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About This Book

The primary objective of this reference manual is to define the processor for software and hardware
developers. The information in this book is subject to change without notice, as described in the
disclaimers on the title page. As with any technical documentation, the reader must use the most recent
version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.freescale.com/coldfire.

Portions of Chapter 23, “Universal Serial Bus Interface — Host Module,” and Chapter 10, “Universal Serial
Bus Interface — On-The-Go Module,’relating to the EHCI specification are Copyright © Intel Corporation
1999-2001. The EHCI specification is provided “As Is” with no warranties whatsoever, including any
warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty
otherwise arising out of any proposal, specification or sample. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in the EHCI specification.
Intel may make changes to the EHCI specifications at any time, without notice.

Audience

This manual is intended for system software and hardware developers and applications programmers who
want to develop products with this ColdFire processor. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of software and hardware, and basic details of the
ColdFire® architecture.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about ColdFire architecture.

General Information

Useful information about the ColdFire architecture and computer architecture in general:
» ColdFire Programmers Reference Manual (MCF5200PRM/AD)

»  Using Microprocessors and Microcomputers: The Motorola Family, William C. Wray, Ross
Bannatyne, Joseph D. Greenfield

»  Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David
A. Patterson.

»  Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy.
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ColdFire Documentation

ColdFire documentation is available from the sources listed on the back cover of this manual, as well as
our web site, http://www.freescale.com/coldfire.

* Reference manuals — These books provide details about individual ColdFire implementations and
are intended to be used in conjunction with the ColdFire Programmers Reference Manual.

» Data sheets — Data sheets provide specific data regarding pin-out diagrams, bus timing, signal
behavior, and AC, DC, and thermal characteristics, as well as other design considerations.

» Product briefs — Each device has a product brief that provides an overview of its features. This
document is roughly equivalent to the overview (Chapter 1) of an device’s reference manual.

» Application notes — These short documents address specific design issues useful to programmers
and engineers working with Freescale Semiconductor processors.

Additional literature is published as new processors become available. For a current list of ColdFire
documentation, refer to http://www.freescale.com/coldfire.

Conventions

This document uses the following notational conventions:

cleared/set

MNEMONICS
mnemonics

italics

0x0
0b0
REGI[FIELD]

nibble
byte
word
longword
X

n

~

&
|

When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it is said to be set.

In text, instruction mnemonics are shown in uppercase.
In code and tables, instruction mnemonics are shown in lowercase.

Italics indicate variable command parameters.
Book titles in text are set in italics.

Prefix to denote hexadecimal number
Prefix to denote binary number

Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges
appear in brackets. For example, RAMBAR[BA] identifies the base address field
in the RAM base address register.

A 4-bit data unit

An 8-bit data unit

A 16-bit data unit!

A 32-bit data unit

In some contexts, such as signal encodings, x indicates a don’t care.
Used to express an undefined numerical value

NOT logical operator

AND logical operator

OR logical operator

The only exceptions to this appear in the discussion of serial communication modules that support variable-length data
transmission units. To simplify the discussion these units are referred to as words regardless of length.
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I Field concatenation operator
OVERBAR An overbar indicates that a signal is active-low.

Register Figure Conventions

This document uses the following conventions for the register reset values:

— Undefined at reset.
u Unaffected by reset.
[signal name] Reset value is determined by the polarity of the indicated signal.

The following register fields are used:

R| O Indicates a reserved bit field in a memory-mapped register. These bits are always read as zeros.
w

R| 1 Indicates a reserved bit field in a memory-mapped register. These bits are always read as ones.
w

R | FIELDNAME Indicates a read/write bit.

w

R | FIELDNAME Indicates a read-only bit field in a memory-mapped register.

w

R Indicates a write-only bit field in a memory-mapped register.

W | FIELDNAME

R | FIELDNAME Write 1 to clear: indicates that writing a 1 to this bit field clears it.

w wic

R 0 Indicates a self-clearing bit.

W | FIELDNAME
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Chapter 1
Overview

The MCF5445x devices are a family of highly-integrated 32-bit microprocessors based on the Version 4
ColdFire microarchitecture. This product line is well suited for secure networked applications in factory
automation, process control, and motion control. The rich feature set and flexibility make it attractive to
many different applications in consumer and industrial markets.

All MCF5445x devices contain a Version 4 ColdFire core, 32-Kbyte internal SRAM, USB On-the-Go
controllers, a 2-bank DDR/DDR2/mobile-DDR SDRAM controller, a 16-channel DMA controller, a serial
boot facility, an SSI interface, and other serial interfaces. Optional peripherals include a PCI bus controller,
ATA controller, Fast Ethernet controllers, and an encryption coprocessor.

1.1 MCF5445x Family Comparison

The following table compares the various device derivatives available within the MCF5445x family.

Table 1-1. MCF5445x Family Configurations

Module MCF54450 | MCF54451 | MCF54452 | MCF54453 | MCF54454 | MCF54455
ColdFire Version 4 Core with EMAC . . . . . .
(Enhanced Multiply-Accumulate Unit)
Core (System) Clock up to 240 MHz up to 266 MHz
f’éé‘f;“f.?éf:‘ Sé)c ook up to 120 MHz up to 133 MHz
(Eé‘;?;n;'os’;‘ii')o"k up to 60 MHz up to 66 MHz
Performance (Dhrystone/2.1 MIPS) up to 370 up to 410
Independent Data/Instruction Cache 16 Kbytes each
Static RAM (SRAM) 32 Kbytes
PCI Controller — — . . . .
Cryptography Acceleration Unit (CAU) — . — . — o
ATA Controller — — — — . .
DDR SDRAM Controller o . D . . .
FlexBus External Interface . . . . . .
USB 2.0 On-the-Go . . . . . .
UTMI+ Low Pin Interface (ULPI) . . . . . .
Synchronous Serial Interface (SSI) . . . . . .

Freescale Semiconductor
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Table 1-1. MCF5445x Family Configurations (continued)

Module MCF54450 | MCF54451 | MCF54452 | MCF54453 | MCF54454 | MCF54455

Fast Ethernet Controller (FEC) 1 1 2 2 2 2
UARTSs 3 3 3 3 3 3
B . . . . . .
DSPI . . . . . .
Real Time Clock . . . . . .
32-bit DMA Timers 4 4 4 4 4 4
Watchdog Timer (WDT) . . . . . .
Periodic Interrupt Timers (PIT) 4 4 4 4 4 4
Edge Port Module (EPORT) . . . . . .
Interrupt Controllers (INTC) 2 2 2 2 2 2
16-channel Direct Memory Access . . . . . .
(DMA)

General Purpose I/0 (GPIO) . . . . . .
JTAG - IEEE® 1149.1 Test Access Port . . o . . .
Package 256 MAPBGA 360 TEPBGA
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1.2 Block Diagram

Overview

Figure 1-1 shows a top-level block diagram of the MCF54455 superset device.

%o
+ & MCF54455

-

LEGEND
ATA — Advanced Technology Attachment Controller INTC — Interrupt controller
BDM — Background debug module JTAG — Joint Test Action Group interface
CAU — Cryptography acceleration unit MMU — Memory management unit
DSPI — DMA serial peripheral interface PCI — Peripheral Component Interconnect
eDMA — Enhanced direct memory access PIT — Programmable interrupt timers
EMAC — Enchance multiply-accumulate unit PLL — Phase locked loop module
EPORT - Edge port module RNG — Random Number Generator
FEC — Fast Ethernet controller RTC — Real time clock
GPIO — General Purpose Input/Output SSi — Synchronous Serial Interface
12c — Inter-Intergrated Circuit USB OTG - Universal Serial Bus On-the-Go controller

Figure 1-1. MCF54455 Block Diagram

Freescale Semiconductor 1-3



V¥ ¢
i

Overview

1.3

1.4

Operating Parameters

0°C to 70°C and —40°C to 85°C junction temperature devices are available
1.5V Core, 3.3V 1/0O, 1.8V/2.5V/3.3V external memory bus

Packages

Depending on device, the MCF5445x family is available in the following packages:

1.5

1.6

256-pin molded array process ball grid array (MAPBGA)
360-pin plastic ball grid array (TEPBGA)

Chip Level Features

Version 4 ColdFire core with MMU and EMAC

Up to 410 Dhrystone 2.1 MIPS @ 266 MHz

16 Kbytes instruction cache and 16 Kbytes data cache

32 Kbytes internal SRAM

Support for booting from SPI-compatible flash, EEPROM, and FRAM devices

Crossbar switch technology (XBS) for concurrent access to peripherals or RAM from multiple bus
masters

16 channel DMA controller

16-bit 133MHz DDR/mobile-DDR/DDR2 Controller
USB 2.0 On-the-Go controller with ULPI support
32-bit PCI controller at 66 MHz

ATA/ATAPI controller

2 10/100 Ethernet MACs

Coprocessor for acceleration of the DES, 3DES, AES, MD5, and SHA-1 algorithms
Random number generator

Synchronous serial interface (SSI)

4 periodic interrupt timers (PIT)

4 32-bit timers with DMA support

DMA supported serial peripheral interface (DSPI)

3 UARTs

IC bus interface

Module-by-Module Feature List

The following is a brief summary of the functional blocks in the MCF54455 superset device. For more
details refer to the MCF54455 ColdFire Microprocessor Reference Manual (MCF54455RM).

1-4
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1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

Overview

Version 4 ColdFire variable-length RISC processor

Static operation
32-bit address and data path on-chip

Maximum 266 MHz processor core, 133 MHz internal peripheral, and 66 MHz external FlexBus
frequency

Sixteen total general-purpose 32-bit registers data and address

Enhanced multiply-accumulate unit (EMAC) for DSP and fast multiply operations
Hardware divide execution unit supporting various 32-bit operations

Implements the ColdFire Instruction Set Architecture, ISA C

Cryptography acceleration unit (CAU)

— DES and AES block cipher engines

— MDS5, SHA-1, and HMAC hash accelerator

On-chip Memories

32 Kbyte dual-ported SRAM on CPU internal bus

— Accessible to non-core bus masters (e.g. FEC, DMA, USB OTG, and PCI controllers) via the
crossbar switch

Non-blocking, independent 16 Kbyte data and instruction caches organized as 4-way set
associative with 16 bytes per cache line and 1024 cache lines, supporting copy-back and
write-through modes of operation

Phase Locked Loop (PLL)

1640 MHz reference crystal
Loss-of-lock detection

Power Management

Fully static operation with processor sleep and whole chip stop modes

Very rapid response to interrupts from the low-power sleep mode (wake-up feature)
Peripheral power management register to enable/disable clocks to most modules
Software controlled disable of external clock input for low power consumption

Chip Configuration Module (CCM)

System configuration during reset

Bus monitor, abort monitor

Configurable output pad drive strength control
Unique part identification and part revision numbers
Serial boot capability
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— Supports SPI-compatible EEPROM, flash, and FRAM
— Configurable boot clock frequency

1.6.6 Reset Controller

» Separate reset in and reset out signals

» Six sources of reset: power-on reset (POR), external, software, watchdog timer, loss of lock, JITAG
instruction

+ Status flag indication of source of last reset

1.6.7 System Control Module

* Access control registers
« Core watchdog timer with a 2" (where n = 8-31) clock cycle selectable timeout period
* Core fault reporting

1.6.8 Crossbar Switch

* Concurrent access from different masters to different slaves
» Slave arbitration attributes configured on a slave by slave basis
* Fixed or round-robin arbitration

1.6.9 Peripheral Component Interconnect (PCI) Bus

» Compatible with PCI 2.2 specification

» Supports up to 4 external PCI masters

* 32-bit target and intiator operation

* 33-66 MHz operation with PCI bus to internal bus divider ratios of 1:1, 1:2, 1:3, 2:3, and 1:4

1.6.10 Universal Serial Bus (USB) 2.0 On-The-Go (OTG) Controller

*  Support for full speed (FS) and low speed (LS) via a serial interface or on-chip FS/LS transceiver

* Optional UTMI+ Low Pin Count Interface (ULPI) on some packages to support high speed (HS)
transfers

» Uses 60 MHz reference clock based off of the system clock or from an external pin

1.6.11 DDR SDRAM Controller

* Supports a glueless interface to DDR, DDR2, and mobile/low-power DDR SDRAM devices
* Support for 16-bit fixed memory port width
» 16-byte critical word first burst transfer

* Up to 14 lines of row address, up to 11 column address lines (16-bit bus), 2 bits of bank address,
and two pinned-out chip selects. The maximum row bits plus column bits equals 25.
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Supports up to 512 MByte of memory; minimum memory configuration of § MByte
Supports page mode to maximize the data rate
Supports sleep mode and self-refresh mode

1.6.12 FlexBus (External Interface)

Glueless connections to 16-, and 32-bit external memory devices (SRAM, flash, ROM, etc.)
Support for independent primary and secondary wait states per chip select

Programmable address setup and hold time with respect to chip-select assertion, per transfer
direction

Glueless interface to SRAM devices with or without byte strobe inputs
Programmable wait state generator

32-bit external bidirectional data bus and 24-bit address bus

Up to four chip selects available

Byte/write enables (byte strobes)

Ability to boot from external memories that are 8, 16, or 32 bits wide

1.6.13 Synchronous Serial Interface (SSI)

Supports shared (synchronous) transmit and receive sections

Normal mode operation using frame sync

Network mode operation allowing multiple devices to share the port with as many as 32 time slots
Gated clock mode operation requiring no frame sync

Programmable data interface modes such as I°S, LSB aligned, and MSB aligned

Programmable word length up to 24 bits

AC97 support

1.6.14 ATA Controller

Compliant with ATA-6 specification

Supports PIO modes 0, 1, 2, 3 and 4

Supports multiword DMA modes 0, 1 and 2

Supports ultra DMA modes 0, 1, 2, 3 and 4 with an internal bus clock of at least 50 Mhz
Supports ultra DMA mode 5 with an internal bus clock of at least 80 Mhz

128 byte FIFO part of interface

FIFO receive alarm, FIFO transmit alarm and FIFO end of transmission alarm to DMA unit
Zero-wait cycles transfer between DMA bus and FIFO allows fast FIFO reading/writing

1.6.15 Fast Ethernet Media Access Controller (FEC MAC)

10/100 BaseT/TX capability, half duplex or full duplex
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*  On-chip transmit and receive FIFOs

* Built-in dedicated DMA controller

* Memory-based flexible descriptor rings

* Media independent interface (MII) to external transceiver (PHY)
» Separate RMII gasket to interface with RMII-compatible PHY

1.6.16 Random Number Generator (RNG)

* FIPS-140 compliant for randomness and non-determinism

1.6.17 Real Time Clock

» Full clock: days, hours, minutes, seconds

* Minute countdown timer with interrupt

* Programmable daily alarm with interrupt

» Sampling timer with interrupt

*  Once-per-day, once-per-hour, once-per-minute, and once-per-second interrupts

* Operation determined by reference input oscillator clock frequency and value programmed into
user-accessible registers

» Ability to wake the processor from low-power modes (wait, doze, and stop) via the RTC interrupts

1.6.18 Software Watchdog Timer

* 16-bit down-counter which resets the device if not serviced

1.6.19 Programmable Interrupt Timers (PIT)

* Four programmable interrupt timers each with a 16-bit counter
» Configurable as a down counter or free-running counter

1.6.20 DMA Timers

» Four 32-bit timers with DMA and interrupt request trigger capability
» Input capture and reference compare modes

1.6.21 DMA Serial Peripheral Interface (DSPI)

* Full-duplex, three-wire synchronous transfer
» Up to five chip selects available
* Master and slave modes with programmable master bit-rates

» Up to 16 pre-programmed transfers
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1.6.22 Universal Asynchronous Receiver Transmitters (UARTS)

» 16-bit divider for clock generation

* Interrupt control logic

* DMA support with separate transmit and receive requests

* Programmable clock-rate generator

» Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity
» Up to two stop bits in 1/16 increments

» Error-detection capabilities

1.6.23  12C Module

* Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
«  Fully compatible with industry-standard I>C bus

* Master or slave modes support multiple masters

* Automatic interrupt generation with programmable level

1.6.24 Interrupt Controllers
* Two interrupt controllers, supporting up to 64 interrupt sources each, organized as seven
programmable levels
* Unique vector number for each interrupt source
* Ability to mask any individual interrupt source plus a global mask-all capability
» Support for service routine software interrupt acknowledge (IACK) cycles

» Combinational path to provide wake-up from low power modes

1.6.25 Edge Port Module
» Each pin can be individually configured as low level sensistive interrupt pin or edge-detecting
interrupt pin (rising, falling, or both)
» Exit stop mode via level-detect function

1.6.26 DMA Controller

* 16 fully programmable channels with 32-byte transfer control

» Data movement via dual-address transfers for 8-, 16-, 32- and 128-bit data values

» Programmable source, destination addresses, transfer size, support for enhanced address modes
» Support for major and minor nested counters with one request and one interrupt per channel

» Support for channel-to-channel linking and scatter/gather for continuous transfers with fixed
priority and round-robin channel arbitration

* External request pins for up to 2 channels
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1.6.27 General Purpose I/O interface

*  Up to 93 bits of GPIO for the MCF54450 and MCF54451

» Up to 132 bits of GPIO for the MCF54452, MCF54453, MCF54454, and MCF54455
* Bit manipulation supported via set/clear functions

* Various unused peripheral pins may be used as GPIO

1.6.28 System Debug Support

» Background debug mode (BDM) Revision D+

» Real time debug support, with four PC breakpoint registers and a pair of address breakpoint
registers with optional data

1.6.29 JTAG Support

» JTAG part identification and part revision numbers

1.7  Memory Map Overview

Table 1-2 illustrates the overall memory map of the device.

Table 1-2. System Memory Map

Ad d':;:;;];::zs] Address Range Destination Slave Slave Memory Size
00xx 0x0000_0000 — 0x3FFF_FFFF FlexBus 1024 MB
01xx 0x4000_0000 — Ox7FFF_FFFF SDRAM Controller 1024 MB
1000 0x8000_0000 — 0x8FFF_FFFF Internal SRAM 256 MB
1001 0x9000_0000 — 0x9FFF_FFFF ATA Controller 256 MB
101x 0xA000_0000 — 0xBFFF_FFFF PCI Controller 512 MB
110x 0xC000_0000 — OxDFFF_FFFF FlexBus 512 MB
1110 0xE000_0000 — OXEFFF_FFFF Reserved 256 MB
1111 0xF000_0000 — OxFFFF_FFFF | Internal Peripheral Space 256 MB

1-10 Freescale Semiconductor



1.7.1

NOTE

This memory map provides two disjoint regions mapped to the FlexBus
controller to support glueless connections to external memories (e.g., flash
and SRAM), as well as a second space with one (or more) unique
chip-selects that can be used for non-cacheable, non-memory devices
(addresses 0xC000_ 0000 — 0xDFFF_FFFF). Additionally, this mapping is
selected because it easily maps into the ColdFire access control registers,
which provide a coarse association between memory addresses and their
attributes (e.g., cacheable, non-cacheable). For this device, one possible
configuration defines the default memory attribute as non-chacheable, and
one ACR is then used to identify cacheable addresses. For example,
ADDR[31] equaling 0 identifies the cacheable space.

Internal Peripheral Space

Overview

The internal peripheral space contains locations for all internal registers used to program and control the
device’s functional blocks and external interfaces. Table 1-3 summarizes the various register spaces and

their base addresses. Each slot is 16 kB in size, which is not necessarily taken up entirely by the functional
blocks. Any slot not illustrated is reserved. See corresponding chapter for details on their individual

memory maps.

Table 1-3. Internal Peripheral Space Memory Map

Base Address Slot Number Peripheral
0xFCO00_0000 0 SCM (MPR and PACRs)
0xFC00_4000 1 Crossbar switch
0xFC00_8000 2 FlexBus
0xFCO03_0000 12 FECO
0xFCO03_4000 13 FECA
0xFC03_C000 15 Real-Time Clock
0xFCO04_0000 16 SCM (CWT and Core Fault Registers)
0xFC04_4000 17 eDMA Controller
0xFCO04_8000 18 Interrupt Controller 0
0xFC04_C000 19 Interrupt Controller 1
0xFCO05_4000 21 Interrupt Controller IACK
0xFC05_8000 22 1°C
0xFCO05_C000 23 DSPI
0xFC06_0000 24 UARTO
0xFCO06_4000 25 UART1
0xFCO06_8000 26 UART2
0xFCO07_0000 28 DMA Timer 0
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1.8

Table 1-3. Internal Peripheral Space Memory Map (continued)

Base Address Slot Number Peripheral
0xFCO07_4000 29 DMA Timer 1
0xFC07_8000 30 DMA Timer 2
0xFCO07_C000 31 DMA Timer 3
0xFC08_0000 32 PITO

0xFCO08_4000 33 PIT 1

0xFC08_8000 34 PIT 2
0xFC08_C000 35 PIT 3

0xFC09_4000 37 Edge Port
0xFCOA_0000 40 CCM, Reset Controller, Power Management
O0xFCOA_4000 41 Pin Multiplexing and Control (GPIO)
0xFCOA_8000 42 PCI Controller
0xFCOA_C000 43 PCI Arbiter
0xFCO0B_0000 44 USB On-the-Go
0xFCO0B_4000 45 RNG

0xFCO0B_8000 46 SDRAM Controller
0xFCO0B_C000 47 SSi

0xFCO0C_4000 49 PLL

Documentation

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale
Literature Distribution Center, or through the Freescale world-wide web address at

http://www.freescale.com/coldfire.
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Chapter 2
Signal Descriptions

2.1 Introduction

This chapter describes the external signals on the device. It includes an alphabetical signal listing of signals
that characterizes each signal as an input or output, defines its state at reset, and identifies whether a
pull-up resistor should be used.

NOTE

The terms assertion and negation are used to avoid confusion when dealing
with a mixture of active-low and active-high signals. The term asserted
indicates that a signal is active, independent of the voltage level. The term
negated indicates that a signal is inactive.

Active-low signals, such as SD_SRAS and TA, are indicated with an
overbar.

2.2 Signal Properties Summary

The below table lists the signals grouped by functionality.
NOTE

In this table and throughout this document, a single signal within a group is
designated without square brackets (i.e., FB_AD23), while designations for
multiple signals within a group use brackets (i.e., FB. AD[23:21]) and is
meant to include all signals within the two bracketed numbers when these
numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality.
Most pins that are muxed with GPIO default to their GPIO functionality. See
Table 2-1 for a list of the exceptions.

Table 2-1. Special-Case Default Signal Functionality

Pin 256 MAPBGA 360 TEPBGA

FB_AD[31:0] FB_AD[31:0] except when serial boot selects 0-bit
boot port size.

FB_BE/BWE[3:0] FB_BE/BWE[3:0]
FB_CS[3:1] FB_CS[3:1]
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Table 2-1. Special-Case Default Signal Functionality (continued)

Pin 256 MAPBGA 360 TEPBGA
FB_OE FB_OE
FB_R/W FB_R/W
FB_TA FB_TA
FB_TS FB_TS

PCI_GNT[3:0] GPIO PCI_GNTI[3:0]

PCI_REQ[3:0] GPIO PCI_REQ][3:0]

IRQ1 GPIO PCI_INTA and

configured as an agent.
ATA_RESET GPIO ATA reset

Table 2-2. MCF5445x Signal Information and Muxing

— 8 |a MCF54452
2c |58 £ | MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate 2 S % 5 S £ | MCF54451 MCF54454
=3 | £ | S8 |256 MAPBGA| MCF54455
az o 360 TEPBGA
Reset
RESET — — U I EVDD L4 Y18
RSTOUT — — — O | EVDD M15 B17
Clock
EXTAL/PCI_CLK — — — I EVDD M16 A16
XTAL — — us O | EVDD L16 A17
Mode Selection
BOOTMODI[1:0] — — — EVDD M5, M7 AB17, AB21
FlexBus
FB_AD[31:24] PFBADH[7:0]* FB_D[31:24] — — I/O | EVDD | A14,A13,D12, | J2,K4,J1,K1-3,
C12,B12, A12, L1, L4
D11, C11
FB_AD[23:16] PFBADMH[7:0]* FB_D[23:16] — — I/0 | EVDD | B11,A11,D10, L2, L3, M1-4,
C10, B10, A10, N1-2
D9, C9
FB_AD[15:8] PFBADML[7:0]* FB_D[15:8] — — I/O | EVDD | B9, A9,D8,C8, | P1-2, R1-3, P4,
B8, A8, D7, C7 T1-2
FB_AD[7:0] PFBADL[7:0]* FB_D[7:0] — — /O | EVDD | B7, A7,D6, C6, T3-4,U1-3,
B6, A6, D5, C5 V1-2, W1
FB_BE/BWE[3:2] PBE[3:2] FB_TSIZ[1:0] — — O | EVDD B5, A5 Y1, W2
FB_BE/BWE[1:0] PBE[1:0] — — O | EVDD B4, A4 W3, Y2
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

— 8 |« MCF54452
2c s g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
FB_CLK — — — — O | EVDD B13 J3
FB_CS[3:1] PCS[3:1] — — O | EVDD C2, D4, C3 W5, AA4, AB3
FB_CS0 — — — — O | EVDD C4 Y4
FB_OE PFBCTL3 — — — O | EVDD A2 AA1
FB_R/W PFBCTL2 — — — O | EVDD B2 AA3
FB_TA PFBCTLA1 — — U | | EVDD B1 AB2
FB_TS PFBCTLO FB_ALE FB_TBST — O | EVDD A3 Y3
PCI Controller®
PCI_ADI[31:0] — FB_A[31:0] — — I/0 | EVDD — C11, D11, A10,
B10, J4, G2, G3,
F1,D12, C12,
B12, A11, B11,
B9, D9, D10, A8,
B8, A5, B5, A4,
A3, B3, D4, D3,
E3-E1, F3, C2,
D2, C1
— — FB_A[23:0] — — I/0 | EVDD | K14-13,J15-13, —
H13-15, G15-13,
F14-13, E15-13,
D16, B16, C15,
B15, C14, D15,
C16,D14
PCI_CBE[3:0] — — — — I/0 | EVDD — G4, E4, D1, B1
PCI_DEVSEL — —_ — — O | EVDD — F2
PCI_FRAME — — — — /0 | EVDD — B2
PCI_GNT3 PPCI7 ATA_DMACK — — O | EVDD — B7
PCI_GNT[2:1] PPCI[6:5] — — — O | EVDD — C8,C9
PCI_GNTO0/ PPCl4 — — — O | EVDD — A9
PCI_EXTREQ
PCI_IDSEL — —_ — — I EVDD — D5
PCI_IRDY — — — — /0 | EVDD — c3
PCI_PAR — — — — I/0 | EVDD — c4
PCI_PERR — — — — | vo | EvbD - B4
PCI_REQS3 PPCI3 ATA_INTRQ — — | | EVDD — c7
PCI_REQ[2:1] PPCI[2:1] — — — | | EVDD — D7, C5
PCI_REQO/ PPCIO — — — | | EVDD — A2
PCI_EXTGNT
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

— 8 |« MCF54452
2c | § g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
PCI_RST — — — — O | EVDD — B6
PCI_SERR — — — /0 | EVDD — A6
PCI_STOP — — — — I/0 | EVDD — A7
PCI_TRDY — — — — /0 | EVDD — c10
SDRAM Controller
SD_A[13:0] — — — — O |SDvDD| Ri1,P1,N2, P2, V22, U20-22,
R2, T2, M4, N3, | T19-22, R20-22,
P3, R3, T3, T4, N19, P20-21
R4, N4
SD_BA[1:0] — — — — O |sbvDD P4, T5 P22, P19
SD_CAS — —_ — — O |sbvbDD T6 L19
SD_CKE — — — — O |SDbvDD N5 N22
SD_CLK — — — — O |sbvbD T9 L22
SD_CLK — — — — O |sbvbD T8 M22
SD_CSJ[1:0] — — — — O |sbvDD P6, R6 L20, M20
SD_DI[31:16] — — — — /O |SDVDD | N6, T7,N7,P7, | L21,K22, K21,
R7, R8, P8, N8, K20, J20, J19,
N9, T10, R10, J21, J22, H20,
P10,N10, T11, | G22, G21, G20,
R11, P11 G19, F22, F21,
F20
SD_DM[3:2] — — — — O |sbvDD P9, N12 H21, E21
SD_DQSJ[3:2] — — — — O |sDvDD R9, N11 H22, E22
SD_RAS — — — — O |sbvbDD P5 N21
SD_VREF — — — — | |sbvDD M8 M21
SD_WE — — — — O |sbvbDD R5 N20
External Interrupts Port®
IRQ7 PIRQ7 — —_ — I EVDD L1 ABB13
IRQ4 PIRQ4 — SSI_CLKIN — | | EVDD L2 ABB13
IRQ3 PIRQ3 — — — | | EVDD L3 AB14
IRQ1 PIRQ1 PCI_INTA — — | | EVDD F15 c6
FECO
FECO_MDC PFECI2C3 — — — O | EVDD F3 AB8
FECO_MDIO PFECI2C2 — — — /0 | EVDD F2 Y7
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

Signal Descriptions

— 8 | o MCF54452
2¢c | § | &S| MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
FECO0_COL PFECOH4 — ULPI_DATA7 — | | EVDD E1 AB7
FECO_CRS PFECOHO — ULPI_DATA6 | | EVDD F1 AA7
FECO_RXCLK PFECOH3 — ULPI_DATA1 — | | EVDD G1 AAB
FECO_RXDV PFECOH2 FECO_RMII_ — — | | EVDD G2 Y8
CRS_DV
FECO_RXD[3:2] PFECOL[3:2] — ULPI_DATA[5:4] | — | | EVDD G3, G4 ABY, Y9
FECO_RXD1 PFECOLA FECO_RMII_RXD1 — — | | EVDD H1 wo
FECO_RXDO PFECOH1 FECO_RMII_RXDO — — | | EVDD H2 AB10
FECO_RXER PFECOLO | FECO_RMII_RXER — — | | EVDD H3 AA10
FECO_TXCLK PFECOH7 FECO_RMII_ — — | | EVDD Ha Y10
REF_CLK
FECO_TXD[3:2] PFECOL[7:6] — ULPI_DATA[3:2] | — | O | EVDD 1,42 W10, AB11
FECO_TXDf1 PFECOL5 FECO_RMII_TXD1 — — | o | Evbp J3 AA11
FECO_TXDO PFECOH5 FECO_RMII_TXDO — — | o | EvbD J4 Y11
FECO_TXEN PFECOH6 | FECO_RMII_TXEN — — | o | Evop K1 Wi1
FECO_TXER PFECOL4 — ULPI_DATAO — | o | EvbD K2 AB12
FEC1
FEC1_MDC PFECI2C5 — ATA_DIOR — O | EVDD - w20
FEC1_MDIO PFECI2C4 — ATA_DIOW — | vo | Evbp — v22
FEC1_COL PFEC1H4 — ATA_DATA7 — | | EvDD — AB18
FEC1_CRS PFEC1HO — ATA_DATA6 — | | EVDD - AA18
FEC1_RXCLK PFEC1H3 — ATA_DATA5 — | | EVDD - w14
FEC1_RXDV PFEC1H2 FEC1_RMII_ ATA_DATA15 — | | EVDD - AB15
CRS_DV
FEC1_RXD[3:2] PFEC1L[3:2] — ATA_DATA[4:3] | — | | EVDD - AA15, Y15
FEC1_RXD1 PFEC1LA FEC1_RMII_RXD1 | ATA_DATA14 — | | EVDD - AA17
FEC1_RXDO PFEC1H1 FEC1_RMII_RXDO | ATA_DATA13 — | | EVDD - Y17
FEC1_RXER PFEC1LO | FEC1_RMII_RXER| ATA_DATA12 — | | EVDD - w17
FEC1_TXCLK PFEC1H7 FEC1_RMII_ ATA_DATA11 — | | EVDD - AB19
REF_CLK
FEC1_TXD[3:2] PFEC1L[7:6] — ATA_DATA[2:1] | — | O |EvDD — Y19, W18
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

— 8 | o MCF54452
2c s g £ | MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 _g 2 8 |256 MAPBGA | MCF54455
o E 360 TEPBGA
FEC1_TXD1 PFEC1L5 FEC1_RMII_TXD1 ATA_DATA10 — O | EVDD — AA19
FEC1_TXDO PFEC1H5 FEC1_RMII_TXDO ATA_DATA9 O | EVDD — Y20
FEC1_TXEN PFEC1H6 FEC1_RMII_TXEN ATA_DATA8 — O | EVDD — AA21
FEC1_TXER PFEC1L4 — ATA_DATAO — O | EVDD — AA22
USB On-the-Go
USB_DM — — — — O | usB F16 A14
VDD
USB_DP — — — — O | usB E16 A15
vDD
USB_VBUS_EN PUSB1 USB_PULLUP ULPI_NXT — o) \lfgg E5 AA2
USB_VBUS_OC PUSBO — ULPI_STP up’ | \lfgg B3 \Z
ATA
ATA_BUFFER_EN PATAH5 — — — O | EVDD — Y13
ATA_CSJ[1:0] PATAH[4:3] — — — O | EvDD — w21, W22
ATA_DA[2:0] PATAH[2:0] — — — O | EVDD — V19-21
ATA_RESET PATAL2 — — — O | EvDD — W13
ATA_DMARQ PATALA1 — —_ — I EVDD — AA14
ATA_IORDY PATALO — — — I EVDD — Y14
Real Time Clock
EXTAL32K — — — — | | EVDD J16 A13
XTAL32K — — — — O | EVDD H16 A12
SSI
SSI_MCLK PSSI4 — — — O | EVDD T13 D20
SSI_BCLK PSSI3 U1CTS — — | vo | EvDD R13 E19
SSI_FS PSSI2 UTRTS — — | vo | EvDD P12 E20
SSI_RXD PSSI1 U1RXD — ubD | EVDD T12 D21
SSI_TXD PSSIO U1TXD — ubD O | EVDD R12 D22
1’c
12C_SCL PFECI2C1 — U2TXD U I/0 | EVDD K3 AA12
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

— 8 | o MCF54452
2¢c | § | &S| MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 _g 2 8 |256 MAPBGA | MCF54455
a3 360 TEPBGA
I2C_SDA PFECI2CO — U2RXD U | Vo | EvDD K4 Y12
DMA
DACK1 PDMA3 — ULPI_DIR — o | EVDD M14 c17
DREQ1 PDMA2 — USB_CLKIN U | | EVDD P16 ci8
DACKO PDMA1 DSPI_PCS3 — — o | EVDD N15 A18
DREQO PDMAO — — U | | EVDD N16 B18
DSPI
DSPI_PCS5/PCSS PDSPI6 — — — O | EVDD N14 D18
DSPI_PCS2 PDSPI5 — — — | o | Evbp L13 A19
DSPI_PCS1 PDSPI4 SBF_CS — — | o | Evbp P14 B20
DSPI_PCS0/SS PDSPI3 — — u 10 | EVDD R16 D17
DSPI_SCK PDSPI2 SBF_CK — — | vo | EvbD R15 A20
DSPI_SIN PDSPI SBF_DI — 8 I | EVDD P15 B19
DSPI_SOUT PDSPIO SBF_DO — — | o | EvbD N13 c20
UARTs
U1CTS PUART7? — — — | | EvDD — V3
U1RTS PUART6 — — — o | EvDD — U4
U1RXD PUART5 — — — | | EVDD — P3
U1TXD PUART4 — — — | o | Evop — N3
UOCTS PUART3 — — — | | EVDD M3 Y16
UORTS PUART2 — — — O | EVDD M2 AA16
UORXD PUART1 — — — | | EVDD N1 AB16
UOTXD PUARTO — — — | o | EvbD M1 w15
Note: The UART1 and UART 2 signals are multiplexed on the DMA timers and 12C pins.
DMA Timers
DT3IN PTIMER3 DT30UT U2RXD — | | EVDD c13 H2
DT2IN PTIMER2 DT20UT U2TXD — | | EVDD D13 H1
DT1IN PTIMERT DT10UT U2CTS — | | EVDD B14 H3
DTOIN PTIMERO DTOOUT U2RTS — | | EVDD A15 G1
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Table 2-2. MCF5445x Signal Information and Muxing (continued)

~ 8 |a MCF54452
2c s g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
a3 Q 360 TEPBGA
BDM/JTAG?®
PSTDDATA[7:0] — — — — O | EVDD | E2,D1,F4,E3, | AA6, AB6, ABS5,
D2, C1, E4, D3 W6, Y6, AA5,
AB4, Y5
JTAG_EN — — — D I EVDD M11 c21
PSTCLK — TCLK — — | | EVDD P13 c22
DSI — TDI — U I | EvDD T15 c19
DSO — TDO — — O | EVDD T14 A21
BKPT _ TMS — U I | EvDD R14 B21
DSCLK — TRST — U I | EvDD M13 B22
Test
TEST — — — D I EVDD M6 AB20
PLLTEST — — — — O | EVDD K16 D15
Power Supplies
IVDD — — — — — — E6-12, F5, F12 | D6, D8, D14, F4,
H4, N4, R4, W4,
W7, W8, W12,
W16, W19
EVDD — — — — — — | G5,G12,H5,H12, | D13, D19, G8,
J5,J12, K5, K12, | G11, G14, G16,
L5-6, L12 J7,J16, L7, L16,
N16, P7, R16, T8,
T12, T14, T16
SD_VDD — — — — — — L7-11, M9, M10 | F19, H19, K19,
N M19, R19, U19
VDD_OSC — — — — — — L14 B16
VDD_A_PLL — — — — — — K15 Cl4
VDD_RTC — — — — — — M12 c13
VSS _ _ _ — — — A1, A16, F6-11, | A1, A22,B14,G7,
G6-11, H6-11, | G9-10, G12-13,
J6-11,K6-11,T1, | G15, H7, H16,
T16 J9-14,K7,K9-14,
K16, L9-14, M7,
M9-M14, M16,
N9-14, P9-14,
P16, R7, T7,
T9-11, T13, T15,
AB1, AB22
VSS_0OSC — — — — — — L15 c16

1 Pull-ups are generally only enabled on pins with their primary function, except as noted.

2 Refers to pin’s primary function.
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3 Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).

Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.

When the PCl is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have
GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCl agent and as GPIO when booting
as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines
and IRQ1/PCI_INTA come up as GPIO.

GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning
the alternate functions.

Depends on programmed polarity of the USB_VBUS_OC signal.
Pull-up when the serial boot facility (SBF) controls the pin

If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not
responsible for assigning these pins.

NOTE

2.3 Signal Primary Functions

2.3.1 Reset Signals

Table 2-3 describes signals used to reset the chip or to indicate a reset.

Table 2-3. Reset Signals

Signal Name Abbreviation Function /0

Reset In RESET Primary reset input to the device. Asserting RESET resets the core and |
peripherals after four FB_CLK cycles. Asserting RESET also causes
RSTOUT to be asserted.

Reset Out RSTOUT Reset output (RSTOUT) is an indicator that the chip is in reset. (0]
RSTOUT is asserted at least 512 internal system bus clock cycles (256
FB_CLK cycles) in response to any internal or external reset. (The
exact time depends on how long it takes for the PLL to lock and/or the
serial boot sequence to complete.)
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2.3.2 PLL and Clock Signals

Table 2-4 describes signals that are used to support the on-chip clock generation circuitry.
Table 2-4. PLL and Clock Signals

Signal Name Abbreviation Function /0

External Clock In EXTAL Always driven by an external clock input except when used as a I

connection to the external crystal if the internal oscillator circuit is

used. Clock source may be configured during reset. See Chapter 11,

“Chip Configuration Module (CCM),” for more details.

Note: This signal is also PCI_CLK (33 or 66 MHz) when running from
an external oscillator with PCI enabled.

Crystal XTAL Used as a connection to the external crystal when the internal 0]
oscillator circuit is used to drive the crystal.

RTC External Clock In  |EXTAL32K | Crystal input clock for the real-time clock module. I

RTC Crystal XTAL32K Oscillator output to EXTAL RTC crystal. 0]

FlexBus Clock Out FB_CLK Reflects one-half of the internal bus clock (or one-fourth the (0]
core/system clock). (fsys/a)

USB Clock In USB_CLKIN |This pin allows the user to drive the reference clock to the USB module I
as an alternate method of generating the USB reference clock during
FS/LS operation. This pin should be driven only with a 60 MHz clock.
When using the ULPI USB interface, this pin is the ULPI input clock.

SSI Clock In SSI_CLKIN |This pin allows the user to drive a specific clock frequency to the SSI
module.

2.3.3 Mode Selection
Table 2-5. Mode Selection Signals

Signal Name Abbreviation Function /0
Boot mode BOOTMODI1:0] |Indicates the device’s boot mode and chip configuration at reset. See |
Chapter 11, “Chip Configuration Module (CCM),” for the signal
encodings.
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2.3.4 FlexBus Signals

Table 2-6 describes signals that are used for performing transactions on the external bus.
Table 2-6. FlexBus Signals

Signal Name Abbreviation Function /0

Address/Data Bus FB_ADI[31:0] Defines address and data of external byte, word, and longword /0
accesses. This three-state, bi-directional bus is the general-purpose
address/data path to external SRAM and flash devices.

Byte Enables FB_BE/BWE[3:0]|Defines flow of data on data bus. During peripheral accesses, these (0]
output signals indicate that data is to be latched or driven onto a byte
of the data bus when driven low. The BE/BWE[3:0] signals are
asserted only to the memory bytes used during a read or write access.
BE/BWEQO controls access to the most significant byte lane of data,
and BE/BWES controls access to the least significant byte lane of
data.

For SRAM or Flash devices, the BE/BWEn outputs should be
connected to individual byte strobe signals.

The BE/BWEn signals are asserted during accesses to on-chip
peripherals, but not to on-chip SRAM or cache.

Output Enable FB_OE Indicates when an external device can drive data during external read (0]
cycles.
Transfer Acknowledge |FB_TA Indicates external data transfer is complete. During a read cycle, when

the processor recognizes TA, it latches the data and then terminates
the bus cycle. During a write cycle, when the processor recognizes TA,
the bus cycle is terminated.

Read/Write FB_R/W Indicates direction of the data transfer on the bus for SRAM (R/W) (0]
accesses. A logic 1 indicates a read from a slave device and a logic 0
indicates a write to a slave device.

Transfer Size FB_TSIZ[1:0] Indicates bus width (8, 16, or 32 bits) for each chip select. The initial (0]
width for the bootstrap program chip select is determined by the initial
state of TSIZ[1:0].

Transfer Burst FB_TBST Indicates external bus access is a burst access. (0]
Transfer Start FB_TS Bus control output signal indicating the start of a transfer. (0]
Address Latch Enable |FB_ALE Indicates device has begun a bus transaction and the address and (0]

attributes are valid. FB_ALE is asserted for one bus clock cycle. In
multiplexed mode, ALE is used externally as an address latch enable
to capture the address phase of the bus transfer.

Chip Selects FB_CS[3:0] Select external devices for external bus transactions. (0]
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2.3.5

SDRAM Controller Signals

Table 2-7 describes signals used for SDRAM accesses.
Table 2-7. SDRAM Controller Signals

logic 1 indicates a read from a slave device and a logic O indicates a
write to a slave device.

Signal Name Abbreviation Function /0
SDRAM Address Bus SD_A[13:0] Address bus used for multiplexed row and column addresses during (0]
SDRAM bus cycles.
SDRAM Data Bus SD_DI[31:16] |Bidirectional, non-multiplexed data bus for SDRAM accesses. 110
SDRAM Bank Address SD_BA[1:0] Selects one of the four SDRAM row banks. (0]
SDRAM Clock Enable SD_CKE SDRAM clock enable. (0]
DDR SDRAM Clock SD_CLK Output clock for DDR SDRAM. (0]
DDR SDRAM Clock SD_CLK Inverted output clock for DDR SDRAM. (0]
SDRAM Chip Selects SD_CSJ[1:0] SDRAM chip select signals. o
DDR SDRAM Data Strobes |SD_DQS[3:2] |Indicates when valid data is on data bus. I/O
SDRAM Write Data Byte  |SD_DQM[3:2] |Used to determine which byte lanes of data bus should be latched (0]
Mask during a write cycle.
The SD_DQMn should be connected to individual SDRAM DQM
signals. Most SDRAMs associate DQM3 with the MSB, in which case
SD_DQMS3 should be connected to the SDRAM's DQMS3 input.
SDRAM Column Address |SD_CAS SDRAM column address strobe. 0]
Strobe
SDRAM Row Address SD_RAS SDRAM row address strobe. (0]
Strobe
SDRAM Write Enable SD_WE Indicates direction of data transfer on bus for SDRAM accesses. A (6]

SDRAM Voltage Reference

SD_VREF

Reference voltage for differential 1/0O pad cells. Should be half the
voltage of the memory used in the system. For example, 2.5 V DDR
results in an SD_VREF of 1.25 V. See the device’s datasheet for the
voltages and tolerances for the various memory modes.
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2.3.6

Table 2-8 describes the external interrupt signals used on the external PCI bus.

PCI Controller Signals

Table 2-8. PCI Controller Signals

Signal Name Abbreviation Function /0

PCI Address/Data Bus |PCI_ADI[31:0] [Multiplexed address/data bus. I/O

PCI Command/Byte PCI_CBE[3:0] |Multiplexed PCl command and byte enables. The PCl command is I/0

Enables present during address phase; the byte enables are present during
data phase.

PCI Device Select PCI_DEVSEL |Indicates processor has recognized itself as the target of a PCI @)
transaction from address presented on the PCI bus.

PCI Frame PCI_FRAME |Asserted by a PCl initiator to indicate the beginning of a transaction. | /O
It is negated when initiator is ready to complete final data phase.

PCI External Bus Grant |PCI_GNT[3:1] |Asserted to an external master to give it control of PCI bus. If internal o
PCI arbiter is enabled, it asserts one of the PCI_GNT[3:1] signals to
grant ownership of PCI bus to external master. When PCI arbiter is
disabled, PCI_GNT[3:1] are driven high and should be ignored.

PCI External Bus PCI_GNTO/ Asserted to external master device 0 to give it control of the PCI bus. O

Grant/Request PCI_EXTREQ |When the PCI arbiter is disabled, the signal operates as the
PCI_EXTREQ output, which is asserted when the processor needs to
initiate a PCI transaction.

PCI Initialization Device |PCI_IDSEL Asserted during a PCI type-0 configuration cycle to address the PCI 0]

Select configuration header.

PCI Initiator Ready PCI_IRDY Indicates that PCl initiator is ready to transfer data. During a write I/0
operation, assertion indicates the master is driving valid data on bus.
During a read operation assertion indicates that master is ready to
accept data.

PCI Parity PCI_PAR Indicates the parity of the data on the PCI_AD[31:0] and 1/0
PCI_CBE[3:0] signals.

PCI Parity Error PCI_PERR Asserted when data phase parity error is detected if enabled. /0

PCI External Bus PCI_REQ[3:1] |Asserted by an external PCl master when it requires access to the PCI |

Request bus.

PCI External Bus PCI_REQO/ Asserted by external PCI master device 0 when it requires access to |

Request/Grant PCI_EXTGNT |the PCI bus. When internal PCI arbiter is disabled, this signal is used
as a grant input for PCI bus, which is driven by an external PCI arbiter.

PCI Reset PCI_RST Asserted by processor to reset PCl bus. It is asserted when processor | O
is reset and must be negated to enable usage on PCI bus.

PCI System Error PCI_SERR Indicates detection of an address-phase-parity error. I/0

PCI Stop PCI_STOP Indicates that the currently addressed target wishes to stop the I/0
current transaction.

PCI Target Ready PCI_TRDY Indicates currently addressed target is ready to complete the current | 1/O
data phase.

PCI Interrupt A PCI_INTA This output is the PCI interrupt A signal. 0]
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2.3.7 Serial Boot Facility Signals
Table 2-9. SBF Signals

Signal Name Abbreviation Function /0
SBF Chip Select SBF_CS Chip select used to access external SPI memory. (0]
SBF Clock SBF_CK 25 MHz clock source for external SPI memory. 0]
SBF Data In SBF_DI Data being driven by SPI memory. I
SBF Data Out SBF_DO Data out to SPI memory. SBF uses this output solely for the purpose o]

of issuing the SPI memory READ command. SBF does not write data
to SPI memory.

2.3.8 External Interrupt Signals

Table 2-10. External Interrupt Signals

Signal Name Abbreviation Function /0

External Interrupts 1RQ[7,4,3,1] |External interrupt sources. I

2.3.9 DMA Signals
Table 2-11. DMA Signals

Signal Name Abbreviation Function /0

DMA Request DREQ[1:0] Asserted by an external device to request a DMA transfer. |

DMA Acknowledge DACK][1:0] Asserted by processor to indicate DMA request has been recognized.| O

2.3.10 Fast Ethernet Controller (FECO and FEC1) Signals

The following signals are used by the two Ethernet modules.

Table 2-12. Ethernet Module (FEC) Signals

Signal Name Abbreviation Function /0

Management Data FECn_MDIO Transfers control information between external PHY and the lfe}
media-access controller. Data is synchronous to FECn_MDC. Applies
to MIl mode operation. This signal is an input after reset. When the
FEC is operated in 10Mbps 7-wire interface mode, this signal should
be connected to VSS.

Management Data FECn_MDC In Ethernet mode, FECn_MDC is an output clock that provides a (0]
Clock timing reference to PHY for data transfers on FECn_MDIO signal.
Applies to MIl mode operation.

Collision FECn_COL Asserted upon collision detection and remains asserted while collision |
persists. This signal is not defined for full-duplex mode.

Carrier Receive Sense |[FECn_CRS When asserted, indicates transmit or receive medium is not idle. |
Applies to MIl mode operation.
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Table 2-12. Ethernet Module (FEC) Signals (continued)

Signal Name Abbreviation Function /10

Transmit Clock FECn_TXCLK |Input clock providing a timing reference for FECn_TXEN, |
FECn_TXD[3:0] and FECn_TXER

Transmit Enable FECn_TXEN Indicates when valid nibbles are present on MIl. This signal is (0]
asserted with the first nibble of a preamble and is negated before the
first FECn_TXCLK following the final nibble of the frame.

Transmit Data 0 FECn_TXDO FECn_TXDO is the serial output Ethernet data and is valid only during | O
the assertion of FECn_TXEN. This signal is used for 10-Mbps
Ethernet data. Also used for MIl mode data in conjunction with
FECn_TXD[3:1].

Transmit Data 1-3 FECn_TXD[3:1] |In Ethernet mode, these pins contain serial output Ethernet data and (e
are valid only during assertion of FECn_TXEN in MIl mode.

Transmit Error FECn_TXER In Ethernet mode, when FECn_TXER is asserted for one or more (6]
clock cycles while FECn_TXEN is also asserted, the PHY sends one
or more illegal symbols. FECn_TXER has no effect at 10 Mbps or
when FECn_TXEN is negated. Applies to MIl mode operation.

Receive Clock FECn_RXCLK |Provides a timing reference for FECn_RXDV, FECn_RXD[3:0], and |
FECn_RXER.

Receive Data Valid FECn_RXDV Asserting the FECn_RXDV input indicates that the PHY has valid |
nibbles present on the MIl. FECn_RXDV should remain asserted from
the first recovered nibble of the frame through to the last. Assertion of
FECn_RXDV must start no later than the SFD and exclude any EOF.

Receive Data 0 FECn_RXDO FECn_RXDO is the Ethernet input data transferred from the PHY to |
the media-access controller when FECn_RXDV is asserted. This
signal is used for 10-Mbps Ethernet data. This signal is also used for
MIl mode Ethernet data in conjunction with FECn_RXD[3:1].

Receive Data 1-3 FECn_RXDI[3:1]|In Ethernet mode, these pins contain Ethernet input data transferred |
from the PHY to the media access controller when FECn_RXDV is
asserted in MIl mode operation.

Receive Error FECn_RXER In Ethernet mode, when asserted with FECn_RXDV, FECn_RXER |
indicates that the PHY has detected an error in current frame. When
FECn_RXDV is not asserted FECn_RXER has no effect. Applies to
MIl mode operation.

2.3.11 I2C I/O Signals
Table 2-13. I12C I/O Signals

Signal Name Abbreviation Function /0

Serial Clock 12C_SCL Open-drain clock signal for I°C interface. It is driven by the I°C module | 1/O
when the bus is in master mode, or it becomes the clock input when
the 12C is in slave mode.

Serial Data 12C_SDA Open-drain signal serving as the data input/output for the 1°C I/0
interface.
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2.3.12 ATA Controller Signals

Table 2-14. ATA Controller Signals

Signal Name Abbreviation Function /10
ATA Data Bus ATA_DATA[15:0] The bi-directional, three-state ATA data bus. I/0
ATA Buffer Enable ATA_BUFFER_EN |This output signal is the ATA transceiver direction-control signal. 0]
ATA Chip Selects ATA_CSJ[1:0] These output signals ATA bus chip selects. (0]
ATA Address ATA_DA[2:0] These output signals are ATA bus address group. o]
ATA Reset ATA_RESET This output signal is ATA reset signal. When asserted, ATA busisin | O

reset state. When negated, no reset. ATA bus is in reset when the
appropriate bit in the control register is cleared. After system reset,
ATA bus is in reset.

ATA DMA Request ATA_DMARQ This input signal is the ATA bus device DMA request. It is asserted by I
the device if it wants to transfer data using multiword DMA or ultra
DMA mode

ATA DMA Acknowledge |ATA_DMACK This output signal is the ATA bus host DMA acknowledge. It is o]

asserted by the host when it grants the DMA request.

ATA 1/0O Ready In ATA_IORDY This input is the ATA IORDY line. It has three functions:

¢ |IORDY—active low wait during PIO cycles,

* DDMARDY—active low device ready during ultra DMA out
transfers

* DSTROBE—device strobe during ultra DMA in transfers

ATA DIO Read ATA_DIOR This output signal corresponds to ATA signal DIOR. During PIO and (0]
multiword DMA transfers, its function is read strobe. During ulira DMA
IN burst, its function is HDMARDY. During ultra DMA OUT burst, its
function is host strobe (HSTROBE).

ATA DIO Write ATA_DIOW This output signal corresponds to ATA signal DIOW. During PIO and (0]
multiword DMA transfers, its function is write strobe. During ultra DMA
burst, its function is STOP, signalling when the host wants to terminate
an ultra DMA transfer.

ATA Interrupt Request |ATA_INTRQ This input signal is the ATA bus interrupt request. It is asserted by the I
device when it wants to interrupt.
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2.3.13 DMA Serial Peripheral Interface (DSPI) Signals

Table 2-15. DMA Serial Peripheral Interface (DSPI) Signals

Signal Name Abbreviation Function /0
DSPI Synchronous DSPI_SOUT |Provides the serial data from the DSPI and can be programmedtobe | O
Serial Output driven on the rising or falling edge of DSPI_SCK. Each byte is sent

msb first.
DSPI Synchronous DSPI_SIN Provides the serial data to the DSPI and can be programmed to be |
Serial Data Input sampled on the rising or falling edge of DSPI_SCK. Each byte is
written to RAM Isb first.
DSPI Serial Clock DSPI_SCK Provides the serial clock from the DSPI. In master mode, the IO
processor generates DSPI_SCK, while in slave mode, DSPI_SCK is
an input from an external bus master.
DSPI Peripheral Chip DSPI_PCS5/ |When in master mode and the DSPI_MCR[PCSSE] bit cleared, (0]
Select 5/Peripheral Chip |DSPI_PCSS |DSPI_PCS5 is a peripheral chip select output that selects which slave
Select Strobe device the current transmission is intended.
DSPI_PCSS provides a strobe signal that can be used with an
external demultiplexer for deglitching of the DSPI_PCSn signals.
When in master mode and the DSPI_MCR[PCSSE] bit is set,
DSPI_PCSS provides the appropriate timing for the decoding of the
DSPI_PCSJ[3:0] signals, which prevents glitches from occurring.
In slave mode, this signal is not used.
DSPI Peripheral Chip DSPI_PCSJ[3:1]|Provide DSPI peripheral chip selects that can be programmed to be (0]
Selects active high or low.
DSPI Peripheral Chip DSPI_PCS0/ |In master mode, DSPI_PCSO is a peripheral chip select output that I/0
Select 0/Slave Select DSPI_SS selects which slave device the current transmission is intended.
In slave mode, the SS signal is a slave select input that allows an SPI
master to select the processor as the target for transmission.
2.3.14 Synchronous Serial Interface (SSI) Signals
Table 2-16. SSI Module Signals
Signal Name Abbreviation Function /0
Serial Bit Clock SSI_BCLK Used by the receive and transmit blocks. In gated clock mode, I/0
SSI_BCLK is only valid during transmission of data, otherwise it is
pulled to an inactive state.
Serial Master Clock SSI_MCLK This clock signal is output from the device when itis the master. When | O
in I°S master mode, this signal is referred to as the oversampling
clock. The frequency of SSI_MCLK is a multiple of the frame clock.
Serial Frame Sync SSI_FS Used by transmitter/receiver to synchronize the transfer of data. In I/0
gated clock mode, this signal is not used. When configured as an
input, the external device should drive SSI_FS during the rising edge
of SSI_BCLK.
Serial Receive Data SSI_RXD Receives data into the receive data shift register |
Serial Transmit Data SSI_TXD Transmits data from the serial transmit shift register. (6]
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2.3.15 Universal Serial Bus (USB) Signals

Table 2-17. USB Module Signals

Direction

USB_CLKIN.

Signal Name Abbreviation Function /0
USB D- USB_DM D- output of the dual-speed transceiver for the On-the-Go module. (0]
USB D+ USB_DP D+ output of the dual-speed transceiver for the On-the-Go module.| O
USB VBUS Enable USB_VBUS_EN Enables the off-chip VBUS charge pump when USB OTG moduleis | O

configured as a host.
USB VBUS over-current|USB_VBUS_OC |Indicates to the processor that a short has occurred on USB data |
bus.
USB External Pull-up |USB_PULLUP Either use this pullup enable output signal, or turn it offinthe CCM’s | O
Enable MISCCR[USBPUE] bit. If internal pullup (and not this output signal)
is used, the internal pullup automatically switches impedances
based on whether USB is transmitting or receiving.
ULPI Data Bus ULPI_DATA[7:0] These bi-directional signals are ULPI data bus. Synchronous to I/0
USB_CLKIN.
ULPI Next Data ULPI_NXT This input is the ULPI next data. Synchronous to USB_CLKIN. |
ULPI Stop Data ULPI_STP This output is the ULPI stop data. Synchronous to USB_CLKIN. O
ULPI Data Bus ULPI_DIR This input is the ULPI data bus direction. Synchronous to |

2.3.16 UART Module Signals

Table 2-18 describes the signals of the three UART modules, where n equals 0 — 2. Baud-rate clock inputs

are not supported.

Table 2-18. UART Module Signals

Signal Name Abbreviation Function /10
Transmit Serial Data uUnTXD Data is shifted out Isb first at the falling edge of the serial clock source. (0]
Output Output is held high when transmitter is disabled, idle, or in local

loopback mode.
Receive Serial Data UnRXD Data is sampled Isb first at the serial clock source’s rising edge. When |
Input the UART clock is stopped for power-down mode, any transition on this
pin restarts it.
Clear-to-Send UnCTS Indicates UART modules can begin data transmission |
Request-to-Send UnRTS Automatic request-to-send outputs from UART modules. They may (0]
also be asserted and negated as a function of the received FIFO level.
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2.3.17 DMA Timer Signals

Table 2-19 describes the signals of the four DMA timer modules, where n equals 0 — 3.
Table 2-19. DMA Timer Signals

Signal Name Abbreviation Function /0
DMA Timer n Input DTnIN Can be programmed to cause events in the respective timer. It can |
clock the event counter or provide a trigger to the timer value capture
logic.
DMA Timer n Output DTnOUT Output from respective timer. (0]

2.3.18 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic. Pin functionality
between JTAG and BDM is dependent upon the JTAG _EN pin.

Table 2-20. Debug Support Signals

Signal Name Abbreviation Function 110
JTAG Enable JTAG_EN Enables JTAG (asserted) or BDM (negated) operation. |
JTAG Signals
Test Reset TRST Active-low signal used to initialize the JTAG logic asynchronously. |
Test Clock TCLK Used to synchronize the JTAG logic. |
Test Mode Select TMS Used to sequence the JTAG state machine. TMS is sampled on the |
rising edge of TCLK.
Test Data Input TDI Serial input for test instructions and data. TDI is sampled on the rising |
edge of TCLK.
Test Data Output TDO Serial output for test instructions and data. TDO is three-stateable and (0]
actively driven in the shift-IR and shift-DR controller states. TDO
changes on the falling edge of TCLK.
BDM Signals
Development Serial DSCLK Clocks the serial communication port to the BDM module during |
Clock packet transfers.
Breakpoint BKPT Used to request a manual breakpoint. |
Development Serial DSI Internally-synchronized signal provides data input for the serial |
Input communication port to the BDM module.
Development Serial DSO Internally-registered signal provides serial output communication for (0]
Output BDM module responses.
Processor Status Clock |[PSTCLK Used by the development system to know when to sample DDATAand | O
PST signals.
Processor Status/ PSTDDATA[7:0]|Display captured processor status and captured address/data values. (0]
Debug Data These outputs change on the negative edge of PSTCLK.
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Table 2-21. Processor Status

PST[3:0] Processor Status
0000 Continue execution
0001 Begin execution of one instruction
0010 Reserved
0011 Entry into user mode
0100 Begin execution of PULSE and WDDATA instructions
0101 Begin execution of taken branch
0110 Reserved
0111 Begin execution of RTE instruction
1000 Begin one-byte transfer on PSTDDATA
1001 Begin two-byte transfer on PSTDDATA
1010 Begin three-byte transfer on PSTDDATA
1011 Begin four-byte transfer on PSTDDATA
1100 Exception processing
1101 Reserved
1110 Processor is stopped
1111 Processor is halted

2.3.19 Test Signals

Table 2-22 describes test signals reserved for factory testing.

Table 2-22. Test Signals

Signal Name Abbreviation Function /0
Test TEST Reserved for factory testing only and in normal modes of operation |
should be connected to VSS to prevent unintentional activation of test
functions.
PLL Test PLL_TEST Reserved for factory testing only and should be treated as a (0]
no-connect (NC).
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2.3.20 Power and Ground Pins

The pins described in Table 2-23 provide system power and ground to the device. Multiple pins are
provided for adequate current capability. All power supply pins must have adequate bypass capacitance

for high-frequency noise suppression.
Table 2-23. Power and Ground Pins

Signal Name Abbreviation Function

/0

PLL Analog Supply VDD_A_PLL |Dedicated power supply signal to isolate the sensitive PLL analog
(VCO) circuitry from the normal levels of noise present on the digital
power supply.

Oscillator VDD_OSC Dedicated power supply signals to isolate the sensitive oscillator —
VSS_0SC circuitry from the normal levels of noise present on the digital power
supply.
Positive I/O Supply EVDD These pins supply positive power to the 1/O pads. —
Positive Core Supply IVDD These pins supply positive power to the core logic. —
SDRAMC Supply SD_VDD These pins supply positive power to the SDRAM controller. —
USB Supply USB_VDD These pins supply positive power to the USB controller. —

Real-time clock Supply |RTC_VDD These pins supply positive power to the RTC module.

Ground VSS These pins are the negative supply (ground) for the device.

2.4 External Boot Mode

After reset the address bus, data bus, FlexBus control signals, and SDRAM control signals default to their

bus functionalities. All other signals default to GPIO inputs (if applicable).

Freescale Semiconductor
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Chapter 3
ColdFire Core

3.1 Introduction

This section describes the organization of the Version 4 (V4) ColdF ire® processor core and an overview
of the program-visible registers. For detailed information on instructions, see the ISA_C definition in the
ColdFire Family Programmer s Reference Manual. The V4 ColdFire core includes the enhanced
multiply-accumulate unit (EMAC), and memory management unit (MMU), which are explained in detail
in their own chapters. This chapter also includes a full description of exception handling, data formats, an
instruction set summary, and a table of instruction timings.

3.1.1 Overview

As with all ColdFire cores, the V4 ColdFire core is comprised of two separate pipelines decoupled by an
instruction buffer.
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Figure 3-1. V4 ColdFire Core Pipelines

The instruction fetch pipeline (IFP) is a four-stage pipeline for prefetching instructions. The prefetched
instruction stream is then gated into the five-stage operand execution pipeline (OEP), that decodes the
instruction, fetches the required operands, and then executes the required function. Because the IFP and
OEP pipelines are decoupled by an instruction buffer serving as a FIFO queue, the IFP is able to prefetch

instructions in advance of their actual use by the OEP thereby minimizing time stalled waiting for
instructions.
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The V4 ColdFire core pipeline stages include the following:
» Four-stage instruction fetch pipeline (IFP) (plus optional instruction buffer stage)
— Instruction address generation (IAG) — Calculates the next prefetch address
— Instruction fetch cycle 1 (IC1) — Prefetch on the processor’s local bus
— Instruction fetch cycle 2 (IC2) — Completes prefetch on the processor’s local bus
— Instruction early decode (IED) — Generates time-critical decode signals needed for the OEP

— Instruction buffer (IB) — Optional buffer stage minimizes fetch latency effects using FIFO
queue

» Five-stage operand execution pipeline (OEP) with two optional processor bus write cycles

— Decode and select (DS/secDS) — Decodes and selects two sequential instructions and selects
operands for effective address calculation

— Operand address generation (OAG) — Generates the effective (logical) address
— Operand fetch cycle 1 (OC1) — Initiates memory operand fetch on the processor’s local bus

— Operand fetch cycle 2 (OC2) — Completes memory operand fetch on the processor’s local bus,
as well as immediate and/or register operand fetches

— Execute (EX) — Performs prescribed operations on previously fetched data operands
— Write data available (DA) — Makes data available for operand write operations only
— Store data (ST) — Updates memory element for operand write operations only

When the instruction buffer is empty, opcodes are loaded directly from the IED cycle into the operand
execution pipeline. If the buffer is not empty, the IFP stores the contents of the fetched instruction and its
early decode information in the IB until it is required by the OEP.

The five stage operand execution pipeline structure is a key factor in the performance of the Version 4
ColdFire design. The pipeline structure is termed a limited superscalar design because there are certain,
heavily-used instruction constructs that support multiple-instruction dispatch. In particular, folding two
consecutive instructions into a single pipeline issue effectively creates zero-cycle execution times for
certain instructions.

With the increased performance, the bandwidth needed to support operand references requires a split bus
(or Harvard architecture) where there are separate instruction and operand memory connections. These
connections may be accessed concurrently to double the amount of available bandwidth to the processor's
pipelines.

The resulting pipeline and local bus structure allow the V4 ColdFire core to deliver sustained high
performance across a variety of demanding embedded applications.

3.1.1.1 Change-of-Flow Acceleration

To maximize the performance of conditional branch instructions, the IFP implements a sophisticated
two-level acceleration mechanism. The first level is an 8-entry, direct-mapped branch cache with 2 bits for
indicating four prediction states (strongly or weakly; taken or not-taken) for each entry. The branch cache
also provides the association between instruction addresses and the corresponding target address. In the
event of a branch cache hit, if the branch is predicted as taken, the branch cache sources the target address
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from the IC1 stage back into the IAG to redirect the prefetch stream to the new location as shown in
Figure 3-1.

The branch cache implements instruction folding, so conditional branch instructions correctly predicted as
taken can execute in zero cycles. For conditional branches with no information in the branch cache, a
second-level, direct-mapped prediction table is accessed. Each of its 128 entries uses the same 2-bit
prediction mechanism as the branch cache.

If a branch is predicted as taken, branch acceleration logic in the IED stage generates the target address.
Other change-of-flow instructions, including unconditional branches, jumps, and subroutine calls, use a
similar mechanism where the IFP calculates the target address. The performance of the subroutine return
instruction (RTS) is improved through the use of a four-entry, LIFO hardware return stack. In all cases,
these mechanisms allow the IFP to redirect the fetch stream down the predicted path ahead of instruction
execution.

3.1.1.2 Operand Execution Pipeline (OEP)

The two instruction registers in the decode stage (DS) of the OEP are loaded from the FIFO instruction
buffer or are bypassed directly from the instruction early decode (IED). The OEP consists of two
traditional, two-stage RISC compute engines with a dual-ported register file access feeding an arithmetic
logic unit (ALU).

The compute engine at the top of the OEP (the address ALU) is used typically for operand address
calculations; the execution ALU at the bottom is used for instruction execution. The resulting structure
provides almost 4 GB/s read operand bandwidth (at 250 MHz) to the two compute engines and supports
single-cycle execution speeds for most instructions, including all load and store operations and most
embedded-load operations. The V4 OEP supports the ColdFire instruction set architecture (ISA)
revision C.

Advanced performance features implemented by the OEP:

 Stalls are minimized by dynamically basing the choice between the address ALU or execution
ALU for instruction execution on the pipeline state.

* The address ALU and register renaming resources together can execute heavily used opcodes and
forward results to subsequent instructions with no pipeline stalls.

* Instruction folding involving MOVE instructions allows two instructions to be issued in one cycle.
The resulting microarchitecture approaches full superscalar performance at a much lower silicon
cost.

3.2 Memory Map/Register Description

The following sections describe the processor registers in the user and supervisor programming models.
The programming model is selected based on the processor privilege level (user mode or supervisor mode)
as defined by the S bit of the status register (SR). Table 3-1 lists the processor registers.
The user-programming model consists of the following registers:

* 16 general-purpose 32-bit registers (D0-D7, A0—A7)

* 32-bit program counter (PC)
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» 8-bit condition code register (CCR)
*  EMAC registers (described fully in Chapter 5, “Enhanced Multiply-Accumulate Unit (EMAC
— Four 48-bit accumulator registers partitioned as follows:

— Four 32-bit accumulators (ACC0-ACC3)

— Eight 8-bit accumulator extension bytes (two per accumulator). These are grouped into two

32-bit values for load and store operations (ACCEXTO01 and ACCEXT23).
Accumulators and extension bytes can be loaded, copied, and stored; results from EMAC
arithmetic operations generally affect the entire 48-bit destination.

— One 16-bit mask register (MASK)

— One 32-bit Status register (MACSR) including four indicator bits signaling product or
accumulation overflow (one for each accumulator: PAVO-PAV3)

ColdFire Core

The supervisor programming model is to be used only by system control software to implement restricted
operating system functions, I/O control, and memory management. All accesses that affect the control
features of ColdFire processors are in the supervisor programming model, that consists of registers
available in user mode as well as the following control registers:

» 16-bit status register (SR)

* 32-bit supervisor stack pointer (SSP)
* 32-bit vector base register (VBR)

* 32-bit cache control register (CACR)
» 32-bit access control registers (ACRO, ACR1, ... ACR3)

* One 32-bit memory base address register (RAMBAR)

» 32-bit address space ID register (ASID)
* 32-bit MMU base address register (MMUBAR)

Table 3-1. ColdFire Core Programming Model

. Width Written with .
1
BDM Register (bits) Access | Reset Value MOVEC Section/Page
Supervisor/User Access Registers
Load: 0x080 Data Register 0 (D0) 32 R/W | OxCF42_602B No 3.2.1/3-7
Store: 0x180
Load: 0x081 Data Register 1 (D1) 32 R/W | 0x0600_2670 No 3.2.1/3-7
Store: 0x181
Load: 0x082—7 | Data Register 2-7 (D2-D7) 32 R/W Undefined No 3.2.1/3-7
Store: 0x182-7
Load: 0x088—-8E | Address Register 0—6 (A0—A6) 32 R/W Undefined No 3.2.2/3-8
Store: 0x188—8E
Load: Ox08F Supervisor/User A7 Stack Pointer (A7) 32 R/W Undefined No 3.2.3/3-8
Store: 0x18F
0x804 MAC Status Register (MACSR) 32 R/W | 0x0000_0000 No 5.2.1/5-4
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Table 3-1. ColdFire Core Programming Model (continued)

. Width Written with .
1
BDM Register (bits) Access | Reset Value MOVEC Section/Page
0x805 MAC Address Mask Register (MASK) 32 R/W | OXFFFF_FFFF No 5.2.2/5-6
0x806, 0x809, |MAC Accumulators 0—3 (ACC0-3) 32 R/W Undefined No 5.2.3/5-8
0x80A, 0x80B
0x807 MAC Accumulator 0,1 Extension Bytes 32 R/W Undefined No 5.2.4/5-8
(ACCext01)
0x808 MAC Accumulator 2,3 Extension Bytes 32 R/W Undefined No 5.2.4/5-8
(ACCext23)
0x80E Condition Code Register (CCR) 8 R/W Undefined No 3.2.4/3-9
0x80F Program Counter (PC) 32 R/W Contents of No 3.2.5/3-10
location
0x0000_0004
Supervisor Access Only Registers
0x002 Cache Control Register (CACR) 32 R/W | 0x0000_0000 Yes 3.2.6/3-10
0x003 Address Space ldentifier (ASID) 8 R/W 0x00 Yes 4.2.1/4-4
0x004-7 Access Control Register 0-3 (ACR0-3) 32 R/W See Section Yes 6.3.2/6-8
0x008 MMU Base Address Register (MMUBAR) | 32 R/W | 0x0000_0000 Yes 4.2.2/4-4
0x800 User/Supervisor A7 Stack Pointer 32 R/W Contents of No 3.2.3/3-8
(OTHER_A?) location
0x0000_0000
0x801 Vector Base Register (VBR) 32 R/W | 0x0000_0000 Yes 3.2.8/3-10
0x80E Status Register (SR) 16 R/W 0x27-- No 3.2.9/3-11
0xCO05 RAM Base Address Register (RAMBAR) | 32 R/W See Section Yes 3.2.10/3-12

' The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more
information see Chapter 34, “Debug Module”.

3.2.1 Data Registers (D0-D7)

D0-D7 data registers are for bit (1-bit), byte (8-bit), word (16-bit) and longword (32-bit) operations; they
can also be used as index registers.
NOTE

Registers DO and D1 contain hardware configuration details after reset. See
Section 3.3.4.15, “Reset Exception” for more details.
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BDM: Load: 0x080 + n;, n=0-7 (Dn) Access: User read/write
Store: 0x180 + n; n = 0-7 (Dn) BDM read/write

31 30 29 28‘27 26 25 24’23 22 21 20’19 18 17 16‘15 14 13 12‘11 10 9 8‘ 7 6 5 4‘ 3 2 1 0

R
w

Data

(D2-D7)

Reset

(DO, D) See Section 3.3.4.15, “Reset Exception

Figure 3-2. Data Registers (D0-D7)

3.2.2 Address Registers (A0—-A6)

These registers can be used as software stack pointers, index registers, or base address registers. They can
also be used for word and longword operations.

BDM: Load: 0x088 + n, n= 0-6 (An) Access: User read/write
Store: 0x188 + n; n= 0-6 (An) BDM read/write

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8 ‘7 6 5 4 ‘3 2 1 0

Address

R e e e L EEE
Figure 3-3. Address Registers (A0-A6)

3.2.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)

The ColdFire architecture supports two independent stack pointer (A7) registers—the supervisor stack
pointer (SSP) and the user stack pointer (USP). The hardware implementation of these two
program-visible 32-bit registers does not identify one as the SSP and the other as the USP. Instead, the
hardware uses one 32-bit register as the active A7 and the other as OTHER A7. Thus, the register contents
are a function of the processor operation mode, as shown in the following:

if SR[S] =1
then A7 = Supervisor Stack Pointer
OTHER A7 = User Stack Pointer
else A7 = User Stack Pointer

OTHER A7 = Supervisor Stack Pointer

The BDM programming model supports direct reads and writes to the (active) A7 and OTHER A7. It is
the responsibility of the external development system to determine, based on the setting of SR[S], the
mapping of A7 and OTHER A7 to the two program-visible definitions (SSP and USP). This functionality
is enabled by setting the enable user stack pointer bit, CACR[EUSP]. If this bit is cleared, only a single
stack pointer (A7), originally defined for ColdFire ISA A, is available. EUSP is cleared at reset.

To support dual stack pointers, the following two supervisor instructions are included in the ColdFire
instruction set architecture to load/store the USP:

move.l Ay,USP;move to USP
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move.l USP,Ax;move from USP

These instructions are described in the ColdFire Family Programmer s Reference Manual. All other
instruction references to the stack pointer, explicit or implicit, access the active A7 register.

NOTE

The SSP is loaded during reset exception processing with the contents of
location 0x0000 _0000.

BDM: Load: 0x08F (A7) Access: A7: User or BDM read/write
Store: 0x18F (A7) OTHER_A?: Supervisor or BDM read/write

0x800 (OTHER_A7)

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0

Address

R e e e R L R B
Figure 3-4. Stack Pointer Registers (A7 and OTHER_A7)

3.24 Condition Code Register (CCR)

The CCR is the LSB of the processor status register (SR). Bits 4-0 act as indicator flags for results
generated by processor operations. The extend bit (X) is also an input operand during multiprecision
arithmetic computations.

NOTE

The CCR register must be explicitly loaded after reset and before any
compare (CMP), Bcc, or Scc instructions are executed.

BDM: LSB of Status Register (SR) Access: User read/write
BDM read/write
4 3 2 1 0
R 0 0 0
X N z Vv C
W
Reset: 0 0 0 — — — — —

Figure 3-5. Condition Code Register (CCR)

Table 3-2. CCR Field Descriptions

Field Description

7-5 Reserved, must be cleared.

Extend condition code bit. Set to the C-bit value for arithmetic operations; otherwise not affected or set to a specified
result.

Negative condition code bit. Set if most significant bit of the result is set; otherwise cleared.

ZW| X»
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Table 3-2. CCR Field Descriptions (continued)

Field Description

Zero condition code bit. Set if result equals zero; otherwise cleared.

N N

Overflow condition code bit. Set if an arithmetic overflow occurs implying the result cannot be represented in operand
size; otherwise cleared.

Carry condition code bit. Set if a carry out of the operand msb occurs for an addition or if a borrow occurs in a
subtraction; otherwise cleared.

Do <=

3.25 Program Counter (PC)

The PC contains the currently executing instruction address. During instruction execution and exception
processing, the processor automatically increments PC contents or places a new value in the PC. The PC
is a base address for PC-relative operand addressing.

The PC is initially loaded during reset exception processing with the contents at location 0x0000 0004.

BDM: 0x80F (PC) Access: User read/write
BDM read/write

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8 ‘7 6 5 4 ‘3 2 1 0

Address

e e e e

Figure 3-6. Program Counter Register (PC)

3.2.6 Cache Programming Model

The registers in the cache portion of the programming model are described in Chapter 6, “Cache.”

3.2.7 MMU Programming Model

The registers in the MMU portion of the programming model are described in Chapter 4, “Memory
Management Unit (MMU).”

