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About This Book
The primary objective of this user’s manual is to describe the functionality of the e500 embedded 
microprocessor core for software and hardware developers. This book is intended as a companion 
to the EREF: A Reference for Freescale Book E and the e500 Core (hereafter referred to as EREF). 
The e500 is a PowerPC™ processor.

Note that, while previous versions of this manual covered only the e500v1 core (and referred to it 
simply as the e500 core), this version includes coverage of both the e500v1 and e500v2 cores. 
Where the two cores diverge, the differences are clearly delineated.

Book E is a PowerPC architecture definition for embedded processors that ensures binary 
compatibility with the user-instruction set architecture (UISA) portion of the PowerPC 
architecture as it was jointly developed by Apple, IBM, and Motorola. The version of the 
architecture jointly developed by Apple, IBM, and Motorola is referred to as the AIM version of 
the PowerPC architecture.

This document distinguishes between the three levels of the architectural and implementation 
definition, as follows: 

• The Book E architecture. Book E defines a set of user-level instructions and registers that 
are drawn from the user instruction set architecture (UISA) portion of the AIM definition 
PowerPC architecture. Book E also include numerous other supervisor-level registers and 
instructions as they were defined in the AIM version of the PowerPC architecture for the 
virtual environment architecture (VEA) and the operating environment architecture (OEA). 

Because Book E defines a much different model for operating system resources (such as 
the MMU and interrupts), it defines many new registers and instructions.

• Freescale Book E implementation standards. In many cases, the Book E architecture 
definition provides a very general framework, leaving many higher-level details up to the 
implementation. To ensure consistency among its Book E implementations, Freescale has 
defined implementation standards that provide an additional layer of architecture between 
Book E and the actual devices.

• e500 implementation details. Each processor typically defines instructions, registers, bits 
within registers, and other aspects that are more detailed than either the Book E definition 
or the Freescale Book E implementation standards. 

This book describes all of the instructions and registers implemented on the e500, including 
those defined by Book E and those that are e500-specific. 
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Information in this book is subject to change without notice, as described in the disclaimers on the 
title page of this book. As with any technical documentation, it is the readers’ responsibility to be 
sure they are using the most recent version of the documentation. 

Audience
It is assumed that the reader understands operating systems, microprocessor system design, and 
the basic principles of RISC processing.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Core Complex Overview,” provides a general description of e500 
functionality. 

• Chapter 2, “Register Model,” is useful for software engineers who need to understand the 
programming model for the three programming environments and the functionality of each 
register. 

• Chapter 3, “Instruction Model,” provides an overview of the addressing modes and a 
description of the instructions. Instructions are organized by function.

• Chapter 4, “Execution Timing,” describes how instructions are fetched, decoded, issues, 
executed, and completed and how instruction results are presented to the processor and 
memory system. Tables are provided that indicate latency and throughput for each of the 
instructions supported by the e500. 

• Chapter 5, “Interrupts and Exceptions,” describes how the e500 implements the interrupt 
model as it is defined by the Book E architecture. 

• Chapter 6, “Power Management,” describes the power management facilities as they are 
defined by Book E and implemented in the e500 core. 

• Chapter 7, “Performance Monitor,” describes the e500 implementation of the performance 
monitor APU that is defined by the Freescale Book E implementation standards. 

• Chapter 8, “Debug Support,” describes the debug facilities as they are defined by Book E 
and implemented in the e500 core.

• Chapter 9, “Timer Facilities,” describes the Book E-defined timer facilities implemented in 
the e500 core. These resources include the time base (TB), decrementer (DEC), 
fixed-interval timer (FIT), and watchdog timer.

• Chapter 10, “Auxiliary Processing Units (APUs),” lists the extensions to the 
Book E–defined programming model that are supported on the e500 and describes the 
e500-specific branch target buffer locking APU. 

• Chapter 11, “L1 Caches,” provides specific hardware and software details regarding the 
e500 cache implementation.
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• Chapter 12, “Memory Management Units,” provides specific hardware and software 
details regarding the e500 MMU implementation.

• Chapter 13, “Core Complex Bus (CCB),” describes those aspects of the CCB that are 
configurable or that provide status information through the programming interface. It 
provides a glossary of those signals that are mentioned in other chapters to offer a clearer 
understanding of how the core is integrated as part of a larger device. 

