

M•CORE

Applications Binary Interface

Standards Manual

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability
of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including
"Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others.
Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, af-
filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
 MOTOROLA and

 !

 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA, INC., 1997

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Paragraph Page

TABLE OF CONTENTS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1
INTRODUCTION

1.1 Scope.. 1-1
1.2 Purpose .. 1-1
1.3 Overview... 1-2
1.3.1 Low-Level Run-Time Binary Interface Standards ... 1-2
1.3.2 Object File Binary Interface Standards ... 1-2
1.3.3 Source-Level Standards.. 1-2
1.3.4 Library Standards.. 1-2
1.4 Associated Documentation ... 1-2
1.5 Future Standards .. 1-2

SECTION 2
LOW-LEVEL BINARY INTERFACES

2.1 Underlying Processor Primitives... 2-1
2.1.1 Registers ... 2-1
2.1.2 Fundamental Data Types.. 2-1
2.1.3 Compound Data Types ... 2-4
2.2 Function Calling Conventions ... 2-5
2.2.1 Register Assignments ... 2-5
2.2.2 Stack Frame Layout .. 2-7
2.2.3 Argument Passing... 2-8
2.2.4 Variable Arguments... 2-10
2.2.5 Return Values ... 2-11
2.3 Runtime Debugging Support .. 2-12
2.3.1 Function Prologues ... 2-12
2.3.2 Stack Tracing .. 2-13

SECTION 3
HIGH-LEVEL LANGUAGE ISSUES

3.1 C Preprocessor Predefines... 3-1
3.2 C In-Line Assembly Syntax... 3-1
3.3 C Name Mapping.. 3-1

SECTION 4
OBJECT FILE FORMATS

4.1 Header Convention... 4-1
4.2 Section Layout .. 4-1
4.2.1 Section Alignment ... 4-1
4.2.2 Section Attributes .. 4-1
4.2.3 Special Sections.. 4-2
M•CORE ABI TABLE OF CONTENTS MOTOROLA
STANDARDS MANUAL i

For More Information On This Product,
 Go to: www.freescale.com

TABLE OF CONTENTS (Continued)

Paragraph Page

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3 Symbol Table Format ... 4-3
4.4 Relocation Information Format ... 4-3
4.4.1 Relocation Types .. 4-3
4.4.2 Relocation Values ... 4-4
4.5 Debugging Information Format ... 4-5
4.5.1 DWARF Register Numbers ... 4-6

SECTION 5
LIBRARIES

5.1 Compiler Assist Libraries .. 5-1
5.2 Floating Point Routines... 5-2
5.2.1 _d_add .. 5-2
5.2.2 int _d_cmp... 5-2
5.2.3 int _d_cmpe... 5-2
5.2.4 double _d_div.. 5-3
5.2.5 float _d_dtof .. 5-3
5.2.6 int _d_dtoi.. 5-3
5.2.7 long long _d_dtoll .. 5-3
5.2.8 unsigned int _d_dtou... 5-3
5.2.9 unsigned long long _d_dtoull .. 5-3
5.2.10 int _d_feq .. 5-3
5.2.11 int _d_fge .. 5-3
5.2.12 int _d_fgt ... 5-4
5.2.13 int _d_fle.. 5-4
5.2.14 int _d_flt... 5-4
5.2.15 int _d_fne .. 5-4
5.2.16 double _d_itod... 5-4
5.2.17 double _d_lltod.. 5-4
5.2.18 double _d_mul... 5-4
5.2.19 double _d_neg .. 5-4
5.2.20 double _d_sub... 5-5
5.2.21 double _d_ulltod.. 5-5
5.2.22 double _d_utod ... 5-5
5.2.23 int _fp_round ... 5-5
5.2.24 float _f_add ... 5-5
5.2.25 int _f_cmp.. 5-5
5.2.26 int _f_cmpe.. 5-6
5.2.27 float _f_div... 5-6
5.2.28 int _f_feq ... 5-6
5.2.29 int _f_fge ... 5-6
5.2.30 int _f_fgt .. 5-6
5.2.31 int _f_fle... 5-7
MOTOROLA TABLE OF CONTENTS M•CORE ABI
ii STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

TABLE OF CONTENTS (Continued)

Paragraph Page

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.32 int _f_flt.. 5-7
5.2.33 int _f_fne ... 5-7
5.2.34 double _f_ftod ... 5-7
5.2.35 int _f_ftoi.. 5-7
5.2.36 long long _f_ftoll .. 5-7
5.2.37 unsigned int _f_ftou... 5-7
5.2.38 unsigned long long _f_ftoull .. 5-7
5.2.39 float _f_itof... 5-8
5.2.40 float _f_lltof.. 5-8
5.2.41 float _f_mul.. 5-8
5.2.42 float _f_neg ... 5-8
5.2.43 float _f_sub.. 5-8
5.2.44 float _f_utof ... 5-8
5.2.45 float _f_ulltof.. 5-8
5.3 Long Long Integer Routines ... 5-8
5.3.1 long long __div64.. 5-9
5.3.2 long long __mul64... 5-9
5.3.3 long long __rem64 .. 5-9
5.3.4 unsigned long long __udiv64 .. 5-9
5.3.5 unsigned long long __urem64... 5-9

SECTION 6
ASSEMBLER SYNTAX AND DIRECTIVES

6.1 Sections .. 6-1
6.2 Input Line Lengths .. 6-1
6.3 Syntax... 6-1
6.3.1 Preprocessing ... 6-2
6.3.2 Symbols .. 6-2
6.3.3 Constants .. 6-3
6.3.4 Expressions... 6-3
6.3.5 Operators and Precedence... 6-3
6.3.6 Instruction Mnemonics .. 6-4
6.3.7 Instruction Arguments ... 6-4
6.4 Assembler Directives ... 6-5
6.4.1 .align abs-exp [, abs-exp] .. 6-6
6.4.2 .ascii “string” {, “string”} ... 6-6
6.4.3 .asciz “string” {, “string”} .. 6-6
6.4.4 .byte exp {, exp} .. 6-6
6.4.5 .comm symbol , length [, align].. 6-7
6.4.6 .data .. 6-7
6.4.7 .double float {, float} .. 6-7
6.4.8 .equ symbol,expression .. 6-7
M•CORE ABI TABLE OF CONTENTS MOTOROLA
STANDARDS MANUAL iii

For More Information On This Product,
 Go to: www.freescale.com

TABLE OF CONTENTS (Continued)

Paragraph Page

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.9 .export symbol {, symbol} .. 6-7
6.4.10 .fill count [, size [, value]] ... 6-7
6.4.11 .float float {, float} .. 6-7
6.4.12 .ident “string” ... 6-7
6.4.13 .import symbol {, symbol} .. 6-8
6.4.14 .literals... 6-8
6.4.15 .lcomm symbol, length [, alignment].. 6-8
6.4.16 .long exp {, exp} .. 6-8
6.4.17 .section name [, “attributes”].. 6-8
6.4.18 .short exp {, exp} ... 6-9
6.4.19 .text ... 6-9
6.4.20 .weak symbol [, symbol] .. 6-9
6.5 Pseudo-Instructions .. 6-9
6.5.1 clrc... 6-10
6.5.2 cmplei rd, n.. 6-10
6.5.3 cmpls rd, rs.. 6-10
6.5.4 cmpgt rd, rs ... 6-10
6.5.5 jbsr label.. 6-10
6.5.6 jbr label.. 6-10
6.5.7 jbf label.. 6-11
6.5.8 jbt label.. 6-11
6.5.9 neg rd .. 6-11
6.5.10 rotlc rd, 1 ... 6-12
6.5.11 rotri rd, imm... 6-12
6.5.12 rts .. 6-12
6.5.13 setc.. 6-12
6.5.14 tstle rd ... 6-12
6.5.15 tstlt rd .. 6-12
6.5.16 tstne rd .. 6-12

INDEX

RECORD OF CHANGES
MOTOROLA TABLE OF CONTENTS M•CORE ABI
iv STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

Number Page

LIST OF ILLUSTRATIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2-1 Stack Frame Layouts; First() calls Second() calls Third() 2-8
M•CORE ABI LIST OF ILLUSTRATIONS MOTOROLA
STANDARDS MANUAL v

For More Information On This Product,
 Go to: www.freescale.com

LIST OF ILLUSTRATIONS (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Number Page
MOTOROLA LIST OF ILLUSTRATIONS M•CORE ABI
vi STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

Number Page

LIST OF TABLES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2-1 M•CORE Control Registers... 2-2
2-2 Mapping of C Fundamental Data Types to the M•CORE.................................... 2-3
2-3 Register Assignments ... 2-6
4-1 e_ident Field values .. 4-1
4-2 M•CORE Section Attributes .. 4-1
4-3 ELF Section Attributes .. 4-2
4-4 M•CORE Tools Special Sections .. 4-2
4-5 ELF Sections... 4-3
4-6 Relocation Types .. 4-4
4-7 Relocation Type Encodings .. 4-5
4-8 DWARF Register Atom Mapping for M•CORE.. 4-6
5-1 int_d_cmp Ordering Values... 5-2
5-2 int_d_cmpe Ordering Values... 5-2
5-3 int _fp_round Values ... 5-5
5-4 int_f_cmp Ordering Values.. 5-6
5-5 int_f_cmpe Ordering Values.. 5-6
6-1 Assembly Expression Operators... 6-4
6-2 M•CORE Section Attribute Encodings .. 6-9
M•CORE ABI LIST OF TABLES MOTOROLA
STANDARDS MANUAL vii

For More Information On This Product,
 Go to: www.freescale.com

LIST OF TABLES (Continued)

Number Page

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA LIST OF TABLES M•CORE ABI
viii STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1 INTRODUCTION

1.1 Scope

This manual defines the Motorola M•CORE Applications Binary Interface (ABI). The
ABI is a set of interface standards that writers of compilers and assemblers must use
when creating tools for the M•CORE architecture. These standards cover run-time
aspects as well as object formats to be used by compatible tool chains. A standard
definition ensures that all M•CORE tools are compatible and can interoperate.

Although compiler support routines are provided, this manual does not describe how
to write M•CORE development tools, does not define the services provided by an
operating system, and does not define a set of libraries. Those tasks must be per-
formed by suppliers of tools, libraries, and operating systems.

1.2 Purpose

The standards defined in this manual ensure that all chains of development tools for
the M•CORE will be fully compatible. Fully compatible tools can interoperate, and
thus make it possible to select an optimum tool for each link in the chain, rather than
selecting an entire chain on the basis of overall performance. The M•CORE Technol-
ogy Center will provide a test suite to verify compliance with published standards.

The standards in this manual also ensure that compatible libraries of binary compo-
nents can be created and maintained. Such libraries make it possible for developers
to synthesize applications from binary components, and can make libraries of com-
mon services stored in on-chip ROM available to applications executing from off-chip
ROM. With established standards, developers can build up libraries over time with the
assurance of continued compatibility.

Two overriding goals are reflected in this manual:

• Use of interfaces that allow future optimizations for performance and energy.

For example, whenever possible, registers are used to pass arguments, even
though always using the stack might be easier. Small programs whose working
sets fit into the registers are thus not forced to make unnecessary memory refer-
ences to the stack just to satisfy the linkage convention.

