
© 2016 NXP B.V.

NXP Semiconductors Document Number: ISF2P2_KINETIS_SWRM
REFERENCE MANUAL Rev. 1.0, 2/2016

Intelligent Sensing Framework v2.2
Software Reference Manual
For the Kinetis Family of Microcontrollers

About this document

2 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Contents
1. About this document .. 3

1.1 Purpose ... 3
1.2 Audience ... 3
1.3 Terminology and conventions .. 3

1.3.1 Notational conventions ..6
2. Introduction ... 7

2.1 System overview ... 7
2.2 Development environment ... 9

3. Intelligent Sensing Framework .. 9
3.1 ISF theory of operation .. 10
3.2 ISF architecture ... 10
3.3 Processor Expert component architecture ... 12
3.4 Core framework component details ... 13

3.4.1 Theory of operation overview ... 13
3.4.2 Framework overview .. 13
3.4.3 Processor Expert component overview .. 13
3.4.4 Digital Sensor Abstraction (DSA) ... 14
3.4.5 DSA-Direct interface ... 17
3.4.6 Bus Manager .. 18
3.4.7 ISF system configuration .. 20
3.4.8 Device messaging and protocol adapters .. 21
3.4.9 Host Interface/Command Interpreter .. 24
3.4.10 Power management ... 29

3.5 Application support component details .. 29
3.5.1 Embedded application component ... 29
3.5.2 Basic Application Component .. 32
3.5.3 Register Level Interface Application Component ... 32

3.6 Operating system abstraction .. 32
3.6.1 ISF tasks and initialization .. 33

4. Protocol definitions .. 33
4.1 Command-Response protocol ... 33

4.1.1 Built-in commands .. 33
4.1.2 Built-in commands for embedded applications .. 42

4.2 Streaming protocol .. 47
4.2.1 Introduction ... 47
4.2.2 General description .. 47
4.2.3 Stream host communication ... 50
4.2.4 Stream host commands ... 53
4.2.5 Triggers, Elements, and updates ... 66
4.2.6 Internal design .. 69
4.2.7 CRC implementation .. 73

5. References .. 75
6. Revision history .. 76

About this document

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 3
NXP Semiconductors

1. About this document
1.1 Purpose
This reference manual describes the features, architecture, and programming model of the Intelligent
Sensing Framework (ISF) embedded middleware, release v2.2. This software is designed to execute
on the vast majority of the Kinetis family of microcontrollers supplied by NXP to easily obtain sensor
data. The framework is supported by a set of cooperative Processor Expert (PEx) components that
automatically generate the framework code, embedded application code, as well as dependent drivers
for a variety of internal hardware components available on Kinetis. Processor Expert technology also
generates the real-time operating system (RTOS) required by ISF. This document focuses on the core
ISF functionality and its use of PEx technology to build custom, embedded sensor applications.
Additional information is available in the ISF v2.2 API Reference Manual, the ISF v2.2 User Guide and
the ISF v2.2 Release Notes available at nxp.com/ISF-2.2-KINETIS.

1.2 Audience
This document is primarily for system architects and software application developers currently using or
considering using the ISF v2.2 middleware on the Kinetis family of microcontrollers as the basis for an
intelligent sensor system.

1.3 Terminology and conventions
This section defines the terminology, abbreviations, and other conventions used throughout this
document.

Table 1. List of technical terms

Term Definition
application ID The identifier used by the Command Interpreter to determine which registered

callback function is invoked by the Command Interpreter on behalf of the
embedded application. Depending on the context, the terms application callback
ID or application ID or AppID or callback ID may be used.

callback See callback function.
callback ID See application ID.
callback function A function registered by a software component, invoked on behalf of the

registering component. The function usually contains instructions to communicate
with or call back to the registering component. Also referred to as callback.

channel A representation of a separate communications pathway to one or more external
slave devices.

component A collection of files implementing the Processor Expert Macro-processor
Command Language and designed to automatically generate code based on high
level configuration properties assigned by a developer.

DeviceHandle A handle identifying the device used for Device Messaging transactions.
Digital Sensor Abstraction Abstraction layer to enable communications with multiple types of sensors.

About this document

4 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Term Definition
embedded application A program that executes on the intelligent sensing platform as an independent unit

of functionality. It consists of a set of one or more tasks providing outputs
consumed outside the intelligent sensing platform. Independence means that an
application may be added or removed from a firmware build without interfering
with the functionality of other applications. Applications typically are run on behalf
of a user as opposed to a simple support task that is run as part of the Intelligent
Sensing Framework.

end-user product A third-party product that hosts a sensing subsystem.
event group A 32-bit group of event bits used to let tasks synchronize and communicate.
FIFO First-In, First-Out; a method of processing and retrieving data
firmware The combination of code and data stored in a device’s flash memory.
framework The infrastructure code providing the execution environment for embedded

applications.
function A portion of code taking a predefined set of input parameters that performs a

series of instructions and returns a predefined set of output values. A function may
be invoked from one or more points in an executable program.

host application A program that executes on the host processor.
Intelligent Sensing
Framework (ISF)

The NXP-provided software middleware layer enabling the development of custom
embedded sensor applications with increased portability, ease-of-use, and
decreased time-to-market.

intelligent sensor system The platform and external sensor hardware that interact together via hardware
and software protocols. Also referred to as system.

Kinetis A family of ARM®-based microcontrollers offered by NXP.
period The time between successive repetitions of a given phenomenon. Period is equal

to the inverse of frequency.
PEx component Processor Expert Component; see component.
platform The combination of the device and firmware. Also referred to as intelligent sensing

platform.
protocol adapter A uniform interface to all communications channels in conjunction with Device

Messaging. There is a Protocol Adapter for each type of communication channel,
for example: I2C, SPI, and UART Protocol Adapters.

sensor adapter A Sensor Adapter implements the Digital Sensor Abstraction interface for a
particular physical sensor and handles the device-specific communications and
interactions with the physical sensor to manage sensors at a higher level of
abstraction. ISF requires a Sensor Adapter for each sensor being managed in the
system.

sensor ID The enumerated value that indexes into the global sensor configuration array.
stream ID Identifier for the Stream protocol data
system The platform and external sensor hardware that interact together via hardware

and software protocols. Also referred to as intelligent sensor system.
task An operating entity within the Intelligent Sensing Framework (ISF) scheduled to

execute by the OS Abstraction layer and underlying RTOS. A task may entail the
execution of one or more functions.

transport Communications mechanism.
Examples: I2C, SPI, Bluetooth©, Ethernet, and USB

About this document

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 5
NXP Semiconductors

Table 2. List of abbreviations

Term Definition
6LoWPAN Low power Wireless Personal Area Network
ADC Analog-to-Digital Converter
API Application Programming Interface
ARM Any of several 32-bit RISC microprocessors that use ARM® instruction set

architectures
BM Bus Manager
CCITT Consultative Committee for International Telephony and Telegraphy
CI Command Interpreter
CMD Command
COCO Command Complete (software)
CRC Cyclic Redundancy Check
DM Device Messaging
DSA Digital Sensor Abstraction
EA Embedded Application
FreeRTOS An open-source, real-time operating system with multitasking kernel for resource-

limited MCUs.
HDLC High-Level Data Link Control Protocol
I2C bi-directional, two-wire, serial communication bus
ISF Intelligent Sensing Framework
ISR Interrupt Service Routine
KDS Kinetis Design Studio
KSDK Kinetis Software Development Kit
MQX A real-time operating system with multitasking kernel for resource-limited MCUs.
NOP No Operation Instruction
OSA Operating System Abstraction
PEx Processor Expert
PIT Programmable Interval Timer
POSIX Portable Operating System Interface; IEEE standard for maintaining compatibility

between operating systems
RTOS Real-time Operating System
SDK Software Developer Kit
SP Stream Protocol
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
ZigBee Network specification using IEEE 802.15.4 wireless standard for low-power,

wireless, local area networks

About this document

6 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

1.3.1 Notational conventions
Notation Description

0b Prefix to denote a binary number
0x Prefix to denote a hexadecimal number
byte An 8-bit data unit
cleared/set When a bit has the value 0, it is said to be cleared; when it has a value of 1, it is

said to be set.
mnemonics Mnemonics that may represent command names, defined macros, constants,

enumeration values are shown as, for example, CI_ERROR_NONE

word A 16-bit data unit

Caution, Note, and Tip statements may be used in this manual to emphasize critical, important, and
useful information. The statements are defined below.

CAUTION: A CAUTION statement indicates a situation that could have unexpected or undesirable side
effects or could be dangerous to the deployed application or system.

Note: A Note statement is used to point out important information.

Tip: A Tip statement is used to point out useful information.

Introduction

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 7
NXP Semiconductors

2. Introduction
2.1 System overview
The Intelligent Sensing Framework (ISF) is designed to be incorporated into integrated sensing
applications executing on the vast majority of the Kinetis family of ARM-based microcontrollers1. The
Kinetis family includes several hundred variations of ARM® cores, memory configurations, and
integrated peripherals, the major categories of the Kinetis family are illustrated in Figure 1. For more
information on the Kinetis family of microcontrollers, see nxp.com/kinetis.

Figure 1. Kinetis MCU product portfolio

Combined with the configurability of Processor Expert (PEx) technology, ISF is a portable, easy-to-use,
embedded-development and runtime framework that supports typical embedded sensor use cases as
well as custom designs. ISF uses an abstract interface and adapter patterns to provide extensibility in
supporting multiple sensors and sensor types as well as multiple communications protocols such as
Master I2C, Master SPI and UART.

The ISF comprises a set of source-level files generated by PEx technology that supports host
communications, sensor management, and periodic interval scheduling. Wherever possible, ISF uses
components supplied with PEx or included in the Kinetis Software Development Kit (KSDK) to abstract
hardware-specific peripherals and operating system services such as timers, as well as I2C, SPI and
Serial (UART) device drivers.

Figure 2 is a static stack diagram that shows the high-level relationship between a customer’s
embedded application and the underlying framework services, generated drivers, and the hardware
target.

1. ISF v2.1 supports sensors requiring the Kinetis E Series platforms supported by Logical Device Drivers in
Processor Expert. ISF v1.1 supports the FXLC95000 Motion Sensing Platform with built-in 32-bit ColdFire
microcontroller and 3-axis digital accelerometer.

Introduction

8 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Figure 2. ISF architecture

The ISF system components that provide the functionality required for developing sensor applications,
are as follows:

• Device hardware: The Kinetis family of microcontrollers provide several hundred different
individual configurations of ARM cores, memory, and integrated peripherals. ISF is designed to run
on the vast majority of the Kinetis family. ISF depends on a very small subset of the integrated
hardware peripherals including a System Tick counter, a Programmable Interval Timer (PIT), any of
the I2C, SPI, or UART/Serial interfaces (optional), and various interrupt/GPIO pins. For analog
sensors, an Analog-to-Digital Converter (ADC) can be used to acquire sensor outputs.

• ISF: The Intelligent Sensor Framework (ISF) provides embedded applications the capability to
subscribe to external sensor data and read such data at various rates. It also supports
communication between the host processor and the application via a UART/Serial interface. ISF
allows the Kinetis microcontroller to act as a sensor hub for external sensors and to manage that
data for the host processor.

• RTOS: The NXP KSDK Operating System Abstraction (OSA) feature supports multiple Real Time
Operating Systems (RTOSs). ISF v2.2 has been tested with MQX and FreeRTOS. Each RTOS is
generated by Processor Expert as runtime functions that provide real-time, multitasking capabilities
to embedded applications.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 9
NXP Semiconductors

2.2 Development environment
ISF v2.2 was developed for Kinetis Design Studio v3.0 with integrated Processor Expert technology.
ISF can target a variety of standard, prototype, and production hardware environments and is released
on the NXP Freedom Development Platform family of boards.

One example of a target system for the ISF middleware framework is shown in Figure 3. This figure
shows the Kinetis Freedom Board along with the FRDM-FXS-MULTI-2B. When connected to a
development host platform, this configuration provides a complete prototyping environment for sensor
applications.

Figure 3. Block diagram of Kinetis and sensor development environment with ISF

3. Intelligent Sensing Framework
This section describes the Intelligent Sensing Framework architecture, the Processor Expert
Technology components that support it, and a high level description of the services. This section also
describes the details of the default Embedded Application generated by its own PEx component.
Finally, it describes the usage of the OS Abstraction also generated within the PEx development
environments.

The ISF uses a set of PEx components that automatically generate the ISF Core code, Communication
Channels, and Sensor Interfaces based on high-level configuration properties. Wherever possible, the
ISF conforms to existing PEx components and KSDK driver interfaces create driver level software for
the Kinetis microcontrollers.

Intelligent Sensing Framework

10 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

3.1 ISF theory of operation
The ISF v2.2 is designed to be used during the early stages of the product development cycle. This
includes sensor-based products requiring access to real-time sensor data and/or processing by an
intermediate microcontroller acting as both a sensor hub and an application layer. The microcontroller
executes the ISF embedded middleware along with a real-time operating system (currently MQX and
FreeRTOS) and application-level code supplied by the embedded application developer. ISF can
support a variety of products with a wide range of resources and configurations. The framework is
tested and released to run on NXP’s line of development boards called Freedom Development
Platforms. As the developer’s project progresses, the framework can be seamlessly ported to many
selected Kinetis microcontrollers, with minimal effort.

In the earliest stage of product development, exploration of the capabilities of a variety of
microcontrollers and sensors is of the most importance to developers. ISF with PEx allows the
developer to quickly explore the capabilities of all supported sensors, using the PEx components to
modify the operation of individual sensors at a register level. ISF allows the application developer to
send raw sensor output to the host processor without writing a single line of code for the embedded
platform. This stage is also an ideal period to assess the capabilities of the ISF middleware for fit in the
final product design.

During the prototyping stage of product development, the target environment is rendered using as
much off-the-shelf software and hardware as possible in order to reduce the overall development time.
One approach is to integrate NXP’s Freedom boards into the prototype using the Arduino-compatible
interface connectors as a bridge into the prototype platform. This approach allows the developer to
leverage the ISF to the maximum extent possible, and to develop software solely at the application
layer, during the prototyping phase. Typical goals include reduced system cost, leveraging memory and
peripheral options, CPU speed, and interface choices can be easily evaluated using this approach.