• Appendix A, “Programming Examples,” provides example code for use of creating atomic 
primitives with load and store with reservation instructions and for programming 
multiple-precision shifts.

• Appendix B, “Guidelines for 32-Bit Book E,” provides a set of guidelines for software 
developers. Application software written to these guidelines can be labelled 32-bit Book E 
applications and can expect to execute properly on all implementations of Book E, both 
32-bit and 64-bit implementations.

• Appendix C, “Simplified Mnemonics for PowerPC Instructions,” provides a set of 
simplified mnemonic examples and symbols.

• Appendix D, “Opcode Listings,” lists opcodes by mnemonic and by opcode. It includes an 
alphabetical listing that includes simplified mnemonics and the architecturally defined 
instructions (with syntax) to which they map.

• Appendix E, “Revision History,” contains a revision history for this manual.

• This book also includes an index.

Suggested Reading
This section lists additional reading that provides background for the information in this manual 
as well as general information about the architecture. 

General Information

The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth 
Floor, San Francisco, CA, provides useful information about the PowerPC architecture and 
computer architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second 
Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and 
David A. Patterson.

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, 
David A. Patterson and John L. Hennessy.
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Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the 
document order numbers are included in parentheses for ease in ordering:

• EREF: A Reference for Freescale Book E and the e500 Core (EREF)—This book provides 
a higher-level view of the programming model as it is defined by Book E, the Freescale 
Book E implementation standards, and the e500 microprocessor. 

• e500 Software Optimization Guide (eSOG) (AN2665)—This manual provides information 
to programmers so that they may write optimal code for the e500.

• Reference manuals—These books provide details about individual implementations and 
are intended for use with the EREF. 

• Addenda/errata to reference manuals—Because some processors have follow-on parts, an 
addendum is provided that describes the additional features and functionality changes. 
These addenda are intended for use with the corresponding reference manuals. 

• Hardware specifications—Hardware specifications provide specific data regarding bus 
timing, signal behavior, and AC, DC, and thermal characteristics, as well as other design 
considerations. 

• Product briefs—Each device has a product brief that provides an overview of its features. 
This document is roughly the equivalent to the overview (Chapter 1) of an 
implementation’s reference manual. 

• Application notes—These short documents address specific design issues useful to 
programmers and engineers working with Freescale processors. 

Additional literature is published as new processors become available. For a current list of 
documentation, refer to http://www.freescale.com

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value 
of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR
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rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, 
or ranges appear in brackets. For example, MSR[LE] refers to the 
little-endian mode enable bit in the machine state register.

x In some contexts, such as signal encodings, an unitalicized x indicates a 
don’t care. 

x An italicized x indicates an alphanumeric variable. 

n An italicized n indicates an numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits can be 
written to as ones or zeros, they are always read as zeros. 

Terminology Conventions
Table i lists certain terms used in this manual that differ from the architecture terminology 
conventions.

Table i. Terminology Conventions

Architecture Specification This Manual

Change bit Changed bit

Extended mnemonics Simplified mnemonics

Out of order memory accesses Speculative memory accesses

Privileged mode (or privileged state) Supervisor level 

Problem mode (or problem state) User level 

Reference bit Referenced bit

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access 

0 0 0 0 
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Part I  
e500 Core

Part I specifically describes the e500 core, excluding details about cache memories and MMU
features. It contains chapters that apply to the entire core, as follows:

• Chapter 1, “Core Complex Overview,” summarizes the e500 core. This a 32-bit 
implementation of the Book E PowerPC architecture, including a recognition that different 
processor implementations may require extensions or deviations from the architectural 
descriptions. 

• Chapter 2, “Register Model,” describes the e500 core register model as defined in Book E 
and the additional implementation-specific registers unique to the e500 core, including a 
Book E SPR model.

• Chapter 3, “Instruction Model,” provides information about the Book E architecture as it 
relates specifically to the e500 core complex. The e500 core complex also implements 
several APUs, which define additional instructions, registers, and interrupts. The chapter 
also features operand conventions, branch prediction, memory access alignment support, 
and memory synchronization sections.

