preamble generated by the
control state machine. The contents of MIIDATA alter as they are serially shifted, and they are
unpredictable if you read them. When the read management frame operation completes, the MII
configuration interrupt is generated. The contents of MIIDATA now match the original value
written, except for the DATA field whose contents are replaced by the value read from the PHY
register. The contents of the TA field can also differ from the original if the PHY delays driving
the MDIO pin by one or more MII management clock (MDC pin) cycles. If MIIDATA is written
during frame generation, the frame contents are altered. Software should use the MIISTATUS
register and/or the MII configuration interrupt to avoid writing to MIIDATA during frame
generation.

MIIDATA MII Management Frame Register ENET_BASE + 0x040

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ST OP PA RA TA

TYPE R/W

RESET Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

TYPE R/W

RESET Undefined
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-37

Fast Ethernet Controller (FEC)
MIISPEED provides control of the MII clock frequency (MDC pin), allows the preamble on the
MII management frame to be dropped, and allows you to observe an internal counter used in
generating the MDC clock signal (intended for manufacturing test).

Table 18-22. MIIDATA Bit Descriptions

Name Description Settings

ST
31–30

Start of Frame Delimiter
These bits must be programmed to 01 for a valid MII
management frame.

OP
29–28

Operation Code
This field must be programmed to 10 (read) or 01(write) to
generate a valid MII management frame. A value of 11 produces
a read frame operation, and a value of 00 produce a write frame
operation, but these frames are not MII-compliant.

10 Read frame.

01 Write frame.

PA
27–23

PHY Address
Specifies one of up to 32 attached PHY devices.

RA
22–18

Register Address
Selects one of up to 32 registers within the specified PHY device.

TA
17–16

Turnaround
Must be programmed to a value of 10 to generate a valid MII
management frame.

DATA
15–0

Management Frame Data
Holds the data to be written to or read from a PHY register.

MIISPEED MII Speed Control Register ENET_BASE + 0x044

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— NPRE MIISPEED —

TYPE R R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-23. MIISPEED Bit Descriptions

Name Reset Description

—
31–8

0 Reserved. Write to zero for future compatibility.

NPRE
7

0 No Preamble
The MII standard allows the preamble to be dropped if the attached PHY device(s) do not require it.
MSC711x Reference Manual, Rev. 0

18-38 Freescale Semiconductor

Fast Ethernet Controller Programming Model
MIBCTL provides the means to control and observe the state of the management information
base (MIB). Software accesses this register to disable the MIB. For example, to clear all MIB
counters in RAM, disable the MIB, clear all the MIB RAM locations by writing a value of
0x00000000 to 0x200–0x2FC, and then enable the MIB.

MIISPEED
6–1

0 MII Speed
Controls the frequency of the MII management interface clock (MDC) relative to the system clock. A
value of 0 in this field turns off the MDC clock and leaves it in a low voltage state. Any non-zero value
results in the MDC frequency of 1/(MIISPEED × 2) of the system clock frequency. MIISPEED must be
programmed with a value to provide an MDC frequency of less than or equal to 2.5 MHz to comply
with the IEEE MII specification. MIISPEED must be set to a non-zero value to source a read or write
management frame. After the management frame completes, the MIISPEED register can optionally
be set to zero to turn off the MDC. The MDC generated has a 50 percent duty cycle, except when
MIISPEED is changed during operation. The change takes effect after either a rising or falling edge of
MDC.

If the system clock is 50 MHz, programming this register to 0x0000000A results in an MDC frequency
of 50 MHz × 1/(10 × 2) = 2.5 MHz, as shown in the following table.

—
6–0

0 Reserved. Write to zero for future compatibility.

MIBCTL MIB Control Register ENET_BASE + 0x064

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MIBD MIBI —

TYPE R/W R

RESET 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-23. MIISPEED Bit Descriptions (Continued)

Name Reset Description

System Clock
Frequency

MIISPEED
Value

MDC Frequency

25 MHz 0x5 2.5 MHz

33 MHz 0x7 2.36 MHz

40 MHz 0x8 2.5 MHz

50 MHz 0xA 2.5 MHz
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-39

Fast Ethernet Controller (FEC)
RCTL controls the operational mode of the receive block and should be written only when
EEN = 0, that is, at initialization.

Table 18-24. MIBCTL Bit Descriptions

Name Reset Description Settings

MIBD
31

1 MIB Disable
If this bit is set, the MIB logic halts and does not update
any MIB counters.

0 Normal operation.

1 Disable the MIB.

MIBI
30

0 MIB Idle

—
29–0

0 Reserved. Write to zero for future compatibility.

RCTL Receive Control Register ENET_BASE + 0x084

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— MAXFL

TYPE R R/W

RESET 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— FCE BFR PROM MIIM DRT LOOP

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 18-25. RCTL Bit Descriptions

Name Reset Description Settings

—
31–27

0 Reserved. Write to zero for future compatibility.

MAXFL
26–16

0b101_1110_
1110
(0x5EE)

Maximum Frame Length
User-defined maximum frame length, where
frame length is measured starting at DA and
including the CRC at the end of the frame.
Transmit frames longer than MAXFL cause the
BABT interrupt. Receive frames longer than
MAXFL cause the BABR interrupt to occur and
set the LG bit in the end-of-frame BD. The
recommended default to be programmed is the
reset value decimal 1518 or decimal 1522 if
VLAN tags are supported.

—
15–6

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

18-40 Freescale Semiconductor

Fast Ethernet Controller Programming Model
RHASH provides address recognition information from the receive block about the frame being
received.

FCE
5

0 Flow Control Enable
Enables the receiver to detect pause frames.
When a pause frame is detected, the transmitter
stops transmitting data frames for a specified
duration.

0 Normal operation.
1 Receiver detects pause frames.

BFR
4

0 Broadcast Frame Reject
Causes frames with a destination address (DA)
= FFFF_FFFF_FFFF to be rejected unless the
PROM bit is set. If both BFR and PROM = 1,
frames with broadcast DA are accepted and the
miss (M) bit is set in the receive BD.

PROM
3

0 Promiscuous Mode
All frames are accepted, regardless of address
matching.

MIIM
2

0 External Interface Mode
Selects between 7Wire Interface mode and MII
mode, which applies to both the transmit and
receive blocks.

0 7-Wire Interface operating mode.
1 MII operating mode.

DRT
1

0 Disable Receive on Transmit
Disables reception of frames while transmitting,
which is normally used for half duplex mode.

0 Receive path operates independently
of transmit (use for full duplex or to
monitor transmit activity in half duplex
mode).

1 Disable reception of frames while
transmitting.

LOOP
0

1 Internal Loopback
Causes transmitted frames to be looped back
internal to the device, and the transmit output
signals are not asserted. The system clock is
substituted for the TXCLK when LOOP is
asserted. DRT must be set to zero when LOOP
is asserted.

0 Normal operation.
1 Internal loopback.

RHASH Receive Hash Register ENET_BASE + 0x088

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FCEDC MCAST HASH —

TYPE R

RESET 0 0 Undefined 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-25. RCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-41

Fast Ethernet Controller (FEC)
TCTL configures the transmit block.

Table 18-26. RHASH Bit Descriptions

Name Reset Description Settings

FCEDC
31

0 Read FCE
Gives a read-only view of the RCTL[FCE] bit.

MCAST
30

0 Multi-cast

HASH
29–24

— Hash
Corresponds to the hash value of the current receive
frame destination address. The hash value is a six-bit
field extracted from the least significant portion of the
CRC register.

—
23–0

0 Reserved. Write to zero for future compatibility.

TCTL Transmit Control Register ENET_BASE + 0x0C4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RFCP TFCP FDEN HBC GTS

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-27. TCTL Bit Descriptions

Name Reset Description Settings

—
31–5

0 Reserved. Write to zero for future compatibility.

RFCP
4

0 RFC Pause
Set when a full duplex flow control pause frame
is received. The transmitter pauses for the
duration defined in the pause frame This bit
automatically clears when the pause duration is
complete.

0 Normal operation.

1 Full duplex flow control pause frame
received.
MSC711x Reference Manual, Rev. 0

18-42 Freescale Semiconductor

Fast Ethernet Controller Programming Model
TFCP
3

0 TFC Pause
When this bit is set, the MAC stops transmitting
data frames after the current transmission
completes. The GRA interrupt in the IEVENT
register is asserted. The MAC transmits a MAC
Control PAUSE frame. Next, the MAC clears the
TFCP bit and resumes transmitting data frames.
If the transmitter is paused due to user assertion
of GTS or reception of a PAUSE frame, the MAC
can still transmit a MAC Control PAUSE frame.

0 Normal operation.
1 Transmit a pause frame.

FDEN
2

0 Full Duplex Enable
If set, frames are transmitted independently of
carrier sense and collision inputs. This bit should
be modified only when ECTL[EEN] is cleared.

0 Normal operation.

1 Enable full duplex.

HBC
1

0 Heartbeat Control
If set, the heartbeat check is performed at the
end of transmission and the HB bit in the status
register is set if the collision input does not assert
within the heartbeat window. This bit should be
modified only when ECTL[EEN] is cleared.

0 Normal operation.

1 Perform heartbeat check.

GTS
0

0 Graceful Transmit Stop
When this bit is set, the MAC stops transmission
after the frame that is being transmitted is
complete, and the GRA interrupt in the IEVENT
register is asserted. If no frames are being
transmitted, the GRA interrupt is asserted
immediately. When transmission completes, the
GTS bit is cleared to initiate a restart. The next
frame in the transmit FIFO is then transmitted. If
an early collision occurs during transmission
when GTS = 1, transmission stops after the
collision. The frame is transmitted again when
GTS is cleared. If old frames are in the transmit
FIFO, they are transmitted when GTS is
reasserted. To avoid this, clear ECTL[EEN] after
the GRA interrupt.

0 Normal operation.

1 Graceful transmit stop.

Table 18-27. TCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-43

Fast Ethernet Controller (FEC)
PADDRL contains the lower 32 bits (bytes 0,1,2,3) of the 48-bit address used in the address
recognition process to compare with the destination address (DA) field of receive frames with an
individual DA. In addition, this register is used in bytes 0–3 of the 6-byte source address field
when PAUSE frames are transmitted. For a physical address of 0x112233445566, PADDRL and
PADDRH should be configured as follows: PADDRL[31–0] = 0x11223344 and
PADDRH[31–16] = 0x5566. Byte0 corresponds with the first byte received on the network at the
start of the frame, when used by the internal address recognition logic. PADDRL is not reset and
is a user-initialized register.

PADDRH contains the upper 16 bits (bytes 4 and 5) of the 48-bit address used in the address
recognition process to compare with the destination address (DA) field of receive frames with an
individual DA. In addition, this register is used in bytes 4 and 5 of the 6-byte source address field
when PAUSE frames are transmitted. Bits 15–0 of PADDRH contain a constant type field
(0x8808) for transmitting PAUSE frames. This register is not reset and bits 31–16 must be
initialized by the user.

PADDRL Physical Address Low Register ENET_BASE + 0x0E4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PADDRL

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PADDRL

TYPE R/W

RESET —

PADDRH Physical Address High Register ENET_BASE + 0x0E8

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PADDRH

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PADDRH

TYPE R/W

VALUE 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
MSC711x Reference Manual, Rev. 0

18-44 Freescale Semiconductor

Fast Ethernet Controller Programming Model
OPPAUSE contains the 16-bit Opcode, and 16-bit pause duration fields used in transmitting a
PAUSE frame. The OPCODE field is a constant value, 0x0001. When another node detects a
PAUSE frame, that node pauses transmission for the duration specified in the pause duration
(PDUR) field. OPPAUSE is not reset and is a user-initialized register.

IADDR1 contains the upper 32 bits of the 64-bit individual address hash table used in the address
recognition process to check for a possible match with the destination address (DA) field of
receive frames with an individual DA. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of
IADDR1 contains hash index bit 32. IADDR1 is not reset and is a user-initialized register.

OPPAUSE Opcode/Pause Duration Register ENET_BASE + 0x0EC

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPCODE

TYPE R

VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PDUR

TYPE R/W

RESET —

IADDR1 Descriptor Individual Address 1 ENET_BASE + 0x118

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IADDR1

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IADDR1

TYPE R/W

RESET —
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-45

Fast Ethernet Controller (FEC)
IADDR2 contains the lower 32 bits of the 64-bit individual address hash table used in the address
recognition process to check for possible match with the destination address (DA) field of receive
frames with an individual DA. Bit 31 of IADDR2 contains hash index bit 31. Bit 0 of IADDR2
contains hash index bit 0. IADDR2 is not reset and is a user-initialized register.

GADDR1 contains the upper 32 bits of the 64-bit hash table used in the address recognition
process for receive frames with a multicast address. Bit 31 of GADDR1 contains hash index bit
63. Bit 0 of GADDR1 contains hash index bit 32. GADDR1 is a user-initialized register.

IADDR2 Descriptor Individual Address 2 ENET_BASE + 0x11C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IADDR2

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IADDR2

TYPE R/W

RESET —

GADDR1 Descriptor Group Address 1 ENET_BASE + 0x120

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GADDR1

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GADDR1

TYPE R/W

RESET —
MSC711x Reference Manual, Rev. 0

18-46 Freescale Semiconductor

Fast Ethernet Controller Programming Model
GADDR2 contains the lower 32 bits of the 64 bit hash table used in the address recognition
process for receive frames with a multicast address. Bit 31 of GADDR2 contains hash index bit
31. Bit 0 of GADDR2 contains hash index bit 0. GADDR2 is a user-initialized register.

GADDR2 Descriptor Group Address 2 ENET_BASE + 0x124

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GADDR2

TYPE R/W

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GADDR2

TYPE R/W

RESET —

FIFOID FIFO ID Register ENET_BASE + 0x140

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FREV 0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FSIZ 0 0 0 0 0 0 0

TYPE R

RESET 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWMRK FIFO Transmit Watermark Register ENET_BASE + 0x144

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TWMRK

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-47

Fast Ethernet Controller (FEC)
TWMRK controls the amount of data required in the transmit FIFO before a frame can be
transmitted. This register helps you to minimize transmit latency (TWMRK = 0X) or allow for
larger bus access latency due to contention for the system bus (TWMRK = 11). Setting the
watermark to a high value minimizes the risk of transmit FIFO underrun due to contention for the
system bus. You may need to modify the byte counts associated with the TWMRK field to match
a given system requirement (worst case bus access latency by the transmit data DMA channel).

FRBND is a register that you can read to determine the upper address bound of the FIFO RAM.
Drivers can use this value, along with the contents of the FRST register, to divide the available
FIFO RAM appropriately between the transmit and receive data paths. The FIFO RAM address is
at 0x00 and is not memory-mapped.

Table 18-28. TWMRK Bit Descriptions

Name Reset Description Settings

—
31–2

0 Reserved. Write to zero for future compatibility.

TWMRK
1–0

0 Transmit Watermark
Specifies the number of bytes that are written to the
transmit FIFO before frame transmission can begin.

0X 64 bytes are written to the
transmit FIFO.

10 128 bytes are written to the
transmit FIFO.

11 192 bytes are written to the
transmit FIFO.

FRBND FIFO Receive Bound Register ENET_BASE + 0x14C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RBND 0

TYPE R

RESET 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

18-48 Freescale Semiconductor

Fast Ethernet Controller Programming Model
FRST is a user-programmable register to indicate the starting address (pointer to a 36-bit data
word) of the receive FIFO. The RFST field marks the boundary between the transmit and receive
FIFOs, and it provides the address of the first receive FIFO location. The transmit FIFO uses
addresses from FTST to FRST. The receive FIFO uses addresses from FRST to FRBND. FRST
is initialized by hardware at reset and need only be written to change the default value. The
default value for the RFST field, 0x40, divides the FIFO RAM into receive and transmit FIFOs of
equal size. If the value for RFST changes, it must be 0x12 or higher.

RDESST provides a pointer to the start of the circular receive BD ring in external memory. This
pointer must be 32-bit word aligned, but it can be made quad word aligned (evenly divisible by
16). Write a value of zero to bits 1 and 0 because hardware ignores non-zero values in these two
bit positions. RDESST is not reset and is a user-initialized register.

FRST FIFO Receive Start Register ENET_BASE + 0x150

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RFST 0 0

TYPE R

RESET 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

 RDESST Receive Descriptor Ring Start Register ENET_BASE + 0x180

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RDESST

TYPE R

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDESST 0 0

TYPE R

RESET —
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-49

Fast Ethernet Controller (FEC)
TDESST provides a pointer to the start of the circular transmit BD ring in external memory. This
pointer must be 32-bit word aligned, but it can be made quad word aligned (evenly divisible by
16). Write a value of zero to bits 1 and 0 because hardware ignores non-zero values in these two
bit positions. TDESST is not reset and is a user-initialized register.

RBSZ specifies the maximum size of all receive buffers. Because receive frames are truncated at
2k – 1 bytes, only bits 10–4 are used. When specifying a value for this field, keep in mind that the
receive CRC is always written into the last receive buffer. To allow one maximum size frame per
buffer, RBSZ must be set to RCTL[MAXFL] or larger. The value in the RBSZ field must be
evenly divisible by 16, so bits 3–0 are low. To minimize descriptor fetches on the bus, the value
of RBSZ should be >= 256 bytes. RBSZ does not reset and is a user-initialized register.

 TDESST Transmit Descriptor Ring Start Register ENET_BASE + 0x184

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDESST

TYPE R

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDESST 0 0

TYPE R

RESET —

 RBSZ Receive Buffer Size Register ENET_BASE + 0x188

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RBSZ 0 0 0 0

TYPE R R/W R

RESET —
MSC711x Reference Manual, Rev. 0

18-50 Freescale Semiconductor

Fast Ethernet Controller Programming Model
DMACTL contains a read-only field that indicates the DMA revision.

MIIGSKCFG contains configuration bits for various features and modes of the MIIGSK module.

DMACTL DMA Control Register ENET_BASE + 0x1F4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DMAREV

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MIIGSKCFG MIIGSK Configuration Register ENET_BASE + 0x400

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 FCTL 0 LOOPB ECHO 0 0 RMII

TYPE R R/W R R/W R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-29. MIIGSKCFG Bit Descriptions

Name Reset Description Settings

—
31–7

0 Reserved. Write to zero for future compatibility.

FCTL
6

0 Frequency Control
Determines the clock frequency of the clock
source to the MIIGSK RMII logic to support
10/100Mbps operations. This field has no effect
in Pass-Through mode.

0 In RMII mode, the clock source
(REF_CLOCK) for the MIIGSK RMII
logic is 50 MHz to support 100 Mbps
operation.

1 In RMII mode, the clock source
(REF_CLOCK) for the MIIGSK RMII
logic is divided by 10 (5 MHz) to
support 10 Mbps operation.

—
5

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-51

Fast Ethernet Controller (FEC)
MIIGSKEN contains two bits to enable/disable MIIGSK operation and indicate when the
MIIGSK is ready for use. The Ready bit ensures proper configuration of the MIIGSK.

LOOPB
4

0 Internal Loopback Mode
Causes the MIIGSK MII transmit inputs from the
Ethernet controller to loop back to the MIIGSK
MII receive outputs to the Ethernet controller
through the MIIGSK RMII transmit/receive logic.
Proper operation is guaranteed only when
RMII = 1 and ECHO = 0.

0 Normal operation (default).

1 Internal loopback mode.

ECHO
3

0 Echo Mode
Causes the MIIGSK MII receive inputs (from the
MII PHY) to be looped back to the MIIGSK MII
transmit outputs (to the MII PHY) without
transferring through the RMII transmit/receive
logic. Proper operation is guaranteed only when
RMII = 0 and LOOPB = 0.

0 Normal operation (default).

1 Echo mode.

—
2–1

0 Reserved. Write to zero for future compatibility.

RMII
0

0 RMII Mode
Determines the type of interface to which the
MIIGSK is connected.

0 Pass-through mode (used for MII
7-Wire Interface modes).

1 RMII mode.

MIIGSKEN MIIGSK Enable Register ENET_BASE + 0x408

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 MIIR MIEN

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 18-30. MIIGSKEN Bit Descriptions

Name Reset Description Settings

—
31–2

0 Reserved. Write to zero for future compatibility.

Table 18-29. MIIGSKCFG Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

18-52 Freescale Semiconductor

Fast Ethernet Controller Programming Model
MIIR
1

0 MIIGSK Ready
Set when the MIIGSK is ready for use. This is a
read-only bit.

0 Normal operation.

1 MIIGSK ready for use.

MIIEN
0

0 MIIGSK Enable
Enables the MIIGSK to transmit/receive frames to/from
the Ethernet controller. Clearing this bit prevents the
transmission/reception of frames. This bit is cleared by
default.

0 Transmission/reception of frames
disabled.

1 Transmission/reception of frames
enabled.

Table 18-30. MIIGSKEN Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 18-53

Fast Ethernet Controller (FEC)
MSC711x Reference Manual, Rev. 0

18-54 Freescale Semiconductor

Time-Division Multiplexing (TDM)
Interface 19
The TDM interface is a full-duplex serial port by which DSP devices communicate with a variety
of serial devices, including industry-standard framers, codecs, other DSPs, and microprocessors.
Typically, TDMs are used to transfer samples periodically. The TDM consists of independent
transmitter and receiver sections with independent clock generation and frame synchronization.

Note: The number of TDM modules differs across MSC711x devices. For example, the
MSC7115 device has three identical and independent TDM modules, whereas the
MSC7110 device has only one. Check the device data sheet to verify how many TDMs
reside on your MSC711x device, or check Table 1-2, MSC711x Device-Specific
Feature Comparison, on page 1-8 of this manual.

The TDM module supports 128 channels running at up to 50 Mbps with 8- and 16-bit word size.
The TDM bus connects gluelessly to most T1/E1 framers as well as to common buses such as the
H.110, SCAS, and MVIP. The TDM also runs in I2S mode. Each TDM module operates in
independent or shared mode when receiving or transmitting data. In independent mode, there are
different sync, clock, and data for receive and transmit. In shared sync and clock mode, the clock
and the sync are shared between the transmit and receive with different receive and transmit data.

MSC711x devices can have anywhere from one to three identical and independent TDM
modules, TDM 0, TDM 1, and TDM 2. The TDMs are clocked either from the TDM clocking
pins, TCK and RCK, or from internal clocks generated from timer module B as determined by the
settings of the CTS and RTS bits in the TDMx General Interface Register (TDMxGIR) described
on page 19-29.

19.1 Features

TDM features are as follows:

� Independent (asynchronous) or shared (synchronous) transmit and receive sections with
separate or shared internal/external clocks and frame syncs.

� TDM (network) mode operation allowing multiple devices to share the port with as many
as 128 time slots.

� Single-channel operation using frame sync.

� Time-slot enable registers (receive and transmit).
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-1

Time-Division Multiplexing (TDM) Interface
� End-of-frame interrupt.

� Programmable internal clock divider.

� Programmable word length (8 or 16 bits).

� Program options for frame sync and clock generation.

� Programmable MSB or LSB first.

� TDM power-down.

� A-law/μ-law hardware conversion for 8-bit channels.

� Loopback mode.

19.2 Halting and Restarting a TDM

To halt the TDM completely, use the following procedure:

1. Follow the shut-down procedure in Section 19.6, Software Programming Sequence, on
page 19-23. To verify that the TDM has shut down correctly, poll its status bits,
TDMxRSR[RENS] (page 19-49) and TDMxTSR[TENS] (page 19-50).

2. Set the HLTREQ[TDMxCD] bit (page 11-28) to shut down the system clock to the
module.

To restart the TDM, use the following procedure:

1. Clear the HLTREQ[TDMxCD] bit to re-enable the system clock to the module.

2. Follow the TDM start-up procedure in Section 19.6, Software Programming Sequence.

19.3 TDM Basics

Figure 19-1 illustrates the TDM block diagram, showing the control registers to set up the port,
status registers, separate transmit and receive circuits with FIFO registers, and separate serial
clock and frame sync generation for the transmit and receive sections. Multiple TDM channels
are transferred sequentially in a frame. A frame sync signal is briefly asserted to identify the start
of a frame. The TDM module can receive or transmit up to 128 channels at a granularity of two
channels. There is also a single-channel mode. The number of receive channels is determined by
the RNCF field in the TDMx Receive Frame Parameters Register (TDMxRFP). The number of
transmit channels is determined by the TNCF field in the TDMx Transmit Frame Parameters
Register (TDMxTFP). The size of all the channels is unified and can be 8 or 16 bits. The receive
channel size is determined by the RCS field in the TDMxRFP; the transmit channel size is
determined by the TCS field in the TDMxTFP.

When the TDM connects to a T1 framer, the RT1 field in the TDMx Receive Frame Parameters
Register (TDMxRFP) and the TT1 field in the TDMx Transmit Frame Parameters Register
(TDMxTFP) should be set. Also, the number of channels in the RCS and TCS fields should be set
to 24. The T1 frame contains 193 bits (24 channels of 8 bits each), and the first bit of the frame is
MSC711x Reference Manual, Rev. 0

19-2 Freescale Semiconductor

TDM Basics
an unused Frame Alignment bit. At the T1 received frame, the Frame Alignment bit is removed
and does not transfer to the data registers. At the transmit T1 frame, the Frame Alignment bit is
not driven out.

Figure 19-1. TDM Block Diagram

General Interface
 Register

Rx/Tx Interface
Register

Rx/Tx
Frame Register

Rx/Tx Channel
 Registers

32-Bit

APB

TCK

TFS

RCK
Rx/Tx

Control Registers

Transmit
Shift Register

Receive
Shift Register

 Rx Clock
Generator

 Tx Clock
Generator

Tx Sync
 Generator

Rx Sync
 Generator Rx/Tx Interrupt

Enable Registers

Rx/Tx
Event Registers

Transmit
Data Register

Tx Control
and State
Machines

Rx Control
and State
Machines RFS

TD

RD

64-Bit

AHB-Lite

A/μ-law
8-bit only

A/μ-law
8-Bit Only

Receive
Data Register

16-Bit

(ASHT)

Tx Channel
Mask Registers

Rx/Tx
Status Registers
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-3

Time-Division Multiplexing (TDM) Interface
Figure 19-2 shows an example TDM interface. The receive frame contains two 8-bit channels.
The transmit frame contains four 8-bit channels. Figure 19-3 shows an example T1 frame. Note
the first bit of the frame is not used by the receive and transmit TDM.

Figure 19-2. TDM Frames

Figure 19-3. T1 Frame

TDMxRCK (Receive Clock)

TDMxRFS (Receive Sync)

TDMxRD (Receive Data) Channel 0 Channel 1 Channel0

TDMxTCK (Transmit Clock)

TDMxTFS (Transmit Sync)

TDMxTD Channel 0 Channel 1 Channel 2 Channel 3 Channel 0

Receive Frame Parameters: RNCF= (2 channels), RCS =(8 bits) and RT1 = (nonT1)

TNCF= (4 channels), TCS = (8 bits). and TT1 = (non T1)Transmit Frame Parameters:

Channel size

Frame Size

TDMxT/RCK

TDMxT/RFS

TDMxT/RD FA D0 D1 D7 D0 D7 FAD6

193 Bits, 125 ms, 8 KHz

Channel 0

Receive Frame Parameters: RNCF[7–0] = (24 channels), RCS = (8 bits) and RT1 = (T1 mode)

TNCF[7–0] = (24 channels), TCS = (8 bits) and TT1 = (T1 mode)Transmit Frame Parameters:
MSC711x Reference Manual, Rev. 0

19-4 Freescale Semiconductor

TDM Basics
19.3.1 Common Signals for the TDM Modules

The sync and clock signals can be independent or shared among the TDM modules. When the
CTS bit of the TDMx General Interface Register is equal to 1, the TDM modules share sync and
clock signals. In this mode, the common signals connect to the following signal lines:

� The transmit sync/frame sync connects to TFS (receive and transmit share the same sync
signal for all TDMs).

� The transmit clock/frame clock connects to TCK (receive and transmit share the same clock
signal for all TDMs).

The configuration registers should be identical for the TDM modules that share signals.
Figure 19-4 illustrates a common receive sync, receive clock, transmit sync, and transmit clock
for TDM 0 and TDM 1.

Figure 19-4. TDM Modules Shared Mode

19.3.2 Clocks

The TDM uses the following three clocks, illustrated in Figure 19-5 and Figure 19-6:

� Bit clock. Serially clocks the data bits in and out of the TDM port.

� Word clock. Counts the number of data bits per word (8 or 16 bits).

� Frame clock. Counts the number of words in a frame.

The bit clock is visible on the TCK, for independent transmit or shared modes and RCK, for
independent receive clock operation pins. The word clock is an internal clock used to determine

TDM0 TDM1
T

D
M

0R
D

R
xdata 0

T
D

M
0R

F
S

T
D

M
0R

C
K

T
D

M
0T

D
T

xdata 0

T
D

M
0T

F
S

T
xsync (com

m
on)

T
D

M
0T

C
K

T
xclk (com

m
on)

T
D

M
1R

D
R

xdata 1

T
D

M
1R

F
S

T
D

M
1R

C
K

T
D

M
1T

D

T
xdata 1

T
D

M
1T

F
S

T
D

M
1T

C
K

CTS = 1 CTS = 1

R
xsync (com

m
on)

R
xclk (com

m
on)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-5

Time-Division Multiplexing (TDM) Interface
when transmission of an 8 or 16 bit word has completed. The word clock then clocks the frame
clock, which marks the beginning of each frame. The frame clock can be viewed on the TFS and
RFS pins; the maximum allowable rate for an external clock source is 50 MHz. The bit clock can
be received from a TDM clock pin, or it can be generated from the peripheral clock passed
through a divider, as illustrated in Figure 19-5 and Figure 19-6.

Figure 19-5. TDM Clocking (8-Bit Words, 4 Time Slots/Frame)

Figure 19-6. TDM Clock Generation

19.3.3 TDM Clock and Frame Sync Generation

Data clock and frame sync signals are generated internally for the TDM from an internal clock
source or are obtained from an external clock from a TDM pin. The maximum allowable rate for
an external clock source is one half of the AMBA host bus clock, or 100 MHz/2 = 50 MHz. If a
timer internally generates the clock, the TDM derives bit clock and frame sync signals from this
internal timer. The sources change according to the receive and transmit sharing as well as
common TDM definitions. A programmable frame rate divider and a word length divider are
used for frame rate sync signal generation.

Table 19-1. Clock Summary

Clock Source Description

TCK Internal/
External

Transmit data changes on the falling or rising edge of this clock. The control register
can invert the clock, if required.

RCK Internal/
External

Receive data is captured on the rising or falling edge of this clock. The control
register can invert the clock, if required.

TFS Internal/
External

Transmit frames begin with this signal. See the discussion of TDMxRIR on
page 19-31. The control register can invert the clock, if required.

RFS Internal/
External

Receive frames begin with this signal. See the discussion of TDMxRIR on
page 19-31. The control register can invert the clock, if required.

TS0 TS1 TS2 TS3 TS0 TS1

Frame n Frame n+1

Word Clock

Data

TCK, RCK

TFS, RFS

TFS, RFS

Serial Bit Clock

Word Divider
(/8, /16)

Word Clock
Frame Divider

(/1 to /128)

Frame Clock

(TCK, RCK)
MSC711x Reference Manual, Rev. 0

19-6 Freescale Semiconductor

TDM Basics
Figure 19-7 shows the clock generator block for the transmit section. The receive section
contains an equivalent circuit for its frame sync generator.

Figure 19-7. TDM Transmit Clock Generator Block Diagram

Figure 19-8 demonstrates the frame sync generator for the transmit section. When internally
generated, both receive and transmit frame sync are generated from the word clock and are
defined by the TDMx Transmit Interface Register (TDMxTIR) and the TDMx Transmit Frame
Parameters Register (TDMxTFP). The receive section contains an equivalent circuit for its frame
sync generator.

Figure 19-8. TDM Transmit Frame Sync Generator Block Diagram

19.3.4 TDM Configurations

Figure 19-9 and Figure 19-10 illustrate the main TDM configurations. These pins support all
transmit and receive functions as shown. Some operating modes do not require the use of all six
pins, so you can use them as GPIO pins, if desired. The GPIO interface is a separate module that
alternatively controls the function and state of the I/O pins. See Chapter 24, General-Purpose
Input/Output (GPIO) for alternate functions of the I/O pins defined here

Internal Clock Source

TCOE (1 = output)

TCOE (0=input)

Serial Bit Clock

Word Length
Divider Word Clock

TCS

TCK

Frame
Rate

TNCF[23–16]

Frame
Sync

TSL

Tx
Control

TSA

TSA

Tx Frame Sync Out

Tx Frame Sync In

Word Clock TFS

TSE,TFSD,TFSE
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-7

Time-Division Multiplexing (TDM) Interface
Figure 19-9 shows two MSC711x devices that connect point-to-point. Data transmits from the
device on the left to the device on the right or vice versa.

Figure 19-9. TDM Point-to-Point Configuration

Figure 19-10 depicts a TDM point to multi-point configuration. Multiple MSC711x devices
connect on the same TDM bus, which connects to the network through a framer.

Figure 19-10. TDM Network Configuration

Figure 19-11 depicts an application in which all the TDM modules share the sync and the clock.
Therefore, each TDM module supports one active link. Six receive links and six transmit links
connect to three MSC711x devices—for devices with two TDM modules or two MSC711x
devices with three TDM modules.

TDMxTD

TDMxTFS

TDMxTCK

TDMxRD

TDMxRFS

TDMxRCK

TDMxRD

TDMxRFS

TDMxRCK

TDMxTD

TDMxTFS

TDMxTCK

D
S

P
D

S
P

T
D

M
xT

D

T
D

M
xT

C
K

T
D

M
xT

F
S

T
D

M
xR

D

T
D

M
xR

C
K

T
D

M
xR

F
S

T
D

M
xT

D

T
D

M
xT

C
K

T
D

M
xT

F
S

T
D

M
xR

D

T
D

M
xR

C
K

T
D

M
xR

F
S

T
D

M
xT

D

T
D

M
xT

C
K

T
D

M
xT

F
S

T
D

M
xR

D

T
D

M
xR

C
K

T
D

M
xR

F
S

T
D

M
xT

D

T
D

M
xT

C
K

T
D

M
xT

F
S

T
D

M
xR

D

T
D

M
xR

C
K

T
D

M
xR

F
S

DSP DSP DSP DSP
MSC711x Reference Manual, Rev. 0

19-8 Freescale Semiconductor

TDM Serial Interface
Figure 19-11. TDM Shared Network Configuration

19.4 TDM Serial Interface

This section covers issues related to the serial interface, such as how to configure the frame sync
and how to control the data order of the bits in the channel word.

19.4.1 Sync Out Configuration

The TFS and RFS signals are programmed as either an input or output by writing a value 1 to the
TSO bit in the Transmit Interface Register (TDMxTIR) or writing 1 to the RSO bit in the Receive
Interface Register (TDMxRIR). When the TSO, RSO bit value is equal to 1, the TFS and RFS is
internally generated. When the TDM modules share a sync and clock signals (the CTS bit is set),
the TDMxTIR[TSO] bits should be equal for all the TDM modules. They determine whether the
sync arrives externally or is generated by the TDM0 transmitter. Additionally, the edge on which
the TFS and RFS signals are driven out is controlled by writing to the TSOE bit in the Transmit
Interface Register (TDMxTIR) or writing to the RSOE bit in the Receive Interface Register
(TDMxRIR). When these bits are set to 0, the corresponding TFS or RFS are driven out on the
rising edge. When these bits are set to 1, the corresponding TFS or RFS are driven out on the
falling edge. Figure 19-12 illustrates how the TDMxRIR[RSL] and TDMxTIR[TSL] bits affect
sync out generation.

TDM0

FCLK

FSYN

R
D

 0
T

D
 0

TDM1 TDM0 TDM1

DSP DSP

R
D

 1
T

D
 1

R
D

 2
T

D
2

R
D

 3
T

D
 3

TDM0 TDM1

DSP

R
D

 4
T

D
 4

R
D

 5
T

D
 5
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-9

Time-Division Multiplexing (TDM) Interface
Figure 19-12. Sync Length Selection

19.4.2 Sync In Configuration

The TFS and RFS signals are inputs that identify the beginning of a frame. Figure 19-14 and
Figure 19-15 illustrate the relationship between the data, sync, and clock for various
configurations. The receive data and frame sync are sampled with the rising or falling edge of the
receive clock. The transmit frame sync, TFS, is sampled with the rising or falling edge of the
transmit clock. The transmit data drives out at the rising or falling edge of the transmit clock.
Determine the value of the (R/T)DE, (R/T)FSE, and the (R/T)FSD bits, as follows:

1. Determine the edge on which the frame sync is driven (or changes) and whether it is
internally generated.

2. Determine the edge on which the data is driven (or changes) and whether it is internally
generated.

3. If the (R/T)DE = (R/T)FSE, set the (R/T)FSD to the number of clock cycles before the
first channel’s first bit of data arrives after the first part of the Frame Sync edge.
Otherwise, set the (R/T)FSD to the number of clock cycles before the first channel’s
first bit of data arrives after the first clock edge that the Frame Sync is active and stable.

When configured as inputs, the TDM frame syncs require only that the frame sync be inactive for
two cycles before becoming active for a minimum of one cycle. Thus, the TDM can support
frame syncs of any length that meet these requirements.

T(R/T)CLK

TFS (Sync Out)

TDMxTD N – 1 Channel 0 Channel 1

T(R/T)CLK

TFS (Sync Out)

TDMxTD Channel 0 Channel 1

8 Bits

One-Bit Length:

Word Length:
MSC711x Reference Manual, Rev. 0

19-10 Freescale Semiconductor

TDM Serial Interface
Figure 19-13. Frame Sync Configurations Without Sync Delays

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5 D6 D7

Channel Number Channel N –1 Channel 0

Data and Sync Change on the Rising Edge (No Sync Delay)

TDE=0, TFSE=0 TFSD=00

 Rx data sampled
Tx data driven

Start of Frame

sync sample

RDE=0, RFSE=0 RFSD=00

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD

Channel Number

Data Changes on the Rising Edge, Sync on the Falling Edge (No Sync Delay)

TDE=0, TFSE=1 TFSD=00

Start of Frame

RDE=0, RFSE=1 RFSD=00

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5 D6 D7

Channel number Channel N–1 Channel 0

Data and Sync Change on the Falling Edge (No Sync Delay)

TDE=1, TFSE=1 TFSD=00

Start of Frame

RDE=1, RFSE=1 RFSD=00

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5 D6 D7

Channel Number Channel N–1 Channel 0

Data Changes on the Falling Edge, Sync on the Rising Edge (No Sync Delay)

TDE=1, TFSE=0 TFSD=00

Start of Frame

RDE=1, RFSE=0 RFSD=00

D6

D7 D0 D1 D2 D3 D4 D5 D6 D7

Channel N–1 Channel 0

D6
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-11

Time-Division Multiplexing (TDM) Interface
Figure 19-14. Frame Sync Configurations With Sync Delays

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5 D6

Channel number Channel N-1 Channel 0

Data and Sync Change on the Rising Edge (One Bit delay)
TDE=0, TFSE=0 TFSD=01

 Rx data sampled
Tx data driven

Start of Frame
sync sample

RDE=0, RFSE=0 RFSD=01

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5D6

Channel number Channel N-1 Channel 0

Data Changes on the Falling Edge, Sync on the Rising Edge (One Bit delay)
TDE=1, TFSE=0 TFSD=01

 Rx data sampled
Tx data driven

Start of Frame
sync sample

RDE=1, RFSE=0 RFSD=01

D6

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4 D5

Channel number Channel N-1 Channel 0

Data and Sync Change on the Rising Edge (Two Bit delay)
TDE=0, TFSE=0 TFSD=10

 Rx data sampled
Tx data driven

Start of Frame
sync sample

RDE=0, RFSE=0 RFSD=10

D6D5

D5

TDMxTCK or TDMxRCK

TDMxTFS or TDMxRFS

TDMxTD or TDMxRD D7 D0 D1 D2 D3 D4D5 D6

Channel number Channel N-1 Channel 0

Data Changes on the Falling Edge, Sync on the Rising Edge (One Bit delay)
TDE=1, TFSE=0 TFSD=01

 Rx data sampled
Tx data driven

Start of Frame
sync sample

RDE=1, RFSE=0 RFSD=01

D5
MSC711x Reference Manual, Rev. 0

19-12 Freescale Semiconductor

TDM Serial Interface
Figure 19-15. Frame Sync Configuration At T1 mode

Figure 19-16 illustrates how the TDMxRIR[RSA] and the TDMxTIR[TSA] bits control the
polarity of the receive sync and the transmit sync signals.

Figure 19-16. Frame Sync Polarity

19.4.3 Serial Interface Synchronization

The receive and transmit of each TDM frame is identified by a frame sync signal that is asserted
at the beginning of every frame. The frame sync synchronization is necessary when more than
one device drives the bus. Figure 19-17 shows the state diagram of the frame sync
synchronization.

TDMxRCK

TDMxRFS

TDMxRD D0 D1 D7 D0 D7 FAD6

Start of the frame

No Sync Delay (Data and the sync sample with the same edge.)

RDE = 0, RFE = 0, RFSD = 00, RT1 = 1

 Data Sample
Sync Sample

FA

TDMx(R/T)CLK

TDMx(R/T)SYN

TDMx(R/T)DAT Channel N – 1 Channel 0 Channel 1

TDMx(R/T)CLK

TDMx(R/T)SYN

TDMx(R/T)DAT Channel N –1 Channel 0 Channel 1

Sync Level Active High (RSA/TSA=0)

Sync Level Active Low (RSA/TSA=1)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-13

Time-Division Multiplexing (TDM) Interface
The details of the state diagram are as follows:

� HUNT (0b00). A sync event is constantly sought. As soon the sync event is detected, the
state machine changes to a WAIT state. During the HUNT state, data is neither received
nor transmitted.

� WAIT (0b01). At least one sync is detected. The next sync event is accepted after one
TDM frame. If the sync appears in the correct position, the state changes to the PRESYNC
state (0b11). If the sync does not appear, the state returns to the HUNT state. During the
WAIT state, data is neither received nor transmitted.

� PRESYNC (0b11). Two sync events are detected and the distance between the syncs is one
TDM frame. If the sync event is recognized early, the state returns to the WAIT state.
Otherwise, the machine transfers to the SYNC state at the last bit of the TDM frame.
During PRESYNC state, data is neither received nor transmitted.

� SYNC (0b10). At least one sync event appears exactly where it is expected. This state is
maintained as long as the sync event continues to appear where expected. If a sync is
missed or a sync event is recognized early, the state changes to the HUNT state (0b00).
During the SYNC state, data is both received and transmitted.

Figure 19-17. Frame Sync Synchronization State Diagram

HUNT

00

PRESYNC

SYNC WAIT

Sync event found at
the expected position

or
Sync event found no at
the expected position

01

11

10

Sync event found
not at the expected

sync event found

No sync event found
at the expected position

position

Last bit of the frame

No sync event found
at the expected position

Sync error:

TDM reset
or disable

Sync event found
not at the expected

Sync event found at
the expected position
MSC711x Reference Manual, Rev. 0

19-14 Freescale Semiconductor

Transmit and Receive Operation
The TDM receiver synchronizes on the receive frame sync (RFS). The state of the receive frame
sync synchronization is indicated by the TDMxRSR[RSSS] field. During the HUNT, WAIT, and
PRESYNC states, the received data is not transferred to the Receive Data Register. When the
receive sync synchronization is lost, the state transfers from SYNC to HUNT (the
TDMxRER[RSE] bit is asserted). If the TDMxREIR[RSEEE] bit is also set, a receive error
interrupt is generated.

The transmit frame sync synchronization state is indicated by the TDMxTSR[TSSS] field.
During the HUNT, WAIT, and PRESYNC states, new data is not driven out. If the Transmit
Always Out (TDMxTIR[TAO]) field is set, then all 1s are driven out until the frame sync
synchronization state returns to the SYNC state. If the TDMxTIR[TAO] bit is clear, data is not
driven out and TD is tri-stated. When the transmit sync synchronization is lost, the
TDMxTER[TSE] bit is asserted. If the TDMxTIER[TSEEE] bit is also set, a transmit error
interrupt is generated.

The frame sync synchronization state can identify different problems. In the initial design stages,
the frame sync summarization state indicates whether the TDM programming matches the actual
TDM stream. During operation, the synchronization state and the error interrupts may indicate
errors in the TDM module signal processing.

19.4.4 Reverse Data Order

Figure 19-18 illustrates how the bit order of the stored data relates to the bit order of the receive
or the transmit data. The TDMxRIR[RRDO] bit defines how the receive channel data is stored in
memory. If TDMxRIR[RRDO] is clear, the first bit of the received channel data is stored as the
least significant bit. The TDMxTIR[TRDO] bit selects the transmit data bits order. If
TDMxTIR[TRDO] is clear, the least significant bit of the memory is transmitted as the first
transmit data.

19.5 Transmit and Receive Operation

The TDM operates with the transmit and receive operations running either independently or
shared, as illustrated in Figure 19-19. When the RTS bit is cleared in the TDMx General
Interface Register, the receive and the transmit are independent as illustrated on the left side of
Figure 19-19. When the RTS bit is set in the TDMx General Interface Register, the transmit and
receive share the Frame Sync (FSYN) and the Frame Clock (FCLK) signals with the transmitter
being the input or the output, as illustrated on the right side of Figure 19-19. I

When the CTS bit is set in the TDMx General Interface Register, TDM0 is the source for the
other TDM module’s clock and frame sync. Therefore the clock and frame sync source
definitions must be the same for all TDMs that are sharing. When the CTS bit is clear, each TDM
controls its own clock and frame sync configurations.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-15

Time-Division Multiplexing (TDM) Interface
Figure 19-18. Reverse Bit Order

Figure 19-19. TDM Module Modes

TDMxCLK (receive/transmit)

TDMxDAT (receive/transmit) D0 D1 D2 D3 D4 D5 D6 D7 D0

Channel N

Row in Memory (Channel N)

LSBMSB

D1D2D3D4D5D6D7 D0 D1D2D3D4D5D6D7 D0

Incoming Bit Order RRDO/TRDO = 0(LSB First)

TDMxCLK (receive/transmit)

TDMxDAT (receive/transmit) D0 D1 D2 D3 D4 D5 D6 D7 D0

Channel N

Row in Memory (Channel N)

D6D5D4D3D2D1D0 D7 D6D5D4D3D2D1D0 D7

Reverse Data Bit Order: RRDO/TRDO = 1(MSB First)

LSBMSB

TDM Module

TDMxRD

TDMxRFS

TDMxRCK

TDMxTD

TDMxTFS

TDMxTCK

Independent Receive and Transmit

x Defines the TDM number.

TDMxRD

TDMxTD

TDMxTFS

TDMxTCK

Shared Clock and Frame Sync

TDM Module

FSYNC (frame sync) specifies that the receiver and transmitter share the same sync.

FCLK (frame clock) specifies that the receiver and transmitter share the same clock.

RD

RFS

RCK

TD

TFS

TCK

RD

TD

FSYNC

FCLK
MSC711x Reference Manual, Rev. 0

19-16 Freescale Semiconductor

Transmit and Receive Operation
Figure 19-20 shows the TDM interface when the receive and transmit are totally independent
(TDMxGIR[RTS] = 0). The TDMxRCK is not synchronized with the TDMxTCK. They differ by sync
location relative to the beginning of the frame and the number of bits in a word.

Figure 19-20. Receive and Transmit Totally Independent

19.5.1 TDM Multi-Channel (Network) Mode

Figure 19-21 and Figure 19-22 illustrate sample timing of TDM multi-channel (network) mode
transfers. The numbered circles and arrows in the figures identify discussion notes in Table 19-2
and Table 19-3.

19.5.1.1 Tx Channel Mask Register

If all bits of the TCMA registers are cleared, the TDM transmitter continues to operate solely by
the TCEN registers. The TCMA registers place data on specific channels. Therefore, TCMA
should be set only on disabled channels or channels with the corresponding TCEN bit already
cleared. When TCEN is cleared, the TCMA is set to 1 in the desired channel bit location for data
to be discarded by the TDM. Therefore, memory structures can keep channels open that are
physically closed on the TDM or are transferred to the TDM via a DMA transfer and the TDM
discards the data. If the TCMA is set on a channel that is enabled, the TDM discards the data for
that channel and instead transmits all 1s.

When a channel is disabled in this way, the TDM ignores the time slot for that channel, and no
data is transferred to the Transmit Shift Register. Figure 19-21 illustrates the transmitter timing,
using TCM registers for an 8-bit word and a continuous clock with disabled FIFO six words per
frame sync in TDM Network mode. Explanatory notes for the transmit portion of the figure are

TDMxRCK

TDMxRFS

TDMxRD Channel N –1 Channel 0 Channel 1 Channel 2

TDMxTCK

TDMxTFS

TDMxTD Channel M Channel 0 Channel 1 Channel 2

X The TDM number.

N The number of channels in the receive TDM frame.

M The number of channels in the transmit TDM frame.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-17

Time-Division Multiplexing (TDM) Interface
provided in Table 19-2. In this example there are only three transmit interrupts per frame instead
of six as in the previous example where the TCM register is not used.

Figure 19-21. TDM Network Mode Transmit Timing with Mask Register

Table 19-2. Transmit Timing with the Mask Register

Note
Source
Signal

Destination
Signal

Description

1 — — Example of a 6 time-slot frames transmitting in Channels 0,3, and 5.

2 TFS — Example of a word length frame sync and standard timing. Frame timing begins with
the rising edge of TFS.

3 — TDR Interrupt For enabled time slots, this flag is set at the beginning of each word to indicate that
TDR data has been used and software should supply another data word. If the
transmit interrupt is enabled, the processor is interrupted to request the data.

4 Tx Data
Register

Tx Shift
Register

On each word clock boundary, there is an indication of what to transmit on the next
time slot. If the TCEN register bit is cleared to zero for the next time slot, the TD pin is
either tri-stated or drives previous time-slot data and the time slot is ignored. When
the TCEN bit is set to one for the next time-slot, the contents of the TDMxTDR are
transferred to the TxSR register and this data is shifted out. If the TDMxTDR register
was not written in the previous time slot, the previous data is reused. When neither of
these registers were written in the previous time slot (where TCEN = 1), the TUE
status bit is set and the hardware operates as if the TDMxTDR has been written. The
TD pin is enabled and the contents of TDMxTDR[TDREG] are transmitted again.

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

TCMA[1] TCMA[2] TCMA[3] TCMA[4] TCMA[5]

Time Slot

TCK

Internal Word Clock

TFS

TCMA Bits Usage

TDR Interrupt

TER Register

Tx Shift Register

TD

2

5

1

Valid Indefinite transition depends on SW interrupt or DMA processing.Invalid

3

TCEN[0] TCEN[1] TCEN[2] TCEN[4]TCEN Bits Usage 44

TCMA[0]

TCEN[3] TCEN[5]

6

MSC711x Reference Manual, Rev. 0

19-18 Freescale Semiconductor

Transmit and Receive Operation
19.5.1.2 Rx Channel Enable Register

Use of TDMxRCEN[0–3] (page 19-39) can reduce interrupt overhead. If all bits of a
TDMxRCEN register are set, the TDM receiver receives all channels in the frame. TDMxRCEN
automatically discards data from selected channels by writing the RCEN with 0 in the selected
channel bit location. No data is transferred from the Receive Data Shift Register on these
channels, no status flags change, and no interrupts are generated.

Figure 19-22 shows receiver timing using TDMxRCEN for an 8-bit word with a continuous
clock, a disabled FIFO, and six words per frame sync. There are only three receive interrupts per
frame instead of the six as in the previous example in which the RCEN register is not used. This
process is explained in Table 19-3.

Figure 19-22. TDM Network Mode Receive Timing with Enable Register

5 Tx shift
Register

TD Pin On active time slots, the TxSR register contents are shifted out on the TD pin, one bit
per rising edge of TCK. On inactive time slots, the TD pin is tri-stated so it can be
driven by another device.

6 Tx Data
Register

Tx Shift
Register

On disabled time slots (TCEN = 0) and the channel mask is enabled (TCMA = 1), The
contents of the TDMxTDR are discarded and the TDR status flag is set as if the data
were shifted out.

Table 19-2. Transmit Timing with the Mask Register (Continued)

Note
Source
Signal

Destination
Signal

Description

RCEN[0] RCEN[1] RCEN[2] RCEN[3] RCEN[4] RCEN[5]

Time Slot

RCK

Internal Word Clock

RFS

RCEN Bits Usage

RD

RER Register

RDREG Register

RDR Interrupt

Valid Indefinite transition depends on SW interrupt processingInvalid

7

8

9

10

Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

6

MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-19

Time-Division Multiplexing (TDM) Interface
19.5.2 Data Structures

The TDM receives and transmits four types of data. There is 16- bit data unencoded, 8-bit data
unencoded, 8 bit data A-law encoded and 8 bit data μ-law encoded. The A/μ-law conversion is
performed according to the ITU-T recommendation G.711. The channel size and encoding is
identical for all channels in the frame.

When the TDMxRFP[RCS] field (page 19-36) is set to receive an 8-bit A-law encoded channel,
the 8-bit pulse code modulation (PCM) compressed sample is converted into a 13-bit PCM linear
sample padded with three zeros on the right to create a 16 bit data structure. When the
TDMxRFP[RCS] field is set to receive an 8-bit μ-law encoded channel, the 8-bit PCM
compressed sample is converted into a 14-bit PCM linear sample padded with two zeros on the
right to create a 16-bit data structure.

When the TDMxTFP[TCS] field (page 19-38) is set to transmit an 8-bit A-law encoded channel,
the 16 bits to be transmitted (13-bit linear sample padded with three zeros on the right) are
converted into an 8-bit PCM A-law compressed sample, which is transmitted out of the TDM.
When the TDMxTFP[TCS] field is set to transmit an 8-bit μ-law encoded channel, the 16 bits to
be transmitted (14-bit linear sample padded with three zeros on the right) are converted into a
8-bit PCM μ-law compressed sample, which is transmitted out of the TDM.

19.5.3 FIFO Configuration

The TDM has a FIFO in both the Tx and Rx paths. After reset, the FIFO is bypassed and
disabled. To enable the FIFO, set the Rx FIFO Enable bit in the TDMxRIR register (page 19-31)
and the Tx FIFO Enable bit in the TDMxTIR register (page 19-34). The FIFO watermark
registers configure when the FIFO sets event bits and/or interrupts. The TDMxRIR[RFWM] and
TDMxTIR[TFWM] bits are set according to how much data is held in the FIFO. The FIFO has a
depth of four lines. The Rx FIFO is cleared when the TDM Rx is disabled, and the Tx FIFO is
cleared when the TDM Tx is disabled.

Table 19-3. Receive Timing with Mask Register

Note
Source
Signal

Destination
Signal

Description

6 — — Example of a frame with six time slots and receive data from channels 0, 2, and 5. The
receive hardware obtains data only on the RD pin when the RCEN bit is set to one.

7 RFS — Example with bit length frame sync and standard timing. Frame timing begins with the
rising edge of RFS.

8 RD Rx Shift
Register

Data on the RD pin is sampled on the falling edge of RCK and shifted into the Rx shift
register.

9 Rx shift
Register

Rx Data
Register

At the word clock, the data in the Rx shift register is transferred to the Rx register for
enabled time slots.

10 RDR
Interrupt

— This flag is set for each word clock, or time slot, where the RCEN bit is set, indicating data
is available to be processed. The software must keep track of the time slots so it knows
which data it is processing. When the receive interrupts are enabled, an interrupt is
generated when the status flag is set. Software reads TDMxRDR to clear the interrupt.
MSC711x Reference Manual, Rev. 0

19-20 Freescale Semiconductor

Transmit and Receive Operation
The width of each line in the FIFO is set to either 1 sample of 16/8-bit data or 64 bits packed with
eight 8-bit samples or four 16-bit samples, as shown in Figure 19-23. Data width must be
accessed in one read/write transaction, as configured via the TDMxRIR[RWEN] and
TDMxTIR[TWEN] bits. In Wide FIFO mode, the channels are packed from the lowest address to
the highest address in the RDREG. When a new frame comes in, the Rx shift register stops filling
the current line in the FIFO and moves to the next line in the FIFO. On the transmit side, Wide
FIFO mode reads data sequentially from the lowest address to the highest address. If a frame ends
in the middle of a FIFO line, the remainder of the line is bogus data that is not transmitted. The
receiver does not put data in the remainder of the line and should be ignored on reads.

Figure 19-23. TDM Rx FIFO Using RWEN Bit with Ten 8-Bit Channels

Receive

Shift Register

8/16-bit

Rx FIFO

RDR

8/16-bit

Receive

Shift Register

8/16-bit

Rx FIFO

RDR

64-bit

RWEN = 1

RWEN = 0

Channel n + 2

Channel n + 1

Channel n

X = Invalid Data Channel

Lowest Address Highest AddressLowest Address

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9 10 X X X X X X
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-21

Time-Division Multiplexing (TDM) Interface
Figure 19-24. TDM Tx FIFO Using TWEN Bit with 10 8-Bit Channels

19.5.4 DMA Configuration

The DMA controller must be configured to transfer the appropriate amount of data for the
TDMxTDR or TDMxRDR on the basis of channel size, encoding, and whether Wide FIFO mode
is used. The DMA interface is enabled by setting the TDMxRIR[RDMA] bit (page 19-31) or the
TDMxTIR[TDMA] bit (page 19-34). Table 19-4 describes the conditions when the DMA
controller is requested to service the TDM data registers. When the DMA controller asserts the
DMA acknowledge signal, the requests deassert if the event flags clear (no more data to service).
See Chapter 8, DMA Controller for details on DMA operation and channel priorities.

Table 19-4. DMA Request Channels for the TDM

Source
of DMA
Request

Event in TDM
Causing Request

Description

TDM0
Rx

Rx Data Ready or
Rx FIFO Full

If the Rx FIFO is not enabled, the Rx Data Ready flag causes the Rx DMA
request to go active. If the Rx FIFO is enabled, the Rx FIFO Full flag causes the
Rx DMA request to go active.

TDM0
Tx

Tx Data Empty or
Tx FIFO Empty

If the Tx FIFO is not enabled, the Tx Data Register Empty flag causes the Tx
DMA request to go active. If the Tx FIFO is enabled, the Tx FIFO Empty flag
causes the DMA request to go active.

Transmit

Shift Register

8/16-bit

Tx FIFO

TDR

8/16-bit

Transmit

Shift Register

8/16-bit

Tx FIFO

TDR

64-bit

TWEN = 1

TWEN = 0

Channel n

Channel n + 1

Channel n + 2

X = Invalid Data Channel

Lowest Address Highest AddressLowest address

LSB MSB

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

9 10 X X X X X X
MSC711x Reference Manual, Rev. 0

19-22 Freescale Semiconductor

Software Programming Sequence
The DMA controller can access the TDM only when the DMA controller TCDx-2[NBYTES]
field equals the number of bytes in one line of the FIFO (1, 2, or 8 bytes). That is, the Rx
TCDx-1[SSIZE] and the Tx TCDx-1[DSIZE] must be equal to 000, 001, or 011, corresponding
to 1, 2, or 8 bytes, respectively. Additionally, the TCDx-1[DSIZE] for Rx and TCDx-1[SSIZE]
for Tx must be equal to or less than TCDx-2[NBYTES] to meet the DMA requirements on
SSIZE and DSIZE.

19.5.5 Interrupts

Normal and error receiver interrupts can occur when receive interrupts are enabled via the TDMx
Receive Interrupt Enable Register (TDMxRIER)(page 19-43). The bits in this register enable
interrupts based on the event occurring. If more than one interrupt is enabled, an interrupt occurs
for either event. To clear the interrupt, a one is written to the corresponding bit of the interrupt in
the TDMx Receive Event Register (TDMxRER) (page 19-45) or the Receive Data Register
(TDMxRDREG) (page 19-51) is read, depending on the type of interrupt.

Normal and error transmitter interrupts can occur when receive interrupts are enabled via the
TDMx Transmit Interrupt Enable Register (TDMxTIER)(page 19-44). The bits in this register
enable interrupts based on the event occurring. If more than one interrupt is enabled, an interrupt
occurs for either event. To clear the interrupt, a one is written to the corresponding bit of the
interrupt in the TDMx Transmit Event Register (TDMxTER)(page 19-47) or the Transmit Data
Register (TDMxTDR)(page 19-52) is written, depending on the type of interrupt.

19.6 Software Programming Sequence

This section describes the programming procedures for the following tasks:

� Initializing a TDM for a shared operation starting on the same frame.

� Initializing a TDM for a non-shared operation.

� Dynamically configuring a channel for both shared and non-shared operations.

� Configuring the TDM for an I2S operation.

� Powering down a TDM.

TDM1
Rx

Rx Data Ready or
Rx FIFO Full

If the Rx FIFO is not enabled, the Rx data Ready flag causes the Rx DMA
request to go active. If the Rx FIFO is enabled, the Rx FIFO Full flag causes the
Rx DMA request to go active.

TDM1
Tx

Tx Data Empty or
Tx FIFO Empty

If the Tx FIFO is not enabled, the Tx Data Register Empty flag causes the Tx
DMA request to go active. If the Tx FIFO is enabled, the Tx FIFO Empty flag
causes the DMA request to go active.

Table 19-4. DMA Request Channels for the TDM (Continued)

Source
of DMA
Request

Event in TDM
Causing Request

Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-23

Time-Division Multiplexing (TDM) Interface
� Handling synchronization errors.

� Processing transmit normal and transmit error interrupts.

19.6.1 Initialization for a Shared Operation

The sequence for initializing the TDM for a shared operation (TDMxGIR[RTS] = 1) in which
both the Tx and Rx machines must start on the same frame is as follows:

1. Bring the MSC711x device out of reset.

2. Program the following TDM configuration registers:

• TDMxGIR (page 19-29)

• TDMxRIR (page 19-31)

• TDMxTIR (page 19-34)

• TDMxRFP (page 19-36)

• TDMxTFP (page 19-37)

3. Program all Channel Enable Registers and Transmit Channel Mask Registers as
disabled:

• TDMxRCEN[0–3] (page 19-39)

• TDMxTCEN[0–3] (page 19-40)

• TDMxTCMA[0–3] (page 19-41)

These are the only registers whose values that can be changed during TDM operation.
These registers are sampled at the beginning of the frame to determine how the current
frame is to be processed.

4. Enable the TDM Rx and Tx by setting the TDMxRCR[REN] (page 19-42) and
TDMxTCR[TEN] bits (page 19-42).

5. Wait until TSR[TENS] and RSR[RENS] are set.

6. If the TDM is serviced by DMA transfers, immediately use a software-started DMA
channel to write data to the Tx data registers. This step must be completed before two
Tx frame syncs arrive after the TDM is enabled.

If the TDM is serviced by interrupts, immediately write data to the Tx data register(s).
This step must be completed before two Tx frame syncs arrive after the TDM is enabled.

7. To enable channels, follow the steps outlined in 19.6.3, Dynamic Channel
Configuration for a Shared Operation.

8. All other writes and all reads are initiated either by an interrupt or a DMA request,
depending on the configuration.

This procedure ensures proper operation of the TDM by changing the control bits before the
TDM is enabled. Except for the channel enable and mask registers, these control bits should not
be changed during TDM operation.
MSC711x Reference Manual, Rev. 0

19-24 Freescale Semiconductor

Software Programming Sequence
19.6.2 Initialization for a Non-Shared Operation

The sequence for initializing the TDM for a non-shared operation is as follows:

1. Bring the device out of reset.

2. Program the TDM configuration registers.

3. Enable the TDM Rx and Tx by setting the TDMxRCR[REN] (page 19-42) and
TDMxTCR[TEN] bits (page 19-42).

4. Wait until TSR[TENS] and RSR[RENS] are set.

5. If the TDM is serviced by DMA transfers, immediately use a software-started DMA
channel to write data to the Tx data registers. This step must be completed before two
Tx frame syncs arrive after the TDM is enabled.

If the TDM is serviced by interrupts, immediately write data to the Tx data register(s).
This step must be completed before two Tx frame syncs arrive after the TDM is enabled.

6. All other writes and all reads are initiated either by an interrupt or a DMA request,
depending on the configuration.

This procedure also applies for a shared operation when the Tx and Rx machines are not required
to start on the same frame. The procedure ensures proper operation of the TDM by changing the
configuration bit values before the TDM is enabled. The configuration bits values should not be
changed during TDM operation.

19.6.3 Dynamic Channel Configuration for a Shared Operation

During a shared operation (TDMxGIR[RTS] = 1), the sequence for changing channels during
TDM operation is as follows:

1. Enable the channel enable update interrupt (in TDMxRIER[RCEUE], page 19-43).

2. Read the values of TDMxRCEN0 into one of the SC1400 core data registers.

3. Immediately write this same value back out to the same register, TDMxRCEN0.

This creates an interrupt for a receive on a frame boundary without modifying the values
in this register.

4. Wait for the receive channel enable update interrupt, TDMxRER[RCEU]. Upon
receiving this interrupt, turn ON/OFF the appropriate channels by writing the new
values to the Transmit and Receive Channel Enable Registers and the Transmit Channel
Mask Registers:

• TDMxRCEN[0–3] (page 19-39)

• TDMxTCEN[0–3] (page 19-40)

• TDMxTCMA[0–3] (page 19-41)

This step should be completed within half a frame after the interrupt is received.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-25

Time-Division Multiplexing (TDM) Interface
5. Wait until the next receive channel enable update interrupt occurs. Read all enable and
mask registers to verify that the writes in Step 4 completed in time.

6. Update any data structures for the TDM in memory.

7. Disable the channel enable update interrupt.

8. Process data as normal.

When there are only one or two physical channels per frame (that is, TDMxRFP[RNCF] = 0x0 or
0x1), the procedure for non-shared dynamic channel configuration must be used instead.

19.6.4 Dynamic Channel Configuration for a Non-Shared Operation

The sequence for changing channels during TDM operation is as follows:

1. Enable the channel enable update interrupt (in TDMxRIER, page 19-43, for a receive
channel or in TDMxTIER, page 19-44, for a transmit channel).

2. Read the value of TDMxRCEN0 and TDMxTCEN0 into two of the SC1400 core data
registers.

3. Immediately write these same values back out to the same registers, TDMxRCEN0 and
TDMxTCEN0.

This creates interrupts for receive and transmit on the frame boundaries without
modifying the values in these registers.

4. Wait for the transmit channel enable update interrupt, TDMxRER[RCEU]. Upon
receiving this interrupt, turn ON/OFF the appropriate channels by writing the new
values to the Transmit Channel Enable Registers and the Transmit Channel Mask
Registers:

• TDMxTCEN[0–3] (page 19-40)

• TDMxTCMA[0–3] (page 19-41)

This step should be completed within half a frame after the interrupt is received.

5. Wait for the receive channel enable update interrupt, TDMxRER[RCEU]. Upon
receiving this interrupt, turn ON/OFF the appropriate channels by writing the new
values to the Receive Channel Enable Registers (TDMxRCEN[0–3]).

This step should be completed within half a frame after the interrupt is received.

Note: Steps 4 and 5 can be completed in either order.

6. Wait until the next transmit channel enable update interrupt occurs. Read all enable and
mask registers to verify that the writes in Step 4 completed in time.

7. Wait until the next receive channel enable update occurs. Read all enable registers to
verify that the writes in Step 5 completed in time.

Note: Steps 6 and 7 can be completed in either order.
MSC711x Reference Manual, Rev. 0

19-26 Freescale Semiconductor

Software Programming Sequence
8. Update any data structures for the TDM in memory.

9. Disable the channel enable update interrupt.

10. Process data as normal.

19.6.5 Configuring a TDM for I2S Operation

To prepare a TDM for I2S operation, configure the TDMxTIR and TDMxRIR as follows:

1. Set the frame sync out length equal to the channel width:

a. TDMxTIR[TSL] = 1.

b. TDMxRIR[RSL] = 1.

2. Set the frame sync to active high on the right channel and active low on the left channel:

a. TDMxTIR[TSA] = 0.

b. TDMxRIR[RSA] = 0.

3. Set the data and synch change on the falling edge only (one bit delay):

a. TDMxTIR[TDE] = 1, TFSE = 1, TFSD = 1.

b. TDMxRIR[RDE] = 1, RFSE = 1, RFSD = 01.

4. Set as reversed data order, with the MSB first:

a. TDMxTIR[TRDO] = 1.

b. TDMxRIR[RRDO] = 1.

19.6.6 Powering Down a TDM

Shut off the TDM as follows:

1. Disable all channels by clearing all the Tx and Rx channel enable bits.

2. Read all data out of the receive data registers.

3. Disable the TDM Rx and Tx by clearing the TDMxRCR[REN] and TDMxTCR[TEN]
bits.

4. Clear all TDMxRER and TDMxTER interrupt/status bits by writing 1s to the registers.

5. Verify that the TDM is disabled by reading 0 for both TDMxRSR[RENS] and
TDMxTSR[TENS].

19.6.7 Handling Synchronization Errors

Handle a synchronization error as follows:
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-27

Time-Division Multiplexing (TDM) Interface
1. Read all data out of the receive data registers.

2. If you want to clear out the data in the Tx FIFO/ Tx data registers, disable the TDM Tx
by clearing TDMxTCR[TEN] bit (page 19-42). Then write data to the Tx Data
register(s) (page 19-52).

Assuming the TDM synchronizes again, all other writes and all reads are initiated either
by an interrupt or a DMA request, depending on the configuration.

19.7 TDM Programming Model

The handshake between the TDM module and the SC1400 core occurs via a set of registers,
interrupts, and DMA requests. The TDM registers are mapped into the APB and AHB address
space. For information on TDMx_BASE, refer to the memory map in Table 5-1, Summary —
Base Addresses for MSC711x Register Files, on page 5-4. The TDM is reset by either a AHB
reset or a APB reset. When the TDM resets, all control registers are reset and the TDM is
disabled.

19.7.1 TDM APB Interface Registers

This section discusses the TDM registers in the APB memory map. Refer to Section 19.7.2, TDM
AHB Interface Registers, on page 19-51 for details on the registers in the AHB memory map. The
APB registers are divided into three categories:

� Configuration registers to set the operation modes and provide indications for all
channels. They are set before the TDM is enabled and should not be changed while the
TDM is active.

� Control registers to set the channel specific parameters individually for each channel and
to set the threshold pointers. These registers can be changed during operation. The channel
enable and mask registers are sampled at the beginning of the frame.

� Status registers, which are read-only registers that can be accessed at any time.

The APB memory-mapped TDM registers are listed as follows, along with the number of the
page where each is discussed:

� TDM configuration registers:

— TDMx General Interface Register (TDMxGIR), page 19-29.
— TDMx Receive Interface Register (TDMxRIR), page 19-31.
— TDMx Transmit Interface Register (TDMxTIR), page 19-34.
— TDMx Receive Frame Parameters Register (TDMxRFP), page 19-36.
— TDMx Transmit Frame Parameters Register (TDMxTFP), page 19-37.
— TDMx Receive Channel Enable Registers 0–3, TDMxRCEN[0–3], page 19-39.