3.2 ISF architecture
The ISF v2.2 architecture has been designed to provide rapid generation of embedded application code
and customized middleware configurations, based on a set of high-level configuration properties
applied to a set of PEx software components. These Processor Expert components relate to each other
based on a specific hierarchy. This hierarchy aids the embedded application developer by eliminating
omissions that can lead to runtime errors in the system. In addition, PEx technology can error-check
and cross-check property settings between the components to guarantee consistency ahead of actually
building the application.

The services included in the ISF component are only brought into the application as needed. This
allows the user to tailor the features of ISF to their specific application and resource environment.

ISF v2.2 is generated by PEx technology, based on the configuration established by the developer. The
software is constructed in layers and uses the Kinetis SDK Drivers, as is practical. The bottom layer of
this hierarchy is the configuration of Kinetis microcontroller, communications interfaces, and remote
sensors desired by the application developer. The Driver layer consists of existing PEx components
(KSDK) that provide the driver-level interfaces to internal hardware peripherals, inside the Kinetis
microcontroller. The ISF Services layer is the set of PEx-generated software that provides the services
described in the following sections.

Uniform interfaces allow applications to access physical data, measured by the remote sensors. The
ISF Core, acting as a server, provides sensor data to registered applications, acting as clients needing
that sensor data. The sensor data is applied to the application at various rates and formats.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 11
NXP Semiconductors

The Host Communications service provides the ability to pass data into and out of the Intelligent
Sensing Framework via the UART/Serial interface. The Host Interface supports a proprietary,
command/response protocol with a set of pre-defined commands. The Host service enables the
embedded application developer to extend the command set. This service also provides a flexible,
asynchronous data streaming protocol.

The Device Messaging and Protocol Adapter services provide a uniform interface to all communications
channels (I2C, SPI, UART). The Protocol Adaptor layer for each underlying protocol allows the service
to run on top of the PEx KSDK drivers, without modification.

The MQX or FreeRTOS operating systems are generated at a source level through the OS Abstraction
PEx component. They provide lightweight, real-time scheduling, intertask events, resource
semaphores, interrupts, stack and heap management.

Software components from the above-mentioned service families are packaged into libraries that target
the various ARM core types in the Kinetis family. The ISF Core packages several software components
to form the base set of functionality. Additional functionality is provided by ISF PEx components that
generate source code based on the desired developer configuration of each of the component’s
properties.

The ISF Embedded Application relies on the ISF Core Services for its operation. The Embedded
Application is either partially generated by PEx or fully written by the developer. Figure 4 shows a high-
level view of the services required by the application.

The application statically registers a callback function with the Host Interface, at compile time. The Host
Interface uses the callback to execute commands addressed to the application. The application also
uses the Host Interface to send asynchronous packets to the Host. The application establishes the
power management scheme to be used, which may also be changed via the Host Interface. The
Embedded Application interaction with sensor interfaces is through the DSA-Direct Interface.

The DSA-Direct interface allows the application to control the sensor directly. This method restricts the
developer to a single application interacting with the sensors and a single rate/format for sensor data.
The Sensor Adapters use the Bus Manager (BM) to create highly accurate, timed callbacks in order to
schedule periodic reads of the sensor data. The Bus Manager can also be used by the application to
schedule timing events when accuracy down to a few microseconds is required.

Intelligent Sensing Framework

12 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Figure 4. ISF embedded application using ISF core services

3.3 Processor Expert component architecture
ISF v2.2 includes a set of Processor Expert components that work together to generate source code
and configure the system to meet the developer’s application and hardware requirements. The
developer configures two components to start: ISF_KSDK_Core and ISF_KSDK_EmbApp. Depending
upon the services, communications channels, and sensors selected in these components, PEx
automatically incorporates additional components that also may be configured. Once a complete set of
components is instantiated in the project, code generation can be initiated. The following sections
explain the ISF PEx components in more detail.

The ISF_KSDK_Core component allows the developer to include from the ISF Core services [Bus
Manager (BM) and Command Interpreter (CI)] the desired optional services for the specific Cortex
family, for example, Cortex M0+, M4, M4F. In resource-constrained systems, some or all of these
services may be excluded in order to save memory or processing cycles. ISF_KSDK_Core also
provides the developer with the ability to select from a list of supported sensors, the necessary remote
sensors to be included in the system.

The ISF_KSDK_EmbApp is an optional component that provides the developer with a pre-compiled
structure to extract and process raw sensor data from a set of sensors. The component includes a list
of subscriptions to types of sensors including accelerometers, magnetometers, gyroscopes, pressure
and temperature sensors. The component displays a list of sensor interfaces that match the selected
type and correspond to physical sensors in the system. In addition, the ISF_KSDK_EmbApp
component allows the developer to configure the Host Interface and extend the default set of the host
commands.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 13
NXP Semiconductors

The ISF_KSDK_Protocol_Adapter component provides a collection of interface adapters (I2C, SPI,
UART) along with the Device Messaging services needed. The component automatically configures the
desired protocol and instantiates the underlying KSDK drivers. This component is not selected by the
developer directly, but is incorporated, based on the Sensor and Host Interface configuration in
ISF_KSDK_Core.

ISF_KSDK_Sensor_Adapter_Interface is a collection of components that select individual sensor
interface components implemented in the ISF system. The component provides for grouping of sensors
based on function and type. It also generates the sensor-specific configuration of instantiated sensors
in the system. Finally, it generates the global list of sensors used during runtime to access and control
sensors.

The ISF_KSDK_Bus_Manager component allows the developer to select the specific PIT hardware to
be used for the application callback, event timing.

3.4 Core framework component details
3.4.1 Theory of operation overview
ISF is separated into the ISF Core component and the Embedded Application component. While these
components are designed to work together, the ISF Core can be used as a standalone to create the
framework, sensor interfaces, and communication channels. ISF Core can then be used with a freeform
application, via the exposed runtime APIs.

After creating a project with PEx technology, the developer can import the ISF_KSDK_Core component
from the PEx component library. This component allows the developer to select the core features of ISF
to be included. The ISF_KSDK_Core automatically instantiates various other components, based on
the developer-selected features. In a fully configured system, the ISF_KSDK_Core automatically
creates an ISF_KSDK_Bus_Manager, ISF_KSDK_Protocol_Adapter, and several RTOS tasks.

Once the features of the ISF Core have been selected, the developer can then select the sensors to be
included in the system. Each sensor has its own, specific, PEx component. These allow the developer
to select or create the desired communication channel interface and to set the sensor-specific, register-
level configuration, if necessary.

After the ISF_KSDK_Core component has been configured, the developer may use the code
generation feature to create the ISF framework.

3.4.2 Framework overview
The Intelligent Sensing Framework is completely generated by the selected Processor Expert (PEx)
components at a source code level. Only the necessary components are generated based on the
configuration of the components. The optional ISF_KSDK_EmbApp component is included to generate
an application layer, which can be extended by the customer’s application specific code.

3.4.3 Processor Expert component overview
The ISF Core components include the ISF_KSDK_Core, ISF_KSDK_Protocol_Adapter,
ISF_KSDK_CommChannels, ISF_KSDK_Bus_Manager, and a set of
ISF_KSDK_Sensor_Adapter_Interface components. Together these components create the baseline
core functionality of the ISF.

Figure 5 and subsequent sections explain the Core Component relationships, their underlying
functionality, and use cases for including/excluding components.

Intelligent Sensing Framework

14 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Figure 5. ISF component relationships

3.4.4 Digital Sensor Abstraction (DSA)
3.4.4.1 Theory of operation
The Digital Sensor Abstraction (DSA) is used to expose a standard interface to sensor command and
control functionality while maintaining a sensor-specific implementation. The DSA defines interfaces to
initialize, configure, start, stop, and shutdown a sensor, to validate sensor settings and to convert native
sensor sample data to standard sensor types.

The set of functions implementing these functions for a given sensor is known as a Sensor Adapter.
The architecture enables the embedded application developer to write new Sensor Adapters and to
associate these adapters with existing or new sensors connected to the platform.

The list of the sensors available is maintained in a global list. This list associates each instance of a
sensor in the system with a system-unique Sensor ID, a Sensor Adapter, and other specific instance
data needed to uniquely address the sensor. The API enables its users to refer to sensors via their
assigned Sensor ID when subscribing. Internally, the provided Sensor ID is used to either lookup the
sensor configuration information contained in the System Sensor Configuration list or to invoke the
appropriate Sensor Adapter functions.

The Digital Sensor Abstraction (DSA) adapter functions to interact and manage its sensors. The Sensor
Adapter functions are designed to allow multiple sensor instances of a particular type to all reference
the same Sensor Adapter. This means that instance data specific to a particular sensor must be kept

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 15
NXP Semiconductors

separate from the adapter code and passed into each adapter function through a reference pointer.
Thus, the adapter may be thought of as a set of class methods, each taking an explicit this pointer in
addition to any other arguments pertinent to the specific function.

Refer to Figure 5 and Figure 6 to understand the interface between the Sensor Adapter and the
application. To prepare to receive sensor data, a software FIFO is created to hold a sample set from
each sensor. An event flag is used to signal when new sensor data is available. ISF validates the
request parameters with the applicable Sensor Adapter and then configures the sensor via the DSA
Sensor Configure interface. The adapter in turn configures the sensor hardware to provide samples at
the specified rate. For a Sensor Adapter that polls, a Bus Manager callback is configured to read the
sensor data at the specified interval. The Bus Manager invokes its registered callback at the specified
intervals. When the adapter’s callback is executed, it completes a Device Messaging read call to
examine the physical sensor’s output registers. Once the read completes, the adapter places the new
samples in the FIFO, waits for the FIFO to fill and sets an event flag to signal that new samples are
available. Registered subscribers are then notified via their event flags. Upon notification, each
embedded application can call the isf_fifo_el_traverse method to retrieve the data.

Figure 6. Digital sensor abstraction calling sequence

Intelligent Sensing Framework

16 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

3.4.4.2 DSA module design
The majority of the sensor-specific software used by ISF v2.2 is included in modules that conform to the
DSA interface and implement a reentrant interface to a specific sensor. Besides implementing the
sensor interface abstraction, each module also uses register-level configuration information, created by
its associated PEx component, to configure the underlying sensor. The sensor-specific module is
included only once in the project, based on the selection of the sensor in the ISF_KSDK_Core
component’s System Sensor Configuration.

3.4.4.3 DSA Processor Expert component design
Figure 7 shows the component hierarchy specific to the System Sensor Configuration in the
ISF_KSDK_Core. The System Sensor Configuration is a list that collects the sensors used in the
system. The System Sensor Configuration is aware of all the available sensor types currently supported
in the ISF. The developer updates the list to include the desired set of sensors based on those
available in the target system. Each type of sensor is classified into generic types: accelerometers,
magnetometers, gyroscopes, pressure, orientation, and temperature. This allows the PEx system to
present the embedded application with alternative sensors that are interface-equivalent at the
application level and can be integrated without changes to the application.

As shown in Figure 7, this is done through the abstract ISF_KSDK_Sensor_Adapter_Interface and
ISF_KSDK_Sensor_<Part Number>_<Sensor Type> PEx components. The specific sensor instance is
then created by the sensor-specific components for example,
ISF_KSDK_Sensor_MMA865x_Accelerometer. These components generate the static configuration
data structures for the desired instance of the sensor. They further define the DSA interface for this
sensor instance and map the function calls to the sensor specific module’s functions.

The sensor-specific components also include properties that expose the register-level interfaces to the
sensor. This feature allows advanced embedded application developers to modify specific features of a
sensor instance statically if desired. Default values for all of these properties are supplied and conform
to the sensor default values as specified in their Data Sheets.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 17
NXP Semiconductors

Figure 7. ISF v2.2 component hierarchy

3.4.5 DSA-Direct interface
3.4.5.1 Theory of operation
As described in Section 4.4.4.1, the DSA Interface allows applications to subscribe to raw sensor data.
The DSA-Direct interface provides a simplified convenience wrapper around the direct Digital Sensor
Abstraction API.

3.4.5.2 DSA-Direct module design
The DSA-Direct interface is a functional API that provides initialization, configuration, operational
control (start/stop) and sensor data conversion routines. The DSA-Direct function calls perform error
checking and global data structure updates. It makes direct calls to the corresponding sensor’s DSA
interface functions via the adapter function call interface.

3.4.5.3 Generic sensor types and standard sensor data types
ISF v2.2 supports Generic Sensor Types and Standard Sensor Data Types as part of the subscription
interface to the sensor. This step towards standardization for the sensor interfaces continues to
preserve the option of the native sensor data format.

The ISF supports the following types of sensors:

• Accelerometer (1 to 3 Axes)
• Analog Sensors other than 5 V (1 to 3 Axes)
• Gyroscope (1 to 3 Axes)
• Magnetometer (1 to 3 Axes)

• Orientation (Up to 10 axes)
• Pedometer Sensor
• Pressure Sensor (1 Axis)
• Temperature Sensor (1 axis)

18 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Each sensor supports its native output data format along with converted sensor output fixed-point and
floating-point formats in standard engineering units for example, magnetic field strength in microTeslas
(µT) for magnetometers.

Each Sensor Adapter includes a conversion routine that scales the native format to the desired
standard format based on the application subscription parameters: resultType and resultFormat.

3.4.6 Bus Manager
3.4.6.1 Theory of operation
The ISF_KSDK_Bus_Manager provides a highly accurate, timed, callback service with a resolution
down to 1 μsec. Embedded Applications or Sensor Adapters may use the Bus Manager (BM) services
to create periodic callbacks at the specified interval2.

The Bus Manager uses one of the Periodic Interval Timers (PIT) internal to the Kinetis microcontroller.
The PIT was chosen because its interval may be loaded while the previous interval is executing on the
timer. Figure 8 shows the behavior of the PIT when the PIT_LDVAL register is modified while the timer
is actively running. The PIT is a countdown timer that generates an interrupt as the count reaches zero.
A value loaded into the PIT_LDVAL register takes effect at the next interrupt (zero). The BM design
relies on the ability to keep the PIT pipeline constantly fed with the next expected interval.

While the actual timed interval is very accurate, the RTOS interrupt handling and
ISF_KSDK_Bus_Manager service itself introduces some delay between when the timer actually fires
and when the registered callback is invoked. Jitter between successive callback invocations is generally
low but can be affected by other interrupts including processing of messages from the host application
as well as preemption by higher-priority tasks in the system. Applications requiring extreme accuracy
must therefore use direct interrupts and/or DMA services.