3.2.8 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in the memory. To access the vector table,
the displacement of an exception vector is added to the value in VBR. The lower 20 bits of the VBR are
not implemented by ColdFire processors. They are assumed to be zero, forcing the table to be aligned on
a 1 MB boundary.
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BDM: 0x801 (VBR) Access: Supervisor read/write
BDM read/write

31302928‘27262524‘23222120191817161514131211 10 9 8|7 6 5 4|3 2 1

R ojo|jo|jofOfO|OfO|O|O|O|O|O|O|O|O|O|O|O]|O
Base Address

w
ResetOOOO‘OOO0‘0OOOOOOOOOOOOOOOOOOOOOOO
Figure 3-7. Vector Base Register (VBR)

3.2.9 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control
bits. In supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits (CCR) are
accessible. The control bits indicate the following states for the processor: trace mode (T bit), supervisor
or user mode (S bit), and master or interrupt state (M bit). All defined bits in the SR have read/write access
when in supervisor mode.

NOTE

The lower byte of the SR (the CCR) must be loaded explicitly after reset and
before any compare (CMP), Bec, or Scc instructions execute.

BDM: 0x80E (SR) Access: Supervisor read/write
BDM read/write
System Byte Condition Code Register (CCR)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0 0 0
T S M | X N 4 \Y C
w
Reset 0 0 1 0 0 1 1 1 0 0 0 — — — — —
Figure 3-8. Status Register (SR)
Table 3-3. SR Field Descriptions
Field Description

15 Trace enable. When set, the processor performs a trace exception after every instruction.

14 Reserved, must be cleared.

13 Supervisor/user state.
S 0 User mode
1 Supervisor mode

12 Master/interrupt state. Bit is cleared by an interrupt exception and software can set it during execution of the RTE or
M move to SR instructions.

11 Reserved, must be cleared.
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Table 3-3. SR Field Descriptions (continued)

Field Description

10-8 |Interrupt level mask. Defines current interrupt level. Interrupt requests are inhibited for all priority levels less than or
| equal to current level, except edge-sensitive level 7 requests, which cannot be masked.

7-0 Refer to Section 3.2.4, “Condition Code Register (CCR)”.
CCR

3.2.10 Memory Base Address Register (RAMBAR)

The memory base address register is used to specify the base address of the internal SRAM module and
indicates the types of references mapped to it. The base address register includes a base address,
write-protect bit, address space mask bits, and an enable bit. RAMBAR determines the base address of
the on-chip RAM. For more information, refer to Section 7.2.1, “SRAM Base Address Register
(RAMBAR)”.

3.3  Functional Description

3.3.1 Version 4 ColdFire Microarchitecture

As previously discussed, the unrolling of the operand execution pipeline into a five-stage structure is a key
factor in the improved performance of the Version 4 ColdFire design. The resulting pipeline structure is
termed a limited superscalar design because there are certain, heavily-used instruction constructs that
support multiple-instruction dispatch. The following figure presents the top-level spatial block diagram of
the Version 4 ColdFire operand execution pipeline, where the major hardware structures associated with
each pipeline stage are clearly visible.

Freescale Semiconductor 3-12



ColdFire Core
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Figure 3-9. Version 4 ColdFire Processor Operand Execution Pipeline Diagram
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3.3.2 Instruction Set Architecture (ISA_C)

The original ColdFire instruction set architecture (ISA_A) was derived from the M68000 family opcodes
based on extensive analysis of embedded application code. The ISA was optimized for code compiled
from high-level languages where the dominant operand size was the 32-bit integer declaration. This
approach minimized processor complexity and cost, while providing excellent performance for compiled
applications.

After the initial ColdFire compilers were created, developers noted there were certain ISA additions that
would enhance code density and overall performance. Additionally, as users implemented ColdFire-based
designs into a wide range of embedded systems, they found certain frequently-used instruction sequences
that could be improved by the creation of additional instructions.

The original ISA definition minimized support for instructions referencing byte- and word-sized operands.
Full support for the move byte and move word instructions was provided, but the only other opcodes
supporting these data types are CLR (clear) and TST (test). A set of instruction enhancements has been
implemented in subsequent ISA revisions, ISA B and ISA_C. The added opcodes primarily addressed
three areas:

1. Enhanced support for byte and word-sized operands
2. Enhanced support for position-independent code
3. Miscellaneous instruction additions to address new functionality

Table 3-4 summarizes the instructions added to revision ISA_A to form revision ISA_C. For more details
see the ColdFire Family Programmers Reference Manual.

Table 3-4. Instruction Enhancements over Revision ISA_A

Instruction Description

BITREV The contents of the destination data register are bit-reversed; that is, new Dn[31] equals old
Dn[0], new Dn[30] equals old Dn[1], ..., new Dn[0] equals old Dn[31].

BYTEREV The contents of the destination data register are byte-reversed; that is, new Dn[31:24] equals
old Dn[7:0], ..., new Dn[7:0] equals old Dn[31:24].

FF1 The data register, Dn, is scanned, beginning from the most-significant bit (Dn[31]) and ending
with the least-significant bit (Dn[0]), searching for the first set bit. The data register is then
loaded with the offset count from bit 31 where the first set bit appears.

INTOUCH Loads blocks of instructions to be locked in the instruction cache.

MOV3Q.L Moves 3-bit immediate data to the destination location.

Move from USP | User Stack Pointer — Destination register

Move to USP Source register — User Stack Pointer
MVS.{B,W} Sign-extends source operand and moves it to destination register.
MVZ.{B,W} Zero-fills source operand and moves it to destination register.
SATS.L Performs saturation operation for signed arithmetic and updates destination register,
depending on CCRI[V] and bit 31 of the register.
TAS.B Performs indivisible read-modify-write cycle to test and set addressed memory byte.
Bce.L Branch conditionally, longword
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Table 3-4. Instruction Enhancements over Revision ISA_A (continued)

Instruction Description

BSR.L Branch to sub-routine, longword

CMP{B,wW} Compare, byte and word

CMPA.W Compare address, word

CMPL.{B,W} Compare immediate, byte and word

MOVEI Move immediate, byte and word to memory using Ax with displacement

3.3.3

Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors
differ from the M68000 family because they include:

A simplified exception vector table
Reduced relocation capabilities using the vector-base register
A single exception stack frame format

A precise instruction restart model for translation (TLB miss) and access faults. This functionality
extends the existing ColdFire access error fault vector in the exception stack frames.

All ColdFire processors use an instruction restart exception model. Exception processing includes all
actions from fault condition detection to the initiation of fetch for first handler instruction. Exception
processing is comprised of four major steps:

1.

The processor makes an internal copy of the SR and then enters supervisor mode by setting the S
bit and disabling trace mode by clearing the T bit. The interrupt exception also forces the M bit to
be cleared and the interrupt priority mask to set to current interrupt request level.

The processor determines the exception vector number. For all faults except interrupts, the
processor performs this calculation based on exception type. For interrupts, the processor
performs an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from the
interrupt controller. The IACK cycle is mapped to special locations within the interrupt
controller’s address space with the interrupt level encoded in the address.

The processor saves the current context by creating an exception stack frame on the system stack.
The exception stack frame is created at a 0-modulo-4 address on top of the system stack pointed to
by the supervisor stack pointer (SSP). As shown in Figure 3-10, the processor uses a simplified
fixed-length stack frame for all exceptions with additional fault status (FS) encodings to support
the MMU. The exception type determines whether the program counter placed in the exception
stack frame defines the location of the faulting instruction (fault) or the address of the next
instruction to be executed (next).

The processor calculates the address of the first instruction of the exception handler. By definition,
the exception vector table is aligned on a 1 MB boundary. This instruction address is generated by
fetching an exception vector from the table located at the address defined in the vector base register.

3-15
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The index into the exception table is calculated as (4 x vector number). After the exception vector
has been fetched, the vector contents determine the address of the first instruction of the desired
handler. After the instruction fetch for the first opcode of the handler has initiated, exception
processing terminates and normal instruction processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1 Mbyte address boundary (see
Table 3-5).

The table contains 256 exception vectors; the first 64 are defined for the core and the remaining 192 are
device-specific peripheral interrupt vectors. See Chapter 17, “Interrupt Controller Modules” for details on
the device-specific interrupt sources.

Table 3-5. Exception Vector Assignments

Vector Vector If:ggl:aeri Assignment
Number(s) Offset (Hex) Counter
0 0x000 — Initial supervisor stack pointer
1 0x004 — Initial program counter
2 0x008 Fault Access error
3 0x00C Fault Address error
4 0x010 Fault lllegal instruction
5 0x014 Fault Divide by zero
6-7 0x018-0x01C — Reserved
8 0x020 Fault Privilege violation
9 0x024 Next Trace
10 0x028 Fault Unimplemented line-A opcode
11 0x02C Fault Unimplemented line-F opcode
12 0x030 Next Non-PC breakpoint debug interrupt
13 0x034 Next PC breakpoint debug interrupt
14 0x038 Fault Format error
15 0x03C Next Uninitialized interrupt
16-23 0x040-0x05C — Reserved
24 0x060 Next Spurious interrupt
25-31 0x064-0x07C Next Level 1—7 autovectored interrupts
32-47 0x080—0x0BC Next Trap # 0-15 instructions
48-60 0x0C0—-0x0F0 — Reserved
61 O0xOF4 Fault Unsupported instruction
62-63 0xOF8—-0x0FC — Reserved
64-255 0x100-0x3FC Next Device-specific interrupts

1 Fault refers to the PC of the instruction that caused the exception. Next refers to the PC
of the instruction that follows the instruction that caused the fault.
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All ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers.
This allows any handler to disable interrupts effectively, if necessary, by raising the interrupt mask level
contained in the status register. For more details, see ColdFire Family Programmers Reference Manual.

3.3.3.1 Exception Stack Frame Definition

Figure 3-10 shows exception stack frame. The first longword contains the 16-bit format/vector word (F/V)
and the 16-bit status register, and the second longword contains the 32-bit program counter address.

31 30 29 28|27 26 25 24‘23 22 21 20‘19 18 17 16 |15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0
SSP —| Format FS[S:Z]‘ Vector |FS[1:0] Status Register

+ Ox4 Program Counter

Figure 3-10. Exception Stack Frame Form

The 16-bit format/vector word contains three unique fields:

* A 4-bit format field at the top of the system stack is always written with a value of 4, 5, 6, or 7 by
the processor, indicating a two-longword frame format. See Table 3-6.

Table 3-6. Format Field Encodings

- . SSP @ 1st
Original S.SP @_Tlme Instruction of Format Field
of Exception, Bits 1:0
Handler
00 Original SSP - 8 0100
01 Original SSP - 9 0101
10 Original SSP - 10 0110
11 Original SSP - 11 0111

» There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for
access and address errors only and written as zeros for all other exceptions. See Table 3-7.

Table 3-7. Fault Status Encodings

FS[3:0] Definition
0000 Not an access or address error nor an interrupted debug service routine
0001 Reserved
0010 Interrupt during a debug service routine for faults other than access errors’
0011 Reserved
0100 Error on instruction fetch
0101 TLB miss on opword of instruction fetch
0110 TLB miss on extension word of instruction fetch
0111 IFP access error while executing in emulator mode
1000 Error on operand write
1001 Attempted write to write-protected space
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Table 3-7. Fault Status Encodings (continued)

FS[3:0] Definition
1010 TLB miss on data write
1011 Reserved
1100 Error on operand read
1101 Attempted read, read-modify-write of protected space
1110 TLB miss on data read, or read-modify-write
1111 OEP access error while executing in emulator mode

! This refers to taking an I/O interrupt during a debug service routine. If an access error occurs
during a debug service routine, FS is set to 0111 if it is due to an instruction fetch orto 1111
for a data access.

» The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor
for all internal faults and represents the value supplied by the interrupt controller in case of an
interrupt. See Table 3-5.

3.34 Processor Exceptions

3.3.41 Access Error Exception

The exact processor response to an access error depends on the memory reference being performed. For
an instruction fetch, the processor postpones the error reporting until the faulted reference is needed by an
instruction for execution. Therefore, faults during instruction prefetches followed by a change of
instruction flow do not generate an exception. When the processor attempts to execute an instruction with
a faulted opword and/or extension words, the access error is signaled and the instruction is aborted. For
this type of exception, the programming model has not been altered by the instruction generating the access
error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s
execution and initiates exception processing. The operand execution pipeline includes logic to fully
recover program-visible register updates in the event of a bus transfer error acknowledge on an operand
memory reference. This allows for a precise instruction restart from this class of exceptions. See
Section 3.3.4.16, “Precise Faults”, for additional information.

Ifthe MMU is disabled, access errors are reported only with an attempted store to write-protected memory.
Therefore, access errors associated with instruction fetch or operand read accesses are not possible. The
Version 4 ColdFire processor, unlike the Version 2 and 3 ColdFire processors, updates the condition code
register if a write-protect error occurs during a CLR or MOV3Q operation to memory.

Internal memory accesses that fault (terminate with an internal memory transfer error acknowledge)
generate an access error exception. MMU TLB misses and access violations use the same fault. If the
MMU is enabled, all TLB misses and protection violations generate an access error exception. To
determine if a fault is due to a TLB miss or another type of access error, new FS encodings (described in
Table 3-7) signal TLB misses on instruction fetch, instruction extension fetch, and data read and writes.
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3.3.4.2 Address Error Exception

Any attempted execution transferring control to an odd instruction address (if bit 0 of the target address is
set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of eight on an indexed effective
addressing mode generates an address error, as does an attempted execution of a full-format indexed
addressing mode, which is defined by bit 8 of extension word 1 being set.

If an address error occurs on a JSR instruction, the Version 4 ColdFire processor first pushes the return
address onto the stack and then calculates the target address. If an address error occurs on an RTS
instruction, the Version 4 ColdFire processor preserves the original return PC and writes the exception
stack frame above this value.

3.3.4.3 lllegal Instruction Exception

The ColdFire variable-length instruction set architecture supports three instruction sizes: 16, 32, or 48 bits.
The first instruction word is known as the operation word (or opword), while the optional words are known
as extension word 1 and extension word 2. The opword is further subdivided into three sections: the upper
four bits segment the entire ISA into 16 instruction lines, the next 6 bits define the operation mode
(opmode), and the low-order 6 bits define the effective address. See Figure 3-11. The opword line
definition is shown in Table 3-8.

15 14 13 12 1 10 9 8 7 6 5 4 ‘ 3 2 1 0
Line OpMode Effective Address

Mode | Register

Figure 3-11. ColdFire Instruction Operation Word (Opword) Format

Table 3-8. ColdFire Opword Line Definition

Opword[Line] Instruction Class
0x0 Bit manipulation, Arithmetic and Logical Immediate
0x1 Move Byte
0x2 Move Long
0x3 Move Word
0x4 Miscellaneous
0x5 Add (ADDQ) and Subtract Quick (SUBQ), Set according to Condition Codes (Scc)
0x6 PC-relative change-of-flow instructions
Conditional (Bcc) and unconditional (BRA) branches, subroutine calls (BSR)
0x7 Move Quick (MOVEQ), Move with sign extension (MVS) and zero fill (MVZ)
0x8 Logical OR (OR)
0x9 Subtract (SUB), Subtract Extended (SUBX)
OxA EMAC, Move 3-bit Quick (MOV3Q)
0xB Compare (CMP), Exclusive-OR (EOR)
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Table 3-8. ColdFire Opword Line Definition (continued)

Opword[Line] Instruction Class
0xC Logical AND (AND), Multiply Word (MUL)
0xD Add (ADD), Add Extended (ADDX)
OxE Arithmetic and logical shifts (ASL, ASR, LSL, LSR)
OxF Cache Push (CPUSHL), Write DDATA (WDDATA), Write Debug (WDEBUG)

In the original M68000 ISA definition, lines A and F were effectively reserved for user-defined operations
(line A) and co-processor instructions (line F). Accordingly, there are two unique exception vectors
associated with illegal opwords in these two lines.

Any attempted execution of an illegal 16-bit opcode (except for line-A and line-F opcodes) generates an
illegal instruction exception (vector 4). Additionally, any attempted execution of any non-MAC line-A and
most line-F opcodes generate their unique exception types, vector numbers 10 and 11, respectively.
ColdFire cores do not provide illegal instruction detection on the extension words on any instruction,
including MOVEC.

3.3.4.4 Divide-By-Zero

Attempting to divide by zero causes an exception (vector 5, offset equal 0x014).

3.3.4.5 Privilege Violation

The attempted execution of a supervisor mode instruction while in user mode generates a privilege
violation exception. See ColdFire Programmer s Reference Manual for a list of supervisor-mode
instructions.

There is one special case involving the HALT instruction. Normally, this opcode is a supervisor mode
instruction, but if the debug module's CSR[UHE] is set, then this instruction can be also be executed in
user mode for debugging purposes.

3.3.4.6 Trace Exception

To aid in program development, all ColdFire processors provide an instruction-by-instruction tracing
capability. While in trace mode, indicated by setting of the SR[T] bit, the completion of an instruction
execution (for all but the stop instruction) signals a trace exception. This functionality allows a debugger
to monitor program execution.

The stop instruction has the following effects:

1. The instruction before the stop executes and then generates a trace exception. In the exception stack
frame, the PC points to the stop opcode.

2. When the trace handler is exited, the stop instruction executes, loading the SR with the immediate
operand from the instruction.

3. The processor then generates a trace exception. The PC in the exception stack frame points to the
instruction after the stop, and the SR reflects the value loaded in the previous step.
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If the processor is not in trace mode and executes a stop instruction where the immediate operand sets
SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points
to the instruction after the stop, and the SR reflects the value loaded in step 2.

Because ColdFire processors do not support any hardware stacking of multiple exceptions, it is the
responsibility of the operating system to check for trace mode after processing other exception types. As
an example, consider a TRAP instruction execution while in trace mode. The processor initiates the trap
exception and then passes control to the corresponding handler. If the system requires that a trace exception
be processed, it is the responsibility of the trap exception handler to check for this condition (SR[T] in the
exception stack frame set) and pass control to the trace handler before returning from the original
exception.

3.34.7 Unimplemented Line-A Opcode

A line-A opcode is defined when bits 15-12 of the opword are 0b1010. This exception is generated by the
attempted execution of an undefined line-A opcode.

3.34.8 Unimplemented Line-F Opcode

A line-F opcode is defined when bits 15-12 of the opword are Ob1111. This exception is generated when
attempting to execute an undefined line-F opcode.

3.3.4.9 Debug Interrupts

See Chapter 34, “Debug Module,” for a detailed explanation of these exceptions, which are generated in
response to hardware breakpoint register triggers. The processor does not generate an IACK cycle, but
rather calculates the vector number internally (vector number 12 or 13, depending on the type of
breakpoint trigger). Additionally, SR[M,I] are unaffected by the interrupt.

Separate exception vectors are provided for PC breakpoints and for address/data breakpoints. In the case
of a two-level trigger, the last breakpoint determines the vector. There are two unique vectors for these
exceptions: vector 0x030 corresponds to non-PC breakpoints and vector 0x034 corresponds to PC
breakpoints.

3.3.4.10 RTE and Format Error Exception

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the
frame type. For a ColdFire core, any attempted RTE execution (where the format is not equal to {4,5,6,7})
generates a format error. The exception stack frame for the format error is created without disturbing the
original RTE frame and the stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from M68000
applications. On M68000 family processors, the SR was located at the top of the stack. On those
processors, bit 30 of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE
is attempted using this old format, it generates a format error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second
longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address
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after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the
second longword operand within the stack frame.

3.3.4.11 TRAP Instruction Exception

The TRAP #n instruction always forces an exception as part of its execution and is useful for implementing
system calls. The TRAP instruction may be used to change from user to supervisor mode.

3.3.4.12 Unsupported Instruction Exception

If execution of a valid instruction is attempted but the required hardware is not present in the processor, an
unsupported instruction exception is generated. The instruction functionality can then be emulated in the
exception handler, if desired.

All ColdFire cores record the processor hardware configuration in the DO register immediately after the
negation of RESET. See Section 3.3.4.15, “Reset Exception,” for details.

3.3.4.13 Interrupt Exception

Interrupt exception processing includes interrupt recognition and the fetch of the appropriate vector from
the interrupt controller using an IACK cycle. See Chapter 17, “Interrupt Controller Modules,” for details
on the interrupt controller.

3.3.4.14 Fault-on-Fault Halt

If a ColdFire processor encounters any type of fault during the exception processing of another fault, the
processor immediately halts execution with the catastrophic fault-on-fault condition. A reset is required to
to exit this state.

3.3.4.15 Reset Exception

Asserting the reset input signal (RESET) to the processor causes a reset exception. The reset exception has
the highest priority of any exception; it provides for system initialization and recovery from catastrophic
failure. Reset also aborts any processing in progress when the reset input is recognized. Processing cannot
be recovered.

The reset exception places the processor in the supervisor mode by setting the SR[S] bit and disables
tracing by clearing the SR[T] bit. This exception also clears the SR[M] bit and sets the processor’s SR[I]
field to the highest level (level 7, 0b111). Next, the VBR is initialized to zero (0x0000_0000). The control
registers specifying the operation of any memories (e.g., cache and/or RAM modules) connected directly
to the processor are disabled.

NOTE

Other implementation-specific registers are also affected. Refer to each
module in this reference manual for details on these registers.

After the processor is granted the bus, it performs two longword read-bus cycles. The first longword at
address 0x0000 0000 is loaded into the supervisor stack pointer and the second longword at address
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0x0000_0004 is loaded into the program counter. After the initial instruction is fetched from memory,
program execution begins at the address in the PC. If an access error or address error occurs before the first
instruction is executed, the processor enters the fault-on-fault state.

ColdFire processors load hardware configuration information into the DO and D1 general-purpose
registers after system reset. The hardware configuration information is loaded immediately after the
reset-in signal is negated. This allows an emulator to read out the contents of these registers via the BDM
to determine the hardware configuration.

Information loaded into DO defines the processor hardware configuration as shown in Figure 3-12.

BDM: Load: 0x080 (DO) Access: User read-only
Store: 0x180 (D0) BDM read-only
31 30 29 28 ‘ 27 26 25 24 23 22 21 20 19 18 17 16
R PF VER REV
we | [ ] [ 1] [ [ ] [ [ ]
Reset 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| MAC | DIV |EMAC| FPU 0 0 0 0 ISA DEBUG
w | [ ] [ [ ]
Reset 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1
Figure 3-12. DO Hardware Configuration Info
Table 3-9. DO Hardware Configuration Info Field Description
Field Description
31-24 | Processor family. This field is fixed to a hex value of 0xCF indicating a ColdFire core is present.
PF
23-20 | ColdFire core version number. Defines the hardware microarchitecture version of ColdFire core.
VER |[0001 V1 ColdFire core
0010 V2 ColdFire core
0011 V3 ColdFire core
0100 V4 ColdFire core (This is the value used for this device.)
0101 V5 ColdFire core
Else Reserved for future use
19-16 | Processor revision number. The default is 0b0010.
REV
15 MAC present. This bit signals if the optional multiply-accumulate (MAC) execution engine is present in processor core.
MAC |0 MAC execute engine not present in core. (This is the value used for this device.)
1 MAC execute engine is present in core.
14 Divide present. This bit signals if the hardware divider (DIV) is present in the processor core.
DIV |0 Divide execute engine not present in core.
1 Divide execute engine is present in core. (This is the value used for this device.)
13 EMAC present. This bit signals if the optional enhanced multiply-accumulate (EMAC) execution engine is present in
EMAC | processor core.
0 EMAC execute engine not present in core.
1 EMAC execute engine is present in core. (This is the value used for this device.)
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Table 3-9. DO Hardware Configuration Info Field Description (continued)

Field

Description

12
FPU

FPU present. This bit signals if the optional floating-point (FPU) execution engine is present in processor core.
0 FPU execute engine not present in core. (This is the value used for this device.)
1 FPU execute engine is present in core.

11-8

Reserved.

ISA

ISA revision. Defines the instruction-set architecture (ISA) revision level implemented in ColdFire processor core.
0000 ISA_A

0001 ISA_B

0010 ISA_C (This is the value used for this device.)

1000 ISA_A+

Else Reserved

3-0
DEBUG

Debug module revision number. Defines revision level of the debug module used in the ColdFire processor core.
0000 DEBUG_A

0001 DEBUG_B

0010 DEBUG_C

0011 DEBUG_D

0100 DEBUG_E

1001 DEBUG_B+

1011 DEBUG_D+ (This is the value used for this device.)

1111 DEBUG_D+PST Buffer

Else Reserved

Information loaded into D1 defines the local memory hardware configuration as shown in the figure below.

BDM: Load: 0x081 (D1)
Store: 0x181 (D1)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R CLsz ICAS ICSzZ 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 1
R MBSZ CPES|DCAS DCSZ SRAMSZ 0 0 0
w
Reset 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0
Figure 3-13. D1 Hardware Configuration Info
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Table 3-10. D1 Hardware Configuration Information Field Description

Field Description
31-30 Cache line size. This field is fixed to a hex value of 0x0 indicating a 16-byte cache line size.
CLSz
29-28 Instruction cache associativity.
ICAS 00  Four-way (This is the value used for this device)
01 Direct mapped
Else Reserved for future use
27-24 Instruction cache size. Indicates the amount of instruction cache.
ICSZ 0000 No instruction cache
0001 512 B instruction cache
0010 1 KB instruction cache
0011 2 KB instruction cache
0100 4 KB instruction cache
0101 8 KB instruction cache
0110 16 KB instruction cache (This is the value used for this device)
0111 32 KB instruction cache
1000 64 KB instruction cache
Else Reserved
23-16 Reserved.
15-14 Bus size. Defines the width of the ColdFire master bus datapath.
MBSz 00  32-bit system bus datapath (This is the value used for this device)
01 64-bit system bus datapath
Else Reserved
13 CPUSHL enhancements supported. Specifies whether the enhancements to the CPUSHL instructions are
CPES supported by the processor core. See Section 6.4.8, “CPUSHL Enhancements,” for details.
0 CPUSHL instruction enhancements are not supported
1 CPUSHL instruction enhancements are supported (This is the value used for this device)
12 Data cache associativity. Defines the data cache set-associativity.
DCAS 0 Four-way (This is the value used for this device)
1 Direct mapped
11-8 Data cache size. Indicates the size of the unified cache.
DCSzZ 0000 No data cache

0001 512 bytes

0010 1 KB

0011 2KB

0100 4 KB

0101 8 KB

0110 16 KB (This is the value used for this device)
0111 32 KB

Else Reserved for future use
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Table 3-10. D1 Hardware Configuration Information Field Description (continued)

Field Description

7-3 SRAM bank size.
SRAMSZ | 00000 No SRAM
00010 512 bytes
00100 1 KB
00110 2 KB
01000 4 KB
01010 8 KB
01100 16 KB
01111 24 KB
01110 32 KB (This is the value used for this device)
10000 64 KB
10010 128 KB
Else Reserved for future use

2-0 Reserved.

3.3.4.16 Precise Faults

To support a demand-paged virtual-memory environment, all memory references require precise,
recoverable faults. The ColdFire instruction restart mechanism ensures that a faulted instruction restarts
from the execution beginning. No internal state information is saved when an exception occurs nor is any
restored when the handler ends. Given the PC address defined in the exception stack frame, the processor
re-establishes program execution by transferring control to the given location as part of the RTE (return
from exception) instruction.

The instruction restart recovery model requires program-visible register changes made during execution
to be undone if that instruction subsequently faults.

The Version 4 (and later) ColdFire OEP structure naturally supports this concept for most instructions;
program-visible registers are updated only in the final OEP stage when fault collection is complete. If any
exception occurs, pending register updates are discarded.

For V4 ColdFire cores and later, most single-cycle instructions naturally support precise faults and

instruction restart, while complex instruction do not. Consider the following memory-to-memory move:
move.l (Ay)+, (Ax) + # copy 4 bytes from source to destination

This instruction takes one cycle to read the source operand (Ay) and one to write the data into Ax. Source

and destination address pointers are updated as part of execution. Table 3-11 lists the operations performed
in execute stage (EX).
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Table 3-11. OEP EX Cycle Operations

EX Cycle Operations
1 Read source operand from memory @ (Ay), update Ay, new Ay = old Ay + 4
2 Write operand into destination memory @ (Ax), update Ax, new Ax = old Ax + 4, update CCR

A fault detected with the destination memory write is reported during the second cycle. At this point,
operations performed in the first cycle are complete, so if the destination write takes any type of access
error, Ay is updated. After the access error handler executes and the faulting instruction restarts, the
processor’s operation would be incorrect (without the special register recovery hardware) because the
source-address register has an incorrect (post-incremented) value.

To recover the original state of the programming model for all instructions, the Version 4 ColdFire core
adds the needed hardware to support full-register recovery. This hardware allows program-visible registers
to be restored to their original state for multi-cycle instructions so that the instruction restart mechanism
is supported. Memory-to-memory moves and move-multiple loads are representative of the complex
instructions needing the special recovery support.

Recall the IFP and OEP are decoupled by a FIFO instruction buffer. In the V4 ColdFire IFP, each buffer
entry includes 48 bits of instruction data fetched from memory and 64 bits of early decode and branch
prediction information. This datapath also includes IFP fault-status information. Therefore, every IFP
access can be tagged if an instruction fetch terminates with an error acknowledge. IFP access errors are
recognized after the buffered instruction enters the OEP.

NOTE

For access errors signaled on instruction prefetches, an access error
exception is generated only if instruction execution is attempted. If an
instruction fetch access error exception is generated and the FS field
indicates the fault occurred on an extension word, it may be necessary for
the exception PC to be rounded-up to the next page address to determine the
faulting instruction fetch address.

3.3.5 Instruction Execution Timing

This section presents processor instruction execution times in terms of processor-core clock cycles. The
number of operand references for each instruction is enclosed in parentheses following the number of
processor clock cycles. Each timing entry is presented as C(R/W) where:

» Cis the number of processor clock cycles, including all applicable operand fetches and writes, and
all internal core cycles required to complete the instruction execution.

* R/W is the number of operand reads (R) and writes (W) required by the instruction. An operation
performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.
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3.3.5.1 Timing Assumptions

For the timing data presented in this section, these assumptions apply:

1.

The OEP is loaded with the opword and all required extension words at the beginning of each
instruction execution. This implies that the OEP does not wait for the IFP to supply opwords and/or
extension words.

Execution times for individual instructions make no assumptions concerning the OEP’s ability to
dispatch multiple instructions in one machine cycle. For sequences where instruction pairs are
issued, the execution time of the first instruction defines the execution time of pair; the second
instruction effectively executes in zero cycles.

The OEP does not experience any sequence-related pipeline stalls. The most common example of
stall occurs when a register is modified in the EX engine and a subsequent instruction generates an
address that uses the previously modified register. The second instruction stalls in the OEP until
the previous instruction updates the register. For example, in the following code:

muls.l #<data>,d0
move.l (a0,d0.1*4),d1

the move.l instruction waits three cycles for the muls.I to update DO. If consecutive instructions
update a register and use that register as a base of index value with a scale factor of 1 (Xi.1*1) in
an address calculation, a 2-cycle pipeline stall occurs. If the destination register is used as an index
register with any other scale factor (Xi.1*2, Xi.1*4), a 3-cycle stall occurs.

NOTE
Address register results from post-increment and pre-decrement modes are

available to subsequent instructions without stalls.

The OEP completes all memory accesses without any stall conditions caused by the memory itself.
Thus, the timing details provided in this section assume that an infinite zero-wait state memory is
attached to the processor core.

All operand data accesses are aligned on the same byte boundary as the operand size; for example,
16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-modulo-4
addresses.

The processor core decomposes misaligned operand references into a series of aligned accesses as
shown in Table 3-12.

Table 3-12. Misaligned Operand References

. Bus Additional
address[1:0] Size Operations C(RIW)

01 or 11 Word Byte, Byte 2(1/0) if read
1(0/1) if write

01 or 11 Long Byte, Word, 3(2/0) if read
Byte 2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write
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3.3.5.2 MOVE Instruction Execution Times
Table 3-13 lists execution times for MOVE.{B,W} instructions; Table 3-14 lists timings for MOVE.L.
NOTE

For all tables in this section, the execution time of any instruction using the
PC-relative effective addressing modes is the same for the comparable
An-relative mode.

ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)}
ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

The nomenclature xxx.wl refers to both forms of absolute addressing, xxx.w

and xxx.l.
Table 3-13. MOVE Byte and Word Execution Times
Destination
Source

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) | (d8,Ax,Xi*SF) | xxx.wl
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)
(Ay)+ 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1)) 2(1/1)

(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,Ay, Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

XXX.W 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

xxx.| 1(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) (1/1) — —

(d8,PC,Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1)) — — —

#HXXX 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) — —

Table 3-14. MOVE Long Execution Times
Destination
Source

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) | (d8,Ax,Xi*SF) xxx.wli
Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 1(1/0) 2(111) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
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Destination
Source
Rx (Ax) (AXx)+ -(AXx) (d16,Ax) | (d8,Ax,Xi*SF) xxx.wli
(d8, Ay, Xi*SF) 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
XX 1(1/0) 2(1/1) 2(1/1) 2(11) — — —
XXX.| 1(1/0) 2(111) 2(111) 2(111) — — —
(d16,PC) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC Xi*SF) | 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
#xxx 1(0/0) 1(0/1) 1(0/1) 1(0/1) — — —
3.3.5.3 Standard One Operand Instruction Execution Times
Table 3-15. One Operand Instruction Execution Times
Effective Address
Opcode | <EA>
Rn (An) (An)+ -(An) (d16,An) | (d8,An,Xn*SF) | xxx.wl #XXX
BITREV | Dx 1(0/0) — — — — — _ _
BYTEREV| Dx 1(0/0) — — — — — _ _
CLR.B | <ea> | 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
CLRW | <ea> | 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
CLR.L | <ea> | 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
EXT.W Dx 1(0/0) — — — — — _ _
EXT.L Dx 1(0/0) — — — — — _ _
EXTBL | Dx 1(0/0) — — — — — _ _
FF1 Dx 1(0/0) — — — — — — _
NEG.L Dx 1(0/0) — — — — — _ _
NEGX.L | Dx 1(0/0) — — — — — _ _
NOT.L Dx 1(0/0) — — — — — _ _
SATSL | Dx 1(0/0) — — — — — _ _
scc Dx 1(0/0) — — — — — — _
SWAP Dx 1(0/0) — — — — — _ _
TASB | <ea> — 1(171) 1(171) 1(171) 1(171) 2(1/1) 1(111) —
TSTB | <ea> | 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
TSTW | <ea> | 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
TSTL | <ea> | 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
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3.3.54 Standard Two Operand Instruction Execution Times
Table 3-16. Two Operand Instruction Execution Times
Effective Address
FEEL T me | an | e | am |(G1SAD (@BADXNSE) |
ADD.L <ea>,Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
ADD.L Dy,<ea> — 111) | 1(/1) | 101) | 1(1/1) 2(1/1) 1(1/1) —
ADDIL | #imm,Dx | 1(0/0) — — — — — — —
ADDQ.L | #imm,<ea> | 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) | 1(1/1) 2(1/1) 1(1/1) —
ADDX.L Dy,Dx 1(0/0) — — — — — — —
AND.L <ea>,Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
AND.L Dy,<ea> — 11/1) | 10/7) | 10/) | 1(1/1) 2(1/1) 1(1/1) —
ANDIL | #mmDx | 1(0/0) — — — — — — —
ASL.L <ea>Dx | 1(0/0) — — — — — — 1(0/0)
ASR.L <ea>Dx | 1(0/0) — — — — — — 1(0/0)
BCHG Dy,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/11) | 2(1/1) 3(1/1) 2(1/1) —
BCHG | #imm,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) | 2(1/1) — — —
BCLR Dy,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) | 2(1/1) 3(1/1) 2(1/1) —
BCLR | #imm,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) | 2(1/1) — — —
BSET Dy,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) | 2(1/1) 3(1/1) 2(1/1) —
BSET | #imm,<ea> | 2(0/0) | 2(1/1) | 2(1/1) | 2(1/1) | 2(1/1) — — —
BTST Dy,<ea> | 2(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) —
BTST | #imm,<ea> | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) — — —
CMPB <ea>,Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
CMPW | <ea>Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
CMPL <ea>,Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
CMPIB | #imm,Dx | 1(0/0) — — — — — — —
CMPILW | #mm,Dx | 1(0/0) — — — — — — —
CMPILL | #mm,DDx | 1(0/0) — — — — — — —
DIVS.W | <ea>Dx | 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) | 20(0/0)
DIVUW | <ea>Dx | 20(0/0) | 20(1/0) | 20(1/0) | 20(1/0) | 20(1/0) 21(1/0) 20(1/0) | 20(0/0)
DIVS.L <ea>,Dx | <35(0/0) | <35(1/0) | <35(1/0) | <35(1/0) | <35(1/0) — — —
DIVU.L <ea>,Dx | <35(0/0) | <35(1/0) | <35(1/0) | <35(1/0) | <35(1/0) — — —
EOR.L Dy,<ea> | 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) | 1(111) 2(1/1) 1(1/1) —
EORIL | #imm,Dx | 1(0/0) — — — — — — —
LEA <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
LSL.L <ea>Dx | 1(0/0) — — — — — — 1(0/0)
LSR.L <ea>Dx | 1(0/0) — — — — — — 1(0/0)
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ColdFire Core

Effective Address
Opoode <EA> Rn (An) (An)+ -(An) 8:2:;\8 :gg:sg:);::gl;; xxx.wl #xxx
MOVEQ.L | #imm,Dx — — — — — — — 1(0/0)
OR.L <ea>Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
OR.L Dy,<ea> — 1) | 1) | 131) | 1(11) 2(1/1) 1(111) —
ORI.L #imm,Dx | 1(0/0) — — — — — — —
REMS.L | <ea>Dx |<35(0/0)|<35(1/0) |<35(1/0)|<35(1/0) | <35(1/0) — — —
REMU.L | <ea>Dx |<35(0/0)|<35(1/0)|<35(1/0)|<35(1/0)| <35(1/0) — — —
SUB.L <ea>,Rx | 1(0/0) | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) 2(1/0) 1(1/0) | 1(0/0)
SUB.L Dy,<ea> — 1(1/1) | 1(141) | 1(11) 1(1/1) 2(1/1) 1(1/1) —
SUBIL | #mmDx | 1(0/0) — — — — — — —
SUBQ.L | #imm,<ea> | 1(0/0) | 1(1/1) | 1(1/1) | 1(1/1) | 1(1/1) 2(1/1) 1(1/1) —
SUBX.L Dy,Dx 1(0/0) — — — — — — —
3.3.5.5 Miscellaneous Instruction Execution Times
Table 3-17. Miscellaneous Instruction Execution Times
Effective Address
Opcode <EA>
Rn (An) (An)+ -(An) (d16,An) |(d8,An,Xn*SF)| xxx.wl #XXX
CPUSHL (AX) — 9(0/1) — — — — — —
CPUSHL bc,Ax — 18(0/1) — — — — — —
CPUSHL dc,Ax — 12(0/1) — — — — — —
CPUSHL ic,Ax — 18(0/1) — — — — — —
INTOUCH (Ay) — 19(1/0) — — — — — —
LINK.W Ay, #imm 2(0/1) — — — — — — —
MOV3Q.L | #imm,<ea>| 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
MOVE.L | Ay,USP 3(0/0) — — — — — — —
MOVE.L | USPAXx 3(0/0) — — — — — — —
MOVE.W | CCR,Dx 1(0/0) — — — — — — —
MOVE.W | <ea>,CCR| 1(0/0) — — — — — — 1(0/0)
MOVE.W | SR,Dx 1(0/0) — — — — — — —
MOVE.W | <ea>,SR | 4(0/0) — — — — — — 4(0/0) 2
MOVEC Ry,Rc 20(0/1) — — — — — — —
MOVEM.L | <ea>, and — n(n/0) — — n(n/0) — — —
list
MOVEM.L and — n(0/n) — — n(0/n) — — —
list,<ea>
MVS <ea>,Dx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
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Table 3-17. Miscellaneous Instruction Execution Times (continued)

Effective Address
Opcode <EA>
Rn (An) (An)+ -(An) (d16,An) |(d8,An,Xn*SF)| xxx.wl #xXX
MVZ <ea>,Dx 1(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) 1(0/0)
NOP 6(0/0) — — — — — — —
PEA <ea> — 1(0/1) — — 1(0/1) 4 2(0/1) 5 1(0/1) —
PULSE 1(0/0) — — — — — — —
STOP #imm — — — — — — — 6(0/0) 3
TRAP #imm — — — — — — — 18(1/2)
TPF 1(0/0) — — — — — — —
TPFW 1(0/0) — — — — — — —
TPFL 1(0/0) — — — — — — —
UNLK Ax 1(1/0) — — — — — — —
WDDATA <ea> — 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 1(1/0) —
WDEBUG | <ea> — 3(2/0) — — 3(2/0) — — —

The n is the number of registers moved by the MOVEM opcode.
2If a MOVE.W #imm,SR instruction is executed and imm[13] equals 1, the execution time is 1(0/0).

3The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

4PEA execution times are the same for (d16,PC).
SPEA execution times are the same for (d8,PC,Xn*SF).

3.3.5.6 EMAC Instruction Execution Times
Table 3-18. EMAC Instruction Execution Times
Effective Address
Opeode <A Rn | (An) | (An)+ | -(An) | (d16,An) | 98AD |k wi| #xxx
’ Xn*SF)

MAC.L Ry, Rx, Raccx 1(0/0) — — — — — —
MAC.L |Ry, Rx, <ea>, Rw, Racex | — 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0)" — —
MAC.W Ry, Rx, Raccx 1(0/0) — — — — — —
MAC.W | Ry, Rx, <ea>, Rw, Racex | — 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0)" — —
MOVE.L <ea>y, Raccx 1(0/0) — — — — — — 1(0/0)
MOVE.L Raccy, Raccx 1(0/0) — — — — — —
MOVE.L <ea>y, MACSR 8(0/0) | — — — — — — | 8(00)
MOVE.L <ea>y, Rmask 7(0/0) — — — — — — 7(0/0)
MOVE.L <ea>y,RaccextO1 1(0/0) — — — — — — 1(0/0)
MOVE.L <ea>y,Raccext23 1(0/0) | — — — — — — | 1(0/0)
MOVE.L Raccx, <ea>X 1(0/0)?| — — — — — — —
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Table 3-18. EMAC Instruction Execution Times (continued)

ColdFire Core

Effective Address

Opcode <EA> (d8.An

Rn (An) | (An)+ | -(An) |(d16,An) Xn’:SF), xxx.wl | #xxx
MOVE.L MACSR, <ea>x 10/0) | — — — — — — _
MOVE.L Rmask, <ea>x 10/0) | — — — — — — _
MOVE.L Raccext01,<ea.x 1(0/0) — — — — — — —
MOVE.L Raccext23,<ea>x 1(0/0) | — — — — — — —
MSAC.L Ry, Rx, Raccx 1(0/0) — — — — — — —
MSAC.W Ry, Rx, Raccx 1(0/0) — — — — — — —
MSAC.L | Ry, Rx, <ea>, Rw, Racex | — 1(1/0) | 1(1/0) | 1(1/0) 1(1/0)1 — — —
MSAC.W | Ry, Rx, <ea>, Rw, Raccx| — | 1(1/0) | 1(1/0) | 1(1/0) | 1(1/0) — — —
MULS.L <ea>y, Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) | 4(1/0) — — —
MULS.W <ea>y, Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) | 4(1/0) | 5(1/0) | 4(1/0) | 4(0/0)
MULU.L <ea>y, Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) | 4(1/0) — — —
MULU.W <ea>y, Dx 4(0/0) | 4(1/0) | 4(1/0) | 4(1/0) | 4(1/0) 5(1/0) | 4(1/0) | 4(0/0)

1 Effective address of (d16,PC) not supported

2 Storing an accumulator requires one additional processor clock cycle when saturation is enabled, or fractional
rounding is performed (MACSR[7:4] equals 1---, -11-, --11)

NOTE

The execution times for moving the contents of the Racc, Raccext[01,23],
MACSR, or Rmask into a destination location <ea>x shown in this table
represent the best-case scenario when the store instruction is executed and
there are no load or M{S} AC instructions in the EMAC execution pipeline.
In general, these store operations require only a single cycle for execution,
but if preceded immediately by a load, MAC, or MSAC instruction, the
depth of the EMAC pipeline is exposed and the execution time is four

cycles.
3.3.5.7 Branch Instruction Execution Times
Table 3-19. General Branch Instruction Execution Times
Effective Address
Opcode | <EA> )
] (d16,An) | (d8,An,Xi*SF)
Rn (An) (An)+ (An) (d16,PC) | (d8,PC Xi*SF) xxX.wl #xxX

BRA — — — — 1(0/1)° — — —
BSR — — — — 1(0/1)? — — —
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Table 3-19. General Branch Instruction Execution Times (continued)

Effective Address
Opcode | <EA> .
i (d16,An) | (d8,An,Xi*SF)
Rn (An) (An)+ (An) (d16.PC) | (d8,PC Xi*SF) xxx.wl #xxX
JMP <ea> — 5(0/0) — — 5(0/0)" 6(0/0) 1(0/0)" —
JSR <ea> — 5(0/1) — — 5(0/1) 6(0/1) 1(0/1)? —
RTE — — 15(2/0) — — — — —
RTS — — 2(1/0)3 — — — — —
9(1/0)3
8(1/0)3
Table 3-20. Bcc Instruction Execution Times
Branch Cache Prediction Table Predicted Predicted
Opcode | Correctly Predicts | Correctly Predicts | Correctly as Not Incorrectl
Taken Taken Taken v
Bcc 0(0/0) 1(0/0) 1(0/0) 8(0/0)

The following notes apply to the branch execution times:

1.

For BRA and JMP <ea> instructions, where <ea> is (d16,PC) or xxx.wl, the branch acceleration
logic of the IFP calculates the target address and begins prefetching the new path. Because the IFP
and OEP are decoupled by the FIFO instruction buffer, the execution time can vary from one to
three cycles, depending on the decoupling amount.

For all other <ea> values of the JMP instruction, the branch acceleration logic is not used, and the
execution times are fixed.

2. For BSR and JSR xxx.wl opcodes, the same branch acceleration mechanism is used to initiate the
fetch of the target instruction. Depending on the amount of decoupling between the IFP and OEP,
the resulting execution times can vary from 1 to 3 cycles.

For the remaining <ea> values for the JSR instruction, the branch acceleration logic is not used,
and the execution times are fixed.

3. For the RTS opcode, the timing depends on the prediction results of the hardware return stack:

a) If predicted correctly, 2(1/0).
b) If mispredicted, 9(1/0).
c) Ifnot predicted, 8(1/0).
3-35 Freescale Semiconductor



Chapter 4
Memory Management Unit (MMU)

4.1 Introduction

This chapter describes the ColdFire virtual memory management unit (MMU), which provides
virtual-to-physical address translation and memory access control. The MMU consists of memory-mapped
control, status, and fault registers that provide access to translation-lookaside buffers (TLBs). Software can
control address translation and access attributes of a virtual address by configuring MMU control registers
and loading TLBs. With software support, the MMU provides demand-paged, virtual addressing.

41.1 Block Diagram

Figure 4-1 shows the placement of the MMU/TLB hardware. It follows a traditional model closely coupled
to the processor local-memory controllers.
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Memory Management Unit (MMU)

— Provides control and maintenance of TLBs
— Provides fault status and recovery information functions
» Separate, 32-entry, fully associative instruction and data TLBs (Harvard TLBs)
— Resides in the processor local bus-controller
— Operates in parallel with internal memory
— Suffers no performance penalty on TLB hits
— Supports 4- and 8-Kbyte, and 1- and 16-Mbyte page sizes concurrently
— Contains register-based TLB entries
» Core extensions:
— User stack pointer
— All access error exceptions are precise and recoverable

» Harvard TLB provides 97% of baseline performance on large embedded applications without
MMU support

4.2 Memory Map/Register Definition

Access to the MMU memory-mapped region is controlled by MMUBAR, a 32-bit supervisor control
register at 0x008 accessed using MOVEC or the serial BDM debug port. The ColdFire Programmers
Reference Manual describes the MOVEC instruction.

MMUBAR holds the base address for the 64-Kbyte MMU memory map (Table 4-1). The MMU memory
map area is not visible unless the MMUBAR is valid and must be referenced aligned. A large map portion
is reserved for future use.

Table 4-1. MMU Memory Map

Address Register Width | Access | Reset Value | Section/Page

Rc[11:0] = | ASID—Address Space ID 8 R/W 0x00 4.2.1/4-4
0x003’

Rc[11:0] = | MMUBAR—MMU Base Address Register 32 R/W | 0x0000_0000 4.2.2/4-4
0x008’

MMUBAR | MMUCR—MMU control register 32 R/W | 0x0000_0000 4.2.3/4-5

+ 0x0000

MMUBAR | MMUOR—MMU operation register 32 R/W | 0x0000_0000 4.2.4/4-6

+ 0x0004

MMUBAR | MMUSR—MMU status register 32 R/W | 0x0000_0000 4.2.5/4-7

+ 0x0008

MMUBAR | MMUAR—MMU fault, test, or TLB address register 32 R/W | 0x0000_0000 4.2.6/4-8

+ 0x0010

MMUBAR | MMUTR—MMU read/write TLB tag register 32 R/W | 0x0000_0000 4.2.7/4-8

+ 0x0014
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Table 4-1. MMU Memory Map (continued)

Address Register Width | Access | Reset Value | Section/Page
MMUBAR | MMUDR—MMU read/write TLB data register 32 R/W | 0x0000_0000 4.2.8/4-9
+ 0x0018

' The address listed here represents the value of the Rc field used when accessing the core registers via the BDM port. For
more information see Chapter 34, “Debug Module”

4.2.1 Address Space ID (ASID)

The address space ID (ASID) is located in a CPU space-control register. The 8-bit ASID value is mapped
into CPU space at address 0x003 and is accessed using a MOVEC instruction. The ColdFire Family
Programmers Reference Manual describes MOVEC.

Rc[11:0]: 0x003 (ASID) Access: Supervisor read/write
7 6 5 4 ‘ 3 2 1 0
R
ID
W
Reset: 0 0 0 0 ‘ 0 0 0 0

Figure 4-2. Address Space ID (ASID)

Table 4-2. ASID Field Descriptions

Field Description

7-0 This 8-bit field is the current user ASID. The ASID is an extension to the virtual address. Address space 0x00
ID may be reserved for supervisor mode. See address space mode functionality in Section 4.2.3, “MMU Control
Register (MMUCR).” The other 255 address spaces are used to tag user processes. The TLB entry ASID
values are compared to this value for user mode unless the TLB entry is marked shared (MMUTR[SG] is set).
The TLB entry ASID value may be compared to 0x00 for supervisor accesses.

4.2.2 MMU Base Address Register (MMUBAR)

The default reset state is an invalid MMUBAR; The MMU is disabled and the memory-mapped space is
not visible.

Rc[11:0] 0x008 (MMUBAR) Access: Supervisor read/write
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0

R ojo|jofo|jO0|0O|O|lO|jO|O|O|O|O|O]|O
BA v

W
Resetoooo\oooo\oooo\oooooooooooooooooooo

Figure 4-3. MMU Base Address Register (MMUBAR)
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Memory Management Unit (MMU)
Table 4-3. MMUBAR Field Descriptions
Field Description
31-16 Base address. Defines the base address for the 64-Kbyte address space mapped to the MMU.
BA
15-1 Reserved, must be cleared.
0 Valid. Indicates when MMUMBAR contents are valid. BA is not used unless V is set.
\Y 0 MMUBAR contents are not valid.
1 MMUBAR contents are valid.
4.2.3 MMU Control Register (MMUCR)
MMUCR contains the address space mode and virtual mode enable bits. The user must force pipeline

synchronization after writing to this register. Therefore, all writes to this register must be immediately
followed by a NOP instruction.

MMUBAR 0x000 (MMUCR) Access: User read/write

Offset:

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4| 3 2 1 0
R|0j0|0O|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O 0| 0
ASM|EN
w
Reset 0 0 0 0|0 O O O|O O O O|O O O 0O|O O OO/IOOOOOOOOf O O o0 O
Figure 4-4. MMU Control Register (MMUCR)
Table 4-4. MMUCR Field Descriptions
Bits Description
31-2 Reserved, must be cleared.
1 Address space mode. Controls how the address space ID is used for TLB hits.

ASM 0 TLB entry ASID values are compared to the ASID register value for user or supervisor mode unless the TLB entry
is marked shared (MMUTR[SG] = 1). The address space ID register value is the effective address space for all
requests, supervisor and user.

1 Address space 0x00 is reserved for supervisor mode, and the effective address space is forced to 0x00 for all
supervisor accesses. The other 255 address spaces are used to tag user processes. The TLB entry ASID values
are compared to the ASID register for user mode unless the TLB entry is marked shared (SG = 1). The TLB entry
ASID value is always compared to 0x00 for supervisor accesses. This allows two levels of sharing. All users, but
not the supervisor, share an entry if SG is set and ASID does not equal 0. All users and the supervisor share an
entry if SG is set and ASID equals 0

0 Virtual mode enable.
EN 0 Virtual mode is disabled

1 Virtual mode is enabled

Freescale Semiconductor 4-5




Memory Management Unit (MMU)

4.24 MMU Operation Register (MMUOR)
MMUBAR 0x004 (MMUOR) Access: User read/write
Offset:
31 30 29 28 ‘ 27 26 25 24 ‘ 23 22 21 20 ‘ 19 18 17 16
R AA
we | [ | [ [ ]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O 0 0 0 0 0 0 0 0 0 0 0 0
ITLB | ADR | R'W
w STLB| CA | CNL | CAS ACC | UAA
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 4-5. MMU Operation Register (MMUOR)
Table 4-5. MMUOR Field Descriptions
Field Description
31-16 TLB allocation address. This read-only field is maintained by MMU hardware. Its range and format depend on the
AA TLB implementation (specific TLB size in entries, associativity, and organization). The access TLB function can
use AA to read or write the addressed TLB entry. The MMU loads AA on the following three events:
¢ On DTLB access errors, it loads the TLB entry address that caused the error.
¢ If MMUORI[UAA] is set, it loads the address of the TLB entry chosen by the MMU for replacement.
¢ |[f MMUORI[STLB] is set, it uses the data in MMUAR to search the TLB. If the TLB hits, it loads the address of
the TLB entry that hits; if the TLB misses, it loads the TLB entry chosen by the MMU for replacement.
The MMU never picks a locked entry for replacement, and TLB hits of locked entries do not update hardware
replacement algorithm information. This is so access error handlers mapped with locked TLB entries do not
influence the replacement algorithm. Further, TLB search operations do not update the hardware replacement
algorithm information; TLB writes (loads) do update the hardware replacement algorithm information. The
algorithm that chooses the allocation address depends on the TLB implementation (such as LRU, round-robin,
pseudo-random).
15-9 Reserved, must be cleared.
8 Search TLB. STLB always reads as zero.
STLB 0 No operation
1 The MMU searches the TLB using data in MMUAR. This operation updates the probe TLB hit bit in the status
register plus loads the AA field as described above.
7 Clear all TLB entries. CA always reads as zero.
CA 0 No operation
1 Clear all TLB entries and all hardware TLB replacement algorithm information.
6 Clear all non-locked TLB entries. Setting CNL clears all TLB entries that do not have locked bits. CNL always
CNL reads as zero.
0 No operation
1 Clear all non-locked TLB entries
5 Clear all non-locked TLB entries that match ASID. CAS always reads as a zero.
CAS 0 No operation
1 Clear all non-locked TLB entries that match ASID register
4 ITLB operation. Used by TLB search and access operations that use the TLB allocation address.
ITLB 0 MMU uses DTLB to search or update allocation address
1 MMU uses ITLB for of the allocation address searches and updates
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Table 4-5. MMUOR Field Descriptions (continued)

Field Description
3 TLB address select. Indicates which address to use when accessing the TLB.
ADR 0 Use the TLB allocation address for the TLB address
1 Use MMUAR for the TLB address
2 TLB access read/write select. Indicates whether to perform a read or a write when accessing the TLB.
R/W 0 Write
1 Read
1 MMU TLB access. This bit always reads as a zero. STLB is used for search operations.
ACC 0 No operation. ACC must be a zero to search the TLB.
1 The MMU reads or writes the TLB depending on R/W. For TLB reads, TLB tag and data results are loaded into
MMUTR and MMUDR. For TLB writes, the contents of these registers are written to the TLB. The TLB is
accessed using the TLB allocation address if ADR is zero or using MMUAR if ADR is set.
0 Update allocation address. UAA always reads as a zero.
UAA 0 No operation
1 MMU updates the allocation address field with the MMU’s choice for the allocation address in the ITLB or DTLB
depending on the ITLB instruction operation bit.
4.2.5 MMU Status Register (MMUSR)
MMUSR is updated on all data access faults and search TLB operations.
MMUBAR 0x008 (MMUSR) Access: User read/write
Offset:
31 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16|15 14 13 1211 10 9 8|7 6 5 4|3 2 1 0
Riofo0|0f(0O|O|0O|O|O|lO|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O]|O 0 0
W SPF|RF|WF — HIT —

Reset 0 0 0 OO0 0 0 O|O O 0 O|O O OO/O0OO0OOOOOO|0OO O O|O0O O 0O

Figure 4-6. MMU Status Register (MMUSR)

Table 4-6. MMUSR Field Descriptions

Field Description
31-6 Reserved, must be cleared.
5 Supervisor-protect fault. Indicates if last data fault was a user-mode access that hit in a TLB entry with its
SPF supervisor protect bit set.
0 Last data access fault did not have a supervisor protect fault
1 Last data access fault had a supervisor protect fault
4 Read-access fault. Indicates if last data fault was a data-read access that hitin a TLB entry without its read bit set.
RF 0 Last data access fault did not have a read protect fault
1 Last data access fault had a read protect fault
3 Write-access fault. Indicates if the last data fault was a data-write access that hit in a TLB entry without its write
WF bit set.
0 Last data access fault did not have a write protect fault
1 Last data access fault had a write protect fault
2 Reserved, must be cleared.
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Table 4-6. MMUSR Field Descriptions (continued)

Field Description

1 Search TLB hit. Indicates if last data fault or last search TLB operation hit in the TLB.
HIT 0 Last data access fault or search TLB operation did not hit in the TLB
1 Last data access fault or search TLB operation hit in the TLB

0 Reserved, must be cleared.

4.2.6 MMU Fault, Test, or TLB Address Register (MMUAR)
The MMUAR format depends on how register is used.

MMUBAR 0x010 (MMUAR) Access: User read/write
Offset:
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0
R
FA
W

Resetoooo\oooo\oooo\oooo]oooo]oooo\oooo\oooo
Figure 4-7. MMU Fault, Test, or TLB Address Register (IMUAR)

Table 4-7. MMUAR Field Descriptions

Field Description

31-0 Form address.

FA * Written by the MMU with the virtual-address on DTLB misses and access faults. For this case, all 32 bits are
address bits.

* This register may be written with a virtual-address and address-attribute information for searching the TLB
(MMUCRI[STLB)). For this case, FA[31-1] are the virtual page number and FA[0] is the supervisor bit. The
current ASID is used for the TLB search.

* MMUAR can also be written with a TLB address for use with the access TLB function (using MMUCR[ACC]).

4.2.7 MMU Read/Write Tag Entry Registers (MMUTR)

Each TLB entry consists of a 32-bit TLB tag entry and a 32-bit TLB data entry. TLB entries are referenced
through MMUTR and MMUDR registers. For read TLB accesses, the contents of the TLB tag and data
entries referenced by the allocation address or MMUAR are loaded in MMUTR and MMUDR. TLB write
accesses place MMUTR and MMUDR contents into the TLB tag and data entries defined by the allocation
address or MMUAR.

The MMUTR register contains the virtual address tag, the address space ID (ASID), a shared page
indicator, and the valid bit.
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MMUBAR 0x014 (MMUTR) Access: User read/write
Offset:
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0
R
VA ID SG|V
W

Resetoooo\oooo\oooo\oooo\oooo\oooo]oooo\oooo
Figure 4-8. MMU Read/Write TLB Tag Register (MMUTR)

Table 4-8. MMUTR Field Descriptions

Field Description

31-10 Virtual address. Defines the virtual address mapped by this entry. The number of bits used in TLB hit

VA determination depends on the page-size field in the corresponding TLB data entry.
9-2 Address space ID (ASID). This extension to the virtual address marks this entry as part of 1 of 256 possible
ID address spaces. Address space 0x00 can be reserved for supervisor mode. The other 255 address spaces are

used to tag user processes. TLB entry ASID values are compared to the ASID register value for user mode
unless the TLB entry is marked shared (SG = 1). The TLB entry ASID value may be compared to 0x00 for
supervisor accesses or to the ASID. The description of MMUCR[ASM] in Table 4-4 gives details on supervisor
mode and ASID compares.

1 Shared global. Indicates when the entry is shared among user address spaces. If an entry is shared, its ASID

SG is not part of the TLB hit determination for user accesses.

0 This entry is not shared globally.

1 This entry is shared globally.

Note: The ASID can determine supervisor mode hits to allow two sharing levels. If SG and MMUCR[ASM] are
set and the ASID is not zero, all users (but not the supervisor) share an entry. If SG and MMUCR[ASM]
are set and the ASID is zero, all users and the supervisor share an entry. The ASM description in Table 4-4
details supervisor mode and ASID compares.

Valid. Indicates when the entry is valid. Only valid entries generate a TLB hit.
0 Entry is not valid.
1 Entry is valid.

< O

4.2.8 MMU Read/Write Data Entry Register (MMUDR)

The MMUDR register contains the physical address, page size, cache-mode field, supervisor-protect bit,
read, write, execute permission bits, and lock-entry bit.

MMUBAR 0x018 (MMUTR) Access: User read/write
Offset:

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8/7 6 5 4|3 2 1 0

R 0

W PA SZ | CM |SP|R|W| X |LK|—

Resetoooo]oooo]oooo\oooo\oooo\oooooooooooo
Figure 4-9. MMU Read/Write TLB Data Register (MMUDR)
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Table 4-9. MMUDR Field Descriptions

Field Descriptions
31-10 Physical address. Defines the physical address mapped by this entry. The number of bits used to build the
PA effective physical address if this TLB entry hits depends on the page size field.
9-8 Page size. Page size for this entry:
Sz 00 1 Mbyte: VA[31-20] used for TLB hit
01 4 Kbytes: VA[31-12] used for TLB hit
10 8 Kbytes: VA[31-13] used for TLB hit
11 16 Mbytes: VA[31-24] used for TLB hit
7-6 Cache mode.
CM Instruction cache modes:
1x Page is non-cacheable.
0x Page is cacheable.
Data cache modes:
00 Page is cacheable write-through.
01 Page is cacheable copy-back.
10 Page is non-cacheable precise.
11 Page is non-cacheable imprecise.
5 Supervisor protect. Controls user mode access to the page mapped by this entry.
SP 0 Entry is not supervisor protected.
1 Entry is supervisor protected. An attempted user mode access that matches this entry generates an access
error exception.
4 Read access enable. Indicates if data read accesses to this entry are allowed. If a Harvard TLB implementation
R is used, this bit is a don’t care for the ITLB. This bit is ignored on writes and always reads as zero for the ITLB.
0 Do notallow data read accesses. Attempted data read accesses that match this entry generate an access error
exception.
1 Allow data-read accesses.
3 Write access enable. Indicates if data write accesses are allowed to this entry. If separate ITLB and DTLBs are
w used, this bit is a don’t care for the ITLB. This bit is ignored on writes and always reads as zero for the ITLB.
0 Do not allow data write accesses. Attempted data write accesses that match this entry generate an access
error exception.
1 Allow data-write accesses.
2 Execute access enable. Indicates if instruction fetches to this entry are allowed. If separate ITLB and DTLBs are
X used, this bit is a don’t care for the DTLB. This bit is ignored on writes and reads as zero for the DTLB.
0 Do not allow instruction fetches. Attempted instruction fetches that match this entry cause an access error
exception.
1 Allow instruction-fetch accesses.
1 Lock entry bit. Indicates if this entry is included in the replacement algorithm. TLB hits of locked entries do not
LK update replacement algorithm information.
0 Include this entry when determining the best entry for a TLB allocation.
1 Do not allow this entry to be selected by the replacement algorithm.
0 Reserved, must be cleared.

4.3

Functional Description

The ColdFire MMU provides a virtual address, demand-paged memory architecture. The MMU supports
hardware address translation acceleration using software-managed TLBs. It enforces permission checking
on a per-memory request basis, and has control, status, and fault registers for MMU operation.

4-10
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4.3.1 Virtual Memory Management Architecture

The ColdFire memory management architecture provides a demand-paged, virtual-address environment
with hardware address translation acceleration. It supports supervisor/user, read, write, and execute
permission checking on a per-memory request basis.

The architecture defines the MMU TLB, associated control logic, TLB hit/miss logic, address translation
based on the TLB contents, and access faults due to TLB misses and access violations. It intentionally
leaves some virtual environment details undefined to maximize the software-defined flexibility. These
include the exact structure of the memory-resident pointer descriptor/page descriptor tables, the base
registers for these tables, the exact information stored in the tables, the methodology (if any) for access
maintenance, and written information on a per-page basis.

4311 MMU Architecture Features

To add optional virtual-addressing support, demand-page support, permission checking, and hardware
address translation acceleration to the ColdFire architecture, the MMU architecture features:

* Addresses from the core to the MMU are treated as physical or virtual addresses.

» The address access control logic, address attribute logic, internal memories, and internal to external
memory bus controller function as in previous ColdFire versions with the addition of MMU.

« MMU, its TLB, and associated control reside in the processor local bus logic.

* MMU appears as a memory-mapped device in the processor local bus space. Information for
access error fault processing is stored in MMU.

» A precise processor local-bus fault (transfer-error acknowledge) signals the core on translation
(TLB miss) and access faults. The core supports an instruction restart model for this fault class.
This structure uses the existing ColdFire access error fault vector and needs no new ColdFire
exception stack frames.

* New ACR bits improve address granularity, supervisor mode protection, and memory functionality
for physical and virtual address environments.

4.3.1.2 MMU Architecture Implementation

This section describes ColdFire design additions and changes for the MMU architecture. It includes
precise faults, MMU access, virtual mode, virtual memory references, instruction and data cache
addresses, supervisor/user stack pointers, access error stack frame additions, expanded control register
space, ACR address improvements, supervisor protection, and debugging in a virtual environment.

4.3.1.2.1 Precise Faults

The MMU architecture performs virtual-to-physical address translation and permission checking in the
core. To support demand-paging, the core design provides a precise, recoverable fault for all processor
local bus references.
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4.3.1.2.2 MMU Access

The MMU TLB control registers are memory-mapped. The TLB entries are read and written indirectly
through MMU control registers. Memory space for these resources is defined by a new supervisor program
model register, the MMU base-address register (MMUBAR). This defines a supervisor-mode, data-only
space. It has the highest priority for the data-processor local-bus address-mode determination.

4.3.1.2.3 Virtual Mode

Every processor local-bus instruction and data reference is a virtual or physical address mode access. The
following are always physical accesses:

» All addresses for special mode (interrupt acknowledges, emulator mode operations, etc.) accesses
» All addresses if the MMU is not enabled

If the MMU is enabled, the address mode for normal accesses is determined by the MMUBAR,
RAMBARs, and ACRs in the priority order listed:

» Addresses that hit in these registers are treated as physical references. These addresses are not
translated and their address attributes are sourced from the highest priority mapping register they
hit.

+ Ifan address hits none of these mapping registers, it is a virtual address and is sent to the MMU. If
the MMU is enabled, the default CACR information is not used.

43.1.2.4 Virtual Memory References

The ColdFire MMU architecture references the MMU for all virtual mode accesses to the processor local
bus. MMU, SRAM and ACR memory spaces are treated as physical address spaces and all permissions
applying to these spaces are contained in the respective mapping register. The virtual mode access either
hits or misses in the TLB of the MMU. A TLB miss generates an access fault in the processor, allowing
software to either load the appropriate translation into the TLB and restart the faulting instruction or abort
the process. Each TLB hit checks permissions based on the access control information in the referenced
TLB entry.

4.3.1.2.5 Instruction and Data Cache Addresses

For a given page size, virtual address bits that reference within a page are called the in-page address. All
bits above this are the virtual page number. Likewise, the physical address has a physical page number and
in-page address bits. Virtual and physical in-page address bits are the same; the MMU translates the virtual
page number to the physical page number.

Instruction and data caches are accessed with the untranslated processor local-bus address. The translated
address is used for cache allocation. That is, caches are virtual-address accessed and physical-address
tagged. If instruction and data cache addresses are not larger than the in-page address for the smallest
active MMU page, the cache is physically accessed; if they are larger, the cache can have aliasing problems
between virtual and cache addresses. Software handles these problems by forcing the virtual address to be
equal to the physical address for those bits addressing the cache, but above the in-page address of the
smallest active page size. The number of these bits depends on cache and page sizes.
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Caches are addressed with the virtual address (the cache uses synchronous memory elements), and an
access starts at the rising-clock edge of the first processor local bus pipeline stage. The MMU provides a
physical address midway through this cycle.

If the cache-set address has fewer bits than the in-page address, the cache is considered physically
addressed because these bits are the same in the virtual and physical addresses. If the cache set address has
more bits than the in-page address, one or more of the low-order virtual page number bits are used to
address the cache. The MMU translates these bits; the resulting low-order physical page number bits are
used to determine cache hits.

Address aliasing problems occur when two virtual addresses access one physical page. This is generally
allowed and, if the page is cacheable, one coherent copy of the page image is mapped in the cache at any
time.

If multiple virtual addresses pointing to the same physical address differ only in the low-order virtual page
number bits, conflicting copies can be allocated. For an 8-Kbyte, 4-way, set-associative cache with a
16-byte line size, the cache set address uses address bits 10—4. If virtual addresses 0x0 1000 and 0x0 1400
are mapped to physical address 0x0_ 1000, using virtual address 0x0 1000 loads cache set 0x00; using
virtual address 0x0 1400 loads cache set 0x40. This puts two copies of the same physical address in the
cache, making this memory space not coherent. To avoid this problem, software must force low-order
virtual page number bits to be equal to low-order physical address bits for all bits used to address the cache
set.

4.3.1.2.6 Supervisor/User Stack Pointers

To isolate supervisor and user modes, the Version 4 ColdFire core implements two A7 register stack
pointers: one for supervisor mode (SSP) and one for user mode (USP). Two former M68000
family-privileged instructions to load and store the user stack pointer are restored in the instruction set
architecture.

4.3.1.2.7 Access Error Stack Frame

Processor local bus accesses that fault (that is, terminate with a transfer error acknowledge) to generate
an access error exception. MMU TLB misses and access violations use the same fault. New fault status
field (FS) encodings in the exception stack frame signal TLB misses on the following to quickly determine
if a fault was due to a TLB miss or another type of access error:

* Instruction fetch

* Instruction extension fetch
» Data read

* Data write

See Section 4.3.3.3, “Access Error Stack Frame Additions,” for more information.

4.3.1.2.8 Expanded Control Register Space

The MMU base-address register (MMUBAR) is added for ColdFire virtual mode. Like other control
registers, it can be accessed from the debug module or written using the privileged MOVEC instruction.
See Section 4.2.2, “MMU Base Address Register (MMUBAR).”
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4.3.1.2.9 Changes to ACRs and CACR

New ACR and CACR bits improve address granularity and supervisor mode protection and memory
functionality for physical- and virtual- address environments.

Table 4-10. New ACR and CACR Bits

Field Description

ACRnN[10] |Address mask mode. Determines access to the associated address space.
AMM 0 The ACR hit function is the same as previous versions, allowing control of a 16-Mbyte or greater memory
region.

1 The upper 8 bits of the address and ACR are compared without a mask function; bits 23-20 of the address
and ACR are compared masked by ACR[19-16], allowing control of a 1- to 16-Mbyte region.

Reset value is 0.

ACRnN[3] |Supervisor protect. Determines access to the associated address space.

SP 0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error exception.
Reset value is 0.

CACR[23] | Default data supervisor protect. Determines access to the associated data space.

DDSP 0 Supervisor and user access allowed.
1 Only supervisor access allowed. Attempted user access causes an access error exception.
Reset value is 0.

CACR([7] |Default instruction supervisor protect. Determines access to the associated instruction space.
DISP 0 Supervisor and user access allowed.

1 Only supervisor access allowed. Attempted user access causes access error exception

Reset value is 0.

4.3.1.2.10 ACR Address Improvements

The ACR registers provide a 16-Mbyte address window. For a given request address, if the ACR is valid
and the request mode matches the mode specified in the supervisor mode field (ACR#[S]), hit
determination is specified as:
ACRx Hit = 0;
if ((address[31:24] and ~ACRn[23:16]) == (ACRn[31:24] and ~ACRn[23:16]))

ACRx Hit = 1;
With this hit function, ACRs can assign address attributes for user or supervisor requests to memory spaces
of at least 16 Mbytes (through the address mask). With the MMU definition, the ACR hit function is
improved by the address mask mode bit (ACRn[AMM]), which supports finer address granularity. See
Table 4-10.

The revised hit determination becomes:

ACRx_Hit = 0;
if (ACRn[10] == 1)

if ((address[31-24] == ACRn[31-24])) &&
((address[23-20] and ~ACRn[19-16]) == (ACRn[23-20] and ~ACRn[19-16])))
ACRx Hit = 1;
else 1if (address[31-24] and ~ACRn[23-16]) == (ACRn[31-24] and ~ACRn[23-161))

ACRx Hit = 1;
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4.3.1.2.11  Supervisor Protection

Each instruction or data reference is a supervisor or user access. The CPU’s status register supervisor bit
(SR[S]) determines the operating mode. New ACR and CACR bits protect supervisor space. See
Table 4-10.

4.3.2 Debugging in a Virtual Environment

To support debugging in a virtual environment, numerous enhancements are implemented in the ColdFire
debug architecture. These enhancements are collectively called debug revision D and primarily relate to
the addition of an 8-bit address space identifier (ASID) to yield a 40-bit virtual address. This expansion
affects two major debug functions:

» The ASID is optionally included in the hardware breakpoint registers specification. For example,
the four PC breakpoint registers are expanded by 8 bits each, so that a specific ASID value can be
part of the breakpoint instruction address. Likewise, data address/data breakpoint registers are
expanded to include an ASID value. The new control registers define if and how the ASID is
included in the breakpoint comparison trigger logic.

* The debug module implements the concept of ownership trace in which an ASID value can be
optionally displayed as part of real-time trace. When enabled, real-time trace displays instruction
addresses on any change-of-flow instruction that is not absolute or PC-relative. For debug
revision D architecture, the address display is expanded to include ASID contents optionally, thus
providing the complete instruction virtual address on these instructions. Additionally, when a
SYNC_PC serial BDM command is loaded from the external development system, the processor
displays the complete virtual-instruction address, including the 8-bit ASID value.

The MMU control registers are accessible through serial BDM commands. See Chapter 34, “Debug
Module.”

4.3.3 Virtual Memory Architecture Processor Support

To support the MMU, enhancements have been made to the exception model, the stack pointers, and the
access error stack frame.

4.3.3.1 Precise Faults

To support demand-paging, all memory references require precise, recoverable faults. The ColdFire
instruction-restart mechanism ensures a faulted instruction restarts from the beginning of execution; in
other words, no internal state information is saved when an exception occurs and none is restored when
the handler ends. Given the PC address defined in the exception stack frame, the processor reestablishes
program execution by transferring control to the given location as part of the RTE (return from exception)
instruction.

For a detailed description, see Section 3.3.4.16, “Precise Faults.”
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4.3.3.2 Supervisor/User Stack Pointers

To provide the required isolation among these operating modes as dictated by a virtual memory
management scheme, a user stack pointer (A7-USP) is added. The appropriate stack pointer register (SSP,
USP) is accessed as a function of the processor’s operating mode.

In addition, the following two privileged M68000 family instructions to load/store the USP are added to
the ColdFire instruction set architecture:

move.l  Ay,USP # move to USP: opcode = 0x4E6{0-7}
move.l USP, Ax # move from USP: opcode = 0x4E6{8-F}
The address register number is encoded in the three low-order bits of the opcode.

These instructions are described in detail in Section 4.3.9, “MMU Instructions.”

4.3.3.3 Access Error Stack Frame Additions

ColdFire exceptions generate a standard 2-longword stack frame, signaling the contents of the SR and PC
at the time of the exception, the exception type, and a 4-bit fault status field (FS). The first longword
contains the 16-bit format/vector word (F/V) and the 16-bit status register. The second contains the 32-bit
program counter address of the faulted instruction. For more information, see Section 3.3.3.1, “Exception
Stack Frame Definition.”

31 30 29 28|27 26 25 24’23 22 21 20‘19 18 17 16 |15 14 13 12’11 10 9 8’7 6 5 4‘3 2 1 0
SSP —| Format FS[S:Z]‘ Vector |FS[1:O] Status Register

+ 0x4 Program Counter

Figure 4-10. Exception Stack Frame Form

The FS field is used for access and address errors. To optimize TLB miss-exception handling, new FS
encodings (as shown in Table 4-11) allow quick error classification.

Table 4-11. Fault Status Encodings

FS[3:0] Definition
0000 Not an access or address error
0001 — 0011 Reserved
0100 Error (for example, protection fault) on instruction fetch
0101 TLB miss on opword of instruction fetch (New for MMU)
0110 TLB miss on extension word of instruction fetch (New for MMU)
0111 IFP access error while executing in emulator mode (New for MMU)
1000 Error on data write
1001 Attempted write of protected space
1010 TLB miss on data write (New for MMU)
1011 Reserved
1100 Error on data read
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Table 4-11. Fault Status Encodings (continued)

FS[3:0] Definition
1101 Attempted read, read-modify-write of protected space (New for MMU)
1110 TLB miss on data read, or read-modify-write (New for MMU)
1111 OEP access error while executing in emulator mode (New for MMU)

4.3.4 Effective Address Attribute Determination

The ColdFire core generates an effective memory address for all instruction fetches and data read and write
memory accesses. The previous ColdFire memory access control model was based strictly on physical
addresses. Every memory request address is a physical address analyzed by this memory access control
logic and assigned address attributes, including:

+ Cache mode

*  SRAM enable information

»  Write protect information

*  Write mode information

These attributes control processing of the memory request. The address itself is not affected by memory
access control logic.

Instruction and data references base effective address attributes and access mode on the instruction type
and the effective address. There are two types of accesses:

» Special mode accesses, including interrupt acknowledges, reads/writes to program-visible control
registers (CACR, RAMBARs, and ACRs), cache-control commands (CPUSHL and INTOUCH),
and emulator-mode operations. These accesses have the following attributes:

— Non-cacheable
— Precise
— No write protection

Unless the CPU space/IACK mask bit is set, interrupt acknowledge cycles and emulator mode
operations are allowed to hit in RAMBAR. All other operations are normal mode accesses.

» Normal mode accesses. For these accesses, an effective cache mode, precision, and
write-protection are calculated for each request.

For data, a normal mode access address is compared with the following priority, from highest to lowest:
RAMBAR, ACRO, and ACR1. If no match is found, default attributes in the CACR are used. The priority
for instruction accesses is RAMBAR, ACR2, and ACR3. Again, if no match is found, default CACR
attributes are used.

Only the test-and-set (TAS) instruction generates a normal mode access with implied cache mode and
precision. TAS is a special, byte-sized, read-modify-write instruction used in synchronization routines. A
TAS data access that does not hit in the RAMBAR is non-cacheable and precise. TAS uses the normal
effective write protection.