� TDM control registers:

— TDMx Transmit Channel Enable Registers 0–3, TDMxTCEN[0–3], page 19-40.
MSC711x Reference Manual, Rev. 0

19-28 Freescale Semiconductor

TDM Programming Model
— TDMx Transmit Channel Mask Registers 0–3, TDMxTCMA[0–3], page 19-41.
— TDMx Receive Control Register (TDMxRCR), page 19-42.
— TDMx Transmit Control Register (TDMxTCR), page 19-42.
— TDMx Receive Interrupt Enable Register (TDMxRIER), page 19-43.
— TDMx Transmit Interrupt Enable Register (TDMxTIER), page 19-44.

� TDM status registers:

— TDMx Receive Event Register (TDMxRER), page 19-45.
— TDMx Transmit Event Register (TDMxTER), page 19-47.
— TDMx Receive Status Register (TDMxRSR), page 19-49.
— TDMx Transmit Status Register (TDMxTSR), page 19-50.

19.7.1.1 Configuration Registers

TDMxGIR TDMx General Interface Register TDMxBASE + 0x00

TDMxGIR defines the operating mode of the TDMx interface.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— LPBK CTS RTS

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-29

Time-Division Multiplexing (TDM) Interface
See Table 19-6 for the timer output source of the TDM clock in independent and shared modes.

.

Table 19-5. TDMxGIR Bit Descriptions

Name Reset Description Settings

—
31–3

0 Reserved. Write to zero for future compatibility.

LPBK
2

0 TDM Loopback Mode
Enables/disables TDM Loopback mode. When this bit is set,
the TDM internally loops back the TD output to the RD input.
Disabled Tx channels get an idle pattern. Use this feature when
the channels enabled in the Tx/Rx are the same, the Tx/Rx
frame parameters are the same, and the RTS bit is set. The RD
input pin data is ignored.

Note: Shared operation is recommended in loopback mode.
For details, see 19.6.1, Initialization for a Shared
Operation.

0 No loopback.

1 Loopback mode.

CTS
1

0 Common TDM Signals
Defines whether the TDM shares frame sync and clock signals
with other TDM modules. The TDMs can share signals as
follows:

• TDM0 and TDM1 do not share signals. (TDM0CTS=0,
TDM1CTS=0).

• TDM0 and TDM1 share signals. (TDM0CTS=1,
TDM1CTS=1) with TDM0 pins being the source of the
signals for TDM1.

See Table 19-7. If the TDM modules share sync and clock
signals, the TDMxRFP, TDMxTFP, TDMxRIR, and TDMxTIR
registers should be configured the same way for all TDM
modules, if the MSC711x device has multiple TDM modules.

0 TDM does not share signals
with other TDM modules

1 TDM shares sync and clock
signals with other TDM
modules.

RTS
0

0 Receive and Transmit Sharing
Defines the TDM serial interface operating mode. It determines
whether the TDM transmit and receive paths are independent
or share the same clock and sync. If frame sync and clock are
shared, the transmitter pins are used and the receiver pins are
not for frame sync and clock. Refer to Table 19-7.

0 Receive and transmit are
independent.

1 Receive and transmit share
the frame clock and frame
sync.

Table 19-6. Timer Module B Inputs for the TDM Modules

CTS RTS
TDM0 TDM1 TDM2

Notes
TCK RCK TCK RCK TCK RCK

0 0 TOUT0 TOUT1 TOUT2 TOUT3 TOUT2 TOUT3 TDM is independent from other TDMs and Rx
and Tx are Independent.

0 1 TOUT0 TOUT0 TOUT2 TOUT2 TOUT2 TOUT2 TDM is independent from other TDMs and Rx
and Tx are shared.

1 0 TOUT0 TOUT1 TOUT0 TOUT1 TOUT0 TOUT1 TDM uses TDM0 as common source and Rx
and Tx are Independent.

1 1 TOUT0 TOUT0 TOUT0 TOUT0 TOUT0 TOUT0 TDM uses TDM0 as common source and Rx
and Tx are shared.
MSC711x Reference Manual, Rev. 0

19-30 Freescale Semiconductor

TDM Programming Model
TDMxRIR defines the TDMx receiver interface operation.

Table 19-7. Pins for TDMx Modules Based on CTS and RTS

CTS RTS
TDMx

Comments
TCK RCK TFS RFS

0 0 TDMxTCK TDMxRCK TDMxTFS TDMxRFS TDM is independent from other TDMs, and Rx and
Tx are independent.

0 1 TDMxTCK TDMxTCK TDMxTFS TDMxTFS TDM is independent from other TDMs, and Rx and
Tx are shared.

1 0 TDM0TCK TDM0RCK TDM0TFS TDM0RFS TDM uses TDM0 as a common source, and Rx and
Tx are Independent.

1 1 TDM0TCK TDM0TCK TDM0TFS TDM0TFS TDM uses TDM0 as a common source, and Rx and
Tx are shared.

TDMxRIR TDMx Receive Interface Register TDMxBASE + 0x04

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— RFWM

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFEN RWEN RSO — RSL — RCOE — RDMA RFSD RSA RDE RFSE RRDO

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-8. TDMxRIR Bit Descriptions

Name Reset Description Settings

—
31–18

0 Reserved. Write to zero for future compatibility.

RFWM
17–16

00 Receive FIFO Watermark
Determines when the receive full FIFO event occurs.

00 The FIFO is full with 1 or more
elements.

01 The FIFO is full with 2 or more
elements.

10 The FIFO is full with 3 or more
elements.

11 The FIFO is full with 4 or more
elements.

RFEN
15

0 Receive FIFO Enable
Determines whether the receive FIFO is used.

0 Rx FIFO is not used.

1 Rx FIFO is used.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-31

Time-Division Multiplexing (TDM) Interface
RWEN
14

0 Receive Wide FIFO Enable
Determines whether the receive FIFO is used as one
sample (8/16 bit data) or as 64 bits packed with eight 8-bit
data or four 16-bit data per entry in the FIFO. RWEN is set
only when RFEN is set.

0 Rx FIFO is used as 16 bits or 8 bits
wide.

1 Rx FIFO is used as 64 bits wide,
packed with eight 8-bit data or four
16-bit data.

RSO
13

0 Receive Sync Output
Determines whether the receive sync is driven out by the
TDM receiver or is input to the TDM receiver. For details,
see Section 19.4.1, Sync Out Configuration, on page 19-9.

0 Receive sync is input.

1 Receive sync is output.

—
12

0 Reserved. Write to zero for future compatibility.

RSL
11

0 Receive Sync Out Length
Indicates whether the TDMxRFS is asserted for one cycle
of TDMxRCK or is asserted for the duration of the first
channel in the frame. RSL must be cleared to 0 when there
is only 1 receive channel in a frame. For details, see
Section 19.4.1, Sync Out Configuration, on page 19-9.

0 The receive sync out width is one bit.

1 The receive sync out width is equal
to the channel width.

—
10

0 Reserved. Write to zero for future compatibility.

RCOE
9

0 Receive Clock Output Enable
Determines whether the receive clock out signal,
TDMxRCK, is driven out from the appropriate timer. For
details, see Section 11.2, Clock Synthesis Module
Operation, on page 11-4.

0 The receive clock is an input.

1 The receive clock is an output.

—
8-7

0 Reserved. Write to zero for future compatibility.

RDMA
6

0 Receive DMA Enable
Specifies whether the TDM requests DMA service for the
receiver. When set, the TDM requests a DMA module
transfer of the received data when:

• The Rx Data Ready TDMxRER[RDR] bit is set (Rx
FIFO disabled).

• The Receive FIFO Full (TDMxRER[RFF] bit is set
(Rx FIFO enabled).

0 The TDM does not request DMA
service for the receiver.

1 The TDM requests DMA service for
the receiver.

RFSD
5–4

0 Receive Frame Sync Delay
With the RDE and the RFSE bits, determines the number of
clocks between the receive sync signal and the first data bit
of the receive frame. For examples, see Section 19.4.2,
Sync In Configuration, on page 19-10.

Refer to Table 19-9.

RSA
3

0 Receive Sync Active
Determines the polarity of the receive sync signal. For
details, see Section 19.4.2, Sync In Configuration, on page
19-10.

0 The receive sync is active on logic 1.

1 The receive sync is active on logic 0.

RDE
2

0 Receive Data Edge.
Determines whether the receive data is driven out on the
rising or falling edge of the receive clock. For details, see
Section 19.4.2, Sync In Configuration, on page 19-10.

0 The receive data is driven out on the
rising edge of the receive clock.

1 The receive data is driven out on the
falling edge of the receive clock.

Table 19-8. TDMxRIR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

19-32 Freescale Semiconductor

TDM Programming Model
RFSE
1

0 Receive Frame Sync Edge.
Determines whether the receive frame sync signal is
sampled on the rising or falling edge of the receive clock.
For details, see Section 19.4.2, Sync In Configuration, on
page 19-10.

0 Driven on the rising edge of the
receive clock.

1 Driven on the falling edge of the
receive clock.

RRDO
0

0 Receive Reversed Data Order.
For examples, see Section 19.4.4, Reverse Data Order, on
page 19-15.

0 The first bit of a received channel is
stored as the least significant bit in
internal memory.

1 The first bit of a received channel is
stored as the most significant bit in
internal memory.

Table 19-9. Received Data Delay for Receive Frame Sync

Receive Frame Sync
Delay (RFSD)

Receive Frame Sync
Edge (RFSE)

Receive Data Edge
(RDE) Receive Clocks1

00 0 0 0

00 0 1 0.5

00 1 0 0.5

00 1 1 0

01 0 0 1

01 0 1 1.5

01 1 0 1.5

01 1 1 1

10 0 0 2

10 0 1 2.5

10 1 0 2.5

10 1 1 2

11 0 0 3

11 0 1 3.5

11 1 0 3.5

11 1 1 3

Notes: 1. Receive clocks is the number of receive clocks between the first edge of the receive
frame sync and the drive of the first data bit of the received frame.

Table 19-8. TDMxRIR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-33

Time-Division Multiplexing (TDM) Interface
TDMxTIR defines the TDMx transmitter interface operation.

TDMxTIR TDMx Transmit Interface Register TDMxBASE + 0x08

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— TFWM

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TFEN TWEN TSO TAO TSL — TCOE — TDMA TFSD TSA TDE TFSE TRDO

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-10. TDMxTIR Bit Descriptions

Name Reset Description Settings

—
31–18

0 Reserved. Write to zero for future compatibility.

TFWM
17–16

01 Transmit FIFO Watermark
Determines when the transmit full FIFO event occurs.

00 FIFO empty with 1 or more empty
slots.

01 FIFO empty with 2 or more empty
slots.

10 FIFO empty with 3 or more empty
slots.

11 FIFO empty with 4 or more empty
slots.

TFEN
15

0 Transmit FIFO Enable
Determines whether the transmit FIFO is used.

0 Tx FIFO not used.

1 Tx FIFO used.

TWEN
14

0 Transmit Wide FIFO Enable
Determines whether the transmit FIFO is used as one
sample (8/16-bit data) or as 64 bits packed with eight
8-bit data or four 16-bit data per entry in the FIFO. Set
TWEN only when TFEN is set.

0 Tx FIFO used as 16-bit or 8-bit wide.

1 Tx FIFO is used as 64 bit wide,
packed with eight 8-bit data or four
16-bit data.

TSO
13

0 Transmit Sync Output
Determines whether the transmit sync is driven out by
the TDM transmitter or it input to the TDM transmitter.
For details, see Section 19.4.1, Sync Out Configuration,
on page 19-9

0 Transmit sync is input.

1 Transmit sync is output.

TAO
12

0 Transmit Always Output
Determines whether the TDM transmitter drives the
TxTD pin for the inactive channels.

0 TDM transmitter does not drive the
TDMxDAT for inactive channels.

1 TDM transmitter drives the
TDMxDAT, regardless of whether the
channel is active.
MSC711x Reference Manual, Rev. 0

19-34 Freescale Semiconductor

TDM Programming Model
TSL
11

0 Sync Out Length
Indicates whether the TDMxTFS is asserted for one
cycle of TDMxTCK or is asserted for the duration of the
first channel in the frame. For details, see Section
19.4.1, Sync Out Configuration, on page 19-9.

0 The sync out width is one bit.

1 The sync out width is equal to the
channel width.

—
10

0 Reserved. Write to zero for future compatibility.

TCOE
9

0 Transmit Clock Output Enable
Determines whether the transmit clockout signal,
TDMxTCK, is driven out from the appropriate timer.

0 Transmit clock is an input.

1 Transmit clock is an output.

—
8–7

0 Reserved. Write to zero for future compatibility.

TDMA
6

0 Transmit DMA Enable
Determines whether the TDM requests DMA service for
the transmitter. When TDMA is set, the TDM requests a
DMA module transfer of the transmit data when:

• The Tx Data Register Empty TDMxTER[TDR] bit
is set (Tx FIFO disabled).

• The Transmit FIFO Empty TDMxTER[TFE] bit is
set (Tx FIFO enabled).

0 The TDM does not request DMA
service for the transmitter.

1 The TDM does request DMA service
for the transmitter.

TFSD
5–4

0 Transmit Frame Sync Delay
With the TDE and the TFSE bits, determines the number
of clocks between the transmit sync signal and the first
data bit of the transmit frame. For examples, see
Section 19.4.2, Sync In Configuration, on page 19-10.

Refer to Table 19-11.

TSA
3

0 Transmit Sync Active
Determines the polarity of the transmit sync signal. For
details, see Section 19.4.2, Sync In Configuration, on
page 19-10.

0 The transmit sync is active on logic 1.

1 The transmit sync is active on logic 0.

TDE
2

0 Transmit Data Edge.
Determines whether the transmit data is driven out on
the rising or falling edge of the transmit clock. For
details, see Section 19.4.2, Sync In Configuration, on
page 19-10.

0 Transmit data is driven out on the
rising edge of the transmit clock.

1 Transmit data is driven out on the
falling edge of the transmit clock.

TFSE
1

0 Transmit Frame Sync Edge.
Determines whether the transmit frame sync signal is
sampled with the rising or falling edge of the receive
clock. For details, see Section 19.4.2, Sync In
Configuration, on page 19-10.

0 Driven out on the rising edge of the
transmit clock.

1 Driven out on the falling edge of the
transmit clock.

TRDO
0

0 Transmit Reversed Data Order.
For examples, see Section 19.4.4, Reverse Data Order,
on page 19-15.

0 The least significant bit of the
memory is sent out as the first
transmit data bit.

1 The most significant bit of the
memory is sent out as the first
transmit data bit.

Table 19-10. TDMxTIR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-35

Time-Division Multiplexing (TDM) Interface
TDMxRFP defines the TDMx receive frame parameters.

Table 19-11. Transmit Data Delay for Transmit Frame Sync

Transmit Frame Sync
Delay (TFSD)

Transmit Frame Sync
Edge (TFSE)

Transmit Data Edge (TDE) Transmit Clocks1

00 0 0 0

00 0 1 0.5

00 1 0 0.5

00 1 1 0

01 0 0 1

01 0 1 1.5

01 1 0 1.5

01 1 1 1

10 0 0 2

10 0 1 2.5

10 1 0 2.5

10 1 1 2

11 0 0 3

11 0 1 3.5

11 1 0 3.5

11 1 1 3

Notes: 1. Transmit clocks is the number of transmit clocks between the first edge of the transmit frame sync and
the first data bit of the frame that is driven out.

TDMxRFP TDMx Receive Frame Parameters TDMxBASE + 0x0C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— RNCF

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RCS — RT1 —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

19-36 Freescale Semiconductor

TDM Programming Model
Table 19-12. TDMxRFP Bit Descriptions

Name Reset Description Settings

—
31–24

0 Reserved. Write to zero for future compatibility.

RNCF
23–16

0 Receive Number of Channels in a TDM Frame
Specifies the total number of channels that are received in
the TDM modules. One TDM frame can contain 1–128
channels at a granularity of two.

Note: If RNCF is clear, the minimum number of channels
is one.

0x00 1 received channels.

0X01 2 received channels.

0x02 Reserved.

0x03 4 received channels.

0x04 Reserved

.

.

.

0x7D 126 received channels.

0x7F 128 received channels.

0x80 – 0xFF Reserved

Note: The even values are
reserved, except x00.

—
15–6

0 Reserved. Write to zero for future compatibility.

RCS
5-4

0 Receive Channel Size.
Determines the receiver channel size for all channels in the
frame, including decoding μ-Law and A-Law.

00 Receive channel size is 8
bits.

01 Receive channel size is 8 bits
using μ-Law decoding.

10 Receive channel size is 8 bits
using A-Law decoding.

11 Receive channel size is 16
bits.

—
3–2

0 Reserved. Write to zero for future compatibility.

RT1
1

0 Receive T1 frame
Determines whether the receive frame is T1 frame or non
T1. In T1 mode the channel size must be 8 (RCS = 0) and
the number of channels must be 24 (RNCF = 0x18). For
details, see Section 19.3, TDM Basics, on page 19-2.

0 The receive frame is a non
T1 frame.

1 The receive frame is a T1
frame.

—
0

0 Reserved. Write to zero for future compatibility.

TDMxTFP TDMx Transmit Frame Parameters TDMxBASE + 0x10

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

— TNCF

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-37

Time-Division Multiplexing (TDM) Interface
TDMxTFP defines the TDMx transmit frame parameters.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TCS — TT1 —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-13. TDMxTFP Bit Descriptions

Name Reset Description Settings

—
31–24

0 Reserved. Write to zero for future compatibility.

TNCF
23–16

0 Transmit Number of Channels in a TDM Frame
Specifies the total number of channels that are
transmitted by the TDM module. One TDM frame can
contain 1–128 channels at a granularity of two.

Note: If TNCF is clear, the minimum number of
channels is one.

0x00 1 transmit channels.

0x01 2 transmit channels.

0x02 Reserved.

0x03 4 transmit channels.

0x04 Reserved.

.

.

.

0x7D 126 transmit channels.

0x7F 128 transmit channels.

0x80 – 0xFF Reserved.

Note: The even values are reserved,
except 0x00.

—
15–6

0 Reserved. Write to zero for future compatibility.

TCS
5-4

0 Transmit Channel Size
Determines the transmitter channel size for all channels in
the frame.

00 Transmit channel size is 8 bits.

01 Transmit channel size is 8 bits
using μ-Law encoding.

10 Transmit channel size is 8 bits
using A-Law encoding.

11 Transmit channel size is 16
bits.

—
3–2

0 Reserved. Write to zero for future compatibility.

TT1
1

0 Transmit T1 frame
Determines whether the transmit frame is T1 frame. In T1
mode, the channel size must be 8 (TCS = 0) and the
number of channels must be 24 (TNCF= 0x18). For
details, see Section 19.3, TDM Basics, on page 19-2.

0 Transmit frame is not a T1 frame.

1 Transmit frame is a T1 frame.

—
0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

19-38 Freescale Semiconductor

TDM Programming Model
19.7.1.2 Control Registers

TDMxRCENx TDMx Receive Channel Enable x
TDMxRCEN0 TDMxBASE + 0x20
TDMxRCEN1 TDMxBASE + 0x24
TDMxRCEN2 TDMxBASE + 0x28
TDMxRCEN3 TDMxBASE + 0x2C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCENx

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCENx

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-14. TDMxRCEN[0–3] Bit Descriptions

Name Reset Description Settings

RCEN
31–0

0 Receive Channel Active Enable Group 0–3 [31–0]
Set when the receive channel n is active. Each bit
corresponds to each channel. For example, Group 0,
bit 0 is the active bit for channel 0 and bit 1 is the active
bit for channel 1.

0 The channel is not active.

1 The channel is active.

Notes: 1. Group 0 = Channels 0–31.

2. Group 1 = Channels 32–63.
3. Group 2 = Channels 64–95.

4. Group 3 = Channels 96–127.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-39

Time-Division Multiplexing (TDM) Interface
TDMxTCENx TDMx Transmit Channel Enable x
TDMxTCEN0 TDMxBASE + 0x40
TDMxTCEN1 TDMxBASE + 0x44
TDMxTCEN2 TDMxBASE + 0x48
TDMxTCEN3 TDMxBASE + 0x4C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TCEN

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCEN

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-15. TDMxTCENx Bit Descriptions

Name Reset Description Settings

TCEN
31–0

0 Transmit Channel Active Enable Group 0–3
Set when the transmit channel n is active. Each bit corresponds
to each channel. For example, Group 0, bit 0 is the active bit for
channel 0 and bit 1 is the active bit for channel 1.

0 The channel is not active.

1 The channel is active.

Notes: 1. Group 0 = Channels 0–31.

2. Group 1 = Channels 32–63.

3. Group 2 = Channels 64–95.
4. Group 3 = Channels 96–127.
MSC711x Reference Manual, Rev. 0

19-40 Freescale Semiconductor

TDM Programming Model
TDMxTCMA[0–3] permit data to be sent to the TDM but not transmitted. TDMxTCMA[0–3]
account for invalid channel data coming into the TDMxTDR. This data is thrown away and the
TDM does not drive the channel. The corresponding TDMxTCENx bit is cleared to disable the
channel, and TDMxTCMA[0–3] allow locations in memory for inactive transmit channels.
Therefore, the DMA controller transfers the invalid data into the TDM where the Transmit
Channel Data Mask can discard it, and the transmit channel is not driven. If this type of
functionality is not desired, do not set the bit to discard the data for the specific channel.

TDMxTCMAx TDMx Transmit Channel Mask x
TDMxTCMA0 TDMxBASE + 0x60
TDMxTCMA1 TDMxBASE + 0x64
TDMxTCMA2 TDMxBASE + 0x68
TDMxTCMA3 TDMxBASE + 0x6C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TCMA

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCMA

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-16. TDMxTCMA[0–3] Bit Descriptions

Name Reset Description Settings

TCMA
31–0

0 Transmit Channel Mask Group x
Set when the transmit channel n data is to be ignored when
received in the transmit data register. Each bit corresponds to
each channel.For example, Group 0, bit 0 is the active bit for
channel 0, and bit 1 is the active bit for channel 1.

0 The channel is transmitted
according the corresponding
TDMxTCEN[0–3] register.

1 The channel data is discarded.

Notes: 1. Group 0 = Channels 0–31.

2. Group 1 = Channels 32–63.

3. Group 2 = Channels 64–95.
4. Group 3 = Channels 96–127.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-41

Time-Division Multiplexing (TDM) Interface
TDMxRCR controls the activation/deactivation of the TDMx receiver. Activation of the receiver
is valid only when the REN bit is clear.

TTDMxRCR TDMx Receive Control Register TDMxBASE + 0x80

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— REN

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-17. TDMxRCR Bit Descriptions

Name Reset Description Settings

—
31–1

0 Reserved. Write to zero for future compatibility.

REN
0

0 Receive Enable.
Determines whether the receive TDM is enabled or disabled.
Setting this bit is the last step in initializing the receiver.

0 Receiver is disabled.

1 Receiver is enabled.

TDMxTCR TDMx Transmit Control Register TDMxBASE + 0x84

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TEN

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

19-42 Freescale Semiconductor

TDM Programming Model
TDMxTCR controls the activation/deactivation of the TDMx Transmitter. The activation of the
transmitter is valid only when the TENS bit is clear.

TDMxRIER has the same bit format as the TDMxRER registers. If one of its bits is clear, the
corresponding event in the TDMxRER registers is masked (see page 19-45).

Table 19-18. TDMxTCR Bit Descriptions

Name Reset Description Settings

—
31–1

0 Reserved. Write to zero for future compatibility.

TEN
0

0 Transmit Enable
Determines whether the transmit TDM is enabled or
disabled. Setting this bit is the last step in initializing the
transmitter.

0 Transmitter is disabled.

1 Transmitter is enabled.

TDMxRIER TDMx Receive Interrupt Enable Register TDMxBASE + 0x88

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RCEUE RLCEE RFSEE RFFEE RDREE RSEEE ROEE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-19. TDMxRIER Bit Descriptions

Name Reset Description Settings

—
31–8

0 Reserved. Write to zero for future compatibility.

RCEUE
8

0 Receive Channel Enable Update Enable
Enables assertion of an interrupt when the Receive Channel
Enable Update (RCEU) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.

RLCEE
7

0 Receive Last Channel Event Enable
Enables assertion of an interrupt when the Receive Last
Channel (RLC) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-43

Time-Division Multiplexing (TDM) Interface
TDMxTIER has the same bit format as the TDMxTER registers. If a TDMxTIER bit is clear, the
corresponding event in the TDMxTER is masked (see page 19-49).

RFSEE
6

0 Receive Frame Sync Event Enable
Enables assertion of an interrupt when the Receive Frame
Sync (RFS) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.

RFFEE
5

0 Receive FIFO Full Event Enable
Enables assertion of an interrupt when the Receive FIFO Full
(RFF) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.

RDREE
4

0 Receive Data Ready Event Enable
Enables assertion of an interrupt when the Receive Data
Ready (RDR) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.

RSEEE
3

0 Receive Sync Error Event Enable
Enables assertion of the receive error interrupt when the
Receive Sync Error (RSE) bit is set (see page 19-45).

0 Receive sync error is masked.

1 Receive sync error is enabled.

ROEE
2

0 Receive Overrun Event Enable
Enables assertion of an interrupt when the Receive Overrun
Event (ROE) bit is set (see page 19-45).

0 Event is masked.

1 Event is enabled.

—
1-0

0 Reserved. Write to zero for future compatibility.

TDMxTIER TDMx Transmit Interrupt Enable Register TDMxBASE + 0x8C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TCEUE TLCEE TFSEE TFEEE TDREE TSEEE TUEE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-19. TDMxRIER Bit Descriptions

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

19-44 Freescale Semiconductor

TDM Programming Model
19.7.1.3 Status Registers

Table 19-20. TDMxTIER Bit Descriptions

Name Reset Description Settings

—
31-8

0 Reserved. Write to zero for future compatibility.

TCEUE
8

0 Transmit Channel Enable Update Enable
Enables assertion of an interrupt when the Transmit Channel
Enable Update (TCEU) bit is set (see page 19-47).

0 Event is masked.

1 Event is enabled.

TLCEE
7

0 Transmit Last Channel Event Enable
Enables assertion of an interrupt when the Transmit Last
Channel (TLC) bit is set (see page 19-47).

0 Event is masked.

1 Event is enabled.

TFSEE
6

0 Transmit Frame Sync Event Enable
Enables assertion of an interrupt when the Transmit Frame
Sync (TFS) bit is set (see page 19-47).

0 Event is masked.

1 Event is enabled.

TFEEE
5

0 Transmit FIFO Empty Event Enable
Enables assertion of an interrupt when the Transmit FIFO
Empty (TFE) bit is set (see page 19-47).

0 Event is masked.

1 Event is enabled.

TDREE
4

0 Transmit Data Register Empty Event Enable
Enables assertion of an interrupt when the Transmit Data
Ready (TDR) bit is set (see page 19-47).

0 Event is masked.

1 Event is enabled.

TSEEE
3

0
Transmit Sync Error Event Enabled
Enables assertion of the transmit error interrupt when the
Transmit Sync Error (TSE) bit is set. See page 19-47

0 Transmit sync error interrupt is
disabled.

1 Transmit sync error interrupt is
enabled.

TUEE
2

0 Transmitter Underrun Error Enabled
Enables assertion of an interrupt when the Transmitter
Under-run Error (TUE) bit is set. See page 19-47.

0 Underrun error is masked.

1 Underrun error is enabled.

—
1-0

0 Reserved. Write to zero for future compatibility.

TDMxRER TDMx Receive Event Register TDMxBASE + 0xA0

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RCEU RLC RFS RFF RDR RSE ROE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-45

Time-Division Multiplexing (TDM) Interface
TDMxRER contains the status of the receive data buffers and general receive events. The register
can be read at any time. Depending on the event, some bits are cleared by writing a 1 to the
register and some bits are cleared by reading the TDMxRDR register. Bits are cleared as defined
for each bit in Table 19-21. If they are cleared by writing a 1, then writing a 0 has no effect. Only
the Receive Sync Error and the Receive Overrun Error cause a receive error interrupt. All others
cause a normal receive interrupt. Interrupts occur only when the Receive Synchronization Status
is in the SYNC state (see TDMxRSR[RSSS] on page 19-49) except as defined in Table 19-21.

Table 19-21. TDMxRER Bit Descriptions

Name Reset Description Settings

—
31–9

0 Reserved. Write to zero for future compatibility.

RCEU
8

0 Receive Channel Enable Update
Set when RxCHEN[0–3] is updated for the current frame, even
if it is the same value. RCEU is cleared by writing a 1 to this bit
location. Valid during all states except HUNT (see
TDMxRSR[RSSS] on page 19-49).

0 Not updated for the current
frame.

1 Updated for the current frame.

RLC
7

0 Receive Last Channel
Set when the start of the last channel of the frame is being
received, regardless of whether the last channel is enabled. It
can happen between the first and fourth bit of the last received
channel. The next word in the RDREG is the last channel, if the
channel is enabled. Bit is cleared by writing a 1 to this bit
location in the register.Valid while the receiver is enabled.

0 Last channel is not received.

1 The last channel is received.

RFS
6

0 Receive Frame Sync
Set when the Rx frame sync is received. Bit is cleared by
writing a 1 to this bit location in the register.Valid during all
states except HUNT (see TDMxRSR[RSSS] on page 19-49).

0 First channel is not received.

1 First channel is received.

RFF
5

0 Receive FIFO Full
When the receiver is programmed to use the Rx FIFO, this bit is
set when the Rx FIFO has reached the Rx FIFO Watermark.
RFF is cleared by reading the RDREG.

0 Watermark not reached.

1 Watermark reached.

RDR
4

0 Receive Data Ready
Set when Receive Data Register (RDREG) or receive FIFO is
loaded with a new value. RDR is cleared by reading the
RDREG register. If the Rx FIFO is enabled, RDR is cleared
when receive FIFO is empty.

0 No data loaded.

1 New data loaded.

RSE
3

0 Receive Sync Error
Indicates a sync error. RSE is set when the receive frame
synchronization is lost (the synchronization state change from
the SYNC to HUNT state) because a frame sync arrived early
or was not received at the expected position. This bit indicates
glitches on the receive pins of the TDM module. For details,
see Section 19.4.3, Serial Interface Synchronization, on page
19-13. RSE is cleared by writing a 1 to this bit location.

0 Normal operation.

1 Receive sync error.
MSC711x Reference Manual, Rev. 0

19-46 Freescale Semiconductor

TDM Programming Model
TDMxTER contains the status of the transmit data buffers and general transmit events. It can be
read at any time. Depending on the event, some bits are cleared by writing a 1 to the register and
others s are cleared by writing to the TDMxTDR. Bits are cleared as defined for each bit in Table
19-22. If they are cleared by writing a 1, then writing a 0 has no effect. Only the Transmit Sync
Error and the Transmit Under-run Error cause a transmit error interrupt. All others cause a
normal transmit interrupt. Interrupts occur only when the Transmit Sync Synchronization Status
is in the SYNC state (see TDMxTSR[TSSS] on page 19-50), except as defined in Table 19-22.

ROE
2

0 Receive Overrun Error
Indicates an overrun event in the TDM when the Rx shift
register loaded the current data by overwriting the oldest data
in the TDMxRDR or the Rx FIFO. In wide mode, the entire line
is thrown out when the current channel is loaded. This may
cause a decrease in the Rx FIFO count until the current line is
filled. This error should not occur during normal operation. ROE
is cleared by reading from the TDMxRDR, and then writing a 1
to this bit location.

0 No overrun event.

1 Overrun event.

—
1–0

0 Reserved. Write to zero for future compatibility.

TDMxTER TDMx Transmit Event Register TDMxBASE + 0xA4

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TCEU TLC TFS TFE TDR TSE TUE —

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-21. TDMxRER Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-47

Time-Division Multiplexing (TDM) Interface
Table 19-22. TDMxTER Bit Descriptions

Name Reset Description Settings

—
31–9

0 Reserved. Write to zero for future compatibility.

TCEU
8

0 Transmit Channel Enable Update
Set when the TCEN0-3 or TCMA0-3 are updated for the current
frame, even if it is the same value. TCEU is cleared by writing a
1 to this bit location in the register. Valid during all states except
HUNT (see TDMxTSR[TSSS] on page 19-50).

0 No update for the current
frame.

1 Update for the current frame.

TLC
7

0 Transmit Last Channel
Set when the start of the last channel of the frame is
transmitted, regardless of whether the last channel is enabled.
TLC is set between the first and fourth bits of the last
transmitted channel. The next word in the TDMxTDR is the first
channel, if that channel is enabled. TLC is cleared by writing a 1
to this bit location in the register. Valid during all states except
HUNT (see TDMxTSR[TSSS] on page 19-50).

0 Last channel is not
transmitted.

1 Last channel is transmitted.

TFS
6

0 Transmit Frame Sync
Set when the Transmit Frame sync is received. TFS is cleared
by writing a 1 to this bit location in the register.Valid while the
transmitter is enabled.

0 First channel not transmitted.

1 First channel is transmitted.

TFE
5

0 Transmit FIFO Empty
When the transmitter is programmed to use the Tx FIFO, TFE is
set when the Tx FIFO falls below the Tx FIFO watermark. The
TFF bit is cleared when data is written to the TXDxTDR or a
TDM reset occurs.

0 At or above the Tx FIFO
watermark.

1 Below the Tx FIFO watermark.

TDR
4

0 Transmit Data Register Empty
Set when the Transmit Data Register (TDMxTDR) or transmit
FIFO is empty and has no values to load into the Tx shift
register. TDR is cleared on a write to TDMxTDR.

0 Data to be transmitted.

1 No data to be transmitted.

TSE
3

0 Transmit Sync Error
Indicates a sync error. TSE is set when the transmit frame
synchronization is lost (the synchronization state change from
SYNC to HUNT state) because a transmit frame sync arrived
early or not at the expected position. During operation, this bit
indicates glitches on the transmit pins of the TDM module. For
details, see Section 19.4.3, Serial Interface Synchronization,
on page 19-13. TSE is cleared by writing a 1 to this bit location.

0 Normal operation.

1 A transmit sync error.

TUE
2

0 Transmitter Underrun Error
Indicates an underrun event in the TDM. This error should not
occur during normal operation. It indicates that the TDM has not
received enough data to transmit. TUE is cleared by first writing
data to the TDMxTDR and then writing a 1 to this bit location.

0 No underrun error.

1 Underrun error.

—
1–0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

19-48 Freescale Semiconductor

TDM Programming Model
TDMxRSR contains the receiver status. It indicates whether the receiver is synchronized on the
receive sync, the receiver is enabled or disabled, and the Rx FIFO status.

,r

TDMxRSR TDMx Receive Status Register TDMxBASE + 0xA8

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— RFCNT RSSS RENS

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-23. TDMxRSR Bit Descriptions

Name Reset Description Settings

—
31–6

0 Reserved. Write to zero for future compatibility.

RFCNT
5–3

0 Receive FIFO Counter
Number of data words in the Rx FIFO.

000 0 words.

001 1 word.

010 2 words.

011 3 words.

100 4 words.

RSSS
2–1

0 Receive Sync Synchronization Status
Indicates the status of the receive sync synchronization.
When the synchronization state is SYNC, the serial part
synchronized on the received sync and the received data
transfer to the buffer in main memory for processing.

For details, see Section 19.4.3, Serial Interface
Synchronization, on page 19-13.

00 HUNT.

01 WAIT.

11 PRESYNC.

10 SYNC.

RENS
0

0 Receive Enable Status
Indicates whether all the receiver parts are enabled/disabled.
The propagation of the enable/disable may be delayed
because of the different clock domains.

0 Receiver machine disabled.

1 Receiver machine enabled.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-49

Time-Division Multiplexing (TDM) Interface
TDMxTSR contains the status of the transmitter. It indicates whether the transmitter is
synchronized on the transmit sync, whether it is enabled or disabled, and the Tx FIFO status.

r

TDMxTSR TDMx Transmit Status Register TDMxBASE + 0xAC

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TFCNT TSSS TENS

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 19-24. TDMxTSR Bit Descriptions

Name Reset Description Settings

—
31–6

0 Reserved. Write to zero for future compatibility.

TFCNT
5-3

0 Transmit FIFO Counter
Number of data words in the Tx FIFO.

000 0 words.

001 1 words.

010 2 words.

011 3 words.

100 4 words.

TSSS
2-1

0 Transmit Sync Synchronization Status
Indicates the transmit sync synchronization status. When the
synchronization state is SYNC, the serial part is synchronized
on the transmit sync and new transit data is driven out. For
details, see Section 19.4.3, Serial Interface Synchronization,
on page 19-13.

00 HUNT.

01 WAIT.

11 PRESYNC.

10 SYNC.

TENS
0

0 Transmit Enable Status
Indicates whether all the transmitter parts are
enabled/disabled. The propagation of the enable/disable may
be delayed because of the different clock domains.

0 Transmit machine disabled.

1 Transmit machine enabled.
MSC711x Reference Manual, Rev. 0

19-50 Freescale Semiconductor

TDM Programming Model
19.7.2 TDM AHB Interface Registers

This section discusses the TDM registers in the AHB memory map. For the value of
TDMx_BASE, see Table 5-1, Summary — Base Addresses for MSC711x Register Files, on page
5-4. The TDM registers discussed in this section are listed as follows:

� TDMx Receive Data Registers (TDMxRDR), page 19-51.

� TDMx Transmit Data Registers (TDMxTDR), page 19-52

TDMxRDR contains the data for the receiver, based on the channel size and any encoding
features. If the Rx FIFO mode is not used and the data is 16 bits or 8 bits decoded to 16 bits, one
word in the TDMxRDR must be read as 16 bits. If the Rx FIFO mode is not used and the data is
8 bits, one byte in the TDMxRDR must be read as 8 bits. If the Rx FIFO mode is used, there are
either eight 8-bit data samples or four 16-bit samples in TDMxRDR, which must be read
simultaneously in one 64-bit read. The data is loaded from the receive FIFO or receive shift

TDMxRDR TDMx Receive Data Register TDMxAHBBASE + 0x00

Bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

RDREG[63–48]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RDREG[47–32]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RDREG[31–16]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDREG[15–0]

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-51

Time-Division Multiplexing (TDM) Interface
register when any read occurs. See Section 19.5.3, FIFO Configuration, on page 19-20 for
information on the Rx FIFO wide mode.

r

TDMxTDR contains the data to be transmitted. If the Tx Wide FIFO mode is not used, and if
16-bit data is to be encoded to 8 bits, one word must be written to the TDMxTDR. If the Tx Wide
FIFO mode is not used and the data is 8 bits, one byte must be written to the TDMxTDR. If the
Tx Wide FIFO mode is used, there are either eight 8-bit data samples or four 16-bit samples to be
loaded into the TDMxTDR, which must be written simultaneously in one 64-bit write. The data

Table 19-25. TDMxRDR Bit Descriptions

Name Reset Description Settings

RDREG
63–0

0 Receive Channel Data Register 0[63:0]
Contains the data received by TDMx. This data is loaded with
top of stack FIFO data.

TDMxTDR TDMx Transmit Data Register TDMxAHBBASE + 0x08

Bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

TDREG[63–48]

TYPE W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

TDREG[47–32]

TYPE W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDREG[31–16]

TYPE W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDREG[15–0]

TYPE W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

19-52 Freescale Semiconductor

TDM Programming Model
is loaded from the transmit FIFO or transmit shift register as needed after any write. See
Section 19.5.3, FIFO Configuration, on page 19-20 for details on transmit Wide FIFO mode.

r

Table 19-26. TDMxTDR Bit Descriptions

Name Reset Description Settings

TDREG
63–0

0 Transmit Channel Data Register[63:0]
The data to be transmitted out of the TDMx. This data goes into
the FIFO or shift register.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 19-53

Time-Division Multiplexing (TDM) Interface
MSC711x Reference Manual, Rev. 0

19-54 Freescale Semiconductor

Host Interface (HDI16) 20
The host interface (HDI16) is a 16-bit wide, full-duplex, double-buffered parallel port that can
directly connect to the data bus of a host processor. The HDI16 supports a variety of buses and
gluelessly connects with a number of industry-standard microcomputers, microprocessors, and
DSPs. An external host processor can asynchronously access the HDI16 host bus, independently
of the clocks on the MSC711x device because the HDI16 registers are divided into two banks:

� External host register bank accessible to an external host.

� MSC711x register bank accessible to the MSC711x device.

The HDI16 supports two classes of interfaces to external devices: a host
processor/microcontroller (MCU) connection interface and a DMA controller interface. The
HDI16 can also operate with an 8-bit host data bus, making it fully compatible with the
DSP56300 HI08 (from the external host side, not from the MSC711x side).

Key aspects of the HDI16 module are its flexible interfacing to the pins of an external host, its
ability to support external hosts with 8- or 16-bit data buses, its different modes of operation such
as polled, interrupt driven, or serviced by a DMA controller, and its additional capabilities such
as the host flags, command vector, and host non-maskable interrupt. Table 20-1 summarizes the
restrictions on the MSC711x HDI16.

Table 20-1. Restrictions on the MSC711x HDI16

Restriction Description

HPE signal pin Not implemented on the MSC711x device. Instead, the HPE signal is internally tied within the
device to asserted.

HA3 signal pin Not supported on the MSC711x devices, and this signal is internally tied within the device to
deasserted.

HDSP and H8BIT signal pins On MSC711x devices, these pins are sampled only out of reset.

HD[15–8] signal pins Out of reset, these pins are configured as GPIO pins and not yet assigned to the HDI16.
These pins must be configured for HDI16 operation if the HDI16 is used with a 16-bit data
bus.

Note: When the device is booted through the HDI port, the boot program configures all
host port pins for host port operation in GPIO ports B and C. See Figure 14-5, Host
Port Loader, on page 14-13.

Big-endian operation HPCR[HLEND] must always be cleared to zero, which configures the HDI16 module for
big-endian operation. This is the default value out of reset.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-1

Host Interface (HDI16)
Table 20-2 summarizes the differences between the MSC711x HDI16 port and that of the
MSC8101.

HDI16 Reset Configuration
Registers

These HDI16 registers are not accessible on MSC711x devices.

DMA controllers Some MSC711x devices have two different DMA controllers: the standard DMA controller
and the Ethernet MAC DMA controller. Only the standard DMA controller can initiate
MSC711x-side DMA transfers. The Ethernet MAC DMA controller cannot access the HDI16.

Table 20-2. MSC711x HDI16 Versus MSC8101 HDI16

Feature MSC711x HDI16 MSC8101 HDI16

Bit Ordering

Data bus bit ordering Bits on HD bus are numbered with bit 0 as the
LSB.

Bits on HD bus are numbered with bit 0 as the
MSB.

Address bus bit
ordering

Bits on HA bus are numbered with bit 0 as the
LSB.

Bits on HA bus are numbered with bit 0 as the
MSB.

Register bit ordering Bits in HDI16 registers are numbered with bit 0
as the LSB.

Bits in HDI16 registers are numbered with bit 0
as the MSB.

Pinout

Host Port Enable (HPE)
pin

Not implemented. On MSC711x devices, the
host port is disabled via its HPCR[HEN] bit.

Implemented. See also the HPCR[HEN] bit.

Host Data Strobe
Polarity (HDSP) pin

Sampled only at reset. Otherwise, the pin is
assigned to a different function. See also the
HPCR[HDSP] bit.

Exists as a pin on the MSC8101 device. See
also the HPCR[HDSP] bit.

H8BIT Pin
(8-Bit Mode)

Sampled only at reset. Otherwise, the pin is
assigned to a different function. See also the
HPCR[H8BIT] bit.

Exists as a pin on the MSC8101 device. See
also the HPCR[H8BIT] bit.

Host Address Bus Uses 3 pins, HA[2–0]. Uses 4 pins, HA[3–0].

Host Data Bus Upper 8 data pins are configured as GPIO out
of reset. Must be configured for HDI16 usage if
the port is used in 16-bit mode.

The HDI data pins are not configured as GPIO
out of reset.

Programming Model

Reset Configuration
Registers (external host
side)

These registers are not accessible to an
external host and are not supported.

These registers are accessible to an external
host and are supported.

Host Port Control
Register [Host Enable]

During HDI16 initialization, HPCR[HEN] should
be cleared.

During HDI16 initialization, HPCR[HEN] does
not need to be cleared.

External Host DMA Mode

Bidirectional transfers
(external host side)

External Host DMA transfers are not supported
when both ICR[TREQ] and ICR[RREQ] are set
to 1 when HCR[HICR] is also set to 1.

External Host DMA transfers are supported
when both ICR[TREQ] and ICR[RREQ] are set
to 1 when HCR[HICR] is also set to 1.

HREQ, HACK pin
polarities

When the HACK pin is used for acknowledge,
does not support different polarities on the
HREQ and HACK pins.

When the HACK pin is used for acknowledge,
supports different polarities on the HREQ and
HACK pins.

Table 20-1. Restrictions on the MSC711x HDI16 (Continued)

Restriction Description
MSC711x Reference Manual, Rev. 0

20-2 Freescale Semiconductor

Features
20.1 Features

Table 20-3 lists the features of the external host-to-MSC711x and MSC711x-to-external host
interfaces. It also discusses the host interface signals and the overall structure of the HDI16
interface.

Table 20-3. HDI16 Features

Feature HDI16-to-MSC711x HDI16-to-External Host Processor

Data word 64 bits 16 or 8 bits

Transfer Modes

• MSC711x to host
• External host to SC1400 core
• External host command

• External host NMI

• Mixed 16-bit, 32-bit, 48-bit and 64-bit data transfers, or
8-bit, 16-bit, 24-bit and 32-bit data transfers in 8-bit mode.
These transfers are MSC711x-to-external host or
external host-to-MSC711x.

• Host command
• Host NMI

Handshaking
Protocols

• Software polled
• Interrupt driven

• MSC711x DMA accesses

• Software polled
• Interrupt driven

• Cycle-stealing DMA with initialization

Instructions
Memory-mapped registers allow the
standard MOVE instruction to be used.

Signals

• HD[15–0] host data bus (in 16-bit mode)
• HD[7–0] host data bus (in 8-bit mode)
• HA[3–0] host address line

• HRW/HRD read/write select (HRW) or read strobe (HRD)
• HDS/HWR data strobe (HDS) or write strobe (HWR)
• HCS1 host chip-select 1

• HCS2 host chip-select 2
• HREQ/HTRQ host request (HREQ) or host transmit

request (HTRQ)
• HACK/HRRQ host acknowledge (HACK) or host receive

request (HRRQ)
• HDDS dual data strobe control input (multiplexed)
• HDSP data strobe polarity control input

• H8BIT 8-bit mode control input

Mapping

• The HDI16 registers are mapped as consecutive locations
in address space of the external host processor.

• The HDI16 acts as a memory or I/O-mapped peripheral for
microprocessors, microcontrollers, and so on.

Dedicated
Interrupts

• Separate interrupt lines for each interrupt source
• Special host commands generate SC1400 interrupts

under host processor control. These commands are useful
for real-time production diagnostics, creating a debugging
window for program development, and host control
protocols.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-3

Host Interface (HDI16)
20.2 HDI16 Host Port Pins

Table 20-4 describes the host port signals and their function.

Interface
Capabilities

Glueless interface (no external logic required) to the following:
• MSC8102
• MPC860
• MPC8260

Minimal glue-logic required to interface to the following:
• Freescale 603-750 core products

• ISA bus
• Freescale 68K family
• Intel X86 family

Table 20-4. HDI16 Host Port Signals

Port Signal Description Settings

Host Bus

HA[3–0] Host Address Lines 3–0
Lines 3–0 of the host address input bus.

Note: Bit 0 corresponds to the LSB of the bus.

Note: The HDI16 does not use the HA3 pin.

HD[15–0] Host Data Bus Lines 15–0
Lines 15–0 of the bidirectional three-state host data
bus. In 8-bit mode, only lines 7–0 (HD[7–0]) are
used.

Note: Bit 0 corresponds to the LSB of the bus.

Data Strobes and Chip Selects

HRW/HRD Host Write Select/Host Read Strobe
When the HDI16 is programmed to interface with a
single data strobe host bus, this pin is the read/write
input (HRW).

When the HDI16 is programmed to interface with a
double data strobe host bus, this pin is the read data
strobe Schmitt trigger input (HRD).

The polarity of HRD is programmable.

HDS/HWR Host Data Strobe/Host Write Data Strobe
When the HDI16 is programmed to interface with a
single data strobe host bus, this pin is the data strobe
Schmitt trigger input (HDS).

When the HDI16 is programmed to interface with a
double data strobe host bus, this pin is the write data
strobe Schmitt trigger input (HWR).

The polarity of HDS or HWR is programmable.

See Section 20.5.2, Data Strobe Pin Configuration,
on page 20-8.

HCS1 HDI16 Chip Select 1
One of the two chip-select (CS) inputs. See Section
20.5.1, Host Port Chip Select Capability, on page
20-8.

The polarity of HCS1 and HCS2 pins is
programmable through the HPCR[HCSP] bit. This bit
configures the polarity of both chip select pins.

Table 20-3. HDI16 Features (Continued)

Feature HDI16-to-MSC711x HDI16-to-External Host Processor
MSC711x Reference Manual, Rev. 0

20-4 Freescale Semiconductor

HDI16 Host Port Pins
Note: Several pins in the HDI16 interface are configurable as outlined in Section 20.5,
Configuring the Host Interface Pins (External Host Side), on page 20-6.

HCS2 HDI16 Chip Select 2
One of the two chip-select (CS) inputs. See Section
20.5.1, Host Port Chip Select Capability, on page
20-8.
Note: The functionality of this pin can be modified

via DEVCFG[HCOV]. See Section 7.4.3,
Device Identification and Configuration, on
page 7-16.

The polarity of the HCS1 and HCS2 pins is
programmable through the HPCR[HCSP] bit. This bit
configures the polarity of both chip-select pins.

Requests and Acknowledges

HREQ/HTRQ Host Request/Host Transmit Request
When the HDI16 is programmed to interface to a
single host request, this pin is the host request output
(HREQ). This pin can be used for host DMA requests
in host DMA mode.

When the HDI16 is programmed to interface to a
double host request, this pin is the transmit host
request output (HTRQ).

The polarity of the host request is programmable.

The HREQ/HTRQ request can be programmed as a
driven or open-drain output.

HACK / HRRQ Host DMA Acknowledge/Host Receive Request
When the HDI16 is programmed to interface to a
single host request, this pin is the host acknowledge
Schmitt trigger input in host DMA mode (HACK). The
polarity of the host DMA acknowledge is
programmable.

When the HDI16 is programmed to interface to a
double host request, this pin is the receive host
request output (HRRQ).

The polarity of the host request is programmable.

The HRRQ request can be programmed as a driven
or open-drain output.

HDI Configuration

HDSP Data Strobe Polarity
This input defines the polarity of the data strobe.

See Section 20.5.2, Data Strobe Pin Configuration,
on page 20-8.

HDDS Dual Data Strobe
This input defines the data strobe mode as dual or
single.

See Section 20.5.2, Data Strobe Pin Configuration,
on page 20-8.

H8BIT 8-Bit Mode
This input defines whether 8-bit or 16-bit mode is
enabled.

0 16-bit mode enabled, if the HPCR[H8BIT] bit is
also zero

1 8-bit mode enabled

Table 20-4. HDI16 Host Port Signals (Continued)

Port Signal Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-5

Host Interface (HDI16)
20.3 HDI16 Architecture

Figure 20-1 shows a block diagram of the HDI16 module configured for big-endian operation. In
little-endian operation, the programming model for the external host side is modified
correspondingly. Notice that there is a correspondence between the registers on the MSC711x side
and the external host side. The MSC711x registers are accessible to MSC711x masters such as the
SC1400 core and the DMA controllers. The external host-side registers are accessible only to the
external host processor or external DMA controllers. Data is transferred through separate transmit
and receive data FIFOs. The MSC711x resources synchronously access an MSC711x-side
programming model, whereas the external host asynchronously accesses a host-side programming
model. Synchronization logic handles the transfers between the MSC711x-side registers and the
external host-side registers.

20.4 HDI16 Clocking

The HDI16 port receives two different clocks: ECore clock and AHB clock. The ECore clock runs
at the core frequency and clocks the synchronizers and state machines in the HDI16. The interfaces
of the HDI16 to the ASTH bus, APB bus, and DMA controller are clocked at the APB bus clock
frequency, which runs at half the frequency of the ECore clock.

20.5 Configuring the Host Interface Pins (External Host Side)

To support glueless interfacing between the HDI16 port pins and an external host, the
functionality and polarity of the pins is programmable to meet the protocol on the host pins. Pin
polarity is configured for either high or low true operation, as summarized in Table 20-5. In
addition, interfacing to both an 8-bit or 16-bit external data bus is supported.

Table 20-5. Configuring HDI16 Pin Polarity

HDI16 Pin
Method to
Configure
Polarity

Alternate Method to
Configure Polarity

Comments

HDS HPCR[HDSP] HDSP pin See Section 20.5.2, Data Strobe Pin Configuration, on page 20-8.

HRD HPCR[HDSP] HDSP pin See Section 20.5.2, Data Strobe Pin Configuration, on page 20-8.

HWR HPCR[HDSP] HDSP pin See Section 20.5.2, Data Strobe Pin Configuration, on page 20-8.

HCS1,
HCS2

HPCR[HCSP] — Both pins are configured for high or low true operation using this
register bit. See Section 20.5.1, Host Port Chip Select Capability, on
page 20-8.

HTRQ,
HRRQ

HPCR[HRP] — Both pins are configured for high or low true operation using this
register bit. See Section 20.5.2.2, Host Request Pin
Configuration, on page 20-10.

HREQ HPCR[HRP] — Configurable only from register. See Section 20.5.2.2, Host Request
Pin Configuration, on page 20-10.

HACK HPCR[HAP] — Configurable only from register. See Section 20.5.2.1, Transfer
Acknowledge Configuration, on page 20-9.
MSC711x Reference Manual, Rev. 0

20-6 Freescale Semiconductor

Configuring the Host Interface Pins (External Host Side)

ip
e

Figure 20-1. HDI16 Block Diagram (Configured for Big-Endian Operation)

Register Register Name Host Address (HA[3–0])

ISR Interface Status Register 0x2

ICR Interface Control Register 0x0

CVR Command Vector Register 0x1

RX[0–3] Receive Data Registers RX0: 0x4 RX1: 0x5 RX2: 0x6 RX3: 0x7

TX[0–3] Transmit Data Registers TX0: 0x4 TX1: 0x5 TX2: 0x6 TX3: 0x7

Programming Model Accessible to External Host

APB Bus

RX2RX1RX0 TX2TX1TX0RX3 TX3

16

Register Register Name Offset (APB) Offset (ASTH Bus)

HCR Host Control Register 0x0000 —

HSR Host Status Register 0x0040 —

HCVR Host Command Vector Register 0x0060 —

HPCR Host Port Control Register 0x0020 —

HOTX Host Transmit Data Register — 0x0080

HORX Host Receive Data Register — 0x00A0

Note: Both HOTX and HORX are FIFOs with a capacity of four 64-bit words.

Programming Model Accessible to MSC711x Device

HOTX is a
Four Location
by 64-bit FIFO

HORX is a
Four Location
by 64-bit FIFO

Configurable
Data Strobes

HDI16
Chip Select

H
C

S
1

H
C

S
2

H
R

W
 /

H
R

D
H

D
S

 /
H

W
R

H
D

D
S

H
D

S
P

HDI16
Address
Decode

H
A

[3
:0

]

CVR

HORXHOTX

ICRISR

HCVRHSRHCR HPCR

1616

1616 16 16 16 16 16 16 16 16 16

16

H
D

[1
5:

0]

Host
Side

External

ASTH Bus

64 64

Configurable
Request /Ack

H
R

E
Q

 /
H

T
R

Q
H

A
C

K
 /

H
R

R
Q

32 64

Host
Flags

Host
Flags

Cmd
Vector

Two Bit DMA
Address Counter

HCR[HDM]
ICR[HM]
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-7

Host Interface (HDI16)
20.5.1 Host Port Chip Select Capability

The HDI16 provides a chip-select capability via the HCS[1–2] pins, either of which can enable the
host port on a device. This chip select is useful, for example, when one select pin is used to select
the HDI16 port for a single device on a board, and the other selects the HDI16 ports for all
MSC711x devices on the board (broadcast mode). The polarity of these two pins is configured
via the HPCR[HCSP] bit as follows:

� HPCR[HCSP] = 1: Module selected by HCS1 || HCS2

� HPCR[HCSP] = 0: Module selected by HCS1 || HCS2

The functionality of the HCS2 signal in can be disabled so that the pin is available for GPIO. For
details, see Table 7-10, DEVCFG Bit Descriptions, on page 7-17.

20.5.2 Data Strobe Pin Configuration

The HDI16 port pins can be configured to accept any of the following types of strobes from an
external processor (Table 20-6):

Figure 20-2 shows single-strobe operation.

Table 20-6. Programming Strobe Pin Functionality

Desired Usage
of Pins

Pins Used Configured via Comments

HRW and HDS HRW/HRD and HDS/HWR • HDDS pin = 0 and
HPCR[HDDS] = 0.

• HDSP pin = 0 and
HPCR[HDSP] = 0.

Single Strobe.
Uses single data strobe, HDS, where
strobe programmed as low true.

HRW and HDS HRW/HRD and HDS/HWR • HDDS pin = 0 and
HPCR[HDDS] = 0.

• HDSP pin = 1 or
HPCR[HDSP] = 1.

Single Strobe.
Uses single data strobe, HDS, where
strobe programmed as high true.

HRD and HWR HRW/HRD and HDS/HWR • HDDS pin = 1 or
HPCR[HDDS] = 1.

• HDSP pin = 0 and
HPCR[HDSP] = 0.

Dual Strobe.
Uses two data strobes, HDR and HWR,
where strobes programmed as low true.

HRD and HWR HRW/HRD and HDS/HWR • HDDS pin = 1 or
HPCR[HDDS] = 1.

• HDSP pin = 1 or
HPCR[HDSP] = 1.

Dual Strobe.
Uses two data strobes, HDR and HWR,
where strobes programmed as high true.
MSC711x Reference Manual, Rev. 0

20-8 Freescale Semiconductor

Configuring the Host Interface Pins (External Host Side)
Figure 20-2. Single-Strobe Bus

Figure 20-3 shows dual-strobe bus operation.

Figure 20-3. Dual-Strobe Bus

20.5.2.1 Transfer Acknowledge Configuration

HDI16 transfer acknowledge is used only in DMA mode. The transfer acknowledge input
indicates to the MSC711x device that DMA data was driven onto the host processor data bus.
There are two different ways to indicate a transfer acknowledge, which are selected using the
HPCR[OAD] bit.

Transfer acknowledge through the HACK input pin (HPCR[OAD] = 0) is as follows:

� For MSC711x-to-external host transfers, the HDI16 writes data onto the bus when HACK is
asserted. The polarity of HACK must be set to use the same polarity as that of HREQ, as
shown in Table 20-7.

� For external host-to-MSC711x transfers, there is valid data on the bus when HACK is
asserted. In Host Acknowledge mode, the HRD/HWR pins are not used in read and write
DMA accesses.

HRW

HDS

In a single-strobe bus, HDS qualifies the access, while HRW specifies the type of access
(if HRW is high, the access is a read and if HRW is low, the access is a write).

Data

HWR

Data

HWR

In a dual-strobe bus, separate HRD and HWR signals specify the access as a read or write
access, respectively.

Read Data Out

Read Cycle

Write Data In

Write Cycle

HRD

HRD
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-9

Host Interface (HDI16)
Transfer acknowledge through the external host accesses to host address 0x4 (HPCR[OAD] = 1):

� For MSC711x-to-external host transfers, the HDI16 writes data onto the bus when a
read operation occurs at host address 0x4.

� For external host-to-MSC711x transfers, there is valid data on the bus when a
write operation occurs at host address 0x4. In OAD mode, the HRD/HWR pins are used in
read and write DMA accesses.

20.5.2.2 Host Request Pin Configuration

Table 20-7 shows how to configure the following parameters for non-DMA or DMA mode:

� Single request (HREQ) or separate requests for receive (HRRQ) and transmit (HTRQ)

� Polarity of the signals.

In addition, open-drain operation is optional through the HPCR[HROD] bit. When open-drain
operation is selected, an external pull-up resistor is required on the appropriate pin(s). Take care
with the pull-up resistor to ensure that HDSP is sampled properly at reset (see the design checklist

Table 20-7. Programming Host Request Pin Functionality

Pin Usage Pins HPCR[DMA] ICR[HDRQ] HPCR[HRP] Comments

Non-DMA Mode

HREQ HREQ/HTRQ
and

HACK/HRRQ

0 0 0 Single Host Request: HREQ
Single request signal to the external host,
HREQ.

HREQ HREQ/HTRQ
and

HACK/HRRQ

0 0 1 Single Host Request: HREQ
Single request signal to the external host,
HREQ.

HTRQ
and

HRRQ

HREQ/HTRQ
and

HACK/HRRQ

0 1 0 Dual Host Request: HTRQ, HRRQ
Dual request signals to the external host,
HTRQ and HRRQ.

HTRQ
and

HRRQ

HREQ/HTRQ
and

HACK/HRRQ

0 1 1 Dual Host Request: HTRQ, HRRQ
Dual request signals to the external host,
HTRQ and HRRQ.

DMA Mode

HREQ
and

HACK

HREQ/HTRQ
and

HACK/HRRQ

1 — 1 DMA Usage: HREQ, HACK
HREQ used as a DMA request signal
and HACK as an acknowledge.

HREQ
and

HACK

HREQ/HTRQ
and

HACK/HRRQ

1 — 0 DMA Usage: HREQ, HACK
HREQ used as a DMA request signal
and HACK as an acknowledge.

Notes: 1. In DMA mode, when configured for using the HACK pin, the HPCR[HAP] bit must be set so that HREQ and
HACK have the same polarity.

2. In DMA mode, the HREQ output pin requests DMA activity and HACK can be selected as an acknowledge, as
shown in Section 20.5.2.1. In non-DMA mode, the HACK pin is not used.
MSC711x Reference Manual, Rev. 0

20-10 Freescale Semiconductor

Configuring the Host Interface Pins (External Host Side)
application note). For open-drain operation, these request signals must be configured as active
low, that is, HPCF[HRP] must be cleared. You can also configure these pins as active only for
receive operations, only for transmit operation, or for both receive and transmit operations. Table
20-8 shows how to configure these pins via the ICR HDRQ, TREQ, and RREQ bits.

20.5.3 Host Data Bus Size Configuration (External Host Side)

External hosts are programmed for an 8- or 16-bit data bus. When the HPCR[H8BIT] bit or the
H8BIT input pin is cleared, the 16-bit mode is enabled. The host processor reads and writes the
entire 16 bits of the HDI16 host bank registers. Data transferred from the HOTX FIFO to
RX[0–3] registers is written with all 64-bits of the HOTX FIFO. Data transferred from the
TX[0–3] registers to the HORX FIFO is written with all 64-bits of the TX[0–3] registers.

When the HPCR[H8BIT] bit or the H8BIT input pin is set, the 8-bit mode is enabled. The host
processor writes/reads only the eight LSBs of the HDI16 host bank registers. The eight MSBs of
the CVR and ICR are always written with zeros. Data is transferred from the 32 LSBs of the
HOTX FIFO to the eight LSBs of the RX[0–3] registers as shown in Figure 20-4.

Table 20-8. Programming Request Signal(s) in Non-DMA Mode

HDRQ TREQ RREQ HREQ/HTRQ Signal HRRQ Signal

When Configured for HREQ Signal Functionality (HRRQ not used)

0 0 0 Not used (polled operation only). Not used.

0 0 1 Receive-Only:
HREQ asserted on ISR[RXDF] request
(interrupt driven operation)

Not used.

0 1 0 Transmit-Only:
HREQ asserted on ISR[TXDE] request
(interrupt driven operation)

Not used.

0 1 1 Transmit and Receive:
HREQ asserted on ISR[RXDF] or ISR[TXDE]
request (interrupt driven operation)

Not used.

When Configured for HTRQ and HRRQ Signal Functionality

1 0 0 Not used (polled TX operation only). Not used (polled RX operation only).

1 0 1
Not used (polled TX operation only). Receive-Only:

HRRQ asserted on ISR[RXDF] request
(interrupt driven operation)

1 1 0
Transmit-Only:
HREQ asserted on ISR[TXDE] request
(interrupt driven operation)

Not used (polled RX operation only).

1 1 1
Transmit:
HREQ asserted on ISR[TXDE] request
(interrupt driven operation)

Receive:
HRRQ asserted on ISR[RXDF] request
(interrupt driven operation)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-11

Host Interface (HDI16)
Figure 20-4. 8-Bit Mode: MSC711x-to-External Host Transfers

Data transferred from TX[0–3] to the HORX FIFO is written to the 32 LSBs of the HORX FIFO
registers. See Figure 20-5.

Figure 20-5. 8-Bit Mode Diagram (External Host-to-MSC711x)

Multiplex Select:

1: 8-bit mode
0: 16-bit mode

0 0 0 0

RX0 RX1 RX2 RX3

10

10

10

10

10

10

10

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

The shaded areas
indicate valid data.

HOTX FIFO Accessed from the MSC711x Device

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

0

0

0

0

HORX FIFO Accessed from the MSC711x Device

01

01

01

01

01

01

01
Multiplex Select:

1: 8-bit mode
0: 16-bit mode

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

The shaded areas
indicate valid data.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

TX0 TX1 TX2 TX3
MSC711x Reference Manual, Rev. 0

20-12 Freescale Semiconductor

HDI16 Data Transfer
20.6 HDI16 Data Transfer

HDI16 data transfers are separated into two categories, MSC711x side and external host side.
This section considers each side independently.

20.6.1 Data Transfer on the MSC711x Side

To the MSC711x device, the HDI16 registers appears as a contiguous block of memory-mapped
registers. The MSC711x device can write to the appropriate HDI16 register to configure the
HDI16 for proper operation. Properly configured, the HDI16 port can be used to transfer data
between the external host and the MSC711x device. Data is transferred using MSC711x polling,
interrupts, or DMA data transfers.

20.6.1.1 Polling

The MSC711x device can service the HDI16 by polling the HSR status bits and accessing the
transmit and receive FIFOs when appropriate. The HSR status bits polled are as follows:

� Host Transmit FIFO Not Full (HTFNF)

� Host Transmit FIFO Empty (HTFE)

� Host Receive FIFO Full (HRFF)

� Host Receive FIFO Not Empty (HRFNE)

These bits are discussed in detail in Table 20-25, HSR Bit Descriptions, on page 20-31.

20.6.1.2 Interrupt-Driven Operation

The HDI16 port can be configured to request interrupt service from the MSC711x device, the
SC1400 interrupts do not require an external interrupt signal. When the appropriate HCR
interrupt enable bit is set, an interrupt condition caused by the host processor sets the appropriate
bit in the HSR, generating an interrupt request to the SC1400 core, which responds by jumping to
the appropriate interrupt service routine. Table 20-9 shows the different MSC711x-side HDI16
interrupts

Table 20-9. Interrupts and Associated Bit Settings

Interrupt HCR Bit HSR Bit CVR HCVR

Receive data FIFO Full HRFIE HRFF

Receive data FIFO not empty HREIE HRFNE

Transmit data FIFO empty HTEIE HTFE

Transfer data FIFO not full HTFIE HTFNF

Host command HCIE HCP

Host NMI NMI HCP
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-13

Host Interface (HDI16)
To clear the interrupt, the SC1400 core interrupt service routine must read or write the
appropriate HDI16 register, for example, clearing HRFF or HTFE. For host command interrupts
and NMI, the pending interrupt condition is cleared when the MSC711x program controller reads
HCVR. Figure 20-6 illustrates HDI16 interrupt generation.

Figure 20-6. HDI16 Interrupt Generation

20.6.1.3 DMA Operation

The MSC711x DMA controller, described in Chapter 8, DMA Controller, can access the HOTX
and HORX FIFOs through the ASTH bus. Both single and WRAP4 accesses are supported.

15 0
Enable

HCIE HTNFIE HTEIE HRFIE HRNEIEHCR

HTFNF HTFE HRFF HRFNEHSR

Status

Interrupt Requests to MSC711x

15

Host Command

HCP

Status

15 NMI HC

Receive Data FIFO Not Empty

Receive Data FIFO Full

Transmit Data FIFO Empty

Host NMI

Transfer Data FIFO Not Full

0

0

HCVR

7 CVR

15 078
MSC711x Reference Manual, Rev. 0

20-14 Freescale Semiconductor

HDI16 Data Transfer
MSC711x DMA operation is set up through the following bits:

� HCR[DBRE], which selects hardware DMA read requests when HORX is full versus not
empty.

� HCR[DBTE], which selects hardware DMA write requests when HOTX is empty versus
not full.

The DMA controller can service the HDI16 port independently of the HDI16 mode, which is
only for DMA accesses on the external host side.

20.6.2 Data Transfer on the External Host Side

To an external host processor, the HDI16 registers appears as a contiguous block of memory
mapped registers. The external host processor can write to the appropriate HDI16 register to
configure the HDI16 for proper operation. Once properly configured, the HDI16 port can transfer
data between the external host and the MSC711x device using one of the following techniques:

� Non-DMA mode:

— External host polling.
— External host interrupts.
— Host DMA can be level-triggered using HREQ, HTRQ, or HRRQ.

� External host DMA mode

— Acknowledge using the HACK pin.
— Acknowledge upon access to host address 0x4.
— Host DMA can be edge-triggered using HREQ.

The HREQ/HTRQ and HACK/HRRQ handshake flags provide polled or interrupt-driven data transfers
with the host processor or host DMA transfers. Because of the speed of the MSC711x interrupt
response, most host microprocessors can load or store data at their maximum programmed I/O
instruction rate without testing the handshake flags for each transfer. If full handshake is not
needed, the host processor can treat the MSC711x as a fast device, and data can transfer between
the host processor and the MSC711x device at the fastest host processor data rate. The host
processor performs the following steps:

1. Asserts the HDI16 address to select the external host register to read or write.

2. Selects the direction of the data transfer (if the host processor is writing, it sources the
data on the bus.)

3. Strobes the data transfer.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-15

Host Interface (HDI16)
20.6.2.1 Polled Operation (Non-DMA Mode)

For polling, the HREQ signal connection to the host processor is not required. The host processor
first performs a data read transfer to read the ISR. This read transfer allows the host processor to
determine the status of the HDI16 and perform the appropriate actions:

� If ISR[RXDF] is set, the receive data register is full. The host processor can perform a data
read.

� If ISR[TXDE] is set, the transmit data register is empty. The host processor can perform a
data write.

� If ISR[TRDY] is set, the transmit data register is empty. This implies that the receive data
FIFO on the core side is also empty. Data written by the host processor to the HDI16 is
transferred directly to the core side.

� If any of ISR[HF(4–7)] is set, depending on how the host flags are used, this may indicate
an application-specific state within the SC1400 core. Intervention by the host processor
may be required.

� If ISR[HREQ] is set, the HREQ signal is asserted, and the SC1400 core requests the
attention of the host processor. One of the previous four conditions exists.

After the appropriate data transfer occurs, the corresponding status bit is updated to reflect the
transfer.

20.6.2.2 External Interrupt (Non-DMA Mode)

The HDI16 can request interrupt service from either the SC1400 or the host processor. When
HREQ is connected to the host processor interrupt input, the HDI16 asserts HREQ to request
service from the host processor. HREQ is asserted according to the programming of ICR[HTRA]
and the status bits TXDE, TXDE16, and TXDE2 when ICR[TREQ] is set, or according to the
programming of ICR[HRRA] and the status bits RXDF, RXDF16, and RXDF32 when
ICR[RREQ] is set, as Figure 20-7 shows. The programming of HRRA or HTRA chooses the
status bit, and depending on its value, HREQ is asserted or deasserted.