Figure 8. Dynamically setting PIT new load value

3.4.6.2 Bus Manager module design
Figure 9 shows the functional structure of the Bus Manager module. The Embedded Application uses
the Bus Manager API to first register the periodic callback, providing the function pointer for the
callback and the desired period. Next, the operation of the timed callback is started and stopped as
required through separate API calls. Once the service is no longer required, the application calls the
unregister function.

2 The Bus Manager services may also be used to create one-shot timing events. In this scenario, the bm_start()
function may be called to schedule a callback. Inside the callback, the user needs to call bm_stop() in order to
terminate the callback after a single execution.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 19
NXP Semiconductors

The Bus Manager functionality is divided between the BM Task, KSDK PIT driver, and BM Interrupt
Service Routine (ISR). The BM Task uses the KSDK PIT driver to initialize and set the period of the PIT
timer, based on the complete set of subscribed callbacks. Each interval is determined by examining the
list of registered and active callbacks and determining the next closest interval to be scheduled. When
an interval is complete, the PIT interrupt is routed to the BM ISR. The ISR signal reloads the PIT timer
and sends the events associated with the last interval to the BM Task. The BM Task waits on events
indicating that callbacks are pending and sequentially calls the registered callback functions.

Figure 9. ISF Bus Manager hierarchy

3.4.6.3 Bus Manager Processor Expert component design
The ISF_KSDK_Bus_Manager is exposed as a linked PEx component from the ISF_KSDK_Core
component. See Figure 10. In turn, the Bus Manager creates its own RTOS task. In addition, it links to
a PEx KDSK PIT driver component and initializes the driver to use the proper PIT timer on the Kinetis
microcontroller.

Intelligent Sensing Framework

20 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Figure 10. ISF_KSDK_Core and Bus Manager components

3.4.7 ISF system configuration
3.4.7.1 Theory of operation
As mentioned previously, the ISF_KSDK_Core PEx component uses its System Sensor Configuration
properties to generate the global sensor configuration data structures (gSensorList and
gSensorHandleList). The component maintains a list of all the sensors available on the platform
along with the data structures necessary to initialize, configure and use the sensors. In turn, these data
structures are automatically generated by each of the device-specific Sensor Interface components.
The naming convention for the device-specific Sensor Interface components is:
 ISF_KSDK_Sensor_<Part Number>_<Sensor Type>.

The ISF_KSDK_Core PEx component also links to an ISF_KSDK_Protocol_Adapter component. The
ISF_KSDK_Protocol_Adapter component contains the list of communication channels to be used in the
system and creates the ISF interface files that create the adapters to the KSDK driver components.

3.4.7.2 Sensor Configuration module design
The sensor configuration is captured in the isf_sensor_configuration.h and isf_sensor_configuration.c
files in the generated project. The isf_sensor_configuration.h exposes the Sensor Adapter definitions
and sensor identifiers for the specified configuration. The isf_sensor_configuration.c file creates the
gSensorList, gNumSupportedSensors variable, and the gSensorHandleList.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 21
NXP Semiconductors

3.4.7.3 Processor Expert component design
The ISF_KSDK_Core component uses the System Sensor Configuration property to auto generate
the isf_sensor_configuration.h and isf_sensor_configuration.c files. In addition, the Communication
Channel list configuration in the ISF_KSDK_Protocol_Adapter component is used to generate the
global COMM_CHANNEL_<Channel> list, the gSys_ConfiguredChannelList data structure, as well as
the individual channel-specific, global initialization data structures.

3.4.8 Device messaging and protocol adapters
3.4.8.1 Theory of operation
Device Messaging is intimately tied to the individual Protocol Adapters for I2C, SPI, and UART/Serial
interfaces. Device Messaging exposes consistent user-level APIs for communicating with external
devices. The goal of Device Messaging is to abstract the communications protocol to provide a unified
interface for communications, regardless of the underlying transport method used.

Figure 11 depicts the architecture of Device Messaging. Device Messaging depends upon a series of
Protocol Adapters. These Protocol Adapters are designed to hide the underlying software driver
implementation and manage the multiplexing of those drivers onto specific hardware interfaces. The
Protocol Adapters are configured at the system level by their corresponding PEx components. Along
with generating the system communication configuration, the components bring in the source code
associated with each requested protocol. The KSDK drivers provide for installation of interrupt service
routines and tasks required by the protocol.

Figure 11. ISF Device Messaging architecture

Intelligent Sensing Framework

22 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

3.4.8.2 Device Messaging concepts
Device Messaging (DM) service provides a high-level abstraction layer on top of the communications
protocols supported by the ISF. This allows applications as well as other ISF modules to communicate
with external devices in the same way, regardless of how that device is physically connected.

The DM interface is loosely modeled after the POSIX file I/O interfaces. A Device Messaging
deviceHandle behaves similarly to a file descriptor. In order to communicate with an external device,
the device must be opened with a dm_device_open() call that returns a deviceHandle. The
deviceHandle is then passed to the dm_device_read() or dm_device_write() functions to
designate the desired communications endpoint.

The DM component depends on the individual Protocol Adapter implementations to map the DM
function calls to a specific function in the KSDK drivers.

Channels and devices
The object types used by Device Messaging are channels and devices. These objects encapsulate the
object types used by the underlying transport protocol in order to provide a unified Device Messaging
interface. For example, when using the ISF I2C transport protocol, a bus object identifies which one of
several different I2C peripherals are used when talking to a particular external I2C slave.

Using the Device Messaging interfaces, a Device Messaging channel object abstracts the I2C bus and
uses an I2C Protocol Adapter to communicate with the Device Messaging device endpoints that
represent the physical I2C devices attached to the bus. A global array of the available device
messaging channels is generated as part of the ISF system configuration by the ISF Core PEx
component.

Channel locking
An explicit, channel-locking capability allows extended and exclusive access to a channel. When a
channel lock is held, no other task may communicate to any devices on the channel until the lock is
released. Calls to device operations, without first acquiring an explicit channel lock, cause an implicit
channel lock to be acquired but only for the duration of that call. Channel locks are implemented with
priority-inversion protection using a priority inheritance scheme that automatically raises the current
lock holder’s priority to the priority of the highest waiting task, until the lock is released.

Device handle
The Device Messaging component uses a logical function abstraction table to interact with multiple
transport protocols, transparently. The Device Messaging APIs operate on device handles. A device
handle represents a physical device, or communications endpoint. Each device handle contains a
reference to an internal channel structure used to communicate with the device. The Device Messaging
component, through the channel reference, determines the protocol used to communicate with the
device.

The Device Messaging APIs cover channel operations including initialization, locking, reconfiguration,
status query and control, as well as device operations including open, close, read and write.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 23
NXP Semiconductors

3.4.8.3 Device Messaging module design
The Device Messaging (DM) service provides the DM API as a generic interface to any type of
underlying protocol. Refer to Figure 12. The DM API function calls map directly to a set of function
pointers that are autogenerated into the PROTOCOL and gSys_ConfiguredChannelList data
structures. These function pointers are initialized to specific functions inside the corresponding Protocol
Adapter for each interface. In addition to the functional interface, the Protocol Adapter creates a Bus
Lock for each channel in the system. This Bus Lock is implemented as an OSA Mutex in order to
ensure that priority inversion problems can automatically be resolved by the RTOS.

Figure 12. Device Messaging component architecture

3.4.8.4 Device Messaging Processor Expert component design
The Device Messaging services are instantiated in a project by the ISF_KSDK_Protocol_Adapter
component along with any Protocol Adapter-specific files. Figure 13 illustrates that the ISF_KSDK_Core
is linked to the ISF_KSDK_Protocol_Adapter component. The ISF_KSDK_Protocol_Adapter contains
the Comm Channel property that creates a list of communication channels in the system. Currently,
ISF supports I2C, SPI, and Serial/UART interfaces. Each interface is included via its own unique
ISF_KSDK_CommChannel_<Interface> component which, in turn, instantiates the underlying PEx
KSDK component for that interface. All of the necessary interface files to attach the DM to the specific
protocol are also autogenerated within these components.

Intelligent Sensing Framework

24 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Figure 13. Device Messaging and protocol adapters

3.4.9 Host Interface/Command Interpreter
3.4.9.1 Theory of operation
The Host Interface service is provided by the ISF Command Interpreter (CI), and enables data passing
between the host and embedded applications running on the Kinetis microcontroller platform. The
interface operates over a UART/serial interface on top of USB or Bluetooth.

The Host Interface currently supports both command/response and streaming protocols over the
UART/Serial interface. The Command/Response Protocol is implemented by the Command Interpreter
that relies on registered callbacks from the Embedded Application for actually executing commands
and producing response data. A working callback is automatically generated by the Embedded
Application component that implements a set of default commands to allow the host to configure and
control sensor subscriptions, read application status, and retrieve raw sensor data. The Streaming Data
protocol provides a general purpose mechanism to generate asynchronous data packets to the host
whenever a specified set of data elements changes in the Embedded Application.

All of the ISF Host Interface application-level protocols are contained as Data Payloads inside a
physical layer, framing format based on the standard High-Level Data Link Control (HDLC) serial
packet protocol. This design separates the functionality of the application layer protocols from the
packet transport protocol. The protocol uses a Protocol Identifier for routing packets to distinct
application-level protocol processing entities. Figure 14 shows the structure of the HDLC protocol.
Table 3 provides descriptions of the HDLC protocol packets.

Figure 14. HDLC protocol packet format

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 25
NXP Semiconductors

The HDLC packet contains the following fields:

Table 3. HDLC data packet descriptions

Field Name Size
(bytes)

Value Description

Start Character 1 0x7E Start Marker, delimiter indicating start of packet
Protocol ID 1 0x00–Reserved

0x01–CI Protocol also
known as
Command/Response
protocol
0x02–Streaming
Protocol
0x03 through 0xFF–
Reserved

Protocol identifier, which is the code for predefined
protocols; additional protocols can be defined

Packet Data variable Packet Data payload
Checksum 2 CCITT-CRC16 of UART Data section (optional)
End Character 1 0x7E End Marker, delimiter indicating end of packet

The HDLC protocol is applied to packets from the host to ISF and vice versa. Packets from the host to
the device or vice versa are marked by a starting and ending byte marker. The byte marker for the start
and end of a packet both use the value 0x7E. If the value 0x7E appears as part of the packet data, in
between the start and end packet marker, it must be escaped or encoded by the method shown in
Table 4.

Table 4. HDLC packet data byte encoding

Data Byte Requiring Encoding Encode As
 0x7D 0x7D followed by 0x5D
 0x7E 0x7D followed by 0x5E

When the host or application sends a packet, it is encoded with the escape values that may appear
between the start and end packet markers and the checksum and packet markers are added in place.
Each side also decodes a received packet and verifies the checksum before interpreting its meaning.

To provide robust communication, a Cyclic Redundancy Check (CRC) feature is optional.

3.4.9.2 Command/Response protocol
The Command Interpreter (CI) provides a general mechanism to accept command packets, and trigger
the execution of callback functions registered by the application that handles the command. The CI
processes commands in the order they are received. Commands can be built-in or user-registered.
Built-in commands are part of the ISF Core functionality and cannot be removed or modified by the
user. User-registered commands can be tied to an application and can register with the CI at run time.

Packets routed between the CI and the host have a specific Packet Data format. This format includes a
4-byte header followed by variable length payload. The Packet Data format is shown in Table 5.

Intelligent Sensing Framework

26 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Table 5. CI packet data format

Field Name Size
(bytes)

Value Protocol layer Description

Start Character 1 0x7E HDLC layer Start Marker, delimiter indicating
start of packet

Protocol ID 1 0x01 ISF layer CI Protocol also known as
Command/Response protocol

AppID 1 variable

CI Protocol

Application Identifier
Command Status 1 Command values:

from 0x00 through 0xFF
or

Response values:
from 0x80 through 0xFF

Command or response status

Offset 1 or 2 variable Offset into the target buffer
(depends upon command).

Length 1 variable Length of the Packet Data
payload in bytes

Payload Length variable Packet Data payload
End Character 1 0x7E HDLC layer End Marker, delimiter indicating

end of packet

The ISF Command Interpreter interface allows an embedded application to interact with the host
processor using the Command/Response paradigm—a synchronous interface where the host sends a
command packet to the embedded application, which in turn processes the packet and returns a
synchronous response to the host.

3.4.9.2.1 Command/Response mode
The CI implements the Command/Response (C/R) mode using a callback design pattern. The C/R
protocol typically operates on the serial/UART interface to the host and is assigned protocol ID 0x01.
Command/Response packets are handled by the Command/Response handler that is registered by the
CI. The C/R protocol handler inspects incoming C/R packets to obtain the AppID field in the command
and then passes the whole C/R payload to the corresponding, registered, callback function. Each
embedded application typically registers a C/R callback because this is the standard way for an
embedded application to receive configuration and control commands from the host. When the callback
returns, the C/R protocol handler formats a response packet using data obtained from the callback
along with the callback return status, and then sends the response back over the serial/UART interface.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 27
NXP Semiconductors

3.4.9.2.2 Command processing
To understand the Command/Response protocol, it is helpful to think of each embedded application
running on the device as having two logical buffers, one for input (configuration and control data) and
one for the application’s output data. Structurally, the buffers can be thought of as having a fixed layout
such that a value at a specific location within the buffer always contains the same type of data. In
typical usage, the input buffer is often overlaid with a C structure to facilitate use of the input data.

Each application can allocate its own configuration and output buffers. The host can send data to a
particular target application by writing data into specific locations within that application’s configuration
buffer. The locations are specified as an offset into the buffer along with the number of bytes to write,
followed by the actual data values. The protocol also supports commands for reading the configuration
buffer and the output data buffer.

3.4.9.3 Streaming protocol
An embedded application may also have data sent to the host asynchronously. For example, the
application collects data from sensors at a subscribed rate, computes some outputs and sends them to
the host. Data from the application’s output buffer discussed in the Command/Response protocol, can
also be sent to the host asynchronously, whenever it is updated. The Streaming protocol allows the
host to specify and subscribe to one or more data elements from an application’s output buffer and
have those elements sent to the host in an asynchronous message, when it is updated or changed.
One usage example for this feature is an embedded application that uses raw sensor data to provide
orientation-change information to a host processor. The host sets up three different asynchronous
messages for it to receive. The first message, or stream, defines a message containing the raw sensor
data that gets sent every time all of the sensors update their data. The second stream is the output of
the orientation change algorithm that gets sent to the host only when a change occurs. The third stream
is a debug stream that sends data only when an error or other anomalous condition occurs in the
application.

