
MMA9559L Intelligent, Motion-Sensing
Platform Software Reference Manual

Devices Supported:
MMA9559L

Document Number: MMA9559LSWRM
Rev. 0.1, 03/2012

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system
and software implementers to use Freescale Semiconductor
products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes
without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale Semiconductor assume any liability arising
out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor
data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for
each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its
patent rights nor the rights of others. Freescale Semiconductor
products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, and the
Energy Efficient Solutions logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a
trademark of Freescale Semiconductor, Inc.

All other product or service names are the property of their
respective owners.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 3

Contents

Chapter 1 About this Document
1.1 Overview .7

1.1.1 Purpose .7
1.1.2 Audience .7
1.1.3 Document structure .7

1.2 Terms and acronyms .8
1.3 Conventions .9
1.4 References .10

Chapter 2 Firmware Overview
2.1 Firmware elements and functionality . 11
2.2 Memory and CPU usage .12

2.2.1 Flash memory .12
2.2.2 RAM .12
2.2.3 Supervisor stack usage .13

2.3 Hardware support .14
2.3.1 Frame interval counter .14
2.3.2 Analog Front End (AFE) .15
2.3.3 Stop mode control .17

2.4 Events and scheduling .18
2.4.1 Events .18
2.4.2 Initialization .21
2.4.3 Interrupts and critical sections .22

2.5 FIFOs .24
2.5.1 Instantiate FIFO .25
2.5.2 Initialize FIFO .25
2.5.3 Push data onto the FIFO .26
2.5.4 Pop data off the FIFO .27
2.5.5 Reset the FIFO .27
2.5.6 Other FIFO functions .28

2.6 Power .28

Chapter 3 User Code Example
3.1 Header .31
3.2 User exception handler .32
3.3 User trap handler .35
3.4 User main .37

Chapter 4 Functional Details
4.1 Memory and CPU usage .39

4.1.1 Supervisor stack .40
4.2 Hardware support .42

4.2.1 Macros .42

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

4 Freescale Semiconductor, Inc.

Section Number Title Page

4.2.1.1 #define NUM_SENSOR_AXIS 5 .42
4.2.2 Enumerations .42

4.2.2.1 enum afe_csr_options_t .42
4.2.2.2 enum framerate_t .44

4.2.3 Data structure .45
4.2.3.1 mma9559_afe_data_t .45

4.2.4 Functions .46
4.2.4.1 framerate_t mma9559_framerate_set(framerate_t rate) 46
4.2.4.2 void mma9559_afe_conversion_start(void) .47
4.2.4.3 void mma9559_afe_interrupt_clear(void) .48
4.2.4.4 void mma9559_afe_raw_sensor_data_get(int16 *data_ptr)49
4.2.4.5 void mma9559_afe_raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)

50
4.2.4.6 void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)51
4.2.4.7 void mma9559_afe_csr_set(afe_csr_options_t options) 52
4.2.4.8 afe_csr_options_t mma9559_afe_csr_get(void)53
4.2.4.9 void mma9559_afe_offsets_set(int16 *data_ptr) 54
4.2.4.10 void mma9559_afe_offsets_get(int16 *data_ptr) 55

4.3 Events and scheduling .56
4.3.1 Macros .56

4.3.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b))56
4.3.2 Enumerations .57

4.3.2.1 enum idle_config_t .57
4.3.2.2 enum idle_bits_t .58

4.3.3 Data structures .60
4.3.3.1 mma9559_idle_t .60
4.3.3.2 mma9559_vars_t .61

4.3.4 Functions .62
4.3.4.1 mma9559_vars_t* mma9559_vars_addr_get(void) 62
4.3.4.2 events_t mma9559_events_set_clear(events_t set_events,

events_t clear_events) .63
4.3.4.3 int mma9559_events_find_first(events_t events)64
4.3.4.4 int mma9559_events_find_next(events_t events, int current_event) . . .65
4.3.4.5 void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)

66
4.3.4.6 void mma9559_idle(void) .67
4.3.4.7 int mma9559_interrupts_disable(void) .68
4.3.4.8 void mma9559_interrupts_restore(int status) .69
4.3.4.9 int mma9559_user_trap0(int d0, int d1, int d2, void *a0, void *a1)70
4.3.4.10 int mma9559_user_trap1(int d0, int d1, int d2, void *a0, void *a1)71
4.3.4.11 int mma9559_user_trap2(int d0, int d1, int d2, void *a0, void *a1)72
4.3.4.12 int mma9559_user_trap3(int d0, int d1, int d2, void *a0, void *a1)73

4.4 FIFOs .74
4.4.1 Macros .74

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 5

Section Number Title Page

4.4.1.1 #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32 rs-
vd[2]; uint8 data[max_entries * bytes_per_entry]; }74

4.4.2 Data structures .75
4.4.2.1 mma9559_fifo_t .75

4.4.3 Functions .76
4.4.3.1 int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr, events_t events,

unsigned int max_entries, unsigned int bytes_per_entry) 76
4.4.3.2 void mma9559_fifo_reset(volatile mma9559_fifo_t *fifo_ptr) 78
4.4.3.3 int mma9559_fifo_pop(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr,

unsigned int entries) .79
4.4.3.4 int mma9559_fifo_push(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr,

unsigned int entries) .80
4.4.3.5 int mma9559_fifo_entries_used(volatile mma9559_fifo_t *fifo_ptr) 81
4.4.3.6 int mma9559_fifo_entries_free(volatile mma9559_fifo_t *fifo_ptr)81

4.5 Other functions .82
4.5.1 Enumerations .82

4.5.1.1 enum boot_options_t .82
4.5.1.2 enum rmf_func_t .83

4.5.2 Data structures .84
4.5.2.1 mma9559_device_info_t .84
4.5.2.2 union rmf_return_t .85

4.5.3 Functions .86
4.5.3.1 void mma9559_boot_options_set(boot_options_t option) 86
4.5.3.2 int mma9559_device_info_get(int length, mma9559_device_info_t *addr)

87
4.5.3.3 void* mma9559_rom_command(rmf_func_t func_id, void *addr)88

4.6 IIR filter .89
4.6.1 Data structures .90

4.6.1.1 mma9559_coef_t .90
4.6.2 Functions .91

4.6.2.1 int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef,
void *buffer) .91

4.6.3 Typedefs .92
4.6.3.1 typedef struct mma9559_coef_t mma9559_coef_t92

Appendix A
Revision History

A.1 Changes Between Revisions 0 and 0.1 .93

6 Freescale Semiconductor, Inc.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 7

Chapter 1 About this Document

1.1 Overview

1.1.1 Purpose

This reference manual describes the features, architecture and programming model of the MMA9559L
Intelligent, Motion-Sensing Platform. This device incorporates dedicated accelerometer MEMS
transducers, signal conditioning, data conversion, and a 32-bit programmable microcontroller. For
information about the device’s hardware, see the MMA955xL Intelligent, Motion-Sensing Hardware
Reference Manual (MMA955xLRM). (See “References” on page 10.)

1.1.2 Audience

This document is primarily for system architects and software application developers who are using or
considering use of the MMA9559L device in a system.

1.1.3 Document structure

This document combines a firmware overview with detailed functional documentation and sample user
code.

• “Firmware Overview”: Provides an overview of the device’s memory configuration and firmware
requirements and explanations of the firmware’s basic functional blocks.

• “User Code Example”: Provides sample code that can be used as a template for creating user code.

• “Functional Details”: Gives the technical details of the firmware’s macros, enumerations, data
structures, and functions.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

8 Freescale Semiconductor, Inc.

1.2 Terms and acronyms
AFE Analog Front End
API Application Programming Interface
CC Command Complete
CI Command Interpreter
CMD Command
COCO Conversion Complete
CRC Cyclic Redundancy Check
DFC Data Format Code
EVM Evaluation Module
FIFO First In First Out (Data structure)
FOPT Flash Options Register
GPIO General-Purpose Input / Output
IIR Infinite Impulse Response
MBOX Mailbox
MCU Microcontroller
MTIM Modulo Timer Module
PDB Program Delay Block
RCSR Reset Control and Status Register
SFD Start Frame Digital
TPM Timer Program Module

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 9

1.3 Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value 0, it is said to be cleared; when it takes a value of 1, it
is said to be set.

MNEMONICS In text, instruction mnemonics are shown in uppercase.

mnemonics In code and tables, instruction mnemonics are shown in lowercase.

italics Italics indicate variable command parameters.
Book titles also are italicized.

0x0 Prefix of 0x to denote a hexadecimal number

0b Suffix of b to denote a binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields or ranges
appear in brackets. For example, RAMBAR[BA] identifies the base address field
in the RAM base-address register.

nibble A 4-bit data unit

byte An 8-bit data unit

word A 16-bit data unit

longword A 32-bit data unit

x In some contexts, such as signal encodings, x indicates a “do not care.”

n Used to express an undefined numerical value.

~ NOT logical operator

& AND logical operator

| OR logical operator

|| Field concatenation operator

OVERLINE Indicates that a signal is active-low.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

10 Freescale Semiconductor, Inc.

1.4 References
1. MMA955xL Intelligent, Motion-Sensing Hardware Reference Manual (MMA955xLRM);

also see the MMA955xL documentation webpage

2. The I2C-Bus Specification, Version 2.1, January 2000, Philips Semiconductors

3. I2C-Bus Specification and User Manual, NXP Semiconductors Document UM10204, Rev. 03 -
19 June 2007

4. ColdFire Family Programmer’s Reference Manual (CFPRM) Rev. 3, 03/2005, Freescale
Semiconductor, Inc.

5. IIR Filter application note AN4464, Digital Filtering with MMA955xL

http://cache.freescale.com/files/dsp/doc/ref_manual/CFPRM.pdf?fsrch=1&sr=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA9550L&nodeId=011269C10C&fpsp=1&tab=Documentation_Tab

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 11

Chapter 2 Firmware Overview
The MMA9559L device is a member of the Freescale MMA955xL intelligent, motion-sensing platform
family. Unlike the other members of the MMA955xL family—where the factory-programmed firmware
provides out-of-the-box operation—the MMA9559L only provides a lightweight infrastructure and
requires user-programmed firmware for the device to run anything other than the internal,
ROM-command-line interpreter.

This approach reduces the factory programmed firmware on the MMA9559L to only 2 KB of flash
memory, leaving the other 14 KB for customer firmware.

After an introduction to the firmware file, this chapter provides an overview of the firmware and related
hardware topics. The information is divided into the following functional categories:

• “Memory and CPU usage”

• “Hardware support”

• “Events and scheduling”

• “FIFOs”

• “Power”

These same categories are used in the following chapter, that provides functional details.

2.1 Firmware elements and functionality
The mma9559.h file contains the type and function declarations required to build custom user firmware
that can be loaded onto the Freescale MMA9559L device.

In order to use this device, CodeWarrior 10.1 or later with the MMA9550 service pack must be installed
for development.

The MMA9559L device’s built-in firmware provides the following basic functionality:

• Device initialization: This code clears the RAM within the MMA9559L and sets up the Exception
Vector Base Register, Vector Table, and the user and supervisor stack pointers. The firmware
enables interrupts and switches to User mode and jumps to the function whose address is stored in
the flash location 0x0000_0800.

If the user flash memory is blank, the Freescale firmware resets back to the ROM command
interpreter.

• Exception vector handler: This code provides a thin handler that is called whenever an exception
occurs (other than a Trap instruction). This handler saves the state of the volatile registers,
disables/masks the interrupts, switches to User mode, and then calls a user-supplied,
exception-handler function.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

12 Freescale Semiconductor, Inc.

The user-written user_exception_handler() code returns a bit field that sets bits in the
mma9559_vars_t events field. This can be used to control a simple execution loop in the user
firmware.

• Trap vector handler: Traps are software-triggered exceptions that can be issued by user firmware.
This code provides a set of functions that can be called by the user firmware. A set of four trap
exceptions are reserved for the user firmware that can register user-supplied trap handlers for each
of them.

The contents of the mma9959.h header file may be used by customer firmware, but this file should not be
modified.

2.2 Memory and CPU usage
The Freescale firmware uses 2 KB of the MMA9559L device’s 16 KB of flash memory and 384 bytes of
its 2 KB of RAM.

2.2.1 Flash memory

The MMA9559L has 16 KB of flash memory, located at the address range 0x0000_0000 to 0x0000_3FFF.
The flash space is assigned as shown in the following table.

The startup vector stored at 0x800 is used to locate the _startup() function in the user firmware. If this
vector is not 0xFFFF_FFFF, the Freescale firmware jumps to it after the firmware initialization is
complete. This vector is normally set in the vector table entry in the user project exceptions.c.

2.2.2 RAM

The MMA9559L has 2 KB of RAM, located at the address range 0x0080_0000 to 0x0080_07FF. This
space is assigned as shown in the following table.

Table 2-1. Firmware flash usage

Flash Region Size (bytes) Usage

0x0000_0000 to 0x0000_07FF 2048 Freescale primary firmware, including the exception table.

0x0000_0800 to 0x0000_0803 4 User firmware startup vector: Contains the address of the
user firmware startup code to execute.

0x0000_0804 to 0x0000_3FFB 14328 User firmware image.

0x0000_3FFC to 0x0000_3FFF 4 Optional Cyclic Redundancy Check (CRC) and default
Flash Options Register (FOPT) value.

Table 2-2. Firmware RAM usage

RAM Region Size (bytes) Usage

0x0080_0000 to 0x0080_00FF 256 Variables for ROM code, trim and Freescale firmware

0x0080_0100 to 0x0080_077F 1664 Space for user firmware variables, heap and user stack

0x0080_0780 to 0x0080_07FF 128 Supervisor stack used by the Freescale firmware

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 13

The first section of RAM is reserved for use by the Freescale firmware to store variables used by the
firmware and the ROM functions.

The second section of 1664 bytes is available for use by the user firmware. This includes space for global
variables, the heap, and the user stack. The Freescale firmware initializes the entire user variable and heap
region with the value 0, so that all global variables are initialized to 0.

The last section of RAM is reserved for the Freescale firmware to store the supervisor stack, which is used
whenever the firmware is running. The user_exception_handler() and the
user_trap_handler() functions are called from the Freescale firmware, but are run in User mode,
using the user stack space rather than using the supervisor stack space.

2.2.3 Supervisor stack usage

The MMA955xL devices use a ColdFire v1 core as the CPU. This CPU contains a set of user registers and
a set of supervisor registers. When executing in User mode, only the user registers are accessible, but when
running in Supervisor mode, all registers are accessible. The ColdFire CPU enables separate stacks to be
used for User and Supervisor modes. The MMA9559L firmware operates in Supervisor mode, but
switches back to User mode when executing any user firmware.

The ColdFire CPU uses the A7 and alternate A7 registers to provide the stack pointer, so that the
MMA9559L firmware only permits a single level of interrupts to be processed, eliminating the risk of
reentrant code, and a limit is placed on the amount of RAM required for the supervisor stack. Interrupts
are disabled when the device is in a critical section or executing an MMA9559L firmware function, a user
trap call, or the exception handler.

However, the INT pin is a non-maskable interrupt that can always execute, even when the interrupts are
masked. The INT pin uses a special, lightweight interrupt handler that converts the non-maskable INT
interrupt to a maskable software interrupt. But in doing so, it consumes 12 bytes of stack space.

Usage of the supervisor stack space should be analyzed to ensure that it does not exceed the reserved space,
otherwise it starts to overwrite the user stack space and may corrupt the user program.

For details on the different operational scenarios and the amount of stack space used by each function, see
“Memory and CPU usage” on page 39.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

14 Freescale Semiconductor, Inc.

2.3 Hardware support
User code can access the underlying functionality of the MMA955xL hardware, but the MMA9559L also
provides functions to fully enable some key hardware capabilities. This section explains how these
functions can be used. For more details, see “Hardware support” on page 42.

2.3.1 Frame interval counter

The MMA955xL hardware is designed on a frame structure. Each frame starts when the FIC (Frame
Interval Counter) reaches the configurable frame-rate timer interval and creates a Start-of-Frame
exception. This exception can be used in the user_exception_handler() to start a sequence of
activities to be executed in each frame.

