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Chapter 1
Introduction

The SC100 application binary interface (ABI) defines a set of standards intended to ensure interoperability 
between conforming software components, such as, compilers, assemblers, linkers, debuggers, and 
assembly language code. These standards cover run-time aspects as well as object formats to be used by 
compatible tool chains from the StarCore Technology Center, Agere Systems, Motorola, and third party 
tools developers.

A benefit of this standard definition is interoperability of conforming tools. This allows users to select the 
best tool for each phase of the application development cycle, rather than being constrained to using an 
entire tool chain. Another benefit is compatibility of conforming libraries. Programmers can build 
compatible binary libraries and assembly code libraries, and be assured of their continued compatibility 
over time.

1.1   Overview
This ABI addresses the following types of standards:

• Low level run-time binary interface standards

— Processor-specific binary interface (the instruction set and representation of fundamental data 
types)

— Function calling conventions (how arguments are passed and results are returned, how registers 
are assigned, and how the calling stack is organized)

• Source-level standards

— C language (preprocessor predefines, name mapping, and intrinsics)

— Assembler syntax and directives

• Object-file binary interface standards

— Header convention

— Section layout

— Relocation information format

— Debugging information format

• Library standards

— Compiler run-time libraries (integer routines and floating-point routines)
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1.2   Conformance
Features defined in this ABI are mandatory unless specifically stated otherwise. Optional features, if 
implemented, must conform to the ABI.

1.3   References
The following standards provide useful reference information:

• Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification, Version 1.1, 
UNIX Systems Laboratories, Portable Formats Specification, 1995

• DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, UNIX 
International, Program Languages SIG, July 27, 1993

• ANSI/IEEE Std 754-1985, IEEE standard for binary floating-point arithmetic data types

• ISO/IEC 9899:1999(E), International Standard - Programming Languages—C, 2nd Edition, 
International Organization for Standardization, December 1, 1999

The following StarCore documents are included by reference into this ABI. With the exception of the 
design specification listed below, these documents are available through the StarCore web site at 
http://www.starcore-dsp.com.

• SC100 Assembly Language Tools User’s Manual (MNSC100ALT/D)

Describes the SC100 assembler syntax and directives listed in Chapter 5 of this ABI.

• SC110 DSP Core Reference Manual (MNSC110CORE/D)

Describes the SC110 core architecture and programming model, including the SC110 instruction set.

• SC140 DSP Core Reference Manual (MNSC140CORE/D)

Describes the SC140 core architecture and programming model, including the SC140 instruction set.

• Support in the Assembler and Simulator Required for Correct Reporting of SC100 Restrictions 
(design specification)

Defines which instruction set programming rules must be validated by the assembler and simulator, 
and specifies the identifier that must be included in the error or warning message that is generated 
when a given rule is violated. This document is an internal design specification that is available to 
third parties under a non-disclosure agreement with the StarCore Technology Center.

The SC100 generation of core architectures currently includes two cores: the StarCore SC110 and the 
StarCore SC140. As future cores become available, their respective core reference manuals should also be 
considered part of this ABI.
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1.4   Revision History
This Rev. 2.0 of the ABI supersedes the previous edition, Rev. 1.8, dated 04/2000. Major changes from the 
previous edition include:

Chapter 2, “Low-Level Binary Interface.” 

• Updated discussion of fundamental data types, aggregates, and bit fields, with little-endian and 
big-endian differences noted.

• Added sections on stack unwinding, register saving and restoring functions, function call modes, 
address modifier modes, saturation mode, and data addressing models.

• Removed the section, “Interrupt Handlers.”

• Updated the calling conventions with these notable changes:

— If the first argument is a long long (where implemented), double, or long double, it is 
passed in D0 and D1, as if it were first stored in an 8-byte aligned memory area and then the 
low-addressed word were loaded into D0 and the high-addressed word into D1.

— Each argument on the stack is passed in the byte order appropriate for the endian mode.

— A function with a variable number of arguments passes the last fixed argument and all subsequent 
variable arguments on the stack.

— An argument that is 8-byte aligned is passed 8-byte aligned on the stack. All other arguments are 
passed 4-byte aligned on the stack.

— Arguments are passed on the stack, in order, from higher addresses to lower addresses. Each 
argument on the stack is passed in the byte order appropriate for the endian mode.

— A long long, double, or long double return value is returned in D0 and D1, as if it were first 
stored in an 8-byte aligned memory area and then the low-addressed word were loaded into D0 
and the high-addressed word into D1.

— A function returning a structure or union of any size receives in R2 the address of space in which 
to return the structure or union. The function does not return that address in R2.

— The extension registers, D6.e and D7.e, are callee saved; the remaining extension registers are 
caller saved.

— The MCTL register is caller saved.

— A compiler assumes the rounding mode default is two’s complement rounding, and the scaling 
mode default is no scaling.

Chapter 3, “High-Level Languages Issues.” 

• Added new C preprocessor predefines: __SC110__, __SC140__, __LITTLE_ENDIAN__, and 
__BIG_ENDIAN__.

• Removed requirement for support of C in-line assembly syntax.

• Changed names of existing floating-point routines and integer routines, and added double and long 
long routines. Also added descriptions of all routines.

• Added new section on intrinsics for accessing architectural features.

Chapter 4, “Object File Format.” 

• Updated the list of SC100 ELF sections.

• Added sections on SC100 special sections and debugging information.

• Replaced the relocation section with a new relocation scheme.
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Removed original Chapter 5, “Endian Support.” This revision of the ABI incorporates endian information 
in individual sections, as appropriate, throughout the document.

Chapter 5, “Assembler Syntax and Directives” (originally Chapter 6 in Rev 1.8).

• Removed requirement for support of object file control directives, in addition to the individual 
directives MODE, DUPA, DUPC, DUPF, EXITM, MACLIB, MACRO, and PMACRO.

• Added requirement for support of ELSE and FALIGN directives.

• Added requirements for checking SC100 programming rules.
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Chapter 2
Low-Level Binary Interface

This chapter defines low-level system standards for the SC100 generation of DSP cores, including:

• Processor-specific binary interface (the instruction set and representation of fundamental data types)

• Function calling conventions (how arguments are passed and results are returned, how registers are 
assigned, and how the calling stack is organized)

2.1   Core Architecture
The SC100 generation of core architectures currently includes three cores: the StarCore SC110, the 
StarCore SC140, and the StarCore SC140E. The architecture and instruction set for each core is defined in 
that core’s respective reference manual, as listed in Section 1.3, “References.” Programs written for these 
cores use their instruction sets, as well as the instruction encodings and semantics of their architecture. 
Programmers may assume that the instructions for these cores work as documented. Note that while an 
ABI-conforming SC110 program will run on an ABI-conforming SC140 processor, the reverse is not 
always true.

To conform to the ABI, the processor must execute the architecture’s instructions and produce the 
expected results. This ABI does not define requirements for the services provided by an operating system, 
nor does it specify what instructions must be implemented in hardware. A software emulation of the 
architecture could conform to the ABI.

Programs that use non-SC100 instructions or capabilities do not conform to the SC100 ABI. Such 
programs may produce unexpected results when run on machines lacking the non-SC100 capability.
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2.2   Endian Support
The SC100 architecture supports both big-endian and little-endian implementations. This standard defines 
a binary interface for each. Note that program binaries that run on a big-endian implementation are not 
portable to a little-endian implementation, and vice versa. The same applies to the data generated by these 
programs, as well as to the layout of data used by these programs (such as the layout of data generated by 
compilation tools).

The bytes that form the supported data types are ordered in memory according to the following:

• In a big-endian implementation, the most significant byte (MSB) is located in the lowest address 
(byte 0).

• In a little-endian implementation, the least significant byte (LSB) is located in the lowest address 
(byte 0).

2.3   Fundamental Data Types
The SC100 architecture defines the following data types:

• An 8-bit byte

• A 16-bit word

• A 32-bit long word

• A 64-bit double-long word

The following examples illustrate the bit and byte numbering for these data types.

Example 2-1.   Word Bit and Byte Numbering

bit 15 8 7 0

byte 1
MSB LSB

byte 0 Little-Endian

bit 15 8 7 0

byte 0
MSB LSB

byte 1 Big-Endian
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Example 2-2.   Long Word Bit and Byte Numbering

Example 2-3.   Double-Long Word Bit and Byte Numbering

bit 31 24 23 16  15 8 7 0

byte 3
MSB LSB

byte 0 Little-Endian

bit 31 24 23 16  15 8 7 0

byte 0
MSB LSB

byte 3 Big-Endian

bit 31 24 23 16 15 8 7 0

Little-Endian
 byte 3

LSB
byte 0

bit 63 56 55 48 47 40 39 32

byte 7
MSB

byte 4

bit 63 56 55 48 47 40 39 32

Big-Endian
 byte 0

MSB
byte 3

bit 31 24 23 16 15 8 7 0

byte 4
LSB

byte 7
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Table 2-1 shows the mapping between these fundamental data types and the C language data types. Note 
that fundamental data is always naturally aligned; that is, a double-long word is 8-byte aligned, a long 
word is 4-byte aligned, and a word is 2-byte aligned.

Table 2-1.   Mapping of C Data Types to SC100

Type C Type
Size
(bits)

Align
(bits)

Limits SC100

_Bool1

Notes:

1. This data type is specified in the latest ISO C definition (ISO/IEC 9899:1999). Support of this data type is
optional. If used, this data type must be implemented with the size and alignment shown.

8 8 0 .. 1 signed byte

Character char
8 8 -27 ..  27−1 signed byte

signed char

unsigned char 8 8 0 ..  28−1 unsigned byte

short
16 16 -215 ..  215 −1 signed word

signed short

unsigned short 16 16 0 ..  216 −1 unsigned word

Integral int

32 32 -231 ..  231 −1 signed long word

signed int

enum

long

signed long

unsigned int
32 32 0 ..  232 −1 unsigned long word

unsigned long

long long1

64 64 -263 ..  263 −1 signed double-long word
signed long long1

unsigned long long1 64 64 0 ..  264 −1 unsigned double-long word

Pointer pointer to data
32 32 0 ..  232 −1 unsigned long word

pointer to function

Floating2

Point

2. Floating point types conform to the IEEE 754 format.

float 32 32
-3.402e38 ..  -1.175e-38

1.175e-38 ..  3.402e38 unsigned long word

double
64 64

-1.797e308 ..  -2.225e-308

2.225e-308 ..  1.797e308 unsigned double-long word
long double



Fundamental Data Types

SC100 Application Binary Interface 2-5

Fractional types are supported in C using intrinsic functions; Table 2-2 shows the fractional types that are 
supported.

 

Table 2-2.   Mapping of C Fractional Types to SC100

C Type C Type Definition
 Size
(bits)

Align
(bits)

Limits

fractional short 16 16 -1  ..  

long fractional long or int 32 32 -1  ..  

long fractional with 
extension bits

Little-Endian:

typedef struct {

   unsigned int body;

   signed char ext;

} word40;

Big-Endian:

typedef struct {

   char pad[3];

   signed char ext;

   unsigned int body;
} word40;

64 32 -256  ..  

double precision 
fractional

typedef struct {

   int  lsb;

   int  msb;

} word64;

64 32 -1  ..  

215 1–( )
215

----------------------

231 1–( )
231

----------------------

239 1–( )
231

----------------------

263 1–( )
263

----------------------
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2.4   Aggregates and Unions
Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned member 
(that is, the member with the largest alignment). For example, a structure containing a char, a short, and 
an int must have a 4-byte alignment to match the alignment of the int. Arrays have the same alignment 
as their individual elements.

The size of any structure, array, or union must be an integral multiple of its alignment. Structure and 
unions may require padding to meet size and alignment constraints:

• An entire structure or union is aligned on the same boundary as its most strictly aligned member.

• Each member is allocated starting at the next byte that satisfies the alignment requirement for that 
member. This may require internal padding.

• If necessary, a structure’s size is increased to make it a multiple of the structure’s alignment. This may 
require tail padding, depending on the last member.

In both endian modes, members are allocated starting with the low order (lowest addressed) byte of the 
structure or union, as shown in the following examples. In Example 2-4, there is internal padding so that 
the first short (s1) starts at a word boundary. Tail padding makes the structure size a multiple of the int 
member’s 4-byte alignment.