• Chapter 4, “Execution Timing,” describes the e500 core’s operations performance as 
defined by instructions and how it reports the results of instruction execution. It gives 
detailed descriptions of how the core execution units work and how these units interact with 
other parts of the processor, such as the instruction fetching mechanism, register files, and 
caches. Included are examples of instruction sequences and tables that provide information 
useful to assembly language programmers for optimizing performance.

• Chapter 5, “Interrupts and Exceptions,” is a general description of the Book E interrupt and 
exception model and gives details of the additions and changes to that model that are 
implemented in the e500 core complex.

• Chapter 6, “Power Management,” describes the hardware and software resources the 
system uses to minimize its power consumption. This chapter regards the power 
management facilities as they are defined by Book E and implemented in devices that 
contain the e500 core, but its scope is limited to features of the core only.

• Chapter 7, “Performance Monitor,” describes the e500 implementation of the performance 
monitor APU that is defined by the Freescale Book E implementation standards. 

• Chapter 8, “Debug Support,” describes the e500 core complex internal debug capabilities 
and associated features. Included are important deviations to the Book E debug mode.
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Chapter 1  
Core Complex Overview
This chapter provides an overview of the PowerPC™ e500 microprocessor core. 

References to e500 are true for both the e500v1 and e500v2. 

This chapter includes the following:

• An overview of the Book E version of the PowerPC architecture features as implemented 
in this core and a summary of the core feature set

• A summary of the instruction pipeline and flow

• An overview of the programming model

• An overview of interrupts and exception handling

• A description of the memory management architecture

• High-level details of the e500 core memory and coherency model

• A brief description of the core complex bus (CCB)

• A summary of the Book E architecture compatibility and migration from the original 
version of the PowerPC architecture as it is defined by Apple, IBM, and Motorola (referred 
to as the AIM version of the PowerPC architecture)

The e500 core provides features that the integrated device may not implement or may implement 
in a more specific way. 

1.1 Overview
The e500 processor core is a low-power implementation of the family of reduced instruction set 
computing (RISC) embedded processors that implement the Book E definition of the PowerPC 
architecture. The e500 is a 32-bit implementation of the Book E architecture using the lower words 
in the 64-bit general-purpose registers (GPRs). 

Figure 1-1 is a block diagram of the processor core complex that shows how the functional units 
operate independently and in parallel. Note that this conceptual diagram does not attempt to show 
how these features are physically implemented. 
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Figure 1-1. e500 Core Complex Block Diagram
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Book E allows processors to provide auxiliary processing units (APUs), which are extensions to 
the architecture that can perform computational or system management functions. One of these on 
the e500 is the signal processing engine APU (SPE APU), which includes a suite of vector 
instructions that use the upper and lower halves of the GPRs as a single two-element operand. 
Most APUs implemented on the e500 are defined by the Freescale Semiconductor Book E 
implementation standards (EIS).

1.1.1 Upward Compatibility

The e500 provides 32-bit effective addresses and integer data types of 8, 16, and 32 bits, as defined 
by Book E. It also provides two-element, 64-bit data types for the SPE APU and the embedded 
vector floating-point APU, which include instructions that operate on operands comprised of two 
32-bit elements. For detailed information regarding the e500 instruction set, see Chapter 3, 
“Instruction Model.”

The embedded single-precision scalar floating-point APU provides 32-bit single-precision 
instructions. 

NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices.

1.1.2 Core Complex Summary

The core complex is a superscalar processor that can issue two instructions and complete two 
instructions per clock cycle. Instructions complete in order, but can execute out of order. Execution 
results are available to subsequent instructions through the rename buffers, but those results are 
recorded into architected registers in program order, maintaining a precise exception model. All 
arithmetic instructions that execute in the core operate on data in the GPRs. Although the GPRs 
are 64 bits wide, only SPE APU, DPFP (e500v2 only), and embedded vector floating-point 
instructions operate on the upper word of the GPRs; the upper 32 bits are not affected by other 
32-bit instructions. 
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The processor core integrates two simple instruction units (SU1, SU2), a multiple-cycle 
instruction unit (MU), a branch unit (BU), and a load/store unit (LSU). 

The LSU and SU2 support 64- and 32-bit instructions. 

The ability to execute five instructions in parallel and the use of simple instructions with short 
execution times yield high efficiency and throughput. Most integer instructions execute in 1 clock 
cycle. A series of independent vector floating-point add instructions can be issued and completed 
with a throughput of one instruction per cycle. 