The frame-rate interval is set by calling the function mma9559_framerate_set() with one of the
following parameter values:

• FRAMERATE_NONE: Disables the FIC, preventing the device from waking up periodically.

• FRAMERATE_3906HZ: Configures the FIC to run at 3906 Hz

• FRAMERATE_1953HZ: Configures the FIC to run at 1953 Hz

• FRAMERATE_977HZ: Configures the FIC to run at 977 Hz

• FRAMERATE_488HZ: Configures the FIC to run at 488 Hz

• FRAMERATE_244HZ: Configures the FIC to run at 244 Hz

• FRAMERATE_122HZ: Configures the FIC to run at 122 Hz

• FRAMERATE_61HZ: Configures the FIC to run at 61 Hz

• FRAMERATE_30HZ: Configures the FIC to run at 30.5 Hz

• FRAMERATE_15HZ: Configures the FIC to run at 15.3 Hz

• FRAMERATE_8HZ: Configures the FIC to run at 7.6 Hz

• FRAMERATE_4HZ: Configures the FIC to run at 3.8 Hz

• FRAMERATE_2HZ: Configures the FIC to run at 1.9 Hz

• FRAMERATE_1HZ: Configures the FIC to run at 0.95 Hz

• FRAMERATE_POINT5HZ: Configures the FIC to run at 0.48 Hz

• FRAMERATE_POINT2HZ: Configures the FIC to run at 0.24 Hz

Setting the frame rate to FRAMERATE_NONE reduces the power consumption of the device to the
lowest level, because the clock to the FIC is disabled. The power consumption will generally increase as
the frame rate is increased.

When the frame interval is set to a frame rate of FRAMERATE_NONE, the Start-of-Frame exception does
not occur to wake the device. The device can be awakened by the mailbox or INT pin exceptions.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 15

2.3.2 Analog Front End (AFE)

The hardware registers for the Analog Front End (AFE) cannot be directly accessed by user code. They
can be controlled and monitored through the functions provided in the Freescale firmware.

The AFE can be configured using the mma9559_afe_csr_set() function that takes a single parameter
which combines one of each of the three configurable aspects of the AFE by OR-ing them together. The
three aspects and their configurable elements include:

• G-mode range: Selects the G range operating mode by selecting one of the following:

— AFE_CSR_GRANGE_8G: Sets the AFE to the +/-8g range

— AFE_CSR_GRANGE_4G: Sets the AFE to the +/-4g range

— AFE_CSR_GRANGE_2G: Sets the AFE to the +/-2g range

• Fourth-channel data source: Selects the source of the data for the fourth channel of the AFE:

— AFE_CSR_C4MODE_NONE: Does not measure anything with the ADC’s fourth channel

— AFE_CSR_C4MODE_TEMP: Uses the ADC’s fourth channel to measure the temperature
sensor

— AFE_CSR_C4MODE_EXT: Uses the ADC’s fourth channel to measure the external inputs

• AFE conversion mode: Sets the number of bits for the AFE conversion:

— AFE_CSR_CMODE_10BIT: Performs a 10-bit ADC conversion, so the 6 LSBs is be 0

— AFE_CSR_CMODE_12BIT: Performs a 12-bit ADC conversion, so the 4 LSBs is be 0

— AFE_CSR_CMODE_14BIT: Performs a 14-bit ADC conversion, so the 2 LSBs is be 0

— AFE_CSR_CMODE_16BIT: Performs a 16-bit ADC conversion using all 16 data bits

For example, to configure the AFE to capture 10 bits of data in the 2g range, ignoring the fourth ADC
channel, the code in the following example would be used.

Example 2-1.

// Configure the AFE Control and Status Register
mma9559_afe_csr_set((afe_csr_options_t)(

AFE_CSR_GRANGE_2G | // Use +/- 2 g range
AFE_CSR_C4MODE_NONE | // Measure X, Y, Z channels only
AFE_CSR_CMODE_10BIT // Use 10 bit conversion

);

The current AFE configuration can be read using the mma9559_afe_csr_get() function.

The AFE conversion is started by calling the mma9559_afe_conversion_start() function. This is
normally called within the user_exception_handler() when a Start-of-Frame exception occurs, but
the function can be called from anywhere in user code.

When the AFE completes the AFE sample, it creates a Conversion-Complete exception. The
user_exception_handler() can respond to this exception by enabling a sequence of operations to use
the AFE data. Normally, this sequence is executed in the main execution level, rather than in the
user_exception_handler().

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

16 Freescale Semiconductor, Inc.

The AFE registers contain semi-trimmed data values that need to complete the rest of the trimming process
before they can be used. In most cases, the user_exception_handler() responds to the
Conversion-Complete exception by signaling an event and the code in the main execution loop reads the
trimmed AFE data using code similar to the following example:

Example 2-2.

mma9559_afe_data_t afe_data; // Variable to hold the trimmed AFE data
...

// Read and trim the AFE data
mma9559_afe_trimmed_sensor_data_get(afe_data.data);

NOTE
The signaling of an event is described in more detail in “Events and
scheduling” on page 18.

In a few circumstances, it may be desirable to read the raw, semi-trimmed data values and then complete
the trimming later. Two situations where this might be useful are:

• A FIFO is being used to pass data from the user_exception_handler() to the main execution
loop

• The data samples are being filtered and decimated before use. (Since the trim process in this device
is linear, it is permissible to filter and decimate the semi-trimmed data and then trim the result.)

The FIFO case could be implemented with code like the following example:

Example 2-3.

// In the user exception handler
mma9559_afe_data_t raw_data; // Variable to hold the semi-trimmed AFE data
...
case VectorNumber_Vconversion_complete:

// AFE conversion complete exception
mma9559_afe_raw_sensor_data_get(raw_data.data);

// Read semi-trimmed AFE data
mma9559_fifo_push((mma9559_fifo_t*)&afe_fifo, (uint8*)raw_data.data, 1);

// store in a FIFO break;

// In the main execution loop
mma9559_afe_data_t raw_data; // Variable to hold the semi-trimmed AFE data
mma9559_afe_data_t afe_data; // Variable to hold the trimmed AFE data
...
case EVENT_AFE_FIFO: // Get the semi trimmed data from the FIFO

mma9559_fifo_pop((mma9559_fifo_t*)&afe_fifo, (uint8*)raw_data.data, 1);
mma9559_afe_raw_sensor_data_trim(afe_data.data, raw_data.data);

// and trim it
... // continue processing with the trimmed AFE data

A more complete description of the FIFO operation is given in “FIFOs” on page 24.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 17

The trim process modifies the gain and offset of the X, Y, Z, and temperature sensor values using
part-specific trim values that were measured and calculated during the manufacture of the device. The trim
process also applies a set of three, user-specified offsets to the X, Y, and Z axes that can be set to
user-configured values, by adding them to the results of the normal trim calculation.

The user-specified offsets can be set using the mma9559_afe_offsets_set() function and read back
using the mma9559_afe_offsets_get() function. The user-specified offset values are treated as
values in the 8g range and adjusted automatically to the appropriate g range when the g range is changed
with the mma9559_afe_csr_set() function. The user-specified offset values can be determined by
putting the device into the 8g mode, reading the accelerometer values without the effects of gravity, and
then negating these values.

The user offset values are reset whenever the device is reset.

2.3.3 Stop mode control

When there is no further software processing required, the CPU can be put into STOP mode to reduce the
power consumption. The MMA955xL hardware enables additional power savings by also enabling the
system clock rate to be controlled.

Three different stop clock modes are supported:

• Stop Fast Clock: The CPU is stopped and the clock tree is still running at the normal rate of 8 MHz

• Stop Slow clock: The CPU is stopped and the clock tree is running at a reduced rate of 62.5 kHz.

• Stop No Clock: The CPU is stopped and the clock tree is disabled

There are some limitations on which clock rate can be used and they vary with the hardware functionality
being used. For example:

• When the AFE is converting a data sample then the clock must remain at 8 MHz (fast), therefore
the Stop Fast Clock mode must be used when stopping the CPU, but not Stop Slow Clock or Stop
No Clock.

• If the frame interval counter is being used to wake the device periodically, then the clock must
remain running, so either Stop Fast Clock or Stop Slow Clock modes must be used when stopping
the CPU, but not Stop No Clock (in fast or slow mode).

To stop the CPU and determine which clock rate to use, the mma9559_idle() function can be called
whenever there is no other software to run. For more information on this usage, see “Events and
scheduling” on page 18. For a more detailed explanation of the clock’s operation, see “Power” on page 28.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

18 Freescale Semiconductor, Inc.

2.4 Events and scheduling
While the MMA9559L firmware does not provide a task scheduler, it does provide the main components
that can be used to create a simple, execution-loop scheduler, in the form of Events. This section explains
how these functions can be used. For more details, see “Events and scheduling” on page 56.

2.4.1 Events

The MMA9559L firmware supports up to 32 events, each one represented by a single bit in the
mma9559_vars_t events field. Whenever an event is signaled (activated), the corresponding bit is set in
the events field. When the event is handled, the bit is cleared.

The MMA9559L firmware does not use any of the event bits, allowing the assignment of the 32 bits by
the user firmware. In this implementation, the least-significant bit of the events bit field corresponds to
event 0—which may be treated as the highest-priority event. The most-significant bit of the event field
corresponds to event 31, which may be treated as the lowest-priority event.

The currently signaled (active) events can be read directly from the MMA9559L firmware
mma9559_vars_t data structure events field, but it should not be modified except through the return
value from the user_exception_handler() or using the mma9559_events_set_clear()
function.

Events are normally signaled in the user_exception_handler() which is created by the user and
exists in the user firmware. The easiest way to signal events is for the user_exception_handler() to
return an event bit field as the function return value where the corresponding bits have been set for the
events that should be signaled. With this, the Freescale exception handler takes care of signaling the
events.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 19

This methodology enables the user_exception_handler() to complete its work quickly, keeping the
interrupt duration short. A simple, user_exception_handler() is shown in the following example.

Example 2-4.

__declspec(register_abi) events_t user_exception_handler(
int vector) // exception vector number

{
events_t events = 0; // Events to be signaled (defaults to none)

switch (vector)
{
case VectorNumber_Vstart_of_frame:// Start of Frame

FCSR_SF = 1; // Clear interrupt source
// Add Start of Frame event to the events to be signaled (asserted)
events |= EVENT_BITFIELD(EVENT_START_OF_FRAME);
break;

default: // code to handle the other exception sources
break;

}
return events; // signal events to be signaled (activated)

}

Events can also be managed by FIFOs. (See “FIFOs” on page 24.) In this case, events that are associated
with FIFOs are signaled when the FIFO contains data and the FIFO events are cleared when the FIFO is
empty.

Events are normally handled in a simple execution loop within the user main() function. The user
firmware selects an active event bit and performs the required processing. When the processing has
completed, the event bit can be cleared using the mma9559_events_set_clear() function.
Alternatively, if the event is associated with a FIFO, it is cleared when the last data is read from the FIFO.

Two functions are provided to assist with the selection of the event to process:

• mma9559_events_find_first() selects the highest-priority event that is active and returns the
event number (from 0 to 31) for the chosen event.

• mma9559_events_find_next() selects the next active task in a round-robin manner, working
from the least-significant bit to the most-significant bit and then wrapping around again.

The mma9559_idle() function is used to put the MMA9559L into the lowest permissible power state
when no computational work is required. The function considers the events field and if any event bits are
still signaled (set) when the mma9559_idle() function is called, it returns immediately to allow the
events to be processed.

The function only enters a CPU Stop mode to save power when the mma9559_vars_t events field is 0.
When an exception occurs, the MMA9559L wakes up from STOP mode and runs the exception handler.
The mma9559_idle() function then returns back to the scheduling loop in the main function.

The mma9559_idle_use_stop_config() function can be used by user code to adjust the lowest
permissible power state when required by hardware. For more details, see “Power” on page 28.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

20 Freescale Semiconductor, Inc.

The discussed commands can be combined in a simple execution loop within the main function, as shown
in the following example.

Example 2-5.

events_t events;
int event = 0;

// Initialization to set up the Freescale firmware data structure
...

// Loop forever processing events
while (1) {

// retrieve the bitfield of active events
events = mma9559_vars_ptr->events;
if (events) { // if there are any active events

// select the next event to process with priority scheduling
// or use mma9559_events_find_next() for round robin scheduling
event = mma9559_events_find_first(events);
// priority scheduling
switch (event) {

// insert code to respond to each of the events here
....

}
// clear event
mma9559_events_set_clear(0, EVENT_BITFIELD(event));

}
else // if there are no outstanding events then go to sleep

mma9559_idle();
};

Event signaling can also be used creatively by tasks in the main execution loop:

• When one task completes, it can wake up the next task by signaling the appropriate event.

• Internal state variables can be used to process more time-consuming tasks.

Some tasks may require longer execution times to complete their processing. The event scheduling
is cooperative rather than preemptive, requiring long tasks to break up their processing into
multiple shorter executions.
Internal state variables may be used to keep track of the processing state of the task. Such tasks
may deliberately not clear the event that causes them to run, but instead leave it set for the task to
execute repeatedly to perform the rest of the processing steps. Only when all of the required
executions have been performed is the event bit cleared.

• Using FIFOs for inter-process communication may be easier, when some longer tasks are difficult
to break up.

The mma9559_vars_t structure also contains an events_missed field. The bits in this field are set
whenever an event is signaled and the event bit is already active in the event field. This situation indicates
that the scheduler may be “losing” events because a new occurrence of the event has been signaled before
the processing for the previous event has been completed and the event bit cleared.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 21

The events_missed field is never cleared by the Freescale firmware and may be used as a diagnostic to
identify problems with the scheduling of event processing. The events_missed field has a slightly
different operation when associated with FIFOs. See “FIFOs” on page 24.

2.4.2 Initialization

The user firmware must perform some initialization steps to configure the MMA9559L firmware before
the user exception handler can run or events can be used. The initialization steps are:

1. Retrieve the address of the MMA9559L Freescale firmware data structure.

This structure is needed in order to read the currently signaled events and to set the pointers to the
user handler functions. The address does not change at run time, and it only needs to be read once.

2. Set the pointer to the user_exception_handler() function.

This must be done before any exceptions are enabled or the firmware may end up trapped in the
exception handler because the exception cause is not being cleared.

3. Optionally, set the pointer to the user_trap_handler() functions.

This is only required if user trap functions are being used and the pointer should be set before the
user trap is called. If a user trap is called before the pointer is initialized, the trap-call function just
returns, but the system does not lock up.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

22 Freescale Semiconductor, Inc.

This initialization normally occurs at the beginning of the user main function. The pointer to Freescale
firmware data structure can be a global variable, to avoid retrieving it multiple times. The following
example gives initialization code.

Example 2-6.

void main(void)
{

... // Instantiate local variables

// Retrieve the address of the mma9559 variables structure
mma9559_vars_ptr = mma9559_vars_addr_get();

// Register the user exception handler (must occur before interrupt sources are enabled)
mma9559_vars_ptr->user_exception_handler = user_exception_handler;

// Register any user trap handlers (only needed if there are any user trap handlers)
mma9559_vars_ptr->user_trap_handler[0] = user_trap_handler0;
mma9559_vars_ptr->user_trap_handler[1] = user_trap_handler1;
mma9559_vars_ptr->user_trap_handler[2] = user_trap_handler2;
mma9559_vars_ptr->user_trap_handler[3] = user_trap_handler3;

// Interrupt sources can now be enabled
...

// Loop forever processing events
while (1) {

...
};

}

2.4.3 Interrupts and critical sections

Interrupts are treated in a simple manner. Only one level of interrupt is permitted, therefore interrupts can
never be nested or reentrant. The only exception is the INT pin IRQ which is non-maskable. This pin is
handled with its own special handler, as explained in “Supervisor stack usage” on page 13.

The user_exception_handler() and user_trap_handler() functions are always called with
interrupts already disabled/masked so that they are not interrupted. The user firmware should not change
the interrupt settings inside these functions.

Normal user code executes with interrupts enabled/unmasked. Occasionally, there are small sections of
code that should not be interrupted by exceptions, in order to avoid unintended side effects. For example,
the mma9559_vars_t events and mma9559_idle_t fields may be modified within exception handlers,
as a result any changes to these fields within normal user code would be protected.