If the MMU is enabled, it adds two factors for calculating effective address attributes:
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* MMUBAR defines a memory-mapped, privileged data-only space with the highest priority in
effective address attribute calculation for the data bus (that is, the MMUBAR has priority over
RAMBAR).

» Ifvirtual mode is enabled, any normal mode access that does not hit in the MMUBAR, RAMBAR
or ACRs is considered a normal mode virtual address request and generates its access attributes
from the MMU. For this case, the default CACR address attributes are not used.

The MMU also uses TLB contents to perform virtual-to-physical address translation.

4.3.5 MMU Functionality

The MMU provides virtual-to-physical address translation and memory access control. The MMU consists
of memory-mapped, control, status, and fault registers, and a TLB that can be accessed through MMU
registers. Supervisor software can access these resources through MMUBAR. Software can control
address translation and virtual address access attributes by configuring MMU control registers and loading
the MMU’s TLB, which functions as a cache, associating virtual addresses to corresponding physical
addresses and providing access attributes. Each TLB entry maps a virtual page. Several page sizes are
supported. Features such as clear-all and probe-for-hit help maintain TLBs.

Fault-free, virtual address accesses that hit in the TLB incur no pipeline delay. Accesses that miss the TLB
or hit the TLB but violate an access attribute generate an access-error exception. On an access error,
software can reference address and information registers in the MMU to retrieve data. Depending on the
fault source, software can obtain and load a new TLB entry, modify the attributes of an existing entry, or
abort the faulting process.

4.3.6 MMU TLB

Each TLB entry consists of two 32-bit fields. The first is the TLB tag entry, and the second is the TLB data
entry. TLB entries can be read and written through MMU registers. TLB contents are unaffected by reset.

4.3.7 MMU Operation

The processor sends instruction-fetch requests and data read/write requests to the MMU internal bus in the
instruction- and operand-address generation cycles (IAG and OAG). The processor local bus controller
and memories occupy the next two pipeline stages, instruction fetch cycles 1 and 2 (IC1 and IC2) and
operand fetch cycles 1 and 2 (OC1 and OC2). For late writes, optional data pipeline stages are added to
the processor local bus controller as well as any writable memories.

Table 4-12 shows the association between internal memory pipeline stages and the processor’s pipeline
structures (Figure 4-1).

Table 4-12. Version 4 Processor Local Bus Memory Pipelines

Processor Local Bus Memory Pipeline Stage | Instruction Fetch Pipeline | Operand Execution Pipeline

J stage IAG OAG
KC1 stage IC1 OCH1
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Table 4-12. Version 4 Processor Local Bus Memory Pipelines (continued)

Processor Local Bus Memory Pipeline Stage | Instruction Fetch Pipeline | Operand Execution Pipeline

KC2 stage IC2 (0]67]
Operand-execute stage n/a EX
Late-write stage n/a DA

Version 4 ColdFire processor local buses use the same 2-cycle read pipeline developed for Version 3
ColdFire cores. Each processor local bus has 32-bit address and 32-bit read data paths. Version 4 ColdFire
cores use synchronous memory elements for all memory-control units. To support this, certain control
information and all address bits are sent on the processor local buses at the end of the cycle before the
initial bus access cycle (J cycle). The data processor local bus has an additional 32-bit write data path. For
processor-store operations, Version 4 ColdFire uses a late-write strategy, which can require two additional
data processor local bus cycles. This strategy yields the processor local bus pipeline behavior described in
Table 4-13.

Table 4-13. Processor Local Bus Pipeline Cycles

Cycle Description

J Control and partial address broadcast (to start synchronous memories)

KC1 Complete address and control broadcast plus MMU information. During this cycle, all memory element
read operations are performed; memory arrays are accessed.

KC2 Select appropriate memory as source, return data to processor, handle cache misses or hold
processor local bus pipeline as needed.

EX Optional write stage, pipeline address and control for store operations.

DA Data available for stores from processor; memory element update occurs in the next cycle.

The processor core contains two independent memory unit access controllers and two independent
processor local bus controllers. Each instruction and data processor local bus request is analyzed to see
which, if any, memory controller is referenced. This information, along with cache mode, store precision,
and fault information, is sourced during KCI.

The MMU is referenced concurrently with the memory unit access controllers. It has two independent
control sections to process simultaneously an instruction and data processor local bus request. Figure 4-1
shows how the MMU and memory unit access controllers fit in the processor local bus pipeline. As the
diagram shows, core address and attributes access the mapping registers and the MMU. By the middle of
the KC1 cycle, the physical-memory address is available along with its corresponding access control.

Figure 4-11 shows more details of the MMU structure. At the beginning of the KC1 pipeline stage, the
TLB is accessed so the resulting physical address can be sourced to the cache controllers to factor into the
cache hit/miss determination. This is required because caches are virtually indexed but physically mapped.
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N1 JADDR, J Control — To processor local bus memory controllers
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Figure 4-11. Processor Local Bus Address and Attributes Generation

4.3.8 MMU Implementation

The MMU implements a 64-entry full-associative Harvard TLB architecture with 32-entry ITLB and
DTLB. This section details the operation and looks at the size, frequency, miss rate, and miss recovery time
of this TLB implementation.

4.3.8.1 TLB Address Fields

Because the TLB has a total of 64 entries (32 each for the instruction and data TLBs), a 6-bit address field
is necessary. TLB addresses 0-31 reference the ITLB; TLB addresses 32—63 reference the DTLB.

In the MMUOR register, bits 0—5 of the TLB allocation address (AA[5-0]) have this address format. The
remaining TLB allocation address bits (AA[15-6]) are ignored on updates and always read as zero.

When the MMUAR register is used for a TLB address, bits FA[5—0] also have this address format. The
remaining form address bits (FA[31-6]) are ignored when this register is used for a TLB address.
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4.3.8.2 TLB Replacement Algorithm

The instruction and data TLBs provide low-latency access to recently used instruction and operand
translation information. The ITLBs and DTLBs are 32-entry fully associative caches. The 32 ITLB entries
are searched on each instruction reference; the 32 DTLB entries are searched on each operand reference.

The TLBs are software controlled. The TLB clear-all function clears valid bits on every TLB entry and
resets the replacement logic. A new valid entry loaded in the TLBs may be designated as locked and
unavailable for allocation. TLB hits to locked entries do not update replacement algorithm information.

When a new TLB entry needs to be allocated, the user can specify the exact TLB entry to be updated
(through MMUORJADR] and MMUAR) or let TLB hardware pick the entry to update based on the
replacement algorithm. A pseudo least recently used (PLRU) algorithm picks the entry to replace ona TLB
miss. The algorithm works as follows:

» If any element is empty (non-valid), use the lowest empty element as the allocate entry (entry 0
before 1, 2, 3, and so on).

« If all entries are valid, use the entry indicated by the PLRU as the allocate entry.

The PLRU algorithm uses 31 most recently used state bits per TLB to track the TLB hit history. Table 4-14
lists these state bits.

Table 4-14. PLRU State Bits

State Bits Meaning

rdRecent31To16 A 1 indicates 31To16 is more recent than 15To00

rdRecent31To24 A 1 indicates 31To24 is more recent than 23To16

rdRecent15To08 A 1 indicates 15To08 is more recent than 07To00

rdRecent31To28 A 1 indicates 31To28 is more recent than 27To24

rdRecent23To20 A 1 indicates 23To20 is more recent than 19To16

rdRecent15To12 A 1 indicates 15To12 is more recent than 11To08

rdRecent07To04 A 1 indicates 07To04 is more recent than 03To00

rdRecent31To30 A 1 indicates 31To30 is more recent than 29To28

rdRecent27To26 A 1 indicates 27T026 is more recent than 25To24

rdRecent23To22 A 1 indicates 23To22 is more recent than 21To20

rdRecent19To18 A 1 indicates 19To18 is more recent than 17To16

rdRecent15To14 A 1 indicates 15To14 is more recent than 13To12

rdRecent11To10 A 1 indicates 11To10 is more recent than 09To08

rdRecent07To06 A 1 indicates 07To06 is more recent than 05To04

rdRecent03To02 A 1 indicates 03To02 is more recent than 01To00

rdRecent31 A 1 indicates 31 is more recent than 30
rdRecent29 A 1 indicates 29 is more recent than 28
rdRecent27 A 1 indicates 27 is more recent than 26
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Table 4-14. PLRU State Bits (continued)

State Bits Meaning

rdRecent25 A 1 indicates 25 is more recent than 24
rdRecent23 A 1 indicates 23 is more recent than 22
rdRecent21 A 1 indicates 21 is more recent than 20
rdRecent19 A 1 indicates 19 is more recent than 18
rdRecent17 A 1 indicates 17 is more recent than 16
rdRecent15 A 1 indicates 15 is more recent than 14
rdRecent13 A 1 indicates 13 is more recent than 12
rdRecent11 A 1 indicates 11 is more recent than 10
rdRecent09 A 1 indicates 09 is more recent than 08
rdRecent07 A 1 indicates 07 is more recent than 06
rdRecent05 A 1 indicates 05 is more recent than 04
rdRecent03 A 1 indicates 03 is more recent than 02
rdRecent01 A 1 indicates 01 is more recent than 00

Binary state bits are updated on all TLB write (load) operations, as well as normal non-locked entries ITLB
and DTLB hits. Also, if all entries in a binary state are locked, then that state is always set. That is, if entries
15, 14, 13, and 12 were locked, LRU state bit rdRecent15To14 is forced to 1.

For a completely valid TLB, binary state information determines the LRU entry. The replacement
algorithm is deterministic and, for the case of a full TLB (with no locked entries and always touching new
pages), the replacement entry repeats every 32 TLB loads.

4.3.8.3 TLB Locked Entries
Figure 4-12 is a ColdFire MMU Harvard TLB block diagram.

For TLB miss faults, the instruction restart model re-executes an instruction on returning from the
exception handler. An instruction can touch two instruction pages (a 32- or 48-bit instruction can straddle
two pages) or four data pages (a memory-to-memory word or longword move where misaligned source
and destination operands straddle two pages). Therefore, one instruction may take two ITLB misses and
allocate two ITLB pages before completion. Likewise, one instruction may require four DTLB misses and
allocate four DTLB pages. Because of this, a pool of unlocked TLB entries must be available if virtual
memory is used.

The above examples show the fewest entries needed to guarantee an instruction can complete execution.
For good MMU performance, more unlocked TLB entries should be available.
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Figure 4-12. Version 4 ColdFire MMU Harvard TLB

4.3.9 MMU Instructions

The MOVE to USP and MOVE from USP instructions are added for accessing the USP. Refer to the
ColdFire Programmer s Reference Manual for more information.
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Chapter 5
Enhanced Multiply-Accumulate Unit (EMAC)

5.1 Introduction

This chapter describes the functionality, microarchitecture, and performance of the enhanced
multiply-accumulate (EMAC) unit in the ColdFire family of processors.

5.1.1 Overview

The EMAC design provides a set of DSP operations that can improve the performance of embedded code
while supporting the integer multiply instructions of the baseline ColdFire architecture.

The MAC provides functionality in three related areas:
1. Signed and unsigned integer multiplication
2. Multiply-accumulate operations supporting signed and unsigned integer operands as well as
signed, fixed-point, and fractional operands
3. Miscellaneous register operations

The ColdFire family supports two MAC implementations with different performance levels and
capabilities. The original MAC features a three-stage execution pipeline optimized for 16-bit operands,
with a 16x16 multiply array and a single 32-bit accumulator. The EMAC features a four-stage pipeline
optimized for 32-bit operands, with a fully pipelined 32 x 32 multiply array and four 48-bit accumulators.

The first ColdFire MAC supported signed and unsigned integer operands and was optimized for 16x16
operations, such as those found in applications including servo control and image compression. As
ColdFire-based systems proliferated, the desire for more precision on input operands increased. The result
was an improved ColdFire MAC with user-programmable control to optionally enable use of fractional
input operands.

EMAC improvements target three primary areas:

* Improved performance of 32 x 32 multiply operation.

» Addition of three more accumulators to minimize MAC pipeline stalls caused by exchanges
between the accumulator and the pipeline’s general-purpose registers

* A 48-bit accumulation data path to allow a 40-bit product, plus 8 extension bits increase the
dynamic number range when implementing signal processing algorithms

The three areas of functionality are addressed in detail in following sections. The logic required to support
this functionality is contained in a MAC module (Figure 5-1).
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Operand Y Operand X

Shift 0,1,-1

| Accumulator(s)

Y
Figure 5-1. Multiply-Accumulate Functionality Diagram

5.1.1.1 Introduction to the MAC

The MAC is an extension of the basic multiplier in most microprocessors. It is typically implemented in
hardware within an architecture and supports rapid execution of signal processing algorithms in fewer
cycles than comparable non-MAC architectures. For example, small digital filters can tolerate some
variance in an algorithm’s execution time, but larger, more complicated algorithms such as orthogonal
transforms may have more demanding speed requirements beyond scope of any processor architecture and
may require full DSP implementation.

To balance speed, size, and functionality, the ColdFire MAC is optimized for a small set of operations that
involve multiplication and cumulative additions. Specifically, the multiplier array is optimized for
single-cycle pipelined operations with a possible accumulation after product generation. This functionality
is common in many signal processing applications. The ColdFire core architecture is also modified to
allow an operand to be fetched in parallel with a multiply, increasing overall performance for certain DSP
operations.

Consider a typical filtering operation where the filter is defined as in Equation 5-1.

N-1 N-1
y() = 3 )y -k + 3 bk)x(i-k) Eqn. 5-1
k=1 k=0

Here, the output y(i) is determined by past output values and past input values. This is the general form of
an infinite impulse response (IIR) filter. A finite impulse response (FIR) filter can be obtained by setting
coefficients a(k) to zero. In either case, the operations involved in computing such a filter are multiplies
and product summing. To show this point, reduce Equation 5-1 to a simple, four-tap FIR filter, shown in
Equation 5-2, in which the accumulated sum is a past data values and coefficients sum.
3
y() = 3b()x(i—k) = b(0)x()+ b(1)x(i~1)+b(2)x(i~2) +b(3)x(i~3) Eqn. 5-2

k=0
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5.2 Memory Map/Register Definition

The following table and sections explain the MAC registers:
Table 5-1. EMAC Memory Map

BDM' Register ‘?S:;r; Access | Reset Value | Section/Page
0x804 MAC Status Register (MACSR) 32 R/W | 0x0000_0000 5.2.1/5-4
0x805 MAC Address Mask Register (MASK) 32 R/W | OXFFFF_FFFF 5.2.2/5-6
0x806 MAC Accumulator 0 (ACCO) 32 R/W Undefined 5.2.3/5-8
0x807 MAC Accumulator 0,1 Extension Bytes (ACCext01) 32 R/W Undefined 5.2.4/5-8
0x808 MAC Accumulator 2,3 Extension Bytes (ACCext23) 32 R/W Undefined 5.2.4/5-8
0x809 MAC Accumulator 1 (ACC1) 32 R/W Undefined 5.2.3/5-8
0x80A MAC Accumulator 2 (ACC2) 32 R/W Undefined 5.2.3/5-8
0x80B MAC Accumulator 3 (ACC3) 32 R/W Undefined 5.2.3/5-8

" The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more
information see Chapter 34, “Debug Module.”

5.2.1 MAC Status Register (MACSR)

The MAC status register (MACSR) contains a 4-bit operational mode field and condition flags.
Operational mode bits control whether operands are signed or unsigned and whether they are treated as
integers or fractions. These bits also control the overflow/saturation mode and the way in which rounding
is performed. Negative, zero, and multiple overflow condition flags are also provided.

BDM: 0x804 (MACSR) Access: Supervisor read/write
BDM read/write

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 7 6 5 4 3 2 1 0

Rjojo0|0|0|0O|O|O|O|O|OfO|O|O|O|O|O|0O|O]|O]|O
w

PAVn |OMC|S/U| F/l |RT|N|Z |V |EV

Reset 0 0 0 00 O O OO O O O|O O OO/OOOO|OO0OO 0| O 0O O 0|0 0 0 O
Figure 5-2. MAC Status Register (MACSR)
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Table 5-2. MACSR Field Descriptions

Field Description

3112 Reserved, must be cleared.

11-8 Product/accumulation overflow flags. Contains four flags, one per accumulator, that indicate if past MAC or
PAVn MSAC instructions generated an overflow during product calculation or the 48-bit accumulation. When a

MAC or MSAC instruction is executed, the PAVn flag associated with the destination accumulator forms the
general overflow flag, MACSR[V]. Once set, each flag remains set until V is cleared by amove .1, MACSR
instruction or the accumulator is loaded directly.

Bit 11: Accumulator 3

Bit 8: Accumulator 0

7 Overflow saturation mode. Enables or disables saturation mode on overflow. If set, the accumulator is set
OomMC to the appropriate constant (see S/U field description) on any operation that overflows the accumulator.
After saturation, the accumulator remains unaffected by any other MAC or MSAC instructions until the
overflow bit is cleared or the accumulator is directly loaded.

6 Signed/unsigned operations.
S/U In integer mode:

S/U determines whether operations performed are signed or unsigned. It also determines the accumulator

value during saturation, if enabled.

0 Signed numbers. On overflow, if OMC is enabled, an accumulator saturates to the most positive
(0x7FFF_FFFF) or the most negative (0x8000_0000) number, depending on the instruction and the
product value that overflowed.

1 Unsigned numbers. On overflow, if OMC is enabled, an accumulator saturates to the smallest value
(0x0000_0000) or the largest value (OXFFFF_FFFF), depending on the instruction.

In fractional mode:

S/U controls rounding while storing an accumulator to a general-purpose register.

0 Move accumulator without rounding to a 16-bit value. Accumulator is moved to a general-purpose
register as a 32-bit value.

1 The accumulator is rounded to a 16-bit value using the round-to-nearest (even) method when moved to
a general-purpose register. See Section 5.3.1.1, “Rounding”. The resulting 16-bit value is stored in the
lower word of the destination register. The upper word is zero-filled. This rounding procedure does not
affect the accumulator value.

5 Fractional/integer mode. Determines whether input operands are treated as fractions or integers.

F/l 0 Integers can be represented in signed or unsigned notation, depending on the value of S/U.

1 Fractions are represented in signed, fixed-point, two’s complement notation. Values range from -1 to
1 - 2715 for 16-bit fractions and -1 to 1 - 23! for 32-bit fractions. See Section 5.3.4, “Data

Representation.”
4 Round/truncate mode. Controls rounding procedure for move.1 ACCx,Rx, or MSAC.L instructions when
R/T in fractional mode.

0 Truncate. The product’s Isbs are dropped before it is combined with the accumulator. Additionally, when
a store accumulator instruction is executed (move .1 ACCx, Rx), the 8 Isbs of the 48-bit accumulator
logic are truncated.

1 Round-to-nearest (even). The 64-bit product of two 32-bit, fractional operands is rounded to the nearest
40-bit value. If the low-order 24 bits equal 0x80_0000, the upper 40 bits are rounded to the nearest even
(Isb = 0) value. See Section 5.3.1.1, “Rounding”. Additionally, when a store accumulator instruction is
executed (move.l ACCx, Rx), the Isbs of the 48-bit accumulator logic round the resulting 16- or 32-bit
value. If MACSR[S/U] is cleared and MACSR[R/T] is set, the low-order 8 bits are used to round the
resulting 32-bit fraction. If MACSR[S/U] is set, the low-order 24 bits are used to round the resulting 16-bit
fraction.
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Table 5-2. MACSR Field Descriptions (continued)

Field

Description

Negative. Set if the msb of the result is set, otherwise cleared. N is affected only by MAC, MSAC, and load
operations; it is not affected by MULS and MULU instructions.

NN | Z2w

Zero. Set if the result equals zero, otherwise cleared. This bit is affected only by MAC, MSAC, and load
operations; it is not affected by MULS and MULU instructions.

< =

Overflow. Set if an arithmetic overflow occurs on a MAC or MSAC instruction, indicating that the result
cannot be represented in the limited width of the EMAC. V is set only if a product overflow occurs or the
accumulation overflows the 48-bit structure. V is evaluated on each MAC or MSAC operation and uses the
appropriate PAVn flag in the next-state V evaluation.

Extension overflow. Signals that the last MAC or MSAC instruction overflowed the 32 Isbs in integer mode
or the 40 Isbs in fractional mode of the destination accumulator. However, the result remains accurately
represented in the combined 48-bit accumulator structure. Although an overflow has occurred, the correct
result, sign, and magnitude are contained in the 48-bit accumulator. Subsequent MAC or MSAC operations
may return the accumulator to a valid 32/40-bit result.

Table 5-3 summarizes the interaction of the MACSR[S/U,F/ILR/T] control bits.

5.2.2

Table 5-3. Summary of S/U, F/l, and R/T Control Bits

S/U | F/l | RIT Operational Modes

0 0 x | Signed, integer

0 1 0 | Signed, fractional
Truncate on MAC.L and MSAC.L
No round on accumulator stores

0 1 1 | Signed, fractional
Round on MAC.L and MSAC.L
Round-to-32-bits on accumulator stores

1 0 x | Unsigned, integer

1 1 0 | Signed, fractional
Truncate on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

1 1 1 | Signed, fractional
Round on MAC.L and MSAC.L
Round-to-16-bits on accumulator stores

Mask Register (MASK)

The 32-bit MASK implements the low-order 16 bits to minimize the alignment complications involved
with loading and storing only 16 bits. When the MASK is loaded, the low-order 16 bits of the source
operand are actually loaded into the register. When it is stored, the upper 16 bits are all forced to ones.

This register performs a simple AND with the operand address for MAC instructions. The processor
calculates the normal operand address and, if enabled, that address is then ANDed with {OxFFFF,
MASK]15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand address
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can be constrained to a certain memory region. This is used primarily to implement circular queues with
the (An)+ addressing mode.

This minimizes the addressing support required for filtering, convolution, or any routine that implements
a data array as a circular queue. For MAC + MOVE operations, the MASK contents can optionally be
included in all memory effective address calculations. The syntax is as follows:

mac.sz Ry,RxSF,<ea>y&,Rw

The & operator enables the MASK use and causes bit 5 of the extension word to be set. The exact
algorithm for the use of MASK is:

if extension word, bit [5] = 1, the MASK bit, then

if <ea> = (An)

oca = An & {0OxFFFF, MASK}
if <ea> = (An)+

oca = An

An = (An + 4) & {OxFFFF, MASK}
if <ea> =-(An)

oca = (An - 4) & {OxFFFF, MASK}

An = (An - 4) & {OxXFFFF, MASK}
if <ea> = (dlo6,An)

oca = (An + se dl6) & {OxFFFFOx, MASK}

Here, oa is the calculated operand address and se_d16 is a sign-extended 16-bit displacement. For
auto-addressing modes of post-increment and pre-decrement, the updated An value calculation is also

shown.
Use of the post-increment addressing mode, {(An)+} with the MASK is suggested for circular queue

implementations.

BDM: 0x805 (MASK) Access: User read/write
BDM read/write

3130292827262524232221201918171615141312‘11 10 9 8‘7 6 5 4‘3 2 10
Ri1{1j1{1{1|1|1 |1 11 {1(1(1]1]1]1

MASK

w
Reset11111111111111111111‘1111‘1111‘1111
Figure 5-3. Mask Register (MASK)

Table 5-4. MASK Field Descriptions

Field Description

31-16 Reserved, must be set.

15-0 Performs a simple AND with the operand address for MAC instructions.
MASK
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5.2.3 Accumulator Registers (ACC0-3)

The accumulator registers store 32-bits of the MAC operation result. The accumulator extension registers
form the entire 48-bit result.

BDM: 0x806 (ACCO) Access: User read/write
0x809 (ACC1) BDM read/write

0x80A (ACC2)
0x80B (ACC3)

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0

R
Accumulator
w
e e e e e R
Figure 5-4. Accumulator Registers (ACC0-3)
Table 5-5. ACCO0-3 Field Descriptions
Field Description
31-0 Store 32-bits of the result of the MAC operation.
Accumulator

5.2.4 Accumulator Extension Registers (ACCext01, ACCext23)

Each pair of 8-bit accumulator extension fields are concatenated with the corresponding 32-bit
accumulator register to form the 48-bit accumulator. For more information, see Section 5.3, “Functional
Description.”

BDM: 0x807 (ACCext01) Access: User read/write
BDM read/write
31 30 29 28‘272625 24|23 22 21 20‘19 18 17 16|15 14 13 12‘11 10 9 8|7 6 5 4‘3 2 10
R
W ACCoU ACCOL ACC1U ACCI1L
Reset — — — —|— — — —| - — - - - - - |- - - - - - - —]- - - - - - - -
Figure 5-5. Accumulator Extension Register (ACCext01)
Table 5-6. ACCext01 Field Descriptions
Field Description
31-24 Accumulator 0 upper extension byte
ACCoU
23-16 Accumulator O lower extension byte
ACCOL
15-8 Accumulator 1 upper extension byte
ACC1U
7-0 Accumulator 1 lower extension byte
ACCI1L
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BDM: 0x808 (ACCext23) Access: User read/write
BDM read/write
31 30 29 28‘272625 24|23 22 21 20‘19 18 17 16[15 14 13 12‘11 10 9 8(7 6 5 4‘3 2 1 0
R
W ACC2u ACC2L ACC3U ACC3L
Reset - - — -[- - - -[- - - - - - - -]---- - - - -[---- - - - -
Figure 5-6. Accumulator Extension Register (ACCext23)
Table 5-7. ACCext23 Field Descriptions
Field Description
31-24 Accumulator 2 upper extension byte
ACC2U
23-16 Accumulator 2 lower extension byte
ACC2L
15-8 Accumulator 3 upper extension byte
ACC3U
7-0 Accumulator 3 lower extension byte
ACC3L

5.3  Functional Description

The MAC speeds execution of ColdFire integer-multiply instructions (MULS and MULU) and provides
additional functionality for multiply-accumulate operations. By executing MULS and MULU in the MAC,
execution times are minimized and deterministic compared to the 2-bit/cycle algorithm with early
termination that the OEP normally uses if no MAC hardware is present.

The added MAC instructions to the ColdFire ISA provide for the multiplication of two numbers, followed
by the addition or subtraction of the product to or from the value in an accumulator. Optionally, the product
may be shifted left or right by 1 bit before addition or subtraction. Hardware support for saturation
arithmetic can be enabled to minimize software overhead when dealing with potential overflow conditions.
Multiply-accumulate operations support 16- or 32-bit input operands in these formats:

» Signed integers
* Unsigned integers
» Signed, fixed-point, fractional numbers

The EMAC is optimized for single-cycle, pipelined 32 x 32 multiplications. For word- and
longword-sized integer input operands, the low-order 40 bits of the product are formed and used with the
destination accumulator. For fractional operands, the entire 64-bit product is calculated and truncated or
rounded to the most-significant 40-bit result using the round-to-nearest (even) method before it is
combined with the destination accumulator.

For all operations, the resulting 40-bit product is extended to a 48-bit value (using sign-extension for
signed integer and fractional operands, zero-fill for unsigned integer operands) before being combined
with the 48-bit destination accumulator.
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Figure 5-7 and Figure 5-8 show relative alignment of input operands, the full 64-bit product, the resulting
40-bit product used for accumulation, and 48-bit accumulator formats.

OperandY 32

X OperandX 32

Product 40 03 0
Extended Product 3 40
+
Accumulator 3 10 8
Extension Byte Upper [7:0] Accumulator [31:0] Extension Byte Lower [7:0]
Figure 5-7. Fractional Alignment
OperandY 32
X OperandX B2
Product 24 B2
Extended Product s b >
+
Accumulator 8 B 2
Extension Byte Upper [7:0] Accumulator [31:0]

Extension Byte Lower [7:0]
Figure 5-8. Signed and Unsigned Integer Alignment

Therefore, the 48-bit accumulator definition is a function of the EMAC operating mode. Given that each
48-bit accumulator is the concatenation of 16-bit accumulator extension register (ACCextn) contents and
32-bit ACCn contents, the specific definitions are:

if MACSR[6:5] == 00 /* signed integer mode */

Complete Accumulator[47:0] = {ACCextn[l5:0], ACCn[31:0]}
if MACSR[6:5] == 01 or 11 /* signed fractional mode */

Complete Accumulator [47:0] = {ACCextn[l1l5:8], ACCn[31:0], ACCextn[7:0]}
if MACSR[6:5] == 10 /* unsigned integer mode */

Complete Accumulator[47:0] = {ACCextn[l5:0], ACCn[31:0]}

The four accumulators are represented as an array, ACCn, where n selects the register.
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Although the multiplier array is implemented in a four-stage pipeline, all arithmetic MAC instructions
have an effective issue rate of 1 cycle, regardless of input operand size or type.

All arithmetic operations use register-based input operands, and summed values are stored in an
accumulator. Therefore, an additional MOVE instruction is needed to store data in a general-purpose
register. One new feature in EMAC instructions is the ability to choose the upper or lower word of a
register as a 16-bit input operand. This is useful in filtering operations if one data register is loaded with
the input data and another is loaded with the coefficient. Two 16-bit multiply accumulates can be
performed without fetching additional operands between instructions by alternating word choice during
calculations.

The EMAC has four accumulator registers versus the MAC'’s single accumulator. The additional registers
improve the performance of some algorithms by minimizing pipeline stalls needed to store an accumulator
value back to general-purpose registers. Many algorithms require multiple calculations on a given data set.
By applying different accumulators to these calculations, it is often possible to store one accumulator
without any stalls while performing operations involving a different destination accumulator.

The need to move large amounts of data presents an obstacle to obtaining high throughput rates in DSP
engines. Existing ColdFire instructions can accommodate these requirements. A MOVEM instruction can
efficiently move large data blocks by generating line-sized burst references. The ability to load an operand
simultaneously from memory into a register and execute a MAC instruction makes some DSP operations
such as filtering and convolution more manageable.

The programming model includes a mask register (MASK), which can optionally be used to generate an
operand address during MAC + MOVE instructions. The register application with auto-increment
addressing mode supports efficient implementation of circular data queues for memory operands.

5.3.1 Fractional Operation Mode

This section describes behavior when the fractional mode is used (MACSRJ[F/I] is set).

5.3.1.1 Rounding

When the processor is in fractional mode, there are two operations during which rounding can occur:

1. Execution of a store accumulator instruction (move.1 Accx,Rx). The Isbs of the 48-bit accumulator
logic are used to round the resulting 16- or 32-bit value. f MACSR[S/U] is cleared, the low-order
8 bits round the resulting 32-bit fraction. If MACSR[S/U] is set, the low-order 24 bits are used to
round the resulting 16-bit fraction.

2. Execution of a MAC (or MSAC) instruction with 32-bit operands. [f MACSR[R/T] is zero,
multiplying two 32-bit numbers creates a 64-bit product truncated to the upper 40 bits; otherwise,
it is rounded using round-to-nearest (even) method.

To understand the round-to-nearest-even method, consider the following example involving the rounding
of a 32-bit number, RO, to a 16-bit number. Using this method, the 32-bit number is rounded to the closest
16-bit number possible. Let the high-order 16 bits of RO be named R0.U and the low-order 16 bits be RO.L.

* IfRO.L is less than 0x8000, the result is truncated to the value of R0.U.
» IfRO.L is greater than 0x8000, the upper word is incremented (rounded up).
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« IfRO.L is 0x8000, RO is half-way between two 16-bit numbers. In this case, rounding is based on
the Isb of R0.U, so the result is always even (Isb = 0).

— If the Isb of RO.U equals 1 and RO.L equals 0x8000, the number is rounded up.
— If the Isb of R0.U equals 0 and RO.L equals 0x8000, the number is rounded down.

This method minimizes rounding bias and creates as statistically correct an answer as possible.

The rounding algorithm is summarized in the following pseudocode:

if RO.L < 0x8000
then Result = R0.U

else if RO.L > 0x8000
then Result = RO.U + 1

else if 1lsb of RO.U = 0 /* RO.L = 0x8000 */
then Result = R0.U

else Result = R0O.U + 1

The round-to-nearest-even technique is also known as convergent rounding.

5.3.1.2 Saving and Restoring the EMAC Programming Model

The presence of rounding logic in the EMAC output datapath requires special care during the EMAC’s
save/restore process. In particular, any result rounding modes must be disabled during the save/restore
process so the exact bit-wise contents of the EMAC registers are accessed. Consider the memory structure
containing the EMAC programming model:

struct macState {
int accO;
int accl;
int acc?2;
int acc3;
int accext01;
int accext02;
int mask;
int macsr;

} macState;

The following assembly language routine shows the proper sequence for a correct EMAC state save. This
code assumes all Dn and An registers are available for use, and the memory location of the state save is

defined by A7.
EMAC state save:
move.l macsr,d7 ; save the macsr
clr.1l do ; zero the register to
move.l dO,macsr ; disable rounding in the macsr
move.l acc0,d0 ; save the accumulators
move.l accl,dl
move.l acc2,d2
move.l acc3,d3
move.l accext0l,d4 ; save the accumulator extensions
move.l accext23,d5
move.l mask,d6 ; save the address mask
movem.l #0xO00ff, (a7) ; move the state to memory

This code performs the EMAC state restore:

EMAC state restore:
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movem.l (a7),#0x00ff ; restore the state from memory
move.l #0,macsr ; disable rounding in the macsr
move.l d0,accO ; restore the accumulators

move.l dl,accl

move.l d2,acc?2

move.l d3,acc3

move.l d4,accext01 ; restore the accumulator extensions
move.l d5,accext23

move.l d6,mask ; restore the address mask

move.l d7,macsr ; restore the macsr

Executing this sequence type can correctly save and restore the exact state of the EMAC programming
model.

5.3.1.3 MULS/MULU

MULS and MULU are unaffected by fractional-mode operation; operands remain assumed to be integers.

5.3.1.4 Scale Factor in MAC or MSAC Instructions

The scale factor is ignored while the MAC is in fractional mode.

5.3.2 EMAC Instruction Set Summary

Table 5-8 summarizes EMAC unit instructions.
Table 5-8. EMAC Instruction Summary

Command Mnemonic Description
Multiply Signed muls <ea>y,Dx Multiplies two signed operands yielding a signed result
Multiply Unsigned mulu <ea>y,Dx Multiplies two unsigned operands yielding an unsigned result
Multiply Accumulate mac Ry,RxSF,ACCx Multiplies two operands and adds/subtracts the product

msac Ry,RxSF,ACCx to/from an accumulator

Multiply Accumulate mac Ry,Rx,<ea>y,Rw,ACCx | Multiplies two operands and combines the product to an
with Load msac Ry,Rx,<ea>y,Rw,ACCx |accumulatorwhile loading a register with the memory operand
Load Accumulator move.l {Ry,#imm},ACCx Loads an accumulator with a 32-bit operand
Store Accumulator move.l ACCx,Rx Writes the contents of an accumulator to a CPU register
Copy Accumulator move.l ACCy,ACCx Copies a 48-bit accumulator
Load MACSR move.l {Ry,#imm}, MACSR Writes a value to MACSR
Store MACSR move.l MACSR,Rx Write the contents of MACSR to a CPU register
Store MACSR to CCR | move.l MACSR, CCR Write the contents of MACSR to the CCR
Load MAC Mask Reg move.l {Ry,#imm},MASK Writes a value to the MASK register
Store MAC Mask Reg | move.l MASK,Rx Writes the contents of the MASK to a CPU register
Load Accumulator move.l {Ry,#imm},ACCext01 | Loads the accumulator 0,1 extension bytes with a 32-bit
Extensions 01 operand
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Table 5-8. EMAC Instruction Summary (continued)

Command Mnemonic Description
Load Accumulator move.l {Ry,#imm},ACCext23 | Loads the accumulator 2,3 extension bytes with a 32-bit
Extensions 23 operand
Store Accumulator move.l ACCext0l,Rx Writes the contents of accumulator 0,1 extension bytes into a
Extensions 01 CPU register
Store Accumulator move.l ACCext23,Rx Writes the contents of accumulator 2,3 extension bytes into a
Extensions 23 CPU register

5.3.3 EMAC Instruction Execution Times

The instruction execution times for the EMAC can be found in Section 3.3.5.6, “EMAC Instruction
Execution Times”.

The EMAC execution pipeline overlaps the EX stage of the OEP (the first stage of the EMAC pipeline
is the last stage of the basic OEP). EMAC units are designed for sustained, fully-pipelined operation on
accumulator load, copy, and multiply-accumulate instructions. However, instructions that store contents
of the multiply-accumulate programming model can generate OEP stalls that expose the EMAC
execution pipeline depth:

mac.w Ry, Rx, AccO
move.l AccO, Rz

The MOVE.L instruction that stores the accumulator to an integer register (Rz) stalls until the
program-visible copy of the accumulator is available. Figure 5-9 shows EMAC timing.

Three-cycle
<—
regBusy stall

DS ‘ mac move | move

OAG mac | move |

OC1 ‘ mac ‘ ‘ move ‘
0OC2 ‘ mac

‘ move ‘

EX mac move

[ move |
EMAC EX1 mac

EMAC EX2 mac
EMAC EX3 mac
EMAC EX4 mac

Accumulator 0 old >< new

Figure 5-9. EMAC-Specific OEP Sequence Stall
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In Figure 5-9, the OEP stalls the store-accumulator instruction for three cycles: the EMAC pipeline depth
minus 1. The minus 1 factor is needed because the OEP and EMAC pipelines overlap by a cycle, the EX
stage. As the store-accumulator instruction reaches the EX stage where the operation is performed, the
recently-updated accumulator 0 value is available.

As with change or use stalls between accumulators and general-purpose registers, introducing intervening
instructions that do not reference the busy register can reduce or eliminate sequence-related store-MAC
instruction stalls. A major benefit of the EMAC is the addition of three accumulators to minimize stalls
caused by exchanges between accumulator(s) and general-purpose registers.

5.3.4 Data Representation

MACSRJ[S/U,F/I] selects one of the following three modes, where each mode defines a unique operand
type:
1. Two’s complement signed integer: In this format, an N-bit operand value lies in the range 2(N-1)
< operand < 2N-D_ 1. The binary point is right of the Isb.

2. Unsigned integer: In this format, an N-bit operand value lies in the range 0 < operand < 2N_1. The
binary point is right of the Isb.

3. Two’s complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining
bits signify the first N-1 bits after the binary point. Given an N-bit number, ay_;an. ay.3... aya;ay,
its value is given by the equation in Equation 5-3.
N-2
value = —(l-ay_j)+ Zz_ﬁﬂ_N)'ai Eqn. 5-3

i=0
This format can represent numbers in the range -1 < operand <1 - 2-(N-D),

For words and longwords, the largest negative number that can be represented is -1, whose internal
representation is 0x8000 and 0x8000 0000, respectively. The largest positive word is Ox7FFF or (1 - 2715y,
the most positive longword is 0x7FFF_FFFF or (1 - 2° 1). Thus, the number range for these signed
fractional numbers is [-1.0, ..., 1.0].

5.3.5 MAC Opcodes
MAC opcodes are described in the ColdFire Programmer s Reference Manual.

Remember the following:

* Unless otherwise noted, the value of MACSR[N,Z] is based on the result of the final operation that
involves the product and the accumulator.

* The overflow (V) flag is managed differently. It is set if the complete product cannot be represented
as a 40-bit value (this applies to 32 x 32 integer operations only) or if the combination of the
product with an accumulator cannot be represented in the given number of bits. The EMAC design
includes an additional product/accumulation overflow bit for each accumulator that are treated as
sticky indicators and are used to calculate the V bit on each MAC or MSAC instruction. See
Section 5.2.1, “MAC Status Register (MACSR)”.
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* For the MAC design, the assembler syntax of the MAC (multiply and add to accumulator) and
MSAC (multiply and subtract from accumulator) instructions does not include a reference to the
single accumulator. For the EMAC, assemblers support this syntax and no explicit reference to an
accumulator is interpreted as a reference to ACCO0. Assemblers also support syntaxes where the
destination accumulator is explicitly defined.

» The optional 1-bit shift of the product is specified using the notation {<<|>>} SF, where <<1
indicates a left shift and >>1 indicates a right shift. The shift is performed before the product is
added to or subtracted from the accumulator. Without this operator, the product is not shifted. If the
EMAC is in fractional mode (MACSR[F/I] is set), SF is ignored and no shift is performed. Because
a product can overflow, the following guidelines are implemented:

— For unsigned word and longword operations, a zero is shifted into the product on right shifts.

— For signed, word operations, the sign bit is shifted into the product on right shifts unless the
product is zero. For signed, longword operations, the sign bit is shifted into the product unless
an overflow occurs or the product is zero, in which case a zero is shifted in.

— For all left shifts, a zero is inserted into the Isb position.

The following pseudocode explains basic MAC or MSAC instruction functionality. This example is
presented as a case statement covering the three basic operating modes with signed integers, unsigned
integers, and signed fractionals. Throughout this example, a comma-separated list in curly brackets, {},
indicates a concatenation operation.

switch (MACSR[6:5]) /* MACSRI[S/U, F/I] */
{
case 0: /* signed integers */
if (MACSR.OMC == || MACSR.PAVn == 0)
then {

MACSR.PAVn = 0
/* select the input operands */

if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {sign-extended Ry[31], Ry[31:16]}
else operandY[31:0] = {sign-extended Ry[15], Ry[15:0]}
if (U/Lx == 1)
then operandX[31:0] = {sign-extended Rx[31], Rx[31:16]}
else operandX([31:0] = {sign-extended Rx[15], Rx[15:0]}
}
else {operandY[31:0] = Ry[31:0]
operandX[31:0] = Rx[31:0]

}

/* perform the multiply */
product[63:0] = operand¥Y[31:0] * operandX([31:0]

/* check for product overflow */
if ((product[63:39] != 0x0000 00 0) && (product([63:39] != Oxffff ff 1))
then { /* product overflow */
MACSR.PAVNn = 1
MACSR.V = 1
if (inst == MSAC && MACSR.OMC == 1)
then if (product[63] == 1)
then result[47:0]
else result([47:0]

0x0000 7Tfff ffff
Oxffff 8000 0000
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else 1if (MACSR.OMC == 1)
then /* overflowed MAC,
saturationMode enabled */
if (product[63] == 1)
then result[47:0] = Oxffff 8000 0000
else result[47:0] 0x0000_7fff ffff

/* sign-extend to 48 bits before performing any scaling */
product[47:40] = {8{product[39]}} /* sign-extend */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case 0: /* no scaling specified */
break;
case 1: /* SF = “< 17 */
product[40:0] = {product([39:0], 0}
break;
case 2: /* reserved encoding */
break;
case 3: /* SE = “">> 17 */
product[39:0] = {product[39], product([39:1]}
break;
}
if (MACSR.PAVn == 0)
then {if (inst == MSAC)

then result([47:0]

/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVn = 1
MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,

saturationMode enabled */

if (result[47] == 1)

then result[47:0] = 0x0000 7fff ffff
Oxffff 8000 0000

else result[47:0]
}
/* transfer the result to the accumulator */
ACCx[47:0] = result([47:0]
}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx([47:0] == 0x0000_0000_0000)
then MACSR.Z = 1
else MACSR.Z = 0

if ((ACCx[47:31] == 0x0000 _0) || (ACCx[47:31] == Oxffff 1))
then MACSR.EV = 0
else MACSR.EV = 1
break;
case 1,3: /* signed fractionals */
if (MACSR.OMC == | | MACSR.PAVn == 0)

ACCx[47:0] - product[47:0]
else result[47:0] = ACCx[47:0] + product[47:0]
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then {
MACSR.PAVn = 0
if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {Ry[31:16], 0x0000}
else operandY[31:0] = {Ry[15:0], 0x0000}
if (U/Lx == 1)
then operandX([31:0] = {Rx[31:16], 0x0000}

else operandX([31:0] = {Rx[15:0], 0x0000}
}
else {operandY¥Y[31:0] Ry[31:0]
operandX[31:0] = Rx[31:0]

}
/* perform the multiply */
product[63:0] = (operandY[31:0] * operandX[31:0]) << 1
/* check for product rounding */
if (MACSR.R/T == 1)
then { /* perform convergent rounding */
if (product[23:0] > 0x80 0000)
then product[63:24] = product[63:24] + 1
else if ((product[23:0] == 0x80 0000) && (product[24] == 1))
then product[63:24] = product[63:24] + 1
}
/* sign-extend to 48 bits and combine with accumulator */
/* check for the -1 * -1 overflow case */
if ((operandY[31:0] == 0x8000 0000) && (operandX[31:0] == 0x8000 0000))
then product[71:64] = 0x00 /* zero-fill */
else product[71:64] = {8{product[63]}} /* sign-extend */
if (inst == MSAC)
then result[47:0] = ACCx[47:0] - product[71:24]
else result[47:0] ACCx[47:0] + product[71:24]
/* check for accumulation overflow */
if (accumulationOverflow == 1)
then {MACSR.PAVn = 1
MACSR.V = 1
if (MACSR.OMC == 1)
then /* accumulation overflow,
saturationMode enabled */

if (result[47] == 1)
then result[47:0] = 0x007f ffff ££f00
else result[47:0] = 0xf£f80_0000_0000

}
/* transfer the result to the accumulator */
ACCx[47:0] = result([47:0]
}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx([47:0] == 0x0000_0000_0000)
then MACSR.Z =1
else MACSR.Z = 0
if ((ACCx[47:39] == 0x00 0) || (ACCx[47:39] == Oxff 1))
then MACSR.EV = 0

else MACSR.EV = 1
break;
case 2: /* unsigned integers */
if (MACSR.OMC == | | MACSR.PAVn == 0)
then {
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MACSR.PAVn = 0
/* select the input operands */

if (sz == word)
then {if (U/Ly == 1)
then operandY[31:0] = {0x0000, Ry[31:16]}
else operandY[31:0] = {0x0000, Ry[15:0]}
if (U/Lx == 1)
then operandX([31:0] = {0x0000, Rx[31:16]}
else operandX[31:0] = {0x0000, Rx[15:0]}

}
else {operandY¥Y[31:0] Ry[31:0]
operandX[31:0] = Rx[31:0]

/* perform the multiply */
product[63:0] = operandY[31:0] * operandX([31:0]

/* check for product overflow */
if (product[63:40] != 0x0000 00)
then { /* product overflow */
MACSR.PAVNn = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then result([47:0] = 0x0000 0000 0000
else 1if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */
result[47:0] = Oxffff ffff ffff

/* zero-fill to 48 bits before performing any scaling */
product[47:40] = 0 /* zero-fill upper byte */

/* scale product before combining with accumulator */

switch (SF) /* 2-bit scale factor */
{
case 0: /* no scaling specified */
break;
case 1: /* SF = “< 17 */
product[40:0] = {product([39:0], 0}
break;
case 2: /* reserved encoding */
break;
case 3: /* SF = “>> 17 %/
product[39:0] = {0, product[39:1]}
break;

/* combine with accumulator */
if (MACSR.PAVn == 0)
then {if (inst == MSAC)
then result[47:0] = ACCx[47:0] - product[47:0]
else result[47:0] ACCx[47:0] + product[47:0]

/* check for accumulation overflow */
if (accumulationOverflow == 1)
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then {MACSR.PAVn = 1
MACSR.V = 1

if (inst == MSAC && MACSR.OMC == 1)
then result([47:0] = 0x0000 0000 0000
else if (MACSR.OMC == 1)

then /* overflowed MAC,
saturationMode enabled */
result[47:0] = Oxffff ffff ffff

/* transfer the result to the accumulator */
ACCx[47:0] = result[47:0]
}
MACSR.V = MACSR.PAVn
MACSR.N = ACCx[47]
if (ACCx[47:0] == 0x0000 0000 _0000)
then MACSR.Z 1
else MACSR.Z 0
if (ACCx[47:32] == 0x0000)
then MACSR.EV 0
else MACSR.EV 1

break;
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Chapter 6
Cache

6.1 Introduction

This section describes the cache module, including organization, configuration, and coherency. It
describes cache operations and how the cache interacts with other memory structures.

6.1.1 Block Diagram

Figure 6-1 shows the organization and integration of the data cache.

Cache
Control External
e — Control Bus
— Control Logic N
¢ trol
y ‘ Data Array C°£,>
ColdFire FlexBus
Processor .
Core Directory Array AdSi:teass/

Data Data
s Data Path .

: | Address
Address L> Address Path

T

Figure 6-1. Data Cache Organization

6.1.2 Overview

The processor’s memory structure includes a 16-Kbyte data cache and a 16-Kbyte instruction cache. Both
are non-blocking and four-way set-associative with a 16-byte line size. The cache improves system
performance by providing single-cycle access to the instruction and data pipelines. This decouples
processor performance from system-memory performance, increasing bus availability for on-chip DMA
or external devices.

This device implements a special branch instruction cache for accelerating branches, enabled by a bit in
the cache access control register (CACR[BEC]). The branch cache is described in Section 3.1.1.1,
“Change-of-Flow Acceleration.”
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Instruction and data caches implement line-fill buffers to optimize line-sized burst accesses. The data
cache supports operation of copyback, write-through, or cache-inhibited modes. A four-entry, 32-bit buffer
supports cache line-push operations, and can be configured to defer write buffering in write-through or
cache-inhibited modes. The cache lock feature can be used to guarantee deterministic response for critical
code or data areas.

A non-blocking cache services read or write hits from the processor while a fill (caused by a cache
allocation) is in progress. As Figure 6-1 shows, accesses use a single bus connected to the cache.

All addresses from the processor to the cache are physical addresses. A cache hit occurs when an address
matches a cache entry. For a read, the cache supplies data to the processor. For a write, which is permitted
to the data cache only, the processor updates the cache. If an access does not match a cache entry (misses
the cache) or if a write access must be written through to memory, the cache performs a bus cycle on the
internal bus and correspondingly on the external bus.

The cache module does not implement bus snooping; cache coherency with other possible bus masters
must be maintained in software.

6.2 Cache Organization

A four-way set-associative cache is organized as four ways (levels). There are 256 sets in the 16-Kbyte
data cache with each set defined as the grouping of four lines (one from each level, or way), corresponding
to the same index into the cache array. Each line contains 16 bytes (4 longwords). The 16-Kbyte instruction
cache has 256 sets as well. Entire cache lines are loaded from memory by burst-mode accesses that cache
four longwords of data or instructions. All four longwords must be loaded for the cache line to be valid.

Figure 6-2 shows data cache organization, as well as terminology used.

Way 0 Way 1 Way 2 Way 3
Set0
Set 1
Set 254 Line
Set 255

Cache Line Format

TAG [VIM]

Longword O

| Longword1 |

Longword 2

| L;);wgword 3 |

Where:

TAG—20-bit address tag

V—Valid bit for line

M—Modified bit for line (data cache only)

Figure 6-2. Data Cache Organization and Line Format
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6.2.1 Cache Line States: Invalid, Valid-Unmodified, and Valid-Modified

As shown in Table 6-1, a data cache line is always in one of three states: invalid, valid-unmodified (often
referred to as exclusive), or valid-modified. An instruction cache line can be valid or invalid. A valid line
can be explicitly invalidated by executing a CPUSHL instruction.

Table 6-1. Valid and Modified Bit Settings

Vv M Description

0 X Invalid. Ignored during lookups.

1 0 Valid, unmodified. Cache line has valid data that matches system memory.

1 1 Valid, modified. Cache line contains most recent data, data at system memory location is stale.

6.2.2 The Cache at Start-Up

As Figure 6-3 (A) shows, after power-up, cache contents are undefined; V and M may be set on some lines
even though the cache may not contain the appropriate data for start up. Because reset and power-up do
not invalidate cache lines automatically, the cache should be cleared explicitly by setting
CACR[DCINVA,ICINVA] before the cache is enabled (B).

After the entire cache is flushed, cacheable entries are loaded first in way 0. If way 0 is occupied, the
cacheable entry is loaded into the same set in way 1, as shown in Figure 6-3 (D). This process is described
in detail in Section 6.4, “Functional Description.”
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— Invalid (V =0) mmm  Valid, not modified (V =1, M =0)

A: Cache population at
start-up

Way 0 Way 1 Way 2 Way 3

< -

B: Cache after invalidation,
before it is enabled

Way 0 Way 1 Way 2 Way 3

=== Valid, modified (V =1, M = 1)

C: Cache after loads in Way 0 D: First load in Way 1

Way 0 Way 1 Way 2 Way 3

Way 0 Way 1 Way 2 Way 3

il |

At reset, cache contents are
indeterminate; V and M may
be set. The cache should be
cleared explicitly by setting
CACRI[DCINVA] before the
cache is enabled.

Setting CACR[DCINVA]
invalidates the entire
cache.

Initial cacheable accesses
to memory-fill positions in
way 0.

A line is loaded in way 1
only if that set is full in
way 0.

Figure 6-3. Data Cache: A) at Reset; B) after Invalidation; C and D) Loading Pattern
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6.3 Memory Map/Register Definition

This section describes the implementation of the cache registers.

Table 6-2. Cache Memory Map

Width Written with

BDM' Register (bits) Access | Reset Value MOVEC Section/Page
0x002 Cache Control Register (CACR) 32 R/W | 0x0000_0000 Yes 6.3.1/6-5
0x004 Access Control Register 0 (ACRO) 32 R/W Undefined Yes 6.3.2/6-8
0x005 Access Control Register 1 (ACR1) 32 R/W Undefined Yes 6.3.2/6-8
0x006 Access Control Register 2 (ACR2) 32 R/W Undefined Yes 6.3.2/6-8
0x007 Access Control Register 3 (ACR3) 32 R/W Undefined Yes 6.3.2/6-8

' The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more
information see Chapter 34, “Debug Module”.

6.3.1 Cache Control Register (CACR)

The CACR register contains bits for configuring the cache. It can be written by the MOVEC register
instruction and can be read or written from the debug facility. A hardware reset clears CACR, which
disables the cache; however, reset does not affect tags, state information, or data in the cache.

BDM: 0x002 Access: MOVEC write-only
Debug read/write
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R DEC | DW |DESB|DDPI |DHLCK DDCM bC DDSP 0 0 IVO | BEC BC 0 0
W INVA INVA
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 IC 0 0 0 0 0 0
IEC | SPA |DNFB| IDPI | IHLCK |IDCM IDSP EUSP
W INVA
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-4. Cache-Control Register (CACR)

Table 6-3. CACR Field Descriptions

Field Description
31 Enable data cache.
DEC 0 Cache disabled. The data cache is not operational, but data and tags are preserved.

1 Cache enabled.

30 Data default write-protect. For normal operations that do not hit in the RAMBARS or ACRSs, this field defines
DW write-protection. See Section 6.4.1, “Caching Modes”

0 Not write protected.

1 Write protected. Write operations cause an access error exception.
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Table 6-3. CACR Field Descriptions (continued)

Field Description
29 Enable data store buffer. Affects the precision of transfers.
DESB 0 Imprecise-mode, write-through or cache-inhibited writes bypass the store buffer and generate bus cycles
directly. Section 6.4.4.2.1, “Push and Store Buffers,” describes the associated performance penalty.

1 The four-entry FIFO store buffer is enabled; to maximize performance, this buffer defers pending
imprecise-mode, write-through or cache-inhibited writes.

Precise-mode, cache-inhibited accesses always bypass the store buffer. Precise and imprecise modes are

described in Section 6.4.1.2, “Cache-Inhibited Accesses.”

28 Data disable CPUSHL invalidate.
DDPI 0 Normal operation. A CPUSHL instruction causes the selected line to be pushed if modified, then invalidated.

1 No clear operation. A CPUSHL instruction causes the selected line to be pushed if modified, then left valid.

27 Data cache half-data lock.
DHLCK |0 Normal operation. The cache allocates the lowest invalid way. If all ways are valid, the cache allocates the way
pointed at by the round-robin counter and then increments this counter.

1 Half-cache operation. The cache allocates to the lower invalid way of levels 2 and 3; if both are valid, the cache
allocates to Way 2 if the high-order bit of the round-robin counter is zero; otherwise, it allocates Way 3 and
increments the round-robin counter. This locks the contents of ways 0 and 1. Ways 0 and 1 are still updated
on write hits and may be pushed or cleared by specific cache push/invalidate instructions.

26-25 Default data-cache mode. For normal operations that do not hit in the RAMBARSs or ACRs, this field defines the
DDCM effective cache mode.

00 Cacheable write-through imprecise

01 Cacheable copyback

10 Cache-inhibited precise

11 Cache-inhibited imprecise

Precise and imprecise accesses are described in Section 6.4.1.2, “Cache-Inhibited Accesses.”

24 Data cache invalidate all. Setting this bit initiates entire cache invalidation. After invalidation is complete, this bit
DCINVA | automatically clears; it is not necessary to clear it explicitly. The caches are not cleared on power-up or normal

reset, as shown in Figure 6-3.

0 No invalidation is performed.

1 Initiate invalidation of the entire data cache. The cache controller sequentially clears V and M bits in all sets.
Subsequent data accesses stall until the invalidation is finished, at which point, this bit is automatically
cleared. In copyback mode, the cache should be flushed using a CPUSHL instruction before setting this bit.

23 Data default supervisor-protect. For normal operations that do not hit in the RAMBAR or ACRSs, this field defines
DDSP supervisor-protection
0 Not supervisor protected
1 Supervisor protected. User operations cause a fault
22-21 Reserved, must be cleared.
20 Invalidate only. Setting this bit forces the invalidation of only the referenced cache line when a CPUSHL
IVO instruction executes. See Section 6.4.8, “CPUSHL Enhancements,” for more information.
19 Enable branch cache.
BEC 0 Branch cache disabled. This may be useful if code is unlikely to be reused.
1 Branch cache enabled.
18 Branch cache invalidate all. Invalidation occurs when this bit is set. Branch caches are not cleared on power-up
BCINVA | or normal reset.
0 No invalidation is performed.
1 Initiate an invalidation of the entire branch cache.
17-16 Reserved, must be cleared.
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Table 6-3. CACR Field Descriptions (continued)

Field Description
15 Enable instruction cache
IEC 0 Instruction cache disabled. All instructions and tags in the cache are preserved.
1 Instruction cache enabled.
14 Search by physical address. Setting this bit forces the cache to search the accessed set with the supplied
SPA physical cache address when a CPUSHL instruction is executed. See Section 6.4.8, “CPUSHL Enhancements,”
for more information.
13 Default cache-inhibited fill buffer
DNFB 0 Fill buffer does not store cache-inhibited instruction accesses (16 or 32 bits).

1 Fill buffer can store cache-inhibited accesses. The buffer is used only for normal (TT = 0) instruction reads of
a cache-inhibited region. Instructions are loaded into the buffer by a burst access (line fill). They stay in the
buffer until they are displaced; subsequent accesses may not appear on the external bus.

Setting DNFB can cause a coherency problem for self-modifying code. If a cache-inhibited access uses the

buffer while DNFB is set, instructions remain valid in the buffer until a cache-invalidate-all instruction, another

cache-inhibited burst, or a miss that initiates a fill. A write to the line in the fill goes to the external bus without
updating or invalidating the buffer. Subsequent reads are serviced by the fill buffer and receive stale information.

Note: Freescale discourages the use of self-modifying code.

12 Instruction CPUSHL invalidate disable.
IDPI 0 Normal operation. A CPUSHL instruction invalidates the selected line.
1 No clear operation. A CPUSHL instruction causes the selected line to remain valid.
11 Instruction cache half-lock.
IHLCK 0 Normal operation. The cache allocates to the lowest invalid way; if all ways are valid, the cache allocates to
the way pointed at by the round-robin counter and then increments this counter.

1 Half cache operation. The cache allocates to the lowest invalid way of ways 2 and 3; if both of these ways are
valid, the cache allocates to way 2 if the high-order bit of the round-robin counter is zero; otherwise, it allocates
way 3 and then increments the round-robin counter. This locks the contents of ways 0 and 1. Ways 0 and 1
are still updated on write hits and may be pushed or cleared by specific cache push/invalidate instructions.

10 Instruction default cache mode. For normal operations that do not hit in the RAMBARSs or ACRs, this field defines
IDCM the effective cache mode.
0 Cacheable
1 Cache-inhibited
9 Reserved, must be cleared.
8 Instruction cache invalidate. Invalidation occurs when this bit is set. Caches are not cleared on power-up or
ICINVA | normal reset.

0 No invalidation is performed.

1 Initiate instruction cache invalidation. The cache controller clears all V bits sequentially. Subsequent local
memory bus accesses stall until invalidation completes, at which point ICINVA is cleared automatically without
software intervention. For copyback mode, use CPUSHL before setting ICINVA.

7 Instruction default supervisor-protect. For normal operations that do not hit in the RAMBAR or ACRs, this field
IDSP defines supervisor-protection.
0 Not supervisor protected
1 Supervisor protected. User operations cause a fault
6 Reserved, must be cleared.
5 Enable USP. Enables user stack pointer.
EUSP 0 USP disabled. Core uses a single stack pointer.
1 USP enabled. Core uses separate supervisor and user stack pointers.
4-0 Reserved, must be cleared.
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6.3.2

Access Control Registers (ACRn)

The ACRn registers assign control attributes, such as cache mode and write protection, to specified
memory regions. ACR0 and ACRI1 control data attributes; ACR2 and ACR3 control instruction attributes.
Registers are accessed with the MOVEC instruction with the Rc encodings in Figure 6-5.

For overlapping regions, the lower ACR number takes priority. Data transfers to and from these registers
are longword transfers.

BDM: 0x004 (ACRO)
0x005 (ACR1)
0x006 (ACR2)

)

NOTE
ACRO-3 are read/write by the debug module.

Access: MOVEC write-only
Debug read/write

0x007 (ACR3

31 302928‘27262524232221 20‘191817161514131211 10 9 8|7 6 5 43 2 1 0
R 0|0 0({0|0 0/0|.40]0
BA ADMSK E| S AMM CM w
W SP
Reset - — - -|- - - -|- - - -[- - - -/0 - -0/0 0 00/0--20/0 - 00
! Reserved in ACR2 and ACR3
Figure 6-5. Access Control Register Format (ACRn)
Table 6-4. ACRn Field Descriptions
Field Description
31-24 Base address. Compared with address bits A[31:24]. Eligible addresses that match are assigned the access
BA control attributes.
23-16 Address mask. Setting a mask bit causes the corresponding address base bit to be ignored. The low-order mask
ADMSK | bits can be set to define contiguous regions larger than 16 Mbytes. The mask can define multiple non-contiguous
regions of memory.
15 Enable. Enables or disables the other ACRn bits.
E 0 Access control attributes disabled
1 Access control attributes enabled
14-13 Supervisor mode. Specifies whether only user or supervisor accesses are allowed in this address range or if the
S type of access is a don’t care.

00 Match addresses only in user mode

01 Match addresses only in supervisor mode

1x Execute cache matching on all accesses

12—-11 Reserved, must be cleared.
10 Address mask mode.
AMM 0 The ACR hit function allows control of a 16 Mbytes or greater memory region.

1 The upper 8 bits of the address and ACR are compared without a mask function. Address bits [23:20] of the
address and ACR are compared using ACR[19:16] as a mask, allowing control of a 1-16 Mbyte memory
region.

9-7 Reserved, must be cleared.
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Table 6-4. ACRn Field Descriptions (continued)

Field Description

6-5 Cache mode. Selects the cache mode and access precision. Precise and imprecise modes are described in
CM Section 6.4.1.2, “Cache-Inhibited Accesses.”

00 Cacheable, write-through

01 Cacheable, copyback

10 Cache-inhibited, precise

11 Cache-inhibited, imprecise

4 Reserved, must be cleared.
3 Supervisor protect.
SP 0 Indicates supervisor and user mode access allowed

1 Indicates only supervisor access is allowed to this address space and attempted user mode accesses
generate an access error exception

2 Write protect. Selects the write privilege of the memory region. This field is reserved in the instruction attribute
w ACRs (ACR2-3).

0 Read and write accesses permitted

1 Write accesses not permitted

1-0 Reserved, must be cleared.

6.4 Functional Description

Figure 6-6 shows the general flow of a caching operation using the 16-Kbyte data cache as an example.
This chapter assumes a data cache. Instruction cache operations are similar except for writing to the cache
has no support; therefore, such notions of modified cache lines and write allocation do not apply.
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Figure 6-6. Data-Caching Operation

The following steps determine if a data-cache line for a given address is allocated:

1. The cache set index, A[11:4], selects one cache set.

2. A[31:12] and the cache set index are used as a tag reference or to update the cache line tag field.
A[31:12] can specify 20 possible address lines that can be mapped to one of the four ways.

3. The four tags from the selected cache set are compared with the tag reference. A cache hit occurs
if a tag matches the tag reference and the V bit is set, indicating that the cache line contains valid
data. If a cacheable write access hits in a valid cache line, the write can occur to the cache line
without loading it from memory.

If the memory space is copyback, the updated cache line is marked modified (M = 1), because the
new data made the data in memory stale. If the memory location is write-through, the write is
passed to system memory and the M bit is not used. The tag does not have TT or TM bits.

To allocate a cache entry, the cache set index selects one of the cache’s 256 sets. The cache control logic
looks for an invalid cache line to use for the new entry. If none are available, the cache controller uses a
pseudo-round-robin replacement algorithm to choose the line to be deallocated and replaced. First, the
cache controller looks for an invalid line, with way 0 the highest priority. If all lines have valid data, a 2-bit
replacement counter chooses the way. After a line is allocated, the pointer increments to point to the next
way.

Cache lines from ways 0 and 1 can be protected from deallocation by enabling half-cache locking. If
CACR[DHLCK,IHLCK] are set, the replacement pointer is restricted to way 2 or 3.
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As part of deallocation, a valid, unmodified cache line is invalidated. It is consistent with system memory,
so memory does not need to be updated. To deallocate a modified cache line, data is placed in a push buffer
(for an external cache line push) before being invalidated. After invalidation, the new entry can replace it.
The old cache line may be written after the new line is read.

When a cache line is selected to host a new cache entry, three things happen:

1. The new address tag bits A[31:12] are written to the tag.

2. The cache line is updated with the new memory data.

3. The cache line status changes to a valid state (V = 1).
Read cycles that miss in the cache allocate normally as previously described. Write cycles that miss in the
cache do not allocate on a cacheable write-through region but do allocate for addresses in a cacheable
copyback region.
A copyback byte, word, longword, or line write miss causes the following:

1. The cache initiates a line fill or flush.

2. Space is allocated for a new line.

3. Vand M are set to indicate valid and modified.

4. Data is written in the allocated space. No write to memory occurs.

NOTE

Read hits cannot change the status bits and no deallocation or replacement
occurs; the data or instructions are read from the cache. If the cache hits on
a write access, data is written to the appropriate portion of the accessed
cache line. Write hits in cacheable, write-through regions generate an
external write cycle and the cache line is marked valid, but is never marked
modified. Write hits in cacheable copyback regions do not perform an
external write cycle; the cache line is marked valid and modified (V and M
are set). Misaligned accesses are broken into at least two cache accesses.
Validity is provided only on a line basis. Unless a whole line is loaded on a
cache miss, the cache controller does not validate data in the cache line.

Write accesses designated as cache-inhibited by the CACR or ACR bypass the cache and perform a
corresponding external write.

Normally, cache-inhibited reads bypass the cache and are performed on the external bus. The exception
occurs when all of the following conditions are true during a cache-inhibited read:

* The cache-inhibited fill buffer bit, CACR[DNFBY], is set.

» The access is an instruction read.

* The access is normal (TT = 0).
In this case, an entire line is fetched and stored in the fill buffer. It remains valid there, and the cache can

service additional read accesses from this buffer until either another fill or a cache-invalidate-all operation
occurs.
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Valid cache entries that match during cache-inhibited address accesses are neither pushed nor invalidated.
Such a scenario suggests that the associated cache mode for this address space was changed. To avoid this,
use the CPUSHL instruction to push or invalidate the cache entry or set CACR[DCINVA] to invalidate the
data cache before switching cache modes.

6.4.1 Caching Modes

For every memory reference the processor or debug module generates, a set of effective attributes is
determined based on the address and ACRs. Caching modes determine how the cache handles an access.
A data access can be cacheable in write-through or copyback mode; it can be cache-inhibited in precise or
imprecise modes. For normal accesses, the ACRrn[CM] bit corresponding to the address of the access
specifies the caching modes. If an address does not match an ACR, the default caching mode is defined by
CACR[DDCM,IDCM]. The specific algorithm is as follows:

if (address == ACRO-address including mask)
effective attributes = ACRO attributes
else if (address == ACRl-address including mask)

effective attributes = ACR1l attributes
else effective attributes = CACR default attributes

Addresses matching an ACR can also be write-protected using ACR[W]. Addresses that do not match
either ACR can be write-protected using CACR[DW].

Reset disables the cache and clears all CACR bits. As shown in Figure 6-3, reset does not automatically
invalidate cache entries; the software invalidates them.

The ACRs allow the defaults selected in the CACR to be overridden. In addition, some instructions (for
example, CPUSHL) and processor core operations perform accesses that have an implicit caching mode
associated with them. The following sections discuss the different caching accesses and their associated
cache modes.

6.4.1.1 Cacheable Accesses

If ACRn[CM] or the default field of the CACR indicates write-through or copyback, the access is
cacheable. If matching data is found, a read access to a write-through or copyback region is read from the
cache. Otherwise, the data is read from memory, and the cache is updated. When a line is read from
memory for either a write-through or copyback read miss, the longword within the line that contains the
core-requested data is loaded first, and the requested data is given immediately to the processor, without
waiting for the three remaining longwords to reach the cache.

The following sections describe write-through and copyback modes in detail. Some of this information
applies to data caches only.

6.4.1.1.1 Write-Through Mode (Data Cache Only)

Write accesses to regions specified as write-through are always passed on to the external bus; although the
cycle can be buffered, depending on the state of CACR[DESB]. Writes in write-through mode are handled
with a no-write-allocate policy—that is, writes that miss in the cache are written to the external bus but do
not cause the corresponding line in memory to load into the cache. Write accesses that hit always write
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through to memory and update matching cache lines. The cache supplies data to data-read accesses that
hit in the cache; read misses cause a new cache line to load into the cache.

6.4.1.1.2 Copyback Mode (Data Cache Only)

Copyback regions are typically used for local data structures or stacks to minimize external bus use and
reduce write-access latency. Write accesses to regions specified as copyback that hit in the cache update
the cache line and set the corresponding M bit without an external bus access.

The cache should be flushed using the CPUSHL instruction before invalidating the cache in copyback
mode using the CINV bits. Modified cache data is written to memory only if the line is replaced because
of a miss or a CPUSHL instruction pushes the line. If a byte, word, longword, or line write access misses
in the cache, the required cache line is read from memory, thereby updating the cache. When a miss selects
a modified cache line for replacement, the modified cache data moves to the push buffer. The replacement
line is read into the cache, and the push buffer contents are then written to memory.

6.4.1.2 Cache-Inhibited Accesses

Memory regions can be designated as cache-inhibited, which is useful for memory containing targets such
as I/O devices and shared data structures in multiprocessing systems. It is also important to not cache the
processor’s memory-mapped registers. If the corresponding ACRxn[CM] or CACR[DDCM] indicates
cache-inhibited, precise or imprecise, the access is cache-inhibited. The caching operation is identical for
both cache-inhibited modes, which differ only regarding recovery from an external bus error.

In determining whether a memory location is cacheable or cache-inhibited, the CPU checks
memory-control registers in the following order:
1. RAMBARs
2. ACRO and ACR2
3. ACRI and ACR3
4. If an access does not hit in the RAMBARS or the ACRs, the default is provided for all accesses in
CACR.

Cache-inhibited write accesses bypass the cache, and a corresponding external write is performed.
Cache-inhibited reads bypass the cache and are performed on the external bus, except when all of the
following conditions are true:

* The cache-inhibited fill buffer bit, CACR[DNFB], is set.
* The access is an instruction read.

* The access is normal (TT = 0).

In this case, a fetched line is stored in the fill buffer and remains valid there; the cache can service
additional read accesses from this buffer until another fill occurs or a cache-invalidate-all operation occurs.

If ACRn[CM] indicates cache-inhibited mode, precise or imprecise, the controller bypasses the cache and
performs an external transfer. If a line in the cache matches the address and the mode is cache-inhibited,
the cache does not automatically push the line if it is modified, nor does it invalidate the line if it is valid.
Before switching cache mode, execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] to
invalidate the entire cache.
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If ACRn[CM] indicates precise mode, the sequence of read and write accesses to the region is guaranteed
to match the instruction sequence. In imprecise mode, the processor core allows read accesses that hit to
occur before completion of a pending write from a previous instruction. Writes are not deferred past
data-read accesses that miss the cache (they must be read from the bus).

Precise operation forces data-read accesses for an instruction to occur only once by preventing the
instruction from being interrupted after data is fetched. Otherwise, if the processor is not in precise mode,
an exception aborts the instruction and the data may be accessed again when the instruction is restarted.
These guarantees apply only when ACR»n[CM] indicates precise mode and aligned accesses.

All CPU space-register accesses, such as MOVEC, are treated as cache-inhibited and precise.

6.4.2 Cache Protocol

The following sections describe the cache protocol for processor accesses and assumes that the data is
cacheable (that is, write-through or copyback). The discussion of write operations applies to the data cache
only.

6.4.2.1 Read Miss

A processor read that misses in the cache requests the cache controller to generate a bus transaction. This
bus transaction reads the needed line from memory and supplies the required data to the processor core.
The line is placed in the cache in the valid state.

6.4.2.2 Write Miss (Data Cache Only)

The cache controller handles processor writes that miss in the data cache differently for write-through and
copyback regions. Write misses to copyback regions cause the cache line to be read from system memory,
as shown in Figure 6-7.
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1. Writing character X to 0xOB generates a write miss. Data cannot be written to an invalid line.

Cache Line

ColdFire | 0x0C | 0x08 | 0x04 | 0x00

processor

0
0

v
Y

| x

2. The cache line (characters A—P) is updated from system memory, and the line is marked valid.

0x0C_0x08 0x04 0x00 .
|ABCD|EFGH| KL [MNOP| 17—
} [ A

System
Memory

3. After the cache line is filled, the write that initiated the write miss (the character X) completes to 0x0B.

0x0C 0x08 0x04 0x00
[ABCD]EXGH] IJKL [MNOP] 4=}

ColdFire
processor

Figure 6-7. Write-Miss in Copyback Mode

The new cache line is then updated with write data and the M bit is set for the line, leaving it in modified
state. Write misses to write-through regions write directly to memory without loading the corresponding
cache line into the cache.

6.4.2.3 Read Hit

On a read hit, the cache provides the data to the processor core and the cache line state remains unchanged.
If the cache mode changes for a specific region of address space, lines in the cache corresponding to that
region that contain modified data are not pushed out to memory when a read hit occurs within that line.

First, execute a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching the cache mode.

6.4.2.4 Write Hit (Data Cache Only)

The cache controller handles processor writes that hit in the data cache differently for write-through and
copyback regions. For write hits to a write-through region, portions of cache lines corresponding to the
size of the access are updated with the data. The data is also written to external memory. The cache line
state is unchanged. For copyback accesses, the cache controller updates the cache line and sets the M bit
for the line. An external write is not performed and the cache line state changes to (or remains in) the
modified state.
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6.4.3 Cache Coherency (Data Cache Only)

The processor provides limited support for maintaining cache coherency in multiple-master environments.
Write-through and copyback memory update techniques are supported to maintain coherency between the
cache and memory.

The cache does not support snooping (cache coherency is not supported while external or DMA masters
use the bus). Therefore, on-chip DMA channels should not access cached local memory locations because
coherency is not maintained with the data cache.

6.4.4 Memory Accesses for Cache Maintenance

The cache controller performs all maintenance activities that supply data from the cache to the core,
including requests for reading new cache lines and writing modified cache lines to memory. The following
sections describe memory accesses resulting from cache fill and push operations.

6.4.4.1 Cache Filling

When a new cache line is required, a line read is requested, which generates a burst-read transfer by
indicating a line access with the size signals, SIZ[1:0].

The responding device supplies four consecutive longwords of data. Line accesses implicitly request
burst-mode operations from memory, but burst operations can be inhibited or enabled through the burst
read/write enable bits (CSCRn[BSTR, BSTW]). For more information regarding external bus burst-mode
accesses, see Chapter 20, “FlexBus.”

The first cycle of a cache-line read loads the longword entry corresponding to the requested address.
Subsequent transfers load the remaining longword entries.

A burst operation aborts by a write-protection fault, which is the only possible access error. Exception
processing proceeds immediately. Unlike Version 2 and Version 3 access errors, the program counter
stored on the exception stack frame points to the faulting instruction. See Section 3.3.4.1, “Access Error
Exception.”

6.4.4.2 Cache Pushes

Cache pushes occur for line replacement and as required for the execution of the CPUSHL instruction. To
reduce the requested data’s latency in the new line, the modified line being replaced is temporarily placed
in the push buffer while the new line is fetched from memory. After the bus transfer for the new line
completes, the modified cache line writes back to memory and the push buffer invalidates.

6.4.4.2.1 Push and Store Buffers

The 16-byte push buffer reduces latency for requested new data on a cache miss by holding a displaced
modified data cache line while the new data is read from memory.

If a cache miss displaces a modified line, a miss read reference is immediately generated. While waiting
for the response, the current contents of the cache location load into the push buffer. When the burst-read
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bus transaction completes, the cache controller can generate the appropriate line-write bus transaction to
write the push buffer contents into memory.

In imprecise mode, the FIFO store buffer can defer pending writes to maximize performance. The store
buffer can support as many as four entries (16 bytes maximum) for this purpose.

Data writes destined for the store buffer cannot stall the core. The store buffer effectively provides a
measure of decoupling between the pipeline’s ability to generate writes (one per cycle maximum) and the
external bus’s ability to retire those writes. In imprecise mode, writes stall only if the store buffer is full
and a write operation is on the internal bus. The internal write cycle is held, stalling the data execution
pipeline.

If the store buffer is not used (store buffer disabled or cache-inhibited precise mode), external bus cycles
generate directly for each pipeline-write operation. The instruction is held in the pipeline until external bus
transfer termination is received. Therefore, each write is stalled for five cycles, making the minimum write
time equal to six cycles when the store buffer is not used. See Section 3.1.1.2, “Operand Execution
Pipeline (OEP).”

The data store buffer enable bit, CACR[DESB], controls the enabling of the data-store buffer. The
MOVEC instruction can set and clear this bit. At reset, this bit is cleared and all writes perform in order
(precise mode). ACRn[CM] or CACR[DDCM] generates the mode used when DESB is set. Cacheable
write-through and cache-inhibited imprecise modes use the store buffer.

The store buffer can queue data as much as four bytes wide per entry. Each entry matches the
corresponding bus cycle it generates; therefore, a misaligned longword write to a write-through region
creates two entries if the address is to an odd-word boundary. It creates three entries if the address is to an
odd-byte boundary—one per bus cycle.

6.4.4.2.2 Push and Store Buffer Bus Operation

As soon as the push or store buffer has valid data, the internal bus controller uses the next available external
bus cycle to generate the appropriate write cycles. In the event another cache fill is required (for example,
cache miss to process) during the continued instruction execution by the processor pipeline, the pipeline
stalls until the push and store buffers empty, before generating the required external bus transaction.