• Use of interfaces that are compatible with legacy “C” code written for the M68000
whenever possible.

For example, whenever possible, M68000 rules are used to build an argument
list. This not only fits the M68000 programmer’s expectations, but easily sup-
ports old code that doesn’t use the ANSI standard macros for handling variable
argument lists.
M•CORE ABI INTRODUCTION MOTOROLA
STANDARDS MANUAL 1-1

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

1.3 Overview

Standards in this manual are intended to preclude creation of incompatible develop-
ment tools for the M•CORE, by ensuring binary compatibility between:

• Object modules generated by different tool chains
• Object modules and the M•CORE processor
• Object modules and source level debugging tools

Current definitions include the following types of standards.

1.3.1 Low-Level Run-Time Binary Interface Standards
• Processor specific binary interface — the instruction set, representation of fun-

damental data types, and exception handling
• Function calling conventions — how arguments are passed and results are

returned, how registers are assigned, and how the calling stack is organized

1.3.2 Object File Binary Interface Standards
• Header convention
• Section layout
• Symbol table format
• Relocation information format
• Debugging information format

1.3.3 Source-Level Standards
• C language — preprocessor predefines, in-line assembly, and name mapping
• Assembler — syntax and directives

1.3.4 Library Standards
• Compiler assist libraries — floating point, and long-long integer

1.4 Associated Documentation

Please refer to the M•CORE Reference Manual (MCORERM/AD) for a detailed dis-
cussion of instruction set encoding and semantics.

1.5 Future Standards

This manual is meant to be expandable. Future standards may include the syntax
used to insert assembly language statements into C language programs, and the
syntax of a link editor command language.
MOTOROLA INTRODUCTION M•CORE ABI
1-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 2 LOW-LEVEL BINARY INTERFACES

2.1 Underlying Processor Primitives

The complete M•CORE architecture is described in the M•CORE Reference Manual
(MCORERM/AD).

2.1.1 Registers

The M•CORE ABI defines how to use the 16 general-purpose 32-bit registers of the
M•CORE processor. These registers are named r0 through r15.

The M•CORE can have up to 32 control registers. These registers are named cr0
through cr31. The first 13 control registers are more commonly referred to by names
that reflect their hard-wired function. The control registers are shown in Table 2-1.

The ABI does not mandate the semantics of the M•CORE Hardware Accelerator
Interface (HAI) because these semantics vary between M•CORE implementations
based on particular chips.

2.1.2 Fundamental Data Types

The M•CORE processor works with the following fundamental data types:

• unsigned byte of eight bits
• unsigned halfword of 16 bits
• unsigned word of 32 bits
• signed byte of eight bits
• signed halfword of 16 bits
• signed word of 32 bits

As the above list indicates, the data sizes are 8-bit bytes, 16-bit halfwords and 32-bit
words. The mapping between these data types and the C language fundamental data
types is shown in Table 2-2.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-1

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 2-1 M•CORE Control Registers

Register Use Convention

Reg Name Function

cr0 psr, cr0 Processor Status Register

cr1 vbr, cr1 Vector Base Register

cr2 epsr, cr2 Shadow Exception PSR

cr3 fpsr, cr3 Shadow Fast Interrupt PSR

cr4 epc, cr4 Shadow Exception Program Counter

cr5 fpc, cr5 Shadow Fast Interrupt PC

cr6 ss0, cr6 Supervisor Scratch Register

cr7 ss1, cr7 Supervisor Scratch Register

cr8 ss2, cr8 Supervisor Scratch Register

cr9 ss3, cr9 Supervisor Scratch Register

cr10 ss4, cr10 Supervisor Scratch Register

cr11 gcr, cr11 Global Control Register

cr12 gsr, cr12 Global Status Register

cr13 cr13 Reserved

cr14 cr14 Reserved

cr15 cr15 Reserved

cr16 cr16 Reserved

cr17 cr17 Reserved

cr18 cr18 Reserved

cr19 cr19 Reserved

cr20 cr20 Reserved

cr21 cr21 Reserved

cr22 cr22 Reserved

cr23 cr23 Reserved

cr24 cr24 Reserved

cr25 cr25 Reserved

cr26 cr26 Reserved

cr27 cr27 Reserved

cr28 cr28 Reserved

cr29 cr29 Reserved

cr30 cr30 Reserved

cr31 cr31 Reserved
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Memory access to unsigned byte-sized data is directly supported through the ld.b
(load byte) and st.b (store byte) instructions. Signed byte-sized access requires a
sextb (sign extension) instruction after the ld.b. Access to unsigned halfword-sized
data is directly supported through the ld.h (load halfword) and st.h (store halfword)
instructions. Signed halfword access requires a sexth (sign extension) instruction
after the ld.h. Memory access to word-sized data is supported through ld.w (load
word) and st.w (store word) instructions. ld.w suffices for both signed and unsigned
word access because the operation sets all 32 bits of the loaded register.

The M•CORE uses only big-endian byte ordering. The lowest addressable byte of a
memory location always contains the most significant byte of the value. Fundamental
data is always naturally aligned, i.e., a long is 4-byte aligned, a short is 2-byte
aligned.

The M•CORE processor currently does not support the long long int data type with
64-bit operations. However, compliant compilers must emulate the data type. The
long long int data type, both signed and unsigned, is eight bytes in length and 8-byte
aligned.

Requiring long long int support as part of the ABI insures that the feature will exist in
all tool chains, so that application developers can depend on its existence.

Table 2-2 Mapping of C Fundamental Data Types to the M•CORE

Fundamental Data Types

ANSI C Size Align M•CORE

char 1 1 unsigned byte

unsigned char 1 1 unsigned byte

signed char 1 1 signed byte

short 2 2 signed halfword

unsigned short 2 2 unsigned halfword

signed short 2 2 signed halfword

long 4 4 signed word

unsigned long 4 4 unsigned word

signed long 4 4 signed word

int 4 4 signed word

unsigned int 4 4 unsigned word

signed int 4 4 signed word

enum 4 4 signed word

data pointer 4 4 unsigned word

function ptr 4 4 unsigned word

long long 8 8 signed word:unsigned word

unsigned long long 8 8 unsigned word[2]

float 4 4 unsigned word

double 8 8 unsigned word[2]

long double 8 8 unsigned word[2]
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-3

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The M•CORE processor currently does not support floating point data. However,
compliant compilers must support its use. The floating point format to be used is the
IEEE standard for float and double data types. Support for the long double data type
is optional but must conform to the IEEE standard format when provided.

Alignments are specifically chosen to avoid the possibility of access faults in the mid-
dle of an instruction (with the exception of load/store multiple).

2.1.3 Compound Data Types

Arrays, structures, unions, and bit fields have different alignment characteristics.

Arrays have the same alignment as their individual elements.

Unions and structures have the most restrictive alignment of their members. A struc-
ture containing a char, a short, and an int must have 4-byte alignment to match the
alignment of the int field. In addition, the size of a union or structure must be an inte-
gral multiple of its alignment. Padding must be applied to the end of a union or struc-
ture to make its size a multiple of the alignment. Members must be aligned within a
union or structure according to their type; padding must be introduced between mem-
bers as necessary to meet this alignment requirement.

Bit fields cannot exceed 32 bits nor can they cross a word (32 bit) boundary. Bit fields
of signed short and unsigned short type are further restricted to 16 bits in size and
cannot cross 16-bit boundaries. Bit fields of signed char and unsigned char types are
further restricted to eight bits in size and cannot cross 8-bit boundaries. Zero-width bit
fields pad to the next 8, 16, or 32 bit boundary for char, short, and int types respec-
tively. Outside of these restrictions, bit fields are packed together with no padding in
between.

Bit fields are assigned in big-endian order, i.e., the first bit field occupies the most sig-
nificant bits while subsequent fields occupy lesser bits. Unsigned bit fields range from
0 to 2w–1 where “w” is the size in bits. Signed bit fields range from –2w–1 to 2w–1–1.
Plain int bit fields are unsigned.

Bit fields impose alignment restrictions on their enclosing structure or union. The fun-
damental type of the bit field (e.g., char, short, int) imposes an alignment on the entire
structure.

In the following example, the structure more has 4-byte alignment and will have size
of four bytes because the fundamental type of the bit fields is int, which requires 4-
byte alignment. The second structure, less, requires only 1-byte alignment because
that is the requirement of the fundamental type (char) used in that structure. The
alignments are driven by the underlying type, not the width of the fields. These align-
ments are to be considered along with any other structure members. Struct care-
ful requires 4-byte alignment; its bit fields only require 1-byte alignment, but the field
fluffy requires 4-byte alignment.
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-4 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

struct more {

int first : 3;
unsigned int second : 8;

};
struct less {

unsigned char third : 3;
unsigned char fourth : 8;

};
struct careful {

unsigned char third : 3;
unsigned char fourth : 8;
int fluffy;

};

Fields within structures and unions begin on the next possible suitably aligned bound-
ary for their data type. For non-bit fields, this is a suitable byte alignment. Bit fields
begin at the next available bit offset with the following exception: the first bit field after
a non-bit field member will be allocated on the next available byte boundary.

In the following example, the offset of the field “c” is one byte. The structure itself has
4-byte alignment and is four bytes in size because of the alignment restrictions intro-
duced by using the “int” underlying data type for the bit field.

struct s {
int bf : 5;
char c;

};

This behavior is consistent with the other UNIX System V Release 4 ABIs.

2.2 Function Calling Conventions

2.2.1 Register Assignments

Table 2-3 shows the required register mapping for function calls. Some registers,
such as the stack pointer, have specific purposes, while others are used for local vari-
ables, or to communicate function call arguments and return values.

Certain registers are bound to their purpose because specific instructions use them.
For instance, subroutine call instructions write the return address into r15. The
instructions used to save and restore registers on entry and exit from a function use
r0 as a base register, making it most appropriate for the stack pointer register.

Refer to 2.2.3 Argument Passing for an explanation of argument words and how
they are allocated. Refer to 2.2.5 Return Values for an explanation of the return
buffer address.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.1.1 Cross-Call Lifetimes

The 16 general-purpose registers are split between those preserved and those
destroyed across function calls. This balances the need for callers to keep values in
registers across calls against the need for simple leaf subroutines to perform opera-
tions without allocating stack space and saving registers. The preserved registers are
called non-volatile registers. The registers that are destroyed are called volatile regis-
ters.

Registers r8 through r14 are preserved because the load and store multiple instruc-
tions deal with registers from N through 15. It is easy to save these registers in a sin-
gle instruction.

The called subroutine can use any of the argument and scratch registers without con-
cern for restoring their values. Preserved registers must be saved before being used
and restored before returning to the caller. While the called function is not specifically
required to save and restore r15, on entry r15 usually contains the return address, so
the value must be preserved in order for execution to resume at the address of the
instruction that follows the subroutine call.

Preserving r15 with the LDM and STM instructions is simple. Many implementations
that save other non-volatile registers will also save r15. This is particularly useful
when the called subroutine itself makes further subroutine calls.