In previous releases of ISF, the Command Interpreter implemented a method called Quick-Read (QR)
that allowed an embedded application to subscribe to data and have it asynchronously send that data
to the host when the data was ready. However, the QR method contained several limitations. The
Streaming protocol is designed to overcome these limitations. With the Streaming protocol method, the
host can define different sets of data with each set referring to a range of bytes and offsets up to 16 KB
in size and it can designate which of these data sets causes data to be sent to the host, when the
application updates data.

The Streaming protocol defines a concept called streams, which defines a logical data flow of
messages, containing a specified set of data that the host can receive in one data packet. Different
streams are identified by a unique Stream ID value. A stream is specified using a Stream Configuration
object. This object contain two lists:

• Stream Element object list
• Trigger Mask list

Each stream element object describes a slice of an application’s output buffer and includes an element
ID, the starting offset within the application’s output buffer, and the number of bytes to transfer. The
Trigger Mask list is a list of bytes that contain information about which stream elements have been
updated by the application. This information is used to specify and track when stream data gets sent to
the host. The stream data sent to the host is referred to in the following discussion as the update
packet.

Intelligent Sensing Framework

28 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

3.4.9.4 Module design
Figure 15 shows the high-level layering and interfaces of the new CI design. The CI uses Device
Messaging to interact with the serial/UART interface for character reception and transmission to the
host. Use of this abstraction allows the CI to operate over different transports. The CI task state
machine receives characters and validates the HDLC framing. Once a complete, valid HDLC frame has
been received, it uses the protocol ID in the packet to route the packet to the registered protocol
handler. In ISF v2.2 there are two implemented protocols: Command/Response and Streaming. For the
Command/Response protocol, the handler interprets the AppID, calls the appropriate application
callback function, and returns the formatted response. For the Streaming protocol, the handler
interprets the command, formats the response according to the internal protocol state, and returns the
response.

Figure 15. Command Interpreter module design

3.4.9.5 Processor Expert component design
The Command Interpreter component is configured via the ISF_KSDK_Core component, which
contains properties indicating whether the CI service should be instantiated in the project. See Figure
16. If the CI is instantiated, the developer may specify the maximum size of the receive buffer–the
default is 34 bytes. The ISF_KSDK_Core allows selection of the default CI protocol to run over the
serial/UART interface. Additionally, the ISF_KSDK_Core component configures the RTOS task for the
CI.

Embedded applications can register their Command/Response callbacks via the CI Callback List
property in the ISF_KSDK_Core component.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 29
NXP Semiconductors

Figure 16. Command Interpreter PEx component hierarchy

3.4.10 Power management
In previous versions of ISF, the Power Manager (PM) provided APIs that allow an embedded
application to request changes to the operating power mode of the device. This functionality is now
supplied natively by the KSDK fsl_power_manager PEx component. The functionality of the ISF Power
Manager has been deprecated from ISF v2.2.

3.5 Application support component details
3.5.1 Embedded application component
3.5.1.1 Theory of operation
The Embedded Application component allows a developer to configure and generate a complete and
working example of an embedded application that subscribes to sensor data and makes it available to
the Host Interface without writing a single line of code. Hooks are generated within the code for
placement of custom functionality.

A typical workflow for developing a custom embedded application starts with the Embedded Application
component’s default-generated code that can be extended or modified as necessary to achieve the
desired custom functionality.

In some cases, the application model constructed in the Embedded Application may be too constraining
to be useful in the application developer’s design. Developers are not required to use the provided
Embedded Application component. It is intended to be used as a starting point to understand the
available ISF API calls; later it can be replaced with a custom application, linked directly with the ISF
embedded middleware.

3.5.1.2 Embedded application module design
The ISF_KSDK_EmbApp PEx component accepts a set of configuration properties and generates the
software for the Embedded Application task. See Figure 17. The resulting Embedded Application
contains three major sections:

• Host Interface Callback function
• The Main Application
• An Application Sensor State Machine.

Intelligent Sensing Framework

30 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Each section is tailored to the developer’s application by the properties assigned in the PEx
component.

Figure 17. Embedded application module

The Host Interface Callback routine contains the autogenerated default commands. These commands
are:

• Read Configuration Data (CI_CMD_READ_CONFIG)–Allows the Host to read from the Application
Specific configuration data structure.

• Write Configuration Data (CI_CMD_WRITE_CONFIG)–Allows the Host to write to the Application
Specific configuration data structure.

• Read Application Data (CI_CMD_READ_APP_DATA)–Allows the Host to poll the Application Specific
Output data structure (including raw sensor samples and processed data).

• Application Reset (CI_CMD_RESET_APP)–Causes the Application to return to an initialized state.

Intelligent Sensing Framework

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 31
NXP Semiconductors

In addition to the default commands, each user-defined application is allowed to define its own
commands within the valid range specified in the ISF_KSDK_EmbApp component. Callback shells are
generated in the Events.c file.

Within the Main Application, the component provides for initialization of the global data structures and
creates a defined set of application resources (events and semaphores used by the task). In addition, it
calls a user-definable function that provides for user-defined application-specific data structure
declaration and initialization: App_Initialization(). The Main Task then falls into a loop that waits
on events indicating new raw sensor samples are ready. Samples are in a queue in a FIFO and are
ready only when the FIFO is full. Multiple sensor raw data can be read all together or whenever any of
the sensors has a new sample. Each time new samples are available, the Main Task calls a user-
defined function designed to accept and process samples according the specific application
requirements. This function is called App_ProcessData() and could implement Motion/Gesture
Detection, eCompass, Sensor Function or a wide variety of other features. The Main Task may also be
exited for user-definable reasons. In this case, there is an App_Exit() function that allows the
application to release resources acquired for its own operation.

The Embedded Application contains an autogenerated sensor subscription state machine that accepts
a desired operational state and, based on the current Application State, determines and executes a
necessary sequence of DSA-Direct calls to bring all of the sensors into that state.

3.5.1.3 Processor Expert component design
The ISF_KSDK_EmbApp component contains a set of properties that allows the resulting generated
application to be configured and tailored to the embedded application developer’s specific needs. See
Figure 18. The Sensor Signaling Method property allows the developer to select whether to perform
sensor data processing every time all of the sensors have completed an update, or when any of the
sensors does so. In addition, the Subscription List contains the application level parameters associated
with each sensor subscription. These properties determine the sensor type, sensor output format, the
specific sensor selected, the desired sampling rate, and the FIFO depth for each subscription. Also, the
component allows the developer to define host commands via the User-defined Host Commands
property. The component links to the underlying ISF_KSDK_Core component in order to access
information regarding the system sensor configuration. Finally, it creates its own application RTOS
Task.

Figure 18. ISF_KSDK_EmbApp hierarchy

Intelligent Sensing Framework

32 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

3.5.2 Basic Application Component
In addition to the Embedded Application component, ISF v2.2 defines the Basic Application component
which provides a simplified model for embedded application development.

The ISF_KSDK_BasicApp PEx component is structured similarly to the ISF_KSDK_EmbApp
component with a subset of the functionality. ISF_KSDK_BasicApp component differs in a few
significant ways:

• The Basic Application does not provide for the automatic extension of the CI Command/Response
protocol with user-defined commands. Thus, it generates the pre-defined CI commands and then
allows the user to edit the CI callback routine directly to generate user-defined CI commands. More
information is available in the source file, BasicApp1_Functions.c.

• The Basic Application does not supply or support the autogenerated sensor subscription state
machine which is replaced with simplified initialization code.

• The Basic Application provides a user-defined initialization function called
BasicApp1_Initialization() and a user-defined sensor data processing function called
BasicApp1_OnAnySensor_Data_Ready().

3.5.3 Register Level Interface Application Component
The Register Level Interface (RLI) component (ISF_KSDK_RLI) may be optionally included into an
ISF v2.2 project. The ISF_KSDK_RLI PEx component generates an additional application, which can
be addressed separately from an embedded application using its AppID. The RLI application adds the
ability to listen for sensor read/write commands from a remote host. Upon receiving a command over
the serial interface, the RLI application executes the requested command and returns the result to the
remote host. Commands are supported for:

• Selecting the I2C slave address to use
• Reading one or more bytes from a specified register offset
• Writing one or more bytes to a specified register offset
• Executing the most recent read command periodically at a specified rate and returning the results.

More information regarding the usage of the RLI feature can be found in the ISF v2.2 User’s Guide.

3.6 Operating system abstraction
This section provides details of NXP’s Operating System Abstraction (OSA) as configured for the ISF
implementation in Kinetis by Processor Expert fsl_os_abstraction component. The Kinetis SDK supplies
the OSA and the KSDK drivers written to the OSA API. ISF v2.2 for Kinetis supports both the MQX
RTOS and the open source FreeRTOS at the source code level, as generated by PEx. ISF v2.2 relies
on the following services from the OSA:

• Memory Management services
• Task Management services
• Events
• Semaphores

• Mutexes
• Timer services
• Critical Section services

The OSA and the underlying RTOS configuration is managed by Processor Expert components. This
generates a configured version of the RTOS for the target system with the processor and board support
drivers.

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 33
NXP Semiconductors

3.6.1 ISF tasks and initialization
ISF has several tasks that must be initialized and running to support its services. These tasks are
instantiated by the ISF Processor Expert components automatically through the defined inheritance
hierarchy. Processor Expert allows the entry function name, priority, and stack size of the tasks to be
modified, but this is not recommended by NXP. The tasks created include, but are not limited to, the
Command Interpreter task, the Bus Manager task, and the Initialization task. The Initialization task
generates an OSA event called ISF_SYSTEM_READY_EVENT at the completion of the ISF
initialization process. In order to guarantee proper initialization, user-defined tasks must wait for this
event to be completed prior to execution of their own initializations. The following code has been
inserted at the beginning of the task to wait for the event:

// Wait for ISF system initialization to complete.
isf_system_sync();

Care should be taken to honor the task priority assignments made by ISF for proper system operations.
User tasks must not be assigned at higher priority levels than ISF system tasks.

4. Protocol definitions
4.1 Command-Response protocol
4.1.1 Built-in commands
ISF provides commands to allow the user to obtain information about the device, the ISF components,
the ISF applications, and the user applications. Similarly, other commands allow the user to provide
information to the specific applications.

4.1.1.1 Device Info command
The Device Info command (DevInfo) is a special Command/Response mode command. It does not
conform to the complete Command/Response protocol described previously. The DevInfo command
allows the user to determine information about the target MCU and ISF.

Table 6. DevInfo command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 0x00 Application Identifier
Command 1 0x00 CI_CMD_READ_VERSION

Offset 1 0x00 There is no offset into the data buffer for this
command.

Length 1 0x00 The user has no influence on the bytes
returned for this command

End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

34 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

DevInfo Command:
The DevInfo command is invoked at runtime by sending the following command to the CI,

7E 01 00 00 00 00 7E

The CI handles the command itself and returns a response packet formatted as shown in Table 7.

Example Response:
7E 01 00 80 48 13 00 62 02 02 02 0F 0A 1E 10 28 0A 30 31 32 33 34 35 36 37 00 7E

Table 7. DevInfo response packet format

Field Name Size (bytes) Value Description

Start Character 1 0x7E Start Marker, delimiter indicating start of
packet

Protocol ID 1 0x01 CI Protocol also known as
Command/Response protocol.

AppID 1 0x00 Echoes the Application ID providing the
Response

Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit,
which indicates command completed.

Bits 6 through 0:
variable 0x00 through

0x7F

Example Values:
0x80

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

system_device_id 4 variable

 Example Values:
0x48 0x13 0x00 0x62

32 bit System Device Identification
information of the Device (SIM_SDID
Register)
For more details on SIM_SDID register,
please refer to appropriate Kinetis Sub-Family
Reference Manual.

emb_app_present 1 variable
from 0x01 to 0xFF

Example Value:

0x02

Number of Embedded Applications present in
the image

Minimum value is 01 for the MBOX App. This
example also contains ISFEmbApp

Isf_lib_majorVersion 1 variable

Example: 0x02

The ISF major version information

Isf_lib_minorVersion 1 variable
Example: 0x02

The ISF minor version information

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 35
NXP Semiconductors

Field Name Size (bytes) Value Description

Isf_lib_buildYear 1 variable
where 0x00

corresponds to the year
2000 and 0xFF

corresponds to the
maximum year of 2255.

Example: 0x0F
(indicating 2015)

The year of the ISF build

Isf_lib_buildMonth 1 0x00 through 0x0C
Example: 0x0A

(indicating October)

The month of the ISF build,

Isf_lib_buildDay

1 0x01 through 0x1F
Example: 0x1E
(indicating 30)

The day of the ISF build,

Isf_lib_buildHours

1 0x00 through 0x17
Example: 0x10

(indicating 16:00)

The time of ISF build in hours,

Isf_lib_buildMinutes 1 0x00 through 0x3B
Example: 0x28

(indicating 16:40)

The time of ISF build in minutes,

Isf_lib_buildSeconds 1 0x00 through 0x3B
Example: 0x0A

(indicating :16:40:10)

The time of ISF build in seconds,

Isf_lib_buildId 8 variable

Example:
0x30 0x31 0x32 0x33
0x34 0x35 0x36 0x37

A hard-coded sequence used for identifying a
valid DevInfo response.

Reserved 0 or 1 If 1 byte, value is 0x00.

Example : yes

Byte Alignment Padding. If the value is 00,
then it is a padding byte. Any other value is
considered to be the next recognized
parameter.

End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

36 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

An Embedded Application can also retrieve device information programmatically using the
_fw_device_info_get(device_info_t *info_ptr) API call. The _fw_device_info_get() command fills
the memory, at the passed in pointer location, with data according to the following structure:

typedef struct {
 uint32 system_device_id;
 uint8 emb_app_present;
 isf_info_t isf_info;

} device_info_t;

The device info metadata includes ISF info as well. The ISF info structure definition is described below:

typedef struct
{
 version_info_t version_info;
 build_info_t build_info;

} isf_info_t;
Where-in, version info structure holds major and minor version information of ISF and build info structure
holds ISFbuild year/month/day and build commit_id.

4.1.1.2 ISF Embedded Application Info command
The ISF Application Info (AppInfo) command conforms to the complete Command/Response protocol
described previously. Table 8 provides the AppInfo Command packet format. The AppInfo command
provides the user information about the application associated with AppID value.