Example 2-4.   Structure With Internal and Tail Padding

 struct { /* 12 bytes, 4-byte aligned */
  char   c;
  short  s1;
  int    i;
  short  s2;

 };

bit 31 16 15 8 7 0

Little-Endian

 byte 3 s1 pad c byte 0

bit 63 32

byte 7 i byte 4

bit 95 80 79 64

byte 11
pad s2 byte 8

bit 95 88 87 80 79 64

Big-Endian

byte 0
c pad s1

byte 3

bit 63 32

byte 4
i

byte 7

bit 31 16 15 0

byte 8
s2 pad

byte 11
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Example 2-5.   union Allocation

 union { /* 4 bytes, 4-byte aligned */
 short s;
 char  c;
 long  l;

 };

bit 31 16 15 8 7 0

Little-Endian
 byte 3

pad s byte 0

pad c

l

bit 31 24 23 16 15 0

Big-Endian
 byte 0

s pad
byte 3

c pad

l
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2.5   Bit Fields
Structure and union definitions may have bit fields as listed in Table 2-3.

Support of _Bool is optional, but all other types shown in Table 2-3 must be supported. This ABI does not 
have requirements for long long bit fields.

Unsigned bit-field values range from 0 to 2w−1, where w is the bit field’s width in bits. Signed bit-field 
values range from -2w−1 to 2w−1−1.

A “plain” bit field (one that is not explicitly declared signed or unsigned) is signed. Although they may 
have type char, short, int, or long (which can have negative values), bit fields of these types have the 
same range as bit fields of the same size with the corresponding signed type. The same size and alignment 
rules that apply to other structure and union members also apply to bit fields. The following rules 
additionally apply to bit fields:

• In little-endian implementations, bit fields are allocated right to left. The first bit field occupies the 
least significant bits while subsequent bit fields occupy more significant bits.

• In big-endian implementations, bit fields are allocated left to right. The first bit field occupies the 
most significant bits while subsequent bit fields occupy less significant bits.

• A bit field may not cross a boundary for its type. For example, a signed char bit field cannot exceed 
eight bits in width, and it cannot cross a byte boundary.

• Bit fields must share a storage unit with other structure and union members (either bit field or non-bit 
field) if and only if there is sufficient space within the storage unit.

• An unnamed bit field does not affect the alignment of its enclosing structure or union, although an 
individual bit field’s member offsets obey the alignment constraints. An unnamed, zero-width bit 
field prevents any further member (either bit field or non-bit field) from residing in the storage unit 
corresponding to the type of the zero-width bit field.

Table 2-3.   C Bit Field Types

C Type Maximum Width (bits)

_Bool1

char2

signed char2

unsigned char2

Notes:

1. Support of _Bool is optional. If implemented, it must be implemented with the width and range shown.
2. This bit field type is not required for ISO C conformance, but is required for ABI conformance.

1 to 8

short2

signed short2

unsigned short2
1 to 16

int

signed int

enum2

long2

signed long2

unsigned int

unsigned long2

1 to 32
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Note in the following examples that alignments are driven not by the widths of the bit fields but by the 
underlying types. Example 2-6 shows a structure that is 4-byte aligned and has a 4-byte size because of the 
int bit fields. There is internal padding so that the char bit field does not cross a byte boundary, and so 
that the short member starts at a word boundary. All members share a long word.

Example 2-6.   Bit Field Alignment and Padding

 struct {    /* 4 bytes, 4-byte aligned */
  int    a  :  3;
  int    b  :  4;
  char   c  :  5;
  short  d;

 };

In Example 2-7, the structure is 2-byte aligned because the unnamed long bit field does not affect 
structure alignment. The zero-width short bit field pads to the next word boundary.

Example 2-7.   Unnamed and Zero-Width Bit Fields

 struct {    /* 8 bytes, 2-byte aligned */
  short  a  :  9;
  short     :  0;
  char   b  :  5;
  long :  15;

 };

bit 31 16 15    13 12 8 7 6 3 2 0

 byte 3 d pad c b a byte 0
Little-Endian

↑  pad

bit 31 28 25 24 23 19 18    16 15    0

 byte 0
a b c pad d

byte 3
Big-Endian

↑  pad

bit 31 21 20 16 15   9 8 0

Little-Endian
 byte 3

pad b pad a byte 0

bit 63 32

byte 7 pad byte 4

bit 63 55 54 48 47   43 42 32

Big-Endian
 byte 0 a pad b pad

byte 3

bit 31 0

byte 4 pad byte 7
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2.6   Function Calling Sequence
Compilers must support the conventions described in this section.

2.6.1  Argument Passing and Return Values
The following calling conventions must be supported.

• If the first function argument is 4 or fewer bytes and is an integral type, floating type, structure, or 
union, the argument is passed in D0. If it is a pointer, it is passed in R0.

• If the second argument is 4 or fewer bytes and is an integral type, floating type, structure, or union, 
the argument is passed in D1. If it is a pointer, it is passed in R1.

• When an argument is passed in D0 or D1, only the lower order register bytes that constitute the 
argument are defined. For example, a first argument of type short is passed in D0[15:0], and the 
contents of D0[31:16] and D0.e are undefined.

• If the first argument is a long long (where implemented), double, or long double, it is passed in 
D0 and D1, as if it were first stored in an 8-byte aligned memory area and then the low-addressed 
word were loaded into D0 and the high-addressed word into D1. This means that D0 contains the 
most significant long word in big-endian and the least significant long word in little-endian.

• Functions with a variable number of arguments pass the last fixed argument and all subsequent 
variable arguments on the stack. The rules above apply to arguments before the last fixed argument.

• All other arguments are passed on the stack. Note that the first argument may be passed on the stack, 
followed by the second argument being passed in D1 or R1.

• Arguments are passed on the stack, in order, from higher addresses to lower addresses. Each argument 
on the stack is passed in the byte order appropriate for the endian mode.

• An argument that is 8-byte aligned according to Section 2.3, “Fundamental Data Types,” Section 2.4, 
“Aggregates and Unions,” and Section 2.5, “Bit Fields,” is passed 8-byte aligned on the stack. All 
other arguments are passed 4-byte aligned on the stack.

• The constituent bytes of an integral argument of fewer than 4 bytes are located on the stack as if the 
argument had been promoted to 32 bits, although the caller might not sign or zero extend the 
argument. Thus, in little-endian, those arguments are placed in the lower addressed bytes within their 
4-byte memory blocks, and in big-endian they are placed in the higher addressed bytes.

• An integral return value, other than a long long, is sign or zero extended to 40 bits and returned in 
D0. A float value is returned in D0. A long long, double, or long double return value is returned 
in D0 and D1, as if it were first stored in an 8-byte aligned memory area and then the low-addressed 
word were loaded into D0 and the high-addressed word into D1.

• A pointer return value is returned in R0.

• A function returning a structure or union receives in R2 the address of the returned structure or union. 
The caller allocates space for the returned object.

• Registers will be saved as shown in Table 2-4.

• Compilers will make the following assumptions about operating control bits:

— Rounding mode default is 1 (SR[3]=1), which means two’s complement rounding.

— Scaling mode bits default is 0 (SR[4,5]=[00]), which means no scaling.

Setting these mode bits is the application’s responsibility.
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Example 2-8 shows two function calls and the arguments that are allocated for each call.

Example 2-8.   Function Calls and Allocation of Arguments

Function Call 1:

foo(int a1, struct fourbytes a2, struct eightbytes a3, short a4)

Arguments:

a1 - in register d0
a2 - in register d1
a3 - on the stack at SP (stack pointer address)
a4 - on the stack at SP - 8 (little-endian) or
     SP - 10 (big-endian)

Function Call 2:

bar(long *b1, int b2, char b3, int b4[])

Arguments:

b1 - in r0
b2 - in d1
b3 - on stack at SP (little-endian) or
     SP - 3 (big-endian)
b4 – on stack at SP - 4

Table 2-4 summarizes register usage in the calling convention.

Table 2-4.   Register Usage in the Calling Convention

Register
Caller 
Saved

Callee 
Saved

Used As

D0 + First numeric argument
Return numeric value

D1 + Second numeric argument

D2–D5 +

D6–D7 +

D8–D15 +

D0.e–D5.e +

D6.e–D7.e +

D8.e–D15.e +

R0 + First pointer argument
Return pointer value

R1 + Second pointer argument

R2 + Structure or union return address
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2.6.2  Variable Argument Lists
In some cases, C programs intended to be portable rely on argument passing schemes that assume the 
following:

• All arguments are passed on the stack

• Arguments appear on the stack in increasing order

In reality, programs that make these assumptions are not portable, but still work on many implementations. 
They do not work with this standard, however, because some arguments are passed in registers. On the 
SC100 and other architectures, C programs intended to be portable use the header files <stdarg.h> or 
<varargs.h> to deal with variable argument lists.

ANSI C requires that before a function with a variable argument list is called, it must be declared with a 
prototype containing a trailing ellipsis mark (...). However, compiler vendors are expected to provide 
options for non-ANSI programs to allow them to declare variable argument functions in the command line 
or to treat all non-prototyped functions as (potentially) having variable argument lists.

2.6.3  Stack
The SP register serves as the stack pointer. SP will point to the first available location, with the stack 
direction being towards higher addresses (i.e., a push will be implemented as “(sp)+”). Initially a long 
word with value -1 is pushed at offset 0 on the stack to serve as a top-of-stack marker. The stack pointer 
must be 8-byte aligned.

R3–R5 +

R6 + Global offset pointer, used for PIC and PID

R7 + Optional frame pointer

R8–R15, B0–B7 +

N0–N3, M0–M3 +

MCTL +

SP (NSP, ESP) +

SA0–SA3 +

LC0–LC3 +

Table 2-4.   Register Usage in the Calling Convention (Continued)

Register
Caller 
Saved

Callee 
Saved

Used As
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2.6.4  Stack Frame Layout
The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the 
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always 
be a multiple of eight.

Figure 2-1 shows typical stack frames for a function and indicates the relative position of local variables, 
arguments, and return addresses. The stack grows upward from low addresses.

The outgoing arguments area is located at the top (higher addresses) of the frame.

The caller puts argument variables that do not fit in registers into the outgoing arguments area. If all 
arguments fit in registers, this area is not required. A caller may allocate outgoing arguments space 
sufficient for the worst-case call, use portions of it as necessary, and not change the stack pointer between 
calls.

Local variables that do not fit into the local registers are allocated space in the local variables area of the 
stack. If there are no such variables, this area is not required.

The caller must reserve stack space for return variables that do not fit in registers. This return buffer area is 
typically located with the local variables. This space is typically allocated only in functions that make calls 
returning structures.

A “return address” value of 0xffffffff (-1) is used to denote the current frame as the outermost (oldest) 
frame on the current call stack. This convention requires that the outermost frame be manually constructed 
and that sufficient object file details are available to determine the sizes of all frames on the current call 
stack. The sole purpose of this convention is to stop stack unwinding while debugging.

Beyond these requirements, a function is free to manage its stack frame in any way desired.

Figure 2-1.   Stack Frame Layout

High Addresses

Low Addresses

Incoming Arguments

Return Address

Outgoing Arguments

Local Variables

SP

and
Saved Registers
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2.6.5  Stack Unwinding
The compiler will create special symbols when a module is compiled without debug enabled (e.g., the -g 
compiler option is not used). These symbols will appear as local symbols in the .symtab ELF section and 
will have the following syntax:

TextStart_module_name : module’s low PC
TextEnd_module_name : module’s high PC
StackOffset_label : size of stack at label
FuncEnd_function_name : function’s high PC

Where:

• module_name is the base name of the source file. The base name must follow the same conventions 
as assembly language labels. These conventions are outlined in Section 5.3.1, “Symbol Names.”

• label is a program label within the function. The value of StackOffset_label is the size of the 
stack frame at the label. The size is in 2-byte words and does not include an implied JSR/BSR 
two-word stack push.

• function_name is the function name, without a leading underscore.

For example, a hello.c program might generate the ELF symbol sequence shown below. 

In this example, the Binding LOCAL means an ELF symbol binding of STB_LOCAL, the Type NOTYPE 
means a symbol type of STT_NOTYPE, and the Section ABS means a symbol table entry of SHN_ABS.

Example 2-9 illustrates how these symbols might be defined in an assembly language program.