The host processor acknowledges host interrupts by executing an interrupt service routine. The
host processor tests the appropriate status bit (TXDE, TXDE16, TXDE32, RXDF, RXDF16, or
RXDF32, depending on the application) to determine the interrupt source. The host processor
interrupt service routine must read or write the appropriate HDI16 data register to clear the
interrupt. HREQ is deasserted under the following conditions:

� The enabled request is cleared or masked.

� The SC1400 core is reset.
MSC711x Reference Manual, Rev. 0

20-16 Freescale Semiconductor

HDI16 Data Transfer
Figure 20-7. HDI16 Host Request Structure

20.6.2.3 Host DMA Mode

The HDI16 host DMA mode supports external DMA controller devices connected to the HDI16
on the external host side. The external DMA controllers should not be confused with the
MSC711x DMA controllers. The HDI16 DMA mode has the following features:

� Mode can be programmed either from the MSC711x side or external host side

� Programmable transfer directions:

— External host-to-MSC711x
— MSC711x-to-external host

TREQ RREQ ICR[7–0]
7 0
INIT

7 0
TRDY TXDE RXDF ISR[7–0]HREQ

Host Request
Asserted

HREQ

ICR[15–8]0 1 0 1

HRRA HTRA

ISR[15–8] RXDF16

HTRQ

HRRQ

TXDE32 TXDE16 RXDF32
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-17

Host Interface (HDI16)
� Programmable DMA word size: 16, 32, 48, or 64 bits

� Programmable transfer acknowledge:

— Data valid when the HACK input pin is asserted
— Data valid on external host accesses to host address 0x4

The HDI16 module can be programmed either from the MSC711x side or external host side. This
procedure is outlined in Section 20.7, Setting Up the HDI16 Port, on page 20-19. The
HPCR[DMA] bit must also be set to enable the external host DMA mode.

Read transfers from the MSC711x device to the external host in DMA mode proceed as follows:

1. HREQ is asserted to the external device when the appropriate RX registers are full,
depending on the programmed transfer size.

2. The external device reads the value on the host data bus (the acknowledge provides the
data strobe as covered is Section 20.5.2.1, Transfer Acknowledge Configuration).

3. Additional transfers are performed until the programmed transfer size is met.

Write transfers from the external host to the MSC711x device in DMA mode proceed as follows:

1. HREQ is asserted to the external device when the appropriate TX registers are empty,
depending on the programmed transfer size.

2. The external device writes a value onto the host data bus (the acknowledge provides the
data strobe as covered is Section 20.5.2.1, Transfer Acknowledge Configuration).

3. Additional transfers are performed until the programmed transfer size is met.

The HDI16 data register (RX[0–3]/TX[0–3]) selected during a DMA transfer is not selected by
the HA[3–0] pins but by an internal 2-bit internal address counter that is initialized via the INIT bit.
After each DMA transfer on the host data bus, the address counter is automatically bumped as
follows to access the next HDI16 data register:

� Decrements (little-endian mode)

� Increments (big-endian mode)

When the address counter (corresponds to the two LSBs of the address bus) reaches the last
register, the address counter is loaded with the value of the HCR[HDM] or ICR[HM] bits. This
arrangement allows a circular transfer of 16-bit, 32-bit, 48-bit, or 64-bit data and eliminates the
need for the DMA controller to supply the HA[3–0] pins. For 32-bit, 48-bit, or 64-bit data transfers,
the SC1400 CPU interrupt rate is reduced by a factor of 2, 3 or 4, respectively, from the host
request rate. Thus, for every two, three, or four host processor data transfers of one word each,
there is only one 64-bit core CPU interrupt.
MSC711x Reference Manual, Rev. 0

20-18 Freescale Semiconductor

Setting Up the HDI16 Port
20.7 Setting Up the HDI16 Port

The HDI16 port is configured either from the MSC711x side or from the external host side by
writing to the HCR[HICR] bit from the MSC711x side, typically during program initialization.
Table 20-10 shows how this bit selects the source for programming the HDI16 port:

The value of the HCR[HICR] bit changes the programming model for the HCR and ICR
registers, as described for the HCR on page 20-28 or the ICR on page 20-39. The ICR is
accessible only to the host, and the HCR is accessible only to the MSC711x device.

20.7.1 Non-DMA Mode Programmed from MSC711x Side (HICR = 0)

To use the HDI16 non-DMA mode, perform the following steps:

1. Initialize the HDI16 by issuing an individual reset via clearing HPCR[HEN].

2. Select HDI16 programmability from the MSC711x side using the HCR[HICR] bit as
outlined in Section 20.7, Setting Up the HDI16 Port. In this case, the HCR[HICR] bit is
set to 0 so that the HDI16 port is programmed through the HCR register.

3. Program the HDI16 for non-DMA mode as shown in Table 20-11:

4. Program the data strobe functionality of the HDI16 pins as outlined in Section 20.5.2,
Data Strobe Pin Configuration. This allows the HDI16 module to conform to the
protocol and polarity found on the pins of the external host processor.

5. Program the host request functionality of the HDI16 pins as outlined in Section
20.5.2.2, Host Request Pin Configuration. This provides either a single interrupt
request, HREQ, to the external host or separate requests for receive and transmit, HRRQ
and HTRQ.

Table 20-10. Selecting HDI16 Programming Source

Value of HCR[HICR] Side to Configure the HDI16

0 HDI16 is programmed from the MSC711x side through the HCR register.

1 HDI16 is programmed from the external host side through the ICR register.

Table 20-11. Selecting Non-DMA Mode (from MSC711x Side)

HPCR[DMA] DMA Mode

0 HDI16 port operates in non-DMA mode.

1 HDI16 port operates in DMA mode.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-19

Host Interface (HDI16)
6. Select the address where data is transferred to/from the FIFOs as shown in Table 20-12
(also see examples with different transfer sizes in Section 20.7.5.1, Non-DMA External
Host Accesses):

7. Enable the HDI16 for operation by setting HPCR[HEN].

8. The external host can now access the HDI16 module as desired. The direction of the
transfers is correctly handled by the host address and data strobe signals provided by the
external host processor.

20.7.2 Non-DMA Mode Programmed from External Host Side (HICR = 1)

To use the HDI16 non-DMA mode, perform the following steps:

1. Initialize the HDI16 by issuing an individual reset via clearing HPCR[HEN].

2. Program the HDI16 for Non-DMA mode as shown in Table 20-13:

3. Select HDI16 programmability from the external host side by setting the HCR[HICR]
bit to 1 so that the HDI6 is programmed through the ICR register.

4. Program the data strobe functionality of the HDI16 pins as outlined in Section 20.5.2,
Data Strobe Pin Configuration. This allows the HDI16 module to conform to the
protocol and polarity on the pins of the external host processor.

5. Program the host request functionality of the HDI16 pins as outlined in Section
20.5.2.2, Host Request Pin Configuration and Table 20-8. This provides either a single

Table 20-12. Non-DMA Trigger Addresses (from MSC711x Side)

HCR[HDM1] HCR[HDM2*]
Trigger after Access to Host Address

(Big-Endian Operation)

0 0 0x7 (TX3 or RX3)

0 1 0x6 (TX2 or RX2)

1 0 0x5 (TX1 or RX1)

1 1 0x4 (TX0 or RX0)

Notes: 1. HDM2 is the LSB in the HDM field.

2. Section 20.7.5, Data Transfer Sizes Through the HDI16, on page 20-23 shows how
the trigger address relates to the size of the data transfer.

Table 20-13. Selecting Non-DMA Mode (from MSC711x Side)

HPCR[DMA] DMA Mode

0 HDI16 port operates in Non-DMA mode.

1 HDI16 port operates in DMA mode.
MSC711x Reference Manual, Rev. 0

20-20 Freescale Semiconductor

Setting Up the HDI16 Port
interrupt request, HREQ, to the external host or separate requests for receive and
transmit, HRRQ and HTRQ.

6. Select the size of the data transfers between the devices as shown in Table 20-14
(also see examples with different transfer sizes in Section 20.7.5.1, Non-DMA External
Host Accesses):

7. Enable the HDI16 for operation by setting HPCR[HEN].

The external host can now access the HDI16 module as desired. The direction of the transfers is
correctly handled by the host address and data strobe signals provided by the external host
processor.

20.7.3 DMA Mode Programmed from MSC711x Side (HICR = 0)

To use the HDI16 DMA mode, perform the following steps:

1. Initialize the HDI16 by issuing an individual reset via clearing HPCR[HEN].

2. Select HDI16 programmability from the MSC711x side by clearing the HCR[HICR] bit
to 0 so that the HDI16 port is programmed through the HCR register.

3. Select the size of the DMA transfer, as shown in Table 20-15:

4. Select the type of transfer acknowledge for DMA operations via the HPCR[OAD] bit.

Table 20-14. Non-DMA Trigger Addresses (from External Host Side)

ICR[HM1] ICR[HM0] Trigger After Access to Host Address

0 0 0x7

0 1 0x6

1 0 0x5

1 1 0x4

Note: Section 20.7.5, Data Transfer Sizes Through the HDI16, on page 20-23 shows how the
trigger address relates to the size of the data transfer.

Table 20-15. Selecting DMA Transfer Size from MSC711x Side

HCR[HDM1] HCR[HDM2*] Transfer Size

0 0 Transfer 64-bit DMA data.

0 1 Transfer 48-bit DMA data.

1 0 Transfer 32-bit DMA data.

1 1 Transfer 16-bit DMA data.

Note: HDM2 is the LSB in the HDM field.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-21

Host Interface (HDI16)
5. Select the direction of the DMA transfer as shown in Table 20-16:

6. Program the HDI16 for DMA mode as shown in Table 20-17:

7. Enable the HDI16 for operation by setting HPCR[HEN].

At this point, the HDI16 is ready. The HREQ pin requests transfers from the external host.

20.7.4 DMA Mode Programmed from External Host Side (HICR = 1)

To use the HDI16 DMA mode, perform the following steps:

1. Initialize the HDI16 by issuing an individual reset via clearing HPCR[HEN].

2. Select HDI16 programmability from the MSC711x side by setting the HCR[HICR] bit
to one so that the HDI16 is programmed through the ICR register.

3. Select the size of the DMA transfer as shown in Table 20-18:

4. Select the direction of the DMA transfer as shown in Table 20-19:

Table 20-16. Selecting DMA Transfer Direction from MSC711x Side

HCR[HDM0] Transfer Direction

0 Input — Transfers are from External Host-to-MSC711x.

1 Output — Transfers are from MSC711x-to-External Host.

Table 20-17. Selecting DMA Mode from MSC711x Side

HPCR[DMA] DMA Mode

0 HDI16 port operates in non-DMA mode.

1 HDI16 port operates in DMA mode.

Table 20-18. Selecting DMA Transfer Size from External Host Side

ICR[HM1] ICR[HM0] Transfer Size

0 0 Transfer 64-bit DMA data.

0 1 Transfer 48-bit DMA data.

1 0 Transfer 32-bit DMA data.

1 1 Transfer 16-bit DMA data.
MSC711x Reference Manual, Rev. 0

20-22 Freescale Semiconductor

Setting Up the HDI16 Port
5. Select the type of transfer acknowledge used in DMA operations using the HPCR[OAD]
bit as outlined in Section 20.5.2.1, Transfer Acknowledge Configuration.

6. Program the HDI16 for DMA mode as shown in Table 20-21.

7. Enable the HDI16 for operation by setting HPCR[HEN].

At this point, the HDI16 is ready. The HREQ pin requests transfers from the host.

20.7.4.1 Host-Side Configuration Visible to MSC711x

Some information programmed into the external host-side ICR register is visible to the
MSC711x-side programming model:

� The value of the ICR[HM] bits can be viewed on the MSC711x side as bits 9 and 8 in the
HCR[HM]. This allows MSC711x-level resources to determine the DMA transfer size.

� The ICR[RREQ] bit is reflected in bit 10 of the HCR[HDM0]. This allows
MSC711x-level resources to determine the direction of the DMA transfer set up by the
external host.

The inverted value of the HCR[HDM0] bit is reflected in bit 1 of the ICR[TREQ] bit so that the
external host can determine the direction of the DMA transfer set up by the MSC711x.

20.7.5 Data Transfer Sizes Through the HDI16

This section demonstrates proper use of the non-DMA and DMA modes for different transfer
sizes. Only transmit operations from the external host are considered. The receive operation
functions similarly. Also, only big-endian operation is covered.

Table 20-19. Selecting DMA Transfer Direction from External Host Side

ICR[TREQ] ICR[RREQ] Table 20-20. Direction of DMA Transfers

0 0 No transfer performed.

0 1 Output. Transfers are from MSC711x-to-external host.

1 0 Input. Transfers are from external host-to-MSC711x.

1 1 Reserved.

Table 20-21. Selecting DMA Mode from MSC711x Side

HPCR[DMA] DMA Mode

0 HDI16 port operates in non-DMA mode.

1 HDI16 port operates in DMA mode.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-23

Host Interface (HDI16)
20.7.5.1 Non-DMA External Host Accesses

This section shows how data passes through the transmit path of the HDI16 port in non-DMA
mode. Non-DMA external host accesses for 16-bit data transfers proceed as follows:

1. The HDI16 is programmed to trigger on host address 0x7 in non-DMA mode.

2. The external host writes 16-bit data to the host-side TX3 register at host address 0x7.

3. The write triggers the transfer of data to the HORX FIFO.

4. The device reads data from the MSC711x-side HORX register in bits 15–0.

Non-DMA external host accesses for 32-bit data transfers proceed as follows:

1. The HDI16 is programmed to trigger on host address 0x7 in non-DMA mode.

2. The host writes the most significant 16 bits of data to the host-side TX2 register
at host address 0x6.

3. The host writes the least significant 16 bits of data to the host-side TX3 register at host
address 0x7.

4. The write triggers the transfer of data to the HORX FIFO.

5. The device reads data from the MSC711x-side HORX register in bits 31–0.

Non-DMA external host accesses for 32-bit data transfers using an alternate technique proceed as
follows:

1. The HDI16 is programmed to trigger on host address 0x6 in non-DMA mode.

2. The host writes the least significant 16 bits of data to the host-side TX3 register
at host address 0x7.

3. The host writes the most significant 16 bits of data to the host-side TX2 register at host
address 0x6.

4. The write triggers the transfer of data to the HORX FIFO.

5. The device reads data from the MSC711x-side HORX register in bits 31–0.

Non-DMA external host accesses for 64-bit data transfers proceed as follows:

1. The HDI16 is programmed to trigger on host address 0x7 in non-DMA mode.

2. The host writes the most significant 16 bits of data to the host-side TX0 register at host
address 0x4.

3. The host writes the next most significant 16 bits of data to the host-side TX1 register at
host address 0x5.

4. The host writes the next most significant 16 bits of data to the host-side TX2 register at
host address 0x6.
MSC711x Reference Manual, Rev. 0

20-24 Freescale Semiconductor

Setting Up the HDI16 Port
5. The host writes the least significant 16 bits of data to the host-side TX3 register at host
address 0x7.

6. The write triggers the transfer of data to the HORX FIFO.

7. The device reads data from the MSC711x-side HORX register in bits 63–0.

An alternative technique for 64-bit non-DMA data transfers proceeds as follows:

1. The HDI16 is programmed to trigger on host address 0x4 in non-DMA mode.

2. The host writes the least significant 16 bits of data to the host-side TX3 register at host
address 0x7.

3. The host writes the next most significant 16 bits of data to the host-side TX2 register at
host address 0x6.

4. The host writes the next most significant 16 bits of data to the host-side TX1 register at
host address 0x5.

5. The host writes the most significant 16 bits of data to the host-side TX0 register at host
address 0x4.

6. The write triggers the transfer of data to the HORX FIFO.

7. The device reads data from the MSC711x-side HORX register in bits 63–0.

20.7.5.2 External Host DMA Accesses

This section shows how data passes through the transmit path of the HDI16 port. The 32-bit data
transfers in host acknowledge mode proceed as follows:

1. The HDI16 is programmed for 32-bit transfers in DMA mode.

2. The HDI16 module asserts its HREQ signal pin when it is ready for an external DMA
access.

3. The host writes the most significant 16-bits of data to the host-side TX2 register (the
two-bit DMA counter points to the TX2 register) using HACK as a strobe to indicate
valid DMA data on the host data bus.

4. The host writes the least significant 16 bits of data using HACK as a strobe to indicate
valid DMA data on the host data bus. The internal DMA counter increments the address
so that the write is performed to the host-side TX3 register (the two-bit DMA counter
points to the TX3 register).

5. Completing the second access triggers the transfer of data (Table 20-15) to the HORX
FIFO.

6. The two-bit DMA counter is loaded from the HCR[HDM] or ICR[HM] bits to point to
the TX2 register, depending on the value of HCR[HICR] bit.

7. The device reads the data from the MSC711x-side HORX register in bits 31–0.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-25

Host Interface (HDI16)
Note: In host acknowledge mode, the HRD/HWR pins are not used in read and write DMA
accesses.

The 32-bit data transfers in OAD mode proceed as follows:

1. The HDI16 programmed for 32-bit transfers in DMA mode.

2. The HDI16 module asserts its HREQ pin when it is ready for an external DMA access.

3. The host writes the most significant 16-bits of data to the host-side TX2 register (the
two-bit DMA counter points to the TX2 register) at host address 0x4.

4. The host writes the least significant 16-bits of data to the same address (host address
0x4). The internal DMA counter increments the address so that the write is performed to
the host-side TX3 register (the two-bit DMA counter points to the TX3 register).

5. Completing the second access triggers the transfer of data (Table 20-15) to the HORX
FIFO.

6. The two-bit DMA counter is loaded from the HCR[HDM] or ICR[HM] bits to point to
the TX2 register, depending on the value of HCR[HICR] bit.

7. The device then reads the data from the MSC711x-side HORX register in bits 31–0.

Note: In OAD Mode, the HRD/HWR signal pins are used in read and write DMA accesses.

20.7.6 Forcing DMA Rx Servicing

When the HDI16 module is configured so that the internal DMA controller services it on the
device side and the host has finished sending data, the HORX FIFO may not be completely filled.
If this happens, the DMA controller does not receive a data transfer request. The external host can
use the ICR[LWRT] bit to indicate the write of its last 8- or 16-bit data word to the TXx registers.
The host must set the ICR[LWRT] bit immediately before writing its last data value. Then, when
the host writes the last data value, the contents of the TXx registers are transferred into the
receive FIFO and a DMA data transfer request is initiated.

20.7.7 Host Flags (HF[0–7])

The host flags are for general-purpose communication of additional system-level information
between the external host and the MSC711x. There are two sets of host flags, as shown in Table
20-22.

Table 20-22. Host Flags

Transfer Direction Host Flags Writable by Readable by

Host-to-MSC711x HF[0–3] Host-to-ICR MSC711x from HSR

MSC711x-to-host HF[4–7] MSC711x-to-HCR Host from ISR
MSC711x Reference Manual, Rev. 0

20-26 Freescale Semiconductor

MSC711x-Side Programming Model
20.7.8 Command Vector

One of the most innovative features of the HDI16 is the host command feature. An external host
processor can issue an interrupt request to the SC1400 core, selecting any of 128 possible vectors
for execution on an MSC711x device. For example, MSC711x host interrupts can allow the host
processor to read or write core registers in data or program memory locations and perform control
and debugging operations. The command vector is always requested by the external host and
serviced by the MSC711x. The external host first writes the command vector register, CVR, with
the CVR[HC] bit set. This value is transferred through the HDI16 to the MSC711x Host
Command Vector Register (HCVR), where the SC1400 core reads it to identify the requested
interrupt routine. This flexibility allows the host processor to execute up to 128 pre-programmed
functions inside the SC1400 core.

The host processor can also issue non-maskable interrupts to the SC1400 core by setting the
CVR[NMI] bit in addition to setting the CVR[HC] bit when writing the external host CVR. For
details on this operation, see the NMI bit description on page 20-46. When the external host
processor issues a command to the MSC711x device, it can read the CVR[HC] bit to determine
whether the interrupt controller in the SC1400 core has accepted the command. When the
command is accepted for execution, the interrupt controller clears this bit.

20.7.9 Initializing the HDI16 Module

The external host can force HDI16 initialization by setting ICR[INIT] as described in Table
20-32, Effects of the INIT Command, on page 20-44.

20.8 MSC711x-Side Programming Model

The SC1400 core treats the HDI16 as a memory-mapped peripheral, employing either standard
polled or interrupt-driven programming techniques. Direct memory mapping allows the SC1400
core to access the HDI16 registers using standard instructions and addressing modes. The on-chip
DMA controller or the SC1400 core services the transmit and receive FIFOs for data transfers. The
SC1400 core accesses all the device-side registers, but the external host cannot access these
registers. The value of the base address for the HDI16 register file, HDI16_BASE, is listed in
Table 5-1, Summary — Base Addresses for MSC711x Register Files, on page 5-4.

Note: The HDI16 programming model addressable by the external host processor is
described in Section 20.9, External Host-Side Programming Model, on page 20-37.

The HDI16 port registers are affected by two different types of reset:

� Peripheral module reset is caused by reset conditions on the MSC711x device
(see Table 13-2, Reset Actions for Each Reset Source, on page 13-2.

� Individual reset is caused by clearing HPCR[HEN] via an APB bus access.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-27

Host Interface (HDI16)
Table 20-23 shows the effects of the reset types on the registers accessible from an MSC711x
device. The HDI16 is disabled on all types of reset.

Programmable from Device Side (Non-DMA and DMA Modes)

Table 20-23. Device-Side Registers After Reset

Register
Name

Page
Register

Data

Reset Type

Peripheral
Module Reset

Individual Reset

Host Control Register (HCR) page 20-28 All bits 0 —1

Host Port Control Register (HPCR) page 20-33 All bits —3 —3

Host Status Register (HSR) page 20-31 HF[0–3] 0 —1

HTFE 14 14

HTFNF 14 14

HRFNE 0 0

HRFF 0 0

Host Command Vector Register (HCVR) page 20-32 HCP 0 0

HV 0 —1

Host Receive Data Register (HORX) page 20-37 All bits Empty Empty

Host Transmit Data Register (HOTX) page 20-36 All bits Empty Empty

Notes: 1. A long dash (—) means that the bit value is indeterminate after reset.

2. Empty means that the data at this location is invalid (trash).
3. The HPCR register is indeterminate out of reset because the HDSP, H8BIT, and the HDDS bits can be

asserted out of reset, depending on the values of their corresponding pins.
4. Internally, the register bit is reset to 1. However, its value is ANDed with that of the HPCR[HEN] bit, so if HEN

is not set, this bit reads as a 0. When the HPCR[HEN] bit is set, the value of this bit then reads as 1.

HCR Host Control Register (HCR) HICR = 0 0x7000

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HF4 HF5 HF6 HF7 HICR HDM0 HDM1 HDM2 — DBTE DBRE HCIE HTNFIE HTEIE HRFIE HRNEIE

TYPE R/W

RESET See Table 20-23, Device-Side Registers After Reset, on page 20-28
MSC711x Reference Manual, Rev. 0

20-28 Freescale Semiconductor

MSC711x-Side Programming Model
Programmable from External Host Side (DMA Mode Only)

HCR is the register by which the SC1400 core controls the HDI16 operating mode. It is used for
the following tasks:

� Configuring programmability from the device or external host side (HICR).

� Writing host flags to the external host (HF[4–7])

� Enabling host port interrupts to the MSC711x device (HCIE–HREIE)

� Enabling DMA bursts (DBTE, DBRE)

See also the HPCR register, which configures the HDI16 modes (page 20-33) and the ICR,
which is a control register accessible to the external host side (Section 20.9, External Host-Side
Programming Model, on page 20-37).

Note: The function of bits 10–8 in the HCR is determined by the value of HCR[HICR].

HCR Host Control Register (HCR) HICR = 1 0x7000

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HF4 HF5 HF6 HF7 HICR RREQ HM — DBTE DBRE HCIE HTNFIE HTEIE HRFIE HRNEIE

TYPE R/W R R R/W

RESET See Table 20-23, Device-Side Registers After Reset, on page 20-28

Table 20-24. HCR Bit Descriptions

Name Description Settings

HF[4–7]
15–12

Host Flags 4–7
General-purpose flags for MSC711x-to-external host
communication that are set or cleared by the SC1400
core. The values of HF[4–7] are reflected in the Interface
Status Register (ISR); if MSC711x software modifies
them, the host processor can read the modified values by
reading the ISR. As general-purpose flags, HF[4–7] can
be used individually or as encoded pairs in a simple
device-to-external host communication protocol in both
the MSC711x and host processor software.

HICR
11

ICR/HCR Priority for DMA/Last Address Mode
Selects which register defines DMA/last address mode,
ICR or HCR. If HICR is cleared, the HDI16 DMA/last
address mode is defined by the HCR[HDM] bits, as
described in Section 20.6.2.3, Host DMA Mode, on page
20-17. If HICR is set, the DMA/last address mode is
defined by the values of HM, RREQ, and TREQ in ICR.

0 DMA/last address mode defined in HCR.

1 DMA/last address mode defined in ICR.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-29

Host Interface (HDI16)
HDM[0–2]
(HICR = 0)

10–8

Host DMA/Last Address Mode Control
When HDI16 DMA mode is enabled (HICR is cleared and
the HPCR[DMA] bit is set), HDM defines the HDI16 DMA
mode of operation.

When the HDI16 is in non-DMA mode (both HICR and
HPCR[DMA] are cleared), the HDM bits define the data
transfer size, as described in Section 20.7.2, Non-DMA
Mode Programmed from External Host Side (HICR = 1),
on page 20-20.

HDM0 (Bit 10):

0 Input. Data transfers are from the
external host to the MSC711x device.

1 Output. Data transfers are from the
MSC711x device to the external host.

HDM[1–2] (Bits 9–8):

00 Transfer 64-bit DMA data.

01 Transfer 48-bit DMA data.

10 Transfer 32-bit DMA data.

11 Transfer 16-bit DMA data.

RREQ
(HICR = 1)

10

RREQ Status
When HICR is set and HPCR[DMA] is also set, RREQ
reflects the status of ICR[RREQ], which indicates the
direction of the DMA transfer selected by the host. When
HICR is set and the HPCR[DMA] is cleared, this bit is
invalid.

HM
(HICR = 1)

9–8

ICR[HM] Status
When HICR is set, HM reflects the status of the ICR[HM]
bits, which indicate the transfer data size.

—
7

Reserved. Write to zero for future compatibility.

DBTE
6

DMA Transmit Burst Enable
Enables/Disables burst mode for DMA transactions to the
HDI16. If DBTE is cleared, the HDI16 transmits data in
single (non-burst) DMA mode. In this mode, if
HSR[HTFNF] is set, the HDI16 generates a transmit data
FIFO DMA request. If DBTE is set, HDI16 transmits data
in burst DMA mode. In this mode, if HSR[HTFE] is set, the
HDI16 generates a transmit data FIFO DMA request.

0 DMA transmit burst mode disabled.

1 DMA transmit burst mode enabled.

DBRE
5

DMA Receive Burst Enable
Enables/Disables burst mode for DMA transactions from
the HDI16. If DBRE is cleared, the HDI16 receives data in
single (non-burst) DMA mode. In this mode, if
HSR[HRFNE] is set, the HDI16 generates a receive data
FIFO DMA request. If DBRE is set, the HDI16 receives
data in burst DMA mode. In this mode, if HRFF is set, the
HDI16 generates a receive data FIFO DMA request.

0 DMA receive burst mode disabled.

1 DMA receive burst mode enabled.

HCIE
4

Host Command Interrupt Enable
Generates a host command interrupt request if the host
command pending status bit HCP is set in the Host
Command Vector Register (HCVR).

0 Host command interrupt disabled.

1 Host command interrupt enabled.

HTNFIE
3

Host Transmit Not Full Interrupt Enable
Enables an SC1400 interrupt when the host transmit FIFO
not full status bit HTFNF is set in the HSR. If both HTNFIE
and HTFNF are set, a host transmit data interrupt request
is generated.

0 Host transmit not full interrupt disabled.

1 Host transmit not full interrupt enabled.

Table 20-24. HCR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

20-30 Freescale Semiconductor

MSC711x-Side Programming Model
HSR is a register that the SC1400 core can read to get the status and flags of the HDI16. The
SC1400 core accesses HSR to read host flags from the external host (HF[0–3]) and to read host
port FIFO status (HTFNF–HRFNE).

HTEIE
2

Host Transmit Empty Interrupt Enable
Enables an SC1400 interrupt when the host transmit FIFO
empty status bit HTFE is set in the HSR. If both HTEIE
and HTFE are set, a host transmit data interrupt request is
generated.

0 Host transmit empty interrupt disabled.

1 Host transmit empty interrupt enabled.

HRFIE
1

Host Receive Full Interrupt Enable
Enables an SC1400 interrupt when the host receive FIFO
full status bit HRFF is set in the HSR. If both HRFIE and
HRFF are set, a host receive FIFO full interrupt request is
generated.

0 Host receive full interrupt disabled.

1 Host receive full interrupt enabled.

HRNEIE
0

Host Receive Not Empty Interrupt Enable
Enables an SC1400 interrupt when the host receive FIFO
not empty status bit HRFNE is set in HSR. If both HRNEIE
and HRFNE are set, a host receive FIFO not empty
interrupt request is generated.

0 Host receive not empty interrupt disabled.

1 Host receive not empty interrupt enabled.

HSR Host Status Register 0x7040

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HF0 HF1 HF2 HF3 — HTFNF HTFE HRFF HRFNE

TYPE R

RESET See Table 20-23, Device-Side Registers After Reset, on page 20-28

Table 20-25. HSR Bit Descriptions

Name Description Settings

HF[0–3]
15–12

Host Flags 0–3
General-purpose flags for external host-to-MSC711x communication,
which the host sets or clears. The values of HF[0–3] are reflected in the
Interface Control Register (ICR) on the host side. The HF flags can be
used individually or as encoded pairs in a simple external
host-to-MSC711x protocol in both the SC1400 core and host processor
software.

—
11–4

Reserved. Write to zero for future compatibility.

Table 20-24. HCR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-31

Host Interface (HDI16)
HTFNF
3

Host Transmit Not Full
Indicates whether the host transmit data FIFO (HOTX) has room for the
SC1400 core to write data. HTFNF is set when data is transferred from
the HOTX FIFO to the RX0:RX1:RX2:RX3 registers. HTFNF is cleared
when HOTX is full after the SC1400 core has written data. If HTFNF is
set and DBTE is cleared, the HDI16 generates a transmit data DMA
request for a single transfer. If both HTFNF and HTFIE are set, a host
transmit FIFO not full interrupt request is generated. The host processor
can also set HTFNF via the initialize function.

0 Host transmit FIFO is full.

1 Host transmit FIFO is not full.

HTFE
2

Host Transmit Empty
Indicates whether the host transmit data FIFO (HOTX) is empty and the
SC1400 core can write data. HTFE is set when the last 64-bit word of
data is transferred from the HOTX FIFO to the RX0:RX1:RX2:RX3
registers. HTFE is cleared after the SC1400 core writes data, if HOTX
was previously empty. If both HFTE and DBTE are set, the HDI16
generates a transmit data DMA request for a burst transfer. If both HFTE
and HTEIE are set, a host transmit FIFO empty interrupt request is
generated. The host processor can also set HTFE via the initialize
function.

0 Host transmit FIFO is not
empty.

1 Host transmit FIFO is empty.

HRFF
1

Host Receive Full
Indicates whether the host receive data FIFO (HORX) contains four
64-bit words of data from the host processor. HRFF is set when data is
transferred from the TX0:TX1:TX2:TX3 registers to the HORX FIFO, if
HORX previously contained three 64-bit words of data.
HRFF is cleared when the SC1400 core reads HORX, if the FIFO
previously contained four 64-bit words of data. If both HRFF and DBRE
are set, the HDI16 generates a receive data DMA request for burst
transfer. If HRFF is set when HRFIE is set, a host receive data FIFO full
interrupt request is generated. The host processor can also clear HRFF
via the initialize function.

0 Host receive FIFO is not full.

1 Host receive FIFO is full.

HRFNE
0

Host Receive Not Empty
Indicates whether the host receive data FIFO (HORX) contains data from
the host processor. HRFNE is set when data is transferred from the
TX0:TX1:TX2:TX3 registers to the HORX FIFO, if HORX previously
contained no data. HRFNE is cleared when the SC1400 core reads
HORX, if the FIFO previously contained only one 64-bit word of data.
If HRFNE is set and DBRE is cleared, the HDI16 generates a receive
data DMA request. If HRFNE is set when HREIE is set, a host receive
data FIFO not empty interrupt request is generated. The host processor
can also clear HRFNE via the initialize function.

0 Host receive FIFO is empty.

1 Host receive FIFO is not
empty.

HCVR Host Command Vector Register 0x7060

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVIN1 EVIN0 — HCP HV

TYPE R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 20-25. HSR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

20-32 Freescale Semiconductor

MSC711x-Side Programming Model

HCVR is a register that the SC1400 core reads to get the host command pending status and the
vector value identifying one of 128 possible functions in an interrupt routine. The host command
interrupt service routine must read HCVR to clear the interrupt.

HPCR is a register by which the SC1400 core controls the HDI16 operating mode. It performs
the following tasks:

� Configures HDI16 pin polarity and functionality (HAP–HDSP).

� Enables the HDI16 module (HEN).

� Configures HDI16 modes (H8BIT, HLEND, DMA).

� Configures the DMA (OAD).

To ensure the correct operation of MSC711x devices, the HPCR HAP, HRP, HDDS, HDSP, and
H8BIT bits must be changed only if the host enable bit, HEN, is cleared. These bits must not be
set when HEN is already set. Also, they must not be set simultaneously with HEN.

Table 20-26. HCVR Bit Descriptions

Name Reset Description

EVIN1
15

0 Host Event Port Input 1
Reflects the status of the EVIN1 bit in the Command Vector Register (CVR). If set, EVIN1
indicates that the host has set the EVIN1 bit. This bit is then used as an input to the event port.

EVIN0
14

0 Host Event Port Input 0
Reflects the status of the EVIN0 bit in the Command Vector Register (CVR). If set, EVIN0
indicates that the host has set the EVIN0 bit. This bit is then used as an input to the event port.

—
13–8

0 Reserved. Write to zero for future compatibility.

HCP
7

0 Host Command Pending
Reflects the status of the HC bit in the Command Vector Register (CVR). If set, HCP indicates that
the host has set the HC bit and that a host command interrupt is pending. HC and HCP are
cleared when the SC1400 core reads HCVR. The host must not clear HC (which also clears HCP)
until HC is cleared by reading HCVR on the core side.

HV
6–0

0 Host Vector
Reflects the status of the HV bit in the CVR. These seven bits indicate a value from 0 to 127 that
represents an interrupt routine. The SC1400 core reads the HV value to identify the interrupt
routine. The HV bits enable the host programmer to select and execute up to 128
pre-programmed functions inside the SC1400 core.

HPCR Host Port Control Register 0x7020

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HAP HRP HCSP HDDS — HDSP HROD HEN H8BIT HLEND — DMA OAD

TYPE R/W

RESET See Table 20-23, Device-Side Registers After Reset, on page 20-28
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-33

Host Interface (HDI16)
Table 20-27. HPCR Bit Descriptions

Name Description Settings

HAP
15

Host Acknowledge Polarity
Determines whether the host acknowledge (HACK) signal
is configured as active low or active high.

0 HACK signal is configured as an active low
input.

1 HACK signal is configured as an active high
input.

HRP
14

Host Request Polarity
Controls the polarity of the host request signals.

Single host request mode (ICR[HDRQ] cleared):

0 HREQ signal is an active low output.

1 HREQ signal is an active high output.

In double host request mode (ICR[HDRQ] set:

0 HTRQ and HRRQ signals are active low
outputs.

1 HTRQ and HRRQ signals are active high
outputs.

HCSP
13

Host Chip Select Polarity
Inverts the polarity of both the HCS1 and HSC0 pins
before the ORing operation occurs.

0 Invert polarity of both HCS1 and HCS2 pins.
That is, the pins become HCS1 and HCS2.

1 No inversion of polarity for HCS1 and HCS2
pins. That is, the pins are HCS1 and HCS2.

HDDS
12

Host Dual Data Strobe
Determines whether the HDI16 operates in single-strobe
or dual-strobe bus mode. In single-strobe mode, the bus
has a single data strobe signal for both reads and writes.
When this bit is read, it reflects the OR value between this
bit and the corresponding pin. In dual-strobe mode, the
bus has two separate data strobes, one for data reads,
the other for data writes. See Figure 20-3, Dual-Strobe
Bus, on page 20-9 and Figure 20-2, Single-Strobe Bus,
on page 20-9 for details on the two types of buses.

0 HDI16 operates in single-strobe bus mode.

1 HDI16 operates in dual-strobe bus mode.

—
11–10

Reserved. Write to zero for future compatibility.

HDSP
9

Host Data Strobe Polarity
Determines whether the data strobe signals are
configured as active high or active low inputs.
When this bit is read, it reflects the OR value between this
bit and the corresponding pin. The data strobe signals are
HDS or HRD or HWR.

0 Data strobe signals are configured as active
low inputs, and data is transferred when the
data strobe is low.

1 Data strobe signals are configured as active
high inputs, and data is transferred when the
data strobe is high.

HROD
8

Host Request Open Drain
Configures HREQ/HTRQ and HRRQ as open drain.

0 Normal (driven) operation.

1 Open-drain operation.

HEN
7

Host Enable
Determines whether the HDI16 operates as the host
interface.

0 HDI16 internal clock is frozen.

1 HDI16 operates as the host interface.

H8BIT
6

H8-Bit Mode
This bit is ORed with the H8BIT input pin and defines
whether the HDI16 operates in 8-bit or 16-bit mode (the
default). When this bit is read, it reflects the OR value
between this bit and the corresponding pin.
If the H8BIT pin is connected to the VDD, the value of
H8BIT is ignored. If the H8BIT pin is connected to the
ground and H8BIT is set, HDI16 8-bit mode is enabled.

0 16-bit mode is enabled (default).

1 8-bit mode is enabled.
MSC711x Reference Manual, Rev. 0

20-34 Freescale Semiconductor

MSC711x-Side Programming Model
HLEND
5

Host Little-Endian Mode
Configures the host port for big- or little-endian
configuration. When this bit is set correctly for endianness
on the device, it should not be modified.

0 Big-endian configuration.

1 Little-endian configuration.

—
4–2

Reserved. Write to zero for future compatibility.

DMA
1

Host DMA Mode Enable
Enables/Disables HDI16 DMA mode, which supports
external DMA controller devices connected to the HDI16
on the host side. When DMA is cleared, the TREQ and
RREQ control bits are used for host processor interrupt
control via the external HREQ output pin or the HRREQ
and HTREQ output pins if HDREQ in ICR is set.
When DMA is set, HDI16 operation is determined by the
HCR[HDM] bits if the HCR[HICR] bit is cleared or by the
HM1, HM0, RREQ and TREQ bits in ICR, if HICR is set.
See Section 20.6.2.3, Host DMA Mode, on page 20-17
for details.

Note: This mode should not be confused with the
operation of the MSC711x DMA controller.

0 Host DMA mode is disabled.

1 Host DMA mode is enabled.

OAD
0

One-Address Host DMA Mode Enable
Enables/Disables one-address host DMA mode
operation. If OAD is cleared and the DMA direction is
MSC711x-to-external host, the contents of the selected
register are written to the host data bus when HACK is
asserted. If the DMA direction is external
host-to-MSC711x, the selected register is read from the
host data bus when HACK is asserted.

If OAD is set and the DMA direction is
MSC711x-to-external host, the contents of the selected
register are written to the host data bus when a read
operation at host address 0x4 is asserted. If the DMA
direction is external host-to-MSC711x, the selected
register is read from the host data bus when a write
operation at host address 0x4 is asserted.

0 HACK input pin is used as a DMA transfer
acknowledge input.

1 Host address 0x4 is used as a host DMA
transfer acknowledge input.

Table 20-27. HPCR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-35

Host Interface (HDI16)
HOTX handles MSC711x-to-external host data transfers. The MSC711x devices treat this
register as a write-only FIFO with a capacity of four 64-bit words. Writing to HOTX clears the
Host Transfer Data Empty bit (HSR[HTFE]) if HOTX was previously empty, or it clears HTFNF
if HOTX previously contained three 64-bit words. The contents of HOTX are transferred as
64-bit data to the receive data registers (RX0:RX1:RX2:RX3) when both the following bits are
cleared:

� Receive data register full ISR[RXDF] on the host side.

� Host transmit data empty HSR[HTFE] on the core side.

This transfer operation sets the ISR[RXDF] bit and the HSR[HTFE] bit, if HOTX previously
contained only one 64-bit word, or HSR[HTFNF], if HOTX was previously full. The SC1400 core
can cause a host transmit data interrupt by setting either:

� HCR[HTFIE] when HSR[HTFNF] is set.

� HCR[HTEIE] when HSR[HTFE] is set.

To prevent data overwrites, do not write data to HOTX in burst mode unless the HSR[HTFE] bit
is set or in single-transfer mode unless HSR[HTFNF] is set. In addition, a DMA channel can be
programmed to write to HOTX in burst mode when HSR[HTFE] is set and DBTE is set, or in
single-transfer mode when HSR[HTFNF] is set and DBTE is cleared.

HOTX Host Transmit Data Register 0x7080

Bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Data Value

TYPE W

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Data Value

TYPE W

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Value

TYPE W

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Value

TYPE W
MSC711x Reference Manual, Rev. 0

20-36 Freescale Semiconductor

External Host-Side Programming Model
HORX handles external host-to-MSC711x data transfers. The MSC711x treats this register as a
read-only FIFO that can receive four 64-bit words. HORX is loaded with 64-bit data from the
transmit data registers on the host side (TX0:TX1:TX2:TX3) when both the following bits are
cleared:

� Transmit data register empty TXDE on the host side (ISR).

� Host receive data full HRFF on the core side (HSR).

Reading HORX clears HSR[HRFF] if the FIFO was previously full, or it clears HSR[HRFNE] if
the FIFO previously contained one 64-bit word. When data is transferred, the ISR[TXDE] bit is
set and either HSR[HRFNE] is set if HORX was previously empty or HSR[HRFF] is set if
HORX previously contained three 64-bit words. The MSC711x may cause a host receive data
interrupt by setting either:

� HCR[HRFIE] when HSR[HRFF] is set.

� HCR[HREIE] when HSR[HRFNE] is set.

In addition, a DMA channel can be programmed to read HORX either when HSR[HRFNE] is set
and DBRE is cleared or when HRFF is set and DBRE is set, meaning that HORX contains valid
data.

20.9 External Host-Side Programming Model

Host processors use standard host processor instructions and addressing modes, for example, byte
move, to communicate with the HDI16 registers. The HDI16 registers are aligned so that 16-bit
host processors can use 16/32/48/64-bit load and store instructions for data transfers. The HDI16
external host-side programming model is affected by whether the module is configured for big-

HORX Host Receive Data Register 0x70A0

Bit 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Data Value

TYPE R

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Data Value

TYPE R

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Value

TYPE R

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Value

TYPE R
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-37

Host Interface (HDI16)
or little-endian operation. Table 20-28 shows the external host HDI16 registers configured as
big-endian and Table 20-29 shows the external host HDI16 registers configured as little-endian.
These registers are not accessible as part of the MSC711x memory map. They are accessible only
to an external host through the host port pins. The HDI16 programming model addressable by the
devices master(s) is described in Section 20.8, MSC711x-Side Programming Model, on page
20-27.

The HDI16 port registers are affected by two different types of reset:

� Peripheral module reset is caused by reset conditions on the MSC711x device
(see Table 13-2, Reset Actions for Each Reset Source, on page 13-2).

Table 20-28. External Host-Side HDI16 Registers Configured as Big-Endian

Name
Host

Address
(HA[0–3])

Description Page Number

Interface Control Register (ICR) 0x0 Control register for the HDI16 port. page 20-39

Interface Status Register (ISR) 0x2 Status register for the HDI16 port. page 20-44

Command Vector Register (CVR) 0x1 Allows an external host processor to select one
of 128 possible interrupt routines to execute.

page 20-46

Transmit Word Data Registers
(TX[0–3])

0: 0x4
1: 0x5
2: 0x6
3: 0x7

Write-only registers written by an external host
processor for transmitting data to the MSC711x
device. TX0 is the MS portion of the data.

page 20-47

Receive Word Data Registers (RX[0–3]) 0: 0x4
1: 0x5
2: 0x6
3: 0x7

Read-only registers read by an external host
processor for receiving data from an MSC711x
device. RX0 is the MS portion of the data.

page 20-47

Table 20-29. External Host-Side Registers Configured as Little-Endian

Name
Host

Address
(HA[0–3])

Description Page Number

Interface Control Register (ICR) 0x0 Control register for the HDI16 port. page 20-39

Interface Status Register (ISR) 0x2 Status register for the HDI16 port. page 20-44

Command Vector Register (CVR) 0x1 Allows an external host processor to select one
of 128 possible interrupt routines to execute.

page 20-46

Transmit Word Data Registers
(TX[0–3])

0: 0x7
1: 0x6
2: 0x5
3: 0x4

Write-only registers written by an external host
processor for transmitting data to the MSC711x
device. TX0 is the MS portion of the data.

page 20-47

 Receive Word Data Registers
(RX[0–3])

0: 0x7
1: 0x6
2: 0x5
3: 0x4

Read-only registers read by an external host
processor for receiving data from the MSC711x
device. RX0 is the MS portion of the data.

page 20-47
MSC711x Reference Manual, Rev. 0

20-38 Freescale Semiconductor

External Host-Side Programming Model
� Individual reset is caused by clearing HPCR[HEN].

Table 20-30 shows the effects of the reset types on the registers accessible to the external host.

Programmable from External Host Side, Non-DMA Mode

Programmable from External Host Side, DMA Mode

Table 20-30. External Host-Side Registers After Reset

Register
Name

Register
Data

Reset Type

Peripheral Module Reset Individual Reset

ICR All Bits 0 —

CVR NMI 0 0

HC 0 0

HV[6–0] 0 —

ISR TXDE32 1 1

TXDE16 1 1

RXDF32 0 0

RXDF16 0 0

HREQ 0 1 if TREQ is set; 0 otherwise

RX[0–3] Empty Empty

TX[0–3] Empty Empty

ICR Interface Control Register (DMA = 0, HICR = 1) 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HRRA HTRA — HF0 HF1 LWRT INIT HM HF2 HF3 HDRQ TREQ RREQ

TYPE R/W

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39

ICR Interface Control Register (DMA = 1, HICR = 1) 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HRRA HTRA — HF0 HF1 LWRT INIT HM HF2 HF3 — TREQ RREQ

TYPE R/W

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-39

Host Interface (HDI16)
Programmable from MSC711x Side, Non-DMA Mode

Programmable from MSC711x Side, DMA Mode

ICR allows the use of bit manipulation instructions on control register bits. The host processor
uses the ICR to control the HDI16 interrupts and flags. The SC1400 core cannot access the ICR.
The HPCR[DMA] bit and the HCR[HICR] bit control the function of the ICR bits. See also the
HPCR register, which configures the HDI16 modes (page 20-33) and the HCR, a control register
accessed on the MSC711x side (page 20-28).

ICR Interface Control Register (DMA = 0, HICR = 0) 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HRRA HTRA — HF0 HF1 LWRT INIT HDM HF2 HF3 HDRQ TREQ RREQ

TYPE R/W R R/W

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39

ICR Interface Control Register (DMA = 1, HICR = 0) 0x0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HRRA HTRA — HF0 HF1 LWRT INIT HDM HF2 HF3 — Note 1 Note 2

TYPE R/W R R/W R/W

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39

Notes: 1. HDM0 when read, TREQ when written

2. HDM0 when read, RREQ when written

Table 20-31. ICR Bit Descriptions

Name Description Settings

HRRA
15–14

HDI Receive Request Assertion
The receive request is asserted for a specified time based on the
number of data bytes to receive.

00 HRRQ asserted for 8 bytes (RX full).

01 HRRQ asserted for 16 bytes (RX full
+ 1 HOTX entry full).

10 HRRQ asserted for 32 bytes (RX full
+ 3 HOTX entries full).

11 Reserved.

HTRA
13–12

HDI Transmit Request Assertion
The transmit request is asserted a specified time based on the
number of data bytes to transmit.

00 HTRQ/HREQ asserted for 8 bytes
(TX empty).

01 HTRQ/HREQ asserted for 16 bytes
(TX empty + 1 HOTX entry empty).

10 HTRQ/HREQ asserted for 32 bytes
(TX empty + 3 HOTX entries empty).

11 Reserved.

—
11

Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 0

20-40 Freescale Semiconductor

External Host-Side Programming Model
HF0
10

Host Flag 0
A general-purpose flag for external host-to-MSC711x
communication. The host processor can set or clear HF0. HF0 is
reflected in the HSR on the core side of the HDI16.

HF1
9

Host Flag 1
A general-purpose flag for external host-to-MSC711x
communication. The host processor can set or clear HF1. HF1 is
reflected in the HSR on the core side of the HDI16.

LWRT
8

Last Write
The external host processor sets this bit to indicate to the HDI16
module that the end of a frame has been transmitted. In response,
the HORX generates a DMA data transfer request, even if the
FIFO is not full. LWRT is automatically cleared when the HORX
FIFO empties. See

INIT
7

Force Initialization
The host processor uses this bit to force initialization of the HDI16
hardware (which may or may not be necessary, depending on the
software design of the interface). During initialization, the HDI16
transmit and receive control bits are configured. The type of
initialization performed when the INIT bit is set depends on the
state of TREQ and RREQ in the HDI16. The INIT command, which
is local to the HDI16, conveniently configures the HDI16 into the
desired data transfer mode. See Table 20-32, Effects of the INIT
Command, on page 20-44. When the host sets the INIT bit, the
HDI16 hardware executes the INIT command. The interface
hardware clears the INIT bit after the command executes.

Table 20-31. ICR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-41

Host Interface (HDI16)
HM/HDM
6–5

Host Mode/Host DMA Mode
When host DMA mode is enabled, if HCR[HICR] is set, the HREQ
pin requests DMA transfers, the TREQ and RREQ bits select the
direction of DMA transfers, and the HACK input pin is used as a
DMA transfer acknowledge input, if OAD in HPCR is cleared. If the
DMA direction is from SC1400 core-to-host, the contents of the
selected register are written to the host data bus when HACK is
asserted. If the DMA direction is from host-to-SC1400 core, the
selected register is read from the host data bus when HACK is
asserted.

If HPCR[OAD] is set, a host read or write to host address 0x4 is
used as a DMA transfer acknowledge. If the DMA direction is from
SC1400 core-to-host, the contents of the selected register are
written to the host data bus when the host reads from host address
0x4. If the DMA direction is from host-to-SC1400 core, the selected
register is read from the host data bus when the host writes to host
address 0x4.

HM also controls the size of the DMA word to be transferred. The
HDI16 data register selected during a host DMA transfer is
determined by a 2-bit address counter, which is preloaded with the
value in HM. The address counter replaces the HA[0–1] bits of the
HDI16 during a host DMA transfer. The address counter can be
initialized with the INIT bit feature. After each DMA transfer on the
host data bus, the address counter decrements. When the address
counter reaches the last register, the address counter is loaded
with the value in HM.

Thus, 16-bit, 32-bit, 48-bit, or 64-bit data can be transferred in a
circular fashion, and the need is eliminated for the DMA controller
to supply the HA[3–0] pins (HPCR bit OAD = 0) or to read/write at
host address 0x4 (HPCR bit OAD = 1). For 32-, 48- or 64-bit data
transfers, the core CPU interrupt rate is reduced by a factor of 2, 3,
or 4, respectively, from the host request rate. That is, for every two
or three host processor data transfers of one byte each, there is
only one 64-bit core CPU interrupt. This bit is available only in ICR
mode (HCR[HICR] = 1).

When the HDI16 is in ICR priority non-DMA mode (the
HPCR[DMA] bit is cleared and HCR[HICR] is set), data transfer
size is defined by HM, as described in Table 20-14, Non-DMA
Trigger Addresses (from External Host Side), on page 20-21. The
transfer size causes the RXx/TXx register read/write at the last
(trigger) address to clear the RXDF/TXDE bits, respectively.

HF2
4

Host Flag 2
A general-purpose flag for external host-to-MSC711x
communication. The host processor can set or clear HF2. HF2 is
reflected in the HSR on the core side of the HDI16.

HF3
3

Host Flag 3
A general-purpose flag for external host-to-MSC711x
communication. The host processor can set or clear HF3. HF3 is
reflected in the HSR on the core side of the HDI16.

Table 20-31. ICR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

20-42 Freescale Semiconductor

External Host-Side Programming Model
Table 20-32 shows the effects of the INIT command in relation to the values of TREQ and RREQ.

HDRQ
2

HREQ/HTRQ and HACK/HRRQ Pin Control
Controls the HREQ/HTRQ and HACK/HRRQ pins. If HDRQ is
cleared, the HREQ/HTRQ pin functions as a single HREQ. If
HDRQ is set, the HREQ/HTRQ and HACK/HRRQ pins function as
HTRQ and HRRQ, respectively. This bit is available only in
non-DMA (interrupt) mode (HPCR[DMA] = 0).

TREQ/
HDM0

1

HREQ/HTREQ Pin Control
Controls the HREQ/HTREQ pin for host transmit data transfers. In
non-DMA (interrupt) mode (DMA = 0 in the HPCR), TREQ enables
host requests via the host request (HREQ or HTRQ) pin when the
Transmit Data Register Empty (TXDE) status bit in the ISR is set. If
TREQ is cleared, TXDE interrupts are disabled. If TREQ and
TXDE are set, the host request pin is asserted as shown in Table
20-8.

In DMA modes (HPCR[DMA] = 1 and HCR[HICR] = 1), software
must set or clear TREQ to select the direction of DMA transfers.
Setting TREQ sets the direction of the DMA transfers as external
host-to-MSC711x and enables the HREQ pin to request data
transfers. When HCR[HICR] is cleared and HPCR[DMA] is set, a
TREQ read reflects the status of the inverted value of HCR[HDM0].

When written, TREQ affects the INIT mode. See Table 20-32.

RREQ/
HDM0

0

HREQ and HRREQ Pin Control
Controls the HREQ and HRREQ pins for host receive data
transfers. In non-DMA (interrupt) mode (HPCR[DMA] = 0), RREQ
enables host requests via the host request (HREQ or HRRQ) pin
when the Receive Data Register Full (RXDF) status bit in the ISR
is set. If RREQ is cleared, ISR[RXDF] interrupts are disabled. If
RREQ is set, the host request pin (HREQ or HRRQ) is asserted if
ISR[RXDF] is set.
This is shown in Table 20-8.

In host DMA mode (DMA = 1 in the HPCR and HICR = 1 in the
HCR), RREQ must be set or cleared by software to select the
direction of DMA transfers. Setting RREQ sets the direction of the
host DMA transfers to MSC711x-to-external host and enables the
HREQ pin to request data transfers. When HCR[HICR] is cleared
and HPCR[DMA] is set, an RREQ read reflects the status of
HCR[HDM0].

When written, RREQ affects the INIT mode. See Table 20-32.

Table 20-31. ICR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-43

Host Interface (HDI16)

The ICR HDRQ, TREQ, and RREQ bits are also used to set up the HREQ/HTRQ and HRRQ signals
(see Section 20.5.2.2, Host Request Pin Configuration, on page 20-10).

ISR is a register by which the host processor interrogates the HDI16 status and flags. The host
processor can write to this address without affecting the internal state of the HDI16. The SC1400
core cannot access ISR.

Table 20-32. Effects of the INIT Command

TREQ RREQ After INIT Execution
Transfer Direction

Initialized

0 0 INIT = 0 None

0 1 INIT = 0; ISR[RXDF] = 0; HSR[HTFE/HTFNF] = 1 MSC711x to External host

1 0 INIT = 0; ISR[TXDE] = 1; HSR[HRFF/HRFNE] = 0 External host to MSC711x

1 1 INIT = 0; ISR[RXDF] = 0; HSR[HTFE/HTFNF] = 1;
ISR[TXDE] = 1; HSR[HRFF/HRFNE] = 0

Reserved

ISR Interface Status Register 0x2

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EV1 EV0 — TXDE32 TXDE16 RXDF32 RXDF16 HREQ HF4 HF5 HF6 HF7 TRDY TXDE RXDF

TYPE R

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39

Table 20-33. ISR Bit Descriptions

Name Description Settings

EV1
15

Event Port Output 1 0 EVGP1 signal from the event port is
deasserted.

1 EVGP1 signal from the event port is asserted.

EV0
14

Event Port Output 0 0 EVGP0 signal from the event port is
deasserted.

1 EVGP0 signal from the event port is asserted.

—
13–12

Reserved. Write to zero for future compatibility.

TXDE32
11

Transmit Queue 32 Bytes Empty 0 < 32 bytes are empty.

1 32 bytes are empty (24 bytes in HORX and 8
bytes in TX).

TXDE16
10

Transmit Queue 16 Bytes Empty 0 < 16 bytes are empty.

1 16 bytes are empty (8 bytes in HORX and 8
bytes in TX).

RXDF32
9

Receive Queue 32 Bytes Full 0 < 32 bytes are full.

1 32 bytes are full (24 bytes in HOTX and 8
bytes in RX).
MSC711x Reference Manual, Rev. 0

20-44 Freescale Semiconductor

External Host-Side Programming Model
RXDF16
8

Receive Queue 16 Bytes Full 0 < 16 bytes are full.

1 16 bytes are full (8 bytes in HOTX and 8
bytes in RX).

HREQ
7

HREQ Status
Indicates the status of the external transmit and receive
request output signals (HTRQ and HRRQ) if HDRQ is
set. If HDRQ is cleared, HREQ indicates the status of
the external host request output signal (HREQ). The
HREQ bit can be set under either or both of two
conditions: the Receive Word Registers (RX[0–3]) are
full or the Transmit Word Registers (TX[0–3]) are empty.
These conditions are indicated by the ISR RXDF and
TXDE status bits, respectively. If the interrupt source is
enabled by the associated request enable bit in the ICR,
HREQ is set if one or more of the two enabled interrupt
sources is set.

If HDRQ is cleared:

0 No host processor interrupts requested.

1 Interrupt requested.

If HDRQ is set:

0 No host processor interrupts requested
(HTRQ and HRRQ cleared).

1 Interrupt requested (HTRQ or HRRQ set).

HF[4–7]
6–3

Host Flags 4–7
Indicates the state of host flags 4–7 in the HCR on the
core side. Only the SC1400 core can change HF[4–7].

TRDY
2

TRDY Status
Indicates whether the Transmit Word Registers TX[0–3]
and the HORX FIFO are empty. TRDY is set if TXDE is
set and HRFNE is cleared. If TRDY is set, the data that
the host processor writes to TX[0–3] is immediately
transferred to the core side of the HDI16 and can be
read by the SC1400 core. This feature has many
applications. For example, if the host processor issues a
host command that causes the SC1400 core to read
HORX, the host processor can be certain that the data it
just transferred to the HDI16 is the same data received
by the SC1400 core.

0 TX[0–3] and the HORX FIFO are not empty.

1 TX[0–3] and the HORX FIFO are empty.

TXDE
1

Transmit Data Empty

Indicates whether the Transmit Word Registers
(TX[0–3]) are empty and can be written by the host
processor. TXDE is set when the contents of the TX[0–3]
registers are transferred to the HORX register. TXDE is
cleared when the host processor writes to the transmit
data registers (TX) and the HORX FIFO is full. TXDE is
useful for polling and operates independently of the
ICR[TREQ] bit. TXDE can also assert the external
HREQ/HTRQ pin if the TREQ bit is set. The host
processor sets TXDE using the initialize function.

0 The TX registers are not empty.

1 The TX registers are empty and can be
written by the host processor.

Table 20-33. ISR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-45

Host Interface (HDI16)
CVR is a special register by which the host processor issues commands to the SC1400 core. Only
the host processor can access this register, and its contents are reflected in the HCVR to the core
side. The host processor uses the CVR to cause the SC1400 core to execute an interrupt. The host
command feature is independent of any data transfer mechanisms in the HDI16. It can be used to
invoke execution of any of the 128 possible indirect interrupt routines in the SC1400 core,
identified by the value of HCVR[HV].

RXDF
0

Receive Data Full

Indicates whether the Receive Word Registers (RX[0–3])
contain data from the SC1400 and can be read by the
host processor. RXDF is set when the HOTX is
transferred to the RX[0–3] registers. RXDF is cleared
when the host processor reads the receive data
registers (RX) at the last address and the HOTX FIFO is
empty. RXDF is useful for polling and operates
independently of the ICR[RREQ] bit. RXDF can also
assert the external HREQ or HRRQ pins if the RREQ bit
is set. The host processor can clear RXDF using the
initialize function.

0 The RX registers are not full.

1 The RX registers are full and can be read by
the host processor.

CVR Command Vector Register 0x1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVIN1 EVIN0 — NMI HC HV

TYPE R/W

RESET See Table 20-30, External Host-Side Registers After Reset, on page 20-39

Table 20-34. CVR Bit Descriptions

Name Description

EVIN1
15

Host Event Port Input 1
The host processor uses this bit to generate a trigger for the device event port. For example, a host processor
could write to this bit to generate a DMA data transfer.

EVIN0
14

Host Event Port Input 0
The host processor uses this bit to generate a trigger for the device event port. For example, a host processor
could write to this bit to generate a DMA data transfer.

—
13–9

Reserved. Write to zero for future compatibility..

NMI
8

Non-Maskable Interrupt
Used by the host processor to handshake the execution of non-maskable interrupts (NMIs). Normally, the
host processor sets both NMI and HC to request an NMI from the SC1400 core. When the SC1400 core
acknowledges the NMI, the host software reading HCVR clears the NMI and HC bits. The host processor can
read the state of NMI to determine when the NMI is accepted. After setting NMI and HC, the host must not
write to the CVR again until the host software reading HCVR clears both HC and NMI. Setting NMI and HC
causes the host command HC pending bit HCP to be set.

Table 20-33. ISR Bit Descriptions (Continued)

Name Description Settings
MSC711x Reference Manual, Rev. 0

20-46 Freescale Semiconductor

External Host-Side Programming Model
RX[0–3] receive 64-bit data from the HOTX FIFO and are selected by the external host address
inputs (HA[3–0]) during a host processor read operation. The receive word registers contain valid
data when the receive data register full (ISR[RXDF]) bit is set. The host processor programs the
RREQ bit to assert the external HREQ pin when ISR[RXDF] is set. This assertion informs the host
processor that the receive word registers are full. When the HOTX FIFO is empty and
ISR[RXDF] is set, reading the data register at the host last address clears the ISR[RXDF] bit.

TX[0–3] send 64-bit data to the HORX FIFO and are selected by the external host address inputs
(HA[3–0]) during a host processor write operation. Data can be written into the transmit word
registers when the Transmit Data Empty (ISR[TXDE]) bit is set. The host processor programs the
TREQ bit to assert the external HREQ pin when ISR[TXDE] is set. This assertion informs the host

HC
7

Host Command
Used by the host processor to handshake the execution of host command interrupts. Normally, the host
processor sets HC to request a host command interrupt from the SC1400 core. When the SC1400 core
acknowledges the host command interrupt, the host software reading HCVR clears HC. The host processor
can read the state of HC to determine when the host command is accepted. After setting HC, the host must
not write to the CVR again until the host software reading HCVR clears HC. Setting HC causes the host
command pending bit HCP in HSR to be set. The host can write to HC and HV in the same write cycle.

HV
6–0

Host Vector
The seven HV bits are reflected in the core-side Host Command Vector Register (HCVR), which the SC1400
core can read via an interrupt routine, enabling the host programmer to execute any of 128 preprogramming
functions inside the SC1400 core. The host can write HC and HV, or NMI and HV, in the same write cycle.

RXx Receive Word Registers (RX[0–3]) (RX0) 0x7
(RX1) 0x6
(RX2) 0x5
(RX3) 0x4

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Value

TYPE R

TXx Transmit Word Registers (TX[0–3]) (TX0) 0x7
(TX1) 0x6
(TX2) 0x5
(TX3) 0x4

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Value

TYPE W

Table 20-34. CVR Bit Descriptions

Name Description
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 20-47

Host Interface (HDI16)
processor that the transmit word registers are empty. When the HORX FIFO is full and
ISR[TXDE] is set, writing the data register at the host last address clears the ISR[TXDE] bit. The
transmit registers are transferred as 64-bit data to the HORX FIFO when both the ISR[TXDE] and
HSR[HRFF] bits are cleared.
MSC711x Reference Manual, Rev. 0

20-48 Freescale Semiconductor

Timers Module 21
There are two identical quad timer modules on MSC711x devices, timer module A and timer
module B. The quad timer module contains four identical counter/timer groups that serve as
frequency dividers, clock generators, and event counters. Each 16 bit counter/timer group
contains a prescaler, a counter, a load register, a hold register, a capture register, two compare
registers, and two Status and Control registers. All of the registers except the prescaler are
read/writable. This document uses the terms timer and counter interchangeably because the
counter/timers may perform either or both tasks. The counters are also called channels. The
timers interface with the MSC711x architecture and with the device pins through the event port.

21.1 Features

Features of the timers are as follows:

� Counters are cascadable, can be preloaded, count once or repeatedly, share input pins, do
capture and compare, count up or down.

� Count modulo is programmable.

� Maximum count rate is the input clock rate when the timer input signals are not in use.

� Maximum count rate is half the input clock rate when the timer input signals are in use.

� Each counter has a separate prescaler.

21.2 Timer Module Signals

The timer interfaces to the MSC711x architecture and to the pins of the device through the event
port. The input clock shown in the block diagram in Figure 21-1 connects to the TIMER CLOCK
signal, which is generated by the MSC711x clock synthesis module. The generation of the TIMER

CLOCK signal is shown in Figure 11-1, MSC711x Timing System, on page 11-2.

21.2.1 Timer Input Signals, TIN[0–3]

The four timer input signals, TIN[0–3] shown in Figure 21-1 connect as follows to output signals
from the event port event multiplexers:

� TIN0 connects to EVOUT0.

� TIN1 connects to EVOUT1.

� TIN2 connects to EVOUT2.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-1

Timers Module
� TIN3 connects to EVOUT3.

The timer module uses these event port output signals to count or measure the width of external
events. TIN[0–3] are sampled at the input clock rate before they are sent to the primary and
secondary clock multiplexers. The maximum count rate on TIN[0–3] is one-half the input clock
rate.

21.2.2 Timer Output Signals, TOUT[0–3]

The four output signals from timer module A, TOUT[0–3], connect as inputs to the event port event
multiplexers. The four output signals from timer module B, TOUT[0–3], connect to the TDM
modules for optional clocking.

21.3 Timer Module Architecture

Each quad timer module contains four channels, that is, four separate counters. The block
diagram of one channel within a quad timer module is shown in Figure 21-1.

Figure 21-1. Timer Module Block Diagram, One of Four Channels

Prescaler:
/1, /2, /4, ..., /128

Input

P
rim

ar
y

C
lo

ck
 M

U
X...

Outputs
from Other

M
U

XTimer

Optional
Invert

TMRxSCTL[OPS]
TxSCTL[IPS]

Primary

Secondary
Input

Clock

16-Bit Counter

Load

Clock

Capture

Hold

Compare 1: Up

Compare 2: Down

IPBus

Control

Status

Output

Interrupt
Generation

Ov

Cmp1

Cmp2

Optional
Invert

TxSCTL[IPS]

C
m

p1
C

m
p2

E
dg

e

Timer Output

to Primary Clock Multiplex

Timer
Interrupt

TMRxCMPLD1

TMRxCMPLD2

16

C
om

pa
re

OEN

to
Device

3

of the Other Three Timers

3 Channels

Secondary
Input

Request

Optional
InvertInputs

Flag
MSC711x Reference Manual, Rev. 0

21-2 Freescale Semiconductor

Timer Module Architecture
The channel architecture contains the following components:

� Primary clock selection

� Secondary input selection

� Counter

� Registers:

— Control and status registers
— Capture registers
— Compare registers

� Compare unit

� Interrupt generation

� Output generation

21.3.1 Primary Clock Selection

The primary clock selection block contains a prescaler, a primary clock multiplexer, and an
optional invert. It selects and optionally inverts a clock source for the primary clock. The primary
clock can be selected from any of the following:

� Normal clocking:

— Input clock.
— Input clock /1, /2, /4, ..., /128 (using the prescaler block).

� Clocking from external events: any of the four timer input signals, TIN[0–3].

� Clocking in cascaded mode: an output from another channel (for cascaded operation).

The prescaler is used to generate the /2, /4, /8, ..., /128 function for the input clock.

21.3.2 Secondary Input Selection

The secondary input selection block contains a secondary input multiplexer and an optional
invert. It selects and optionally inverts a secondary input, which can be selected from any of the
four timer input signals, TIN[0–3].

21.3.3 Counter

A configurable up/down counter, TMRxCNTR, provides the counting capability for the channel.
It is reinitialized when the terminal count value is reached. The terminal count value can be
programmed as either a compare register or a counter rollover. The load register, TMRxLOAD,
provides the initialization value to the counter when the counter terminal value is reached.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-3

Timers Module
21.3.4 Control and Status Registers

Control registers (TMRxCTL and TMRxSCR) are used to configure the operation of the channel:

� Input source selection:

— Primary count source
— Secondary input source

� Counter modes:

— Count mode
— Count once or repeatedly
— Selectively use compare value to reinitialize counter
— Up/down counting

� Broadcast mode (one counter forces use of other counters)

� Capture mode

� Interrupt enables

� Input and output polarities

� Output mode selection

� Output enable

The TMRxSCR also provides readable status on the following:

� Timer compare flag

� Timer overflow flag

� Input edge flag

� Secondary input (allows reading of the secondary input signal)

21.3.5 Capture Registers

There are two mechanisms for capture on the quad timer module:

� Normal capture function, available via the capture register, TMRxCAP, which takes a
snapshot of the current counter value when the secondary input signal is asserted. The
capture unit functionality is covered in detail in Section 21.6.1.1, Capture Register Use,
on page 21-14.

� Capture read of a cascaded counter, available via the hold registers, TMRxHOLD, which
capture the counter value the instant any counter register is read so that cascaded counters
can be read.
MSC711x Reference Manual, Rev. 0

21-4 Freescale Semiconductor

Timer Module Architecture
21.3.6 Compare Unit

The TMRCMP1 and TMRCMP2 registers provide the values with which the counter is
compared. If a match occurs:

� The OFLAG signal can be set, cleared, or toggled.

� An interrupt is generated, if enabled.

� If enabled, the new compare value is loaded into the CMP1 or CMP2 registers
from CMPLD1 and CMPLD2, respectively.

� If enabled, stops the counter.

� If enabled, reinitializes the counter.

The compare unit functionality is covered in detail in Section 21.3.6, Compare Unit, on page
21-5 and Section 21.3.6, Compare Unit, on page 21-5.