Table 8. AppInfo command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier
Command 1 0x00 CI_CMD_READ_VERSION

Offset 1 0x00 There is no offset into the data buffer for this
command

Length 1 0x00 The user has no influence on the bytes
returned for this command

End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 37
NXP Semiconductors

AppInfo Command:
The AppInfo command is invoked at runtime by sending the following command to the CI along with the
AppID:

Example AppInfo command for AppID value of 0x01:

7E 01 01 00 00 00 7E

Example AppInfo command for AppID value of 0x02:

7E 01 02 00 00 00 7E

The CI handles the command itself and returns a response packet formatted as shown in Table 9.

Example Response:

AppInfo response for AppID value of 01:

7E 01 01 80 0E 00 01 00 01 09 4D 42 4F 58 20 41 70 70 00 7E

AppInfo response for AppID value of 02:

7E 01 02 80 06 00 04 00 01 01 00 7E

Table 9. AppInfo response packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable

Example 1: 0x01
Example 2: 0x02

Echoes the Application ID providing the
Response

Command Status

1

Bit 7 = 1 This is what is referred to as the COCO bit
which indicates command completed

Bits 6 through 0:
variable 0x00 through

0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length 1 variable

Example 1: 0x0E
Example 2: 0x06

Actual number of response payload bytes
returned

Length requested 1 0x00 Echoes the input value of bytes to be returned
for this command

Protocol definitions

38 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Field Name Size (bytes) Value Description
appType 1 variable

Example 1: 0x01
Example 2: 0x04

8-bit: ISF Application type
for example appType is:
01 for MBOX App,
02 for RLI App,
03 for Basic App,
04 for Embedded App.

appMajorVersion 1 variable
Example 1 and 2: 0x00

The majorVersion information of the App
indicated by the AppID

appMinorVersion 1 variable
Example 1 and 2: 0x01

The minorVersion information of the App
indicated by the AppID

appNumBytes 1 variable
Example 1: 0x09
Example 2: 0x01

Size of the data from the AppID App

appData appNumBytes variable
Example 1:

4D 42 4F 58 20 41 70 70
00

Example 2:
0x00

Data from the AppID App e.g. interpretation of
configuration data. This data can be specified
by the user in Processor Expert for the
EmbApp and BasicApp components.

End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 39
NXP Semiconductors

4.1.1.3 ISF Application Sensor Subscription Info command
The ISF Application Sensor Subscription Info command conforms to the complete
Command/Response protocol described previously. Table 10 provides ISF Application Sensor
Subscription Info command packet format. The Application Sensor Subscription Information provides
the user with information about the sensors associated with the AppID.

Table 10. ISF application sensor subscription info command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier
Command 1 0x09 CI_CMD_GET_APP_SUBSCRIPTION

Offset 1 0x00 There is no offset into the data buffer for this
command

Length 1 0x00 The user has no influence on the bytes
returned for this command

End Character 1 0x7E End Marker, delimiter indicating end of packet

Example Command:
The Sensor Subscription Info command is invoked at runtime by sending the following command to the
CI. The AppID is 02 in the example command shown below:

7E 01 02 09 00 00 7E

The CI handles the command itself and returns a response packet formatted as shown in Table 11.

First Example Response with a single sensor:

7E 01 02 80 0B 01 BC 00 [00 01 66 00 02 BC 08] 00 7E
[] is the single sensor subscription information from the MMA865X accelerometer.

Second Example Response with two sensors:

7E 01 02 80 11 00 02 30 01 [01 66 00 02 00 08] {02 CA 00 03 CB 14} 00 7E
[] is the first sensor subscription information from the MMA865x accelerometer
and
{} contains the second subscription information for the MAG3110 magnetometer.

Protocol definitions

40 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Table 11. ISF application sensor subscription info response packet format

Field Name Size
(bytes)

Value Description

Start Character 1 0x7E Start Marker, delimiter indicating start of
packet

Protocol ID 1 0x01 CI Protocol also known as
Command/Response protocol

AppID 1 variable Echoes the Application ID providing the
Response

Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit
which indicates command completed

Bits 6 through 0:
variable 0x00
through 0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length 1 variable
Example 1: 0x0B
Example 2: 0x11

Actual number of response payload bytes
returned

Length requested 1 0x00 Echoes the input value of bytes to be returned
for this command

numSensors 1 variable
Example 1: 0x01
Example 2: 0x02

Number of Sensors Subscriptions for the App

processedDataBufferOffset 2 variable
Example 1:

0xBC00
Example 2: 0x3001

Value that holds offset to the sensor
processed data buffer

The following fields apply for each sensor subscribed (numSensors) within the App:
Reserved 0 or 1 If 1 byte, value is

0x00.

Example 1: yes
Example 2: no

Byte Alignment Padding. If the value is 00,
then it is a padding byte. Any other value is
considered to be the next recognized
parameter.

sensorId 1 variable
Example 1 and 2a:

0x01
Example 2b: 0x02

Sensor Subscription ID for the subscribed
sensor within the App

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 41
NXP Semiconductors

Field Name Size
(bytes)

Value Description

sensorDataType 2 variable

Example1: 0x6600
(3D accel)

Example 2a:
0x6600

(3D accel)
Example 2b:

0xCA00
(3D mag)

The two bytes form a 16-bit value in little
endian format. This value corresponds to the
isf_SensorDataTypes_t enumeration
defined in isf_sensor_types.h.
Output Data Type
Type (Native/Acceleration/Magnetic
Field/Temperature/Altitude/Pressure) for the
subscribed sensor within the App.
e.g. sensorDataTypes:
0x00: Native
0x64 0x00: 1-D Acceleration
0x65 0x00: 2-D Acceleration
0x66 0x00: 3-D Acceleration
0xC8 0x00: 1-D Magnetic Field Strength
0xC9 0x00: 2-D Magnetic Field Strength
0xCA 0x00: 3-D Magnetic Field Strength
0x2C 0x01: 1-D Gyroscope Rotational rate
0x2D 0x01: 2-D Gyroscope Rotational rate
0x2E 0x01: 3-D Gyroscope Rotational rate
0x90 0x01: Quaternion Orientation
0x91 0x01: 1-D Euler Orientation
0x92 0x01: 2-D Euler Orientation
0x93 0x01: 3-D Euler Orientation
0x94 0x01: Direct Cos Matrix Orientation
0xF4 0x01: Temperature
0x58 0x02: Altitude
0x59 0x02: Pressure

sensorResultType 1 0x01 = Raw
Counts

0x02 = Fixed Point
0x03 = Floating

Point
Example 1 and 2a:

0x02
Example 2b: 0x03

Output data format type (output data
representation in Raw/Fixed Point/Floating
Point) for the subscribed sensor within the
App

sampleRateOffset 2 variable Value that holds offset to the sensor sample
rate in µsec for the subscribed sensor within
the App

After the final set, there is an end character to mark the end of the response packet
Reserved 0 or 1 If 1 byte,

value is 0x00.
Byte Alignment Padding. If the value is 00,
then it is a padding byte. Any other value is
considered to be the next recognized
parameter.

End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

42 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.1.2 Built-in commands for embedded applications
In addition to the built-in mailbox application, the ISF_KSDK_EmbApp PEx component defines a default
set of commands. This section describes those commands along with usage examples.

Enumerations for these commands are found in the file isf_ci.h in the embedded application’s Include
directory.

4.1.2.1 Read Configuration Data command (CI_CMD_READ_CONFIG [0x01])
This command returns the desired portion of the application’s configuration data buffer, based on the
offset and length sent in the command. Table 12 and Table 13 provide Command packet and
Response packet Read Configuration data formats, respectively.

Response status:

• CI_ERROR_NONE – Success
• CI_INVALID_COUNT – Number of bytes requested exceeds size of output data buffer.
• CI_ERROR_COMMAND – Offset plus number of bytes is beyond the end of the buffer.

Table 12. Read Configuration Data–command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier
Command 1 0x01 (sets offset size to

1 byte)
0x81 (sets offset size to

2 bytes)

CI_CMD_READ_CONFIG

Offset 1 or 2 variable Offset into the data buffer
Length 1 variable Number of bytes desired to be returned
End Character 1 0x7E End Marker, delimiter indicating end of packet

Table 13. Read Configuration Data–response packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 43
NXP Semiconductors

Field Name Size (bytes) Value Description
Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit,

which indicates command completed
Bits 6 through 0:

variable 0x00 through
0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length requested 1 variable Number of bytes desired to be returned
Length actual 1 variable Actual number of bytes returned
Payload Length actual

(plus escape
characters

when
necessary)

variable Packet Data payload
The actual number of bytes of the payload
over the wire may be different than the length
indicated above because the "Length Actual"
is computed against the real payload bytes
while the bytes over the wire may include
extra escape characters as necessary.

End Character 1 0x7E End Marker, delimiter indicating end of packet

4.1.2.2 Write Configuration Data command (CI_CMD_WRITE_CONFIG [0x02])
This command returns the desired portion of the application output data buffer based on an offset and
length sent in the command. Table 14 and Table 15 provide Command packet and Response packet
Write Configuration data formats, respectively.

Response status:

• CI_ERROR_NONE – Success
• CI_INVALID_COUNT – Number of bytes requested exceeds size of output data buffer
• CI_ERROR_COMMAND – Offset plus number of bytes is beyond the end of the buffer

Table 14. Write Configuration Data–command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command 1 0x02 CI_CMD_WRITE_CONFIG

Offset 2 variable MSB, LSB–Offset into configuration data
buffer

Length 1 variable Number of bytes desired to be written
Data Length variable Data to be written to the configuration buffer
End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

44 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Table 15. Write Configuration Data–response packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit

which indicates command completed.
Bits 6 through 0:

variable 0x00 through
0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length requested 1 variable Number of bytes desired to be written
Length actual 1 variable Actual number of bytes written
Payload Length actual variable Packet Data payload
End Character 1 0x7E End Marker, delimiter indicating end of packet

4.1.2.3 Read Application Data command (CI_CMD_READ_APP_DATA [0x03])
This command returns the desired portion of the application output data buffer based on an offset and
length sent in the command. Table 16 and Table 17 provide Command packet and Response packet
Read Application data formats, respectively.

Response status:

• CI_ERROR_NONE – Success
• CI_INVALID_COUNT – Number of bytes requested exceeds size of output data buffer
• CI_ERROR_COMMAND – Offset plus number of bytes is beyond the end of the buffer

Table 16. Read Application Data–command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier
Command 1 0x03 (sets offset size to

1 byte)
0x83 (sets offset size to

2 bytes)

CI_CMD_READ_APP_DATA

Offset 1 or 2 variable Offset into the data buffer
Length 1 variable Number of bytes desired to be returned
End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 45
NXP Semiconductors

Table 17. Read Application Data–response packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command Status

1 Bit 7 = 1 This is what is referred to as the COCO bit
which indicates command completed.

Bits 6 through 0:
variable 0x00 through

0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length requested 1 variable Number of bytes desired to be returned
Length actual 1 variable Actual number of bytes returned
Payload Length variable Packet Data payload
End Character 1 0x7E End Marker, delimiter indicating end of packet

4.1.2.4 Read Application Status command (CI_CMD_READ_APP_STATUS [0x05])
This command returns an application’s status information. The command must be explicitly
implemented in the embedded application’s callback function and the format and contents of the
information returned is implementation-specific. Table 18 and Table 19 provide Command packet and
Response packet Read Application Status data formats, respectively.

Response status:

• CI_ERROR_NONE – Success
• CI_INVALID_COUNT – Number of bytes requested exceeds size of output data buffer
• CI_ERROR_COMMAND – Offset plus number of bytes is beyond the end of the buffer

Table 18. Read Application Status–command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating

start of packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol
AppID 1 variable Application Identifier
Command 1 0x05 (sets offset size to 1 byte)

0x85 (sets offset size to 2 bytes)
CI_CMD_READ_APP_STATUS

Offset 1 or 2 variable Offset into the data buffer
Length 1 variable Number of bytes desired to be

returned
End Character 1 0x7E End Marker, delimiter indicating end

of packet

Protocol definitions

46 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Table 19. Read Application Status–response packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit

which indicates command completed.
Bits 6 through 0:

variable 0x00 through
0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length requested 1 variable Number of bytes desired to be returned
Length actual 1 variable Actual number of bytes returned
Payload Length variable Packet Data payload containing application

status data
End Character 1 0x7E End Marker, delimiter indicating end of packet

4.1.2.5 Application Reset command (CI_CMD_RESET_APP [0x06])
This command causes the application to reset its internal state to as close as possible to its initial state
out of Power-On Reset. The command returns a confirmation. Table 20 and Table 21 provide
Command packet and Response packet Application Reset data formats, respectively.

Response status:

• CI_ERROR_NONE – Success

Table 20. Application Reset–command packet format

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command 1 0x06

(sets offset size to 1
byte)

CI_CMD_RESET_APP

Offset 1 0x00 Offset into the data buffer
Length 1 0x00 Placeholder for compatibility with ColdFire

implementations
End Character 1 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 47
NXP Semiconductors

Table 21. Application Reset–response packet example

Field Name Size (bytes) Value Description
Start Character 1 0x7E Start Marker, delimiter indicating start of

packet
Protocol ID 1 0x01 CI Protocol also known as

Command/Response protocol.
AppID 1 variable Application Identifier
Command Status 1 Bit 7 = 1 This is what is referred to as the COCO bit

which indicates command completed.
Bits 6 through 0:

variable 0x00 through
0x7F

These bits contain status of the command.
Status = 0b000 0000 indicates successful
completion. Any other value indicates an error
as described in the ISF API Reference
Manual available at nxp.com/ISF-2.2-
KINETIS.

Length requested 1 0x00 Placeholder for compatibility with ColdFire
implementations

Length actual 1 0x00 Actual number of bytes returned
End Character 1 0x7E End Marker, delimiter indicating end of packet

4.2 Streaming protocol
4.2.1 Introduction
An Embedded Application (EA) may have data to send to the host, asynchronously. For example, the
EA collects data from sensors at a subscribed rate. When the sensor produces the data, the EA reads it
and sends it to the host. The EA can offer different types of data to the host in a buffer and the host can
select which of these data types it needs. A means is needed to allow the host to subscribe to this data
and choose which data it wants.

4.2.2 General description
The SP defines a concept called streams that encapsulates a set of data that the host can receive in a
single data packet. Streams are identified by a unique ID value and contain details of the data
pertaining to the stream. A stream is implemented with the Stream Configuration object. This object
contain two lists:

• The Stream Element object list
• The Trigger Mask list.