The mma9559_interrupts_disable() and mma9559_interrupts_restore() functions can be
used by normal code to create critical sections that cannot be interrupted by exceptions. They may be used
in either of the following manners.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 23

In simple implementations—where calls to disable interrupts can never be nested—a simpler form can be
used, a shown in the following example.

Example 2-7.

mma9559_interrupts_disable(); // start critical section (disable interrupts)
....
mma9559_interrupts_restore(0); // enable interrupts

If there is any possibility that calls to disable interrupts (such as critical sections) may be nested, a
more-advanced form can be used that saves the state of the interrupts at the start of the critical section. This
form also restores the interrupts to the same state (masked or unmasked) that they were at the start of the
critical section. See the following example.

Example 2-8.

int status = mma9559_interrupts_disable();
// start critical section (disable interrupts)
....
mma9559_interrupts_restore(status); // restores previous interrupt mask state

The mma9559_interrupts_disable() function changes the Interrupt Priority Mask in the ColdFire
Status Register to 7, that masks all interrupt sources. Any exceptions that occur while the interrupts are
disabled are not lost, but remain pending in the hardware. Those pending interrupts are serviced as soon
as the interrupt level is restored at the end of the critical section.

Since interrupts are delayed, the critical section should be kept as short as possible to avoid unnecessarily
increasing the interrupt latency.

The mma9559_interrupts_restore() function does not just enable interrupts by changing the
Interrupt Priority Mask back to 0. It also restores the mask to the state supplied in the status parameter—
which the user should have saved from the result of the mma9559_interrupts_disable() function
call. This distinction enables the interrupt functions to work correctly, even when interrupts are nested
accidentally or deliberately.

The mma9559_interrupts_restore() function uses only the interrupt-priority mask bits of the
supplied status parameter. If any of the interrupt priority mask bits are set, the interrupt priority mask is
set to 7 to mask all interrupts. Otherwise, the interrupt priority mask is set to 0 to enable/unmask the
interrupts.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

24 Freescale Semiconductor, Inc.

2.5 FIFOs
Most applications’ needs can be met using the Events and Scheduling capabilities, where an event can be
signaled in the user exception handler and handled in the main execution loop. This works when the tasks
in the execution loop are short and can be completed before the next interrupt or AFE sample.

Occasionally, longer processing is required—processing that takes more time than the interval between
interrupts/AFE samples. In such cases, the AFE samples would be lost—if the regular event method was
used.

This can be handled in a couple of ways:

• Break the longer tasks into a number of smaller sections which can each be executed separately.
(See “Events and scheduling” on page 18.)

• Use FIFOs for inter-process communications, as described in more detail in this section.

FIFOs provide a configurable amount of buffering between tasks in order to store data before being
processed. This can be used in situations where the tasks with longer execution times execute infrequently
and the total average processing time per AFE sample is less than the AFE sample period. The FIFO
provides a means for storing data temporarily during the times when the long-execution task runs, so that
that data can be retrieved from the FIFO and processed when shorter tasks run.

The MMA9559L firmware includes simple FIFO functionality that enables multiple, user-configurable
FIFOs to be created by the user code. For each of the FIFOs, the FIFO buffer size is configured in terms
of the maximum number of entries that can be stored and the size of each entry.

All entries within a FIFO are the same size, although different FIFOs may have a different, fixed entry
size. The size of each FIFO entry should be determined by the data being stored in it. For example, if a
FIFO is storing AFE samples, the entry size might be sizeof(mma9559_afe_data_t). The maximum
number of entries should be determined according to the maximum delay that may be caused by the
long-execution tasks.

The FIFO functions also can use the event functionality. When a FIFO is initialized, the event bit field is
specified that defines the events associated with the FIFO. Typically, there is either zero or one event
associated with a FIFO. If there are any events associated with a FIFO, when data is pushed into the FIFO
the associated events are signaled. When the FIFO becomes empty—either because the last data was
popped out of the FIFO or the FIFO is reset—the associated events are cleared.

This can be used in conjunction with the simple event scheduling capability to trigger processing to occur
whenever the FIFO contains data. In order to easily identify which FIFO contains data, it is best to use an
event bit in only one FIFO. That enables the appropriate FIFO to be uniquely identified by the event bit,
when the event is signaled.

If an event is associated with a FIFO by being set in the events field when the FIFO is initialized, the event
is added to the mma9559_vars events_fifos field. That prevents the event from being signaled by the
user_exception_handler() code or modified by the ma9559_event_set_clear() function.

The events_missed field in the mma9559_vars_t structure is used slightly differently for events
that are associated with FIFOs. In this case, the events_missed event bit is set whenever the FIFO
overflows because it cannot store all of the data entries that are being pushed into it. This situation indicates

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 25

that the scheduler may be “losing” events because one or more FIFO samples were not stored on the FIFO,
although user code may make some accommodation for this. The events_missed field is never cleared
by the Freescale firmware and may be used as a diagnostic to identify problems with the chosen FIFO size.

FIFOs are used with the following steps:

1. Instantiate the FIFO variable to reserve the space for the FIFO structure.

2. Initialize the FIFO at run time to configure it before it is used.

3. Push data onto the FIFO, as it becomes available.

4. Pop data off the FIFO in the tasks that process the data.

5. Reset the FIFO to discard the current contents of the FIFO and restore it to its empty state.

FIFOs are normally created as global variables so that they are always permanently allocated and are never
de-allocated. They may also be created as local variables within functions, in which case they are allocated
on the user stack. If they are on the user stack, the user must ensure that they are not referenced after they
have gone out of scope and been removed from the stack.

2.5.1 Instantiate FIFO

The data buffer and control variables for each FIFO are held in a single data structure. The data structure
can either be created on a per-instance basis or by creating a data type that enables multiple instances of
the same FIFO to be created.

A FIFO instance can be created with the FIFO_STRUCT macro, as in the following code that creates the
FIFO test_fifo. That FIFO can hold up to FIFO_MAX_ENTRIES entries, where each entry is the size of
the mma9559_afe_data_t data type.

FIFO_STRUCT(FIFO_MAX_ENTRIES, sizeof(mma9559_afe_data_t)) test_fifo;

An alternate method of creating a FIFO is to create a data type for the required FIFO configuration and
instantiate one or more FIFO variables from the data type with the same configuration. In the following
example, the fifo_20_t data type is created and used to create fifo_1 and fifo_2 variables:

Example 2-9.

typedef FIFO_STRUCT(10, 2) fifo_20_t;
fifo_20_t fifo1, fifo2;

2.5.2 Initialize FIFO

Once the FIFO data structure has been created through the definition of a FIFO variable, the space for the
FIFO structure has been reserved, but the contents of the FIFO structure must be initialized before it is
used. Initialization of a FIFO occurs at runtime and performs the following steps:

• Sets the events that are associated with the FIFO, and reserves them in the mma9559_vars
events_fifos field. It also clears the associated events, in case any events were already signaled
because the FIFO is now empty and contains no data.

• Sets the maximum number of data entries that the FIFO can hold and the size of each data entry.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

26 Freescale Semiconductor, Inc.

Both values must be greater than 0 and less than 256. The product of the maximum number of
entries and the size of each entry must be less than or equal to the size that was reserved when the
FIFO variables was created. (Normally, the values are the same as when the FIFO variable was
created/instantiated.)

• Resets the internal variables, so that the FIFO is empty.

From Example 2-9 on page 25, fifo1 may be initialized with the following code to set the FIFO size to the
same values that were used in the FIFO data type (maximum entries of 10, each entry is 2 bytes). The
following example shows how to associate fifo1 with the EVENT_FIFO event value:

Example 2-10.

ret = mma9559_fifo_init(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure
EVENT_BITFIELD(EVENT_FIFO), // bitfield of associated events
2, // maximum number of data entries
sizeof(mma9559_afe_data_t) // number of bytes in each data entry

);

The return value from mma9559_fifo_init() is 0, if the initialization is successful. If the initialization
fails, the value is -1. If the values for the maximum number of entries or the bytes per entry are invalid (0
or greater than 255), the initialization fails. The buffer size (the product of the maximum number of entries
and the bytes per entry) is not checked to see if it exceeds the space reserved during the FIFO instantiation.

2.5.3 Push data onto the FIFO

Data can be stored in a FIFO after it has been successfully initialized. Data is always stored as an integer
number of data entries and is copied (byte by byte) into the FIFO from the supplied data pointer. Since the
data entry size was already set when the FIFO was configured, all that must be provided is the number of
data entries to be stored.

Usually data is pushed onto the FIFO one at a time, but the writing of multiple entries also is supported. If
the FIFO does not have enough empty data entries to store the data, the push operation is limited to the
amount of free space in the FIFO.

The mma9559_fifo_push() function returns the number of entries that were actually pushed onto the
FIFO, allowing user code to check that the requested data was stored correctly. If the number of entries
stored does not match the requested number of entries to push, the FIFO overflows and the associated
event bits are set in the mma9559_vars events_missed field.

If the FIFO has not been successfully initialized, the return value is always 0. No data is stored in the FIFO.

Example 2-11.

ret = mma9559_fifo_push(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure
(uint8*)raw_data.data, // pointer to the first byte of the first entry
1 // the number of data entries to store

);

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 27

Since the FIFO push operation is performed within the firmware with interrupts disabled, it is an atomic
transaction. This ensures that multiple asynchronous processes can safely push data into the same FIFO
without any risk of interruption or corruption.

2.5.4 Pop data off the FIFO

Data can be read from a FIFO after it has been successfully initialized. Data is always read as an integer
number of data entries and is copied (byte by byte) from the FIFO to the supplied data pointer. Since the
data entry size is already set when the FIFO was configured, all that is needed is the number of data entries
to be fetched.

Data can be read as single or multiple entries. If the FIFO does not contain enough valid data entries to
store the data, the pop operation is limited to the number of non-empty entries in the FIFO.

The mma9559_fifo_pop() function returns the number of entries that were actually popped off the
FIFO, allowing user code to check that the requested data was retrieved correctly. If the number of entries
read does not match the requested number of entries to pop, the FIFO underflows.

If the FIFO has not been successfully initialized, the return value is always 0 and no data is read from the
FIFO.

Example 2-12.

ret = mma9559_fifo_pop(
(mma9559_fifo_t*)&fifo1,// pointer to the FIFO structure
(uint8*)raw_data.data, // pointer to the start of the destination buffer
1 // the number of data entries to retrieve

);

Since the FIFO pop operation is performed within the firmware with interrupts disabled, it is an atomic
transaction. This ensures that multiple asynchronous processes can safely pop data off the same FIFO
without any risk of interruption or corruption.

2.5.5 Reset the FIFO

A FIFO can be returned to an empty state, discarding its contents and resetting the associated events, using
the mma9559_fifo_reset() function. This is useful for quickly discarding the contents of a FIFO
without having to read all of the data entries:

Example 2-13.

ret = mma9559_fifo_reset(
(mma9559_fifo_t*)&fifo1 // pointer to the FIFO structure to reset

);

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

28 Freescale Semiconductor, Inc.

2.5.6 Other FIFO functions

The following additional FIFO functions are provided by the firmware:

• mma9559_fifo_entries_used(): Returns the number of data entries currently used in the
FIFO.

• mma9559_fifo_entries_free(): Returns the number of data entries currently unused in the
FIFO.

2.6 Power
The MMA9559L device supports four major power modes, listed below from highest to lowest:

• System clock running at full speed (8 MHz) with the CPU running (RunFastClock)

• System clock running at full speed (8 MHz) with the CPU stopped (StopFastClock)

• System clock running at slow speed (62.5 kHz) with the CPU stopped (StopSlowClock)

• System clock and CPU stopped (StopNoClock)

Ideally, the device would always run in the lowest power mode (StopNoClock), but that is not feasible
because of interactions with the hardware. For instance:

• In order for the frame interval counter to run and wake the device up periodically, the system clock
must be running in either Fast or Slow Clock rates, but cannot be stopped in the No Clock mode.

• The AFE ADC requires the system clock to be running at full speed in order for the conversion to
complete. Once the ADC conversion is complete, the clock rate may be reduced.

In order to accommodate dynamic changes of the stop mode clock rate, the mma9559_idle_t structure
is used. It contains two 32-bit fields:

• use_stop_fc

• use_stop_sc

Whenever the device has no further CPU processing to perform, the Freescale firmware can put the CPU
into Stop mode until the next interrupt occurs. However, the appropriate clock speed mode must be used.
The mma9559_idle() function selects the clock speed based on the two fields in the mma9559_idle_t
structure:

• If use_stop_fc is not zero, then use StopFastClock mode,

• Else if use_stop_sc is not zero, then use StopSlowClock mode,

• Else, use StopNoClock mode.

The 32 bits in each field are split into 16 bits that are reserved for use by Freescale firmware and 16 bits
that user code can allocate to different activities that are impacted by the clock rate so that the activities
can each independently control the selection of the Stop-mode clock speed.

The Freescale firmware already uses two of the reserved bits:

• IDLE_BITS_CKOSC is used by the frame interval counter to prevent the use of StopNoClock
when the frame interval counter is being used.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 29

• IDLE_BITS_AFE is used by the AFE to force the use of StopFastClock when the ADC is
performing a conversion.

The use_stop_fc and use_stop_sc fields may be modified inside the
user_exception_handler() function. While these functions can be read anywhere, any code that
modifies the functions should only be executed when interrupts are disabled.

This can be achieved in three ways:

• Within the user_exception_handler() or user_trap_handler() functions,

• When interrupts are disabled using the interrupts_disable() function,

• Using the mma9559_idle_use_stop_config() function.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

30 Freescale Semiconductor, Inc.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 31

Chapter 3 User Code Example
The functionality of the device is determined by the user firmware. This section shows sample code that
can be used as a template for creating that firmware.

The following code usually would be contained in a single file. The code is split into four sections:

• Header

• User exception handler

• User trap handler

• User main

Each of the sections is required, except the user trap handler, which is optional and usually not needed.

3.1 Header
The user code should include the mma9559.h header file, instantiate the key global variables, assign event
bits, and set the FOPT value that is loaded from address 0x3FFE.

Example 3-1.

#include "derivative.h" // include peripheral declarations
#include "mma9559.h" // include mma9559 firmware functions

// User assignment of event bits (0 to 31)
#define EVENT_AFE_DATA (0) // AFE conversion is complete
#define EVENT_SLAVE_PORT (1) // write to the slave port mailboxes completes

// Set Flash Options to enable boot from Flash
word flash_opt @0x3FFE = 0x0337;
// //FOPT_BF_MASK | // This bit is inverted so leave
// // blank for boot from flash.
// FOPT_CHECKB_MASK | // Do not perform Flash CRC
// FOPT_PW_MASK | // PROTB writable
// FOPT_PROTB_MASK | // Flash Array NOT protected
// FOPT_SSW_MASK | // Security State Writable
// FOPT_SSC_MASK; // Security State = Unsecured

// Instantiate global variables

// Use a pointer to access the MMA9559 firmware variables
mma9559_vars_t *mma9559_vars_ptr;

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

32 Freescale Semiconductor, Inc.

// The following variables are useful if working with the slave mailboxes, to
// record the mailbox read and write status bits before they are cleared in the
// user exception handler

vuint32 sp_reads;
vuint32 sp_writes;

3.2 User exception handler
The user firmware normally contains a single user exception handler function that is similar to
Equation 3-2 on page 33. This example lists all of the exception vectors that are specific to the
MMA955xL device.

For additional information on the exception sources, see the MMA955xL Intelligent, Motion-Sensing
Hardware Reference Manual (MMA955xLRM). (See “References” on page 10.).

The MMA9559L firmware handles the exception, masks the interrupts, and saves the volatile registers.
Then, it switches to User mode (with interrupts still masked) and calls the user_exception_handler().

The user_exception_handler() code is modified/written by the user to perform the following
functions:

• Clear the source, or mask—the interrupt that caused the exception.

• Optionally, perform processing based on the interrupt.

This should be short, to limit the interrupt latency.
• Do either of the following:

— If the user wants to use the scheduling capabilities (described in “Events and scheduling” on
page 18): Signal events by setting a return value that causes the execution of code in the main
function loop.