Value Size Binding Type Section Name

----- ---- ------- ---- ------- ----

0x10120 0 LOCAL NOTYPE .text TextStart_hello

0x0 0 LOCAL NOTYPE ABS StackOffset__main

0x2 0 LOCAL NOTYPE ABS StackOffset_DW_2

0x0 0 LOCAL NOTYPE ABS StackOffset_DW_5

0x1012a 0 LOCAL NOTYPE .text DW_2

0x10136 0 LOCAL NOTYPE .text DW_5

0x10138 0 LOCAL NOTYPE .text FuncEnd_main

0x10138 0 LOCAL NOTYPE .text TextEnd_hello
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Example 2-9.   Generating Stack Unwinding Symbols in Assembly Code

    section .text local

TextStart_hello

;**************************************************************
; Example function _main
;**************************************************************

    global _main
_main type func
 [
    push r6
    push r7
 ]
DW_2
    . . .
 [
    pop r6
    pop r7
 ]
DW_5
    rts

FuncEnd__main

StackOffset__main equ 0 ; at _main sp = 0 words
StackOffset_DW_2 equ 2 ; at DW_2 sp = 2 words
StackOffset_DW_5 equ 0 ; at DW_5 sp = 0 words

TextEnd_hello
    endsec
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2.6.6  Register Saving and Restoring Functions
The register saving and restoring functions described in this section save and restore the callee-saved 
registers defined by Table 2-4 and the SR. These functions are provided to save and restore these registers 
with a minimal increase in static code size. The functions use nonstandard calling conventions which 
require them to be statically linked into any executable or shared object modules in which they are used.

Thus their interfaces are private, within module interfaces, and therefore are not part of the ABI. They are 
defined here only to encourage uniformity among compilers in the code used to save and restore registers.

After calling the saving function ___Qabi_callee_save, the stack frame values relative to the address 
in the stack pointer (SP) will be:  

The restoring function ___Qabi_callee_restore assumes the stack frame layout above. It restores the 
callee-saved registers and returns through the caller return address stored at SP-32. There is no need for an 
RTS after calling the restoring function, since it returns automatically for the caller.

Example 2-10 shows an example use of the saving and restoring functions. The functions do not modify 
any caller-saved registers.

Example 2-10.   Saving and Restoring Functions Usage Example

 _foo:
bsr   ___Qabi_callee_save ; save callee-saved registers

      adda  #frame_size_foo,sp ; adjust SP by frame size
 _foo_body:

...
 _foo_body_end:

suba  #frame_size_foo,sp ; adjust SP by frame size
bra   ___Qabi_callee_restore ; restore callee-saved registers

;   and return to caller of foo

R7

R6

D7

D6

Reserved

D7.e

D6.e

SR

Return Address

Little-Endian

-32

-28

-24

-22

-20

-16

-12

-8

-4

←SP
R7

R6

D7

D6

Reserved

D6.e

D7.e

SR

Return Address

Big-Endian

-32

-28

-24

-22

-20

-16

-12

-8

-4

←SP
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2.6.7  setjmp and longjmp Layout
The layout for the jmp_buf used by setjmp and longjmp follows. This layout preserves the callee-saved 
registers, which is needed to restore the state when longjmp is called.  

2.6.8  Frame and Global Pointers
This ABI standard does not require the use of a frame pointer or a global pointer. If, however, the use of a 
frame pointer or a global pointer is necessary, a compiler may allocate R7 as a frame pointer and R6 as a 
global pointer. When these registers are allocated for this purpose, they should be saved and restored as 
part of the function prologue/epilog code.

2.6.9  Dynamic Memory Allocation
Dynamic allocations are implemented using a heap structure managed by the standard library functions 
malloc() and free(). The heap shall be allocated statically by the linker. All addresses returned by 
malloc() shall be at least 8-byte aligned.

2.6.10  Hardware Loops
All hardware loop resources are available for the compiler’s use. As it is assumed that no nesting occurs 
when entering a function, a function may use all four nesting levels for its own use.

typedef int jmp_buf[7];

Offset Saved Register Offset Saved Register

Little-Endian + 0 D6 Big-Endian + 0 D6

+ 4 D7 + 4 D7

+ 8 R6 + 8 R6

+ 12 R7 + 12 R7

+ 16 D6.e + 16 D7.e

+ 18 D7.e + 18 D6.e

+ 20 SP + 20 SP

+ 24 Return Address + 24 Return Address
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2.7   Function Call Modes
Compilers must support the following pragma directives to control how external functions are called. The 
directives affect all functions declared after the pragma. If the compiler encounters inconsistent pragma 
directives for a given function, it will generate a warning and use the information from the original 
directive.

#pragma starcore callmode=near
#pragma starcore callmode=far
#pragma starcore callmode=default

If the callmode is far, the compiler will generate a 32-bit absolute call. If the callmode is near, the compiler 
will generate a 20-bit PC-relative call. If a function is out of range at link time, the linker will generate an 
error. The default callmode is determined by compiler options.

2.8   Address Modifier Modes
Compilers will make the following assumptions about address modifier modes:

• The default C runtime state of the MCTL register is 0, which identifies the memory address 
calculation methods for R0-R7 as linear.

• If the MCTL register is changed local to a function, then MCTL must be restored to 0 prior to calling 
any other function or returning from the original function.

2.9   Saturation Mode
Compilers shall be able to set arithmetic saturation mode on or off using a compiler command line option, 
and they shall document their default saturation mode settings. Compilers need not emit the same code 
when saturation mode is off as they emit when the mode is on.

Compilers must support the saturation mode intrinsics as described in Table 3-8.

2.10   Data Addressing Models
A Zero Data Area (ZDA) has special data sections located near zero, allowing the compiler to more 
effectively use the 16-bit absolute addressing mode. The sections, .zdata and .zbss, need to be located 
in the low 16-bits of address space. The compiler supports directives to place data in the zero data area, and 
knows to use the more efficient addressing modes to access it. If more data is placed in ZDA than can fit, 
the linker will generate errors.

By default, data is placed in the standard data areas. Compilers will support an option that allows a coarse 
level of control, in which the user has the option of allocating all data to ZDA or allocating only those data 
items of a specified size.
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The following pragma directives allow a finer level of control:

#pragma starcore startzda
#pragma starcore endzda
#pragma starcore startdata
#pragma starcore enddata

Any data declared between the startzda and endzda directives will be placed in ZDA. The 
corresponding startdata and enddata directives force data into the standard data section even if the 
zero data compiler option is specified.

Compilers must support both unsigned 16-bit, signed 16-bit, and signed 32-bit addresses. If the application 
is small enough to allow all static data to fit into the lower 64K or 32K of the address space, then more 
efficient code can be generated. The big memory model does not restrict the amount of space allocated to 
addresses; this model is the default. The small memory model assumes that all addresses are within the 
address range of an unsigned 16-bit immediate. The tiny memory model assumes that all addresses are 
within the range of a signed 16-bit immediate (effectively an unsigned 15-bit range).

These three compilation models are provided to allow the compiler to generate references to global and 
static data without global knowledge as to the variables’ final allocation address in memory. For each 
model, the compiler will assume that references to global and static data fit within the corresponding size 
implied by the model. The expectation is that the linker will generate errors whenever a symbolic reference 
is resolved to not fit within the range defined by the memory model.

When the compiler uses the big memory model to access a data object, whether static or global, it must use 
a longer instruction that includes a 32-bit address. This operation requires an additional word, and as a 
result it produces code that is larger, and in some cases, slower, than a similar operation using the small or 
tiny memory models.

Example 2-11 illustrates the code sequence to generate the address of a global symbol in memory and the 
sequence to reference the memory contents of a global symbol for each memory model.

Example 2-11.   Memory Models

;;Big Memory Model

    move.l address,d0    (3 16-bit words)
    moveu.l #address,d0  (3 16-bit words)

;;Small Memory Model

    move.l <address,d0   (2 16-bit words)
    moveu.l #address,d0  (3 16-bit words)

;;Tiny Memory Model

    move.l <address,d0   (2 16-bit words)
    move.w #address,d0   (2 16-bit words)

Certain instructions can be used only in small and tiny memory models. If < is omitted in conjunction with 
these instructions, an error results. Example 2-12 shows the instruction BMSET.W, which sets bit 0 in the 
specified address, and is valid only in small and tiny memory models.

Example 2-12.   Small and Tiny Memory Mode Instruction

    bmset.w #0001,<address 
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Chapter 3
High-Level Languages Issues

3.1   C Preprocessor Predefines
All C/C++ language compilers must have the predefined macros as in Table 3-1, in addition to the 
predefined macros required by the C and C++ language standards.

As future cores become available, their predefined macros will be noted in the document, SC100 
Application Binary Interface Supplement. This supplement will be available through the StarCore web site 
at http://www.starcore-dsp.com.

3.2   C Name Mapping
Externally visible names in the C language are prefixed by an underscore (_) when generating assembly 
language symbol names. For example, the following:

void testfunc() 
{

return; 
}

generates assembly code similar to the following fragment:

_testfunc: 
rts

Table 3-1.   Predefined Macros

Macro Description

__SC100__ Defined for use with all compilers based on the SC100 architecture

__SC110__ The architecture variant which specifies that one MAC unit is to be used by the compiler

__SC140__ The architecture variant which specifies that four MAC units are to be used by the compiler

__LITTLE_ENDIAN__ Defined for use in little-endian mode

__BIG_ENDIAN__ Defined for use in big-endian mode
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3.3   C System Calls
There are several typedefs specified in POSIX.1 which are required for system call wrappers. These types 
are defined as follows for the SC100 architecture:

typedef unsigned int mode_t;
typedef long int off_t;
typedef unsigned int size_t;
typedef int ssize_t;
typedef long int clock_t;
typedef long int time_t;

The following system calls must also be supported:

int open(const char *, int, ...); /* Third arg is mode_t if present */
int close(int);
ssize_t read(int, void *, size_t);
ssize_t write(int, const void *, size_t);
off_t lseek(int, off_t, int);
int unlink(const char *);
int rename(const char *, const char *);
int access(const char *, int);
clock_t clock(void);
time_t time(time_t *);

3.4   Fractional Arithmetic Support
Fractional arithmetic is supported through the intrinsic functions listed in Table 3-2. Compilers must 
recognize the function names as shown with the double underscore (__) prefix. A header file may be 
provided that maps the unprefixed function names to the prefixed names.

The file abi_intrinsics.c contains a reference implementation in C of the intrinsics listed in 
Table 3-2. This reference implementation is in accordance with the ITU/ETSI definition of these functions. 
The abi_intrinsics.c file will be available through StarCore’s documentation web site at 
http://www.starcore-dsp.com.

Table 3-2.   Required Intrinsics for Fractional Types

Intrinsic Function Description

Fractional Arithmetic:

short __add(short,short) Short add

short __sub(short,short) Short sub

short __mult(short,short) Short multiplication

short __div_s(short,short) Short div

short __mult_r(short,short) Multiply with round
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Fractional Arithmetic (continued):

long __L_mac(long,short,short) Multiply accumulate

long __L_macNs(long,short,short) Multiply accumulate with no saturation

short __mac_r(long,short,short) Multiply accumulate with round

long __L_msu(long,short,short) Multiply subtract

long __L_msuNs(long,short,short) Multiply subtract with no saturation

short __msu_r(long,short,short) Multiply subtract with round

short __abs_s(short) Short abs

short __negate(short) Short negate

short __round(long) Round

short __shl(short,short) Short shift left

short __shr(short,short) Short shift right

short __shr_r(short,short) Short shift right with round

short __norm_s(short) Normalize any fractional value

Long Fractional Arithmetic:

long __L_add(long,long) Long add

long __L_sub(long,long) Long subtract

long __L_mult(short,short) Long multiplication

short __extract_h(long) Extract high

short __extract_l(long) Extract low

long __L_deposit_h(short) Deposit short in MSB

long __L_deposit_l(short) Deposit short in LSB

long __L_abs(long) Long abs

long __L_negate(long) Long negate

short __norm_l(long) Normalize any long fractional value

long __L_shl(long,short) Long shift left

long __L_shr(long,short) Long shift right

long __L_shr_r(long,short) Long shift right with round

long __L_sat(long) Long saturation

Table 3-2.   Required Intrinsics for Fractional Types (Continued)

Intrinsic Function Description
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3.5   Libraries
The following sections provide details on support libraries.

3.5.1  Compiler Assist Libraries
The SC100 architecture does not provide hardware support for floating-point data types, nor for divide 
functionality for integer types. Compilers should provide the functionality for some of these operations 
through the use of support library routines. 

The functions to be provided through support library routines include the following:

• Floating-point math routines

• Integer divide routines

• Integer modulo routines

Compilers that generate in-line code to provide these functions must make no reference to the library 
functions. Compilers that provide these functions by generating function calls to the support libraries must 
use the calling convention when calling them.

To ensure the ability to link code produced by different compilers into a single executable, it is required 
that names of compiler support library functions match those listed in Table 3-3, Table 3-4, and Table 3-5.