The Stream Element object describes a region of a dataset that includes the Dataset ID, the length, and
the offset. The Trigger Mask list is a list of bytes that contains information indicating, which elements
have been updated by the EA. This information is used to determine when a stream is sent to the host.
The stream data sent to the host is referred to as the Update packet.

Protocol definitions

48 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.2.1 Stream configuration
The Stream Configuration object allows the host to store a Stream Element and Trigger Mask list. The
Stream Element list consists of one or more Elements with each Element containing a Dataset ID,
length, and offset. The Trigger Mask list is an array of byte(s) with each bit corresponding to a Stream
Element. The data structure of a Stream Configuration is implemented as follows:

Field Size (bytes) Description
Stream ID 1 ID of this stream
numElements 1 Number of elements in the pElementList
*pTriggerMask 4 Pointer to an array of trigger byte(s)
*pElementList 4 Pointer to a list of Stream Element(s)

The stream ID is unique in the system and only one stream can exist with a particular ID value. When
an Update packet is sent to the host, the stream ID is included to identify the stream.

The Stream Element list can specify multiple Elements and the same Dataset ID can be specified more
than once.

When a stream is created, a set of Trigger Mask byte(s) is required along with Stream Element list
information. The number of trigger bytes depends on the number of elements in the stream. Since a
byte contains 8 bits, each byte can represent up to 8 elements.

Each bit in the trigger byte corresponds to a stream element. For example, bit 0 of the first byte in the
pTriggerMask corresponds to the first Element in the pElementList. In other words, pTriggerMask[0]
bit0 corresponds to pElementList[0].

When the EA updates a dataset region which is configured into one or more stream elements, the
Trigger Mask bit for those particular elements is cleared in all affected streams. If the Trigger Mask bit
is set, it means that the Update packet cannot be sent until the bit is cleared. All bits in the Trigger
Mask list must be cleared before the Update Packet is sent to the host.

4.2.2.2 Stream elements
The Stream Element object contains a description of a stream element. The element contains
information to describe a set of data that is shown below. The Dataset ID identifies the source element
which provides the data.

Field Size (bytes) Description
datasetID 1 Identifier for the dataset providing the data
Offset 2 Offset into the dataset’s data buffer
Length 2 Number of bytes to take from the dataset

The Dataset ID is defined by the EA. The Dataset specifies a segment of data or all of the data from the
data buffer that the EA has to offer to the host.

4.2.2.3 Stream APIs
A summary of the SP APIs are listed here. The detailed description can be found in the isf_ci_stream.h
file.

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 49
NXP Semiconductors

4.2.2.3.1 Stream API functions

API Function Description
isf_ci_stream_create() Create a stream
isf_ci_stream_update_data() Update data of a Dataset
isf_ci_stream_delete() Delete a stream
isf_ci_stream_reset_trigger() Reset the current trigger state to the trigger mask
isf_ci_stream_get_trigger() Get the current trigger state of a given stream
isf_ci_stream_get_config() Get the steam configuration of a stream
isf_ci_stream_get_num_streams() Get the number of streams that currently exists
isf_ci_stream_get_first() Get the first stream in the list of streams
isf_ci_stream_get_next() Get the next stream in the list of streams
isf_ci_stream_set_CRC() Enable or disable CRC code generation and checking

4.2.2.3.2 Stream Protocol APIs

The two functions below are meant to be called by the CI itself. They provide the stream functionality as
described in this document. Normally, these functions are specified in the ISF_KSDK_Core PEx
component and they are placed in the CI protocol list.

API Function Description
ci_stream_init() Stream initialization that is to be performed before the SP can be used
ci_protocol_CB_stream() Stream Protocol callback function to be registered with the Command

Interpreter

4.2.2.3.3 Enable Data Update command
Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x01 CI_CMD_STREAM_ENABLE_DATA_UPDATE command

3 0x7E End Marker, delimiter indicating end of packet

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1; Status = 0b000 0000 (success)
3 0x01 CI_CMD_STREAM_ENABLE_DATA_UPDATE command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

50 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.3 Stream host communication
The SP defines three types of packets for communication with the host:

• Command packet
• Response packet
• Update packet

The host sends a command packet and receives a response packet from the SP using the formats
defined in Sections 4.2.3.2 and 4.2.3.2.1. For every command packet sent to the SP, the host receives
a response packet for that command. The host could also be receiving update packets when the EA
has data that is available. A cyclic redundancy feature is available to allow the hosts and EA to verify
that a received SP packet is not corrupted.

The packet description refers to a Stream Protocol ID. This ID value is determined by the setup of the
EA and depends on how many protocols are registered with the CI and the placement order of the
Stream Protocol, relative to other protocols. This value is set at the time the EA is compiled.

4.2.3.1 Cyclic redundancy check (CRC)
To provide robust communication, a cyclic redundancy check (CRC) feature is provided as an option. If
the CRC feature is enabled, CRC codes are generated for all packets going to and from the SP. If the
host sends a command packet, it is required to generate CRC codes as part of the packet. If the host
receives a packet from the SP, the packet contains CRC codes.

The CRC standard used is 16-bit CCITT method. The polynomial used is 0x1021. The two CRC bytes
(16-bit) are placed in big endian format at the end of the packet, but before the end marker. The
following description of the command and response packets show where the CRC bytes are placed.
Note that the CRC code generated does not include the Stream Protocol ID or the start and end
marker.

See Section 4.2.7 for the full C code implementation of the CRC standard used by the SP.

4.2.3.2 Host command packet
The host sends a command to the SP in the following format. The start and end marker is always the
value 0x7E.

Packet with CRC disabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 Stream host command
3 X Data for the command if any is required

3+X 1 End Marker, delimiter indicating end of packet (0x7E)

Packet with CRC enabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 Stream host command

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 51
NXP Semiconductors

Offset Size (bytes) Description
3 X Data for the command if any is required

3+X 2 16-bit CRC, [3+X] - msb, [3+X+1] - lsb
5+X 1 End Marker, delimiter indicating end of packet (0x7E)

The Stream Protocol ID value is dependent on where the SP is placed in the CI protocol list in the ISF
PEx component. The ID value becomes fixed when the EA is compiled. Refer to Section 4.2.4 for more
details on Stream Host commands.

4.2.3.2.1 Command response packet
The SP sends a response packet to the host in the following formats. If the response packet contains
data to return to the host, the packet will contain additional information as well as the data itself. The
start and end marker is always the value 0x7E. The following response packet is received by the host.

Packet with CRC disabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 b[7] - Command Complete (COCO), b[6:0] - status
3 1 Stream host command echo
4 2 Length of data in big endian: [4] - msb, [5] - lsb
6 X Data in response to the command if any

6+X 1 End Marker, delimiter indicating end of packet (0x7E)

Packet with CRC enabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 b[7] - Command Complete (COCO), b[6:0] - status
3 1 Stream host command echo
4 2 Length of data in big endian: [4] - msb, [5] - lsb
6 X Data in response to the command if any

6+X 2 16-bit CRC, [6+X] - msb, [6+X+1] - lsb
8+X 1 End Marker, delimiter indicating end of packet (0x7E)

The COCO/status byte at offset 2 provides the host with the status of the command. The COCO bit is
set if the command was received and executed. The status portion indicates the result of executing the
command. The exact status is dependent on the command and is detailed in Section 4.2.4.

The command echo at offset 3 is a copy of the Stream host command in the command packet. The
command echo allows the host to verify, which command this response packet matches.

The length of the data at offset 4/5 is in big-endian format and specifies the number of data bytes
following but does NOT include the end marker (0x7E).

Protocol definitions

52 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.3.3 Update packet
The host can receive update packets asynchronously from the SP. Update packets are data from a
stream that the host has requested.

Update packets contain the COCO bit along with the Update packet status at offset 2. The
COCO/status byte contains the value 0x82 (COCO = 1 and status = 0b000 0010) to indicate that the
packet is an update packet. The host uses this information to distinguish this update packet from a
command response packet.

The length of the data at offset 4/5 is in big endian format and specifies the number of bytes following it
that includes the Element ID(s) and the data bytes for each Element, but does NOT including the end
marker (0x7E).

Packet with CRC disabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 b[7] - Command Complete (COCO), b[6:0] – status.

COCO = 1; Status = 0b000 0010 indicates the packet is an update packet.
3 1 Stream ID of the Update packet
4 2 Length of the following data which includes the IDs and data for all

elements of this stream, [4] - msb, [5] - lsb
6 1 Element ID
7 X Data

7+X 1 Element ID
8+X Y Data

Z 1 End Marker, delimiter indicating end of packet (0x7E)

Packet with CRC enabled

Offset Size (bytes) Description
0 1 Start Marker, delimiter indicating start of packet (0x7E)
1 1 Stream Protocol ID
2 1 b[7] - Command Complete (COCO), b[6:0] – status.

COCO = 1; Status = 0b000 0010 indicates the packet is an update packet.
3 1 Stream ID of the Update packet
4 2 Length of the following data which includes the IDs and data for all

elements of this stream, [4] - msb, [5] - lsb
6 1 Element ID
7 X Data

7+X 1 Element ID
8+X Y Data
Z-2 2 16-bit CRC, [Z-2] - msb, [Z-1] - lsb
Z 1 End Marker, delimiter indicating end of packet (0x7E)

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 53
NXP Semiconductors

4.2.4 Stream host commands
The SP implements a series of host commands that map directly to the stream APIs. The host
commands are sent to the EA in the command packet format as defined in Section 4.2.3.2.

4.2.4.1 Command list summary
The available commands are listed here. They can be found in the file isf_ci_stream.h

• CI_CMD_STREAM_RESET
• CI_CMD_STREAM_ENABLE_DATA_UPDATE
• CI_CMD_STREAM_DISABLE_DATA_UPDATE
• CI_CMD_STREAM_CREATE_STREAM
• CI_CMD_STREAM_DELETE_STREAM
• CI_CMD_STREAM_RESET_TRIGGER
• CI_CMD_STREAM_ENABLE_CRC
• CI_CMD_STREAM_DISABLE_CRC
• CI_CMD_STREAM_GETINFO_NUMBER_STREAMS
• CI_CMD_STREAM_GETINFO_TRIGGER_STATE
• CI_CMD_STREAM_GETINFO_STREAM_CONFIG
• CI_CMD_STREAM_GETINFO_GET_FIRST_STREAMID
• CI_CMD_STREAM_GETINFO_GET_NEXT_STREAMID

4.2.4.2 Command description
This section describes each host command with details.

Note: The description provides example command and response packets for each command and they
make the following assumption:

• The Stream Protocol ID is 2. As noted, the actual protocol ID value is dependent on the placement
of the protocol in the CI protocol list.

• The Cyclic Redundancy Check (CRC) feature is disabled as the default state, unless noted
otherwise in the example.

4.2.4.2.1 Reset Command
Command: CI_CMD_STREAM_RESET

Description: This command resets the stream protocol. All streams are deleted. The CRC is set to
disabled state, update packets are disabled, and internal states are set to default values.

Value: 0x00
Parameters: None
Response status: CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is enabled)

Protocol definitions

54 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x00 CI_CMD_STREAM_RESET command

3 0x7E End Marker, delimiter indicating end of packet

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x00 CI_CMD_STREAM_RESET command echo

4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.2 Disable Data Update command
Command: CI_CMD_STREAM_DISABLE_DATA_UPDATE

Description: This command disables the SP from sending update packets to the host.1
Value: 0x02
Parameters: None
Response status: CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is enabled)
1. Regardless of whether stream update is enabled or disabled, the applications or tasks running in the EA

can always update data in a dataset using the isf_ci_stream_update_data() API. The difference is that
if update is disabled and the conditions exists for a stream to send data, the update packet will NOT be
sent.

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x02 CI_CMD_STREAM_DISABLE_DATA_UPDATE command

3 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 55
NXP Semiconductors

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x02 CI_CMD_STREAM_DISABLE_DATA_UPDATE command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.3 Create Stream command
Command: CI_CMD_STREAM_CREATE_STREAM

Description: This command creates a stream with the given parameters. Memory is allocated from
the system to store the stream information including the each element’s data.

Value: 0x03
Parameters: The parameters required to create a stream is the same as for the API function

isf_ci_stream_create(). The parameters are listed here in the order that they
appear in the command packet.

Stream ID A unique stream ID value
Number of
Elements

Number of elements in the element list

Trigger Mask bytes A list of bytes with each bit in each byte representing one element in the element list.
Bit 0 of the first trigger byte corresponds to the first element in the element list. Bit 1 of
the first trigger byte corresponds to the second element in the element list, and so on.

Element list

A list of bytes that define one or more datasets in the stream. Each element is defined
in a list as follows:

Offset Size (bytes) Description
0 1 Dataset ID
1 2 Length, [1] - msb, [2] - lsb
3 2 Offset, [3] - msb, [4] - lsb

Protocol definitions

56 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Response status:

CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is enabled)

CI_STATUS_STREAM_ERR_STREAMID_EXISTS – The stream ID value is already
used by an existing stream.
CI_STATUS_STREAM_ERR_INVALID_NUM_PARM – The number of parameters provided
to create the stream is insufficient. An example is the number of trigger bytes is not sufficient to
represent the number of elements in the element list. Another example is the number of bytes in
the element list is not sufficient to define all the number of elements specified.

CI_STATUS_STREAM_ERR_NUMELEMENTS_INVALID – The number of element
values is zero. A stream must have at least one element.
CI_STATUS_STREAM_ERR_OUT_OF_MEMORY – The system is out of memory and the
stream cannot be created.
CI_STATUS_STREAM_ERR_NULL_POINTER – The trigger mask or element list buffer
is NULL.

Command Packet example:
Command packet to create a stream:

Stream ID: 0xF0
Number of
elements:

2

Trigger mask bytes: 0x03, b[0] – Element 1, b[1] – Element 2:

Element list:
Element 1: / ID / Length / Offset: 0x10, 0x0004, 0x0012
Element 2: / ID / Length / Offset: 0x11, 0x0345, 0x0513

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x03 CI_CMD_STREAM_CREATE_STREAM command
3 0xF0 Stream ID
4 0x02 Number of elements
5 0x03 Trigger byte (for 2 elements)
6 0x10 Element1 ID
7 0x00 Length MSB
8 0x04 Length LSB
9 0x00 Offset MSB

10 0x12 Offset LSB
11 0x11 Element2 ID
12 0x03 Length MSB
13 0x45 Length LSB
14 0x05 Offset MSB
15 0x13 Offset LSB
16 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 57
NXP Semiconductors

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x03 CI_CMD_STREAM_CREATE_STREAM command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.4 Delete Stream command
Command: CI_CMD_STREAM_DELETE_STREAM

Description: This command deletes a stream with the given stream ID. Memory used to
store the stream and its data is released back to the system.