Supervisor instructions, the NOP instruction, and exception processing synchronize the processor core and
guarantee the push and store buffers are empty before proceeding. The NOP instruction should be used
only to synchronize the pipeline. The preferred no-op function is the TPF instruction. See the ColdFire
Programmer s Reference Manual for more information on the TPF instruction.

6.4.5 Cache Locking

Ways 0 and 1 of the data cache can lock by setting CACR[DHLCK]; likewise, ways 0 and 1 of the
instruction cache can lock by setting CACR[IHLCK]. If a cache locks, cache lines in ways 0 and 1 are not
subject to deallocation by normal cache operations.

As Figure 6-8 (B and C) shows, the algorithm for updating the cache and for identifying cache lines for
deallocation does not change. If ways 2 and 3 are entirely invalid, cacheable accesses are first allocated in
way 2. Way 3 is not used until the location in way 2 is occupied.
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Ways 0 and 1 are still updated on write hits (D in Figure 6-8) and may be pushed or cleared only explicitly
by using specific cache push/invalidate instructions. However, new cache lines cannot be allocated in ways

0 and 1.

= Invalid (V = 0)

A: Ways 0 and 1 are filled.
Ways 2 and 3 are invalid.

Way 0 Way 1 Way 2 Way 3

=

EE  Valid, not modified (V =1, M =0)

B: CACR[DHLCK] is set,
locking ways 0 and 1.

Way 0 Way 1 Way 2 Way 3

C: When a setin Way 2 is

occupied, the set in way 3 is

EEE Valid, modified (V=1,M=1)

D: Write hits to ways 0 and 1
update cache lines.

used for a cacheable access.

Way 0 Way 1 Way 2 Way 3

Way 0 Way 1 Way 2 Way 3

=

-

==

,

,

!

Set 255

After reset, the cache is
invalidated, ways 0 and 1 are
then written with data that
should not be deallocated.
Ways 0 and 1 can be filled
systematically by using the
INTOUCH instruction.

After CACR[DHLCK] is set,

subsequent cache accesses
go to ways 2 and 3.

:

While the cache is locked
and after a position in ways 2
is full, the set in Way 3 is
updated.

Figure 6-8. Data Cache Locking

While the cache is locked,
ways 0 and 1 can be updated
by write hits. In this example,
memory is configured as

copyback, so updated cache
lines are marked modified.
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6.4.6 Cache Management

The cache can be enabled and configured by using a MOVEC instruction to access CACR. A hardware
reset clears CACR, disabling the cache and removing all configuration information; however, reset does
not affect the tags, state information, and data in the cache.

Set CACR[DCINVA,ICINVA] to invalidate the caches before enabling them.

The privileged CPUSHL instruction supports cache management by selectively pushing and invalidating
cache lines. The address register used with CPUSHL directly addresses the cache’s directory array. The
CPUSHL instruction flushes a cache line.

The value of CACR[DDPLIDPI] determines whether CPUSHL invalidates a cache line after it is pushed.
To push the entire cache, implement a software loop to index through all sets and each of the four lines
within each set (for a total of 512 lines for the data cache and 1024 lines for the instruction cache). The
state of CACR[DEC,IEC] does not affect the operation of CPUSHL or CACR[DCINVA,ICINVA].
Disabling a cache by clearing CACR[IEC] or CACR[DEC] makes the cache non-operational without
affecting tags, state information, or contents.

The contents of Ax used with CPUSHL specify cache row and line indexes. This differs from the
MC68040 family where a physical address is specified. Figure 6-9 shows the Ax format for the data and
instruction cache.

3130292827262524232221201918171615141312‘111098‘7654321O
loJofo]o|o[o]o|o[o]ofo[o|o]o[o]o]0[0]0] Set Index Way Index |

Figure 6-9. Ax Format

The following code example flushes the entire data cache:

_cache disable:

nop
move.w #0x2700, SR ;mask off IRQs
jsr _cache flush ;flush the cache completely
clr.1l do
movec d0, ACRO ;ACRO off
movec d0,ACR1 ;ACR1 off
move.l #0x01000000,d0 ;Invalidate and disable cache
movec d0, CACR
rts
_cache flush:
nop ;synchronize—flush store buffer
moveq. 1l #0,d0 ;initialize way counter
moveq. 1l #0,d1 ;initialize set counter
move. 1l do, a0 ;initialize cpushl pointer
setloop:
cpushl dc, (a0) ;push cache line a0
add.l #0x0010, a0 ;increment set index by 1
addg.1l #1,d1 ;increment set counter
cmpi.l #255,d1 ;are sets for this way done?
bne setloop
moveq. 1l #0,d1 ;set counter to zero again
addg.l #1,d0 ;increment to next way
move.l do, a0 ;set = 0, way = dO
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cmpi.l #4,d0 ;flushed all the ways?
bne setloop
rts

The following CACR loads assume: the instruction cache has been invalidated, the default instruction
cache mode is cacheable, the default data cache mode is copyback.

dataCacheLoadAndLock:
move.1l #0xa3080800,d0 ; enable and invalidate data cache
movec d0, cacr ; ... 1n the CACR

The following code segments preload half of the data cache (8 Kbytes). It assumes a contiguous block of
data is to be mapped into the data cache, starting at a 0-modulo-8K address.

move.l #512,d0 ; 512 16-byte lines in 8K space

lea data ,a0 ; load pointer defining data area
dataCacheLoop:

tst.b (a0) ; touch location + load into data cache

lea 16 (a0),al ; increment address to next line

subqg. 1l #1,d0 ; decrement loop counter

bne.b dataCachelLoop ; 1if done, then exit, else continue

; A 8K region has been loaded into ways 0 and 1 of the 16K data cache. lock it!

move.l #0xaa088000,d0 ; set the data cache lock bit
movec d0, cacr ; ... 1n the CACR
rts

align 16

The following CACR loads assume the data cache has been previously invalidated, the default instruction
cache mode is cacheable, and the default operand cache mode is copyback.

This function must be mapped into a cache-inhibited or SRAM space or these text lines are to be
prefetched into the instruction cache. This may displace some of the 8-Kbyte space being explicitly
fetched.

instructionCacheLoadAndLock:

move.l #0xa2088100,d0 ; enable and invalidate the instruction
movec d0, cacr ; cache in the CACR

The following code segments preload half of the instruction cache (8 Kbytes). It assumes a contiguous
block of data is to be mapped into the cache, starting at a 0-modulo-8K address

move.l #512,d0 ; 512 16-byte lines in 8K space

lea code ,al ; load pointer defining code area
instCacheLoop:

intouch (a0) ; touch location + load into instruction cache

; Note in the assembler we use, there is no INTOUCH opcode. The following
; 1s used to produce the required binary representation

cpushl #nc, (a0) ;touch location + load into
;instruction cache

lea 16(a0),a0 ;increment address to next line

subg. 1l #1,d0 ;decrement loop counter

bne.b instCacheLoop ;1f done, then exit, else continue

; A 8K region was loaded into levels 0 and 1 of the 16-Kbyte instruction cache. lock it!

move.l #0xa2088800,d0 ;set the instruction cache lock bit
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movec d0, cacr ;in the CACR
rts

6.4.7 Cache Operation Summary

This section gives operational details for the cache and presents instruction and data cache-line state
diagrams.

6.4.7.1 Instruction Cache State Transitions

Because the instruction cache does not support writes, it supports fewer operations than the data cache. As
Figure 6-10 shows, an instruction cache line can be in one of two states: valid or invalid. Modified state is
not supported. Transitions are labeled with a capital letter (indicating the previous state) and a number
(indicating the specific case listed in Table 6-5). These numbers correspond to the equivalent operations
on data caches as described in Section 6.4.7.2, “Data Cache-State Transitions.”

II5—ICINVA
116—CPUSHL and IDPI
II7—CPUSHL and IDPI

IV1—CPU read miss
IV2—CPU read hit
IV7—CPUSHL and IDPI

111—CPU read miss

Invalid Valid
V=0 V=1

IV5—ICINVA
IV6—CPUSHL and IDPI

Figure 6-10. Instruction Cache Line State Diagram

Table 6-5 describes the instruction cache-state transitions shown in Figure 6-10.

Table 6-5. Instruction Cache Line State Transitions

Current State
Access

Invalid (V = 0) Valid (V = 1)

Read miss | lI1 | Read line from memory and update cache; | IV1 | Read new line from memory and update cache;
supply data to processor; supply data to processor; stay in valid state.
go to valid state.

Read hit 112 | Not possible IV2 | Supply data to processor;
stay in valid state.
Write miss | 113 | Not possible IV3 | Not possible
Write hit 114 | Not possible IV4 | Not possible
Cache 115 | No action; IV5 | No action;
invalidate stay in invalid state. go to invalid state.
Cache 116 | No action; IV6 | No action;
push 117 | stay in invalid state. go to invalid state.
IV7 | No action;

stay in valid state.
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6.4.7.2 Data Cache-State Transitions

Using the V and M bits, the data cache supports a line-based protocol allowing individual cache lines to
be invalid, valid, or modified. To maintain coherency with memory, the data cache supports write-through
and copyback modes, specified by the corresponding ACR[CM], or CACR[DDCM] if no ACR matches.

Read or write misses to copyback regions cause the cache controller to read a cache line from memory into
the cache. If available, tag and data from memory update an invalid line in the selected set. The line state
then changes from invalid to valid by setting the V bit for the line. If all lines in the row are already valid
or modified, the pseudo-round-robin replacement algorithm selects one of the four lines and replaces the
tag and data. Before replacement, modified lines are buffered temporarily and later copied back to memory
after the new line has been read from memory.

Figure 6-11 shows the three possible data-cache line states and possible processor-initiated transitions for
memory configured as copyback. Transitions are labeled with a capital letter indicating the previous state
and a number indicating the specific case listed in Table 6-6.

CV1—CPU read miss
CV2—CPU read hit
CV7—CPUSHL and

CI5—DCINVA
Cl6—CPUSHL and
DDPI
CI7—CPUSHL and

CI1—CPU read miss

CV5—DCINVA

CV6—CPUSHL and
CI3—CPU
write miss CD1—CPU
read miss,

CD7—CPUSH
and DDPI

CD5—DCINVA
CD6—CPUSHL and DDPI

CV3—CPU write miss
CV4—CPU write hit

CD2—CPU read hit
CD3—CPU write miss
CD4—CPU write hit

Figure 6-11. Data Cache Line State Diagram—Copyback Mode

Figure 6-12 shows the two possible states for a cache line in write-through mode.

WI3—CPU write miss WV1—CPU read miss
WI5—DCINVA WV2—CPU read hit
WI6—CPUSHL and DDPI WV3—CPU write miss
WI7—CPUSHL and DDPI WV4—CPU write hit
WH—CPU read miss WV7—CPUSHL and
Invalid Valid
V=0 V=1
WV5—DCINVA

WV6—CPUSHL and

Figure 6-12. Data-Cache Line State Diagram—Write-Through Mode

Table 6-6 describes data-cache line transitions and what accesses cause them.
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Table 6-6. Data Cache Line State Transitions
Current State
Access
Invalid (V = 0) Valid (V=1, M =0) Modified (V=1,M=1)
Read (C,W)I1 | Read line from memory and | (C,W)V1 | Read new line from memory CDH1 Push modified line to buffer;
miss update cache; and update cache; read new line from memory
supply data to processor; supply data to processor; and update cache;
go to valid state. stay in valid state. supply data to processor;
write push buffer contents to
memory;
go to valid state.
Read hit | (C,W)I2 | Not possible. (C,W)V2 | Supply data to processor; CD2 | Supply data to processor;
stay in valid state. stay in modified state.
Write CI3 Read line from memory and CV3 |Readnewlinefrommemory | CD3 |Push modified line to buffer;
miss update cache; and update cache; read new line from memory
(copy- write data to cache; write data to cache; and update cache;
back) go to modified state. go to modified state. write push buffer contents to
memory;
stay in modified state.
Write WI3 Write data to memory; WV3 | Write data to memory; WD3 | Write data to memory;
miss stay in invalid state. stay in valid state. stay in modified state.
(write- Cache mode changed for
through) the region corresponding to
this line. To avoid this state,
execute a CPUSHL
instruction or set
CACRI[DCINVA,ICINVA]
before switching modes.
Write hit Cl4 Not possible. CV4 | Write data to cache; CD4 | Write data to cache;
(copy- go to modified state. stay in modified state.
back)
Write hit WI4 | Not possible. WV4 | Write datato memoryandto | WD4 | Write data to memory and to
(write- cache; cache;
through) stay in valid state. go to valid state.
Cache mode changed for
the region corresponding to
this line. To avoid this state,
execute a CPUSHL
instruction or set
CACRI[DCINVA,ICINVA]
before switching modes.
Cache (C,W)I5 | No action; (C,W)V5 | No action; CD5 | No action (modified data
invalidate stay in invalid state. go to invalid state. lost);
go to invalid state.
Cache (C,W)I6( | No action; (C,W)V6 | No action; CD6 | Push modified line to
push C,W)I7 |stay in invalid state. go to invalid state. memory;
go to invalid state.
(C,W)V7 | No action; CD7 | Push modified line to

memory;
go to valid state.
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The following tables present the same information as Table 6-6, organized by the current state of the cache

line. In Table 6-7 the current state is invalid.

Table 6-7. Data Cache Line State Transitions (Current State Invalid)

Access Response

Read miss (C,W)I1 | Read line from memory and update cache;
supply data to processor;
go to valid state.

Read hit (C,W)I2 | Not possible

Write miss (copyback) CI3 Read line from memory and update cache;
write data to cache;
go to modified state.

Write miss (write-through) | WI3 Write data to memory;
stay in invalid state.

Write hit (copyback) Cl4 Not possible

Write hit (write-through) Wi4 Not possible

Cache invalidate (C,W)I5 | No action;
stay in invalid state.

Cache push (C,W)I6 | No action;
stay in invalid state.

Cache push (C,W)I7 | No action;
stay in invalid state.

In Table 6-8 the current state is valid.

Table 6-8. Data Cache Line State Transitions (Current State Valid)

Access Response
Read miss (C,W)V1 | Read new line from memory and update cache;
supply data to processor; stay in valid state.
Read hit (C,W)V2 | Supply data to processor;
stay in valid state.
Write miss (copyback) Cv3 Read new line from memory and update cache;
write data to cache;
go to modified state.
Write miss (write-through) | WV3 Write data to memory;
stay in valid state.
Write hit (copyback) Cv4 Write data to cache;
go to modified state.
Write hit (write-through) WV4 Write data to memory and to cache;
stay in valid state.
Cache invalidate (C,W)V5 | No action;
go to invalid state.
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Table 6-8. Data Cache Line State Transitions (Current State Valid) (continued)

Access Response

Cache push (C,W)V6 | No action;
go to invalid state.

Cache push (C,W)V7 | No action;
stay in valid state.

In Table 6-9 the current state is modified.

Table 6-9. Data Cache Line State Transitions (Current State Modified)

Access Response

Read miss CD1 | Push modified line to buffer;

read new line from memory and update cache;
supply data to processor;

write push buffer contents to memory;

go to valid state.

Read hit CD2 | Supply data to processor;
stay in modified state.
Write miss CD3 | Push modified line to buffer;
(copyback) read new line from memory and update cache;

write push buffer contents to memory;
stay in modified state.

Write miss WD3 | Write data to memory;

(write-through) stay in modified state.

Cache mode changed for the region corresponding to this line. To avoid this state, execute
a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.

Write hit CD4 | Write data to cache;

(copyback) stay in modified state.

Write hit WD4 | Write data to memory and to cache;
(write-through) go to valid state.

Cache mode changed for the region corresponding to this line. To avoid this state, execute
a CPUSHL instruction or set CACR[DCINVA,ICINVA] before switching modes.

Cache invalidate CD5 | No action (modified data lost);
go to invalid state.

Cache push CD6 | Push modified line to memory;
go to invalid state.

Cache push CD7 | Push modified line to memory;
go to valid state.

6.4.8 CPUSHL Enhancements

The extended CPUSHL functionality adds two new bits in the cache control register (CACR) to support a
set search using a physical address. In particular, the added CACR bits are defined as:

cacr([14] = cacr[SPA] cpushl Search by physical address
cacr[20] = cacr[IVO] cpushl Invalidate only
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In many applications where data is shared among bus masters, the performance of the software function
to push and/or clear specific lines from the data cache is important. Previously, this function was
implemented using a CPUSHL loop that explicitly referenced all four ways in each cache set. By
referencing all possible cache entries that might contain the targeted address range, it is guaranteed that
the cache data of interest is referenced. It also has the unfortunate side-effect of potentially
pushing/clearing other data that happened to be mapped into the targeted cache entries.

For the enhanced CPUSHL functionality, a higher-performance version of this function is possible using
a physical address range and a simpler search loop. The enhanced CPUSHL instruction also affects only
the specific cache lines being referenced and does not change the state of any other cache entries.

The specific variation of the CPUSHL instruction used to operate only on the data cache:

cpushl dc, (ax)

where dc specifies the data cache, and ax is the cache set address and way number for the baseline
CPUSHL functionality or ax is the physical address for the enhanced CPUSHL.

For the enhanced implementations, the specific operation performed by the CPUSHL instruction is defined
by the state of four CACR bits. See Table 6-10.

Table 6-10. Enhanced CPUSHL Functionality

CACR Bits Description
instruction [141 | [20]) [28] | [12] Search by Action
SPA | IVO |DDPI | IDPI

cpushl bc, (ax) 0 0 0 0 Cache address/way Clear both
cpushl bc, (ax) 0 0 0 1 Cache address/way Clear data
cpushl bc, (ax) 0 0 1 0 Cache address/way Push data, clear instruction
cpushl bc, (ax) 0 0 1 1 Cache address/way Push data
cpushl bc, (ax) 0 1 - - Cache address/way Invalidate both
cpushl bc, (ax) 1 0 0 0 Physical address Clear both
cpushl bc, (ax) 1 0 0 1 Physical address Clear data
cpushl bc, (ax) 1 0 1 0 Physical address Push data, clear instruction
cpushl bc, (ax) 1 0 1 1 Physical address Push data
cpushl bc, (ax) 1 1 - - Physical address Invalidate both
cpushl dc, (ax) 0 0 0 - Cache address/way Clear data
cpushl dc, (ax) 0 0 1 - Cache address/way Push data
cpushl dc, (ax) 0 1 - - Cache address/way Invalidate data
cpushl dc, (ax) 1 0 0 - Physical address Clear data
cpushl dc, (ax) 1 0 1 - Physical address Push data
cpushl dc, (ax) 1 1 - - Physical address Invalidate data
cpushl ic, (ax) 0 0 - 0 Cache address/way Clear instruction
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Table 6-10. Enhanced CPUSHL Functionality (continued)

CACR Bits Description
instruction [141 | [20]) [28] | [12] Search by Action
SPA | IVO |DDPI | IDPI

cpushl ic, (ax) 0 0 - 1 Cache address/way No operation
cpushl ic, (ax) 0 1 - - Cache address/way Invalidate inst
cpushl ic, (ax) 1 0 - 0 Physical address Clear instruction
cpushl ic, (ax) 1 0 - 1 Physical address No operation
cpushl ic, (ax) 1 1 - - Physical address Invalidate instruction
cpushl nc, (ax) - - - - Address intouch instruction

6.5 Initialization/Application Information
The following example sets up the cache for flash or ROM space only.

move.l #0xA70C8100, DO //enable cache, invalidate it,
//default mode is cache-inhibited imprecise
movec DO, CACR
move.l #0xFF00C000, DO //cache flash space, enable,
//ignore supervisor/user, cacheable, writethrough
movec DO, ACRO
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Chapter 7
Static RAM (SRAM)

71 Introduction

This chapter describes the on-chip static RAM (SRAM) implementation, including general operations,
configuration, and initialization. It also provides information and examples showing how to minimize
power consumption when using the SRAM.

711 Overview

The SRAM module provides a general-purpose memory block that the ColdFire processor can access in a
single cycle. The location of the memory block can be specified to any 0-modulo-32K address within the
256-Mbyte address space (0x8000 0000 — Ox8FFF_FFFF). The memory is ideal for storing critical code
or data structures or for use as the system stack. Because the SRAM module is physically connected to the
processor's high-speed local bus, it can service processor-initiated accesses or memory-referencing
commands from the debug module.

Depending on configuration information, processor references may be sent to the cache and the SRAM
block simultaneously. If the reference maps into the region defined by the SRAM, the SRAM provides the
data back to the processor, and the cache data is discarded. Accesses from the SRAM module are not
cached.

The SRAM is dual-ported to provide access for any of the bus masters via the SRAM backdoor on the
crossbar switch. The SRAM is partitioned into two physical memory arrays to allow simultaneous access
to arrays by the processor core and another bus master. For more information on arbitration between
multiple masters accessing the SRAM, see Chapter 15, “Crossbar Switch (XBS).”

7.1.2 Features

The major features includes:
* One 32 Kbyte SRAM
» Single-cycle access
» Physically located on the processor's high-speed local bus
* Memory location programmable on any 0-modulo-32 Kbyte address

* Byte, word, and longword address capabilities
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7.2 Memory Map/Register Description

The SRAM programming model shown in Table 7-1 includes a description of the SRAM base address
register (RAMBAR), SRAM initialization, and power management.

Table 7-1. SRAM Programming Model

. Width Written .
.01
Rc[11:0] Register (bits) Access | Reset Value w/ MOVEC Section/Page

Supervisor Access Only Registers

0xC05 RAM Base Address Register (RAMBAR) 32 R/W See Section Yes 7.21/7-2

' The values listed in this column represent the Rc field used when accessing the core registers via the BDM port. For more
information see Chapter 34, “Debug Module.”

7.2.1 SRAM Base Address Register (RAMBAR)

The configuration information in the SRAM base-address register (RAMBAR) controls the operation of
the SRAM module.

* The RAMBAR holds the SRAM base address. The MOVEC instruction provides write-only access
to this register.

* The RAMBAR can be read or written from the debug module.

* All undefined bits in the register are reserved. These bits are ignored during writes to the
RAMBAR and return zeroes when read from the debug module.

* Areset clears the RAMBAR’s priority, backdoor write-protect, and valid bits, and sets the
backdoor enable bit. This enables the backdoor port and invalidates the processor port to the
SRAM (The RAMBAR must be initialized before the core can access the SRAM.) All other bits
are unaffected.

NOTE

The only applicable address ranges for the SRAM module’s base address are
0x8000 0000 —0x8FFF_8000. The address must be 0-modulo-32 K. Set the
RAMBAR register appropriately.

By default, the RAMBAR is invalid, but the backdoor is enabled. In this
state, any core accesses to the SRAM are routed through the backdoor.
Therefore, the SRAM is accessible by the core, but it does not have a
single-cycle access time. To ensure that the core has single-cycle access to
the SRAM, set the RAMBAR[V] bit.

Any access within the memory range allocated for the on-chip SRAM
(0x8000_0000-0x8FFF FFFF) hits in the SRAM even if the address is
beyond the defined size for the SRAM. This creates address aliasing for the
on-chip SRAM memory. For example, writes to addresses 0x8000 0000
and 0x8000 8000 modify the same memory location. System software
should ensure SRAM address pointers do not exceed the SRAM size to
prevent unwanted overwriting of SRAM.
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The RAMBAR contains several control fields. These fields are shown in Figure 7-1.

Rc[11:0]: 0x0C05 (RAMBAR) Access: User write-only
Debug read/write

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12| 11 10 9 8 7 6 5 4|3 2 1 0

R 0|0|0
W BA PRIU|PRIL|{BDE|WP |D/I| BWP|C/I|SC|SD|UC|UD| V

ResetuUUU]UUUU\UUUU]UUUU\Uooo 0 0 1 U/0 0 UU/UUUDO
Figure 7-1. SRAM Base Address Register (RAMBAR)

Table 7-2. RAMBAR Field Descriptions

Field Description
31-15 Base Address. Defines the 0-modulo-32K base address of the SRAM module. By programming this field,
BA the SRAM may be located on any 32-Kbyte boundary within the processor’s 256-Mbyte address space. For
proper operation, the base address must be set to between 0x8000_0000 and 0x8FFF_8000.
14-12 Reserved, must be cleared.
11-10 Priority Bit. PRIU determines if the SRAM backdoor or CPU has priority in the upper 16K bank of memory.
PRIU PRIL determines if the SRAM backdoor or CPU has priority in the lower 16K bank of memory. If a bit is set,
PRIL the CPU has priority. If a bit is cleared, the SRAM backdoor has priority. Priority is determined according to
the following table:
PRIU,PRIL Upper Bank Priority Lower Bank Priority
00 SRAM Backdoor SRAM Backdoor
01 SRAM Backdoor CPU
10 CPU SRAM Backdoor
11 CPU CPU

Note: The recommended setting (maximum performance) for the priority bits is 00.

9 Backdoor Enable. Allows access by non-core bus masters via the SRAM backdoor on the crossbar switch
BDE 0 Non-core crossbar switch master access to memory is disabled.
1 Non-core crossbar switch master access to memory is enabled.

8 Write Protect. Allows only read accesses to the SRAM. When this bit is set, any attempted write access
WP from the core generates an access error exception to the ColdFire processor core.
0 Allows core read and write accesses to the SRAM module
1 Allows only core read accesses to the SRAM module
Note: This bit does not affect non-core write accesses.

7 Data/instruction bus. Determines if the SRAM is connected to the internal data or instruction bus.
D/l 0 Data bus
1 Instruction bus
6 Backdoor Write Protect. Allows only read accesses from the non-core bus masters. When this bit is set, any
BWP attempted write access from the non-core bus masters on the backdoor terminates the bus transfer with an

access error.
0 Allows read and write accesses to the SRAM module from non-core masters.
1 Allows only read accesses to the SRAM module from non-core masters.
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Table 7-2. RAMBAR Field Descriptions (continued)

Field Description
5-1 Address Space Masks (ASn). These five bit fields allow types of accesses to be masked or inhibited from
C/l, SC, SD, UC, |accessing the SRAM module. The address space mask bits are:
ubD C/I = CPU space/interrupt acknowledge cycle mask

SC = Supervisor code address space mask
SD = Supervisor data address space mask
UC = User code address space mask
UD = User data address space mask

For each address space bit:

0 An access to the SRAM module can occur for this address space

1 Disable this address space from the SRAM module. If a reference using this address space is made, it
is inhibited from accessing the SRAM module and is processed like any other non-SRAM reference.

These bits do not affect accesses by non-core bus masters using the SRAM backdoor port in any manner.
These bits are useful for power management as detailed in Section 7.3.2, “Power Management.” In most
applications, the C/I bit is set

Valid. When set, this bit enables the SRAM module; otherwise, the module is disabled. A hardware reset
clears this bit.

0 Processor accesses of the SRAM are masked

1 Processor accesses of the SRAM are enabled

< o

7.3 Initialization/Application Information

After a hardware reset, the SRAM module contents are undefined. The valid bit of the RAMBAR is
cleared, disabling the processor port into the memory. RAMBAR[BDE] is set, enabling the system
backdoor port into the memory. If the SRAM requires initialization with instructions or data, perform the
following steps:

1. Load the RAMBAR, mapping the SRAM module to the desired location within the address space.

2. Read the source data and write it to the SRAM. Various instructions support this function,
including memory-to-memory move instructions, or the MOVEM opcode. The MOVEM
instruction is optimized to generate line-sized burst fetches on 0-modulo-16 addresses, so this
opcode generally provides maximum performance.

3. After the data loads into the SRAM, it may be appropriate to load a revised value into the
RAMBAR with a new set of attributes. These attributes consist of the write-protect and address
space mask fields.

The ColdFire processor or an external debugger using the debug module can perform these initialization
functions.

7.3.1 SRAM Initialization Code

The following code segment describes how to initialize the SRAM. The code sets the base address of the
SRAM at 0x8000 0000 and initializes the SRAM to zeros.

RAMBASE EQU 0x80000000 ;set this variable to 0x80000000
RAMVALID EQU 0x00000001
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move.l #RAMBASE+RAMVALID, DO ;load RAMBASE + valid bit into DO.

movec.l DO, RAMBAR ; load RAMBAR and enable SRAM

The following loop initializes the entire SRAM to zero:

lea.l RAMBASE, AQ ;load pointer to SRAM
move. 1l #8192,D0 ;load loop counter into DO (SRAM size/4)

SRAM INIT LOOP:

clr.l (A0) +
clr.1l (AOD) +
clr.1l (A0) +
clr.l (AO) +

subqg.l #4,D0

;clear 4 bytes of SRAM
;clear 4 bytes of SRAM
;clear 4 bytes of SRAM
;clear 4 bytes of SRAM

;decrement loop counter

bne.b SRAM INIT LOOP ;if done, then exit; else continue looping

7.3.2 Power Management

As noted previously, depending on the RAMBAR-defined configuration, instruction fetch and operand
read accesses may be sent to the SRAM and cache simultaneously. If the access maps to the SRAM
module, it sources the read data and the cache access is discarded. If the SRAM is used only for data
operands, setting the ASn bits associated with instruction fetches can decrease power dissipation.
Additionally, if the SRAM contains only instructions, masking operand accesses can reduce power
dissipation. Table 7-3 shows examples of typical RAMBAR settings.

Table 7-3. Typical RAMBAR Setting Examples

Data Contained in SRAM RAMBAR][7:0]
Instruction Only 0x2B
Data Only 0x35
Instructions and Data 0x21
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Chapter 8
Clock Module

8.1 Introduction

The clock module allows the device to be configured for one of several clocking methods. Clocking modes
include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal
reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external
oscillator can directly clock the device. The clock module contains:

* Crystal amplifier and oscillator (OSC)
* Phase-locked loop (PLL)

+ Status and control registers

* Control logic

NOTE

Throughout this manual, fg refers to the core frequency and £y, refers to

the internal bus frequency.
Figure 8-1 is a high-level representation of clock connections. The exact functionality of the blocks is not
illustrated (SBF controls many configuration options, clocks to the SDRAMC, USB, FECs, PCI, and ATA
controllers are disabled when the device is in limp mode, and the clocks to individual modules may be
disabled via the peripheral power management registers as described in Chapter 9, “Power Management”).
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EXTAL

FB_AD3 (when
BOOTMOD = 10)

EXTAL32K
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BOOTMOD = 10)
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PCR L
[PFDR] OUTDIV2 |
I

OUTDIV3

fret !
OUTDIV4 +
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OUTDIV5]L

I
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CDRILPDIV]

Serial Boot
Facility

Y

V4 ColdFire Core

Y

SRAM/Cache

fsys

BDM

CAU

fsys/2

fsys/(4 or 8)

SDRAMC

SD_CLK
SD_CLK

YYYY

FlexBus

—> FB_CLK

Must be 60MHz if used
as USB clock source

Y

PCI

Y

eDMA

Y

FECs

FECn_TXCLK

< FECn_RXCLK

A

PIT

DMA Timers

Peripheral Bus Clock

DSPI

<> DSPI_SCK

Y

UART

Y

12C

GPIO

RNG

MISCCR[SSISRC] ¢

ATA

USBCLKIN

SSI

Notes:
1

USB OTG

MISCCR[USBSRC]

V¢ V$ V; Y

For the 256MAPBGA devices, FB_AD[1:0] control the multiplier during reset.

a b~ 0N

The output frequency of OUTDIV2 must equal the output frequency of OUTDIV1 + 2.
The output frequency of OUTDIV3 must equal the output frequency of OUTDIV1 + 4 or OUTDIV = 8.
The output frequency of OUTDIV5 must be 60MHz if it is used as the USB clock source.
The SDRAMC, FECs, and PCI modules are disabled in limp mode. The USB controller is essentially

Real Time Clock

disabled, as well. However, it is able to capture a wake-up event to bring the device out of limp mode.

to the module-specific clock.

When loading boot code via the SBF, the device is clocked by the main oscillator (f,ef).

Figure 8-1. Device Clock Connections

The SDRAMC, SSI, USB, and real time clock contain some logic that uses the fgy/> clock, in addition
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8.1.1 Block Diagram
Figure 8-2 shows the clock module block diagram.
XTAL32K
To Real-Time
OSC +——> Clock
>
EXTAL32K
Crystal
XTAL Ref. Mode
EXTAL OSC A > Phase/Frequency > . .| Voltage-Controlled
> | Detector (PFD) | | oo Filter Oscillator (VCO)
External
Ref. Mode VCO Clock
Feedback Divider | _ Frequency
P) B
Y A
Lock
Detect Y
> Output Dividers
Bus (+2 to +16)
Interface PLL 4|—’
Reset Config Registers ¢ ¢ ‘L ¢ ¢
Signals Output Clocks
Figure 8-2. Clock Module Diagram
8.1.2 Features
Features of the clock module include:

16-66.66 MHz input clock frequency

Programmable frequency multiplication factor settings generating voltage-controlled oscillator
(VCO) frequencies from 300 — 540 MHz, resulting in a core frequency of 75 MHz (f,., + 4) to
266.67 MHz (maximum rated frequency).

Five user-programmable output dividers

— Each post-VCO divider can be programmed to divide-by-2 through divide-by-16. (There are
some dependencies of the divider settings. See Section 8.2.1, “PLL Control Register (PCR)”,
for details.) The post-VCO dividers can be enabled asynchronously or disabled via register.

— Allows glitch-free, dynamic switching of the output divider

Provides signals indicating when the PLL has acquired lock and lost lock
16 — 40 MHz reference crystal oscillator

Support for low-power modes

Direct clocking of system by input clock, bypassing the PLL
Loss-of-lock reset

Reference crystal oscillator for the real time clock (RTC) module. Input clock used is
programmable within the RTC.
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8.1.3 Modes of Operation

The PLL operational mode must be configured during reset. The reset configuration pins must be driven
to the appropriate state for the desired mode from the time RSTOUT asserts until it negates. Refer to
Chapter 11, “Chip Configuration Module (CCM).”

The clock module can operate in normal PLL mode with crystal reference, normal PLL mode with external
reference, and input-clock limp mode.

8.1.3.1 Normal PLL Mode with Crystal Reference

In normal mode with a crystal reference, the PLL receives an input clock frequency from the crystal
oscillator circuit and multiplies the frequency to create the PLL output clock. It can synthesize frequencies
ranging from 4 — 34x the input frequency. The user must supply a crystal oscillator within the appropriate
input frequency range, the crystal manufacturer’s recommended external support circuitry, and short signal
route from the device to the crystal.

8.1.3.2 Normal PLL Mode with External Reference

This second mode is the same as Section 8.1.3.1, “Normal PLL Mode with Crystal Reference,” except
EXTAL is driven by an external clock generator rather than a crystal oscillator. However, the input
frequency range is the same as the crystal reference. To enter normal mode with external clock generator
reference, the PLL configuration must be set at reset by overriding the default reset configuration. See
Chapter 11, “Chip Configuration Module (CCM),” for details on setting the device for external reference
(oscillator bypass mode).

8.1.3.3 Input Clock (Limp) Mode

Through parallel RCON, serial boot, or the MISCCR[LIMP] bit, the device may be placed into a
low-frequency limp mode, in which the PLL is bypassed and the device runs from a factor of the input
clock (EXTAL). In this mode, EXTAL feeds a 5-bit programmable counter that divides the input clock by
2" where n is the value of the programmable counter field, MISCCR[LPDIV]. For more information on
programming the divider, see Chapter 9, “Power Management.” The programmed value of the divider may
be changed without glitches or otherwise negative affects to the system.

While in this mode, the PLL is placed in bypass mode to reduce overall system power consumption. A 2:1
ratio is maintained between the core and the primary bus clock, while a 1:1 ratio is maintained between
FB_CLK and the internal bus clock (normally a 1:2 ratio). Because they do not function at speeds as low
as the minimum input-clock frequency, the SDRAM controller, FECs, ATA controller, and PCI controller
are not functional in limp mode. The USB controller is effectively disabled as well. However, it is able to
capture a wake-up event to release the processor from limp mode.

When switching from limp mode to normal functional mode, you must ensure that any peripheral
transactions in progress (Ethernet frame reception/transmission) are allowed to complete to avoid data loss
or corruption.
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Entering limp mode via the MISCCR[LIMP] bit requires a special procedure for the SDRAM module. As
noted above, the SDRAM controller is disabled in limp mode, so follow these two critical steps before
setting the MISCCR[LIMP] bit:

1. Code execution must be transferred to another memory resource. Primary options are whatever
memory device is attached to the FlexBus boot chip-select or on-chip SRAM (but not the CPU
cache, as it may have to be flushed upon limp mode entrance or exit).

2. The SDRAM controller must be placed in self-refresh mode to avoid data loss while the SDRAMC
shuts down.

8.1.34 Low-power Mode Operation

This subsection describes the clock module operation in low-power and halted modes of operation.
Low-power modes are described in Chapter 9, “Power Management.” Table 8-1 shows the clock module
operation in low-power modes.

Table 8-1. Clock Module Operation in Low-power Modes

Low-power Mode Clock Operation Mode Exit

Clock module does not cause exit, but normal

Wait Clocks sent to peripheral modules only clocking resumes upon mode exit

Clock module does not cause exit, but normal

Doze Clocks sent to peripheral modules only clocking resumes upon mode exit

Clock module does not cause exit, but clock
Stop All system clocks disabled sources are re-enabled and normal clocking
resumes upon mode exit

Halted Normal Clock module does not cause exit

In wait and doze modes, the system clocks to the peripherals are enabled, and the clocks to the core, and
SRAM are stopped. Each module can disable its clock locally at the module level.

In stop mode, all system clocks are disabled (except the real-time clock that continues to run via its external
clock). There are several options for enabling or disabling the PLL or crystal oscillator in stop mode,
compromising between stop mode current and wake-up recovery time. The PLL can be disabled in stop
mode, but requires a wake-up period before it relocks. The oscillator can also be disabled during stop
mode, but it requires a wake-up period to restart.

When the PLL is enabled in stop mode (LPCR[STPMD] = 00), the external FB_CLK signal can support
systems using FB_CLK as the clock source. For more information about operating the PLL in stop mode,
see Section 9.2.5, “Low-Power Control Register (LPCR).”

There is also a fast wake-up option for quickly enabling the system clocks during stop recovery
(LPCR[FWKUP])). This eliminates the wake-up recovery time but at the risk of sending a potentially
unstable clock to the system.

8.2 Memory Map/Register Definition

The PLL programming model consists of the following:
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Table 8-2. PLL Memory Map

Address Register ‘?S:;r; Access | Reset Value | Section/Page
0xFCOC_4000 | PLL Control Register (PCR) 32 R/W | See Section 8.2.1/8-6
0xFCOC_4004 | PLL Status Register (PSR) 32 R/W | 0x0000_0000 8.2.2/8-8

8.2.1 PLL Control Register (PCR)

The PCR register controls the feedback and output dividers for generating the core and bus clocks. For
details on altering these values after reset, see Section 8.3.1, “PLL Frequency Multiplication Factor
Select.”

NOTE

A single longword (32-bit) write to the PCR register is required. If
back-to-back word or longword writes are attempted, some of the clocks in
the system change frequency before others, which can cause the device to

hang.
Address: 0xFCOC_4000 (PCR) Access: User read/write
31302928‘272625242322212019181716151413121110987654321O
R 0O|1]1(1
W PFDR OUTDIV5 | OUTDIV4 | OUTDIV3 | OUTDIV2 | OUTDIV1
Reset
360 TEPBGA See Note 0111/01 1 1] SeeNote O 1 1 1|0 0 1 1/0 0 O 1
Reset
256 MAPBGA See Note ot1t110111/0111/0111/001 1|0 00 1

Note: The reset values of PFDR and OUTDIV4 depend on the boot configuration mode.

360 TEPBGA 256 MAPBGA
BOOTMOD[1:0]
PFDR OuUTDIV4 PFDR OuUTDIV4

00 0x06 0x5 0x10 0x7
01 (Reserved)

10 If FB_AD[6:5]=11,

FB_AD[1:0] 0ox7 FB_AD[2:0] 0x7
(Parallel Boot) Else, PFDR - 1
If SBF_RCON[125]=1,
11 SBF_RCON 0ox7 SBF_RCON ox7
(Serial Boot) [119:112] If SBF_RCON][125]=0, [119:112]
PFDR - 1

Figure 8-3. PLL Control Register (PCR)
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Table 8-3. PCR Field Descriptions

Field Description
31-24 | Feedback divider for setting the VCO frequency. Valid values range from 4 (0x4) to 34 (0x22). Other settings are
PFDR |invalid and stable operation is not guaranteed. The reset value depends on the selected chip configuration. See
Chapter 11, “Chip Configuration Module (CCM),” for more information.
fvco = frer X PFDR Eqn. 8-1
where frgr is the PLL input frequency from the internal oscillator or EXTAL clock source (defined by the selected
chip configuration).
23-20 | Reserved, must be cleared.
19-16 | Output divider for generating the USB clock frequency. The divider is the value of this bit field plus 1. The reset value
OUTDIV5 | depends on the selected chip configuration. See Chapter 11, “Chip Configuration Module (CCM),” for more
information. A value of zero disables this clock.
Note: The OUTDIV5 resulting frequency must be 60 MHz if used as the USB clock source.
Jvco
Juss = GUTDIVS 1 Eqn. 8-2
15-12 | Output divider for generating the PCI clock frequency. The divider is the value of this bit field plus 1. The reset value
OUTDIV4 | depends on the selected chip configuration. See Chapter 11, “Chip Configuration Module (CCM),” for more
information. A value of zero disables this clock.
_ Jveo
feet = SUTDIVA T 1 Eqn. &-3
11-8 | Output divider for generating the FlexBus clock (FB_CLK) frequency. The divider is the value of this bit field plus 1.
OUTDIV3 | The reset value depends on the selected chip configuration. See Chapter 11, “Chip Configuration Module (CCM),”

for more information. A value of zero disables this clock.
Note: The OUTDIV3 divider value must be four or eight times the OUTDIV1 divider. For example, if OUTDIV1 equals
0001, then OUTDIV3 must equal 0111 or 1111. FB_CLK must also not exceed 66 MHz.

_ Jsys _ Jvco
Bk = Fors ~ OUTDIV3 +1 Eqn. 8-4

Freescale Semiconductor 8-7




Clock Module

Table 8-3. PCR Field Descriptions (continued)

Field Description

7-4 Output divider for generating the internal bus clock frequency. The divider is the value of this bit field plus one. The
OUTDIV2 | reset value depends on the chip configuration selected. See Chapter 11, “Chip Configuration Module (CCM),” for
more information. A value of zero disables this clock.

Note: The OUTDIV2 divider value must be twice the OUTDIV1 divider. For example, if OUTDIV1 equals 0001, then
OUTDIV2 equals 0011.

fsys _ Svco Eqgn. 8-5

Jsvs2 =73 = GUIDIV2+1

3-0 Output divider for generating the CPU clock frequency. The divider is the value of this bit field plus 1. The reset value
OUTDIV1 | depends on the selected chip configuration. See Chapter 11, “Chip Configuration Module (CCM),” for more
information. A value of zero disables this clock.

_ fVCO
Jsvs = GUTDIVI+1 Eqn. 8-6

Note: The maximum value restrictions on this field depend on the setting of OUTDIV2 and OUTDIV3, as shown

below:
OUTDIV2
78 LK) (nternal Maximum
- Peripheral Clock)
8 x OUTDIV1 +7 — 0001
(CPU freq + 8)
4 x OUTDIV1 +3 — 0011
(CPU freq + 4)
0 #0 0111
(Disabled) (Enabled)
0 0 1111
(Disabled) (Disabled)

8.2.2 PLL Status Register (PSR)

The PSR register enables loss-of-lock reset and interrupt, and also indicates the PLL lock status.

Address: 0xFCOC_4004 (PSR) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16(15 14 13 12|11 10 9 8|7 6 5 4| 3 2 1 0

\;0000000000000000000000000000LROELll‘F?Cl)‘LOCKLOCKS
Reset 0 0 O O/0O O O O|0O O O O|O O O O/O O OO|OOOO O|OOOGO| O 0 0 0

Figure 8-4. PLL Status Register (PSR)
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Table 8-4. PSR Field Descriptions

Field Description

31-4 Reserved, must be cleared.

3 PLL loss of lock reset enable. Because reset clears the PSR register, if this bit is set and a loss-of-lock occurs, the
LOLRE |user must read the reset status register (RSR) to determine a loss-of-lock condition occurred. See Chapter 13,
“Reset Controller Module,” for more details on RSR.

0 Loss of lock does not generate a reset.
1 Loss of lock generates a reset to the device.

2 PLL loss-of-lock interrupt enable. Enables an interrupt request to generate when the PLL loses lock.
LOLIRQ |0 Loss-of-lock does not generate an interrupt request.
1 Loss-of-lock generates an interrupt request.

1 PLL lock status. Indicates a locked PLL. See Section 8.3.2, “Lock Conditions,” for more details.
LOCK |0 PLL is not locked.
1 PLL is locked.

0 PLL lost lock. Indicates that the PLL has lost lock. If the PFDR field changes or if an unexpected loss-of-lock condition
LOCKS | occurs, this bit is set. This bit is sticky and the user must clear it before the PLL can write the register again.
0 PLL has not lost lock.
1 PLL has lost lock.

8.3  Functional Description

This subsection provides a functional description of the clock module.

8.3.1 PLL Frequency Multiplication Factor Select

The frequency multiplication factor of the PLL is defined by the feedback divider and output dividers. An
example equation for the core frequency is given below:

PCR[PFDR
fsvs = Jrer X(PCR[OU[TDIV1]] n 1)
where fg, ¢ is the clock frequency of the ColdFire core and fpgf is the PLL clock source as shown in
Figure 8-1. The allowable range of values for the PFDR is 4 to 34 and OUTDIVn is 1 to 15. However,
PFDR must also be selected such that the VCO frequency (fggr x PCR[PFDRY]) is of the
range 300 — 540 MHz. The other clocks on the processor are configurable in a similar fashion. However,
there are various dependencies. See Section 8.2.1, “PLL Control Register (PCR),” for details.

Eqgn. 8-7

The PCR[OUTDIVr] fields can be changed during normal operation or when the device is in limp mode.
However, PCR[PFDR] can only be altered during limp mode. After a new value is written to the PCR, the
PLL synchronizes the new value of the PCR with the VCO clock domain. Then, the transition from the old
divider value to the new divider value takes place, such that the PLL output clocks remain glitch free.
During the adjustment to the new divider value, a PLL output clock may experience an intermediate
transition while the divider values are being synchronized. Following the transition period, all output
clocks begin toggling at the new divider values simultaneously. The transition from the old divider value
to the new divider value takes no more than 100 ns. Because the output divider transition takes a period of
time to change, the PCR may not be written back-to-back without waiting 100 ns between writes.
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8.3.2 Lock Conditions

The lock-detect logic monitors the reference frequency and the PLL feedback frequency to determine
when frequency lock has been achieved. Phase lock is inferred by the frequency relationship, but is not
guaranteed. The PLL lock status reflects in the PSR[LOCK] status bit. The lock-detect function uses two
counters clocked by the reference and PLL feedback, respectively. When the reference counter has counted
N cycles, the feedback counter is compared. If the feedback counter has also counted N cycles, the process
is repeated for N + K counts. Then, if the two counters counts continue to match, the lock criteria relaxes
by one count, and the system is notified that the PLL has achieved frequency lock by setting the
PSR[LOCK] bit.

After detection of lock, the lock circuitry continues monitoring the reference and feedback frequencies
using the alternate count and compare process. If the counters do not match at any comparison time, then
the PSR[LOCK] and PSR[LOCKS] status bits are cleared to indicate the PLL has lost lock. At this point,
the lock criteria tightens and the lock detect process repeats. The alternate count sequences prevent false
lock detects due to frequency aliasing while the PLL tries to lock. Alternating between a tight and relaxed
lock criteria prevents the lock detect function from randomly toggling between locked and not locked
status due to phase sensitivities.

In PLL bypass mode, the PSR[LOCK] bit is set 16 clock cycles after reset as described above. In this case,
the signal does not indicate the PLL has locked to the input reference, but the bypass clock is present on
the output. In bypass mode, no PLL lock exists.

8.3.3 Loss-of-Lock

When the PLL loses lock the PSR[LOCKS] status bit is set. If the PFDR is changed, or if an unexpected
loss of lock condition occurs, the LOCKS status bit is set. While the PLL is in an unlocked condition, the
system clocks continue to be sourced from the PLL as the PLL attempts to relock. Therefore, during the
re-locking process, the system-clock frequency is not well defined and may exceed the maximum system
frequency, violating the system clock timing specifications. Due to this condition, using the loss-of-lock
reset functionality as described in Section 8.3.3.1, “Loss of Lock Reset Request,” is recommended. After
the PLL has re-locked, the PLL does not update the PSR[LOCKS] status bit. The LOCKS status bit is
sticky, and the user must clear it before the PLL can write the register again.

8.3.3.1 Loss of Lock Reset Request

The PLL provides the ability to assert reset when a loss-of-lock condition occurs by programming the
PSR[LOLRE] bit. Because the PSR[LOCK, LOCKS] bits are cleared after reset, the reset status register
(RSR) must be read to determine a loss of lock condition occurred. See Chapter 13, “Reset Controller
Module,” for more information on the RSR register. To exit reset in PLL mode, the reference must be
present and the PLL must acquire lock. In PLL bypass mode, the PLL cannot lock; therefore, a loss of lock
condition cannot occur, and LOLRE has no affect.

8.3.3.2 Loss of Lock Interrupt Request

By programming the PSR[LOLIRQ)] bit, the PLL provides the ability to request an interrupt when a
loss-of-lock condition occurs. This bit is sticky, and remains asserted until the user clears the
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PSR[LOCKS] status bit. LOLIRQ provides information to the lock detect logic to let it know if an interrupt
should be generated upon loss-of-lock. In PLL bypass mode, the PLL cannot lock; therefore, a loss-of-lock
condition cannot occur, and the LOLIRQ has no affect.

8.3.4

The system clock source is determined during reset. By default the PLL is placed in crystal-reference mode
and generates a core frequency of 10 times the input clock (internal bus 5x, FlexBus and USB clock 2.5x).
The BOOTMOD pins can override the default mode. See Chapter 11, “Chip Configuration Module

(CCM),” for more information on default configuration, as well as overwriting these defaults during reset.

System Clock Modes

Table 8-5 shows some of the various clocking scenarios offered on the processor. When the PCI controller
is enabled, the input reference clock bypasses the oscillator and become the PCI reference clock.

NOTE

If PCI is enabled, the input reference clock must be a bypass clock (external
oscillator) and must also equal the PCI operating frequency.

The PCI controller can operate at frequencies other than what is shown in Table 8-5, but ensure that the
input bypass clock frequency is the PCI operating frequency. USB_CLKIN in the USB OTG column
indicates that the USB On-the-Go module receives its clock from the USB_CLKIN signal rather than the
PLL output.

Table 8-5. MCF54455 Clocking Scenarios (MHz)

chgr;re él?;{:ﬁllg (EI::(EBEZ) PCI USB OTG Inputgiz(rence Crystal Frequency

266.67 133.33 66.67 66.67 USB_CLKIN 66.67 T
266.67 133.33 66.67 33.33 USB_CLKIN 33.33 —1
266.67 133.33 66.67 Disabled | USB_CLKIN 33.33, 66.67 33.33

240 120 60 60 60 60 1

240 120 60 30 60 30 T

240 120 60 Disabled 60 30, 60 20, 24, 30

200 100 50 66.67 USB_CLKIN 66.67 —1

200 100 50 33.33 USB_CLKIN 33.33 —1

200 100 50 Disabled | USB_CLKIN 33.33, 66.67 20, 25, 33.33

180 90 45 60 60 60 T

180 90 45 30 60 30 T

180 90 45 Disabled 60 30, 60 20, 24, 30

' When the PCl is enabled, use of a crystal oscillator is not supported.
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8.3.5 Clock Operation During Reset

This section describes the PLL reset operation. Power-on reset and normal reset are described.

8.3.5.1 Power-On Reset (POR)

After VDD_PLL and the input clock are within specification, the PLL is held in reset for at least ten input
clock cycles to initialize the PLL. The reset configuration signals are used to select the multiply factor of
the PLL and the reset state of the PLL registers. While in reset, the PLL input clock is output to the device.
After RESET de-asserts, PLL output clocks generate; however, until the PSR[LOCK] bit is set, the PLL
output clock frequencies are not stable and within specification. When this bit is set, the PLL is in
frequency lock.

8.3.5.2 External Reset

When RESET asserts, the PLL input clock outputs to the device, and the PLL does not begin acquiring
lock until RESET is negated. The PSR[LOCK] bit is cleared and remains cleared while the PLL is
acquiring lock.

CAUTION

When running in an unlocked state, the clocks the PLL generate are not
guaranteed to be stable and may exceed the maximum specified frequency.
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Chapter 9
Power Management

9.1

Introduction

This chapter explains the low-power operation of the device.

9.1.1

Features

These features support low-power operation:

» Four operation modes: run, wait, doze, and stop

» Ability to shut down most peripherals independently

» Ability to shut down clocks to most peripherals independently

» Ability to run the device in low-frequency limp mode
+ Ability to shut down the external FB_CLK pin

9.2

Memory Map/Register Definition

The power management programming model consists of registers from the SCM and CCM memory space:

Table 9-1. Power Management Memory Map

Address Register ‘a’)‘:;‘; Access | Reset Value | Section/Page
Supervisor Access Only Registers’
0xFC04_0013 | Wakeup Control Register (WCR) 8 R/W 0x00 9.2.1/9-2
0xFC04_002C | Peripheral Power Management Set Register 0 (PPMSRO) 8 w 0x00 9.2.2/9-3
0xFC04_002D | Peripheral Power Management Clear Register 0 (PPMCRO) 8 w 0x00 9.2.3/9-4
0xFCO04_0030 | Peripheral Power Management High Register 0 (PPMHRO) 32 R/W | OxFFFC_00DO 9.2.4/9-4
0xFC04_0034 | Peripheral Power Management Low Register 0 (PPMLRO) 32 R/W | 0x0000_0300 9.2.4/9-4
0xFCOA_0007 | Low-Power Control Register (LPCR) 8 R/W 0x00 9.2.5/9-7
0xFCOA_0010 | Miscellaneous Control Register (MISCCR)? 16 R/W See Section 11.3.4/11-8
0XxFCOA_0012 | Clock Divider Register (CDR)? 16 R/W 0x0001 11.3.5/11-11

1 User access to supervisor only address locations have no effect and result in a bus error
2 The MISCCR and CDR registers are described in Chapter 11, “Chip Configuration Module (CCM).”
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9.2.1 Wake-up Control Register (WCR)

Implementation of low-power stop mode and exit from a low-power mode via an interrupt requires
communication between the core and logic associated with the interrupt controller. The WCR enables
entry into low-power modes and includes the interrupt level setting needed to exit a low-power mode.
NOTE
The setting of the low-power mode select field, WCR[LPMD], determines
which low-power mode the device enters when a STOP instruction is issued.
Sequence of operations generally needed to enable this functionality:
1. The WCR register is programmed, setting the ENBWCR bit and the desired interrupt priority level.

2. At the appropriate time, the processor executes the privileged STOP instruction. After the
processor stops execution, it asserts a specific processor status (PST) encoding. Issuing the STOP
instruction when the WCR[ENBWCR] is set causes the SCM to enter the mode specified in
WCR[LPMD].

3. The low power mode control logic processes the entry into a low power mode, and the appropriate
clocks (usually those related to the high-speed processor core) are disabled.

4. After entering the low-power mode, the interrupt controller enables a combinational logic path
which evaluates any unmasked interrupt requests. The device waits for an event to generate an
interrupt request with a priority level greater than the value programmed in WCR[PRILVL].

5. After an appropriately high interrupt request level arrives, the interrupt controller signals its
presence, and the SCM responds by asserting the request to exit low-power mode.

6. The low-power mode control logic senses the request signal and re-enables the appropriate clocks.
7. With the processor clocks enabled, the core processes the pending interrupt request.

Address: 0xFC04_0013 (WCR) Access: Supervisor read/write
7 6 5 4 3 2 1 0
R 0 0
ENBWCR LPMD PRILVL
w
Reset: 0 0 0 0 0 0 0 0

Figure 9-1. Wake-up Control Register (WCR)

Table 9-2. WCR Field Descriptions

Field Description

7 Enable low-power mode entry. The mode entered is specified in WCR[LPMD].
ENBWCR |0 Low-power mode entry is disabled
1 Low-power mode entry is enabled.

6 Reserved, must be cleared.
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Table 9-2. WCR Field Descriptions (continued)

Field Description
54 Low-power mode select. Used to select the low-power mode the chip enters after the ColdFire core executes the
LPMD | STOP instruction. To take effect, write these bits prior to instruction execution. The LPMD bits are readable and
writable in all modes.
00 Run
01 Doze
10 Wait
11 Stop
Note: If WCR[LPMD] is cleared, the device stops executing code upon a STOP instruction. However, no clocks
disable.
3 Reserved, must be cleared.
2-0 Exit low-power mode interrupt priority level. This field defines the interrupt priority level to exit the low-power mode:
PRILVL
PRILVL Interrupt Level Needed to Exit Low-Power Mode
000 Any interrupt request exits low-power mode
001 Interrupt request levels [2-7] exit low-power mode
010 Interrupt request levels [3-7] exit low-power mode
011 Interrupt request levels [4-7] exit low-power mode
100 Interrupt request levels [5-7] exit low-power mode
101 Interrupt request levels [6-7] exit low-power mode
11x Interrupt request level [7] exits low-power mode
9.2.2 Peripheral Power Management Set Register (PPMSRO0)

The PPMSR register provides a simple mechanism to set a given bit in the PPM {H,L} R registers to disable
the clock for a given peripheral module without needing to perform a read-modify write on the PPMR. The
data value on a register write causes the corresponding bit in the PPM{H,L}R to be set. The SAMCD bit
provides a global set function forcing the entire contents of the PPMR to set, disabling all peripheral
module clocks. Reads of these registers return all zeroes.

Address: 0xFC04_002C (PPMSRO0) Access: Supervisor Write-only
7 6 5 4 3 2 1
R 0 0 0 0 0 0 0 0
W SAMCD SMCD
Reset: 0 0 0 0 0 0 0 0

Figure 9-2. Peripheral Power Management Set Register (PPMSRO0)
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Table 9-3. PPMSRO Field Descriptions

Field Description
7 Reserved, must be cleared.
6 Set all module clock disables.

SAMCD |0 Set only those bits specified in the SMCD field
1 Set all bits in PPMRH and PPMRL, disabling all peripheral clocks

5-0 Set module clock disable. Set the corresponding bit in PPM{H,L}R, disabling the peripheral clock.
SMCD

9.2.3 Peripheral Power Management Clear Register (PPMCRO)

The PPMCR register provides a simple mechanism to clear a given bit in the PPMHR and PPMLR
registers, enabling the clock for a given peripheral module without needing to perform a read-modify write
on the PPMR. The data value on a register write causes the corresponding bit in the PPM{H,L}R to be
clear. A value of 64 to 127 (setting the CAMCD bit) provides a global clear function, forcing the entire
PPMR contents to clear, enabling all peripheral module clocks. Reads of these registers return all zeroes.

Address: 0xFC04_002D (PPMCRO) Access: Supervisor Write-only
7 6 5 4 3 2 1
R 0 0 0 0 0 0 0 0
W CAMCD CMCD
Reset: 0 0 0 0 0 0 0 0

Figure 9-3. Peripheral Power Management Clear Register (PPMCRO)

Table 9-4. PPMCRO Field Descriptions

Field Description
7 Reserved, must be cleared.
6 Clear all module clock disables.

CAMCD |0 Clear only those bits specified in the CMCD field
1 Clear all bits in PPMRH and PPMRL, enabling all peripheral clocks

5-0 Clear module clock disable. Clear the corresponding bit in PPMR{H,L}, enabling the peripheral clock.
CMCD

9.2.4 Peripheral Power Management Registers (PPMHRO and PPMLRO)

The PPMR registers provide a bit map for controlling the generation of the peripheral clocks for each
decoded address space. Recall each peripheral module is mapped into 16 kByte slots within the memory
map. The PPMR registers provide a unique control bit for each address space that defines whether the
module clock for the given space is enabled or disabled.

Because the operation of the crossbar switch and the system control module (SCM) are fundamental to the
operation of the device, the clocks for these modules cannot be disabled.
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Using a read-modify-write to this register directly or indirectly through writes to the PPMSR and PPMCR
registers to set/clear individual bits can modify the PPMR individual bits.

Address: 0xFC04_0030 (PPMHRO)

R
W
Reset

Reset

31

30

29

28

27

26

25

24

23

20

Access: Supervisor read/write

19

18

17

16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 cD49 | cDas
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CD47|CD46 | CD45|CD44 | CD43 | CD42 | CD41 | CD40 ! ! CD37 ! CD35 |CD34 | CD33 |CD32
0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

Figure 9-4. Peripheral Power Management High Register (PPMHRO)

Table 9-5. PPMHRO[CDn] Assignments

Slot Number CDn Peripheral
32 CD32 PITO
33 CD33 PIT 1
34 CD34 PIT 2
35 CD35 PIT 3
37 CD37 Edge Port
40 CD40 CCM, Reset Controller, Power Management
41 CD41 Pin Multiplexing and Control (GPIO)
42 CDh42 PCI Controller
43 CD43 PCI Arbiter
44 CD44 USB On-the-Go
45 CD45 RNG
46 CD46 SDRAM Controller
47 CD47 SSlI
48 CD48 ATA Controller
49 CD49 PLL
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Address: 0xFC04_0034 (PPMLRO)

Reset

Reset

Access: Supervisor read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 0

CD31|CD30 |CD29 | CD28 CD26 | CD25 |CD24 | CD23 | CD22 | CD21 CD19|CD18| CD17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0

CD15 CD13|CD12 CD2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-5. Peripheral Power Management Low Registers (PPMLRO)

Table 9-6. PPMLRO[CDn] Assignments

Slot Number CDn Peripheral
2 CDh2 FlexBus
12 CD12 FECO
13 CD13 FECA
15 CD15 Real-Time Clock
17 CD17 eDMA Controller
18 CD18 Interrupt Controller 0
19 CD19 Interrupt Controller 1
21 CD21 IACK
22 CD22 1°C
23 CD23 DSPI
24 CD24 UARTO
25 CD25 UART1
26 CD26 UART2
28 CD28 DMA Timer 0
29 CD29 DMA Timer 1
30 CD30 DMA Timer 2
31 CD31 DMA Timer 3

Table 9-7. PPMHR and PPMLR Field Descriptions

Field

Description

CDn

Module slot n clock disable.
0 The clock for this module is enabled.
1 The clock for this module is disabled.
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CAUTION

Take extreme caution when setting PPMR[CD40] to disable clocking of the
CCM, reset controller, and power management modules. This may disable
logic to reset the chip and disable the external bus monitor or other logic
contained within these blocks.

9.2.5 Low-Power Control Register (LPCR)

The LPCR register controls chip operation and module operation during low-power modes.

Address: 0xFCOA_0007 (LPCR) Access: Supervisor read/write
5 4 ‘ 3 2 1
R 0 0 0 0 0
FWKUP STPMD
w
Reset: 0 0 0 0 ‘ 0 0 0 0

Figure 9-6. Low-Power Control Register (LPCR)

Table 9-8. LPCR Field Descriptions

Field Description

7-6 Reserved, should be cleared.

5 Fast wake-up. Determines whether the system clocks are enabled upon wake-up from stop mode. This bit must be

FWKUP |written before execution of the STOP instruction for it to take effect.

0 System clocks enabled only when PLL is locked or operating normally.

1 System clocks enabled upon wake-up from stop mode, regardless of PLL lock status.

Note: Setting this bit is potentially dangerous and unreliable. The system may behave unpredictably when using an
unlocked clock, because the clock frequency could overshoot the maximum frequency of the device.

Note: If FWKUP is set before entering stop mode, it should not be cleared upon wake-up from stop mode until after
the PLL has actually acquired lock. Lock status may be obtained by reading PLL status register. Because the
PLL never locks in limp mode, the FWKUP is ineffective. The system clocks are always enabled upon wake-up
from stop mode, regardless of the value of FWKUP.

4-3 FB_CLK stop mode bits. Controls the operation of the clocks, PLL, and oscillator in stop mode:
STPMD

STPMD | System Clocks FB_CLK PLL Oscillator
00 Disabled Enabled Enabled Enabled
01 Disabled Disabled Enabled Enabled
10 Disabled Disabled Disabled Enabled
11 Disabled Disabled Disabled Disabled

2-0 Reserved, must be cleared.

9.3 Functional Description

This section discusses the functions and characteristics of the low-power modes, and how each module is
affected by, or affects these modes.
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9.3.1 Peripheral Shut Down

All peripherals, except for the SCM and crossbar switch, may have the software remove their input clocks
individually to reduce power consumption. See Section 9.2.4, “Peripheral Power Management Registers
(PPMHRO and PPMLRO0),” for more information. A peripheral may be disabled at any time and remains
disabled during any low-power mode of operation.

9.3.2 Limp mode

The device may also boot into a low-frequency limp mode, in which the PLL is bypassed and the device
runs from a factor of the input clock (EXTAL). In this mode, EXTAL feeds a counter that divides the input
clock by 2", where n is the value of the programmable counter field, CDR[LPDIV]. The programmed
value of the divider may be changed without glitches or otherwise negative affects to the system. While in
this mode, the PLL is placed in bypass mode to reduce overall system-power consumption.

Limp mode may be entered and exited by writing to MISCCR[LIMP].

While in this mode, a 2:1 ratio maintains between the core and the primary bus clock. Because they do not
function at speeds as low as the minimum input clock frequency, the SDRAM controller, USB On-to-Go,
FECs, PCI controller, and ATA controller are not functional in limp mode.

9.3.3 Low-Power Modes

The system enters a low-power mode by executing a STOP instruction. The low-power mode the device
actually enters (stop, wait, or doze) depends on the setting of the WCR[LPMD] bits. Entry into any of these
modes idles the CPU with no cycles active, powers down the system, and stops all internal clocks
appropriately. During stop mode, the system clock is stopped low.

A wake-up event is required to exit a low-power mode and return to run mode. Wake-up events consist of
any of these conditions:

* Any type of reset

* Any valid, enabled interrupt request

Exiting from low-power mode via an interrupt request requires:
* An interrupt request whose priority is higher than the value programmed in the WCR[PRILVL].

* An interrupt request whose priority is higher than the value programmed in the interrupt priority
mask (I) field of the core’s status register.

* An interrupt request from a source not masked in the interrupt controller’s interrupt mask register.
* An interrupt request which has been enabled at the module of the interrupt’s origin.

9.3.3.1 Run Mode

Run mode is the normal system operating mode. Current consumption in this mode is related directly to
the system clock frequency.
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9.3.3.2 Wait Mode

Wait mode is intended to stop only the CPU and memory clocks until a wake-up event is detected. In this
mode, peripherals may be programmed to continue operating and can generate interrupts, causing the CPU
to exit from wait mode.

9.3.3.3 Doze Mode

Doze mode affects the processor in the same manner as wait mode, except that some peripherals define
individual operational characteristics in doze mode. Peripherals continuing to run and having the
capability of producing interrupts may cause the CPU to exit the doze mode and return to run mode.
Stopped peripherals restart operation on exit from doze mode, as defined for each peripheral.

9.3.3.4 Stop Mode

Stop mode affects the processor the same as the wait and doze modes, except that all clocks to the system
are stopped and the peripherals cease operation.

Stop mode must be entered in a controlled manner to ensure that any current operation is properly
terminated. When exiting stop mode, most peripherals retain their pre-stop status and resume operation.

NOTE

Entering stop mode disables the SDRAMC, including the refresh counter. If
SDRAM is used, code is required to ensure proper entry and exit from stop
mode. See Chapter 21, “SDRAM Controller (SDRAMC),” for more
information.

9.3.4 Peripheral Behavior in Low-Power Modes

The following subsections specify the operation of each module while in and when exiting low-power
modes.

9.3.4.1 ColdFire Core

The ColdFire core disables during any low-power mode. No recovery time is required when exiting any
low-power mode.

9.3.4.2 Internal SRAM

The SRAM is disabled during any low-power mode. No recovery time is required when exiting any
low-power mode.

9.3.4.3 Clock Module

In wait and doze modes, the clocks to the CPU and SRAM stops and the system clocks to the peripherals
enable. Each module may disable the module clocks locally at the module level, or the module clocks may
be individually disabled by the PPMR registers (refer to Section 9.2.4, “Peripheral Power Management
Registers (PPMHRO and PPMLRO)”). In stop mode, all clocks to the system stop.
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There are several options for enabling or disabling the PLL or crystal oscillator in stop mode,
compromising between stop mode current and wake-up recovery time. The PLL can be disabled in stop
mode, but requires a wake-up period before it can relock. The oscillator can also be disabled during stop
mode, but requires a wake-up period to restart.

When the PLL is enabled in stop mode (LPCR[STPMD] = 00), the external FB_CLK signal can support
systems using FB_CLK as the clock source. See Section 9.2.5, “Low-Power Control Register (LPCR),”
for more information about operating the PLL in stop mode.

There is also a fast wake-up option for quickly enabling the system clocks during stop recovery
(LPCR[FWKUP])). This eliminates the wake-up recovery time but at the risk of sending a potentially
unstable clock to the system. This is also explained in Section 9.2.5, “Low-Power Control Register
(LPCR).”

9.3.4.4 Chip Configuration Module

The chip configuration module is unaffected by entry into a low-power mode. If a reset exits low-power
mode, chip configuration may execute if configured to do so.

9.3.4.5 Reset Controller
A power-on reset (POR) always causes a chip to reset and exit from any low-power mode.

In wait and doze modes, asserting the external RESET pin for at least four clocks causes an external reset
that resets the chip and exits any low-power modes.

In stop mode, the RESET pin synchronization disables and asserting the external RESET pin
asynchronously generates an internal reset and exit any low-power modes. Registers lose current values
and must be reconfigured from reset state if needed.

If the core watchdog timer is still enabled during wait or doze modes, a watchdog timer timeout may
generate a reset to exit these low-power modes.

When the CPU is inactive, a software reset cannot generate to exit any low-power mode.

9.3.4.6 System Control Module (SCM)

The SCM’s core watchdog timer can bring the device out of all low-power modes except stop mode. In
stop mode, all clocks stop, and the core watchdog timer does not operate.

When enabled, the core watchdog can bring the device out of low-power mode in one of two ways.
Depending on the setting of the CWCR[CWRI] field, a core watchdog timeout may reset the device. Other
settings of the CWRI field may enable a core watchdog interrupt and upon a watchdog timeout, this
interrupt can bring the device out of low-power mode. This system setup must meet the conditions
specified in Section 9.3.3, “Low-Power Modes,” for the core watchdog interrupt to bring the part out of
low-power mode.
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9.3.4.7 GPIO Ports

The GPIO ports are unaffected by entry into a low-power mode. These pins may impact low-power current
draw if they are configured as outputs and are sourcing current to an external load. If low-power mode is
exited by a reset, the state of the I/O pins reverts to their default direction settings.

9.3.4.8 Interrupt Controllers (INTCO, INTC1)

The interrupt controller is not affected by any of the low-power modes. All logic between the input sources
and generating the interrupt to the processor is combinational to allow the ability to wake up the core
during low-power stop mode when all system clocks stop.

An interrupt request causes the processor to exit a low-power mode only if that interrupt’s priority level is
at or above the level programmed in the interrupt priority mask field of the CPU’s status register (SR) and
above the level programmed in the WCR[PRILVL]. The interrupt must also be enabled in the interrupt
controller’s interrupt mask register as well as at the module from which the interrupt request would
originate.

9.3.4.9 Edge Port

In wait and doze modes, the edge port continues to operate normally and may be configured to generate
interrupts (either an edge transition or low level on an external pin) to exit the low-power modes.

In stop mode, no system clock is available to perform the edge detect function. Therefore, only the level
detect logic is active (if configured) to allow any low level on the external interrupt pin to generate an
interrupt (if enabled) to exit stop mode.

9.3.4.10 eDMA Controller

In wait and doze modes, the eDMA controller can bring the device out of a low-power mode by generating
an interrupt upon completion of a transfer or upon an error condition. The completion of transfer interrupt
generates when DMA interrupts are enabled by the setting of a EDMA _INTR[INT#], and an interrupt is
generated when TCDr[DONE] is set. The interrupt upon error condition is generated when
EDMA_EEIR[EEIn] is set, and an interrupt generates when any of the EDMA_ ESR bits become set.

The eDMA controller is stopped in stop mode and thus cannot cause an exit from this low-power mode.

9.3.4.11 FlexBus Module

In wait and doze modes, the FlexBus module continues operation but does not generate interrupts;
therefore, it cannot bring a device out of a low-power mode. This module is stopped in STOP mode.

9.3.4.12 SDRAM Controller (SDRAMC)

SDRAM controller operation is unaffected either the wait or doze modes; however, the SDRAMC is
disabled by stop mode. Because the STOP mode disables all clocks to the SDRAMC, the SDRAMC does
not generate refresh cycles.
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To prevent data loss, SDRAMC should be placed in self-refresh mode by clearing SDCR[CKE] and setting
SDCR[REF_EN]. The SDRAM self-refresh mode allows the SDRAM to enter a low-power state where
internal refresh operations maintain the integrity of the SDRAM data.

When stop mode is exited, setting the SDCR[CKE] bit causes the SDRAM controller to exit the
self-refresh mode and allow bus cycles to the SDRAM to resume.

NOTE

The SDRAM is inaccessible in the self-refresh mode. Therefore, if stop
mode is used, the vector table and any interrupt handlers that could wake the
processor should not be stored in or attempt to access SDRAM.

9.3.4.13 Fast Ethernet Controller (FEC)

In wait and doze modes, the FEC is unaffected and may generate an interrupt to exit these low-power
modes. In stop mode, the FEC stops immediately and freezes operation, register values, state machines,
and external pins. The FEC clocks also shut down in this mode. Exiting stop mode returns the FEC to
operation from the state prior to stop mode entry.

9.3.4.14 USB On-the-Go Module

If the USB On-the-Go module is clocked externally, it operates normally in wait and doze. It is capable of
generating an interrupt to wake up the core from the wait and doze modes. In stop mode, the USB module
is disabled.

The USB block contains an automatic low power mode in which the module enters suspend mode after a
6.0 ms minimum period of inactivity. When the module receives a wake-up from the USB host, the
transceiver is re-enabled for normal USB operations.

9.3.4.15 PCI Controller

In wait and doze modes, the PCI controller is unaffected and may generate an interrupt to exit these
low-power modes.

9.3.4.16 ATA Controller

In wait and doze modes, the ATA controller is unaffected and may generate an interrupt to exit these
low-power modes.

9.3.4.17 Real Time Clock

In stop mode, the external clock driving EXTAL32K/XTAL32K continues to clock the RTC module.
Therefore, the device can update the RTC counters, alarms, etc. while in stop mode. An RTC
interrupt/wake-up can be generated while in stop mode to wakeup the device if the RTC alarms are
triggered.
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9.3.4.18 Programmable Interrupt Timers (PIT0-3)

In stop mode (or doze mode, if so programmed in the PCSR# register), the programmable interrupt timer
(PIT) ceases operation, and freezes at the current value. When exiting these modes, the PIT resumes
operation from the stopped value. It is the responsibility of software to avoid erroneous operation.

When not stopped, the PIT may generate an interrupt to exit the low-power modes.

9.3.4.19 DMA Timers (DTIMO0-3)

In wait and doze modes, the DMA timers may generate an interrupt to exit a low-power mode. This
interrupt can generate when the DMA timer is in input capture mode or reference compare mode.

In input capture mode, where the capture enable (CE) field of the timer mode register (DTMR) has a
non-zero value and the DTXMR[DMAEN] is cleared, an interrupt issues upon a captured input. In
reference compare mode, where the output reference requests interrupt enable (ORRI) bit of DTMR is set
and DTXMR[DMAEN] is cleared, an interrupt issues when the timer counter reaches the reference value.

DMA timer operation disables in stop mode. Upon exiting stop mode, the timer resumes operation unless
stop mode was exited by reset.

9.3.4.20 DMA Serial Peripheral Interface (DSPI)

In wait and doze modes, the DSPI module is unaffected and may generate an interrupt to exit these
low-power modes.

In stop mode, the DSPI stops immediately and freezes operation, register values, state machines, and
external pins. During this mode, the DSPI clocks shut down. Coming out of stop mode returns the DSPI
to operation from the state prior to stop mode entry.

9.3.4.21 UART Modules (UART0-2)

In wait and doze modes, the UARTSs are unaffected and may generate an interrupt to exit these low-power
modes.

In stop mode, the UARTS stop immediately and freeze their operation, register values, state machines, and
external pins. During this mode, the UART clocks shut down. Exiting stop mode returns the UARTS to the
operation of the state prior to stop-mode entry.

9.3.4.22 12C Module

When the I>C Module is enabled by the setting of the I2CR[IEN] bit and the device is not in stop mode,
the I°C module is operable and may generate an interrupt to bring the device out of a low-power mode.
For an interrupt to occur, the I2CR[IIE] bit must be set to enable interrupts, and the setting of the [2SR[IIF]
generates the interrupt signal to the CPU and interrupt controller. The setting of [2SR[IIF] signifies the
completion of one byte transfer or the reception of a calling address matching its own specified address
when in slave-receive mode.

In stop mode, the I>C module stops immediately and freezes operation, register values, and external pins.
Upon exiting stop mode, the I2C resumes operation unless stop mode was exited by reset.
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9.3.4.23 BDM

Entering halt (debug) mode via the BDM port (by asserting the external BKPT pin) causes the processor
to exit any low-power mode.

9.3.4.24 JTAG

The JTAG (Joint Test Action Group) controller logic is clocked using the TCLK input and not affected by
the system clock. The JTAG cannot generate an event to cause the processor to exit any low-power mode.
Toggling TCLK during any low-power mode increases the system current consumption.

9.3.5

The functionality of each of the peripherals and CPU during the various low-power modes is summarized
in Table 9-9. The status of each peripheral during a given mode refers to the condition the peripheral
automatically assumes when the STOP instruction is executed and the WCR[LPMDY] field is set for the
particular low-power mode. Individual peripherals may be disabled by programming its dedicated control
bits. The wake-up capability field refers to the ability of an interrupt or reset by that peripheral to force the
CPU into run mode.