21.3.7 Interrupt Generation

Several conditions within a channel which can generate a quad timer module interrupt:

� Compare

� Compare 1

� Compare 2

� Overflow

� Input edge

These conditions are ORed together to create a single interrupt request for each timer channel
within the quad timer module. The interrupt unit functionality is covered in detail in Section
21.7, Resets and Interrupts, on page 21-15.

21.3.8 Output Generation

The primary output of each timer/counter is the output signal, OFLAG, which can be programmed
for any of the following:

� When the counter reaches the programmed compare value, OFLAG is:

— set
— cleared
— toggled

� OFLAG is asserted while the counter is active.

� OFLAG is an enabled gated clock while the counter is active.

� OFLAG is toggled on alternating compare registers (used for Variable Frequency PWM
mode)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-5

Timers Module
� OFLAG is:

— Set on a successful compare.
— Reset on a secondary input signal edge.

� OFLAG is:

— Set on a successful compare.
— Reset on a counter rollover.

The polarity of the OFLAG output signal is programmable. This signal is sent outside the quad
timer module via its corresponding TOUTx signal. See Section 21.2, Timer Module Signals, on
page 21-1 for information on how the output signals are connected at the device level. The OFLAG
output signal enables each counter to generate square waves (PWM) or pulse stream outputs.

Before a counter is enabled, you can initialize OFLAG by writing the desired initialization value to
TMRxSCR[VAL] and then setting TMRxSCR[FORCE]. Read the descriptions of these bits for
more information.

21.4 Setting up Counters for Cascaded Operation

To create a counter larger than 16 bits, the first counter is programmed for the desired
configuration and count mode (it is not programmed in Cascade mode). This first counter also
programs the TMRxCTL[PCS] field to select the desired primary clock. All other counters in the
cascade are simply programmed with their count mode set to Cascade mode (TMRxCTL[CM] =
111). They also program the TMRxCTL[PCS] field using the appropriate Counter N output so
that each can receive their clocks from the previous counter in the chain. The first counter in the
chain must never be programmed in cascade mode. Also, the first counter in the chain must not
choose one of the outputs from the timers for its primary clock.

All counters in the cascade follow the counting mode of the first counter in the chain. In Cascade
mode, a special high-speed signal path is used, bypassing the timer output flag logic to ensure
that the cascaded channels operate as a single synchronous counter.

You can connect counters using the other (non-cascade) counter modes and selecting the outputs
of other counters as a clock source. In this case, the counters operate in a ripple mode, where
higher-order counters transition a clock later than in a purely synchronous design. This is not the
typical use for cascaded counters.

21.4.1 Operation of the Cascaded Counter

If the first counter in a cascaded chain is counting up and it encounters a compare event, the
counter connected to it is incremented. If the first counter in the chain is counting down and it
encounters a compare event, the counter is decremented. You can correctly read all 16-bit
portions of a cascaded counter as follows using the TMRxHOLD registers:
MSC711x Reference Manual, Rev. 0

21-6 Freescale Semiconductor

Timer Operating Modes
1. Read any 16-bit portion of the cascaded timer from its TMRxCNTR register. You can
do this at any time.

2. When any TMRxCNTR register in the module is read, all other counters simultaneously
load their values into their hold registers.

3. Read the 16-bit portions of all other counters in the cascade from their TMRxHOLD
registers.

21.4.2 Cascading Restrictions

To ensure that there are no feedback loops in a cascade, there are restrictions on which timers can
be cascaded. The counter with the lowest number must always be the first in the cascade, the
counter with the second lowest number must be second, and so on. The counter with the highest
number must always be last in the cascade. Table 21-1 summarizes the cascading restrictions.

21.5 Timer Operating Modes

The counter/timer operates in two modes:

� Count one of the available MSC711x clock sources using the primary clock.

� Count one of the available MSC711x clock sources using the primary clock while a
second input signal, the secondary clock, is asserted, thus timing the width of the
secondary clock signal.

Each channel can be configured in the following ways:

� to count the rising, falling, or both edges of the selected input pin.

� to decode and count quadrature encoded input signals.

� to count up and down using dual inputs in a count with direction format.

Table 21-1. Restrictions On Cascading Timers

Counter
Number

Valid Cascade
Inputs

Legal Values for
Cascading using
TMRxCTL[PCS]

Description

Counter 0 None None Counter 0 can only be the first counter in a cascaded counter.
It cannot receive another counter’s output for cascaded
operation. Counter 0 must always be the first counter in the
cascade.

Counter 1 Counter 0 output 0100: Counter 0 Counter 1 can be cascaded with Counter 0, with Counter 0 as
the first counter in the chain.

Counter 2 Counter 0 output
Counter 1 output

0100: Counter 0
0101: Counter 1

Counter 2 can be cascaded with Counter 0 or Counter 1
when Counter 2 is not the first counter in the cascade.

Counter 3 Counter 0 output
Counter 1 output
Counter 2 output

0100: Counter 0
0101: Counter 1
0110: Counter 2

Counter 3 can be cascaded with Counter 0, Counter 1, or
Counter 3. Counter 3 must always be the last counter in a
cascade.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-7

Timers Module
� to program the counter terminal count value (modulo).

� to program the value loaded into the counter after it reaches its terminal count.

� to count repeatedly or to stop after completing one count cycle.

� to count to a programmed value (using the compare functionality)
and then immediately reinitialize or to count through the compare value until the count
rolls over to zero.

21.5.1 Counting Modes

The counting modes define the different modes for clocking the counters. The count mode is
selected in the TMRxCTL[CM] field (page 21-16). If a counter is programmed to count to a
specific value and then stop, the TMRCTL[CM] bit is cleared when the count terminates.
Table 21-2 summarizes the counting modes.

Table 21-2. Summary of Timer Counting Modes

Counting Mode CM Bits Description Primary Clock
Secondary

Clock

Disabled 000 Counter not active. — —

Count 001 Counts the rising edges of the selected clock source
(falling edges if TxSCTL[IPS] is set).
This mode is useful for generating periodic interrupts
for timing purposes or for counting external events.

Clock* —

Dual-Edge Count 010 Counts both edges of a timer Input signal.
This mode is useful for counting the changes in the
external environment. When this mode is selected,
TMRxCTL[PCS] must not be set to any value between
1000 and 1111; that is, it must not set to the input
clock or any scaled version of the input clock.

Clock —

Gated Count 011 Counts primary clock edges while the secondary input
is high (low if TxSCTL[IPS] is set). This mode is used
to time the duration of external events when the
primary clock is set to the input clock and the
secondary input is set to use one of the timer input
signals. It can also be used to count the number of
external events that occur on one of the timer input
signals, set as the primary clock, while a second timer
input signal, connected to the secondary Input signal,
is asserted.

Clock Gate*

Quadrature
Count

100 Uses quadrature encoded signals that are square
waves, 90 degrees out of phase. The decoding of
quadrature signal provides both count and direction
information. A timing diagram illustrating the basic
operation of a quadrature incremental position
encoder is provided in Figure 21-2.

Quadrature
signal

Quadrature
signal

Signed Count 101 Counts the primary clock source while a secondary
input provides the count direction (up or down) for
each recognized count.

Clock to count Count direction
MSC711x Reference Manual, Rev. 0

21-8 Freescale Semiconductor

Timer Operating Modes
Figure 21-2. Quadrature Incremental Position Encoder

Other count modes derived as special cases of the modes described in Table 21-2 are described
in the remainder of this section.

21.5.1.1 One-Shot Mode

One-Shot mode is a variation on Triggered Count mode if the counter is set up as follows:

� TMRxCTL[CM] = 110 to count the rising and falling edges of the primary source

(see Table 21-4, TMRxSCTL Bit Descriptions, on page 21-19).

� The Count Length bit, TMRxCTL[LEN] = 1.

� Output Flag mode, TMRxCTL[OFLM] = 101 to select set on compare, cleared on
secondary input signal’s edge.

� The Count Once bit, TMRxCTL[ONCE] = 1 to count till a compare and then stop.

An external event causes the counter to count. When terminal count is reached, the timer output
flag is asserted. This delayed output assertion can be used to provide timing delays.

Triggered Count 110 Counts the primary clock source only after a rising
edge is detected on the secondary input (falling edge if
TxSCTL[IPS] is set). The counting continues until a
compare event occurs or another positive input
transition is detected. If a second input transition
occurs before a terminal count is reached, counting
stops. Subsequent odd-numbered edges of the
secondary input restart the counting, and even
numbered edges stop counting. This process
continues until a compare event occurs.

Clock to count Enable/disable
counter*

Cascade Count 111 Cascades multiple counters. Cascade mode is used
for creating counters larger than 16-bits. Up to four
counters may be cascaded together to create a 64-bit
wide counter. The Cascaded Counter mode is
synchronous. See Section 21.5.1.2.

Clock to count Triggers counter

Note: * This input can be inverted by the TxSCTL[IPS] bit.

Table 21-2. Summary of Timer Counting Modes

Counting Mode CM Bits Description Primary Clock
Secondary

Clock

-1 -1 -1 -1 -1 -1 -1

PHASEA

COUNT

PHASEB

UP/DOWN

+1 +1 +1 +1 +1 +1 +1 +1
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-9

Timers Module
21.5.1.2 Pulse Output Mode

In Pulse Output mode, a variation on Count mode, the counter outputs a stream of pulses with the
same frequency as the selected clock source (cannot be the input clock divided by 1) if the
counter is set up as follows:

� TMRxCTL[CM] = 001 to count the rising edges of the primary source.
(see Table 21-4, TMRxSCTL Bit Descriptions, on page 21-19).

� The Output Flag Mode, TMRxCTL[OFLM], = 111 to enable gated clock output while the
counter is active.

� The Count Once bit, TMRxCTL[ONCE], = 1 to count till a compare and then stop.

The number of output pulses is equal to the compare value minus the initial value. The primary
count source must be set to one of the counter outputs for gated clock output mode.

21.5.1.3 Fixed Frequency PWM Mode

Fixed Frequency Pulse Width Modulated (PWM) mode is a subset of Count mode. The counter is
set up as follows:

� TMRxCTL[CM] = 001 to count the rising edges of the primary source.

� The Count Length bit, TMRxCTL[LEN], = 0 so that the counter continues counting past
the compare value (binary roll-over).

� The Count Once bit, TMRxCTL[ONCE], = 0 to count repeatedly.

� The Output Flag Mode, TMRxCTL[OFLM], = 110 so that the output flag is set when a
compare occurs.

The counter output yields a PWM signal with:

� a frequency equal to the count clock frequency divided by 65,536.

� a pulse width duty cycle equal to the compare value divided by 65,536.

21.5.1.4 Variable Frequency PWM Mode

The counter output yields a PWM signal with a frequency and pulse width determined by the
values programmed into the TMRxCMP1 and TMRxCMP2 registers and the input clock
frequency if the counter is set up as follows:

� TMRxCTL[CM] = 001 to count the rising edges of the primary source (see Table 21-4,
TMRxSCTL Bit Descriptions, on page 21-19).

� The Count Length bit, TMRxCTL[LEN], = 1 so that the counter counts to the compare
value and then reinitializes.

� The Count Once bit, TMRxCTL[ONCE], = 0 to count repeatedly.
MSC711x Reference Manual, Rev. 0

21-10 Freescale Semiconductor

Timer Operating Modes
� The Output Flag Mode, TMRxCTL[OFLM], = 100 to toggle the timer output flag using
alternating compare registers.

This method of PWM generation has the advantage of allowing almost any desired PWM
frequency and/or constant on or off periods. The TMRxCMPLD1 and TMRxCMPLD2 registers
are especially useful for this mode because they give you time to calculate values for the next
PWM cycle during the PWM current cycle.

To set up the timer to run in Variable Frequency PWM mode with compare preload, use the
set-up described here for the desired counter. During set-up, update the TMRxCTL register last
because the counter starts counting if the count mode changes to any value other than 000. Set up
the Timer Control (TMRxCTL) register bits as follows:

� Count Mode (CM) = 001 to count the rising edges of the primary source.

� Primary Count Source (PCS) = 1000 to specify the IPBus clock to get the best granularity
for waveform timing; prescaler input clock divided by 1.

� Secondary Count Source (SCS) = Any value because the bits are ignored in this mode.

� Count Once (ONCE) = 0 to count repeatedly.

� Count Length (LEN) = 1 so that the counter counts till it reaches a compare and then
reinitializes the counter register.

� Direction (DIR) = Count up (0) or count down (1). The compare register values must be
chosen carefully to account for roll-under and so on.

� External Initialization (EIN) = 0 so that external counters/timers cannot force a
reinitialization of this timer. However, you can set this bit if you need the functionality.

� Output Mode (OFLM) = 100 to toggle the timer output flag using alternating compare
registers.

Set up the Timer Status and Control Register (TMRxSCTL) bits as follows:

� Output Polarity Select (OPS) = Your choice, true (0) or inverted (1).

� Output Enable (OEN) = 1 to enable the timer output to be put on an external pin. Set this
bit as needed.

� Ensure that the rest of the TMRxSCTL bits are cleared. Interrupts are enabled in the Timer
Comparator Status and Control Register (TMRxCOMSC) instead of in this register.

Set up the Timer Comparator Status and Control Register (TMRxCOMSC) bits as follows:

� Timer Compare 2 Interrupt Enable (TCF2EN) = 1 to allow an interrupt to be issued when
TCF2 is set).

� Timer Compare1 Interrupt Enable (TCF1EN) = 0 so that an interrupt cannot be issued
when TCF1 is set.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-11

Timers Module
� Timer Compare 1 Interrupt Source (TCF1) = 0 to clear the timer compare 1 interrupt
source flag. This bit is set when a successful comparison of the timer and the TMRxCMP1
register occurs.

� Timer Compare 2 Interrupt Source (TCF2) = 0 to clear the timer compare 2 interrupt
source flag. This bit is set when a successful comparison of the timer and the TMRxCMP2
register occurs.

� Compare Load Control 1 (CL1) = 10 to load the compare register when TCF2 is set.

� Compare Load Control 2 (CL2) = 01 to load the compare register when TCF1 is set.

To service the TCF2 interrupts generated by the Timer, the interrupt controller must be
configured to enable the interrupts for the timer being used. Additionally, you must write an
interrupt service routine to do at least the following:

� Clear the TCF2 and TCF1 flags.

� Calculate and write new values for TMRxCMPLD1[15–0] and TMRxCMPLD2[15–0].

Figure 21-3 shows the timing for the compare preload cycle, which begins when a compare
event on TMRxCMP2 causes TCF2 to be set. TMRxCMP1 is loaded with the value in the
TMRxCMPLD1 one IPBus clock later. In addition, the timer asserts an interrupt, and the
interrupt service routine executes while both comparator load registers are updated with new
values. When TCF1 is set, TMRxCMP2 is loaded with the value of the CLV2 bits in
TMRxCMPLD2. During the subsequent TCF2 event, TMRxCMP1 is loaded with the value of
the TMRxCMPLD1[CLV1] bits. The cycle starts over again as an interrupt is asserted and the
interrupt service routine clears TCF1 and TCF2 and calculates new values for TMRxCMPLD1
and TMRxCMPLD2.

Figure 21-3. Compare Preload Timing

1 Compare Preload Cycle 3

ci1-1 ci1 0 1 c0-n c0-1 c0 0 1 c2-1 c2 0

ci0 c0 c1

ci1 c2

c0 c1

ci1 c2

IPBus Clock

Counter[15–0]

TMRxCMP1[15–0]

TMRxCMP2[15–0]

TCF1

TCF2

TMRxCMPLD1[15–0]

TMRxCMPLD2[15–0]

Output Flag
MSC711x Reference Manual, Rev. 0

21-12 Freescale Semiconductor

Timer Compare Functionality
21.6 Timer Compare Functionality

The compare registers (TMRxCMP1 and TMRxCMP2) provide a bidirectional modulo count
capability. TMRxCMP1 is used when the counter is counting up. Program it with the desired
maximum count value or to 0xFFFF to indicate the maximum unsigned value prior to roll-over.
TMRxCMP2 is used when the counter is counting down. Program it with the maximum negative
count value or to 0x0000 to indicate the minimum unsigned value prior to roll-under. The only
exception occurs when the counter operates with alternating compare registers.

When TMRxCTL[OFLM] = 100, alternating values of TMRxCMP1 and TMRxCMP2 are used
to generate successful compares, and the output flag toggles while alternating compare registers
are in use. For example, when TMRxCTL[OFLM] = 100, the counter is programmed to count
upwards. It counts until the TMRxCMP1 value is reached, reinitializes, then counts until the
TMRxCMP2 value is reached, reinitializes, then counts until the TMRxCMP1 value is reached,
and so on. In this Variable Frequency PWM mode, the TMRxCMP2 value defines the desired
pulse width of the on-time, and the TMRxCMP1 register defines the off-time. The Variable
Frequency PWM mode is defined for positive counting only. See Section 21.5.1.4, Variable
Frequency PWM Mode, on page 21-10.

Use caution when changing TMRxCMP1 and TMRxCMP2 while the counter is active. If the
counter has already passed the new value, it counts to 0xFFFF or 0x0000, rolls over/under, and
then begins counting toward the new value. The check is for Count = TMRxCMPx, not Count >
= TMRxCMP1 or Count < = TMRxCMP2). Use of the preload registers addresses this problem.

21.6.1 Compare Preload Registers

The TMRxCMPLD1, TMRxCMPLD2, and TMRxCOMSC registers offer a high degree of
flexibility for loading compare registers with user-defined values on different compare events. To
ensure correct functionality, use the loading method described in this section.

The compare preload feature speeds updating of the compare registers. The compare preload
feature allows you to calculate new compare values and store them into the comparator preload
registers. When a compare event occurs, the new compare values in the comparator preload
registers are directly written to the compare registers, eliminating the use of software to do this.

The compare preload feature is used in variable frequency PWM mode. See Section 21.5.1.4,
Variable Frequency PWM Mode, on page 21-10. The TMRxCMP1 register determines the pulse
width for the logic low part of the timer output, and TMRxCMP2 determines the pulse width for
the logic high part of the timer output. The period of the waveform is determined by the
TMRxCMP1 and TMRxCMP2 values and the frequency of the primary clock source.
See Figure 21-4.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-13

Timers Module
Figure 21-4. Variable PWM Waveform

To update the duty cycle or period of the waveform, update the TMRxCMP1 and TMRxCMP2
values using the compare preload feature.

21.6.1.1 Capture Register Use

The capture register, TMRxCAP (page 21-23), stores a copy of the counter value when an input
edge (positive, negative, or both) on the secondary input signal is detected.

The capture mode, programmable via TMRxSCTL[CM] (page 21-19), is one of the following:

� CM = 00. Disabled.

� CM = 01. Load the capture register on the rising edge of the signal.

� CM = 10. Load the capture register on the falling edge of the signal.

� CM = 11. Load the capture register on either edge of the signal.

When a capture event occurs, there are no further updates of TMRxCAP until the input edge flag
(IEF) is cleared by writing a value of 0 to the TMRxSCTL[IEF] bit (page 21-19).

21.6.1.2 Broadcast from a Master Counter

Any counter/timer can be assigned as a master. A master compare signal can be broadcast to the
other counter/timers within the module. The other counters can be configured as follows to
reinitialize their counters and/or force their output to predetermined values when a master
counter/timer compare event occurs:

� Select one counter as the master counter by setting the TMRxSCTL[MSTR] bit.

� Program the other counters to perform an action when a compare event occurs on the
master counter as follows:

— The other counter is reinitialized if its TMRxCTL[EIN] bit is set.
— The other counter forces its output flag signal if its TMRxSCTL[EEOF] bit is set.

TMRxCMP1

TMRxCMP2

PWM Period
MSC711x Reference Manual, Rev. 0

21-14 Freescale Semiconductor

Resets and Interrupts
21.7 Resets and Interrupts

A timer module is reset by a peripheral module reset, as shown in Table 13-1, Reset Sources, on
page 13-1. This reset forces all registers to their reset state and clears the output flag signal if it is
asserted. The counter is turned off until the settings in the control register are changed. Each
channel in a quad timer module can be programmed for interrupts. The available types of
interrupts are as follows:

� Timer compare

� Timer compare 1

� Timer compare 2

� Timer overflow

� Timer input edge

These different types are ORed together within each timer channel to generate a single interrupt
request signal to the interrupt controller.

21.7.1 Timer Compare Interrupts

Interrupt requests are generated when a successful compare occurs between a counter and its
compare registers while the Timer Compare Flag Interrupt Enable bit, TMRxSCTL[TCFIE], is
set. These interrupt requests are cleared by writing a zero to the appropriate TMRxSCTL[TCF]
bit. When a timer compare interrupt is set in the TMRxSCTL and the compare preload registers
are available, one of the following two interrupts is also asserted:

� Timer compare 1 interrupt

� Timer compare 2 interrupt

Timer compare 1 interrupts are generated when a successful compare occurs between a counter
and its TMRxCMP1 register while the Timer Compare 1 Interrupt Enable (TCF1EN) is set in the
TMRxCOMSC register. These interrupts are cleared by writing a zero to the
TMRxCOMSC[TCF1] bit. Timer compare 2 interrupts are generated when a successful compare
occurs between a counter and its TMRxCMP2 register while the Timer Compare 2 Interrupt
Enable (TCF2EN) bit is set in the TMRxCOMSC register. These interrupts are cleared by writing
a zero to the TCF2 bit in the TMRxCOMSC.

21.7.2 Timer Overflow Interrupts

Timer overflow interrupts are generated when a counter rolls over its maximum value while the
TCFIE bit is set in the TMRxSCTL register. These interrupts are cleared by writing a zero to the
Timer Overflow Flag (TOF) bit of the appropriate TMRxSCTL.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-15

Timers Module
21.7.3 Timer Input Edge Interrupts

Timer input edge interrupts are generated by a transition of the input signal (either positive or
negative, depending on TMRxSCTL[IPS] setting) while the Input Edge Flag Interrupt Enable
(IEFIE) bit is set in the TMRxSCTL. These interrupts are cleared by writing a zero to the
appropriate TMRxSCTL[IEF] bit.

21.8 Timer Programming Model

This section presents only the registers for timer module A. The registers for timer module B are
identical to those for module A. For a complete listing of all registers in both modules, consult
Table 5-2, MSC711x Detailed Memory Map, on page 5-5.The value of the base address for the
timer register file, TMRx_BASE, is provided in Table 5-1, Summary — Base Addresses for
MSC711x Register Files, on page 5-4. The timer registers are listed as follows, along with the
number of the page on which each register is discussed:

� Timer Channel x Control Register, TMRxCTL, page 21-16.

� Timer Channel x Status and Control Register (TMRxSCTL), page 21-19.

� Timer Channel x Compare Register 1 (TMRxCMP1), page 21-21.

� Timer Channel x Compare Register 2 (TMRxCMP2), page 21-21.

� Timer Channel x Compare Load Register 1 (TMRxCMPLD1), page 21-21.

� Timer Channel x Compare Load Register 2 (TMRxCMPLD2), page 21-22.

� Timer Channel x Comparator Status and Control Registers (TMRxCOMSC), page 21-22.

� Timer Channel x Capture Register (TMRCAP), page 21-22.

� Timer Channel x Load Register (TMRxLOAD), page 21-24.

� Timer Channel x Hold Registers (TMRxHOLD), page 21-24.

� Timer Channel x Counter Register (TMRCNTR), page 21-24.

TMRxCTL Timer A Channel x Control Register
TMR0CTL Timer A Channel 0 Control Register BASE + 0x18
TMR1CTL Timer A Channel 1 Control Register BASE + 0x58
TMR2CTL Timer A Channel 2 Control Register BASE + 0x98
TMR3CTL Timer A Channel 3 Control Register BASE + 0xD8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CM PCS SC ONCE LEN DIR EIN OFLM

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

21-16 Freescale Semiconductor

Timer Programming Model
Table 21-3. TMRxCTL Bit Descriptions

Name Reset Description Settings

CM
15–13

0 Count Mode
Control the basic counting behavior of the
counter. Rising edges are counted only when
TxSCTL[IPS] = 0. Falling edges are counted
only when TxSCTL[IPS] = 1.

When count mode 010 is selected, the PCS bits
must not be set to 1000.

When count mode 111 is selected, the PCS bits
must be set to one of the “Counter N output”
selections.

000 No operation. Disabled.

001 Count rising edges of the primary
source.

010 Count rising and falling edges of the
primary source.

011 Count rising edges of the primary
source while the secondary input is
high active.

100 Quadrature count mode, uses primary
clock and secondary input.

101 Count rising edges of the primary
clock; secondary input specifies
direction (1 = minus).

110 Edge of the secondary input triggers
primary count until a compare occurs.

111 Cascaded counter mode (up/down).

PCS
12–9

0 Primary Count Source
Select the primary count source. A timer
selecting its own output for input is not a legal
choice. The result is no counting.

0000 Counter 0 input signal.

0001 Counter 1 input signal.

0010 Counter 2 input signal.

0011 Counter 3 input signal.

0100 Counter 0 output for cascaded
counter operation.

0101 Counter 1 output for cascaded
counter operation.

0110 Counter 2 output for cascaded
counter operation.

0111 Counter 3 output for cascaded
counter operation.

1000 Prescaler (input clock divided by 1).

1001 Prescaler (input clock divided by 2).

1010 Prescaler (input clock divided by 4).

1011 Prescaler (input clock divided by 8).

1100 Prescaler (input clock divided by 16).

1101 Prescaler (input clock divided by 32).

1110 Prescaler (input clock divided by 64).

1111 Prescaler (input clock divided by 128).

SC
8–7

0 Secondary Count Source
Provides additional information, such as
direction, used for counting. These bits also
define the source used by both the Capture
mode bits and the input Edge Flag in the
Channel Status and Control register.

00 TIN0 Timer input signal.

01 TIN1 Timer input signal.

10 TIN2 Timer input signal.

11 TIN3 Timer input signal.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-17

Timers Module
ONCE
6

0 Count Once
Selects continuous or one-shot counting. If
counting up, a successful compare occurs when
the counter reaches TMRxCMP1 value. If
counting down, a successful compare occurs
when a counter reaches TMRxCMP2 value.

0 Count repeatedly.

1 Count to the compare value and then
stop.

LEN
5

0 Count Length
Determines whether the counter counts to the
compare value and then reinitializes itself, or
the counter continues counting past the
compare value (binary roll-over). If counting up,
a successful compare occurs when the counter
reaches the TMRxCMP1 value. If counting
down, a successful compare occurs when the
counter reaches the TMRxCMP2 value.

0 Roll-over.

1 Count to the compare value and then
reinitialize.

DIR
4

0 Count Direction
Selects either the normal count up direction, or
the reverse down direction.

0 Count up.

1 Count down.

EIN
3

0 External Initialization
Enables another counter/timer within the same
module to force the reinitialization of this
counter/timer when the other counter has an
active compare event. Details on Broadcast
mode are presented in Section 21.6.1.2,
Broadcast from a Master Counter, on page
21-14.

0 External counter/timers can not force
a reinitialization of this counter/timer.

1 External counter/timers may force a
reinitialization of this counter/timer.

OFLM
2–0

0 Output Mode
Determine the mode of operation for the timer
output signal. For all of these modes except 000
and 111, the output flag is not toggled when the
counter reaches the compare value but instead
when the counter advances one value beyond.
For example, for a compare value of 7, it
toggles on the transition from 7 to 8, not 6 to 7.
Unexpected results may occur if the Output
mode field is set to use alternating compare
registers (mode 100) and the ONCE bit is set.

000 Asserted while counter is active.

001 Clear timer output on successful
compare.

010 Set timer output on a successful
compare.

011 Toggle the timer output flag when a
successful compare occurs.

100 Toggle the timer output flag using
alternating compare registers.

101 Set on compare, cleared on
secondary input signal’s edge.

110 Set on compare, cleared on counter
rollover.

111 Enable gated clock output while the
counter is active.

Table 21-3. TMRxCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

21-18 Freescale Semiconductor

Timer Programming Model
TMRxSCTL Timer A Channel x Status and Control Register
TMR0SCTL Timer A Channel 0 Status and Control Register BASE + 0x1C
TMR1SCTL Timer A Channel 1 Status and Control Register BASE + 0x5C
TMR2SCTL Timer A Channel 2 Status and Control Register BASE + 0x9C
TMR3SCTL Timer A Channel 3 Status and Control Register BASE + 0xDC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCF TCFIE TOF TOFIE IEF IEFIE IPS INPUT CM MSTR EEOF VAL FORC OPS OEN

TYPE R/W R R/W W R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-4. TMRxSCTL Bit Descriptions

Name Reset Description Settings

TCF
15

0 Timer Compare Flag
Set when a successful compare occurs. Clear
the bit by writing 0 to it.

0 No successful compare.

1 Successful compare.

TCFIE
14

0 Timer Compare Flag Interrupt Enable
Enables interrupts when the TCF bit is set.

0 No interrupt.

1 Interrupt.

TOF
13

0 Timer Overflow Flag
Set when the counter rolls over its maximum
value 0xFFFF or 0x0000, depending on count
direction. Clear the bit by writing 0 to it.

0 No overflow.

1 Overflow. The timer has reached its
maximum or minimum value.

TOFIE
12

0 Timer Overflow Flag Interrupt Enable
Enables interrupts when the TOF bit is set.

0 No interrupt.

1 Interrupt.

IEF
11

0 Input Edge Flag
Set when a positive input transition occurs while
the counter is enabled. Clear the bit by writing a
0 to it. Setting the input polarity select
(TxSCTL[IPS]) bit enables the detection of
negative input edge transitions. Also, the control
register secondary count source determines
which external input pin is monitored by the
detection circuitry.

0 No action.

1 Positive input transition while counter
enabled.

IEFIE
10

0 Input Edge Flag Interrupt Enable
Enables interrupts when the IEF bit is set.

0 No action.

1 Interrupts enabled.

IPS
9

0 Input Polarity Select
Inverts the input signal polarity.

0 No action.

1 Invert signal polarity.

INPUT
8

0 Secondary Input Signal
Reflects the current state of the secondary Input
signal.

00 Capture function disabled.

01 Load capture register on rising edge
of the secondary count source input.

10 Load capture register on falling edge
of the secondary count source input.

11 Load capture register on any edge of
the secondary count source input.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-19

Timers Module
CM
7–6

0 Input Capture Mode
Specifies the operation of the capture register
as well as the operation of the input edge flag.

00 Capture function is disabled.

01 Load capture register on the rising
edge of the secondary count source
input.

10 Load capture register on the falling
edge of the secondary count source
input.

11 Load capture register on any edge of
the secondary count source input.

MSTR
5

0 Master Mode
Enables the compare function output to
broadcast to the other counter/timers in the
module. This identifies a counter as the master
counter in Broadcast mode. This signal is used
to reinitialize the other counters and/or force
their outputs. For details on Broadcast mode,
see Section 21.6.1.2, Broadcast from a Master
Counter, on page 21-14.

0 No action.

1 Broadcast mode.

EEOF
4

0 Enable External Output Force
Enables the compare from another
counter/timer configured as the master to force
the state of this counter output signal. For
details on Broadcast mode, see Section
21.6.1.2, Broadcast from a Master Counter, on
page 21-14.

o No action.

1 Other counter can force this counter’s
output flag signal.

VAL
3

0 Forced Output Flag Value
Determines the value of the timer output flag
signal when a software-triggered FORCE
command occurs.

FORC
2

0 Force Output
Forces the current value of the VAL bit to be
written to the timer output. Always read this bit
as a 0. The VAL and FORCE bits can be written
simultaneously in a single write operation. Write
to the FORCE bit only if the counter is disabled.
Setting this bit while the counter is enabled may
yield unpredictable results.

0 No action.

1 Forces the current value of the VAL bit
to be written to timer output.

OPS
1

0 Output Polarity Select
Determines the polarity of the output signal.

0 True polarity.

1 Inverted polarity.

OEN
0

0 Output Enable
Enables the timer output. The OPS bit
determines the polarity of the output.

0 Timer output not enabled.

1 Timer output enabled.

Table 21-4. TMRxSCTL Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

21-20 Freescale Semiconductor

Timer Programming Model
TxCxCMP1 store the comparison value (CV) for comparison with the counter value.

TxCxCMP2 store the comparison value (CV) for comparison with the counter value.

TMRxCMPLDx store the preload value for the TMRxCMP1.

TMRxCMP1 Timer A Channel x Compare 1 Registers
TxC0CMP1 Timer A Channel 0 Compare 1 Register BASE + 0x00
TMR1CMP1 Timer A Channel 1 Compare 1 Register BASE + 0x40
TMR2CMP1 Timer A Channel 2 Compare 1 Register BASE + 0x80
TMR3CMP1 Timer A Channel 3 Compare 1 Register BASE + 0xC0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRxCMP2 Timer A Channel x Compare 2 Registers
TxC0CMP2 Timer A Channel 0 Compare 2 Register BASE + 0x04
TMR1CMP2 Timer A Channel 1 Compare 2 Register BASE + 0x44
TMR2CMP2 Timer A Channel 2 Compare 2 Register BASE + 0x84
TMR3CMP2 Timer A Channel 3 Compare 2 Register BASE + 0xC4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRxCMPLD1 Timer A Channel x Compare Load 1 Registers
TxC0CMPLD1 Timer A Channel 0 Compare Load 1 Register BASE + 0x20
TMR1CMPLD1 Timer A Channel 1 Compare Load 1 Register BASE + 0x60
TMR2CMPLD1 Timer A Channel 2 Compare Load 1 Register BASE + 0xA0
TMR3CMPLD1 Timer A Channel 3 Compare Load 1 Register BASE + 0xE0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLV1

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-21

Timers Module
TMRxCMPLD2 store the preload value for the TMRxCMP2.

TMRxCOMSC store the preload value used for the TMRxCMP2 register.

TMRxCMPLD2 Timer A Channel x Compare Load 2 Registers
TxC0CMPLD2 Timer A Channel 0 Compare Load 2 Register BASE + 0x24
TMR1CMPLD2 Timer A Channel 1 Compare Load 2 Register BASE + 0x64
TMR2CMPLD2 Timer A Channel 2 Compare Load 2 Register BASE + 0xA4
TMR3CMPLD2 Timer A Channel 3 Compare Load 2 Register BASE + 0xE4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLV2

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRxCOMSC Timer A Channel x Comparator Status and Control Registers
TxC0COMSC2 Timer A Channel 0 Comparator Status and Control Register BASE + 0x28
TMR1COMSC2 Timer A Channel 1 Comparator Status and Control Register BASE + 0x68
TMR2COMSC2 Timer A Channel 2 Comparator Status and Control Register BASE + 0xA8
TMR3COMSC2 Timer A Channel 3 Comparator Status and Control Register BASE + 0xE8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— TCF2EN TCF1EN TCF2 TCF1 CL2 CL1

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-5. TMRxCOMSC Bit Descriptions

Name Reset Description Settings

—
15–8

0 Reserved. Write to zero for future compatibility.

TCF2EN
7

0 Timer Compare 2 Interrupt Enable
Enables the compare 2 interrupt. An interrupt is
issued when both this bit and the TCF2 bit are
set.

0 No action.

1 Enable compare 2 interrupt.

TCF1EN
6

0 Timer Compare 1 Interrupt Enable
Enables the compare 1 interrupt. An interrupt is
issued when both this bit and the TCF1 bit are
set.

0 No action.

1 Enable compare 1 interrupt.

TCF2
5

0 Timer Compare 2 Interrupt Source
Indicates a successful comparison of the timer
and the TMRxCMP2. This bit is sticky and
remains set until it is explicitly cleared by writing
a zero to this bit location.

0 Normal operation.

1 Successful compare 2.
MSC711x Reference Manual, Rev. 0

21-22 Freescale Semiconductor

Timer Programming Model
TMRxCAP store the values captured from the counters.

TCF1
4

0 Timer Compare 1 Interrupt Source
Indicates a successful comparison of the timer
and the TMRxCMP1. This bit is sticky and
remains set until it is explicitly cleared by writing
a zero to this bit location.

0 Normal operation.

1 Successful compare 1.

CL2
3–2

0 Compare Load Control 2
Control when TMRxCMP2 is preloaded with the
value from TMRxCMPLD2.

00 Never preload.

01 Load upon successful compare with
the value in TMRxCMP1.

10 Load upon successful compare with
the value in TMRxCMP2.

11 Reserved.

CL1
1–0

0 Compare Load Control 2
Control when TMRxCMP1 is preloaded with the
value from TMRxCMPLD1.

00 Never preload.

01 Load upon successful compare with
the value in TMRxCMP1.

10 Load upon successful compare with
the value in TMRxCMP2.

11 Reserved.

TMRxCAP Timer A Channel x Capture Registers
TxC0CAP Timer A Channel 0 Capture Register BASE + 0x08
TMR1CAP Timer A Channel 1 Capture Register BASE + 0x48
TMR2CAP Timer A Channel 2 Capture Register BASE + 0x88
TMR3CAP Timer A Channel 3 Capture Register BASE + 0xC8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAPV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 21-5. TMRxCOMSC Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-23

Timers Module
TMRxLOAD store the value used to load the counter.

TMRxHOLD store the channel value whenever any counter is read.

TMRxCNTR are counters.

TMRxLOAD Timer A Channel x Load Registers
TxC0LOAD Timer A Channel 0 Load Register BASE + 0x0C
TMR1LOAD Timer A Channel 1 Load Register BASE + 0x4C
TMR2LOAD Timer A Channel 2 Load Register BASE + 0x8C
TMR3LOAD Timer A Channel 3 Load Register BASE + 0xCC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRxHOLD Timer A Channel x Hold Registers
TxC0HOLD Timer A Channel 0 Hold Register BASE + 0x10
TMR1HOLD Timer A Channel 1 Hold Register BASE + 0x50
TMR2HOLD Timer A Channel 2 Hold Register BASE + 0x90
TMR3HOLD Timer A Channel 3 Hold Register BASE + 0xD0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HDV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMRxCNTR Timer A Channel x Counter Registers
TxC0CNTR Timer A Channel 0 Counter Register BASE + 0x14
TMR1CNTR Timer A Channel 1 Counter Register BASE + 0x54
TMR2CNTR Timer A Channel 2 Counter Register BASE + 0x94
TMR3CNTR Timer A Channel 3 Counter Register BASE + 0xD4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HDV

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 0

21-24 Freescale Semiconductor

Timer Programming Model
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor 21-25

Timers Module
MSC711x Reference Manual, Rev. 0

21-26 Freescale Semiconductor

I2C Software Module 22
The I2C module provides the functionality of a standard I2C slave and master and is designed to
be compatible with the standard Phillips I2C bus protocol.1 The I2C module is a two-wire,
bidirectional serial bus for simple, efficient data exchange that minimizes the interconnection
between devices. This bus accommodates applications requiring occasional communications
over a short distance between many devices. I2C flexibility permits additional devices to connect
to the bus for expansion and system development. I2C is a 16-bit IP module, so only 16-bit
accesses should be performed to the module.

The interface operates at up to 400 kbps with maximum bus loading and timing. The I2C system
is a true multiple-master bus with arbitration and collision detection to prevent data corruption if
multiple devices attempt to control the bus simultaneously. This feature supports complex
applications with multiprocessor control and is useful for rapid testing and alignment of end
products through external connections to an assembly-line computer.

22.1 Features

Features of the I2C module are as follows:

� Compatibility with I2C bus standard

� Multiple-master operation

� Software-programmable for one of 64 different serial clock frequencies

� Software-selectable acknowledge bit

� Interrupt-driven, byte-by-byte data transfer

� Arbitration-lost interrupt with automatic mode switching from master to slave

� Calling address identification interrupt

� Start and stop signal generation/detection

� Repeated START signal generation

� Acknowledge bit generation/detection

� Bus-busy detection

1. For information on system configuration, protocol, and restrictions, see The I2C Bus Specification, Version 2.1.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-1

I2C Software Module
22.2 Architecture

Figure 22-1 shows a functional block diagram of the I2C module. Notice that The I2C module
operates via two pins:

� SCL, a bidirectional clock pin.

� SDA, a bidirectional data pin.

Figure 22-1. I2C Block Diagram

I2C Signals

Address
Compare

In/Out
Data
Shift

Start, Stop,

Input
Sync

Clock
Control

Registers Interface

Address Decode

I2C Address

Data Multiplex

SDASCL

AddressIRQ Read

and
Arbitration

Control

Register

IPBus

Register
(IADR)

I2C Frequency
Divider Register

(IFDR)

I2C Data
I/O Register

(I2DR)

I2C Status
Register
(I2SR)

I2C Control
Register
(I2CTLR)

11

Data

Write
Data

16 8
MSC711x Reference Manual, Rev. 1

22-2 Freescale Semiconductor

I2C Operation
22.3 I2C Operation

Out of reset, the I2C module is by default a slave receiver. When it is not programmed to be a
master or when it is not responding to a slave transmit address, the I2C module should return to
the default slave receiver state. The I2C communication protocol consists of six components:
START, data source/recipient, data direction, slave acknowledge, data, data acknowledge, and
STOP (see Figure 22-3).

Figure 22-2. I2C Standard Communication Protocol

Table 22-1. Components of the I2C Standard Communication Protocol

Protocol Component Description

A START signal When no other device is bus master (both the SCL and SDA lines are at logic
high), a device can initiate communication by sending a START signal, which is
defined as a high-to-low transition of SDA while SCL is high. This signal denotes
the beginning of a data transfer, which can be several bytes long, and awakens
all slaves.

B Calling address (slave address
transmission)

The master sends the slave address in the first byte after the START signal. After
the seven-bit calling address, it sends the R/W bit, which gives the slave the data

transfer direction. Each slave must have a unique address. An I2C master must
not transmit an address that is the same as its slave address; it cannot be master
and slave at the same time. The slave with an address matching that sent by the
master pulls SDA low at the ninth clock to return an acknowledge bit.

C Data direction When successful slave addressing is achieved, the data transfer can proceed
byte-by-byte in the direction specified by the R/W bit sent by the calling master.

D Acknowledge If it does not acknowledge the master, the slave receiver must leave SDA high.
The master can then generate a STOP signal to abort the data transfer or
generate a START signal (repeated start) to start a new calling sequence. If the
master receiver does not acknowledge the slave transmitter after a byte
transmission, it means end-of-data to the slave. The slave releases SDA for the
master to generate a STOP or START signal.

E Data Data can be changed only while SCL is low and must be held stable while SCL is
high, as Figure 22-2 shows. SCL is pulsed once for each data bit, and the MSB
is sent first. The receiving device must acknowledge each byte by pulling SDA
low at the ninth clock. Therefore, a data byte transfer requires nine clock pulses.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 89 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address R/W ACK
Bit

Data Byte No
ACK

Bit

STOP
Signal

LSBMSBLSBMSB

SDA

SCL

START
Signal

A

B DC
E

F

MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-3

I2C Software Module
Figure 22-3. Repeated START

22.3.1 Arbitration

If multiple devices simultaneously request the bus, the bus clock is determined by a
synchronization procedure in which the low period equals the longest clock-low period among
the devices and the high period equals the shortest. A data arbitration procedure determines the
relative priority of competing devices. A device loses arbitration if it sends logic high while
another sends logic low; it immediately switches to slave-receive mode and stops driving SDA.
The transition from master to slave mode does not generate a STOP condition. Meanwhile,
hardware sets I2SR[IAL] to indicate loss of arbitration.

22.3.2 Clock Synchronization and Stretching

Because wire-AND logic is used, a high-to-low transition on SCL affects devices connected to the
bus. Devices start counting their low period when the master drives SCL low. When a device
clock goes low, it holds SCL low until the clock high state is reached. However, the low-to-high
change in this device clock may not change the state of SCL if another device clock is still in its
low period. Therefore, the device with the longest low period holds the synchronized clock SCL

F STOP signal or repeat start The master terminates communication by generating a STOP signal to free the
bus. A STOP signal is defined as a low-to-high transition of SDA while SCL is at
logical high. A master can generate a STOP even if the slave has made an
acknowledgment, and the slave must release the bus.

Instead of signalling a STOP, the master can repeat the START signal, followed
by a calling command, (A in Figure 22-3). A repeated START occurs when a
START signal is generated without first generating a STOP signal to end the
communication. The master uses a repeated START to communicate with
another slave or with the same slave in a different mode (transmit/receive mode)
without releasing the bus.

Table 22-1. Components of the I2C Standard Communication Protocol (Continued)

Protocol Component Description

SCL 1 2 3 4 5 6 7 8 1 2 5 6 7 83 4

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

9 9

XX

New Calling Address
R/W No

Stop

ACK
Bit

STOP
Signal

Repeated
START
Signal

ACK
Bit

R/WCalling AddressSTART

SDA

MSB LSB MSB LSB

Signal
A

MSC711x Reference Manual, Rev. 1

22-4 Freescale Semiconductor

Initialization/Application
low. Devices with shorter low periods enter a high wait state during this time (see Figure 22-4).
When all affected devices have counted off their low period, the synchronized clock SCL is
released and pulled high so that there is no difference between device clocks and the state of SCL.
All devices start counting their high periods. The first device to complete its high period pulls
SCL low again.

Figure 22-4. Synchronized Clock SCL

Clock synchronization can be used as a handshake in data transfers. Slave devices can hold SCL
low after completing one byte transfer (9 bits). The bus clock halts, and the master clock goes
into wait states until the slave releases SCL.

Slaves can use clock synchronization to slow down the transfer bit rate. After the master has
driven SCL low, the slave can drive SCL low for the required period and then release it. If the slave
SCL low period is longer than the master SCL low period, the resulting SCL bus signal low period
is stretched.

22.4 Initialization/Application

This section presents programming examples for initialization, signalling START, post-transfer
software response, signalling STOP, and generating a repeated START. Before the interface can
transfer serial data, the registers must be initialized, as follows:

1. Configure the I2C Frequency Divider Register (IFDR) clock rate (IC) bits to obtain the
SCL frequency from the system bus clock.

2. Update I2C Address Register (IADR) to define its slave address.

3. Set the control register I2CTLR[IEN] bit to enable the I2C bus interface.

4. Modify the I2C Control Register (I2CTLR) to select master/slave mode,
transmit/receive mode, and interrupt enable or not.

Internal Counter Reset

SCL1

SCL2

SCL

Wait Start Counting High Period
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-5

I2C Software Module
22.4.1 Generation of START

After initialization completes, master transmitter mode is selected to transmit serial data. On a
multiple-master bus system, I2SR[IBB] must be checked to determine whether the serial bus is
free. If the bus is free (IBB = 0), the START signal and the first byte (the slave address) are sent.
The data written to the data register comprises the address of the desired slave and the LSB to
indicate the transfer direction. The free time between a STOP and the next START condition is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the
system clock and the SCL period, it may be necessary to wait until the I2C module is busy after
the calling address is written to the I2DR and before data is written to the I2C Data I/O Register
(I2DR).

22.4.2 Post Transfer Software Response

Sending or receiving a byte sets the I2C Status Register I2SR[ICF] bit, indicating that a one byte
communication is finished. I2SR[IIF] is also set. An interrupt is generated if the interrupt
function is enabled during initialization (I2CTLR[IIEN] = 1). Software must first clear IIF in the
interrupt routine. ICF is cleared either by reading from I2DR in receive mode or by writing to
I2DR in transmit mode.

Software can service the I2C I/O in the main program by monitoring IIF if the interrupt function
is disabled. Polling should monitor IIF rather than ICF because that operation is different when
arbitration is lost. When an interrupt occurs at the end of the address cycle, the master is always
in transmit mode; that is, the address is sent. If master receive mode is required, (I2DR[R/W],
I2CTLR[MTX] should be set.

During slave-mode address cycles (I2SR[IAAS] = 1), I2SR[SRW] is read to determine the
direction of the next transfer. MTX is programmed accordingly. For slave-mode data cycles
(IAAS = 0), SRW is invalid. MTX should be read to determine the current transfer direction.

22.4.3 Generation of STOP or a Repeated START

A data transfer ends when the master signals a stop after all data is sent. To terminate a data
transfer, the master receiver must inform the slave transmitter by not acknowledging the last data
byte. That is, I2CTLR[TXAK] is set before the next-to-last byte is read. Before the last byte is
read, a STOP signal must be generated. After the data transfer, if the master still wants the bus, it
can signal another START followed by another slave address without signalling a STOP.

22.4.4 Slave Mode

In the slave interrupt service routine, the slave (IAAS) bit should be tested to check whether it has
called its own address. If IAAS is set, software should set the transmit/receive mode select bit
(I2CTLR[MTX]) according to the I2SR[SRW]. Writing to the I2CTLR automatically clears the
IAAS bit. IAAS is read as set only from the interrupt at the end of the address cycle where an
MSC711x Reference Manual, Rev. 1

22-6 Freescale Semiconductor

Halting and Starting the I2C Module
address match occurred. Interrupts from subsequent data transfers must have IAAS cleared. A
data transfer is now initiated by writing information to I2DR for slave transmit or reading from
I2DR in slave receive mode. A dummy read of I2DR in slave/receive mode releases SCL,
allowing the master to send data.

In the slave transmitter routine, I2SR[RXAK] must be tested before the next byte of data is sent.
RXAK = 1 means that the master receiver has sent an end-of-data signal and that software must
switch from transmitter to receiver mode. Reading I2DR releases SCL so that the master can
generate a STOP signal.

22.4.5 Arbitration Lost

If several devices try to engage the bus at the same time, one becomes the master. Devices that
lose arbitration are immediately switched to slave receive mode. Data output to SDA stops, but
SCL is still generated until the end of the byte at which arbitration is lost. An interrupt occurs at
the falling edge of the ninth clock of this transfer with I2SR[IAL] = 1 and I2CTLR[MSTA] = 0.

If a device that is not a master tries to transmit or do a START, the system inhibits the
transmission, clears MSTA without signalling a STOP, generates an interrupt to the CPU, and
sets IAL to indicate a failed attempt to engage the bus. Therefore, the slave service routine should
first test IAL and software should clear it if it is set. Figure 22-5 shows a diagram of an I2C
interrupt service routine.

22.5 Halting and Starting the I2C Module

To halt the I2C module completely for lowest power consumption, complete the following steps:

1. To ensure that no data transfer is in progress, poll the I2SR[ICF] bit (page 22-12).
Omitting this step can result in transmission or reception of invalid data.

2. To shut down the module, clear the I2CTLR[IEN] bit (page 22-11).

3. Set the HLTREQ[I2CCD] bit (page 11-26) to shut down the system clock to the module
for lowest power consumption.

To restart the I2C module, complete the following steps:

1. Clear the HLTREQ[I2CCD] bit (page 11-26) to re-enable the system clock to the
module.

2. Set the I2CTLR[IEN] bit (page 22-11) to re-enable the module.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-7

I2C Software Module
Figure 22-5. Flow-Chart of Typical I2C Interrupt Routine

Clear

Master
Mode?

TX/Rx
?

Last Byte
Transmitted

?

RXAK= 0
?

End of
ADDR Cycle
(Master RX)

?

Write Next
Byte to I2DR

Switch to
Rx Mode

Dummy Read
from I2DR

Generate
STOP Signal

Read Data
from I2DR
And Store

Set TXAK =1 Generate
STOP Signal

Second Last
Byte to be

Last
Byte to be

?

Arbitration
Lost?

Clear IAL

IAAS=1
?

IAAS=1
?

SRW=1
?

Tx/Rx
?

Set TX
Mode

Write Data
to I2DR

Set RX
Mode

Dummy Read
from I2DR

ACK from
Receiver

?

Tx Next
Byte

Read Data
from I2DR
and Store

Switch to
Rx Mode

Dummy Read
from I2DR

RTE

Y N

Y

Y
Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(WRITE)

(Read)

N

IIF

Address
Cycle

Data
Cycle

Read

Read?
MSC711x Reference Manual, Rev. 1

22-8 Freescale Semiconductor

I2C Programming Model
22.6 I2C Programming Model

The value of the base address for the I2C register file, I2C_BASE, is listed in Table 5-1,
Summary — Base Addresses for MSC7119 Register Files, on page 5-4. Notice that the registers at
offsets 0x02, 0x06, 0xa, 0x0e are reserved for future additions. Only 16-bit read or write accesses
are allowed for the I2C registers. The I2C registers are listed as follows, along with the number of
the page where each register is discussed:

� I2C Address Register (I2AR), page 22-9.

� I2C Frequency Register (I2FR), page 22-10.

� I2C Control Register (I2CTLR), page 22-11.

� I2C Status Register (I2SR), page 22-12.

� I2C Data Register (I2DR), page 22-13.

IADR holds the address for the I2C module when it is addressed as a slave. This is not the address
sent on the bus during the address transfer. The register is not reset by a software reset.

I2AR I2C Address Register IADR Base + 0x00

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— ADR —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-2. I2AR Bit Descriptions

Name Reset Description Settings

—
15–8

0 Reserved. Write to zero for future compatibility.

ADR
7–1

0 Slave Address

Contains the slave address for the I2C module.
Slave mode is the default mode for an address
match on the bus.

—
0

0 Reserved. Write to zero for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-9

I2C Software Module
I2FR provides a programmable prescaler to configure the clock for bit-rate selection. The register
is not reset by software reset. The divider values above are not arranged in order from lowest to
highest. As Table 22-4 shows, 22 is the smallest divider and 3840 is the largest.

I2FR I2C Frequency Register IFDR Base + 0x04

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— IC

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-3. I2FR Bit Descriptions

Name Reset Description Settings

—
15–6

0 Reserved. Write to zero for future compatibility.

IC
5–0

0 I2C Clock Rate
Prescales the clock for bit-rate selection. Because of
potentially slow SCL and SDA rise and fall times, bus signals
are sampled at the prescaler frequency. IC can be changed
anywhere in a program.

See Table 22-4.

Table 22-4. I2C I2FR Field Values

IC Divider IC Divider IC Divider IC Divider

0x00 30 0x10 288 0x20 22 0x30 160

0x01 32 0x11 320 0x21 24 0x31 192

0x02 36 0x12 384 0x22 26 0x32 224

0x03 42 0x13 480 0x23 28 0x33 256

0x04 48 0x14 576 0x24 32 0x34 320

0x05 52 0x15 640 0x25 36 0x35 384

0x06 60 0x16 768 0x26 40 0x36 448

0x07 72 0x17 960 0x27 44 0x37 512

0x08 80 0x18 1152 0x28 48 0x38 640

0x09 88 0x19 1280 0x29 56 0x39 768

0x0A 104 0x1A 1536 0x2A 64 0x3A 896

0x0B 128 0x1B 1920 0x2B 72 0x3B 1024

0x0C 144 0x1C 2304 0x2C 80 0x3C 1280

0x0D 160 0x1D 2560 0x2D 96 0x3D 1536

0x0E 192 0x1E 3072 0x2E 112 0x3E 1792

0x0F 240 0x1F 3840 0x2F 128 0x3F 2048
MSC711x Reference Manual, Rev. 1

22-10 Freescale Semiconductor

I2C Programming Model
I2CTLR enables the I2C module and the I2C interrupt. It also contains bits that govern I2C
operation as a slave or a master.

I2CTLR I2C Control Register IFDR Base + 0x08

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— IEN IIEN MSTA MTX TXAK RSTA —

TYPE R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-5. I2CTLR Bit Descriptions

Name Reset Description Settings

—
15–8

0 Reserved. Write to zero for future compatibility.

IEN
7

0 I2C Enable

Enables/disables the I2C module. Also controls the

software reset of the entire I2C module. Resetting the
bit generates an internal reset to the module. If the
module is enabled and in the middle of a byte transfer,
slave mode ignores the current bus transfer and starts
operating when the next start condition is detected.
Master mode is not aware that the bus is busy, so
initiating a start cycle may corrupt the current bus
cycle, ultimately causing either the current master or

the I2C module to lose arbitration, after which bus
operation returns to normal.

0 I2C module disabled, but registers
can still be accessed.

1 I2C module enabled. This bit must
be set before any other I2C register
bits have any effect.

IIEN
6

0 I2C Interrupt Enable

Enables/disables I2C interrupts. When IIEN is set, an

I2C interrupt occurs if I2SR[IIF] is also set. The
interrupt remains asserted as long as I2SR[IIF] and
IIEN both remain set.

0 I2C module interrupts are disabled,
but currently pending interrupt
conditions are not cleared.

1 I2C module interrupts are enabled.

MSTA
5

0 Master/Slave Mode Select
Selects either master mode or slave mode. If the
master loses arbitration, MSTA is cleared without
generating a STOP signal. In master mode, changing
MSTA from 0 to 1 signals a START on the bus and
selects master mode. In slave mode, changing MSTA
from 1 to 0 generates a STOP and selects slave
mode. The module clock should be on for writing to
the MSTA bit.

0 Slave mode.

1 Master mode.

MTX
4

0 Transmit/Receive Mode Select
Selects the direction of master and slave data
transfers. When a slave is addressed, software should
set MTX according to I2SR[SRW]. In master mode,
MTX should be set according to the type of transfer
required. Therefore, for address cycles, MTX is
always set to 1.

0 Receive.

1 Transmit.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-11

I2C Software Module
I2SR contains bits that indicate transaction direction and status.

TXAK
3

0 Transmit Acknowledge Enable
Specifies the value driven onto SDA during
acknowledge cycles for both master and slave

receivers. Writing TXAK applies only when the I2C bus
is a receiver.

0 An acknowledge signal is sent to
the bus at the ninth clock bit after
one byte of data is received.

1 No acknowledge signal response is
sent (that is, acknowledge bit = 1).

RSTA
2

0 Repeat Start
Always read as 0. Attempting a repeat start without
bus mastership causes loss of arbitration.

0 No repeat start.

1 Generates a repeated START
condition.

—
1–0

0 Reserved. Write to zero for future compatibility.

I2SR I2C Status Register IFDR Base + 0x0C

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICF IAAS IBB IAL — SRW IIF RXAK

TYPE R R/W R R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-6. I2SR Bit Descriptions

Name Reset Description Settings

—
15–8

0 Reserved. Write to zero for future compatibility.

ICF
7

0 Data Transfer
Indicates whether a data transfer is in progress. While
one byte of data is transferred, ICF is cleared.

0 Transfer in progress.

1 Transfer complete. Set by the falling
edge of the ninth clock of a byte
transfer.

IAAS
6

0 I2C Address as Slave
Interrupts the CPU if I2CTLR[IIEN] is set. Next, the
CPU must check SRW and set its TX/RX mode
accordingly. Writing to I2CTLR clears this bit.

0 Not addressed.

1 Addressed as a slave. Set when its
own address (IADR) matches the
calling address.

IBB
5

0 I2C Busy
Indicates the status of the bus. When START is
detected, IBB is set. If a STOP signal is detected, IBB
is cleared.

0 Bus is idle.

1 Bus is busy

Table 22-5. I2CTLR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

22-12 Freescale Semiconductor

I2C Programming Model
IAL
4

0 Arbitration Lost
Set by hardware in the following circumstances:

• SDA sampled low when the master drives high
during an address or data transmit cycle.

• SDA sampled low when the master drives high
during the acknowledge bit of a data-receive
cycle.

• A start cycle is attempted when the bus is busy.
• A repeated start cycle is requested in slave

mode.
• A stop condition is detected when the master

did not request it.
For the first two cases, the bit is set at the falling edge
of ninth SCL clock during an ACK cycle. IAL is cleared
when software writes a zero to it. Software cannot set
this bit.

0 No arbitration lost.

1 Arbitration lost.

—
3

0 Reserved. Write to zero for future compatibility.

SRW
2

0 Slave Read/Write
When IAAS is set, SRW indicates the value of the
R/W command bit of the calling address sent from the
master. SRW is valid only when a complete transfer
has occurred, no other transfers have been initiated,

and the I2C module is a slave and has an address
match.

0 Slave receive, master writing to
slave.

1 Slave transmit, master reading from
slave.

IIF
1

0 I2C Interrupt
Indicates that an interrupt is pending, which causes a
processor interrupt request (if IIEN = 1). IFF is set
when one of the following occurs:

• Complete one byte transfer (set at the falling
edge of the ninth clock)

• Reception of a calling address that matches its
own specific address in slave-receive mode

• Arbitration lost.

0 No I2C interrupt pending.

1 Interrupt pending.

RXAK
0

0 Receive Acknowledge
The value of SDA during the acknowledge bit of a bus
cycle.

0 Acknowledge signal received after
the completion of the 8-bit data
transmission on the bus.

1 No acknowledge signal detected at
the ninth clock.

I2DR I2C Data Register I2DR Base + 0x10

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— D

TYPE R R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-6. I2SR Bit Descriptions (Continued)

Name Reset Description Settings
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 22-13

I2C Software Module
In master-receive mode, reading the I2DR allows a read to occur and initiates next byte data
receiving. In slave mode, the same function is available after it is addressed. Note that a value
written by the SC1400 to the I2DR cannot be read back by the SC1400 core. Only data written on
the I2C bus side can be read.

Table 22-7. I2DR Bit Descriptions

Name Reset Description Settings

—
15–8

0 Reserved. Write to zero for future compatibility.

D
7–0

0 Data Byte
Holds the last data byte received or the next data
byte to be transferred. Software writes the next data
byte to be transmitted or reads the data byte
received.
MSC711x Reference Manual, Rev. 1

22-14 Freescale Semiconductor

Universal Asynchronous
Receiver/Transmitter (UART) 23
The UART, also known as the serial communication interface (SCI), provides a full-duplex port
for serial communications with other MSC7119 devices, microprocessors, or DSPs. This
interface uses two dedicated signals: transmit data (UTXD) and receive data (URXD) (see Figure
23-1). The extended core accesses the UART through the APB bus. The UART is modeled after
the industry-standard 16550, with the register address space relocated to 32-bit data boundaries
for APB bus implementation. It contains registers to control the character length, baud rate, parity
generation/checking, and interrupt generation.

Figure 23-1. UART Interface

23.1 UART Basics

The main functional components of the UART are as follows (see Figure 23-2):

� APB interface. Standard AMBA 2.0-compliant APB interface with support for 8-, 16-, and
32-bit read and write bus widths.

� Control and status registers. Serial data control registers are stored and used for control
and status generation. These registers control interrupt generation based on transmitter and
receiver status and determine which interrupts are enabled.

� Rx and Tx control. Controls the data transfer between the Receive Buffer Register (RBR)
and Rx block and the Transmit Holding Register (THR) and the Tx block.

� Transmitter (Tx). Converts parallel data programmed into the THR into a serial data
stream that is built according to conditions specified in the Line Control Register. The
serial data is output on the UTXD pin.

� Receiver (Rx). Converts serial data sent to the UART on the URXD pin to a parallel data
character based on Line Control Register settings. When a complete character is received,
it is sent to the RBR.

UART

UTXD

URXD

 APB

UART Interrupt Request

to Interrupt Controller

Timer Clock
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 23-1

Universal Asynchronous Receiver/Transmitter (UART)
� Baud clock generator. Generates the clock for the Tx and Rx to serialize the data from
THR or to receive the data into Rx. Serial clock frequency is based on the PCLK, DLL,
and DLH registers.

Figure 23-2. UART Block Diagram

Interrupt Enable Register

Interrupt Identity Register

Line Control Register

Line Status Register

32-bit

APB

Scratch Register

Tx Transmitter
(Shift Register)

Tx Control and State
Machines

UTXD

APB
Interface

Input Clock Source

DLH DLL

Serial
/16

Transmit Holding Register

Rx Receiver
(Shift Reg) UTXD

(RBR)

Rx Control and State
Machines

Baud-Rate
Divisor

Bit Clock

Interrupt
Generation

Data Formatting Control Signals

UART Interrupt Request

Rx Buffer Full
Tx Buffer Empty
Rx Line Status

(THR)

Receive Buffer Register

(LCR)

(LSR)

(IER)

(IIR)

(SCR)
(GP register available; not used by UART.)
MSC711x Reference Manual, Rev. 1

23-2 Freescale Semiconductor

Halting and Restarting the UART
Table 23-1 lists the serial interface signals.

Figure 23-3. Serial Data Format

23.2 Halting and Restarting the UART

To halt the UART completely, use the following procedure:

1. Optionally, poll the LSR[TEMT] bit (page 23-7) to ensure that the UART is not
transmitting data. Omitting this step can result in transmission of invalid data.

2. Set the HLTREQ[UARTCD] bit (page 11-26) to shut down the system clock to the
module. Asserting this bit during transmission or reception can result in invalid data.

To restart the UART, clear the HLTREQ[UARTCD] bit to re-enable the system clock to the
module.

23.3 UART Programming Model

This section describes the programmable features of the UART. The value of the base address for
the UART_BASE register file is in Table 5-1, Summary — Base Addresses for MSC7119 Register
Files, on page 5-4. Control registers should not be changed while the transmitter is busy, as
indicated by the LSR[TEMT] bit. The UART registers are listed as follows, along with the
number of the page where each register is discussed:

� Receive Buffer Register (RBR), page 23-4.

� Transmit Holding Register (THR), page 23-4.

� Baud-Rate Divider Register (BRDR), page 23-4.

� Interrupt Enable Register (IER), page 23-5.

� Interrupt Identity Register (IIR), page 23-5.

� Line Control Register (LCR), page 23-7.

Table 23-1. Serial Interface Signals

Signal Name Type Description

URXD I The serial data input from the modem, data set, or peripheral device (see Figure 23-3).

UTXD O The serial data output to the modem, data set, or peripheral device (see Figure 23-3).
SOUT is driven high when the reset (preset) is applied.

Start Data Bits 5–8 Parity StopSerial Data

One Character

One Bit Time Equals 16 Clock Periods
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 23-3

Universal Asynchronous Receiver/Transmitter (UART)
� Line Status Register (LSR), page 23-7.

� Scratchpad Register (SCR), page 23-8.

RBR contains the data byte received on the serial input port. The data in this register is valid only
if the LSR[DR] (Data Ready) bit is set. This register is accessible only when LCR[DLAB] is
cleared to 0. The data in the RBR must be read before the next data arrives. Otherwise, it is
overwritten, resulting in an overrun error.

THR contains data to be transmitted on the serial output port. Data can be written to the THR any
time the LSR[THRE] bit is set.Writing a single character to the THR clears the THRE. Any
additional writes to the THR before the THRE is set again causes the THR data to be overwritten.
This register is accessible only when LCR[DLAB] is cleared to 0.

BRDR contains the baud-rate divisor for the UART. It is accessed by first setting the
LCR[DLAB] bit (page 23-7). The output baud rate is baud rate = (PCLK) / (16 × divisor). When
both DLH and DLL are set, at least (2 × divisor × 16) clock cycles of the UART should be

RBR Receive Buffer Register 0x00

BIT 7 6 5 4 3 2 1 0

RBR

TYPE R

RESET 0 0 0 0 0 0 0 0

THR Transmit Holding Register 0x00

BIT 7 6 5 4 3 2 1 0

THR

TYPE W

RESET 0 0 0 0 0 0 0 0

BRDR Baud-Rate Divider Register 0x00
0x04

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DLH DLL

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

23-4 Freescale Semiconductor

UART Programming Model
allowed to pass before data is transmitted or received. This 16-bit is accessible only by its 8-bit
fields, DLH and DLL.

IER contains four bits to enable interrupt generation. This register is accessible only when
LCR[DLAB] is cleared to 0.

IIR identifies the source of an interrupt. The upper four bits of the register are reserved and have
a value of 00. The lower four bits identify the pending interrupt with the highest priority, as
shown in Table 23-3.

IER Interrupt Enable Register 0x04

Bit 7 6 5 4 3 2 1 0

— — — — EDSSI ELSI ETBEI ERBFI

TYPE R/W

RESET 0 0 0 0 0 0 0 0

Table 23-2. IER Bit Descriptions

Name Description Settings

—
7–4

Reserved. Write to zero for future compatibility.

EDSSI
3

Enable Modem Status Interrupt
Enables/disables a modem status interrupt.

0 Interrupt disabled.

1 Interrupt enabled.

ELSI
2

Enable Line Status Interrupt
Enables/disables a line status interrupt.

0 Interrupt disabled.

1 Interrupt enabled.

ETBEI
1

Enable Transmit Buffer Empty Interrupt
Enables/disables a transmit buffer empty interrupt.

0 Interrupt disabled.

1 Interrupt enabled.

ERBFI
0

Enable Receive Buffer Full Interrupt
Enables/disables a receive buffer full interrupt.

0 Interrupt disabled.

1 Interrupt enabled.

IIR Interrupt Identity Register 0x08

Bit 7 6 5 4 3 2 1 0

— INTID

TYPE R

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 23-5

Universal Asynchronous Receiver/Transmitter (UART)
Table 23-3. IIR Bit Descriptions

Name Description Settings

—
7–4

Reserved. Write to zero for future compatibility.

INTID
3–0

Interrupt ID
Identifies the source of the interrupt.

Table 23-4. UART Interrupt Structure

Reserved
Interrupt Identification

Register
Interrupt Set and Reset Functions

Bit 3 Bit 2 Bit 1 Bit 0
Priority
Level

Interrupt
Type

Interrupt Source
Interrupt Reset

Control

0 0 0 1 — None None —

0 1 1 0 Highest Receiver
Line Status

Overrun/parity/framing
errors or break interrupt

Reading the LSR

0 1 0 0 Second Received
data
available

Receiver data available Reading the RBR

0 0 1 0 Third Transmitter
holding
register
empty

Transmitter holding
register

Reading the IIR or
writing into THR

0 0 0 0 Fourth Modem
status

Clear to send or data
set ready or ring
indicator or data center
detect

Reading the modem
status register

INTID[3–0] Interrupt Identification

0000 Modem Status Changed.

0001 No Interrupt Pending.

0010 THR Empty.

0011 Reserved.

0100 Received Data Available.

0101 Reserved.

0110 Receiver Status.

0111 Reserved.

10xx Reserved.

1100 Character Time Out.

1101 Reserved.

111x Reserved.
MSC711x Reference Manual, Rev. 1

23-6 Freescale Semiconductor

UART Programming Model
LCR controls the format of the data that is transmitted and received by the UART.

LSR contains the status of the receiver and transmitter data transfers. You can read this status any
time. The OE, PE and FE bits are reset when the LSR is read.

LCR Line Control Register 0x0C

Bit 7 6 5 4 3 2 1 0

DLAB BRK STKP EPS PEN STOP CLS

TYPE R

RESET 0 0 0 0 0 0 0 0

Table 23-5. LCR Bit Descriptions

Name Description Settings

DLAB
7

Divisor Register Access Bit
Provides an extra bit when the UART register file is
addressed.

BRK
6

Break Control
Generates a break on the UTXD line.

0 No break generated.

1 Break generated.

STKP
5

Stick Parity
Not used.

EPS
4

Even Parity Select
Parity must be enabled.

0 Odd parity is transmitted or checked.

1 Even parity is transmitted or checked.

PEN
4

Parity Enable
Enables/disables parity.

0 Parity is disabled.

1 Parity is enabled.

STOP
4

Number of Stop Bits Transmitted
Specifies the number of stop bits transmitted.

0 One stop bit is transmitted in serial data.

1 If data bits is set to 5, one and a half stop bits are
generated. Otherwise, two stop bits are
generated and transmitted in serial data out.

CLS
1–0

CLS
Controls number of bits per character.

00 5 bits.

01 6 bits.

10 7 bits.

11 8 bits.

LSR Line Status Register 0x14

Bit 7 6 5 4 3 2 1 0

— TEMT THRE BI FE PE OE DR

TYPE R

RESET 0 1 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 23-7

Universal Asynchronous Receiver/Transmitter (UART)
SCR is available for programmers to use as a temporary storage space. It has no defined purpose
in the UART.