Value: 0x04
Parameters: None
Response status: CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is
enabled)
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – The given stream ID
does not exists.

Command Packet example:
Command packet to delete stream ID 0xF0.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x04 CI_CMD_STREAM_DELETE_STREAM command

3 0xF0 Stream ID to delete
4 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

58 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x04 CI_CMD_STREAM_DELETE_STREAM command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.5 Reset Trigger command
Command: CI_CMD_STREAM_RESET_TRIGGER

Description: This command resets the trigger state of the given stream ID. The current
trigger state of the stream is set to the trigger mask.

Value: 0x05
Parameters: None
Response status: CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is
enabled)
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – The given stream ID
does not exist.

Command Packet example:
Command packet to reset stream ID 0xF0.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x05 CI_CMD_STREAM_RESET_TRIGGER command

3 0xF0 Stream ID to reset trigger
4 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 59
NXP Semiconductors

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x05 CI_CMD_STREAM_RESET_TRIGGER command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.6 Enable CRC command
Command: CI_CMD_STREAM_ENABLE_CRC

Description: This command enables CRC code generation and checking. Note that the
response packet for this command contains two additional bytes for the
CRC code. Any packets that the host sends to the SP after this command
is required to have the CRC codes. The SP uses the CRC to check for data
corruption. If corruption occurs, the response packet contains the status
error CI_STATUS_STREAM_ERR_CRC.

Value: 0x06
Parameters: None

Response status:
CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled.

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet r
1 0x02 Stream protocol ID
2 0x06 CI_CMD_STREAM_ENABLE_CRC command
3 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

60 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Response Packet example:
Note: the response packet contains two bytes for CRC codes.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x06 CI_CMD_STREAM_ENABLE_CRC command echo

4 0x00 Length MSB
5 0x00 Length LSB
6 0xDA CRC MSB (SP generated)
7 0xD5 CRC LSB (SP generated)
8 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.7 Disable CRC command
Command: CI_CMD_STREAM_DISABLE_CRC

Description: This command disables CRC code generation and checking. The response
packet for this command does NOT contain CRC codes as it is disabled.

Value: 0x07
Parameters: None

Response status:
CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet (if CRC is
enabled)

Command Packet example:
Assume that CRC is currently enabled. The host generates CRC codes as part of the packet.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x07 CI_CMD_STREAM_DISABLE_CRC command

3 0xBC CRC MSB (host generated)
4 0x7B CRC LSB (host generated)
5 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 61
NXP Semiconductors

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x07 CI_CMD_STREAM_DISABLE_CRC command echo
4 0x00 Length MSB
5 0x00 Length LSB
6 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.8 Get Number of Streams command
Command: CI_CMD_ STREAM_GETINFO_NUMBER_STREAMS

Description: This command returns the number of streams that currently exist.
Value: 0x08
Parameters: None

Response status:
CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x08 CI_CMD_STREAM_GETINFO_NUMBER_STREAMS command

3 0x7E End Marker, delimiter indicating end of packet

Response Packet example:
The example assumes that five streams exist in the system.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x08 CI_CMD_STREAM_GETINFO_NUMBER_STREAMS command echo

4 0x00 Length MSB
5 0x01 Length LSB
6 0x05 Number of streams that currently exists
7 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

62 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.4.2.9 Get Trigger State command
Command: CI_CMD_ STREAM_GETINFO_TRIGGER_STATE

Description: This command returns the current trigger state of a given stream.
Value: 0x09
Parameters: None

Response status:

CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled.
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – The given stream ID
does not exist.

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x09 CI_CMD_STREAM_GETINFO_TRIGGER_STATE command
3 0xF0 Stream ID to get trigger state
4 0x7E End Marker, delimiter indicating end of packet

Response Packet example:
This example assumes that stream 0xF0 has 10 elements (10-bits, two trigger bytes) with current state
of:

• 0xF9 – Elements 0 to 7, b[7:0]
• 0x02 – Elements 8 to 9, b[1:0]

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x09 CI_CMD_STREAM_GETINFO_TRIGGER_STATE command echo

4 0x00 Length MSB
5 0x02 Length LSB
6 0xF9 Trigger state of elements 0-7
7 0x02 Trigger state of elements 8-9
8 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 63
NXP Semiconductors

4.2.4.2.10 Get Stream Configuration command
Command: CI_CMD_ STREAM_GETINFO_STREAM_CONFIG

Description: This command returns the configuration of a given stream.
Value: 0x0A
Parameters: None

Response status:

CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – The given stream ID
does not exist.

Command Packet example:
Assume that a stream exists with the following attributes:
• Stream ID: 0xF0
• Number of elements: 2
• Trigger mask bytes: 0x03, b[0] – Element 1, b[1] – Element 2
• Element list:

— Element 1 / DatasetID / Length / Offset: 0x10, 0x0004, 0x0012
— Element 2 / DatasetID / Length / Offset: 0x11, 0x2345, 0x9513

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x0A CI_CMD_STREAM_GETINFO_STREAM_CONFIG command

3 0xF0 Stream ID to get trigger state
4 0x7E End Marker, delimiter indicating end of packet

Response Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x0A CI_CMD_STREAM_GETINFO_STREAM_CONFIG command echo
4 0x00 Length MSB
5 0x0D Length LSB (13 bytes)
6 0xF0 Stream ID
7 0x02 Number of elements
8 0x03 Trigger byte (for 2 elements)
9 0x10 Element 1 Dataset ID

10 0x00 Length MSB
11 0x04 Length LSB

Protocol definitions

64 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

Byte Value Description
12 0x00 Offset MSB
13 0x12 Offset LSB
14 0x11 Element 2 Dataset ID
15 0x23 Length MSB
16 0x45 Length LSB
17 0x95 Offset MSB
18 0x13 Offset LSB
19 0x7E End Marker, delimiter indicating end of packet

4.2.4.2.11 Get First Stream ID command
Command: CI_CMD_ STREAM_GETINFO_GET_FIRST_STREAMID

Description: Streams are stored in a linked list and this command returns the ID of the
first stream in the list.

Value: 0x0B
Parameters: None

Response status:

CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – No streams exist

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x0B CI_CMD_STREAM_GETINFO_GET_FIRST_STREAMID command

3 0x7E End Marker, delimiter indicating end of packet

Response Packet example:
Assume that the ID of the first stream is 0xF0.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x0B CI_CMD_STREAM_GETINFO_GET_FIRST_STREAMID command echo

4 0x00 Length MSB
5 0x01 Length LSB
6 0xF0 Stream ID
7 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 65
NXP Semiconductors

4.2.4.2.12 Get Next Stream ID command
Command: CI_CMD_ STREAM_GETINFO_GET_NEXT_STREAMID

Description: Streams are stored in a linked list and this command returns the ID of the
stream that is next in the list from the previous get first or get next stream
ID. If this command is issued without calling the
CI_CMD_STREAM_GETINFO_GET_FIRST_STREAMID, the SP returns the
status CI_STATUS_STREAM_STREAM_END_OF_LIST.

Value: 0x0C
Parameters: None

Response status:

CI_STATUS_STREAM_SUCCESS – Success

CI_STATUS_STREAM_ERR_CRC – CRC error in the packet if CRC is
enabled
CI_STATUS_STREAM_ERR_STREAM_NOEXISTS – No streams exist

CI_STATUS_STREAM_STREAM_END_OF_LIST – End of stream list

Command Packet example:

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x0C CI_CMD_STREAM_GETINFO_GET_NEXT_STREAMID command
3 0x7E End Marker, delimiter indicating end of packet

Response Packet example:
Assume that the ID of the first stream is 0xF1.

Byte Value Description
0 0x7E Start Marker, delimiter indicating start of packet
1 0x02 Stream protocol ID
2 0x80 COCO = 1, status = 0b000 0000 (success)
3 0x0C CI_CMD_STREAM_GETINFO_GET_NEXT_STREAMID command echo
4 0x00 Length MSB
5 0x01 Length LSB
6 0xF1 Stream ID
7 0x7E End Marker, delimiter indicating end of packet

Protocol definitions

66 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.5 Triggers, Elements, and updates
The SP sends stream data to the host with an update packet, when the data in the stream is ready. The
condition under which the stream data is ready depends on two factors:

• The trigger state
• The stream-enable state.

This section discusses the factors that affect the trigger state.

4.2.5.1 Elements
Streams are created with an element list consisting of one or more elements. Element information
contains a Dataset ID, length, and offset. The length and offset specify the region of interest to the host
within the specified dataset. Memory is allocated as part of the stream to store the length of the data.
For example, if the dataset has a length of 100 bytes and an offset of 500, 100 bytes is allocated to
store the data.

When an EA updates data using the isf_ci_stream_update_data() API, it specifies the dataset ID,
length, offset, and a pointer to the source data. The source region is compared to the elements in all
currently configured streams. If a stream element requires data from the updated dataset, only that
portion of the dataset required to satisfy the configured stream elements is copied. If at least one byte
overlaps, the data is copied from the source to the element’s data area in the stream. When this
happens, the element is considered to be updated. This event causes the trigger state to change and is
discussed in Section 4.2.5.2.

4.2.5.2 Trigger states
Streams are created with a set of trigger masks. Each element in the element list has a corresponding
bit in the trigger mask. If the mask bit for the element is set to one, then the data for that element must
be updated by the EA, before the update packet belonging to the stream can be sent. If the mask bit is
set to zero, then the element is not required to be updated before the update packet is sent. In addition,
all trigger bits of the stream must be set to zero before the update packet is sent.

Each stream keeps the current state of the trigger bits with a trigger state byte. When the stream is
created, the stream initializes the trigger state to be the same as the trigger mask. If an element is
updated, the corresponding bit in the trigger state is set to zero. Refer to Section 4.2.5.2.

The stream trigger state is initialized to the trigger mask when the stream is created, and it can also be
initialized when the EA or host resets the trigger of the stream.

In the case where the trigger mask byte(s) provided are all zeros, any update to any elements in the
stream cause an update packet to be sent to the host, provided that the source dataset’s region
overlaps with the element’s region.

Note: There may be unused bits in the trigger masks. For example, if there are five elements in the
element list, only bits b[4:0] of the trigger byte are needed. The SP disregards the values in the unused
trigger bits, b[7:5] in its processing. This means that unused, trigger mask, bits provided to the SP
during stream creation, have no effect. Only the used trigger bits are processed by the SP.

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 67
NXP Semiconductors

4.2.5.3 Update conditions
The SP sends an update packet of a stream when these conditions are met:

• All the trigger state byte(s) of the stream are zeros.
• The stream update is enabled. The host enables stream update by using the host command

CI_CMD_STREAM_ENABLE_DATA_UPDATE.

Note: Regardless of whether stream update is enabled or disabled, the EA can always call the
isf_ci_stream_update_data() API to update data. If the regions of data overlap, then the data is
updated. Whether the update packet is sent or not depends on the trigger state and the stream update
enable state.

4.2.5.4 Update example
The EA or host creates a stream with the following elements.

Stream Element Description Value
Number of elements: 3
Trigger mask byte value: 0x05
b[0] = 1 for Element 1
b[1] = 0 for Element 2
b[2] = 1 for Element 3
b[7:3] are unused (values are disregarded)
Element list: – Dataset

ID
Length Offset

Element 1 0x10 0x0008 0x0010
Element 2 0x11 0x0200 0x0500
Element 3 0x12 0x0100 0x0000

The internal trigger state is initialized to the value 0x05, same as the trigger mask value. Consider the
following cases of events and the outcomes.

Event 1: EA calls isf_ci_stream_update_data() API to update Dataset 0x12.

Field Value
Dataset ID: 0x12
Length: 0x0008
Offset: 0x0000

Protocol definitions

68 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

The EA source data region being updated overlaps with Element 3’s data region. The portion of data
that overlaps is copied over and the trigger state bit for Element 3 is set to zero.

Current trigger state value: 0x01

1. Overlapped source region copied to stream element buffer

2. b[2] is set to zero

New trigger state value: 0x01

No update packet is sent because the trigger state byte is not zero.

Field Value
Current trigger state value : 0x01

Overlapped source region copied to stream element
buffer

b[2] is set to zero
New trigger state value: 0x01

No update packet is sent because the trigger state
byte is not zero.

No update packet is sent because the trigger state byte is not zero.

Event 2: EA calls isf_ci_stream_update_data() API to update Dataset 0x11.

Field Value
Dataset ID: 0x11
Length: 0x0200
Offset: 0x0400

The region being updated overlaps with Element 2 region. Note that a portion of the EA source region
being updated is outside of Element 2’s region. In this case, only the source region that overlaps with
Element 2’s region is updated. The overlapped region starts at offset 0x500 with a length of 0x0100
bytes and only this region is copied to the dataset.

Because the trigger state bit for Element 2 is already cleared, there is no change in the trigger state.

Current trigger state value: 0x01

1. Overlapped source region copied to the stream element buffer.
2. b[1] set to 0 (already 0 so no change)

New trigger state value: 0x01

No update packet is sent because the trigger state byte is not 0.

Event 3: EA calls isf_ci_stream_update_data() API to update Dataset 0x10.

Field Value
Dataset ID: 0x10
Length: 0x0020
Offset: 0x0030

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 69
NXP Semiconductors

The EA source data region being updated does NOT overlap with Element 1’s region. No data is
copied. The trigger bit for Element 1 remains a value of one.

Current trigger state value: 0x01

New trigger state value: 0x01

No update packet is sent because the trigger state byte is not 0.

Event 4: EA calls isf_ci_stream_update_data() API to update Element 1.

Field Value
Dataset ID: 0x10
Length: 0x004
Offset: 0x0010

The EA source data region being updated overlaps with Element 1’s region. The source data is copied
to the dataset. The trigger state bit for Element 1 is set to zero.

Current trigger state value: 0x01

1. b[0] is set to 0
2. Trigger state value: 0x00
3. Update packet for the stream is sent to the host if stream update is enabled.
4. Trigger state is reset to the trigger mask value.
5. New trigger state value: 0x05

In this situation, the trigger state becomes zero after the element data is updated that causes an update
packet to be sent if stream update is enabled. The trigger state is then reset to the trigger mask value.