The caller must preserve any essential data stored in argument and scratch registers.
Data in these registers does not survive function calls. In particular, r1 is designated
as a scratch register upon entry to a subroutine, and used to calculate stack frame
adjustments for subroutines with large stack frames.

Table 2-3 Register Assignments

Register Use Convention

Name Usage Cross-Call Status

r0 Stack Pointer Preserved

r1 Scratch Destroyed

r2 Argument Word 1/Return Buffer Address Destroyed/Preserved

r3 Argument Word 2 Destroyed

r4 Argument Word 3 Destroyed

r5 Argument Word 4 Destroyed

r6 Argument Word 5 Destroyed

r7 Argument Word 6 Destroyed

r8 Local Preserved

r9 Local Preserved

r10 Local Preserved

r11 Local Preserved

r12 Local Preserved

r13 Local Preserved

r14 Local Preserved

r15 Link/Scratch (Return Address)
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-6 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There is no register dedicated as a frame pointer. For non-alloca() functions, the
frame pointer can always be expressed as an offset from the stack pointer. For
alloca() functions and functions with very large frames, a frame pointer can be syn-
thesized into one of the non-volatile registers.

Eliminating the dedicated frame pointer makes another register available for general
use, with a corresponding improvement in generated code. This affects stack tracing
for debugging. See 2.3 Runtime Debugging Support for additional information.

2.2.2 Stack Frame Layout

The stack pointer points to the bottom (low address) of the stack frame. Space at
lower addresses than the stack pointer is considered invalid and may actually be
unaddressable. The stack pointer value must always be a multiple of eight.

Figure 2-1 shows typical stack frames for three functions, indicating the relative posi-
tions of local variables, parameters, and return addresses. The outbound argument
overflow must be located at the bottom (low address) of the frame. Any incoming
argument spill generated for varargs and stdarg processing must be at the top (high
address) of the frame. Space allocated by Alloca() must reside between the out-
bound argument overflow and local variables areas.

The caller must stack argument variables that do not fit in the argument registers in
the outbound argument overflow area. If all outbound arguments fit in registers, this
area is not required. A caller may allocate argument overflow space sufficient for the
worst-case call, use portions of it as necessary, and not change the stack pointer
between calls.

The caller must reserve stack space for return variables that do not fit in the first two
argument registers (e.g., structure returns). This return buffer area is typically located
with the local variables. This space is typically allocated only in functions that make
calls returning structures, and is not required.

The caller may stack the return address (r15) and the content of other local registers
in the register save area upon entry to the called subroutine. If a called routine does
not modify local variables (including r15), this area is not required.

Local variables that do not fit into the local registers are allocated space in the Local
Variable area of the stack. If there are no such variables, this area is not required.

Beyond these requirements, a routine is free to manage its stack frame in any way
desired.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-1 Stack Frame Layouts; First() calls Second() calls Third()

2.2.2.1 Extending the Stack

Stack maintenance is the responsibility of system software. In some environments, it
may be valuable for compilers to probe the stack as they extend it in order to allow
memory protection hardware to provide “guard pages”.

2.2.3 Argument Passing

The M•CORE uses six registers (r2–r7) to pass the first six words of arguments from
the caller to the called routine. If additional argument space is required, the caller is
responsible for allocating this space on the stack. This space (if needed by a particu-
lar caller) is typically allocated upon entry to a subroutine, reused for each of the calls
made from that subroutine that have more arguments than fit into the six registers
used for subroutine calls, and deallocated only at the caller’s exit point. All argument
overflow allocation and deallocation is the responsibility of the caller.

At entry to a subroutine, the first word of any argument overflow can be found at the
address contained in the stack pointer. Subsequent overflow words are located at
successively larger addresses.

...

LOCAL VARIABLES

OUTBOUND ARG OVERFLOW

ARGUMENT SPILL

REGISTER SAVE

LOCAL VARIABLES

ALLOCA() SPACE

OUTBOUND ARG OVERFLOW

ARGUMENT SPILL

REGISTER SAVE

LOCAL VARIABLES

OUTBOUND ARG OVERFLOW

UNADDRESSABLE SPACE

(HIGH ADDRESS)

(FIRST FUNCTION’S FRAME)

(SECOND FUNCTION’S FRAME)

(THIRD FUNCTION’S FRAME)

(LOW ADDRESS)
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-8 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.3.1 Scalar Arguments

Arguments are passed using registers r2 through r7, with no more than one argument
assigned per register. Argument values that are smaller than a 32-bit register occupy
a full register.

In addition, small argument values are right justified and possibly extended within the
register. Small signed arguments (e.g., shorts) are sign extended; small unsigned
arguments (e.g., unsigned shorts) are zero extended, while other small values (e.g.,
structures of less than four bytes) are not extended, leaving the upper bits of the reg-
ister undefined. The caller is responsible for sign and zero extensions. Small argu-
ments that are passed via the argument overflow mechanism are placed in the
overflow word with the same orientation they would have if passed in a register; a
char is passed in the low-order byte of an overflow word. Such small overflow argu-
ments need not be sign extended within the argument word as they would be if
passed in a register.

Arguments larger than a register must be assigned to multiple argument registers as
long as there are argument registers available. Arguments that would be aligned on
eight-byte boundaries in memory (double, long double, long long, or structures or
unions containing a double, long double or long long) must begin in an even num-
bered register. Once all the argument registers are used, or if there are not enough
registers left to hold a large argument, the argument and any subsequent arguments
must be placed in the overflow area described above.

Large arguments must not be split when there are too few argument registers to hold
the entire argument.

The caller is responsible for allocating argument overflow space and for deallocating
any space needed for argument overflow. The only argument space that may be allo-
cated or deallocated by the called routine is space used to place the register argu-
ments in memory. This may be necessary for stdargs or structure parameters.

Alignment is forced for atomic data types; fundamental data types are not split.

2.2.3.2 Structure Arguments

Structures passed as arguments can be partially or wholly passed through the argu-
ment registers. A structure argument may overflow onto the stack only when all argu-
ment registers are full. In these cases, the caller must adjust the stack pointer to
allocate the overflow area.

Structure arguments that are smaller than 32 bits have their value right justified within
the argument register. The unused upper bits within the register are undefined.

Structure arguments larger than 32 bits are packed into consecutive registers. Struc-
tures that are not integral multiples of 32 bits in size have their final bits left justified
within the appropriate register. This allows those bits to be stored with a 32-bit opera-
tion and be adjacent to the preceding portion of the structure.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.4 Variable Arguments

The stdarg C macros provide a mechanism to handle variable length argument lists.
The caller might not know whether the called function handles variable arguments, so
the called routine is responsible for handling the nuances of variable argument lists.

2.2.4.1 Spilling Register Arguments

Variable argument lists are most easily handled by spilling one or more of the register
arguments so that they are adjacent to any overflow arguments that are on the stack
at function entry. The typical sequence should extend the stack several words, spill
the argument registers after the last named argument into this space, and then pro-
ceed with the normal prologues to allocate a stack frame and save any non-volatile
registers.

The stdarg macros can use the address of the first stored argument register for the
va_start macro. The va_arg macro advances this pointer by an amount appropriate to
the size of the type specified.

2.2.4.2 Legacy Code Compatibility

The M•CORE linkage convention provides a way for variable argument lists to be
handled in a way that is compatible with legacy C code written for processors where
the entire argument list is passed in memory.

The legacy behavior uses several more instructions, stack slots, and memory refer-
ences than required by strict interpretation of the ANSI C standards. Tool generators
must provide this legacy behavior as an option. It is not required as a default behav-
ior.

To provide compatibility, the called function must spill all the argument registers,
rather than just those beyond the registers that hold the named arguments. This is
more pessimistic than required for the stdarg definitions, but provides the most com-
patibility.

Spilling is triggered for functions that take the address of any of their arguments.This
allows non-standard varargs code (C code that works on processors with all argu-
ments passed in memory) to run on the M•CORE.

The spilled arguments are a snapshot of their values at the time the function is
entered. This requirement does not force the compiler to generate code that keeps
the “live” value of the parameters in memory. For example, the following would not be
required to print out the value “4”.

func(int a, int b, int c, ...)
{

int *ip;
use(c);
ip = &b;
ip++;
*ip = 4;
printf (“C now has value %d\n”, c);

}

MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-10 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The compiler is free to keep the value of c live in a register. The only requirement is to
save a snapshot of the parameter passing registers (e.g., r2 through r7) during the
function prologue.

2.2.5 Return Values

2.2.5.1 Scalar Values

Subroutines return values in the argument registers. Return values smaller than 32
bits occupy a full register. These must be right justified and zero or sign extended to
32 bits before return (refer to 2.2.3.1 Scalar Arguments). Return values of 32 bits or
fewer are returned in register r2.

Return values between 33 and 64 bits are returned in the register pair r2/r3. The por-
tion of the data that would reside at a lower address if stored in memory is in r2. For
example, r2 would contain the most significant 32 bits of the long long data type.

Return values larger than eight bytes are treated as structure return values and are
returned through memory. The return value is placed in a caller-supplied buffer. The
buffer address is passed from the caller to the called routine as a hidden first argu-
ment in register r2.

2.2.5.2 Structure Values

Structures can be returned in one of two ways.

Small structures (eight bytes or fewer) are returned in the register pair r2/r3. If the
structure consists of four or fewer bytes, the value is returned in r2, right justified. This
matches the way it would be justified when passed as an argument. If the structure
consists of five to eight bytes, the first four bytes are returned in r2 and the trailing
portion of the structure is returned left justified in r3.

This alignment is chosen to generate good code for code sequences such as

 wom(..., bat(), ...)

where wom takes a structure argument of the same type returned by bat. The only
work required is to perhaps change registers if the call to wom has the structure in
some place other than r2/r3.

Structures larger than eight bytes are placed in a buffer provided by the caller. The
caller must provide for a buffer of sufficient size; the buffer is typically allocated on the
stack to provide re-entrancy and to avoid any race conditions where a static buffer
may be overwritten. The address of the buffer is passed to the called function as a
hidden first argument and arrives in register r2. The normal arguments start in regis-
ter r3 instead of in r2, within the fundamental data type constraints.

The caller must provide this buffer for large structures even when the caller does not
use the return value (e.g., the function was called to achieve a side-effect). The called
routine can thus assume that the buffer pointer is valid and need not check the pointer
value passed in r2.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When r2 is used to pass a buffer address, the called routine must preserve the value
passed through r2. The caller can thus assume that r2 is preserved when the buffer
address of a large structure is passed in r2. This is similar to the way in which strcat
and memcpy return their respective destination addresses.

Often, the temporary buffer that is used for such structure returns is immediately used
as a source for a memcpy to a final destination. For example, the sequence

struct s {...} s, sfunc();

s = sfunc();

will often be compiled with sfunc returning into a temporary buffer, which is immedi-
ately copied into s. Although the caller must know the address of the temporary buffer
in order to provide it to the called routine, the address need not be recalculated. In
turn, the called routine can use the address to copy the results into the temporary
buffer using memcpy, which returns the destination address (e.g., r2 has the desired
value), or passes it to in-line code which uses r2 as a base register.