The core complex includes independent on-chip, 32-Kbyte, eight-way set-associative, physically 
addressed caches for instructions and data. It also includes on-chip first-level instruction and data 
memory management units (MMUs) and an on-chip second-level unified MMU. 

• The first-level MMUs contain two four-entry, fully-associative instruction and data 
translation lookaside buffer (TLB) arrays that provide support for demand-paged virtual 
memory address translation and variable-sized pages. They also contain two 64-entry, 
4-way set-associative instruction and data TLB arrays that support 4-Kbyte pages. These 
arrays are maintained entirely by the hardware with a true least-recently-used (LRU) 
algorithm.

• The second-level MMU contains a 16-entry, fully-associative unified (instruction and data) 
TLB array that provides support for variable-sized pages. It also contains a unified TLB for 
4-Kbyte page size support, as follows:

— a 256-entry, 2-way set-associative unified TLB for the e500v1

— a 512-entry, 4-way set-associative unified TLB for the e500v2

These second-level TLBs are maintained completely by the software.

The core complex allows cache-line-based user-mode locks on the contents in either the instruction 
or data cache. This provides embedded applications with the capability for locking interrupt 
routines or other important (time-sensitive) instruction sequences into the instruction cache. It also 
allows data to be locked into the data cache, which supports deterministic execution time.

The core complex supports a high-speed on-chip internal bus with data tagging called the core 
complex bus (CCB). The CCB has two general-purpose read data buses, one write data bus, data 
parity bits, data tag bits, an address bus, and address attribute bits. The processor core complex 
supports out-of-order reads, in-order writes, and one level of pipelining for addresses with 
address-retry responses. It can also support single-beat and burst data transfers for memory 
accesses and memory-mapped I/O operations.
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1.2 e500 Processor and System Version Numbers
Table 1-1 matches the revision code in the processor version register (PVR) and the system version 
register (SVR). These registers can be accessed as SPRs through the e500 core (see Chapter 2, 
“Register Model”) or as memory-mapped registers defined by the integrated device (see the 
reference manual for the device).

1.3 Features 
Key features of the e500 are summarized as follows: 

• Implements Book E 32-bit architecture

• Auxiliary processing units

The branch target buffer (BTB) locking APU is specific to the e500. The BTB locking APU 
gives the user the ability to lock, unlock, and invalidate BTB entries; further information is 
provided in Table 1-5 and Section 10.2, “Branch Target Buffer (BTB) Locking APU.” The 
EIS defines the following APUs:

— Integer select. This APU consists of the Integer Select instruction, isel, which is a 
conditional register move that helps eliminate conditional branches, decreases latency, 
and reduces the code footprint. 

— Performance monitor. The performance monitor facility provides the ability to monitor 
and count predefined events such as processor clocks, misses in the instruction cache or 
data cache, types of instructions decoded, or mispredicted branches. The count of such 
events can be used to trigger the performance monitor exception. Additional 
performance monitor registers (PMRs) similar to SPRs are used to configure and track 
performance monitor operations. These registers are accessed with the Move to PMR 
and Move from PMR instructions (mtpmr and mfpmr). See Section 1.12, 
“Performance Monitoring.” 

— Cache locking. This APU allows instructions and data to be locked into their respective 
caches on a cache block basis. Locking is performed by a set of touch and lock set 
instructions. This functionality can be enabled for user mode by setting MSR[UCLE]. 
The APU also provides resources for detecting and handling overlocking conditions. 

— Machine check. The machine check interrupt is treated as a separate level of interrupt. 
It uses its own save and restore registers (MCSRR0 and MCSRR1) and Return from 

Table 1-1. Revision Level-to-Device Marking Cross-Reference

SoC Revision
e500v2 Core 

Revision
Processor Version Register (PVR) System Version Register (SVR)

1.0 1.0 0x8020_0010 SoC-dependent value

1.1 2.0 0x8020_0020 SoC-dependent value

2.0 2.0 0x8021_0010 SoC-dependent value
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Machine Check Interrupt (rfmci) instruction. See Section 1.8, “Interrupts and 
Exception Handling.” 

— Single-precision embedded scalar and vector floating-point APUs. These instructions 
are listed in Table 1-4.