Table 23-6. LSR Bit Descriptions

Name Description Settings

—
7

Reserved. Write to zero for future compatibility.

TEMT
6

Transmitter Empty
Indicates that the transmitter is completely empty. TEMT is
useful for ensuring that it is safe to change control registers.
Changing control registers while the transmitter is busy can
result in corrupted data.

0 THR and the Transmit Shift register
are not both empty.

1 THR and Transmit Shift register are both
empty.

THRE
5

Transmitter Holding Register Empty
Indicates the UART can accept a new character for
transmission. THRE is set when data is transferred from the
THR to the transmit shift register and no new data is written
to the THR.

0 THR is not empty.

1 THR is empty.

BI
4

Break Interrupt
Set when the serial input (Sin) is held in a logic 0 state for
longer than the sum of start time + data bits + parity + stop
bits. When a break condition occurs on Sin, the UART
receives one and only one character, consisting of all zeros.
The BI indication occurs immediately and persists until the
LSR is read

0 No break interrupt.

1 Break interrupt.

FE
3

Framing Error
Indicates a framing error in the receiver. A framing error
occurs when the receiver does not detect a valid stop bit in
the received data.

0 No framing error.

1 Framing Error has occurred.

PE
2

Parity Error
This status bit indicates parity errors only when parity is
enabled in the LCR[PEN] bit.

0 No parity error.

1 Parity error.

OE
1

Overrun Error
Indicates an overrun condition when a new character arrives
in the receiver before the previous character is read from the
RBR. The data in the RBR is overwritten.

0 No overrun.

1 Overrun.

DR
0

Data Ready
Cleared when the RBR is read

0 Receiver does not contain data in the RBR.

1 Receiver contains data in the RBR.

SCR Scratchpad Register 0x1C

Bit 7 6 5 4 3 2 1 0

SCR

TYPE R/W

RESET 0 0 0 0 0 0 0 0
MSC711x Reference Manual, Rev. 1

23-8 Freescale Semiconductor

General-Purpose Input/Output (GPIO) 24
The MSC711x general-purpose I/O (GPIO) signal lines are multiplexed to serve as either GPIO
signals or dedicated peripheral interface signals. Each GPIO signal is configured as an
input/output, with a register for data output that is read or written at any time. GPIO signals do
not have internal pull-up resistors. The dedicated MSC711x peripheral functions multiplexed
with the GPIO signals are grouped to maximize their usefulness in the greatest number of
MSC711x applications. All the GPIO pins are tri-stated in test mode when reset is asserted active
low.

It is recommended that you read the following chapters on MSC711x peripherals before you read
this one:

� Chapter 18, Fast Ethernet Controller (FEC)

� Chapter 19, Time-Division Multiplexing (TDM) Interface

� Chapter 20, Host Interface (HDI16)

� Chapter 21, Timers Module

� Chapter 22, I2C Software Module

� Chapter 23, Universal Asynchronous Receiver/Transmitter (UART)

24.1 GPIO Features

Features of the GPIO signals are as follows:

� Four ports, A to D, that are separately configurable for input or output or tri-state.

� Bits in each port can be independently configured for direction (input or output) and
control:

— Software control, with pin data and direction determined by GPIO registers.
— Hardware control, with pin data and direction determined by a peripheral module.

� Separate data registers and data direction registers for each port, for use in software
control mode.

� Data on port is always readable, regardless of pin mode or direction.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-1

General-Purpose Input/Output (GPIO)
Port A of the GPIO block supports additional functionality, as follows:

� All signals that can generate independent interrupts.

� Configurable interrupt detection: edge detection, level-sensitive operation
(unsynchronized), or level-sensitive operation (synchronized).

� Configurable interrupt detection polarity:

— Active high or rising edge
— Active low or falling edge

� Readable interrupt status before or after masking

24.2 Operating Modes

The GPIO signals operate either under software control as GPIO pins or under hardware control
as dedicated peripheral pins.

24.2.1 Software Control Mode as GPIO Pins

When a port is configured for software control, the data and direction control for the port are
sourced from the data register (GPxDR) (page 24-18) and the direction control register
(GPxDDR) (page 24-17), where x designates port A, B, C, or D. The data written to GPxDDR is
mapped onto an output port that controls the direction of an external I/O pad. The data written to
the data register (GPxDR) drives the output buffer of the I/O pad when the direction is set to
output. External data is input on the external data port. If the data direction is set to input, then a
read of the external port register (GPxEXPRT) (page 24-19) shows the value on the port. This
register is read-only, so it cannot be written from the APB software interface. Otherwise, if the
direction is set to output, the value in the data register (GPxDR) is returned.

24.2.2 Hardware Control Mode as Peripheral Pins

If a port is configured for hardware control, its external auxiliary hardware signals control the
data and the direction of ports A through D. In hardware control mode, the internal auxiliary data
input signal and direction control signal are selected for the designated port. Figure 24-2 shows
how the GPIO peripheral controls the data and direction ports of an I/O PAD and the generation
of data for the auxiliary source. The value on the external port is masked and returned to the
auxiliary source.

24.2.3 Reading External Ports

A separate port is provided for reading the value on any port pin. Regardless of whether Software
Control mode or Hardware Control mode is selected, the data on the external GPIO port can
always be read via an APB read of the memory-mapped register GPxEXPRT (described on
page 24-19). The data is first synchronized with teh AHB clock before it is read from the port.
The maximum rate for reading data on this port is half the AHB clock frequency.
MSC711x Reference Manual, Rev. 1

24-2 Freescale Semiconductor

GPIO Architecture
When the data direction is set to input, a read of the external port register (GPxEXPRT) produces
the value on the port. When the data direction is set to output, a read returns the value of the
memory-mapped data register GPxDR (described on page 24-18). Both the external GPIO port
register and the data register (GPxDR) return the same value for both modes of operation.

Figure 24-2 shows the multiplexing of the hardware/software option with the control lines for the
multiplexing coming from a memory mapped-register. It also shows the synchronization registers
and the individual bit control of each data and data direction bit.

24.3 GPIO Architecture

Figure 24-1 shows the functional groupings of the main interfaces to the GPIO block:

� APB interface to/from the APB bridge

� External data interface to/from the I/O pads

� Auxiliary hardware data interface to/from auxiliary data sink/source

� Interrupt interface to/from the interrupt controller

Figure 24-1. GPIO High-Level Functional Block Diagram

24.3.1 Data and Control Flow

The GPIO controls the output data and direction of external I/O pads. Software controls the
input/output data and each port over the APB bus interface. Hardware control of the input/output
data for each port is enabled through the control register. Each bit in each port is individually
controllable, so each register can be regarded as N individual registers, where N is the port width.
Figure 24-2 shows the data and flow control for the ports. The default direction of any port is set
at configuration time.

APB

Interface
Port I/O
Interface

Interrupt
Detection

APB

Interrupt Request to

Peripheral Data Signal

External Data

Pins

Interrupt Controller

GPIO Module

GPIO

Register
File

Peripheral Direction

32

(Port A only)

Signal
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-3

General-Purpose Input/Output (GPIO)
24.3.2 GPIO Port Assignments

This section describes how ports A, B, C, and D are allocated. Remember, only port A has
interrupt capability. An MSC711x device comes out of reset with the primary functional pin
enabled as an input. Signals with no GPIO for the primary function come out of reset as unused.

Multiple functionality is multiplexed to each port and is under software control. Peripheral
functionality is not available until a port is configured to be under hardware control so that the
internal peripheral can determine the direction of the signal (in/out/inout). When the signals are
not configured for their primary function, bits in the DEVCFG register (Section 7.4.3, Device
Identification and Configuration, on page 7-16) select between the secondary and additional
functions. This is not the case for pins sampled out of reset, which are sampled independently of
the state of DEVCFG bits.

When a port is configured for GPIO software control, the data register, GPxDR controls the data.
The direction control register, GPxDDR, controls the direction of a data transfer. If the data
direction is set to input, the value on the port is read in the external port register (GPxEXPRT).
This register is read-only, so it cannot be written from the APB software interface. Otherwise, if
the direction is set to output, the value in the Port X data register (GPxDR) is returned.

24.3.2.1 Port Configuration Out of Reset

An MSC711x device comes out of reset with the functionality shown in the “Software Control”
column of Table 24-1 through Table 24-5 enabled as an input. For pins with no GPIO for the
primary function, the pin comes out of reset as an unused input.

Note: To ensure compatibility with future devices, an application must not assign any of the
reserved states in the port assignment tables presented in this section.

24.3.2.2 Port A

Port A contains all signals with interrupt capability, including the NMI signals and signals for the
UART, I2C, TDM1, and TDM0 modules, as well as the event port and Ethernet MAC signals
with interrupt capability. The DEVCFG[PAS] bit (page 7-17) selects between the secondary
function and the addition multiplexing function.

Table 24-1 shows the port A configurations for MSC711x devices containing an Ethernet MAC.
Table 24-2 shows the port A configurations for devices containing a third TDM.
MSC711x Reference Manual, Rev. 1

24-4 Freescale Semiconductor

GPIO Architecture
Figure 24-2. Block Diagram of one Bit (Ports A, B, C, D)

D Q

D Q

D Q

0

1

0

1

GPxDDR[i]

GPxCTL[i]

GPxDR[i]

Peripheral data to driver

To Peripheral from PAD

DQ
GPAxEXPRT[i]

Port Data Direction

GPIO Port Data

GPIO External Port

Software Control

(Pin used
as GPIO)

Read Data
on Port Pin

(Independent
of Modes)

Pad

PAD

Hardware Control

(Pin used
for Peripheral)

APB Clock

GPxCTL[i]

Peripheral driver enable

(Registers Accessed
through APB)

GPIO Interrupt

Interrupt
Detect

APB
GPAIEN

GPAIMSK

GPAITYP

GPAIPOL

GPAISLS

GPAISR

GPAIRWSR

Interrupt Register File

Interrupt Control

APB Clock

Port A Only

Hardware
Control

GPAICLR
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-5

General-Purpose Input/Output (GPIO)
Table 24-1. Port A GPIO Signal Pin Assignments for Devices With Ethernet MAC

Bit

Software Control Hardware Control Interrupt
Capability

(Input)

Sampled
on POR

(Input)GPACTL[i]==0
GPACTL[i]==1 and
DEVCFG[PAS]==0

GPACTL[i]==1 and
DEVCFG[PAS]==1

29 GPIO RXD3 (I) Reserved IRQ18 —

28 GPIO TX_ER Reserved IRQ17 —

27 GPIO TXD3 Reserved IRQ16 —

26 GPIO RX_ER IRQ26 —

25 GPIO RX_DV IRQ25 —

24 GPIO TX_EN IRQ24 —

23 GPIO TXCLK IRQ23 —

22 GPIO RXD0 IRQ22 —

21 GPIO RXD1 IRQ21 —

20 GPIO TXD0 IRQ20 —

19 GPIO TXD1 IRQ19 —

18 Reserved for NMI signal (not configurable) —

17 GPIO EVNT1 or CLKO IRQ13 —

16 GPIO EVNT4 IRQ12 SWTE

15 GPIO SCL IRQ14 —

14 GPIO SDA IRQ15 —

13 GPIO URXD IRQ2 —

12 GPIO UTXD IRQ3 —

11 GPIO T0RCK IRQ4 —

10 GPIO T0RFS IRQ5 —

9 GPIO T0RD Reserved —

8 GPIO T0TCK IRQ6 —

7 GPIO T0TFS IRQ7 —

6 GPIO T0TD Reserved —

5 GPIO T1RCK IRQ0 —

4 GPIO T1RFS IRQ1 —

3 GPIO T1RD IRQ8 —

2 GPIO T1TCK IRQ9 —

1 GPIO T1TFS IRQ10 —

0 GPIO T1TD IRQ11 —

Notes: 1. The reset state of these pins is is the “Software Control” column. When this is reserved, the pin operates as
an input.

2. When CLKCTL[CLKO] != 00, then CLKO is driven onto Port 17 in Hardware Control mode.
When CLKCTL[CLKO] == 00, EVNT1 is driven onto Port 17 in Hardware Control mode.
Bit 17 must be programmed in Hardware Control mode when CLKO is desired as an output.

3. When the Ethernet MAC is used:
− For MII mode, DEVCFG[PAS] must be cleared for correct operation.
− For RMII or 7-Wire Interface mode, DEVCFG[PAS] must be set to ensure future compatibility.

4. When bit 13 is in software control mode, the UART input is internally tied to 1, disabling it.
MSC711x Reference Manual, Rev. 1

24-6 Freescale Semiconductor

GPIO Architecture
Table 24-2. Port A GPIO Signal Pin Assignments for Devices With a Third TDM (TDM2)

Bit

Software Control Hardware Control Interrupt
Capability

(Input)

Sampled
on POR

(Input)GPACTL[i]==0
GPACTL[i]==1 and
DEVCFG[PAS]==0

GPACTL[i]==1 and
DEVCFG[PAS]==1

29 GPIO Reserved T2TFS IRQ18 —

28 GPIO Reserved T2RD IRQ17 —

27 GPIO Reserved T2RCK IRQ16 —

26 GPIO Reserved IRQ26 —

25 GPIO Reserved IRQ25 —

24 GPIO Reserved IRQ24 —

23 GPIO Reserved IRQ23 —

22 GPIO Reserved IRQ22 —

21 GPIO Reserved IRQ21 —

20 GPIO Reserved IRQ20 —

19 GPIO Reserved IRQ19 —

18 Reserved for NMI signal (not configurable) —

17 GPIO EVNT1 or CLKO IRQ13 —

16 GPIO EVNT4 IRQ12 SWTE

15 GPIO SCL IRQ14 —

14 GPIO SDA IRQ15 —

13 GPIO URXD IRQ2 —

12 GPIO UTXD IRQ3 —

11 GPIO T0RCK IRQ4 —

10 GPIO T0RFS IRQ5 —

9 GPIO T0RD Reserved —

8 GPIO T0TCK IRQ6 —

7 GPIO T0TFS IRQ7 —

6 GPIO T0TD Reserved —

5 GPIO T1RCK IRQ0 —

4 GPIO T1RFS IRQ1 —

3 GPIO T1RD IRQ8 —

2 GPIO T1TCK IRQ9 —

1 GPIO T1TFS IRQ10 —

0 GPIO T1TD IRQ11 —

Notes: 1. The reset state of these pins is is the “Software Control” column. When this is reserved, the pin operates as an
input.

2. When CLKCTL[CLKO] != 00, CLKO is driven onto port 17 in Hardware Control mode.
When CLKCTL[CLKO] == 00, EVNT1 is driven onto port 17 in Hardware Control mode.
Bit 17 must be programmed in Hardware Control mode when CLKO is an output.

3. When TDM2 functionality is required, DEVCFG[PAS] must be set.
4. When bit 13 is in software control mode, the UART input is internally tied to 1, disabling it.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-7

General-Purpose Input/Output (GPIO)
24.3.2.3 Port B

Port B contains a portion of the host port pins. HDSP is an input sampled only on power-on reset.

Table 24-3. Port B GPIO Signal Pin Assignments

Bit
Software Control Hardware Control Sampled on POR

(Input)GPBCTL[i]==0 GPBCTL[i]==1

15 Reserved Reserved —

14 Reserved HDDS —

13 Reserved HDS —

12 Reserved HRW —

11 GPIO2 HCS2 —

10 Reserved HCS1 —

9 Reserved HACK —

8 Reserved HREQ HDSP

7 Reserved HD7 —

6 Reserved HD6 —

5 Reserved HD5 —

4 Reserved HD4 —

3 Reserved HD3 —

2 Reserved HD2 —

1 Reserved HD1 —

0 Reserved HD0 —

Notes: 1. The reset state of these pins is the “Software Control” column. For cases where this is reserved, the pin
operates as an input.

2. GPIO functionality only available in mask set 1M88B.
MSC711x Reference Manual, Rev. 1

24-8 Freescale Semiconductor

GPIO Architecture
24.3.2.4 Port C

Port C contains the remaining host port pins as well as non-interrupting pins for the debug and
event ports (used also to specify the boot mode).

24.3.2.5 Port D

Port D contains the Ethernet MAC pins, which do not have interrupt capability. H8BIT is an input
sampled only during power-on reset. The operation of some of these port pins in Hardware
Control mode is selected via the DEVCFG[PDS] bit (see Section 7.4.3, Device Identification and
Configuration, on page 7-16). Table 24-5 shows the port D signal pin configurations for
MSC711x devices containing an Ethernet MAC.

Table 24-4. Port C GPIO Signal Pin Assignments

Bit
Software Control Hardware Control Sampled on POR

(Input)GPCCTL[i]==0 GPCCTL[i]==1

15 GPIO EVNT3 BM1

14 GPIO EVNT2 BM0

13 Reserved EVNT0 —

12 Reserved Reserved —

11 GPIO2 HA3 —

10 Reserved HA2 —

9 Reserved HA1 —

8 Reserved HA0 —

7 GPIO HD15 —

6 GPIO HD14 —

5 GPIO HD13 —

4 GPIO HD12 —

3 GPIO HD11 —

2 GPIO HD10 —

1 GPIO HD9 —

0 GPIO HD8 —

Notes: 1. The reset state of these pins is the “Software Control” column. For cases where this is reserved, the pin
operates as an input.

2. GPIO functionality only available in mask set 1M88B.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-9

General-Purpose Input/Output (GPIO)
Table 24-5. Port D GPIO Signal Pin Assignments for Devices With an Ethernet MAC

Bit

Software Control Hardware Control Sampled on POR

(Input)GPDCTL[i]==0
GPDCTL[i]==1 and
DEVCFG[PDS]==0

GPDCTL[i]==1 and
DEVCFG[PDS]==1

8 GPIO3 Reserved Reserved BM3

7 GPIO3 Reserved Reserved BM2

6 GPIO RXD2 T2TD —

5 GPIO RXCLK T2TCK —

4 GPIO TXD2 T2RFS —

3 Reserved MDIO —

2 Reserved MDC H8BIT

1 Reserved CRS —

0 Reserved COL —

Notes: 1. The reset state of these pins is stated in the “Software Control” column. For cases where this is reserved, the
pin operates as an input.

2. When the Ethernet MAC is in use
− For MII mode, DEVCFG[PDS] must be cleared for correct operation.
− For RMII or 7-Wire Interface mode, DEVCFG[PDS] must be set to ensure future compatibility.

3. GPIO functionality only available in mask set 1M88B.

Table 24-6. Port D Signal Pin Assignments for Devices With a Third TDM (TDM2)

Bit

Software Control Hardware Control
Sampled on POR

(Input)GPDCTL[i]==0
GPDCTL[i]==1 and
DEVCFG[PDS]==0

GPDCTL[i]==1 and
DEVCFG[PDS]==1

8 GPIO3 Reserved BM3

7 GPIO3 Reserved BM2

6 GPIO RXD2 T2TD —

5 GPIO RXCLK T2TCK —

4 GPIO TXD2 T2RFS —

3 Reserved MDIO —

2 Reserved MDC H8BIT

1 Reserved CRS —

0 Reserved COL —

Notes: 1. The reset state of these pins is is the “Software Control” column. For cases where this is reserved, the pin
operates as an input.

2. When TDM2 functionality is required, DEVCFG[PDS] must be set.
3. GPIO functionality only available in mask set 1M88B.
MSC711x Reference Manual, Rev. 1

24-10 Freescale Semiconductor

Interrupts
24.4 Interrupts

Port A can be programmed to accept external signals as interrupt sources on any bits of the port.
The type of interrupt is programmable, with the following selections:

� Active-high and level

� Active-low and level

� Rising edge

� Falling edge

Interrupts are masked through the GPAIMSK register. The interrupt status can be read before and
after masking. When port A is configured for interrupts, the data direction must be set to input,
and the mode must be set to software control for interrupts to be latched. If the data direction
register is reprogrammed to output or the mode register is programmed to enable hardware mode,
any pending interrupts are not lost. However, no new interrupts are generated. Figure 24-3
illustrates how the interrupts are generated and how the data flows. The signal names in the
diagram correspond to either I/O signals or memory mapped registers.

Figure 24-3. GPIO Interrupt Block Diagram

24.4.1 Clearing Interrupts

The interrupt service routine (ISR) can clear edge-detected interrupts by writing to the GPAICLR
register to disable the interrupt. This write also clears the interrupt status and raw status registers.
Writing to the GPAICLR register has no effect on level-sensitive interrupts. If level-sensitive
interrupts are causing the processor to interrupt, the ISR can poll the GPAIRWSR register until
the interrupt source disappears, or it can write to the GPAIMSK register to mask the interrupt
before exiting the ISR.

External Port A

GPAICLR[i]

GPIO Interrupt

GPIO Interrupt

GPAISR[i]

GPAIRWSR[i]

GPAIPOL[i]

GPAITYP[i]

GPAIMSK[i]

Rising Edge
Detect

Falling Edge
Detect

Active High
Detect

Active Low
Detect

Polarity

Polarity

AND

1

0

1

0

1

0

i = 0 through 19

OR

GPIO Signal

Flag
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-11

General-Purpose Input/Output (GPIO)
If the ISR exits without masking or disabling the interrupt, the level-sensitive interrupt repeatedly
requests an interrupt until the interrupt is cleared at the source. There are no restrictions on the
number of edge-detected interrupts that can be cleared simultaneously by writing to the
GPAICLR register.

24.4.2 Synchronizing Interrupt Signals with the System Clock

Interrupt signals are synchronized internally with a free running system clock, AHB clock. The
EIRQ clock signal is used to detect edge-triggered interrupts while the SC1400 core is in sleep or
stop mode. The EIRQ clock is a version of the AHB clock that is enabled by the
HLTREQ[EIRQHR] bit (page 11-28).

24.4.2.1 Interrupt Edge Detection

Figure 24-4 shows an RTL diagram of the synchronization and edge detection of interrupt
sources on signals from the pin.

Figure 24-4. Synchronization and Edge Detect Interrupt Generation

Figure 24-5 shows a timing diagram for an interrupt generated on the rising edge of an input on
port a where the de-bounce logic is disabled. It also shows the clearing of such an interrupt by a
write to the interrupt clear register. Note that signals A, B, C, and D in Figure 24-5 refer to the
points labelled A, B, C, and D in Figure 24-4, that is, points within the synchronizer and edge
detection circuitry.

A B C

Combinational
Logic

Interrupt
Masking

Single Pulse Generated
on Edge Detection of
Programmed Polarity

Write to Interrupt
Clear Register

Meta-Stability Registers Edge Detect Circuitry

D
Edge
Detect

GPIO

Internal Reset

EIRQ Clock

External GPIO

EIRQ clock is AHB clock gated with HLTREQ[EIRQHR].

Port A Signal
N

Interrupt n
MSC711x Reference Manual, Rev. 1

24-12 Freescale Semiconductor

Interrupts
Figure 24-5. Interrupt Edge Detection and Interrupt Clear Timing

If the interrupt service routine is writing to the interrupt clear register to clear an interrupt on the
same clock cycle as a new interrupt is detected, the write to the interrupt clear register clears only
the first interrupt, and the second interrupt is not lost. Figure 24-6 shows such a case. In this
timing diagram, meta_out is the output of the second meta-stability register and edge_detect_out
is the output of the edge detect logic. The second edge detection occurs on the same cycle as the
write to the interrupt clear register. In this example, the write to the interrupt clear register does
not clear the second interrupt, and the internal GPIO interrupt signal is not deasserted.

N = 0–31

PCLK

GPIO External Port A N

A

B

C

D

GPIO Interrupt

Port Select

Port Enable

Port Write
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-13

General-Purpose Input/Output (GPIO)
Figure 24-6. Write to Interrupt Clear Register, Coincident with Detection of New Interrupt

24.4.2.2 Level-Sensitive Interrupts

Figure 24-7 shows the generation of level-sensitive interrupts. As the figure shows, the LSSYN
bit in the Port A Synchronous Level-Sensitive Register (GPAISLS), which is discussed on
page 24-22, specifies whether the interrupt is synchronized with the EIRQ clock or is entirely
combinational. LSSYN is a memory-mapped bit that inserts two meta-stability registers clocked
off the EIRQ clock to synchronize the level-sensitive interrupts with the EIRQ clock. When the
GPAISLS[LSSYN] bit is not set, there is no guarantee that the interrupt lines are synchronous to
the EIRQ clock. The processor status register may need to be programmed to indicate
asynchronous interrupts. When the GPAISLS[LSSYN] bit is set, the EIRQ clock must be present
to pass the interrupt to the interrupt controller. The internal GPIO interrupt clock enable output
signal is asserted when level-sensitive interrupts synchronized with EIRQ clock are active.

Figure 24-7. Level-Sensitive Interrupt Diagram

PCLK

GPIO External Port A N

N = 0–31

meta_out

edge_detect_out

GPIO Interrupt

Port Select

Port Enable

Port Address

Port Address

D Q

0

1

D Q 0

1 GPIO Interrupt

Interrupt Enable
Interrupt Masking

GPAIPOL Register

External Signal

EIRQ Clock

GPAISLS Register (LSSYN Bit)
MSC711x Reference Manual, Rev. 1

24-14 Freescale Semiconductor

GPIO Programming Model
The input signal is inverted for active low level-sensitive interrupts. The same detection logic is
used here as for active high level-sensitive interrupts. Figure 24-8 shows the generation of an
active low level-sensitive interrupt.

Figure 24-8. Active Low Level-Sensitive Interrupt Generation Timing

When level-sensitive operation is desired, the device must always be programmed for
synchronous level-sensitive operation to ensure that external signals are synchronized before they
enter the interrupt controller.

24.5 GPIO Programming Model

This section describes the GPIO registers. When you are programming the GPIO registers for
interrupt capability, you must configure the edge-sensitive or level-sensitive interrupts and
interrupt polarity before you enable the interrupts on port A to prevent spurious glitches on the
lines to the interrupt controller. Writing to the interrupt clear register clears an edge-detected
interrupt and has no effect on a level-sensitive interrupt. When the port width is less than the APB
bus width of 32, for example port A, the undefined bits are read as zero.

The value of the base address for the GPIO register file, GPIO_BASE, is listed in Table 5-1,
Summary — Base Addresses for MSC711x Register Files, on page 5-4. The GPIO registers are
listed as follows, along with the number of the page on which each register is discussed:

� Port x Control Register (GPxCTL), page 24-16.

� Port x Data Direction Register (GPxDDR), page 24-17.

� Port x Data Register (GPxDR), page 24-18.

� Port x External Port Register (GPxEXPRT), page 24-19.

� Port A Interrupt Enable Register (GPAIEN), page 24-19.

� Port A Interrupt Mask Register (GPAIMSK), page 24-20.

� Port A Interrupt Detection Type Register (GPAITYP), page 24-21.

� Port A Interrupt Polarity Register (GPAIPOL), page 24-21.
� Port A Interrupt Synchronous Level-Sensitive Register (GPAISLS), page 24-22.

� Port A Interrupt Clear Register (GPAICLR), page 24-23.

� Port A Interrupt Status Register (GPAISR), page 24-23.

� Port A Interrupt Raw Status Register (GPAIRSR), page 24-24.

PCLK

GPIO External Port A N

C

GPIO Interrupts
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-15

General-Purpose Input/Output (GPIO)
G

GPxCTL specifies whether a signal pin is configured as a GPIO pin under software control or as
a peripheral-dedicated pin under hardware control.

GPxCTL Port x Control Register (Port A) GPIO_BASE + 0x08
(Port B) GPIO_BASE + 0x14
(Port C) GPIO_BASE + 0x20
(Port D) GPIO_BASE + 0x2C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i] CTL[i]

TYPE R/W

RESET

Table 24-7. GPxCTL Bit Descriptions

Name Reset Description Settings

CTL[i]
31–0

0 Control Bit i
Each bit configures a port signal pin for either GPIO or
peripheral functionality.

0 Signal pin is GPIO.

1 Signal pin is peripheral-dedicated.

Notes: 1. The number of bits in the GPIO ports, A, B, C, and D, differs from port to port, as shown in Section 24.3.2,
GPIO Port Assignments, on page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits
are read as 0 and must be written with 0 for future compatibility.

2. Certain pins may also depend on DEVCFG[PAS] or DEVCFG[PDS] bit settings. See Section 24.3.2, GPIO Port
Assignments, on page 24-4.
MSC711x Reference Manual, Rev. 1

24-16 Freescale Semiconductor

GPIO Programming Model
GPxDDR is for reading or writing values to a GPIO signal pin when software configures the bit.

GPxDDR Port x Data Direction Register (Port A) GPIO_BASE + 0x04
(Port B) GPIO_BASE + 0x10
(Port C) GPIO_BASE + 0x1C
(Port D) GPIO_BASE + 0x28

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i] DD[i]

TYPE R/W

RESET

Table 24-8. GPxDDR Bit Descriptions

Name Reset Description Settings

DD[i]
31–0

0 Data Direction Bit i
Each bit corresponds to a GPIO pin on the device and
specifies the direction of the corresponding pin when
software programs the bit via the corresponding bit in
the port’s GPxCTL register. These bits are unaffected
when the pins are configured as peripheral-dedicated
rather than as GPIO.

0 GPIO pin is configured as an input
pin.

1 GPIO pin is configured as an output
pin

Note: The number of bits in the GPIO ports, A, B, C, and D, differs from port to port,, as shown in Section 24.3.2, GPIO
Port Assignments, on page 24-4. Unused bits (the uppermost bits of each register) are reserved. These bits read as
0 and must be written with 0 for future compatibility.
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-17

General-Purpose Input/Output (GPIO)
GPxDR is for reading or writing values to a GPIO signal pin when software configures the bit.

GPxDR Port x Data Register (Port A) GPIO_BASE + 0x00
(Port B) GPIO_BASE + 0x0C
(Port C) GPIO_BASE + 0x18
(Port D) GPIO_BASE + 0x24

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i] D[i]

TYPE R/W

RESET

Table 24-9. GPxDR Bit Descriptions

Name Reset Description Settings

D[i]
31–0

0 Data Bit i
Each bit corresponds to a GPIO signal pin on the
device. Software reads or writes each bit via the
corresponding bit in the port’s GPxCTL register.
These bits are unaffected when the pins are configured
as peripheral-dedicated rather than as GPIO.

0 Write a 0 to the corresponding
GPIO pin.

1 Write a 1 to the corresponding
GPIO pin

Note: The number of bits in the GPIO ports, A, B, C, and D, differs from port to port,, as shown in Section 24.3.2, GPIO
Port Assignments, on page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits read as 0
and must be written with 0 for future compatibility.
MSC711x Reference Manual, Rev. 1

24-18 Freescale Semiconductor

GPIO Programming Model
GPxEXPRT allows the value on the port to be read, regardless of whether the signal pin is
configured as a GPIO signal or a peripheral-dedicated signal.

GPxEXPRT Port x External Port Register (Port A) GPIO_BASE + 0x50
(Port B) GPIO_BASE + 0x54
(Port C) GPIO_BASE + 0x58
(Port D) GPIO_BASE + 0x5C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i]

TYPE R

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i] PRT[i]

TYPE R

RESET

Table 24-10. GPxEXPRT Bit Descriptions

Name Reset Description Settings

PRT[i]
31–0

0 Port Bit i
Each bit corresponds to a GPIO signal pin on the
device. When the pin is configured as an input, the bit
reads the value on the pin. When the pin is configured
as an output, the bit reads the value of the
corresponding bit in the GPxDR register. Notice that all
of these bits are read-only.

0 A value of 0 is read.

1 A value of 1 is read.

Note: The number of bits in the GPIO ports, A, B, C, and D, differs from port to port,, as shown in Section 24.3.2, GPIO
Port Assignments, on page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits read as 0
and must be written with 0 for future compatibility.

GPAIEN Port A Interrupt Enable Register GPIO_BASE + 0x30

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i] EN[i]

TYPE R/W

RESET
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-19

General-Purpose Input/Output (GPIO)
GPAIEN enables individual interrupt pins.

GPAIMSK masks individual interrupt pins.

Table 24-11. GPAIEN Bit Descriptions

Name Reset Description Settings

EN[i]
31–0

0 Enable Bit i
Each bit corresponds to an interrupt signal pin on the
device. Interrupts on the corresponding bit are disabled
if the port is configured as peripheral-dedicated under
hardware control or if the pin is configured as an
output.

0 Interrupt source not enabled.

1 Interrupt source enabled.

Note: The number of bits in this register is shown in the Port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits are read as 0 and must be written
with 0 for future compatibility.

GPAIMSK Port A Interrupt Mask Register GPIO_BASE + 0x34

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i] MSK[i]

TYPE R/W

RESET

Table 24-12. GPAIMSK Bit Descriptions

Name Reset Description Settings

MSK[i]
31–0

0 Mask Bit i
Each bit corresponds to an interrupt pin on the device.

0 Interrupt source is not masked.

1 Interrupt source is masked.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits read as 0 and must be written with
0 for future compatibility.
MSC711x Reference Manual, Rev. 1

24-20 Freescale Semiconductor

GPIO Programming Model
GPAITYP specifies the type of the interrupt.

GPAIPOL configures the polarity of the interrupt pins.

GPAITYP Port A Interrupt Detection Type Register GPIO_BASE + 0x38

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i] TYP[i]

TYPE R/W

RESET

Table 24-13. GPAITYP Bit Descriptions

Name Reset Description Settings

TYP[i]
31–0

0 Type Bit i
Each bit corresponds to an interrupt pin on the device
and configures it for either edge-triggered or
level-sensitive operation.

0 Interrupt source is level-sensitive.

1 Interrupt source is edge-triggered.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits are read as 0 and must be written
with 0 for future compatibility.

GPAIPOL Port A Interrupt Polarity Register GPIO_BASE + 0x3C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i]

TYPE R/W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i] POL[i]

TYPE R/W

RESET
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-21

General-Purpose Input/Output (GPIO)
GPAISLS specifies whether pins programmed for level-sensitive operation are synchronized or
not.

Table 24-14. GPAIPOL Bit Descriptions

Name Reset Description Settings

POL[i]
31–0

0 Polarity Bit i
Each bit corresponds to an interrupt pin on the device
and configures the polarity for both edge-triggered and
level-sensitive operation.

0 Interrupt polarity is falling edge
or active low.

1 Interrupt polarity is rising edge
or active high.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits are read as 0 and must be written
with 0 for future compatibility.

GPAISLS Port A Synchronous Level-Sensitive Register GPIO_BASE + 0x60

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

—

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— LSSYN

TYPE R/W R

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 24-15. GPAISLS Bit Descriptions

Name Reset Description Settings

—
31–1

0 Reserved. Write to zero for future compatibility.

LSSYN
0

1 Level-Sensitive Synchronous
Corresponds to an interrupt pin on the device. LSSYN
specifies whether level-sensitive interrupts are
synchronized with the EIRQ clock. This bit always
reads as a value of 1 for synchronized level-sensitive
operation. It is read-only and cannot be modified by the
user.

0 Reserved.

1 Level-sensitive interrupt sources are
synchronized.
MSC711x Reference Manual, Rev. 1

24-22 Freescale Semiconductor

GPIO Programming Model
GPAICLR clears pending interrupts.

GPAISR allows the value on the interrupt signal pins to be read after the masking operation is
performed.

GPAICLR Port A Interrupt Clear Register GPIO_BASE + 0x4C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i]

TYPE W

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i] CLR[i]

TYPE W

RESET

Table 24-16. GPAICLR Bit Descriptions

Name Reset Description Settings

CLR[i]
31–0

0 Clear Bit i
Each bit corresponds to an interrupt pin on the device.
When a 1 is written to one of these bits, the
corresponding interrupt is cleared. Notice that all of
these bits are write-only.

0 Pending Interrupt is not cleared.

1 Pending Interrupt is cleared.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits are read as 0 and must be written
with 0 for future compatibility.

GPAISR Port A Interrupt Status Register GPIO_BASE + 0x40

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i]

TYPE R

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i] ST[i]

TYPE R

RESET
MSC711x Reference Manual, Rev. 1

Freescale Semiconductor 24-23

General-Purpose Input/Output (GPIO)
GPAIRSR allows the value on the interrupt signal pins to be read before the masking operation is
performed.

Table 24-17. GPAISR Bit Descriptions

Name Reset Description Settings

ST[i]
31–0

0 Status Bit i
Each bit corresponds to an interrupt pin on the device
and reads the value of the processed interrupt signal
after interrupt masking. Notice that all of these bits are
read-only.

0 A masked value of 0 is read.

1 A masked value of 1 is read.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (the uppermost bits of each register) are reserved. These bits are read as 0 and must be
written with 0 for future compatibility.

GPAIRSR Port A Interrupt Raw Status Register GPIO_BASE + 0x44

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i]

TYPE R

RESET

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i] RS[i]

TYPE R

RESET

Table 24-18. GPAIRSR Bit Descriptions

Name Reset Description Settings

RS[i]
31–0

0 Raw Status Bit i
Each bit corresponds to an interrupt pin on the device
and reads the value of the processed interrupt signal
before interrupt masking. Notice that all of these bits
are read-only.

0 An unmasked value of 0.

1 An unmasked value of 1.

Note: The number of bits in this register is shown in the port A description in Section 24.3.2, GPIO Port Assignments, on
page 24-4. Unused bits (uppermost bits of each register) are reserved. These bits are read as 0 and must be written
with 0 for future compatibility.
MSC711x Reference Manual, Rev. 1

24-24 Freescale Semiconductor

System Usage and Tuning/
Programming Reference A
The chapters of this manual discuss the MSC711x modules and describe the configuration
options for set up and performance tuning. This appendix discusses the best way to configure
these modules within the context of the entire system. It also covers trade-offs in tuning different
parts of the system. The last section provided programming sheets to assist you in configuring
key MSC711x registers. It is highly recommended that you read this appendix carefully so that
you know how to get the best performance from your MSC711x device.

A.1 Best Use of the System

Many MSC711x modules can be tuned with different arbitration schemes and different priorities.
Time-out monitors also detect incorrect system operation. This section discusses the required
system settings for correct operation and the recommended settings for best operation of the
modules within the system.

A.1.1 Critical Settings

The following task checklist helps to ensure best performance through the system:

� Correct placement of program and data as described in Section A.1.2, M1 and M2
Memories, on page A-2. Of special importance is the correct allocation of memory to
reduce memory contention.

� Enabling the ICache and programming the burst parameters as described in Section A.1.4,
Instruction Fetch Unit, on page A-3

� Set-up as described in Section A.1.10, DDR Memory Controller Interface, on page A-17.

� Correct settings for the ASEMI slave port as shown in Table A-2, Arbitration Settings at
Each Slave Port in the Crossbar Switch, on page A-10. The ASM2 slave port parameters
are also important.

� Priority elevation for the crossbar switch as described in Section A.1.7.5, High-Priority
Enable Bits, on page A-14.

� Use of Page mode instead of Auto Precharge mode, as described in Section A.1.10, DDR
Memory Controller Interface, on page A-17.

� Enabling the ECI write buffer for all writes to DDR and M2 memory as described in
Section A.1.5, Write Buffer and Write Buffer Data Areas, on page A-3.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-1

System Usage and Tuning/ Programming Reference
A.1.2 M1 and M2 Memories

Recommendations for placement of program code and data reflect the different ways the M1 and
M2 memories are used to best advantage:

� Use M1 memory for data accesses. Up to two 64-bit data accesses can occur in one core
clock.

� Use M1 memory for all important data that needs efficient access, such as DSP
algorithms.

� Use M1 or M2 memory to store program code:

— Program code in M1 memory does not use the ICache.
— Program code in M2 memory uses the ICache very efficiently with little penalty in

overall performance.

� Use of M2 memory for data accesses is not as efficient as use of M1 memory. One 64-bit
data segment requires 7–8 core clocks. This can be reduced to ~1 core clock if the address
range for the M2 memory is configured for writes through the write buffer or immediate
writes with no core freeze (see Section 4.7.1, Write Buffer Data Areas, on page 4-35 and
Section A.1.5, Write Buffer and Write Buffer Data Areas, on page A-3).

The following practices are recommended for most efficient system operation:

� Carefully read Section 4.3.1, Memory Contention, on page 4-6 to understand how best to
organize data in M1 memory. DMA traffic to M1 memory must operate in a different half
memory group than the half memory group heavily accessed by the SC1400 core when
DSP algorithms are executing.

� To speed up writes to the SC1400 core, program one of the WBDAR regions covering the
address space of M2 memory for normal write buffer operation.

� Place program code into M2 memory for highest efficiency.

� Any leftover space in M1 memory can be used for additional program code.

� Any leftover space in M2 memory can be used for additional data.

� Use the last 64 bytes of M2 memory for data only. Because of system pipelining, SC1400
core code fetches from this area can result in an attempt to access the reserved areas
beyond the end of the M2 memory. Such fetches may cause the system to stop operating.
To prevent this situation, do not store instruction code in the last 64 bytes of M2 memory.
For example, for MSC711x devices with 192 KB M2 memory, the memory range
0x0102FFC0 should be reserved for data only.

Note: Initialization code is typically placed into DDR memory.

A.1.3 M1 Memory: Two Different Address Ranges

There are two different address ranges to access M1 memory:

� For access by the SC1400 core over its P, XA, or XB buses: 0x00000000–0x0003FFFF.
MSC711x Reference Manual, Rev. 0

A-2 Freescale Semiconductor

Best Use of the System
� For access by the DMA controller or Ethernet MAC as master ports on the crossbar
switch: 0x01800000–0x0183FFFF. The DMA controller performs accesses over the
AMDMA bus and the Ethernet MAC performs accesses over the AMENT bus.

For example, a 32-bit SC1400 core access to address 0x0000001C occurs at the same location in
M1 memory as a 32-bit access from the DMA or Ethernet MAC at address 0x0180001C.

A.1.4 Instruction Fetch Unit

Usually M2 memory is used to store program code, which is efficiently burst into the ICache.
The following burst parameters, programmable in the Instruction Region Configuration Registers
(IRCR[0–3]) (page 4-48), are recommended for the address space that accesses M2:

� Primary set size of 4

� Burst size of 4

� Prefetch enabled.

DDR memory is also useful for storing program code. The following settings are useful when the
address space that accesses DDR is configured:

� Primary set size of 4

� Burst size of 4

� Prefetch enabled

To attain the highest performance, you may need to adjust the parameters for accessing DDR. For
example, in systems with high DMA traffic to DDR memory, the prefetch can be disabled, and so
on.

A.1.5 Write Buffer and Write Buffer Data Areas

The write buffer data areas are programmed in the WB Data Area Registers (WBDAR[0–3] (see
page 4-42). Recommended settings are as follows:

� Assign no write buffer data areas to the address space of M1 memory because the SC1400
core directly accesses M1 memory and does not use the write buffer.

� Assign one write buffer data area to the address space of both the IPBus peripherals and
APB peripherals (see Table 5-1, Summary — Base Addresses for MSC711x Register
Files, on page 5-4). Program the IMM field for this address range as write immediate
(WBDARx[IMM] = 01) (see Table 4-11, WBDARx Bit Descriptions, on page 4-42).

� Assign one write buffer data area to the portion of the memory map for performing data
accesses on the ASTH bus to MSC711x peripherals (HDI16 and TDMs). The IMM field
for this address range is typically programmed as regular write through write buffer
(WBDARx[IMM] = 00).
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-3

System Usage and Tuning/ Programming Reference
� Assign one or more write buffer data areas to the address space of M2 memory.
The IMM field for this address range is typically programmed as regular write through
write buffer (WBDARx[IMM] = 00).

� Assign one or more write buffer data areas to the address space of the DDR memory.
The IMM field for this address range is typically programmed as regular write through
write buffer (WBDARx[IMM] = 00).

Note: One data area can be used to cover both the M1 and M2 memories, if desired. One data
area can be used to cover both the peripherals and external memory, if desired.

Following is an example write buffer data area programmed for the peripheral space.

1. Select a WBDAR area for the portion of the memory map containing MSC711x
peripherals, 0x0400 0000–0x07FF FFFF.

2. Size = 64 MB → Line 18 in Table 4-8, Programming the Write Buffer Data Area Base
and Size, on page 4-36

3. Upper 24-bits of base = 0x040000

4. Value placed into WBDARx[BASE] = 0x040000 || 020000 = 0x0600000

5. To program as write immediate: WBDARx[IMM] = 01.

A.1.6 DMA Controller

This section discusses the proper use of DMA preemption with fixed-priority arbitration, how to
prevent master port time-outs, and overall recommended settings. For more information, see
Section 8.3, Data Transfer Overview, on page 8-5 to get a better understanding of the time
required for DMA bursting on the device between different sources and destinations.

A.1.6.1 Preemption with Fixed-Priority Arbitration

The DMA controller allows a DMA channel to be preempted if the DMA is configured for
fixed-priority arbitration. For example, preemption can be enabled for long, low-priority DMA
transfers. Because nested preemption within the DMA is not supported, there can be long
latencies before a high-priority channel is serviced, as demonstrated in the following scenario:

1. A DMA channel with a large byte count and low priority is in progress.

2. A second DMA channel with a slightly higher priority and a large byte count preempts
the first channel.

3. A peripheral such as a TDM with a priority higher than the first and the second channels
issues a third DMA request, but it must wait until the preempting DMA channel (the
second channel) is processed before it can preempt.
MSC711x Reference Manual, Rev. 0

A-4 Freescale Semiconductor

Best Use of the System
To avoid such a situation, use one of the following techniques to ensure that only one
lower-priority channel allowing preemption can be active at a time:

� Link all low-priority channels together so that when one preemptable channel completes,
processing continues with the next channel in the chain.

� Normally long, low-priority DMA transfers are performed in a single minor loop with a
large byte count. Break this loop into several minor loops using the DMA major-minor
looping structure. The DMA can then rearbitrate as each minor loop is processed, so
highest priority channels must wait less time if preempted. For example, a 2048 byte
DMA transfer can be broken into sixteen 128-byte transfers. This solution is not as
effective as the preceding solution.

You can link all preemptable DMA channels or carefully schedule them so that they never
preempt each other and there is no issue with preemption.

A.1.6.2 Preventing Master Port Time-Outs

For DMA data transfers in which both the source and destination address access the same
memory (that is, M1→ M1, M2 → M2, or DDR→ DDR), use one of the following strategies to
prevent time-outs in the bus error detection units on the other AHB master buses:

� Program the DMA controller for the corresponding crossbar slave port SGPCR as the
lowest-priority master, and do not elevate the channel performing this
memory-to-memory transfer (TCDx-7[BWC] != 01. This is a recommended solution.

� Set the bandwidth control for this channel for DMA controller stalls of either 4 or 8 cycles
in the TCDx-7[BWC] field (see Table 8-32, TCDx-7 Bit Descriptions, on page 8-49). This
is a recommended solution.

� Limit the maximum byte count for the minor loop. This solution is not as effective as the
previous two solutions.

The maximum byte count permitted depends on how the DMA channel bandwidth control is
programmed. If maximum byte count is an issue, use the bandwidth control options that
introduce DMA stalls between each read-write sequence. If this option is not used, certain
maximum byte count restrictions must be in effect. If the bandwidth control in TCDx-7[BWC] is
set to dynamic priority elevation (TCDx-7[BWC] = 01), the DMA priority through the crossbar
switch elevates, possibly blocking out other masters (AMIC, AMEC, or AMDMA). This is
significant because other important AHB masters may be delayed. The minor loop byte count in
DMA channels with this elevation must be further restricted to prevent bus time-outs. This limit
ensures that other masters are not locked out from a particular slave port in the crossbar, resulting
in a bus time-out. The maximum allowed byte count is determined in Table A-1.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-5

System Usage and Tuning/ Programming Reference
Table A-1. DMA Minor Loop Byte Count Restrictions

Source Destination
Source

Transfer Size:
TCD1[SSIZE]

Destination
Transfer Size:
TCDx-1[DSIZ

E]

TCDx-7[BW
C]

Maximum
Minor Loop
Byte Count

Comments

M1 M1 8-bits 64-bits 00 2,370 Not recommended3

16-bits 64-bits 00 4,250 Not recommended3

32-bits 64-bits 00 7,100 Not recommended3

64-bits 8-bits 00 2,370 Not recommended3

64-bits 16-bits 00 4,250 Not recommended3

64-bits 32-bits 00 7,100 Not recommended3

64-bits 64-bits 00 10,600 See Note 1.

64-bits 64-bits 01 900 Priority elevated channel.

Any Any 10 or 11 No Restriction See Note 2.

M2, DDR, or
Peripheral

Any Any Any No Restriction

M2 M2 8-bits 64-bits 00 2,900 Not recommended3

16-bits 64-bits 00 5,240 Not recommended3

32-bits 64-bits 00 8,700 Not recommended3

64-bits 8-bits 00 2,900 Not recommended3

64-bits 16-bits 00 5,240 Not recommended3

64-bits 32-bits 00 8,700 Not recommended3

64-bits 64-bits 00 13,100 See Note 1.

64-bits 64-bits 01 1,300 Priority elevated channel.

Any Any 10 or 11 No Restriction See Note 2.

M1, DDR, or
Peripheral

Any Any Any No Restriction
MSC711x Reference Manual, Rev. 0

A-6 Freescale Semiconductor

Best Use of the System
DDR
(16-pin)

DDR
(16-pin)

8-bits 64-bits 00 — Not recommended3

16-bits 64-bits 00 — Not recommended3

32-bits 64-bits 00 — Not recommended3

64-bits 8-bits 00 — Not recommended3

64-bits 16-bits 00 — Not recommended3

64-bits 32-bits 00 — Not recommended3

64-bits 64-bits 00 512 See Note 1.

64-bits 64-bits 01 160 Priority elevated DMA
channel.

Any Any 10 or 11 No Restriction See Note 2.

M1, M2, or
Peripheral

Any Any Any No Restriction

DDR
(32-pin)

DDR
(32-pin)

8-bits 64-bits 00 — Not recommended3

16-bits 64-bits 00 — Not recommended3

32-bits 64-bits 00 — Not recommended3

64-bits 8-bits 00 — Not recommended3

64-bits 16-bits 00 — Not recommended3

64-bits 32-bits 00 — Not recommended3

64-bits 64-bits 00 1024 See Note 1.

64-bits 64-bits 01 320 Priority elevated channel.

Any Any 10 or 11 No Restriction See Note 2.

M1, M2, or
Peripheral

Any Any Any No Restriction

Peripheral Any Any Any Any No Restriction

Notes: 1. A transfer size of 64-bits is used when the size fields are programmed with a value of 0b101 to specify 32-byte
transfers.

2. DMA bandwidth control ensures that the slave port buses used by the DMA are periodically freed after each
read-write sequence. Better performance is attained when the DMA channel is also programmed for 32-byte
bursts to both its source and destination.

3. During large memory to memory transfers, use the largest possible transfer size, which occurs when the source
and destination are both configured for 32-byte bursts.

Table A-1. DMA Minor Loop Byte Count Restrictions (Continued)

Source Destination
Source

Transfer Size:
TCD1[SSIZE]

Destination
Transfer Size:
TCDx-1[DSIZ

E]

TCDx-7[BW
C]

Maximum
Minor Loop
Byte Count

Comments
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-7

System Usage and Tuning/ Programming Reference
A.1.6.3 Recommended DMA Settings

The following DMA settings are recommended for most efficient system operation:

� For DMA data transfers greater than or equal to 128 bytes, program the TCDx-1[SSIZE]
and TCDx-1[DSIZE] fields with a value of 101, which corresponds to a 32-byte AHB
burst.

� To ensure compatibility with future devices, the largest value used in the 32-bit
TCDx-2[NBYTES] field must be 0x1FFFFFFF.

� In applications with high DMA bandwidth requirements, all channels with the source and
destination going to different slave buses on the crossbar switch should not use the
bandwidth control. That is, do not configure TCDx-7[BWC] to DMA engine stalls for 4
cycles or DMA engine stalls for 8 cycles. Examples of this case are channels between
DDR and M1 memory, DDR and M2 memory, M1 and M2 memory, and so on.

� In applications with high DMA bandwidth requirements, all channels with the source and
destination going to the same slave bus on the crossbar switch should use bandwidth
control. That is, configure TCDx-7[BWC] to DMA engine stalls for 4 cycles or DMA
engine stalls for 8 cycles. Examples are channels between DDR and DDR memory, M2
and M2 memory, and M1 and M1 memory.

� For DDR-to-DDR transfers, ensure that 32-byte bursting is used in conjunction with one
of the bandwidth control options (4 or 8 cycle stalls after each read-write sequence) to
remove the restrictions on maximum byte count (see Table A-1 on page A-6).

A.1.7 Crossbar Switch

For proper and most efficient use of the crossbar switch, each slave port must be configured
correctly, as described in this section

A.1.7.1 Priority Elevation by the Masters

Different masters can elevate the priority of their accesses to important data, as described in.
Section 6.2.2, Priority Assignment, on page 6-7. Hardware automatically handles priority
elevation for the instruction fetch unit (IFU) and the extended core interface (ECI).

DMA channels should be programmed as follows:

� Long low-priority transfers with high byte counts have no priority elevation.

� DMA channels assigned to service the TDMs or HDI16 have priority elevation.

The Ethernet does not elevate any of its accesses, so Ethernet accesses normally have a lower
fixed priority than priority-elevated accesses from the IFU, the ECI, and the DMA controller.
However, you can configure the DEVCFG[ENTP] bit to define all Ethernet accesses as always
elevated or always non-elevated. This bit is cleared in normal operation.
MSC711x Reference Manual, Rev. 0

A-8 Freescale Semiconductor

Best Use of the System
A.1.7.2 Crossbar Slave Port Capabilities

Figure A-1 shows a detailed view of a slave port. The correct set-up is described in the following
subsections.

Figure A-1. View of One Crossbar Slave Port (ASEMI)

A.1.7.3 Arbitration at Crossbar Slave Ports

The arbitration scheme at each slave port in the crossbar switch are programmed in each slave
port through its registers, as follows:

� SGPCRx[ARB] bit to set arbitration mode (see page 6-22).

� MPRx register when configured for fixed-priority operation (see page 6-20).

64

AMEC

to ECI

Multiplex

ASEMI

64

128

to DDR
64

64

AMDMA

to DMA

64

32

AMENT

to Ethernet

32

AMIC
to IFU

128

Arbitration

Parking

Halt Priority Options at this Port:
— Halt is at Highest Priority
— Halt is at Lowest Priority

REGISTERS

SGPCRx
ASGPCRx

MPRx
AMPRx

Parking Options at this Port:
— Park on Specified Master
— Park on Last Master
— Park on No Master

Arbitration Options at this Port:
— Round Robin
— Fixed Priority

(Priorities are chosen for each
master in the MPRx registers)

ENET Elevation

IFU Elevation
ECI Elevation
DMA Elevation

Halt Request
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-9

System Usage and Tuning/ Programming Reference
Table A-2 presents the different arbitration settings. Correctly setting the arbitration for the
ASEMI port is important for attaining desired performance. Incorrect settings can reduce device
performance.

Table A-2. Arbitration Settings at Each Slave Port in the Crossbar Switch

Scenario

Master Port

CommentsArbitration
Type

Programmed
Master Port

Priorities
Resulting Priorities

For ASM1 Ports — Does Not Support Program (IFU) Accesses

ASM1-1 Fixed Priority 1. AMDMA

2. AMENT

1. AMDMA with elevation

2. AMDMA typical usage

3. AMENT

All DMA transfers have a higher priority
than Ethernet MAC DMA transfers.

ASM1-2 Fixed Priority 1. AMENT

2. AMDMA

1. AMDMA with elevation

2. AMENT

3. AMDMA typical usage

Only DMA transfers with priority
elevation have a higher priority than
Ethernet MAC DMA transfers.

ASM1-3 Round Robin — 1. Master accesses with
elevated priorities

2. Master accesses without
elevated priorities

Masters with elevated priorities:
• DMA with elevation (AMDMA)
Masters without elevated priorities:
• DMA (AMDMA) typical usage
• Ethernet MAC (AMENT)

For ASM2 and ASEMI Ports

ASEMI-1 Fixed Priority 1. AMIC

2. AMEC

3. AMENT

4. AMDMA

1. AMIC with elevation

2. AMEC with elevation

3. AMENT with elevation

4. AMDMA with elevation

5. AMIC prefetch accesses

6. AMEC WB Accesses

7. AMENT no elevation

8. AMDMA typical usage

Recommended setting:
Favors IFU accesses for servicing
cache misses that stall the SC1400
core.

Ethernet MAC must be selected as
either always or never elevating access
priority.

Long DMA bursts must not elevate
priority.

ASEMI-2 Fixed Priority 1. AMEC

2. AMIC

3. AMENT

4. AMDMA

1. AMEC with elevation

2. AMIC with elevation

3. AMENT with elevation

4. AMDMA with elevation

5. AMEC WB accesses

6. AMIC prefetch accesses

7. AMENT no elevation

8. AMDMA typical usage

Alternate setting:
Favors SC1400 core data accesses
that can otherwise stall the core.

Ethernet MAC must be selected as
either always or never elevating access
priority.

Long DMA bursts must not elevate
priority.
MSC711x Reference Manual, Rev. 0

A-10 Freescale Semiconductor

Best Use of the System
ASEMI-3 Fixed Priority 1. AMENT

2. AMIC

3. AMEC

4. AMDMA

1. AMENT with elevation

2. AMIC with elevation

3. AMEC with elevation

4. AMDMA with elevation

5. AMENT no elevation

6. AMIC prefetch accesses

7. AMEC: WB accesses

8. AMDMA typical usage

Alternate setting:
Ethernet MAC has highest priority when
elevated. Favors IFU accesses for
servicing cache misses that stall the
SC1400 core.

Ethernet MAC must be selected as
either always or never elevating access
priority.

Long DMA bursts must not elevate
priority.

ASEMI-4 Round Robin — 1. Master accesses with
elevated priorities:

2. Master accesses without
elevated priorities.

Masters with elevated priorities:
• ECI with elevation (AMEC)
• DMA with elevation (AMDMA)
• IFU (AMIC): primary set
• Ethernet MAC (AMENT) when

DEVCFG[ENTP] = 1
Masters without elevated priorities:
• ECI (AMEC)
• DMA (AMDMA): Typical usage
• IFU (AMIC): Prefetch
• Ethernet MAC (AMENT) when

DEVCFG[ENTP] = 0

For ASTH Port — Does Not Support Program (IFU) or Ethernet MAC Accesses

ASTH-1 Fixed Priority 1. AMDMA

2. AMEC

1. AMDMA with elevation

2. AMECI with elevation

3. AMDMA typical usage

4. AMEC

Recommended configuration when
HDI16 and TDM registers are accessed
via the DMA controller.

ASTH-2 Fixed Priority 1. AMEC

2. AMDMA

1. AMEC with elevation

2. AMDMA with elevation

3. AMEC

4. AMDMA typical usage

Recommended configuration when the
HDI16 and TDM registers are accessed
via the SC1400 core.

ASTH-3 Round Robin — 1. Master accesses with
elevated priorities:

2. Master accesses without
elevated priorities.

Masters with elevated priorities:
• ECI with elevation (AMEC)
• DMA with elevation (AMDMA)
Masters without elevated priorities:
• ECI (AMEC)
• DMA (AMDMA): Typical usage

For ASSB, and ASAPB Ports — Do Not Support Program or Ethernet MAC Accesses

ASAPB-1 Fixed Priority 1. AMEC

2. AMDMA

1. AMEC: with elevation

2. AMDMA: with elevation

3. AMEC

4. AMDMA (typical usage)

Recommended configuration because
DMA transfers do not typically occur on
these AHB slave buses.

Table A-2. Arbitration Settings at Each Slave Port in the Crossbar Switch (Continued)

Scenario

Master Port

CommentsArbitration
Type

Programmed
Master Port

Priorities
Resulting Priorities
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-11

System Usage and Tuning/ Programming Reference
In the settings listed in Table A-2, it is critical that the slave ports be set up correctly for the
ASEMI slave port because these settings directly affect DDR performance. It is also important to
set up the M2 memory correctly. Most users choose the fixed-priority settings instead of round
robin.

A.1.7.4 Slave Port Parking

Parking is programmed in each slave port via the following bits:

� SGPCRn[PCTL] to select the type of parking.

� SGPCRn[PARK] to determine which master is to be parked on a slave port when
SGPCRn[PCTL] is programmed to park on a particular master port.

See Table 6-6, SGPCRx and ASGPCRx Bit Descriptions, on page 6-23 for details on the SGPCR
bits. The following settings are recommended:

� For applications with a significant amount of code in DDR memory, the ASEMI slave port
should park on the AMIC master, as selected in the SGPCRx[PCTL] and
SGPCRx[PARK] fields. Alternatively, the slave port can park on the last master.

� For applications with very high DMA bandwidth through the DDR port and/or to M1
memory, the ASEMI/ASM1 slave ports should park on the AMDMA master, as selected
in the SGPCRx[PCTL] and SGPCRx[PARK] fields. For applications with large DMA
transfers between DDR memory and M1 memory, this is recommended for the ASEMI
and ASM1 ports, especially if the DDR port is configured for 16-pin operation.
Alternatively, these slave ports can park on the last master.

� For applications using M2 memory primarily to hold program code that is loaded on
ICache misses, the ASM2 slave port should park on the AMIC master, as selected in the

ASAPB-2 Fixed Priority 1. AMDMA

2. AMEC

1. AMDMA: with elevation

2. AMECI: with elevation

3. AMDMA (typical usage)

4. AMEC

Alternate configuration, not typically
used.

ASAPB-3 Round Robin — 1. Master accesses with
elevated priorities:

2. Master accesses without
elevated priorities.

Masters with elevated priorities:
• ECI with elevation (AMEC)
• DMA with elevation (AMDMA)
Masters without elevated priorities:
• ECI (AMEC)
• DMA (AMDMA): Typical usage
DMA transfers do not typically occur on
these buses.

Table A-2. Arbitration Settings at Each Slave Port in the Crossbar Switch (Continued)

Scenario

Master Port

CommentsArbitration
Type

Programmed
Master Port

Priorities
Resulting Priorities
MSC711x Reference Manual, Rev. 0

A-12 Freescale Semiconductor

Best Use of the System
SGPCRx[PCTL] and SGPCRx[PARK] fields. Alternatively, these slave ports can park on
the last master.

� If the DMA controller services the TDMs and HDI16, the ASTH slave port should park on
the AMDMA master. If the SC1400 core services the TDMs and HDI16, the ASTH slave
port should park on the AMEC master, as selected in the SGPCRx[PCTL] and
SGPCRx[PARK] fields.

Table A-3 summarizes the recommended park settings for the crossbar switch slave ports.

Table A-3. Park Settings for Each Crossbar Switch Slave Port

Slave Port Parking Technique Master to Park On Comments

ASM1 Park on specified master AMDMA For systems with high DMA bandwidth between M1
memory and DDR or between M1 and M2 memories.
Use this approach if DDR usage is high.

Park on last master — Alternate approach, not as optimal for the DMA or DDR
controller.

Park on no master — Reduces power consumption. Suitable only for systems
that do not require high DMA bandwidth to M1 memory.

ASM2 Park on specified master AMIC For systems using M2 memory primarily to hold program
code for the ICache. If M2 memory is used for code
overlays, this setting is also recommended.

Park on specified master AMDMA For systems using M2 memory primarily for data loaded
through the DMA controller.

Park on last master — Alternate approach, not as optimal for the IFU.

Park on no master — Reduces power consumption. Suitable only for systems
with low MIPs requirements that can afford slower cache
bursting.

ASEMI Park on specified master AMIC For systems with large amounts of code in DDR.

Park on specified master AMDMA For systems with very high DMA bandwidth requirements
between M1 and DDR memories or between M2 memory
and DDR.

Park on last master — Alternate approach, more appropriate if there is high
usage from DMA, Instruction Cache, and/or Ethernet
MAC.

Park on no master — Reduces power consumption. Only suitable for systems
which do not require high DMA bandwidth to DDR
memory.

ASTH Park on specified master AMDMA For when the DMA controller services the HDI16 and
TDMs.

Park on specified master AMEC For when the SC1400 core services the HDI16 and
TDMs.

Park on last master — Alternate approach, not as optimal for transfers.

Park on no master — Only for masters with low bandwidth requirements on the
DMA and low bandwidth requirements to the HDI16 and
TDMs.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-13

System Usage and Tuning/ Programming Reference
A.1.7.5 High-Priority Enable Bits

The high-priority enable bits are normally set to ensure that the crossbar switch works with the
masters as desired. Table A-4 describes how to set these crossbar switch bits correctly:

� SGPCRx[HPE7–4] must be cleared to 0 on all slave ports; they correspond to
unimplemented master ports on the crossbar.

� SGPCRx[HPE3] corresponds to the Ethernet MAC and must be set to 1 on all slave ports.

� SGPCRx[HPE2] corresponds to the ICache IFU and must be cleared to 0 for the following
slave ports that do not support program accesses:

— ASM1
— ASTH
— ASSB
— ASAPB

� SGPCRx[HPE2] corresponds to the IFU and must be set to 1 for the following slave ports
that support program accesses:

— ASM2
— ASEMI
This bit setting ensures that the IFU has a higher priority than the DMA controller when
its priority is elevated for primary set accesses (see Section 4.6.1, Cache Bursting
Parameters, on page 4-31). This is important because DMA bursts may occur for long
intervals, possibly locking out accesses from the IFU. This does not affect prefetch
accesses from the IFU when the IFU priority is not elevated.

� SGPCRn[HPE0] corresponds to the extended core interface (ECI) and should be cleared
to 0 for the following slave ports that do not support ECI accesses:

— ASM1

� SGPCRn[HPE0] corresponds to the ECI and should be set to 1 for the following slave
ports:

— ASM2
— ASEMI
This bit setting ensures that the ECI has higher priority than the DMA controller when its
priority is elevated (see Section 6.2.2, Priority Assignment, on page 6-7). This is

ASSB Park on specified master AMEC For servicing by the SC1400 core.

Park on no master — Only for systems with low bandwidth requirements.

ASAPB Park on specified master AMEC For servicing by the SC1400 core.

Park on no master — Only for systems with low bandwidth requirements.

Table A-3. Park Settings for Each Crossbar Switch Slave Port (Continued)

Slave Port Parking Technique Master to Park On Comments
MSC711x Reference Manual, Rev. 0

A-14 Freescale Semiconductor

Best Use of the System
important because DMA bursts may occur for long intervals, possibly locking out
accesses from the ECI. This does not affect ECI accesses when the priority is not elevated.

Table A-4 summarizes the correct settings for the HPE bits.

A.1.7.6 Alternate Priorities

There is an alternate priority register set for each crossbar slave port. Use the alternate priorities
only for unusual situations on the device or for recovery from an application error. See Section
A.6.5, Configurable Priority Modification During a Chip Event, on page A-24.

Alternate priorities for a slave port are set up in the following registers:

� AMPRx (see page 6-20)

� ASGPCRx (see page 6-22)

This capability is provided for advanced error recovery if an application needs it.

A.1.8 Programmable Bus Time-Out Monitors on Master Buses

Closely connected with the crossbar switch, there is a dedicated programmable time-out monitor
on each master port of the crossbar switch (see Section 7.1.2, Bus Time-Out and Error Detection
(Master Buses), on page 7-2). This section describes the correct usage of these monitors.

Note: It is highly recommended that the bus monitors are enabled and used in the system.
They will greatly reduce the time spent debugging the system.

These time-out monitors can be independently programmed for accesses where priority is
elevated and for normal accesses which are not elevated. For correct system operation, it is
recommended that the bus error monitors are programmed with any of the values in Table A-5:

Table A-4. Required Settings for the HPE bits for each Slave Port in the Crossbar

Crossbar
Slave Port

Master Port

Unused Masters:
HPE[7–4]

Ethernet MAC:
HPE3

IFU:
HPE2

DMA:
HPE1

ECI:
HPE02

ASM1 0x0 1 0 As desired1 0

ASM2 0x0 1 1 As desired 1

ASEMI 0x0 1 1 As desired 1

ASTH 0x0 1 0 As desired As desired

ASSB 0x0 1 0 As desired As desired

ASAPB 0x0 1 0 As desired As desired

Notes: 1. If you are unsure how to set the entries labeled “as desired,” then set them to 1.

2. The HPE bits for the ECI master, HPE0, are typically set for the crossbar ASSB and ASAPB slave ports.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-15

System Usage and Tuning/ Programming Reference
Note: When initially debugging a system, use the lowest recommended value to help reveal
any incorrect system set-up.

A.1.9 Programmable Bus Time-Out Monitors on Slave Buses

A dedicated programmable time-out monitor resides on each slave port of the crossbar switch.
For significant savings in the time spent debugging the system, these bus monitors should be
enabled and used. Program the time-out monitors only with of the values in Table A-6.

Table A-5. Recommended Settings for the Bus Error Detection

Master Port
Priority

Crossbar
Master Port

Recommended Bus Error Time-Out Values

256 AHB clocks 1024 AHB clocks 4096 AHB clocks Disabled

Elevated AMIC Highly
Recommended

Yes Yes Not Recommended

AMEC Highly
Recommended

Yes Yes Not Recommended

AMDMA Highly
Recommended

Yes Yes Not Recommended

AMENT Highly
Recommended

Highly
Recommended

Yes Not Recommended

Normal AMIC — Highly
Recommended

Yes Not Recommended

AMEC — Highly
Recommended

Yes Not Recommended

AMDMA — Highly
Recommended

Yes Not Recommended

AMENT — Highly
Recommended

Yes Not Recommended

Table A-6. Settings for Bus Time-Out Monitors

Crossbar
Slave Port

Corresponding Time-Out Monitor Values

31 AHB clocks 127 AHB clocks 511 AHB clocks 2047 AHB clocks Disabled

ASM1 — — Highly
Recommended

Yes Not Recommended

ASM2 Highly
Recommended

Yes Yes Yes Not Recommended

ASEMI — — Highly
Recommended

Yes Not Recommended

ASTH Highly
Recommended

Yes Yes Yes Not Recommended

ASSB Highly
Recommended

Yes Yes Yes Not Recommended

ASAPB Highly
Recommended

Yes Yes Yes Not Recommended
MSC711x Reference Manual, Rev. 0

A-16 Freescale Semiconductor

Best Use of the System
When debugging system problems, you can reduce some of the values listed in Table A-6.
Although it is not recommended, you can reduce these values to constrain the size of DMA
transfers to a very low value, using the DMA bandwidth control capability (TCDx-7[BWC]) or
ensure that there are no DMA transfers to and from the same slave (DDR to DDR, M2 to M2, and
so on). If these constraints are not possible, you should use only the settings listed in Table A-6.
The minimum value specified for ASEMI time-out ensures proper operation during refresh. It is
preferable to enable the time-out monitor and to use the smallest recommended value.

A.1.10 DDR Memory Controller Interface

The following settings are recommended for optimal system operation:

� Set ICache predictive reads to always enabled (MCIFCTRL[IPRE] = 01).

� Enable DMA predictive reads (MCIFCTRL[DPRE] = 1).

� Enable ECI predictive reads (MCIFCTRL[EPRE] = 1).

For more information, see Section 10.3, Programming the MCIF, on page 10-5.

A.1.11 DDR Memory Controller

Following are recommendations for best use of the DDR memory controller:

� Use Page mode instead of Auto Precharge mode:

— Page mode is optimal for DMA bursting.
— Auto Precharge mode is appropriate only when most DDR accesses are random

accesses and not DMA bursts, as programmed in the SICFG[BSTOPRE] field (see
page 9-42).