2.3 Runtime Debugging Support

The most difficult aspect of M•CORE debugging is stack tracing. Tracing is compli-
cated because the linkage convention does not mandate a frame pointer register and
does not provide any back-chain construct. This section describes rules for generat-
ing function prologues that can be easily decoded by a debugger to determine the
size of a stack frame, the location of the return address, and the location of any saved
non-volatile registers.

2.3.1 Function Prologues

Function prologues acquire stack space needed by the function to store local vari-
ables. This includes space the function uses to save non-volatile registers. Prologue
instruction sequences can take a number of forms. A set of working assumptions
about function prologues follows.

• The function prologue is the only place in the function that acquires stack space,
other than later calls to alloca().

• The function prologue uses only the following classes of instructions.
— subi r0,imm (Note that this might appear multiple times in a prologue)
— stm rn-r15,(r0)
— st.w rx,(r0,disp)
— instructions that set and modify r1.
— These are presumed to establish values for a relatively large frame. This

sequence includes one of the following instructions:
• lr.w r1, imm
• movi r1, imm
• bgeni r1, imm
• bmaski r1, imm
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-12 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

followed by zero or more of:

• addi r1, imm
• subi r1, imm
• rsubi r1, imm
• not r1
• rotli r1, imm
• bseti r1, imm
• bclri r1, imm
• ixh r1,r1
• ixw r1,r1

followed by:
• sub r0, r1

Whether lrw or the other sequence is used, the r1 value is subtracted
from r0 to increase stack space. While this sequence is allowed to occur
multiple times, code generators should generate a single literal of the
appropriate value (e.g., summing two constants) rather than perform two
subtractions.

— mov rn,r0

This is optional support for traceback through alloca()-using functions,
and also marks the final instruction in the prologue.

• The function prologue is organized roughly as:
— If stdarg, acquire space to store volatile registers; store volatile registers.
— Acquire space to store non-volatile registers.
— Store non-volatile registers that may be modified in this function.
— Acquire any additional stack space required. This space acquisition might

be folded in with earlier ones if the total space allocated is no more than 32
bytes.

— If needed in this function, copy the stack pointer into one of the non-volatile
registers to act as a frame pointer.

— Larger frames should allocate the register save space and then allocate the
remainder of the required stack space rather than perform a single large
stack acquisition. If the stack is acquired in a single allocation before the
non-volatile registers are saved, then another base register is needed to
reach the location for the stored registers. The prologue recognition code in
the debugger does not recognize using alternate base registers to store the
non-volatile registers as being part of the prologue.

— This sequence allows the stack pointer to be modified several times.

2.3.2 Stack Tracing

Stack tracing for the M•CORE depends on the ability to determine the entry point for
a function, given a PC value in that function. Since there are no unique prologue-only
patterns in the instruction stream that can be identified by scanning backwards from
the current PC, a symbol table for the executable file must be present. The symbols
need not be complete DWARF information.
M•CORE ABI LOW-LEVEL BINARY INTERFACES MOTOROLA
STANDARDS MANUAL 2-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Placing a specific byte pattern just before the prologue is not sufficient to identify the
beginning of a function because the pattern can also appear within the body of the
function as part of a literal table. In code-size sensitive environments, the extra space
consumed by such a byte pattern is undesirable.

The stack tracing code iteratively performs the following:

1. Get the current PC.

2. Find the beginning of the containing function. Stop if this can’t be determined.

3. Decode the prologue starting at the function’s entry.

4. Determine the “top of frame” from the framesize information described in the pro-
logue. This is either an adjustment to the stack pointer or a “pseudo-frame pointer”
if the prologue ends with a frame pointer generating instruction.

5. Recover stored non-volatile registers based on the offsets described in the pro-
logue.

6. Repeat for the next frame.
MOTOROLA LOW-LEVEL BINARY INTERFACES M•CORE ABI
2-14 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 3 HIGH-LEVEL LANGUAGE ISSUES

3.1 C Preprocessor Predefines

All C language compilers must predefine the symbol __MCORE__ with the value “1” to
indicate that the compiler targets the M•CORE processor. In the future, this value may
be changed to correspond to different versions of the chip.

3.2 C In-Line Assembly Syntax

A C in-line assembly facility must be provided.

3.3 C Name Mapping

Externally visible names in the C language must be mapped through to assembly lan-
guage without change.

For example, the following

void testfunc() { return;}

generates assembly code similar to the following fragment.

testfunc:
jmp r15
M•CORE ABI HIGH-LEVEL LANGUAGE ISSUES
STANDARDS MANUAL 3-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA HIGH-LEVEL LANGUAGE ISSUES M•CORE ABI
3-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 4 OBJECT FILE FORMATS

M•CORE tools use ELF 2.0 object file formats and DWARF 1.1 debugging informa-
tion formats, as described in System V Application Binary Interface, from The Santa
Cruz Operation, Inc. ELF and DWARF provide a suitable basis for representing the
information needed for embedded applications. This section describes particular
fields in the ELF and DWARF formats that differ from the base standards for those
formats.

4.1 Header Convention

The e_machine member of the ELF header contains the decimal value 39 (hexadeci-
mal 0x27) which is defined as the name EM_MCORE.

The ELF header e_flags member contains zero, because the M•CORE processor
family defines no flags at this time.

4.2 Section Layout

4.2.1 Section Alignment

The object generator (compiler or assembler) provides alignment information for the
linker. The default alignment is eight bytes. Object producers must ensure that gener-
ated objects specify required alignment. For example, an object file must reflect the
fact that four-byte alignment is required in the data section.

4.2.2 Section Attributes

Table 4-2 defines section attributes that are available for M•CORE tools. These
attributes are additions to the ELF standard flags shown in Table 4-3.

Table 4-1 e_ident Field values

M•CORE e_ident Fields

e_ident[EI_CLASS] ELFCLASS32 For all 32-bit implementations

e_ident[EI_DATA] ELFDATA2MSB For all implementations

Table 4-2 M•CORE Section Attributes

M•CORE Section Attribute Flags

Name Value

SHF_MCORE_NOREAD 0x80000000
M•CORE ABI OBJECT FILE FORMATS
STANDARDS MANUAL 4-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The SHF_MCORE_NOREAD attribute allows the specification of code that is execut-
able but not readable. Plain ELF assumes that all segments have read attributes,
which is why there is no read permission attribute in the ELF attribute list. In embed-
ded applications, “execute-only” sections that allow hiding the implementation are
often desirable.

4.2.3 Special Sections

Various sections hold program and control information. Table 4-4 shows sections
used by the system, the indicated types, and attributes. These are additions to ELF
standards shown in Table 4-5. The ELF standard reserves section names beginning
with a period (“.”), but applications may use those sections if their existing meanings
are satisfactory.

M•CORE currently does not have a PIC standard. However, PIC section names are
reserved for possible future implementation. The M•CORE is targeted at embedded
systems. The linkage conventions for shared libraries are not necessary in this appli-
cation space and are not defined as part of this ABI.

NOTE

It is strongly recommended that read-only constants, such as string
literals, be placed into the .rodata section instead of the .text
section. The space that these add to .text can have a severe
impact on addressability, requiring the use of larger branch instruc-
tions and reducing the chances for sharing of values in literal tables.

Table 4-3 ELF Section Attributes

ELF Section Attribute Flags

Name Value

SHF_WRITE 0x00000001

SHF_ALLOC 0x00000002

SHF_EXECINSTR 0x00000004

Table 4-4 M•CORE Tools Special Sections

M•CORE Reserved Section Names

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.plt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
MOTOROLA OBJECT FILE FORMATS M•CORE ABI
4-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3 Symbol Table Format

There are no M•CORE symbol table requirements beyond the base ELF standards.

4.4 Relocation Information Format

4.4.1 Relocation Types

Relocation entries describe how to alter the instruction and data relocation fields as
shown in Table 4-6. The choice of the relocation type numbers as encoded in the ELF
object file is defined in Table 4-7.

Table 4-5 ELF Sections

ELF Reserved Section Names

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.debug SHT_PROGBITS none

.dynamic SHT_DYNAMIC —

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.interp SHT_PROGBITS —

.line SHT_PROGBITS none

.note SHT_NOTE none

.rel* SHT_REL —

.rela* SHT_RELA —

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB —

.symtab SHT_SYMTAB —

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR
M•CORE ABI OBJECT FILE FORMATS
STANDARDS MANUAL 4-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The object file supports the 32-bit relocations for 32-bit data (addressing constants in
memory). Both absolute and PC-relative relocations are defined.

Note that the 32 bits where the relocation is to be applied need not be on a 32-bit
boundary. The relocation entry points to the address of the 32 bits to be adjusted by
the relocation entry. The relocation adds the appropriate value (either the 32-bit value
or the 32-bit displacement) to the existing contents of the 32 bits at that address.

A packed data structure can cause a 32-bit relocation to be misaligned in the object
file. This might be done with a C compiler extension, or by means of hand-crafted
assembly, in order to save data space (but the misaligned data must be accessed
piece-wise to avoid alignment exceptions). The linker must be able to deal with this
case.

Scaled 11-bit displacement mode is used in br, bf, bt, and bsr instructions. The 11-bit
value indicates the number of halfwords from PC+2 to the target address. The reloca-
tion entry must point to the 16-bit instruction that contains the displacement.

The compiler or assembler must resolve displacement values for eight-bit indirect
mode and four-bit negative displacement mode (used in the loopt instruction). The
compiler must also fill in the eight-bit indirect mode to point to the appropriate literal
table. Relocation entries are not expected in the object file.

4.4.2 Relocation Values

This section describes values and algorithms used for relocations. In particular, it
describes values the compiler/assembler must leave in place and how the linker mod-
ifies those values.

Table 4-7 shows semantics of relocation operations. Key S indicates the final value
assigned to the symbol referenced in the relocation record. Key A is the addend value
specified in the relocation record. Key P indicates the address of the relocation (e.g.,
the address being modified).

Table 4-6 Relocation Types

word32
This specifies a 32-bit field occupying four bytes. This address is NOT
required to be 4-byte aligned.

disp11
This corresponds to the scaled 11-bit displacement addressing mode.
The relocation is the low-order 11 bits of the 16 bits addressed in the
relocation type.

pcword32
This specifies a 32-bit field occupying four bytes. This address is NOT
required to be 4-byte aligned.
MOTOROLA OBJECT FILE FORMATS M•CORE ABI
4-4 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.2.1 32-Bit Relocations

Absolute 32-bit relocation adds the relocated symbols value to the existing content of
the location specified. Consider the example

.long symbol+1234

The object file emitted by the compiler has a relocation entry for symbol that refer-
ences the address of this word. The existing content of the 32 bits at the specified
address are overwritten with the new value.

4.4.2.2 11-Bit Relocations

These relocations occur when br, bf, bt, and bsr instructions (typically bsr) reference a
target that is not in the current object file. They can also occur when the target is in a
separate section of the same object file, but these occurrences must be resolved by
the compiler/assembler and not appear as relocation entries.

The relocation is calculated as shown in Table 4-7. The existing contents of the low-
order 11 bits of the instruction are overwritten with the newly calculated displacement.