Routines in support libraries must satisfy the following constraints:

• The only external state information used is floating-point operation mode (rounding mode, flush to 
zero, etc.).

• No other global state can be modified.

• Identical results must be returned when a routine is reinvoked with the same input arguments.

• Multiple calls with the same input arguments can be collapsed into a single call with a cached result.

These properties permit a compiler to make assumptions about variable lifetimes across library function 
calls: values in memory will not change, previously dereferenced pointers need not be referenced again.

3.5.2  Floating-Point Routines
Conformant library support must include the floating point routines listed in Table 3-3 (the routine 
interfaces are shown as C function prototypes). These floating point routines must comply with the calling 
conventions described in Section 2.6, “Function Calling Sequence.”

The data formats are as specified in IEEE-754. The math routines are not required to compute results as 
specified in IEEE-754. Implementation of these routines must document the degree to which operations 
conform to the IEEE standard. Not all users of floating point require IEEE-754 precision and exception 
handling, and may not want to incur the overhead that complete conformance requires.
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int _fp_round(int rounding_mode)
Sets the rounding mode for floating point library routines. If rounding mode is:

– -1, then return the current rounding mode without setting it (this is required for 
conformance)

– 0, then request round to nearest (this is required for conformance)

– 1, then request round toward 0 (optional)

– 2, then request round toward positive infinity (optional)

– 3, then request round toward negative infinity (optional)

This function returns the resulting rounding mode (0–3), which will be rounding_mode 
if that rounding mode is supported by the floating point routines.

double _d_add(double a, double b)
Returns a+b, computed to double precision.

int _d_cmp(double a, double b)
Performs an unordered comparison of the double precision values of a and b, and returns 
an integer value, as follows, that indicates their relative ordering:

int _d_cmpe(double a, double b)
Performs an ordered comparison of the double precision values of a and b, and returns an 
integer value, as follows, that indicates their relative ordering:

Table 3-3.   Floating-Point Routines

_fp_round

_d_add _d_fgt _f_add _f_ftod _q_add _q_fne _q_utoq

_d_cmp _d_fle _f_cmp _f_ftoi _q_cmp _q_itoq

_d_cmpe _d_flt _f_cmpe _f_ftoq _q_cmpe _q_mul

_d_div _d_fne _f_div _f_ftou _q_div _q_neg

_d_dtof _d_itod _f_feq _f_itof _q_dtoq _q_qtod

_d_dtoi _d_mul _f_fge _f_mul _q_feq _q_qtoi

_d_dtoq _d_neg _f_fgt _f_neg _q_fge _q_qtos

_d_dtou _d_qtod _f_fle _f_qtof _q_fgt _q_qtou

_d_feq _d_sub _f_flt _f_sub _q_fle _q_stoq

_d_fge _d_utod _f_fne _f_utof _q_flt _q_sub

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
a unordered with respect to b 3

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
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double _d_div(double a, double b)
Returns a/b, computed to double precision.

float _d_dtof(double a)
Converts the double precision value of a to single precision, and returns the single 
precision value.

int _d_dtoi(double a)
Converts the double precision value of a to a signed integer by truncating any fractional 
part, and returns the signed integer value.

long double _d_dtoq(double a)
Converts the double precision value of a to extended precision, and returns the extended 
precision value.

unsigned int _d_dtou(double a)
Converts the double precision value of a to an unsigned integer by truncating any 
fractional part, and returns the unsigned integer value.

int _d_feq(double a, double b)
Performs an unordered comparison of the double precision values of a and b. Returns a 1 
if they are equal, and a 0 otherwise.

int _d_fge(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returns a 1 if a 
is greater than or equal to b, and a 0 otherwise.

int _d_fgt(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returns a 1 if a 
is greater than b, and a 0 otherwise.

int _d_fle(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returns a 1 if a 
is less than or equal to b, and a 0 otherwise.

int _d_flt(double a, double b)
Performs an ordered comparison of the double precision values of a and b. Returns a 1 if a 
is less than b, and a 0 otherwise.

int _d_fne(double a, double b)
Performs an unordered comparison of the double precision values of a and b. Returns a 1 
if they are unordered or not equal; returns a 0 otherwise.

double _d_itod(int a)
Converts the signed integer value of a to double precision, and returns the double 
precision value.

double _d_mul(double a, double b)
Returns a*b, computed to double precision.

double _d_neg(double a)
Returns -a.

double _d_qtod(const long double *a)
Converts the extended precision value of a to double precision, and returns the double 
precision value.

double _d_sub(double a, double b)
Returns a-b, computed to double precision.
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double _d_utod(unsigned int a)
Converts the unsigned integer value of a to double precision, and returns the double 
precision value.

float _f_add(float a, float b)
Returns a+b, computed to single precision.

int _f_cmp(float a, float b)
Performs an unordered comparison of the single precision values of a and b, and returns 
an integer value, as follows, that indicates their relative ordering:

int _f_cmpe(float a, float b)
Performs an ordered comparison of the single precision values of a and b, and returns an 
integer value, as follows, that indicates their relative ordering:

float _f_div(float a, float b)
Returns a/b, computed to single precision.

int _f_feq(float a, float b)
Performs an unordered comparison of the single precision values of a and b. Returns a 1 if 
they are equal, and a 0 otherwise.

int _f_fge(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returns a 1 if a 
is greater than or equal to b, and a 0 otherwise.

int _f_fgt(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returns a 1 if a 
is greater than b, and a 0 otherwise.

int _f_fle(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returns a 1 if a 
is less than or equal to b, and a 0 otherwise.

int _f_flt(float a, float b)
Performs an ordered comparison of the single precision values of a and b. Returns a 1 if a 
is less than b, and a 0 otherwise.

int _f_fne(float a, float b)
Performs an unordered comparison of the single precision values of a and b. Returns a 1 if 
they are unordered or not equal; returns a 0 otherwise.

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
a unordered with respect to b 3

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
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double _f_ftod(float a)
Converts the single precision value of a to double precision, and returns the double 
precision value.

int _f_ftoi(float a)
Converts the single precision value of a to a signed integer by truncating any fractional 
part, and returns the signed integer value.

long double _f_ftoq(float a)
Converts the single precision value of a to extended precision, and returns the extended 
precision value.

unsigned int _f_ftou(float a)
Converts the single precision value of a to an unsigned integer by truncating any fractional 
part, and returns the unsigned integer value.

float _f_itof(int a)
Converts the signed integer value of a to single precision, and returns the single precision 
value.

float _f_mul(float a, float b)
Returns a*b, computed to single precision.

float _f_neg(float a)
Returns -a.

float _f_sub(float a, float b)
Returns a-b, computed to single precision.

float _f_utof(unsigned int a)
Converts the unsigned integer value of a to single precision, and returns the single 
precision value.

long double _q_add (const long double *a, const long double *b)
Returns a+b, computed to extended precision.

int _q_cmp(const long double *a, const long double *b)
Performs an unordered comparison of the extended precision values of a and b, and 
returns an integer value, as follows, that indicates their relative ordering:

int _q_cmpe(const long double *a, const long double *b)
Performs an ordered comparison of the extended precision values of a and b, and returns 
an integer value, as follows, that indicates their relative ordering:

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
a unordered with respect to b 3

Relation Value

a equal to b 0
a less than b 1
a greater than b 2
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long double _q_div(const long double *a, const long double *b)
Returns a/b, computed to extended precision.

long double _q_dtoq(double a)
Converts the double precision value of a to quadruple precision, and returns the extended 
precision value.

int _q_feq(const long double *a, const long double *b)
Performs an unordered comparison of the extended precision values of a and b. Returns a 
nonzero value if they are equal, and a 0 otherwise.

int _q_fge(const long double *a, const long double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a 
nonzero value if a is greater than or equal to b, and a 0 otherwise.

int _q_fgt(const long double *a, const long double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a 
nonzero value if a is greater than b, and a 0 otherwise.

int _q_fle(const long double *a, const long double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a 
nonzero value if a is less than or equal to b, and a 0 otherwise.

int _q_flt(const long double *a, const long double *b)
Performs an ordered comparison of the extended precision values of a and b. Returns a 
nonzero value if a is less than b, and a 0 otherwise.

int _q_fne(const long double *a, const long double *b)
Performs an unordered comparison of the extended precision values of a and b. Returns a 
nonzero value if they are unordered or not equal; returns a 0 otherwise.

long double _q_itoq(int a)
Converts the integer value of a to extended precision, and returns the extended precision 
value.

long double _q_mul(const long double *a, const long double *b)
Returns a*b, computed to extended precision.

long double _q_neg(const long double *a)
Returns -a without raising any exceptions.

double _q_qtod(const long double *a)
Converts the extended precision value of a to double precision, and returns the double 
precision value.

int _q_qtoi(const long double *a)
Converts the extended precision value of a to a signed integer by truncating any fractional 
part, and returns the signed integer value.

float _q_qtos(const long double *a)
Converts the extended precision value of a to single precision, and returns the single 
precision value.

unsigned int _q_qtou(const long double *a)
Converts the extended precision value of a to an unsigned integer by truncating any 
fractional part, and returns the unsigned integer value.
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long double _q_stoq(float a)
Converts the single precision value of a to extended precision, and returns the extended 
precision value.

long double _q_sub(const long double *a, const long double *b)
Returns a-b, computed to extended precision.

long double _q_utoq(unsigned int a)
Converts the unsigned integer value of a to extended precision, and returns the extended 
precision value.

3.5.3  Integer Routines
Conformant library support must include the integer routines listed in Table 3-4 (the routine interfaces are 
shown as C function prototypes). These integer routines must comply with the calling conventions 
described in Section 2.6, “Function Calling Sequence.” These routines have no side effects.

int __div16(short a, short b)
Returns the value of a/b. If the divisor has the value zero, the behavior is undefined.

int __udiv16(unsigned short a, unsigned short b)
Returns the unsigned value of a/b. If the divisor has the value zero, the behavior is 
undefined.

int __div32(long a, long b)
Returns the value of a/b. If the divisor has the value zero, the behavior is undefined.

int __udiv32(unsigned long a, unsigned long b)
Returns the unsigned value of a/b. If the divisor has the value zero, the behavior is 
undefined.

int __rem16(short a, short b)
Returns the remainder upon dividing a by b. If the divisor has the value zero, the behavior 
is undefined.

int __urem16(unsigned short a, unsigned short b);
Returns the unsigned remainder upon dividing a by b. If the divisor has the value zero, the 
behavior is undefined.

int __rem32(long a, long b)
Returns the remainder upon dividing a by b. If the divisor has the value zero, the behavior 
is undefined.

int __urem32(unsigned long a, unsigned long b)
Returns the unsigned remainder upon dividing a by b. If the divisor has the value zero, the 
behavior is undefined.

Table 3-4.   Integer Routines

__div16 __div32 __rem16 __rem32

__udiv16 __udiv32 __urem16 __urem32
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3.5.4  Optional Integer Routines
If the optional C long long data type is supported, then library support must also include the following 
long long integer routines. These routines must comply with the calling conventions described in 
Section 2.6, “Function Calling Sequence.”

long long __div64(long long a, long long b)
Computes the quotient a/b, truncating any fractional part, and returns the signed long 
long result. If the divisor has the value zero, the behavior is undefined.

unsigned long long __udiv64(unsigned long long a, unsigned long long b)
Computes the quotient a/b, truncating any fractional part, and returns the unsigned long 
long result. If the divisor has the value zero, the behavior is undefined.

long long __rem64(long long a, long long b)
Computes the remainder upon dividing a by b, and returns the signed long long result. If 
the divisor has the value zero, the behavior is undefined.

unsigned long long __urem64(unsigned long long a, unsigned long long b)
Computes the remainder upon dividing a by b, and returns the unsigned long long 
result. If the divisor has the value zero, the behavior is undefined.

long long _d_dtoll(double a)
Converts the double precision value of a to a signed long long by truncating any 
fractional part, and returns the signed long long value.

unsigned long long _d_dtoull(double a)
Converts the double precision value of a to an unsigned long long by truncating any 
fractional part, and returns the unsigned long long value.

double _d_lltod(long long a)
Converts the signed long long value of a to a double precision value, and returns the 
double precision value.

double _d_ulltod(unsigned long long a)
Converts the unsigned long long value of a to a double precision value, and returns the 
double precision value.

long long _f_ftoll(float a)
Converts the single precision value of a to a signed long long by truncating any 
fractional part, and returns the signed long long value.

unsigned long long _f_ftoull(float a)
Converts the single precision value of a to an unsigned long long by truncating any 
fractional part, and returns the unsigned long long value.

float _f_lltof(long long a)
Converts the signed long long value of a to a single precision value, and returns the 
single precision value.