� If DDR is used in a power sensitive application, it is useful to read Section 9.5.4,
Low-Power Modes, on page 9-15

A.1.12 Event Port

The event port can greatly assist in debugging difficult system-level problems. Section 16.3,
System-Level Debugging, on page 16-4 shows how the event port can be integrated with the
debug port for advanced debugging. Software can examine the values of signals or combinations
of signals in the system using an event multiplexer in the event port to combine the desired
signals (see Figure 15-3, Block Diagram of One Event Multiplexer, on page 15-4 and Figure
15-6, Combining Logic in an Event Multiplexer, on page 15-11). The output trigger from the
event multiplexer can be viewed after latching via the EVCTL[EMUX] field, as shown in the
block diagram. The values can also be viewed without latching by sending the output of an event
multiplexer to a timer (that is, programming a timer’s secondary input as TIN[0–3]) and reading its
associated TMRxSCR[INPUT] bit, which reflects the value on the secondary input signal.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-17

System Usage and Tuning/ Programming Reference
A.2 Access Times from the SC1400 Core to Device Components

Table A-7 summarizes the access time from the SC1400 core to different locations on an
MSC711x device.

Table A-7. MSC711x Access Times from SC1400 Core

Destination
Description of

SC1400 Access
R/W

Core
Clocks

Conditions Comments

Access to Memory Elements

M1 memory Single 32-bit
access

Read 1 No M1 memory contention. See Section 4.3.1, Memory
Contention, on page 4-6

Writes 1 No M1 memory contention.

8 consecutive
32-bit accesses

Reads 8 No M1 memory contention.

Writes 8 No M1 memory contention.

M2 memory Single 32-bit
access

Read 9 No other accesses on ASM2.

Wr-Imm 8 No other accesses on ASM2.

Wr-WB 1 Write buffer empty and no other
accesses on AMEC or ASM2.

Write Immediate with No Freeze
performs similarly.

4 consecutive
32-bit accesses

Wr-WB 4 Write buffer empty and no other
accesses on AMEC or ASM2.

8 consecutive
32-bit Accesses

Reads 40 No other accesses on ASM2.

Wr-Imm 40 No other accesses on ASM2.

Wr-WB 12 Write buffer empty and no other
accesses on AMEC or ASM2.

Write Immediate with No Freeze
performs similarly.

External
DDR

memory
16-Pin

Single 32-bit
access

Read 23 No other accesses on ASEMI. More cycles if RAS is issued.

Wr-Imm 8 No other accesses on ASEMI.

Wr-WB 1 Write buffer empty and no other
accesses on AMEC or ASEMI.

Write Immediate with No Freeze
performs similarly.

4 consecutive
32-bit accesses

Wr-WB 4 Write buffer empty and no other
accesses on AMEC or ASM2.

8 consecutive
32-bit accesses

Reads 84 No other accesses on ASEMI. MCIF Predictive Read is on. If
MCIF ECI Predictive Read is off,
the access takes 104 cycles.

Wr-Imm 40 No other accesses on ASEMI.

Wr-WB 13 Write buffer empty and no other
accesses on AMEC or ASEMI.

Write Immediate with No Freeze
performs similarly.
MSC711x Reference Manual, Rev. 0

A-18 Freescale Semiconductor

DMA Burst Times
A.3 DMA Burst Times

Table A-8 summarizes the burst time through the DMA controller between different locations on
an MSC711x device. Both the source and destination in the DMA transfer are programmed for
32-byte bursts.

External
DDR

memory
32-Pin

Single 32-bit
access

Read 23 No other accesses on ASEMI. More cycles if RAS is issued.

Wr-Imm 8 No other accesses on ASEMI.

Wr-WB 1 Write buffer empty and no other
accesses on AMEC or ASEMI.

Write Immediate with No Freeze
performs similarly.

4 consecutive
32-bit accesses

Wr-WB 4 Write buffer empty and no other
accesses on AMEC or ASM2.

8 consecutive
32-bit accesses

Reads 72 No other accesses on ASEMI. MCIF Predictive Read is
on.Otherwise, the accesses take
104 cycles.

Wr-Imm 40 No other accesses on ASEMI.

Wr-WB 13 Write buffer empty and no other
accesses on AMEC or ASEMI.

Write Immediate with No Freeze
performs similarly.

Accesses to Registers

IPBus
Peripheral
Registers

Single Access Read 8 No other accesses on ASSB.

Wr-Imm 10 No other accesses on ASSB.

BMSET 18 No other accesses on ASSB. Performs read and write.

APB
Peripheral
Registers

Single Access Read 8 No other accesses on ASAPB.

Wr-Imm 6 No other accesses on ASAPB.

BMSET 13 No other accesses on ASAPB. Performs read and write.

ECore
Registers

Single Access Read 3

Wr-Imm 2

BMSET 5 Performs read and write.

Table A-7. MSC711x Access Times from SC1400 Core (Continued)

Destination
Description of

SC1400 Access
R/W

Core
Clocks

Conditions Comments
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-19

System Usage and Tuning/ Programming Reference
A.4 DMA Burst Efficiency

It is useful to understand how efficient are long DMA bursts on one channel between a source
memory and destination memory, compared to the theoretical bandwidth available through the
DDR. This section provides measured results for two DMA transfers of different size: 0.5 KB

Table A-8. MSC711x DMA Burst Times

Source Destination
 64-bit

Transfers
 Bytes

AHB
Clocks

Conditions Comments

M1 to Destination

M1 M1 64 512 159 — DMA bandwidth control not used.

M2 64 512 144 —

DDR 64 512 144 Open Page mode,
16-pin

MCIF Write Buffer never full.

DDR 64 512 144 Open Page mode,
32-pin

MCIF Write Buffer never full.

M2 to Destination

M2 M1 64 512 128 —

M2 64 512 128 — DMA bandwidth control not used.

DDR 64 512 128 Open Page mode,
16-pin

MCIF write buffer never full.

DDR 64 512 128 Open Page mode,
32-pin

MCIF write buffer never full.

DDR (16-Pin Mode) to Destination

DDR
16-Pin
(Page
open)

M1 64 512 175 — MCIF DMA Predictive read
enabled.

M2 64 512 168 — MCIF DMA Predictive read
enabled.

DDR 64 512 436 Open Page mode,
16-pin

MCIF DMA Predictive read
enabled.
DMA bandwidth control not used.

DDR (32-Pin Mode) to Destination

DDR
32-Pin
(Page
open)

M1 64 512 144 — MCIF DMA Predictive read
enabled.

M2 64 512 135 — MCIF DMA Predictive read
enabled.

DDR 64 512 275 Open Page mode,
32-pin

MCIF DMA Predictive read
enabled.
DMA bandwidth control not used.

Notes: 1. One AHB clock is equivalent to two core clocks

2. In all cases, the ASM1, ASM2, and ASEMI buses are programmed to park on the AMDMA master when no
transactions are occurring.
MSC711x Reference Manual, Rev. 0

A-20 Freescale Semiconductor

ICache Efficiency
and 32 KB. Measurements include the time required to open a new bank of the DDR. Table A-10
summarizes the efficiencies attained by the DMA controller during bursts through the DDR. No
other masters were accessing the DDR when these measurements were collected.

The data indicates that the measured bandwidth through the DMA is approximately the same for
32-pin DDR as for 16-pin. However, in a fully loaded system, the 32-pin option maintains high
DMA transfer rates while also servicing other masters such as ICache misses to DDR and
Ethernet bursts to DDR.

A.5 ICache Efficiency

Running the ICache can result in small performance degradations compared to running the same
code directly out of M1 memory. Since M1 memory is best suited for storing data, it important to
understand the ICache impact when an application runs with program code in M2 or DDR
memory. This section describes the measured performance impact when code runs from the
different memories. Real applications are more complex, but these measurements provide a
useful frame of reference. In all measurements listed in Table A-10, the cache is flushed before
the application runs to emulate the fact that in a real application the ICache may not yet contain
the desired entries. No other masters on the device are accessing the DDR when the
measurements listed in Table A-10 were collected.

Table A-9. DMA Burst Efficiency Between DDR and M1 Memory

Source Destination
512 Byte

DMA Transfer
32 KB

DMA Transfer
Measured BW

(300 MHz, 32 KB)

M1 DDR: 16-pin 89% 87.75% 526.5 MBps

DDR: 32-pin 44% 44.13% 529.6 MBps

M2 DDR: 16-pin 98% 87.75% 526.5 MBps

DDR: 32-pin 49% 44.13% 529.6 MBps

DDR: 16-pin M1 73% 74.25% 445.5 MBps

M2 76% 71.0% 426.0 MBps

DDR: 16-pin 29% 50.0% 300.0 MBps

DDR: 32-pin M1 45% 46.0% 552.0 MBps

M2 47% 43.5% 522.0 MBps

DDR: 32-pin 23% 33.26% 399.1 MBps

Notes: 1. Theoretical bandwidth at 300 MHz is calculated as follows:
16-pin DDR: 2 edges × 2 bytes × 150 MHz = 600 MBps
32-pin DDR: 2 edges × 4 bytes × 150 MHz = 1200 MBps

2. These efficiencies require the DMA predictive read capability in the MCIF to be enabled. In the 32 KB transfer,
the DMA channel is programmed for WRAP4 bursts with NBYTES = 32 KB and the major loop counter equal to
1. The result is a minor loop count of 1024.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-21

System Usage and Tuning/ Programming Reference
A.6 Handling Access Errors

Memory access errors are signalled by non-maskable interrupt requests, and the source of the
request is readable in the interrupt controller NMIPR.

A.6.1 Extended Core

Table A-11 summarizes the errors that can occur during SC1400 memory accesses to addresses
in the extended core:

Table A-10. Impact of Running Programs from M2 or DDR Memory

Application
Ratio: Code in

M1 memory
Ratio: Code in

M2 memory

Ratio: Code in
DDR memory
(32-pin DDR)

Ratio: Code in
DDR memory
(16-pin DDR)

G.729ab encode 1.0 1.01 1.12 1.28

G.729ab decode 1.0 1.03 1.19 1.47

G.729ab encode + decode 1.0 1.02 1.14 1.32

G.723.1 encode 1.0 1.00 1.02 1.05

G.723.1 decode 1.0 1.03 1.10 1.22

G.723.1 encode + decode 1.0 1.01 1.03 1.07

Notes: 1. These measurements were made with the ICache predictive read feature enabled. The IFU IRCR is
programmed with a value of 0x0405.

2. When code is stored in M1 memory, the ICache is not used.

3. Total code size for G.729AB is 39 KB. Total code size for G.723.1 is 40 KB.

Table A-11. SC1400 Access Error Types Within the Extended Core

Error Type Description
Detection
Location

Bit(s) in
NMIPR

Comments

SC1400 Program Accesses

Address
Out-of-Range

SC1400 initiated a program access
to an invalid address in the ECore.

ECore 19

Misaligned
Access

SC1400 generated a misaligned
program access

ECore 25 All SC1400 program accesses
must be aligned on 16-bit
boundaries.

SC1400 Data Accesses

Address
Out-of-Range

SC1400 initiated a data access to
an invalid address in the ECore.

ECore 18

Misaligned
Access

SC1400 generated a misaligned
data access

ECore 28 All SC1400 data accesses
must be aligned to the size of
the access.
MSC711x Reference Manual, Rev. 0

A-22 Freescale Semiconductor

Handling Access Errors
A.6.2 AHB Subsystem

Table A-12 summarizes the errors that can occur during MSC711x memory accesses in the AHB
subsystem.

A.6.3 Error Detection on Both Ends of the Transfer

For some access errors listed in Table A-12, you can detect both the master that generated the
access and the slave bus for which the access was targeted. The first non-maskable interrupt
request arrives and is followed after a short delay by a second non-maskable request.

Table A-12. Access Error Types to AHB Subsystem

Access Error
Type

Description
Detection
Location

Bit(s) in
NMIPR

Comments

Address
Out-of-Range

Address from an AHB Master is
not in an allowed address range.

AHB master
initiating access

4–1 Only the master for the access can
be known. Status bits indicate which
AHB master initiated the access.

Misaligned
Access

AHB master has generated a
misaligned access.

AHB master
initiating access

24–21 Only the master for the access can
be known. Status bits indicate which
AHB master initiated the access.

Bus Error AHB master receives an AHB error
response for an access.

AHB master
initiating access

14–11 Receives response from either an
AHB slave or the crossbar switch.
See Section A.6.3, Error Detection
on Both Ends of the Transfer.

Bus Time-Out Access on an AHB slave has timed
out.

AHB slave bus
with late/no
response

10–5 Both the master and slave for the
access can be known. The slave is
indicated by a bus time-out. The
master is indicated by a bus error
(delayed).

Write to
ROM Location

AHB master initiated a write
access to a location in ROM.

Crossbar
switch

0 Destination is known, ROM location.
The source is indicated by a bus
error (delayed).

DDR Memory
Select Error

AHB master initiated an access to
an address outside the regions
defined by the DDR controller chip
selects.

DDR controller 26 Destination is known, - DDR
address space. The source is
indicated by a bus error (delayed).

Peripheral Size
Error

A 64-bit AHB access to an AHB or
IPBus peripheral.

Crossbar
switch

20 Destination is known, MSC711x
peripheral. The source is indicated
by a bus error (delayed).

Table A-13. Detecting Both Ends of a Failed Access

First Access Error (Slave Bus) Second Access Error (Master Bus)

Bus time-out Bus error

Write to ROM location Bus error

DDR memory select error Bus error
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-23

System Usage and Tuning/ Programming Reference
When a chip-level non-maskable interrupt is serviced, which includes any first access error in
Table A-13, the service routine reads the NMIPR. When the register is read, the status bits for
both sources are set. Both interrupt sources should then be cleared by servicing these two bits in
the NMIPR.

Reading the NMIPR after the proper delay, you can determine both ends of the access. If the
NMIPR register is read immediately, you can miss the second access error, which then generates
a subsequent non-maskable interrupt request when exiting the original interrupt service handler.

A.6.4 Automatic State Recovery During Error Detection

An access error can be detected when the device is in a state in which it cannot respond correctly.
Therefore, the device automatically reconfigures itself so that it can respond. Specifically, the
device is designed to recover from the following cases:

� Accidental IFU or ECI access when the crossbar switch is powered down and a time-out
occurs.

� Non-maskable interrupt when a master other than the SC1400 core has a desired crossbar
slave port.

The following capabilities ensure that deadlock does not occur and the SC1400 can respond to
the non-maskable interrupt:

� Automatic crossbar priority change on non-maskable interrupt
(see CNMI bit in Table 7-10, DEVCFG Bit Descriptions, on page 7-17)

� Automatic crossbar wake-up on non-maskable interrupt
(see XHRQ bit in Table 4-12, GPSCTL Bit Descriptions, on page 4-43)

A.6.5 Configurable Priority Modification During a Chip Event

Another programmable feature for error recovery from a particular state is the crossbar switch
alternate priority register set. A particular event detectable in the event port switches the crossbar
switch from its normal set of priority registers to an alternate set. Priority switching is
programmed not only in crossbar switch alternate priority registers but also in the event port
EVOUTx[ACT1–0] register bits. Program these registers when the crossbar slaves are
configured for fixed-priority arbitration and the AMEC has the highest priority. This ensures that
the SC1400 core can recover from a system error when the device is not programmed correctly
and a resource is locked out of the crossbar switch, thus providing an additional mechanism for

M1 access time-out Bus error

Peripheral size error Bus error

Table A-13. Detecting Both Ends of a Failed Access

First Access Error (Slave Bus) Second Access Error (Master Bus)
MSC711x Reference Manual, Rev. 0

A-24 Freescale Semiconductor

Best Use of the Development Tools
assisting in recovery from an application error. If you do not want this feature, do not program
the event port to generate this action and configure the alternate priority registers with the same
values as their corresponding normal slave port registers.

A.7 Best Use of the Development Tools

You can disassemble the boot ROM using the development tools. When you are using the
compiler to access peripheral registers in the MSC711x memory map, be aware of the restrictions
on access sizes on many of these registers. The following tables summarize the permitted access
sizes:

� Table 5-11, Permitted Accesses to MSC711x Blocks via Device-Level Buses, on page
5-38

� Table 5-12, Permitted Accesses to MSC711x Blocks via System-Level Buses, on page
5-39

When using indirection in compiled code, be careful with MSC711x registers that do not support
16-bit accesses as summarized in Table 5-11, Permitted Accesses to MSC711x Blocks via
Device-Level Buses, on page 5-38. If an AND or OR operation with immediate data is performed
on one of these restricted registers using indirection, incorrect operation results:

*crossbar_reg1 |= 0x8000; // Careful with this C code
*crossbar_reg2 &= 0x8000; // Careful with this C code
*crossbar_reg3 ^= 0x8000; // Careful with this C code

The compiler may generate a BMSET or BMCLR instruction, but these instructions do not work
correctly because of access restrictions. This applies only to peripheral registers on the MSC711x
device that do not support 16-bit accesses. For example, the crossbar registers do not support
16-bit accesses.

Take care when you are debugging with the watchdog timer on. Often, it is easier to debug
without the watchdog timer, which is disabled in two different ways:

� The program never enables the watchdog. In this case, the watchdog timer comes out of
reset in a disabled state.

� Use the SWTE pin for applications programmed with the watchdog timer enabled. The
SWTE pin is sampled only power-on reset is deasserted.

You can also configure the operation of the device when it enters Debug mode:

� Maskable and Non-maskable interrupts can optionally be masked when the device is in
Debug mode. Configure this feature with the interrupt controller MIPR[DDBG] bit.

� The DMA controller can optionally be configured not to start new channels when the
device enters Debug mode. Configure this feature with the DMA controller
DMACR[EDBG] bit. When this bit is set, the DMA stalls when the current minor loop
completes.
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor A-25

System Usage and Tuning/ Programming Reference
MSC711x Reference Manual, Rev. 0

A-26 Freescale Semiconductor

MSC711x Boot Code B
; ###
; ###
; ### MSC711x Boot Program
; ###
; ### >>>>>>
; ### >>>>>> NOTE: Before using this boot program, it is *** CRITICAL ***
; ### >>>>>> that the section below in boot code entitled
; ### >>>>>> "Configuring the Boot Program" is correctly set up.
; ### >>>>>>
; ### >>>>>> This section is used for modifying the boot program
; ### >>>>>> for verification in the lab or on the tester.
; ### >>>>>>
; ### >>>>>> The FINAL VERSION OF THE BOOT PROGRAM must set all these
; ### >>>>>> parameters up correctly.
; ### >>>>>>
; ### >>>>>>
; ###
; ### Assembled as follows:
; ### $asmsc100 -a -b -l -mex -obe <filename>.asm
; ###
; ### Description:
; ### Allows boot from:
; ### - HDI16
; ### - I2C
; ### - SPI (Implemented in software using GPIO pins)
; ### - Test Mode
; ###
; ### Revision History:
; ### -----------------
; ### 01/20/2004 First Revision
; ### 09/28/2004 First Modifications for Rev A
; ### 10/25/2004 1st Release for Rev A
; ### 11/01/2004 2nd Release for Rev A
; ### 11/02/2004 3rd Release for Rev A
; ### 11/03/2004 4th Release for Rev A
; ### 11/22/2004 5th Release for Rev A
; ### - passes all tests
; ### 12/17/2004 6th Release for Rev A
; ### - updated comments
; ### - fixed SR[DI] issue - added "ei"
; ### - Test Boot now turns on CLKO pin
; ### - No longer setting CHPCFG[PAS]
; ### since not reqd on Rev A for CLKO
; ### 12/20/2004 Next Release for Rev A
; ### - writes to SR, EMR due to SC issue
; ### 01/06/2004 Next Release for Rev A
; ### - commenting improved
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-1

MSC711x Boot Code
; ### 01/26/2004 Final set of commenting on I2C code.
; ### 04/22/2004 Removed internal use only info
; ### 09/16/2005 Removed internal use only info
; ###
; ### Layout of Code in the Boot ROM:
; ### -------------------------------
; ### BASE+$0000: Reset Vectors
; ### BASE+$____: Boot Parameter Table (located at end of reset vectors)
; ### BASE+$____: Main Program
; ### BASE+$____: HDI16 Boot (using HDI8 or HDI16 functionality)
; ### BASE+$____: I2C Boot
; ### BASE+$____: SPI Boot (main pin set)
; ### BASE+$____: SPI Boot (alternate pin set)
; ### BASE+$1000: Interrupt Vectors (non-maskable interrupts)
; ### BASE+$____: Special Code - CodeWarrior
; ### BASE+$____: Special Code - Tester
; ###
; ### Note: The interrupt vector table is located right at the middle
; ### of the boot code at 4KB because it must be located
; ### on 4KB boundaries.
; ###
; ### Reserved M1 Memory Used by Boot Program:
; ### --
; ### The boot code also requires locations in M1 memory to operate
; ### correctly. As a result, the last 512 bytes of M1 memory are reserved.
; ###
; ### >>> See detailed comment below for the exact usage of these locations.
; ###
; ###
; ###
; ### Chip Configuration after Power-On Reset:
; ### --
; ### - clocked w/ bypass clock
; ### - PLL is disabled
; ### - Interrupts are disabled (non-maskable are still recognized though)
; ### - jumps to "power-on reset vector"
; ###
; ### Chip Configuration after Hard Reset:
; ### ------------------------------------
; ### - clocked w/ same clock as before hardware reset
; ### - PLL configuration not modified
; ### - Interrupts are disabled (non-maskable are still recognized though)
; ### - jumps to "hard reset vector"
; ###
; ###
; ### Register Usage - Over ENTIRE Program:
; ### -------------------------------------
; ### r8 - stores address of 1st location in the section of M1 memory
; ### reserved for use by the boot program (ie, last 512 locats)
; ###
; ### Register Usage - HDI
; ### --------------------
; ### (see HDI section)
; ###
; ### Register Usage - SPI
; ### --------------------
; ### (see SPI section)
; ###
MSC711x Reference Manual, Rev. 0

B-2 Freescale Semiconductor

; ### Additional Notes:
; ### -----------------
; ### - Almost all of the code for Test Boot modes and HDI (16pin) boot
; ### is identical. A sizeable reduction in code size can be achieved
; ### by having this common code only present once.
; ###
; ###

; --- M1 Memory Parameters

BASE_M1_MEMORYequ $00000000; (typically not modified)

BASE_M2_MEMORYequ $01000000; (typically not modified)
BASE_BOOT_ROM equ $01400000; (typically not modified)

; --- Memory Sizes for Different Devices

M1_MEMSZ_7110 equ $00010000 ; Size of M1 for this device

M1_MEMSZ_7112 equ $00030000 ; Size of M1 for this device
M1_MEMSZ_7113 equ M1_MEMSZ_7112 ; Size of M1 for this device
M1_MEMSZ_7115 equ M1_MEMSZ_7112 ; Size of M1 for this device
M1_MEMSZ_7116 equ M1_MEMSZ_7112 ; Size of M1 for this device

M1_MEMSZ_7118 equ $00040000 ; Size of M1 for this device
M1_MEMSZ_7119 equ M1_MEMSZ_7118 ; Size of M1 for this device

; --- Device IDs (corresponds to DEVID[DEVNBR] field)

ID_FINAL equ -1 ; Device ID for Final Boot Code
ID_7110 equ $3 ; Device ID for 7110 device
ID_7112 equ $7 ; Device ID for 7112 device
ID_7113 equ $6 ; Device ID for 7113 device
ID_7115 equ $1 ; Device ID for 7115 device
ID_7116 equ $2 ; Device ID for 7116 device
ID_7118 equ $9 ; Device ID for 7118 device
ID_7119 equ $A ; Device ID for 7119 device

; ###
; ###
; ### Configuring the Boot Program:
; ###
; ### The Boot Program can be configured with different parameters
; ### in this section. These are set correctly for the final configuration
; ### required for boot on the device.
; ###
; ###
; ###
; ###

OVERRIDE_BM_PINSequ -1 ; Configuration used in final boot code
OVERRIDE_DEVIDequ ID_FINAL ; Configuration used in final boot code
BASE_BOOT_CODEequ BASE_BOOT_ROM ; Base address used in final boot code
BURN_SERIAL equ 0 ; Configuration used in final boot code
LABTEST_SPI equ 0 ; Configuration used in final boot code
JMP_AT_LOC_00000000equ 0 ; No instruction at p:$00000000
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-3

MSC711x Boot Code
; ###
; ### End - Configuring the Boot Program
; ###
; ###

page 132 ; useful for list files

; ###
; ### Include Files
; ###

 IF LABTEST_SPI
nolist
include ’spidata.asm’
list

 ENDIF

; ###
; ###
; ### Usage - Last 512 Locations of M1 Memory
; ### ---------------------------------------
; ### $000 to $0FF Overlay Region (256 bytes)
; ### $100 to $13F (64 byte reserved area)
; ### $140 to $17F (64 byte area for Boot Variables - see below)
; ### $180 to $1FF System Stack used by Boot Program (128 bytes)
; ### - each bsr pushes 8 bytes
; ### - thus, maximum depth of 16 subroutines supported
; ###
; ### $140 to $17f 64 bytes reserved for Boot Variables:
; ### ------------ -------------------------------------
; ### $160 Boot Pgm Var (8-bit): Reserved
; ### $161 Boot Pgm Var (8-bit): Reserved
; ### $162 Boot Pgm Var (8-bit): Reserved
; ### $163 Boot Pgm Var (8-bit): Reserved
; ### $164 Boot Pgm Var (8-bit): Reserved
; ### $165 Boot Pgm Var (8-bit): Reserved
; ### $166 Boot Pgm Var (8-bit): NMITYPE:
; ### - -1: No nonmaskable ints
; ### occurred.
; ### - $0: TRAP occurred
; ### - $1: (reserved)
; ### - $2: ILLEGAL occurred
; ### - $3: DEBUG occurred
; ### - $4: OVERFLOW occurred
; ### - $5: (reserved)
; ### - $6: Auto-NMI occurred
; ### - $7: Auto-maskable occurred
; ### $167 Boot Pgm Var (8-bit): RSTSRC - Reset Source:
; ### - $0: POR
; ### - $1: External Hard Reset
; ### - $2: Software Watchdog Tmr
; ### - $3: Bus Timeout Reset
; ### - $4: JTAG Int Reset
; ### - $5: (reserved)
; ### - $6: (reserved)
; ### - $7: (reserved)
MSC711x Reference Manual, Rev. 0

B-4 Freescale Semiconductor

; ###
; ### $168 Boot Pgm Var (16-bit): Reserved
; ### $16A Boot Pgm Var (16-bit): Reserved
; ### $16C Boot Pgm Var (16-bit): Reserved
; ### $16E Boot Pgm Var (16-bit): BTERR- Boot Error:
; ### - $FFFF: Boot in Progress
; ### - $0000: Boot Successful
; ### - $BAD0: NMI occurred
; ### (see locat $17C)
; ### - $BAD1: HDI checksum
; ### - $BAD2: SPI checksum
; ### - $BAD3: I2C checksum
; ### - $BAD4: (unused)
; ### - $BAD5: (unused)
; ### - $BAD6: (unused)
; ###
; ### $170 Boot Pgm Var (32-bit): Reserved
; ### $174 Boot Pgm Var (32-bit): Reserved
; ### $178 Boot Pgm Var (32-bit): EXTBTMD - Extracted Boot Mode
; ### - extracted from BM pins by the
; ### routine "determine_boot_mode"
; ### $17C Boot Pgm Var (32-bit): CNMIPR - Captured NMIPR
; ### - Value of NMIPR if a
; ### non-maskable int occurs
; ###
; ###
; ###
; ### Offset Addresses - For Addressing the Last 512 Locations of M1 Memory
; ### ----------------
; ### - Overlay Area
; ### - Stack
; ### - Boot Code Variables
; ###
; ### Note: Each of these is an offset from the r8 pointer
; ### which points to the first reserved location
; ### at the end of M1 memory.
; ###
; ###

OFFSET_M1_OVERLAYequ $0000; Region reserved for Overlays
OFFSET_M1_VARS equ $0140 ; Region reserved for Boot Variables
OFFSET_M1_STACK equ $0180 ; Region reserved for Stack

OFFSET_M1VAR_NMITYPEequ $0166; Offset to 8-bit Var: Type of NMI
OFFSET_M1VAR_RSTSRCequ $0167; Offset to 8-bit Var: Reset Source
OFFSET_M1VAR_BTERRequ $016E; Offset to 16-bit Var: Boot Error
OFFSET_M1VAR_EXTBTMDequ $0178; Offset to 32-bit Var: Extr Boot Mode
OFFSET_M1VAR_CNMIPRequ $017C; Offset to 32-bit Var: NMIPR register

; ###
; ### Interrupt Vector Table
; ###

BASE_EXCEPTION_TABLE equ BASE_BOOT_CODE+$1000
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-5

MSC711x Boot Code
; ###
; ### Base Addresses - Register Banks
; ###

HDIAPB_BASE equ $06007000; For ASAPB: HCR,HPCR etc
HDIAHB_BASE equ $01F87000; For ASTH: HORX and HOTX
CLK_BASE equ $0400C000; Clock Control and Reset Registers base

GPIO_BASE equ $06009000
BTM_BASE equ $0400A000 ; Bus Timeout Monitor Register
I2C_BASE equ $04009000

; ###
; ### Register Addresses
; ###

; ---- SYSTEM CONTROL ----

CHIPCFG_REG equ BTM_BASE+$00000080
DEVID_REG equ BTM_BASE+$00000088

; ---- GPIO ----

GPIO_PortA_CTLequ GPIO_BASE+$00000008
GPIO_PortB_CTLequ GPIO_BASE+$00000014
GPIO_PortC_CTLequ GPIO_BASE+$00000020

GPIO_PortA_DATAequ GPIO_BASE+$00
GPIO_PortB_DATAequ GPIO_BASE+$0c
GPIO_PortC_DATAequ GPIO_BASE+$18

GPIO_PortC_EXPRTequ GPIO_BASE+$58

; ---- Reset and Clock ----

RSR equ CLK_BASE+$00000040; Reset Status Register
CLKCTRL equ CLK_BASE+$00000000 ; Clock Control Register

; ---- HDI16 (Chip Side) ----

HCR equ HDIAPB_BASE+$00000000
HPCR equ HDIAPB_BASE+$00000020
HSR equ HDIAPB_BASE+$00000040
HCVR equ HDIAPB_BASE+$00000060

HOTX equ HDIAHB_BASE+$00000080
HORX equ HDIAHB_BASE+$000000a0

; ---- I2C Registers ----
IADR equ I2C_BASE+$00
IFDR equ I2C_BASE+$04
I2CR equ I2C_BASE+$08
I2SR equ I2C_BASE+$0C
I2DR equ I2C_BASE+$10
MSC711x Reference Manual, Rev. 0

B-6 Freescale Semiconductor

EONCE_BASE equ $00EFF000
ECI_BASE equ $00F00000
IC_BASE equ $00F00100
ICARRAY_BASE equ $00F20000
SKYBLUE_BASE equ $04000000
SBG_BASE equ $04000000
TMRA_BASE equ $04001000
TMRB_BASE equ $04002000
XBAR_BASE equ $04003000
DMA_BASE equ $04004000
ENET_BASE equ $04006000
EV_BASE equ $0400B000
APB_BASE equ $06000000
SWT_BASE equ $06001000
TDM0_BASE equ $06004000
TDM1_BASE equ $06005000
TDM2_BASE equ $06006000
HDI16_BASE equ $06007000
UART_BASE equ $06008000
ICTL_BASE equ $0600A000
IPL_BASE equ $0600B000
AHB_BASE equ $01F84000
TDM0AHB_BASE equ $01F84000
TDM1AHB_BASE equ $01F85000
TDM2AHB_BASE equ $01F86000
HDI16AHB_BASE equ $01F87000

GPA_DR equ GPIO_BASE+$00
GPB_DR equ GPIO_BASE+$0C
GPC_DR equ GPIO_BASE+$18
GPD_DR equ GPIO_BASE+$24

GPA_DDR equ GPIO_BASE+$04
GPB_DDR equ GPIO_BASE+$10
GPC_DDR equ GPIO_BASE+$1C
GPD_DDR equ GPIO_BASE+$28

GPA_EXPRT equ GPIO_BASE+$50
GPB_EXPRT equ GPIO_BASE+$54
GPC_EXPRT equ GPIO_BASE+$58
GPD_EXPRT equ GPIO_BASE+$5C

PACTL equ GPIO_BASE+$08
PBCTL equ GPIO_BASE+$14
PCCTL equ GPIO_BASE+$20
PDCTL equ GPIO_BASE+$2C

ICCR equ IC_BASE
ICCMR equ IC_BASE+$04
LRUSR equ IC_BASE+$10
TASR equ IC_BASE+$14
VBASR equ IC_BASE+$18

IRBSR0 equ IC_BASE+$82
IRBSR1 equ IC_BASE+$86
IRBSR2 equ IC_BASE+$8A
IRBSR3 equ IC_BASE+$8E
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-7

MSC711x Boot Code
IRCR0 equ IC_BASE+$80
IRCR1 equ IC_BASE+$84
IRCR2 equ IC_BASE+$88
IRCR3 equ IC_BASE+$8c

SZ_Perif equ $04000000 ; size of the peripheral address space
B_Perif equ $04000000 ; beginning address for all peripherals
ECI_WBDAR0 equ $00F00040 ; address of WB’s WBDAR0 register
ECI_WBCR equ $00F00004 ; address of WB control register

; ###
; ### Macro Definitions - Used across entire program
; ###

INSNOPS macro NBRNOPS ; Argument is number of NOPs desired (decimal)
dup ?NBRNOPS
nop
endm
endm

; ===
; ===
; ===

; ###
; ### Location P:$00000000
; ###

 IF JMP_AT_LOC_00000000
org p:$00000000
jmp power_on_reset

 ENDIF

;##
;##
;##
;## Reset Vectors
;## - see "Reset Vector" in the "Reset" Chapter of the Manual
;## - Boot ROM Base = BASE_BOOT_CODE
;## - Valid Reset Sources:
;## 0x000: Power On Reset
;## 0x040: External Hard Reset
;## 0x080: Software Watchdog Timer Reset
;## 0x0C0: Bus Timeout Reset
;## 0x100: JTAG Reset
;##
;##
;##

; ###
; ### Power On Reset
; ###

org p:BASE_BOOT_CODE+$0000
power_on_reset
MSC711x Reference Manual, Rev. 0

B-8 Freescale Semiconductor

;
; Add code here unique to Power-On Reset
;

; --- Get Value to Place (later) in RSTSRC Boot Variable
move.w #$0,d7

bra >common_start
end_power_on_reset

INSNOPS ((power_on_reset+$40-end_power_on_reset)/2)

; ###
; ### External Hard Reset
; ###

org p:BASE_BOOT_CODE+$0040
ext_hard_reset

;
; Add code here unique to External Hard Reset
;

; --- Get Value to Place (later) in RSTSRC Boot Variable
move.w #$1,d7

bra >common_start
end_ext_hard_reset

INSNOPS ((ext_hard_reset+$40-end_ext_hard_reset)/2)

; ###
; ### Watchdog Reset
; ###

org p:BASE_BOOT_CODE+$0080
watchdog_reset

;
; Add code here unique to Watchdog Reset
;

; --- Get Value to Place (later) in RSTSRC Boot Variable
move.w #$2,d7

bra >common_start
end_watchdog_reset

INSNOPS ((watchdog_reset+$40-end_watchdog_reset)/2)

; ###
; ### Bus Timeout Reset
; ###

org p:BASE_BOOT_CODE+$00C0
bus_timeout_reset

;
; Add code here unique to Bus Timeout Reset
;
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-9

MSC711x Boot Code
; --- Get Value to Place (later) in RSTSRC Boot Variable
move.w #$3,d7

bra >common_start
end_bus_timeout_reset

INSNOPS ((bus_timeout_reset+$40-end_bus_timeout_reset)/2)

; ###
; ### JTAG Reset
; ###

org p:BASE_BOOT_CODE+$0100
jtag_reset

;
; Add code here unique to JTAG Reset
;

; --- Get Value to Place (later) in RSTSRC Boot Variable
move.w #$4,d7

bra >common_start
end_jtag_reset

;;;INSNOPS ((jtag_reset+$40-end_jtag_reset)/2)

; ###
; ### Last Reserved Reset Vectors
; ###

last_reset
; (currently unused)
; (space instead used for code below)

end_last_reset

; ###
; ### Routine: Determine Boot Mode
; ###
; ### - Examines BM pins to correctly set the following:
; ### - CLKCTRL[PLLMLTF]
; ### - CLKCTRL[PLLDVF]
; ### - CLKCTRL[RNG]
; ### - CLKCTRL[CKSEL]
; ###
; ### - Currently written to support up to 64 boot modes (via loop)
; ###
; ### - Return Value:
; ### - D0 = Value of Boot Parameters returned
; ###
; ### - Register Usage:
; ### - D2 = Value on BM pins
; ### - D3 = Loop Index
; ### - D0 = Value of Boot Parameters returned
; ###
; ### - R0 = Decrementing Pointer which accesses Boot Parameter Table
; ###
MSC711x Reference Manual, Rev. 0

B-10 Freescale Semiconductor

; ### - NOTE: Algorithm written to take equal time indep of boot mode.
; ### This can be very useful for a tester!
; ###

NBR_BTMDS equ 64 ; Total Number of Boot Modes

align 16

determine_boot_mode

; --- Get BM Pins
move.l RSR,d2 ; D2 = Value of BM pins (in bits

[15:12])
asrr #12,d2 ; then shifted to bits [5:0]

; Handle Override of BM Pins
move.w #OVERRIDE_BM_PINS,d3
cmpeq.w #-1,d3
nop ; reqd by pipeline: see dependency T.1
iff move.l d3,d2

; Continue
and #$3f,d2,d2 ; (6-bit value)

move.l #Param_Tbl+(NBR_BTMDS-1)*2,r0
; R0 = Ptr to last entry in Update Value

Table

; --- Determine Boot Mode

 ; for (i=63; i=0; i--) {

move.w #NBR_BTMDS-1,d3; D3 = Loop Index

find_bm_lp
cmpeq d3,d2 ; if loop index == BM[n:0]
nop ; reqd by pipeline: see dependency T.1
ift move.w (r0),d0; load CLKCTRL fields for this boot index
suba #2,r0

deceq d3
cmpeq.w #-1,d3
bf <find_bm_lp

 ; }

; --- Return to Main Program
rts

; ###
; ### Parameter Table
; ###
; ### This table specifies parameters for a boot mode (clocking and boot src).
; ### Although the CLKCTRL register is 32-bits, less than 16-bits can be
; ### configured by the boot pins. As a result, this table stores a
; ### 16-bit entry for each boot mode, allocated as follows:
; ### - PLLMLTF field: [05:00] (6-bits)
; ### - PLLDVF field: [08:06] (3-bits)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-11

MSC711x Boot Code
; ### - RNG field: [09] (1-bit)
; ### - CKSEL field: [11:10] (2-bits)
; ###
; ### - BSRC field: [15:12] (4-bits) ("BSRC" is "Boot Source")
; ###

RNG____ equ ($1<<9) ; CLKCTRL[RNG] unused
RNG_DV1 equ ($1<<9) ; CLKCTRL[RNG] set for /1
RNG_DV2 equ ($0<<9) ; CLKCTRL[RNG] set for /2

CKSEL_BYPASS equ ($0<<10) ; CLKCTRL[CKSEL] set for /1
CKSEL_PLLDV1 equ ($3<<10) ; CLKCTRL[CKSEL] set for /1
CKSEL_PLLDV2 equ ($1<<10) ; CLKCTRL[CKSEL] set for /2

DVF__ equ (0<<6) ; CLKCTRL[PLLDVF] unused
DVF_1 equ (0<<6) ; CLKCTRL[PLLDVF] set for
/1
DVF_2 equ (1<<6) ; CLKCTRL[PLLDVF] set for
/2
DVF_3 equ (2<<6) ; CLKCTRL[PLLDVF] set for
/3

MLTF___ equ 00 ; CLKCTRL[PLLMLTF] unused
MLTF_01 equ 00 ; CLKCTRL[PLLMLTF] set for
*01
MLTF_12 equ 11 ; CLKCTRL[PLLMLTF] set for
*12
MLTF_13 equ 12 ; CLKCTRL[PLLMLTF] set for
*13
MLTF_14 equ 13 ; CLKCTRL[PLLMLTF] set for
*14
MLTF_15 equ 14 ; CLKCTRL[PLLMLTF] set for
*15
MLTF_16 equ 15 ; CLKCTRL[PLLMLTF] set for
*16
MLTF_17 equ 16 ; CLKCTRL[PLLMLTF] set for
*17
MLTF_18 equ 17 ; CLKCTRL[PLLMLTF] set for
*18
MLTF_32 equ 31 ; CLKCTRL[PLLMLTF] set for
*32

BT_HDI0 equ ($0<<12) ; Boot Source: HDI port
BT_SPI0 equ ($1<<12) ; Boot Source: SPI - main pins
BT_SPI1 equ ($2<<12) ; Boot Source: SPI - backup pins
BT_I2C0 equ ($3<<12) ; Boot Source: I2C
BT_TST0 equ ($4<<12) ; Boot Source: Test Mode (0011)
BT_TST1 equ ($5<<12) ; Boot Source: Test Mode (1111)

align 16

Param_Tbl
dcw BT_HDI0+DVF__+MLTF___+RNG____+CKSEL_BYPASS; Boot Mode 0
dcw BT_I2C0+DVF__+MLTF___+RNG____+CKSEL_BYPASS; Boot Mode 1
dcw BT_HDI0+DVF_2+MLTF_32+RNG_DV1+CKSEL_PLLDV2; Boot Mode 2
dcw BT_TST0+DVF_2+MLTF_32+RNG_DV2+CKSEL_PLLDV1; Boot Mode 3

dcw BT_HDI0+DVF_2+MLTF_12+RNG_DV1+CKSEL_PLLDV1; Boot Mode 4
MSC711x Reference Manual, Rev. 0

B-12 Freescale Semiconductor

dcw BT_HDI0+DVF_1+MLTF_12+RNG_DV1+CKSEL_PLLDV1; Boot Mode 5
dcw $0000 ; Boot Mode

6
dcw BT_HDI0+DVF_3+MLTF_12+RNG_DV1+CKSEL_PLLDV1; Boot Mode 7

dcw BT_SPI0+DVF__+MLTF___+RNG____+CKSEL_BYPASS; Boot Mode 8
dcw BT_SPI0+DVF_1+MLTF_17+RNG_DV2+CKSEL_PLLDV1; Boot Mode 9
dcw BT_SPI0+DVF_2+MLTF_16+RNG_DV2+CKSEL_PLLDV1; Boot Mode 10
dcw BT_SPI0+DVF_3+MLTF_18+RNG_DV2+CKSEL_PLLDV1; Boot Mode 11

dcw BT_SPI1+DVF__+MLTF___+RNG____+CKSEL_BYPASS; Boot Mode 12
dcw $0000 ; Boot Mode

13
dcw $0000 ; Boot Mode

14
dcw BT_TST1+DVF_2+MLTF_16+RNG_DV1+CKSEL_PLLDV1; Boot Mode 15

dcw $0000 ; Boot Mode 16
dcw $0000 ; Boot Mode 17
dcw $0000 ; Boot Mode 18
dcw $0000 ; Boot Mode 19
dcw $0000 ; Boot Mode 20
dcw $0000 ; Boot Mode 21
dcw $0000 ; Boot Mode 22
dcw $0000 ; Boot Mode 23

dcw $0000 ; Boot Mode 24
dcw $0000 ; Boot Mode 25
dcw $0000 ; Boot Mode 26
dcw $0000 ; Boot Mode 27
dcw $0000 ; Boot Mode 28
dcw $0000 ; Boot Mode 29
dcw $0000 ; Boot Mode 30
dcw $0000 ; Boot Mode 31

dcw $0000 ; Boot Mode 32
dcw $0000 ; Boot Mode 33
dcw $0000 ; Boot Mode 34
dcw $0000 ; Boot Mode 35
dcw $0000 ; Boot Mode 36
dcw $0000 ; Boot Mode 37
dcw $0000 ; Boot Mode 38
dcw $0000 ; Boot Mode 39

dcw $0000 ; Boot Mode 40
dcw $0000 ; Boot Mode 41
dcw $0000 ; Boot Mode 42
dcw $0000 ; Boot Mode 43
dcw $0000 ; Boot Mode 44
dcw $0000 ; Boot Mode 45
dcw $0000 ; Boot Mode 46
dcw $0000 ; Boot Mode 47

dcw $0000 ; Boot Mode 48
dcw $0000 ; Boot Mode 49
dcw $0000 ; Boot Mode 50
dcw $0000 ; Boot Mode 51
dcw $0000 ; Boot Mode 52
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-13

MSC711x Boot Code
dcw $0000 ; Boot Mode 53
dcw $0000 ; Boot Mode 54
dcw $0000 ; Boot Mode 55

dcw $0000 ; Boot Mode 56
dcw $0000 ; Boot Mode 57
dcw $0000 ; Boot Mode 58
dcw $0000 ; Boot Mode 59
dcw $0000 ; Boot Mode 60
dcw $0000 ; Boot Mode 61
dcw $0000 ; Boot Mode 62
dcw $0000 ; Boot Mode 63

end_determine_boot_mode

;;;INSNOPS ((determine_boot_mode+$40-end_determine_boot_mode)/2)

; ###
; ### ------ End of Reset Vectors ------
; ###

;##
;##
;##
;## Main Program
;## - Initialize:
;## - VBA, vector base address register for interrupts
;## - Stack Pointer
;## - Place where Boot Port is selected based on BM pins
;## - Program up chip clocks correctly
;##
;##
;##

align 16

common_start

; At this point, the value in d7 indicates which reset vector was taken.
; Will be stored in a variable in M1 memory once r8 is calculated below.

; --- SW fix for problem - SC1400’s SR and EMR come up in unknown state:
; --- (should be reset, i.e., interrupts enabled)

move.l #$00E40000,sr ; software fix
bmclr #$000F,emr.l ; software fix

; Handle Override of Device ID: Override if not equal to -1
move.w #OVERRIDE_DEVID,d3
cmpeq.w #ID_FINAL,d3
nop ; reqd by pipeline: see dependency T.1
iff move.l d3,d2
bf <mask_id

; --- SW fix for problem - SC1400’s SR[DI] bit comes up in unknown state
MSC711x Reference Manual, Rev. 0

B-14 Freescale Semiconductor

; --- (should be reset, i.e., interrupts enabled)
;ei ; software fix

; --- Get Device ID (Can be overridden)
move.l DEVID_REG,d2 ; D2 = Value of DEVNBR pins (in bits [15:12])
asrr #12,d2 ; then shifted to bits [3:0]

; Continue
mask_id

and #$0f,d2,d2 ; (4-bit value)

; --- Calculate Address - Reserved Section at end of M1 memory
move.l #BASE_M1_MEMORY,r8; Initially r8 points to FIRST locat’n.

; Later modified to point
to the

; first RESERVED location.
move.l #M1_MEMSZ_7110,r0; Initialize r0 w/ smallest value.

cmpeq.w #ID_7110,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7110,r0

cmpeq.w #ID_7112,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7112,r0

cmpeq.w #ID_7113,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7113,r0

cmpeq.w #ID_7115,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7115,r0

cmpeq.w #ID_7116,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7116,r0

cmpeq.w #ID_7118,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7118,r0

cmpeq.w #ID_7119,d2
nop ; reqd by pipeline: see dependency T.1
ift move.l #M1_MEMSZ_7119,r0

nop ; reqd by pipeline
adda #-512,r0,r8

; --- Initialize Stack and Vector Base Address(VBA) register

move.l #BASE_EXCEPTION_TABLE,vba; init vba

adda #OFFSET_M1_STACK,r8,r0
nop
tfra r0,sp ; init ESP
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-15

MSC711x Boot Code
 ;; stack initialization
move.l #0,d3
move.l d3,(r0)

; --- Load Boot Variable RSTSRC
; d7 loaded in reset vectors
move.b d7,(r8+OFFSET_M1VAR_RSTSRC)

; --- Clear Boot Variable BTERR
move.w #$FFFF,d0
move.w d0,(r8+OFFSET_M1VAR_BTERR)

; --- Reset Boot Variable NMITYPE
move.w #-1,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

; --- Region of NOPs - allows for later patching
INSNOPS (32)

; ###
; ### Extract Boot Parameters
; ###
; ### The boot parameters are packed into a 16-bit word.
; ### This is where the different boot info is extracted.
; ###

; --- Read the values of the BM pins and Load BTMD variable
bsr determine_boot_mode; Return Value is in d0
move.w d0,(r8+OFFSET_M1VAR_EXTBTMD)

; --- Set Up PLL (if not one of the Test Boot modes)
; d0 contains boot parameters for routine

 IF 0

 ; Skip PLL if Test Boot Mode
extractu #4,#12,d0,d7 ; #sz,#offset,src,dst
asll #12,d7

cmpeq.w #BT_TST0,d7
nop
bt skip_PLL

cmpeq.w #BT_TST1,d7
nop
bt skip_PLL

 ENDIF

 ; Setup PLL Otherwise
bsr setup_PLL ; Programs up PLL and waits for lock

skip_PLL
MSC711x Reference Manual, Rev. 0

B-16 Freescale Semiconductor

; --- Determine Which Boot Loader to Use

; --- NOTE: Algorithm written to take equal time indep of boot mode.
; --- This is useful for the tester.

extractu #4,#12,d0,d7 ; #sz,#offset,src,dst
asll #12,d7

; Boot Source = HDI16
cmpeq.w #BT_HDI0,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_HDI_0,r0

; Boot Source = SPI
cmpeq.w #BT_SPI0,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_SPI_0,r0

cmpeq.w #BT_SPI1,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_SPI_1,r0

; Force Alternate SPI Pins if LABTEST_SPI is set
move.w #LABTEST_SPI,d2
cmpeq.w #0,d2
nop ; reqd by pipeline: see dependency T.1
iff move.l #LOADER_SPI_1,r0

; Boot Source = I2C
cmpeq.w #BT_I2C0,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_I2C_0,r0

; Boot Source = Test Mode
cmpeq.w #BT_TST0,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_TST_0,r0

cmpeq.w #BT_TST1,d7
nop ; reqd by pipeline: see dependency T.1
ift move.l #LOADER_TST_1,r0

INSNOPS (20)

; ###
; ### Jump to appropriate Boot Loader
; ###

jmp r0
; ##################################
; ###
; ### Setup PLL
; ###
; ### - Extracts fields from 16-bit boot parameter
; ###
; ### NOTE: Must NOT destroy the d0 register!
; ###
; ##################################
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-17

MSC711x Boot Code
setup_PLL

; --- Extract CLKCTRL Fields
move.l CLKCTRL,d1

 ; Clear all desired clock fields
bmclr #$10ff,d1.h
bmclr #$3f30,d1.l

 ; PLLDVF: BootParam[8:6] => CLKCTRL[10:8]
extractu #3,#6,d0,d7 ; #sz,#offset,src,dst
insert #3,#8,d7,d1 ; #sz,#offset,src,dst

 ; PLLMLTF: BootParam[5:0] => CLKCTRL[21:16]
extractu #6,#0,d0,d7 ; #sz,#offset,src,dst
insert #6,#16,d7,d1 ; #sz,#offset,src,dst

 ; RNG: BootParam[9] => CLKCTRL[28]
extractu #1,#9,d0,d7 ; #sz,#offset,src,dst
insert #1,#28,d7,d1 ; #sz,#offset,src,dst

 ; Get CKSEL Field: BootParam[11:10] => d7[1:0]
extractu #2,#10,d0,d7 ; #sz,#offset,src,dst
; not yet placed into CLKCTRL[5:4] ...

 ; These nops allow the addition of future fields.
nop
nop
nop
nop
nop
nop
nop
nop
nop

; --- Skip PLL section if (CKSEL == Bypass)
; --- (uses result from prev "extractu")

tsteq d7
nop ; reqd by pipeline: see dependency T.1

 ; If CKSEL==00, then rts
ift rts

 ; Else continue with code below which turns on the PLL

; --- Enable PLL if Selected

 ; PLLEN: 1 => CLKCTRL[7]
 ; RSTRT: 1 => CLKCTRL[6]

move.w #3,d2
insert #2,#6,d2,d1 ; #sz,#offset,src,dst

 ; Write value to CLKCTRL
move.l d1,CLKCTRL
MSC711x Reference Manual, Rev. 0

B-18 Freescale Semiconductor

; --- Wait for Lock:
; --- (the wait loop is written in a manner to remove timing variation)

; --- Outer Loop - Polling Loop

Wait_for_pll_lck
; do {

 ; Inner Loop - Fixed Delay Loop
doensh0 #256
 nop
loopstart0
 nop ; in body of loop
 nop ; in body of loop
loopend0

; } while (not locked);
move.l CLKCTRL,d2
bmtsts #$0200,d2.h
bf <Wait_for_pll_lck

; --- Change from PLL Bypass to Clocking with the PLL
 ; CKSEL: BootParam[11:10] (already in d7[1:0]) => CLKCTRL[5:4]

insert #2,#4,d7,d1 ; #sz,#offset,src,dst

 ; RSTRT: 0 => CLKCTRL[6]
bmclr #$0040,d1.l

move.l d1,CLKCTRL

rts

;##
;##
;##
;## HDI Boot
;## --------
;## - Examines value of sampled H8BIT pin
;## - Selects between HDI8 vs HDI16 boot
;##
;## HDI16 Configuration Used by Boot Program:
;## ---
;## - Boot program configures the HDI16 for:
;## - Non-DMA mode (cannot use DMA mode)
;## - HCR[HICR] = 0 ==> part is programmed from StarLite
;## - Triggers on Access to Host Address 0x7
;## - to operate in Polled Mode on Chip Side
;## - Boot program sets up the Host Flags as follows:
;## - HF4: "finished bit",
;## used by SC1400 to tell Ext Host boot is done
;## - HF7: "sticky bit",
;## used by SC1400 to tell Ext Host error occurred
;## - HF3: "checksum",
;## used by Ext Host to tell SC1400 to calculate
;## - NOTE: Revisions 0 and 0.1 also modified the HF5 bit.
;## HF5: "Core ready bit",
;## used by SC1400 to tell Ext Host boot that it is ready
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-19

MSC711x Boot Code
;## to accept data from external host.
;## This has been removed from Revision A onwards.
;## - operates in ______ Mode on External Host
;## - Via Pins (sampled only at power-on reset):
;## - HDDS: Single or Dual Data Strobe
;## - HDSP: Data Strobe Polarity
;## - xxxx
;##
;## How the External Host Processor Should Act During the Boot Process
;## --
;## - User must perform 64-bit transfers in 4 parts a
;## - User perform 16-bit writes from external host using TX0-3
;## as follows:
;## - write Word 1 from Block Structure to TX0 (HA=0x4)
;## - write Word 2 from Block Structure to TX1 (HA=0x5)
;## - write Word 2 from Block Structure to TX2 (HA=0x6)
;## - write Word 3 from Block Structure to TX3 (HA=0x7)
;##
;## - write Word 4 from Block Structure to TX0 (HA=0x4)
;## - write Word 5 from Block Structure to TX1 (HA=0x5)
;## - write Word 6 from Block Structure to TX2 (HA=0x6)
;## - write Word 7 from Block Structure to TX3 (HA=0x7)
;## .
;## - Host flags are available for use as described above
;## (it is not necessary to use these)
;##
;## Register Usage - HDI16:
;## -----------------------
;## d6 - used to hold the block size
;## d7 - used for calculating checksum
;##
;## r3 - used to store data from data blocks to Memories
;##
;##
;##

; ###
; ###
; ### HDI16 Boot Block Structure:
; ### - Defn: Entire Block contains:
; ### - 32-bit Block Size
; ### - 32-bit Dest Address
; ### - Set of 16-bit Data Records
; ### - 32-bits for: Checksum and !Checksum
; ### - Defn: Block Size:
; ### - Number of 16-bit Data Records
; ### - Must satisfy: Block Size 4N+2 (N=integer from 0 to ...)
; ### - A Block Size of "0" indicates the End of Boot data.
; ### - Size of entire block is a multiple of 8 bytes (i.e. 64-bits)
; ###
; ###

align 16
;org p:HDI_BOOT_START

MSC711x Reference Manual, Rev. 0

B-20 Freescale Semiconductor

LOADER_HDI_0
;HDI16_BOOT

; --------------------------Basic HDI configuration-------------------------

; --- Go to HDI16 16-bit Loader

; --- GPIO Setup - GPIO pins used for HDI16 functionality, not GPIO
 ; Set GPIO PortB pins 0-14 into hardware mode

move.l #$00007fff,d0
move.l d0,GPIO_PortB_CTL

 ; Set GPIO PortC pins 0-11 into hardware mode
move.l #$00000fff,d1
move.l d1,GPIO_PortC_CTL

;-----------BEGIN: INITIAL TEST SECTION-------------

 ; ---Basic configuration of HOST port-------
 ; Enabling of HOST by setting HEN bit in HPCR

move.w HPCR,d3
or #$0080,d3.l
move.w d3,HPCR

 ; Set the HICR bit in HCR so that ICR can define the HM bits
move.w HCR,d3
or #$0800,d3.l
move.w d3,HCR

 ;; ############################

 IF 0
 ; Set the HF5 flag in HCR to let the host know that HDI is ready to accept data

move.w HCR,d3
or #$4000,d3.l
move.w d3,HCR

 ENDIF

 ;; ############################

hdi_loader_after_setup

 ; --- Go to HDI16 or HDI8 Loader (depending on HPCR[8])
 ; get the 8bit bit from hpcr (which is in d3)

move.w HPCR,d3
bmtsts #$0040,d3.l

 ; if (8bit) goto load_8bit
bt <load_8bit

 ; else goto load_16bit
bra load_16bit
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-21

MSC711x Boot Code
;##
;##
;## HDI8 Boot - 8-bit Host Data Bus
;## - Executes code specific to HDI8 boot
;##
;##

load_8bit

; --- Clear Checksum (stored in d7)
move.l #0,d7

; --- Get first 2 words from Block Structure:
; - Word 1: Block_Size[31:16]
; - Word 2: Block_Size[15:00]

bsr load_from_fifo ; (returns 64-bits into d4:d5)
 ; (d4=0,d5=32 bits)

 ;; check if the finished bit is set ,if it is set clear it
 ;; and the sticky bit .(it means there was an error and
 ;; the blocks are being loaded for the second time

move.w HCR,d6
bmtsts.w #$8000,d6.l
bf <continue_loading_8

; Clear Finished Bit, HCR[HF4], and Sticky Bit, HCR[HF7]
move.w HCR,d6
and #$6fff,d6.l ; clears HCR[HF4] and HCR[HF7]
move.w d6,HCR

continue_loading_8
eor d5,d7 ;; checksum is calculated on size as d5 contains block size
move.l d5,d6

 ; if (size == 0) it means the last block was loaded
 ; so goto end_of_loading

tsteq d6
bt end_of_loading

 ; load the address
bsr load_from_fifo
move.l d5,r3
eor d5,d7 ;checksum is calculated on address

load_loop_8
 ; load data word

bsr load_from_fifo
move.l d5,(r3)

 ; add 4 bytes to the address
adda #$4,r3

 ; CALCULATE_CHECKSUM d7 = d7 ^ d5
eor d5,d7

 ; substruct 2 words from the size
sub #$2,d6

 ; if (size | = 0) go to load_loop_8
tsteq d6
bf <load_loop_8
MSC711x Reference Manual, Rev. 0

B-22 Freescale Semiconductor

;;------Calculating the checksum & ~checksum for the block

 ; get the checksum into d7.l
 ; d2 = (0xffff0000 & d7)>>16

extractu #16,#16,d7,d2

 ; d2 = d2 & 0x0000ffff
and #$0000ffff,d2,d2

 ; d7 = d7 & 0x0000ffff
and #$0000ffff,d7,d7

 ; d7 = d7 ^ d2
eor d2,d7

 ; d2 = (~d7 & 0x0000ffff) = ~checksum
not d7,d2
and #$0000ffff,d2,d2

;;------Getting the Loaded checksum & ~checksum

 ; load the checksum ,~checksum
bsr load_from_fifo

 ; get ~checksum into d4
extractu #16,#16,d5,d4

 ; delete the ~checksum from d5
and #$0000ffff,d5,d5

 ; if (checksum_loaded |= Checksum_calculated) goto set sticky bit
cmpeq d5,d7
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit
 ; if (~checksum_loaded |= ~Checksum_calculated) goto set sticky bit

and #$0000ffff,d4,d4
cmpeq d4,d2 ; d4,d7 contain checksum
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit
 ; goto load the next block

bra load_8bit

end_of_loading

 ; load the destination address into r3
bsr load_from_fifo
move.l d5,r3

eor d5,d7

bsr load_from_fifo ; reads checksum to d5
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-23

MSC711x Boot Code
 ; get the checksum into d7.l
 ; d2 = (0xffff0000 & d7)>>16

extractu #16,#16,d7,d2
 ; d2 = d2 & 0x0000ffff

and #$0000ffff,d2,d2
 ; d7 = d7 & 0x0000ffff

and #$0000ffff,d7,d7
 ; d7 = d7 ^ d2

eor d2,d7
 ; d2 = (~d7 & 0x0000ffff) = ~checksum

not d7,d2
and #$0000ffff,d2,d2

 ; get ~checksum into d4
extractu #16,#16,d5,d4

 ; delete the ~checksum from d5
and #$0000ffff,d5,d5

 ; if (checksum_loaded |= Checksum_calculated) goto set sticky bit
cmpeq d5,d7
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit
 ; clean d4.h

and #$0000ffff,d4,d4
 ; if (~checksum_loaded |= ~Checksum_calculated) goto set sticky bit

cmpeq d4,d2
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit

 ; set hf4 bit in HCR to show that loading is finished
move.w HCR,d6
or #$8000,d6.l
move.w d6,HCR

 ; check that the "check checksum" bit is set (hf3 in HSR (HSR[12))
move.w HSR,d6
and #$00001000,d6,d6

 ; check if the sticky bit is set (hf7 in HCR(HCR[12]))
move.w HCR,d4
and #$00001000,d4,d4

 ; if both of the flags are set start the loading again
and d4,d6
tsteq d6
bf hdi_loader_after_setup
nop

; --- Jump to Starting Address of Booted User Code (stored in r3)
; --- (exits boot program)

jmp r3
MSC711x Reference Manual, Rev. 0

B-24 Freescale Semiconductor

;##
;##
;## HDI16 Boot - 16-bit Host Data Bus
;## - Executes code specific to HDI16 boot
;##
;##

; ###
; ### Receive and Store:
; ### - Receives and stores last two Boot Data Entries
; ### - Receives Expected Checksums and perform final checksum calculations
; ###
; ### **
; ### ** Not the Entry Point. See Below. **
; ### **
; ###

load_last_2_16bit_data

; If the size left to load is only 2 words (4 bytes)
; and the mode is 16bit so every load action is of 4 words,
;
; Then the load action will load the last two word of the data and checksum
; and the ~checksum which are the very last two word of
; a block.so it is a special case .

; --- Get LAST 4 words from Record:
; Word 1: Boot_Data_Entry[15:00] => d4[31:16]
; Word 2: Boot_Data_Entry[15:00] => d4[15:00]
; Word 3: Expected_Checksum_Inv[15:00] => d5[31:16]
; Word 4: Expected_Checksum[15:00] => d5[15:00]

bsr load_from_fifo; (returns 64-bits into d4:d5)

 ; move the last 2 words to Load address (found in r3)
move.l d4,(r3) ; Two 16 bit words are moved to the memory.
adda #$4,r3

; --- Last Two Boot Data Entries of Block are combined w/ Running Checksum (d7)
; --- (note that Running_Checksum is calculated using 32-bit XORs)

eor d4,d7

; --- At this point, the Running Checksum is complete.

; ---
; --- Calculate Two Final Checksums:
; --- - Final_Checksum[15:0]
; --- - Final_Checksum_Inv[15:0]
; ---
; --- Final_Checksum[15:0] = Running_Checksum[31:16] ^ Running_Checksum[15:0]
; --- Final_Checksum_Inv[15:0] = One’s complement of Final_Checksum[15:0]
; ---
; --- During the loading process the checksum is calculated by 32-bit XORs.
; --- At the end of the block, the upper and lower 16-bit words in the
; --- Running checksum are xored with each other to get the Final checksum.
; ---
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-25

MSC711x Boot Code
 ; Running_Checksum[31:16] => d2[15:0] (upper 16-bits are cleared)
extractu #16,#16,d7,d2

 ; d2 = d2 & 0x0000ffff
and #$0000ffff,d2,d2

 ; Running_Checksum[15:00] => d7[15:0] (upper 16-bits are cleared)
 ; d7 = d7 & 0x0000ffff

and #$0000ffff,d7,d7

 ; Running_Checksum[31:16] ^ Running_Checksum[15:0] => Final_Checksum[15:0]
 ; d7 = d7 ^ d2 = checksum

eor d2,d7

 ; One’s Complement of Final_Checksum[15:0] => Final_Checksum_Inv[15:0]
 ; d2 = (~d7 & 0x0000ffff) = ~checksum

not d7,d2
and #$0000ffff,d2,d2

; ---
; --- Checksum Calculation:
; --- - Compare Expected Checksums against Final Checksums
; ---

 ; Expected_Checksum_Inv[15:00] => d4[15:0] (upper 16-bits are cleared)
extractu #16,#16,d5,d4
and #$0000ffff,d4,d4

 ; Expected_Checksum[15:00] => d5[15:0] (upper 16-bits are cleared)
and #$0000ffff,d5,d5

; --- If (Expected_Checksum != Final_Checksum)
; --- Set sticky bit

cmpeq d5,d7
nop ; reqd by pipeline: see dependency T.1
iff bsr set_sticky_bit

; --- If (Expected_Checksum_Inv != Final_Checksum_Inv)
; --- Set sticky bit

cmpeq d4,d2
nop ; reqd by pipeline: see dependency T.1
iff bsr set_sticky_bit

; --- Fall through into code below

 ; goto loading the next block
 ; goto load_16bit

; ###
; ### HDI16’s 16-Bit Loader (Start of Loader)
; ###
; ### *****************
; ### ** ENTRY POINT **
; ### *****************
; ###
MSC711x Reference Manual, Rev. 0

B-26 Freescale Semiconductor

; ### Reached this point either by:
; ### - Entry into the HDI16 loader or
; ### - When finishing processing of the previous Record and about to
; ### begin processing of a new Record.
; ###

load_16bit

; --- Clear Checksum (stored in d7)
move.l #0,d7

; --- Get First 4 words from Record:
; Word 1: Block_Size[31:16] => d4[31:16]
; Word 2: Block_Size[15:00] => d4[15:00]
; Word 3: Dest_Addr[31:16] => d5[31:16]
; Word 4: Dest_Addr[15:00] => d5[15:00]

bsr load_from_fifo; (returns 64-bits into d4:d5)

; --- Block Size (32-bits) => "d6"
 ; move the size into d6

move.l d4,d6

; --- Dest Address (32-bits) => "r3"
 ; move the address into r3

move.l d5,r3

; --- First Four Words of the Block are combined w/ Running Checksum (d7)
 ; Checksum should be calculated on data and address also

eor d4,d7
eor d5,d7

; --- If (Finished Bit is Set) {
 ; Clear Finished Bit and Sticky Bit.
 ; (It means there was an error and blocks are being loaded a second time)

 ; Check Finished Bit
move.w HCR,d4
bmtsts.w #$8000,d4.l
bf <continue_loading_16 ; skip over clearing of HF4 and HF7

 ; Clear Finished Bit, HCR[HF4], and Sticky Bit, HCR[HF7]
move.w HCR,d4
and #$6fff,d4.l ; clears HCR[HF4] and HCR[HF7]
move.w d4,HCR

; --- }

continue_loading_16

; ###
; ### Check if Final Record
; ###
; ### The Last Record is found when its Record Size is 0.
; ### If so, then there are no more Boot Data Entries to process.
; ### There are only four more 16-bit values in the Final Record
; ### which are handled in the exit code.
; ###
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-27

MSC711x Boot Code
; ---
; --- If (size == 0)
; --- Then goto end_of_loading_16

tsteq d6
bt <end_of_loading_16

; ###
; ### Otherwise,
; ### Receive and Store all but Last Two Boot Data Entries
; ###

; --- while (Block_Size > 2) {

load_loop_16

; --- Special Case: Block Size = 2 (last 2 words of data before 2 wd checksum)
; ---
; --- If (size ==2) it is a special case so
; --- Goto load_last_2_word

 move.l #$00000002,d4
 cmpeq d4,d6
 bt load_last_2_16bit_data

; --- Normal Case: Process 4 words (64-bits, 1 HORX FIFO entry)
; ---

; --- Get 4 Boot Data Entries from Record:
; Word 1: Boot_Data_Entry[15:00] => d4[31:16]
; Word 2: Boot_Data_Entry[15:00] => d4[15:00]
; Word 3: Boot_Data_Entry[15:00] => d5[31:16]
; Word 4: Boot_Data_Entry[15:00] => d5[15:00]

bsr load_from_fifo; (returns 64-bits into d4:d5)

; --- Store First Two Boot Data Entries:
 ; load the first 2 data words (4 bytes) to the address

move.l d4,(r3)
 ; increment the address by 4 bytes

adda #$4,r3 ; 4 is added because of 32 bit is loaded
 ; from d4 and the memory is byte addresable.

; --- Store Next Two Boot Data Entries:
 ; load the second 2 data words (4 bytes) to the address

move.l d5,(r3)
 ; increment the address by 4 bytes

adda #$4,r3

 ; CALCULATE_CHECKSUM on all 4 Boot Data Entries
eor d4,d7
eor d5,d7

; --- Decrease Block Size by 4 words
sub #$4,d6 ; 4 is deducted because 64 bit is loaded

; from HORX at a
MSC711x Reference Manual, Rev. 0

B-28 Freescale Semiconductor

 ; and the block size is given in 16 bits.
; --- Back to Top of Loop
 bra load_loop_16

; --- }

; --- Upon exiting this While Loop
; --- goto load_last_2_16bit_data (located above).