Summary of Peripheral State During Low-power Modes

Table 9-9. CPU and Peripherals in Low-Power Modes

Peripheral Status' / Wake-up Procedure
Module
Wait Mode Doze Mode Stop Mode

ColdFire Core Stopped N/A Stopped N/A Stopped N/A
SRAM Stopped N/A Stopped N/A Stopped N/A
Clock Module Enabled Interrupt Enabled Interrupt Program Interrupt
Power Management Enabled N/A Enabled N/A Stopped N/A
Chip Configuration Module Enabled N/A Enabled N/A Stopped N/A
Reset Controller Enabled Reset Enabled Reset Stopped Reset
System Control Module Enabled Reset Enabled Reset Stopped N/A
GPIO Enabled N/A Enabled N/A Stopped N/A
Interrupt controller Enabled Interrupt Enabled Interrupt Stopped Interrupt
Edge port Enabled Interrupt Enabled Interrupt Stopped Interrupt
eDMA Controller Enabled Yes Enabled Yes Stopped N/A
FlexBus Module Enabled N/A Enabled N/A Stopped N/A
SDRAM Controller Enabled N/A Enabled N/A Stopped N/A
Fast Ethernet Controller Enabled Interrupt Enabled Interrupt Stopped N/A
USB OTG Enabled Interrupt Enabled Interrupt | Stopped N/A
PCI Controller and Arbiter Enabled Interrupt Enabled Interrupt Stopped N/A
ATA Controller Enabled Interrupt Enabled Interrupt Stopped N/A

9-14
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Table 9-9. CPU and Peripherals in Low-Power Modes (continued)

Peripheral Status' / Wake-up Procedure
Module
Wait Mode Doze Mode Stop Mode
SSi Enabled Interrupt Enabled Interrupt Stopped N/A
Real Time Clock Enabled Interrupt Enabled Interrupt Enabled Interrupt
Programmable Interrupt Timers Enabled Interrupt Program Interrupt Stopped N/A
DMA Timers Enabled Interrupt Enabled Interrupt Stopped N/A
DSPI Enabled Interrupt Enabled Interrupt Stopped N/A
UARTs Enabled Interrupt Enabled Interrupt Stopped N/A
I2C Module Enabled Interrupt Enabled Interrupt Stopped N/A
RNG Enabled Interrupt Enabled Interrupt Stopped N/A
JTAG? Enabled N/A Enabled N/A Enabled N/A
BDM3 Enabled Yes Enabled Yes Enabled Yes

Program indicates that the peripheral function during the low-power mode is dependent on programmable bits in the
peripheral register map.

The JTAG logic is clocked by a separate TCLK clock.

Entering halt mode via the BDM port exits any lower-power mode. Upon exit from halt mode, the previous low-power mode
is re-entered, and changes made in halt mode remain in effect.
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Chapter 10
Universal Serial Bus Interface — On-The-Go Module

10.1 Introduction

This chapter describes the universal serial bus (USB) interface, which implements many industry
standards. However, it is beyond the scope of this document to document the intricacies of these standards.
Instead, you should refer to the governing specifications. Readers of this chapter are assumed to be fluent
in the operation and requirements of a USB network.

Visit the USB Implementers Forum web page at http://www.usb.org/developers/docs for:

»  Universal Serial Bus Specification, Revision 2.0
*  On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a

Visit the Intel USB specifications web page at http://www.intel.com/technology/usb/spec.htm for:

*  Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0

Visit the ULPI web page at http://www.ulpi.org for:
»  UTMI+ Specification, Revision 1.0
* UTMI Low Pin Interface (ULPI) Specification, Revision 1.0

10.1.1 Overview

The USB On-The-Go (OTG) module is a USB 2.0-compliant serial interface engine for implementing a
USB interface. The registers and data structures are based on the Enhanced Host Controller Interface
Specification for Universal Serial Bus (EHCI) from Intel Corporation. The USB OTG module can act as
a host, a device, or an On-The-Go negotiable host/device on the USB bus.

The USB 2.0 OTG module interfaces to the processor’s ColdFire core. The USB controller is
programmable to support host, or device operations under firmware control. Full-speed (FS) and
low-speed (LS) applications are supported by the integrated on-chip transceiver. The ULPI interface
option supports high-speed (HS) applications. The processor’s on-chip PLL provides all necessary clocks
to the USB controller, including a system interface clock and a 60 MHz clock. For special applications,
pin access (via USBCLKIN) is provided for an external 60 MHz reference clock.

The USB controller provides control and status signals to interface with external USB OTG and USB host
power devices. Use these control and status signals on the chip interface and the I2C bus to communicate
with external USB On-The-Go and USB host power devices.

USB-host modules must supply 500 mA with a 5 V supply on its downstream port (referred to as VBUS);
however, the USB OTG standard provides a minimum 8 mA VBUS supply requirement. Optionally, the
OTG module may supply up to 500 mA to the USB-connected devices. If the connected device attempts
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to draw more than the allocated amount of current, the USB host must disable the port and remove power.
USB VBUS is not provided on-chip. This processor provides pins for control and status to an external IC
capable of managing the VBUS downstream supply.

For OTG operations, external circuitry is required to manage the host negotiation protocol (HNP) and
session request protocol (SRP). External ICs that are capable of providing the OTG VBUS with support
for HNP and SRP, as well as support for programmable pullup and pulldown resistors on the USB DP and
DM lines are available from various manufacturers.

The on-chip FS/LS transceiver also includes a programmable pullup resistor on USB DP. This pullup is
configurable via the CCM. See Chapter 11, “Chip Configuration Module (CCM),” for more information.
The primary function of the transceiver is the physical signal conditioning of the external USB DP and
DM cable signals for a USB 2.0 network. Several USB system elements are not supported on the device
as they are available via standard products from various manufacturers.

10.1.2 Block Diagram
Figure 10-1 shows the USB On-The-Go interface using the on-chip full-speed/low-speed transceiver.

USB On-The-Go
B USBD_DP
< FS/LS [T >
9 Transceiver|_ USBD_DM
- S
- HE
()] E = g
@l 2 8 <
S| 3 T 8
gl o m
g g 3 oTG
= 5 Control
kS Status
A
< > Chip
B _ | Configuration |« VBUS
: ~ Module Interrupt
< > 12C SCL/SDA
< Master

Figure 10-1. USB On-The-Go with on-chip FS/LS Transceiver Interface Block Diagram

Figure 10-2 illustrates the On-The-Go (OTG) configuration with an off-chip ULPI transceiver. The ULPI
transceiver is an implementation of the HS/FS/LS physical layer which encapsulates the 60+ pin UTMI+
interface using a 12-pin digital interface.
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The board-level implementation of a ULPI based product is dependent on the PHY vendor. One possible
implementation is shown in Figure 10-1. The ULPI PHY manages USB clocking, DP/DM bias resistors,
and the OTG VBUS charge pump. For OTG applications requiring full host power (100 — 500 mA
downstream current), an additional USB power-switch chip may be used. This OTG configuration may be
used as a USB device, host, or dual-role device under firmware control.

ColdFire Processor

Internal Bus

Interrupt Subsystem

USB On-The-Go

A

USB On-The-Go

Controller

FS/LS

Board Interconnect

Transceiver|

ULPI <
Interface

OTG
Control
Status

A

A

Yy

Chip
Configuration
Module

<

A

SCL/SDA

2C |

Master

Figure 10-2. USB On-The-Go module and ULPI transceiver/PHY

10.1.3 Features

The USB On-The-Go module includes these features:
» Complies with USB specification rev 2.0

* USB host mode

— Supports enhanced-host-controller interface (EHCI).

— Allows direct connection of FS/LS devices without an OHCI/UHCI companion controller.

— Supported by Linux and other commercially available operating systems.
* USB device mode
Supports full-speed operation via the on-chip transceiver.

Supports full-speed/high-speed operation via an external ULPI transceiver.

Supports one upstream facing port.

USB
Mini-AB
Connector
_ DbP
> NC ULPI [~ oM DbP
PHY [< DM
Optional
VBUS
ID

Supports four programmable, bidirectional USB endpoints, including endpoint 0. See endpoint
configurations:

Freescale Semiconductor
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Table 10-1. Endpoint Configurations

Endpoint Type FIFO Size Data Transfer Comments

0 Bidirectional | Variable Control Mandatory

1-3 IN or OUT | Variable Ctrl, Int, Bulk, or Iso Optional

Suspend mode/low power

— As host, firmware can suspend individual devices or the entire USB and disable chip clocks for
low-power operation

— Device supports low-power suspend

— Remote wake-up supported for host and device

— Integrated with the processor’s doze and stop modes for low power operation
Includes an on-chip full-speed (12 Mbps) and low-speed (1.5 Mbps) transceiver
Support for off-chip HS/FS/LS transceiver

— External ULPI transceiver supports high speed (480 Mbps), full speed, and low speed
operation in host mode, and high-speed and full-speed operation in device mode

— Interface uses 8-bit single-data-rate ULPI data bus
— ULPI PHY supplies a 60 MHz USB reference clock input to the processor

10.1.4 Modes of Operation

The USB OTG module has two basic operating modes: host and device. Selection of operating mode is
accomplished via the USBMODE[CM] bit field.

Speed selection is auto-detected at connect time via sensing of the DP or DM pull-up resistor on the
connected device using enumeration procedures in the USB network. The USB OTG module provides
these operation modes:

USB disabled. In this mode, the USB OTG’s datapath does not accept transactions received on the
USB interface.

USB enabled. In this mode, the USB host’s datapath is enabled to accept transactions received on
the USB interface.

USB enabled, low-power modes. See Section 10.1.4.1, “Low-Power Modes,” for details.

10.1.4.1 Low-Power Modes

The USB OTG module is integrated with the processor’s low-power modes (stop, doze and wait). The
modes are implemented as follows:

Stop — The processor stops the clock to the USB OTG module. In this state, the USB OTG module
ignores traffic on the USB and does not generate any interrupts or wake-up events. The on-chip
transceiver is disabled to save power.

Wait — The clocks to the USB OTG module are running.

10-4
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* Doze — The processor stops the system clocks to the USB OTG module, but the 60 MHz
transceiver clock remains active. In doze mode, detection of resume signaling initiates a restart of
the module clocks.

10.2 External Signal Description

Table 10-2 describes the external signal functionality of the USB OTG module.

NOTE

The ULPI signals are multiplexed with the FEC module. This section
describes the signal functions when in ULPI mode; refer to Chapter 16, “Pin
Multiplexing and Control,” for more details.

Table 10-2. USB OTG Signal Descriptions

Signal

/0

Description

On-chip FS/LS transceiver

USB_CLKIN

Optional 60 MHz clock source. This signal is also used for the input clock from a ULPI PHY.

USB_DM

I/0

Data minus. Output of dual-speed transceiver for the USB OTG module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing

Asynchronous

USB_DP

I/0

Data plus. Output of dual-speed transceiver for the USB OTG module.

State
Meaning

Asserted—Data 1
Negated—Data 0

Timing

Asynchronous

USB_PULLUP

Enables an external pull-up on the USB_DP line. This signal is controlled by the
UOCSRI[BVLD] bit.

State
Meaning

Asserted—Pull-up enabled. UOCSR[BVLD] set.
Negated—Pull-up disabled. UOCSR[BVLD] cleared.

Timing

Asynchronous

ULPI Interface

ULPI_DIR

Direction. ULPI_DIR controls data bus direction. When PHY has data to transfer to USB port,
it drives ULPI_DIR high to take ownership of the bus. When the PHY has no data to transfer,
it drives ULPI_DIR low and monitors the bus for link activity. The PHY pulls ULPI_DIR high
when the interface cannot accept data from the link. For example, when PHY’s PLL is not

stable.

State
Meaning

Asserted—PHY has data to transfer to the link.
Negated—PHY has no data to transfer.

Timing

Synchronous to USB_CLKIN or ULPI_CLK.

Freescale Semiconductor
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Table 10-2. USB OTG Signal Descriptions (continued)

Signal /0 Description

ULPI_NXT I | Next data. PHY asserts ULPI_NXT to throttle data. When USB port sends data to the PHY,
ULPI_NXT indicates when PHY accepts the current byte. The USB port places the next byte
on the data bus in the following clock cycle. When the PHY sends data to USB port, ULPI_NXT
indicates when a new byte is available for USB port to consume.

State | Asserted—PHY is ready to transfer byte.
Meaning | Negated—PHY is not ready.

Timing | Synchronous to ULPI_CLK.

ULPI_STP O | Stop. ULPI_STP indicates the end of a transfer on the bus.

State | Asserted—USB asserts this signal for one clock cycle to stop the data stream
Meaning currently on the bus. If the USB port sends data to the PHY, ULPI_STP
indicates the last data byte was previously on the bus. If the PHY is sending
data to the USB port, ULPI_STP forces the PHY to end its transfer, deassert
ULPI_DIR, and relinquish control of the data bus to the USB port.
Negated—Indicates normal operation.

Timing | Synchronous to USB_CLK or ULPI_CLK

ULPI_DATA[7:0] |I/O |Databit n. ULPI_DATAT nis bit n of the 8-bit, bi-directional data bus used to carry USB, register,
and interrupt data between the USB port controller and the PHY.

State | Asserted—Data bit nis 1.
Meaning | Negated—Data bit n is 0.

Timing | Synchronous to USB_CLK or ULPI_CLK

10.2.1 USB OTG Control and Status Signals

The USB OTG module uses a number of control and status signals to implement the OTG protocols. The
USB OTG module must be able to individually enable and disable the pull-up and pull-down resistors on
DP and DM, and it must be able to control and sense the levels on the USB VBUS line.

These control and status signals are implemented on chip as registers within the chip-configuration module
(CCM) to minimize the pin-count on the device. With firmware, the system designer uses an external
device to manage the OTG functions to implement communications across the I>C bus or GPIO pins.

The OTG controller status register (UOCSR) implements as follows:
*  Writes to the UOCSR register from the firmware set the corresponding bits on the USB interface.
*  When the USB OTG module outputs change, the corresponding bits on the UOCSR register are
updated, and a maskable interrupt is generated.

The UOCSR register is documented in the CCM chapter, see Section 11.3.6, “USB On-the-Go Controller
Status Register (UOCSR).”
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Table 10-3. Internal Control and Status Bits for USB OTG Module

Signal Mnemonic Direction Comments In'ferrupt
Trigger?

DP Pull-down DPPD Enables 15 kQ resistor pull-down R Y

Enable on DP

DM Pull-down DMPD Enables 15 kQ resistor pull-down R Y

Enable on DM

VBUS Charge CRG_VBUS Enables 8 mA pull-up to charge R Y
VBUS.

VBUS Discharge DCR_VBUS Enables 8 mA pull-down to R Y
discharge VBUS.

DP Pull-up Enable DPPU Enables the 1.5KQ resistor pull-up R Y
on DP

A Session Valid AVLD Indicates a valid session level for A R/W N
device detected on VBUS.

B Session Valid BVLD Indicates a valid session level for B R/W N
device detected on VBUS.

Session Valid VVLD Indicates valid operating level on R/W N
VBUS from USB device’s
perspective.

Session End SEND Indicates VBUS fell below the R/W N

session valid threshold.

VBUS Fault PWRFLT Indicates a fault (overcurrent, R/W N
thermal issue) on VBUS.

Wake-up Event WKUP Reflects when a wake-up event R/W Y
occurred on the USB bus.

Interrupt Mask UOMIE Interrupt enable. When this bit is 1, R/W N/A
changes on DPPD, DMPD, DPPU,
CHRG_VBUS, DCRG_VBUS, or
VBUS_PWR cause an interrupt to
be asserted.

When this bit is 0, the interrupt is

masked.
On-chip Transceiver XPDE Enables the on-chip 50 kQ2 R/W N
Pull-down Enable pull-downs on the OTG controller's

DM and DP pins when the on-chip
transceiver is used.

10.3 Memory Map/Register Definition

This section provides the memory map and detailed descriptions of all USB-interface registers. See
Table 10-4 for the memory map of the USB OTG interface.
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Table 10-4. USB On-The-Go Memory Map

0

Address Register E N% ‘?t’:t,:)] g Reset Section/Page

<
Module Identification Registers
0xFCOB_0000 | Identification Register (ID) N |H/D| 32 R | 0x0042_FA05| 10.3.1.1/10-9
0xFCO0B_0004 | General Hardware Parameters (HWGENERAL) H/D| 32 R | 0x0000_07C5 | 10.3.1.2/10-10
0xFCO0B_0008 | Host Hardware Parameters (HWHOST) N |H/D| 32 R | 0x1002_0001 | 10.3.1.3/10-11
0xFCO0B_000C | Device Hardware Parameters (HWDEVICE) N | D 32 R | 0x0000_0009 | 10.3.1.4/10-11
0xFCO0B_0010 | TX Buffer Hardware Parameters (HWTXBUF) N |H/D| 32 R | Ox8004_0604 | 10.3.1.5/10-12
0xFCO0B_0014 | RX Buffer Hardware Parameters (HWRXBUF) N |H/D| 32 R | 0x0000_0404 | 10.3.1.6/10-12
Device/Host Timer Registers
0xFCO0B_0080 | General Purpose Timer 0 Load (GPTIMEROLD) N |H/D| 32 |R/W|0x0000_0000 | 10.3.2.1/10-13
0xFCO0B_0084 | General Purpose Timer 0 Control (GPTIMEROCTL) N |H/D| 32 |R/W|0x0000_0000 | 10.3.2.2/10-13
0xFCO0B_0088 | General Purpose Timer 1 Load (GPTIMER1LD) N |H/D| 32 |R/W|0x0000_0000 | 10.3.2.1/10-13
0xFCO0B_008C | General Purpose Timer 1 Control (GPTIMER1CTL) N |H/D| 32 |R/W|0x0000_0000 | 10.3.2.2/10-13
Capability Registers
0xFCOB_0100 | Host Interface Version Number (HCIVERSION) Y | H 16 R 0x0100 10.3.3.1/10-14
0xFCOB_0103 | Capability Register Length (CAPLENGTH) Y |HD| 8 R 0x40 10.3.3.2/10-15
0xFCOB_0104 | Host Structural Parameters (HCSPARAMS) Y | H 32 R | 0x0001_0011 | 10.3.3.3/10-15
0xFCOB_0108 | Host Capability Parameters (HCCPARAMS) Y | H 32 R | 0x0000_0006 | 10.3.3.4/10-16
0xFCOB_0122 | Device Interface Version Number (DCIVERSION) N | D 16 R 0x0001 10.3.3.5/10-17
0xFCOB_0124 | Device Capability Parameters (DCCPARAMS) N | D 32 R | 0x0000_0184 | 10.3.3.6/10-17
Operational Registers

0xFCOB_0140 | USB Command (USBCMD) Y |H/D| 32 |R/W|0x0008_0000 | 10.3.4.1/10-18
0xFCOB_0144 | USB Status (USBSTS) Y |H/D| 32 |R/W|0x0000_0080 | 10.3.4.2/10-20
0xFCOB_0148 | USB Interrupt Enable (USBINTR) Y |H/D| 32 |R/W|0x0000_0000 | 10.3.4.3/10-23
0xFCOB_014C | USB Frame Index (FRINDEX) Y |H/D| 32 |R/W|0x0000_0000 | 10.3.4.4/10-25
0xFCOB_0154 | Periodic Frame List Base Address (PERIODICLISTBASE) | Y | H 32 | R/W | 0x0000_0000 | 10.3.4.5/10-26
0xFCOB_0154 | Device Address (DEVICEADDR) N | D 32 |R/W | 0x0000_0000 | 10.3.4.6/10-27
0xFCOB_0158 | Current Asynchronous List Address (ASYNCLISTADDR) Y | H 32 | R/W | 0x0000_0000 | 10.3.4.7/10-27
0xFCOB_0158 | Address at Endpoint List (EPLISTADDR) N | D 32 | R/W | 0x0000_0000 | 10.3.4.8/10-28
0xFCOB_015C | Host TT Asynchronous Buffer Control (TTCTRL) N | H 32 | R/W | 0x0000_0000 | 10.3.4.9/10-28
0xFCOB_0160 | Master Interface Data Burst Size (BURSTSIZE) N [H/D| 32 |R/W|0x0000_0404 |10.3.4.10/10-29
0xFCOB_0164 | Host Transmit FIFO Tuning Control (TXFILLTUNING) N | H 32 | R/W | 0x0000_0000 | 10.3.4.11/10-29
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Table 10-4. USB On-The-Go Memory Map (continued)

S |9y | Width @
Address Register % % (bits) § Reset Section/Page

<
0xFCOB_0170 | ULPI Register Access (ULPI_VIEWPORT) N [H/D| 32 |R/W | 0x0000_ 0000 |10.3.4.12/10-31
0xFCO0B_0180 | Configure Flag Register (CONFIGFLAG) Y |HD| 32 R | 0x0000_0001 | 10.3.4.13/10-33
0xFCO0B_0184 | Port Status/Control (PORTSC1) Y |H/D| 32 |R/W |0xEC00_0004|10.3.4.14/10-33
0xFCOB_01A4 | On-The-Go Status and Control (OTGSC) N |H/D| 32 |R/W|0x0000_1020 |10.3.4.15/10-37
0xFCOB_01A8 | USB Mode Register (MODE) N |H/D| 32 |R/W |0x0000_0000 |10.3.4.16/10-40
0xFCOB_01AC | Endpoint Setup Status Register (EPSETUPSR) N | D 32 |R/W | 0x0000_0000 | 10.3.4.17/10-41
0xFCOB_01B0 | Endpoint Initialization (EPPRIME) N | D 32 | R/W| 0x0000_0000 | 10.3.4.18/10-41
0xFCOB_01B4 | Endpoint De-initialize (EPFLUSH) N | D 32 | R/W| 0x0000_0000 |10.3.4.19/10-42
0xFCOB_01B8 | Endpoint Status Register (EPSR) N | D 32 R | 0x0000_0000 | 10.3.4.20/10-42
0xFCOB_01BC | Endpoint Complete (EPCOMPLETE) N | D 32 | R/W| 0x0000_0000 |10.3.4.21/10-43
0xFCOB_01CO0 | Endpoint Control Register 0 (EPCRO0) N | D 32 | R/W | 0x0080_0080 | 10.3.4.22/10-44
0xFCOB_01C4 | Endpoint Control Register 1 (EPCR1) N |D 32 | R/W| 0x0000_0000 | 10.3.4.23/10-45
0xFCOB_01C8 | Endpoint Control Register 2 (EPCR2) N |D 32 | R/W| 0x0000_0000 | 10.3.4.23/10-45
0xFCOB_01CC | Endpoint Control Register 3 (EPCR3) N | D 32 | R/W | 0x0000_0000 | 10.3.4.23/10-45

' Indicates if the register is present in the EHCI specification.
2 Indicates if the register is available in host and/or device modes.

10.3.1

Module Identification Registers

Declare the slave interface presence and include a table of the hardware configuration parameters. These
registers are not defined by the EHCI specification.

10.3.1.1

Identification (ID) Register

Provides a simple way to determine if the module is provided in the system. The ID register identifies the
module and its revision.

Address: 0xFCOB_0000 (ID)

Access: User read-only

31 30 29 2827 26 25 24|23 22 21 20‘19 18 17 1615 14 13 12‘11 10 9 8|7 6 5 4‘3 2 1.0
R{oj0j0j0j0|0O|0O|O REVISION 1)1 NID 0(0 ID
w [ LTI [ L[] [ [ [ ][]
Reset 0 0 0 0|0 0 0 0|0 1 O O[O O 1 O|1T 1T 1 1|1 0 0/0 0 00|01 0 1

Figure 10-3. Identification Register (ID)
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Table 10-5. ID Field Descriptions

Field Description
3124 | Reserved, always cleared.
23-16 | Revision number of the module.
REVISION
15-14 | Reserved, always set.
13-8 Ones-complement version of the ID bit field.
NID
7-6 Reserved, always cleared.
5-0 Configuration number. This number is set to 0x05.
ID
10.3.1.2

General Hardware Parameters Register (HWGENERAL)

The HWGENERAL register contains parameters defining the particular implementation of the module.

Address: 0xFCOB_0004 (HWGENERAL)

Access: User read-only

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8‘7 6 5 4|3 2 1 0
rR(o|0|0f(O0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O| SM | PHYM |PHYW|O|O|O|O
W | [ [ ]
Reset 0 O 0 0/|O O 0 O|O O O O/O O OOOOOOO11TT1T 11 1 000101
Figure 10-4. General Hardware Parameters Register ( HWGENERAL)
Table 10-6. HWGENERAL Field Descriptions
Field Description
31-11 Reserved, always cleared.
10-9 Serial mode. Indicates presence of serial interface. Always 11.
SM 11 Serial engine is present and defaulted for all FS/LS operations
86 PHY Mode. Indicates USB transceiver interface used. Always reads 111.
PHYM |111 Software controlled reset to serial FS
54 PHY width. Indicates data interface to UTMI transceiver. This field is relevant only for UTMI mode; therefore, it is
PHYW | relevant only to the USB OTG module in UTMI mode. Always reads 00.
00 8-bit data bus (60 MHz)
3 Reserved, always cleared.
2—1 Reserved. For the USB OTG module, always 10.
0 Reserved, always set.
10-10
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.3 Host Hardware Parameters Register (HWHOST)

Provides host hardware parameters for this implementation of the module.

Address: 0xFCOB_0008 (HWHOST)

Access: User read-only

31 302928‘27262524232221 20‘191817161514131211 10 9 8/7 6 5 43 2 1 0
R TTPER TTASY o(ojojojo|ojo|o 0 | NPORT |HC
LEEEEEEEEEEEEEEN [ |
Reset 0 O 0 1/0 O O O|O O O O|O O 1 0|0 OOOOOU OU OOOOOU O|O0OO0TO 01
Figure 10-5. Host Hardware Parameters Register (HWHOST)
Table 10-7. HWHOST Field Descriptions
Field Description
31-24 | Transaction translator periodic contexts. Number of supported transaction translator periodic contexts.
TTPER | Always 0x10.
0x10 16
23-16 | Transaction translator contexts. Number of transaction translator contexts. Always 0x02.
TTASY |0x02 2
154 Reserved, always cleared.
3-1 Indicates number of ports in host mode minus 1. Always 0 for the USB OTG module.
NPORT
0 Indicates module is host capable. Always set.
HC

10.3.1.4 Device Hardware Parameters Register (HWDEVICE)

Provides

device hardware parameters for this implementation of the USB OTG module.

Address: 0xFCOB_000C (HWDEVICE) Access: User read-only
31 30 29 28|27 26 25 24|23 22 21 20[19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4‘3 2 1 0
R{o0|0|0|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]O DEVEP DC
w [ [ [ ]
Reset 0 0 O 0/O O 0 O|O O O O/|0O O O O/O O O O|O O O O|O O O Of1T O O 1
Figure 10-6. Device Hardware Parameters Register (HWDEVICE)
Table 10-8. HWDEVICE Field Descriptions
Field Description
31-6 Reserved, always cleared.
5-1 Device endpoints. The number of supported endpoints. Always 0x04.
DEVEP
0 Indicates the OTG module is device capable. Always set.
DC
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10.3.1.5

Transmit Buffer Hardware Parameters Register (HWTXBUF)

Provides the transmit-buffer parameters for this implementation of the module.

Address: 0xFCOB_0010 (HWTXBUF)

Access: User read-only

23222120‘1918171615141312‘1110987654‘321 0

31 30 29 28|27 26 25 24
R|TXLC|0|0O|0O|0|O|0O|O TXCHANADD TXADD TXBURST
W HEEEEEEEEEEEEEEEEEEEEE
Reset 1 0 O 0|0 O O 0/|O OO O/O1O0O0O0OO0OOOT11T11O0O/0OO0OOOO0OT1TO0TUO
Figure 10-7. Transmit Buffer Hardware Parameters Register (HWTXBUF)
Table 10-9. HWTXBUF Field Descriptions
Field Description
31 Transmit local context registers. Indicates how the device transmit context registers implement. Always set on
TXLC USB OTG module.
0 Store device transmit contexts in the TX FIFO
1 Store device transmit contexts in a register file
3024 Reserved, always cleared.
23-16 Transmit channel address. Number of address bits required to address one channel’s worth of TX data. Always
TXCHANADD | 0x04.
15-8 Transmit address. Number of address bits for the entire TX buffer. Always 0x06.
TXADD
7-0 Transmit burst. Indicates number of data beats in a burst for transmit DMA data transfers. Always 0x04.
TXBURST
10.3.1.6 Receive Buffer Hardware Parameters Register (HWRXBUF)

Provides the receive buffer parameters for this implementation of the module.

Address: 0xFCOB_0014 (HWRXBUF)

Access: User read-only

15141312‘1110987654‘32 1 0

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16
R{0|0|O|O|O|O|O|O|O|O|0O|O|O|O]|O|O RXADD RXBURST
w HEEEEEEEEEEEEN
Reset 0 0 O 0/O O 0 O|O O O O/|O O O O/O O O O|O 1 O O|O O O OlO 1 0O
Figure 10-8. Receive Buffer Hardware Parameters Register (HWRXBUF)

Table 10-10. HWRXBUF Field Descriptions
Field Description
31-16 Reserved.
15-8 Receive address. The number of address bits for the entire RX buffer. Always 0x04.
RXADD
7-0 Receive burst. Indicates the number of data beats in a burst for receive DMA data transfers. Always 0x04.
RXBURST
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10.3.2 Device/Host Timer Registers

The host/device controller drivers can measure time-related activities using these timer registers, which
are not defined by the EHCI specification.

10.3.2.1 General Purpose Timer n Load Registers (GPTIMERNLD)
The GPTIMER=#LD registers contain the timer duration or load value.

Address: 0xFCOB_0080 (GPTIMEROLD) Access: User read/write
0xFCO0B_0088 (GPTIMER1LD)

31 30 29 28|27 26 25 24|23 22 21 20‘19181716‘15141312‘11 10 9 8‘7 6 5 4‘3 2 1.0
R|ojo0oj0j0|0|0f0|O

GPTLD

Resetoooooooooooo\oooo\oooo\oooo]oooo\oooo
Figure 10-9. General Purpose Timer n Load Registers (GPTIMERNLD)

Table 10-11. GPTIMERNLD Field Descriptions

Field Description
31-24 Reserved, must be cleared.
23-0 Specifies the value to be loaded into the countdown timer on a reset. The value in this register represents the

GPTLD time in microseconds minus 1 for the timer duration. For example, for a one millisecond timer,
load 1000 — 1 = 999 (0x00_03E?7).
Note: Maximum value of OxFF_FFFF or 16.777215 seconds.

10.3.2.2 General Purpose Timer n Control Registers (GPTIMERNCTL)
The GPTIMER#CTL registers control the various functions of the general purpose timers.

Address: 0xFCOB_0084 (GPTIMEROCTL) Access: User read/write
0xFCO0B_008C (GPTIMER1CTL)

31 30 29 28|27 26 25 24 23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0

R 0 |0(0fl0OfO|O GPTCNT
RUN MODE

w| " [RsT HEEEEEEEEEEEEEEEEEEEEN

Reset 0 0o o0o0/0OO0OO O |OO0OOOOOTOOOOOOOOOOOOOOOOOODO
Figure 10-10. General Purpose Timer n Control Registers (GPTIMERNCTL)

Table 10-12. GPTIMERNCTL Field Descriptions

Field Description
31 Timer run. Enables the general purpose timer. Setting or clearing this bit does not have an effect on the
RUN GPTCNT field.
0 Timer stop
1 Timer run
30 Timer reset. Setting this bit reloads GPTCNT with the value in GPTIMERALD[GPTLD].
RST 0 No action
1 Load counter value
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Table 10-12. GPTIMERNCTL Field Descriptions (continued)

Field Description
29-25 Reserved, must be cleared.

24 Timer mode. Selects between a single timer countdown and a looped countdown. In one-shot mode, the timer
MODE counts down to zero, generates an interrupt, and stops until the counter is reset by software. In repeat mode,

the timer counts down to zero, generates an interrupt, and automatically reloads the counter and begins
another countdown.

0 One shot

1 Repeat

230 Timer count. Indicates the current value of the running timer.
GPTCNT

10.3.3 Capability Registers

Specifies software limits, restrictions, and capabilities of the host/device controller implementation. Most
of these registers are defined by the EHCI specification. Registers not defined by the EHCI specification
are noted in their descriptions.

10.3.3.1 Host Controller Interface Version Register (HCIVERSION)

This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this
OTG controller. The most-significant byte of the register represents a major revision; the least-significant
byte is the minor revision. Figure 10-11 shows the HCIVERSION register.

Address: 0xFCOB_0100 (HCIVERSION) Access: User read-only
15 14 13 12 ‘ 11 10 9 8 ‘ 7 6 5 4 ‘ 3 2 1 0
R HCIVERSION
we | [ | [ [ ] [ [ ] [ [ ]
Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 10-11. Host Controller Interface Version Register (HCIVERSION)

Table 10-13. HCIVERSION Field Descriptions

Field Description
15-0 EHCI revision number. Value is 0x0100 indicating version 1.0.
HCIVERSION
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10.3.3.2 Capability Registers Length Register (CAPLENGTH)

Register is used as an offset to add to the register base address to find the beginning of the operational
register space, the location of the USBCMD register.

Address: 0xFC0OB_0103 (CAPLENGTH) Access: User read-only
7 6 5 4 3 2 1 0
R CAPLENGTH
W
Reset: 0 1 0 0 0 0 0 0

Figure 10-12. Capability Registers Length Register (CAPLENGTH)

Table 10-14. CAPLENGTH Field Descriptions

Field Description

7-0 Capability registers length. Always 0x40.
CAPLENGTH

10.3.3.3 Host Controller Structural Parameters Register (HCSPARAMS)

This register contains structural parameters such as the number of downstream ports. Figure 10-13 shows
the HCSPARAMS register.

Address: 0xFCOB_0104 (HCSPARAMS) Access: User read-only
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16 |15 14 13 12/11 10 9 8|7 6 5 4 |3 2 1 0
R|0|0|0]|O N_TT N_PTT 0[0|0]| PI N_CC N_PCC 0|0|0|PPC| N_PORTS

w HEREEN [ [T []] [ [

Reset 0 0 O 0|0 O O O|O O O O|O OO O|OOOOOOOOOOO 1|0 O0DOH1
Figure 10-13. Host Controller Structural Parameters Register (HCSPARAMS)

Table 10-15. HCSPARAMS Field Descriptions

Field Description

31-28 Reserved, always cleared.

27-24 Number of transaction translators. Non-EHCI field. Indicates number of embedded transaction translators
N_TT associated with host controller. This field is always 0xO.

See Section 10.5.5.1, “Embedded Transaction Translator Function,” for more information on embedded
transaction translators.

23-20 Ports per transaction translator. Non-EHCI field. Indicates number of ports assigned to each transaction
N_PTT translator within host controller.
19-17 Reserved, always cleared.

16 Port indicators. Indicates whether the ports support port indicator control. Always cleared.

PI 0 No port indicator fields.

1 The port status and control registers include a R/W field for controlling the state of the port indicator. See
Table 10-3 for more information.
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Table 10-15. HCSPARAMS Field Descriptions (continued)

Field Description
15-12 Number of companion controllers. Indicates number of companion controllers associated with USB OTG
N_CC controller. Always cleared.

11-8 Number ports per CC. Indicates number of ports supported per internal companion controller. This field is 0
N_PCC because no companion controllers are present.

7-5 Reserved, always cleared.

4 Power port control. Indicates whether host controller supports port power control. Always set.
PPC 1 Ports have power port switches.
3-0 Number of ports. Indicates number of physical downstream ports implemented for host applications. Field value
N_PORTS | determines how many addressable port registers in the operational register. For the USB OTG module, this is
always Ox1.
10.3.3.4 Host Controller Capability Parameters Register (HCCPARAMS)

Identifies multiple mode control (time-base bit functionality) addressing capability.

Address: 0xFC0B_0108 (HCCPARAMS)

15 14 13 12‘11 10 9 8

Access: User read-only

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16 7 6 5 4|3 2 1 0
R|0Oj0|0O|O|O|O|O|O|O|O|O|O|O|O|O]|O EECP IST 0 |[ASP|PFL|ADC
w [ [T TP IT]

Reset 0 0 0 0,0 0 O O|O O O O|O O O O/|O O O O/O OOOOOOO|O 1 1 o
Figure 10-14. Host Controller Capability Parameters Register (HCCPARAMS)
Table 10-16. HCCPARAMS Field Descriptions
Field Description
31-16 Reserved, always cleared.
15-8 EHCI extended capabilities pointer. This optional field indicates the existence of a capabilities list.
EECP 0x00 No extended capabilities are implemented. This field is always 0.
7-4 Isochronous scheduling threshold. Indicates where software can reliably update the isochronous schedule,
IST relative to the current position of the executing host controller. This field is always O.
0 The value of the least significant 3 bits indicates the number of microframes a host controller can hold a set
of isochronous data structures (one or more) before flushing the state.
3 Reserved, always cleared.
2 Asynchronous schedule park capability. Indicates if the host controller supports the park feature for high-speed
ASP queue heads in the asynchronous schedule. The feature can be disabled or enabled and set to a specific level
by using the asynchronous schedule park mode enable and asynchronous schedule park mode count fields in
the USBCMD register. This bit is always set.
0 Park not supported.
1 Park supported.
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Table 10-16. HCCPARAMS Field Descriptions (continued)

Field Description
1 Programmable frame list flag. Indicates that system software can specify and use a frame list length less that
PFL 1024 elements. This bit is always set.

1 Frame list size is configured via the USBCMD register frame list size field. The frame list must always be
aligned on a 4K-page boundary. This requirement ensures that the frame list is always physically contiguous.

0 64-bit addressing capability. This field is always 0; 64-bit addressing is not supported.
ADC 0 Data structures use 32-bit address memory pointers

10.3.3.5 Device Controller Interface Version (DCIVERSION)

Not defined in the EHCI specification. DCIVERSION is a two-byte register containing a BCD encoding
of the device controller interface. The most-significant byte of the register represents a major revision and
the least-significant byte is the minor revision.

Address: 0xFCOB_0122 (DCIVERSION) Access: User read-only
15 14 13 12 ‘ 11 10 9 8 ‘ 7 6 5 4 ‘ 3 2 1 0
R DCIVERSION
we [ [ ] [ [ ] [ [ ] [ [ ]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Figure 10-15. Device Controller Interface Version Register (DCIVERSION)

Table 10-17. DCIVERSION Field Descriptions

Field Description

15-0 Device interface revision number.
DCIVERSION

10.3.3.6 Device Controller Capability Parameters (DCCPARAMS)

Not defined in the EHCI specification. Register describes the overall host/device capability of the USB
OTG module.

Address: 0xFCOB_0124 (DCCPARAMS) Access: User read-only
31 30 29 28|27 26 25 24|23 22 21 20[19 18 17 16|15 14 13 12|11 10 9 8 7654‘3210
R/of0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|OHC|IDC|O]|O DEN
w | [

Reset 0 0 0 0|0 O 0O OO O O O|O O OO|/lOOOOOOOT1T|1 0O00O0O01TO00DO
Figure 10-16. Device Control Capability Parameters (DCCPARAMS)

Table 10-18. DCCPARAMS Field Descriptions

Field Description
31-9 Reserved, always cleared.
8 Host capable. Indicates the USB OTG controller can operate as an EHCI compatible USB 2.0 host. Always set.
HC
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Table 10-18. DCCPARAMS Field Descriptions (continued)

Field Description
7 Device Capable. Indicates the USB OTG controller can operate as an USB 2.0 device. Always set.
DC
6-5 Reserved, always cleared.
4-0 Device endpoint number. This field indicates the number of endpoints built into the device controller. Always
DEN 0x04.

10.3.4 Operational Registers

Comprised of dynamic control or status registers and are defined below.

10.3.4.1

The module executes the command indicated in this register.

USB Command Register (USBCMD)

Address: 0xFCOB_0140 (USBCMD)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 ‘ 19 18 17 16
R| O 0 0 0 0 0 0 0 ITC
W | | [ ]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R 0 0 0
W FS2 |[ATDTW|SUTW ASPE ASP IAA | ASE | PSE | FS1 | FSO | RST RS
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 10-17. USB Command Register (USBCMD)
Table 10-19. USBCMD Field Descriptions
Field Description
31-24 Reserved, must be cleared.
23-16 Interrupt threshold control. System software uses this field to set the maximum rate at which the module issueS
ITC interrupts. ITC contains maximum interrupt interval measured in microframes.
0x00 Immediate (no threshold)
0x01 1 microframe
0x02 2 microframes
0x04 4 microframes
0x08 8 microframes
0x10 16 microframes
0x20 32 microframes
0x40 64 microframes
Else Reserved
15 See the FS bit description below. This is a non-EHCI bit.
FS2
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Table 10-19. USBCMD Field Descriptions (continued)

Field Description
14 Add dTD TripWire. This is a non-EHCI bit. This bit is used as a semaphore when a dTD is added to an active
ATDTW (primed) endpoint. This bit is set and cleared by software. This bit is also cleared by hardware when the state
machine is in a hazard region where adding a dTD to a primed endpoint may go unrecognized. More
information appears in Section 10.5.3.6.3, “Executing a Transfer Descriptor.”
13 Setup TripWire. A non-EHCI bit. Used as a semaphore to ensure that the setup data payload of 8 bytes is
SUTW extracted from a QH by driver software without being corrupted. If the setup lockout mode is off
(USBMODE[SLOM] = 1) then a hazard exists when new setup data arrives, and the software copies setup from
the QH for a previous setup packet. This bit is set and cleared by software and is cleared by hardware when a
hazard exists. More information appears in Section 10.5.3.4.4, “Control Endpoint Operation.”
12 Reserved, must be cleared.
11 Asynchronous schedule park mode enable. Software uses this bit to enable or disable park mode.
ASPE 1 Park mode enabled
0 Park mode disabled
10 Reserved, must be cleared.
9-8 Asynchronous schedule park mode count. Contains a count of the successive transactions the host controller
ASP can execute from a high-speed queue head on the asynchronous schedule before continuing traversal of the
asynchronous schedule. Valid values are Ox1 to 0x3. Software must not write a zero to this field when ASPE is
set as this results in undefined behavior.
7 Reserved, must be cleared.
6 Interrupt on async advance doorbell. Used as a doorbell by software to tell controller to issue an interrupt the
IAA next time it advances the asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.
When controller has evicted all appropriate cached schedule states, it sets USBSTS[AAI] register. If the
USBINTR[AAE] bit is set, the host controller asserts an interrupt at the next interrupt threshold.
The controller clears this bit after it has set the USBSTS[AAI] bit. Software must not write a 1 to this bit when
the asynchronous schedule is inactive. Doing so yields undefined results. This bit used only in host mode.
Writing a 1 to this bit when the USB OTG module is in device mode has undefined results.
5 Asynchronous schedule enable. Controls whether the controller skips processing the asynchronous schedule.
ASE Only used in host mode.
1 Use the ASYNCLISTADDR register to access asynchronous schedule.
0 Do not process asynchronous schedule.
4 Periodic schedule enable. Controls whether the controller skips processing periodic schedule. Used only in host
PSE mode.
1 Use the PERIODICLISTBASE register to access the periodic schedule.
0 Do not process periodic schedule.
3-2 Frame list size. With bit 15, these bits make the FS[2:0] fields, which specifies the frame list size controlling
FS which bits in the frame index register must be used for the frame list current index. Used only in host mode.
Note: Values below 256 elements are not defined in the EHCI specification.
000 1024 elements (4096 bytes)
001 512 elements (2048 bytes)
010 256 elements (1024 bytes)
011 128 elements (512 bytes)
100 64 elements (256 bytes)
101 32 elements (128 bytes)
110 16 elements (64 bytes)
111 8 elements (32 bytes)
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Table 10-19. USBCMD Field Descriptions (continued)

Field

Description

RST

Controller reset. Software uses this bit to reset controller. Controller clears this bit when reset process

completes. Clearing this register does not allow software to terminate the reset process early.

Host mode:
When software sets this bit, the controller resets its internal pipelines, timers, counters, state machines etc.
to their initial value. Any transaction in progress on the USB immediately terminates. A USB reset is not
driven on downstream ports. Software must not set this bit when the USBSTS[HCH] bit is cleared.
Attempting to reset an actively running host controller results in undefined behavior.

Device mode:
When software sets this bit, the controller resets its internal pipelines, timers, counters, state machines, etc.
to their initial value. Setting this bit with the device in the attached state is not recommended because it has
an undefined effect on an attached host. To ensure the device is not in an attached state before initiating a
device controller reset, all primed endpoints must be flushed and the USBCMDI[RS] bit must be cleared.

Run/Stop.

Host mode:
When set, the controller proceeds with the execution of the schedule. The controller continues execution as
long as this bit is set. When this bit is cleared, the controller completes the current transaction on the USB
and then halts. The USBSTS[HCH)] bit indicates when the host controller finishes the transaction and enters
the stopped state. Software must not set this bit unless controller is in halted state (USBSTS[HCH] = 1).

Device mode:
Setting this bit causes the controller to enable a pull-up on DP and initiate an attach event. This control bit is
not directly connected to the pull-up enable, as the pull-up becomes disabled upon transitioning into
high-speed mode. Software must use this bit to prevent an attach event before the USB OTG controller has
properly initialized. Clearing this bit causes a detach event.

10.3.4.2

USB Status Register (USBSTS)

This register indicates various states of each module and any pending interrupts. This register does not
indicate status resulting from a transaction on the serial bus. Software clears certain bits in this register by
writing a 1 to them.

Address: 0xFCOB_0144 (USBSTS) Access: User read/write
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O 0 0 0 0 0 T TIO 0 0 0 0 0 | NAKI
W wic | wic P UA
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| AS PS | RCL | HCH 0 |ULPHI| O SRl | URI | AAl | SEI | FRI | PCI | UEI ul
w wic | wic | wic | wic | wic | wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Figure 10-18. USB Status Register (USBSTS)
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Table 10-20. USBSTS Field Descriptions

Field Description
31-26 Reserved, must be cleared.
25 General purpose timer 1 interrupt. Set when the counter in the GPTIMER1CTRL register transitions to zero.
T Writing a one to this bit clears it.
0 No interrupt
1 Interrupt occurred.
24 General purpose timer 0 interrupt. Set when the counter in the GPTIMEROCTRL register transitions to zero.
TIO Writing a one to this bit clears it.
0 No interrupt
1 Interrupt occurred.
23-20 Reserved, must be cleared.
19 USB host periodic interrupt. Set by the host controller when the cause of an interrupt is a completion of a USB
UPI transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit set and the TD was from
the periodic schedule.
This bit is also set by the host controller when a short packet is detected and the packet is on the periodic
schedule. A short packet is when the actual number of bytes received was less than the expected number of
bytes.
Note: This bit is not used by the device controller and is always zero.
18 USB host asynchronous interrupt. Set by the host controller when the cause of an interrupt is a completion of
UAI a USB transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit set and the TD was
from the asynchronous schedule.
This bit is also set by the host controller when a short packet is detected and the packet is on the asynchronous
schedule. A short packet is when the actual number of bytes received was less than the expected number of
bytes.
Note: This bit is not used by the device controller and is always zero.
17 Reserved, must be cleared.
16 NAK interrupt. Set by hardware for a particular endpoint when the TX/RX endpoint’s NAK bit and the
NAKI corresponding TX/RX endpoint’s NAK enable bit are set. The hardware automatically clears this bit when all
the enabled TX/RX endpoint NAK bits are cleared.
15 Asynchronous schedule status. Reports the current real status of asynchronous schedule. Controller is not
AS immediately required to disable or enable the asynchronous schedule when software transitions the
USBCMDI[ASE] bit. When this bit and the USBCMD[ASE] bit have the same value, the asynchronous schedule
is enabled (1) or disabled (0). Used only in host mode.
0 Disabled.
1 Enabled.
14 Periodic schedule status. Reports current real status of periodic schedule. Controller is not immediately
PS required to disable or enable the periodic schedule when software transitions the USBCMD[PSE] bit. When this
bit and the USBCMD[PSE] bit have the same value, the periodic schedule is enabled or disabled. Used only in
host mode.
0 Disabled.
1 Enabled.
13 Reclamation. DetectS an empty asynchronous schedule. Used only by the host mode.
RCL 0 Non-empty asynchronous schedule.
1 Empty asynchronous schedule.
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Table 10-20. USBSTS Field Descriptions (continued)

Field Description
12 Host controller halted. This bit is cleared when the USBCMD[RS] bit is set. The controller sets this bit after it
HCH stops executing because of the USBCMDI[RS] bit being cleared, by software or the host controller hardware (for
example, internal error). Used only in host mode.
0 Running.
1 Halted.
11 Reserved, must be cleared.
10 ULPI interrupt. Set by event completion.
ULPII

9 Reserved, must be cleared.

8 Device-controller suspend. Non-EHCI bit. When a device controller enters a suspend state from an active state,
this bit is set. The device controller clears the bit upon exiting from a suspend state. Used only by the device
controller.

0 Active.

1 Suspended.

7 SOF received. This is a non-EHCI status bit. Software writes a 1 to this bit to clear it.
SRI Host mode:

In host mode, this bit is set every 125 ps, provided PHY clock is present and running (for example, the port
is NOT suspended) and can be used by the host-controller driver as a time base.

Device mode:
When controller detects a start of (micro) frame, bit is set. When a SOF is extremely late, controller
automatically sets this bit to indicate an SOF was expected. Therefore, this bit is set roughly every 1 ms in
device FS mode and every 125 psec in HS mode, and it is synchronized to the actual SOF received.
Because the controller is initialized to FS before connect, this bit is set at an interval of 1 ms during the
prelude to the connect and chirp.

6 USB reset received. A non-EHCI bit. When the controller detects a USB reset and enters the default state, this

URI bit is set. Software can write a 1 to this bit to clear it. Used only by in device mode.
0 No reset received.
1 Reset received.
5 Interrupt on async advance. By setting the USBCMDI[IAA] bit, system software can force the controller to issue
AAl an interrupt the next time the controller advances the asynchronous schedule. This status bit indicates the
assertion of that interrupt source. Used only by the host mode.
0 No async advance interrupt.
1 Async advance interrupt.
4 System error. Set when an error is detected on the system bus. If the system error enable bit (USBINTR[SEE])
SEI is set, interrupt generates. The interrupt and status bits remain set until cleared by writing a 1 to this bit.
Additionally, when in host mode, the USBCMD[RS] bit is cleared, effectively disabling controller. An interrupt
generates for the USB OTG controller in device mode, but no other action is taken.
0 Normal operation
1 Error
3 Frame-list rollover. Controller sets this bit when the frame list index (FRINDEX) rolls over from its maximum
FRI value to 0. The exact value the rollover occurs depends on the frame list size. For example, if the frame list size
(as programmed in the USBCMDIFS] field) is 1024, the frame index register rolls over every time FRINDEX[13]
toggles. Similarly, if the size is 512, the controller sets this bit each time FRINDEX[12] toggles. Used only in the
host mode.
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Table 10-20. USBSTS Field Descriptions (continued)

Field

Description

PCI

Port change detect. This bit is not EHCI compatible.

Host mode:
Controller sets this bit when a connect status occurs on any port, a port enable/disable change occurs, an
over-current change occurs, or the force port resume (PORTSCn[FPR]) bit is set as the result of a J-K
transition on the suspended port.

Device mode:
The controller sets this bit when it enters the full- or high-speed operational state. When it exits the full- or
high-speed operation states due to reset or suspend events, the notification mechanisms are URI and bits
respectively. The device controller detects resume signaling only.

UEI

USB error interrupt. When completion of USB transaction results in error condition, the controller sets this bit.
If the TD on which the error interrupt occurred also had its interrupt on complete (I0C) bit set, this bit is set
along with the USBINT bit. See Section 4.15.1 in the EHCI specification for a complete list of host error interrupt
conditions. See Table 10-58 for more information on device error matrix.

0 No error.

1 Error detected.

USB interrupt (USBINT). This bit is set by the controller when the cause of an interrupt is a completion of a USB
transaction where the TD has an interrupt on complete (IOC) bit set. This bit is also set by the controller when
a short packet is detected. A short packet is when the actual number of bytes received was less than the
expected number of bytes.

10.3.4.3

USB Interrupt Enable Register (USBINTR)

The interrupts to software are enabled with this register. An interrupt generates when a bit is set and the
corresponding interrupt is active. The USB status register (USBSTS) continues to show interrupt sources
(even if the USBINTR register disables them), allowing polling of interrupt events by the software.

Address: 0xFCOB_0148 (USBINTR)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0
W TIE1 | TIEO UPIE | UAIE NAKE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O 0 0 0 0 0
W ULPIE SLE | SRE | URE | AAE | SEE | FRE | PCE | UEE | UE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 10-19. USB Interrupt Enable Register (USBINTR)
Freescale Semiconductor 10-23




Universal Serial Bus Interface — On-The-Go Module

Table 10-21. USBINTR Field Descriptions

Field Description
31-26 Reserved, must be cleared.
25 General purpose timer 1 interrupt enable. When this bit and USBSTS[GPTINT1] are set, the USB controller
TIE1 issues an interrupt to the processor. The interrupt is acknowledged by clearing GPTINT1.
0 Disabled
1 Enabled
24 General purpose timer 0 interrupt enable. When this bit and USBSTS[GPTINTO] are set, the USB controller
TIEO issues an interrupt to the processor. The interrupt is acknowledged by clearing GPTINTO.
0 Disabled
1 Enabled
23-20 Reserved, must be cleared.

19 USB host periodic interrupt enable. When this bit and USBSTS[USBHSTPERINT] are set, the host controller
UPIE issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by clearing USBHSTPERINT.
18 USB host asynchronous interrupt enable. When this bit and USBSTS[USBHSTASYNCINT] are set, the host

UAIE controller issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by clearing
USBHSTASYNCINT.
17 Reserved, must be cleared.
16 NAK interrupt enable. When this bit and the USBSTS[NAKI] bit are set, an interrupt generates.
NAKE 0 Disabled
1 Enabled
15-11 Reserved, must be cleared.
10 ULPI enable. When this bit and USBSTS[ULPII] are set, controller issues an interrupt. The interrupt is
ULPIE acknowledged by writing a 1 to USBSTS[ULPII].
9 Reserved, must be cleared.
8 Sleep (DC suspend) enable. A non-EHCI bit. When this bit is set and the USBSTS]] bit transitions, USB OTG
SLE controller issues an interrupt. Software writing a 1 to the USBSTS]] bit acknowledges the interrupt. Used only
in device mode.
0 Disabled
1 Enabled
7 SOF-received enable. This is a non-EHCI bit. When this bit and the USBSTS[SRI] bit are set, controller issues
SRE an interrupt. Software clearing the USBSTS[SRI] bit acknowledges the interrupt.
0 Disabled
1 Enabled
6 USB-reset enable. A non-EHCI bit. When this bit and the USBSTS[URI] bit are set, device controller issues an
URE interrupt. Software clearing the USBSTS[URI] bit acknowledges the interrupt. Used only in device mode.
0 Disabled
1 Enabled
5 Interrupt on async advance enable. When this bit and the USBSTS[AAI] bit are set, controller issues an
AAE interrupt at the next interrupt threshold. Software clearing the USBSTS[AAI] bit acknowledges the interrupt.
Used only in host mode.
0 Disabled
1 Enabled
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Table 10-21. USBINTR Field Descriptions (continued)

Field Description
4 System error enable. When this bit and the USBSTS[SEI] bit are set, controller issues an interrupt. Software
SEE clearing the USBSTSI[SEI] bit acknowledges the interrupt.
0 Disabled
1 Enabled
3 Frame list rollover enable. When this bit and the USBSTS[FRI] bit are set, controller issues an interrupt.
FRE Software clearing the USBSTS[FRI] bit acknowledges the interrupt. Used only in host mode.
0 Disabled
1 Enabled
2 Port change detect enable. When this bit and the USBSTS[PCI] bit are set, controller issues an interrupt.
PCE Software clearing the USBSTS[PCI] bit acknowledges the interrupt.
0 Disabled
1 Enabled
1 USB error interrupt enable. When this bit and the USBSTS[UEI] bit are set, controller issues an interrupt at the
UEE next interrupt threshold. Software clearing the USBSTS[UEI] bit acknowledges the interrupt.
0 Disabled
1 Enabled
0 USB interrupt enable. When this bit is 1 and the USBSTS[UI] bit is set, the USB OTG controller issues an
UE interrupt at the next interrupt threshold. Software clearing the USBSTS[UI] bit acknowledges the interrupt.
0 Disabled
1 Enabled

10.3.4.4 Frame Index Register (FRINDEX)

In host mode, the controller uses this register to index the periodic frame list. The register updates every
125 microseconds (once each microframe). Bits [N—3] select a particular entry in the periodic frame list
during periodic schedule execution. The number of bits used for the index depends on the size of the frame
list as set by system software in the USBCMDIFS] field.

This register must be a longword. Byte writes produce undefined results. This register cannot be written
unless the USB OTG controller is in halted state as the USBSTS[HCH] bit indicates. A write to this
register while the USBSTS[RS] bit is set produces undefined results. Writes to this register also affect the
SOF value.

In device mode, this register is read-only, and the USB OTG controller updates the FRINDEX][13-3] bits
from the frame number the SOF marker indicates. When the USB bus receives a SOF, FRINDEX][13-3]
checks against the SOF marker. If FRINDEX][13-3] is different from the SOF marker, FRINDEX][13-3]
is set to the SOF value and FRINDEX][2—0] is cleared (SOF for 1 ms frame). If FRINDEX][13-3] equals
the SOF value, FRINDEX[2-0] is incremented (SOF for 125 usec microframe.)

Address: 0xFCOB_014C (FRINDEX) Access: User read/write

3130292827262524232221201918171615141312‘11 10 9 8‘7 6 5 4‘3 2 1.0
R/ojojofofjofjofojo|j0|j0|0|0|0|0O|0O|0O|0O]|O

W
Resetoooooooooooooooooooo\oooo\oooo\oooo

Figure 10-20. Frame Index Register (FRINDEX)

FRINDEX
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Table 10-22. FRINDEX Field Descriptions

Field Description
31-14 Reserved, must be cleared.
13-0 Frame index. The value in this register increments at the end of each time frame (microframe). Bits [N— 3] are

FRINDEX | for the frame list current index. This means each location of the frame list is accessed 8 times per frame (once
each microframe) before moving to the next index.

In device mode, the value is the current frame number of the last frame transmitted and not used as an index.
In either mode, bits 2—-0 indicate current microframe.

Table 10-23 illustrates values of N based on the value of the USBCMD[FS] field when used in host mode.
Table 10-23. FRINDEX N Values

USBCMDIFS] Frame List Size FRINDEX N value
000 1024 elements (4096 bytes) 12
001 512 elements (2048 bytes) 11
010 256 elements (1024 bytes) 10
011 128 elements (512 bytes) 9
100 64 elements (256 bytes) 8
101 32 elements (128 bytes) 7
110 16 elements (64 bytes) 6
111 8 elements (32 bytes) 5

10.3.4.5 Periodic Frame List Base Address Register (PERIODICLISTBASE)

This register contains the beginning address of the periodic frame list in the system memory. The host
controller driver loads this register prior to starting the schedule execution by the controller. The memory
structure referenced by this physical memory pointer assumes to be 4-Kbyte aligned. The contents
combine with the FRINDEX register to enable the controller to step through the periodic frame list in
sequence.

The host and device mode functions share this register. In host mode, it is the PERIODICLISTBASE
register; in device mode, it is the DEVICEADDR register. See Section 10.3.4.6, “Device Address Register
(DEVICEADDR),” for more information.

Address: 0xFCOB_0154 (PERIODICLISTBASE) Access: User read/write

31 30 29 28‘27 26 25 24’23 22 21 20‘19 18 17 16‘15 14 13 12|11 10 9 8 6 5 4|3 2 1 0
0j0|jo0j0|0|0]|O

R 0(0j0]|O0
PERBASE
w

Resetoooo\oooo\oooo\oooo\oooooooooooooooo
Figure 10-21. Periodic Frame List Base Address Register (PERIODICLISTBASE)

[@ NN

10-26 Freescale Semiconductor



Universal Serial Bus Interface — On-The-Go Module

Table 10-24. PERIODICLISTBASE Field Descriptions

Field Description
31-12 Base Address. These bits correspond to memory address signal [31:12]. Used only in the host mode
PERBASE
11-0 Reserved, must be cleared.

10.3.4.6 Device Address Register (DEVICEADDR)

This register is not defined in the EHCI specification. For device mode, the upper seven bits of this register
represent the device address. After any controller or USB reset, the device address is set to the default
address (0). The default address matches all incoming addresses. Software reprograms the address after

receiving a SET ADDRESS descriptor.

The host and device mode functions share this register. In device mode, it is the DEVICEADDR register;
in host mode, it is the PERIODICLISTBASE register. See Section 10.3.4.5, “Periodic Frame List Base
Address Register (PERIODICLISTBASE),” for more information.

Address: 0xFCOB_0154 (DEVICEADDR) Access: User read/write

31 30 29 28‘27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 6 5 4/3 2 1.0
R 0o|jojo|o|0|0|0|0O|0O|O|OjOjO|O|O|O|O 0|0|0|0]|0|0]|O
W USBADR

ResetOOO0‘0000000000000000000000000000
Figure 10-22. Device Address Register (DEVICEADDR)

[@ NN

Table 10-25. DEVICEADDR Field Descriptions

Field Description

31-25 Device Address. This field corresponds to the USB device address.
USBADR

24-0 Reserved, must be cleared.

10.3.4.7 Current Asynchronous List Address Register (ASYNCLISTADDR)

The ASYNCLISTADDR register contains the address of the next asynchronous queue head to executed
by the host.

The host and device mode functions share this register. In host mode, it is the ASYNCLISTADDR register;
in device mode, it is the EPLISTADDR register. See Section 10.3.4.8, “Endpoint List Address Register
(EPLISTADDR),” for more information.

Address: 0xFCOB_0158 (ASYNCLISTADDR) Access: User read/write
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4,3 2 1 0
R olofolo
ASYBASE
w
Resetoooo\oooo\oooo\oooo\oooo\oooo\oooooooo

Figure 10-23. Current Asynchronous List Address Register (ASYNCLISTADDR)
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Table 10-26. ASYNCLISTADDR Field Descriptions

Field Description
31-5 Link pointer low (LPL). These bits correspond to memory address signal [31:5]. This field may only reference
ASYBASE |a queue head (QH). Used only in host mode.
4-0 Reserved, must be cleared.
10.3.4.8 Endpoint List Address Register (EPLISTADDR)

This register is not defined in the EHCI specification. For device mode, this register contains the address
of the endpoint list top in system memory. The memory structure referenced by this physical memory
pointer assumes to be 64-bytes. The queue head is actually a 48-byte structure, but must be aligned on
64-byte boundary. However, the EPBASE field has a granularity of 2 Kbytes; in practice, the queue head
should be 2-Kbyte aligned.

The host and device mode functions share this register. In device mode, it is the EPLISTADDR register;

in host mode, it is the ASYNCLISTADDR register. See Section 10.3.4.7, “Current Asynchronous List
Address Register (ASYNCLISTADDR),” for more information.

Address: 0xFCOB_0158 (EPLISTADDR) Access: User read/write

31 30 29 28‘27 26 25 24’23 22 21 20‘19 18 17 16‘15 14 13 12’11 10 9 8

R 0|(0(0
EPBASE
w

Resetoooo\oooo\oooo\oooo\oooo\oooo
Figure 10-24. Endpoint List Address Register (EPLISTADDR)

6 5 4/3 2 1 0
0|jo0jo0|0|0]|O0

[@ NN

0 00 O0/0O0OTO

Table 10-27. EPLISTADDR Field Descriptions

Field Description
31-11 Endpoint list address. Correspond to memory address signals [31:11] References a list of up to 32 queue heads
EPBASE | (i.e. one queue head per endpoint and direction). Address of the top of the endpoint list.
10-0 Reserved, must be cleared.
10.3.4.9 Host TT Asynchronous Buffer Control (TTCTRL)
Address: 0xFCOB_015C (TTCTRL) Access: User read/write
31 302928‘27262524232221 20|19 18 17 16|15 14 13 12/11 10 9 8|7 6 5 4|3 2 1 0
R| O TTHA ofojojo|jofo|0|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O| O 0
Wl [T [T
Reset 0 0 0 0|0 O O O/O O O O/O O O O/O O O O|O O O O|0O0 O O O|O0O O O 0

Figure 10-25. Host TT Asynchronous Buffer Control (TTCTRL)
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Table 10-28. TTCTRL Field Descriptions

Field Description
31 Reserved, must be cleared.

3024 TT Hub Address. This field is used to match against the Hub Address field in a QH or siTD to determine if the

TTHA packet is routed to the internal TT for directly attached FS/LS devices. If the hub address in the QH or siTD
does not match this address then the packet is broadcast on the high speed ports destined for a downstream
HS hub with the address in the QH or siTD.

23-0 Reserved, must be cleared.

10.3.4.10 Master Interface Data Burst Size Register (BURSTSIZE)

This register is not defined in the EHCI specification. BURSTSIZE dynamically controls the burst size
during data movement on the initiator (master) interface.

Address: 0xFCOB_0160 (BURSTSIZE) Access: User read/write

31

30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12‘11 10 9 8|7 6 5 4 ‘3 2 1 0

R|ojofo0j0|0O|O|O|0O|O|lO|O|O|O|O|O]|O
W TXPBURST RXPBURST
ResetOOOOOO00000000000000’01000000‘0100
Figure 10-26. Master Interface Data Burst Size (BURSTSIZE)
Table 10-29. BURSTSIZE Field Descriptions
Field Description
31-16 Reserved, must be cleared.
15-8 Programable TX burst length. Represents the maximum length of a burst in 32-bit words while moving data from
TXPBURST | system memory to the USB bus. Must not be set to greater than 16.
7-0 Programable RX burst length. This register represents the maximum length of a burst in 32-bit words while
RXPBURST | moving data from the USB bus to system memory. Must not be set to greater than 16.
10.3.4.11 Transmit FIFO Tuning Control Register (TXFILLTUNING)

This register is not defined in the EHCI specification. The TXFILLTUNING register controls performance
tuning associated with how the module posts data to the TX latency FIFO before moving the data onto the
USB bus. The specific areas of performance include how much data to post into the FIFO and an estimate

for how long

Definitions:

that operation takes in the target system.

T,y = Standard packet overhead

T; = Time to send data payload

Ty

= Total packet flight time (send-only) packet (7, =T, + T;)

Tyy=Time to fetch packet into TX FIFO up to specified level
T, = Total packet time (fetch and send) packet (7, = T+ T})
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Upon discovery of a transmit (OUT/SETUP) packet in the data structures, the host controller checks to
ensure 7, remains before the end of the (micro)frame. If so, it pre-fills the TX FIFO. If at anytime during
the pre-fill operation the time remaining the (micro)frame is less than 7}, packet attempt ceases and tries
at a later time. Although this is not an error condition and the module eventually recovers, a mark is made
in the scheduler health counter to mark the occurrence of a back-off event. When a back-off event is
detected, the partial packet fetched may need to be discarded from the latency buffer to make room for
periodic traffic beginning after the next SOF. Too many back-off events can waste bandwidth and power
on the system bus and should be minimized (not necessarily eliminated). The TSCHHEALTH (7%)
parameter described below can minimize back-offs.

Address: 0xFCOB_0164 (TXFILLTUNING)

31 30 29 28|27 26 25 24

23 22 21 20‘19 18 17 16

15 14 13 12‘11 10 9 8

Access: User read/write

7654‘3210

R|0O(0|0|0O|0O|O|0O|O|O0]O 0[{0]|0

W TXFIFOTHRES TXSCHHEALTH TXSCHOH
Reset 0 0 0 0/0 0 0 0/0 0 0 0/0 00 0/00O0O0[/00O0O0[0O0OO0[0O0O0O

Figure 10-27. Transmit FIFO Tuning Controls (TXFILLTUNING)
Table 10-30. TXFILLTUNING Field Descriptions

Field Description
31-22 Reserved, must be cleared.
21-16 FIFO burst threshold. Controls the number of data bursts that are posted to the TX latency FIFO in host mode

TXFIFOTHRES

before the packet begins on the bus. The minimum value is 2 and this value should be as low as possible to
maximize USB performance. Systems with unpredictable latency and/or insufficient bandwidth can use a
higher value where the FIFO may underrun because the data transferred from the latency FIFO to USB
occurs before it can replenish from system memory.
This value is ignored if the USBMODE[SDIS] bit is set. When the USBMODE[SDIS] bit is set, the host
controller behaves as if TXFIFOTHRES is set to its maximum value.

15-13

Reserved, must be cleared.

10-30
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Table 10-30. TXFILLTUNING Field Descriptions (continued)

Field Description

12-8 Scheduler health counter. These bits increment when the host controller fails to fill the TX latency FIFO to the
TXSCHHEALTH | level programmed by TXFIFOTHRES before running out of time to send the packet before the next SOF.
This health counter measures the number of times this occurs to provide feedback to selecting a proper
TXSCHOH. Writing to this register clears the counter and this counter stops counting after reaching the
maximum of 31.

7-0 Scheduler overhead. These bits add an additional fixed offset to the schedule time estimator described as T
TXSCHOH | As an approximation, the value chosen for this register should limit the number of back-off events captured in
the TXSCHHEALTH field to less than 10 per second in a highly utilized bus. Choosing a value too high for this
register is not desired as it can needlessly reduce USB utilization.

The time unit represented in this register is 1.267 us when a device connects in high-speed mode.
The time unit represented in this register is 6.333 us when a device connects in low-/full-speed mode.

For most applications, TXSCHOH can be set to 4 or less. A good value to begin with is:

TXFIFOTHRES x (BURSTSIZE x 4)
40 x TimeUnit

Always rounded to the next higher integer. TimeUnitis 1.267 or 6.333 as noted earlier in this description. For
example, if TXFIFOTHRES is 5 and BURSTSIZE is 8, set TXSCHOH to 5x(8x4)/(40x1.267) equals 4 for a
high-speed link. If this value of TXSCHOH results in a TXSCHHEALTH count of 0 per second, low the value
by 1 if optimizing performance is desired. If TXSCHHEALTH exceeds 10 per second, raise the value by 1.
If streaming mode is disabled via the USBMODE register, treat TXFIFOTHRES as the maximum value for
purposes of the TXSCHOH calculation.

Eqgn. 10-1

10.3.4.12 ULPI Register Access (ULPI_VIEWPORT)

The register provides indirect access to the ULPI PHY register set. Although the controller modules
perform access to the ULPI PHY register set, there may be circumstances where software may need direct
access.

NOTE

Be advised that writes to the ULPI through the ULPI viewport can
substantially harm standard USB operations. Currently no usage model has
been defined where software should need to execute writes directly to the
ULPI. Executing read operations though the ULPI viewport should have no
harmful side effects to standard USB operations. Also, if the ULPI interface
is not enabled, this register is always read cleared.

Address: 0xFCOB_0170 (ULPI_VIEWPORT) Access: User read/write
31 30 29 28| 27 26 25 24|23 22 21 20‘19 18 17 16|15 14 13 12‘11 10 9 8|7 6 5 4‘3 2 10
RIULPI_|ULPI_[ULPI_| O |ULPI_| ULPI_ ULPI_DATRD
wl wu | RUN| RW [ ss PORT ULPI_ADDR l I l I l | ULPI_DATWR
Reset 0 0 0 0 0 00 OOOOO‘OOOOOOO 0|0 O O OOOOO‘OOOO

Figure 10-28. ULPI Register Access (ULPI VIEWPORT)
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Table 10-31. ULPI VIEWPORT Field Descriptions

Field Description
31 ULPI wake-up. Setting this bit begins the wake-up operation. This bit automatically clears after the
ULPI_WU wake-up is complete. After this bit is set, it can not be cleared by software.

Note: The driver must never execute a wake-up and a read/write operation at the same time.

30 ULPI run. Setting this bit begins a read/write operation. This bit automatically clears after the read/write is
ULPI_RUN complete. After this bit is set, it can not be cleared by software.
Note: The driver must never execute a wake-up and a read/write operation at the same time.
29 Read/write. Selects between running a read or write operation to the ULPI.
ULPI_RW 0 Read
1 Write
28 Reserved, should be cleared.
27 Sync state. Represents the state of the ULPI interface. Before reading this bit, the ULPI_PORT field should
ULPI_SS be set accordingly if used with the multi-port host. Otherwise, this field should always remain 0.

0 Any other state (that is, carkit, serial, low power).
1 Normal sync state.

26-24 Port number. For wake-up or read/write operations this value selects the port number to which the ULPI
ULPI_PORT PHY is attached. Valid values are 0 and 1.

23-16 Data address. When a read or write operation is commanded, the address of the operation is written to
ULPI_ADDR this field.

15-8 Data read. After a read operation completes, the result is placed in this field.
ULPI_DATRD

7-0 Data write. When a write operation is commanded, the data to be sent is written to this field.

ULPI_DATWR

There are two operations that can be performed with the ULPI viewport, wake-up and read/write
operations. The wake-up operation is used to put the ULPI interface into normal operation mode and
re-enable the clock if necessary. A wake-up operation is required before accessing the registers when the
ULPI interface is operating in low power mode, serial mode, or carkit mode. The ULPI state can be
determined by reading the sync state bit (ULPI_SS). If this bit is set, then the ULPI interface is running in
normal operating mode and can accept read/write operations. If ULPI SS is cleared, then read/write
operations are not executed. Undefined behavior results if a read or write operation is performed when
ULPI_SS is cleared. To execute a wake-up operation, write all 32-bits of the ULPI VIEWPORT where
ULPI PORT is constructed appropriately and the ULPI WU bit is set and the ULPI RUN bit is cleared.
Poll the ULPI VIEWPORT until ULPI_WU is cleared for the operation to complete.

To execute a read or write operation, write all 32-bits of the ULPI VIEWPORT where ULPI DATWR,
ULPI_ADDR, ULPI PORT, ULPI RW are constructed appropriately and the ULPI RUN bit is set. Poll
the ULPI VIEWPORT until ULPI RUN is cleared for the operation to complete. For read operations,
ULPI DATRD is valid after ULPI RUN is cleared.

The polling method above can be replaced with interrupts using the ULPI interrupt defined in the USBSTS
and USBINTR registers. When a wake-up or read/write operation completes, the ULPI interrupt is set.
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10.3.4.13 Configure Flag Register (CONFIGFLAG)

This EHCI register is not used in this implementation. A read from this register returns a constant of a
0x0000_0001 to indicate that all port routings default to this host controller.

Address: 0xFCOB_0180 (CONFIGFLAG) Access: User read-only

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16/15 14 13 12|11 10 9 8 |7 6 5 4,3 2 1 0
Rfojojo0|j0|0f0O|0O|O|O|O|O|O|O|O|O|OflO|O|O|O|OfO]|O 0|j0|0|0]|0]|0O]|1
W

Reset 0 0 0 0|0 O 0 O|O 0 O OO OOOOOOO|OO0OOOOOOOOOOQ 01

Figure 10-29. Configure Flag Register (CONFIGFLAG)

Table 10-32. CONFIGFLAG Field Descriptions

Field Description

31-0

Reserved. (0x0000_0001, all port routings default to this host)

10.3.4.14 Port Status and Control Registers (PORTSCn)

The USB module contains a single PORTSC register. This register only resets when power is initially
applied or in response to a controller reset. Initial conditions of a port are:

* No device connected
* Port disabled

If the port has port power control, this state remains until software applies power to the port by setting port
power to one.

For the USB OTG module in device mode, the USB OTG controller does not support power control. Port
control in device mode is used only for status port reset, suspend, and current connect status. It is also used

to initiate test mode or force signaling, and allows software to place the PHY into low-power suspend
mode and disable the PHY clock.

Address: 0xFCOB_0184 (PORTSC1)

31

30

29

28

27

26

25

24

23

22

21

20

Access: User read/write

19 18 17 16

R 1 0 PSPD 0
W PTS | PFSC|PHCD| WKOC |WKDS|WLCN PTC
Reset 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PO LS HSP OCC | OCA | PEC CSC | CCSs
PIC PP PR |SUSP| FPR PE
w wic wic wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 10-30. Port Status and Control Register (PORTSC1)
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Table 10-33. PORTSC1 Field Descriptions

Field Description
31-30 | Port transceiver select. Controls which parallel transceiver interface is selected.
PTS 00 Reserved
01 Reserved
10 ULPI parallel interface
11 FS/LS on-chip transceiver
This bit is not defined in the EHCI specification.
29 Reserved, must be set.
28 Reserved, must be cleared.
27-26 | Port speed. This read-only register field indicates the speed the port operates. This bit is not defined in the EHCI
PSPD | specification.
00 Full speed
01 Low speed
10 High speed
11 Undefined
25 Reserved, must be cleared.
24 Port force full-speed connect. Disables the chirp sequence that allows the port to identify itself as a HS port. useful
PFSC |for testing FS configurations with a HS host, hub, or device. Not defined in the EHCI specification.
0 Allow the port to identify itself as high speed.
1 Force the port to only connect at full speed.
This bit is for debugging purposes.
23 PHY low power suspend. This bit is not defined in the EHCI specification.
PHCD |Host mode:
The PHY can be placed into low-power suspend when downstream device is put into suspend mode or when no
downstream device connects. Software completely controls low-power suspend.
Device mode:
For the USB OTG module in device mode, the PHY can be put into low power suspend when the device is not
running (USBCMDIRS] = 0) or suspend signaling is detected on the USB. The PHCD bit is cleared automatically
when the resume signaling is detected or when forcing port resumes.
0 Normal PHY operation.
1 Signal the PHY to enter low-power suspend mode
Reading this bit indicates the status of the PHY.
22 Wake on over-current enable. Enables the port to be sensitive to over-current conditions as wake-up events. This
WKOC |field is O if the PP bit is cleared. In host mode, this bit can work with an external power control circuit.
21 Wake on disconnect enable. Enables the port to be sensitive to device disconnects as wake-up events.
WKDS | This field is 0 if the PP bit is cleared or the module is in device mode. In host mode, this bit can work with an external
power control circuit.
20 Wake on connect enable. Enables the port to be sensitive to device connects as wake-up events.
WLCN | This field is 0O if the PP bit is cleared or the module is in device mode. In host mode, this can work with an external

power control circuit.
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Table 10-33. PORTSC1 Field Descriptions (continued)

Field Description
19-16 | Port test control. Any value other than 0 indicates the port operates in test mode. Refer to Chapter 7 of the USB
PTC Specification Revision 2.0 for details on each test mode.
0000 Not enabled.
0001 J_STATE
0010 K_STATE
0011 SEQ_NAK
0100 Packet
0101 FORCE_ENABLE_HS
0110 FORCE_ENABLE_FS
0111 FORCE_ENABLE_LS
Else Reserved.
Note: The FORCE_ENABLE_FS and FORCE ENABLE_LS settings are extensions to the test mode support in the
EHCI specification. Writing the PTC field to any of the FORCE_ENABLE values forces the port into the
connected and enabled state at the selected speed. Then clearing the PTC field allows the port state
machines to progress normally from that point.
15-14 | Port indicator control.For this device, this feature is not implemented, therefore this field is read-only and is always
PIC cleared.
13 Port owner. Port owner handoff is not implemented in this design, therefore this bit is read-only and is always
PO cleared.
12 Port power. Represents the current setting of the port power control switch (0 equals off, 1 equals on). When power
PP is not available on a port (PP = 0), it is non-functional and does not report attaches, detaches, etc.
When an over-current condition is detected on a powered port, the host controller driver from a 1to a 0 (removing
power from the port) transitions the PP bit in each affected port.
11-10 |Line status. Reflects current logical levels of the USB DP (bit 11) and DM (bit 10) signal lines. In host mode, the line
LS status by the host controller driver is not necessary (unlike EHCI) because hardware manages the connection of FS
and LS. In device mode, LS by the device controller is not necessary.
00 SEO
01 J-state
10 K-state
11 Undefined
9 High speed port. Indicates if the host/device connected is in high speed mode.
HSP 0 FSorlLS
1 HS
Note: This bit is redundant with the PSPD bit field.
8 Port reset. This field is cleared if the PP bit is cleared.
PR Host mode:

When software sets this bit the bus-reset sequence as defined in the USB Specification Revision 2.0 starts. This
bit automatically clears after the reset sequence completes. This behavior is different from EHCI where the host
controller driver is required to clear this bit after the reset duration is timed in the driver.