Table 3-5.   Optional Integer Routines

__div64 _d_dtoll _f_ftoll _q_lltoq

__udiv64 _d_dtoull _f_ftoull _q_qtoll

__rem64 _d_lltod _f_lltof _q_qtoull

__urem64 _d_ulltod _f_ulltof _q_ulltoq



3-12 SC100 Application Binary Interface

High-Level Languages Issues

float _f_ulltof(unsigned long long a)
Converts the unsigned long long value of a to a single precision value, and returns the 
single precision value.

long double _q_lltoq(long long a)
Converts the long long value of a to an extended precision value, and returns the 
extended precision value.

long long _q_qtoll(const long double *a)
Converts the extended precision value of a to a signed long long by truncating any 
fractional part, and returns the signed long long value.

unsigned long long _q_qtoull(const long double *a)
Converts the extended precision value of a to an unsigned long long by truncating any 
fractional part, and returns the unsigned long long value.

long double _q_ulltoq(unsigned long long a)
Converts the unsigned long long value of a to an extended precision value, and returns 
the extended precision value.

3.6   Function Argument and Return Type Checking 
in C
ABI-conforming implementations support the following mechanism for checking that arguments and 
return types of function calls match the called functions’ signatures.

3.6.1  Signature Symbols
For every direct call to a non-static function in a source file (that is, a call using the function name as 
opposed to a call through a function pointer), the compiler system produces in the ELF object file a symbol 
of the following convention:

__caller.name.return_type.argument_types

For every non-static function definition, the compiler system produces a symbol of the following 
convention:

__callee.name.return_type.parameter_types

Table 3-6 explains the construction of the italicized fields in the symbol names:

Table 3-6.   Italicized Fields in the Symbol Names

Field Value Meaning

name ASCII string The name of the called function

return_type basetype

argument_types basetype[basetype[...]]

parameter_types basetype[basetype[...]]
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Table 3-7 explains the possible values for basetype.

Example:

Definition:

int foo(struct { int a,b; } parm1, double parm2);

Call:

struct { int a,b; } tmp;
foo(tmp, 1.0);

Special Symbols:

__callee.foo.i.s2f 
__caller.foo.v.s2f

3.6.2  Return Value
In generating a signature symbol for a call to a function defined as returning a (non-void) value, if the 
return value is ignored by the caller, then the compiler may specify i as the return value type for the 
function.

3.6.3  Using Signature Symbols
The caller/callee match verification using signature symbols is implementation-dependent. The 
implementation must accept object modules that do not contain signature symbols. 

Table 3-7.   Basetype Values

Code Meaning

i Scalar type (e.g., char, short, int) of size <= 32 bits, passed in register

l Scalar type of size = 64 bits, passed in register

p Pointer, passed in a register

f Float, passed in a register

d Double float, passed in a register

snum Struct, passed in a data register

anum Struct, passed in an address register

n An argument or parameter passed on the stack

v Void

x Start of a variable argument list (...)
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3.7   Access to Architectural Features
The following set of intrinsics must be supported. These intrinsics allow access to hardware resources from 
a C application without using assembly inserts.

Table 3-8.   Intrinsics for Access to Architectural Features

Feature Intrinsic Function Description

Saturation Mode
__setnosat() Sets saturation mode off.

__setsat() Sets saturation mode on.

Rounding Mode
__set2crm() Sets rounding mode to two’s complement rounding mode.

__setcnvrm() Sets rounding mode to convergent rounding mode.

Scaling Mode

void __setnoscale(void) Sets scaling mode off.

void __setdownscale(void) Scales down.

void __setupscale(void) Scales up.

Trapping

void __trap_r(void *) Executes TRAP exception. Argument is passed in R0. 
Calling convention register usage is assumed.

int __trap_d(int) Executes TRAP exception. Argument is passed in D0. 
Calling convention register usage is assumed.

Registers
Reading:
unsigned int __read_SR(); These functions set the values of their related registers.

unsigned int __read_PCTL0();

unsigned int __read_PCTL1();

unsigned int __read_MCTL();

short *  __read_VBA();

unsigned int __read_SP();

unsigned int __read_OSP();

int __read_EMR();

Writing:
void __write_SR(int); These functions set the values of their related registers.

Care is required when writing the EMR register. Bits 
cannot be set by the user, and clearing a given bit is done 
by writing a 1 to it using the BMCLR instruction.

void __write_PCTL0(int);

void __write_PCTL1(int);

void __write_MCTL(int);

void __write_VBA(short *);

void __bit_clr_EMR(int);
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Registers
(continued)

SR Masks:

__SR_I2 (0x1 << 23)

__SR_I1 (0x1 << 22)

__SR_I0 (0x1 << 21)

__SR_I_MASK (0x7 << 21)

__SR_OVE (0x1 << 20)

__SR_DI (0x1 << 19)

__SR_EXP (0x1 << 18)

__SR_S (0x1 << 6)

__SR_S1 (0x1 << 5)

__SR_S0 (0x1 << 4)

__SR_S_MASK (0x3 << 4)

__SR_RM (0x1 << 3)

__SR_SM (0x1 << 2)

__SR_T (0x1 << 1)

__SR_C (0x1 << 0)

These masks provide access to individual SR bits or 
fields.

PCTL1 Masks:
__PCTL1_COE (0x1 << 16)

__PCTL1_PODF2 (0x1 << 2)

__PCTL1_PODF1 (0x1 << 1)

__PCTL1_PODF0 (0x1 << 0)

__PCTL1_PODF_MASK(0x7 << 0)

These masks provide access to individual PCTL1 bits or 
fields.

MCTL Masks:
__R7_AM3 (0x1 << 31)

__R7_AM2 (0x1 << 30)

__R7_AM1 (0x1 << 29)

__R7_AM0 (0x1 << 28)

__R7_AM_MASK (0xF << 28)

__R6_AM3 (0x1 << 27)

__R6_AM2 (0x1 << 26)

__R6_AM1 (0x1 << 25)

__R6_AM0 (0x1 << 24)

__R6_AM_MASK (0xF << 24)

__R5_AM3 (0x1 << 23)

__R5_AM2 (0x1 << 22)

__R5_AM1 (0x1 << 21)

__R5_AM0 (0x1 << 20)

__R5_AM_MASK (0xF << 20)

These masks provide access to individual MCTL bits or 
fields.

Table 3-8.   Intrinsics for Access to Architectural Features (Continued)

Feature Intrinsic Function Description
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Registers
(continued)

MCTL Masks (continued):

__R4_AM3 (0x1 << 19)

__R4_AM2 (0x1 << 18)

__R4_AM1 (0x1 << 17)

__R4_AM0 (0x1 << 16)

__R4_AM_MASK (0xF << 16)

__R3_AM3 (0x1 << 15)

__R3_AM2 (0x1 << 14)

__R3_AM1 (0x1 << 13)

__R3_AM0 (0x1 << 12)

__R3_AM_MASK (0xF << 12)

__R2_AM3 (0x1 << 11)

__R2_AM2 (0x1 << 10)

__R2_AM1 (0x1 << 9)

__R2_AM0 (0x1 << 8)

__R2_AM_MASK (0xF << 8)

__R1_AM3 (0x1 << 7)

__R1_AM2 (0x1 << 6)

__R1_AM1 (0x1 << 5)

__R1_AM0 (0x1 << 4)

__R1_AM_MASK (0xF << 4)

__R0_AM3 (0x1 << 3)

__R0_AM2 (0x1 << 2)

__R0_AM1 (0x1 << 1)

__R0_AM0 (0x1 << 0)

__R0_AM_MASK (0xF << 0)

EMR Masks:
__EMR_GP6 (0x1 << 23)

__EMR_GP5 (0x1 << 22)

__EMR_GP4 (0x1 << 21)

__EMR_GP3 (0x1 << 20)

__EMR_GP2 (0x1 << 19)

__EMR_GP1 (0x1 << 18)

__EMR_GP0 (0x1 << 17)

__EMR_GP_MASK (0x7F << 17)

__EMR_BEM (0x1 << 16)

__EMR_NMID (0x1 << 3)

__EMR_DOVF (0x1 << 2)

__EMR_ILST (0x1 << 1)

__EMR_ILIN (0x1 << 0)

These masks provide access to individual EMR bits or 
fields. Note that some of these bits are read only.

Table 3-8.   Intrinsics for Access to Architectural Features (Continued)

Feature Intrinsic Function Description
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Chapter 4
Object File Format

The executable and linking format (ELF) is used for representing the binary application to the system. For 
a complete description of ELF, refer to the Tools Interface Standards (TIS) Executable and Linking 
Format (ELF) Specification, Version 1.1. This chapter highlights differences between the ELF version 1.1 
definition and the SC100 implementation.

This chapter focuses on the interface for relocatable and executable programs. A relocatable program 
contains code suitable for linking to create another relocatable program or executable program. An 
executable program contains binary information suitable for loading and execution on a target processor.

4.1   Interface Descriptions
ELF presents two views of binary data, as shown in Figure 4-1:

• The linking view provides data in a format suitable for incremental linking into a relocatable file or 
final linking to an executable file.

• The execution view provides binary data in a format suitable for loading and execution. 

An ELF header is always present in either view of the ELF file. For the linking view, sections are the main 
entity in which information is presented. A section header table provides information for interpretation and 
navigation for each section. For the execution view, segments are the primary sources of information. 
Sections may be present but are not required. A program header table provides information for 
interpretation and navigation through each segment. For exact details, see the ELF version 1.1 
specification.

Figure 4-1.   Object File Format

Linking View Execution View

Elf Header Elf Header

Optional Program Header Program Header

SegmentsSections

... ...

Section Header Table Opt Section Header Table
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4.2   The ELF Header 
The ELF header structure is shown in Example 4-1. This structure and its fields are defined by the ELF 
version 1.1 specification. SC100-specific code is shown in Example 4-2.

Example 4-1.   ELF Header Structure

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off  e_phoff;
Elf32_Off  e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Example 4-2.   SC100 Specifics

e_ident[EI_CLASS] = ELFCLASS32
e_ident[EI_DATA] = ELFDATA2LSB (little-endian memory mode)
e_ident[EI_DATA] = ELFDATA2MSB (big-endian memory mode)
e_machine: 0x3a (EM_STARCORE) 

The e_flags field is used to distinguish object files translated for different cores, different core revisions, 
and different ABI versions. The e_flags field is split into three parts: 

• Bits 0-5: The core type. The defined core types are:

#define EF_STARCORE_CORE_SC140          0
#define EF_STARCORE_CORE_SC110          1

Mixing object files with EF_STARCORE_CORE_SC110 and EF_STARCORE_CORE_SC140 will result 
in an object file with EF_STARCORE_CORE_SC140.
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• Bits 6-11: The revision of the used core type. The defined core revisions are:

#define EF_STARCORE_CORE_REV_UNKNOWN    0
#define EF_STARCORE_CORE_REV_SC140_V1   1
#define EF_STARCORE_CORE_REV_SC140_V2   2
#define EF_STARCORE_CORE_REV_SC140_E    3

• Bits 12-17: The ABI version. The defined ABI versions are:

#define EF_STARCORE_ABI_PREABI          0
#define EF_STARCORE_ABI_NONCONFORMING   1
#define EF_STARCORE_ABI_2_0             2

ABI versions newer than 2.0 will be backward compatible. The result of linking object files with 
mixed ABI versions of 2.0 or higher will result in an object file with the lowest ABI version number. 
Linking with Pre-ABI or with non-conforming object files may result in linker errors or undetermined 
output.

• Bits 18-31: Zero. Reserved for future use.

As future cores become available, their respective core types and core revisions will be noted in the 
document, SC100 Application Binary Interface Supplement. This supplement will be available through the 
StarCore web site at http://www.starcore-dsp.com.

Example 4-3.   Definition of Macros for Accessing e_flag Parts

#define ELF32_EF_STARCORE_CORE(e_flags)  ((e_flags) & 0x3f)
#define ELF32_EF_STARCORE_REV(e_flags)   (((e_flags) >> 6) & 0x3f))
#define ELF32_EF_STARCORE_ABI(e_flags)   (((e_flags) >> 12) & 0x3f))
#define ELF32_EF_STARCORE(core,rev,abi) \
        (((core) & 0x3f) | (((rev) & 0x3f) << 6) | (((abi) & 0x3f) << 12))

4.3   Sections
Sections are the main components of the ELF file. Section headers define all the information about a 
section. A section header is shown in Example 4-4. It is identical to the ELF version 1.1 definition.