— If the user does not want to signal events: Return 0.

When the user_exception_handler() function completes, control returns to the MMA9559L firmware.
The firmware signals the events based on the return value from the user_exception_handler() function,
restores the volatile registers, and restores the Program Counter and Status Register to their previous states
before the exception occurred.

NOTE
Two of the interrupts sources operate differently from the other interrupt
sources:

• The VectorNumber_Vconversion_complete vector occurs on the
completion of an AFE conversion, and uniquely clears the interrupt
source without requiring the user_exception_handler() function to
clear it.

The user_exception_handler() function may still perform
processing or signal events when this exception occurs, but it does not
need to clear the AFE conversion complete interrupt source.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 33

• The INT / IRQ pin is a non-maskable interrupt. In order to prevent it
from preempting already-running exception processing that exceeds the
supervisor stack space, the pin is handled by a thin handler.

The handler disables the IRQ interrupt and signals a Level-5 software
interrupt that is maskable. The user trap handler has to
acknowledge/clear the software interrupt and re-enable the INT / IRQ
pin interrupt.

Example 3-2.

// User Exception Handler function declaration
__declspec(register_abi) events_t user_exception_handler(

int vector);

// User Exception Handler function definition example
// This function is called in User mode with interrupts disabled/masked

__declspec(register_abi) events_t user_exception_handler(
int vector) // exception vector number

{
events_t events = 0; // Events to be signaled (defaults to none)
switch (vector) {

case VectorNumber_VL5swi: // Proxy for the INT pin (IRQ) external interrupt
INTC_CFRC = 0x3A; // Clear level 5 Software Interrupt (first)
IRQSC_IRQACK = 1; // Clear interrupt source
IRQSC_IRQIE = 1; // Re-enable IRQ interrupt
break;

case VectorNumber_Vtpm1ovf: // TPM Overflow
TPMSC_TOF = 0; // Clear interrupt source
break;

case VectorNumber_Vtpm1ch0: // TPM Channel 0
TPMC0SC_CH0F = 0; // Clear interrupt source
break;

case VectorNumber_Vtpm1ch1: // TPM Channel 1
TPMC1SC_CH1F = 0; // Clear interrupt source
break;

case VectorNumber_Vmtim: // MTIM (Modulo Timer) Overflow
MTIM16SC_TOF = 0; // Clear interrupt source
break;

case VectorNumber_Vpdb_a: // PDB_A
PDB_SCR_SA = 1; // Clear interrupt source
break;

case VectorNumber_Vpdb_b: // PDB_B
PDB_SCR_SB = 1; // Clear interrupt source
break;

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

34 Freescale Semiconductor, Inc.

case VectorNumber_Vsp_wake: // Slave mailbox
// Save the mailbox read and write status bits if needed for later
sp_writes = *((vuint32*)&SP_WSTS0);
sp_reads = *((vuint32*)&SP_RSTS0);
SP_SCR_ACTIVE_CSR = 1; // Clear slave port read and write status bits
// Signal an event to trigger processing in the main execution loop
events = EVENT_BITFIELD(EVENT_SLAVE_PORT);
break;

case VectorNumber_Vstart_of_frame: // Start of Frame
FCSR_SF = 1; // Clear interrupt source
mma9559_afe_conversion_start();// Start a new AFE conversion
break;

case VectorNumber_Vconversion_complete:// AFE conversion complete
// Interrupt source already cleared in the Freescale exception handler
// Signal an event to enable processing in the main execution loop
events = EVENT_BITFIELD(EVENT_AFE_DATA);
break;

case VectorNumber_Vmaster_i2c: // I2C Master
IICS_IICIF = 1; // Clear interrupt source
break;

default:
break;

}

return events; // signal events to run in the main execution loop
}

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 35

3.3 User trap handler
Although most firmware developers do not need to use these capabilities, the user firmware may optionally
create up to four user trap handlers. The trap handlers can be called by any of the supplied functions:

• mma9559_user_trap0()

• mma9559_user_trap1()

• mma9559_user_trap2()

• mma9559_user_trap3()

Alternatively, the trap call can be issued directly, using the following assembly trap instructions:
• asm { trap #TRAP_USER_0 }

• asm { trap #TRAP_USER_1 }

• asm { trap #TRAP_USER_2 }

• asm { trap #TRAP_USER_3 }

When issuing a trap call directly with an assembly instruction, the user code is responsible for setting the
required values in the registers.

The MMA9559L firmware handles the trap exception, masks the interrupts, switches to User mode (with
interrupts still masked), and calls the appropriate user_trap_handler().

When the user_trap_handler() function completes, control returns to the MMA9559L firmware. The
firmware leaves the return value in the D0 register and restores the Program Counter and Status Register
to their previous state before the trap call. The firmware does not save and restore the volatile registers
because the trap call is treated as a function call. The compiler takes care of the values in the volatile
registers in the calling function.

A trap handler normally appears similar to the following example. The parameters are the values in the d0,
d1, d2, a0 and a1 registers when the trap call is issued. The use of the parameters is up to the user code.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

36 Freescale Semiconductor, Inc.

Example 3-3.

// User Trap Handler function declaration
__declspec(register_abi) int user_trap_handler(

int d0,
int d1,
int d2,
void *a0,
void *a1);

// User trap Handler function definition example
__declspec(register_abi) int user_trap_handler(

int d0, // first integer parameter
int d1, // second integer parameter
int d2, // third integer parameter
void *a0, // first pointer parameter
void *a1) // second pointer parameter

{
switch (d0) {

case 0:
....

}
return 0;

}

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 37

3.4 User main
The user main() function is called from the startup code. It should initialize all key variables and enter
an infinite loop, waiting for events and processing them when they occur.

Events are signaled in the User Exception Handler. The exception wakes up from the mma9559_idle()
function and keeps processing until all of the signaled events have been cleared. At that point, the function
again calls the mma9559_idle() function to enter a low-power sleep.

Example 3-4.

void main(void)
{

mma9559_afe_data_t afe_data;
events_t events;
int event;
int frame_ctr = 0;

// Get the address of the mma9559 variables structure
mma9559_vars_ptr = mma9559_vars_addr_get();

// Register the exception handler and any trap handlers
mma9559_vars_ptr->user_exception_handler = user_exception_handler;
mma9559_vars_ptr->user_trap_handler[0] = user_trap_handler;

// Setup the slave port mailboxes to generate an interrupt when written to
SP_SCR = (SP_SCR & (SP_SCR_EN_MASK | SP_SCR_PS_MASK)) |

SP_SCR_ACTIVE_CSR_MASK |
SP_SCR_STOP_EN_MASK |
SP_SCR_WIE_MASK;

// Configure the AFE and Frame Interval Counter
mma9559_afe_csr_set((afe_csr_options_t)(

AFE_CSR_GRANGE_8G | // Use AFE 8 g mode
AFE_CSR_C4MODE_NONE | // Do not use the 4th ADC channel
AFE_CSR_CMODE_16BIT)); // Use 16 bit ADC conversion

mma9559_framerate_set(FRAMERATE_POINT2HZ);// Set the frame rate to 1/5 Hz

// Loop forever processing events
while (1) {

events = mma9559_vars_ptr->events;
if (events) {

// select the next event to process
event = mma9559_events_find_first(events); // priority scheduling
switch(event) {

case EVENT_AFE_DATA: // AFE Conversion Complete
frame_ctr++;
mma9559_afe_trimmed_sensor_data_get(afe_data.data);
.... // add user code here
break;

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

38 Freescale Semiconductor, Inc.

case EVENT_SLAVE_PORT: // Slave Port Maibox write
if (sp_writes & 0x01)

.... // add user code here
break;

}
mma9559_events_set_clear(0, EVENT_BITFIELD(event));// clear event

}
else

mma9559_idle(); // if there are no outstanding events, then go to sleep
};

}

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 39

Chapter 4 Functional Details
This chapter provides the details for the following functional categories and special topics:

• “Memory and CPU usage”

• “Hardware support”

• “Events and scheduling”

• “FIFOs”

• “Other functions”

• “IIR filter”

4.1 Memory and CPU usage
This section documents the resources used by each of the MMA9559L Freescale firmware functions in
terms of Supervisor Stack Space (RAM) and CPU (cycles and time).

In examining the firmware’s use of memory and the CPU, there are three scenarios to consider:

• When in a Freescale firmware function, all interrupts are disabled except for the INT / IRQ
interrupt. The supervisor stack usage for each of the Freescale functions is shown in the
“Supervisor stack usage” on page 13.

The total stack usage could also include an additional 12 bytes for the IRQ / INT interrupt, as the
worst-case usage in this scenario is mma9559_device_get_info() (100 bytes) plus the IRQ
handler (12 bytes) giving a total of 112 bytes supervisor stack usage.

• Waking up from idle sleep mode to handle an exception and then getting an IRQ / INT exception.

The mma9559_idle() function uses 8 bytes of stack space, the Freescale portion of the exception
handler uses 36 bytes, and the INT / IRQ handler uses 12 bytes, for a total of 56 bytes. Additional
stack space will be used by functions called in the user_exception_handler().
There are 128 bytes available and 56 bytes already have been used, with 72 bytes of supervisor
stack space remaining. Since the user exception handler runs on the user stack, it is only necessary
to count Freescale firmware functions.
This enables any Freescale function except mma9559_device_info_get() to be safely called from
within the exception handler.

• Being in a user trap function and then getting an IRQ / INT exception.

A user trap function consumes 20 bytes of supervisor stack space and the INT / IRQ exception
handler takes 12 bytes, for a total of 32 bytes that leaves 96 bytes available for calling Freescale
firmware functions or other user trap calls.
This enables any Freescale function except mma9559_device_info_get() to be safely called from
within the user trap handler. If the user_trap_handler() calls other user_trap_handler()
functions or is recursive, an additional 20 bytes of stack space is used for each instance.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

40 Freescale Semiconductor, Inc.

4.1.1 Supervisor stack

As described in “Memory and CPU usage” on page 12, the last section of RAM is reserved for the
supervisor stack that is used whenever the firmware is running.

The user_exception_handler() and the user_trap_handler() functions are called from the Freescale
firmware, but are run in User mode, using the user stack space rather than using the supervisor stack space.
Four other firmware functions do not use any supervisor stack space, because they are in-line functions
that are expanded in the customer code and do not issue any trap call. Those functions are:

• mma9559_events_find_first()

• mma9559_events_find_next()

• mma9559_fifo_entries_free()

• mma9559_fifo_entries_used()

Since the MMA9559L clocks at 8 MHz when the CPU is running, the CPU time needed for the remaining
functions can be estimated by dividing the CPU usage in cycles by eight. The following table gives the
memory space, CPU cycles, and time required for firmware functions.

Table 4-1. Firmware’s use of RAM and CPU

Function
Supervisor
stack usage

(bytes)

CPU cycles
(approximately)1

Time (µs)2

Exception Handler 36 115 14

mma9559_afe_conversion_start() 24 77 10

mma9559_afe_csr_get() 24 83 10

mma9559_afe_csr_set() 40 217 27

mma9559_afe_offsets_get() 24 78 10

mma9559_afe_offsets_set() 24 78 10

mma9559_afe_interrupt_clear() 24 80 10

mma9559_afe_raw_sensor_data_get() 24 88 11

mma9559_afe_raw_sensor_data_trim() 52 210 26

mma9559_afe_trimmed_sensor_data_get() 52 218 27

mma9559_boot_options_set() 24 79 10

mma9559_device_info_get() 100 718 90

mma9559_events_find_first() 0 8 1

mma9559_events_find_next() 0 65 8

mma9559_events_set_clear() 24 103 13

mma9559_fifo_entries_free() 0 39 5

mma9559_fifo_entries_used() 0 16 2

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 41

mma9559_fifo_init() 24 106 13

mma9559_fifo_pop()3 40 145 + E * (12 + 6 * B) —

mma9559_fifo_push()3 40 134 + E * (22 + 6 * B) —

mma9559_fifo_reset() 24 103 13

mma9559_framerate_set() 28 105 13

mma9559_idle() 8 34 4

mma9559_idle_use_stop_config() 24 87 11

mma9559_iir_filter() (order O)4 40 143 + 9 * O —

mma9559_interrupts_disable() 12 44 6

mma9559_interrupts_restore() 12 46 6

mma9559_rom_command (RMF_DEV_INFO, 0)5 68 515 64

mma9559_user_trap0() 20 101 13

mma9559_vars_addr_get() 24 76 10

1 E = The number of entries that are being transferred.
B = The size of each entry, in bytes.
O = The order of the filter.

2 The CPU time may be calculated for the blank cells, by calculating the number of CPU cycles and dividing by 8.
3 The CPU usage of the mma9559_fifo_pop() and mma9559_fifo_push() functions depends on the number

of entries that are being transferred (E) and the size of each entry in bytes (B). Once the number of cycles has
been calculated, the CPU time can be determined by dividing by 8.

4 The CPU usage of the mma9559_iir_filter() function depends on the order (O) of the filter. Once the number
of cycles has been calculated, the CPU time can be determined by dividing by 8.

5 The CPU time for the mma9559_rom_command() function depends on which of its ROM functions are being
executed. The stack usage is fixed, however, because the ROM functions do not use stack space. The ROM
Device Info function was used for the measurement of the CPU cycles and time in Table 4-1.

Table 4-1. Firmware’s use of RAM and CPU (Continued)

Function
Supervisor
stack usage

(bytes)

CPU cycles
(approximately)1

Time (µs)2

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

42 Freescale Semiconductor, Inc.

4.2 Hardware support
Enables user code to access key hardware functionality of the MMA955xL device.

The MMA9559L Freescale firmware provides a set of functions that enable access to key areas of
functionality in the MMA955xL hardware. These areas include:

• Frame Interval Counter (FIC): Creates a periodic interval timer

• Analog Front End (AFE): Configures and reads the sensor hardware values

4.2.1 Macros

4.2.1.1 #define NUM_SENSOR_AXIS 5

Specifies the total number of axes/sensors in the (AFE) Analog Front End. These include:

• Accelerometer X, Y, and Z

• Temperature

• External input

4.2.2 Enumerations

4.2.2.1 enum afe_csr_options_t

This enumeration configures the AFE (Analog Front End) through the AFE CSR (Control and Status
Register).

Since the AFE_CSR is not directly accessible in User mode, it can be accessed using the Freescale
mma9559_afe_csr_set() and mma9559_afe_csr_get() functions.

The AFE_CSR controls three parameters of the AFE operation:

• G range selection: The AFE can operate in +/-2g, +/- 4g or +/-8g range.

• Fourth Conversion: The X, Y and Z accelerometer channels are measured using three out of four
of the ADC channels. The fourth channel can be disabled or used to measure the temperature or
external ADC input.

• Conversion mode: The ADC can perform a 10, 12, 14, or 16-bit conversion. A higher bit
conversion gives more resolution in the result, but takes longer to complete, such that more power
is consumed.

The significance of the most-significant bit remains the same in all conversion modes. In other
words, if the conversion mode is less than 16 bits, the least-significant bits of the raw sensor value
is 0.

The AFE_CSR setting value is normally constructed by OR-ing one entry from each of the three sections
and casting it to the correct type, as shown in the following example.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 43

Example 4-1.

\\ Configure the AFE Control and Status Register
mma9559_afe_csr_set((afe_csr_options_t)(

AFE_CSR_GRANGE_2G | // Use +/- 2 g range
AFE_CSR_C4MODE_TEMP | // Measure X, Y, Z and Temperature
AFE_CSR_CMODE_10BIT // Use 10 bit conversion

);

See also:

• void mma9559_afe_csr_set(afe_csr_options_t options)
• void mma9559_afe_csr_set(afe_csr_options_t options)

Table 4-2. enum afe_csr_options_t enumerators

Enumerator Description

AFE_CSR_GRANGE_8G Set the AFE to the +/-8g range, so each LSB is 0.244 mg

AFE_CSR_GRANGE_4G Set the AFE to the +/-4g range, so each LSB is 0.122 mg

AFE_CSR_GRANGE_2G Set the AFE to the +/-2g range, so each LSB is 0.061 mg

AFE_CSR_C4MODE_NONE Do not measure anything with the ADC’s fourth channel

AFE_CSR_C4MODE_TEMP Use the ADC’s fourth channel to measure the temperature sensor

AFE_CSR_C4MODE_EXT Use the ADC’s fourth channel to measure the external inputs

AFE_CSR_CMODE_10BIT Perform a 10-bit ADC conversion so the six LSBs are 0

AFE_CSR_CMODE_12BIT Perform a 12-bit ADC conversion so the four LSBs are 0

AFE_CSR_CMODE_14BIT Perform a 14-bit ADC conversion so the two LSBs are 0

AFE_CSR_CMODE_16BIT Perform a 16-bit ADC conversion using all 16 data bits

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

44 Freescale Semiconductor, Inc.

4.2.2.2 enum framerate_t

This enumeration configures the FIC (Frame Interval Counter) frequency through the CK_OSCTRL
register.