; ###
; ### Process Last 4 Words of Final HDI Record
; ###

end_of_loading_16

; --- Get LAST 4 words from Record:
; Word 1: Expected_Checksum_Inv[15:00] => d4[31:16]
; Word 2: Expected_Checksum[15:00] => d4[15:00]
; Word 3: $0000 => d5[31:16]
; Word 4: $0000 => d5[15:00]

bsr load_from_fifo; (returns 64-bits into d4:d5)

; --- Checksum Calculations on Final Boot Record
 ; get the checksum into d7.l
 ; d2 = (0xffff0000 & d7)>>16

extractu #16,#16,d7,d2

 ; d2 = d2 & 0x0000ffff
and #$0000ffff,d2,d2

 ; d7 = d7 & 0x0000ffff
and #$0000ffff,d7,d7

 ; d7 = d7 ^ d2
eor d2,d7

 ; d2 = (~d7 & 0x0000ffff) = ~checksum
not d7,d2
and #$0000ffff,d2,d2

 ; get ~checksum into d5
extractu #16,#16,d4,d5

 ; delete the ~checksum from d4 so that it only contains the checksum
and #$0000ffff,d4,d4

 ; if (Expected_Checksum != Checksum_calculated) Set sticky bit
cmpeq d4,d7
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit
 ; clean d5.h

and #$0000ffff,d5,d5
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-29

MSC711x Boot Code
 ; if (Expected_Checksum_Inv != Checksum_calculated_Inv) Set sticky bit
cmpeq d5,d2
nop ; Inserted due to T.1 from StarCore spec:

; IFc not allowed to follow a group
; containing a T bit modification

iff bsr set_sticky_bit

; ###
; ### Loading of All Boot Records Completed:
; ### if (no errors)
; ### Exit Boot Loader and go to User’s Starting Address
; ### if (errors but no reload on error)
; ### Exit Boot Loader and go to User’s Starting Address
; ### if (errors and reload on error)
; ### Go back to the beginning of the HDI Boot Loader
; ###

 ; set HCR[HF4] to show that loading is finished
move.w HCR,d6
or #$00008000,d6.l
move.w d6,HCR

 ; check if the user data should be reloaded if checksums don’t match
 ; (HSR[HF3] which is bit 12)

move.w HSR,d6
and #$00001000,d6,d6

 ; check if the sticky bit is set (HCR[HF7] which is bit 12)
move.w HCR,d4
and #$00001000,d4,d4

 ; if both of the flags are set start the loading again
and d4,d6
tsteq d6
bf hdi_loader_after_setup

; --- Jump to Starting Address of Booted User Code (stored in r3)
; --- (exits boot program)

jmp r3

;##
;##
;##
;## Supporting Routines - HDI Boot:
;## - Called when booting through HDI port for:
;## - Normal HDI boot modes
;## - Test boot modes:
;## - Test boot modes use the HDI16 port (16-pin data bus)
;## - previously the Test boot modes had their own routines
;##
;##
;##
MSC711x Reference Manual, Rev. 0

B-30 Freescale Semiconductor

; ###
; ### Load From FIFO
; ### - Polls until HDI16 Receive FIFO is not empty
; ### - Load 64-bit value into d4:d5
; ###

load_from_fifo

; --- Poll until Receive FIFO Not Empty (HRFNE)

load_no_wd
 ; if the host is empty wait for it to fill
 move.w HSR,d4

bmtsts.w #$0001,d4.l; Checking HRFNE bit
bf <load_no_wd

; --- Get 64-bit Entry from Receive FIFO => d4:d5
 ;; the receive FIFO is not empty so load 64bit from it

move.l #HORX,r0
nop
move.2l (r0),d4:d5

rts

; ###
; ### Set Sticky Bit
; ### - xxx
; ### - xxx
; ###

set_sticky_bit
 ; Set HCR[HF7]

move.w HCR,d6
or #$1000,d6.l
move.w d6,HCR

rts

;##
;##
;##
;## I2C Boot
;##
;##
;##
;##

; ###
; ### Defines
; ###

I2C_SLAVE_ADDRequ $00A0

I2C_WR equ $0 ; Placed into R/W bit of 1st transmitted byte
I2C_RD equ $1 ; Placed into R/W bit of 1st transmitted byte
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-31

MSC711x Boot Code
align 16
;org p:I2C_BOOT_START

LOADER_I2C_0
;I2C_BOOT

; ###
; ### Initial I2C Setup
; ###
; ### - Program GPIO’s Port A for I2C pin functionality
; ### - Set Clock Divider
; ### - Enable I2C
; ###

; --- Setup GPIO’s Port A for SDA and SCL functionality

 ; Set GPIO PortA pin 14(SDA),15(SCL) into hardware mode for CLKO pin
move.l #$0000c000,d0
move.l d0,GPIO_PortA_CTL

; --- Set Clock Divider to 128
; --- - IFDR=$0B => Divider of 128
; --- - For CLKIN = 100 MHZ during booting,
; --- => IPBus Clock = 50.0 MHz
; --- => I2C Clock = 50.0 MHz / 128 = 390.625 KHZ
; --- - For CLKIN = 25 MHZ during booting,
; --- => IPBus Clock = 12.5 MHz
; --- => I2C Clock = 12.5 MHz / 128 = 97.66 KHZ

move.w #$000B,d0
move.w d0,IFDR

;------ Enable I2C Peripheral
 ; Set I2CR[IEN] bit

move.w I2CR,d3
or #$0080,d3.l
move.w d3,I2CR

; ###
; ### Generate First Start
; ###

;------ Test that Bus is not busy before generating a start.

bus_busy
 move.w I2SR,d10

bmtsts.w #$0020,d10.l; waiting for IBB bit to be 0
bt <bus_busy

; --- Generating the very first start of the I2C
 ; --Setting other bits of I2C
 ; (IEN is already set)
 ; ## IIEN=1
 ; ## MSTA=1, 711x devices is in I2C’s master mode
MSC711x Reference Manual, Rev. 0

B-32 Freescale Semiconductor

 ; ## MTX=1,transmiit,for initial slave address transmitting
 ; ## TXAK=0,Acknowledge transfer
 ; ## RSTA=0,No repeat start.Since first data read and the address

move.w #$00f0,d3
move.w d3,I2CR

;------ wait for the start to "kick in"

bus_not_busy
 move.w I2SR,d10

bmtsts.w #$0020,d10.l; waiting for IBB bit to be 1
bf <bus_not_busy

; ###
; ### First Dummy Write
; ###
; ### - Set the EEPROM address counter to 0
; ###

; ### I2C Write Access:

; --- Send Calling Address in first byte:
; --- Master => Slave
; --- [7:1] = 7-bit Calling Address of I2C Slave ($A0)
; --- [0] = R/W (0=WR, 1=RD)

move.w #((I2C_SLAVE_ADDR)+I2C_WR),d3
move.w d3,I2DR

bsr wait_for_interrupt

; --- Send 2 Data Bytes:
; --- These 2 bytes contain the Starting Address of the
; --- First Record in the I2C EEPROM:
; --- 1st Byte = [15:8] = $00
; --- 2nd Byte = [07:0] = $00

move.l #$0,d0 ; I2C EEPROM’s Starting Address

move.l d0,I2DR
bsr wait_for_interrupt

move.l d0,I2DR
bsr wait_for_interrupt

; ###
; ### Initiate Reads from EEPROM Device
; ###

;------Repeat start

;----Initiate the repeat start for sending EEPROM
 ;Device ID with read bit turned on

 move.w I2CR,d3
or #$0004,d3.l; repeat starting RSTA=1
move.w d3,I2CR ;
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-33

MSC711x Boot Code
nop
nop
nop

; ### I2C Read Access:

; --- Send Calling Address in first byte:
; --- Master => Slave
; --- [7:1] = 7-bit Calling Address of I2C Slave ($A0)
; --- [0] = R/W (0=WR, 1=RD)

move.w #((I2C_SLAVE_ADDR)+I2C_RD),d3
move.w d3,I2DR

bsr wait_for_interrupt

; --- Turn off the repeat start & put the I2C master in receive mode
; --- to receive data from EEPROM slave
 ;; I2CR[MTX]=0 I2CR[RSTA]=0

move.w I2CR,d3
and #$ffeb,d3.l
move.w d3,I2CR

; --- Receive 1 Data Byte:
; --- This is a dummy read.

move.w I2DR,d7

; ###
; ### Block Read Loop (Outer Loop)
; ###
; ### Each iteration processes one Block (Record).
; ### (the word Record and Block are used with the same meaning).
; ###
; ### There are two different locations at the top of the Read Loop:
; ### - read_next_block
; ### - reload_block
; ###
; ### These are almost identical except that read_next_block:
; ### - resets the error counter (d9)
; ### - provides a new starting address for data (d6)
; ### In contrast, reload_block does neither of these two tasks
; ###

; --- Initialize Loop Variables before entering loop:
; ---
; --- d6 <= $0 Record Start Address in I2C EEPROM
; --- - the value $0 indicates "sequential loading"
; --- d14 <= $0 Next Record Address in I2C EEPROM
; --- --------- ----------------------------------
; --- d12 <= $0 Record Size --unchged in loop
; --- d15 <= $0 Number of Remaining Bytes in Record
; --- Used as Number of Remaining Bytes in the
; --- loops which read the Boot Data Entries
; --- d13 <= $0 Number of bytes read so far
; --- It will be used during reloading
; --- of a consecutive block by
; --- subtracting d12 from d13.
MSC711x Reference Manual, Rev. 0

B-34 Freescale Semiconductor

; ---
; --- Reload Start Address
; --- = d13 - (Record Size + first four word)
; --- = d13 - (d12 + 4*2)
; ---

move.l #$0,d6
move.l #$0,d14
move.l #$0,d15
move.l #$0,d12
move.l #$0,d13

; --- Other Loop Variables before entering loop:
; ---
; --- d8 Checksum Calculation Enable
; --- (extracted from bit 15 of Record Size)
; --- r3 Load Address:
; --- Used for storing 16-bit Boot Data Entries received
; --- through the I2C. Updated by 2 for each entry.

; --- Top of Loop (if no error)

read_next_block

; --- Update Loop Variables:
; ---
; --- d9 <= $0 Number of Checksum errors found = 0
; --- d6 <= d14 Record Start Address <= Next Record Address

move.l #$0,d9
move.l d14,d6

; --- Top of Loop (if error occurred)

reload_block

; --- Update Loop Variables:
; ---
; --- d7 <= $0 Running Checksum

move.l #$0,d7

; ###
; ### Select which path to process:
; ### - Sequential Reload
; ### - NonSequential Load or Reload
; ### - Sequential Load
; ###
; ### Decision based on values in d6, d9 registers:
; ###
; ### d6 | d9 | Action Performed
; ### -----------------------------
; ### 1) 0 | 0 | Sequential Load
; ### 2) 0 | 1 | Sequential ReLoad (i.e. one checksum error)
; ### 3) 1 | 0 | NonSequential Load
; ### 4) 1 | 1 | NonSequential ReLoad (i.e. one checksum error)
; ### ------------------------------
; ###
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-35

MSC711x Boot Code
; --- If d6=0, sequential loading or reloading.
; --- If d6=1, nonsequential loading or reloading

tsteq d6
bf <nonsequential_load_or_reload

sequential_load_or_reload

; --- If d9=0 at this point, sequential loading
; --- If d9=1 at this point, sequential reloading

tsteq d9
bt sequential_loading

; ###
; ### Reload Record - One Checksum Error occurred during Sequential Record
; ###
; ### Executed on:
; ### - Sequential Reload Only
; ###

sequential_reloading

tsteq d12 ; if last block d12=0

move.l #$10,d0 ; d0=size of the last block

move.l #$8,d2
add d2,d12,d1 ; d1 =the the size of any non last block

; --- If (Last Record Size == 0)
; --- // Then reloading "Last Record" - Special Case
; --- Record_Start_Addr = Number_of_Bytes - d0;

ift sub d0,d13,d6

; --- Else
; --- // Normal Reload
; --- Record_Start_Addr = Number_of_Bytes - d1;

iff sub d1,d13,d6

; ###
; ### Executed on:
; ### - Sequential Reload
; ### - NonSequential Load
; ### - NonSequential Reload
; ###

nonsequential_load_or_reload

; ---
; --- Dummy write to EEPROM to update address counter to block address
; ---

; --- Initiate the repeat start and transmit mode for sending
; --- EEPROM Device ID followed by two byte of read memory address

 move.w I2CR,d3
MSC711x Reference Manual, Rev. 0

B-36 Freescale Semiconductor

or #$0014,d3.l; repeat starting RSTA=1 & MTX=1
move.w d3,I2CR ;

nop
nop
nop

; ### I2C Write Access:

; --- Send Calling Address in first byte:
; --- Master => Slave
; --- [7:1] = 7-bit Calling Address of I2C Slave ($A0)
; --- [0] = R/W (0=WR, 1=RD)

move.w #((I2C_SLAVE_ADDR)+I2C_WR),d3
move.w d3,I2DR

bsr wait_for_interrupt

; --- stop repeat start by putting RSTA=0

 move.w I2CR,d3
and #$fffb,d3.l; stop repeat starting
move.w d3,I2CR

nop
nop
nop

; --- Send 2 Data Bytes:
; --- These 2 bytes contain the Record’s Starting Address in the EEPROM:
; --- 1st Byte = d6[15:8]
; --- 2nd Byte = d6[07:0]
; --- This can be one of two values:
; --- - Record Start Address for Current Record when boot failure occurred
; --- - Record Start Address for Next Record, obtained from the
; --- Last Record’s "Next Record Address" field

move.l d6,d11
lsrr #8,d11

move.w d11,I2DR
bsr wait_for_interrupt

extractu #$8,#$0,d6,d5

move.w d5,I2DR
bsr wait_for_interrupt

; ---
; --- End of Dummy write to EEPROM
; ---

; --- Initiate the repeat start for sending EEPROM Device ID again

 move.w I2CR,d3
or #$0004,d3.l; repeat starting
move.w d3,I2CR
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-37

MSC711x Boot Code
nop
nop
nop

; ### I2C Read Access:

; --- Send Calling Address in first byte:
; --- Master => Slave
; --- [7:1] = 7-bit Calling Address of I2C Slave ($A0)
; --- [0] = R/W (0=WR, 1=RD)

move.w #((I2C_SLAVE_ADDR)+I2C_RD),d3
move.w d3,I2DR

bsr wait_for_interrupt

; --- stop repeat start and put I2C in receive mode again for read
 move.w I2CR,d3

and #$ffeb,d3.l; RSTA=0;MTX=0;
move.w d3,I2CR

nop
nop
nop

; --- Receive 1+N Data Bytes:
; --- - First byte is a dummy read.
; --- - All other bytes in the record are then read using the code below:
; --- - Block Address
; --- - Next Block Address
; --- - Load Address
; --- - Boot Data Entries

move.w I2DR,d7

; ###
; ### Get First 4 Record Fields:
; ### - Block Size 15-bits (MSB is Checksum Comparison Enable)
; ### - Next Block Address 16-bits
; ### - Load Address 32-bits
; ###
; ### This code is executed for all of the following:
; ### - Sequential Load
; ### - Sequential Reload
; ### - NonSequential Load
; ### - NonSequential Reload
; ###

sequential_loading

; ---
; --- Read Block Size (15 bits, where MSB is checksum comparison enable)
; ---

; --- Get 16-bit Value
bsr wait_for_interrupt ; bit[15:8] of block size
move.w I2DR,d0
asll #8,d0
MSC711x Reference Manual, Rev. 0

B-38 Freescale Semiconductor

bsr wait_for_interrupt ; bit[7:0] of block size
move.w I2DR,d1

add d0,d1,d15 ; bit[15:0] of block size

eor d15,d7

; --- Extract MSB which is Checksum Calculation Enable
extractu #$1,#$f,d15,d8 ; Isolate the checksum enable bit
 ; from d15 and put it into d8
 ; to be used later

and #$7fff,d15,d15 ; set the CSE bit to zero in d15
 ; to get the real block size

; --- Record Size stored in d12
move.l d15,d12 ; (will be subtracted during reload)

;---- Tracking how many bytes loaded so far
move.l #$8,d0
move.l #$10,d1

tsteq d15 ; Testing if block size=0 implying last block
nop
nop ; reqd by pipeline: see dependency T.1

ift add d1,d15,d13; if last block(d15=0) add 16
; (Total number bytes in last block) to

d13

iff add d0,d15,d13; else add block size+8 to d13

; ---
; --- Read Next Block Address (16-bits)
; ---

bsr wait_for_interrupt; bit[15:8] of next block addr
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt; bit[7:0] of next block addr
move.w I2DR,d1

add d0,d1,d14 ; bit[15:0] of next block addr

eor d14,d7

; ---
; --- Read Load Address (32-bits)
; ---

bsr wait_for_interrupt;Reading Bit[31:24] of source
move.w I2DR,d0 ;program destination address
asll #24,d0

bsr wait_for_interrupt;Reading Bit[23:16] of source
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-39

MSC711x Boot Code
move.w I2DR,d1 ;program destination address
asll #16,d1

add d0,d1,d2 ;Put the Bit[31:16] in a data
;register. Bit[15:0] of

data reg=0

add d0,d1,d3
lsrr #16,d3 ;Right align bit [31:16] for checksum
eor d3,d7

bsr wait_for_interrupt;Reading Bit[15:8] of source
move.w I2DR,d0 ;program destination address
asll #8,d0

bsr wait_for_interrupt;Reading Bit[7:0] of source
move.w I2DR,d1 ;program destination address

add d0,d1,d3 ;Put the Bit[15:0] in a data
;register. Bit[31:16] of data reg=0

eor d3,d7 ;xoring bit[15:0]

add d2,d3,d4 ;Create the 32 bit source program
 ;destination address

move.l d4,r3 ; Final 32-bit Load Address saved in "r3" and
 ; will be used for storing all Boot Data Entries

; ###
; ### Determine if this is the "End Block"
; ### - i.e., the Final Boot Record
; ### - indicated by a Block with a size of "0"
; ###

 ; --- If (Block_Size == 0)
 ; --- Then {
 ; --- // Final I2C Boot Record
 ; --- goto finish_final_record
 ; --- }
 ; --- Else {
 ; --- Read in Block Data via one of two different loops:
 ; --- Read Block Data with Checksum Calculation
 ; --- Read Block Data w/o Checksum Calculation
 ; --- }

tsteq d15 ; Block Size in d15
bt finish_final_record

; --- For above "Else" case, Goto One of Two "Read Data Byte" Loops:
MSC711x Reference Manual, Rev. 0

B-40 Freescale Semiconductor

; --- If Checksum enabled
; --- goto keep_reading_db_Csum
; --- If Checksum not enabled
; --- goto keep_reading_db_NoCsum

tsteq d8
bt keep_reading_db_NoCsum

; ###
; ### Keep Reading Data Bytes Loop (w/ Checksum Calculation Enabled)
; ###
; ### - This loop reads in all the Boot Data Entries in the Block
; ###

; --- while (FOREVER) {

keep_reading_db_Csum

; --- if (Number_of_Remaining_Bytes == 4) {
; --- // Loop Exit found in this code

move.l #$0004,d0 ;Testing if only chksum &
cmpeq d0,d15 ;~chksum left to be loaded
bf <load_source_program

; --- Get Expected Checksum Fields from Record

; --- load checksum in d2
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d2

; --- load ~checksum in d3
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d3

; --- Perform Checksum Calculation
 ; d11 = (~d7 & 0x0000ffff) = calculated ~checksum

not d7,d11
and #$0000ffff,d11,d11

cmpeq d7,d2
bt <check_Csumbar

; --- Error Detected on Checksum field
add #1,d9 ; Number_Checksum_Errors++;
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-41

MSC711x Boot Code
move.l #$2,d5 ; If (Number_Checksum_Errors == 2)
cmpeq d5,d9 ; goto I2C_Stop_Boot
bt I2C_Stop_Boot

bra reload_block; Else goto reload_block

; --- Perform Checksum_Inv Calculation

check_Csumbar
cmpeq d11,d3
bt read_next_block; No Error Detected on either calculation,

; goto Top of Loop

; --- Error Detected on Checksum_Inv field
add #1,d9 ; Number_Checksum_Errors++;

move.l #$2,d5 ; If (Number_Checksum_Errors == 2)
cmpeq d5,d9 ; goto I2C_Stop_Boot
bt I2C_Stop_Boot

bra reload_block; Else goto reload_block

; --- } // End If

load_source_program

; --- Get Boot Data Entry from Record

; Get upper 8-bits
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

; Get lower 8-bits
bsr wait_for_interrupt
move.w I2DR,d1

; Combine into 16-bit value and XOR into checksum
add d0,d1,d2
eor d2,d7

; Write 16-bit Boot Data Entry to current value of the Load Address
move.w d2,(r3)+

; Update Number of Remaining Bytes
sub #$2,d15

bra keep_reading_db_Csum

; --- } // End While FOREVER Loop

; ###
; ### Keep Reading Data Bytes Loop (w/o Checksum Calculation Enabled)
; ###
; ### - This loop reads in all the Boot Data Entries in the Block
; ###
MSC711x Reference Manual, Rev. 0

B-42 Freescale Semiconductor

; --- while (FOREVER) {

keep_reading_db_NoCsum

; --- if (Number_of_Remaining_Bytes == 4) {
; --- // Loop Exit found in this code

move.l #$0004,d0
cmpeq d0,d15
bf Load_source_program

Load_Csum

; --- Read Expected Checksum and Expected Checksum Inv but unused

bsr wait_for_interrupt
move.w I2DR,d0

bsr wait_for_interrupt
move.w I2DR,d1

bsr wait_for_interrupt
move.w I2DR,d0

bsr wait_for_interrupt
move.w I2DR,d1

bra read_next_block

; --- } // End If

Load_source_program

 ; Get Boot_Data_Entry[15:8]
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

 ; Get Boot_Data_Entry[7:0]
bsr wait_for_interrupt
move.w I2DR,d1

 ; Combine into 16-bit value
add d0,d1,d2

; Write 16-bit Boot Data Entry to current value of the Load Address
move.w d2,(r3)+

; Update Number of Remaining Bytes
sub #$2,d15

bra keep_reading_db_NoCsum

; --- } // End While FOREVER Loop
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-43

MSC711x Boot Code
; ###
; ### Finish Final Record
; ###
; ### Get Remaining Records in Last Boot Record:
; ### - $0000
; ### - $0000
; ### - Expected Checksum
; ### - Expected Checksum Inv
; ###

finish_final_record

; --- Loading 0x0000
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d2

eor d2,d7

; --- Loading 0x0000
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d2

eor d2,d7

; --- load checksum in d2
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d2

; --- load ~checksum in d3
bsr wait_for_interrupt
move.w I2DR,d0
asll #8,d0

bsr wait_for_interrupt
move.w I2DR,d1

add d0,d1,d3
MSC711x Reference Manual, Rev. 0

B-44 Freescale Semiconductor

; --- Perform Checksum Calculation
 ; d11 = (~d7 & 0x0000ffff) = calculated ~checksum

not d7,d11
and #$0000ffff,d11,d11

cmpeq d7,d2
bt <CHeck_Csumbar

; --- Error Detected on Checksum field
add #1,d9 ; Number_Checksum_Errors++;

move.l #$2,d5 ; If (Number_Checksum_Errors == 2)
cmpeq d5,d9 ; goto I2C_Stop_Boot
bt I2C_Stop_Boot

bra reload_block; Else goto reload_block

; --- Perform Checksum_Inv Calculation

CHeck_Csumbar

cmpeq d11,d3
bt <stop_loading; No Error Detected on either calculation,

; goto stop_loading since last block

; --- Error Detected on Checksum_Inv field
add #1,d9 ; Number_Checksum_Errors++;

move.l #$2,d5 ; If (Number_Checksum_Errors == 2)
cmpeq d5,d9 ; goto I2C_Stop_Boot
bt I2C_Stop_Boot

bra reload_block; Else goto reload_block

; ###
; ### Exit I2C Boot
; ###
; ### This point is reached when all records loaded successfully
; ###

stop_loading

;------ penultimate Read

bsr wait_for_interrupt

move.w I2CR,d3 ; Set TXAK=1 before reading the penultimate
or #$0008,d3.l ; data to generate stop in master receive mode
move.w d3,I2CR

move.w I2DR,d0

;------ last Read

bsr wait_for_interrupt

move.w I2CR,d3 ; Set msta=0 before the last
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-45

MSC711x Boot Code
and #$ffdf,d3.l ; will put the I2C in slave mode and will
move.w d3,I2CR ; generate stop

move.w I2DR,d0

;###
;### Jump to Starting Address of User’s Booted Code (stored in r3)
;### (exits boot program)
;###

 jmp r3

;##
;##
;##
;## Supporting Routines - I2C Boot:
;## - Called when booting through I2C port
;##
;##
;##

; #####
; ###Poll I2SR to see if the interrupt bit has,meaning data is
; ###ready in I2DR
; #####

wait_for_interrupt

data_not_ready
 move.w I2SR,d10

bmtsts.w #$0002,d10.l; Checking IIF bit
bf <data_not_ready

 ;; Clearing the IIF bit in I2SR
move.w I2SR,d10
and #$fffd,d10.l
move.w d10,I2SR

rts

;##
;##
;##
;##
;##

; (code for internal use has been removed from this file)

align 16

LOADER_TST_0 ; both test modes start at same point
LOADER_TST_1 ; both test modes start at same point

; (difference is in PLL
setup
MSC711x Reference Manual, Rev. 0

B-46 Freescale Semiconductor

; AFTER booting has
completed.)

;##
;##
;##
;## Interrupt Vectors
;## - The boot code is executed in response to one of the
;## different resets which can occur on the device.
;## As a result, all maskable interrupts are disabled.
;## - This vector table only contains non-maskable interrupts.
;##
;## - Base Address = BASE_EXCEPTION_TABLE
;##
;## - NOTE: The vector table MUST be allocated on a 4 KB Boundary
;## due to the format of the address driven onto the VAB
;## (as shown in the User’s Manual in the Interrupt Processing
;## chapter). This is reflected in having a 20-bit VBA register.
;##
;## - NOTE: Because only non-maskable interrupts are possible while
;## booting, it is possible to use ROM locations above the
;## last maskable interrupt vector for general usage:
;## BASE+1000 to BASE+11BF: Used by non-maskable vectors
;## (uses 448 bytes of 4096)
;## BASE+11C0 to BASE+1FFF: Available for more boot code
;## (3648 bytes of 4096)
;##
;##
;##

;---------- TRAP (0x000) ----------
org p:BASE_EXCEPTION_TABLE+$000

non_msk_Trap
;---
;--- This should not occur because
;--- there aren’t any TRAP instrs in the boot code.
;---

; Mark that non-maskable interrupt has occurred
move.w #0,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- (Reserved) (0x040) ----------
org p:BASE_EXCEPTION_TABLE+$040

non_msk_Reserved1
;---
;--- This should never occur because
;--- this is a reserved vector.
;---

; Mark that non-maskable interrupt has occurred
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-47

MSC711x Boot Code
move.w #1,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- ILLEGAL (0x080) ----------
org p:BASE_EXCEPTION_TABLE+$080

non_msk_Illegal
;---
;--- This occurs if an ILLEGAL opcode is encountered.
;---

; Mark that non-maskable interrupt has occurred
move.w #2,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- DEBUG PORT (0x0C0) ----------
org p:BASE_EXCEPTION_TABLE+$0C0

non_msk_DebugPort
;---
;--- This occurs if an EOnCE exception is generated.
;---

; Mark that non-maskable interrupt has occurred
move.w #3,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- OVERFLOW (0x100) ----------
org p:BASE_EXCEPTION_TABLE+$100

non_msk_Overflow
;---
;--- This occurs if an overflow occurs while booting.
;---

; Mark that non-maskable interrupt has occurred
move.w #4,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- (Reserved) (0x140) ----------
org p:BASE_EXCEPTION_TABLE+$140

non_msk_Reserved2
;---
;--- This should never occur because
;--- this is a reserved vector.
MSC711x Reference Manual, Rev. 0

B-48 Freescale Semiconductor

;---

; Mark that non-maskable interrupt has occurred
move.w #5,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

rte

;---------- Auto-NMI (0x180) ----------
org p:BASE_EXCEPTION_TABLE+$180

non_msk_AutoNMI
;---
;--- This occurs if ANY non-maskable interrupt occurs.
;---
;--- NOTE: If this occurs, examine the interrupt controller’s
;--- NMIPR register to determine the cause of the failure,
;--- i.e., what generated the non-maskable interrupt.
;---
;--- NMIPR register located at $0600A000:
;--- NMIPR[31] = ______
;--- NMIPR[30] = ______
;--- NMIPR[29] = ______
;--- NMIPR[28] = ______
;--- NMIPR[27] = ______
;--- . .
;--- . .

; Mark that non-maskable interrupt has occurred
move.w #6,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)

; --- Report Error in Boot Variable BTERR
move.w #$BAD0,d0
move.w d0,(r8+OFFSET_M1VAR_BTERR)

; --- Capture NMIPR Register in Boot Variable NMIPR
move.l $0600A000,d0
move.l d0,(r8+OFFSET_M1VAR_CNMIPR)

;;debug ; <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
rte

;---------- Auto-Maskable (0x1C0) ----------
org p:BASE_EXCEPTION_TABLE+$1C0

non_msk_AutoMask
;---
;--- This should never occur because
;--- maskable interrupts are disabled out of reset
;--- and are not enabled in the boot code.
;---

; Mark that interrupt has occurred
move.w #7,d0
move.b d0,(r8+OFFSET_M1VAR_NMITYPE)
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-49

MSC711x Boot Code
rte

;##
;##
;##
;## Additional Boot Code
;## - This section of the boot program is located in unused space
;## above the Interrupt Vector Table
;## - It uses the space reserved for Maskable interrupts
;## which do not occur when booting.
;##
;##
;##

align 16

;##
;##
;##
;##
;##
;##

; (code for internal use has been removed from this file)

;##
;##
;##
;## SPI Boot (through GPIO pins in software)
;##
;##
;##
;##

;###
;### DEFINEs and EQUs
;###

WREN equ $06
WRDI equ $04
RDSR equ $05
WRSR equ $01
READ equ $03
WRITE equ $02
SECERASE equ $D8
BULKERASE equ $C7
READID_0 equ $90
READID_1 equ $AB
DUMMY equ $FF

FLASH_BYTES_PER_PAGEequ 256
EEPROM_BYTES_PER_PAGEequ 64
BASEADDR equ $40

;;
MSC711x Reference Manual, Rev. 0

B-50 Freescale Semiconductor

; These bits are updated in STATUS_reg
;
; Status bits - low word

OddByte equ $0001
DataByte equ $0002
ChecksumEnable equ $0004
FirstError equ $0008
ErrorReport equ $0010
StartBlock equ $0020

; Status bits - high word

EEPROMFlash equ $0001
;;

define BASEADDR_reg ’d15’
define STATUS_reg ’d13’
define CALCCS_reg ’d14’
define TWOBYTES_reg ’d12’
define MISOSHIFT_reg ’d4’

define SPICLK_reg ’r1’
define MOSI_reg ’r2’
define MISO_reg ’r3’
define SPISEL_reg ’r4’

define MISO_data ’d2’
define MOSI_data ’d7’
define SPICLK_data ’d11’
define SPISEL_data ’d6’

;;;
;MSC711x EEPROM/FLASH
;------- ------------
;SPISEL Pin 1
;MISO Pin 2
;3.3V Pin 3 (/WP)
;GND Pin 4 (Vss)
;MOSI Pin 5
;SPICLK Pin 6
;3.3V Pin 7 (/Hold)
;3.3V Pin 8 (Vcc)
;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Offset from Port Data Reg
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

DR_offset equ $00
PxCTL_offset equ $08
DDR_offset equ $04
EXPRT_offset equ $50

;###
;### SPI Macro Definitions
;###
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-51

MSC711x Boot Code
;;;
ClearBit MACROmask,reg,offset

not mask,d9 move.l (reg+offset),d10 ;1 cycle
and d9,d10 ;1 cycle
move.l d10,(reg+offset) ;1 cycle

ENDM
;;;
SetBit MACRO mask,reg,offset

move.l (reg+offset),d10 ;1 cycle
or mask,d10 ;1 cycle
move.l d10,(reg+offset) ;1 cycle
ENDM

;;;

;######################################
;###
;### SPI Loader Code:
;### - for main pins
;### - for alternate pins
;###
;######################################

align 16

; ###
; ### Loader for Main SPI Pins
; ###
; ### ****************************
; ### ** Entry Point: Boot Modes w/ Main Pins
; ### ****************************
; ###

LOADER_SPI_0
bsr InitWB ; common to both setups

 ; Bit Locat in GPIO register for each
pin

;--

 ; Port Pin ADS EEPROM/Flash

;--
MAIN_MISO equ $00000800 ;Port B [11] /HCS2 2
MAIN_MOSI equ $00000100 ;Port D [08] BM3 5
MAIN_SPICLK equ $00000080 ;Port D [07] BM2 6
MAIN_SPISEL equ $00000800 ;Port C [11] HA3 1

move.l #MAIN_MISO,MISO_data
move.l #MAIN_MOSI,MOSI_data
move.l #MAIN_SPICLK,SPICLK_data
move.l #MAIN_SPISEL,SPISEL_data

 ; Pointers to GPIO registers for each pin
move.l #GPB_DR,MISO_reg
move.l #GPD_DR,MOSI_reg
MSC711x Reference Manual, Rev. 0

B-52 Freescale Semiconductor

move.l #GPD_DR,SPICLK_reg
move.l #GPC_DR,SPISEL_reg

bra <LOADER_SPI_COMMON

; ###
; ### Loader for Alternate SPI Pins
; ###
; ### ****************************
; ### ** Entry Point: Boot Modes w/ Alt Pins
; ### ****************************
; ###

LOADER_SPI_1
bsr InitWB ; common to both setups

 ; Bit Locat in GPIO register for each
pin

;--

 ; Port Pin ADS EEPROM/Flash

;--
ALT_MISO equ $00008000 ;Port A [15] SCL J5.B21 2
ALT_MOSI equ $00001000 ;Port A [12] UTXD J5.E22 5
ALT_SPICLK equ $00002000 ;Port A [13] URXD J5.D22 6
ALT_SPISEL equ $00004000 ;Port A [19] SDA J5.B19 1

move.l #ALT_MISO,MISO_data
move.l #ALT_MOSI,MOSI_data
move.l #ALT_SPICLK,SPICLK_data
move.l #ALT_SPISEL,SPISEL_data

 ; Pointers to GPIO registers for each pin
move.l #GPA_DR,MISO_reg
move.l #GPA_DR,MOSI_reg
move.l #GPA_DR,SPICLK_reg
move.l #GPA_DR,SPISEL_reg

bra <LOADER_SPI_COMMON

nop
nop
nop
nop
nop
nop
nop
nop

LOADER_SPI_COMMON

SPIERR equ $00008000 ;Port C bit 15 EVNT3 N/A
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-53

MSC711x Boot Code
; --- Initialize GPIO
bsr InitGPIO

; --- Initialize SPI
bsr InitSPIRegs

; --- Calculate Shift Amount
bsr CalculateMISOShift

; --- Determine Type of SPI Device:
; --- - Serial Flash or Serial EEPROM

bsr Check_EEPROM_Flash

; -------------------
; Only for burning serial memory
 IF BURN_SERIAL

bsr WriteTest
debug

 ENDIF
; -------------------

; ###
; ### Process First SPI Record
; ###

FirstBlock
bmset #StartBlock,STATUS_reg.l; Set for first block
bmclr #FirstError,STATUS_reg.l; d13 = initialize CS error found
bmset #ChecksumEnable,STATUS_reg.l; start with CS on
bmclr #OddByte,STATUS_reg.l ; start with odd byte
bsr ReadBlock ; read first block
bmclr #StartBlock,STATUS_reg.l; Clear after first block

; ###
; ### Process Remaining SPI Records
; ###
; ### Runs as an infinite loop.
; ### Exit from this loop in "ReadBlock" when Final Record found.
; ###

MoreBlocks

; --- while (FOREVER) {

bsr Save_BLOCK_ADDR

 ; Get next data block address
 move.l n1,BASEADDR_reg
 bsr ReadBlock

 jmp MoreBlocks

; --- }
MSC711x Reference Manual, Rev. 0

B-54 Freescale Semiconductor

; --- (This statement should NEVER be reached.) ---
debug

;##
;##
;##
;## Supporting Routines - SPI Boot
;##
;##
;##

; ###
; ### Initialize GPIO Pins
; ###

InitGPIO

; --- MISO mask d2, reg r3
 ; Clear PxCTL bit to set as GPIO

ClearBit MISO_data,MISO_reg,PxCTL_offset

 ; Clear GPx_DDR bit to set as input

ClearBit MISO_data,MISO_reg,DDR_offset

; --- MOSI mask d7, reg r2
 ; Clear PxCTL bit to set as GPIO

ClearBit MOSI_data,MOSI_reg,PxCTL_offset

 ; Set GPx_DDR bit to set as output

SetBit MOSI_data,MOSI_reg,DDR_offset

 ; Clear GPx_DR bit to set logic high
 ClearBit MOSI_data,MOSI_reg,DR_offset

; --- SPICLK mask d11, reg r1
 ; Clear PxCTL bit to set as GPIO

ClearBit SPICLK_data,SPICLK_reg,PxCTL_offset

 ; Set GPx_DDR bit to set as output

SetBit SPICLK_data,SPICLK_reg,DDR_offset

 ; Clear GPx_DR bit to set logic low
 ClearBit SPICLK_data,SPICLK_reg,DR_offset

; --- SPISEL mask d6, reg r4
 ; Clear PxCTL bit to set as GPIO

ClearBit SPISEL_data,SPISEL_reg,PxCTL_offset

 ; Set GPx_DDR bit to set as output

SetBit SPISEL_data,SPISEL_reg,DDR_offset

 ; Set GPx_DR bit to set logic high
 SetBit SPISEL_data,SPISEL_reg,DR_offset

TestPortA
move.l #GPA_DR,r0
nop
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-55

MSC711x Boot Code
cmpeqa MISO_reg,r0
bf TestPortB

move.l #GPA_EXPRT,MISO_reg

bra DoneTestPort

TestPortB
move.l #GPB_DR,r0
nop
cmpeqa MISO_reg,r0
bf TestPortC

move.l #GPB_EXPRT,MISO_reg

bra DoneTestPort

TestPortC
move.l #GPC_DR,r0
nop
cmpeqa MISO_reg,r0
bf PortD

move.l #GPC_EXPRT,MISO_reg

bra DoneTestPort

PortD
move.l #GPD_EXPRT,MISO_reg

DoneTestPort
rts

; ###
; ### Initialize Write Buffer
; ###

InitWB
; Enable ECI’s Write Buffer
; d0 = WB Timeout value
move.l #$3ff,d0
bsr Cwb_timeout

; Setup WB DARs

 ; WBDAR[-] - M1 Memory: Not Required
 ; WBDAR[0] - M2 Memory: (done below)
 ; WBDAR[1] - SB and APB Peripherals: Write Immediate

move.l #B_Perif,d0 ; buffer’s base
move.l #SZ_Perif,d1 ; buffer’s size
move.w #1,d2 ; Select WBDAR[1]
move.w #0,d3 ; IMM field: 0=WB, 1=WImm, 2=WImm no

frz

bsr Cwbdar_cfg

rts
MSC711x Reference Manual, Rev. 0

B-56 Freescale Semiconductor

; ###
; ### Set Write Buffer Timeout
; ###

Cwb_timeout
 ; d0 contains desired timeout value

push d0

bmclr #$fc00,d0.l ; Clear uppermost 6 bits
bmclr #$1000,d0.l ; Clear turns on the WB
move.w d0,ECI_WBCR

pop d0
rts

; ###
; ### Configure Write Buffer Data Area Registers
; ###

Cwbdar_cfg
push r1
push r0
push d1
push d0

 ; Calculate Register Address
move.l d2,r1
move.l #ECI_WBDAR0,r0
asla r1
asla r1
adda r1,r0

 ; Load Base Address into Area Base field
; already in d0
; (8 LSBs must all be zeros -currently no err chk)
asr d1,d1
add d1,d0,d0

 ; Load IMM field
insert #2,#5,d3,d0 ; insert D3[1:0] -> D0[6:5]

 ; Enable via EN bit
bmset #$0004,d0.l

 ; Save WBDAR[0-3] reg
move.l d0,(r0)

pop d0
pop d1
pop r0
pop r1
rts

; ###
; ### Initialize SPI Registers
; ###

InitSPIRegs
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-57

MSC711x Boot Code
 ; Clear d1 = MISO data
clr d1

 ; First 64 bytes reserved in serial memory
 ; d15 = base address is 0x40

move.l #BASEADDR,BASEADDR_reg

 ; Clear d14 = calculated CS
clr CALCCS_reg

 ; Clear d12 = 2 bytes of received data
clr TWOBYTES_reg ; d12 = 2

bytes of data

 ; Reset m1 = current block address
move.l #0,m1

 ; Enable error reporting on EVNT3
bmset #ErrorReport,STATUS_reg.l
rts

; ###
; ### Calculate MISO Shift
; ###

CalculateMISOShift
 ; MISO mask affects number of bits to shift MISO data
 ; so this needs to be calculated

move.l MISO_data,MISOSHIFT_reg
;move.l #MISO,MISOSHIFT_reg
clb MISOSHIFT_reg,MISOSHIFT_reg
neg MISOSHIFT_reg
add #$A,MISOSHIFT_reg
rts

; ###
; ### SPI Transmit / Receive
; ###
; ### Inputs:
; ### d0 - Byte to send on MOSI
; ### d4 - Numb bytes to shift MISO mask to read data
; ### Output:
; ### d1 - Byte read on MISO
; ###

SPI_TxRx
move.w #0,d1 ; Reqd so that "tsteq"

executed
; immed after returning

from routine
; has valid set of upper

bits.
push d5

dosetup2 TxRx_Byte
MSC711x Reference Manual, Rev. 0

B-58 Freescale Semiconductor

doen2 #8
loopstart2

TxRx_Byte
bmtsts #$80,d0.l
bt MOSI_set

MOSI_clr

 ; Force MOSI_bit low
ClearBit MOSI_data,MOSI_reg,DR_offset
bra >SPICLK_set

MOSI_set
SetBit MOSI_data,MOSI_reg,DR_offset

SPICLK_set
SetBit SPICLK_data,SPICLK_reg,DR_offset

 ; Read MISO bit
 ; Prepare next MOSI bit

asl d0,d0 move.l (MISO_reg),d5

 ; Put MISO bit in carry bit
lsll MISOSHIFT_reg,d5

 ; Roll carry bit into d1
rol d1

SPICLK_clr
ClearBit SPICLK_data,SPICLK_reg,DR_offset
loopend2

pop d5
rts

; ---
; --- The "equ" directives below are used to measure size of prev routine
; ---

end_SPI_TxRx

SPI_TxRx_SZ equ (end_SPI_TxRx-SPI_TxRx+004)
;SPI_TxRx_COPYequ (BASE_M1_MEMORY+M1_MEMORY_SIZE-$100)

; ###
; ### Sector Erase
; ###
; ### Inputs:
; ### n2 - Must contain the value $DEADBEEF
; ###
; ### Protection against accidental erase:
; ### To protect against inadvertent call to this routine,
; ### user must write correct data to register n2.
; ### If n2 is not 0xDEADBEEF, then routine is not executed.
; ###
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-59

MSC711x Boot Code
Sector_Erase
push n1

; --- Verify key is correct in n2 register
move.l #$DEADBEEF,n1
move.w #SECERASE,d0
cmpeqa n2,n1
bf Done_Sector_Erase

; --- Continue with routine
ClearBit SPISEL_data,SPISEL_reg,DR_offset
bsr SPI_TxRx
move.w #00,d0
bsr SPI_TxRx
move.w #00,d0
bsr SPI_TxRx
move.w #00,d0
bsr SPI_TxRx
SetBit SPISEL_data,SPISEL_reg,DR_offset

Done_Sector_Erase

; --- Overwrite key
move.l #0,n2

pop n1
rts

; ###
; ### Bulk Erase
; ###
; ### Inputs:
; ### n2 - Must contain the value $DEADBEEF
; ###
; ### Protection against accidental erase:
; ### To protect against inadvertent call to this routine,
; ### user must write correct data to register n2.
; ### If n2 is not 0xDEADBEEF, then routine is not executed.
; ###

Bulk_Erase
push n1

; --- Verify key is correct in n2 register
move.l #$DEADBEEF,n1
move.w #BULKERASE,d0
cmpeqa n2,n1
bf Done_Bulk_Erase

; --- Continue with routine
ClearBit SPISEL_data,SPISEL_reg,DR_offset
bsr SPI_TxRx
SetBit SPISEL_data,SPISEL_reg,DR_offset

Done_Bulk_Erase

; --- Overwrite key
move.l #0,n2
MSC711x Reference Manual, Rev. 0

B-60 Freescale Semiconductor

pop n1
rts

; ###
; ### Write Enable
; ###

Write_Enable
ClearBit SPISEL_data,SPISEL_reg,DR_offset
move.w #WREN,d0
bsr SPI_TxRx
SetBit SPISEL_data,SPISEL_reg,DR_offset

rts

; ###
; ### Write Disable
; ###

Write_Disable
ClearBit SPISEL_data,SPISEL_reg,DR_offset
move.w #WRDI,d0
bsr SPI_TxRx
SetBit SPISEL_data,SPISEL_reg,DR_offset

rts

; ###
; ### Enable Write
; ###

EnableWrite
bsr Write_Enable
bsr WaitforWriteEnabled

rts
; ###
; ### Erase Flash
; ###

EraseFlash
bsr EnableWrite
bsr Bulk_Erase
bsr WaitforNotBusy

rts
; ###
; ### Read Status
; ###
; ### Outputs:
; ### d1 - contains status value with bits as follows:
; ### [7] = WPEN
; ### [6] = (reserved)
; ### [5] = (reserved)
; ### [4] = (reserved)
; ### [3] = BP1
; ### [2] = BP0
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-61

MSC711x Boot Code
; ### [1] = WEL
; ### [0] = /RDY
; ###
; ###

Read_Status
ClearBit SPISEL_data,SPISEL_reg,DR_offset
move.w #RDSR,d0
bsr SPI_TxRx

move.w #DUMMY,d0
bsr SPI_TxRx
SetBit SPISEL_data,SPISEL_reg,DR_offset
rts

; ###
; ### Wait for Not Busy
; ###

WaitforNotBusy
bsr Read_Status

 ; Check if WIP bit is cleared
bmtstc #$01,d1.l
bt NotBusy
jmp WaitforNotBusy

NotBusy
rts

; ###
; ### Wait for Write Enabled
; ###

WaitforWriteEnabled
bsr Read_Status

 ; Check if WEL bit is set in MISO
bmtsts #$02,d1.l
bt WriteEnabled
jmp WaitforWriteEnabled

WriteEnabled
rts

; ###
; ### Wait for Read Done
; ###

WaitforReadDone
bsr Read_Status

 ; Check if WIP and WEL bits is cleared
bmtstc #$03,d1.l
bt ReadDone
jmp WaitforReadDone

ReadDone
rts
MSC711x Reference Manual, Rev. 0

B-62 Freescale Semiconductor

; ###
; ### Write Data
; ###
; ### Inputs:
; ### d0 - EEPROM address
; ### d5 - max number bytes per page
; ### r0 - pointer where write data is stored
; ### r5 - number of bytes
; ###

WriteData
push n1
move.l #$DEADBEEF,n1
push d8
cmpeqa n2,n1
bf Done_WriteData

bmtstc #EEPROMFlash,STATUS_reg.h
tfr d0,d3 ;d3 = EEPROM

address
ift move.l #EEPROM_BYTES_PER_PAGE,d5
iff move.l #FLASH_BYTES_PER_PAGE,d5

move.l r5,d8 ;d8 = actual
compare

cmpgt d8,d5 ;if
actual<max

jt belowmax

bsr Write_Enable
bsr WaitforWriteEnabled

ClearBit SPISEL_data,SPISEL_reg,DR_offset

 ; Send WRITE command
move.w #WRITE,d0
bsr SPI_TxRx

 ; Send 3 address bytes for Flash
bmtsts #EEPROMFlash,STATUS_reg.h
tfr d3,d0
ift bsr SendExtraByteAddress_Slow

 ; Send 2 address bytes for EEPROM
tfr d3,d0
asrr #8,d0
bsr SPI_TxRx

tfr d3,d0
bsr SPI_TxRx

writeloop
 ; Write data

move.b (r0)+,d0
bsr SPI_TxRx ;write max

bytes
deceq d5
bf writeloop
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-63

MSC711x Boot Code
bmtstc #EEPROMFlash,STATUS_reg.h
nop ; reqd by pipeline: see dependency T.1
ift move.l #EEPROM_BYTES_PER_PAGE,d5
iff move.l #FLASH_BYTES_PER_PAGE,d5

sub d5,d8,d8
;actual=actual-max

add d5,d3,d3
SetBit SPISEL_data,SPISEL_reg,DR_offset
jmp compare

belowmax

bsr Write_Enable
bsr WaitforWriteEnabled

move.l d8,r5
ClearBit SPISEL_data,SPISEL_reg,DR_offset

 ; Send WRITE command
move.w #WRITE,d0
bsr SPI_TxRx

 ; Send 3 address bytes for Flash
bmtsts #EEPROMFlash,STATUS_reg.h
tfr d3,d0
ift bsr SendExtraByteAddress_Slow

 ; Send 2 address bytes for EEPROM
tfr d3,d0
asrr #8,d0
bsr SPI_TxRx

tfr d3,d0
bsr SPI_TxRx

 ; Write r5 bytes
dosetup0 WriteBytes
doen0 r5
nop

loopstart0
WriteBytes

move.b (r0)+,d0
bsr SPI_TxRx
nop
nop
nop
loopend0
SetBit SPISEL_data,SPISEL_reg,DR_offset

Done_WriteData
move.l #0,n2
pop d8
pop n1
rts
MSC711x Reference Manual, Rev. 0

B-64 Freescale Semiconductor

; ###
; ### Read Field
; ###
; ### Inputs:
; ### d0 - EEPROM address
; ### r6 - pointer where read data is stored
; ### used only if d13.l bit 1 = 1
; ### r5 - number of bytes
; ### d13.l - bit 1 determines data or field
; ###
; ### Outputs:
; ### d12 - Concatenated 2 bytes data

ReadField
push d3

 ; Copy EEPROM address to d11
tfr d0,d3
ClearBit SPISEL_data,SPISEL_reg,DR_offset

 ; Send READ command
move.w #READ,d0
bsr SPITxRx

 ; Send 3 address bytes for Flash
bmtsts #EEPROMFlash,STATUS_reg.h
tfr d3,d0
ift bsr SendExtraByteAddress_Fast

tfr d3,d0
asrr #8,d0
bsr SPITxRx

tfr d3,d0
bsr SPITxRx

pop d3

 ; Receive r5 bytes
dosetup0 ReadBytes
doen0 r5
loopstart0

ReadBytes
bsr SPITxRx

Check_Data
bmtsts #DataByte,STATUS_reg.l
nop ; reqd by pipeline: see dependency T.1
ift move.b d1,(r6)+

Check_Odd_Even_Byte
bmtstc #OddByte,STATUS_reg.l
bf Even_Byte

Odd_Byte
asll #8,d1
tfr d1,TWOBYTES_reg
jmp Toggle

Even_Byte
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-65

MSC711x Boot Code
or d1,TWOBYTES_reg
eor TWOBYTES_reg,CALCCS_reg

Toggle
bmchg #OddByte,STATUS_reg.l
nop
nop
nop
loopend0
and #0,TWOBYTES_reg.h
SetBit SPISEL_data,SPISEL_reg,DR_offset
bsr WaitforReadDone
rts

; ###
; ### Get CS Size
; ###

Get_CS_SIZE
push r5

tfr BASEADDR_reg,d0 ; d0 = base + 0 for cs/size
bmclr #DataByte,STATUS_reg.l ; not data
move.w #2,r5 ; r5 = 2 bytes for cs/size
bsr ReadField
move.l TWOBYTES_reg,n0 ; n0 = CS_SIZE

Check_CS_Enabled
tfr TWOBYTES_reg,CALCCS_reg ;d14 = calculated CS
bmtsts #$8000,CALCCS_reg.l
bf CS_OFF

CS_ON
bmset #ChecksumEnable,STATUS_reg.l
jmp CS_SIZE_done

CS_OFF
bmclr #ChecksumEnable,STATUS_reg.l

CS_SIZE_done

pop r5
rts

; ###
; ### Get Next Block Address (Upper 16 bits)
; ###

Get_NEXT_BLOCK_ADDR_HIGH
push r5
tfr BASEADDR_reg,d0
add #2,d0 ;d0 =

base + 2 bytes for next addr
bmclr #DataByte,STATUS_reg.l ;not data
move.w #2,r5 ;r5 =

2 bytes for next addr
bsr ReadField

asll #16,TWOBYTES_reg
move.l TWOBYTES_reg,n1
pop r5
rts
MSC711x Reference Manual, Rev. 0

B-66 Freescale Semiconductor

; ###
; ### Get Next Block Address (Lower 16 bits)
; ###

Get_NEXT_BLOCK_ADDR_LOW
push r5
push d5
tfr BASEADDR_reg,d0
add #4,d0 ; d0 = base + 4 bytes for next

addr
bmclr #DataByte,STATUS_reg.l ; not data
move.w #2,r5 ; r5 = 2 bytes for next addr
bsr ReadField
and #0,TWOBYTES_reg.h move.l n1,d5
or d5,TWOBYTES_reg
move.l TWOBYTES_reg,n1 ; n1 = next block address
pop d5
pop r5
rts

; ###
; ### Check Sequence Order
; ###

Check_SEQ_ORDER
move.l n1,d0
tsteq d0
bf SEQ_ORDER_Done

SEQ_ORDER
move.l n0,d0
bmclr #$8000,d0.l
add BASEADDR_reg,d0,d0
add #$a,d0
move.l d0,n1

SEQ_ORDER_Done
rts

; ###
; ### Check End Block
; ###

Check_END_BLOCK
move.l n0,d0 ; test first two bytes to

see if 0
tsteq d0
bf NOT_END_BLOCK

tfr BASEADDR_reg,d0; test next two bytes to see if 0
add #2,d0
move.w #2,r5
bsr ReadField

 ; Check two bytes are 0
bmtstc #$ffff,TWOBYTES_reg.l
bf NOT_END_BLOCK
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-67

MSC711x Boot Code
END_BLOCK

 ;Next 4 bytes are jump addr
tfr BASEADDR_reg,d0
add #4,d0 ; d0 = base +

4 bytes for jump addr
move.w #2,r5 ; r5 = 2 bytes for load

addr
bsr ReadField
asll #16,TWOBYTES_reg
move.l TWOBYTES_reg,r7

tfr BASEADDR_reg,d0
add #6,d0 ; d0 = base +

6 bytes for next addr
move.w #2,r5 ; r5 = 2 bytes for next

addr
bsr ReadField
move.l r7,d5
or d5,TWOBYTES_reg
move.l TWOBYTES_reg,r7; r7 = jump address

bsr JumpAddr

NOT_END_BLOCK
rts

; ###
; ### Set Load Address (Upper 16-bits)
; ###

Get_LOAD_ADDR_HIGH
push r5
tfr BASEADDR_reg,d0
add #6,d0 ; d0 = base +

6 bytes for load addr
bmclr #DataByte,STATUS_reg.l; not data
move.w #2,r5 ; r5 = 2

bytes for load addr
bsr ReadField
asll #16,TWOBYTES_reg
move.l TWOBYTES_reg,r6
pop r5
rts

; ###
; ### Set Load Address (Lower 16-bits)
; ###

Get_LOAD_ADDR_LOW
push r5
tfr BASEADDR_reg,d0
add #8,d0 ; d0 = base +

8 bytes for load addr
bmclr #DataByte,STATUS_reg.l; not data
move.w #2,r5 ; r5 = 2

bytes for load addr
bsr ReadField
MSC711x Reference Manual, Rev. 0

B-68 Freescale Semiconductor

and #0,TWOBYTES_reg.hmove.l r6,d5
or d5,TWOBYTES_reg
move.l TWOBYTES_reg,r6
pop r5
rts

; ###
; ### Get Data
; ###

Get_DATA
push r5
tfr BASEADDR_reg,d0
add #$A,d0 ; d0 = base +

10 for data
move.l n0,d8
bmclr #$8000,d8.l
move.l d8,r5 ; d8 =

program sz including CS and /CS
bmset #DataByte,STATUS_reg.l; indicate data
suba #4,r5 ; r5 =

subtract 4 bytes for CS and /CS
bsr ReadField
bmclr #DataByte,STATUS_reg.l; indicate not data

pop r5
rts

; ###
; ### Save Calculated Checksum
; ###

Save_CALC_CS
move.l CALCCS_reg,d0 ; save calculated CS
not CALCCS_reg,d1 ; save

calculated /CS
move.w #0,d1.h move.w #0,d0.h
asll #16,d0
or d1,d0
move.l d0,m3
rts

; ###
; ### Get Checksum
; ###

Get_CS
push r5
tfr BASEADDR_reg,d0
add #$6,d8
add d8,d0,d0 ; d0 = CS

address is program size + 5 bytes
bmclr #DataByte,STATUS_reg.l; not data
move.w #2,r5 ; r5 = 2

bytes CS
bsr ReadField
asll #16,TWOBYTES_reg
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-69

MSC711x Boot Code
move.l TWOBYTES_reg,n3

pop r5
rts

; ###
; ### Get Checksum Inv
; ###

Get_NotCS
push r5
tfr BASEADDR_reg,d0
add #$2,d8
add d8,d0,d0 ; d0 = /CS

address is program size + 7 bytes
bmclr #DataByte,STATUS_reg.l; not data
move.w #2,r5 ; r5 = 2

bytes /CS
bsr ReadField
and #0,TWOBYTES_reg.hmove.l n3,d5
or d5,TWOBYTES_reg
move.l TWOBYTES_reg,n3
pop r5
rts

; ###
; ### Compare Checksum
; ###
; ### Inputs:
; ### n3 = Expected 16-bit Checksum concated w/ 16-bit Checksum Inv
; ### - Upper 16-bits contains ___________
; ### - Lower 16-bits contains ___________
; ### m3 = Calculated 16-bit Checksum concated w/ 16-bit Checksum Inv
; ### - Upper 16-bits contains ___________
; ### - Lower 16-bits contains ___________
; ###

Compare_CS

; --- if (Checksum Compare is Enabled for this Record) {
bmtstc #ChecksumEnable,STATUS_reg.l
bt Compare_CS_Done

; --- Compare Calculated vs Expected
move.l n3,d0 ; d0 = provided CS and /CS
move.l m3,d1 ; d1 = calculated CS and

/CS
cmpeq d0,d1
bt No_CS_Error

; --- Determine Error Handling

CS_Error
 ; Check if first error

bmtsts #FirstError,STATUS_reg.l; check if first error
bt First_Error
MSC711x Reference Manual, Rev. 0

B-70 Freescale Semiconductor

; --- Process - More than one Checksum Error for this Record
bsr SPI_Stop_Boot

; --- Process - Only one Checksum Error for this Record

First_Error
bmset #FirstError,STATUS_reg.l; d13 = CS error found
bsr Restore_BLOCK_ADDR
jmp MoreBlocks ; Reload same block

; --- }

; --- Process - No Checksum Errors for this Record

No_CS_Error
bmclr #FirstError,STATUS_reg.l; d13 = reset CS errors

Compare_CS_Done
rts

; ###
; ### Save Block Address
; ###

Save_BLOCK_ADDR
move.l n1,d0

 move.l d0,m1
rts

; ###
; ### Restore Block Address
; ###

Restore_BLOCK_ADDR
move.l m1,d0

 move.l d0,n1
rts

; ###
; ### Jump Address
; ###

JumpAddr
 ; Cannot jump to jump address if this is first block

bmtsts #StartBlock,STATUS_reg.l
bt SPI_Stop_Boot

 ; At end of boot process make all SPI pins input
 ; Clear GPx_DDR bit to set as input

ClearBit MOSI_data,MOSI_reg,DDR_offset
ClearBit SPICLK_data,SPICLK_reg,DDR_offset
ClearBit SPISEL_data,SPISEL_reg,DDR_offset
jmp r7
rts

; ###
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-71

MSC711x Boot Code
; ### SPI Stop Boot
; ###
; ### On SPI Boot Error:
; ###
; ### If (SPI Boot Error occurred) {
; ### Write BTERR Variable with $BAD2
; ### If Checksum Comparison Enabled
; ### Then {
; ### Place GPIO’s PortC[15] in Software Mode: BM1/GPIO/EVNT3 pin
; ### Program GPIO’s PortC[15] as GPIO Output
; ### Toggle BM1/GPIO/EVNT3 pin (which is used as GP Output)
; ### (continues toggling pin in an infinite loop)
; ### }
; ### Else
; ### Simply Loop on a single jmp instruction (at end of this routine)
; ### (continues in an infinite loop)
; ### }
; ###
; ### On I2C Boot Error:
; ###
; ### If (I2C Boot Error occurred) {
; ### Write BTERR Variable with $BAD3
; ###
; ### Place GPIO’s PortC[15] in Software Mode: BM1/GPIO/EVNT3 pin
; ### Program GPIO’s PortC[15] as GPIO Output
; ### Toggle BM1/GPIO/EVNT3 pin (which is used as GP Output)
; ### (continues toggling pin in an infinite loop)
; ### }
; ###
; ### This routine is called if:
; ### - SPI Error: A second checksum error happened in a record.
; ### - SPI Error: The very first Record is also the Final record.
; ### - I2C Error: A second checksum error happened in a record.
; ###
; ### NOTE: Upon entry to this routine, the BM1/GPIO/EVNT3 pin has
; ### not yet been programmed by the Boot ROM so it is a GPIO Input.
; ### Because it is muxed with BM1, there will already be a
; ### pullup/pulldown on this pin.
; ###
; ### NOTE: No exit from this routine - infinite looping!
; ###

SPI_Stop_Boot

; --- Flag SPI Boot Error in Boot Error Variable
move.w #$BAD2,d0
move.w d0,(r8+OFFSET_M1VAR_BTERR)

; --- If ErrorReport is disabled, just loop continuously
bmtstc #ErrorReport,STATUS_reg.l
bt LoopForever

Signal_Boot_Error

; --- Else {
; --- Set pin in Software Control Mode (should already be in this from reset)
; --- Set pin as a GP output
; --- Toggle BM1/GPIO/EVNT3 pin in an infinite loop
MSC711x Reference Manual, Rev. 0

B-72 Freescale Semiconductor

 ; Clear PxCTL bit to set as GPIO (i.e., in Software Control Mode)
move.l #PCCTL,r0
move.l #SPIERR,d9 ; d9 = $0000 8000 for BM1/GPIO/EVNT3 pin

move.l (r0),d10
not d9,d9 ; d9 = $FFFF 7FFF
and d9,d10
move.l d10,(r0)

 ; Set GPx_DDR bit to set as output
move.l #GPC_DDR,r0
move.l #SPIERR,d9

move.l (r0),d10
or d9,d10
move.l d10,(r0)

 ; Program r0, d9 regs to point to correct bit in GPx_DR bit reg
 move.l #GPC_DR,r0 ; Address of GPx_DR reg
 move.l #SPIERR,d9 ; Bit position in GPx_DR reg

; --- while (FOREVER) {

toggle_pin
 ; Clear BM1/GPIO/EVNT3 Pin

move.l (r0),d10
not d9,d9 ; d9 = $FFFF 7FFF
and d9,d10
move.l d10,(r0)

 ; Delay
doensh0 #100
nop
loopstart0
 nop
 nop
loopend0

 ; Set BM1/GPIO/EVNT3 Pin
move.l (r0),d10
not d9,d9 ; d9 = $0000 8000
or d9,d10
move.l d10,(r0)

 ; Delay
doensh0 #100
nop
loopstart0
 nop
 nop
loopend0

bra <toggle_pin

; --- }
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-73

MSC711x Boot Code
; --- }

LoopForever
jmp *
rts

; ###
; ### I2C Stop Boot
; ###
; ### (see comment under SPI Stop Boot)
; ###

I2C_Stop_Boot

; --- Flag I2C Boot Error in Boot Error Variable
move.w #$BAD3,d0
move.w d0,(r8+OFFSET_M1VAR_BTERR)

bra <Signal_Boot_Error

; ###
; ### Check EEPROM Flash
; ###
; ### Only Flash supports Read Device ID instruction.
; ### EEPROM does not support this instruction.
; ### EEPROM returns 0x00 or 0xFF
; ###

Check_EEPROM_Flash
bmclr #EEPROMFlash,STATUS_reg.h

ClearBit SPISEL_data,SPISEL_reg,DR_offset
move.w #READID_0,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #DUMMY,d0
bsr SPI_TxRx

SetBit SPISEL_data,SPISEL_reg,DR_offset

 ; Check if 0x00
tsteq d1
bt TryOtherReadID

 ; Check if 0xFF
bmtsts #$00ff,d1.l
bt TryOtherReadID
MSC711x Reference Manual, Rev. 0

B-74 Freescale Semiconductor

 ; Otherwise - Flash and Copy SPI_TxRx to M1 for fast transfer
bmset #EEPROMFlash,STATUS_reg.h
bsr Copy_SPI_TxRx_M1
bra Done_Check_EEPROM_Flash

TryOtherReadID
ClearBit SPISEL_data,SPISEL_reg,DR_offset
move.w #READID_1,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #$0,d0
bsr SPI_TxRx

move.w #DUMMY,d0
bsr SPI_TxRx

SetBit SPISEL_data,SPISEL_reg,DR_offset

 ; Check if 0x00 - EEPROM
tsteq d1
bt Done_Check_EEPROM_Flash

 ; Check if 0xFF - EEPROM
bmtsts #$00ff,d1.l
nop ; reqd by pipeline: see dependency T.1

 ; Otherwise - Flash and Copy SPI_TxRx to M1 for fast transfer
iff bmset #EEPROMFlash,STATUS_reg.h
iff bsr Copy_SPI_TxRx_M1

Done_Check_EEPROM_Flash
rts

; ###
; ### (A Copy of) SPI Transmit / Receive
; ###
; ### Will be copied into M1 memory.
; ###

Copy_SPI_TxRx_M1
push r0
push r1
move.l #SPI_TxRx,r0
adda #OFFSET_M1_OVERLAY,r8,r1
dosetup2 Copy
doen2 #SPI_TxRx_SZ
loopstart2

Copy
move.b (r0)+,d0
move.b d0,(r1)+
nop
nop
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-75

MSC711x Boot Code
loopend2
pop r1
pop r0
rts

; ###
; ### SPI Transmit / Receive
; ###

SPITxRx
bmtsts #EEPROMFlash,STATUS_reg.h
bt FastSPI
bsr SPI_TxRx
bra SPITxRxDone

FastSPI
push r0
adda #OFFSET_M1_OVERLAY,r8,r0
jsr r0
pop r0

SPITxRxDone
rts

; ###
; ### Send Extra Byte Address: Fast Mode
; ###

SendExtraByteAddress_Fast
asrr #16,d0
push r0
adda #OFFSET_M1_OVERLAY,r8,r0
jsr r0
pop r0
rts

; ###
; ### Send Extra Byte Address: Slow Mode
; ###

SendExtraByteAddress_Slow
asrr #16,d0
bsr SPI_TxRx
rts

; ###
; ### Read Block
; ###
; ### Processes one Record from the SPI.
; ###
; ###
; ###

ReadBlock

; --- Get Record Size (which includes Checksum Compare Enable in MSB)
MSC711x Reference Manual, Rev. 0

B-76 Freescale Semiconductor

bsr Get_CS_SIZE

; --- Get Next Record Address
bsr Get_NEXT_BLOCK_ADDR_HIGH
bsr Get_NEXT_BLOCK_ADDR_LOW
bsr Check_SEQ_ORDER

; --- Check if Final Record
bsr Check_END_BLOCK

; --- Get Load Address
bsr Get_LOAD_ADDR_HIGH
bsr Get_LOAD_ADDR_LOW

; --- Get all Boot Data Entries
bsr Get_DATA
bsr Save_CALC_CS

; --- Checksum Processing
bsr Get_CS
bsr Get_NotCS
bsr Compare_CS

rts

;;;
; The functions below show an example of how to burn
; serial memory. Will not be part of ROM code
;;;

 IF BURN_SERIAL

WriteTest
move.l #$DEADBEEF,n2
bmtsts #EEPROMFlash,STATUS_reg.h
nop ; reqd by pipeline: see dependency T.1
ift bsr EraseFlash
bsr Write_Enable
bsr WaitforWriteEnabled
bsr WriteTestData
bsr WaitforNotBusy
bsr ReadTestData
debug

; ###
; ###
; ###

WriteTestData
move.l #$40,d0 ; d0 = EEPROM address
move.l #DATA_OUT,r0 ; r0 = pts to data to write
bmtstc #EEPROMFlash,STATUS_reg.h
move.w #DATA_SZ,r5 ; r5 = pts to data size
ift move.l #EEPROM_BYTES_PER_PAGE,d5
iff move.l #FLASH_BYTES_PER_PAGE,d5
move.l #$DEADBEEF,n2
bsr WriteData
rts
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor B-77

MSC711x Boot Code
; ###
; ###
; ###

ReadTestData
move.l #$40,d0 ; d0 = EEPROM address
move.l #DATA_IN,r6 ; r0 = pts to data to write
bmtstc #EEPROMFlash,STATUS_reg.h
move.w #DATA_SZ,r5 ; r5 = pts to data size
bmset #$0002,STATUS_reg.l; indicate data
bsr ReadField
rts

 ENDIF
MSC711x Reference Manual, Rev. 0

B-78 Freescale Semiconductor

Index
Numerics

SCFG 9-18
60x-compatible address bus 1-18

A

A[0–31] 2-11
Address Generation Unit (AGU) 3-2
address register modification 3-8
Address Registers (R[0–15]) 3-8
address space by type of access 5-31
address space of master controller ports 5-1
AGU

block diagram 3-3
AGU Arithmetic Instructions 3-13
AGU pointers 3-4
AHB clock 11-1, 11-4
AHB crossbar switch 6-1
AHB ERROR condition 6-4
AHB Master DMA (AMDMA) 1-16
AHB Master Ethernet MAC (AMENT) 1-17
AHB Master Extended Core (AMEC) 1-16
AHB Master Instruction Cache (AMIC) 1-16
AHB Slave to APB (ASAPB) 1-17
AHB Slave to External Memory Interface (ASEMI) 1-17
AHB Slave to IPBus (ASSB) 1-18
AHB Slave to M1 (ASM1) 1-17
AHB Slave to M2 (ASM2) 1-17
AHB Slave to TDM / HDI16 Interfaces (ASTH) 1-17
AHB subsystem 11-12, 11-16
AHB-Lite 6-1
AHB-Lite bus 7-2
AHB-Lite buses 7-1
AHB-Lite crossbar switch 1-3
AHB-Lite slave buses 6-4
Alternate Master Priority Register (AMPRx) 6-20
Alternate Slave General-Purpose Register (ASGPCRx) 6-22
AMDMA 7-2
AMDMA address space 5-1
AMDMA-AHB crossbar switch 8-2
AMEC 7-2
AMEC bus 4-11

AMENT 7-2
AMENT address space 5-1
AMIC 7-2
AMIC address space 5-1
AMIC bus 4-19
AMPR 6-11
APB clock 11-1, 11-4, 11-5
APB peripheral bus 1-18
APB peripherals 1-25, 6-3
arbitration

crossbar switch 6-6, 6-12
DMA controller

DMA controller
arbitration 8-6

interrupt controller 12-4
Area Base Address bits 4-48
arithmetic and logical shifts 3-3
Arithmetic Logic Unit (ALU) 3-4
arithmetic operations 1-20
ASAPB 6-3
ASAPB address space 5-2
ASAPB bus 1-18
ASEMI 6-3
ASEMI address space 5-2
ASGPCR 6-11
ASM1 address space 5-2
ASM1 bus 4-15
ASM1 port 4-8
ASM2 address space 5-2
ASSB 6-3
ASSB address space 5-2
ASSB bus 7-2
ASTH address space 5-2
atomic instruction acknowledge 4-5
atomic Read-Modify-Write instruction 4-13