Example 4-4.   Section Header Structure

typedef struct  {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off  sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;
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Sections used in SC100 ELF binaries are listed in Table 4-1. The section names listed in this table are case 
sensitive and are reserved for the system.

Table 4-1.   SC100 ELF Sections

Name (sh_name) Type (sh_type) Flags (sh_flags) Purpose

.text SHT_PROGBITS SHF_ALLOC, SHF_EXECINSTR Executable instructions

.data SHT_PROGBITS SHF_ALLOC, SHF_WRITE Initialized data

.rodata SHT_PROGBITS SHF_ALLOC Read-only, initialized data

.zdata SHT_PROGBITS SHF_ALLOC, SHF_WRITE Zero Data Area initialized data

.bss SHT_NOBITS SHF_ALLOC, SHF_WRITE Uninitialized data 1

Notes:

1. Contents of .bss and .zbss sections are zeroed when loaded.

.zbss SHT_NOBITS SHF_ALLOC, SHF_WRITE Zero Data Area uninitialized data 1

.relasection SHT_RELA None Relocation info for section 2

2. See Section 4.5, “Relocation.”

.symtab SHT_SYMTAB None Symbol table

.shstrtab SHT_STRTAB None Section name string table

.strtab SHT_STRTAB None General purpose string table

.note SHT_NOTE None File identification 3

3. See Section 4.6, “NOTE Section.”

.debug_abbrev SHT_PROGBITS None Abbreviation tables 4

4. This information in DWARF2 format.

.debug_aranges SHT_PROGBITS None Address range tables 4

.debug_frame SHT_PROGBITS None Call frame information 4

.debug_info SHT_PROGBITS None Debugging information entries 4

.debug_line SHT_PROGBITS None Line number information 4

.debug_loc SHT_PROGBITS None Location lists 4

.debug_macinfo SHT_PROGBITS None Macro information 4

.debug_pubnames SHT_PROGBITS None Global name tables 4

.SC100.delay_slots SHT_PROGBITS None Static delay slot information 5

5. See Section 4.4, “Special Sections.”
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4.4   Special Sections
A debug section called .SC100.delay_slots is used to hold all static delay slot information for each 
SC100 executable file. Assemblers must identify and generate sufficient relocatable file information 
(sections and relocation entries) to support this feature; linkers should need no special knowledge of this 
feature when creating executable files. Assemblers must also populate this section when creating 
executable files in absolute mode.

The .SC100.delay_slots section uses DWARF2 definitions like those used in the .debug_line 
section, and consists of an unpadded sequence of opcodes with zero or more operands. No special headers, 
padding, alignment, or sequence terminators are required.

Opcodes are represented by a single unsigned byte (8 bit) value. To accommodate future expansion 
without breaking existing readers, 4 bits are used for a unique ID (provides 16 opcodes) and 4 bits are used 
to indicate the size in bytes for the operands (provides up to 15 bytes of operands).

Three opcode IDs are initially required; additional IDs may be added later to support such features as 
overlays and position independent code. The required opcode IDs are:

• SDS_EXPLICIT_OP (explicit “delayed” instructions, for example, JSRD).

Accepts two unsigned word (32 bits) operands. The first is the address of the explicit Variable Length 
Execution Set (VLES), and the second is the address of the delay slot VLES.

• SDS_LONGLOOP_OP (last two VLESes of a long loop).

Accepts three unsigned word (32 bits) operands. The first is the address of the lpmark VLES, the 
second is the address of the next VLES, and the third is the address of the last VLES in the loop.

• SDS_SHORTLOOP_OP (last VLES of a short loop).

Accepts two unsigned word (32 bits) operands. The first is the address of the first VLES, and the 
second is the address of the last (second) VLES in the loop.

Each opcode with operands is intended to completely describe all information potentially needed to 
implement features or checks that any debugger may reasonably expect to perform. This includes the static 
delay slot type, the addresses of the VLES immediately before the delay slot, and the address of each 
VLES in a static delay slot.

Debuggers need simply walk the byte stream (opcode then operands) of the .SC100.delay_slots 
section until all data is exhausted.

Example 4-5 and Example 4-6 define the opcode IDs and the macros for accessing opcode parts.

Example 4-5.   Definition of Opcode IDs

#define    SDS_EXPLICIT_OP        0 
#define    SDS_LONGLOOP_OP        1 
#define    SDS_SHORTLOOP_OP       2 

Example 4-6.   Definition of Macros for Accessing Opcode Parts

#define    SDS_ID(opcode)      (((opcode) >> 4) & 0xf) 
#define    SDS_SIZE(opcode)    ((opcode) & 0xf) 
#define    SDS_OPCODE(id,size) (((size) & 0xf) | (((id) & 0xf) << 4)) 
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4.5   Relocation
Each section which contains relocatable data has a corresponding relocation section of type SHT_RELA. 
The sh_info field of the relocation section defines the section header index of the section (henceforth 
referred to as the “data section”) to which the relocations apply. The sh_link field of the relocation 
section defines the section header index of the associated symbol table. If section names are used, the name 
of the relocation section is .rela prepended to the name of the data section.

A relocation entry is defined by the Elf32_Rela structure and associated macros as shown in 
Example 4-7. The r_offset field defines an offset into the data section to which the individual relocation 
applies. The r_info field specifies both the type of the relocation and the symbol used in computation of 
the relocation data.

The relocation type is extracted from the r_info field using the ELF32_R_TYPE macro and the symbol 
number is extracted using the ELF32_R_SYM macro. The r_info field is synthesized from the relocation 
type and symbol number using the ELF32_R_INFO macro.

In the remainder of this section, the “relocation value” is the value to be stored at the location defined by 
the r_offset field (in the format specified by the relocation type). For a relocation type in Table 4-2, the 
relocation value is computed by adding the signed value of the r_addend field to the value of the symbol 
indicated by the symbol number. Symbol number zero is treated as absolute zero, in which case the 
relocation value is simply the value of the r_addend field. This degenerate case is also often used by the 
extended relocation types defined in Section 4.5.2, “Relocation Stack,” particularly R_STARCORE_OPER 
and R_STARCORE_POP, for which a symbol value is rarely useful.

Example 4-7.   Relocation Entry Defined with Elf32_Rela

typedef struct
    {
      Elf32_Addr   r_offset;
      Elf32_Word   r_info;
      Elf32_Sword  r_addend;
    } Elf32_Rela;

    #define ELF32_R_SYM(i)     ((i)>>8)
    #define ELF32_R_TYPE(i)    ((i)&0xff)
    #define ELF32_R_INFO(s,t)  (((s)<<8)|((t)&0xff))
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4.5.1  Relocation Types
Device-specific relocations describe how a memory location should be patched by the linker. An ordinary 
relocation encodes exactly one instruction operand (or, in the case of data relocations, exactly one data 
value). It is the responsibility of the linker to ensure that the operand meets the range and alignment 
requirement specified by the relocation.

For each relocation type in Table 4-2, the Type field indicates the value extracted using ELF32_R_TYPE, 
both as a number and as a standard C preprocessor symbol. A brief abstract of the relocation follows in 
parentheses.

The Size field indicates the number of bits used to represent the relocation value. If the operand range is a 
subset of the values which can be represented in these bits, that restriction is indicated in parentheses.

The Signedness field indicates whether the relocation value is treated as signed, unsigned, or either.

The Alignment field indicates the alignment requirement in bits of the relocation value. This is the number 
of least significant bits in the relocation value which must be zero.

The Shift field indicates the number of bits the relocation value is right-shifted before it is encoded. The 
shift count subtracted from the size is the number of bits used to encode the relocation value.

The Special field indicates any other special processing performed during relocation. For instructions 
which compute the PC, the value of the PC is the address of the instruction to which the relocation applies 
(computed by adding the relocation’s r_offset field and the data section’s sh_addr field), not the 
machine’s runtime PC value (see Section 4.5.3, “Instruction Address vs. VLES Address” ).

The Encoding field indicates the way the relocation value is encoded in the target memory locations. The 
order of the bits in the instruction operand or data value encoding does not necessarily match the order of 
the bits in the relocation value. Upper case letters are used to indicate relocation value bits which are more 
significant than bits indicated by lower case letters. s and S denote bits of a signed relocation value, u and 
U denote bits of an unsigned relocation value, and x denotes a bit of a relocation value that is either signed 
or unsigned. Dashes indicate bits not changed by the relocation. All encodings for instructions are shown 
in groups of 16 bits; the bits within each group are subject to byte-swapping depending on target 
endianness. Relocation types 2 and 3 (16-bit and 32-bit direct) are also endianness-sensitive.

The Applies To field indicates which instructions or directives generate this relocation.

Example:

   ----S---sss--SSS ---ssssssssssssS
       1   111  111    1198765432101
       9   432  876    10          5

Left to right, the “S”s represent bits 19-15 and the “s”s represent bits 14-0 of the relocation value. For a 
big-endian target, this corresponds to a byte representation of:

   byte 0    byte 1    byte 2    byte 3
   ----S---  sss--SSS  ---sssss  sssssssS
       1     111  111     11987  65432101
       9     432  876     10            5

For a little-endian target, this corresponds to a byte representation of:

   byte 0    byte 1    byte 2    byte 3
   sss--SSS  ----S---  sssssssS  ---sssss
   111  111      1     65432101     11987
   432  876      9            5     10
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Table 4-2.   Relocation Type Definitions

Type: 1, R_STARCORE_DIRECT_8 (8-bit direct)

Size: 8

Signedness: either

Alignment: 0

Shift: 0

Encoding: xxxxxxxx

76543210

Applies To: DCB

Type: 2, R_STARCORE_DIRECT_16 (16-bit direct)

Size: 16

Signedness: either

Alignment: 0

Shift: 0

Encoding: xxxxxxxxxxxxxxxx

1111119876543210

543210

Applies To: DCW

Type: 3, R_STARCORE_DIRECT_32 (32-bit direct)

Size: 32

Signedness: either

Alignment: 0

Shift: 0

Encoding: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

33222222222211111111119876543210

1098765432109876543210

Applies To:  DCL

Type: 4, R_STARCORE_R9_1_1 (9-bit PC-relative)

Size: 9

Signedness: signed

Alignment: 1

Shift: 1

Encoding: -------ssssssss-

       87654321

Special: The PC is subtracted from the relocation value before any range checking or alignment 
checking is performed.

Applies To: BF, BFD, BSR, BSRD, BT, BTD
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Type: 5, R_STARCORE_R11_1_1 (11-bit PC-relative)

Size: 11

Signedness: signed

Alignment: 1

Shift: 1

Encoding: -----ssssssssss-

     1987654321

     0

Special: The PC is subtracted from the relocation value before any range checking or alignment 
checking is performed.

Applies To: BRA, BRAD

Type: 6, R_STARCORE_R17_1_1 (17-bit PC-relative)

Size: 17

Signedness: signed

Alignment: 1

Shift: 1

Encoding: --------sss----- ---ssssssssssssS

        111         1119876543211

        543         210         6

Special: The PC is subtracted from the relocation value before any range checking or alignment 
checking is performed.

Applies To: BREAK, CONT, CONTD, DOSETUP0, DOSETUP1, DOSETUP2, DOSETUP3, 
SKIPLS

Type: 7, R_STARCORE_R21_1_1 (21-bit PC-relative)

Size: 21

Signedness: signed

Alignment: 1

Shift: 1

Encoding: ----S---sss--SSS ---ssssssssssssS

    2   111  111    1119876543211

    0   543  987    210         6

Special: The PC is subtracted from the relocation value before any range checking or alignment 
checking is performed.