The frame interval counter is the primary mechanism for waking the device up periodically to take some
action such as reading the AFE values. The frame interval counter register is accessible in User mode, but
a function is provided to set the frame rate for two reasons:

• The upper three bits of the CK_OSCTRL register control other attributes of the oscillator, and
should be preserved when the frame rate is changed.

• In order for the frame interval counter to run, the lowest power idle mode that can be used is Stop
SC (slow clock). This is ensured by setting the IDLE_BITS_CKOSC bit in the idle
mma9559_idle_t use_stop_sc field. While this field can be accessed by user code, it should only
be modified while interrupts are disabled, either in the exception or trap handlers, or when
interrupts have been disabled.

If the frame rate is set to FRAMERATE_NONE, the IDLE_BITS_CKOSC bit in the idle mma9559_idle_t
use_stop_sc field is cleared to enable idle mode to drop to the lowest power Stop NC (no clock) mode.
If the frame rate is set to any other valid value, the IDLE_BITS_CKOSC bit in the idle mma9559_idle_t
use_stop_sc field is set to prevent the idle mode from dropping below the Stop SC (slow clock) mode.

If the device enters the Stop NC state, the frame interval counter does not run and cannot wake the device
at the start of each frame.

See also:

• framerate_t mma9559_framerate_set(framerate_t rate)

Table 4-3. enum framerate_t enumerators

Enumerator Description

FRAMERATE_NONE The FIC is disabled and does NOT wake up the MMA9559L periodically.

FRAMERATE_3906HZ Configures the FIC to run at 3906 Hz

FRAMERATE_1953HZ Configures the FIC to run at 1953 Hz

FRAMERATE_977HZ Configures the FIC to run at 977 Hz

FRAMERATE_488HZ Configures the FIC to run at 488 Hz

FRAMERATE_244HZ Configures the FIC to run at 244 Hz

FRAMERATE_122HZ Configures the FIC to run at 122 Hz

FRAMERATE_61HZ Configures the FIC to run at 61 Hz

FRAMERATE_30HZ Configures the FIC to run at 30.5 Hz

FRAMERATE_15HZ Configures the FIC to run at 15.3 Hz

FRAMERATE_8HZ Configures the FIC to run at 7.6 Hz

FRAMERATE_4HZ Configures the FIC to run at 3.8 Hz

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 45

4.2.3 Data structure

4.2.3.1 mma9559_afe_data_t

The mma9559_afe_data_t structure is used to contain a set of raw or trimmed AFE sensor data taken
during a single AFE sample. A 16-bit, signed value is stored for each axis/sensor, where the number of
axes/sensors in each sample is defined in the NUM_SENSOR_AXIS macro.

See also:

• framerate_t mma9559_framerate_set(framerate_t rate)

Field

int16 data [5]: Raw or trimmed value for each axis/sensor

FRAMERATE_2HZ Configures the FIC to run at 1.9 Hz

FRAMERATE_1HZ Configures the FIC to run at 0.95 Hz

FRAMERATE_POINT5HZ Configures the FIC to run at 0.48 Hz

FRAMERATE_POINT2HZ Configures the FIC to run at 0.24 Hz

Table 4-3. enum framerate_t enumerators

Enumerator Description

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

46 Freescale Semiconductor, Inc.

4.2.4 Functions

4.2.4.1 framerate_t mma9559_framerate_set(framerate_t rate)

This function configures the FIC (Frame Interval Counter) with the supplied frequency. If the frame rate
is invalid, it is ignored and the frame rate is not adjusted.

Example 4-2.

framerate_t framerate;
framerate = mma9559_framerate_set(FRAMERATE_488HZ);

If the rate value is FRAMERATE_NONE, the IDLE_BITS_CKOSC bit is cleared in the mma9559_idle_t
use_stop_sc field, enabling the mma9559_idle() function to use the StopNC stop mode (unless some
other setting of the idle_config_t structure prevents it).

If the rate value is any other valid rate, the IDLE_BITS_CKOSC bit is set in the mma9559_idle_t
use_stop_sc field, preventing the mma9559_idle() function from using the StopNC mode, and stopping
the FIC from running.

NOTE
At the highest supported frame rate of 3.906 kHz, the 16-bit and 14-bit AFE
conversion cannot be completed within the frame interval, as a result only
an AFE conversion length of 12 bits or less should be used.

See also:

• enum framerate_t
• “Frame interval counter” on page 14
• “User main” on page 37

Return

The resulting frame rate value is the frame interval counter. This should be the same as the requested value,
unless the requested value was invalid, in which case the current frame rate setting in the frame interval
counter is returned.

Parameter

rate: The frame rate setting for the frame interval counter frequency.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 47

4.2.4.2 void mma9559_afe_conversion_start(void)

This function triggers the AFE to start an ADC conversion cycle. The duration of the conversion depends
on the AFE_CSR configuration. When the conversion completes, the
VectorNumber_Vconversion_complete exception occurs and can be used by the
user_exception_handler to start subsequent processing.

This function can be called from anywhere in user code, but is usually called from within the
user_exception_handler() function, when the Start of Frame interrupt is serviced, to minimize the
jitter on the AFE sampling:

Example 4-3.

__declspec(register_abi) events_t user_exception_handler(
int vector) // exception vector number

{
...
case VectorNumber_Vstart_of_frame: // Start of Frame

FCSR_SF = 1; // Clear interrupt source
mma9559_afe_conversion_start(); // Start a new AFE conversion
break;

...
}

The function also sets the IDLE_BITS_AFE in the mma9559_idle_t use_stop_fc field so that the
mma9559_idle() function uses StopFC (fast clock) during any idle time. The ADC requires the system
clock to run at full speed during the AFE conversion.

See also:

• “User exception handler” on page 32

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

48 Freescale Semiconductor, Inc.

4.2.4.3 void mma9559_afe_interrupt_clear(void)

This function resets the AFE conversion complete bit that is set on the completion of the ADC conversion.
It also clears the IDLE_BITS_AFE in the mma9559_idle_t use_stop_fc. As a result, the
mma9559_idle() function is no longer forced to use StopFC (fast clock) during any idle time.

NOTE
Since the Freescale exception handler already executes this functionality
whenever an AFE conversion complete exception occurs, users do not
normally need to call this function unless they are operating with interrupts
disabled.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 49

4.2.4.4 void mma9559_afe_raw_sensor_data_get(int16 *data_ptr)

This function gets the raw (semi-trimmed) data from the AFE sensors.

Normally, the trimmed AFE sensor values are read using the
mma9559_afe_trimmed_sensor_data_get() function which reads the hardware registers and applies the
trim calculations in a single function call.

This function copies the semi-trimmed sensor values directly from the AFE hardware registers into the
supplied data structure. The raw sensor values can then be trimmed using the
mma9559_afe_raw_sensor_data_trim() function. This can be useful in saving power when basic
operations can be performed on the sensor data (such as decimation), prior to applying the trim
calculations.

Example 4-4.

mma9559_afe_data_t raw_afe_data;
...
mma9559_afe_raw_sensor_data_get(raw_afe_data.data);

The raw sensor values are stored in the array of 16-bit signed integers in the order:
• Accelerometer X axis
• Accelerometer Y axis
• Accelerometer Z axis
• Temperature
• External input

The Temperature and External input values do not change if the AFE_CSR is not configured to measure
them using the fourth ADC channel.

NOTE
The user must ensure that the supplied data structure is large enough to hold
the values from all of the axis/sensors. The number of axes/sensors is set in
the NUM_SENSOR_AXIS definition.

See also:

• void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)
• void mma9559_afe_raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)
• mma9559_afe_data_t
• “Analog Front End (AFE)” on page 15

Parameter

data ptr: Address to store the raw AFE sensor data values.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

50 Freescale Semiconductor, Inc.

4.2.4.5 void mma9559_afe_raw_sensor_data_trim(int16 *trim_ptr, int16
*data_ptr)

This function trims the supplied raw AFE sensor data to produce trimmed AFE sensor values.

Normally the trimmed AFE sensor values are read using the
mma9559_afe_trimmed_sensor_data_get() function which reads the hardware registers and applies the
trim calculations in a single function call.

This function trims previously read semi-trimmed sensor values, that were read using the
mma9559_afe_raw_sensor_data_get() function, and optionally pre-processed. The trim processing is
identical to the mma9559_afe_trimmed_sensor_data_get() function.

Example 4-5.

mma9559_afe_data_t raw_afe_data;
mma9559_afe_data_t trimmed_afe_data;
...
mma9559_afe_raw_sensor_data_trim(trimmed_afe_data.data, raw_afe_data.data);

NOTE
The user must ensure that the supplied data structure is large enough to hold
the values from all of the axis/sensors. The number of axis/sensors is set in
the NUM_SENSOR_AXIS definition.

See also:

• void mma9559_afe_raw_sensor_data_get(int16 *data_ptr)
• mma9559_afe_data_t
• “Analog Front End (AFE)” on page 15

Parameters

• trim_ptr: Address to store the trimmed AFE sensor data values.
• data_ptr: Address of the raw AFE sensor data to be trimmed.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 51

4.2.4.6 void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)

This function reads the data from the AFE sensor hardware registers and applies the trim calculations to
provide the accurate values.

The accelerometer sensor values are corrected for gain and offset using device-specific trim values. User
specified offsets are also applied to account for offsets caused by board mounting during the assembly
process. The user offsets can be set using the mma9559_afe_offsets_set() function.

Example 4-6.

mma9559_afe_data_t trimmed_afe_data;
...
mma9559_afe_trimmed_sensor_data_get(trimmed_afe_data.data);

The trimmed sensor values are stored in the array of 16-bit, signed integers in the order:

• Accelerometer X axis

• Accelerometer Y axis

• Accelerometer Z axis

• Temperature

• External input

The temperature and external input values remain unchanged, if the AFE_CSR is not configured to
measure them using the fourth ADC channel.

NOTE
The user must ensure that the supplied data structure is large enough to hold
the values from all of the axis/sensors. The number of axis/sensors is set in
the NUM_SENSOR_AXIS definition.

See also:

• void mma9559_afe_offsets_set(int16 *data_ptr)
• mma9559_afe_data_t
• “Analog Front End (AFE)” on page 15

Parameter

trim_ptr: Address to store the trimmed AFE sensor data values.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

52 Freescale Semiconductor, Inc.

4.2.4.7 void mma9559_afe_csr_set(afe_csr_options_t options)

This function configures the AFE (Analog Front End) by setting the AFE CSR (Control and Status
Register) contents. The AFE_CSR is not directly accessible in User mode, so this function enables it to be
set by the user. The function also preserves some fixed configuration settings.

The AFE_CSR controls three parameters of the AFE operation:

• G range selection: The AFE can operate in +/-2g, +/- 4g or +/-8g range.

• Fourth Conversion: The X, Y, and Z accelerometer channels are measured using three out of the
four ADC channels. The fourth ADC channel can be disabled or used to measure the temperature
or external input.

• Conversion mode: The ADC can perform a 10, 12, 14, or 16-bit conversion. A higher bit
conversion gives more resolution in the result, but takes longer to complete, and consumes more
power.

The significance of the most-significant bit remains the same in all conversion modes. If the
conversion mode is less than 16 bits, the least-significant bits of the raw sensor value is 0.

The AFE_CSR setting value is normally constructed by OR-ing one entry from each of the three sections
and casting it to the correct type, as shown in the following example.

Example 4-7.

// Configure the AFE Control and Status Register
mma9559_afe_csr_set((afe_csr_options_t)(

AFE_CSR_GRANGE_2G | // Use +/- 2 g range
AFE_CSR_C4MODE_TEMP | // Measure X, Y, Z and Temperature
AFE_CSR_CMODE_10BIT) // Use 10 bit conversion

);

Parameter

options: Configuration option to be loaded into the AFE CSR.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 53

4.2.4.8 afe_csr_options_t mma9559_afe_csr_get(void)

This function reads the configuration bits from the AFE CSR register.

Example 4-8.

afe_csr_options_t csr;
csr = mma9559_afe_csr_get(); // Read the current AFE CSR value

See also:

• void mma9559_afe_offsets_set(int16 *data_ptr)
• enum afe_csr_options_t

Return

The current setting of the AFE CSR options.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

54 Freescale Semiconductor, Inc.

4.2.4.9 void mma9559_afe_offsets_set(int16 *data_ptr)

This function gets the current AFE accelerometer user offset values.

The mma9559_afe_trimmed_sensor_data_get() and mma9559_afe_raw_sensor_data_trim()
functions add user-programmable offset values to the trimmed accelerometer readings. These values may
be set or read by the user.

The offset values are treated as values in the 8g range (where the hex value 0x4000 equates to 1g), and are
adjusted automatically to the appropriate g range when the g range is changed with the
mma9559_afe_csr_set() function. The values can be determined by putting the device into the 8g mode,
reading the accelerometer values without the effects of gravity, and negating these values.

Example 4-9.

int16 offsets[3] = { 0, 0, 0x4000 }; // X, Y and, Z offsets in 8g mode
mma9559_afe_offsets_set(offsets);

The user offset values are reset whenever the device is reset.

See also:

• void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)

Parameter

data ptr: Address containing the three accelerometer user offset values.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 55

4.2.4.10 void mma9559_afe_offsets_get(int16 *data_ptr)

This function enables the user to read the current values of the three accelerometer user offset settings. The
offset values are in 8g mode, with the hex value of 0x4000 corresponding to an offset of 1g.

Example 4-10.

int16 offsets[3]; // X, Y and Z offsets in 8 g mode
mma9559_afe_offsets_get(offsets);

NOTE
The user must ensure that the supplied data structure is large enough to hold
the values from all three of the accelerometer axes.

See also:

• void mma9559_afe_offsets_set(int16 *data_ptr)

Parameter

data ptr: Address containing the three accelerometer user offset values.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

56 Freescale Semiconductor, Inc.

4.3 Events and scheduling
This functional category manages events and task-scheduling.

The MMA9559L firmware creates events and provides a set of functions to manage them and use them to
schedule tasks or activities. These tasks or activities include:

• Signaling and clearing up to 32 events

• Selecting events, using priority or round-robin scheduling algorithms

• Providing configurable, power-saving idle control

• Disabling or restoring interrupts for critical sections

• Providing prototypes for user-created exception and trap-handler functions

4.3.1 Macros

4.3.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b))

This macro creates an events_t bit field from the event number.

The MMA9559 firmware supports up to 32 events, numbered from 0 to 31. The events_t data type can
represent multiple events by using a single bit for each event. This macro provides an easy way to create
the events_t bit field from an event number.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 57

4.3.2 Enumerations

4.3.2.1 enum idle_config_t

This value is used by the mma9559_idle_use_stop_config() to set how the idle_bits bit field is used
to modify the idle mode operation.

See also:

• void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)

Enumerators

Table 4-4. enum idle_config_t enumerators

Enumerators Description

IDLE_USE_STOP_FC_CLEAR Clear (remove) a bit in the use_stop_fc field of the mma9559_idle_t structure

IDLE_USE_STOP_FC_SET Set a bit in the use_stop_fc field of the mma9559_idle_t structure. This forces the idle
function to stop using the Stop_FC mode so that the system clock still runs at full speed

IDLE_USE_STOP_SC_CLEAR Clear (remove) a bit in the use_stop_sc field of the mma9559_idle_t structure

IDLE_USE_STOP_SC_SET Set a bit in the use_stop_sc field of the mma9559_idle_t structure. This prevents the
idle function from using the Stop_NC mode, allowing the system clock to still run

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

58 Freescale Semiconductor, Inc.

4.3.2.2 enum idle_bits_t

This value may be used individually or combined by the mma9559_idle_use_stop_config() function to
set how the bit field is used to modify the idle mode operation. Bits can be individually set to separate
tasks, allowing tasks to modify the idle mode configuration without overwriting the configuration set by
other tasks or activities.