Device mode:
This bit is a read-only status bit. Device reset from the USB bus is also indicated in the USBSTS register.

0 Portis not in reset.

1 Portis in reset.
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Table 10-33. PORTSC1 Field Descriptions (continued)

Field Description
7 Suspend
SUSP |0 Port not in suspend state.
1 Port in suspend state.
Host mode:
The PE and SUSP bits define the port state as follows:
PE SUSP Port State
0 X Disable
1 0 Enable
1 1 Suspend
When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The
blocking occurs at the end of the current transaction if a transaction was in progress when this bit was set. In the
suspend state, the port is sensitive to resume detection. The bit status does not change until the port is
suspended and there may be a delay in suspending a port if there is a transaction currently in progress on the
USB.
The module unconditionally clears this bit when software clears the FPR bit. The host controller ignores clearing
this bit. If host software sets this bit when the port is not enabled (PE = 0), the results are undefined.
This field is cleared if the PP bit is cleared in host mode.
Device mode:
In device mode, this bit is a read-only status bit.
6 Force Port Resume. This bit is not-EHCI compatible.
FPR 0 No resume (K-state) detected/driven on port.
1 Resume detected/driven on port.
Host mode:
Software sets this bit to drive resume signaling. The controller sets this bit if a J-to-K transition is detected while
the port is in suspend state (PE = SUSP = 1), which in turn sets the USBSTS[PCI] bit. This bit automatically
clears after the resume sequence is complete. This behavior is different from EHCI where the host controller
driver is required to clear this bit after the resume duration is timed in the driver.
When the controller owns the port, the resume sequence follows the defined sequence documented in the USB
Specification Revision 2.0. The resume signaling (full-speed K) is driven on the port as long as this bit remains
set. This bit remains set until the port switches to the high-speed idle. Clearing this bit has no affect because the
port controller times the resume operation to clear the bit the port control state switches to HS or FS idle.
This field is cleared if the PP bit is cleared in host mode.
Device mode:
After the device is in suspend state for 5 ms or more, software must set this bit to drive resume signaling before
clearing. The device controller sets this bit if a J-to-K transition is detected while port is in suspend state, which
in turn sets the USBSTS[PCI] bit. The bit is cleared when the device returns to normal operation.
5 Over-current change. Indicates a change to the OCA bit. Software clears this bit by writing a 1. For host mode, the
OCC | user can provide over-current detection to the USBn_PWRFAULT signal for this condition. For device-only
implementations, this bit must always be cleared.
0 No over-current.
1 Over-current detect.
4 Over-current active. This bit automatically transitions from 1 to 0 when the over-current condition is removed. For
OCA host/OTG implementations, the user can provide over-current detection to the USBn_PWRFAULT signal for this
condition. For device-only implementations, this bit must always be cleared.
0 Port not in over-current condition.
1 Port currently in over-current condition.
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Table 10-33. PORTSC1 Field Descriptions (continued)

Field Description

3 Port enable/disable change. For the root hub, this bit gets set only when a port is disabled due to disconnect on the
PEC port or due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification).
Software clears this by writing a 1 to it.

In device mode, the device port is always enabled. (This bit is zero).
0 No change.

1 Port disabled.

This field is cleared if the PP bit is cleared.

2 Port enabled/disabled.

PE Host mode:
Ports can only be enabled by the controller as a part of the reset and enable sequence. Software cannot enable
a port by setting this bit. A fault condition (disconnect event or other fault condition) or host software can disable
ports. The bit status does not change until the port state actually changes. There may be a delay in disabling or
enabling a port due to other host and bus events.
When the port is disabled, downstream propagation of data is blocked except for reset. This field is cleared if the
PP bit is cleared in host mode.

Device mode:
The device port is always enabled. (This bit is set).

1 Connect change status.

CSC  |Host mode:
This bit indicates a change occurred in the port’s current connect status. The controller sets this bit for all changes
to the port device connect status, even if system software has not cleared an existing connect status change. For
example, the insertion status changes twice before system software has cleared the changed condition; hub
hardware is setting an already-set bit (i.e., the bit remains set). Software clears this bit by writing a 1 to it. This
field is cleared if the PP bit is cleared.

0 No change.

1 Connect status has changed.

In device mode, this bit is undefined.

0 Current connect status. Indicates that a device successfully attaches and operates in high speed or full speed as
CCs indicated by the PSPD bit. If clear, the device did not attach successfully or forcibly disconnects by the software
clearing the USBCMDI[RUN] bit. It does not state the device disconnected or suspended. This field is cleared if the
PP bit is cleared in host mode.

0 No device present (host mode) or attached (device mode)
1 Device is present (host mode) or attached (device mode)

10.3.4.15 On-the-Go Status and Control Register (OTGSC)

This register is not defined in the EHCI specification. The host controller implements one OTGSC register
corresponding to port 0 of the host controller.
The OTGSC register has four sections:

* OTG interrupt enables (read/write)

* OTG interrupt status (read/write to clear)

* OTG status inputs (read-only)

* OTG controls (read/write)

The status inputs de-bounce using a 1 ms time constant. Values on the status inputs that do not persist for
more than 1 ms do not cause an update of the status inputs or an OTG interrupt.
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Address: 0xFCOB_01A4 (OTGSC)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 | DPIS |1MSS|BSEIS|BSVIS|ASVIS|AVVIS| IDIS
DPIE | 1MSE |BSEIE|BSVIE |ASVIE |AVVIE| IDIE
w wic | wic | wic | wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rl O DPS |1MST| BSE | BSV | ASV | AVV | ID 0 0 0
IDPU | DP oT VC VD
w
Reset 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
Figure 10-31. On-the-Go Status and Control Register (OTGSC)
Table 10-34. OTGSC Field Descriptions
Field Description
31 Reserved, must be cleared.
30 Data pulse interrupt enable.
DPIE 0 Disable
1 Enable
29 1 millisecond timer interrupt enable.
1MSE |0 Disable
1 Enable
28 B session end interrupt enable.
BSEIE |0 Disable
1 Enable
27 B session valid interrupt enable.
BSVIE |0 Disable
1 Enable
26 A session valid interrupt enable.
ASVIE |0 Disable
1 Enable
25 A VBUS valid interrupt enable.
AVVIE |0 Disable
1 Enable
24 USB ID interrupt enable.
IDIE 0 Disable
1 Enable
23 Reserved, must be cleared.
22 Data pulse interrupt status. Indicates when data bus pulsing occurs on DP or DM. Data bus pulsing only detected
DPIS when USBMODE[CM] equals 11 and PORTSCO[PP] is cleared. Software must write a 1 to clear this bit.
21 1 millisecond timer interrupt status. This bit is set once every millisecond. Software must write a 1 to clear this bit.
1MSS
20 B session end interrupt status. Indicates when VBUS falls below the B session end threshold. Software must write
BSEIS |a 1 to clear this bit.

10-38

Freescale Semiconductor



Universal Serial Bus Interface — On-The-Go Module

Table 10-34. OTGSC Field Descriptions (continued)

Field Description
19 B session valid interrupt status. Indicates when VBUS rises above or falls below the B session valid threshold (0.8
BSVIS |VDC). Software must write a 1 to clear this bit.
18 A session valid interrupt status. Indicates when VBUS rises above or falls below the A session valid threshold (0.8
ASVIS | VDC). Software must write a 1 to clear this bit.
17 A VBUS valid interrupt status. Indicates when VBUS rises above or falls below the VBUS valid threshold (4.4
AVVIS | VDC) on an A device. Software must write a 1 to clear this bit.
16 USB ID interrupt status. Indicates when a change on the ID input is detected. Software must write a 1 to clear this
IDIS bit.
15 Reserved, must be cleared.
14 Data bus pulsing status.
DPS 0 No pulsing on port.
1 Pulsing detected on port.
13 1 millisecond timer toggle. This bit toggles once per millisecond.
1MST
12 B session end.
BSE 0 VBus is above B session end threshold.
1 VBus is below B session end threshold.
11 B Session valid.
BSV 0 VBus is below B session valid threshold.
1 VBus is above B session valid threshold.
10 A Session valid.
ASV 0 VBus is below A session valid threshold.
1 VBus is above A session valid threshold.
9 A VBus valid.
AVV 0 VBus is below A VBus valid threshold.
1 VBus is above A VBus valid threshold.
8 USB ID.
ID 0 A device.
1 B device.
7-6 Reserved, must be cleared.
5 ID Pull-up. Provides control over the ID pull-up resistor.
IDPU 0 Disable pull-up. ID input not sampled.
1 Enable pull-up.
4 Data pulsing.
DP 0 The pull-up on DP is not asserted.
1 The pull-up on DP is asserted for data pulsing during SRP.
3 OTG Termination. This bit must be set with the OTG module in device mode.
oT 0 Disable pull-down on DM.
1 Enable pull-down on DM.
2 Reserved, must be cleared.
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Table 10-34. OTGSC Field Descriptions (continued)

Field Description
1 VBUS charge. Setting this bit causes the VBUS line to charge. This is used for VBus pulsing during SRP.
vC

0 VBUS discharge. Setting this bit causes VBUS to discharge through a resistor.
VD

10.3.4.16 USB Mode Register (USBMODE)

This register is not defined in the EHCI specification. It controls the operating mode of the module.

Address: 0xFCOB_01A8 (USBMODE) Access: User read/write
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| O 0 0 0 0 0 0 0
W SDIS [SLOM| ES CM
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-32. USB Mode Register (USBMODE)

Table 10-35. USBMODE Field Descriptions

Field Description

31-5 Reserved, must be cleared.

4 Stream disable.
SDIS |0 Inactive.
1 Active.
Host mode:

Setting this bit ensures that overruns/underruns of the latency FIFO are eliminated for low bandwidth systems
where the RX and TX buffers are sufficient to contain the entire packet. Enabling stream disable also has the
effect of ensuring the TX latency fills to capacity before the packet launches onto the USB.
Time duration to pre-fill the FIFO becomes significant when stream disable is active. See TXFILLTUNING to
characterize the adjustments needed for the scheduler when using this feature.
Also, in systems with high system bus utilization, setting this bit ensures no overruns or underruns during
operation at the expense of link utilization. SDIS can be left clear and the rules under the description of the
TXFILLTUNING register can limit underruns/overruns for those who desire optimal link performance.

Device mode:
Setting this bit disables double priming on RX and TX for low bandwidth systems. This mode ensures that when
the RX and TX buffers are sufficient to contain an entire packet that the standard double buffering scheme is
disabled to prevent overruns/underruns in bandwidth limited systems.
In high-speed mode, all packets received are responded to with a NYET handshake when stream disable is
active.

3 Setup lockout mode. For the module in device mode, this bit controls behavior of the setup lock mechanism. See
SLOM | Section 10.5.3.4.4, “Control Endpoint Operation.”
0 Setup lockouts on.
1 Setup lockouts off (software requires use of the USBCMD[SUTW] bit).
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Table 10-35. USBMODE Field Descriptions (continued)

Field

Description

Endian select. Controls the byte ordering of the transfer buffers to match the host microprocessor bus architecture.
The bit fields in the register interface and the DMA data structures (including the setup buffer within the device QH)
are unaffected by the value of this bit, because they are based upon 32-bit words.

0 Little endian. First byte referenced in least significant byte of 32-bit word.

1 Big endian. First byte referenced in most significant byte of 32-bit word.

Note: For proper operation, this bit must be set for this ColdFire device.

1-0
CM

Controller mode. This register can be written only once after reset. If necessary to switch modes, software must
reset the controller by writing to the USBCMDI[RST] bit before reprogramming this register.

00 Idle (default for the USB OTG module)

01 Reserved

10 Device controller

11 Host controller

Note: The USB OTG module must be initialized to the desired operating mode after reset.

10.3.4.17 Endpoint Setup Status Register (EPSETUPSR)

This register is not defined in the EHCI specification. This register contains the endpoint setup status and
is used only in device mode.

Address: 0xFCOB_01AC (EPSETUPSR) Access: User read/write

31 30 29 28|27 26 25 24|23 22 21 2019 18 17 16|15 14 13 12|11 10 9 8 |7 413 2 1 0

5
0

o|lo

R{o|0|0O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O|O
EPSETUPSTAT
w
Reset 0 0 0 0|0 0 O O|O O O O|O O O O/O O O O|O O OO|OOOO O O O O
Figure 10-33. Endpoint Setup Status Register (EPSETUPSR)
Table 10-36. EPSETUPSR Field Descriptions
Field Description
314 Reserved, must be cleared.
3-0 Setup endpoint status. For every setup transaction received, a corresponding bit in this field is set.

EPSETUPSTAT | Software must clear or acknowledge the setup transfer by writing a 1 to a respective bit after it has read

the setup data from the queue head. The response to a setup packet, as in the order of operations and
total response time, is crucial to limit bus time outs while the setup lockout mechanism engages.

10.3.4.18 Endpoint Initialization Register (EPPRIME)

This register is not defined in the EHCI specification. This register is used to initialize endpoints and is
used only in device mode.

Address: 0xFCOB_01B0 (EPPRIME) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
Rj{ojojO0(O|O|O|lO|O|0O|0O|O]|O ojojo|ojojo|0|OjO|0O|0O]|O
W PETB PERB

Reset 0 0 0 0|0 O 0O OO O O O|O O OOOOOGOOOOOOOOO|O0OO0O0OO

Figure 10-34. Endpoint Initialization Register (EPPRIME)
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Table 10-37. EPPRIME Field Descriptions

Field Description

31-20 |Reserved, must be cleared.

19-16 | Prime endpoint transmit buffer. For each endpoint, a corresponding bit requests that a buffer be prepared for a

PETB |transmit operation to respond to a USB IN/INTERRUPT transaction. Software must write a 1 to the corresponding

bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for

a new transfer descriptor from the queue head and prepare a transmit buffer. Hardware clears this bit when

associated endpoint(s) is (are) successfully primed.

Note: These bits are momentarily set by hardware during hardware re-priming operations when a dTD retires, and
the dQH updates.

154 Reserved, must be cleared.

3-0 Prime endpoint receive buffer. For each endpoint, a corresponding bit requests that a buffer be prepared for a
PERB | receive operation to respond to a USB OUT transaction. Software must write a 1 to the corresponding bit when
posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new
transfer descriptor from the queue head and prepare a receive buffer. Hardware clears this bit when associated
endpoint(s) is (are) successfully primed.

Note: These bits are momentarily set by hardware during hardware re-priming operations when a dTD retires, and
the dQH updates.

10.3.4.19 Endpoint Flush Register (EPFLUSH)

This register is not defined in the EHCI specification. This register used only in device mode.

Address: 0xFCOB_01B4 (EPFLUSH) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
R(ojo|l0O|O|0O|0O|0O|0O|0O]|0O|O]|O ojojo|ofjojo0|0O|lO|O|O|O]|O

FETB FERB

w
Reset 0 0 0 0|0 O O O|O O O O/|O O O OO O O O|O0 O O O|0O0 O O O|O0 O OO

Figure 10-35. Endpoint Flush Register (EPFLUSH)

Table 10-38. EPFLUSH Field Descriptions

Field Description

31-20 |Reserved, must be cleared.

19-16 | Flush endpoint transmit buffer. Writing a 1 to a bit in this field causes the associated endpoint to clear any primed
FETB |buffers. If a packet is in progress for an associated endpoint, that transfer continues until completion. Hardware
clears this register after the endpoint flush operation is successful.

15-4 Reserved, must be cleared.

3-0 Flush endpoint receive buffer. Writing a 1 to a bit in this field causes the associated endpoint to clear any primed
FERB | buffers. If a packet is in progress for an associated endpoint, that transfer continues until completion. Hardware
clears this register after the endpoint flush operation is successful. FERB[3] corresponds to endpoint 3.

10.3.4.20 Endpoint Status Register (EPSR)

This register is not defined in the EHCI specification. This register is only used in device mode.
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Address: 0xFC0OB_01B8 (EPSR) Access: User read-only

19 18 17 16|15 14 13 12|11 10 9 8|7 6 5
ETBR 0|jojo|j0|j0|0|0O|0O|O|O]|O

0O 0 00O|OOOOOOOOOOOOOOOSOO0O0OO0OTO
Figure 10-36. Endpoint Status Register (EPSR)

4/3 2 1 0
0| ERBR

0 0 0O

31 30 29 2827 26 25 24
R|0|{0f(0O|0O|O|0O|O|O|0O]|O

w
Reset 0 0 0 O

23 22 21 20
0|0

Table 10-39. EPSR Field Descriptions

Field Description

31-20 |Reserved, must be cleared.

19-16
ETBR

Endpoint transmit buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. The

hardware sets this bit in response to receiving a command from a corresponding bit in the EPPRIME register. A

constant delay exists between setting a bit in the EPPRIME register and endpoint indicating ready. This delay time

varies based upon the current USB traffic and the number of bits set in the EPPRIME register. USB reset, USB DMA

system, or EPFLUSH register clears the buffer ready. ETBRI[3] (bit 19) corresponds to endpoint 3.

Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD is
retired, and the dQH is updated.

15-4 | Reserved, must be cleared.

3-0
ERBR

Endpoint receive buffer ready. One bit for each endpoint indicates status of the respective endpoint buffer. The

hardware sets this bit in response to receiving a command from a corresponding bit in the EPPRIME register. A

constant delay exists between setting a bit in the EPPRIME register and endpoint indicating ready. This delay time

varies based upon the current USB traffic and the number of bits set in the EPPRIME register. USB reset, USB DMA

system, or EPFLUSH register clears the buffer ready. ERBRI[3] (bit 19) corresponds to endpoint 3.

Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD is
retired, and the dQH is updated.

10.3.4.21 Endpoint Complete Register (EPCOMPLETE)
This register is not defined in the EHCI specification. This register is used only in device mode.
User read/write

Address: 0xFCOB_01BC (EPCOMPLETE) Access:

31 30 29 28

27 26 25 24

23 22 21 20

19 18 17 16

15 14 13 12

11 10 9 8

4

3 2 1 0

R|0|0|0]|O

0(0(0]|0

0(0j0]|0

ETCE

0(0(0]|0

0(0j0]|0

6 5
00

[@ NN

0

ERCE

W

wic

wic

Reset 0 0 0 O

0 00O

0 00O

0 00O

0 0 00O

0 00O

0 0O

Figure 10-37. Endpoint Complete Register (EPCOMPLETE)

Table 10-40. EPCOMPLETE Field Descriptions

0

0 000

Field Description

31-20 Reserved, must be cleared.

19-16 Endpoint transmit complete event. Each bit indicates a transmit event (IN/INTERRUPT) occurs and software must

ETCE read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set in the
transfer descriptor, this bit is set simultaneously with the USBINT. Writing a 1 clears the corresponding bit in this
register. ETCE[3] (bit 19) corresponds to endpoint 3.
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Table 10-40. EPCOMPLETE Field Descriptions (continued)

Field Description
154 Reserved, must be cleared
3-0 Endpoint receive complete event. Each bit indicates a received event (OUT/SETUP) occurs and software must
ERCE read the corresponding endpoint queue to determine the transfer status. If the corresponding IOC bit is set in the
transfer descriptor, this bit is set simultaneously with the USBINT. Writing a 1 clears the corresponding bit in this
register. ERCE[3] corresponds to endpoint 3.

10.3.4.22 Endpoint Control Register 0 (EPCRO0)

This register is not defined in the EHCI specification. Every device implements endpoint 0 as a control

endpoint.
Address: 0xFCOB_01CO0 (EPCRO) Access: User read/write
31 30 29 28|27 26 25 24| 23 22 21 20|19 18 17 16 |15 14 13 12|11 10 9 8| 7 6 5 4|3 2 1 0
R/|0O|0|0O|0|O0O|O|O0O|O|TXE|O|O|O|TXT|O 0[{0|0O|0O|O|0O|0O|O|RXE|O|O|O|RXT|O
TXS RXS
w
Reset 0 0 0 0|0 0O O O/ 1 0 O O/O OO O|OOOOOOOSO 1T O0O0OOO0OO0OODTFODO
Figure 10-38. Endpoint Control 0 (EPCRO)
Table 10-41. EPCRO Field Descriptions
Field Description
31-24 Reserved, must be cleared.
23 TX endpoint enable. Endpoint zero is always enabled.
TXE 1 Enable
22-20 Reserved, must be cleared.
19-18 TX endpoint type. Endpoint zero is always a control endpoint.
TXT 00 Control
17 Reserved, must be cleared.
16 TX endpoint stall. Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host.
TXS It continues returning STALL until software clears the bit or it automatically clears upon receipt of a new SETUP
request.
0 Endpoint OK
1 Endpoint stalled
15-8 Reserved, must be cleared.
7 RX endpoint enable. Endpoint zero is always enabled.
RXE 1 Enabled.
6-4 Reserved, must be cleared.
3-2 RX endpoint type. Endpoint zero is always a control endpoint.
RXT 00 Control
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Table 10-41. EPCRO Field Descriptions (continued)

Field Description

1 Reserved, must be cleared.

0 RX endpoint stall. Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host.
RXS It continues returning STALL until software clears the bit or it automatically clears upon receipt of a new SETUP

request.
0 Endpoint OK
1 Endpoint stalled

10.3.4.23 Endpoint Control Register n (EPCRn)

These registers are not defined in the EHCI specification. There is an EPCR# register for each endpoint in

a device.

Address: 0xFCOB_01C4 (EPCR1)
0xFCOB_01C8 (EPCR2)
0xFCOB_01CA (EPCRS3)

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R| O 0 0 0 0 0 0 0 0 0
TXE TXI TXT TXD | TXS
w TXR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| O 0 0 0 0 0 0 0 0 0
RXE RXI RXT RXD | RXS
w RXR
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 10-39. Endpoint Control Registers (EPCRn)
Table 10-42. EPCRn Field Descriptions
Field Description
31-24 | Reserved, must be cleared.
23 TX endpoint enable.
TXE 0 Disabled
1 Enabled
22 TX data toggle reset. When a configuration event is received for this Endpoint, software must write a 1 to this bit
TXR to synchronize the data PID’s between the host and device. This bit is self-clearing.
21 TX data toggle inhibit. This bit is used only for test and should always be written as 0. Writing a 1 to this bit causes
TXI this endpoint to ignore the data toggle sequence and always transmit DATAO for a data packet.
0 PID sequencing enabled.
1 PID sequencing disabled.
20 Reserved, must be cleared.
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Table 10-42. EPCRn Field Descriptions (continued)

Field Description
19-18 | TX endpoint type.
TXT 00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should
be configured as a bulk type endpoint.
17 TX endpoint data source. This bit should always be written as 0, which selects the dual port memory/DMA engine
TXD as the source.
16 TX endpoint stall. This bit sets automatically upon receipt of a SETUP request if this endpoint is not configured as
TXS a control endpoint. It clears automatically upon receipt of a SETUP request if this endpoint is configured as a
control endpoint.
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues
returning STALL until software clears this bit clears or automatically clears as above.
0 Endpoint OK
1 Endpoint stalled
15-8 Reserved, must be cleared.
7 RX endpoint enable.
RXE 0 Disabled
1 Enabled
6 RX data toggle reset. When a configuration event is received for this endpoint, software must write a 1 to this bit
RXR to synchronize the data PIDs between the host and device. This bit is self-clearing.
5 RX data toggle inhibit. This bit is only for testing and should always be written as 0. Writing a 1 to this bit causes
RXI this endpoint to ignore the data toggle sequence and always accept data packets regardless of their data PID.
0 PID sequencing enabled
1 PID sequencing disabled
4 Reserved, must be cleared.
3-2 RX endpoint type.
RXT 00 Control
01 Isochronous
10 Bulk
11 Interrupt
Note: When only one endpoint (RX or TX, but not both) of an endpoint pair is used, the unused endpoint should
be configured as a bulk type endpoint.
1 RX endpoint data sink. This bit should always be written as 0, which selects the dual port memory/DMA engine
RXD as the sink.
0 RX endpoint stall. This bit sets automatically upon receipt of a SETUP request if this endpoint is not configured
RXS as a control endpoint. It clears automatically upon receipt of a SETUP request if this endpoint is configured as a
control endpoint,
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues
returning STALL until software clears this bit or automatically clears as above,
0 Endpoint OK
1 Endpoint stalled
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10.4 Functional Description

This module can be broken down into functional sub-blocks as described below.

10.4.1 System Interface

The system interface block contains all the control and status registers to allow a core to interface to the
module. These registers allow the processor to control the configuration and ascertain the capabilities of
the module and, they control the module’s operation.

10.4.2 DMA Engine

The USB module contains a local DMA engine. It is responsible for moving all of the data transferred over
the USB between the module and system memory. Like the system interface block, the DMA engine block
uses a simple synchronous bus signaling protocol.

The DMA controllers must access control information and packet data from system memory. Control
information is contained in link list based queue structures. The DMA controllers have state machines able
to parse data structures defined in the EHCI specification. In host mode, the data structures are EHCI
compliant and represent queues of transfers performed by the host controller, including the
split-transaction requests that allow an EHCI controller to direct packets to FS and LS speed devices. In
device mode, data structures are similar to those in the EHCI specification and used to allow device
responses to be queued for each of the active pipes in the device.

10.4.3 FIFO RAM Controller

The FIFO RAM controller is used for context information and to control FIFOs between the protocol
engine and the DMA controller. These FIFOs decouple the system processor/memory bus requests from
the extremely tight timing required by USB.

The use of the FIFO buffers differs between host and device mode operation. In host mode, a single data
channel maintains in each direction through the buffer memory. In device mode, multiple FIFO channels
maintain for each of the active endpoints in the system.

In host mode, the USB OTG modules use 16-byte transmit buffers and 16-byte receive buffers. For the
USB OTG module, device operation uses a single 16-byte receive buffer and a 16-byte transmit buffer for
each endpoint.

10.4.4 Physical Layer (PHY) Interface

Readers should familiarize themselves with chapter 7 of the Universal Serial Bus Specification, Revision
2.0. The USB OTG modules contain an on-chip digital to analog transceiver (XCVR) for DP and DN USB
network communication. The USB module defaults to FS XCVR operation and can communicate in LS.
The USB OTG module may interface to any ULPI compatible PHY as well.

Due to pin-count limitations the USB module only supports certain combinations of PHY interfaces and
USB functionality. Refer to the Table 10-43 for more information.
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Table 10-43. USB Network Speed and Required Physical Interface

DP and DN
USB Mode and Speed On-Chip Analog | I>C |FEC External Integrated Circuit Required
XCVR Active
USB Host FS/LS Yes No | Yes | See Section 10.4.4.1, “USB On-Chip Transceiver
Required External Components”
USB Device FS Yes No | Yes | See Section 10.4.4.1, “USB On-Chip Transceiver
Required External Components”
Host/Device ULPI HS/FS No Yes | No |Maxim

10.4.4.1 USB On-Chip Transceiver Required External Components

USB system operation does not require external components. However, the recommended method ensures
driver output impedance, eye diagram, and Vgyjq cable fault tolerance requirements are met. The
recommended method is for the DM and DP I/O pads to connect through series resistors (approximately
33 Q each) to the USB connector on the application printed circuit board (PCB). Additionally, signal
quality optimizes when these 33 Q resistors are mounted close to the processor rather than closer to the
USB board level connector.

NOTE

Internal pull-down resistors are included that keep the DP and DM ports in
a known quiescent state when the USB port is not used or when a USB cable
is not connected.

Also included is an internal 1.5k Q pull-up resistor on DP controlled by the
CCM. (See Chapter 11, “Chip Configuration Module (CCM),” for more
details.) This allows the OTG module to operate in full-speed device
operation. Host operation requires this internal resistor to be disabled via the
CCM, and 15k Q external resistors to connect from DP and DM signals to
ground.

10.5 |Initialization/Application Information

10.5.1 Host Operation

Enhanced Host Controller Interface (EHCI) Specification defines the general operational model for the
USB module in host mode. The EHCI specification describes the register-level interface for a host
controller for USB Revision 2.0. It includes a description of the hardware/software interface between
system software and host controller hardware. The next section has information about the initialization of
the USB modules; however, full details of the EHCI specification are beyond the scope of this document.

10.5.1.1 Host Controller Initialization

After initial power-on or module reset (via the USBCMD[RST] bit), all of the operational registers are at
default values, as illustrated in the register memory map in Table 10-4.
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To initialize the host controller, software must:
1. Optionally set streaming disable in the USBMODE[SDIS] bit.
Optionally modify the BURSTSIZE register.
Program the PORTSCI1[PTS] field if using a non-ULPI PHY.
Optionally write the appropriate value to the USBINTR register to enable the desired interrupts.

Set the USBMODE[CM] field to enable host mode, and set the USBMODE[ES] bit for big endian

operation.

6. Write the USBCMD register to set the desired interrupt threshold, frame list size (if applicable),
and turn the controller on by setting the USBCMDI[RS] bit.

7. Enable external VBUS supply. The exact steps required for initialization depend on the external

hardware used to supply the 5V VBUS power.

8. Set the PORTSC[PP] bit.

e

At this point, the host controller is up and running and the port registers begin reporting device connects.
System software can enumerate a port through the reset process (port is in the enabled state).

To communicate with devices via the asynchronous schedule, system software must write the
ASYNCLISTADDR register with the address of a control or bulk queue head. Software must then enable
the asynchronous schedule by setting the asynchronous schedule enable (ASE) bit in the USBCMD
register. To communicate with devices via the periodic schedule, system software must enable the periodic
schedule by setting the periodic schedule enable (PSE) bit in the USBCMD register. Schedules can be
turned on before the first port is reset and enabled.

Any time the USBCMD register is written, system software must ensure the appropriate bits are preserved,
depending on the intended operation.

10.5.2 Device Data Structures

This section defines the interface data structures used to communicate control, status, and data between
device controller driver (DCD) software and the device controller. The interface consists of device queue
heads and transfer descriptors.

NOTE
Software must ensure that data structures do not span a 4K-page boundary.
The USB OTG uses an array of device endpoint queue heads to organize device transfers. As shown in

Figure 10-40, there are two endpoint queue heads in the array for each device endpoint—one for IN and
one for OUT. The EPLISTADDR provides a pointer to the first entry in the array.
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ENDPOINTLISTADDR

Endpoint Queue Heads
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—

Endpoint
Transfer
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Figure 10-40. End Point Queue Head Organization

10.5.2.1

Endpoint Queue Head

All transfers are managed in the device endpoint queue head (dQH). The dQH is a 48-byte data structure,
but must align on 64-byte boundaries. During priming of an endpoint, the dTD (device transfer descriptor)
copies into the overlay area of the dQH, which starts at the nextTD pointer longword and continues
through the end of the buffer pointers longwords. After a transfer is complete, the dTD status longword
updates in the dTD pointed to by the currentTD pointer. While a packet is in progress, the overlay area of
the dQH acts as a staging area for the dTD so the device controller can access needed information with

minimal latency.

Figure 10-41 shows the endpoint queue head structure.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Mult [ZLT| 0| O Maximum Packet Length I0s|o|jo|jo0|jO0O|0O0O|0O|O0O|0O|O|O|O|O|0O|O]|O
Current dTD Pointer o|jojojo0|0
Next dTD Pointer 0|{0|0|0|T
0|0 Total Bytes IOC|0 |0 |0 |MultO|0]|O0 Status
Buffer Pointer (Page 0) Current Offset
Buffer Pointer (Page 1) Reserved
Buffer Pointer (Page 2) Reserved
Buffer Pointer (Page 3) Reserved
Buffer Pointer (Page 4) Reserved
Reserved

Setup Buffer Bytes 3—0

Setup Buffer Bytes 7—4

Device controller read/write; all others read-only.

Figure 10-41. Endpoint Queue Head Layout

1 Offsets 0x08 through 0x20 contain the transfer overlay.

10.5.2.1.

1 Endpoint Capabilities/Characteristics (Offset = 0x0)

offset

0x00
0x04
oxo8!
0x0C!
ox10?
ox14!
ox18!
0x1C!
0x20'
0x24
0x28
0x2C

This longword specifies static information about the endpoint. In other words, this information does not
change over the lifetime of the endpoint. DCD software must not attempt to modify this information while
the corresponding endpoint is enabled.

Table 10-44. Endpoint Capabilities/Characteristics

Field Description
31-30 Mult. This field indicates the number of packets executed per transaction description as given by:
Mult 00 Execute N Transactions as demonstrated by the USB variable length packet protocol where N computes

01 Execute 1 Transaction.
10 Execute 2 Transactions.
11 Execute 3 Transactions.

needed.

using the Maximum Packet Length (dQH) and the Total Bytes field (dTD)

Note: Non-ISO endpoints must set Mult equal to 00. ISO endpoints must set Mult equal to 01, 10, or 11 as
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Table 10-44. Endpoint Capabilities/Characteristics (continued)

Field Description
29 Zero length termination select. This bit is ignored in isochronous transfers.
ZLT Clearing this bit enables the hardware to automatically append a zero length packet when the following

conditions are true:

* The packet transmitted equals maximum packet length

e The dTD has exhausted the field Total Bytes

After this the dTD retires. When the device is receiving, if the last packet length received equals the maximum
packet length and the total bytes is zero, it waits for a zero length packet from the host to retire the current dTD.

Setting this bit disables the zero length packet. When the device is transmitting, the hardware does not append
any zero length packet. When receiving, it does not require a zero length packet to retire a dTD whose last packet
was equal to the maximum packet length packet. The dTD is retired as soon as Total Bytes field goes to zero,

or a short packet is received.

0 Enable zero length packet (default).

1 Disable the zero length packet.

Note: Each transfer is defined by one dTD, so the zero length termination is for each dTD. In some software
application cases, the logic transfer does not fit into only one dTD, so it does not make sense to add a zero
length termination packet each time a dTD is consumed. On those cases we recommend to disable the
ZLT feature, and use software to generate the zero length termination.

28-27 Reserved. Reserved for future use and must be cleared.

26-16 Maximum packet length. This directly corresponds to the maximum packet size of the associated endpoint
Maximum (wMaxPacketSize). The maximum value this field may contain is 0x400 (1024).
Packet Length

15 Interrupt on setup (I0S). This bit used on control type endpoints indicates if USBSTS[UI] is set in response to a
I0S setup being received.
14-0 Reserved. Reserved for future use and must be cleared.

10.5.2.1.2 Current dTD Pointer (Offset = 0x4)

The device controller uses the current dTD pointer to locate transfer in progress. This word is for USB
OTG (hardware) use only and should not be modified by DCD software.

Table 10-45. Current dTD Pointer

Field Description

31-5 Current dtd. This field is a pointer to the dTD represented in the transfer overlay area. This field is modified by the
Current dtd | device controller to next dTD pointer during endpoint priming or queue advance.

4-0 Reserved. Reserved for future use and must be cleared.

10.5.2.1.3 Transfer Overlay (Offset = 0x8-0x20)

The seven longwords in the overlay area represent a transaction working space for the device controller.
The general operational model is that the device controller can detect whether the overlay area contains a
description of an active transfer. If it does not contain an active transfer, it does not read the associated
endpoint.

After an endpoint is readied, the dTD is copied into this queue head overlay area by the device controller.
Until a transfer expires, software must not write the queue head overlay area or the associated transfer
descriptor. When the transfer is complete, the device controller writes the results back to the original
transfer descriptor and advance the queue.
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See Section 10.5.2.2, “Endpoint Transfer Descriptor (dTD),” for a description of the overlay fields.

10.5.2.1.4  Setup Buffer (Offset = 0x28-0x2C)

The set-up buffer is dedicated storage for the 8-byte data that follows a set-up PID. Refer to
Section 10.5.3.4.4, “Control Endpoint Operation” for information on the procedure for reading the setup
buffer
NOTE
Each endpoint has a TX and an RX dQH associated with it, and only the RX
queue head receives setup data packets.

Table 10-46. Multiple Mode Control

longword Field Description

1 31-0 Setup Buffer 0. This buffer contains bytes 3 to 0 of an incoming setup buffer packet and is written
Setup Buffer 0 | by the device controller software reads.

2 31-0 Setup Buffer 1. This buffer contains bytes 7 to 4 of an incoming setup buffer packet and is written
Setup Buffer 1 | by the device controller software reads.

10.5.2.2 Endpoint Transfer Descriptor (dTD)

The dTD describes to the device controller the location and quantity of data sent/received for a given
transfer. The DCD software should not attempt to modify any field in an active dTD except the next dTD
pointer, which must be modified only as described in Section 10.5.3.6, “Managing Transfers with Transfer
Descriptors.”

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next dTD Pointer 0{0|0|0]|T|Ox00

0 Total Bytes ioc|0| 0|0 |MultO|0O |0 Status 0x04
Buffer Pointer (Page 0) Current Offset 0x08

Buffer Pointer (Page 1) Frame Number 0x0C

Buffer Pointer (Page 2) 0|j0|{0|0OfO0O|O0O|O|O|0O|0O]|0O]Ox10

Buffer Pointer (Page 3) 0/0|0j|0|0O|O0O|0O|O|O|O]|O|Ox14

[« el NelNe)

0/0{0|0|0|0|0O|0O|0O|0O|O0O]Ox18

Buffer Pointer (Page 4)

Device controller read/write; all others read-only.

Figure 10-42. Endpoint Transfer Descriptor (dTD)

10.5.2.2.1  Next dTD Pointer (Offset = 0x0)
The next dTD pointer is used to point the device controller to the next dTD in the linked list.
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Table 10-47. Next dTD Pointer

Field Description
31-5 Next dTD pointer. This field contains the physical memory address of the next dTD to be processed. The field
Next dTD corresponds to memory address signals [31:5], respectively.
pointer
4-1 Reserved. Reserved for future use and must be cleared.
0 Terminate. This bit indicates to the device controller no more valid entries exist in the queue.
T 0=Pointer is valid (points to a valid transfer element descriptor).
1=pointer is invalid.

10.5.2.2.2 dTD Token (Offset = 0x4)

The dTD token is used to specify attributes for the transfer including the number of bytes to read or write
and the status of the transaction.

Table 10-48. dTD Token

Field Description

31 Reserved. Reserved for future use and must be cleared.

30-16 | Total bytes. This field specifies the total number of bytes moved with this transfer descriptor. This field decrements
Total Bytes | by the number of bytes actually moved during the transaction and only on the successful completion of the
transaction.

The maximum value software may store in the field is 5*4K(0x5000). This is the maximum number of bytes 5 page
pointers can access. Although possible to create a transfer up to 20K, this assumes the first offset into the first
page is 0. When the offset cannot be predetermined, crossing past the fifth page can be guaranteed by limiting
the total bytes to 16K**. Therefore, the maximum recommended transfer is 16K (0x4000).

Note: Larger transfer sizes can be supported, but require disabling ZLT and using multiple dTDs.

If the value of the field is 0 when the host controller fetches this transfer descriptor (and the active bit is set), the
device controller executes a zero-length transaction and retires the transfer descriptor.

For IN transfers it is not a requirement for total bytes to transfer be an even multiple of the maximum packet length.
If software builds such a transfer descriptor for an IN transfer, the last transaction is always less than maximum
packet length.

For OUT transfers the total bytes must be evenly divisible by the maximum packet length.

15 Interrupt on complete. Indicates if USBSTS[UI] is set in response to device controller finished with this dTD.
I0C

14-12 Reserved. Reserved for future use and must be cleared.

10-54 Freescale Semiconductor



Universal Serial Bus Interface — On-The-Go Module

Table 10-48. dTD Token (continued)

Field Description
11-10 Multiplier Override. This field can possibly transmit-ISOs (ISO-IN) to override the multiplier in the QH. This field
MultO must be 0 for all packet types not transmit-1SO.
For example, if QH.MULT equals 3; Maximum packet size equals 8; Total Bytes equals 15; MultiO equals O
[default], then three packets are sent: {Data2(8); Data1(7); Data0(0)}.
If QH.MULT equals 3; Maximum packet size equals 8; Total Bytes equals 15; MultO equals 2, then two packets
are sent: {Data1(8); Data0(7)}
For maximal efficiency, software must compute MultO equals greatest integer of (Total Bytes / Max. Packet Size)
except for the case when Total Bytes equals 0; then MultO must be 1.
Note: Non-ISO and Non-TX endpoints must set MultO equals 00.
9-8 Reserved. Reserved for future use and must be cleared.
7-0 Status. Device controller communicates individual command execution states back to the DCD software. This field
Status | contains the status of the last transaction performed on this dTD. The bit encodings are:
Bit Status Field Description

7 Active. Set by software to enable the execution of transactions by the device controller.

6 Halted. Set by the device controller during status updates to indicate a serious error has
occurred at the device/endpoint addressed by this dTD. Any time a transaction results in the
halted bit being set, the active bit is also cleared.

5 Data Buffer Error. Set by the device controller during status update to indicate the device
controller is unable to maintain the reception of incoming data (overrun) or is unable to supply
data fast enough during transmission (under run).

4 Reserved.

3 Transaction Error. Set by the device controller during status update in case the device did not
receive a valid response from the host (time-out, CRC, bad PID).

2-0 Reserved.
10.5.2.2.3 dTD Buffer Page Pointer List (Offset = 0x8-0x18)

The last five longwords of a device element transfer descriptor are an array of physical memory address
pointers. These pointers reference the individual pages of a data buffer.

Table 10-49. Buffer Page Pointer List

Field

Description

31-12

Buffer Pointer

Buffer Pointer. Selects the page offset in memory for the packet buffer. Non virtual memory systems typically
set the buffer pointers to a series of incrementing integers.

0;11-0

Current Offset

Current Offset. Offset into the 4kB buffer where the packet begins.

1;10-0

Frame Number

Frame Number. Written by the device controller to indicate the frame number a packet finishes in. Typically
correlates relative completion times of packets on an ISO endpoint.
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10.5.3 Device Operation

The device controller performs data transfers using a set of linked list transfer descriptors pointed to by a
queue head. The next sections explain the use of the device controller from the device controller driver
(DCD) point-of-view and further describe how specific USB bus events relate to status changes in the
device controller programmer's interface.

10.5.3.1 Device Controller Initialization

After hardware reset, USB OTG is disabled until the run/stop bit in the USBCMD register is set. At
minimum, it is necessary to have the queue heads set up for endpoint 0 before the device attach occurs.
Shortly after the device is enabled, a USB reset occurs followed by setup packet arriving at endpoint 0. A
queue head must be prepared so the device controller can store the incoming setup packet.
To initialize a device, the software must:

1. Optionally set streaming disable in the USBMODE[SDIS] bit.

2. Optionally modify the BURSTSIZE register.

3. Program the PORTSCI1[PTS] field if using a non-ULPI PHY.

4

. Write the appropriate value to the USBINTR to enable the desired interrupts. For device operation,
setting UE, UEE, PCE, URE, and SLE is recommended.

For a list of available interrupts, refer to Section 10.3.4.3, “USB Interrupt Enable Register
(USBINTR),” and Section 10.3.4.2, “USB Status Register (USBSTS).”

5. Set the USBMODE[CM] field to enable device mode, and set the USBMODE[ES] bit for big
endian operation.

Optionally write the USBCMD register to set the desired interrupt threshold.

Set USBMODE[SLOM] to disable setup lockouts.

Initialize the EPLISTADDR.

Create two dQHs for endpoint 0—one for IN transactions and one for OUT transactions.

A BRSO B

For information on device queue heads, refer to Section 10.5.2.1, “Endpoint Queue Head.”
10. Set the CCM’s UOCSR[BVLD] bit to allow device to connect to a host.
11. Set the USBCMD[RS] bit.
After the run/stop bit is set, a device reset occurs. The DCD must monitor the reset event and set the
DEVICEADDR and EPCRu# registers, and adjust the software state as described in Section 10.5.3.2.1,
“Bus Reset.”
NOTE
Endpoint 0 is a control endpoint only and does not need to configured using
the EPCRO register.

It is not necessary to initially prime endpoint 0 because the first packet received is always a setup packet.
The contents of the first setup packet requires a response in accordance with USB device framework
command set.

10-56 Freescale Semiconductor



Universal Serial Bus Interface — On-The-Go Module

10.5.3.2 Port State and Control

From a chip or system reset, the USB OTG module enters the powered state. A transition from the powered
state to the attach state occurs when the USBCMDI[RS] bit is set. After receiving a reset on the bus, the
port enters the defaultFS or defaultHS state in accordance with the protocol reset described in Appendix
C.2 of the Universal Serial Bus Specification, Revision 2.0. Figure 10-43 depicts the state of a USB 2.0

device.

Active State Inactive State

Powered

Set Run/Stop bit
to run mode

Power
Interruption

~— Buslnactve X\

When the host
resets, the device
returns to the
default state.

Bus Activity

_____ Address\ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _____._
"Assgn%

e AN Bus Inactive e S

[ Address | | Suspend
3 FS/HS | \ FSHS
\ /
Device ®___ BusActivity > __~
De-configured Device
Configured
Bus Inactive .7 T N
, Conflgured 1 [ Suspend \‘
, FSHs \ FSHS

\ / \ /

N7 Bus Activity SN

-~
l \ Software-only state
\ /

Figure 10-43. USB 2.0 Device States

States powered, attach, defaultFS/HS, suspendFS/HS are implemented in the USB OTG, and they are
communicated to the DCD using these status bits:
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Table 10-50. Device Controller State Information Bits

Bit Register

DC Suspend () USBSTS

USB Reset Received (URI) USBSTS
Port Change Detect (PCI) USBSTS
High-Speed Port (PSPD) PORTSCn

DCD software must maintain a state variable to differentiate between the defaultFS/HS state and the
address/configured states. Change of state from default to the address and configured states is part of the
enumeration process described in the device framework section of the USB 2.0 specification.

As a result of entering the address state, the DCD must program the device address register
(DEVICEADDR).

Entry into the configured state indicates that all endpoints to be used in the operation of the device have
been properly initialized by programming the EPCR# registers and initializing the associated queue heads.

10.5.3.2.1 Bus Reset

The host uses a bus reset to initialize downstream devices. When a bus reset is detected, USB OTG
controller renegotiates its attachment speed, resets the device address to 0, and notifies the DCD by
interrupt (assuming the USB reset interrupt enable is set). After a reset is received, all endpoints (except
endpoint 0) are disabled and the device controller cancels any primed transactions. The concept of priming
is clarified below, but when a reset is received, the DCD must perform:

1. Clear all setup token semaphores by reading the EPSETUPSR register and writing the same value
back to the EPSETUPSR register.

2. Clear all the endpoint complete status bits by reading the EPCOMPLETE register and writing the
same value back to the EPCOMPLETE register.

3. Cancel all primed status by waiting until all bits in the EPPRIME are 0 and then writing
OxFFFF_FFFF to EPFLUSH.

4. Read the reset bit in the PORTSCr register and make sure it remains active. A USB reset occurs
for a minimum of 3 ms and the DCD must reach this point in the reset clean-up before end of the
reset occurs, otherwise a hardware reset of the device controller is recommended (rare).

a) Setting USBCMD[RST] bit can perform a hardware reset.

NOTE

A hardware reset causes the device to detach from the bus by clearing the
USBCMDIRS] bit. Therefore, the DCD must completely re-initialize the
USB OTG after a hardware reset.

5. Free all allocated dTDs because the device controller no longer executes them. If this is the first
time the DCD processes a USB reset event, it is likely w3a4no dTDs have been allocated.

6. Atthis time, the DCD may release control back to the OS because no further changes to the device
controller are permitted until a port change detect is indicated.

10-58 Freescale Semiconductor



Universal Serial Bus Interface — On-The-Go Module

7. After a port change detect, the device has reached the default state and the DCD can read the
PORTSChn register to determine if the device operates in FS or HS mode. At this time, the device
controller has reached normal operating mode and DCD can begin enumeration according to the
chapter 9 Device Framework of the USB specification.

In some applications, it may not be possible to enable one or more pipes while in FS mode. Beyond the
data rate issue, there is no difference in DCD operation between FS and HS modes.

10.5.3.2.2 Suspend/Resume

To conserve power, USB OTG module automatically enters the suspended state when no bus traffic is
observed for a specified period. When suspended, the module maintains any internal status, including its
address and configuration. Attached devices must be prepared to suspend any time they are powered,
regardless if they are assigned a non-default address, are configured, or neither. Bus activity may cease due
to the host entering a suspend mode of its own. In addition, a USB device shall also enter the suspended
state when the hub port it is attached to is disabled.

The USB OTG module exits suspend mode when there is bus activity. It may also request the host to exit
suspend mode or selective suspend by using electrical signaling to indicate remote wake-up. The ability
of a device to signal remote wake-up is optional. The USB OTG is capable of remote wake-up signaling.
When the USB OTG is reset, remote wake-up signaling must be disabled.

Suspend Operational Model

The USB OTG moves into the suspend state when suspend signaling is detected or activity is missing on
the upstream port for more than a specific period. After the device controller enters the suspend state, an
interrupt notifies the DCD (assuming device controller suspend interrupt is enabled,

USBINTRJ[SLE] is set). When the PORTSCn[SUSP] is set, the device controller is suspended.

DCD response when the device controller is suspended is application specific and may involve switching
to low power operation. Find information on the bus power limits in suspend state in USB 2.0
specification.

Resume

If the USB OTG is suspended, its operation resumes when any non-idle signaling is received on its
upstream facing port. In addition, the USB OTG can signal the system to resume operation by forcing
resume signaling to the upstream port. Setting the PORTSCr[FPR] bit while the device is in suspend state
sends resume signaling upstream. Sending resume signal to an upstream port should cause the host to issue
resume signaling and bring the suspended bus segment (one more devices) back to the active condition.

NOTE

Before use of resume signaling, the host must enable it by using the set
feature command defined in chapter 9 Device Framework of the USB 2.0
specification.
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10.5.3.3 Managing Endpoints

The USB 2.0 specification defines an endpoint (also called a device endpoint or an address endpoint) as a
uniquely addressable portion of a USB device that can source or sink data in a communications channel
between the host and the device. Combination of the endpoint number and the endpoint direction specifies
endpoint address.

The channel between the host and an endpoint at a specific device represents a data pipe. Endpoint 0 for a
device is always a control type data channel used for device discovery and enumeration. Other types of
endpoints are supported by USB include bulk, interrupt, and isochronous. Each endpoint type has specific
behavior related to packet response and error managing. Find more detail on endpoint operation in the USB
2.0 specification.

The USB OTG supports up to four endpoint specified numbers. The DCD can enable, disable, and
configure each endpoint.

Each endpoint direction is essentially independent and can have differing behavior in each direction. For
example, the DCD can configure endpoint 1-IN to be a bulk endpoint and endpoint 1-OUT to be an
isochronous endpoint. This helps to conserve the total number of endpoints required for device operation.
The only exception is that control endpoints must use both directions on a single endpoint number to
function as a control endpoint. Endpoint 0, for example, is always a control endpoint and uses both
directions.

Each endpoint direction requires a queue head allocated in memory. If the maximum is four endpoint
numbers (one for each endpoint direction used by the device controller), eight queue heads are required.
The operation of an endpoint and use of queue heads are described later in this document.

10.5.3.3.1 Endpoint Initialization

After hardware reset, all endpoints except endpoint 0 are uninitialized and disabled. The DCD must
configure and enable each endpoint by writing to the appropriate EPCR# register. Each EPCR# is split into
an upper and lower half. The lower half of EPCR#n configures the receive or OUT endpoint, and the upper
half configures the corresponding transmit or IN endpoint. Control endpoints must be configured the same
in the upper and lower half of the EPCR# register; otherwise, behavior is undefined. Table 10-51 shows
how to construct a configuration word for endpoint initialization.

Table 10-51. Device Controller Endpoint Initialization

Field Value

Data Toggle Reset (TXR, RXR) 1 Synchronize the data PIDs

Data Toggle Inhibit (TXI, RXI) 0 PID sequencing disabled

Endpoint Type (TXT, RXT) 00 Control

01 Isochronous
10 Bulk

11 Interrupt

Endpoint Stall (TXS, RXS) 0 Not stalled
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10.5.3.3.2  Stalling

There USB OTG has two occasions it may need to return to the host a STALL:

» The first is the functional stall, a condition set by the DCD as described in the USB 2.0 Device
Framework chapter. A functional stall is used only on non-control endpoints and can be enabled in
the device controller by setting the endpoint stall bit in the EPCR# register associated with the
given endpoint and the given direction. In a functional stall condition, the device controller
continues to return STALL responses to all transactions occurring on the respective endpoint and
direction until the endpoint stall bit is cleared by the DCD.

* A protocol stall, unlike a function stall, is used on control endpoints and automatically cleared by
the device controller at the start of a new control transaction (setup phase). When enabling a
protocol stall, DCD must enable the stall bits as a pair (TXS and RXS bits). A single write to the
EPCRu# register can ensure both stall bits are set at the same instant.

NOTE

Any write to the EPCR# register during operational mode must preserve the
endpoint type field (perform a read-modify-write).

Table 10-52. Device Controller Stall Response Matrix

Endpoint Effect on

USB Packet Stall Bit Stall bit USB Response
SETUP packet received by a non-control N/A None STALL
endpoint.
IN/OUT/PING packet received by a 1 None STALL
non-control endpoint.
IN/OUT/PING packet received by a 0 None ACK/NAK/NYET
non-control endpoint.
SETUP packet received by a control N/A Cleared ACK
endpoint.
IN/OUT/PING packet received by a control 1 None STALL
endpoint
IN/OUT/PING packet received by a control 0 None ACK/NAK/NYET
endpoint.

10.5.3.3.3 Data Toggle

Data toggle maintains data coherency between host and device for any given data pipe. For more
information on data toggle, refer to the USB 2.0 specification.

Data Toggle Reset

The DCD may reset the data toggle state bit and cause the data toggle sequence to reset in the device
controller by setting the data toggle reset bit in the EPCR# register. This should only happen when
configuring/initializing an endpoint or returning from a STALL condition.
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Data Toggle Inhibit
This feature is for test purposes only and must never be used during normal device controller operation.

Setting the data toggle inhibit bit causes the USB OTG module to ignore the data toggle pattern normally
sent and accepts all incoming data packets regardless of the data toggle state.

In normal operation, the USB OTG checks the DATAO/DATA1 bit against the data toggle to determine if
the packet is valid. If the data PID does not match the data toggle state bit maintained by the device
controller for that endpoint, the data toggle is considered not valid. If the data toggle is not valid, the device
controller assumes the packet was already received and discards the packet (not reporting it to the DCD).
To prevent the USB OTG from re-sending the same packet, the device controller responds to the error
packet by acknowledging it with an ACK or NYET response.

10.5.3.4 Packet Transfers

The host initiates all transactions on the USB bus and in turn, the device must respond to any request from
the host within the turnaround time stated in the USB 2.0 specification.

A USB host sends requests to the USB OTG in an order that can not be precisely predicted as a single
pipeline, so it is not possible to prepare a single packet for the device controller to execute. However, the
order of packet requests is predictable when the endpoint number and direction is considered. For example,
if endpoint 3 (transmit direction) is configured as a bulk pipe, expect the host to send IN requests to that
endpoint. This USB OTG module prepares packets for each endpoint/direction in anticipation of the host
request. The process of preparing the device controller to send or receive data in response to host initiated
transaction on the bus is referred to as priming the endpoint. This term appears throughout the
documentation to describe the USB OTG operation so the DCD is built properly. Further, the term flushing
describes the action of clearing a packet queued for execution.

10.5.3.4.1 Priming Transmit Endpoints

Priming a transmit endpoint causes the device controller to fetch the device transfer descriptor (dTD) for
the transaction pointed to by the device queue head (dQH). After the dTD is fetched, it is stored in the dQH
until the device controller completes the transfer described by the dTD. Storing the dTD in the dQH allows
the device controller to fetch the operating context needed to manage a request from the host without the
need to follow the linked list, starting at the dQH when the host request is received.

After the device has loaded the dTD, the leading data in the packet is stored in a FIFO in the device
controller. This FIFO splits into virtual channels so the leading data can be stored for any endpoint up to
the maximum number of endpoints configured at device synthesis time.

After a priming request is complete, an endpoint state of primed is indicated in the EPSR register. For a
primed transmit endpoint, the device controller can respond to an IN request from the host and meet the
stringent bus turnaround time of high-speed USB.
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10.5.3.4.2 Priming Receive Endpoints

Priming receives endpoints identical to priming of transmit endpoints from the point of view of the DCD.
The major difference in the operational model at the device controller is no data movement of the leading
packet data because the data is to be received from the host.

As part of the architecture, the FIFO for the receive endpoints is not partitioned into multiple channels like
the transmit FIFO. Thus, the size of the RX FIFO does not scale with the number of endpoints.

10.5.3.4.3 Interrupt/Bulk Endpoint Operation

The behaviors of the device controller for interrupt and bulk endpoints are identical. All valid IN and OUT
transactions to bulk pipes handshake with a NAK unless the endpoint is primed. After the endpoint is
primed, data delivery commences.

A dTD is retired by the device controller when the packets described in the transfer descriptor are
completed. Each dTD describes N packets to transfer according to the USB variable length transfer
protocol. The formula below and Table 10-53 describe how the device controller computes the number and
length of the packets sent/received by the USB vary according to the total number of bytes and maximum
packet length. See Section 10.5.2.1.1, “Endpoint Capabilities/Characteristics (Offset = 0x0),” for details
on the ZLT bit.

With zero-length termination (ZLT) cleared:

N = INT(number of bytes/max. packet length) + 1

With zero-length termination (ZLT) set:
N = MAXINT(number of bytes/max. packet length)
Table 10-53. Variable Length Transfer Protocol Example (ZLT=0)

Bros | Jaxresel | w | e | k|
511 256 2 256 255 —
512 256 3 256 256 0
512 512 2 512 0 —

Table 10-54. Variable Length Transfer Protocol Example (ZLT=1)

ros | Mokl | n | e || e
511 256 2 256 255 —
512 256 2 256 256 —
512 512 1 512 — —
NOTE
The MULT field in the dQH must be set to 00 for bulk, interrupt, and control

endpoints.
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TX-dTD is complete when:

» All packets described in the dTD successfully transmit. Total bytes in dTD equal 0 when this
occurs.

RX-dTD is complete when:

» All packets described in the dTD are successfully received. Total bytes in dTD equal 0 when this
occurs.

* A short packet (number of bytes < maximum packet length) was received.
This is a successful transfer completion; DCD must check the total bytes field in the dTD to
determine the number of bytes remaining. From the total bytes remaining in the dTD, the DCD can
compute the actual bytes received.

* A long packet was received (number of bytes > maximum packet size) or (total bytes received >
total bytes specified).
This is an error condition. The device controller discards the remaining packet and set the buffer
error bit in the dTD. In addition, the endpoint flushes and the USBERR interrupt becomes active.

NOTE
Disabling zero-length packet termination allows transfers larger than the
total bytes field spanning across two or more dTDs.

Upon successful completion of the packet(s) described by the dTD, the active bit in the dTD is cleared and
the next pointer is followed when the terminate bit is clear. When the terminate bit is set, USB OTG flushes
the endpoint/direction and ceases operations for that endpoint/direction.

Upon unsuccessful completion of a packet (see long packet above), the dQH is left pointing to the dTD in
error. To recover from this error condition, DCD must properly re-initialize the dQH by clearing the active
bit and update the nextTD pointer before attempting to re-prime the endpoint.

NOTE

All packet level errors, such as a missing handshake or CRC error, are
retried automatically by the device controller. There is no required
interaction with the DCD for managing such errors.

Table 10-55. Interrupt/Bulk Endpoint Bus Response Matrix

Token Stall NOt Primed Underflow | Overflow
Type Primed
Setup Ignore Ignore Ignore N/A N/A
In STALL NAK Transmit BS Error’ N/A
Out STALL NAK Receive + NYET/ACK? N/A NAK
Ping STALL NAK ACK N/A N/A
Invalid Ignore Ignore Ignore Ignore Ignore

1 Force bit stuff error
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2 NYET/ACK — NYET unless the transfer descriptor has packets remaining according
to the USB variable length protocol then ACK.

10.5.3.4.4 Control Endpoint Operation

Setup Phase

All requests to a control endpoint begin with a setup phase followed by an optional data phase and a
required status phase.
Setup packet managing:
» Disable setup lockout by setting the setup lockout mode bit (USBMODE[SLOM]), once at
initialization. Setup lockout is not necessary when using the tripwire as described below.
NOTE

Leaving the setup lockout mode cleared results in a potential compliance

issue.
After receiving an interrupt and inspecting EPSETUPSR to determine a setup packet was received
on a particular pipe:
Write 1 to clear corresponding bit in EPSETUPSR.
Set the setup tripwire bit (USBCMD[SUTW]).
Duplicate contents of dQH.SetupBuffer into local software byte array.
Read the USBCMD[SUTW] bit. If set, continue; if cleared, goto 2)
Clear the USBCMD[SUTW] bit.
Poll until the EPSETUPSR bit clears.
Process setup packet using the local software byte array copy and execute status/handshake phases.

NOTE

After receiving a new setup packet, status and/or handshake phases may
remain pending from a previous control sequence. These should be flushed
and de-allocated before linking a new status and/or handshake dTD for the
most recent setup packet.

Nk w =

Data Phase

Following the setup phase, the DCD must create a device transfer descriptor for the data phase and prime
the transfer.

After priming the packet, the DCD must verify a new setup packet is not received by reading the
EPSETUPSR register immediately verifying that the prime had completed. A prime completes when the
associated bit in the EPPRIME register is cleared and the associated bit in the EPSR register is set. If the
EPPRIME bit goes to 0 and the EPSR bit is not set, the prime fails. This can only happen because of
improper setup of the dQH, dTD, or a setup arriving during the prime operation. If a new setup packet is
indicated after the EPPRIME bit is cleared, then the transfer descriptor can be freed and the DCD must
re-interpret the setup packet.
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Should a setup arrive after the data stage is primed, the device controller automatically clears the prime
status (EPSR) to enforce data coherency with the setup packet.

NOTE

Error managing of data phase packets is the same as bulk packets described
previously.

Status Phase

Similar to the data phase, the DCD must create a transfer descriptor (with byte length equal zero) and prime
the endpoint for the status phase. The DCD must also perform the same checks of the EPSETUPSR as
described above in the data phase.

NOTE
Error managing of status phase packets is the same as bulk packets

described previously.
Control Endpoint Bus Response Matrix

Table 10-56 shows the device controller response to packets on a control endpoint according to the device
controller state.

Table 10-56. Control Endpoint Bus Response Matrix

Token Endpoint State Setup
Type Stall Not Primed Primed Underflow | Overflow Lockout
Setup ACK ACK ACK N/A SYSERR!
In STALL NAK Transmit BS Error? N/A N/A
Out STALL NAK Receive + N/A NAK N/A
NYET/ACK®

Ping STALL NAK ACK N/A N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore Ignore

SYSERR — System error must never occur when the latency FIFOs are correctly sized and
the DCD is responsive.

Force bit stuff error

NYET/ACK — NYET unless the transfer descriptor has packets remaining according to the
USB variable length protocol then ACK.

10.5.3.4.5 Isochronous Endpoint Operation

Isochronous endpoints used for real-time scheduled delivery of data, and their operational model is
significantly different than the host throttled bulk, interrupt, and control data pipes. Real time delivery by
the USB OTG is accomplished by:

» Exactly MULT packets per (micro)frame are transmitted/received.
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NOTE

MULT is a two-bit field in the device queue head. Isochronous endpoints do
not use the variable length packet protocol.

* NAK responses are not used. Instead, zero length packets are sent in response to an IN request to
unprimed endpoints. For unprimed RX endpoints, the response to an OUT transaction is to ignore
the packet within the device controller.

* Prime requests always schedule the transfer described in the dTD for the next (micro)frame. If
ISO-dTD remains active after that frame, ISO-dTD holds ready until executed or canceled by the
DCD.

The USB OTG in host mode uses the periodic frame list to schedule data exchanges to isochronous
endpoints. The operational model for device mode does not use such a data structure. Instead, the same
dTD used for control/bulk/interrupt endpoints is also used for isochronous endpoints. The difference is in
the managing of the dTD.

The first difference between bulk and ISO-endpoints is that priming an ISO-endpoint is a delayed
operation such that an endpoint becomes primed only after a SOF is received. After the DCD writes the
prime bit, the prime bit clears as usual to indicate to software that the device controller completed a
priming the dTD for transfer. Internal to the design, the device controller hardware masks that prime start
until the next frame boundary. This behavior is hidden from the DCD, but occurs so the device controller
can match the dTD to a specific (micro)frame.

Another difference with isochronous endpoints is that the transaction must wholly complete in a
(micro)frame. After an ISO transaction is started in a (micro)frame, it retires the corresponding dTD when
MULT transactions occur or the device controller finds a fulfillment condition.

The transaction error bit set in the status field indicates a fulfillment error condition. When a fulfillment
error occurs, the frame after the transfer failed to complete wholly, and the device controller retires the
current ISO-dTD and move to the next ISO-dTD.

Fulfillment errors are only caused due to partially completed packets. If no activity occurs to a primed
ISO-dTD, the transaction stays primed indefinitely. This means it is up to software must discard transmit
ISO-dTDs that pile up from a failure of the host to move the data.

Finally, the last difference with ISO packets is in the data level error managing. When a CRC error occurs
on a received packet, the packet is not retried similar to bulk and control endpoints. Instead, the CRC is
noted by setting the transaction error bit and the data is stored as usual for the application software to sort
out.

* TX packet retired:
— MULT counter reaches zero.
— Fulfillment error (transaction error bit is set):
— # packets occurred > 0 AND # packets occurred < MULT
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NOTE
For TX-ISO, MULT counter can be loaded with a lesser value in the dTD
multiplier override field. If the multiplier override field is zero, the MULT
counter initializes to the multiplier in the QH.
* RX packet retired:
— MULT counter reaches zero.
— Non-MDATA data PID is received
— Overflow error:
— Packet received is > maximum packet length. (Buffer Error bit is set)
— Packet received exceeds total bytes allocated in dTD. (Buffer Error bit is set)
— Fulfillment error (Transaction Error bit is set):
— # packets occurred > 0 AND # packets occurred < MULT
— CRC error (Transaction Error bit is set)

NOTE

For ISO, when a dTD is retired, the next dTD is primed for the next frame.
For continuous (micro)frame to (micro)frame operation, DCD must ensure
the dTD linked-list is out ahead of the device controller by at least two
(micro)frames.

Isochronous Pipe Synchronization

When it is necessary to synchronize an isochronous data pipe to the host, the (micro)frame number
(FRINDEX register) can act as a marker. To cause a packet transfer to occur at a specific (micro)frame
number (N), the DCD must interrupt on SOF during frame N-1. When the FRINDEX equals N-1, the DCD
must write the prime bit. The USB OTG primes the isochronous endpoint in (micro)frame N-1 so the
device controller executes delivery during (micro)frame N.

CAUTION

Priming an endpoint towards the end of (micro)frame N-1 does not
guarantee delivery in (micro)frame N. The delivery may actually occur in
(micro)frame N+1 if the device controller does not have enough time to
complete the prime before the SOF for packet N is received.

Isochronous Endpoint Bus Response Matrix

Table 10-57. Isochronous Endpoint Bus Response Matrix

Token Stall NOt Primed |Underflow | Overflow
Type Primed
Setup STALL STALL STALL N/A N/A
In NULL' NULL Transmit | BS Error? N/A
Packet Packet
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Token Stall NOt Primed | Underflow | Overflow
Type Primed
Ignore Ignore Receive N/A Drop
Out
Packet
Ping Ignore Ignore Ignore Ignore Ignore
Invalid Ignore Ignore Ignore Ignore Ignore

1 Zero length packet
2 Force bit stuff error

10.5.3.5

The device queue head (dQH) points to the linked list of transfer tasks, each depicted by the device transfer
descriptor (dTD). An area of memory pointed to by EPLISTADDR contains a group of all dQH's in a
sequential list (Figure 10-44). The even elements in the list of dQH's receive endpoints (OUT/SETUP) and
the odd elements transmit endpoints (IN/INTERRUPT). Device transfer descriptors are linked head to tail
starting at the queue head and ending at a terminate bit. After the dTD retires, it is no longer part of the
linked list from the queue head. Therefore, software is required to track all transfer descriptors because
pointers no longer exist within the queue head after the dTD is retired (see Section 10.5.3.6.1, “Software
Link Pointers”).

Managing Queue Heads

Endpoint Queue Heads

ENDPOINTLISTADDR (up to 32 elements)

SN

Transfer Buffer
Pointer

Transfer

L.

i Buffer

Transfer Buffer «/ Transfer
Pointer “"\._ Buffer
-

Endpoint QHO - Out

Endpoint QHO - In

Transfer

Endpoint QH1 - Out Buffer

L]

Fieis

Transfer

Endpoint
Transfer
Descriptors

Figure 10-44. Endpoint Queue Head Diagram

In addition to current and next pointers and the dTD overlay examined in Section 10.5.3.4, “Packet
Transfers,” the dQH also contains the following parameters for the associated endpoint: multipler,
maximum packet length, and interrupt on setup. The next section includes demonstration of complete
initialization of the dQH including these fields.
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10.5.3.5.1 Queue Head Initialization
One pair of device queue heads must be initialized for each active endpoint. To initialize a device queue
head:

»  Write the wMaxPacketSize field as required by the USB specification chapter 9 or application
specific protocol.

»  Write the multiplier field to 0 for control, bulk, and interrupt endpoints. For ISO endpoints, set the
multiplier to 1,2, or 3 as required for bandwidth with the USB specification chapter 9 protocol. In
FS mode, the multiplier field can only be 1 for ISO endpoints.

o Set the next dTD terminate bit field.
* C(Clear the active bit in the status field.
e (Clear the halt bit in the status field.

NOTE

The DCD must only modify dQH if the associated endpoint is not primed
and there are no outstanding dTDs.

10.5.3.5.2  Setup Transfers Operation

As discussed in Section 10.5.3.4.4, “Control Endpoint Operation,” setup transfers require special
treatment by the DCD. A setup transfer does not use a dTD, but instead stores the incoming data from a
setup packet in an 8-byte buffer within the dQH.
Upon receiving notification of the setup packet, the DCD should manage the setup transfer by:

1. Copying setup buffer contents from dQH-RX to software buffer.

2. Acknowledging setup backup by writing a 1 to the corresponding bit in the EPSETUPSR register.

NOTE

The acknowledge must occur before continuing to process the setup packet.
After acknowledge occurs, DCD must not attempt to access the setup buffer
in dQH-RX. Only local software copy should be examined.

3. Checking for pending data or status dTD's from previous control transfers and flushing if any exist
as discussed in Section 10.5.3.6.5, “Flushing/De-priming an Endpoint.”

NOTE

It is possible for the device controller to receive setup packets before
previous control transfers complete. Existing control packets in progress
must be flushed and the new control packet completed.

4. Decoding setup packet and prepare data phase (optional) and status phase transfer as required by
the USB specification chapter 9 or application specific protocol.
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10.5.3.6 Managing Transfers with Transfer Descriptors

10.5.3.6.1 Software Link Pointers

It is necessary for the DCD software to maintain head and tail pointers for the linked list of dTDs for each
respective queue head. This is necessary because the dQH only maintains pointers to the current working
dTD and the next dTD executed. The operations described in the next section for managing dTDs assumes
DCD can reference the head and tail of the dTD linked list.

NOTE
To conserve memory, the reserved fields at the end of the dQH can be used
to store the head and tail pointers, but DCD must continue maintaining the
pointers.

Endpoint QH [_current

| | Head Pointer | ‘ ‘ | Tail Pointer | ‘

next

12 Y
—~ > > P&
;V—/ k——\/—/

Completed dTDs Queued dTDs

Figure 10-45. Software Link Pointers

NOTE
Check the status of each dTD to determine completed status.

10.5.3.6.2 Building a Transfer Descriptor

Before a transfer can be executed from the linked list, a dTD must be built to describe the transfer. Use the
following procedure for building dTDs.

Allocate an 8-longword dTD block of memory aligned to 8-longword boundaries. The last 5 bits of the
address must equal 00000.
Write the following fields:
1. Initialize the first 7 longwords to 0.
Set the terminate bit.
Fill in total bytes with transfer size.
Set the interrupt on complete bit if desired.
Initialize the status field with the active bit set, and all remaining status bits cleared.
Fill in buffer pointer page 0 and the current offset to point to the start of the data buffer.

o

Initialize buffer pointer page 1 through page 4 to be one greater than each of the previous buffer
pointers.
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10.5.3.6.3  Executing a Transfer Descriptor

To safely add a dTD, the DCD must follow this procedure that manages the event where the device
controller reaches the end of the dTD list. At the same time, a new dTD is added to the end of the list.
Determine whether the linked list is empty:
Check the DCD driver to see if the pipe is empty (internal representation of the linked list should
indicate if any packets are outstanding)
Case 1: Link list is empty
1. Write dQH next pointer AND dQH terminate bit to 0 as a single longword operation.
2. Clear active and halt bit in dQH (in case set from a previous error).
3. Prime endpoint by writing 1 to the correct bit position in the EPPRIME register.

Case 2: Link list is not empty
1. Add dTD to end of the linked list.
Read correct prime bit in EPPRIME - if set, DONE.
Set the USBCMD[ATDTW] bit.
Read correct status bit in EPSR, and store in a temporary variable for later.
Read the USBCMD[ATDTW] bit:
If clear, go to 3.

ok Wb

If set, continue to 6.
6. Clear the USBCMD[ATDTW] bit.
7. If status bit read in step 4 is | DONE.
8. If status bit read in step 4 is 0 then go to case 1, step 1.

10.5.3.6.4 Transfer Completion

After a dTD is initialized and the associated endpoint is primed, the device controller executes the transfer
upon the host-initiated request. The DCD is notified with a USB interrupt if the interrupt-on-complete bit
was set, or alternatively, the DCD can poll the endpoint complete register to determine when the dTD had
been executed. After a dTD is executed, DCD can check the status bits to determine success or failure.

CAUTION

Multiple dTDs can be completed in a single endpoint complete notification.
After clearing the notification, the DCD must search the dTD linked list and
retire all finished (active bit cleared) dTDs.

By reading the status fields of the completed dTDs, the DCD can determine if the transfers completed
successfully. Success is determined with the following combination of status bits:
» Active = 0, Halted = 0, Transaction error = 0, Data buffer error =0

Should any combination other than the one shown above exist, the DCD must take proper action. Transfer
failure mechanisms are indicated in Section 10.5.3.6.6, “Device Error Matrix.”
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In addition to checking the status bit, the DCD must read the transfer bytes field to determine the actual
bytes transferred. When a transfer is complete, the total bytes transferred decrements by the actual bytes
transferred. For transmit packets, a packet is only complete after the actual bytes reaches zero. However,
for receive packets, the host may send fewer bytes in the transfer according the USB variable length packet
protocol.

10.5.3.6.5 Flushing/De-priming an Endpoint

It is necessary for the DCD to flush or de-prime endpoints during a USB device reset or during a broken
control transfer. There may also be application specific requirements to stop transfers in progress. The
DCD can use this procedure to stop a transfer in progress:

1. Set the corresponding bit(s) in the EPFLUSH register.
2. Wait until all bits in the EPFLUSH register are cleared.

NOTE

This operation may take a large amount of time depending on the USB bus
activity. It is not desirable to have this wait loop within an interrupt service
routine.

3. Read the EPSR register to ensure that for all endpoints commanded to be flushed, that the
corresponding bits are now cleared. If the corresponding bits are set after step #2 has finished, flush
failed as described below:

In very rare cases, a packet is in progress to the particular endpoint when commanded to flush using
EPFLUSH. A safeguard is in place to refuse the flush to ensure that the packet in progress
completes successfully. The DCD may need to repeatedly flush any endpoints that fail to flush by
repeating steps 1-3 until each endpoint successfully flushes.

10.5.3.6.6 Device Error Matrix

The following table summarizes packet errors not automatically managed by the USB OTG module.
Table 10-58. Device Error Matrix

Error Direction Packet | Data Buffer | Transaction
Type Error Bit Error Bit
Data Buffer Overflow RX Any 1 0
ISO Packet Error RX ISO 0 1
ISO Fulfillment Error Both ISO 0 1

The device controller manages all errors on bulk/control/interrupt endpoints except for a data buffer
overflow. However, for ISO endpoints, errors packets are not retried and errors are tagged as indicated.
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Table 10-59. Error Descriptions

Overflow Number of bytes received exceeded max. packet size or total buffer length.

Note: This error also sets the halt bit in the dQH, and if there are dTDs remaining in the
linked list for the endpoint, those are not executed.

ISO Packet Error CRC error on received ISO packet. Contents not guaranteed correct.

ISO Fulfillment Error | Host failed to complete the number of packets defined in the dQH mult field within the given
(micro)frame. For scheduled data delivery, DCD may need to readjust the data queue
because a fulfillment error causes the device controller to cease data transfers on the pipe
for one (micro)frame. During the dead (micro)frame, the device controller reports error on
the pipe and primes for the following frame.

10.5.4 Servicing Interrupts

The interrupt service routine must understand there are high frequency, low frequency, and error
operations to order accordingly.

10.5.4.1 High Frequency Interrupts

In particular, high frequency interrupts must be managed in the order below. The most important of these
is listed first because the DCD must acknowledge a setup buffer in the timeliest manner possible.

Table 10-60. Interrupt Managing Order

Execution .
Order Interrupt Action
1a USB Interrupt’ Copy contents of setup buffer and acknowledge setup packet (as indicated
EPSETUPSR in Section 10.5.3.5, “Managing Queue Heads”). Process setup packet
according to USB specification chapter 9 or application specific protocol.
1b USB Interrupt Manage completion of dTD as indicated in Section 10.5.3.5, “Managing
EPCOMPLETE Queue Heads”
2 SOF Interrupt Action as deemed necessary by application. This interrupt may not have a
use in all applications.

T ltis likely multiple interrupts stack up on any call to the interrupt service routine and during interrupt service routine.

10.5.4.1.1  Low Frequency Interrupts

The low frequency events include the following interrupts. These interrupts can be managed in any order
because they do not occur often in comparison to the high-frequency interrupts.

Table 10-61. Low Frequency Interrupt Events

Interrupt Action

Port Change Change software state information.

Sleep Enable (Suspend) | Change software state information. Low power managing as
necessary.

Reset Received Change software state information. Abort pending transfers.
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10.5.4.1.2  Error Interrupts

Error interrupts are least frequent and should be placed last in the interrupt service routine.

Table 10-62. Error Interrupt Events

Interrupt Action

USB Error Interrupt. | This error is redundant because it combines USB interrupt and an error status in the dTD.
The DCD more aptly manages packet-level errors by checking the dTD status field upon
receipt of USB interrupt (w/ EPCOMPLETE).