NOTE

The bsr instruction encoding is the distance from PC+2 to the target.
This adjustment must be made in the compiler/assembler. The emit-
ted relocation record for a bsr to symbol X must be to X+(–2); in
other words, the symbol must be X and the addend field of the relo-
cation record must contain –2.

4.5 Debugging Information Format

M•CORE tools must use DWARF 1.1 debugging information formats, as described in
System V Application Binary Interface, from The Santa Cruz Operation, Inc.

Currently, no extensions to the DWARF standard are necessary to provide M•CORE
debugging support. However, such extensions may be made in the future.

Table 4-7 Relocation Type Encodings

Name Value Field Calculation

R_MCORE_NONE 0 none none

R_MCORE_ADDR32 1 word32

R_MCORE_PCRELIMM11BY2 3 disp11

R_MCORE_PCREL32 5 word32

S A+

S A P–+() 1»() 0x7 ff∧
S A P–+
M•CORE ABI OBJECT FILE FORMATS
STANDARDS MANUAL 4-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.1 DWARF Register Numbers

DWARF generally describes the steps a debugger takes to locate variables in a pro-
gram being debugged in machine-independent terms. However, the way in which the
OP_REG and OP_BASEREG atoms are handled is machine-specific — these atoms
require that a value (or the pointer to a value) be contained in a machine-specific reg-
ister.

Table 4-8 shows the mapping between the values used in those atoms and the
M•CORE register set. The entries for r0 through r15 specify the currently active set of
general purpose registers; this is usually the primary register set. The entries for r0’
through r15’ specify the alternate register file. The control registers are encoded from
32 through 63.

Table 4-8 DWARF Register Atom Mapping for M•CORE

Atom Register Atom Register Atom Register Atom Register

0 r0 1 r1 2 r2 3 r3

4 r4 5 r5 6 r6 7 r7

8 r8 9 r9 10 r10 11 r11

12 r12 13 r13 14 r14 15 r15

16 r0’ 17 r1’ 18 r2’ 19 r3’

20 r4’ 21 r5’ 22 r6’ 23 r7’

24 r8’ 25 r9’ 26 r10’ 27 r11’

28 r12’ 29 r13’ 30 r14’ 31 r15’

32 cr0 33 cr1 34 cr2 35 cr3

36 cr4 37 cr5 38 cr6 39 cr7

40 cr8 41 cr9 42 cr10 43 cr11

44 cr12 45 cr13 46 cr14 47 cr15

48 cr16 49 cr17 50 cr18 51 cr19

52 cr20 53 cr21 54 cr22 55 cr23

56 cr24 57 cr25 58 cr26 59 cr27

60 cr28 61 cr29 62 cr30 63 cr31

64 pc
MOTOROLA OBJECT FILE FORMATS M•CORE ABI
4-6 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 5 LIBRARIES

The content of most libraries are platform and OS dependent. For this reason, they
are beyond the scope of this document and are not addressed here. Some library
functions are required to provide support for operations that are not supported
directly by the M•CORE hardware. These library routines are specified in this section.

5.1 Compiler Assist Libraries

The M•CORE does not currently provide hardware support for floating point data
types, nor for long long data types. Compilers should provide the functionality for
some of these operations through the use of support library routines. The M•CORE
Technology Center requires a single shared support library for all tool sets to elimi-
nate redundant code.

The functions to be provided through support routines include:

• Floating point math routines
• Long long routines

Compilers that generate in-line code to provide these functions must make no refer-
ences to the library functions.

Compilers that provide these functions by generating subroutine calls to the support
libraries must use the standard interfaces.

In particular, it must be possible to link objects produced with different tool sets into
single executables. This requires that:

• Compiler support library names not clash between tool sets
• Compiler support routines follow consistent linkage rules
• Linkers from different tool sets must either use the same support library names

and interfaces, or must provide a mechanism to indicate where support libraries
can be found.

Routines in the support libraries must satisfy the following constraints.

• The only external state information used is floating point rounding mode
• No global state can be modified
• Identical results must be returned when a routine is re-invoked with the same

input arguments
• Multiple calls with the same input arguments can be collapsed into a single call

with a cached result

These properties permit a compiler to make assumptions about variable lifetimes
across library subroutine calls — values in memory won’t change; previously de-ref-
erenced pointers need not be de-referenced again.
M•CORE ABI LIBRARIES MOTOROLA
STANDARDS MANUAL 5-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2 Floating Point Routines

These routines comply with ABI linkage conventions concerning registers that must
be preserved across function calls. The routines have no side effects. They do not
modify memory except as noted, thus allowing compilers to optimize de-referenced
pointer values across calls. The routines always return the same value for the same
inputs, allowing compilers to optimize subsequent calls away.

The data formats are as specified in IEEE 754. The routines are not required to com-
pute results as specified in IEEE 754. Implementations of these routines must docu-
ment the degree to which operations conform to the IEEE standard. Not all users of
floating point require IEEE 754 precision and exception handling, and may not want
to incur the overhead that complete conformance requires.

5.2.1 _d_add
double _d_add(double a, double b);

This function must return a + b computed to double precision.

5.2.2 int _d_cmp
int _d_cmp(double a, double b);

This function must perform an unordered comparison of the double precision values
of a and b and must return an integer value that indicates their relative ordering:

5.2.3 int _d_cmpe
int _d_cmpe(double a, double b);

This function must perform an ordered comparison of the double precision values of a
and b and must return an integer value that indicates their relative ordering:

Table 5-1 int_d_cmp Ordering Values

Relation Value

a equal to b 0

a less than b 1

a greater than b 2

a unordered with respect to b 3

Table 5-2 int_d_cmpe Ordering Values

Relation Value

a equal to b 0

a less than b 1

a greater than b 2
MOTOROLA LIBRARIES M•CORE ABI
5-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.4 double _d_div

double _d_div(double a, double b);

This function must return a / b computed to double precision.

5.2.5 float _d_dtof
float _d_dtof(double a);

This function must convert the double precision value of a to single precision and
must return the single precision value.

5.2.6 int _d_dtoi
int _d_dtoi(double a);

This function must convert the double precision value of a to a signed integer by trun-
cating any fractional part and must return the signed integer value.

5.2.7 long long _d_dtoll
long long _d_dtoll(double a);

This function must convert the double precision value of a to a signed long long by
truncating any fractional part and must return the signed long long value.

5.2.8 unsigned int _d_dtou
unsigned int _d_dtou(double a);

This function must convert the double precision value of a to an unsigned integer by
truncating any fractional part and must return the unsigned integer value.

5.2.9 unsigned long long _d_dtoull
unsigned long long _d_dtoull(double a);

This function must convert the double precision value of a to an unsigned long long
by truncating any fractional part and must return the unsigned long long value.

5.2.10 int _d_feq
int _d_feq(double a, double b);

This function must perform an unordered comparison of the double precision values
of a and b and must return one if they are equal, and zero otherwise.

5.2.11 int _d_fge
int _d_fge(double a, double b);

This function must perform an ordered comparison of the double precision values of a
and b and must return one if a is greater than or equal to b, and zero otherwise.
M•CORE ABI LIBRARIES MOTOROLA
STANDARDS MANUAL 5-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.12 int _d_fgt

int _d_fgt(double a, double b);

This function must perform an ordered comparison of the double precision values of a
and b and must return one if a is greater than b, and zero otherwise.

5.2.13 int _d_fle
int _d_fle(double a, double b);

This function must perform an ordered comparison of the double precision values of a
and b and must return one if a is less than or equal to b, and zero otherwise.

5.2.14 int _d_flt
int _d_flt(double a, double b);

This function must perform an ordered comparison of the double precision values of a
and b and must return one if a is less than b, and zero otherwise.

5.2.15 int _d_fne
int _d_fne(double a, double b);

This function must perform an unordered comparison of the double precision values
of a and b and must return one if they are unordered or not equal, and zero other-
wise.

5.2.16 double _d_itod
double _d_itod(int a);

This function must convert the signed integer value of a to double precision and must
return the double precision value.

5.2.17 double _d_lltod
double _d_lltod(long long a);

This function must convert the signed long long value of a to double precision and
must return the double precision value.

5.2.18 double _d_mul
double _d_mul(double a, double b);

This function must return a * b computed to double precision.

5.2.19 double _d_neg
double _d_neg(double a);

This function must return –a.
MOTOROLA LIBRARIES M•CORE ABI
5-4 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.20 double _d_sub

double _d_sub(double a, double b);

This function must return a – b computed to double precision.

5.2.21 double _d_ulltod
double _d_ulltod(unsigned long long a);

This function must convert the unsigned long long value of a to double precision and
must return the double precision value.

5.2.22 double _d_utod
double _d_utod(unsigned int a);

This function must convert the unsigned integer value of a to double precision and
must return the double precision value.

5.2.23 int _fp_round
int _fp_round(int rounding_mode);

This function must set the rounding mode for sfpe library routines. Table 5-3 shows
the mode selected by different argument values. This function must return the result-
ing rounding mode (zero for round to nearest, etc.) if that rounding mode is supported
by the sfpe library routines. Only round to nearest (function returns zero) is required
for conformance. The rounding mode may be stored in memory.

5.2.24 float _f_add
float _f_add(float a, float b);

This function must return a + b computed to single precision.

5.2.25 int _f_cmp
int _f_cmp(float a, float b);

This function must perform an unordered comparison of the single precision values of
a and b and must return an integer value that indicates their relative ordering:

Table 5-3 int _fp_round Values

Rounding_mode Value Rounding Operation

0 Round toward nearest

1 Round toward zero

2 Round toward positive infinity

3 Round toward negative infinity
M•CORE ABI LIBRARIES MOTOROLA
STANDARDS MANUAL 5-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.26 int _f_cmpe
int _f_cmpe(float a, float b);

This function must perform an ordered comparison of the single precision values of a
and b and must return an integer value that indicates their relative ordering:

5.2.27 float _f_div
float _f_div(float a, float b);

This function must return a / b computed to single precision.

5.2.28 int _f_feq
int _f_feq(float a, float b);

This function must perform an unordered comparison of the single precision values of
a and b and must return one if they are equal, and zero otherwise.

5.2.29 int _f_fge
int _f_fge(float a, float b);

This function must perform an ordered comparison of the single precision values of a
and b and must return one if a is greater than or equal to b, and zero otherwise.

5.2.30 int _f_fgt
inf _f_fgt(float a, float b);

This function must perform an ordered comparison of the single precision values of a
and b and must return one if a is greater than b, and zero otherwise.

Table 5-4 int_f_cmp Ordering Values

Relation Value

a equal to b 0

a less than b 1

a greater than b 2

a unordered with respect to b 3

Table 5-5 int_f_cmpe Ordering Values

Relation Value

a equal to b 0

a less than b 1

a greater than b 2
MOTOROLA LIBRARIES M•CORE ABI
5-6 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.31 int _f_fle

int _f_fle(float a, float b);

This function must perform an ordered comparison of the single precision values of a
and b and must return one if a is less than or equal to b, and zero otherwise.

5.2.32 int _f_flt
int _f_flt(float a, float b);

This function must perform an ordered comparison of the single precision values of a
and b and must return one if a is less than b, and zero otherwise.