These bit fields also can be used to directly modify the idle_config_t fields within the
user_exception_handler function. The fields also can be used whenever interrupts are disabled.

• The first 16 idle bits are reserved for Freescale use and should not be used by user code.

• The second set of 16 bits are available for user code.

See also:

• void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)

Enumerators

Table 4-5. enum idle_bits_t enumerators

Enumerator Description

IDLE_BITS_CKOSC Sets the idle configuration for the FIC (Frame Interval Counter)

IDLE_BITS_AFE Sets the idle configuration for the AFE (Analog Front End)

IDLE_BITS_RSVD_2 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_3 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_4 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_5 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_6 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_7 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_8 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_9 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_10 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_11 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_12 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_13 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_14 Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_15 Idle configuration bit reserved for Freescale use

IDLE_BITS_USER_0 User-assignable idle configuration bit

IDLE_BITS_USER_1 User-assignable idle configuration bit

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 59

IDLE_BITS_USER_2 User-assignable idle configuration bit

IDLE_BITS_USER_3 User-assignable idle configuration bit

IDLE_BITS_USER_4 User-assignable idle configuration bit

IDLE_BITS_USER_5 User-assignable idle configuration bit

IDLE_BITS_USER_6 User-assignable idle configuration bit

IDLE_BITS_USER_7 User-assignable idle configuration bit

IDLE_BITS_USER_8 User-assignable idle configuration bit

IDLE_BITS_USER_9 User-assignable idle configuration bit

IDLE_BITS_USER_10 User-assignable idle configuration bit

IDLE_BITS_USER_11 User-assignable idle configuration bit

IDLE_BITS_USER_12 User-assignable idle configuration bit

IDLE_BITS_USER_13 User-assignable idle configuration bit

IDLE_BITS_USER_14 User- assignable idle configuration bit

IDLE_BITS_USER_15 User-assignable idle configuration bit

Table 4-5. enum idle_bits_t enumerators

Enumerator Description

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

60 Freescale Semiconductor, Inc.

4.3.3 Data structures

This section describes the data structures used in the events and scheduling functional category.

4.3.3.1 mma9559_idle_t

This structure holds the configuration variables that control the operation of the device when the
mma9559_idle() function is called. The use of this structure is described in the mma9559_idle() function.

The use_stop_fc and use_stop_sc fields can be modified inside the user_exception_handler()
function. While these fields can be read anywhere, any code that modifies them should only be executed
when interrupts are disabled.

This can be achieved in three ways:

• Within the user_exception_handler() or user_trap_handler() functions

• When interrupts are disabled, using the interrupts_disable() function

• Using the mma9559_idle_use_stop_config() function

See also:

• void mma9559_idle(void)
• void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)

Fields

Table 4-6. mma9559_idle_t fields

Field Description

int8 stop_cfg Override the normal idle mode stop configuration, based upon the value of this field:
 • stop_cfg < 0: do not use any Stop mode
 • stop_cfg > 0: use the supplied value as the Stop mode
 • stop_cfg = 0: use the use_stop_fc and use_stop_sc fields

vuint32 use_stop_fc If this is non-zero then STOP mode must use StopFC (Fast Clock) mode.

vuint32 use_stop_sc If this is non-zero and use_stop_fc is zero then STOP mode must use StopSC (Slow Clock) mode.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 61

4.3.3.2 mma9559_vars_t

This structure holds all of the variables that are used by the Freescale firmware. Most of these variables
can be used by the user firmware to configure and control the operation of the Freescale firmware. User
code obtains the address of the data structure using the mma9559_vars_addr_get() function.

The events and events_missed fields can be read anywhere, but—since they can be updated by the
Freescale exception_handler() function—any code that modifies them should only be executed when
interrupts are disabled. (These fields are described in “Events” on page 18 and “FIFOs” on page 74.)

Modifying the two fields can be achieved in three ways:

• Within the user_exception_handler() or user_trap_handler() functions

• When interrupts are disabled, using the interrupts_disable() function

• Using the mma9559_idle_use_stop_config() function

The user_exception_handler and user_trap_handler fields can be loaded with the addresses of the
respective user functions, if they are present. If no handlers are present, they are set to 0.

See also:

• void mma9559_idle(void)
• mma9559_vars_t* mma9559_vars_addr_get(void)
• events_t mma9559_events_set_clear(events_t set_events, events_t clear_events)

Fields

Table 4-7. mma9559_idle_t fields

Field Description

volatile events_t events Currently signaled events. (See “Events and scheduling” on page 56.)

volatile events_t
events_missed

Events that were signaled before they had been cleared from the previous time that they had
been signaled. (See “Events and scheduling” on page 56.)

events_t events_fifos Events that are associated with FIFOs should not be modified by user code. (See “FIFOs” on
page 74.)

uint16 afe_cm_gain AFE trim configuration. Do not modify.

uint8 afe_fs_shift AFE trim configuration. Do not modify.

mma9559_idle_t idle Idle stop mode configuration. (See “mma9559_idle_t” on page 60.)

user_exception_handler_t
user_exception_handler

Address of the user exception handler.

user_trap_handler_t
user_trap_handler[4]

Addresses of the user trap handlers. These are optional, but should be set prior to issuing the
associated trap call.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

62 Freescale Semiconductor, Inc.

4.3.4 Functions

4.3.4.1 mma9559_vars_t* mma9559_vars_addr_get(void)

The Freescale firmware uses an instance of the mma9559_vars_t structure to store the variables used for
its configuration and control. The operation of the firmware can be modified and/or observed through this
control structure.

Since the address of the structure instance may change in future releases of the firmware, this function is
provided to enable the user code to find the address of the structure and use it.

NOTE
This function calls the ROM trap function to get device information from
the ROM code. This causes both this function call and the ROM trap being
on the supervisor stack at the same time—consuming a large part of the
supervisor stack. This function should not be called from within a user
exception handler or a user trap call because that would exceed the
supervisor stack space.

Return

Address of the Freescale firmware data structure.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 63

4.3.4.2 events_t mma9559_events_set_clear(events_t set_events,
events_t clear_events)

This function updates the mma9559_vars_t events and events_missed fields with the supplied
set_events and clear_events parameters.

The mma9559_vars_t events_missed field is updated to mark any events that were signaled in the
set_events parameter, were not set in the clear_events parameter, and are still active in the events field.

The mma9559_vars_t events field is updated, setting the events signaled in the set_events parameter
and marking the events in the clear_events parameter. If an event is set in both the set_events and the
clear_events fields, the event is signaled.

Any events that have been associated with FIFOs, using mma9559_fifo_init(), are masked, indicating
that they can only be signaled and cleared by the FIFO functions and cannot be modified by user code,
including this function.

The function performs the operations shown in the following example:

Example 4-11.

set_events &= ~(mma9559_vars.events_fifos);
clear_events &= ~(mma9559_vars.events_fifos);
mma9559_vars.events_missed |= set_events & ~clear_events & mma9559_vars.events;
mma9559_vars.events = set_events | (~clear_events & mma9559_vars.events);

The mma9559_vars_t events field may be modified in an exception handler, which means it must not be
modified in User mode. This is because User mode cannot ensure an atomic transaction is not interrupted
by an exception, unless it is modified within a critical section (that cannot be interrupted). The
mma9559_events_set_clear() function runs with interrupts masked, providing a safe way for user code
to modify the events field without the risk of being interrupted by an exception and without needing to
create a critical section.

Return

The resulting value of the mma9559_vars_t events field

Parameters

Table 4-8. events_t mma9559_events_set_clear parameters

Parameter Description

set_events Bits that are set in this parameter are signaled in the mma9559_vars_t events field

clear_events Bits that are set in this parameter are cleared from the mma9559_vars_t events field

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

64 Freescale Semiconductor, Inc.

4.3.4.3 int mma9559_events_find_first(events_t events)

This function may be used in conjunction with the Events and Scheduling functionality of the Freescale
firmware to provide a basic scheduling capability for a user’s execution loop.

The function returns the number of the highest-priority event bit that is set in the events field. The priority
is arranged so that the least-significant bit (LSB) of the events parameter is the highest-priority
event—which generates the return value 0. The most-significant bit (MSB) of the events parameter is the
lowest-priority event—which generates the return value 31.

Return

The priority number of the highest-priority active task in the events bit field, from 0 for the LSB to 31 for
the MSB. If there are no active priority bits, the value 32 is returned.

Parameter

events: The events bit field to be searched for the first event.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 65

4.3.4.4 int mma9559_events_find_next(events_t events, int current_event)

The purpose of this function is to find the next active event for round-robin scheduling. This function may
be used in conjunction with the Events and Scheduling functionality of the Freescale firmware to provide
a basic scheduling capability for a user’s execution loop.

This function returns the number of the next-highest priority event bit that is set in the events field and a
lower priority than the current event. The priority is arranged, such that the least-significant bit (LSB) of
the events parameter is the highest-priority event—which generates the return value 0. The
most-significant bit (MSB) of the events parameter is the lowest-priority event—which generates the
return value 31.

If there are no active priority bits lower than the current_event, the selection wraps around and the
highest-priority active event is returned.

Calling this function with a current_event parameter of 32 or higher causes the function to return the
highest-priority active event.

Return

The priority number of the next-highest priority active task in the events bit field that is lower than the
current_event—from 0 for the LSB to 31 for the MSB. If there are no active priority bits, the value 32
is returned.

Parameters

Table 4-9. int mma9559_events_find_next parameters

Parameter Description

events The events bit field to be searched for the next event.

current_event The currently running priority level (0 to 31).

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

66 Freescale Semiconductor, Inc.

4.3.4.5 void mma9559_idle_use_stop_config(idle_config_t config,
idle_bits_t bits)

This function enables the mma9559_idle_t use_stop_fc and use_stop_sc fields to be configured from
user space.

The mma9559_idle_t fields are modified directly by the Freescale exception handler and may also be
modified by the user_exception_handler function. To avoid modification of these fields from user
space or corruption of the fields by an exception during processing, the user code must use a critical section
(disabling then enabling interrupts) or call this function.

Example 4-12.

// Set a use StopFastClock bit so that idle will use Stop Fast Clock mode
mma9559_idle_use_stop_config(

IDLE_USE_STOP_FC_SET, // Set bit(s) in the Use Stop Fast field
IDLE_BITS_USER_0); // Bits to be set

...
// When the hardware has finished running clear the bit to allow normal Stop mode operation

mma9559_idle_use_stop_config(
IDLE_USE_STOP_FC_CLEAR, // Clear bit(s) in the Use Stop Fast field
IDLE_BITS_USER_0); // Bits to be cleared

These fields are used by the mma9559_idle() function to determine which Stop mode to use when the
device is idle to achieve the lowest possible power.

The Freescale firmware reserves the lower 16 idle_bits and already uses the two least-significant idle_bits:

• IDLE_BITS_CKOSC: Used by the frame interval counter to prevent the use of StopNoClock when
the frame interval counter is being used.

• IDLE_BITS_AFE: Used by the AFE to force the use of StopFastClock when the ADC is
performing a conversion.

User code may use any of the upper 16 bits that have the prefix IDLE_BITS_USER_.

See also:

• void mma9559_idle(void)
• “Power” on page 28

Parameters

Table 4-10. void mma9559_idle_use_stop_config parameters

Parameter Description

config Selects which field and type of modification to make.

bits Designates the bits to be modified in the selected field.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 67

4.3.4.6 void mma9559_idle(void)

This function executes the idle processing function, to sleep until the next exception.

The mma9559_idle() function manages the CPU Stop modes to use the lowest possible power. This is
done using the Stop mode, based on the configuration set in the mma9559_idle_t fields and the
mma9559_vars_t events field:

• If the mma9559_vars_t events field is non-zero, then return.

This occurs if there are unhandled events that should be processed before entering Stop mode.
• If the mma9559_idle_t stop_cfg field is negative, then return.

This enables the use of Stop modes to be disabled for debug purposes.
• If the mma9559_idle_t stop_cfg field is positive, that value is loaded directly into the STOP_CR

register and a stop issued.

This enables testing of particular Stop configurations but should not generally be used.
• If the mma9559_idle_t stop_cfg field is 0 and the mma9559_idle_t use_stop_fc is non-zero,

the device uses StopFC (fast clock) mode.

• If the mma9559_idle_t stop_cfg and use_stop_fc fields are 0 and the mma9559_idle_t
use_stop_sc field is non-zero, the device uses StopSC (slow clock) mode.

• If the mma9559_idle_t stop_cfg, use_stop_fc, and use_stop_sc fields are all zero, the device
uses StopNC (no clock) mode—the lowest power mode.

See also:

• mma9559_idle_t
• mma9559_vars_t

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

68 Freescale Semiconductor, Inc.

4.3.4.7 int mma9559_interrupts_disable(void)

This function can be used to create critical sections in user firmware that is not interrupted by exceptions.
This implementation supports the use of nested critical sections (accidentally or deliberately) by enabling
the user to record the interrupt level/mask interrupts when they are disabled. The interrupts are restored to
their original value, when the interrupts are restored.

The user_exception_handler() and user_trap_handler() run with the interrupts disabled; therefore,
these functions are not required for either of these handlers.

Any exception sources that become active are handled once the interrupt priority mask is returned to 0 by
the call to the mma9559_interrupts_restore() function.

A critical section can be created as shown in the following example.

Example 4-13.

int status = mma9559_interrupts_disable(); // start critical section
....
mma9559_interrupts_restore(status); // restores previous interrupt level/mask

If the critical section is never nested, this solution can be simplified by removing the status variable and
making the parameter to the mma9559_interrupts_restore() function zero. See the following example.

Example 4-14.

mma9559_interrupts_disable(); // start critical section
....
mma9559_interrupts_restore(0); // enables interrupts

Return

The value of the status register, including the interrupt priority mask before the interrupts were disabled.

See also:

• void mma9559_interrupts_restore(int status)
• “Interrupts and critical sections” on page 22

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 69

4.3.4.8 void mma9559_interrupts_restore(int status)

This function is used in conjunction with the mma9559_interrupts_disable() function to enable user
code to create critical sections that cannot be interrupted by exceptions. See int
mma9559_interrupts_disable(void) for more information.

• If user code supports nested critical sections, then the status parameter should be the value returned
by the matching mma9559_interrupts_disable() function call.

• If user code does not support nested critical sections, then the status parameter may be set to 0 to
re-enable interrupts. No other values should be used

Only the interrupt priority mask bits of the status parameter are used. If any of the interrupt priority mask
bits are set, then the interrupt priority mask is set to 7 to disable/mask all interrupts; otherwise, the interrupt
priority mask is set to 0 to enable/unmask the interrupts.

For example code using the mma9559_interrupts_restore() function, see the description of the int
mma9559_interrupts_disable(void) function.

See also:

• int mma9559_interrupts_disable(void)
• “Interrupts and critical sections” on page 22

Parameter

status: Interrupt status state to be restored.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

70 Freescale Semiconductor, Inc.

4.3.4.9 int mma9559_user_trap0(int d0, int d1, int d2, void *a0, void *a1)

This function issues a trap instruction that calls the function registered in the firmware variables structure
entry user_trap_handler[0]. The parameter variables are passed to the trap function and their usage is
determined by the user trap handler function.

Return

The integer value returned by the user_trap_handler function.

NOTE
The user trap handler can be called directly using the asm { trap
#TRAP_USER_0 } instruction. This function makes it easier to set the
parameter values.

Parameters

Table 4-11. int mma9559_user_trap0 parameters

Parameter Description

d0 First integer parameter (user-defined meaning).

d1 Second integer parameter (user-defined meaning).

d2 Third integer parameter (user-defined meaning).

a0 First pointer parameter (user-defined meaning).

a1 Second pointer parameter (user-defined meaning).