System Error Unrecoverable error. Immediate reset of module; free transfers buffers in progress and
restart the DCD.

10.5.5 Deviations from the EHCI Specifications

The host mode operation of the USB OTG module is nearly EHCI-compatible with a few minor
differences. For the most part, the modules conform to the data structures and operations described in
Section 3, “Data Structures,” and Section 4, “Operational Model,” in the EHCI specification. The
particulars of the deviations occur in the following areas:

* Embedded transaction translator—Allows direct attachment of FS and LS devices in host mode
without the need for a companion controller.

* Device operation—In host mode, the device operational registers are generally disabled; therefore,
device mode is mostly transparent when in host mode. However, there are a couple exceptions
documented in the following sections.

* Embedded design interface—The module does not have a PCI Interface and therefore the PCI
configuration registers described in the EHCI specification are not applicable.

For the purposes of the USB OTG implementing a dual-role host/device controller with support for OTG
applications, it is necessary to deviate from the EHCI specification. Device and OTG operation are not
specified in the EHCI specification, and thus the implementation supported in the USB OTG module is
proprietary.

10.5.5.1 Embedded Transaction Translator Function

The USB host mode supports directly connected full- and low-speed devices without requiring a
companion controller by including the capabilities of a USB 2.0 high-speed hub transaction translator.
Although there is no separate transaction translator block in the system, the transaction translator function
normally associated with a high-speed hub is implemented within the DMA and protocol engine blocks.
The embedded transaction translator function is an extension to EHCI interface, but makes use of the
standard data structures and operational models existing in the EHCI specification to support full- and
low-speed devices.

10.5.5.1.1  Capability Registers

These additions to the capability registers support the embedded Transaction translator function:
* N _TT added to HSCPARAMS - Host Controller Structural Parameters
* N _PTT added to HSCPARAMS - Host Controller Structural Parameters
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See Section 10.3.3.3, “Host Controller Structural Parameters Register (HCSPARAMS)” for usage
information.

10.5.5.1.2  Operational Registers

These additions to the operational registers support the embedded TT:
* Addition of the TTCTRL register.
* Addition of a two-bit port speed (PSPD) field to the PORTSCn register.

10.5.5.1.3

In a standard EHCI controller design, the EHCI host controller driver detects a full-speed (FS) or
low-speed (LS) device by noting if the port enable bit is set after the port reset operation. The port enable
is set only in a standard EHCI controller implementation after the port reset operation and when the host
and device negotiate a high-speed connection (chirp completes successfully).

Discovery

The module always sets the port enable bit after the port reset operation regardless of the result of the host
device chirp result, and the resulting port speed is indicated by the PORTSCr[PSPD] field. Therefore, the
standard EHCI host controller driver requires an alteration to manage directly connected full- and
low-speed devices or hubs. The change is a fundamental one summarized in Table 10-63.

Table 10-63. Functional Differences Between EHCI and EHCI with Embedded TT

Standard EHCI

EHCI with embedded Transaction Translator

After port enable bit is set following a
connection and reset sequence, the
device/hub is assumed to be HS.

After port enable bit is set following a connection and
reset sequence, the device/hub speed is noted from
PORTSCn.

FS and LS devices are assumed to be
downstream from a HS hub.
Therefore, all port-level control
performs through the hub class to the
nearest hub.

FS and LS device can be downstream from a HS hub or
directly attached. When the FS/LS device is downstream
from a HS hub, port-level control acts using the hub class
through the nearest hub. When a FS/LS device is directly
attached, then port-level control is accomplished using
PORTSCn.

FS and LS devices are assumed to be
downstream from a HS hub with
HubAddr equal to X. [where HubAddr
> 0 and HubAddr is the address of the
hub where the bus transitions from HS
to FS/LS (split target hub)]

FS and LS device can be downstream from a HS hub
with HubAddr equal to X [HubAddr > 0] or directly
attached [where HubAddr equals 0 and HubAddr is the
address of the root hub where the bus transitions from
HS to FS/LS (split target hub is the root hub)]

10.5.5.1.4

Data Structures

The same data structures used for FS/LS transactions though a HS hub are also used for transactions
through the root hub. It is demonstrated here how hub address and endpoint speed fields should be set for
directly attached FS/LS devices and hubs:

1. QH (for direct attach FS/LS) — asynchronous (bulk/control endpoints) periodic (interrupt)
* Hub address equals 0
» Transactions to direct attached device/hub.
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— QH.EPS equals port speed
* Transactions to a device downstream from direct attached FS hub.
— QH.EPS equals downstream device speed

NOTE

When QH.EPS equals 01 (LS) and PORTSCn[PSPD] equals 00 (FS), a
LS-pre-PID is sent before transmitting LS traffic.

Maximum packet size must equal 64 or less to prevent undefined behavior.
2. siTD (for direct attach FS) — Periodic (ISO endpoint)
* All FS ISO transactions:
— Hub address equals 0
— siTD.EPS equals 00 (full speed)
Maximum packet size must equal to 1023 or less to prevent undefined behavior.

10.5.5.1.5 Operational Model

The operational models are well defined for the behavior of the transaction translator (see USB 2.0
specification) and for the EHCI controller moving packets between system memory and a USB-HS hub.
Because the embedded transaction translator exists within the USB host controller, no physical bus
between EHCI host controller driver and the USB FS/LS bus. These sections briefly discuss the
operational model for how the EHCI and transaction translator operational models combine without the
physical bus between. The following sections assume the reader is familiar with the EHCI and USB 2.0
transaction translator operational models.

Microframe Pipeline

The EHCI operational model uses the concept of H-frames and B-frames to describe the pipeline between
the host (H) and the bus (B). The embedded transaction translator uses the same pipeline algorithms
specified in the USB 2.0 specification for a hub-based transaction translator.

All periodic transfers always begin at B-frame 0 (after SOF) and continue until the stored periodic transfers
are complete. As an example of the microframe pipeline implemented in the embedded transaction
translator, all periodic transfers that are tagged in EHCI to execute in H-frame 0 are ready to execute on
the bus in B-frame 0.

When programming the S-mask and C-masks in the EHCI data structures to schedule periodic transfers
for the embedded transaction translator, the EHCI host controller driver must follow the same rules
specified in EHCI for programming the S-mask and C-mask for downstream hub-based transaction
translators.

After periodic transfers are exhausted, any stored asynchronous transfer is moved. Asynchronous transfers
are opportunistic because they execute when possible and their operation is not tied to H-frame and
B-frame boundaries with the exception that an asynchronous transfer cannot babble through the SOF (start
of B-frame 0.)

Freescale Semiconductor 10-77



Universal Serial Bus Interface — On-The-Go Module

Split State Machines

The start and complete-split operational model differs from EHCI ghtly because there is no bus medium
between the EHCI controller and the embedded transaction translator. Where a start or complete-split
operation would occur by requesting the split to the HS hub, the start/complete-split operation is simple
an internal operation to the embedded transaction translator. Table 10-64 summarizes the conditions where
handshakes are emulated from internal state instead of actual handshakes to HS split bus traffic.

Table 10-64. Emulated Handshakes

Condition Emulate TT Response
Start-Split: All asynchronous buffers full NAK
Start-Split: All periodic buffers full ERR
Start-Split: Success for start of async. transaction ACK
Start-Split: Start periodic transaction No handshake (Ok)
Complete-Spilit: Failed to find transaction in queue Bus time-out
Complete-Split: Transaction in queue is busy NYET
Complete-Split: Transaction in queue is complete Actual handshake from FS/LS device

Asynchronous Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded Transaction Translator:

« USB20-11.17.3

— Sequencing is provided and a packet length estimator ensures no full-/low-speed packet
babbles into SOF time.

« USB20-11.17.4
— « Transaction tracking for 2 data pipes.
+ USB20-11.17.5
— < Clear TT Buffer capability provided though the use of the TTCTRL register.

Periodic Transaction Scheduling and Buffer Management

The following USB 2.0 specification items are implemented in the embedded transaction translator:
« USB2.0-11.18.6.[1-2]
— Abort of pending start-splits
— EOF (and not started in microframes 6)
— Idle for more than 4 microframes
— Abort of pending complete-splits
— EOF
— Idle for more than 4 microframes
« USB2.0-11.18.[7-8]
— Transaction tracking for up to 4 data pipes.
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— No more than 4 periodic transactions (interrupt/isochronous) can be scheduled through the
embedded TT per frame.

— Complete-split transaction searching.

NOTE

There is no data schedule mechanism for these transactions other than the
microframe pipeline. The embedded TT assumes the number of packets
scheduled in a frame does not exceed the frame duration (1 ms) or else
undefined behavior may result.

10.5.5.2 Device Operation

The co-existence of a device operational controller within the USB OTG module has little effect on EHCI
compatibility for host operation. However, given that the USB OTG controller initializes in neither host
nor device mode, the USBMODE register must be programmed for host operation before the EHCI host
controller driver can begin EHCI host operations.

10.5.5.3 Non-Zero Fields in the Register File

Some of the reserved fields and reserved addresses in the capability registers and operational registers have
use in device mode. Adhere to these steps:

*  Write operations to all EHCI reserved fields (some of which are device fields in the USB OTG
module) in the operation registers should always be written to zero. This is an EHCI requirement
of the device controller driver that must be adhered to.

» Read operations by the module must properly mask EHCI reserved fields (some of which are
device fields in the USB OTG module registers).

10.5.5.4 SOF Interrupt

The SOF interrupt is a free running 125 ps interrupt for host mode. EHCI does not specify this interrupt,
but it has been added for convenience and as a potential software time base. The free running interrupt is
shared with the device mode start-of-frame interrupt. See Section 10.3.4.2, “USB Status Register

(USBSTS),” and Section 10.3.4.3, “USB Interrupt Enable Register (USBINTR),” for more information.

10.5.5.5 Embedded Design

This is an embedded USB host controller as defined by the EHCI specification; therefore, it does not
implement the PCI configuration registers.

10.5.5.5.1 Frame Adjust Register

Given that the optional PCI configuration registers are not included in this implementation, there is no
corresponding bit level timing adjustments like those provided by the frame adjust register in the PCI
configuration registers. Starts of microframes are timed precisely to 125 us using the transceiver clock as
a reference clock or a 60 Mhz transceiver clock for 8-bit physical interfaces and full-speed serial
interfaces.
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10.5.5.6 Miscellaneous Variations from EHCI

10.5.5.6.1 Programmable Physical Interface Behavior

The modules support multiple physical interfaces that can operate in different modes when the module is
configured with the software programmable physical interface modes. The control bits for selecting the
PHY operating mode are added to the PORTSCn register providing a capability not defined by the EHCI
specification.

10.5.5.6.2 Discovery

Port Reset

The port connect methods specified by EHCI require setting the port reset bit in the PORTSCn register for
a duration of 10 ms. Due to the complexity required to support the attachment of devices not high speed,
a counter is present in the design that can count the 10 ms reset pulse to alleviate the requirement of the
software to measure this duration. Therefore, the basic connection is summarized as:

» Port change interrupt—Port connect change occurs to notify the host controller driver that a device
has attached.

* Software shall set the PORTSCn[PR] bit to reset the device.

» Software shall clear the PORTSCr[PR] bit after 10 ms.

— This step, necessary in a standard EHCI design, may be omitted with this implementation.
Should the EHCI host controller driver attempt to write a 0 to the reset bit while a reset is in
progress, the write is ignored and the reset continues until completion.

» Port change interrupt—Port enable change occurs to notify the host controller that the device is
now operational and at this point the port speed is determined.

Port Speed Detection

After the port change interrupt indicates that a port is enabled, the EHCI stack should determine the port
speed. Unlike the EHCI implementation, which re-assigns the port owner for any device that does not
connect at high speed, this host controller supports direct attach of non-HS devices. Therefore, the
following differences are important regarding port speed detection:

* Port owner hand-off is not implemented. Therefore, PORTSCr[PO] bit is read-only and always
reads 0.

* A 2-bit port speed indicator field has been added to PORTSCr to provide the current operating
speed of the port to the host controller driver.

» A I-bit high-speed indicator bit has been added to PORTSCn to signify that the port is in HS vs.
FS/LS.

— This information is redundant with the 2-bit port speed indicator field above.
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Chapter 11
Chip Configuration Module (CCM)

11.1 Introduction

The chip-configuration module (CCM) controls the chip configuration for the device.

11.1.1  Block Diagram

Reset Low-Power
Configuration Configuration
Serial Boot Bus Monitor
Facility Configuration

U

Chip Configuration Module
Registers

Figure 11-1. Chip-Configuration Module Block Diagram

11.1.2 Features

The CCM performs these operations:
* Configures device based on chosen reset configuration options
» Selects bus-monitor configuration
* Selects low-power configuration
» Facilitates serial boot (See Chapter 12, “Serial Boot Facility (SBF),” for details.)

11.1.3 Modes of Operation

The only chip operating mode available on this device is master mode. In master mode, the ColdFire core
can access external memories and peripherals.The external bus consists of a 32-bit data bus and 24 address
lines. The available bus control signals include R/W, TS, TA, OE, and BE/BWE[3:0]. Up to four chip
selects can be programmed to select and control external devices and to provide bus cycle termination.
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11.2 External Signal Descriptions

Table 11-1 provides an overview of the CCM signals.
Table 11-1. Signal Properties

Name Function Reset State
BOOTMODI1:0] Reset configuration select —
FB_ADI[7:0] Reset configuration override pins —

11.2.1  BOOTMODI1:0]

If the BOOTMODI[ 1:0] signals determine the boot performed at reset. See the table below for
BOOTMOD][1:0] usage.

Table 11-2. BOOTMOD[1:0] Values

BOOTMOD[1:0] Meaning
00 Boot from Flexbus with defaults.
01 Reserved.
10 Boot from Flexbus and override defaults via data bus (FB_AD[7:0]).
11 Boot from Flexbus and override defaults via the serial boot facility (SPI
EEPROM/flash). See Chapter 12, “Serial Boot Facility (SBF).”

11.2.2 FB_AD][7:0] (Reset Configuration Override)

If the external BOOTMODI 1:0] pins are driven to 10 during reset, the states of the FB_ AD[7:0] pins
during reset determine Flexbus, PCI, and PLL configurations after reset.

NOTE

The logic levels for reset configuration on FB_AD[7:0] must be actively
driven when BOOTMOD equals 10. FB__ADJ[31:8] should be allowed to
float or be pulled high.

11.3 Memory Map/Register Definition

The CCM programming model consists of the registers listed in the below table.
Table 11-3. CCM Memory Map

Address Register ‘g)‘:;;‘ Access | Reset Value | Section/Page

Supervisor Access Only Registers'

0xFCOA_0004 | Chip Configuration Register (CCR) 16 R See Section 11.83.1/11-3
0xFCOA_0008 | Reset Configuration Register (RCON) 16 R Ox03ED_0346| 11.3.2/11-7
0xFCOA_O0O00A | Chip Identification Register (CIR) 16 R See Section 11.3.3/11-8
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Table 11-3. CCM Memory Map (continued)

Chip Configuration Module (CCM)

Address Register ‘?g:;;‘ Access | Reset Value | Section/Page
0xFCOA_0010 | Miscellaneous Control Register (MISCCR) 16 R/W See Section 11.3.4/11-8
0xFCOA_0012 | Clock Divider Register (CDR) 16 R/W 0x0001 11.3.5/11-11
0xFCOA_0014 | USB On-the-Go Controller Status Register (UOCSR) 16 R/W 0x0010 11.3.6/11-11
0xFCOA_0018 | Serial Boot Facility Status Register (SBFSR)? 16 R See Section 12.3.1/12-3
0xFCOA_0020 | Serial Boot Facility Control Register (SBFCR)? 16 R/W See Section 12.3.2/12-3

1 User access to supervisor-only address locations have no effect and result in a bus error.

2 See Chapter 12, “Serial Boot Facility (SBF);” for details.

11.3.1

Chip Configuration Register (CCR)

The CCR is a read-only register; writing to the CCR has no effect. At reset, the CCR reflects the chosen
operation of certain chip functions. These functions may be set to the defaults defined by the RCON
register values or overridden during reset configuration using the external BOOTMOD]J 1:0] and either the
FB_AD[7:0] pins or the serial boot data obtained from external SPI memory. (See Figure 11-4 for the
RCON register definition.)

Three versions of the CCR are available, depending on the package type and the value of the
CCR[FBCONFIG] bit field. These versions are shown below.

Address: OXFCOA_0004 (CCR)

Access: Supervisor read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R:
PLL | PCI | PCI
FBCONFIG=| O 0 0 0 0 0 1 1 FBCONFIG MODE |MODE| SLEW PLLMULT
011, 111
R PLL | OSC
FBCONFIG#| 0 0 0 0 0 0 1 1 FBCONFIG MODE |MODE PLLMULT
011, 111
w | [ ]
Reset 0 0 0 0 0 0 1 1 See Note
Note: Reset value depends upon chosen reset configuration. Default reset value (BOOTMOD = 00) is the value of
RCON.
Figure 11-2. Chip Configuration Register (CCR) 360-pin
Table 11-4. CCR Field Descriptions 360-pin
Field Description
15-10 Reserved, must be cleared.
9-8 Reserved, must be set.
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Table 11-4. CCR Field Descriptions 360-pin (continued)

Field Description
7-5 Flexbus, PCI, port size configuration. Relects the chosen Flexbus address/data muxing mode, PCI enable, and
FBCONFIG |port size.
FBCONFIG Flexbus A/D PCI Port Size
000 Non-muxed Disabled 32-bit
001 Non-muxed Disabled 8-bit
010 Non-muxed Disabled 16-bit
011 Muxed Enabled 16-bit
100 Muxed Disabled 32-bit
101 Muxed Disabled 8-bit
110 Muxed Disabled 16-bit
111 Muxed Enabled 8-bit
Muxed means that the FB_AD[31:0] signals are used for Flexbus address and data.
Non-muxed means that the FB_AD[31:0] signals are used for Flexbus data and the PCI_AD[31:0] signals are
used for Flexbus address.
Note: The FBCONFIG field value may not be valid following serial boot, because serial boot reset configuration
can select chip configurations not shown in the above table.
4 PLL mode. Reflects the chosen overall clocking mode for the device.
PLLMODE |0 Normal operation; PLL drives internal clocks
1 Limp mode; low-power clock divider drives internal clocks
3 PCI host/agent mode, if the PCl is enabled. Reflects whether the PCl is a host or agent.
PCIMODE |0 PClis agent
(FBCONFIG = |1 PClis host
011, 111)
3 Oscillator clock mode, if the PCl is disabled.
OSCMODE |0 Crystal oscillator mode
(FBCONFG = |1 Oscillator bypass mode

011, 111)
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Table 11-4. CCR Field Descriptions 360-pin (continued)

Field Description
2 PCI pad slew rate mode, if the PCl is enabled. Reflects the slew rate on the PCI pads.
PCISLEW |0 33 MHz slew rate
(FBCONFG = |1 66 MHz slew rate
011, 111)
1-0 PLL clock mode. Reflects the chosen PLL clock mode as set by the reference clock multiplier used to generate
PLLMULT |the VCO clock. The below table describes the PLLMULT settings for PCl-enabled 360-pin devices.
(FBCONFG =
011, 111) PLLMULT vCo CPU Frequency | PCI Frequency
2-0 00 12 x REF 200/240 33/40
PLLMULT
(FBCONFG #= 01 6 x REF 200/180 66/50
011, 111) 10 16 x REF 266/200 33/25
11 8 x REF 266/200 66/50

Note: The PLLMULT field value may not be valid following serial boot, because serial boot reset configuration can
select reference clock multipliers not shown directly above.

The below table describes the PLLMULT settings for PCl-disabled 360-pin devices.

PLLMULT vCO PLLMULT vCO
000 20 x REF 100 12 x REF
001 10 x REF 101 6 x REF
010 24 x REF 110 16 x REF
011 18 x REF 111 8 x REF

Note: The PLLMULT field value may not be valid following serial boot, because serial boot reset configuration can
select reference clock multipliers not shown in directly above.

The PLL output frequency can also be programmed after reset via the PLL output divider registers (PODR) and

PLL feedback divider register (PFDR). See Chapter 8, “Clock Module,” for more details. The default output divider

settings (values used to divide the VCO clock down to the system clocks) are shown in the below table.

Clock PLL clock Q| pobR
CPU OUTDIV1 2 1
System bus OUTDIV2 4 3
Flexbus (FB_CLK) OUTDIV3 8 7
PCI clock OUTDIV4 MULT! | MULT'-1
USB clock OUTDIV5 8 7
' The value of MULT is the reference clock multiplier selected by the CCR[PLLMULT]

field.
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The CCR bit definition for 256-pin devices is shown in the below figure and table.

Address: 0xFCOA_0004 (CCR)

Access: Supervisor read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PLL | OSC
0 0 0 0 0 0 1 1 FBCONFIG MODE |MODE PLLMULT
w | ]
Reset 0 0 0 0 0 0 1 1 See Note

Note: Reset value depends upon chosen reset configuration. Default reset value (BOOTMOD = 00) is the value of

RCON.
Figure 11-3. Chip Configuration Register (CCR) 256-pin

Table 11-5. CCR Field Descriptions 256-pin

Field Description
15-10 Reserved, must be cleared.
9-8 Reserved, must be set.
7-5 Flexbus, port size configuration. Relects the chosen Flexbus address/data muxing mode and port size.
FBCONFIG
FBCONFIG Flexbus A/D Port Size
000 Non-muxed 32-bit
001 Non-muxed 8-bit
010 Non-muxed 16-bit
011 Reserved
100 Muxed 32-bit
101 Muxed 8-bit
110 Muxed 16-bit
111 Reserved
Muxed means that the FB_AD[31:0] signals are used for Flexbus address and data.
Non-muxed means that the FB_AD[31:0] signals are used for Flexbus data and the PCI_AD[23:0] signals are
used for Flexbus address.
Note: The FBCONFIG field value may not be valid following serial boot, because serial boot reset configuration
can select chip configurations not shown in the above table.
4 PLL mode. Reflects the chosen overall clocking mode for the device.
PLLMODE |0 Normal operation; PLL drives internal clocks
1 Limp mode; low-power clock divider drives internal clocks
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Table 11-5. CCR Field Descriptions 256-pin (continued)

Field Description
3 Oscillator clock mode.
OSCMODE |0 Crystal oscillator mode
1 Oscillator bypass mode
2-0 PLL clock mode. Reflects the chosen PLL clock mode as set by the reference clock multiplier used to generate
PLLMULT |the VCO clock.
PLLMULT vco PLLMULT vco
000 20 x REF 100 12 x REF
001 10 x REF 101 6 x REF
010 24 x REF 110 16 x REF
011 18 x REF 111 8 x REF
Note: The PLLMULT field value may not be valid following serial boot, because serial boot reset configuration can
select reference clock multipliers not shown in the above table.
The PLL output frequency can also be programmed after reset via the PLL output divider registers (PODR) and
PLL feedback divider register (PFDR). See Chapter 8, “Clock Module,” for more details. The default output divider
settings (values used to divide the VCO clock down to the system clocks) are shown in the below table.
OouTDIV
Clock PLL clock Value PODR
CPU OUTDIVA1 2 1
System bus OuUTDIV2 4 3
FlexBus (FB_CLK) OUTDIV3 8 7
USB clock OUTDIV5 8 7
11.3.2 Reset Configuration Register (RCON)

At reset, the RCON register determines the default operation of certain chip functions. All default
functions defined by the RCON values can be overridden only during reset configuration (see

Section 11.4.1, “Reset Configuration”) if the external BOOTMOD]J 1:0] pins are driven to 10 or 11. RCON
is a read-only register and contains the same fields as the CCR register.

Two versions of the RCON are available, depending on package type. These versions are shown in
Figure 11-4 and Figure 11-5. Only two versions are available, unlike three versions for the CCR, because
there are only two sets of default values. Those default values make one of the three CCR versions (360-pin
PCI-disabled) unavailable as a default configuration.
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Address: 0xFCOA_0008 (RCON)

Access: Supervisor read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PLL | PCI PCI
0 0 0 0 0 0 1 1 FBCONFIG MODE | MODE | SLEW PLLMULT
w ||
Reset 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1

Figure 11-4. Reset Configuration Register (RCON) 360-pin

Address: 0xFCOA_0008 (RCON)

Access: Supervisor read-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R PLL | OSC
oo ]| o | o] o] o 1 1 FBCONFIG | ior | S PLLMULT
w [ ] [
Resst 0 0 0 0 | 0 O 1 1 o 1 0 o0 0 1 1 0

Figure 11-5. Reset Configuration Register (RCON) 256-pin

11.3.3 Chip Identification Register (CIR)

Address: 0xFCOA_000A (CIR)

12‘11

Access: Supervisor read-only

4‘3 2 1 0

15 14 13 10 6 5
R PIN PRN
we | [ [ T | | [ |
Reset Device Dependent Mask Set Dependent
Figure 11-6. Chip Identification Register (CIR)
Table 11-6. CIR Field Descriptions
Field Description
15-6 | Part identification number. Contains a unique identification number for the device.
PIN 0x04F MCF54450
0x04D MCF54451
0x04B MCF54452
0x049 MCF54453
0x04A MCF54454
0x048 MCF54455
5-0 Part revision number. This number increases by one for each new full-layer mask set of this part. The revision
PRN | numbers are assigned in chronological order.

11.3.4 Miscellaneous Control Register (MISCCR)

The MISCCR register provides clock source selection and configuration for internal clocks, as well as

SSI/timer DMA mux control and other miscellaneous control functionality.

Freescale Semiconductor
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Address: 0xFCOA_0010 (MISCCR) Access: Supervisor read/write
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rl 0 0 0 SSI | SSI | TIM|SSI| O |uUSB| USB | USB

W LIMP | BME BMT PUE | PUS | DMA | SRC PUD | OC | SRC
Reset 0 0 0 See Note 0 0 See Note

Note: Reset value depends on RCON type. See Table 11-7.

Figure 11-7. Miscellaneous Control Register (MISCCR)

Table 11-7. MISCCR Field Reset Values

Fiold BOOTMOD[1:0]
00 10 11

LIMP 0 FB_AD4 SBF_RCONJ[111]

BME 1 1 SBF_RCON[123]

BMT 000 000 SBF_RCON[122:120]
SSIPUE 1 1 SBF_RCONJ[107]
SSIPUS 1 1 SBF_RCONJ[106]
TIMDMA 1 1 SBF_RCONJ[110]
SSISRC 1 1 SBF_RCONJ[105]
USBPUD 0 0 0
USBOC 1 1 SBF_RCONJ[108]
USBSRC 1 1 SBF_RCONJ[109]

Table 11-8. MISCCR Field Descriptions

Field Description
15-13 Reserved, must be cleared.

12 Limp mode enable. Selects between the PLL and the low-power clock divider as the source of all system clocks.
LIMP 0 Normal operation; PLL drives system clocks.

1 Limp mode; low-power clock divider drives system clocks.

Note: The transient behavior of the system when writing this bit cannot be predicted. When any USB wake-up
event is detected, this bit is cleared, limp mode is exited, and the PLL begins the process of relocking and
driving the system clocks.

11 Bus monitor external enable bit. Enables the bus monitor to operate during external FlexBus cycles
BME 0 Bus monitor disabled on external FlexBus cycles
1 Bus monitor enabled on external FlexBus cycles
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Table 11-8. MISCCR Field Descriptions (continued)

Field Description
10-8 Bus monitor timing field. Selects the timeout period in FlexBus clock cycles for the bus monitor:
BMT Timeout period for external bus cycles equals 2(16-BMT) FB_CLK cycles

000 65536

001 32768

010 16384

011 8192

100 4096

101 2048

110 1024

111 512

7 SSI RXD/TXD pull enable. Enables the internal weak pull cells on any external pin where either the SSI receive
SSIPUE | data (RXD) function or SSI transmit data (TXD) function is available. The affected pins include SSI_RXD, and

SSI_TXD.

0 SSI data pin weak pull cells disabled.

1 SSI data pin weak pull cells enabled.

Note: The SSIPUE bit enables only the pull cells when the SSI RXD and TXD functions are currently selected
for the affected pins. See the Chapter 16, “Pin Multiplexing and Control,” for information on how to enable
the SSI functions on those pins.

6 SSI RXD/TXD pull select. Selects whether the internal weak pull cells enabled by the SSIPUE bit are pull up or
SSIPUS | pull down.

0 SSI data pins are pulled down.

1 SSI data pins are pulled up.

Note: The SSIPUS bit has no effect when the SSIPUE bit is cleared.

5 Timer DMA mux selection. Selects between the timer DMA signals and SSI DMA signals as those signals are
TIMDMA | mapped to DMA channels 9-12. Refer to the Chapter 19, “Enhanced Direct Memory Access (eDMA),” for more
details on the DMA controller.

0 SSI RX0, SSI RX1, SSI TX0, and SSI TX1 DMA signals mapped to DMA channels 9 — 12, respectively.

1 Timer 0 — 3 DMA signals mapped to DMA channels 9 — 12, respectively.

4 SSI clock source. Selects between the PLL and the external SSI_CLKIN pin as the source of the SSI baud clock.
SSISRC |0 SSI_CLKIN pin directly drives SSI baud clock.
1 PLL drives SSI baud clock with fractionally divided CPU clock.
3 Reserved, must be cleared.
2 USB transceiver pull-up disable. Disables the USB OTG controller from driving the internal transceiver pull-up.
USBPUD |0 USB OTG drives the internal transceiver pull-up.

1 Internal transceiver pull-up is disabled. The USB_PULLUP signal is used to trigger the external pull-up.

1 USB VBUS over-current sense polarity. Selects the polarity of the USB VBUS over-current sense signal driven
USBOC | off-chip.
0 USB_VBUS_OC is active high.
1 USB_VBUS_OC is active low.
0 USB clock source. Selects between the PLL and the external USB_CLKIN external pin as the clock source for
USBSRC | the serial and ULPI interfaces of the USB module.
0 USB_CLKIN pin drives USB serial interface clocks.
1 PLL drives USB serial interface clocks.

11-10
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11.3.5 Clock-Divider Register (CDR)

The CDR register provides clock division factors for limp mode and the SSI master clock when the PLL
is used to drive the SSI clock.

Address: 0xFCOA_0012 (CDR) Access: Supervisor read/write

4’3 2 1 0

15 14 13 12 11 10 9 8 7 6 5
Rl O 0 0 0
LPDIV SSIDIV
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 ‘ 0 0 0 1

Figure 11-8. Clock-Divider Register (CDR)

Table 11-9. CDR Field Descriptions

Field Description
15-12 Reserved, must be cleared.
11-8 Low power clock divider. Specifies the divide value used to produce the system clocks during limp mode. A 2:1
LPDIV ratio is maintained between the core and the internal bus.This field is used only when MISCCRILIMP] bit is set.
fEXTAL
System Clocks = ZU)W Eqgn. 11-1
Note: When LPDIV is cleared (divide-by-1), the internal bus clock and FB_CLK do not have a 50/50 duty cycle.
7-0 SSI oversampling clock divider. Specifies the divide value used to produce the oversampling clock for the SSI.
SSIDIV | This field is used only when MISCCR[SSISRC] is set (PLL is the source).
f
— —_sys -
SSI Baud Clock SSIDIV, 2 Eqgn. 11-2
Note: A value of 0 or 1 for SSIDIV represents a divide-by-65. SSIDIV should not be set to any value that sets the
SSI oversampling clock frequency over the bus clock frequency (fsys/2), because incorrect SSI operation
could result.
11.3.6 USB On-the-Go Controller Status Register (UOCSR)

The UOCSR register controls and reflects various features of the USB OTG module. When any bit of this
register generates an interrupt, that interrupt can be cleared by reading the UOCSR register. The read-only
bits of this register are set by the USB OTG module.

Address: 0xFCOA_0014 (UOCSR)

Access: Supervisor read/write

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
R CRG_|DCR
0 0 |DPPD|DMPD| O .y —~|DPPU
VBUS |VBUS AVLD | BVLD | VVLD |[SEND PFVI\_’f WKUP |UOMIE | XPDE
W
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Figure 11-9. USB On-the-Go Controller Status Register (UOCSR)
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Table 11-10. UOCSR Field Descriptions

Field Description
15-14 Reserved, must be cleared.
13 D+ 15 kQ pull-down. Indicates the 15-kQ pull-down on the OTG D+ line is active. When set, asserts an interrupt
DPPD if the UOMIE bit is set.
12 D- 15 kQ pull-down. Indicates the 15-kQ pull-down on the OTG D- line is active. When set, asserts an interrupt
DMPD if the UOMIE bit is set.
11 Reserved, must be cleared.
10 Charge VBUS. Indicates a charge resistor to pull-up VBUS is enabled. When set, asserts an interrupt if the
CRG_VBUS | UOMIE bit is set.
9 Discharge VBUS. Indicates a discharge resistor to pull-down VBUS is enabled. When set, asserts an interrupt if
DCR_VBUS | the UOMIE bit is set.
8 D+ pull-up control. Indicates pull-up on D+ for FS-only applications is enabled. When set, asserts an interrupt if
DPPU the UOMIE bit is set.
7 A-peripheral is valid. Indicates if the session for an A-peripheral is valid.
AVLD 0 Session is not valid for an A-peripheral.
1 Session is valid for an A-peripheral.
6 B-peripheral is valid. Indicates if the session for a B-peripheral is valid.
BVLD 0 Session is not valid for a B-peripheral.
1 Session is valid for a B-peripheral.
5 VBUS valid. Indicates if voltage on VBUS is at a valid level for operation.
VVLD 0 Voltage level on VBUS is not valid for operation.
1 Voltage level on VBUS is valid for operation.
4 Session end. Indicates if voltage on VBUS has dropped below the session end threshold.
SEND 0 Voltage on VBUS has not dropped below the session end threshold
1 Voltage on VBUS has dropped below the session end threshold
3 VBUS power fault. Indicates a power fault has occurred on VBUS (e.g. overcurrent).
PWRFLT |0 No power fault has occurred.
1 Power fault has occurred.
2 USB OTG controller wake-up event. Reflects if a wake-up event has occurred on the USB OTG controller bus
WKUP 0 No outstanding wake-up event.
1 Wake-up event has occurred.
1 USB OTG miscellaneous interrupt enable. Enables an interrupt to generate from any of the following UOCSR
UOMIE |bits: DPPD, DMPD, CRG_VBUS, DCR_VBUS, DPPU, and WKUP
0 Interrupt sources are disabled.
1 Interrupt sources are enabled.
0 On-chip transceiver pull-down enable.
XPDE 0 50 kQ pull-downs disabled on OTG D+ and D- pins of on-chip transceiver.
1 On-chip 50 kQ pull-downs enabled on OTG D+ and D- transceiver pins of on-chip transceiver.

11-12
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11.4 Functional Description

11.4.1 Reset Configuration

During reset, the pins for the reset override functions are immediately configured to known states.
Table 11-11 shows the states of the external pins while in reset.

Table 11-11. Reset Configuration Pin States During Reset

Pin Pin Function /0 Input State

BOOTMOD[1:0] | BOOTMOD function for all modes | Input | Must be driven by external logic

Flexbus address/data functions

(BOOTMO does not equal 10) Input N/A

FB_AD[7:0]

Reset configuration data functions

(BOOTMOD equals 10) Input | Must be driven by external logic

11.4.1.1 Reset Configuration (BOOTMOD[1:0] = 00)

If the BOOTMOD pins are 00 during reset, the RCON register determines the chip configuration after
reset, regardless of the states of the external data pins. The internal configuration signals are driven to
levels specified by the RCON register’s reset state for default module configuration.

11.4.1.2 Reset Configuration (BOOTMOD[1:0] = 10)

If the BOOTMOD pins are 10 during reset, the chip configuration after reset is determined according to
the levels driven onto the FB_AD[7:0] pins. (See Table 11-12.) The internal configuration signals are
driven to reflect the levels on the external configuration pins to allow for module configuration.

NOTE

The logic levels for reset configuration on FB_AD[7:0] must be actively
driven when BOOTMOD equals 10. The FB_AD[15:8] pins must be
allowed to float or be pulled high.
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Table 11-12.

Parallel Configuration During Reset’

Pin(s) Affected

Default

Override Pins

Function

Configuration in Reset??
FB_AD[7:5] Flexbus, PCI, Port Size Mode (360-pin Devices)
111 PCI, muxed FB addr/data, 8-bit boot
110 No PCI, muxed FB addr/data, 16-bit boot
101 No PCI, muxed FB addr/data, 8-bit boot
FB_AD[31:0], PCI_* See RCON[7:5] 100 No PCI, muxed FB addr/data, 32-bit boot
011 PCI, muxed FB addr/data, 16-bit boot
010 No PCI, non-muxed FB addr/data, 16-bit boot
001 No PCI, non-muxed FB addr/data, 8-bit boot
000 No PCI, non-muxed FB addr/data, 32-bit boot
FB_AD[7:5] Flexbus, PCI, Port Size Mode (256-pin Devices)
111 Reserved
110 No PCI, muxed FB addr/data, 16-bit boot
101 No PCI, muxed FB addr/data, 8-bit boot
FB_AD[31:0], PCI_* See RCON[7:5] 100 No PCI, muxed FB addr/data, 32-bit boot
011 Reserved
010 No PCI, non-muxed FB addr/data, 16-bit boot
001 No PCI, non-muxed FB addr/data, 8-bit boot
000 No PCI, non-muxed FB addr/data, 32-bit boot
FB_AD4 PLL Mode
(none) See RCON[4] 1 Limp mode
0 PLL mode
FB_AD3 (360-F|,oci:rlu ﬂt():?-tlliﬁg:rlngS:\Zces)
(none) See RCONI3] 1 PCI host mode
0 PCIl agent mode
FB AD3 _ _ Oscillatqr Mode ) _
- (360-pin PCI-Disabled Devices and 256-pin Devices)
(none) See RCONI3] 1 Oscillator bypass mode
0 Crystal oscillator mode

11-14
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Table 11-12. Parallel Configuration During Reset' (continued)

. Default Override Pins .
Pin(s) Affected Configuration in Reset2? Function
PCI Slew Rate Mode
FB_AD2 (360-pin PCI-Enabled Devices)
PCI_* See RCON[2]
1 66 MHz slew rate mode
0 33 MHz slew rate mode
. PLL Multiplier
FB_AD[2:0] (360-pin PCI-Disabled Devices and 256-pin Devices)
111 VCO =8 x REF
110 VCO = 16 x REF
101 VCO =6 x REF
(none) See RCONJ[2:0]
100 VCO =12 x REF
011 VCO = 18 x REF
010 VCO =24 x REF
001 VCO =10 x REF
000 VCO =20 x REF
FB_AD[1:0] PLL Multiplier (360-pin PCI-Enabled Devices)
11 VCO =8 x REF
CPU = 266/200; PCI = 66/50
10 VCO = 16 x REF
(none) See RCON[1:0] CPU = 266/200; PCI = 33/25
01 VCO =6 x REF
CPU =200/180; PCI = 66/50
00 VCO =12 x REF
CPU = 200/240; PCI = 33/40

1 Modifying the default configurations through the FB_AD[7:0] pins is possible only if the external BOOTMOD[1:0] pins are 10
while RSTOUT is asserted.

2 The FB_AD[31:8] pins do not affect reset configuration.

3 The external reset override circuitry drives the data bus pins with the override values while RSTOUT is asserted. It must stop
driving the data bus pins within one FB_CLK cycle after RSTOUT is negated. To prevent contention with the external reset
override circuitry, the reset override pins are forced to inputs during reset and do not become outputs until at least one FB_CLK
cycle after RSTOUT is negated.

11.4.1.3 Reset Configuration (BOOTMOD[1:0] = 11)

If the BOOTMOD pins are 11 during reset, the chip configuration after reset is determined by data
obtained from external SPI memory through serial boot using the SBF DI, SBF DO, SBF CS, and
SBF_ CK signals. The internal configuration signals are driven to reflect the data being received from the
external SPI memory to allow for module configuration. See Chapter 12, “Serial Boot Facility (SBF),” for
more details on serial boot.
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NOTE

The serial configuration depends on the package of the device. Use
Table 11-13 for 360-pin devices and Table 11-14 for 256-pin devices

Table 11-13. Serial Configuration During Reset for 360-pin Devices

Pin(s) Affected

Default
Configuration

Override Serial
RCON Bits

Function

(none)

See RCONJ7:5]

SBF_RCON[127:126]

Boot Port Size

11

0-bit port (FB_ADI[31:0] configured for GPIO)

10 8-bit port
01 16-bit port
00 32-bit port

PCI_ADI[31:0] (360-pin)

See RCON[7:5]

SBF_RCON[125]

PCI and Flexbus A/D Pin Mode

1

PCI disabled
Flexbus non-muxed address/data mode

PCI enabled
Flexbus muxed address/data mode

SBF_RCON[124]

Oscillator Mode

(none) See RCON([3] 1 Oscillator bypass mode
0 Crystal oscillator mode
SBF_RCON[123] Bus Monitor Enable
(none) See MISCCR[11] 1 Bus monitor enabled
0 Bus monitor disabled
SBF_RCON[122:120] Bus Monitor Timeout (FB_CLK Cycles)
000 65536
001 32768
010 16384
(none) See MISCCR[10:8] 011 8192
100 4096
101 2048
110 1024
111 512

11-16
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Table 11-13. Serial Configuration During Reset for 360-pin Devices (continued)

Pin(s) Affected

Default
Configuration

Override Serial
RCON Bits

Function

PLL Reference Clock Multiplier

(none) 24 (dec) SBF_RCON[119:112] | 15 value is loaded into the PLL's PCRIPFDRI.
SBF_RCON[111] PLL Mode
(none) See RCON[4] 1 Limp mode
0 PLL mode
SBF_RCON[110] Timer/SSI DMA Channel Mux Select
1 Timer 0-3 DMA signals mapped to DMA channels
(none) See MISCCR[5] 9-12, respectively
0 SSI RX0, SSI RX1, SSI TX0, SSI TX1 DMA signals
mapped to DMA channels 9-12, respectively
SBF_RCONI[109] USB Clock Source
(none) See MISCCRI(] 1 PLL drives USB serial interface clocks
0 USB_CLKIN pin drives USB serial interface clock
SBF_RCON[108] USB VBUS Overcurrent Sense Polarity
(none) See MISCCR[1] 1 USB_VBUS_OC is active-high
0 USB_VBUS_OC is active-low
SBF_RCONI[107] SSI RXD/TXD Pull Enable
(none) See MISCCR[7] 1 SSI_RXD,SSI_TXD pull cells enabled
0 SSI_RXD,SSI_TXD pull cells disabled
SBF_RCONI[106] SSI RXD/TXD Pull Select
(none) See MISCCR6] 1 SSI_RXD,SSI_TXD pulled high
0 SSI_RXD,SSI_TXD pulled low
SBF_RCONI[105] SSI Clock Source
(none) See MISCCR[4] 1 PLL drives SSI clock
0 SSI_CLKIN pin drives SSI clock
SBF_RCONI[104] PCI Pad Slew Rate Mode
(none) See RCON[2] 1 66 MHz slew rate mode
0 33 MHz slew rate mode
See RCON[3] - SBF_RCON[103] PCI Interrupt
(none) hostmode disables 1 PCl interrupt enabled
interrupt

0

PCI interrupt disabled

Freescale Semiconductor
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Table 11-13. Serial Configuration During Reset for 360-pin Devices (continued)

Pin(s) Affected

Default
Configuration

Override Serial
RCON Bits

Function

SBF_RCON[102]

PCI Configuration Retry

See RCONJ3] -
(none) hostmode disables 1 PCI configuration retry enabled
retry
0 PCI configuration retry disabled
SBF_RCON[101] PCI BARS5 Enable
See RCONJ3] -
(none) host mode enables 1 BARS5 enabled
BAR
0 BARS5 disabled
SBF_RCONI[100] PCI BAR4 Enable
See RCON[3] -
(none) host mode enables 1 BAR4 enabled
BAR
0 BARA4 disabled
SBF_RCONJ[99] PCI BAR3 Enable
See RCONJ3] -
(none) host mode enables 1 BAR3 enabled
BAR
0 BAR3 disabled
SBF_RCON[98] PCI BAR2 Enable
See RCONJ3] -
(none) host mode enables 1 BAR2 enabled
BAR
0 BAR2 disabled
SBF_RCONI[97] PCI BAR1 Enable
See RCON[3] -
(none) host mode enables 1 BAR1 enabled
BAR
0 BAR1 disabled
SBF_RCONJ[96 PCI BARO Enable
See RCONJ3] - B [96]
(none) host mode enables 1 BARO enabled
BAR
0 BARO disabled
(none) $5807 SBF_RCON[95:80] PCI Device ID
(none) $1957 SBF_RCONJ[79:64] PCI Vendor ID
(none) $068000 SBF_RCONI[63:40] PCI Class Code
(none) $00 SBF_RCON[39:32] PCI Revision ID
(none) $0000 SBF_RCON[31:16] PCI Subsystem ID
(none) $0000 SBF_RCON[15:0] PCI Subsystem Vendor ID
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Table 11-14. Serial Configuration During Reset for 256-pin Devices

Pin(s) Affected

Default
Configuration

Override Serial
RCON Bits

Function

SBF_RCON[127:126]

Boot Port Size

11

0-bit port (FB_ADI[31:0] configured for GPIO)

(none) See RCON[7:5] 10 8-bit port
01 16-bit port
00 32-bit port
SBF_RCONI[125] Flexbus A/D Pin Mode
PCI_AD[23:0] See RCON[7:5] 1 Flexbus non-muxed address/data mode
0 Flexbus muxed address/data mode
SBF_RCON[124] Oscillator Mode
(none) See RCON([3] 1 Oscillator bypass mode
0 Crystal oscillator mode
SBF_RCONJ[123] Bus Monitor Enable
(none) See MISCCR[11] 1 Bus monitor enabled
0 Bus monitor disabled
SBF_RCON[122:120] Bus Monitor Timeout (FB_CLK Cycles)
000 65536
001 32768
010 16384
(none) See MISCCRJ[10:8] 011 8192
100 4096
101 2048
110 1024
111 512
(none) 24 (dec) SBF_RCON[119:112] | ;0 vall::;l-isﬁzgedr:g ?:tc? tlr?: 'I(DllinLl’:,ltliD%i;{PFDR].
(none) — SBF_RCON[111:96] Must be Zero
11.4.2 Boot Configuration

During reset configuration, the FB_CSO0 chip select pin is always configured to select an external boot
device. The valid (V) bit in the CSMRO register is ignored and FB_CS0 is enabled after reset. FB_CSO0 is
asserted for the initial boot fetch accessed from address 0x0000 0000 for the stack pointer and address

Freescale Semiconductor
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0x0000 0004 for the program counter (PC). It is assumed the reset vector loaded from address
0x0000_0004 causes the processor to start executing from external memory space decoded by FB_CSO0.

11.4.3 Low Power Configuration

After reset, the device can be configured for operation during the low power modes using the low power
control register (LPCR). For more information on this register, see Section 9.2.5, “Low-Power Control
Register (LPCR).”
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Chapter 12
Serial Boot Facility (SBF)

12.1 Introduction

It is nearly impossible to dedicate and very impractical to share pins for the numerous available power-up
options on today’s complex, highly-integrated processors. The serial boot facility (SBF), shown in
Figure 12-1, solves this problem by providing the user with the capability to store and load all device reset
configuration data and user code from an external SPI memory. This method requires only a minimal
number of I/O pins.

On-chip
Modules SBF

0 0 > Clock
Control

Y

SBF_CK

Reset
Controller

A
Y

Y
A

Y

SBF_CS

Y

| |
| =<
| |
L _ _ 1
r— — — 1
!
|

> Control Read
Command

Y

I chip
| Configuration |
Module |

SBF_DO

A
Y

A
Y

Registers

A

Y
A

SBF_DI

Deserializer/
Debounce

A

Interface

A

r— — — "

.
|

Memory ' | RAM
|
_I

Figure 12-1. SBF Block Diagram

12.1.1 Overview

The SBF interfaces to an external SPI memory to read configuration data and boot code during the
processor reset sequence if BOOTMOD[1:0] equals 11. By reading data stored in the SPI memory, the SBF
adjusts the SPI memory clock frequency, configures an extended set of power-up options for the processor,
and optionally loads code into the on-chip SRAM. Through interaction with the reset controller, the SBF
performs these actions so that the chip is properly configured after exiting the reset state.
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12.1.2

Features

The SBF includes these distinctive features:

*  Support for many different SPI memory devices

EEPROM

Flash

FRAM

Embedded FPGA memory

» External interface maps directly to (and can be multiplexed with) the DMA serial peripheral
interface (DSPI) pins

» Self-adjusting shift clock frequency for maximum throughput supported by SPI memory

* Optionally load boot code into processor’s memory space

12.2 External Signal Description

Listed below are the SBF module external signals.

Table 12-1. Signal Properties

Signal /0 Description

Reset| Pull Up

data from and drive data to the processor

SBF_CK O | Shift clock. Alternate edges of this signal cause the SPI memory to accept | —

active state, ready to accept commands.

SBF_CS O | Chip select. This signal enables the SPI memory and places it into an

this signal.

SBF_DI | | Datain. The SPI memory drives and the processor accepts read dataon | — Active'

SBF_DO O | Data out. The SBF drives the read command and address on this signal. | —

' Disabled by the SBF when the SPI memory begins shifting out data.

12.3 Memory Map/Register Definition

The SBF programming model consists of the registers listed below.
Table 12-2. SBF Memory Map

Address Register ‘?S::; Access | Reset Value | Section/Page
0xFCOA_0018 | Serial boot facility status register (SBFSR) 16 R See Section 12.3.1/12-3
0xFCOA_0020 | Serial boot facility control register (SBFCR) 16 R/W See Section 12.3.2/12-3

12-2
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12.3.1 Serial Boot Facility Status Register (SBFSR)

The read-only SBFSR register reflects the amount of boot code loaded through the external SPI memory.

Address: 0xFCOA_0018 (SBFSR) Access: User read-only
15 14 13 12 ‘ 11 10 9 8 ‘ 7 6 5 4 ‘ 3 2 1 0
R BLL
w [ rrrrrrr [ |
Reset See Note

Note: Reset value is user-defined (loaded from SPI memory during serial boot following any reset type)

Figure 12-2. Serial Boot Facility Status Register (SBFSR)

Table 12-3. SBFSR Field Descriptions

Field Description

15-0 |Boot load length. Reflects the number of longwords of boot code loaded from external SPI memory during serial
BLL boot. No boot code was loaded if BLL equals 0x0000. Otherwise, BLL plus 1 longwords were loaded.

12.3.2 Serial Boot Facility Control Register (SBFCR)

The read-always/write-once SBFCR register controls SBF operation following subsequent warm resets.

Address: 0xFCOA_0020 (SBFCR) Access: User read/write-once
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R| O 0 0 0 0 0 0 0 0 0 0
FR BLDIV
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0! See Note

" Reset value is 0 and is reset only by power-on reset (remains unchanged for other reset types)

Note: The reset value is loaded from SPI memory during serial boot following power-on reset. It remains unchanged
for other reset types. Prior to this register being loaded from SPI memory, a divisor of 67 is used to begin the
serial boot sequence.

Figure 12-3. Serial Boot Facility Control Register (SBFCR)

Table 12-4. SBFCR Field Descriptions

Field Description

15-5 Reserved, must be cleared.

4 Fast read. Determines whether the SBF uses the standard READ command or flash FAST_READ command on

FR reboot following any reset other than power-on reset. Because this register is write-once, the application must write
the value for this bit in the same write that the BLDIV field is written. Any subsequent writes to this field prior to a
power-on reset event terminate without effect.

0 SBF uses the standard READ command

1 SBF uses the FAST_READ command
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Table 12-4. SBFCR Field Descriptions (continued)

Field Description
3-0 Boot loader clock divider. Determines the SBF clock (PLL input reference clock) divisor that generates the serial shift
BLDIV | clock output on SBF_CK. Prior to the serial boot sequence, a divisor of 67 is used.
During the serial boot sequence, this field is loaded with the value read from the SPI memory. The application may
write to this register to change the divisor for any subsequent serial boot that follows a soft-reset condition.
Because this register is write-once, the application must write the value for this field in the same write that the FR bit
is written (regardless of the value written to the FR bit). Any subsequent writes to this field prior to a power-on reset
event terminate without effect.
Shift Clock Shift Clock
Ideal Ideal
BLDIV Divisor | High Time | Low Time BLDIV Divisor | High Time | Low Time
(fres Ticks) | (fe Ticks) (fres Ticks) | (fe Ticks)

0000 1 Bypass Bypass 1000 14 7 7

0001 2 1 1 1001 17 9 8

0010 3 2 1 1010 25 13 12

0011 4 2 2 1011 33 17 16

0100 5 3 2 1100 34 17 17

0101 7 4 3 1101 50 25 25

0110 10 5 5 1110 67 34 33

0111 13 7 6 1111 Reserved

12.4 Functional Description

When enabled, the SBF inserts three additional steps into the normal system boot process:

Serial initialization and shift clock frequency adjustment
Reset configuration and optional boot load
Execution transfer

12.4.1 Serial Initialization and Shift Clock Frequency Adjustment

The following sequence is followed during a serial boot sequence:

1.

The SBF is engaged when BOOTMODJ1:0] = 11 concurrent with the release of a pending source
of reset (power-on, software watchdog, RESET pin, etc.).

Boot-up is paused.

The weak internal pull-up on SBF DI is enabled. This allows a 1-to-0 transition to register when
the SPI memory output switches from high-impedance to logic 0.

The SBF shifts the standard SPI memory read command (0x03) followed by repeated 0x00 address
bytes to the SPI memory at fpzp + 60.

12-4
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. After the SPI memory accepts however many shift clock edges are necessary to respond to the

READ command, it turns on its previously tri-stated output and begins driving the msb of the byte
at address 0.

Bits [7:4] of this byte must be 0000, so that the required 1-to-0 transition can be detected on

SBF DI to synchronize the SBF state machine. If bits [7:4] of this byte are not 0000, bits[3:0] are
ignored, another byte is clocked out of the SPI memory (SBF_DO remains at logic 0), and the SBF
state machine again tests for a 1-to-0 transition followed by four consecutive zero bits.

After the necessary 1-to-0 transition and reception of a byte with bits [7:4] equal to 0000, the SBF
pauses and bits [3:0] of the received byte select a new shift clock divider according to Table 12-4.
The weak internal pull-up on SBF DI is disabled.

The shift clock begins toggling at the new frequency, resuming the READ command already in
progress.

NOTE

Shift clock frequency adjustment follows a power-on/hard reset only. After
the new divisor is known, it is stored in the sticky SBFCR[BLDIV] field and
used for subsequent soft resets. This speeds reboot for systems that do not
benefit from the optional FAST READ on soft reset feature (e.g., the SPI
memory does not support FAST READ, or the input reference clock does
not exceed the maximum allowable frequency for the READ command).

12.4.2 Reset Configuration and Optional Boot Load

After the steps in Section 12.4.1, “Serial Initialization and Shift Clock Frequency Adjustment”, are
executed, the following is performed to load configuration data and optional boot code.

1.

Next, the SBF shifts two bytes (16 bits) out of the SPI memory that indicate how many longwords,
if any, are to be read during the optional boot load sequence. These bytes are software-visible in
the SBFSR[BLL] field.

The read operation continues with four longwords (128 bits) of reset configuration data (one
longword in the 256-pin devices), formatted in the order presented in Section 11.4.1.3, “Reset
Configuration (BOOTMODJ[1:0] = 11)".

At this point, the SBF determines whether or not to read boot code. If SBFSR[BLL] is non-zero,
BLL plus one longwords (4 x (BLL + 1) bytes) are consecutively loaded into the SRAM.

NOTE

Although the SBF permits up to 65,536 longwords (262,144 bytes) to be
loaded, the maximum practical number that can be read is limited by the size
of the device’s internal SRAM (8192 longwords (32,768 bytes) for this
device).
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12.4.3 Execution Transfer

After boot load is complete or if no boot load is requested (SBFSR[BLL] = 0), the following steps

complete the serial boot process:

1. The acquired configuration data is driven to the appropriate modules.

The system is released from reset.

2
3. The ColdFire processor initiates its normal reset vector fetch at address 0.
4

. The actual memory that responds to the reset vector fetch depends on whether serial boot load is

requested:

— If SBFSR[BLL] is cleared, the reset vector fetch is handled by the FlexBus module, and
whatever external memory is mapped at address 0, governed by the user-provided setting of

RCON/CCR[FBCONFIG].

— If SBFSR[BLL] is set, the reset vector and boot code are read from the on-chip SRAM. (The
SBF enables the SRAM and maps it to address 0 via the RAMBAR before control of the
processor is restored to the ColdFire core.) The reset vector (initial stack pointer and program
counter) should point to locations in the on-chip SRAM, so that boot code can initialize the
device and load the application software from the SPI memory or via some other mechanism
(e.g. a hard disk drive connected to the ATAPI controller or a network server responding to a

TFTP client).

12.5 Initialization Information

12.5.1 SPI Memory Initialization

The SBF requires that, prior to device power-up, the SPI memory is loaded with data organized according
to Table 12-5 or Table 12-6, depending on the exact device used (256- or 360-pin). See Section 11.4.1.3,
“Reset Configuration (BOOTMODJ1:0] = 11),” for the reset configuration (SBF_RCON) data definition.

Table 12-5. SPI Memory Organization (360-pin Devices)

Byte Address Data Contents
0x0 {0000,BLDIV[3:0]}
Ox1 BLL[7:0]
0x2 BLL[15:8]
0x3 RCON([7:0]
Ox4 RCON[15:8]
0x12 RCON[127:120]
ox13! CODE_BYTE_0?
ox14! CODE_BYTE_1

12-6
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Table 12-5. SPI Memory Organization (360-pin Devices) (continued)

Byte Address Data Contents

0x12 + 4 x (BLL + 1)! CODE_BYTE_[4 x (BLL + 1) - 1]

' This assumes SBFSRIPLL] is non-zero. If PLL is zero, the SBF
does not access data at these addresses.

2 Start of user code copied into the on-chip SRAM.
CODE_BYTE_0-3 is the supervisor stack pointer (SP) when
loading completes. CODE_BYTE_4-7 is the program counter
(PC) when loading completes.

Table 12-6. SPI Memory Organization (256-pin Devices)

Byte Address Data Contents
0x0 {0000,BLDIV[3:0]}
0x1 BLL[7:0]
0x2 BLL[15:8]
0x3 0x00
Ox4 0x00
0x5 RCON[119:112]
0x6 RCON[127:120]
ox7’ CODE_BYTE_0?
0x8’ CODE_BYTE_1

0x6 + 4 x (BLL + 1)’ CODE_BYTE_[4 x (BLL + 1) - 1]

! This assumes SBFSR[BLL] is non-zero. If BLL is zero, the SBF
does not access data at these addresses.

2 Start of user code copied into the on-chip SRAM.
CODE_BYTE_0-3 is the supervisor stack pointer (SP) when
loading completes. CODE_BYTE_4-7 is the program counter
(PC) when loading completes.

12.5.2 FAST_READ Feature Initialization

Many SPI flash memories implement a FAST READ command that allows for a substantially higher
shift-clock frequency. The SBF always uses the normal read command when coming out of a
power-on/hard reset. However, when coming out of a soft reset, it is possible to use FAST READ because
the SBF machine state is not lost.

For this reason, the SBFCR[FR] sticky bit may be set, causing the FAST READ command to be issued
instead of the read command in the event of a soft reset. To enable the FAST READ feature, set
SBFCR[FR] in the same write that sets the SBFCR[BLDIV] field. The value written to SBFCR[BLDIV]
should correspond to the frequency the SPI memory supports in FAST READ mode. After a soft reset,
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SBFCR[BLDIV] is not overwritten with the BLDIV[3:0] value read from the SPI memory. Instead, the
SBF uses the SBFCR[BLDIV] value to determine the SPI memory clock.

NOTE

The ability to use the FAST READ command is limited by the SBF
electrical specifications. Specifically, delays present throughout the system
(including those between the SBF, the pin multiplexing logic, and the actual
I/O pads) effectively limit the maximum frequency at which the SBF
operates and can preclude use of the FAST READ feature altogether. Even
when the delays within the processor itself are minimized, the actual SPI
memories may have similarly untenable electrical specifications (data input
setup and output valid times).
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Chapter 13
Reset Controller Module

13.1 Introduction

The reset controller determines the cause of reset, asserts the appropriate reset signals to the system, and

keeps a history of what caused the reset.

13.1.1 Block Diagram

Figure 13-1 illustrates the reset controller and is explained in these:

[
RESET
Pin
_ /

Power-On
Reset

Y

Core Watchdog
Timer Timeout

PLL
Loss of Lock

Y

Software
Reset

Y

Reset
Controller

~

——
L RST_OUTJ
L Pin

——> To Internal Resets

Figure 13-1. Reset Controller Block Diagram

13.1.2 Features

Module features include the following:
» Five sources of reset:
— External
— Power-on reset (POR)
— Core watchdog timer
— Phase locked-loop (PLL) loss of lock
— Software

* Software-assertable RSTOUT pin independent of chip-reset state

» Software-readable status flags indicating the cause of the last reset

Freescale Semiconductor
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13.2 External Signal Description

Table 13-1 provides a summary of the reset-controller signal properties. The signals are described in the
following paragraphs.

Table 13-1. Reset Controller Signal Properties

Input Input

_iinl

Name 1’0 Pull-up Hysteresis Synchronization
RESET | Active Y Y2
RSTOUT 0 — — —

Al pull-ups are disconnected when the signal is programmed as an output.
2 RESET s always synchronized except when in low-power stop mode.

13.2.1 RESET

Asserting the external RESET for at least four rising FB_ CLK edges causes the external reset request to
be recognized and latched.

13.2.2 RSTOUT

This active-low output signal is driven low when the internal reset controller module resets the device. It
may take up to six FB_ CLK edges after RESET assertion for RSTOUT to assert, due to an internal
synchronizer on RESET. When RSTOUT is active, the user can drive override options on the data bus. See
Chapter 11, “Chip Configuration Module (CCM),” for more details on these override options.

13.3 Memory Map/Register Definition

The reset controller programming model consists of these registers:
* Reset control register (RCR), which selects reset control functions
* Reset status register (RSR), which reflects the state of the last reset source
See Table 13-2 for the memory map and the following paragraphs for register descriptions.

Table 13-2. Reset Controller Memory Map

Address Register ‘?g::; Access | Reset Value | Section/Page
0xFCOA_0000 | Reset Control Register (RCR) 8 R/W 0x00 13.3.1/13-2
OxFCOA_0001 | Reset Status Register (RSR) 8 R See Section | 13.3.2/13-3

13.3.1 Reset Control Register (RCR)

The RCR allows software control for requesting a reset and for independently asserting the external
RSTOUT pin.

13-2 Freescale Semiconductor



Reset Controller Module

Address: 0xFCOA_0000 (RCR) Access: User read/write
7 6 5 4 3 2 1
0 0 0 0 0 0
SOFTRST |FRCRSTOUT
w
Reset: 0 0 0 0 0 0 0 0
Figure 13-2. Reset Control Register (RCR)
Table 13-3. RCR Field Descriptions
Field Description
7 Allows software to request a reset. The reset caused by setting this bit clears this bit.

SOFTRST |1 Software reset request
0 No software reset request

6 Allows software to assert or negate the external RSTOUT pin.
FRCRSTOUT |1 Assert RSTOUT pin
0 Negate RSTOUT pin
CAUTION: External logic driving reset configuration data during reset needs to be considered when asserting
the RSTOUT pin when setting FRCRSTOUT.

5-0 Reserved, must be cleared.

13.3.2 Reset Status Register (RSR)

The RSR contains a status bit for every reset source. When reset is entered, the cause of the reset condition
is latched, along with a value of O for the other reset sources that were not pending at the time of the reset
condition. These values are then reflected in RSR. One or more status bits may be set at the same time.
The cause of any subsequent reset is also recorded in the register, overwriting status from the previous reset
condition.

RSR can be read at any time. Writing to RSR has no effect.

Address: 0xFCOA_0001 (RSR) Access: User read-only
7 6 5 4 3 2 1 0
R 0 0 SOFT 0 POR EXT oot LoL
W
Reset: 0 0 Reset 0 Reset Reset Reset Reset
Dependent Dependent Dependent Dependent Dependent

Figure 13-3. Reset Status Register (RSR)
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Table 13-4. RSR Field Descriptions

Field Description
7-6 Reserved, must be cleared.
5 Software reset flag. Indicates the software caused last reset.
SOFT 0 Last reset not caused by software
1 Last reset caused by software
4 Reserved, should be cleared.
3 Power-on reset flag. Indicates power-on reset caused the last reset.
POR 0 Last reset not caused by power-on reset
1 Last reset caused by power-on reset
2 External reset flag. Indicates that the last reset was caused by an external device or circuitry asserting the
EXT external RESET pin.
0 Last reset not caused by external reset
1 Last reset caused by external reset
1 Core watchdog timer reset flag. Indicates the core watchdog timer timeout caused the last reset.
WDRCORE |0 Last reset not caused by watchdog timer timeout
1 Last reset caused by watchdog timer timeout
0 Loss-of-lock reset flag. Indicates the last reset state was caused by a PLL loss of lock.
LOL 0 Last reset not caused by loss of lock
1 Last reset caused by a loss of lock

13.4 Functional Description

13.4.1

Reset Sources

Table 13-5 defines the reset sources and the signals driven by the reset controller.

To protect data integrity, a synchronous reset source is not acted upon by the reset control logic until the
end of the current bus cycle. Reset is then asserted on the next rising edge of the system clock after the

Table 13-5. Reset Source Summary

Source Type
Power on Asynchronous
External RESET pin (not stop mode) Synchronous
External RESET pin (during stop mode) Asynchronous
Core Watchdog timer Synchronous
Loss of lock Synchronous
Software Synchronous

cycle is terminated. Internal byte, word, or longword writes are guaranteed to complete without data

corruption when a synchronous reset occurs. External writes, including longword writes to 16-bit ports,

are also guaranteed to complete.

13-4

Freescale Semiconductor




Reset Controller Module

Asynchronous reset sources usually indicate a catastrophic failure. Therefore, the reset control logic does
not wait for the current bus cycle to complete. Reset is immediately asserted to the system.

13.4.1.1 Power-On Reset

At power up, the reset controller asserts RSTOUT. RSTOUT continues to be asserted until Vpp has
reached a minimum acceptable level and, if PLL clock mode is selected, until the PLL achieves phase lock.
After approximately another 512 cycles (non-serial boot) or at the end of the serial boot sequence,
RSTOUT is negated and the device begins operation.

13.4.1.2 External Reset

Asserting the external RESET for at least four rising FB_CLK edges causes the external reset request to
be recognized and latched. After the RESET pin is negated and the PLL has acquired lock, the reset
controller asserts RSTOUT either for approximately 512 bus clock cycles (non-serial boot) or for the
duration of the serial boot sequence. The device then exits reset and begins operation.

In low-power stop mode, the system clocks stop. Asserting the external RESET in stop mode causes an
external reset to be recognized asynchronously.

13.4.1.3 Core Watchdog Timer Reset

A core watchdog timer timeout causes the timer reset request to be recognized and latched. If the RESET
pin is negated and the PLL has acquired lock, the reset controller asserts RSTOUT either for approximately
512 bus clock cycles (non-serial boot) or for the duration of the serial boot sequence. Then the device exits
reset and begins operation.

13.4.1.4 Loss-of-Lock Reset

This reset condition occurs when the PLL loses lock. After the PLL has acquired lock, the reset controller
asserts RSTOUT either for approximately 512 bus clock cycles (non-serial boot) or for the duration of the
serial boot sequence. The device then exits reset and resumes operation.

13.4.1.5 Software Reset

A software reset occurs when the RCR[SOFTRST] bit is set. If the RESET is negated and the PLL has
acquired lock, the reset controller asserts RSTOUT either for approximately 512 bus clock cycles
(non-serial boot) or for the duration of the serial boot sequence. Then the device exits reset and resumes
operation.

13.4.2 Reset Control Flow

The reset logic control flow is shown in Figure 13-4. In this figure, the control state boxes have been
numbered, and these numbers are referred to (within parentheses) in the flow description that follows. All
cycle counts given are approximate.
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2 Y

1 [ Power-on-Reset ]

>
>

—><_ LossOflLock?

RESET Y
Pin or WD Timeout

or SW Reset?
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Negate RSTOUT
A

5 Y
Assert RSTOUT and
Latch Reset Status

4 Y
Assert RSTOUT and
Latch Reset Status

7 /,/
A
PLL Locked?

Serial Boot Sequence —

Y
8 - \\\\
<~ BOOTMODI[1:0] == 11 ')BL»

. (Serial Boot)

N
0y

Wait 512 FB_CLK Cycles

11
OOTMODI1:0] == 10?7
. (Parallel RCON)

>

11A

Latch Configuration
from FB_AD[7:0] pins

Figure 13-4. Reset Control Flow

13.4.2.1 Synchronous Reset Requests

In this discussion, the reference in parentheses refer to the state numbers in Figure 13-4. All cycle counts

given are approximate.
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If the external device asserts the external RESET signal for at least four rising FB_ CLK edges (3), if the
watchdog timer times out, or if software requests a reset, the reset control logic latches the reset request
internally. At this point the RSTOUT pin is asserted (5). (Even though the external RESET pin needs to
be asserted for only four FB_ CLK edges, it may take up to six clocks beyond RESET assertion for
RSTOUT to assert.) The reset control logic waits until the RESET signal is negated (6) and for the PLL to
attain lock (7) before waiting 512 FB_CLK cycles (10) or for the duration of serial boot (9). For non-serial
boot, the reset control logic may latch the chip configuration options from the FB_AD[7:0] pins (11, 11A).
RSTOUT is then negated (12).

If the external RESET signal is asserted by an external device for at least four rising FB_ CLK edges during
the 512 count (10) or during the wait for PLL lock (7) or during serial boot (9), the reset flow switches to
(6) and waits for the RESET signal to be negated before continuing.

13.4.2.2 Asynchronous Reset Request

If reset is asserted by an asynchronous internal reset source, such as loss of lock (2) or power-on reset (1),
the reset control logic asserts RSTOUT (4). The reset control logic waits for the PLL to attain lock (7)
before waiting either 512 bus clock cycles (10) or for the duration of serial boot (9). For non-serial boot,
the reset control logic may then latch the chip configuration options from the FB_ AD[7:0] pins (11, 11A).
RSTOUT is then negated (12).

Ifaloss of lock occurs during the 512 bus clock count (10) or during serial boot (9), the reset flow switches
to (7) and waits for the PLL to lock before continuing.

13.4.3 Concurrent Resets

This section describes the concurrent resets. As in the previous discussion references in parentheses refer
to the state numbers in Figure 13-4.

13.4.3.1 Reset Flow

If a power-on reset is detected during any reset sequence, the reset sequence starts immediately (1).

If the external RESET pin is asserted for at least four rising FB_CLK edges while waiting for PLL lock or
the 512 cycles or serial boot, the external reset is recognized. Reset processing switches to wait for the
external RESET pin to negate (6).

If a loss-of-lock condition is detected during the 512 cycle wait or during serial boot, the reset sequence
continues after a PLL lock (7).

13.4.3.2 Reset Status Flags

For a POR reset, the RSR[POR] bit is set, and all other RSR flags are cleared even if another type of reset
condition is pending or concurrently asserted.

If other reset sources are asserted after the RSR status bits have been latched (4 or 5), the device is held in
reset (9 or 10) until all sources have negated, and the subsequent sources are not reflected in the RSR
contents.
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Chapter 14
System Control Module (SCM)

14.1 Introduction

This system control module (SCM) provides several control functions, including peripheral access control,
a software core watchdog timer, and generic access error information for the processor core.

14.1.1 Overview

The SCM provides programmable access protections for masters and peripherals. It allows the privilege
level of a master to be overridden, forcing it to user-mode privilege, and allows masters to be designated
as trusted or untrusted. Peripherals may be programmed to require supervisor privilege level for access,
may restrict access to a trusted master only, and may be write-protected.

The SCM’s core watchdog timer (CWT) provides a means of preventing system lockup due to
uncontrolled software loops via a special software service sequence. If periodic software servicing action
does not occur, the CWT times out with a programmed response (system reset or interrupt) to allow
recovery or corrective action to be taken.

Fault access reporting is also available within the SCM. The user can use these registers during the
resulting interrupt service routine and perform an appropriate recovery.

14.1.2 Features

The SCM includes these distinctive features:

* Access control registers
— Master privilege register (MPR)
— Peripheral access control registers (PACRs)

* System control registers
— Core watchdog control register (CWCR) for watchdog timer control
— Core watchdog service register (CWSR) to service watchdog timer
— SCM interrupt status register (SCMISR) to service a bus fault or watchdog interrupt
— Bus monitor timeout register (BMT)

* Core fault reporting registers

14.2 Memory Map/Register Definition
The memory map for the SCM registers is shown in Table 14-1.
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Attempted accesses to reserved addresses result in a bus error, while attempted writes to read-only registers
are ignored and do not terminate with an error. Unless noted otherwise, writes to the programming model
must match the size of the register, e.g., an 8-bit register supports only 8-bit writes, etc. Attempted writes
of a different size than the register width produce a bus error and no change to the targeted register.

Table 14-1. SCM Memory Map

Address Register ‘?g:;'; Access | Reset Value | Section/Page
0xFCO00_0000 | Master Privilege Register (MPR) 32 R/W | 0x7000_0007 | 14.2.1/14-2
0xFCO00_0020 | Peripheral Access Control Register A (PACRA) 32 R/W | 0x5440_0000| 14.2.2/14-4
0xFCO00_0024 | Peripheral Access Control Register B (PACRB) 32 R/W | 0x0000_4404 | 14.2.2/14-4
0xFCO00_0028 | Peripheral Access Control Register C (PACRC) 32 R/W | 0x4444_0444| 14.2.2/14-4
0xFCO00_002C | Peripheral Access Control Register D (PACRD) 32 R/W | 0x4440_4444| 14.2.2/14-4
0xFCO00_0040 | Peripheral Access Control Register E (PACRE) 32 R/W | 0x4444_4444| 14.2.2/14-4
0xFCO00_0044 | Peripheral Access Control Register F (PACRF) 32 R/W | 0x4444_4444 | 14.2.2/14-4
0xFCO00_0048 | Peripheral Access Control Register G (PACRG) 32 R/W | 0x4444_4444 | 14.2.2/14-4
0xFC04_0013 | Wakeup Control Register (WCR)' 8 R/W 0x00 9.2.1/9-2
0xFC04_0016 | Core Watchdog Control Register (CWCR) 16 R/W 0x0000 14.2.3/14-7
0xFCO04_001B | Core Watchdog Service Register (CWSR) 8 R/W Undefined 14.2.4/14-8
0xFC04_001F | SCM Interrupt Status Register (SCMISR) 8 R/W 0x00 14.2.5/14-9
0xFCO04_0024 | Burst Configuration Register (BCR) 32 R/W | 0x0000_0000| 14.2.6/14-10
0xFCO04_0070 |Core Fault Address Register (CFADR) 32 R Undefined 14.2.7/14-10
0xFCO04_0075 | Core Fault Interrupt Enable Register (CFIER) 8 R/W 0x00 14.2.8/14-11
0xFCO04_0076 | Core Fault Location Register (CFLOC) 8 Undefined 14.2.9/14-11
0xFCO04_0077 | Core Fault Attributes Register (CFATR) 8 Undefined | 14.2.10/14-12
0xFCO04_007C | Core Fault Data Register (CFDTR) 32 Undefined | 14.2.11/14-13

! The WCR register is described in Chapter 9, “Power Management.”

14.2.1

Master Privilege Register (MPR)

The MPR specifies five 4-bit fields defining the access-privilege level associated with a bus master in the
device to the various peripherals listed in Table 14-4. The register provides one field per bus master.

Address: 0xFC00_0000 (MPR)

Access: User read/write

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4

3
R 0|{0|0|0 0
MPROTO | MPROT1 | MPROT2 | MPROT3 MPROT5 | MPROT6

2 1 0
1011

Reset 0 1 1 1/0 0 O 0O|]O O O O/O OO O|OO0OOOO0OOOOOOOT1T 11

Figure 14-1. Master Privilege Register (MPR)
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Each master is assigned depending on its connection to the various crossbar switch master ports.

Table 14-2. MPROTn Assignments

Crgj;bﬁ;iv;::h MPROTn Master
MO MPROTO ColdFire Core
M1 MPROT1 eDMA Controller
M2 MPROT2 FECO
M3 MPROT3 FECA
M5 MPROT5 PCI Controller
M6 MPROT6 USB On-the-Go
M7 MPROT7" Serial Boot

T This field is located at MPR([3:0]. However, it is hardwired to
0111 and may not be altered.

The MPROTn field is defined as shown below.

MTR MTW MPL

Figure 14-2. MPROTnN Fields

Table 14-3. MPROTn Field Descriptions

Field Description
3 Reserved, must be cleared.
2 Master trusted for read. Determines whether the master is trusted for read accesses.

MTR 0 This master is not trusted for read accesses.
1 This master is trusted for read accesses.

1 Master trusted for writes. Determines whether the master is trusted for write accesses.
MTW |0 This master is not trusted for write accesses.
1 This master is trusted for write accesses.

0 Master privilege level. Determines how the privilege level of the master is determined.
MPL 0 Accesses from this master are forced to user-mode.
1 Accesses from this master are not forced to user-mode.
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14.2.2 Peripheral Access Control Registers (PACRX)

Each of the peripherals has a four-bit PACR~# field which defines the access levels supported by the given
module. Eight PACRs are grouped together to form a 32-bit PACRx register (PACRA-PACRG). At reset,
the SCM (PACRO) does not allow access from untrusted masters, while the other peripherals do.