— Signal processing engine APU (SPE APU). Note that the SPE is not a separate unit; SPE 
computational and logical instructions are executed in the simple and multiple-cycle 
units used by all other computational and logical instructions, and 64-bit loads and stores 
are executed in the common LSU. Figure 1-1 shows how execution logic for SU1, the 
MU, and the LSU is replicated to support operations on the upper halves of the GPRs. 

Note that the SPE APU and the two single-precision floating-point APUs were combined in the 
original implementation of the e500 v1, as shown in Figure 1-2.

The e500 register set is modified as follows:

– GPRs are widened to 64 bits to support 64-bit load, store, and merge operations. Note 
that the upper 32 bits are affected only by 64-bit instructions.

– A 64-bit accumulator (ACC) has been added.

– The signal processing and embedded floating-point status and control register 
(SPEFSCR) provides interrupt control and status for SPE and embedded 
floating-point instructions. 

These registers are shown in Figure 1-7. SPE instructions are grouped as follows:

– Single-cycle integer add and subtract with the same latencies for SPE APU 
operations as for the 32-bit equivalent

– Single-cycle logical operations

– Single-cycle shift and rotates

– Four-cycle integer pipelined multiplies

– 4-, 11-, 19-, and 35-cycle integer divides

– If rA or rB is zero, a floating-point divide takes 4 cycles; all other cases take 29 cycles. 

– 4-cycle SIMD pipelined multiply-accumulate (MAC)

– 64-bit accumulator for no-stall MAC operations

Vector and Floating-Point APUs e500 v1 e500 v2

Original SPE 
Definition

SPE vector instructions ev… √ √

Vector single-precision floating-point evfs… √ √

Scalar single-precision floating-point efs… √ √

Scalar double-precision floating-point efd… √

Figure 1-2. Vector and Floating-Point APUs
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– 64-bit loads and stores

– 64-bit merge instructions

• Cache structure—Separate 32-Kbyte, 32-byte line, 8-way set-associative level 1 instruction 
and data caches

— 1.5-cycle cache array access, 3-cycle load-to-use latency

— Pseudo-LRU (PLRU) replacement algorithm

— Copy-back data cache that can function as a write-through cache on a page-by-page basis

— Supports all Book E memory coherency modes

— Supports EIS-defined cache-locking instructions, as listed in Table 1-3

• Dual-issue superscalar control

— Two-instructions-per-clock peak issue rate

— Precise exception handling 

• Decode unit

— 12-entry instruction queue (IQ)

— Full hardware detection of interlocks

— Decodes as many as two instructions per cycle

— Decode serialization control

— Register dependency resolution and renaming

• Branch prediction unit (BPU)

— Dynamic branch prediction using a 512-entry, 4-way set-associative branch target 
buffer (BTB) supported by the e500 BTB instructions listed in Table 1-5. 

— Branch prediction is handled in the fetch stages. 

• Completion unit

— As many as 14 instructions allowed in 14-entry completion queue (CQ)

— In-order retirement of as many as two instructions per cycle

— Completion and refetch serialization control

— Synchronization for all instruction flow changes—interrupts, mispredicted branches, 
and context-synchronizing instructions

• Issue queues

— Two-entry branch instruction issue queue (BIQ)

— Four-entry general instruction issue queue (GIQ)

• Branch unit—The branch unit (BU) is an execution unit and is distinct from the BPU. It 
executes (resolves) all branch and CR logical instructions.
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• Two simple units (SU1 and SU2) 

— Add and subtract 

— Shift and rotate

— Logical operations 

— Support for 64-bit SPE APU instructions in SU1

• Multiple-cycle unit (MU)—The MU is shown in Figure 1-3. 

Figure 1-3. Four-Stage MU Pipeline, Showing Divide Bypass

The MU has the following features:

— Four-cycle latency for all multiplication, including SPE integer and fractional multiply 
instructions and embedded scalar and vector floating-point multiply instructions

— Variable-latency divide: 4, 11, 19, and 35 cycles for all integer divide instructions. If rA 
or rB is zero, floating-point divide instructions take 4 cycles; all others take 29. Note 
that although most divide instructions take more than 4 cycles to execute, the MU 
allows subsequent multiply instructions to execute through all four MU stages in 
parallel with the divide. 