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 71

4.3.4.10 int mma9559_user_trap1(int d0, int d1, int d2, void *a0, void *a1)

This function issues a trap instruction that calls the function registered in the firmware variables structure
entry user_trap_handler[1]. The parameter variables are passed to the trap function and their usage is
determined by the user trap handler function.

Return

The integer value returned by the user_trap_handler function.

NOTE
The user trap handler can be called directly using the asm { trap
#TRAP_USER_1 } instruction. This function makes it easier to set the
parameter values.

Parameter

Table 4-12. int mma9559_user_trap1 parameters

Parameter Description

d0 First integer parameter (user-defined meaning).

d1 Second integer parameter (user-defined meaning).

d2 Third integer parameter (user-defined meaning).

a0 First pointer parameter (user-defined meaning).

a1 Second pointer parameter (user-defined meaning).

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

72 Freescale Semiconductor, Inc.

4.3.4.11 int mma9559_user_trap2(int d0, int d1, int d2, void *a0, void *a1)

This function issues a trap instruction that calls the function registered in the firmware variables structure
entry user_trap_handler[2]. The parameter variables are passed to the trap function and their usage is
determined by the user trap handler function.

Return

The integer value returned by the user_trap_handler function.

NOTE
The user trap handler can be called directly using the asm { trap
#TRAP_USER_2 } instruction. This function makes it easier to set the
parameter values.

Parameters

Table 4-13. int mma9559_user_trap2 parameters

Parameter Description

d0 First integer parameter (user-defined meaning).

d1 Second integer parameter (user-defined meaning).

d2 Third integer parameter (user-defined meaning).

a0 First pointer parameter (user-defined meaning).

a1 Second pointer parameter (user-defined meaning).

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 73

4.3.4.12 int mma9559_user_trap3(int d0, int d1, int d2, void *a0, void *a1)

This function issues a trap instruction that calls the function registered in the firmware variables structure
entry user_trap_handler[3]. The parameter variables are passed to the trap function, and their usage is
determined by the user trap handler function.

Return

This is the integer value returned by the user_trap_handler function.

NOTE
The user trap handler can be called directly using the asm { trap
#TRAP_USER_3 } instruction. This function makes it easier to set the
parameter values.

Parameters

Table 4-14. int mma9559_user_trap3 parameters

Parameter Description

d0 First integer parameter (user-defined meaning)

d1 Second integer parameter (user-defined meaning)

d2 Third integer parameter (user-defined meaning)

a0 First pointer parameter (user-defined meaning)

a1 Second pointer parameter (user-defined meaning)

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

74 Freescale Semiconductor, Inc.

4.4 FIFOs
The MMA9559L Freescale firmware supports the use of FIFOs for inter-process communication, with a
configurable FIFO structure definition and a set of functions to manage them. For overview information,
see “FIFOs” on page 24.

4.4.1 Macros

4.4.1.1 #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32
rsvd[2]; uint8 data[max_entries * bytes_per_entry]; }

The MMA9559L firmware provides functions to store and retrieve data in FIFOs. The FIFO data structure
contains a common set of internal variables that are the same in every FIFO and a data buffer whose length
is determined by the number of data entries in the FIFO and the size of each entry. The entry size is in bytes.

This macro can be used to create FIFOs in two ways:

• A single variable instance of a FIFO can be created using the macro, as shown in the following
example.

Example 4-15.

FIFO_STRUCT(5, sizeof(uint32)) fifo1;
// FIFO variable to hold five 32 bit unsigned integers

• A typedef can be created for a particular FIFO configuration and individual variable instances of
the same configuration created from that typedef, as shown in the following example.

Example 4-16.

typedef FIFO_STRUCT(10, sizeof(uint8)) fifo10_t;// FIFO data type to hold 10 bytes
fifo10_t fifo2; // Instance variable of a FIFO to hold 10 bytes

NOTE
When creating the FIFO structure, this macro calculates the total data buffer
size (in bytes) by multiplying the maximum_entries field by the
bytes_per_entry field. The two, separate values are not needed here, but
are kept in this format to maintain consistency with the
mma9559_fifo_init() function.

See also:

• int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr, events_t events, unsigned int
max_entries, unsigned int bytes_per_entry)

• “FIFOs” on page 24

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 75

4.4.2 Data structures

4.4.2.1 mma9559_fifo_t

This structure provides a generic FIFO structure that contains the internal variables used by the FIFO
functions and a placeholder for the data buffer. This structure is not used directly because it does not have
any data buffer space. Instead, users should create the FIFOs they need using the FIFO_STRUCT macro
and include a correctly sized data buffer.

The contents of the structure should not be accessed directly by user code, but accessed by
MMA9559L-firmware functions.

See also:

• int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr, events_t events, unsigned int
max_entries, unsigned int bytes_per_entry)

• int mma9559_fifo_pop(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr, unsigned
int entries)

• #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32 rsvd[2]; uint8
data[max_entries * bytes_per_entry]; }

Fields

Table 4-15. mma9559_fifo_t fields

Field Description

events_t events Events to signal when the FIFO has data.

uint8 read_index Index for the next entry to be read.

uint8 maximum_entries Maximum number of elements in the FIFO.

uint8 number_of_entries Number of entries currently in the FIFO.

uint8 bytes_per_entry Number of bytes in each data element.

uint8 data[] Configurable size buffer for FIFO data.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

76 Freescale Semiconductor, Inc.

4.4.3 Functions

4.4.3.1 int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr,
events_t events, unsigned int max_entries,
unsigned int bytes_per_entry)

This function initializes the FIFO data structure. The structure first must be defined, using the
FIFO_STRUCT macro that creates a customized FIFO variable or data type. At run time, the FIFO
structure must be initialized using this function.

Whenever data is pushed into the FIFO, the events in the events field is signaled and the event is cleared
when either the last data is popped off the FIFO (leaving it empty) or the FIFO is reset. The events are also
added to the mma9559_vars events_fifos field, which means they can be signaled or cleared by the user
exception handler or the mma9559_events_set_clear() function.

The max_entries and bytes_per_entry values both must be in the range of 1 to 255. If either value is
out of this range, the function returns a value of -1 and leaves the FIFO structure marked as unconfigured.

The following example:

• Initializes fifo1.

• Sets the FIFO size to the same values that were used in the FIFO data type (maximum entries of
10, entry size of 2 bytes).

• Associates fifo1 with the EVENT_FIFO event.

Example 4-17.

// Instantiate the FIFO to reserve the memory space
FIFO_STRUCT(2, sizeof(mma9559_afe_data_t)) fifo1;

...
// At run time initialize the FIFO before using it

ret = mma9559_fifo_init(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure
EVENT_BITFIELD(EVENT_FIFO), // bitfield of associated events
2, // maximum number of data entries
sizeof(mma9559_afe_data_t) // number of bytes in each data entry

);

The max_entries and bytes_per_entry fields normally match the values used in the FIFO_STRUCT
macro to create the FIFO variable. Other values may be used, however, as long as the product of the
max_entries and bytes_per_entry values—used in the mma9559_fifo_init() function—is not larger
than the product of the values used by the FIFO_STRUCT macro to determine the FIFO data buffer size.

NOTE
There is no automatic validation of the max_entries and
bytes_per_entry values. The user must ensure that these values are
consistent with the FIFO_STRUCT usage.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 77

See also:

• #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32 rsvd[2]; uint8
data[max_entries * bytes_per_entry]; }

• “Initialize FIFO” on page 25

Return

Error status:

• If the max_entries or bytes_per_entry values are greater than 255 or less than 1, then -1 is
returned.

• Otherwise, 0 is returned on success

Parameters

Table 4-16. int mma9559_fifo_init parameters

Field Description

fifo_ptr Address of the FIFO data structure to be initialized.

events Bit field of events signaled, when the FIFO contains data.

max_entries Maximum number of entries that can be stored.

bytes_per_entry Bytes per FIFO entry.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

78 Freescale Semiconductor, Inc.

4.4.3.2 void mma9559_fifo_reset(volatile mma9559_fifo_t *fifo_ptr)

This function resets the FIFO variables to empty the FIFO and clears any currently signaled event bits for
the FIFO. When the FIFO is reset, all data in the FIFO is discarded and the FIFO data structure is
re-initialized.

Example 4-18.

mma9559_fifo_reset(
(mma9559_fifo_t*)&fifo1 // pointer to the FIFO structure to be reset

);

See also:

• “Reset the FIFO” on page 27

Parameter

fifo_ptr: Address of the FIFO data structure to be reset.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 79

4.4.3.3 int mma9559_fifo_pop(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr,
unsigned int entries)

This function copies the requested number of entries from the FIFO to memory, starting at the supplied
data pointer. If the FIFO contains less entries than the number of entries requested, only the number of
entries in the FIFO are copied.

After the data has been copied from the FIFO, the data is discarded from the FIFO buffer—freeing space
for new data. If the FIFO is empty after the data has been read, the events associated with the FIFO are
cleared.

It does not corrupt the FIFO to attempt to pop data off an empty FIFO or to read more data entries from a
FIFO than it contains. Either action, however, results in all of the available entries being read and the FIFO
being emptied.

Example 4-19.

ret = mma9559_fifo_pop(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure
(uint8*)afe_data.data, // pointer to the start of the destination buffer
1 // the number of data entries to retrieve

);

If the FIFO has not been successfully initialized with the mma9559_fifo_init() function, no data is read
from the FIFO and the return value is 0.

NOTE
The buffer addressed by the data_ptr parameter must be large enough to
hold the number of bytes being popped. This value must be greater than or
equal to the entries parameter multiplied by the number of bytes per entry,
set when the FIFO was initialized. This function does not check the size of
the data buffer.

Return

The actual number of entries that were popped off the FIFO and copied to the data pointer.

Parameters

Table 4-17. int mma9559_fifo_pop parameters

Field Description

fifo_ptr Address of the FIFO data structure to obtain data.

data_ptr Address of the structure to store the popped data.

entries Number of entries to pop off the FIFO.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

80 Freescale Semiconductor, Inc.

4.4.3.4 int mma9559_fifo_push(volatile mma9559_fifo_t *fifo_ptr,
uint8 *data_ptr, unsigned int entries)

This function copies the requested number of entries—from the memory starting at the supplied data
pointer—into the FIFO. If the FIFO does not have enough space (empty FIFO entries) to store the
requested number of entries, then only the number of entries fitting within that space are copied.

The events associated with the FIFO are signaled every time this function is called, regardless of the
number of entries that are pushed into the FIFO.

If the number of entries to be pushed into the FIFO exceeds the space in the FIFO, the FIFO overflows.
The entries that do not fit are not stored in the FIFO and the events bit field, associated with the FIFO, are
set in the mma9559_vars_t events_missed field.

The FIFO is not corrupted by attempting to push data into a full FIFO or to write data entries that exceed
the available space. However, the excess data (in both scenarios) are not stored in the FIFO and are lost.

Example 4-20.

ret = mma9559_fifo_push(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure
(uint8*)afe_data.data, // pointer to the first byte of the first entry
1 // the number of data entries to store

);

If the FIFO has not been successfully initialized with the mma9559_fifo_init() function, no data is read
from the FIFO and the return value is 0.

NOTE
The buffer addressed by the data_ptr parameter must contain the correct
number of bytes to match the number of entries being pushed. The parameter’s
value must be equal to the entries parameter multiplied by the number of bytes
per entry, set when the FIFO was initialized. This function does not check the
size of the data buffer.

Return
The actual number of entries that were copied from the data pointer and pushed into the FIFO.

Parameters

Table 4-18. int mma9559_fifo_push parameters

Field Description

fifo_ptr Address of the FIFO data structure.

data_ptr Address of the structure from which the data is pushed.

entries Number of entries to push into the FIFO.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 81

4.4.3.5 int mma9559_fifo_entries_used(volatile mma9559_fifo_t *fifo_ptr)

This function returns the number of entries in the FIFO that currently contain valid data. User code may
pop this many entries off the FIFO without running out of data. The FIFO may still contain data after this
many reads because more data may be pushed onto the FIFO by interrupt handlers while the FIFO is being
read. The FIFO should not run out of data.

Example 4-21.

used_entries = mma9559_fifo_entries_used(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure

);

Return

The number of entries in the FIFO that currently contain data that can be popped off the FIFO.

Parameter

fifo_ptr: Address of the FIFO data structure.

4.4.3.6 int mma9559_fifo_entries_free(volatile mma9559_fifo_t *fifo_ptr)

This function returns the number of entries in the FIFO that currently are empty. User code may push this
many entries into the FIFO without running out of FIFO space and overflowing the FIFO. The entries
value is only correct at the time it is read. If any other tasks (such as interrupt handlers) are using the FIFO,
there may be more or less space in the FIFO when the user code actually accesses the FIFO.

Example 4-22.

free_entries = mma9559_fifo_entries_free(
(mma9559_fifo_t*)&fifo1, // pointer to the FIFO structure

);

Return

The number of entries in the FIFO that are currently available to store more data.

Parameter

fifo_ptr: Address of the FIFO data structure.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

82 Freescale Semiconductor, Inc.

4.5 Other functions
This section describes additional firmware functionality that does not fit into the previous functional
categories.

4.5.1 Enumerations

4.5.1.1 enum boot_options_t

This sets the execution path for a startup other than power-on reset.

When the device first powers up, the boot mode is loaded with the FOPT settings from the flash location
at 0x3FFE. This is set in the flash code image.

On subsequent resets, the FOPT settings are not reloaded from the flash location. Instead, the register
settings are used directly. This function enables users to modify the FOPT setting for the execution path in
order to set the operation next time the device resets.

See also:

• void mma9559_boot_options_set(boot_options_t option)

Enumerators

Table 4-19. enum boot_options_t enumerators

Enumerator Description

BOOT_TO_ROM On the next non power-on reset, execute the ROM command line interpreter.

BOOT_TO_FLASH On the next non power-on reset, execute the firmware loaded in the flash memory.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 83

4.5.1.2 enum rmf_func_t

This value specifies the ROM command to execute. For more information on the operation and data
formats for the commands, see the “User Callable ROM Functions” section of the “ROM” chapter in the
MMA955xL Intelligent, Motion-Sensing Hardware Reference Manual (MMA955xLHWRM).

See also:

• void* mma9559_rom_command(rmf_func_t func_id, void *addr)

Enumerators

Table 4-20. enum rmf_func_t enumerators

Enumerator Description

RMF_DEV_INFO Retrieves device information data structure.

RMF_FLASH_PROGRAM Programs flash memory, through the flash controller.

RMF_FLASH_ERASE Erases flash memory, through the flash controller.

RMF_EXTENSION Executes extended flash functions.

RMF_CRC Calculates the CRC, over a range in memory.

RMF_CI Transfers command to the ROM-based command interpreter.

RMF_CHANGE_CONFIG Updates the device capabilities configuration.

RMF_FLASH_PROTECT Protects the flash against accidental erasure and programming.

RMF_FLASH_UNPROTECT Unprotects access to the flash program and erase functions.

RMF_FLASH_UNSECURE Modifies the current security status of the device.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

84 Freescale Semiconductor, Inc.

4.5.2 Data structures

4.5.2.1 mma9559_device_info_t

This structure holds device information that is derived from a combination of the ROM device, version
information, and firmware-version information.

• The device_id, rom_version, and hw_version values are retrieved from the ROM device
information.

• The fw_version, build_code, part_number, reset cause, and security state are reported
by the MMA9559L firmware.

Fields

Table 4-21. mma9559_device_info_t fields

Field Description

uint32 device_id ROM: Pseudo-random part identification value.

uint16 rom_version ROM: ROM version code, major.minor.

uint16 fw_version FW: Firmware version code, major.minor.

uint16 hw_version ROM: Hardware version code, major.minor.

uint16 build_code FW: Firmware build number and date code. The value is encoded in the following bit fields:
 • [15:12] Daily build number, 0 to 15
 • [11: 8] Build month, 1 to 12
 • [7: 3] Build day, 1 to 31
 • [2: 0] Build year, 2010 to 2017

uint16 part_number FW: BCD-encoded part number. For example, 0x9559.

uint8 reset_cause FW: Lower five bits from the RCSR reports reset source.

uint8 secure_mode FW: Lower two bits of FOPT report the security mode of the device.
Values:
 • 2 = secure
 • Otherwise = not secure

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 85

4.5.2.2 union rmf_return_t

This returns a value from the ROM command, accessible as a value or a pointer.