Applies To: BF, BFD, BRA, BRAD, BSD, BSRD, BT, BTD

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 8, R_STARCORE_S7_0_0 (7-bit signed)

Size: 7

Signedness: signed

Alignment: 0

Shift: 0

Encoding:  ---------sssssss

          6543210

Applies To: MOVE.W

Type: 9, R_STARCORE_S15_0_0 (15-bit signed)

Size: 15

Signedness: signed

Alignment: 0

Shift: 0

Encoding: ---------ss----- ---sssssssssssss

         11         1119876543210

         43         210

Applies To: MOVE.B, MOVE.F, MOVE.L, MOVE.W, MOVES.F, MOVEU.B, MOVEU.W

Type: 10, R_STARCORE_S15_1_0 (15-bit signed)

Size: 15

Signedness: signed

Alignment: 1

Shift: 0

Encoding: ---------ss----- ---sssssssssssss

         11         1119876543210

         43         210

Applies To: MOVE.F, MOVE.W, MOVES.F, MOVEU.W

Type: 11, R_STARCORE_S15_2_0 (15-bit signed)

Size: 15

Signedness: signed

Alignment: 2

Shift: 0

Encoding: ---------ss----- ---sssssssssssss

         11         1119876543210

         43         210

Applies To: MOVE.L

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 12, R_STARCORE_S16_0_0 (16-bit signed)

Size: 16

Signedness: signed

Alignment: 0

Shift: 0

Encoding: --------sss----- ---sssssssssssss

        111         1119876543210

        543         210

Applies To: ADDA, ADDNC.W, CMPEQ.W, CMPGT.W, IMPY.W, MAC, MOVE.F, MOVE.W, 
SUBNC.W

Type: 13, R_STARCORE_S16_1_0 (16-bit signed)

Size: 16

Signedness: signed

Alignment: 1

Shift: 0

Encoding: --------sss----- ---sssssssssssss

        111         1119876543210

        543         210

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W, 
EOR.W, MOVE.W, NOT.W, OR.W

Type: 14, R_STARCORE_T16_0_0 (16-bit signed)

Size: 16

Signedness: signed

Alignment: 0

Shift: 0

Encoding: -----------ss--- ---------------- --ssssssssssssss

           11                       11119876543210

           54                       3210

Applies To: MOVE.W

Type: 15, R_STARCORE_S32_0_0 (32-bit signed)

Size: 32

Signedness: signed

Alignment: 0

Shift: 0

Encoding: --------sssSS--- ---sssssssssssss --SSSSSSSSSSSSSS

        11133       1119876543210   22222222221111

        54310       210             98765432109876

Applies To: MOVE.L

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 16, R_STARCORE_U4_1_1 (4-bit unsigned)

Size: 4

Signedness: unsigned

Alignment: 1

Shift: 1

Encoding: -------------uuu

                             321 

Applies To: MOVE.W

Type: 17, R_STARCORE_U5_2_2 (5-bit unsigned)

Size: 5

Signedness: unsigned

Alignment: 2

Shift: 2

Encoding: -------------uuu

             432

Applies To: MOVE.L

Type: 18, R_STARCORE_U5_0_0 (5-bit unsigned)

Size: 5

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: -----------uuuuu

           43210

Applies To: ADD, ADDA, ASLL, ASRR, CMPEQ.W, CMPGT.W, DECA, INCA, LSRR, SUBA

Type: 19, R_STARCORE_U6_1_1 (6-bit unsigned)

Size: 6

Signedness: unsigned

Alignment: 1

Shift: 1

Encoding: -----------uuuuu

           54321

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W, 
EOR.W, MOVE.W, NOT.W, OR.W

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 20, R_STARCORE_U6_0_0 (6-bit unsigned)

Size: 6

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: ----------uuuuuu

          543210

Applies To: DOEN0, DOEN1, DOEN2, DOEN3, DOENSH0, DOENSH1, DOENSH2, DOENSH3

Type: 21, R_STARCORE_U7_1_1 (7-bit unsigned)

Size: 7

Signedness: unsigned

Alignment: 1

Shift: 1

Encoding: ----------uuuuuu

          654321

Applies To: MOVE.W

Type: 22, R_STARCORE_U8_2_2 (8-bit unsigned)

Size: 8

Signedness: unsigned

Alignment: 2

Shift: 2

Encoding: ----------uuuuuu

          765432

Applies To: MOVE.L

Type: 23, R_STARCORE_V6_0_0 (6-bit unsigned)

Size: 6 (range 0..39)

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: ---------------- ----uuuuuu------

                     543210

Applies To: EXTRACT, EXTRACTU, INSERT

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 24, R_STARCORE_W6_0_0 (6-bit unsigned)

Size: 6 (range 0..39)

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: ---------------- ----------uuuuuu

                           543210

Applies To: EXTRACT, EXTRACTU, INSERT

Type: 25, R_STARCORE_U16_0_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: --------uuu----- ---uuuuuuuuuuuuu

        111         1119876543210

        543         210

Applies To: AND, BMCHG, BMCHG.W, BMCLR, BMCLR.W, BMSET, BMSET.W, BMTSET, 
BMTEST.W, BMTSTC, BMTSTC.W, BMTSTS, BMTSTS.W, DOEN0, DOEN1, 
DOEN2, DOEN3, DOENSH0, DOENSH1, DOENSH2, DOENSH3, EOR, EOR.W, 
MOVE.B, MOVEU.B, MOVEU.W, OR, OR.W

Type: 26, R_STARCORE_U16_1_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 1

Shift: 0

Encoding: --------uuu----- ---uuuuuuuuuuuuu

        111         1119876543210

        543         210

Applies To: AND.W, BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W, 
EOR.W, MOVE.F, MOVE.W, MOVES.F, MOVEU.W, NOT.W, OR.W

Type: 27, R_STARCORE_U16_2_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 2

Shift: 0

Encoding: --------uuu----- ---uuuuuuuuuuuuu

        111         1119876543210

        543         210

Applies To: MOVE.L

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 28, R_STARCORE_V16_0_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: -----------uu--- ---------------- --uuuuuuuuuuuuuu

           11                       11119876543210

           54                       3210

Applies To: BMCHG.W, BMCLR.W, BMSET.W, BMTSET.W, BMTSTC.W, BMTSTS.W, EOR.W, 
OR.W

Type: 29, R_STARCORE_N16_0_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: --------uuu----- ---uuuuuuuuuuuuu

        111         1119876543210

        543         210

Special: The relocation value is exclusive-ORed with 0xFFFF before any range checking or 
alignment checking is performed.

Applies To: AND, AND.W

Type: 30, R_STARCORE_O16_0_0 (16-bit unsigned)

Size: 16

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: -----------uu--- ---------------- --uuuuuuuuuuuuuu

Special: The relocation value is exclusive-ORed with 0xFFFF before any range checking or 
alignment checking is performed.

Applies To: AND.W

Type: 31, R_STARCORE_U32_0_0 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 0

Shift: 0

Encoding: --------uuuUU--- ---uuuuuuuuuuuuu --UUUUUUUUUUUUUU

Applies To: MOVE.B, MOVE.L, MOVEU.B, MOVEU.L

Table 4-2.   Relocation Type Definitions (Continued)
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Type: 32, R_STARCORE_U32_1_0 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 1

Shift: 0

Encoding: --------uuuUU--- ---uuuuuuuuuuuuu --UUUUUUUUUUUUUU

        11133       1119876543210   22222222221111

        54310       210             98765432109876

Applies To: JF, JFD, JMP, JMPD, JSR, JSRD, JT, JTD, MOVE.F, MOVE.W, MOVES.F, 
MOVEU.W

Type: 33, R_STARCORE_U32_2_0 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 2

Shift: 0

Encoding: --------uuuUU--- ---uuuuuuuuuuuuu --UUUUUUUUUUUUUU

        11133       1119876543210   22222222221111

        54310       210             98765432109876

Applies To: MOVE.L

Type: 34, R_STARCORE_U32_16_16 (32-bit unsigned)

Size: 32

Signedness: unsigned

Alignment: 16

Shift: 16

Encoding: --------uuu----- ---uuuuuuuuuuuuu

        332         2222222221111

        109         8765432109876

Applies To: AND

Table 4-2.   Relocation Type Definitions (Continued)
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4.5.2  Relocation Stack
For those situations in which the relocation value cannot be expressed as a simple symbol value plus an 
addend, there are three special relocation types used to evaluate an arbitrary expression on a relocation 
stack. These relocation types are referred to as extended relocations. Other relocation types are ordinary 
relocations.

A relocation stack is a standard last-in-first-out data structure containing 32-bit values. A hosted 
environment must not place any arbitrary limit on the depth of the stack. An embedded environment may 
impose any limit on stack depth or omit the relocation stack entirely (effectively, a maximum stack depth 
of zero).

A relocation type of 253 (R_STARCORE_PUSH) indicates that the sum of the symbol value (the value of 
symbol number zero is zero) plus the signed r_addend value should be pushed onto the relocation stack.

A relocation type of 254 (R_STARCORE_OPER) defines an operation to be performed on one or more stack 
values. The operation is specified by the sum of the symbol value (the value of symbol number zero is 
zero) plus the signed r_addend value. Operations are shown in Table 4-3. In the table, Stack0 indicates 
the value on the top of the stack, and Stack1 indicates the value one level beneath the top of the stack.

Table 4-3.   Relocation Stack Operations

Relocation 
Value

Before After
Operation

Stack0 Stack1 Stack0

0 X X No operation

1 X -X Negation (2s complement)

2 X ~X Bitwise NOT (1s complement)

3 X !X Boolean NOT (zero -> 1, nonzero -> 0)

4 Y X X * Y Multiplication

5 Y X X / Y Division

6 Y X X % Y Remainder

7 Y X X + Y Addition

8 Y X X - Y Subtraction

9 Y X X <<< Y Logical shift left

10 Y X X >>> Y Logical shift right

11 Y X X << Y Arithmetic shift left

12 Y X X >> Y Arithmetic shift right

13 Y X X < Y 1 if X < Y, otherwise 0

14 Y X X <= Y 1 if X <= Y, otherwise 0

15 Y X X > Y 1 if X > Y, otherwise 0

16 Y X X >= Y 1 if X >= Y, otherwise 0

17 Y X X == Y 1 if X equals Y, otherwise 0

18 Y X X != Y 1 if X does not equal, otherwise 0

19 Y X X & Y Bitwise AND

20 Y X X ^ Y Bitwise OR

21 Y X X | Y Bitwise XOR

22 Y X X && Y 1 if X and Y both nonzero, otherwise 0

23 Y X X || Y 1 if X or Y or both nonzero, otherwise 0



4-18 SC100 Application Binary Interface

Object File Format

Note that in most cases, the stack values are treated as unsigned. However, arithmetic shifts and logical 
shifts are treated differently:

A relocation type of 255 (R_STARCORE_POP) indicates the end of a relocation expression, to be relocated 
using an ordinary relocation type from Table 4-2. The relocation type is specified by the sum of the symbol 
value (the value of symbol number zero is zero) plus the signed r_addend value.

When the R_STARCORE_POP operation is encountered, there should be exactly one value on the stack. 
This value, which is consumed by this operation, becomes the new relocation value for the ordinary 
relocation type specified in the R_STARCORE_POP relocation.

It is the responsibility of the relocation engine to ensure that the stack is empty after an R_STARCORE_POP, 
before an ordinary relocation, and after linking is complete. A sequence of relocations which causes a stack 
underflow does not conform to the ABI.

4.5.3  Instruction Address vs. VLES Address
Within a Variable Length Execution Set (VLES) all instructions share a common value of the PC register, 
specifically the starting address of the VLES itself. The r_offset field of a relocation points to the 
instruction address, not the VLES address. To compensate for this, a PC-relative instruction must have the 
instruction offset subtracted from the PC-relative operand as follows:

1. In an ordinary relocation, the offset should be subtracted from the value in the r_addend field. 
Example: 

The “dosetup3” instruction would generate an ordinary relocation with the following field values:
     r_info:   ELF32_R_INFO(<symbol number of lptab>, R_STARCORE_R17_1_1)
     r_addend: 26 (32 - 6)

2. In an extended relocation, the subtraction of the offset should be inserted at the end of 
relocation expression, just before the R_STARCORE_POP operation. Example:

Logical shift left: Zeroes are shifted in on the right.
Logical shift right: Zeroes are shifted in on the left.
Arithmetic shift left: Zeroes are shifted in on the right, and the most significant bit is always unaffected.
Arithmetic shift right: Copies of the most significant bit are shifted in on the left.

VLES Offset Instruction

0 (1w prefix) [

2    tsteq     d2

4    doen3     d4

6    dosetup3  lptab+32

]

VLES Offset Instruction

0 (1w prefix) [

2    tsteq     d2

4    doen3     d4

6    dosetup3  lptab+4*ndx

]
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The “dosetup3” instruction would generate a sequence of extended relocations with the following 
field values:

The relocations marked with asterisks implement the offset subtraction.

4.6   NOTE Section
The note section is optional. It contains object file vendor identification and application-specific object file 
comments. If included, it follows the described format.