— 4-cycle floating-point add and subtract

• The load/store unit (LSU) is shown in Figure 1-4.

The LSU has the following features:

— 3-cycle load latency

— Fully pipelined

— Load miss queue allows up to four load misses before stalling (up to nine load misses 
in the e500v2).

— Load hits can continue to be serviced when the load miss queue is full.

— The seven-entry L1 store queue allows full pipelining of stores.

Upper Lower

MU-3

MU-1

MU-2

Divide Bypass Path

Postdivide

Divide

Reservation
Station

From GIQ0 or GIQ1 

MU-4
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Figure 1-4. Three-Stage Load/Store Unit

— The three-entry data line fill buffer (five-entry on the e500v2) is used for loads and 
cacheable stores. Stores are allocated here so loads can access data from the store 
immediately. 

— The data write buffer contains three entries: one dedicated for snoop pushes, one 
dedicated for castouts, and one that can be used for snoop pushes or cast outs.

• Cache coherency

— Supports four-state cache coherency: modified-exclusive, exclusive, shared, and invalid 
(MESI). Note, however that shared state may not be accessible in some 
implementations.

— Bus support for hardware-enforced coherency (bus snooping)

• Core complex bus (CCB)—internal bus

— High-speed, on-chip local bus with data tagging

— 32-bit address bus

— Address protocol with address pipelining and retry/copyback derived from bus used by 
previous generations of PowerPC processors (referred to as the 60x bus)

— Two general-purpose read data buses and one write data bus

• Extended exception handling

— Supports Book E interrupt model

– Less than 10-cycle interrupt latency

– Interrupt vector prefix register (IVPR)

Reservation
Station

Load/Store Unit
 (64-/32-Bit)

Load

Data Line
Fill Buffer

Data Write
Buffer

L1 Store
Queue Miss

Queue

To core interface unit

To data cache

To GPR operand bus

To completion queue

To GPRs

Three-Stage Pipeline

Queues and Buffers

e500v2 (9 entry)

e500v1 (3 entry)
e500v2 (5 entry)

e500v1 (4 entry)



PowerPC e500 Core Family Reference Manual, Rev. 1

1-10 Freescale Semiconductor

Core Complex Overview

– Interrupt vector offset registers (IVORs) 0–15 as defined in Book E, plus 
e500-defined IVORs 32–35

– Exception syndrome register (ESR)

– Book E-defined preempting critical interrupt, including critical interrupt status 
registers (CSRR0 and CSRR1) and an rfci instruction

— e500-specific interrupts not defined in Book E architecture

– Machine-check APU

– SPE APU unavailable exception 

– Floating-point data exception 

– Floating-point round exception

– Performance monitor 

• Memory management unit (MMU)

— 32-bit effective address translated to 32-bit real address (using a 41-bit interim virtual 
address) for the e500v1core and 36-bit real addressing for the e500v2 core

— TLB entries for variable- (4-Kbyte–256-Mbyte pages for the e500v1 and 
4-Kbyte–4-Gbyte pages for the e500v2) and fixed-size (4-Kbyte) pages

— Data L1 MMU

– 4-entry, fully associative TLB array for variable-sized pages

– 64-entry, 4-way set-associative TLB for 4-Kbyte pages

— Instruction L1 MMU

– 4-entry, fully associative TLB array for variable-sized pages

– 64-entry, 4-way set-associative TLB for 4-Kbyte pages

— Unified L2 MMU

– 16-entry, fully associative TLB array for variable-sized pages

– e500v1—A 256-entry, 2-way set-associative unified (for instruction and data 
accesses) L2 TLB array (TLB0) supports only 4-Kbyte pages

– e500v2—A 512-entry, 4-way set-associative unified (for instruction and data 
accesses) L2 TLB array (TLB0) supports only 4-Kbyte pages

— Software reload for TLBs

— Virtual memory support for as much as 4 Gbytes (232) of effective address space

— Real memory support for as much as 4 Gbytes (232) of physical memory on the e500v1 
and 64 Gbytes (236) on the e500v2

— Support for big-endian and true little-endian memory on a per-page basis

• Power management
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— Low-power design

— Power-saving modes: core-halted and core-stopped 

— Internal clock multipliers ranging from 1 to 8 times the bus clock, including integer and 
half-mode multipliers. 