ROM commands return a single value that can be either a pointer or a value, depending on which function
was called. The mma9559_rom_command() function returns a pointer that can be assigned to the ptr field
in the union and handled by user code as either a pointer or a value, depending on which ROM command
was executed.

See also:

• void* mma9559_rom_command(rmf_func_t func_id, void *addr)

Fields

Table 4-22. union rmf_return_t fields

Field Description

void* ptr Return value handled as a pointer

unsigned long val Return value handled as an integer

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

86 Freescale Semiconductor, Inc.

4.5.3 Functions

4.5.3.1 void mma9559_boot_options_set(boot_options_t option)

Sets the execution path for the next non-POR reset.

This function enables the execution path on the next reset, other than a power-on reset, to be configured to
run either the ROM command interpreter or to execute the user firmware in flash.

When the device first powers up, the boot mode is loaded with the FOPT settings from the flash location
at 0x3FFE. This is set in the flash code image. On subsequent resets, the FOPT settings are not reloaded
from the flash location. Instead, the register settings are used directly.

This function enables users to modify the FOPT setting for the execution path to set the operation next time
the device resets.

Once the execution path has been set using the mma9559_boot_options_set() function, a reset can be
generated by writing to the Assert Software Reset (ASR) bit of the user-accessible, Reset Control and
Status Register (RCSR). Resets caused by anything other than the POR also follow the execution path set
with this function.

The following example resets the device back to the ROM Command Interpreter.

Example 4-23.

mma9559_boot_options_set(BOOT_TO_ROM); // Set next reset boot path to ROM
RCSR_ASR = 1; // Issue software reset

NOTE
The MMA955xL EVM board issues a reset to the MMA955xL device
whenever it connects to the device to ensure that the correct I2C / SPI
connection selection is used. If the user code already has set the boot path to
ROM using mma9559_boot_options_set(BOOT_TO_ROM), the part always
runs the ROM Command interpreter when the PC connects to the part
through the MMA955xL EVM board. This problem is avoided by not
setting the boot path to ROM until a reset to ROM is desired.

Parameter

option: Selects the execution path on the next non-POR reset.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 87

4.5.3.2 int mma9559_device_info_get(int length,
mma9559_device_info_t *addr)

This function retrieves a combination of identification and version information from the ROM code and
the MMA9559L device and copies it into the data structure at addr.

To avoid overflowing the supplied data buffer, the caller must provide a length parameter that limits the
number of bytes that are copied to the supplied data buffer, as shown in the following example.

Example 4-24.

mma9559_device_info_t device_info;
// storage to hold the returned device information

device_info_length = mma9559_device_info_get(
sizeof(mma9559_device_info_t), // maximum number of bytes to read
&device_info // address of buffer to receive data
);

NOTE
This function uses a large amount of the supervisor stack space, so it should
never be called from within the user_exception_handler() function or
any user_trap_handler() function.

Return

Reports the number of bytes copied into the buffer, which is the minimum of the length parameter and the
length of the available device identification and version information.

Parameters

Table 4-23. int mma9559_device_info_get parameters

Field Description

length Size of the receiving buffer, in bytes.

addr Address of the buffer into which the device information is being copied.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

88 Freescale Semiconductor, Inc.

4.5.3.3 void* mma9559_rom_command(rmf_func_t func_id, void *addr)

This function provides access to the ROM functions documented in the MMA955xL Intelligent,
Motion-Sensing Hardware Reference Manual (MMA955xLHWRM). For details on the operation of these
functions, see that document’s “ROM” chapter.

Example 4-25.

rmf_return_t rmf_ret;
rmf_ret.ptr = mma9559_rom_command(

RMF_DEV_INFO, // ROM function to be called = Get Device Info
0 // this command does not take any arguments

);

Return

Either provides the address of a parameter block containing the result of the command or returns a value,
depending on the ROM function called.

Parameters

Table 4-24. void* mma9559_rom_command parameters

Field Description

func_id Specifies the ROM functions to be executed.

addr Gives the address of the parameter block used for the ROM function.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 89

4.6 IIR filter
The MMA9559L firmware includes an optimized Direct Form I, Nth-order Infinite Impulse Response
(IIR) filter function that can be accessed by user code.

A Direct Form I IIR filter is calculated using a general formula than can be extended to an Nth-order filter.
See the following equation.

Y[n] = b0*X[n] + b1*X[n-1] - a1*Y[n-1] + b2*X[n-2] - a2*Y[n-2] ... Eqn. 4-1

Where:

• X[n] is the current input

• X[n-N] is the input from N cycles earlier

• Y[n] is the current output

• Y[n-N] is the output from N cycles earlier

• aN and bN are the filter coefficients that are fixed for a particular filter response

In this implementation, the input, output, and coefficient values are all 16-bit, signed integers, but the
intermediate accumulation of the result uses a 32-bit accumulator that is right-shifted, at the end of the
operation, to normalize the result.

For more detailed information, see the related IIR Filter applications note AN4464, Digital Filtering with
MMA955xL.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

90 Freescale Semiconductor, Inc.

4.6.1 Data structures

4.6.1.1 mma9559_coef_t

This structure is used to hold the coefficients for an IIR filter. The methods of calculating the coefficients
for the filter is beyond this reference manual, but an sample low-pass filter is shown, in the following
example, to illustrate how the data structure is used.

Example 4-26.

// 6th order Chebyshev type 2 lowpass filter, cutoff at fs/4
static const mma9559_coef_t lp_cheby6 = {

6, // filter order = 6
14, // coefficient shift = 1/16384

{ 16384, 441, // a0, b0 = 1.000000, 0.000244 (a0 value not used)
-16546, 1637, // a1, b1 = -1.009888, 0.099915
20052, 3191, // a2, b2 = 1.223877, 0.194763
-8837, 3925, // a3, b3 = -0.539368, 0.239563
3957, 3191, // a4, b4 = 0.241516, 0.194763
-624, 1637, // a5, b5 = -0.038086, 0.099915

78, 441 } // a6, b6 = 0.004761, 0.000244
};

See also:

• int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef, void *buffer)

Fields

Table 4-25. mma9559_coef_t fields

Field Description

uint16 order Defines the order of the filter and determines the size of the coef_ary array.

uint16 shift Specifies the number of fractional bits in the coefficients to determine how many bits to right-shift the
output of the filter.

int16 coef_ary[] Holds the coefficient values for the filter. The number of coefficients is determined by the order of the
filter and is calculated as 2 * (order + 1); for example, for a sixth order filter, there are 14 coefficients.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 91

4.6.2 Functions

4.6.2.1 int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef,
void *buffer)

This function applies the supplied input data to the specified IIR filter. The coefficient structure is
predefined for each particular transform. The same coefficient structure may be reused, such as for each
channel of the X, Y, and Z accelerometer data.

The buffer is used to hold the previous X[n] and Y[n] values. In order to keep the previous values, the
buffer must be persistent; therefore it is either global or static. It is updated by the filter function on each
execution, as new data enters into the filter.

The size of the buffer depends on the order of the filter and is 2 * order-words long. This is declared as
shown in the following code:

Example 4-27.

int32 buffer[ORDER]; // each int32 holds a pair of 16 bit {yn,xn} values

A three-channel, low-pass filter could be implemented as shown in the following example.

Example 4-28.

// 6th order Chebyshev type 2 lowpass filter, cutoff at fs/4
static const mma9559_coef_t lp_cheby6 = {

6, // filter order = 6
14, // coefficient shift = 1/16384

{ 16384, 441, // a0, b0 = 1.000000, 0.000244 (a0 value not used)
-16546, 1637, // a1, b1 = -1.009888, 0.099915
20052, 3191, // a2, b2 = 1.223877, 0.194763
-8837, 3925, // a3, b3 = -0.539368, 0.239563
3957, 3191, // a4, b4 = 0.241516, 0.194763
-624, 1637, // a5, b5 = -0.038086, 0.099915

78, 441 } // a6, b6 = 0.004761, 0.000244
};

// buffers are global to maintain their contents across function calls
int32 buffer_x[6]; // buffer to hold X intermediate values for 6th order filter
int32 buffer_y[6]; // buffer to hold Y intermediate values for 6th order filter
int32 buffer_z[6]; // buffer to hold Z intermediate values for 6th order filter

// Function to low pass filter X, Y and Z channels
void filter(int16 *output, int16 *input) {

(output++) = mma9559_iir_filter((input++), &lp_cheby6, &buffer_x);
// Filter X data

(output++) = mma9559_iir_filter((input++), &lp_cheby6, &buffer_y);
// Filter Y data

(output++) = mma9559_iir_filter((input++), &lp_cheby6, &buffer_z);
// Filter Z data

}

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

92 Freescale Semiconductor, Inc.

For more information about using this function, see the related IIR Filter applications note AN4464,
Digital Filtering with MMA955xL.

Parameters

4.6.3 Typedefs

4.6.3.1 typedef struct mma9559_coef_t mma9559_coef_t

This structure is used to hold the coefficients for an IIR filter. The methods for calculating the coefficients
for the filter is beyond this reference manual, but a sample, low-pass filter is given in the following
example.

Example 4-29.

// 6th order Chebyshev type 2 lowpass filter, cutoff at fs/4
static const mma9559_coef_t lp_cheby6 = {

6, // filter order = 6
14, // coefficient shift = 1/16384

 16384, 441, // a0, b0 = 1.000000, 0.000244 (a0 value not used)
-16546, 1637, // a1, b1 = -1.009888, 0.099915
20052, 3191, // a2, b2 = 1.223877, 0.194763
-8837, 3925, // a3, b3 = -0.539368, 0.239563
3957, 3191, // a4, b4 = 0.241516, 0.194763
-624, 1637, // a5, b5 = -0.038086, 0.099915
78, 441 } // a6, b6 = 0.004761, 0.000244

};

See also:

• int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef, void *buffer)

Table 4-26. int16 mma9559_iir_filter parameters

Parameter Description

input Filter input data value.

coef Pointer to the IIR filter coefficient data structure.

buffer Pointer to the working data buffer used by the filter.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 93

Appendix A
Revision History
This appendix describes corrections to the MMA9559L Intelligent, Motion-Sensing Platform Software
Reference Manual. For convenience, the corrections are grouped by revision.

A.1 Changes Between Revisions 0 and 0.1
Rev. 0 of this document was published on Feb 1 2012.

Table A-1. Changes Between Revisions 0 and 0.1

Chapter Description

Chapter 2, “Firmware
Overview”

 • In Table 2-1., “Firmware flash usage,” for flash region 0x0000_0804 to 0x0000_3FFB ,
corrected the size to 14328 (was 14332, which is wrong). (Mar 8 2012)

 • Fixed a typo in Section 2.5.4, “Pop data off the FIFO”— changed “Since the FIFO push
operation is performed” to “Since the FIFO pop operation is performed”.

 •

 •

 •

	Contents
	Chapter 1 About this Document
	1.1 Overview
	1.1.1 Purpose
	1.1.2 Audience
	1.1.3 Document structure

	1.2 Terms and acronyms
	1.3 Conventions
	1.4 References

	Chapter 2 Firmware Overview
	2.1 Firmware elements and functionality
	2.2 Memory and CPU usage
	2.2.1 Flash memory
	2.2.2 RAM
	2.2.3 Supervisor stack usage

	2.3 Hardware support
	2.3.1 Frame interval counter
	2.3.2 Analog Front End (AFE)
	2.3.3 Stop mode control

	2.4 Events and scheduling
	2.4.1 Events
	2.4.2 Initialization
	2.4.3 Interrupts and critical sections

	2.5 FIFOs
	2.5.1 Instantiate FIFO
	2.5.2 Initialize FIFO
	2.5.3 Push data onto the FIFO
	2.5.4 Pop data off the FIFO
	2.5.5 Reset the FIFO
	2.5.6 Other FIFO functions

	2.6 Power

	Chapter 3 User Code Example
	3.1 Header
	3.2 User exception handler
	3.3 User trap handler
	3.4 User main

	Chapter 4 Functional Details
	4.1 Memory and CPU usage
	4.1.1 Supervisor stack

	4.2 Hardware support
	4.2.1 Macros
	4.2.1.1 #define NUM_SENSOR_AXIS 5

	4.2.2 Enumerations
	4.2.2.1 enum afe_csr_options_t
	4.2.2.2 enum framerate_t

	4.2.3 Data structure
	4.2.3.1 mma9559_afe_data_t

	4.2.4 Functions
	4.2.4.1 framerate_t mma9559_framerate_set(framerate_t rate)
	4.2.4.2 void mma9559_afe_conversion_start(void)
	4.2.4.3 void mma9559_afe_interrupt_clear(void)
	4.2.4.4 void mma9559_afe_raw_sensor_data_get(int16 *data_ptr)
	4.2.4.5 void mma9559_afe_raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)
	4.2.4.6 void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)
	4.2.4.7 void mma9559_afe_csr_set(afe_csr_options_t options)
	4.2.4.8 afe_csr_options_t mma9559_afe_csr_get(void)
	4.2.4.9 void mma9559_afe_offsets_set(int16 *data_ptr)
	4.2.4.10 void mma9559_afe_offsets_get(int16 *data_ptr)

	4.3 Events and scheduling
	4.3.1 Macros
	4.3.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b))

	4.3.2 Enumerations
	4.3.2.1 enum idle_config_t
	4.3.2.2 enum idle_bits_t

	4.3.3 Data structures
	4.3.3.1 mma9559_idle_t
	4.3.3.2 mma9559_vars_t

	4.3.4 Functions
	4.3.4.1 mma9559_vars_t* mma9559_vars_addr_get(void)
	4.3.4.2 events_t mma9559_events_set_clear(events_t set_events, events_t clear_events)
	4.3.4.3 int mma9559_events_find_first(events_t events)
	4.3.4.4 int mma9559_events_find_next(events_t events, int current_event)
	4.3.4.5 void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)
	4.3.4.6 void mma9559_idle(void)
	4.3.4.7 int mma9559_interrupts_disable(void)
	4.3.4.8 void mma9559_interrupts_restore(int status)
	4.3.4.9 int mma9559_user_trap0(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.10 int mma9559_user_trap1(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.11 int mma9559_user_trap2(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.12 int mma9559_user_trap3(int d0, int d1, int d2, void *a0, void *a1)

	4.4 FIFOs
	4.4.1 Macros
	4.4.1.1 #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32 rsvd[2]; uint8 data[max_entries * bytes_per_entry]; }

	4.4.2 Data structures
	4.4.2.1 mma9559_fifo_t

	4.4.3 Functions
	4.4.3.1 int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr, events_t events, unsigned int max_entries, unsigned int bytes_per_entry)
	4.4.3.2 void mma9559_fifo_reset(volatile mma9559_fifo_t *fifo_ptr)
	4.4.3.3 int mma9559_fifo_pop(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr, unsigned int entries)
	4.4.3.4 int mma9559_fifo_push(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr, unsigned int entries)
	4.4.3.5 int mma9559_fifo_entries_used(volatile mma9559_fifo_t *fifo_ptr)
	4.4.3.6 int mma9559_fifo_entries_free(volatile mma9559_fifo_t *fifo_ptr)

	4.5 Other functions
	4.5.1 Enumerations
	4.5.1.1 enum boot_options_t
	4.5.1.2 enum rmf_func_t

	4.5.2 Data structures
	4.5.2.1 mma9559_device_info_t
	4.5.2.2 union rmf_return_t

	4.5.3 Functions
	4.5.3.1 void mma9559_boot_options_set(boot_options_t option)
	4.5.3.2 int mma9559_device_info_get(int length, mma9559_device_info_t *addr)
	4.5.3.3 void* mma9559_rom_command(rmf_func_t func_id, void *addr)

	4.6 IIR filter
	4.6.1 Data structures
	4.6.1.1 mma9559_coef_t

	4.6.2 Functions
	4.6.2.1 int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef, void *buffer)

	4.6.3 Typedefs
	4.6.3.1 typedef struct mma9559_coef_t mma9559_coef_t

	Appendix A Revision History
	A.1 Changes Between Revisions 0 and 0.1