5.2.33 int _f_fne
int _f_fne(float a, float b);

This function must perform an unordered comparison of the single precision values of
a and b and must return one if they are unordered or not equal, and zero otherwise.

5.2.34 double _f_ftod
double _f_ftod(float a);

This function must convert the single precision value of a to double precision and
must return the double precision value.

5.2.35 int _f_ftoi
int _f_ftoi(float a);

This function must convert the single precision value of a to a signed integer by trun-
cating any fractional part and must return the signed integer value.

5.2.36 long long _f_ftoll
long long _f_ftoll(float a);

This function must convert the single precision value of a to a signed long long by
truncating any fractional part and must return the signed long long value.

5.2.37 unsigned int _f_ftou
unsigned int _f_ftou(float a);

This function must convert the single precision value of a to an unsigned integer by
truncating any fractional part and must return the unsigned integer value.

5.2.38 unsigned long long _f_ftoull
unsigned long long _f_ftoull(float a);

This function must convert the single precision value of a to an unsigned long long by
truncating any fractional part and must return the unsigned long long value.
M•CORE ABI LIBRARIES MOTOROLA
STANDARDS MANUAL 5-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.39 float _f_itof

float _f_itof(int a);

This function must convert the signed integer value of a to single precision and must
return the single precision value.

5.2.40 float _f_lltof
float _f_lltof(long long a);

This function must convert the signed long long value of a to single precision and
must return the single precision value.

5.2.41 float _f_mul
float _f_mul(float a, float b);

This function must return a * b computed to single precision.

5.2.42 float _f_neg
float _f_neg(float a);

This function must return –a.

5.2.43 float _f_sub
float _f_sub(float a, float b);

This function must return a – b computed to single precision.

5.2.44 float _f_utof
float _f_utof(unsigned int a);

This function must convert the unsigned integer value of a to single precision and
must return the single precision value.

5.2.45 float _f_ulltof
float _f_ulltof(unsigned long long a);

This function must convert the unsigned long long value of a to single precision and
must return the single precision value.

5.3 Long Long Integer Routines

These routines comply with ABI linkage conventions concerning registers that must
be preserved across function calls. The routines have no side effects. They do not
modify memory except as noted, and thus allow compilers to optimize de-referenced
pointer values across calls. The routines always return the same value for the same
inputs, allowing compilers to optimize subsequent calls away.
MOTOROLA LIBRARIES M•CORE ABI
5-8 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.1 long long __div64

long long __div64(long long a, long long b)

This function computes the quotient a / b, truncating any fractional part, and returns
the signed long long result.

If the divisor has the value zero, the behavior is undefined.

5.3.2 long long __mul64
long long __mul64(long long a, long long b);

This function computes the product a * b and returns the result.

5.3.3 long long __rem64
long long __rem64(long long a, long long b)

This function computes the remainder upon dividing a by b and returns the signed
long long result.

If the divisor has the value zero, the behavior is undefined.

5.3.4 unsigned long long __udiv64
unsigned long long __udiv64(unsigned long long a, unsigned long long b)

This function computes the quotient a / b, truncating any fractional part, and returns
the unsigned long long result.

If the divisor has the value zero, the behavior is undefined.

5.3.5 unsigned long long __urem64
unsigned long long __urem64(unsigned long long a, unsigned long long b)

This function computes the remainder upon dividing a by b and returns the unsigned
long long result.

If the divisor has the value zero, the behavior is undefined.
M•CORE ABI LIBRARIES MOTOROLA
STANDARDS MANUAL 5-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA LIBRARIES M•CORE ABI
5-10 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 6 ASSEMBLER SYNTAX AND DIRECTIVES

6.1 Sections

The output of the assembler consists of, in part, sections whose content is deter-
mined by the assembler input. Sections containing code are aligned to 2-byte bound-
aries. Sections containing data are aligned so that the alignment requirements of the
data contained in the section is preserved.

6.2 Input Line Lengths

The assembler may limit input lines, but such a limit must be at least 2100 characters
in length. This gives the ability to construct an expression containing a symbol of
maximum supported length (2048 bytes) and a data-allocation pseudo-instruction.
For example:

 .long longsymbol

The assembler is allowed to support longer lines. If the assembler imposes a limit on
the length of an input line, the assembler must issue a diagnostic if that limit is
exceeded.

6.3 Syntax

An assembler source file contains a list of one or more assembler statements. Each
statement is terminated with a newline character or a “;” character. The “;” character
does not terminate the statement if it appears within a string literal or inside a com-
ment. Empty statements (i.e. blank lines) are ignored.

Each statement consists of zero or more labels, at most one mnemonic, with the
remainder of the statement being arguments specific to the mnemonic.

Labels are symbols that are followed by a “:”. Temporary labels are allowed and are
indicated by a non-zero digit (1–9) instead of a symbol. Duplicate temporary labels
are allowed and references to them are resolved by searching for the nearest source
line with the label. References to temporary labels must have a “b” or “f” suffix
appended to the digit to indicate which direction to search.

Labels that begin with “.” (period) are considered local labels. The assembler does
not include these symbols in the symbol table of the generated object file.

Mnemonics fall into three categories: instructions, pseudo-instructions, and direc-
tives. Instruction mnemonics map one-to-one into an M•CORE opcode. Pseudo-
instructions map into sequences of M•CORE opcodes. Directives always start with a
“.” and are used to control the assembly and allocate data areas. All mnemonics are
case sensitive and must be specified in lower case.
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

White space in assembler source files is ignored except as a separator between mne-
monics and when embedded within string literals or character constants. Multiple
white space characters are functionally equivalent to a single white space character
except within literals and character constants.

Comments in assembler source are indicated by the following:

• A “//” sequence indicates a comment reaching to the end of the line.
• A “#” character, when not part of a valid preprocessing directive, indicates a

comment reaching to the end of the line.

Comments are terminated only by the end of the line. The “;” character does not ter-
minate a comment. A multi-line comment, e.g. “/* */”, is not supported since most
assemblers are inherently line oriented.

Comments can never begin or end within a string literal or character constant.

6.3.1 Preprocessing

The assembler is not required to provide macro preprocessing. This functionality can
be provided by existing preprocessors that conform to the ANSI standard. If the
assembler does provide preprocessing, then it must conform to the “C” language pre-
processing standard and the following paragraph does not apply.

An assembler command line option will enable the following behavior. Any line with a
“#” character in the first column is assumed to be line and file information from the
preprocessor. The assembler must use this information in error messages. This
allows a programmer to relate an error back to the line and file of the original source
file before preprocessing. The file and line information from the preprocessor is in the
form:

number “filename”

Any other preprocessor lines that do not match this form are ignored by treating them
as comments.

6.3.2 Symbols

Symbols must begin with a character in the set: a–z, A–Z, . (period), or _ (under-
score). The remaining characters in a symbol may be in that set plus the digits 0–9.
Symbols are case sensitive and all characters in the symbol are significant. Symbols
may be limited in length but that limit must be at least 2048 characters. If there is a
limit on symbol length, symbols that exceed the limit must cause an error message to
be emitted.

Silent truncation of long symbols is undesirable. This is intended to avoid silent errors
where two long symbols differ only at some point after the tools have stopped keeping
track of significant characters. The “$” character is not allowed in a symbol name
because it is not a universally supported character on non-U.S. keyboards.
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The special symbols created by temporary labels can only be referenced within a sin-
gle source file. These references must consist of a single digit followed by a “b” or “f”
to indicate the direction of the nearest matching label.

The “.” symbol will always indicate the current location within the current section at
the start of the current statement. Thus:

movi r3,15;br.
br .

results in three instructions, two of which branch to themselves.

The “.” symbol is used instead of “*” because it avoids conflicts with “*” as a multiply
operator.

6.3.3 Constants

The same constants and lexical expression of constants that are available in C are
allowed in the assembly. This includes hex, octal, decimal, float, double, character,
and strings. Both character and string constants have characters, ‘ and “ respec-
tively, to delimit them. Multiple characters within character constant are each treated
like a base 256 number. e.g. ‘1234’ equals 0x31323334.

The syntax of constants is chosen to be familiar to C programmers. The use of spe-
cial characters in the syntax for constants must be avoided as they are used in
expressions. In addition, the “$” character is not a universally supported character on
non-U.S. keyboards.

6.3.4 Expressions

Addition, subtraction, multiplication, division, modulus, logical anding, inclusive oring,
exclusive oring, negating, complementing, and shifting operations are supported by
the assembler for the generation of constants or relocatable expressions in the argu-
ment portion of a statement. These operations have the semantics and precedence
of their equivalent C language operations. Parenthesis can be used to force particular
bindings of operations. All operations are done as if on 32-bit unsigned values. The
syntax of expressions is chosen to be familiar to C programmers.

Expressions can involve more than one relocatable value as long as the assembler
can resolve the expression to remove all or all but one of the relocatable values. For
example, the difference between two labels in the same section reduces to an assem-
ble time constant.

Relocatable expressions must evaluate down to a possibly-zero offset from a relocat-
able address. The linker is not required to provide the ability to store the value “5
times the value of this relocatable symbol”.

6.3.5 Operators and Precedence

Table 6-1 shows the operators available to the assembly programmer. The table is
arranged in order of precedence; the higher precedence operators appear earlier in
the table. These are the same operators used in the C language.
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operations may be grouped with parentheses to force a particular precedence.

6.3.6 Instruction Mnemonics

The instruction opcode mnemonics are listed in the M•CORE Reference Manual
(MCORERM/AD).

6.3.7 Instruction Arguments

Register arguments within the argument portion of a statement are indicated by the
character, “r” or “R” followed by the register number (0 through 15). Register 0 (r0)
can also be specified as “sp”.

Instructions that use the PC relative indirect addressing (lrw, jsri, jmpi) take two argu-
ment syntaxes. The first syntax is of the form:

lrw r0,0x12345678
lrw r1,0x4321
lrw r2,0x4321
lrw r3,0x4321

The assembler collects these argument values into a literal table, possibly allowing
several instructions to reuse the same slot, and emit them at an appropriate point in
the output. Such a point may be after the nearest unconditional branch. In some situ-
ations, such a location might not arise before the span of the lrw/jsri/jmpi instruction is
exhausted. In such cases, the assembler must spill the literal table before the span is
exhausted and provide a branch around the literal table.

The assembler provides a mechanism that allows the user to force a dump of the cur-
rently outstanding literals by using the .literals pseudo-instruction. Any literals
that have not yet been emitted are emitted when this directive is encountered. When
the assembler input is exhausted, the assembler emits any literals that have not yet
been emitted, as if a .literals pseudo-instruction was appended to the assembly
source.

Table 6-1 Assembly Expression Operators

Assembly Expression Operators Precedence

- unary negation
1

~ unary logical complement

* multiplication

2/ division

% modulus

+ addition
3

- subtraction

<< left shift
4

>> right shift

& logical and 5

^ logical exclusive or 6

| logical inclusive or 7
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-4 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

The assembler is allowed, but not required, to attempt to optimize
code size by doing “optimal” literal placement. This interacts with the
expansion of jbt and jbf pseudo-operations. Also, if literals must
be output after an instruction that is not an unconditional transfer of
control, the assembler must insure that a branch around the literal
table is also generated.