— Dynamic power management of execution units, caches, and MMUs

— NAP, DOZE, and SLEEP bits in HID0 can be used to assert nap, doze, and sleep output 
signals to initiate power-saving modes at the integrated device level.

• Testability 

— LSSD scan design

— JTAG interface

— ESP support 

— Nexus debug support

• Reliability and serviceability

— Parity checking on caches

— Parity checking on e500 local bus

1.3.1 e500v2 Differences

The e500v2 provides the following additional features not supported by the e500v1:

• The e500v2 uses 36-bit physical addressing, which is supported by the following:

— MMU assist register 7 (MAS7) 

— HID0[EN_MAS7_UPDATE] 

— Programmable jumper options to specify the upper bits of the reset vector. 

• The e500v2 has a 512-entry, 4-way set-associative unified TLB for TLB1.

• The maximum variable page size is extended to 4 Gbytes.

• Embedded double-precision floating-point APU has been added. These instructions use the 
64-bit GPRs as single, 64-bit double-precision operands. This APU is enabled through 
MSR[SPE]. 

• Slightly different functionality of HID1[RFXE] bit. 

• The data line fill buffer in the LSU is expanded from three to five entries.

• The load miss queue in the LSU is expanded from four to nine entries.

• TBSEL and TBEE bits have been added to the performance monitor global control 
register 0 (PMGC0) to support monitoring of time base events. 

• Minor modifications to the SPE APU.
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• Data cache flush assist capability, supported through HID0[DCFA]. When DCFA is set, the 
cache miss replacement algorithm ignores invalid entries and follows the replacement 
sequence defined by the PLRU bits. This reduces the series of uniquely addressed load or 
dcbz instructions required to flush the cache.

Detailed descriptions of these differences are provided in their respective chapters. 

NOTE
Unless otherwise indicated, references to e500 apply to both e500v1 
and e500v2.

1.4 Instruction Set
The e500 implements the following instructions:

• The Book E instruction set for 32-bit implementations. This is composed primarily of the 
user-level instructions defined by the PowerPC user instruction set architecture (UISA). 
The e500 does not include Book E floating-point, load string, or store string instructions.

• The e500 supports the following implementation-specific instructions:

— Integer select APU. This APU consists of the Integer Select instruction (isel), which 
functions as an if-then-else statement that selects between two source registers by 
comparison to a CR bit. This instruction eliminates conditional branches, decreases 
latency, and reduces the code footprint. 

— Performance monitor APU. Table 1-2 lists performance monitor APU instructions.

— Cache locking APU. This APU consists of the instructions described in Table 1-3. 

— Machine check APU. This APU defines the Return from Machine Check Interrupt 
instruction (rfmci).

Table 1-2. Performance Monitor APU Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS

Table 1-3. Cache Locking APU Instructions

Name Mnemonic Syntax

Data Cache Block Lock Clear dcblc CT, rA, rB 

Data Cache Block Touch and Lock Set dcbtls CT, rA, rB 

Data Cache Block Touch for Store and Lock Set dcbtstls CT, rA, rB

Instruction Cache Block Lock Clear icblc CT, rA, rB 

Instruction Cache Block Touch and Lock Set icbtls CT, rA, rB 
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— SPE APU vector instructions. Vector instructions are defined that view the 64-bit GPRs 
as composed of a vector of two 32-bit elements (some instructions also read or write 
16-bit elements). Some scalar instructions produce a 64-bit scalar result. 
Section 3.8.1.3, “SPE APU Instructions,” lists SPE APU vector instructions. 

— The embedded floating-point APUs provide scalar and vector floating-point 
instructions. Scalar single-precision floating-point instructions use only the lower 32 
bits of the GPRs; double-precision operands (e500v2 only) use all 64 bits. Table 1-4 
lists embedded floating-point instructions.