4.2.6 Internal design
This section discusses the internal design of the SP. The stream instance and configuration are
described along with the handling of the instance linked list.

4.2.6.1 Stream instance
Stream information is stored in a singly-linked list of stream instances. The placement of the stream in
the linked list is in the order in which they are created by the EA or host. The last stream in the list
points to a NULL stream. Each stream instance encapsulates the following information about the
stream:

• Stream configuration that includes stream ID, trigger mask, and element(s)
• Current trigger states
• Stream buffer; for more details see Section 4.2.6.2.
• Pointer to the next stream in the linked list

Protocol definitions

70 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

The C code definition of the stream instances is as follows:

typedef struct __attribute__ ((__packed__)) _ci_stream_instance
 {
 ci_stream_config_t *pStreamConfig;
 uint8 *pStreamBuffer;
 uint8 *pTriggerState;
 struct _ci_stream_instance *pNextInstance;
 } ci_stream_instance_t;

4.2.6.2 Stream instance buffer
Streams contain stream information and the data for each element in the stream. Stream information
consists mainly of the stream instance structure plus the trigger states. When an update packet is sent
to the host, the typical method is to copy the element information from the stream to an update packet
and send it. However, the stream may contain large amounts of data and the system may not have
sufficient memory for the update packet, even only temporarily. In addition, copying the data adds to
the latency of processing an update packet.

In order to use memory efficiently and reduce latency, a single, dynamically-allocated stream instance
buffer is created for each stream to hold the stream information and the update packet. The update
packet portion of the buffer contains all the information needed, including the data for each element.
With this method, only one memory buffer is required to store data for the element and the SP can send
the update packet with one contiguous buffer, saving memory and time.

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 71
NXP Semiconductors

The stream instance buffer is structured as follows:

 Stream Instance
 Buffer points to Addr1

 Addr1 -> +=================+
 | pStreamConfig | Points to stream configuration buffer
 Stream +-----------------+
 Instance | pStreamBuffer | Points to Addr3
 Structure +-----------------+
 | pTriggerState | Points to Addr2
 +-----------------+
 | pNextInstance | Points to next stream instance buffer
 Addr2 -> +=================+
 | Trigger state |
 | byte(s) |
 Addr3 -> +=================+ Beginning of update packet
 | Stream protocol |
 | ID |
 + - - - - - +
 | COCO/Status |
 + - - - - - +
 | Stream ID |
 + - - - - - +
 Update | Length |
 Packet + - - - - - +
 | Element 1 ID |
 | |
 | Data payload |
 + - - - - - +
 | Element 2 ID |
 | |
 | Data payload |
 + - - - - - +
 | Element 3 ID |
 | |
 | Data payload |
 +-----------------+ End of update packet

During the stream creation process, the static information of the update packet is initialized, including
the protocol ID, COCO/status (0x82 value), stream ID, length, and element ID(s). Each element’s data
is initialized to zero. Populating these fields is done at initialization to ensure the update packet is ready
to be sent to the host, when trigger conditions allow.

Protocol definitions

72 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

4.2.6.3 Stream configuration buffer
A stream instance holds information about the stream in a stream configuration object. The Stream
configuration contains information such as stream ID, trigger mask byte(s), and the element list
consisting of element(s) information. Each element has a Dataset ID, length, and offset that are stored
in the element list.

Similar to the stream instance buffer, the stream configuration is stored in a stream configuration buffer
that is designed to minimize memory usage. The stream configuration buffer layout is as follows:

 Stream Configuration
 Buffer points to Addr1

 Addr1 -> +=================+
 | Stream ID |
 Stream +-----------------+
 Configuration | Num Elements |
 Structure +-----------------+
 | pTriggerMask | Points to Addr2
 +-----------------+
 | pElementList | Points to Addr3
 Addr2 -> +=================+
 | Trigger mask |
 | byte(s) |
 Addr3 -> +=================+ Beginning of element list
 | Element 1 ID |
 | Length |
 | Offset |
 + - - - - - +
 | Element 2 ID |
 | Length |
 | Offset |
 + - - - - - +
 | Element 3 ID |
 | Length |
 | Offset |
 +-----------------+ End of element list

4.2.6.4 Stream instance linked list modification
Modification of the linked list is handled in a typical fashion as described in the following cases:

Case 1: Adding Stream3 to the list.

Before:
Stream1 -> Stream2 - >NULL

After:
Stream1 -> Stream2 -> Stream3 -> NULL

Protocol definitions

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 73
NXP Semiconductors

Case 2: Deleting the first stream, Stream1, from the list.

Before:
Stream1 -> Stream2 -> Stream3 -> NULL

After:
Stream2 -> Stream3 -> NULL

Case 3: Deleting the middle stream, Stream2, from the list.

Before:
Stream1 -> Stream2 -> Stream3 -> NULL

After:
Stream1 -> Stream3 -> NULL

4.2.7 CRC implementation
The 16-bit, CCITT CRC standard is implemented in ISF v2.2 using the following code:

 #define POLY_CRC16_GENERATOR 0x1021

 uint16 ccitt_crc16_cal(uint32 anumBytes, uint8 *apBuf)
 {

 uint16 crc16 = 0xffff;
 uint8 *p8 = (uint8*)apBuf;
 uint8 bit;
 uint16 xor_flag;

 while(anumBytes--)
 {

 uint8 v;

 // Align test bit with leftmost bit of the message byte.
 v = 0x80;

 bit = 0;
 do
 {
 if (crc16 & 0x8000)
 {
 xor_flag= 1;
 }
 else
 {
 xor_flag= 0;
 }
 crc16 = crc16 << 1;

 if (*p8 & v)
 {

Protocol definitions

74 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

 // If not zero, then append the next bit of the message
 // to the end of the CRC. The zero bit placed there by
 // the shift above need not be changed if the next bit of
 // the message is zero.
 crc16 = crc16 + 1;
 }

 if (xor_flag)
 {
 crc16 = crc16 ^ POLY_CRC16_GENERATOR;
 }

 // Align test bit with next bit of the message byte.
 v = v >> 1;

 } while(++bit < 8);

 p8++;
 }

 bit = 0;
 do
 {
 if (crc16 & 0x8000)
 {
 xor_flag= 1;
 }
 else
 {
 xor_flag= 0;
 }
 crc16 = crc16 << 1;

 if (xor_flag)
 {
 crc16 = crc16 ^ POLY_CRC16_GENERATOR;
 }
 } while(++bit < 16);

 return crc16;
 }

References

Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016 75
NXP Semiconductors

5. References
Resource Description Link

MQX RTOS Reference Manual Documentation nxp.com/files/32bit/doc/ref_manual/MQXRM.pdf

MQX RTOS User Guide Documentation nxp.com/files/32bit/doc/user_guide/MQX_USER_GUIDE.pdf

FreeRTOS Web page nxp.com/FREERTOS

Kinetis Design Studio Downloads Tool Summary
page

nxp.com/KINETIS-IDE/DOWNLOADS

Kinetis Software Development Kit Documentation nxp.com/KINETIS-SDK/DOCS

Freedom Development Platform Tool Summary
page

nxp.com/FREEDOM

Processor Expert

Processor Expert Drivers

Documentation

nxp.com/PROCESSOREXPERT/DOCS

nxp.com/PROCESSOREXPERT-MICRODRIVER/DOCS

FRDM-KL25Z Documentation nxp.com/FRDM-KL25Z/DOCS

FRDM-KL26Z Documentation nxp.com/FRDM-KL26Z/DOCS

FRDM-K22F Documentation nxp.com/FRDM-K22F/DOCS

FRDM-K64F Documentation nxp.com/FRDM-K264F/DOCS

Sensor Fusion Tool Summary
Page

nxp.com/SENSORFUSION

ISF v2.2 Kinetis User Guide Documentation nxp.com/isf-2.2-KINETIS

ISF v2.2 API Reference Manual Documentation nxp.com/isf-2.2-KINETIS

ISF v2.2 Release Notes Documentation nxp.com/isf-2.2-KINETIS

http://nxp.com/files/32bit/doc/ref_manual/MQXRM.pdf
http://nxp.com/files/32bit/doc/user_guide/MQX_User_Guide.pdf?fsrch=1&sr=8&pageNum=1
http://nxp.com/freertos
http://nxp.com/KINETIS-IDE/DOWNLOADS
http://nxp.com/KINETIS-SDK/DOCS
http://nxp.com/freedom
http://nxp.com/PROCESSOREXPERT/DOCS
http://nxp.com/PROCESSOREXPERT-MICRODRIVER/DOCS
http://nxp.com/FRDM-KL25Z/DOCS
http://nxp.com/FRDM-KL26Z/DOCS
http://nxp.com/FRDM-K22F/DOCS
http://nxp.com/FRDM-K264F/DOCS
http://nxp.com/sensorfusion
http://nxp.com/ISF-2.2-KINETIS
http://nxp.com/ISF-2.2-KINETIS
http://nxp.com/ISF-2.2-KINETIS

Revision history

76 Intelligent Sensing Framework v2.2 Software Reference Manual, Rev. 1.0, 2/2016
NXP Semiconductors

6. Revision history
Rev. No. Date Description

1.0 2/2016 Initial public release

Document Number: ISF2P2_KINETIS_SWRM
Revision 1.0, 2/2016

How to Reach Us:
Home Page:
NXP.com
Web Support:
NXP.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products
herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. NXP does not
convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address:
NXP.com/SalesTermsandConditions.

NXP and the NXP logo, Processor Expert and Kinetis are trademarks of
NXP B.V. Reg. U.S. Pat. & Tm. Off. ARM and Cortex are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All other product or service names are the property of their
respective owners.

© 2016 NXP B.V.

	Intelligent Sensing Framework v2.2 Software Reference Manual For the Kinetis Family of Microcontrollers Microcontrollers
	Table of Contents
	1. About this document
	1.1 Purpose
	1.2 Audience
	1.3 Terminology and conventions
	1.3.1 Notational conventions

	2. Introduction
	2.1 System overview
	2.2 Development environment

	3. Intelligent Sensing Framework
	3.1 ISF theory of operation
	3.2 ISF architecture
	3.3 Processor Expert component architecture
	3.4 Core framework component details
	3.4.1 Theory of operation overview
	3.4.2 Framework overview
	3.4.3 Processor Expert component overview
	3.4.4 Digital Sensor Abstraction (DSA)
	3.4.4.1 Theory of operation
	3.4.4.2 DSA module design
	3.4.4.3 DSA Processor Expert component design

	3.4.5 DSA-Direct interface
	3.4.5.1 Theory of operation
	3.4.5.2 DSA-Direct module design
	3.4.5.3 Generic sensor types and standard sensor data types

	3.4.6 Bus Manager
	3.4.6.1 Theory of operation
	3.4.6.2 Bus Manager module design
	3.4.6.3 Bus Manager Processor Expert component design

	3.4.7 ISF system configuration
	3.4.7.1 Theory of operation
	3.4.7.2 Sensor Configuration module design
	3.4.7.3 Processor Expert component design

	3.4.8 Device messaging and protocol adapters
	3.4.8.1 Theory of operation
	3.4.8.2 Device Messaging concepts
	3.4.8.3 Device Messaging module design
	3.4.8.4 Device Messaging Processor Expert component design

	3.4.9 Host Interface/Command Interpreter
	3.4.9.1 Theory of operation
	3.4.9.2 Command/Response protocol
	3.4.9.2.1 Command/Response mode
	3.4.9.2.2 Command processing

	3.4.9.3 Streaming protocol
	3.4.9.4 Module design
	3.4.9.5 Processor Expert component design

	3.4.10 Power management

	3.5 Application support component details
	3.5.1 Embedded application component
	3.5.1.1 Theory of operation
	3.5.1.2 Embedded application module design
	3.5.1.3 Processor Expert component design

	3.5.2 Basic Application Component
	3.5.3 Register Level Interface Application Component

	3.6 Operating system abstraction
	3.6.1 ISF tasks and initialization

	4. Protocol definitions
	4.1 Command-Response protocol
	4.1.1 Built-in commands
	4.1.1.1 Device Info command
	4.1.1.2 ISF Embedded Application Info command
	4.1.1.3 ISF Application Sensor Subscription Info command

	4.1.2 Built-in commands for embedded applications
	4.1.2.1 Read Configuration Data command (CI_CMD_READ_CONFIG [0x01])
	4.1.2.2 Write Configuration Data command (CI_CMD_WRITE_CONFIG [0x02])
	4.1.2.3 Read Application Data command (CI_CMD_READ_APP_DATA [0x03])
	4.1.2.4 Read Application Status command (CI_CMD_READ_APP_STATUS [0x05])
	4.1.2.5 Application Reset command (CI_CMD_RESET_APP [0x06])

	4.2 Streaming protocol
	4.2.1 Introduction
	4.2.2 General description
	4.2.2.1 Stream configuration
	4.2.2.2 Stream elements
	4.2.2.3 Stream APIs
	4.2.2.3.1 Stream API functions
	4.2.2.3.2 Stream Protocol APIs
	4.2.2.3.3 Enable Data Update command

	4.2.3 Stream host communication
	4.2.3.1 Cyclic redundancy check (CRC)
	4.2.3.2 Host command packet
	4.2.3.2.1 Command response packet

	4.2.3.3 Update packet

	4.2.4 Stream host commands
	4.2.4.1 Command list summary
	4.2.4.2 Command description
	4.2.4.2.1 Reset Command
	4.2.4.2.2 Disable Data Update command
	4.2.4.2.3 Create Stream command
	4.2.4.2.4 Delete Stream command
	4.2.4.2.5 Reset Trigger command
	4.2.4.2.6 Enable CRC command
	4.2.4.2.7 Disable CRC command
	4.2.4.2.8 Get Number of Streams command
	4.2.4.2.9 Get Trigger State command
	4.2.4.2.10 Get Stream Configuration command
	4.2.4.2.11 Get First Stream ID command
	4.2.4.2.12 Get Next Stream ID command

	4.2.5 Triggers, Elements, and updates
	4.2.5.1 Elements
	4.2.5.2 Trigger states
	4.2.5.3 Update conditions
	4.2.5.4 Update example

	4.2.6 Internal design
	4.2.6.1 Stream instance
	4.2.6.2 Stream instance buffer
	4.2.6.3 Stream configuration buffer
	4.2.6.4 Stream instance linked list modification

	4.2.7 CRC implementation

	5. References
	6. Revision history
	Disclaimer