Vendor identification format is shown in Figure 4-2. It consists of the following: 

r_info (type shown first, then symbol) r_addend

  R_STARCORE_PUSH  <symbol number of lptab> 0

  R_STARCORE_PUSH  0 4

  R_STARCORE_PUSH  <symbol number of ndx> 0

  R_STARCORE_OPER  0 4 (*)

  R_STARCORE_OPER  0 7 (+)

* R_STARCORE_PUSH  0 6

* R_STARCORE_OPER  0 8 (-)

  R_STARCORE_POP   0 R_STARCORE_R17_1_1

namesz The string length (not counting null terminator) of the name. It is a 4-byte unsigned 
integer.

descz The size of the description entries. This is 12 bytes for the vendor id note. The 
description fields contain the version, revision, minor revision numbers of the 
producing entity (assembler or linker). Data is an unsigned 4-byte integer.

type Type equals 2 for the vendor identification note. It is a 4-byte unsigned integer in 
little-endian order.

name Null terminated string and padded, if necessary, to achieve a 4-byte boundary 
alignment which represents the vendor’s identification.
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Figure 4-2.   Vendor Identification Note Format

Object file comments generated by the user through an assembler directive are placed in the note section. 
This is typically for users to identify their object code. The same string termination and padding 
restrictions apply to object file comments as apply to vendor identification notes. The field contains a 
user-specified comment. A null comment ( \0 ) is not a valid comment.

The object file comment format is shown in Figure 4-3.

Figure 4-3.   User (Application-Specific) Note Format

namesz

descsz

type

0 1 2 3

name ‘v’ ‘e’ ‘n’ ‘d’

‘o’ ‘r’ ‘i’ ‘d’

2 (Vendor ID note)

‘\0’ pad pad’ pad

Version number

Revision number

Bytes

Minor rev number

namesz

descsz

type

1 2 3

name ‘c’ ‘o’ ‘m’ ‘m’

‘e’ ‘n’

0

1 

0

‘t’ \0
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4.7   Program Headers
Program headers are used to build an executable image in memory and are only useful for executable files. 
While section headers may or may not be included in executable files, program headers are always present. 
See Example 4-8 for a sample program header.

Example 4-8.   Program Header

typedef struct {
Elf32_Word p_type;
Elf32_Off  p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

The program header members are described below.

p_type Describes the type of program header. Only PT_LOAD and PT_NOTE are recognized as 
types.

p_offset Offset from beginning of file to first byte of segment.
p_vaddr Virtual address in memory of the first byte of the segment.
p_paddr Physical address in memory of the first byte of the segment.
p_filesz Gives the number of bytes in segment’s file image. (May be zero.)
p_memsz Gives the number of bytes in segment’s memory image. (May be zero.)
p_flags Gives flags relevant to the segment. Defined flags are PF_R, PF_W, and PF_X.
p_align Segment alignment requirements in file and memory.
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4.8   Debugging Information
SC100 tools must use the Debug With Arbitrary Record Format (DWARF) debugging format, as defined 
in the Tool Interface Standard (TIS) DWARF Debugging Information Format Specification, Version 2.0.

4.8.1  DWARF Register Number Mapping
Table 4-4 outlines the register number mapping for the SC100 generation of DSP cores.

Table 4-4.   SC100 Register Number Mapping

Register Name Number Abbreviation

Stack Pointer 0 SP

General Data Registers 1–16 D0–D15

Address Registers 17–32 R0–R15

Data Registers—extension portion 33–48 D0_e–D15_e

Data Registers—high portion 49–64 D0_h–D15_h

Data Registers—low portion 65–80 D0_l–D15_l

Loop Counter Registers 81–84 LC0–LC3

Modulo Registers 85–88 M0–M3

Offset Registers 89–92 N0–N3

Program Counter 93 PC

Clock Control Registers 94–97 PCTL0–PCTL3

Start Address Registers 98–101 SA0–SA3

Vector Base Address Register 102 VBA

Exception and Mode Register 103 EMR

Modifier Control Register 104 MCTL
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Chapter 5
Assembler Syntax and Directives

Assemblers must support the directives, special characters, and syntax identified in this section. Details on 
these topics can be found in the SC100 Assembly Language Tools User’s Manual, Rev 2.0.

5.1   Assembler Significant Characters
Several one- and two-character sequences are significant to the assembler and must be supported. Some 
have multiple meanings depending on the context in which they are used. These characters are listed in 
Table 5-1.

Table 5-1.   Assembler Significant Characters

Character Meaning

; Comment delimiter

;; Unreported comment delimiter

\ Line continuation character or macro dummy argument concatenation 
operator

" Quoted string DEFINE expansion character

@ Function delimiter

* Location counter substitution

++ String concatenation operator

[ ] Substring delimiter or instruction grouping delimiter

<< I/O short addressing mode force operator

< Short addressing mode force operator

> Long addressing mode force operator

# Immediate addressing mode operator

#< Immediate short addressing mode force operator

#> Immediate long addressing mode force operator
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5.2   Assembler Directives
The assembler directives listed in Table 5-2 must be supported.
 

Table 5-2.   Assembler Directives

Type Directive Description

Assembly Control COMMENT Start comment lines

DEFINE Define substitution string

END End of source program

FAIL Programmer generated error message

HIMEM Set high memory bounds

INCLUDE Include secondary file

LOMEM Set low memory bounds

MSG Programmer generated message

ORG Initialize memory space and location counters

RADIX Change input radix for constants

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning

Symbol Definition ENDSEC End section

EQU Equate symbol to a value

GLOBAL Global section symbol declaration

GSET Set global symbol to a value

SECFLAGS Set ELF section flags

SECTION Start section

SECTYPE Set ELF section type

SET Set symbol to a value

SIZE Set size of symbol in the ELF symbol table

TYPE Set symbol type in the ELF symbol table

Data Definition /
Storage Allocation

ALIGN Set address to modulo boundary

BADDR Set buffer address

BSB Block storage bit-reverse

BSC Block storage of constant

BUFFER Start buffer

DC, DCW Define constant (16-bits)

DCB Define constant byte (8-bits)

DCL Define constant long word (32-bits)

DS Define storage

DSR Define reverse carry storage

ENDBUF End buffer

FALIGN Align hardware loop
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5.3   Assembler Syntax
The following sections provide details on assembler syntax.

5.3.1  Symbol Names
Symbol names follow these conventions:

• Symbol names can be from one to 4000 characters long.

• Symbol names cannot begin with a number (0-9). Symbol names can otherwise be any combination 
of alphanumeric characters (A-Z, a-z, 0-9) and the underscore character (_).

• Symbol names and other identifiers containing a period ( .) are legal but are reserved for the system.

• Upper and lower case letters in symbols are considered distinct.

• The upper or lower case names of SC100 core registers are reserved by the assembler and cannot be 
used.

Examples of symbol names are shown below.

 

5.3.2  Strings
One or more ASCII characters enclosed by single quotes (’) constitute a literal ASCII string. In order to 
specify an apostrophe within a literal string, two consecutive apostrophes must appear where the single 
apostrophe is intended. Strings are used as operands for some assembler directives and also can be used to 
a limited extent in expressions.

A string may also be enclosed in double quotes (") in which case any DEFINE directive symbols contained 
in the string would be expanded.

Conditional Assembly DUP Duplicate sequence of source lines

ENDIF End of conditional assembly

ENDM End of duplicate sequence

ELSE Conditional assembly directive

IF Conditional assembly directive

Valid Names Invalid Names Reserved Names

loop_1

ENTRY
_a_B_c

1_loop loop.e

.loop

Table 5-2.   Assembler Directives

Type Directive Description
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Two strings separated by the string concatenation operator (++) will be recognized by the assembler as 
equivalent to the concatenation of the two strings. For example, the following two strings are equivalent:

’ABC’++’DEF’  =  ’ABCDEF’

The assembler has a substring extraction capability using brackets ([]). Refer to the following example:

[’abcdefg’,1,3]  =  ’bcd’

Substrings may be used wherever strings are valid and can be nested. There are also functions for 
determining the length of a string and the position of one string within another. 

5.3.3  Source Statement Format
As shown in Figure 5-1, an assembly language source statement may include four fields in its most basic 
form: label, operation, operand, and comment.

Figure 5-1.   Basic Source Statement

Fields must be separated by one or more spaces or tabs. Fields other than the comment field cannot contain 
embedded whitespace characters, since these characters are used as field delimiters. An exception is spaces 
and tabs in quoted strings.

Only fields preceding the comment field are considered significant to the assembler; the comment field is 
ignored. Anything beginning in column 1 is considered a label.

A source statement can be extended to multiple lines by including the line continuation character (\) as the 
last character on the line to be continued. An exception to this is instruction groups, which can span 
multiple lines as long as the instruction group is surrounded by brackets ([]). (See Section 5.3.3.1, 
“Instruction Groups.”)

A source statement (first line and any continuation lines) can be a maximum of 4000 characters long. 
Upper and lower case letters are equivalent for assembler mnemonics and directives, but are distinct for 
labels, symbols, directive arguments, and literal strings.

TABLE    DC    1426,253            ; This is a directive

Label*

 Operation
      Operand

Comment

*Begins in column 1
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5.3.3.1   Instruction Groups
The SC100 architecture supports instruction groups, which allow multiple instructions to be executed in 
parallel. Rules governing how instructions may be grouped are discussed in each core’s respective 
reference manual.

The assembler interprets each line containing instructions as an instruction group. Instructions must be 
separated by tabs or spaces, as shown in Example 5-1.

Example 5-1.   Single-Line Instruction Group

move.f (r2)+,d0 move.f (r2)+,d8 clr d5 ; Instruction group with 3 instructions

When delimited with brackets ([]), an instruction group may span multiple lines, as shown in 
Example 5-2.

Example 5-2.   Multiple-Line Instruction Group (SC140)

[
mac d0,d1,d2 mac d3,d4,d5 ; multiply operands

 add d0,d1,d3 add d3,d4,d6 ; add operands
 move.f (r0)+,d0 move.w (r1)+,d1 ; load new operands
]

5.3.3.2   Labels
Labels begin in column 1 of a source statement. A space or tab as the first character on a line ordinarily 
indicates that the label field is empty. Labels are subject to the following rules:

• Label names must follow the same conventions as symbol names.

• A label may be indented if it is immediately followed by a colon (:) with no intervening spaces. In 
this case, all characters preceding the label on the line must be whitespace characters—spaces or tabs.

• A label may occur only once in the label field of an individual source file unless it is used as a local 
label, a label local to a section, or is used with the SET directive. If a non-local label occurs more than 
once in a label field, each reference to that label after the first will be flagged as an error.

• A line consisting of a label only is valid and has the effect of assigning the value of the location 
counter to the label. With the exception of some directives, a label is assigned the value of the location 
counter of the first word of the instruction or data being assembled.

5.3.3.3   Operation Field
The operation field appears after the label field, and must be preceded by at least one space or tab. Entries 
in the operation field may be one of three types:

Opcode Mnemonics that correspond directly to DSP machine instructions.
Directive Special operation codes known to the assembler which control the assembly process.
Macro call Invocation of a previously defined macro which is to be inserted in place of the macro call.
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5.3.3.4   Operand Field
The interpretation of the operand field is dependent on the contents of the operation field. The operand 
field, if present, must follow the operation field, and must be preceded by at least one space or tab. The 
operand field may contain a symbol, an expression, or a combination of symbols and expressions separated 
by commas with no intervening spaces.

5.3.3.5   Comment Field
Comments are ignored by the assembler, but can be included in the source file for documentation purposes. 
A comment field is composed of any characters (not part of a literal string) that are preceded by a 
semicolon (;). 

5.4   Rule Checking
Every core architecture has a set of programming rules that must be adhered to, in order to ensure correct 
code execution. Each core’s reference manual defines the instructions that an assembly programmer or 
compiler will use. It is the role of the assembler and simulator to ensure that the instructions are legally 
used.

To ensure ABI conformance, it is required that third party assemblers and simulators follow the 
requirements defined in the design specification, “Support in the Assembler and Simulator Required for 
Correct Reporting of SC100 Restrictions.” This specification defines which rules must be validated 
statically by the assembler. In some cases, it is only possible to validate a rule dynamically through the 
simulator. These cases are also documented.

For each rule violation, the specification defines an error or warning message. Each message contains an 
identifier (for example, A1, GG4, or LC7). Third party assemblers must include this identifier as part of the 
error or warning message. Beyond this requirement, the message may be formatted or worded as desired.

A set of programming rule test cases will be made available to third parties to validate conformance to the 
specification. The test suite and the design specification will be provided to third parties under a 
non-disclosure agreement with the StarCore Technology Center.
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