The second form uses a [label] notation for the literal. In this case, the supplied
argument is the label of the address containing the value to be loaded. This gives the
assembler programmer complete control over the placement and sharing of literals.

lrw r0,[lit0]
lrw r1,[lit1]
lrw r2,[lit1]
lrw r3,[lit1]
...

.align 2
lit0: .long 0x12345678
lit1: .long 0x4321

NOTE

The user is responsible for insuring that the specified label is 4-byte
aligned when using the [label] literal syntax.

The M•CORE instruction set does not directly support position independent code so it
is up to the assembler programmer or compiler to synthesize PC-relative branches
and subroutine calls. To help support this, a 32-bit PC relative argument type is
allowed and is indicated by an expression that is evaluated as a delta from “.”. Any
symbols in the expression must be within the same section as the instruction so the
assembler can resolve it to a constant offset. This can be done in the following man-
ner (assuming r1 and r15 are available):

bsr .+2
lrw r1,symbol-.
add r1,r15
jsr r1
...

symbol: subi r0,12
...

6.4 Assembler Directives

Assembler directives are used to control the assembly of the source code as well as
reserving and/or initializing areas for data. All assembler directive mnemonics begin
with a “.”.
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Only the .align, .comm, and .lcomm directives align the location counter to a
known boundary. All other mnemonics, including .long, do not imply alignment. It is
up to the assembler programmer or compiler to explicitly align these locations to
avoid runtime misalignment faults. For operations that specify alignment values (e.g.,
.align, .comm, and .lcomm), the value specified is log2 of the alignment. For exam-
ple, the value “3” specifies 8-byte alignment.

All data values emitted by assembler directives will be in big-endian order.

This alignment behavior is needed to support packed data structures. Packed data
structures explicitly allow misaligned fundamental types to save data space at the
expense of additional code to pack and unpack the structures. Note that the ABI does
not specify how a user expresses such misaligned references at the C source level.

The directive syntax in this manual uses “[” and “]” to indicate an optional field. The “{”
and “}” syntax indicates zero or more repetitions of a field.

6.4.1 .align abs-exp [, abs-exp]

Aligns the location counter to the boundary indicated by the first constant expression.
The integral alignment argument is log2 of the alignment, e.g. the value “3” specifies
8-byte alignment. Negative alignment values are treated as zero, indicating 1-byte
alignment.

The second, optional expression is the value to be filled into the bytes between the
old location and new location. If unspecified, the bytes will be filled with zeros.

NOTE

The maximum alignment allowed is not constrained by the assem-
bler. But in order for the assembler to be able to resolve expressions
between symbols in the section, the linker must guarantee that the
resulting section will be aligned to the largest alignment required
within the section. This can be true for every loadable section from
every source file, so large alignments should be used conservatively
to avoid large gaps in the final load image.

6.4.2 .ascii “string” {, “string”}

Reserves and initializes space for one or more strings given. Each assembled string
will not be null-terminated and will fill consecutive addresses. No alignment is implied.

6.4.3 .asciz “string” {, “string”}

Same as .ascii except the strings will be null terminated.

6.4.4 .byte exp {, exp}

Assembles consecutive bytes with the one or more values given by the expression(s).
No alignment is implied.

Values larger than eight bits are truncated to fit into eight bits. This also generates a
warning diagnostic.
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-6 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.5 .comm symbol, length [, align]

Declares an area of length bytes in the .bss section that will be shared by different
files. If another file declares a longer length, then the length will be the maximum of all
the declared lengths.

The alignment, if specified, is log2 of the alignment. The value “3” specifies 8-byte
alignment. The units are the same as in the .align directive. If no alignment is spec-
ified, the assembler will naturally align the symbol according to the largest natural
type that can be contained in an entity of that size. Entities of eight bytes and larger
are 8-byte aligned, entities of four bytes are 4-byte aligned, entities of two and three
bytes are 2-byte aligned, single-byte entities are 1-byte aligned.

6.4.6 .data

Equivalent to:

.section .data,”RW”

6.4.7 .double float {, float}

Assembles floating point values into IEEE 64-bit floating point numbers. The numbers
will be consecutive and no alignment is implied.

6.4.8 .equ symbol, expression

Sets the value of the symbol to the expression. If the expression value cannot be
resolved to an absolute or relocatable value after all assembler passes are complete,
the assembly will be aborted with an error.

6.4.9 .export symbol {, symbol}

Causes the symbol to appear in the emitted symbol table in the resulting object file.
The symbol may be defined within the file or it may be defined within an external file.

6.4.10 .fill count [, size [, value]]

Emits count copies of the value given. Only the least significant size bytes of value
are replicated. The size must be a value ranging from one through eight; the default
size is one byte. The default value is zero.

All three arguments are integral absolute expressions.

6.4.11 .float float {, float}

Assembles floating point values into IEEE 32-bit floating point numbers. The numbers
will be consecutive and no alignment is implied.

6.4.12 .ident “string”

Places the string in the .comment section of the object file reserved for identification
purposes. This is used for version tracking and source-to-binary audit trails.
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.13 .import symbol {, symbol}

Indicates that the symbols are defined externally from this file. All undefined symbols
that are not declared as imported will cause a warning message to be issued by the
assembler. Symbols that have been declared external but are not referenced should
not appear in the symbol table of the emitted object file.

6.4.14 .literals

Causes the assembler’s accumulated literal table for the jmpi, jsri, and lrw
instructions for the current section to be emitted. Can be used by the assembler pro-
grammer to flush literal tables at the exact point desired.

6.4.15 .lcomm symbol, length [, alignment]

Reserve length bytes for a named local common area in the .bss section. The allo-
cations of symbols in the .bss section will be in the same order as the .lcomm state-
ments in the source file.

NOTE

Preserving the allocation order allows the compiler to use fixed off-
sets from a bss pointer to access several related variables.

The optional alignment value is log2 of the desired alignment; a value of “3” specifies
eight byte alignment. If no alignment is specified, the assembler will naturally align the
symbol according to the largest natural type that can be contained in an entity of that
size. Entities of eight bytes and larger are 8-byte aligned, entities of four bytes are 4-
byte aligned, entities of two and three bytes are 2-byte aligned, single-byte entities
are 1-byte aligned.

6.4.16 .long exp {, exp}

Emits four byte values consecutively.

6.4.17 .section name [, “attributes”]

Assemble subsequent statements onto the end of the named section.

Section names obey the same syntax as symbol names.

The attributes supported are the access permissions (read, write, and execute) and
the allocation bits (yes or no). Permissions and allocation are indicated by any combi-
nation of the letters RWXANrwxan with no separators between them. The attributes
are specified as a quoted string. The attribute characters are explained in Table 6-2.
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-8 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A missing attribute list indicates that the section should have all permissions (RWX)
and address space will be allocated in the load map. An empty attribute list (e.g., an
empty quoted string) specifies an allocated but inaccessible section.

A missing attribute list generates the default permissions.

Multiple specifications of a section take the attributes from the first specification of the
section.

.sectionsectionname,”RX”

.sectionsectionname,”RW”

The RW attribute is ignored and the section sectionname will have read and execute
permissions.

6.4.18 .short exp {, exp}

Emits two byte values consecutively.

6.4.19 .text

Equivalent to:

.section.text,”RX”

6.4.20 .weak symbol [, symbol]

Specify a weak external symbol definition. If symbol is not otherwise defined at link
time, it has the value zero. Multiple symbols can be specified on the same line.

6.5 Pseudo-Instructions

The assembler also supports several pseudo-instructions which are expanded into
one or more machine instructions.

Some pseudo-instructions are used to delay selection of instructions until relative
addresses are resolved. For example, a smaller relative branch instruction could be
emitted instead of a larger absolute jump instruction if the decision is delayed until the
branch distance is known.

Other pseudo-instructions are for the assembler programmers convenience. For
example, the “clear the condition bit” (clrc) instruction is another mnemonic for a
compare of r0 being not equal to r0. Also, the mnemonics for the load/store instruc-
tions (ldb, ldh, ldw, stb, sth, stw) have alternate forms (ld.b, ld.h, ld.w, st.b, st.h, st.w).

Table 6-2 M•CORE Section Attribute Encodings

Section Attribute Encodings

R or r Section is to be readable.

W or w Section is to be writable.

X or x Section contains executable code.

A or a Section is to be allocated space in the loaded image.

N or n Section is NOT to be allocate space in the loaded image.
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.1 clrc

Clear the condition code bit (C) in the status register. Emits the opcode equivalent to:

cmpner0,r0

6.5.2 cmplei rd, n

Perform a signed comparison of the value in rd with the constant n. N is allowed to
have the values 0 through 31. Emits the opcode equivalent to:

cmpltird, n+1

6.5.3 cmpls rd, rs

Compare if the unsigned value in rd is lower or the same as the unsigned value in rs.
Emits the opcode equivalent to:

cmphsrs, rd

6.5.4 cmpgt rd, rs

Compare if the signed value in rd is greater than the signed value in rs. Emits the
opcode equivalent to:

cmpltrs, rd

6.5.5 jbsr label

Call the subroutine identified by label. Use the relative branch to subroutine instruc-
tion if the subroutine is within range, otherwise use an absolute jump to subroutine.
Emits one of the following sequences:

bsrlabel

Or:

jsrilabel

6.5.6 jbr label

Continue execution at the instruction identified by label. Use the relative branch
instruction if the label is within range, otherwise use an absolute jump to the label.
Emits the equivalent of one of the following sequences based on the distance to the
target label.

br label

Or:

jmpilabel
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-10 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.7 jbf label

Continue execution at the instruction identified by label only if the condition code bit is
false. Use the relative conditional branch instruction if the label is within range, other-
wise use a conditional branch around an absolute jump to the label. Emits the equiv-
alent of one of the following sequences based on the distance to the target label.

bf label

Or:

bt 1f
jmpilabel

1: ...

The temporary label “1” is here for illustration purposes; it is not emitted. The expan-
sion of jbf will not cause a problem for the following fragment.

bt 1
...
jbflabel

1: ...

6.5.8 jbt label

Continue execution at the instruction identified by label only if the condition code bit is
true. Use the relative conditional branch instruction if the label is within range, other-
wise use a conditional branch around an absolute jump to the label. Emits the equiv-
alent of one of the following sequences based on the distance to the target label.

bt label

Or:

bf 1f
jmpilabel

1: ...

The temporary label “1” is here for illustration purposes; it is not emitted. The expan-
sion of jbt will not cause a problem for the following fragment.

bt 1
...
jbtlabel

1: ...

6.5.9 neg rd

Negates the value in rd. Emits the opcode equivalent to:

rsubird,0
M•CORE ABI ASSEMBLER SYNTAX AND DIRECTIVES MOTOROLA
STANDARDS MANUAL 6-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.10 rotlc rd, 1

Rotates the value in rd left by one bit. The carry bit is rotated into least significant bit
while the most significant bit that was rotated out is saved in the carry bit. Emits the
opcode equivalent to:

addcrd,rd

6.5.11 rotri rd, imm

Rotates the value in rd right by the number of bits specified in imm. Emits the opcode
equivalent to:

rotli rd,32-imm

An immediate value of 0 is not allowed.