B

Base Address 31–16 (BASE) bits 4-42
Base Address Registers (B[0-7]) 3-9
bit 8-7, 11-18, 11-19
Bit Field Unit (BFU) 3-6
bit field units (BFUs) 3-5
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-1

Index
Bit Mask Instructions 3-15
bit mask instructions 3-4
bit mask operations 3-4
Bit Mask Test and Set instruction (BMTSET.W) 4-39
Bit Mask Unit (BMU) 3-4
bits 11-5, 11-18, 11-22
block diagram of MSC7113 device 1-11
block diagram of MSC7115 device 1-12
block diagram of MSC7116 device 1-13
BM[0–2] 14-5
BMTSET 4-14
BMTSET instruction 3-4
BMTSET.W atomic instruction 4-14
boot

checksum 14-17, 14-22
crossbar switch 14-2
DDR memory controller 14-8
error handling on completion 14-17
example source program 14-23
from an external host 14-10, 14-13
from external host 14-11
from I2C module 14-18
from power-on reset 14-7
HDI16 data example 14-16
HDI16 data record 14-15
HDI16 host interface 14-10
host interface procedure 14-13
I2C example 14-21
instruction fetch unit 14-2
interrupt handling 14-9
M1 memory 14-8
power-on reset vector 14-7
record structure for HDI16 14-15
UART 14-18
valid source 14-4
write to serial EPROM over I2C port 14-24

boot data record size 14-3
boot mode 14-7
Boot Mode (BM[0–2]) 13-3
boot operating mode 14-5
boot port

HDI16 14-1
I2C 14-1

boot ports 14-1
boot program 14-1
boot program and data flow 14-3
boot program flow 14-2
boot record format 14-2
boot ROM 1-3, 14-2
boot sequence 14-1, 14-5, 14-6
boot user program 14-4
booting basics 14-1
booting via the SPI 14-26
bootLhost flags 14-10
bootloader

operation
host interface procedure 14-13

Boundary Scan Register 16-27
Boundary Scan Register (BSR) 16-21
boundary scan TAP 16-11
boundary scan TAP controller instructions 16-16
buffer descriptors

FCC Fast Ethernet controller 18-23, 18-26
burst size 4-34
bursting, ICache 4-31
bursts

ICache 1-21
bus access exceptions 4-5
bus collisions 1-20
bus error detection 7-1, 7-2
bus interface, external 1-18
bus monitor reset 13-1
Bus Switch (BS) 4-12
bus switch and write buffer 1-19
Bus Time-Out Control Register (BTMCTL) 7-8
bus time-out monitors 6-4, 7-1
bypass clock 11-16
BYPASS instruction 16-14, 16-16, 16-18, 16-20
Bypass Register 16-12
byte, SC140 bit size 1-xxi

C

C libraries 1-7
C/C++ compiler 1-7
cache array 4-20
cache bursting from M2 memory 6-4
cache hit 4-19
Cache Lock Mode (LM) bit 4-50
cache miss 4-19
Capture Register Use TMR 21-14
Change-of-Flow Instructions 3-16
char, bit size defined 1-xxii
checksum

boot 14-17, 14-22
CHOOSE_EONCE instruction 16-18, 16-20
CLAMP instruction 16-16, 16-17
clear line ICache command (Debug mode only) 4-45
CLKCTL 11-5, 11-25
CLKIN 2-10
CLKOUT 2-11, 11-5
Clock and Frame Sync Generation ESSI 19-6
clock configuration 11-5
clock configuration registers 11-24
Clock Control Register (CLKCTL) 11-24
clock frequency restrictions 11-7
clock generation 11-5
clock synthesis module 1-6, 11-1, 11-4
clock, reference 11-1
clockout signal 11-5
MSC711x Reference Manual, Rev. 0

Index-2 Freescale Semiconductor

Index
clocks
configuration 11-5

Clocks ESSI 19-5
DEVCFG 7-3
collision handling, 18-18
collisions 1-20
Command Vector Register (CVR) 20-46

bit definitions 20-46
Commands Bits (C) 4-51
communications ports 1-8
communications processor module (CPM)

fast communications controllers (FCCs)
Fast Ethernet mode

buffer descriptors 18-23, 18-26
compare or test operations 3-3
compiler 1-7
context switching 6-5

crossbar switch 6-5
control registers 3-4
conventions, reference manual 1-xx
CORE clock frequency ratios 11-5
core data buses (XDBA and XDBB) 3-4
core data register accesses 3-10
core Data Registers (D[0–15]) 3-5
Counting Modes of Definitions TMR 21-8
DDR memory controller

TCFG2 9-21
crossbar master port buses 1-16
crossbar slave port buses 1-16, 1-17
crossbar switch 1-1, 1-22, 1-24, 4-14, 4-19, 5-2, 7-1

arbitration 6-5, 6-12
data throughput 6-17
decoders 6-9
fixed-priority arbitration 6-5
master port programming model 6-18
masters 1-24
parking on last master 6-15
priority elevation 6-7
round-robin arbitration 6-7
slave port programming model 6-19
state machine 6-9, 6-12
system-level parallelism 6-4

crossbar switch halt 11-16, 11-17
crossbar switch masters 6-2
crossbar switch slaves 6-3
CSBRx 9-32
GPACTL 11-5
CVR (Command Vector Register) 20-46

D

D[0–31] 2-11
DALU Logical Instructions 3-11
Data ALU arithmetic instructions 3-12
Data ALU components 3-4

Data ALU programming model 3-9
Data ALU register partitioning 3-5
Data ALU registers 3-4
Data Area Register 0–3 (DBR[0–3]) 4-42
Data Area Registers 4-12
data buses, core 3-5
data movement

DMA controller 8-10
data types, SC140 1-xxi
DBR[BASE] 4-42
DBR[EN] 4-42
DBR[GBL] 4-42
DBR[IMM] 4-42
DBR[SIZE] 4-42
DCHPRI 8-39
MIPR 12-3
DDR

features 9-1
functional description 9-3
initialization and application information 9-31
modes of operation 9-15

DDR clock 11-5
DDR memory controller 1-3, 14-8

16-Pin DDR SDRAM configuration 9-9
16-pin mode 9-7
32-Pin DDR SDRAM configuration 9-10
32-pin mode 9-7
64 MB DDR SDRAM configuration 9-11
accessing 9-3
address multiplexing in 32-Pin mode 9-27
AHB masters through the crossbar switch 9-3
Auto-Precharge mode 9-14
CASLAT parameter 9-19
Chip Select Configuration Registers (CSxCFG) 9-34
Chip Select Memory Bounds Register, 32-pin Operation

(CSBRx) 9-33
Chip-Select Memory Bounds Register, 16-Pin

Operation (CSBRx) 9-32
configurable timing parameters 9-22
configuration examples 9-7
data beats to SDRAM devices 9-27
DDR SDRAM configurations supported 9-6
DDR SDRAM Control Configuration Register

(SCFG) 9-39
DDR SDRAM Interval Configuration Register

(SICFG) 9-42, 9-43
DDR SDRAM Mode Configuration Register

(SMCFG) 9-41
DDR SDRAM Timing Configuration Register 1

(TCFG1) 9-35
DDR SDRAM Timing Configuration Register 2

(TCFG2 9-38
error detection and management 9-30
error handling registers 9-43
fan-out and termination 9-8
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-3

Index
initializing DDR SDRAM devices 9-31
JEDEC-standard interface commands 9-12
low-power modes 9-15
Memory Error Address Capture Register, 16-Pin

Operation (MEADDC) 9-46
Memory Error Address Capture Register, 32-Pin

Operation (MEADDC) 9-47
Memory Error Attributes Capture Register

(MEAC) 9-30, 9-45
Memory Error Detect Register (MERRD) 9-43
Memory Error Extended Address Capture Register,

16-Pin Operation (MEEAC) 9-47
Memory Error Extended Address Capture Register,

32-Pin Operation (MEEAC) 9-48
Memory Error Interrupt Enable Register

(ERRINT) 9-44
memory select errors 9-30
Open Page mode 9-14
operating modes 9-13
refresh 9-24
refresh timing for DDR SDRAM 9-25
registered DIMMs 9-22
SDRAM interface timing 9-17
single-beat write operation 9-19
structure of 9-4
write timing adjustments 9-23

DDR memory controller halt 11-18
DDR SDRAM

address multiplexing 9-25
interface operation 9-17
JEDEC standard interface commands 9-12
mode-set command timing 9-21
refresh 9-24
refresh and power-saving modes 9-15
refresh timing 9-25
registered DIMM mode 9-22
supported organizations 9-6
write timing adjustments 9-23

STOPCTL 11-18, 11-19
HLTACK 11-18
HLTREQ 11-19
DDR-RAM 1-3
DDR-RAM memory controller 1-1
debug

Boundary Scan Register 16-27
boundary scan TAP controller 16-11
crossbar switch 16-9
emulator

breakpoint sequencing 16-6
breakpoint triggering 16-3
exit Debug mode 16-10
halt events 16-7
interrupt requests 16-10

emulator access 16-4
emulator access through memory map 16-4

emulator accessed through the JTAG port 16-21
emulator and debug exception 16-5
emulator and event port 16-4
emulator and JTAG port 16-4
emulator interrupt request 16-3
emulator registers 16-23
emulator system-level 16-3
enter Debug mode 16-7
exiting SC1400 Debug mode 16-10
forced Debug mode 16-6
halt SC1400 core 16-4
hardware breakpoints 16-4
JTAG boundary scan registers 16-25
JTAG Bypass Register 16-29
JTAG General-Purpose Register 16-30
JTAG Identification (ID) Register (JTAGID) 16-26
JTAG instructions 16-14
JTAG Parallel Input Register (PIREG) 16-31
JTAG TAP state machine 16-22
JTAG test access port (TAP) 16-10
SC1400 emulator instructions 16-7
software watchdog timer 16-7
system-level emulator signals 16-6
trace buffer 16-5

Debug mode 1-21, 4-49, 12-3
Debug Mode (DM) bit 4-50
debug port (OCE10 emulator) 1-30
debug port breakpoint unit 1-30
debug processing state 16-9
debug TAP controller 16-11, 16-18
DEBUG_REQUEST instruction 16-18, 16-19
debugger 1-7
debugging

system-level 4-9
Descriptor Group Address 1 (GADDR1) 18-46
Descriptor Group Address 2 (GADDR2) 18-47
Descriptor Individual Address 1 (IADDR1) 18-45
Descriptor Individual Address 2 (IADDR2) 18-46
Destination Address Field (DA) bits 4-51
Device Configuration Register (DEVCFG) 7-17
device-level non-maskable interrupt requests 12-3
device-specific features of MSC711x family 1-8
DI instruction 12-4
Direct Memory Access (DMA) controller 1-xix
DMA arbitration 8-6
DMA channel activation 8-9
DMA Channel Priority Register (DCHPRI) 8-39
DMA Channel Priority Registers (DCHPRIx) 8-7
DMA Clear Done Status (DMACDNE) 8-36
DMA Clear Enable Error Interrupt (DMACEEI) 8-34
DMA Clear Enable Request (DAMCERQ) 8-33
DMA Clear Error Register (DMACERR) 8-35
DMA Clear Interrupt Request Register (DMACINT) 8-34
DMA Control Register (DMACR) 8-27
DMA Control Register (DMACTL) 18-51
MSC711x Reference Manual, Rev. 0

Index-4 Freescale Semiconductor

Index
DMA controller 1-1, 1-3, 1-24, 1-25, 5-1, 6-2
bursts 8-5
channel assignments 8-6
channel linking (or chaining) 8-23
channel operation and data flow 8-9
check TCD status 8-21
crossbar switch 8-8
data movement 8-10
data transfer examples 8-17
destination address error 8-5
destination offset error 8-5
dynamically changing channel priority levels 8-24
event port 15-10
features 8-1
interrupt vectors 8-8
loop completion 8-21
M1 memory 8-5
preemption status 8-22
programming errors 8-17
source address error 8-5
source offset error 8-5
transfer control descriptor (TCD) 8-3

DMA controller and crossbar switch 1-25
DMA controller to M1 memory 1-25
DMA Enable Error Interrupt Register (DMAEEI) 8-32
DMA Enable Request Register (DMAERQ) 8-31
DMA engine 8-3
DMA Error Register (DMAERR) 8-38
DMA Error Status Register (DMAES) 8-5, 8-28
DMA event types 15-10
DMA initialization sequence 8-17
DMA Interrupt Request (DMAINT) 8-37
DMA programming errors 8-17
DMA programming model 8-25
DMA Set Enable Error Interrupt Register (DMASEEI) 8-33
DMA Set Enable Request Register (DMASERQ) 8-32
DMA Set Start (DMASSRT) 8-36
DMA transfer control descriptor 8-3
DMACDNE 8-36
DMACEEI 8-34
DMACEER 8-35
DMACERQ 8-33
DMACR 8-27
DMAEEI 8-32
DMAERQ 8-31
DMAERR 8-38
DMAES 8-28
DMAINT 8-37
DMASEEI 8-33
DMASERQ 8-32
DMASSRT 8-36
double data rate (DDR) SDRAM memory modules 9-1
Dx (data register) 3-9

E

ECore clock 11-23, 12-2
ECore clock, and DDR clock 11-4
ECTL 18-35
emulation and debug capability 16-2
emulator 16-1
emulator (OCE10) and debug module 1-21
emulator breakpoint logic 1-30
Enable Area Operation (EN) bit 4-48
Enable Operation (EN) bit 4-42
Enable WB (WBOFF) bit 4-41, 17-9, 17-10, 17-19, 17-20,

17-21
ENABLE_EONCE instruction 16-18, 16-19
Enhanced On-Chip Emulation (Enhanced OnCE)

module 16-2
EOnCE registers 5-1
EPROM 14-24
DMACR 8-7
ERRINT 9-44
error detection

bus 7-2
error handling

Ethernet controller, 18-19
error, misaligned program 4-9
DDR memory controller

SMCFG 9-21
ESSI

Clock and Frame Sync Generation 19-6
Clocks 19-5
Configurations 19-7
Features 19-1
Interrupts 19-23
Network Mode with Mask Registers

Implemented 19-17
Ethernet

enabling 18-7
software initialization sequence 18-6

Ethernet (FEC) 14-5
Ethernet Control Register (ECTL) 18-35
Ethernet controller 1-1

address recognition 18-12
address recognition, 18-12
buffer descriptors 18-8
collision handling, 18-18
collisions 18-18
data frame transmission 18-17
Descriptor Group Address 1 (GADDR1) 18-46
Descriptor Group Address 2 (GADDR2) 18-47
Descriptor Individual Address 1 (IADDR1) 18-45
Descriptor Individual Address 2 (IADDR2) 18-46
DMA Control Register (DMACTL) 18-51
error handling, 18-19
errors

reception, 18-19
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-5

Index
reception,overrun, 18-20
Ethernet Control Register (ECTL) 18-35
Fast Ethernet Receive Buffer Descriptor (RxBD) 18-23
Fast Ethernet Transmit Buffer Descriptor (TxBD) 18-26
FEC DMA controller 18-10
FEC hard reset 18-20
FEC Identification Register (FECID) 18-28
FEC receiver 18-11
FIFO ID Register (FIFOID) 18-47
FIFO Receive Bound Register (FRBND) 18-48
FIFO Receive Start Register (FRST) 18-49
FIFO Transmit Watermark Register (TWMRK) 18-47
frame reception and transmission error conditions 18-19
full-duplex flow control 18-17
IEEE standards 18-1
internal and external loopback, 18-18
inter-packet gap time 18-18
interpacket gap time, 18-18
Interrupt Enable Register (IMASK) 18-31
Interrupt Event Register (IEVENT) 18-29
interrupts 18-20
Management Information Base (MIB) counters 18-21
media independent interface (MII) 18-1
MIB Control Register (MIBCTL) 18-39
MII Management Frame Register (MIIDATA) 18-37
MII Speed Control Register (MIISPEED) 18-38
MIIGSK Configuration Register (MIIGSKCFG) 18-51
MIIGSK Enable Register (MIIGSKEN) 18-52
Opcode/Pause Duration Register (OPPAUSE) 18-45
operating modes 18-8
pause frame 18-17
Physical Address High Register (PADDRH) 18-44
Physical Address Low Register (PADDRL) 18-44
receive buffer descriptors 18-10
receive buffer interrupts 18-12
Receive Buffer Size Register (RBSZ) 18-50
Receive Control Register (RCTL) 18-40
Receive Descriptor Active Register (RDA) 18-34
Receive Descriptor Ring Start Register

(RDESST) 18-49
Receive Hash Register (RHASH) 18-41
RMON counters 18-21
transmit buffer descriptors 18-9
Transmit Control Register (TCTL) 18-42
Transmit Descriptor Active Register (TDA) 18-35
Transmit Descriptor Ring Start Register

(TDESST) 18-50
transmitter 18-11

Ethernet CRC 18-9
Ethernet interface 1-4, 1-8
Ethernet MAC 1-25, 5-1, 6-2, 18-11
Ethernet MAC DMA data transfers 1-24
Ethernet MAC halt 11-19
EVCTL 15-27
event counting 16-2

event port 1-3, 1-30, 15-1
ANDing restrictions 15-12
architecture 15-3
auxiliary input 15-7
combining logic 15-10
direct connect modes 15-8
DMA input source 15-8
DMA interaction 15-2
EEx signals 15-18
emulator 15-2
emulator detection module 15-4
Event Multiplexer Input Selection Register

(EVINx) 15-32
event multiplexer inputs 15-5
Event Output Register (EVOUTx) 15-34, 15-37
Event Port Control Register (EVCTL) 15-27
event sequencing 15-20
EVNTx pins 15-4
interaction with debug port 15-17
interrupt controller 15-4
interrupts 15-15
peripheral interaction 15-2
REN bit usage 15-20
reset event multiplexer 15-19
restrictions on multiple drivers 15-16
sequencing from Debug port 15-23
sequencing to Debug port 15-23
set operation 15-12
set-reset operation 15-13
software management of event multiplexers 15-19
timer module 15-4
timer operations 15-2
toggle 15-14
trigger event multiplexer 15-19
trigger events 15-15
triggering sequence 15-25

EVNT pins 15-1
EVNT4 pin 11-23
EVOUTx register 15-19
exception

misaligned data 4-9
X and P memory bus contention 4-9

Exception and Mode Register (EMR) 3-10
Exception mode 3-4
Exception Mode Stack Pointer (ESP) 3-4
exception processing state 16-9
Exception Stack Pointer (ESP) 3-8
extended core 1-3, 1-19, 1-24, 4-1
extended core control unit 4-5
extended core controller

errors, exceptions, events 4-8
extended core interface 1-22, 4-10, 6-2

access priority 4-11
AMEC bus 4-11
bus switch 4-12
MSC711x Reference Manual, Rev. 0

Index-6 Freescale Semiconductor

Index
system-level debugging 4-9
write buffer 4-12

extended core interface (ECI) 11-4
Extended Core Version (ECVer) bits 4-44
Extended QBus System (EQBS) 4-10
external bus interface 1-18
external buses 1-16
external configuration signals 13-3
external data bus 1-3
external hard reset (HRESET) 13-1
EXTEST instruction 16-16, 16-21

F

fast Ethernet controller (FEC) 1-28
features

extended core 1-3
memory controller 1-3
SC1400 core 1-2

features of MSC711x 1-2
FEC Identification Register 18-28
FECID 18-28
fetch block 4-16
Fetch Unit (FU) 4-20, 4-31
fieldBIST hardware diagnostics 1-6
FIFO ID Register (FIFOID) 18-47
FIFO Receive Bound Register (FRBND) 18-48
FIFO Receive Start Register (FRST) 18-49
FIFO Transmit Watermark Register (TWMRK) 18-47
fixed 6-12
Fixed Frequency PWM Mode TMR 21-10
fixed-priority arbitration 6-5, 6-12
flush cache between boundaries ICache command 4-45
flush cache ICache command 4-45
flush of WB content 4-13
frame reception

Ethernet controller, 18-11
frame transmission

Ethernet controller, 18-11
freeze 11-16
freeze, core 4-12
full-duplex port 1-xxv, 23-1

G

general-purpose I/O (GPIO) signals 1-29
general-purpose I/O port 1-5
General-Purpose Input/Output (GPIO) port 1-xix, 1-6
General-Purpose Register 0–1 (GPR[0–1]) 4-44, 8-44
General-Purpose System Control Register (GPSCTL) 4-43
Global (GBL) bit 4-42
Global Interrupt Controller (GIC) 1-xix, 1-3
GPIO 1-3, 1-5, 12-8
GPIO pins in port D 7-1
GPIO signals 24-1
GPSCTL 4-43

TCTL 11-19

H

half word, SC140 bit size 1-xxi
Halt Acknowledge Status Register (HLTACK) 11-29
halt crossbar switch 11-16, 11-17
halt Ethernet MAC 11-19
halt HDI16 11-20
halt I2C module 11-21
halt memory controller 11-18
Halt Request Register (HLTREQ) 11-28
halt TDM 11-20
halt UART 11-21
hard reset 14-7
Hardware Semaphores 3-4
hash table effectiveness, 18-15
HCR register 19-29, 19-31, 19-34, 19-38
HCR, Host Control Register 20-28
HCVR, Host Command Vector Register 20-32
HDI16 1-3
HDI16 boot data record 14-15
HDI16 halt 11-20
HDI16 host flags 14-10
HIGHZ instruction 16-16
HLTACK 11-29
HLTREQ 11-28
HORX, Host Receive Data Register 20-37
Host Command Vector Register (HCVR) 20-32

bit definitions 20-33
Host Control Register (HCR) 19-29, 19-31, 19-34, 19-38,

20-28
bit definitions 20-29

host debug 1-8
host interface 1-3
Host Interface (HDI16) 20-1

Command Vector Register (CVR)
bit definitions 20-46

data transfer 20-15
Host Command Vector Register (HCVR)

bit definitions 20-33
Host Control Register (HCR) 19-29, 19-31, 19-34,

19-38
bit definitions 20-29

Host Port Control Register (HPCR)
bit definitions 20-34

Host Receive Data Register (HORX) 20-37
Host Status Register (HSR)

bit definitions 20-31
Host Transmit Data Register (HOTX) 20-36
Interface Control Register (ICR)

bit definitions 20-40
Interface Status Register (ISR)

bit definitions 20-44
programming model
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-7

Index
external host-side 20-37
SC140 core-side 20-27

Receive Word Registers (RX[0-3]) 20-47
Transmit Word Registers (RX[0-3]) 20-47

host interface (HDI16) 1-4, 1-28
host interface halt 11-20
Host Port Control Register (HPCR) 20-33

bit definitions 20-34
Host Receive Data Register (HORX) 20-37
Host Status Register (HSR) 20-31

bit definitions 20-31
Host Transmit Data Register (HOTX) 20-36
HOTX, Host Transmit Data Register 20-36
HPCR, Host Port Control Register 20-33
HRESET 2-10
HSR, Host Status Register 20-31

I

I2C
arbitration procedure 22-4
clock

synchronization 22-4
lost arbitration 22-7
software response 22-6
START generation 22-6
STOP generation 22-6
system configuration 22-3

I2C boot code 14-19
I2C boot data example 14-21
I2C boot data record 14-20
I2C boot procedure 14-19
I2C port 1-5
I2C two-wire, bidirectional serial bus 1-29
ICABR[area base] 4-48
ICache 1-1, 1-3, 1-19, 1-21, 11-4, 14-7

non-real-time debugging 4-16
real-time debugging 4-16
run-time debug support 1-21

ICache bursts 1-21
ICache command

clear line (Debug mode only) 4-45
flush cache 4-45
flush cache between boundaries 4-45
initialize status registers (Debug mode only) 4-45

ICache Command Register (ICCMR) 4-45, 4-50
ICache commands 4-45
ICache Control Register (ICCR) 4-49
ICache Debug mode 4-49
ICache debugging support 4-23
ICache disabled 14-7
ICache fetch block 4-16
ICache fetch unit 5-1
ICache index and way/set 4-16
ICache line 4-16

ICache Lock mode 4-49
ICache memory address partitioning 4-16
ICache miss 15-1
ICache multi-task support 4-21
ICache programming restrictions 4-46
ICache reads 4-45
ICache replacement algorithm 4-16
ICache state and mode 4-45
ICache TAG 4-17
ICache valid bit 4-16
ICACR[EN] 4-48
ICACR[SIZE] 4-48
ICCMR[C] 4-51
ICCMR[DA] 4-51
ICCR[DM] 4-50
ICCR[LB] 4-50
ICCR[LM] 4-50
ICCR[ON] 4-50
ICCR[UB] 4-49
ICR, Interface Control Register 20-39-20-40
IDCODE instruction 16-15, 16-17, 16-19, 16-30
Identification Register (ID) 16-12, 16-30
IEEE 1149.1 Standard Test Access Port and Boundary Scan

Architecture 16-1
IEEE 1149.1 Test Access Port (TAP)

controller 16-12
restrictions 16-21

IEVENT 18-29
IFUR[PFOFF] 4-48
illegal access detection 7-1, 7-3
IMASK 18-31
Immediate (IMM) bits 4-42
immediate memory write accesses, core 4-12
Immediate write access with no freeze 4-12
index and way/set 4-16
Initialization/application information 9-31, 22-5
initialize status registers ICache command (Debug mode

only) 4-45
Instruction Cache (ICache) 4-15
instruction cache (ICache) 4-15, 4-34

bursting 4-31
cache array 4-20
cache hits and misses 4-19
locking 4-21
multi-tasking 4-21
number of fetch sets 4-21
performance improvement 4-21
programmable cacheable memory 4-37
second cache miss 4-34
set associative mapping 4-17, 4-19
tuning 4-21

instruction cache (ICache) structure 4-17
instruction cache misses 4-10
Instruction Cacheable Area Base Register (ICABR) 4-47
Instruction Cacheable Area Control Register (ICACR) 4-48
MSC711x Reference Manual, Rev. 0

Index-8 Freescale Semiconductor

Index
Instruction fetch unit 1-19
instruction fetch unit 1-22, 1-24, 6-2, 6-4, 14-2
instruction fetch unit (IFU) 4-19, 4-31, 11-4
instruction region registers 4-45
Integrated Development Environment (IDE) 1-7
Interface Control Register (ICR) 20-39-20-40

bit definitions 20-40
Interface Status Register (ISR)

bit definitions 20-44
ISR, Interface Status Register 20-44

internal memory 1-3
Internal Peripheral Bus (IPBus) 1-3
inter-packet gap time 18-18
interrupt arbitration priorities 12-4
interrupt controller 1-3

arbitration 12-4
architecture 12-2
signal pins 12-2

interrupt controller registers 1-17, 1-18
Interrupt Enable Register 18-31
interrupt requests

internal non-maskable 12-8
interrupt sources 12-6

maskable 12-1
non-maskable 12-4
non-maskable device-level 12-7

interrupt system 1-xxiv, 12-1
interrupt vector 12-6
interrupt vector address 12-5
interrupt vectors

DMA controller 8-8
interrupts 1-6, 1-26

event port 15-15
Interrupt Priority Level Registers 12-16, 12-17
Maskable Interrupt Pending Register 12-15
MIPR 12-15
Non-Maskable Interrupt Pending Register 12-12
Vector Base Address Register (VBA) 12-12

Interrupts Programming Model 12-12
IPBus 1-3, 1-18, 5-2
IPBus address space

DMA controller 8-25
IPBus clock 11-1, 11-4, 11-5, 11-22
IPBus clock shut off 11-22
IPBus peripherals 1-25, 6-3

J

JEDEC-compliant DDR SDRAMS 9-3
Joint Test Action Group (JTAG) 16-4
JTAG 1-8

Bypass Register 16-12
Identification Register (ID) 16-12
instructions 16-16, 16-18
saving power 16-21

TAP controller 16-11, 16-13
TAP controller states 16-13
TCK signal 16-10
TDI signal 16-10
TDO signal 16-10
TMS signal 16-10, 16-13
TRST signal 16-10

JTAG boundary scan registers 16-25
JTAG command reset 13-1
JTAG Debug Instruction Register (JDIR) 16-15
JTAG General-Purpose Register 16-30
JTAG Identification (ID) Register (JTAGID) 16-26
JTAG interface 16-3
JTAG Parallel Input Register (PIREG) 16-31
JTAG TAP state machine 16-22
JTAG test access port (TAP) 16-10

L

least recently used (LRU) algorithm 4-16
least-recently used (LRU) 4-15
libraries 1-7
line 4-16
linker 1-7
LOAD_GPR instruction 16-20
Lock mode 4-49
Loop Counter Registers (LC[0–3]) 3-10
loopback, internal and external, 18-18
loss of lock 11-12
low power operation 11-15
low power Stop mode 1-6
Lower Boundary Value (LB) bits 4-50
low-power operation 11-12
LRU algorithm 4-19
LRU Status Register (LRUSR) 4-51
LRU Status Register Contents (LS) bits 4-51
LRUSR[LS] 4-51

M

M1 4-2
M1 memory 1-3, 1-8, 1-19, 1-25, 4-2, 4-15, 4-39, 5-1, 5-2,

6-3, 11-4
access priority 4-5
memory contention summary 4-7
memory contentions 4-6

access priority 4-7
parallel accesses 4-6
reducing 4-8

organization of 1-20
M1 memory access fields 4-4
M1 memory and DMA controller 8-5
M1 memory ports 4-3
M1 memory space 1-20
M1 memory, boot 14-8
M2 memory 1-1, 1-2, 1-3, 1-8, 1-25, 1-27, 4-19, 4-37, 6-3
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-9

Index
SC1400 core accesses 1-22
MAC (multiply-accumulate) 3-5
MAP-BGA package 1-6
Maskable Interrupt Controller 12-2
maskable interrupt sources 12-1
Master Priority Register (MPRx) 6-20
masters to the crossbar switch 1-24
MEAC 9-45
MEADDC 9-46
memory 1-22
memory address partitioning 4-16
memory contention and priority 4-6, 4-7
memory controller 1-3

features 9-1
Memory Error Address Capture Register (MEADDC) 9-30
memory errors and exceptions 4-8
memory group, module interleaving 4-4
memory groups 4-4
memory map 5-1
memory map addressable regions 5-1
Metrowerks® CodeWarrior® 1-7
MIB Control Register (MIBCTL) 18-39
MIB counters 18-21
MII Management Frame Register (MIIDATA) 18-37
MII Speed Control Register (MIISPEED) 18-38
MIIENR 11-19
MIIGSK Configuration Register (MIIGSKCFG) 18-51
MIIGSK Enable Register (MIIGSKEN) 18-52
MIISPEED 18-38
misaligned data 4-9
misaligned program error 4-9
MMACS 4-2
Modifier Control (MCTL) Register 3-9
Modifier Registers (M[0-3]) 3-9
modulo adder 3-3
modulo comparator 3-3
modulo mode 3-3
Move Instructions 3-14
MSC7110 block diagram 1-9
MSC7112 block diagram 1-10
MSC7113 1-11
MSC7115 1-12
MSC7116 1-13
MSC8102 default memory map 5-3
MSC8102 interrupt system 1-xxiv, 12-1
DDR memory controller

MERRD 9-30, 9-31
multiply-accumulate (MAC) units 3-5
multi-task support 4-21

N

N[0-3] (offset registers) 3-9
Network Mode with Implemented Mask Registers

ESSI 19-17

NMI 2-36
NMIPR 12-12
No Cache Debug mode command 4-47
non-maskable interrupt request 12-3
non-maskable interrupt sources 12-4, 12-6
non-maskable interrupt sources from SC1400 core 12-6
Normal Mode Stack Pointer (NSP) 3-4
normal processing state 16-9
Normal Stack Pointer (NSP) 3-8

O

OCE10 breakpoint logic 1-26
OCE10 emulator debug port. 1-6
OCE10 emulator module 16-1
OCE10 on-chip emulator 15-1
offset adder 3-3
Offset Registers (N[0–3]) 3-9
On/Off Bit (ON) bit 4-50
One-Shot Mode TMR 21-9
Opcode/Pause Duration Register (OPPAUSE) 18-45
Overflow 3-10

P

packaging 1-6
parallel arithmetic operations 3-4
parallel transfers at the system level 6-1
DEVCFG 11-5
peripheral bus 1-18

IPBus 1-18
peripheral buses 1-16
peripheral clocking 11-1
peripheral subsystem 11-12
peripherals 1-27
phase lock loop (PLL) 11-1
Physical Address High Register (PADDRH) 18-44
Physical Address Low Register (PADDRL) 18-44
PIC 1-6
PLL 1-6
PLL and clocks 1-26
PLL clock 11-16
PLL clockout frequency 11-5
PLL lock 11-16
PLL multiplication factor (PLLMLTF) 11-5
PLL ON/OFF 1-7
PLL pre-division factor (PLLDVF) 11-5
POP instruction 3-8
PORESET 2-10
PORESET, 2-10
Port A of GPIO module 12-3
power reduction 11-12
power-on reset (PORESET) 13-1
power-on reset flow 13-2
power-on reset or hard reset 14-1
power-on reset vector 14-7
MSC711x Reference Manual, Rev. 0

Index-10 Freescale Semiconductor

Index
Pre-division on PLL 1-6
pre-fetch 4-31
Pre-Fetch (PFOFF) bit 4-48
PRIVATE instruction 16-20
Process Version (PrVer) bits 4-44
processing states 16-9
profiler 1-7
program address bus (PAB) 4-19
Program Address Generator (PAG) 3-6
Program Control Instructions 3-17
Program Control Unit (PCU) 3-6
Program Counter (PC) 3-6
Program Counter Register (PC) 3-10
Program Dispatch Unit (PDU) 3-6
Program Sequencer Unit (PSEQ) 3-6, 3-10
programmable interrupt controller (PIC) 1-6
PSDDQM[0–7] 2-11
PSDRAS 2-11
Pulse Output Mode TMR 21-10

Q

quad word, SC140 bit size 1-xxi

R

r 20-37
READ_PIREG instruction 16-20
read-modify-write operation 4-14
reads, ICache 4-45
Real-time operating systems (RTOS) 1-7
Receive Buffer Size Register (RBSZ) 18-50
Receive Control Register (RCTL) 18-40
receive data (URXD) 23-1
Receive Descriptor Active Register (RDA) 18-34, 18-35
Receive Descriptor Ring Start Register (RDESST) 18-49
Receive Hash Register (RHASH) 18-41
Receive Word Registers (RX[0-3]) 20-47
reference clock 11-1
DDR memory controller

SICFG 9-24
register base addresses 5-4
replacement algorithm 4-16
reset

actions for each reset source 13-2
bus monitor 13-1
external configuration signals

Boot Mode 13-3
Hard Reset Configuration Word (HRCW) 13-6
HRESET 13-1
JTAG command 13-1
PORESET 13-1
power-on reset flow 13-2
Reset Status Register (RSR) 13-7

Bus Monitor Reset Status 13-8
External hard reset status 13-8

JTAG Reset Status 13-7
Software Watchdog Reset Status 13-8

software watchdog 13-1
software watchdog timer 7-7
sources 13-1

reset and boot 1-26
reset configuration registers 11-24
reset processing state 16-9
reset sequence 14-1
reset sources 13-1
restart TDM 11-20
restrictions

ICache programming 4-46
restrictions/issues on ICache programming 4-46
reverse-carry mode 3-3
RHASH 18-41
SWTCL 7-6
round-robin arbitration 6-14
round-robin priority arbitration 6-7
RS-232 interface 1-3
RTOS 1-7
RX[0-3], Receive Word Registers 20-47

S

SAMPLE//PRELOAD instruction 16-16
SC1300 core arithmetic operations 1-20
SC140 core

data types 1-xxi
SC140 DSP core programming model 3-7
SC140 extended core 4-1
SC140 instruction set 3-11
SC1400 core 1-1, 1-19, 4-2
SC1400 core buses 1-16
SC1400 core features 1-2
SC1400 core stalls 1-20
SC1400 core Status Register 12-4, 12-5
SC1400 core Wait Stop modes 11-14
SCR[UART_STC] 11-29
DDR memory controller

SMCFG 9-21
SDRAM interface

registered DIMM mode 9-22
timing 9-17

SDRAM machine 1-3
serial communication interface (SCI) 1-xxv, 23-1
Serial Communications Interface (SCI) 1-3
set associative mapping 4-17
set operation

event port 15-12
shadow stack pointer registers 3-8
short, bit size defined 1-xxii
shut down timer 11-21
shut off IPBus clock 11-22
sign extension 3-10
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-11

Index
Size Indication (SIZE) bit 4-42, 4-48
Slave General-Purpose Register (SGPCRx) 6-22
slaves to crossbar switch 1-25
slaves to the crossbar switch 6-3
SmartDSP OS 1-7
software support 1-7

debugger 1-7
linker 1-7
profiler 1-7

software watchdog counter
pause mechanism 7-6

software watchdog reset 13-1
software watchdog timer 1-6, 1-25, 11-4, 14-7

configuration out of reset 7-6
counter 7-5

software watchdog timer (SWT) 7-4
software watchdog timer disabled 14-7
software watchdog timer enable 7-1
Software Watchdog Timer Enable (SWTE) 13-3
SPI-based serial Flash or EEPROM 14-26
SPLL PDF 11-5
Stack Pointer (SP) registers 3-4
Stack Support Instructions 3-15
StarCore SC140 DSP Core Reference Manual 1-xxvi
Start Address Registers (SA[0-3]) 3-10
state machine 6-12
Status Register (SR) 3-10
STOPCTL 11-22
stop configuration registers 11-24
Stop mode 1-6, 11-14, 11-15, 11-16, 11-19, 11-22
Stop Mode Control Register (STOPCTL) 11-26
stop processing state 16-9
STOPCTL 11-15, 11-26
sync in configuration 19-10
sync out configuration 19-9
system configuration and protection 7-1
system control registers 7-7
system control unit 1-25, 7-1
system initialization 1-25
system lock 7-4
system monitoring and protection 1-25
system protection 7-1
system start-up 1-25

T

TAG 4-17
Tag Array Status Register (TASR) 4-52
Tag State Register (TS) bits 4-52
TAP controller 16-11, 16-13
TAP controller states 16-13
TASR[TS] 4-52
TCD0 8-42
TCFG1 9-35
TCFG2 9-38

TCK 2-42
TCK signal 16-10

input restriction 16-21
TDI 2-42
TDI signal 16-10
TDM 1-3
TDM basics 19-2
TDM halt 11-20
TDM interface 1-27
TDM interfaces 1-xix
TDM interfaces, number of 1-8
TDM modules 1-4
TDM restart 11-20
TDM reverse data order 19-15
TDM serial interface synchronization 19-13
TDM sync in configuration 19-10
TDM sync out configuration 19-9
TDMs/HDI16 1-25, 6-3
TDO 2-42
TDO signal 16-10
test access port (TAP) 16-1
test-and-set operations 4-14
thrashing 4-21
time-division multiplexing (TDM) modules 1-3
timer clock 11-1, 11-4
timer clock multiplex 11-1
Timer Compare Interrupts 21-15
Timer Input Edge Interrupts 21-16
timer module

event port 15-4
Timer Overflow Interrupts 21-15
timer shut down 11-21
timers 1-xix, 1-3, 1-5, 1-29
Timing diagrams

DRAM/EDO, self-refresh in sleep and suspend
modes 9-16

TMR
Capture Register Use 21-14
Features 21-1
Fixed Frequency PWM Mode 21-10
Memory Map 21-16
One-Shot Mode 21-9
Pulse Output Mode 21-10
Resets 21-14
Timer Channel Load Register (LOAD) 21-24
Timer Compare Interrupts 21-15
Timer Control Registers (CTL) 21-17, 21-19, 21-22,

22-9, 22-10, 22-11, 22-12, 22-14
Timer Input Edge Interrupts 21-16
Timer Overflow Interrupts 21-15
Variable Frequency PWM Mode 21-10

TMR Module Memory Map
Memory Map TMR Module 21-1

TMS 2-42
TMS signal 16-10, 16-13
MSC711x Reference Manual, Rev. 0

Index-12 Freescale Semiconductor

Index
restriction 16-21
CLKCTL 11-22
trace buffer 16-2
transfer control descriptor (TCD) 8-3
Transfer Control Descriptor 7 (TCD7) 8-48
Transfer Control Descriptor Word 0 (TCD0) 8-42
Transfer Control Descriptor Word 1 (TCD1) 8-42
Transfer Control Descriptor Word 2 (TCD2) 8-44
Transfer Control Descriptor Word 4 (TCD4) 8-45
Transfer Control Descriptor Word 5 (TCD5) 8-46
Transfer Control Descriptor Word 6 (TCD6) 8-47
Transmit Control Register (TCTL) 18-42
transmit data (UTXD) 23-1
Transmit Descriptor Ring Start Register (TDESST) 18-50
Transmit Word Registers (TX[0-3]) 20-47
TRST 2-42
TRST signal 16-10
true (T) bit 4-14
TX[0-3], Transmit Word Registers 20-47
typical SC140 DSP CoreDevice 3-2

U

UART 1-xix, 1-xxv, 1-3, 1-5, 1-29, 23-1
UART halt 11-21
UART Stop (UART_STC) bit 11-29
Universal Asynchronous Receiver/Transmitter (UART) 1-3
Upper Boundary Value (UB) bits 4-49
URXD 23-1
user boot program 14-4
UTXD 23-1

V

valid bit 4-16
Valid Bit Array Line Content (VS) bits 4-52
Valid Bit Array Status Register (VBASR) 4-52
valid boot source 14-4
Variable Frequency PWM Mode TMR 21-10
VBA register of SC1400 core 12-5
VBASR[VS] 4-52
Vector Base Address 12-5
Vector Base Address Register (VBA) 12-12
Version Register (VR) 4-44
VR[ECVer] 4-44
VR[PrVer] 4-44

W

Wait or Stop modes 11-14
wait processing state 16-9
wake-up control 11-1
Watchdog 7-14
watchdog clock 11-4
Watchdog Control Register (SWTCTL) 7-12
Watchdog Count (WD) bits 4-41

Watchdog Counter Restart Register (SWTCR) 7-14
Watchdog Current Counter Value Register (SWTCCV) 7-14
Watchdog End of Interrupt Register (SWTEOI) 7-15
Watchdog Interrupt Status Register (SWTSTA) 7-15
WB Control Register (WBCR) 4-41
WB flush 4-13
WB Software Flush Register (WBFR) 4-41
WBCR[WBOFF] 4-41, 17-9, 17-10, 17-19, 17-20, 17-21
WBCR[WD] 4-41
SWTCTL 7-6
word, SC140 bit size 1-xxi
write buffer 1-1, 1-19, 1-23, 4-12

flush 4-13
watchdog flush 4-13

Write Buffer (WB) 4-12
write buffer data areas 4-35
write buffer stalls 4-13
write buffer writes to M2 memory 1-25

X

X and P contention 4-9
XDBA 3-4
XDBB 3-4
MSC711x Reference Manual, Rev. 0

Freescale Semiconductor Index-13

Index
MSC711x Reference Manual, Rev. 0

Index-14 Freescale Semiconductor

	MSC711x Reference Manual
	Contents
	About This Book
	Before Using This Manual-Important Note
	Audience and Helpful Hints
	Notational Conventions and Definitions
	Conventions for Registers
	Organization of this Manual
	Other MSC711x Documentation
	Further Reading

	1 MSC711x Overview
	1.1 Features
	1.2 MSC711x Block Diagrams
	1.3 Bus Architecture
	1.3.1 SC1400 Core Buses
	1.3.2 Crossbar Master Port Buses
	1.3.3 Crossbar Slave Port Buses
	1.3.4 Peripheral Buses
	1.3.5 External Buses

	1.4 Extended Core
	1.4.1 SC1400 Core
	1.4.2 M1 Memory
	1.4.3 Instruction Cache
	1.4.4 Instruction Fetch Unit
	1.4.5 Extended Core Interface

	1.5 Direct Memory Access (DMA) Controller
	1.6 Crossbar Switch
	1.7 System Control
	1.8 Reset
	1.9 Boot ROM
	1.10 PLL and Clocks (PLL/Clock)
	1.11 Interrupt Scheme
	1.12 M2 Memory (Device-Specific)
	1.13 Peripherals
	1.13.1 TDM Serial Interface
	1.13.2 Host Interface (HDI16)
	1.13.3 Fast Ethernet Controller (Device-Specific)
	1.13.4 Timers
	1.13.5 Universal Asynchronous Receiver/Transmitter (UART)
	1.13.6 I2C Interface
	1.13.7 GPIO Signals
	1.13.8 Event Port

	2 Signal Pins and Pinouts
	2.1 Power and Ground
	2.2 Clocks and Resets
	2.3 Memory System Interface (DDR Controller)
	2.4 TDM Interfaces
	2.5 Ethernet MAC Interface Port
	2.6 Host Interface Port
	2.7 I2C Port
	2.8 UART Port
	2.9 Event Port
	2.10 GPIO Ports
	2.11 Interrupts
	2.12 JTAG/OCE10 Enhanced On-Chip Emulator Port
	2.13 Boot Behavior of Pins
	2.14 Schmidt Triggering
	2.15 Connectivity Guidelines

	3 SC1400 Core Overview
	3.1 MSC711x Architecture
	3.1.1 Address Generation Unit (AGU)
	3.1.1.1 AAUs
	3.1.1.2 Stack Pointer Registers
	3.1.1.3 Bit Mask Unit (BMU)

	3.1.2 Data Arithmetic Logic Unit (Data ALU)
	3.1.2.1 Data Registers
	3.1.2.2 Multiply-Accumulate (MAC) Unit
	3.1.2.3 Bit-Field Unit (BFU)

	3.1.3 Program Sequencer Unit (PSEQ)
	3.1.4 On-Chip Emulator

	3.2 Programming Model
	3.2.1 AGU Programming Model
	3.2.2 Data Arithmetic Logic Programming Model
	3.2.3 Program Control Unit (PCU) Programming Model

	3.3 Instruction Set Overview
	3.4 Programming Considerations

	4 Extended Core
	4.1 SC1400 DSP Core
	4.2 Extended Core Memory (M1)
	4.2.1 Interleaving Within a Memory Group

	4.3 Extended Core Controller
	4.3.1 Memory Contention
	4.3.1.1 Detecting Contentions
	4.3.1.2 Access Priority During Memory Contention
	4.3.1.3 Allocating M1 Memory to Avoid Contention

	4.3.2 Errors, Exceptions, and Events
	4.3.2.1 Errors
	4.3.2.2 Exceptions
	4.3.2.3 Events

	4.4 Extended Core Interface (ECI) System
	4.4.1 AMEC Bus
	4.4.2 Bus Switch and Write Buffer
	4.4.2.1 Write Buffer

	4.4.3 Atomic Accesses (Read-Modify-Write)
	4.4.3.1 Coherency at the System Level, Against Interrupts
	4.4.3.2 Coherency at the System Level, Accesses Issued from the ECI
	4.4.3.3 Coherency at the System Level, Accesses to M1 Memory

	4.5 Instruction Cache (ICache)
	4.5.1 Set Associative Address Mapping
	4.5.2 MSC711x Set Associative Mapping
	4.5.3 Cache Hits and Misses
	4.5.3.1 Servicing a Miss
	4.5.3.2 Loading the Cache Array on a Miss
	4.5.3.3 Tuning the Cache to Improve Performance

	4.5.4 Cache Locking
	4.5.5 Debugging Support
	4.5.5.1 Run-time Debugging
	4.5.5.2 Cache Debug Mode Debugging
	4.5.5.2.1 Entering Cache Debug Mode
	4.5.5.2.2 ICache Structure

	4.5.5.3 Techniques for Accessing the Tag, Valid Bit, and LRU Arrays
	4.5.5.3.1 Reading the Contents of the Tag Array
	4.5.5.3.2 Reading the Contents of the Valid Bit Array
	4.5.5.3.3 Reading the LRU Registers

	4.5.5.4 Setting Breakpoints with the ICache

	4.6 Instruction Fetch Unit
	4.6.1 Cache Bursting Parameters
	4.6.1.1 Burst of 1, Primary Set Size of 1
	4.6.1.2 Burst of 1, Primary Set Size of 2
	4.6.1.3 Burst of 1, Primary Set Size of 4
	4.6.1.4 Burst of 4, Primary Set Size of 4
	4.6.1.5 Trade-offs in Setting the Burst and Primary Set Sizes

	4.6.2 Servicing a Second Cache Miss
	4.6.3 Transaction Priorities

	4.7 Configuring the Address Space Outside the Extended Core
	4.7.1 Write Buffer Data Areas
	4.7.2 Instruction Cacheable Area
	4.7.3 Data Coherency
	4.7.3.1 Global Memory Attributes
	4.7.3.2 Semaphore Support
	4.7.3.3 Program and Data Coherency

	4.8 Extended Core Programming Model
	4.8.1 ECI Registers
	4.8.2 ICache Registers
	4.8.2.1 Commands
	4.8.2.2 Reads
	4.8.2.3 Instruction Regions
	4.8.2.4 ICache Programming Restrictions
	4.8.2.5 ICache Registers

	5 Memory Map
	5.1 Register Base Addresses
	5.2 Memory-Mapped Registers
	5.3 Address Space by Type of Access
	5.4 Program Accesses
	5.4.1 SC1400 Read Data Accesses
	5.4.2 SC1400 Core and Write Buffer Data Accesses
	5.4.3 DMA Read Data Accesses
	5.4.4 DMA Write Data Accesses
	5.4.5 Ethernet MAC Read Data Accesses
	5.4.6 Ethernet MAC Write Data Accesses

	5.5 Access Restrictions
	5.5.1 Master Port Restrictions
	5.5.1.1 AMEC Port
	5.5.1.2 AMIC Port
	5.5.1.3 AMDMA Port
	5.5.1.4 AMENT Port

	5.5.2 Access Size Restrictions

	5.6 Misaligned Access Detection on AHB Masters
	5.7 Bit Field Operations and Restricted Accesses
	5.8 Big-Endian Operation
	5.9 16-bit Accesses to 32-bit Peripheral Registers

	6 Crossbar Switch
	6.1 Architecture
	6.1.1 Master and Slave Ports
	6.1.2 Buses
	6.1.3 System-Level Parallelism

	6.2 Crossbar Switch Operation
	6.2.1 Arbitration
	6.2.1.1 Alternate Priority Capability
	6.2.1.2 Context Switching
	6.2.1.3 Fixed-Priority Arbitration
	6.2.1.4 Round-Robin Priority Arbitration

	6.2.2 Priority Assignment
	6.2.3 Master Port Functionality
	6.2.4 Slave Port Functionality
	6.2.4.1 Slave Port Registers
	6.2.4.2 Slave Port State Machine

	6.2.5 Halting the Crossbar Switch

	6.3 Data Throughput for Masters and Slaves
	6.3.1 Master Ports
	6.3.2 Slave Ports

	6.4 Crossbar Switch Programming Model

	7 System Control
	7.1 System Protection
	7.1.1 Bus Time-Out Monitors (Slave Buses)
	7.1.2 Bus Time-Out and Error Detection (Master Buses)

	7.2 Illegal Access Detection
	7.2.1 Fixed Illegal Access Detection
	7.2.2 Programmable Access Detection
	7.2.3 Misaligned Access Detection

	7.3 Software Watchdog Timer
	7.3.1 Software Watchdog Timer Operation
	7.3.1.1 Counter
	7.3.1.2 Pause Mechanism
	7.3.1.3 Interrupt and System Reset Response

	7.3.2 Configuring the Watchdog Timer out of Reset
	7.3.3 Servicing the Watchdog Timer

	7.4 System Control Programming Model
	7.4.1 Bus Time-Out Monitor and Bus Error Registers
	7.4.2 Software Watchdog Timer Registers
	7.4.3 Device Identification and Configuration

	8 DMA Controller
	8.1 Features
	8.2 DMA Architecture
	8.2.1 DMA Engine
	8.2.2 Transfer Control Descriptor (TCD)

	8.3 Data Transfer Overview
	8.3.1 Channel Assignments
	8.3.2 DMA Arbitration
	8.3.2.1 Channel Arbitration within a Group
	8.3.2.2 Prioritization through the Crossbar Switch

	8.3.3 DMA Interrupt Vectors

	8.4 Channel Operation and Data Flow
	8.4.1 Channel Operation
	8.4.2 DMA Data Flow
	8.4.2.1 Channel Activation
	8.4.2.2 Data Movement
	8.4.2.3 Field Updates

	8.4.3 Pseudo-Code Description of DMA Channel Processing

	8.5 DMA Performance
	8.6 DMA Initialization/Applications
	8.6.1 DMA Programming Errors
	8.6.2 Single-Request DMA Data Transfer Example
	8.6.3 Multiple-Request DMA Data Transfer Example
	8.6.4 TCD Status
	8.6.4.1 Minor Loop Completion
	8.6.4.2 Active Channel TCD Reads
	8.6.4.3 Preemption Status

	8.6.5 Channel Linking
	8.6.6 Dynamic Programming

	8.7 DMA Programming Model
	8.7.1 Control Registers
	8.7.2 Transfer Control Descriptor (TCD) Registers

	9 Memory Controller
	9.1 Features
	9.2 DDR Memory Controller Signal Description
	9.3 Architecture
	9.3.1 DDR SDRAM Configurations
	9.3.2 Configuration Examples
	9.3.2.1 Fan-Out and Termination

	9.4 JEDEC-Standard DDR SDRAM Interface Commands
	9.5 Operating Modes
	9.5.1 Open Page Mode
	9.5.2 Auto-Precharge Mode
	9.5.3 DDR SDRAM 2T Timing Mode
	9.5.4 Low-Power Modes

	9.6 Interface Characteristics
	9.6.1 SDRAM Interface Timing
	9.6.2 DDR Access Timings
	9.6.2.1 Adjustments to Read Timing
	9.6.2.2 DDR SDRAM Mode-Set Command Timing
	9.6.2.3 Configurable Timing Parameters
	9.6.2.4 DDR SDRAM Registered DIMM Mode
	9.6.2.5 DDR SDRAM Write Timing Adjustments
	9.6.2.6 DDR SDRAM Refresh
	9.6.2.6.1 DDR SDRAM Refresh Timing

	9.6.3 DDR SDRAM Address Multiplexing
	9.6.4 Data Beats to DDR SDRAM Devices
	9.6.5 Error Detection and Management

	9.7 Initialization and Set-Up
	9.8 DDR Memory Controller Programming Model
	9.8.1 Chip Select Registers
	9.8.2 Configuration Registers
	9.8.3 Error Handling Registers

	10 Memory Controller Interface
	10.1 Features
	10.2 Architecture
	10.2.1 Write Buffer Characteristics
	10.2.2 Read Prediction Characteristics
	10.2.2.1 Program Predictive Reads
	10.2.2.2 Data Predictive Reads
	10.2.2.3 Predictive Read Hardware Disable

	10.2.3 Non-Optimized Accesses
	10.2.4 Error Detection
	10.2.5 MCIF Reset

	10.3 Programming the MCIF
	10.4 MCIF Programming Model

	11 Clocks and Power Management
	11.1 Timing System Architecture
	11.2 Clock Synthesis Module Operation
	11.2.1 Generating the Clocks
	11.2.2 Configuring the Clocks
	11.2.3 Selecting Clock Frequencies

	11.3 Clock Selection
	11.3.1 Resetting the Clock Synthesis Module
	11.3.2 Enabling the PLL
	11.3.3 PLL Lock Status
	11.3.4 Modifying the PLL Settings
	11.3.4.1 PLL Restart
	11.3.4.2 Bypass Clock

	11.3.5 Disabling the PLL
	11.3.6 Loss of Lock Handling

	11.4 Low-Power Operation
	11.4.1 Extended Core Low-Power Operation
	11.4.2 Clock Synthesis Module Low Power Operation
	11.4.3 AHB Subsystem Low-Power Operation
	11.4.3.1 Limited Halt of the Crossbar Switch
	11.4.3.2 Complete Halt of the Crossbar Switch

	11.4.4 Peripheral Subsystem Low Power Operation
	11.4.4.1 Complete Halt of the DDR Memory Controller
	11.4.4.2 Halt of the DDR Memory Controller in Stop Mode Only
	11.4.4.3 Complete Halt of the Ethernet MAC
	11.4.4.4 Complete Halt of the HDI16
	11.4.4.5 Complete Halt of a TDM
	11.4.4.6 Complete Halt of the UART
	11.4.4.7 Complete Halt of the I2C
	11.4.4.8 Shutting Down One Timer in a Timer Module
	11.4.4.9 Shutting Down a Timer Module
	11.4.4.10 Selecting the Input Clock as the Source for the Timer Modules

	11.4.5 Exit from Stop Mode
	11.4.5.1 Basic Exit Operations
	11.4.5.2 STOPCTL Register-Enabled Exit Operations
	11.4.5.2.1 Direct Exit Operations
	11.4.5.2.2 Event Port Multiplexor 0 Exit Operations

	11.5 Clock Programming Model

	12 Interrupt Processing
	12.1 Interrupt Controller Architecture
	12.1.1 IRQ Pins Preprocessed in GPIO Port A
	12.1.2 NMI Interrupts
	12.1.3 Operation in Debug Mode

	12.2 Interrupt Arbitration
	12.3 Interrupt Vectors
	12.4 Interrupt Sources
	12.5 Interrupt Event Selection
	12.6 Interrupt Controller Programming Model

	13 Reset
	13.1 Reset Sources
	13.1.1 Power-On Reset
	13.1.2 Hard Reset
	13.1.3 Soft Reset

	13.2 Reset Timing
	13.3 Exiting Reset and Booting the Device
	13.4 Reset Programming Model

	14 Boot Program
	14.1 Boot Basics
	14.1.1 Boot Procedure
	14.1.2 Boot Modes

	14.2 Boot Program Operation
	14.2.1 Boot from Power-On Reset
	14.2.2 Boot from Hard Reset
	14.2.3 Bootstrapping and the Watchdog Timer
	14.2.4 Writing Boot Data to External DDR Memory Not Supported
	14.2.5 Reserved M1 Memory for Bootstrap Program
	14.2.6 Interrupt Handling During Booting

	14.3 Booting from an External Host through the HDI16
	14.3.1 Host Flags
	14.3.2 Host Tasks During HDI16 Boot
	14.3.3 External Host-Side Boot Load Flow
	14.3.4 Host Interface Boot Procedure
	14.3.5 HDI16 Boot Data Records
	14.3.5.1 HDI16 Boot Data Example

	14.3.6 Error Handling on Completion
	14.3.7 Broadcast Boot Facility

	14.4 Booting From an I2C Device
	14.4.1 I2C Boot Procedure
	14.4.2 I2C Boot Data Records
	14.4.2.1 I2C Boot Data Example

	14.4.3 Error Handling on Completion
	14.4.4 Example Source Program
	14.4.5 Writing to an EPROM Over the I2C Port

	14.5 Booting from an SPI-Based Serial Flash or EEPROM
	14.5.1 Main Set Pin Configuration
	14.5.2 Alternate Set Pin Configuration
	14.5.3 SPI Boot Loader Procedure
	14.5.4 SPI Boot Data Records
	14.5.4.1 Format of the Last Boot Record
	14.5.4.2 SPI Boot Data Example

	14.5.5 SPI Boot Error Handling
	14.5.6 User Access to SPI Routines

	15 Event Port
	15.1 Event Port Architecture
	15.2 Multiplexer Inputs
	15.2.1 Auxiliary Input Operation
	15.2.2 Direct Connection Modes
	15.2.3 DMA Input Source Selection

	15.3 Event Multiplexer Combining Logic
	15.3.1 Restrictions on Combining via ANDing
	15.3.2 Set
	15.3.3 Set-Reset
	15.3.4 Toggle

	15.4 Event Port Actions
	15.4.1 Event Port DMA Transfers
	15.4.2 Event Port Interrupts
	15.4.3 Crossbar Switch Priority Changes
	15.4.4 Forced Exit from Stop Mode
	15.4.5 Status to an External Host
	15.4.6 Restrictions on Multiple Drivers

	15.5 Event Port and Debug Port Interaction
	15.6 Software Management of Event Multiplexers
	15.6.1 Trigger an Event Multiplexer
	15.6.2 Reset An Event Multiplexer

	15.7 Event Sequencing
	15.7.1 Sequencing Through the Event Multiplexers
	15.7.2 Sequencing from Event Multiplexer to Debug Port
	15.7.3 Sequencing from Debug Port to Event Multiplexers
	15.7.4 Instruction in a Triggering Sequence
	15.7.5 Instruction ORed with an Event in a Triggering Sequence

	15.8 Event Port Programming Model

	16 Debugging
	16.1 Debugging Modes
	16.2 Emulator
	16.2.1 Emulator System-Level View
	16.2.2 Accessing the Emulator
	16.2.2.1 Access through the JTAG Port
	16.2.2.2 Access from the MSC711x Memory Map

	16.3 System-Level Debugging
	16.3.1 System-Level Emulator Signals
	16.3.2 SC1400 Emulator Instructions
	16.3.3 Halting the SC1400 Core and Entering Debug Mode
	16.3.4 Exiting SC1400 Debug Mode

	16.4 MSC711x JTAG Port
	16.4.1 Boundary Scan TAP Controller
	16.4.2 TAP Controller Operation
	16.4.3 JTAG Instruction Decoding
	16.4.3.1 Boundary Scan TAP Controller Instruction Decoding
	16.4.3.2 Debug TAP Controller Instruction Decoding

	16.4.4 JTAG Mode Restrictions

	16.5 Accessing the Emulator Through the JTAG Port
	16.6 OCE10 On-Chip Emulator and JTAG Programming Model
	16.6.1 Emulator Registers
	16.6.2 JTAG Registers

	17 Programmable Address Detection
	17.1 Extended Core Programmable Address Detection
	17.1.1 Detection Comparison Types
	17.1.2 Detection Action Types
	17.1.3 Detection Modes
	17.1.4 Extended Core Address Detection Architecture

	17.2 Peripheral Programmable Address Detection
	17.2.1 Detection Comparison Types
	17.2.2 Detection Action Types
	17.2.3 Detection Modes
	17.2.4 Peripheral Address Detection Architecture

	17.3 Address Detection Unit Programming Model
	17.3.1 Extended Core Address Detection Registers
	17.3.2 Peripheral Address Detection Registers

	18 Fast Ethernet Controller (FEC)
	18.1 Features
	18.2 FEC Architecture
	18.3 FEC MAC-PHY Interface Signal Pins
	18.3.1 MII MAC-PHY Signal Pins
	18.3.2 RMII MAC-PHY Pins
	18.3.3 7-Wire MAC-PHY Interface Pins

	18.4 FEC Operation
	18.4.1 Initialization Sequence
	18.4.2 Operating Modes
	18.4.3 Buffer Descriptors
	18.4.3.1 Driver/DMA Operation with Transmit BDs
	18.4.3.2 Driver/DMA Operation with Receive BDs

	18.4.4 FEC Frame Transmission
	18.4.5 FEC Frame Reception
	18.4.6 Ethernet Address Recognition
	18.4.7 Full Duplex Flow Control
	18.4.8 Inter-Packet Gap Time
	18.4.9 Collision Handling
	18.4.10 Internal and External Loopback
	18.4.11 Ethernet Transmission Error-Handling
	18.4.12 Ethernet Reception Error Handling
	18.4.13 Reset
	18.4.14 Interrupts

	18.5 Fast Ethernet Controller Programming Model
	18.5.1 Management Information Base (MIB) Counters
	18.5.2 Ethernet Receive and Transmit BDs
	18.5.3 FEC Registers

	19 Time-Division Multiplexing (TDM) Interface
	19.1 Features
	19.2 Halting and Restarting a TDM
	19.3 TDM Basics
	19.3.1 Common Signals for the TDM Modules
	19.3.2 Clocks
	19.3.3 TDM Clock and Frame Sync Generation
	19.3.4 TDM Configurations

	19.4 TDM Serial Interface
	19.4.1 Sync Out Configuration
	19.4.2 Sync In Configuration
	19.4.3 Serial Interface Synchronization
	19.4.4 Reverse Data Order

	19.5 Transmit and Receive Operation
	19.5.1 TDM Multi-Channel (Network) Mode
	19.5.1.1 Tx Channel Mask Register
	19.5.1.2 Rx Channel Enable Register

	19.5.2 Data Structures
	19.5.3 FIFO Configuration
	19.5.4 DMA Configuration
	19.5.5 Interrupts

	19.6 Software Programming Sequence
	19.6.1 Initialization for a Shared Operation
	19.6.2 Initialization for a Non-Shared Operation
	19.6.3 Dynamic Channel Configuration for a Shared Operation
	19.6.4 Dynamic Channel Configuration for a Non-Shared Operation
	19.6.5 Configuring a TDM for I2S Operation
	19.6.6 Powering Down a TDM
	19.6.7 Handling Synchronization Errors

	19.7 TDM Programming Model
	19.7.1 TDM APB Interface Registers
	19.7.1.1 Configuration Registers
	19.7.1.2 Control Registers
	19.7.1.3 Status Registers

	19.7.2 TDM AHB Interface Registers

	20 Host Interface (HDI16)
	20.1 Features
	20.2 HDI16 Host Port Pins
	20.3 HDI16 Architecture
	20.4 HDI16 Clocking
	20.5 Configuring the Host Interface Pins (External Host Side)
	20.5.1 Host Port Chip Select Capability
	20.5.2 Data Strobe Pin Configuration
	20.5.2.1 Transfer Acknowledge Configuration
	20.5.2.2 Host Request Pin Configuration

	20.5.3 Host Data Bus Size Configuration (External Host Side)

	20.6 HDI16 Data Transfer
	20.6.1 Data Transfer on the MSC711x Side
	20.6.1.1 Polling
	20.6.1.2 Interrupt-Driven Operation
	20.6.1.3 DMA Operation

	20.6.2 Data Transfer on the External Host Side
	20.6.2.1 Polled Operation (Non-DMA Mode)
	20.6.2.2 External Interrupt (Non-DMA Mode)
	20.6.2.3 Host DMA Mode

	20.7 Setting Up the HDI16 Port
	20.7.1 Non-DMA Mode Programmed from MSC711x Side (HICR = 0)
	20.7.2 Non-DMA Mode Programmed from External Host Side (HICR = 1)
	20.7.3 DMA Mode Programmed from MSC711x Side (HICR = 0)
	20.7.4 DMA Mode Programmed from External Host Side (HICR = 1)
	20.7.4.1 Host-Side Configuration Visible to MSC711x

	20.7.5 Data Transfer Sizes Through the HDI16
	20.7.5.1 Non-DMA External Host Accesses
	20.7.5.2 External Host DMA Accesses

	20.7.6 Forcing DMA Rx Servicing
	20.7.7 Host Flags (HF[0-7])
	20.7.8 Command Vector
	20.7.9 Initializing the HDI16 Module

	20.8 MSC711x-Side Programming Model
	20.9 External Host-Side Programming Model

	21 Timers Module
	21.1 Features
	21.2 Timer Module Signals
	21.2.1 Timer Input Signals, TIN[0-3]
	21.2.2 Timer Output Signals, TOUT[0-3]

	21.3 Timer Module Architecture
	21.3.1 Primary Clock Selection
	21.3.2 Secondary Input Selection
	21.3.3 Counter
	21.3.4 Control and Status Registers
	21.3.5 Capture Registers
	21.3.6 Compare Unit
	21.3.7 Interrupt Generation
	21.3.8 Output Generation

	21.4 Setting up Counters for Cascaded Operation
	21.4.1 Operation of the Cascaded Counter
	21.4.2 Cascading Restrictions

	21.5 Timer Operating Modes
	21.5.1 Counting Modes
	21.5.1.1 One-Shot Mode
	21.5.1.2 Pulse Output Mode
	21.5.1.3 Fixed Frequency PWM Mode
	21.5.1.4 Variable Frequency PWM Mode

	21.6 Timer Compare Functionality
	21.6.1 Compare Preload Registers
	21.6.1.1 Capture Register Use
	21.6.1.2 Broadcast from a Master Counter

	21.7 Resets and Interrupts
	21.7.1 Timer Compare Interrupts
	21.7.2 Timer Overflow Interrupts
	21.7.3 Timer Input Edge Interrupts

	21.8 Timer Programming Model

	22 I2C Software Module
	22.1 Features
	22.2 Architecture
	22.3 I2C Operation
	22.3.1 Arbitration
	22.3.2 Clock Synchronization and Stretching

	22.4 Initialization/Application
	22.4.1 Generation of START
	22.4.2 Post Transfer Software Response
	22.4.3 Generation of STOP or a Repeated START
	22.4.4 Slave Mode
	22.4.5 Arbitration Lost

	22.5 Halting and Starting the I2C Module
	22.6 I2C Programming Model

	23 Universal Asynchronous Receiver/Transmitter (UART)
	23.1 UART Basics
	23.2 Halting and Restarting the UART
	23.3 UART Programming Model

	24 General-Purpose Input/Output (GPIO)
	24.1 GPIO Features
	24.2 Operating Modes
	24.2.1 Software Control Mode as GPIO Pins
	24.2.2 Hardware Control Mode as Peripheral Pins
	24.2.3 Reading External Ports

	24.3 GPIO Architecture
	24.3.1 Data and Control Flow
	24.3.2 GPIO Port Assignments
	24.3.2.1 Port Configuration Out of Reset
	24.3.2.2 Port A
	24.3.2.3 Port B
	24.3.2.4 Port C
	24.3.2.5 Port D

	24.4 Interrupts
	24.4.1 Clearing Interrupts
	24.4.2 Synchronizing Interrupt Signals with the System Clock
	24.4.2.1 Interrupt Edge Detection
	24.4.2.2 Level-Sensitive Interrupts

	24.5 GPIO Programming Model

	A System Usage and Tuning/ Programming Reference A
	A.1 Best Use of the System
	A.1.1 Critical Settings
	A.1.2 M1 and M2 Memories
	A.1.3 M1 Memory: Two Different Address Ranges
	A.1.4 Instruction Fetch Unit
	A.1.5 Write Buffer and Write Buffer Data Areas
	A.1.6 DMA Controller
	A.1.6.1 Preemption with Fixed-Priority Arbitration
	A.1.6.2 Preventing Master Port Time-Outs
	A.1.6.3 Recommended DMA Settings

	A.1.7 Crossbar Switch
	A.1.7.1 Priority Elevation by the Masters
	A.1.7.2 Crossbar Slave Port Capabilities
	A.1.7.3 Arbitration at Crossbar Slave Ports
	A.1.7.4 Slave Port Parking
	A.1.7.5 High-Priority Enable Bits
	A.1.7.6 Alternate Priorities

	A.1.8 Programmable Bus Time-Out Monitors on Master Buses
	A.1.9 Programmable Bus Time-Out Monitors on Slave Buses
	A.1.10 DDR Memory Controller Interface
	A.1.11 DDR Memory Controller
	A.1.12 Event Port

	A.2 Access Times from the SC1400 Core to Device Components
	A.3 DMA Burst Times
	A.4 DMA Burst Efficiency
	A.5 ICache Efficiency
	A.6 Handling Access Errors
	A.6.1 Extended Core
	A.6.2 AHB Subsystem
	A.6.3 Error Detection on Both Ends of the Transfer
	A.6.4 Automatic State Recovery During Error Detection
	A.6.5 Configurable Priority Modification During a Chip Event

	A.7 Best Use of the Development Tools

	B MSC711x Boot Code
	Index