Address: 0xFC00_0020 (PACRA) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
o|jo|jofjo|0O|0O|O|O|lO|O|O|O|O|O|O|O|O|O|O]|O

PACRO PACR1 PACR2

w
Reset 0 1 0 1/O0 1 0 O0/O1O0O0/O0O0OOO0OO00OOO0OOO0OOOOOO0O0O0OO

Figure 14-3. Peripheral Access Control Register A (PACRA)

Address: 0xFC00_0024 (PACRB) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0

R|0|0|0O|O|O|O|O|O|O|O|O|O|O|O|O]O o|o|o0f0
PACR12 PACR13 PACR15

w
Reset 0 0 0 O/O O O O|O O O O/OOOOO1TO0OO1O0O0OOOOOOT1TOO

Figure 14-4. Peripheral Access Control Register B (PACRB)

Address: 0xFC00_0028 (PACRC) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
R ojojo0|0
W PACR16 PACR17 PACR18 PACR19 PACR21 PACR22 PACR23

Reset 0 1 0 0/O 1 0O OO 1 OO0O/O10O0O0O0O0O0O0O0OO0O01TO0OO0O01O0OO01TO00O0
Figure 14-5. Peripheral Access Control Register C (PACRC)

Address: 0xFC00_002C (PACRD) Access: User read/write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
R o(ojo|o
W PACR24 PACR25 PACR26 PACR28 PACR29 PACR30 PACR31

Reset 0 1 0 00 1 0O 0O/0O 1 0 O|OOOOO1O0O0O01O0O0O01O0O0C0T1TO00O0
Figure 14-6. Peripheral Access Control Register D (PACRD)

Address: 0xFC00_0040 (PACRE) Access: User read/write
31 30 29 28|27 26 25 2423 22 21 20|19 18 17 16/15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
R o|{1|0/0 o|1|0j0|0|1]0]|O0

PACR32 PACR33 PACR34 PACR35 PACR37

w
Reset 0 1 0 0O/O0 1 O 0/O 1 O0OO/O1O0O0OO01O0O0O0O1O0O00O1TO0O0OO0T1TOGO

Figure 14-7. Peripheral Access Control Register E (PACRE)
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Address: 0xFC00_0044 (PACRF) Access: User read/write

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0

PACR40 PACR41 PACR42 PACR43 PACR44 PACR45 PACR46 PACR47

Reset 0 1 0 0/O 1 0 O|/O 1 O O/O1TO0OO1O0O0OO0O1O0OO0O01TO0O001TO00
Figure 14-8. Peripheral Access Control Register F (PACRF)

Address: 0xFC00_0048 (PACRG) Access: User read/write

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7
oj1j0|0|0|1|0|O|O|1T|0O|O|Of1]0|0O]|O

6 5 4|3 2 1 0
1{0(0|0|1|0
PACR48 PACR49

Reset 0 1 0 0/O 1 0 O/O 1 O O/O1TO0OO1O0O0OO0O1O0OO0OO01O0O001TO00
Figure 14-9. Peripheral Access Control Register G (PACRG)

Each peripheral is assigned to its PACR# field:
Table 14-4. PACRn Assighments

Slot Number PACRn Peripheral
0 PACRO SCM (MPR and PACRs)
1 PACR1 Crossbar switch
2 PACR2 FlexBus
12 PACR12 FECO
13 PACR13 FECA
15 PACR15 Real-Time Clock
16 PACR16 SCM (CWT and Core Fault Registers)
17 PACR17 eDMA Controller
18 PACR18 Interrupt Controller O
19 PACR19 Interrupt Controller 1
21 PACR21 Interrupt Controller IACK
22 PACR22 1°C
23 PACR23 DSPI
24 PACR24 UARTO
25 PACR25 UART1
26 PACR26 UART2
28 PACR28 DMA Timer 0
29 PACR29 DMA Timer 1
30 PACR30 DMA Timer 2
31 PACR31 DMA Timer 3

Freescale Semiconductor 14-5



System Control Module (SCM)

Table 14-4. PACRn Assignments (continued)

Slot Number PACRn Peripheral
32 PACR32 PITO
33 PACR33 PIT 1
34 PACR34 PIT 2
35 PACR35 PIT 3
37 PACR37 Edge Port
40 PACR40 CCM, Reset Controller, Power Management
41 PACR41 Pin Multiplexing and Control (GPIO)
42 PACR42 PCI Controller
43 PACR43 PCI Arbiter
44 PACR44 USB On-the-Go
45 PACR45 RNG
46 PACR46 SDRAM Controller
47 PACR47 SSI
48 PACR48 ATA Controller
49 PACR49 PLL

The PACR# field is defined as:

SP WP TP

Figure 14-10. PACRn Fields

Table 14-5. PACRn Field Descriptions

Field Description
3 Reserved, must be cleared.
2 Supervisor protect. Determines whether the peripheral requires supervisor privilege level for access.

SP 0 This peripheral does not require supervisor privilege level for accesses.

1 This peripheral requires supervisor privilege level for accesses. The master privilege level must indicate
supervisor access attribute, and the MPROTn[MPL] control bit for the master must be set. If not, access
terminates with an error response and no peripheral access initiates.
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Table 14-5. PACRn Field Descriptions (continued)

Field Description
1 Write protect. Determines whether the peripheral allows write accesses
WP 0 This peripheral allows write accesses.
1 This peripheral is write protected. If a write access is attempted, access terminates with an error response and
no peripheral access initiates.
0 Trusted protect. Determines whether the peripheral allows accesses from an untrusted master.
TP 0 Accesses from an untrusted master are allowed.
1 Accesses from an untrusted master are not allowed. If an access is attempted by an untrusted master, the access
terminates with an error response and no peripheral access initiates.
14.2.3 Core Watchdog Control Register (CWCR)

The CWCR controls the software watchdog timer, time-out periods, and software watchdog timer

interrupt. The register can be read or written at any time. At system reset, the software watchdog timer is
disabled.
Address: 0xFC04_0016 (CWCR) Access: User read/write
15 14 13 12 11 10 9 8 7 6 5 4 ‘ 3 2 1 0
R RO 0 0 0 0 0 0 cw CWE CWRI CWT
W RWH
Reset 0 0 0 0 0 0 0 0 0 0 0 0 ‘ 0 0 0 0
Figure 14-11. Core Watchdog Control Register (CWCR)
Table 14-6. CWCR Field Descriptions
Field Description
15 Read-only control bit.
RO 0 CWCR can be read or written.
1 CWCR is read-only. A system reset is required to clear this register. The setting of this bit is intended to prevent
accidental writes of the CWCR from changing the defined core watchdog configuration.
14-9 | Reserved, must be cleared.
8 Core watchdog run while halted.
CWRWH |0 Core watchdog timer stops counting if the core is halted.
1 Core watchdog timer continues to count even while the core is halted.
7 Core watchdog timer enable.
CWE |0 CWT is disabled.
1 CWT is enabled.
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Table 14-6. CWCR Field Descriptions (continued)

Field

Description

6-5
CWRI

Core watchdog reset/interrupt.

00 If a time-out occurs, the CWT generates an interrupt to the core. Refer to Chapter 17, “Interrupt Controller
Modules,” for details on setting its priority level.

01 The first time-out generates an interrupt to the processor, and if not serviced, a second time-out generates a
system reset and sets the RSR[WDRCORE] flag in the reset controller.

10 If a time-out occurs, the CWT generates a system reset and RSR[WDRCORE] in the reset controller is set.

11 The CWT functions in a window mode of operation. For this mode, the servicing of the CWSR must occur during
the last 25% of the time-out period. Any writes to the CWSR during the first 75% of the time-out period generate
an immediate system reset. Likewise, if the CWSR is not serviced during the last 25% of the time-out period, a
system reset is generated. For any type of reset response, the RSR[WDRCORE] flag is set.

4-0
CWT

Core watchdog time-out period. Selects the time-out period for the CWT. At reset, this field is cleared selecting the
minimum time-out period, but the CWT is disabled because CWCR[CWE] is cleared at reset.

If CWCR[CWT] is n, the time-out period equals 2" system clock cycles. However, if nis less than 8, the time-out
period is forced to 28.
0x00 28

ox08 28
0x09 2°

Ox1F 231

14.2.4 Core Watchdog Service Register (CWSR)

The software watchdog service sequence must be performed using the CWSR as a data register to prevent
a CWT time-out. The service sequence requires two writes to this data register: a write of 0x55 followed
by a write of 0OxAA. Both writes must be performed in this order prior to the CWT time-out, but any
number of instructions can be executed between the two writes. If the CWT has already timed out, writing
to this register has no effect in negating the CWT interrupt or reset. Figure 14-12 illustrates the CWSR. At
system reset, the contents of CWSR are uninitialized.

NOTE

If the CWT is enabled and has not timed out, any write of a data value other
than 0x55 or 0OXAA causes an immediate system reset, regardless of the
value in the CWCR[CWRI] field.

Address: 0xFC04_001B (CWSR) Access: User read/write
7 6 5 4 ‘ 3 2 1 0
R
CWSR
W
Reset: — — — — — — — —

Figure 14-12. Core Watchdog Service Register (CWSR)

14-8
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14.2.5 SCM Interrupt Status Register (SCMISR)

For certain values in the CWCR[CWRI] field, the CWT generates an interrupt response to a time-out. For
these configurations, the SCMISR provides a program visible interrupt request from the watchdog timer.
During the interrupt service routine which handles this interrupt, the source must be explicitly cleared by
writing a 0x01 to the SCMISR.

The SCMISR also indicates system bus fault errors. An interrupt is sent only to the interrupt controller
when the CFIER[ECFEI] bit is set. The SCMISR[CFEI] bit flags fault errors independent of the
CFIER[ECFEI] setting. Therefore, if CFEI is set prior to setting ECFEI, an interrupt is requested
immediately after ECFEI is set.

Address: 0xFC04_001F (SCMISR) Access: User read/write
5 4 3 2 1 0
R 0 0 0 0 0 0 CFEI CWIC
w wic wic
Reset: 0 0 0 0 0 0 0 0

Figure 14-13. SCM Interrupt Status Register (SCMISR)

Table 14-7. SCMISR Field Descriptions

Field

Description

7-2

Reserved, must be cleared.

CFEI

Core fault error interrupt flag. Indicates if a bus fault has occurred. Writing a 1 clears this bit and negates the interrupt

request. Writing a 0 has no effect.

0 No bus error.

1 A bus error has occurred. The faulting address, attributes (and possibly write data) are captured in the CFADR,

CFATR, and CFDTR registers. The error interrupt is enabled only if CFLOC[ECFEI] is set.

Note: This bit reports core faults regardless of the setting of CFIER[ECFEI]. Therefore, if the error interrupt is
disabled and a core fault occurs, this bit is set. Then, if the error interrupt is subsequently enabled, an interrupt
is immediately requested. To prevent an undesired interrupt, clear the captured error by writing one to CFEI
before enabling the interrupt.

CwiC

Core watchdog interrupt flag. Indicates whether an CWT interrupt has occurred. Writing a 1 clears this bit and
negates the interrupt request. Writing a 0 has no effect.

0 No CWT interrupt has occurred.

1 CWT interrupt has occurred.
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14.2.6 Burst Configuration Register (BCR)

The BCR register enables or disables the USB On-the-Go module for bursting to/from the crossbar switch
slave modules. There is an enable field for the slaves, and either direction (read and write) is supported via
the GBR and GBW bits.

Address: 0xFC04_0024 (BCR) Access: User read-write
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 |7 6 5 4‘3 2 1 0
R|o0|0|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O
GBR|GBW SBE
W
Reset 0 O O 0|0 O O O|0O O O O|O O O O/O OOO|OO O OOOOO‘OOOO

Figure 14-14. Burst Configuration Register (BCR)

Table 14-8. BCR Field Descriptions

Field Description

31-10 |Reserved, must be cleared.

9 Global burst enable for reads. Allows bursts to happen on read transactions from the crossbar switch slaves to the
GBR | USB On-the-Go module.
0 Read bursts are disabled.
1 Read bursts are enabled.
Note: If GBR and GBW are cleared, then SBE is ignored.

8 Global burst enable for writes. Allows bursts to happen on write transactions to the crossbar switch slaves from the
GBW | USB On-the-Go module.
0 Write bursts are disabled.
1 Write bursts are enabled.
Note: If GBR and GBW are cleared, then SBE is ignored.

7-0 Slave burst enable. Allows bursts to happen to/from the crossbar switch slaves. The only valid settings for this field

SBE |are 0x00 or OxFF.

0x00 Bursts disabled.

OxFF Bursts enabled. The GBR and GBW bits determine the burst direction. If neither is set, then this bit has no
effect.

Else Reserved.

14.2.7 Core Fault Address Register (CFADR)

The CFADR is a read-only register indicating the address of the last core access terminated with an error
response.

Address: 0xFC04_0070 (CFADR) Access: User read-only
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0

R ADDR
wl I e g
Reset - — — = |- = = —=|- = = =|— = = =|- = = —=|= = = =|= = = —|= = — =

Figure 14-15. Core Fault Address Register (CFADR)
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Table 14-9. CFADR Field Descriptions

Field Description

31-0 |Indicates the faulting address of the last core access terminated with an error response.
ADDR

14.2.8 Core Fault Interrupt Enable Register (CFIER)

The CFIER register enables the system bus-error interrupt. See Chapter 17, “Interrupt Controller
Modules,” for more information of the interrupt controller.

Address: 0xFC04_0075 (CFIER) Access: User read/write
5 4 3 2 1 0
R 0 0 0 0 0 0 0
ECFEI
W
Reset: 0 0 0 0 0 0 0 0

Figure 14-16. Core Fault Interrupt Enable Register (CFIER)

Table 14-10. CFIER Field Descriptions

Field Description

7-1 Reserved, must be cleared.

0 Enable core fault error interrupt.
ECFEI |0 Do not generate an error interrupt on a faulted system bus cycle.
1 Generate an error interrupt to the interrupt controller on a faulted system bus cycle.

14.2.9 Core Fault Location Register (CFLOC)

The read-only CFLOC register indicates the exact location within the device of the captured fault
information.

Address: 0xFC04_0076 (CFLOC) Access: User read-only
7 6 5 4 3 2 1
R LOC 0 0 0 0 0 0 0
W
Reset: - 0 0 0 0 0 0 0

Figure 14-17. Core Fault Location Register (CFLOC)
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Table 14-11. CFLOC Field Descriptions

Field Description

7 The location of the last captured fault.
LOC 0 Error occurred on the internal bus.
1 Error occurred within the core.

6-0 Reserved, must be cleared.

14.2.10 Core Fault Attributes Register (CFATR)

The read-only CFATR register captures the processor’s attributes of the last faulted core access to the
system bus.

Address: 0xFC04_0077 (CFATR) Access: User read-only
7 6 5 4 3 2 1 0
R| WRITE SIZE CACHE 0 MODE TYPE
W
Reset: - - - - - - - -

Figure 14-18. Core Fault Attributes Register (CFATR)

Table 14-12. CFATR Field Descriptions

Field Description

7 Indicates the direction of the last faulted core access.
WRITE |0 Core read access.
1 Core write access.

6-4 Indicates the size of the last faulted core access.
SIZE |000 8-bit core access.

001 16-bit core access.

010 32-bit core access.

Else Reserved.

3 Indicates if last faulted core access was cacheable.
CACHE |0 Non-cacheable
1 Cacheable
2 Reserved, must be cleared.
1 Indicates the mode the device was in during the last faulted core access.

MODE |0 User mode
1 Supervisor mode

0 Defines the type of last faulted core access.
TYPE |0 Instruction
1 Data
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14.2.11 Core Fault Data Register (CFDTR)

The CFDTR is a read-only register for capturing the data associated with the last faulted processor write
data access from the device’s internal bus. The CFDTR is valid only for faulted internal bus-write accesses,
CFLOC[LOC] is cleared.

Address: 0xFC04_007C (CFDTR) Access: User read-only
31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 10

R CFDTR
we PP PP PP PP PP PP lg]
Reset - - — - |- = = =|—- = = =|—- = = =|—- = = —=|—- = = =|- = = —|=- = = -

Figure 14-19. Core Fault Data Register (CFDTR)

Table 14-13. CFDTR Field Descriptions

Field Description

31-0 | Contains data associated with the faulting access of the last internal bus write access. Contains the data value taken
CFDTR | directly from the write data bus.

14.3 Functional Description

14.3.1 Access Control

The SCM supports the traditional model of two privilege levels: supervisor and user. Typically, memory
references with the supervisor attribute have total accessibility to all the resources in the system, while user
mode references cannot access system control and configuration registers. In many systems, the operating
system executes in supervisor mode, while application software executes in user mode.

The SCM further partitions the access-control functions into two parts: one control register defines the
privilege level associated with each bus master (MPR), and another set of control registers define the
access levels associated with the peripheral modules (PACRX).

Each bus transaction targeted for the peripheral space is first checked to see if its privilege rights allow
access to the given memory space. If the privilege rights are correct, the access proceeds on the internal
bus. If the privilege rights are insufficient for the targeted memory space, the transfer is immediately
aborted and terminated with an exception, and the targeted module not accessed.

14.3.2 Core Watchdog Timer

The core watchdog timer (CWT) prevents system lockup if the software becomes trapped in a loop with
no controlled exit or if a bus transaction becomes hung. The core watchdog timer can be enabled through
CWCR[CWE]; it is disabled at reset. If enabled, the CWT requires the periodic execution of a core
watchdog servicing sequence. If this periodic servicing action does not occur, the timer expires and,
depending on the setting of CWCR[CWRI], different events may occur:

* An interrupt may be generated to the core.
* An immediate system reset.
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» Upon the first time-out, a watchdog timer interrupt is asserted. If this time-out condition is not
serviced before a second time-out occurs, the CWT asserts a system reset. This configuration
supports a more graceful response to watchdog time-outs.

» In addition to these three basic modes of operation, the CWT also supports a windowed mode of
operation. In this mode, the time-out period is divided into four equal segments and the entire
service sequence of the CWT must occur during the last segment (last 25% of the time-out period).
If the timer is serviced anytime (any write to the CWSR register) in the first 75% of the time-out
period, an immediate system reset occurs.

To prevent the core watchdog timer from interrupting or resetting, the CWSR register must be serviced by
performing the following sequence:

1. Write 0x55 to CWSR.
2. Write OxAA to CWSR.

Both writes must occur in order before the time-out, but any number of instructions can execute between
the two writes. This allows interrupts and exceptions to occur, if necessary, between the two writes.

NOTE

If the CWT is enabled and has not timed out, any write of a data value other
than 0x55 or OXAA causes an immediate system reset, regardless of the
value in the CWCR[CWRI] field.

The timer value is constantly compared with the time-out period specified by CWCR[CWT], and any write
to the CWCR register resets the watchdog timer. In addition, a write-once control bit in the CWCR sets
the CWCR to read-only to prevent accidental updates to this control register from changing the desired
system configuration. After this bit, CWCR[RO], is set, a system reset is required to clear it.

For certain values in the CWCR[CWRI] field, the CWT generates an interrupt response to a time-out. For
these configurations, the SCMISR register provides a program visible interrupt request from the watchdog
timer. During the interrupt service routine which handles this interrupt, the source must be explicitly
cleared by writing a 0x01 to the SCMISR.

14.3.3 Core Data Fault Recovery Registers

To aid in recovery from certain types of access errors, the SCM module supports a number of registers that
capture access address, attribute, and data information on bus cycles terminated with an error response.
These registers can then be read during the resulting exception service routine and the appropriate recovery
performed.

The details on the core fault recovery registers are provided in the above sections. It is important to note
these registers are used to capture fault recovery information on any processor-initiated system bus cycle
terminated with an error.
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Chapter 15
Crossbar Switch (XBS)

15.1 Overview

This section provides information on the layout, configuration, and programming of the crossbar switch.
The crossbar switch connects the bus masters and bus slaves using a crossbar switch structure. This
structure allows bus masters to access different bus slaves simultaneously with no interference while
providing arbitration among the bus masters when they access the same slave. A variety of bus arbitration
methods and attributes may be programmed on a slave by slave basis.

The MCF5445x devices have up to seven masters and slaves (7Mx6S) connected to the crossbar switch.
The seven masters are the ColdFire core, eDMA controller, FECs, USB OTG module, PCI controller, and
serial boot. The slaves are SDRAM controller, FlexBus, SRAM controller ATA controller, PCI
controller,backdoor, and the peripheral bus controller.

Figure 15-1 is a block diagram of the MCF5445x family bus architecture showing the crossbar switch
configuration.

ColdFire eDMA Fast Ethernet | | Fast Ethernet USB On-the-Go .
Core Controller Controller 0 Controller 1 PCI Module Serial Boot

Y Y Y Y H Y Y

MO M1 M2 M3 M5 M6 M7 Master Modules

————————— Crossbar Switch -

S1 S2 S3 S4 S5 s7

Slave Modules
Y Y Y Y Y Y

SDRAM SRAM Other On-chip
FlexBus Controller ATA Backdoor PCl Slave Peripherals

Figure 15-1. Bus Architecture Block Diagram
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The modules are assigned to the numbered ports on the crossbar switch in the below table.

Table 15-1. Crossbar Switch Master/Slave Assignments

Master Modules

Crossbar Port Module

Master 0 (MO) ColdFire core
Master 1 (M1) eDMA controller
Master 2 (M2) Fast Ethernet controller 0
Master 3 (M3) Fast Ethernet controller 1
Master 5 (M5) PCI controller
Master 6 (M6) USB On-the-Go
Master 7 (M7) Serial boot

Slave Modules

Crossbar Port Module Address Range1

Slave 1 (S1) Flexbus 0x0000_0000-0x3FFF_FFFF &
0xC000_0000-0xDFFF_FFFF

Slave 2 (S2) SDRAM Controller 0x4000_0000-0x7FFF_FFFF

Slave 3 (S3) ATA Controller 0x9000_0000—-0x9FFF_FFFF

Slave 4 (S4) Internal SRAM Backdoor 0x8000_0000-0x8FFF_FFFF

Slave 5 (S5) PCI Controller 0xA000_0000-0xBFFF_FFFF

Slave 7 (S7) Other on-chip slave peripherals | 0xFO00_0000-OxFFFF_FFFF2

' Unused address spaces are reserved.

2 See the various peripheral chapters for their memory maps. Any unused space by these
peripherals within this memory range is reserved and must not be accessed.

NOTE

This memory map provides two disjoint regions mapped to the FlexBus
controller to support glueless connections to external memories (e.g., flash
and SRAM) and a second space with one (or more) unique chip-selects that
can be used for non-cacheable, non-memory devices (addresses
0xC000_0000-0xDFFF_FFFF). Additionally, this mapping is easily maps
into the ColdFire access control registers, which provide a coarse
association between memory addresses and their attributes (e.g., cacheable,
non-cacheable). For this device, one possible configuration defines the
default memory attribute as non-cacheable, and one ACR then identifies
cacheable addresses, e.g., ADDR[31] equals 0 identifies the cacheable
space.
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15.2 Features

The crossbar switch includes these distinctive features:
* Symmetric crossbar bus switch implementation
— Allows concurrent accesses from different masters to different slaves
— Slave arbitration attributes configured on a slave by slave basis
» 32 bits wide and supports byte, word (2 byte), longword (4 byte), and 16 byte burst transfers
* Operates at a 1-to-1 clock frequency with the bus masters

15.3 Modes of Operation

The crossbar switch supports two arbitration modes (fixed or round-robin), which may be set on a slave
by slave basis. Slaves configured for fixed arbitration mode have a unique arbitration level assigned to
each bus master.

In fixed priority mode, the highest priority active master accessing a particular slave is granted the master
bus path to that slave. A higher priority master blocks access to a given slave from a lower priority master
if the higher priority master continuously requests that slave. See Section 15.5.1.1, “Fixed-Priority
Operation.”

In round-robin arbitration, active masters accessing a particular slave are initially granted the slave based
on their master port number. Master priority is then modified in a wrap-around manner to give all masters
fair access to the slave. See Section 15.5.1.2, “Round-Robin Priority Operation.”

15.4 Memory Map / Register Definition

Two registers reside in each slave port of the crossbar switch. Read- and write-transfers require two bus
clock cycles. The registers can only be read from and written to in supervisor mode. Additionally, these
registers can only be read from or written to by 32-bit accesses.

A bus error response is returned if an unimplemented location is accessed within the crossbar switch. See
Section 14.2.5, “SCM Interrupt Status Register (SCMISR).”

The slave registers also feature a bit that, when set, prevents the registers from being written. The registers
remain readable, but future write attempts have no effect on the registers and are terminated with a bus
error response to the master initiating the write. The core, for example, takes a bus error interrupt.

Table 15-2 shows the memory map for the crossbar switch program-visible registers.

Table 15-2. XBS Memory Map

Address Register ‘?S::; Access | Reset Value | Section/Page
0xFCO00_4100 | Priority Register Slave 1 (XBS_PRS1) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4110 | Control Register Slave 1 (XBS_CRS1) 32 R/W | 0x0000_0000 | 15.4.2/15-5
0xFCO00_4200 | Priority Register Slave 2 (XBS_PRS2) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4210 | Control Register Slave 2 (XBS_CRS2) 32 R/W | 0x0000_0000 | 15.4.2/15-5
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Table 15-2. XBS Memory Map (continued)

Address Register ‘?S::g; Access | Reset Value | Section/Page
0xFCO00_4300 | Priority Register Slave 3 (XBS_PRS3) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4310 | Control Register Slave 3 (XBS_CRS3) 32 R/W | 0x0000_0000 | 15.4.2/15-5
0xFCO00_4400 | Priority Register Slave 4 (XBS_PRS4) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4410 | Control Register Slave 4 (XBS_CRS4) 32 R/W | 0x0000_0000 | 15.4.2/15-5
0xFCO00_4500 | Priority Register Slave 5 (XBS_PRS5) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4510 | Control Register Slave 5 (XBS_CRS5) 32 R/W | 0x0000_0000 | 15.4.2/15-5
0xFCO00_4700 | Priority Register Slave 7 (XBS_PRS7) 32 R/W | 0x6540_3210 | 15.4.1/15-4
0xFCO00_4710 | Control Register Slave 7 (XBS_CRS?7) 32 R/W | 0x0000_0000 | 15.4.2/15-5

15.4.1 XBS Priority Registers (XBS_PRSnh)

The priority registers (XBS_PRSn) set the priority of each master port on a per slave port basis and reside

in each slave port. The priority register can be accessed only with 32-bit accesses. After the

XBS CRSn[RO] bit is set, the XBS PRS# register can only be read; attempts to write to it have no effect
on XBS PRS# and result in a bus-error response to the master initiating the write.

Additionally, no two available master ports may be programmed with the same priority level, including
reserved masters. Attempts to program two or more masters with the same priority level result in a
bus-error response (see Section 14.2.5, “SCM Interrupt Status Register (SCMISR)”) and the XBS PRSn

is not updated.

Address: 0xFC00_4100 (XBS_PRSH1)
0xFCO00_4200 (XBS_PRS2)
0xFC00_4300 (XBS_PRS3)
0xFC00_4400 (XBS_PRS4)
0xFC00_4500 (XBS_PRS5)
0xFCO00_4700 (XBS_PRS7)

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16

15 14 13 12

Access: Supervisor read/write

11 10 9 8

7 6 5 4|3

R
w

0

0

0

0/0|0j0]|O0

M7 M6 M5

M3

0

M2

M1

Mo

Reset 0 1 1 00 1 0 1|0 1 0 O/0O O O 0|0 O 1

110

0 1

0

000 1

Figure 15-2. XBS Priority Registers Slave n (XBS_PRSn)
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Crossbar Switch (XBS)

Table 15-3. XBS_PRSn Field Descriptions

Field Description

31 Reserved, must be cleared.

30-28 | Master 7 (Serial Boot) priority. Sets the arbitration priority for this port on the associated slave port.
M7 000 This master has level 1 (highest) priority when accessing the slave port.

001 This master has level 2 priority when accessing the slave port.

010 This master has level 3 priority when accessing the slave port.

011 This master has level 4 priority when accessing the slave port.

100 This master has level 5 priority when accessing the slave port.

101 This master has level 6 priority when accessing the slave port.

110 This master has level 7 (lowest) priority when accessing the slave port.

Else Reserved

27 Reserved, must be cleared.

26—24 |Master 6 (USB OTG) priority. See M7 description.
M6

23 Reserved, must be cleared.

22-20 |Master 5 (PCI controller) priority. See M7 description.
M5

19-15 | Reserved, must be cleared.

14—12 | Master 3 (FEC1) priority. See M7 description.
M3

11 Reserved, must be cleared.

10-8 |Master 2 (FECO) priority. See M7 description.
M2

7 Reserved, must be cleared.

64 Master 1 (eDMA) priority. See M7 description.
M1

3 Reserved, must be cleared.

2-0 Master 0 (ColdFire core) priority. See M7 description.
MO

NOTE

The possible values for the XBS PRSr fields depend on the number of
masters available on the device. Because the device contains seven masters,
valid values are 000 to 110. Unpredictable results occur when using the
reserved setting 111.

15.4.2 XBS Control Registers (XBS_CRSnh)

The XBS control registers (XBS CRSn) control several features of each slave port and must be accessed
using 32-bit accesses. After XBS CRSn[RO] is set, the XBS CRS#n can only be read; attempts to write to
it have no effect and result in an error response.

Freescale Semiconductor 15-5



Crossbar Switch (XBS)

Address: 0xFC00_4110 (XBS_PRS1

R
w

( ) Access: Supervisor read/write
0xFCO00_4210 (XBS_PRS2)
0xFC00_4310 (XBS_PRS3)
0xFCO00_4410 (XBS_PRS4)
0xFCO00_4510 (XBS_PRS5)
0xFC00_4710 (XBS_PRS7?)

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 7 6 5 4|3 2 1 0

4/ 0 |O0|0O|0Oj0O|OjOjOfOfO|O|O|O|O|0O|0O|0O|0O|O|O|O]|O 0|0 0
RO ARB PCTL— PARK

Reset 0 0O 00/0O0OO0OO0OOO0COOO0OOOOOOOOOO O|0OO0COOBOOOCDO

1 After this bit is set, only a hardware reset clears it.

Figure 15-3. XBS Control Registers Slave n (XBS_CRSh)

Table 15-4. XBS_CRSn Field Descriptions

Field Description
31 Read only. Forces both of the slave port’s registers (XBS_CRSn and XBS_PRSn) to be read-only. After set, only a
RO hardware reset clears it.
0 Both of the slave port’s registers are writeable.
1 Both of the slave port’s registers are read-only and cannot be written (attempted writes have no effect on the
registers and result in a bus error response).
30-9 Reserved, must be cleared.
8 Arbitration Mode. Selects the arbitration policy for the slave port.
ARB |0 Fixed priority
1 Round robin (rotating) priority
7-6 Reserved, must be cleared.
54 Parking control. Determines the slave port’s parking control. The low-power park feature results in an overall power
PCTL |savings if the slave port is not saturated; however, this forces an extra latency clock when any master tries to access
the slave port while not in use because it is not parked on any master.
00 When no master makes a request, the arbiter parks the slave port on the master port defined by the PARK bit
field.
01 When no master makes a request, the arbiter parks the slave port on the last master to be in control of the slave
port.
10 When no master makes a request, the slave port is not parked on a master and the arbiter drives all outputs to
a constant safe state.
11 Reserved.
3 Reserved, must be cleared.
2-0 Park. Determines which master port the current slave port parks on when no masters are actively making requests
PARK |and the PCTL bits are cleared.

000 Park on master port MO (ColdFire Core)
001 Park on master port M1 (eDMA Controller)
010 Park on master port M2 (FECO)

011 Park on master port M3 (FEC1)

100 Reserved

101 Park on master port M5 (PCI Controller)
110 Park on master port M6 (USB OTG)

111 Park on master port M7 (Serial Boot)

15-6
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Crossbar Switch (XBS)

15.5 Functional Description

15.5.1 Arbitration

The crossbar switch supports two arbitration schemes: a simple fixed-priority comparison algorithm and
a simple round-robin fairness algorithm. The arbitration scheme is independently programmable for each
slave port.

15.5.1.1  Fixed-Priority Operation

When operating in fixed-priority mode, each master is assigned a unique priority level in the XBS PRSn
(priority registers). If two masters request access to a slave port, the master with the highest priority in the
selected priority register gains control over the slave port.

When a master makes a request to a slave port, the slave port checks if the new requesting master’s priority
level is higher than that of the master that currently has control over the slave port (unless the slave port is
in a parked state). The slave port does an arbitration check at every bus transfer boundary makes certain
that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port, the new requesting master is granted control over the slave port at the next clock edge. The
exception to this rule is if the master that currently has control over the slave port is running a fixed length
burst transfer or a locked transfer. In this case, the new requesting master must wait until the end of the
burst transfer or locked transfer before it is granted control of the slave port.

If the new requesting master’s priority level is lower than the master that currently has control of the slave
port, the new requesting master is forced to wait until the current master runs one of the following cycles:

* AnIDLE cycle
* A non-IDLE cycle to a location other than the current slave port.

15.5.1.2 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port
number. This priority is based on how far ahead the master port number of the requesting master is to the
master port number of the current bus master for this slave. Master port numbers are compared modulo the
total number of bus masters, i.e. take the requesting master port number minus the current bus master’s
port number modulo the total number of bus masters. The master port with the highest priority based on
this comparison is granted control over the slave port at the next bus transfer boundary.

After granted access to a slave port, a master may perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line is granted access to the slave
port at the next transfer boundary.

Parking may continue to be used in a round-robin mode, but does not affect the round-robin pointer unless
the parked master actually performs a transfer. Handoff occurs to the next master in line after one cycle of
arbitration. If the slave port is put into low-power park mode, the round-robin pointer is reset to point at
master port 0, giving it the highest priority.
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15.5.1.3 Priority Assignment

Each master port needs to be assigned a unique 3-bit priority level. If an attempt is made to program
multiple master ports with the same priority level within the priority registers (XBS_PRS#) the crossbar
switch responds with a bus error (refer to Section 14.2.5, “SCM Interrupt Status Register (SCMISR)”) and
the registers are not updated.

15.6 |Initialization/Application Information

No initialization is required by or for the crossbar switch. Hardware reset ensures all the register bits used
by the crossbar switch are properly initialized to a valid state. Settings and priorities should be
programmed to achieve maximum system performance.
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Chapter 16
Pin Multiplexing and Control

16.1 Introduction

Many of the pins associated with the device may be used for several different functions. Their primary
functions are to provide external interfaces to access off-chip resources. When not used for their primary
function, many of the pins may be used as general-purpose digital /O (GPIO) pins. In some cases, the pin
function is set by the operating mode, and the alternate pin functions are not supported.

Each GPIO port has registers that configure, monitor, and control the port pins. Figure 16-1 is a block
diagram of the device ports. The GPIO functionality of the port IRQ pins is selected by the edge port
module. They are shown in the figure only for completeness.

This chapter also includes registers for controlling the drive strengths and slew rates of the external pins.
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Pin Multiplexing and Control

<«<—> FB_OE / PFBCTL3
Port  |«——> FB_TA/PFBCTL2
FBCTL |<«—> FB_R/W /PFBCTLI1
l«<—> FB_TS / FB_ALE / FB_TBST / PFBCTLO
Port K———>FB_BE/BWE[3:2]/FB_TSIZ[3:2] / PBE[3:2]
BE (———> FB_BE/BWE[1:0] / FB_TSIZ[1:0] / PBE[1:0]
foit K—=>Fecsia:1/Posiai
<«<—> DACK{ / ULPI_DIR / PDMA3
Port |<«—> DREQ1/USB_CLKIN / PDMA2
DMA  |<—> DACKO/DSPI_PCS3/PDMAI1
<«—> DREQO / PDMAO
«<—> DSPI_PCS5/SS / PDSPI6
<—> DSPI_PCS2/ PDSPI5
Port [<—> DSPI_PCS1/SBF_CS/PDSPI4
DSP| |[<—> DSPI_PCS0/SS/PDSPI3
<<—> DSPI_SCK / SBF_CK / PDSPI2
<<—> DSPI_SIN / SBF_DI / PDSPI1
<«<—> DSPI_SOUT / SBF_DO / PDSPIO
<<—> PCI_GNT3 / ATA_DMACK / PPCI7
[<«—> PCI_GNT[2:1] / PPCI[6:5]
Port |<—> PCI_GNTO/PCI_EXTREQ /PPCl4
PCl |<—> PCI_REQ3/ATA_INTRQ/PPCI3
<«<—> PCI_REQ[2:1]/ PPCI[2:1]
<«—> PCI_REQO/PCI_EXTGNT / PPCIO
[<«—> U1CTS / PUART?
«<—> UTRTS / PUART6
«—> U1RXD / PUART5
Port  |«—> U1TXD/PUART4
UART |<«—> UOCTS/PUART3
<<—> UORTS / PUART2
<«—> UORXD / PUART1
[<<—> UOTXD / PUARTO
[<«<—> T3IN/ T30UT / U2RXD / PTIMER3
Port  |«—> T2IN/T20UT/U2TXD / PTIMER2
TIMER  |<«—> T1IN/T10UT / U2CTS / PTIMER1
<«<—> TOIN / TOOUT / U2RTS / PTIMERO
Port
EBADH K———>FB_AD[31:24]/ PFBADH[7:0]
Port FB_AD[23:16] / PFBADMH[7:0
FBADMH [ FB-ADI23:16] [7:0l
Port (———>FB_AD[15:8] / PFBADML[7:0]
FBADML ~ : :
Port (———>FB_AD[7:0]/ PFBADL[7:0]
FBADL AL :

;. Pin Assignment and
v—) Drive Strength Control

Port
FECI2C

<<—> FEC1_MDC / ATA_DIOR / PFECI2C5
<<—> FEC1_MDIO / ATA_DIOW / PFECI2C4
<«<—> FECO0_MDC / PFECI2C3

<<—> FECO0_MDIO / PFECI2C2

<«—> 12C_SCL / U2TXD / PFECI2C1
<«—> [2C_SDA / U2RXD / PFECI2C0

Port
FECOH

<<—> FECO_TXCLK / FECO_RMII_REF_CLK/PFECOH7
<«—> FECO_TXEN / FECO_RMII_TXEN / PFECOH6
<<—> FECO0_TXDO0 / FECO_RMII_TXDO0 / PFECOH5
<<—> FECO_COL / ULPI_DATA7 / PFECOH4

<<—> FECO_RXCLK /ULPI_DATA1 / PFECOH3

<<—> FECO_RXDV / FECO_RMII_CRS_DV / PFECOH2
<<—> FECO_RXDO0 / FECO_RMII_RXDO / PFECOH1
|<«—> FECO0_CRS / ULPI_DATA6 / PFECOHO

Port
FECOL

<> FECO_TXD[3:2] / ULPI_DATA[3:2] / PFECOL[7:6]
<—> FECO_TXD1/ FECO_RMII_TXD1 / PFECOL5
<«—> FECO_TXER / ULPI_DATAO / PFECOL4

<—> FECO_RXD[3:2] / ULPI_DATA[5:4] / PFECOL[3:2]
<—> FECO_RXD1/FECO_RMII_RXD1/PFECOL1
l«<—> FECO_RXER / FECO_RMII_RXER / PFECOLO

Port
FEC1H

<<—> FEC1_TXCLK/FEC1_RMII_REF_CLK/ATA_DATA11/PFEC1H7
<<—> FEC1_TXEN/FEC1_RMII_TXEN / ATA_DATA8 / PFEC1H6
<<—> FEC1_TXDO0 / FEC1_RMII_TXDO / ATA_DATA9 / PFEC1H5
<<—> FEC1_COL / ATA_DATA7 / PFEC1H4

<<—> FEC1_RXCLK/ ATA_DATA5 / PFEC1H3

<<—> FEC1_RXDV /FEC1_RMII_CRS_DV / ATA_DATA15 / PFEC1H2
[<<—> FEC1_RXDO0/ FEC1_RMII_RXDO / ATA_DATA13 / PFEC1H1
<«<—> FEC1_CRS / ATA_DATA6 / PFEC1HO

Port
FECI1L

«—> FEC1_TXD[3:2] / ATA_DATA[2:1] / PFEC1L[7:6]
<—> FEC1_TXD1/FEC1_RMII_TXD1/ ATA_DATA10 / PFEC1L5
<—> FEC1_TXER / ATA_DATAO / PFEC1L4

<—> FEC1_RXD[3:2] / ATA_DATA[4:3] / PFEC1L[3:2]

<—> FEC1_RXD1/FEC1_RMII_RXD1/ ATA_DATA14 / PFEC1L1
«<—> FEC1_RXER / FEC1_RMII_RXER / ATA_DATA12 / PFEC1LO

Port
SSl

<«<—> SSI_MCLK/ PSSI4
<«—> SSI_BCLK/U1CTS/ PSSI3
<<—> SSI_FS/U1RTS/ PSSI2
<«—> SSI_RXD / UTRXD / PSSI1
<«—> SSI_TXD / U1TXD / PSSI0

Port
ATAH

<«—>ATA_BUFFER_EN / PATAH5
|<«<—>ATA_CS[1:0] / PATAH[4:3]

<«—>ATA_DA[2:0] / PATAH[2:0]

Port
ATAL

<<—>ATA_RESET / PATAL2
<<—>ATA_DMARQ / PATAL1
<«—>ATA_IORDY / PATALO

Port
usB

l«——>USB_VBUS_EN/USB_PULLUP / ULPI_NXT / PUSB1
<<—>USB_VBUS_OC / ULPI_STP / PUSBO

Port
IRQ

l«<——>IRQ7 / PIRQ7
l<«—>1RQ4 / SSI_CLKIN / PIRQ4
l<—>RQ3 / PIRQ3

[<—>IRQ1/PCIL_INTA/PIRQ1

Internal Bus

Figure 16-1. Ports Block Diagram
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Pin Multiplexing and Control

16.1.1 Overview

The external pin-muxing and control module configures various external pins, including those used for:
» External bus accesses
» External device selection
» Ethernet data and control
« I%C serial control

+ DSPI

- DMA
« SSI

- USB
 ATAPI
 PCI

« UART

e 32-bit DMA timers

16.1.2 Features

The module includes these distinctive features:
» Control of primary function use
— On all supported GPIO ports, except those for FB_ AD[31:0] pins
— On pins whose GPIO is not supported by ports module: IRQ[7,4,3,1]
* General purpose I/O support for all ports
— Registers for storing output pin data
— Registers for controlling pin data direction
— Registers for reading current pin state
— Registers for setting and clearing output pin data registers
» Control of functional pad drive strengths
» Slew rate control for PCI and SDRAM pins

16.2 External Signal Description
The external pins controllable by this module are listed under the GPIO column in Figure 16-2.

NOTE

In this table and throughout this document, a single signal within a group is
designated without square brackets (i.e., FB_AD23), while designations for
multiple signals within a group use brackets (i.e., FB. AD[23:21]) and is
meant to include all signals within the two bracketed numbers when these
numbers are separated by a colon.
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A
Pin Multiplexing and Control
NOTE
The primary functionality of a pin is not necessarily its default functionality.
Most pins that are muxed with GPIO default to their GPIO functionality. See
Table 16-1 for a list of the exceptions.
Table 16-1. Special-Case Default Signal Functionality
Pin 256 MAPBGA 360 TEPBGA
FB_ADI[31:0] FB_AD[31:0] except when serial boot selects 0-bit
boot port size.
FB_BE/BWE[3:0] FB_BE/BWE[3:0]
FB_CS[3:1] FB_CS[3:1]
FB_OE FB_OE
FB_R/W FB_R/W
FB_TA FB_TA
FB_TS FB_TS
PCI_GNT[3:0] GPIO PCI_GNT[3:0]
PCI_REQ[3:0] GPIO PCI_REQ[3:0]
IRQ1 GPIO PCI_INTA and
configured as an agent.
ATA_RESET GPIO ATA reset
Table 16-2. MCF5445x Signal Information and Muxing
=8 |« MCF54452
2¢c | § | &S| MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate 2 S % S | & €| MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
az o 360 TEPBGA
Reset
RESET — — — §] I EVDD L4 Y18
RSTOUT — — — — O | EVDD M15 B17
Clock
EXTAL/PCI_CLK — — — — I | EVDD M16 A16
XTAL — — — us O | EvDD L16 A17
Mode Selection
BOOTMOD[1:0] — — — — EVDD M5, M7 AB17, AB21
FlexBus
16-4
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A
Pin Multiplexing and Control
Table 16-2. MCF5445x Signal Information and Muxing (continued)
-8 |« MCF54452
2c | § g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
FB_AD[31:24] PFBADH[7:0]* FB_D[31:24] — — I/0 | EVDD | A14,A13,D12, | J2, K4, J1, K1-3,
C12,B12, A12, L1, L4
D11, C11
FB_ADI[23:16] PFBADMH[7:O]4 FB_D[23:16] — — /0 | EVDD | B11, A11, D10, L2, L3, M1-4,
C10, B10, A10, N1-2
D9, C9
FB_AD[15:8] PFBADML[7:0]* FB_D[15:8] — — I/0 | EVDD | B9, A9,D8,C8, | P1-2, R1-3, P4,
B8, A8, D7, C7 T1-2
FB_AD[7:0] PFBADL[7:0]* FB_DI[7:0] — — I/0 | EVDD | B7,A7,D6, C8, T3-4, U1-3,
B6, A6, D5, C5 V1-2, W1
FB_BE/BWE[3:2] PBE[3:2] FB_TSIZ[1:0] — — O | EVDD B5, A5 Y1, W2
FB_BE/BWE[1:0] PBE[1:0] — — — O | EVDD B4, A4 W3, Y2
FB_CLK — — — — O | EVDD B13 J3
FB_CSI[3:1] PCS[3:1] — — — O | EVDD C2, D4, C3 W5, AA4, AB3
FB_CSO — — — — O | EVDD c4 Y4
FB_OE PFBCTL3 — — — O | EVDD A2 AA1
FB_R/W PFBCTL2 — — — O | EVDD B2 AA3
FB_TA PFBCTLA — — U | | EVDD B1 AB2
FB_TS PFBCTLO FB_ALE FB_TBST — O | EVDD A3 Y3
PCI Controller®
PCI_AD[31:0] — FB_A[31:0] — — I/0 | EVDD — C11, D11, A10,
B10, J4, G2, G3,
F1,D12, C12,
B12, A11, B11,
B9, D9, D10, A8,
B8, A5, B5, A4,
A3, B3, D4, D3,
E3-E1, F3,C2,
D2, C1
— — FB_A[23:0] — — /O | EVDD | K14-13,J15-13, —
H13-15, G15-13,
F14-13, E15-13,
D16, B16, C15,
B15, C14, D15,
C16,D14
PCI_CBE[3:0] — — — — /0 | EVDD — G4, E4, D1, B1
PCI_DEVSEL — — — — O | EVDD — F2
PCI_FRAME — — — — /0 | EVDD — B2
PCI_GNT3 PPCI7 ATA_DMACK — — O | EVDD — B7
PCI_GNT[2:1] PPCI[6:5] — — — O | EVDD — c8, C9
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Table 16-2. MCF5445x Signal Information and Muxing (continued)

-8 |« MCF54452
2c | § g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
PCI_GNTO0/ PPCl4 — — — O | EVDD - A9
PCI_EXTREQ
PCI_IDSEL — — — — | | EVDD — D5
PCI_IRDY — - — — I/0 | EVDD — c3
PCI_PAR — - — — I/0 | EVDD — C4
PCI_PERR — — — — I/0 | EVDD — B4
PCI_REQ3 PPCI3 ATA_INTRQ — — | I |EvDD - c7
PCI_REQ[2:1] PPCI[2:1] — — — | | EVDD — D7, C5
PCI_REQO0/ PPCIO — — — I | EVDD — A2
PCI_EXTGNT
PCI_RST — — — — O | EVDD — B6
PCI_SERR — - — — I/0 | EVDD — A6
PCI_STOP _ — — — I/0 | EVDD — A7
PCI_TRDY — — — — I/0 | EVDD — c10
SDRAM Controller
SD_A[13:0] — — — — O |SDvDD| Ri1,P1,N2, P2, V22, U20-22,
R2, T2, M4, N3, | T19-22, R20-22,
P3, R3, T3, T4, N19, P20-21
R4, N4
SD_BA[1:0] — — — — O |sbvbDD P4, T5 P22, P19
SD_CAS — — — — O |SDvDD T6 L19
SD_CKE — — — — O |sDvDD N5 N22
SD_CLK — — — — O |sDvDD T9 L22
SD_CLK — — — — O |sDvDD T8 M22
SD_CSJ1:0] — — — — O |sDvDD P6, R6 L20, M20
SD_DI[31:16] — — — — I/O | SDVDD | N8, T7,N7, P7, L21, K22, K21,
R7, R8, P8, N8, | K20,J20, J19,
N9, T10, R10, J21, J22, H20,
P10,N10, T11, | G22, G21, G20,
R11, P11 G19, F22, F21,
F20
SD_DM[3:2] — — — — O |sbvDD P9, N12 H21, E21
SD_DQS[3:2] — — — — O |sbvDD R9, N11 H22, E22
SD_RAS — — — — O |sbvbDD P5 N21
SD_VREF — — — — | |sbvDD M8 M21
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Table 16-2. MCF5445x Signal Information and Muxing (continued)
— 8 | o MCF54452
2c | § | &S| MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 _g 2 8 |256 MAPBGA | MCF54455
a3 360 TEPBGA
SD_WE — — — — O |SDvDD R5 N20
External Interrupts Port®
IRQ7 PIRQ7 — — — | | EvDD L1 ABB13
IRQ4 PIRQ4 — SSI_CLKIN — | | EVDD L2 ABB13
IRQ3 PIRQ3 — — — I | EVDD L3 AB14
IRQT PIRQ1 PCIL_INTA — — I | EvbD F15 ce
FECO
FECO_MDC PFECI2C3 — — — | o | evop F3 ABS
FECO_MDIO PFECI2C2 — — — | vo | evop F2 v7
FECO_COL PFECOH4 — ULPI_DATA?7 — | | EVDD E1 AB7
FECO_CRS PFECOHO — ULPI_DATA6 — | | EVDD F1 AA7
FECO_RXCLK PFECOH3 — ULPI_DATA1 — | | EVDD G AA8
FECO_RXDV PFECOH2 FECO_RMII_ — — | | EvbD G2 v8
CRS_DV
FECO_RXDI[3:2] PFECOL[3:2] — ULPI_DATA5:4] | — | | EVDD G3, G4 AB9, Y9
FECO_RXD1 PFECOL1 FECO_RMII_RXD1 — — | | EvDD H1 wo
FECO_RXDO PFECOH1 FECO_RMII_RXDO — — | | EVDD H2 AB10
FECO_RXER PFECOLO | FECO_RMII_RXER — — | | EvDD H3 AA10
FECO_TXCLK PFECOH7 FECO_RMII_ — — | | EvDD H4 Y10
REF_CLK
FECO_TXD[3:2] PFECOL[7:6] — ULPI_DATA[3:2] | — | O | EvDD 5,02 W10, AB11
FECO_TXD1 PFECOL5 FECO_RMII_TXD1 — — | o | evop J3 AAT1
FECO_TXDO PFECOH5 | FECO_RMII_TXDO — — | o | evop i Y11
FECO_TXEN PFECOH6 | FECO_RMII_TXEN — — | o | evop K1 W11
FECO_TXER PFECOL4 — ULPI_DATAO — | o | Evbp K2 AB12
FEC1
FEC1_MDC PFECI2C5 — ATA_DIOR — | o | EvpD — W20
FEC1_MDIO PFECI2C4 — ATA_DIOW — | vo | Evbp - Y22
FEC1_COL PFEC1H4 — ATA_DATA7 — | | EVDD - AB18
FEC1_CRS PFEC1HO — ATA_DATA6 — | | EVDD - AA18

Freescale Semiconductor
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Pin Multiplexing and Control

Table 16-2. MCF5445x Signal Information and Muxing (continued)
~— 8 |a MCF54452
2c s g S | MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 _g 2 8 |256 MAPBGA | MCF54455
o E 360 TEPBGA
FEC1_RXCLK PFEC1H3 — ATA_DATAS5 — I | EVDD — wi4
FEC1_RXDV PFEC1H2 FEC1_RMII_ ATA_DATA15 I | EVDD — AB15
CRS_DV
FEC1_RXDI[3:2] PFEC1L[3:2] — ATA_DATA[4:3] — I | EVDD — AA15,Y15
FEC1_RXD1 PFEC1LA FEC1_RMII_RXD1 ATA_DATA14 — I | EVDD — AA17
FEC1_RXDO PFEC1HA1 FEC1_RMII_RXDO ATA_DATA13 — I | EVDD — Y17
FEC1_RXER PFEC1LO FEC1_RMII_RXER ATA_DATA12 — I | EVDD — w17
FEC1_TXCLK PFEC1H7 FEC1_RMII_ ATA_DATA11 — I | EVDD — AB19
REF_CLK
FEC1_TXD[3:2] PFEC1L[7:6] — ATA_DATA[2:1] — O | EVDD — Y19, W18
FEC1_TXD1 PFEC1L5 FEC1_RMII_TXD1 ATA_DATA10 — O | EVDD — AA19
FEC1_TXDO PFEC1H5 FEC1_RMII_TXDO ATA_DATA9 — O | EVDD — Y20
FEC1_TXEN PFEC1H6 FEC1_RMII_TXEN ATA_DATA8 — O | EVDD — AA21
FEC1_TXER PFEC1L4 — ATA_DATAO — O | EVDD — AA22
USB On-the-Go
USB_DM — — — — o usB F16 Al4
VDD
USB_DP — — — — o usB E16 A15
VDD
USB_VBUS_EN PUSB1 USB_PULLUP ULPI_NXT — o \l/Jgg E5 AA2
USB_VBUS_OC PUSBO — ULPI_STP uD’ I t/J[SxB) B3 V4
ATA
ATA_BUFFER_EN PATAH5 — — — O | EVDD — Y13
ATA_CS[1:0] PATAH[4:3] — — — O | EvDD — w21, W22
ATA_DA[2:0] PATAH[2:0] — — — O | EVDD — V19-21
ATA_RESET PATAL2 — — — O | EVDD — w13
ATA_DMARQ PATALA — — — I | EVDD — AA14
ATA_IORDY PATALO — — — I | EVDD — Y14
Real Time Clock
EXTAL32K — — — — | | EVDD J16 A13
XTAL32K — — — — O | EVDD H16 A12

16-8
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Table 16-2. MCF5445x Signal Information and Muxing (continued)

— 8 | o MCF54452
2¢c | 5| &E| MCF54450 | MCF54453
Signal Name GPIO Alternate 1 Alternate2 | 23 |5 | 8 €| MCF54451 | MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
ssi
SSI_MCLK PSSI4 — — — O | EVDD T13 D20
SSI_BCLK PSSI3 U1CTS — — | vo | EvbD R13 E19
SSI_FS PSSI2 U1RTS — — /O | EVDD P12 E20
SSI_RXD PSSI1 U1RXD — UD | ! |EVDD T12 D21
SSI_TXD PSSIO U1TXD — UD | O | EvDD R12 D22
1’c
I2C_SCL PFECI2C1 — U2TXD U | vo | EvbD K3 AAT12
I2C_SDA PFECI2CO — U2RXD U | vo | EvbD K4 Y12
DMA
DACK PDMA3 — ULPI_DIR — | o | EvDD M14 c17
DREQ1 PDMA2 — USB_CLKIN U | | EVDD P16 c18
DACKO PDMAT1 DSPI_PCS3 — — | o | EvDD N15 A18
DREQO PDMAO — — U | | EVDD N16 B18
DSPI
DSPI_PCS5/PCSS PDSPI6 — — — O | EVDD N14 D18
DSPI_PCS2 PDSPI5 — — — O | EVDD L13 A19
DSPI_PCS1 PDSPI4 SBF_CS — — o | EvDD P14 B20
DSPI_PCS0/SS PDSPI3 — — U 10 | EVDD R16 D17
DSPI_SCK PDSPI2 SBF_CK — — | vo | EvDD R15 A20
DSPI_SIN PDSPI1 SBF_DI — 8 | | EVDD P15 B19
DSPI_SOUT PDSPIO SBF_DO — — O | EVDD N13 C20
UARTs
U1CTS PUART? — — — | | EvDD — V3
U1RTS PUART6 — — — o | EvDD - U4
U1RXD PUART5 — — — | | EvDD — P3
U1TXD PUART4 — — — | o | Evbp — N3
UoCTS PUART3 — — — | | EvDD M3 Y16
UORTS PUART2 — — — O | EVDD M2 AA16
Freescale Semiconductor 16-9
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Table 16-2. MCF5445x Signal Information and Muxing (continued)

~ 8 |a MCF54452
2c s g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S e MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
a3 Q 360 TEPBGA
UORXD PUART1 — — — I EVDD N1 AB16
UOTXD PUARTO — — O | EVDD M1 W15
Note: The UART1 and UART 2 signals are multiplexed on the DMA timers and 12C pins.
DMA Timers
DT3IN PTIMER3 DT30UT U2RXD — I | EVDD C13 H2
DT2IN PTIMER2 DT20UT U2TXD — I | EVDD D13 H1
DT1IN PTIMERH1 DT10UT U2CTS — I | EVDD B14 H3
DTOIN PTIMERO DTOOUT U2RTS — | | EVDD A15 G1
BDM/JTAG?®
PSTDDATA[7:0] — — — — O | EVDD | E2,D1,F4,E3, | AA6, ABG, ABS5,
D2, C1, E4, D3 W6, Y6, AA5,
AB4, Y5
JTAG_EN — — — D I EVDD M11 c21
PSTCLK — TCLK — — I EVDD P13 c22
DSI — TDI — U | | EVDD T15 c19
DSO — TDO — — O | EVDD T14 A21
BKPT — T™MS — | | EVDD R14 B21
DSCLK — TRST — I EVDD M13 B22
Test
TEST — — — D I EVDD M6 AB20
PLLTEST — — — — O | EVDD K16 D15
Power Supplies
IVDD — — — — — — E6-12, F5, F12 | D6, D8, D14, F4,
H4, N4, R4, W4,
W7, W8, W12,
W16, W19
EVDD — — — — — — | G5,G12,H5,H12, | D13, D19, G8,
J5,J12,K5, K12, | G11, G14, G16,
L5-6, L12 J7,J16, L7, L16,
N16, P7, R16, T8,
T12, T14, T16
SD_VDD — — — — — — L7-11, M9, M10 | F19, H19, K19,
- M19, R19, U19
VDD_OSC — — — — — — L14 B16
VDD_A_PLL — — — — — — K15 C14
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Table 16-2. MCF5445x Signal Information and Muxing (continued)
— 8 | o MCF54452
2c | § g % MCF54450 MCF54453
Signal Name GPIO Alternate 1 Alternate 2 g % 5 S £ | MCF54451 MCF54454
=2 | £ | S8 |256 MAPBGA| MCF54455
ad |° 360 TEPBGA
VDD_RTC — — — — — — M12 c13
VSS — — — — — | — | A1,A16F6-11, | A1, A22,B14,G7,
G6-11, H6-11, | G9-10, G12-13,
J6-11,K6-11,T1, | G15, H7, H16,
T16 J9-14,K7,K9-14,
K16, L9-14, M7,
M9-M14, M16,
N9-14, P9-14,
P16, R7, T7,
T9-11, T13, T15,
AB1, AB22
VSS_0SC — — — — — | — L15 C16
' Pull-ups are generally only enabled on pins with their primary function, except as noted.
2 Refers to pin’s primary function.
3 Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).
4 Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.
5 When the PCl is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have

GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCl agent and as GPIO when booting

as a PCI host.
For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines

and IRQ1/PCI_INTA come up as GPIO.

6 GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning
the alternate functions.

7 Depends on programmed polarity of the USB_VBUS_OC signal.

8 Pull-up when the serial boot facility (SBF) controls the pin

9 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not
responsible for assigning these pins.

Refer to the Chapter 2, “Signal Descriptions,” for more detailed descriptions of these pins and other pins
not controlled by this module. The function of most of the pins (primary function, GPIO, etc.) is
determined by the pin assignment registers (PAR x).

From the above table, there are several cases where a function is available on more than one pin. While it
is possible to enable the function on more than one pin simultaneously, this type of programming should
be avoided for input functions to prevent unexpected behavior. All multiple-pin functions are listed in
Table 16-3.

Table 16-3. Multiple-Pin Functions

Function Direction Associated Pins
U1CTS | U1CTS, SSI_BCLK
UTRTS ¢} U1RTS, SSI_FS
U1RXD I U1RXD, SSI_RXD
U1TXD (0] U1TXD, SSI_TXD
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16.3 Memory Map/Register Definition

Table 16-3. Multiple-Pin Functions (continued)

Function Direction Associated Pins
U2RXD I 12C_SDA, T3IN
U2TXD (0] 12C_SCL, T2IN

Table 16-4 summarizes all the registers in the pin multiplexing and control address space.

Table 16-4. Pin Multiplexing and Control Memory Map

Address Register ‘?g:;r; Access | Reset Value | Section/Page
Port Output Data Registers
0xFCOA_4000 | PODR_FECOH 8 R/W OxFF 16.3.1/16-16
0xFCOA_4001 | PODR_FECOL 8 R/W OxFF 16.3.1/16-16
0xFCOA_4002 | PODR_SSI 8 R/W Ox1F 16.3.1/16-16
0xFCOA_4003 | PODR_FBCTL 8 R/W OxOF 16.3.1/16-16
0xFCOA_4004 | PODR_BE 8 R/W OxOF 16.3.1/16-16
0xFCOA_4005 | PODR_CS 8 R/W Ox0E 16.3.1/16-16
0xFCOA_4006 | PODR_DMA 8 R/W OxOF 16.3.1/16-16
0xFCOA_4007 | PODR_FECI2C 8 R/W Ox3F 16.3.1/16-16
0xFCOA_4009 | PODR_UART 8 R/W OxFF 16.3.1/16-16
0xFCOA_400A | PODR_DSPI 8 R/W Ox7F 16.3.1/16-16
0xFCOA_400B | PODR_TIMER 8 R/W OxOF 16.3.1/16-16
0xFCOA_400C | PODR_PCI 8 R/W OxFF 16.3.1/16-16
0xFCOA_400D | PODR_USB 8 R/W 0x03 16.3.1/16-16
0xFCOA_400E | PODR_ATAH 8 R/W Ox3F 16.3.1/16-16
0xFCOA_400F | PODR_ATAL 8 R/W 0x07 16.3.1/16-16
0xFCOA_4010 | PODR_FEC1H 8 R/W OxFF 16.3.1/16-16
0xFCOA_4011 | PODR_FEC1L 8 R/W OxFF 16.3.1/16-16
0xFCOA_4014 | PODR_FBADH 8 R/W OxFF 16.3.1/16-16
0xFCOA_4015 | PODR_FBADMH 8 R/W OxFF 16.3.1/16-16
0xFCOA_4016 | PODR_FBADML 8 R/W OxFF 16.3.1/16-16
0xFCOA_4017 | PODR_FBADL 8 R/W OxFF 16.3.1/16-16
Port Data Direction Registers

0xFCOA_4018 | PDDR_FECOH 8 R/W 0x00 16.3.2/16-18
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Pin Multiplexing and Control

Table 16-4. Pin Multiplexing and Control Memory Map (continued)

Address Register ‘gal::)] Access | Reset Value | Section/Page
0xFCOA_4019 | PDDR_FECOL 8 R/W 0x00 16.3.2/16-18
0xFCOA_401A | PDDR_SSI 8 R/W 0x00 16.3.2/16-18
0xFCOA_401B | PDDR_FBCTL 8 R/W 0x00 16.3.2/16-18
0xFCOA_401C | PDDR_BE 8 R/W 0x00 16.3.2/16-18
0xFCOA_401D | PDDR_CS 8 R/W 0x00 16.3.2/16-18
0xFCOA_401E | PDDR_DMA 8 R/W 0x00 16.3.2/16-18
0xFCOA_401F | PDDR_FECI2C 8 R/W 0x00 16.3.2/16-18
0xFCOA_4021 | PDDR_UART 8 R/W 0x00 16.3.2/16-18
0xFCOA_4022 | PDDR_DSPI 8 R/W 0x00 16.3.2/16-18
0xFCOA_4023 | PDDR_TIMER 8 R/W 0x00 16.3.2/16-18
0xFCOA_4024 | PDDR_PCI 8 R/W 0x00 16.3.2/16-18
0xFCOA_4025 | PDDR_USB 8 R/W 0x00 16.3.2/16-18
0xFCOA_4026 | PDDR_ATAH 8 R/W 0x00 16.3.2/16-18
O0xFCOA_4027 | PDDR_ATAL 8 R/W 0x00 16.3.2/16-18
0xFCOA_4028 | PDDR_FEC1H 8 R/W 0x00 16.3.2/16-18
0xFCOA_4029 | PDDR_FEC1L 8 R/W 0x00 16.3.2/16-18
0xFCOA_402C | PDDR_FBADH 8 R/W 0x00 16.3.2/16-18
0xFCOA_402D | PDDR_FBADMH 8 R/W 0x00 16.3.2/16-18
0xFCOA_402E | PDDR_FBADML 8 R/W 0x00 16.3.2/16-18
0xFCOA_402F | PDDR_FBADL 8 R/W 0x00 16.3.2/16-18

Port Pin Data/Set Data Registers
0xFCOA_4030 | PPDSDR_FECOH 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4031 | PPDSDR_FECOL 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4032 | PPDSDR_SSI 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4033 | PPDSDR_FBCTL 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4034 | PPDSDR_BE 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4035 | PPDSDR_CS 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4036 | PPDSDR_DMA 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4037 | PPDSDR_FECI2C 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4039 | PPDSDR_UART 8 R/W | See Section | 16.3.3/16-20
O0xFCOA_403A | PPDSDR_DSPI 8 R/W | See Section | 16.3.3/16-20
0xFCOA_403B | PPDSDR_TIMER 8 R/W | See Section | 16.3.3/16-20
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Table 16-4. Pin Multiplexing and Control Memory Map (continued)

Address Register ‘gal::)] Access | Reset Value | Section/Page
0xFCOA_403C | PPDSDR_PCI 8 R/W | See Section | 16.3.3/16-20
0xFCOA_403D | PPDSDR_USB 8 R/W | See Section | 16.3.3/16-20
0xFCOA_403E | PPDSDR_ATAH 8 R/W | See Section | 16.3.3/16-20
0xFCOA_403F | PPDSDR_ATAL 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4040 | PPDSDR_FEC1H 8 R/W | See Section | 16.3.3/16-20
O0xFCOA_4041 | PPDSDR_FECI1L 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4044 | PPDSDR_FBADH 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4045 | PPDSDR_FBADMH 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4046 | PPDSDR_FBADML 8 R/W | See Section | 16.3.3/16-20
0xFCOA_4047 | PPDSDR_FBADL 8 R/W | See Section | 16.3.3/16-20

Port Clear Output Data Registers
0xFCOA_4048 | PCLRR_FECOH 8 W 0x00 16.3.4/16-23
0xFCOA_4049 | PCLRR_FECOL 8 W 0x00 16.3.4/16-23
OxFCOA_404A | PCLRR_SSI 8 W 0x00 16.3.4/16-23
0xFCOA_404B | PCLRR_FBCTL 8 W 0x00 16.3.4/16-23
0xFCOA_404C | PCLRR_BE 8 W 0x00 16.3.4/16-23
0xFCOA_404D | PCLRR_CS 8 W 0x00 16.3.4/16-23
O0xFCOA_404E | PCLRR_DMA 8 W 0x00 16.3.4/16-23
0xFCOA_404F | PCLRR_FECI2C 8 W 0x00 16.3.4/16-23
0xFCOA_4051 | PCLRR_UART 8 W 0x00 16.3.4/16-23
0xFCOA_4052 | PCLRR_DSPI 8 W 0x00 16.3.4/16-23
0xFCOA_4053 | PCLRR_TIMER 8 W 0x00 16.3.4/16-23
0xFCOA_4054 | PCLRR_PCI 8 W 0x00 16.3.4/16-23
0xFCOA_4055 | PCLRR_USB 8 W 0x00 16.3.4/16-23
0xFCOA_4056 | PCLRR_ATAH 8 W 0x00 16.3.4/16-23
0xFCOA_4057 | PCLRR_ATAL 8 W 0x00 16.3.4/16-23
0xFCOA_4058 | PCLRR_FEC1H 8 W 0x00 16.3.4/16-23
O0xFCOA_405A | PCLRR_FEC1L 8 W 0x00 16.3.4/16-23
0xFCOA_405C | PCLRR_FBADH 8 W 0x00 16.3.4/16-23
0xFCOA_405D | PCLRR_FBADMH 8 W 0x00 16.3.4/16-23
0xFCOA_405E | PCLRR_FBADML 8 w 0x00 16.3.4/16-23
0xFCOA_405F | PCLRR_FBADL 8 W 0x00 16.3.4/16-23
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Table 16-4. Pin Multiplexing and Control Memory Map (continued)

Address Register ‘g)‘:g; Access | Reset Value | Section/Page
Pin Assignment Registers
0xFCOA_4060 | PAR_FEC 8 R/W 0x00 16.3.5.1/16-25
0xFCOA_4061 | PAR_DMA 8 R/W 0x00 16.3.5.2/16-27
0xFCOA_4062 | PAR_FBCTL 8 R/W 0xF8 16.3.5.3/16-27
0xFCOA_4063 | PAR_DSPI 8 R/W 0x00 16.3.5.4/16-28
O0xFCOA_4064 | PAR_BE 8 R/W OxF5 16.3.5.5/16-29
O0xFCOA_4065 | PAR_CS 8 R/W Ox0E 16.3.5.6/16-30
0xFCOA_4066 | PAR_TIMER 8 R/W 0x00 16.3.5.7/16-30
0xFCOA_4067 | PAR_USB 8 R/W 0x00 16.3.5.8/16-31
0xFCOA_4069 | PAR_UART 8 R/W 0x00 16.3.5.9/16-32
O0xFCOA_406A | PAR_FECI2C 16 R/W 0x0000 16.3.5.10/16-33
0xFCOA_406C | PAR_SSI 16 R/W 0x0000 16.3.5.11/16-34
OxFCOA_406E | PAR_ATA 16 R/W 0x0004 16.3.5.12/16-34
0xFCOA_4070 | PAR_IRQ 8 R/W | See Section |16.3.5.13/16-36
0xFCOA_4072 | PAR_PCI 16 R/W | See Section |16.3.5.14/16-36
Mode Select Control Registers
0xFCOA_4074 | MSCR_SDRAM 8 R/W OxFF 16.3.6/16-38
0xFCOA_4075 | MSCR_PCI 8 R/W | See Section | 16.3.7/16-39
Drive Strength Control Registers

0xFCOA_4078 | DSCR_I2C 8 R/W 0x03 16.3.8/16-39
0xFCOA_4079 | DSCR_FLEXBUS 8 R/W OxFF 16.3.8/16-39
0xFCOA_407A | DSCR_FEC 8 R/W OxOF 16.3.8/16-39
0xFCOA_407B | DSCR_UART 8 R/W OxOF 16.3.8/16-39
0xFCOA_407C | DSCR_DSPI 8 R/W 0x03 16.3.8/16-39
0xFCOA_407D | DSCR_TIMER 8 R/W 0x03 16.3.8/16-39
0xFCOA_407E | DSCR_SSI 8 R/W 0x03 16.3.8/16-39
0xFCOA_407F | DSCR_DMA 8 R/W 0x03 16.3.8/16-39
0xFCOA_4080 | DSCR_DEBUG 8 R/W 0x03 16.3.8/16-39
0xFCOA_4081 | DSCR_RESET 8 R/W 0x03 16.3.8/16-39
0xFCOA_4082 | DSCR_IRQ 8 R/W 0x03 16.3.8/16-39
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Table 16-4. Pin Multiplexing and Control Memory Map (continued)

Address Register ‘g)‘::; Access | Reset Value | Section/Page
0xFCOA_4083 | DSCR_USB 8 R/W 0x03 16.3.8/16-39
0xFCOA_4084 | DSCR_ATA 8 R/W 0x03 16.3.8/16-39

16.3.1 Port Output Data Registers (PODR_x)

The PODR _x registers store the data to be driven on the corresponding port pins when the pins are
configured for general purpose output. The PODR_x registers are each eight bits wide, but not all ports use
all eight bits. The register definitions for all ports are shown in the below figures. The PODR _x registers
are read/write. At reset, all implemented bits in the PODR_x registers are set. Reserved bits always remain
cleared.

Reading a PODR x register returns the current values in the register, not the port pin values. To set bits in
a PODR x register, set the PODR x bits or set the corresponding bits in the PPDSDR _x register. To clear
bits in a PODR_x register, clear the PODR _x bits or clear the corresponding bits in the PCLRR _x register.

Address: 0xFCOA_4000 (PODR_FECOH) Access: User read/write
0xFCOA_4001 (PODR_FECOL)
0xFCOA_4009 (PODR_UART)
0xFCOA_400C (PODR_PCI)
0xFCOA_4010 (PODR_FEC1H)
0xFCOA_4011 (PODR_FEC1L)
0xFCOA_4014 (PODR_FBADH)
0xFCOA_4015 (PODR_FBADMH)
0xFCOA_4016 (PODR_FBADML)
0xFCOA_4017 (PODR_FBADL)

7 6 5 4 3 2 1 0
R
PODR_x
W
Reset: 1 1 1 1 ‘ 1 1 1 1
Figure 16-2. Port x Output Data Registers (PODR_x)
Address: 0xFCOA_400A (PODR_DSPI) Access: User read/write
7 6 5 4 ‘ 3 2 1 0
R 0
PODR_DSPI
w

Reset: 0 1 1 1 ‘ 1 1 1 1
Figure 16-3. Port DSPI Output Data Registers (PODR_DSPI)
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Address: 0xFCOA_4007 (PODR_FECI2C) Access: User read/write
0xFCOA_400E (PODR_ATAH)
7 6 5 4 ‘ 3 2 1 0
R 0 0
PODR_x
W
Reset: 0 0 1 1 ‘ 1 1 1 1
Figure 16-4. Port x Output Data Registers (PODR_x)
Address: 0xFCOA_4002 (PODR_SSI) Access: User read/write
7 6 5 4 ‘ 3 2 1 0
R 0 0 0
PODR_SSI
W
Reset: 0 0 0 1 ‘ 1 1 1 1
Figure 16-5. Port SSI Output Data Registers (PODR_SSI)
Address: 0xFCOA_4003 (PODR_FBCTL) Access: User read/write
0xFCOA_4004 (PODR_BE)
0xFCOA_4006 (PODR_DMA)
0xFCOA_400B (PODR_TIMER)
3 2 1 0
R 0 0 0 0
PODR_x
W
Reset: 0 0 0 0 1 1 1 1
Figure 16-6. Port x Output Data Registers (PODR_x)
Address: 0xFCOA_400F (PODR_ATAL) Access: User read/write
5 4 3 2 1 0
R 0 0 0 0 0
PODR_ATAL
W
Reset: 0 0 0 0 0 1 1 1
Figure 16-7. Port ATAL Output Data Registers (PODR_ATAL)
Address: 0xFCOA_4005 (PODR_CS) Access: User read/write
5 4 3 2 1
R 0 0 0 0 0
PODR_CS
W
Reset: 0 0 0 0 1 1 1 0

Figure 16-8. Port CS Output Data Registers (PODR_CS)
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Address: 0xFCOA_400D (PODR_USB) Access: User read/write
5 4 3 2 1 0
R 0 0 0 0 0 0
PODR_USB
W
Reset: 0 0 0 0 0 0 1 1

Figure 16-9. Port USB Output Data Registers (PODR_USB)

Table 16-5. PODR_ x Field Descriptions

Field Description

PODR_x | Port x output data bits.
0 Drives 0 when the port x pin is general purpose output
1 Drives 1 when the port x pin is general purpose output

Note: See above figures for bit field positions.

16.3.2 Port Data Direction Registers (PDDR_Xx)

The PDDRs control the direction of the port pin drivers when the pins are configured for GPIO. The
PDDR x registers are each eight bits wide, but not all ports use all eight bits. The register definitions for
all ports are shown in the figures below.

The PDDRs are read/write. At reset, all bits in the PDDRs are cleared. Setting any bit ina PDDR_x register
configures the corresponding port pin as an output. Clearing any bit in a PDDR_x register configures the
corresponding pin as an input.

Address: 0xFCOA_4018 (PDDR_FECOH) Access: User read/write
0xFCOA_4019 (PDDR_FECOL)
0xFCOA_4021 (PDDR_UART)
0xFCOA_4024 (PDDR_PCI)
O0xFCOA_4028 (PDDR_FEC1H)
0xFCOA_4029 (PDDR_FECI1L)
0xFCOA_402C (PDDR_FBADH)
0xFCOA_402D (PDDR_FBADMH)
0xFCOA_402E (PDDR_FBADML)
0xFCOA_402F (PDDR_FBADL)

7 6 5 4 ‘ 3 2 1 0

R
PDDR_x
w
Reset: 0 0 0 0 ‘ 0 0 0 0

Figure 16-10. Port Data Direction Registers (PDDR_Xx)
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Address: 0xFCOA_4022 (PDDR_DSPI) Access: User read/write
6 5 4 ‘ 3 2 1 0
R 0
PDDR_DSPI
W
Reset: 0 0 0 0 0 0 0 0

Figure 16-11. Port DSPI Data Direction Registers (PDDR_DSPI)

Address: 0xFCOA_401F (PDDR_FECI2C) Access: User read/write
0xFCOA_4026 (PDDR_ATAH)
7 6 5 4 ‘ 3 2 1 0
R 0 0
PDDR_x
w
Reset: 0 0 0 0 0 0 0 0
Figure 16-12. Port Data Direction Registers (PDDR_x)
Address: 0xFCOA_401A (PDDR_SSI) Access: User read/write
7 6 5 4 ‘ 3 2 1 0
R 0 0 0
PDDR_SSI
w
Reset: 0 0 0 0 0 0 0 0
Figure 16-13. Port PWM Output Data Registers (PDDR_SSI)
Address: 0xFCOA_401B (PDDR_FBCTL) Access: User read/write
0xFCOA_401C (PDDR_BE)
0xFCOA_401E (PDDR_DMA)
0xFCOA_4023 (PDDR_TIMER)
6 5 3 2 1 0
R 0 0 0 0
PDDR_x
w
Reset: 0 0 0 0 0 0 0 0
Figure 16-14. Port x Output Data Registers (PDDR_x)
Address: 0xFCOA_4027 (PDDR_ATAL) Access: User read/write
6 5 4 3 2 1 0
R 0 0 0 0 0
PDDR_ATAL
w
Reset: 0 0 0 0 0 0 0 0

Figure 16-15. Port ATAL Output Data Registers (PDDR_ATAL)
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Address: 0xFCOA_401D (PDDR_CS) Access: User read/write
6 5 4 3 2 1
R 0 0 0 0 0
PDDR_CS
W
Reset: 0 0 0 0 0 0 0 0

Figure 16-16. Port CS Output Data Registers (PDDR_CS)

Address: 0xFCOA_4025 (PDDR_USB) Access: User read/write
5 4 3 2 1 0
R 0 0 0 0 0 0
PDDR_USB
w
Reset: 0 0 0 0 0 0 0 0

Figure 16-17. Port USB Output Data Registers (PDDR_USB)

Table 16-6. PDDR_x Field Descriptions

Field Description

PDDR_x | Port x output data direction bits.
1 Port x pin configured as output
0 Port x pin configured as input

Note: See above figures for bit field positions.

16.3.3 Port Pin Data/Set Data Registers (PPDSDR_x)

The PPDSDR registers reflect the current pin states and control the setting of output pins when the pin is
configured for GPIO. The PPDSDR x registers are each eight bits wide, but not all ports use all eight bits.
The register definitions for all ports are shown in the below figures.

The PPDSDR _x registers are read/write. At reset, the bits in the PPDSDR_x registers are set to the current
pin states. Reading a PPDSDR_x register returns the current state of the port x pins. Setting a PPDSDR_x
register sets the corresponding bits in the PODR_x register. Writing zeroes has no effect.
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Address: 0xFCOA_4030 (PPDSDR_FECOH) Access: User read/write
0xFCOA_4031 (PPDSDR_FECOL)
0xFCOA_4039 (PPDSDR_UART)
0xFCOA_403C (PPDSDR_PCI)
O0xFCOA_4040 (PPDSDR_FEC1H)
OxFCOA_4041 (PPDS