6.5.12 rts

Return from subroutine. Emits the opcode equivalent to:

jmpr15

6.5.13 setc

Set the condition code bit (C) in the status register. Emits the opcode equivalent to:

cmphsr0,r0

6.5.14 tstle rd

Test for a negative or zero value in the specified register. Emits the opcode equivalent
to:

cmpltird,1

6.5.15 tstlt rd

Test for a negative value in the specified register. Emits the opcode equivalent to:

btstird,31

6.5.16 tstne rd

Test for a non-zero value in the specified register. Emits the opcode equivalent to:

cmpneird,0
MOTOROLA ASSEMBLER SYNTAX AND DIRECTIVES M•CORE ABI
6-12 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A

alignment
section 4-1

argument 2-8
instruction 6-4
overflow 2-7
register 2-10, 6-4
scalar 2-9, 2-11
structure 2-9
variable 2-10

array 2-4
assembler 1-2

constant 6-3
directive 6-5 to 6-12
expression 6-3
label 6-1, 6-4
line length 6-1
macro 6-2
mnemonic 6-4
operation 6-4
precendence 6-4
preprocessing 6-2
sections 6-1
statement 6-1
symbol 6-2 to 6-3
syntax 6-1

B

big endian 2-4
binary interface 1-2
bit field 2-4 to 2-5
byte 2-1

C

c language 1-2, 2-3, 2-10, 3-1
control information 4-2
control registers 2-1 to 2-2
cross-call 2-6
M•CORE ABI INDE
STANDARDS MANUAL

For More Information
 Go to: www.f
D

data type
array 2-4
bit field 2-4 to 2-5
byte 2-1
c language 2-3
floating point 2-3, 5-1 to 5-8
halfword 2-1
long long 2-3, 5-1, 5-8 to 5-9
signed 2-1
structure 2-4 to 2-5, 2-9, 2-11
union 2-4 to 2-5
unsigned 2-1, 2-3
word 2-1

debugging 2-7, 2-12
format 4-5
register number 4-6

directive 6-5 to 6-12
displacement value 4-4
DWARF 4-1, 4-5 to 4-6

E

ELF 4-1

F

file format
object 4-1

floating point
formats 5-2 to 5-8
routines 5-2 to 5-8

frame pointer 2-12
function 1-2

calling conventions 1-2
calls 2-5
prologue 2-12

H

halfword 2-1
header convention 4-1
X MOTOROLA
I-1

 On This Product,
reescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

I

IEEE 754 5-2 to 5-8
in-line assembly 3-1
instruction mnemonic 6-4

L

legacy code 2-10
library

compiler assist 5-1
floating point 5-1
long long 5-1, 5-8

library standards 1-2
linking 5-1
literal table 6-4
local variable 2-7, 2-12
long long

routines 5-8 to 5-9

M

memory access 2-3

O

object 5-1
object modules 1-2

P

padding 2-4
PIC 4-2

R

registers 2-8
control 2-1 to 2-2
local 2-7
mapping 2-5
non-volatile 2-6
volatile 2-6

relative branches 6-5
relocation

11-bit 4-5
32-bit 4-5
4-bit negative 4-5
entries 4-3
format 4-3
type 4-3 to 4-4
value 4-4

return address 2-7
return value 2-11
return variable 2-7
MOTOROLA INDE
I-2

For More Information
 Go to: www.f
S

scalar value 2-11
section

alignment 4-1
attribute 4-1
layout 4-1
special 4-2

section alignment 4-1
silent truncation 6-2
spilling 2-10
stack

frame 2-7, 2-12
maintenance 2-8
tracing 2-7, 2-12 to 2-13

standards
library 1-2
source-level 1-2

structure 2-4 to 2-5
subroutine 2-6 to 2-8, 2-11

U

union 2-4 to 2-5

V

variable
local 2-7
return 2-7

W

word 2-1
X M•CORE ABI
STANDARDS MANUAL

 On This Product,
reescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RECORD OF CHANGES

Revision Date Description

Original 03 OCT 97 Publication based on Motorola design specifications
M•CORE ABI RECORD OF CHANGES MOTOROLA
STANDARDS MANUAL R-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA RECORD OF CHANGES M•CORE ABI
R-2 STANDARDS MANUAL

For More Information On This Product,
 Go to: www.freescale.com

	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	SECTION 1 INTRODUCTION
	1.1 Scope
	1.2 Purpose
	1.3 Overview
	1.3.1 Low-Level Run-Time Binary Interface Standard...
	1.3.2 Object File Binary Interface Standards
	1.3.3 Source-Level Standards
	1.3.4 Library Standards

	1.4 Associated Documentation
	1.5 Future Standards

	SECTION 2 LOW-LEVEL BINARY INTERFACES
	2.1 Underlying Processor Primitives
	2.1.1 Registers
	2.1.2 Fundamental Data Types
	Table 2-1 M•CORE Control Registers
	Table 2-2 Mapping of C Fundamental Data Types to t...

	2.1.3 Compound Data Types

	2.2 Function Calling Conventions
	2.2.1 Register Assignments
	Table 2-3 Register Assignments
	2.2.1.1 Cross-Call Lifetimes

	2.2.2 Stack Frame Layout
	Figure 2-1 Stack Frame Layouts; First() calls Seco...
	2.2.2.1 Extending the Stack

	2.2.3 Argument Passing
	2.2.3.1 Scalar Arguments
	2.2.3.2 Structure Arguments

	2.2.4 Variable Arguments
	2.2.4.1 Spilling Register Arguments
	2.2.4.2 Legacy Code Compatibility

	2.2.5 Return Values
	2.2.5.1 Scalar Values
	2.2.5.2 Structure Values

	2.3 Runtime Debugging Support
	2.3.1 Function Prologues
	2.3.2 Stack Tracing

	SECTION 3 HIGH-LEVEL LANGUAGE ISSUES
	3.1 C Preprocessor Predefines
	3.2 C In-Line Assembly Syntax
	3.3 C Name Mapping

	SECTION 4 OBJECT FILE FORMATS
	4.1 Header Convention
	Table 4-1 e_ident Field values

	4.2 Section Layout
	4.2.1 Section Alignment
	4.2.2 Section Attributes
	Table 4-2 M•CORE Section Attributes
	Table 4-3 ELF Section Attributes

	4.2.3 Special Sections
	Table 4-4 M•CORE Tools Special Sections
	Table 4-5 ELF Sections

	4.3 Symbol Table Format
	4.4 Relocation Information Format
	4.4.1 Relocation Types
	Table 4-6 Relocation Types

	4.4.2 Relocation Values
	Table 4-7 Relocation Type Encodings
	4.4.2.1 32-Bit Relocations
	4.4.2.2 11-Bit Relocations

	4.5 Debugging Information Format
	4.5.1 DWARF Register Numbers
	Table 4-8 DWARF Register Atom Mapping for M•CORE

	SECTION 5 LIBRARIES
	5.1 Compiler Assist Libraries
	5.2 Floating Point Routines
	5.2.1 _d_add
	5.2.2 int _d_cmp
	Table 5-1 int_d_cmp Ordering Values

	5.2.3 int _d_cmpe
	Table 5-2 int_d_cmpe Ordering Values

	5.2.4 double _d_div
	5.2.5 float _d_dtof
	5.2.6 int _d_dtoi
	5.2.7 long long _d_dtoll
	5.2.8 unsigned int _d_dtou
	5.2.9 unsigned long long _d_dtoull
	5.2.10 int _d_feq
	5.2.11 int _d_fge
	5.2.12 int _d_fgt
	5.2.13 int _d_fle
	5.2.14 int _d_flt
	5.2.15 int _d_fne
	5.2.16 double _d_itod
	5.2.17 double _d_lltod
	5.2.18 double _d_mul
	5.2.19 double _d_neg
	5.2.20 double _d_sub
	5.2.21 double _d_ulltod
	5.2.22 double _d_utod
	5.2.23 int _fp_round
	Table 5-3 int _fp_round Values

	5.2.24 float _f_add
	5.2.25 int _f_cmp
	Table 5-4 int_f_cmp Ordering Values

	5.2.26 int _f_cmpe
	Table 5-5 int_f_cmpe Ordering Values

	5.2.27 float _f_div
	5.2.28 int _f_feq
	5.2.29 int _f_fge
	5.2.30 int _f_fgt
	5.2.31 int _f_fle
	5.2.32 int _f_flt
	5.2.33 int _f_fne
	5.2.34 double _f_ftod
	5.2.35 int _f_ftoi
	5.2.36 long long _f_ftoll
	5.2.37 unsigned int _f_ftou
	5.2.38 unsigned long long _f_ftoull
	5.2.39 float _f_itof
	5.2.40 float _f_lltof
	5.2.41 float _f_mul
	5.2.42 float _f_neg
	5.2.43 float _f_sub
	5.2.44 float _f_utof
	5.2.45 float _f_ulltof

	5.3 Long Long Integer Routines
	5.3.1 long long __div64
	5.3.2 long long __mul64
	5.3.3 long long __rem64
	5.3.4 unsigned long long __udiv64
	5.3.5 unsigned long long __urem64

	SECTION 6 ASSEMBLER SYNTAX AND DIRECTIVES
	6.1 Sections
	6.2 Input Line Lengths
	6.3 Syntax
	6.3.1 Preprocessing
	6.3.2 Symbols
	6.3.3 Constants
	6.3.4 Expressions
	6.3.5 Operators and Precedence
	Table 6-1 Assembly Expression Operators

	6.3.6 Instruction Mnemonics
	6.3.7 Instruction Arguments

	6.4 Assembler Directives
	6.4.1 .align abs-exp [, abs-exp]
	6.4.2 .ascii “string” {, “string”}
	6.4.3 .asciz “string” {, “string”}
	6.4.4 .byte exp {, exp}
	6.4.5 .comm symbol, length [, align]
	6.4.6 .data
	6.4.7 .double float {, float}
	6.4.8 .equ symbol, expression
	6.4.9 .export symbol {, symbol}
	6.4.10 .fill count [, size [, value]]
	6.4.11 .float float {, float}
	6.4.12 .ident “string”
	6.4.13 .import symbol {, symbol}
	6.4.14 .literals
	6.4.15 .lcomm symbol, length [, alignment]
	6.4.16 .long exp {, exp}
	6.4.17 .section name [, “attributes”]
	Table 6-2 M•CORE Section Attribute Encodings

	6.4.18 .short exp {, exp}
	6.4.19 .text
	6.4.20 .weak symbol [, symbol]

	6.5 Pseudo-Instructions
	6.5.1 clrc
	6.5.2 cmplei rd, n
	6.5.3 cmpls rd, rs
	6.5.4 cmpgt rd, rs
	6.5.5 jbsr label
	6.5.6 jbr label
	6.5.7 jbf label
	6.5.8 jbt label
	6.5.9 neg rd
	6.5.10 rotlc rd, 1
	6.5.11 rotri rd, imm
	6.5.12 rts
	6.5.13 setc
	6.5.14 tstle rd
	6.5.15 tstlt rd
	6.5.16 tstne rd

	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	O
	P
	R
	S
	U
	V
	W

	INDEX
	RECORD OF CHANGES