— BTB locking APU instructions. The core complex provides a 512-entry BTB for 
efficient processing of branch instructions. The BTB is a branch target address cache, 

Table 1-4. Scalar and Vector Embedded Floating-Point APU Instructions

Instruction
Mnemonic

Syntax
Scalar SP Scalar DP Vector

Convert Floating-Point Single- from Double-Precision — efscfd — rD,rB 

Convert Floating-Point Double- from Single-Precision — efdcfs — rD,rB 

Convert Floating-Point from Signed Fraction efscfsf efdcfsf evfscfsf rD,rB 

Convert Floating-Point from Signed Fraction efscfsf efdcfsf evfscfsf rD,rB 

Convert Floating-Point from Signed Integer efscfsi efdcfsi evfscfsi rD,rB 

Convert Floating-Point from Unsigned Fraction efscfuf efdcfuf evfscfuf rD,rB 

Convert Floating-Point from Unsigned Integer efscfui efdcfui evfscfui rD,rB 

Convert Floating-Point to Signed Fraction efsctsf efdctsf evfsctsf rD,rB 

Convert Floating-Point to Signed Integer efsctsi efdctsi evfsctsi rD,rB 

Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz efdctsiz evfsctsiz rD,rB 

Convert Floating-Point to Unsigned Fraction efsctuf efdctuf evfsctuf rD,rB 

Convert Floating-Point to Unsigned Integer efsctui efdctui evfsctui rD,rB 

Convert Floating-Point to Unsigned Integer with Round toward Zero efsctuiz efdctuiz evfsctuiz rD,rB 

Floating-Point Absolute Value efsabs efdabs evfsabs rD,rA 

Floating-Point Add efsadd efdadd evfsadd rD,rA,rB 

Floating-Point Compare Equal efscmpeq efdcmpeq evfscmpeq crD,rA,rB 

Floating-Point Compare Greater Than efscmpgt efdcmpgt evfscmpgt crD,rA,rB 

Floating-Point Compare Less Than efscmplt efdcmplt evfscmplt crD,rA,rB 

Floating-Point Divide efsdiv efddiv evfsdiv rD,rA,rB 

Floating-Point Multiply efsmul efdmul evfsmul rD,rA,rB 

Floating-Point Negate efsneg efdneg evfsneg rD,rA 

Floating-Point Negative Absolute Value efsnabs efdnabs evfsnabs rD,rA 

Floating-Point Subtract efssub efdsub evfssub  rD,rA,rB 

Floating-Point Test Equal efststeq efdtsteq evfststeq crD,rA,rB 

Floating-Point Test Greater Than efststgt efdtstgt evfststgt crD,rA,rB 

Floating-Point Test Less Than efststlt efdtstlt evfststlt crD,rA,rB 
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organized as 128 rows with 4-way set associativity, that holds the address and target 
instruction of the 512 most-recently taken branches. Table 1-5 lists BTB instructions.

1.5 Instruction Flow
The e500 core is a pipelined, superscalar processor with parallel execution units that allow 
instructions to execute out of order but record their results in order. Pipelining breaks instruction 
processing into discrete stages, so multiple instructions in an instruction sequence can occupy the 
successive stages: as an instruction completes one stage, it passes to the next, leaving the previous 
stage available to a subsequent instruction. So, even though it may take multiple cycles for an 
instruction to pass through all of the pipeline stages, once a pipeline is full, instruction throughput 
is much shorter than the latency. 

A superscalar processor is one that issues multiple independent instructions into separate 
execution units, allowing parallel execution. The e500 core has five execution units, one each for 
branch (BU), load/store (LSU), and multiple-cycle operations (MU), and two for simple arithmetic 
operations (SU1 and SU2). The MU and SU1 arithmetic execution units also execute 64-bit SPE 
vector instructions, using both the lower and upper halves of the 64-bit GPRs.

The parallel execution units allow multiple instructions to execute in parallel and out of order. For 
example, a low-latency addition instruction that is issued to an SU after an integer divide is issued 
to the MU should finish executing before the higher latency divide instruction. The add instruction 
can make its results available to a subsequent instruction, but it cannot update the architected GPR 
specified as its target operand ahead of the multiple-cycle divide instruction. 

1.5.1 Initial Instruction Fetch

The e500 core begins execution at fixed virtual address 0xFFFF_FFFC. The MMU has a default 
page translation which maps this to the identical physical address. So, the instruction at physical 
address 0xFFFF_FFFC must be a branch to another address within the 4-Kbyte boot page.

1.5.2 Branch Detection and Prediction

To improve branch performance, the e500 provides implementation-specific dynamic branch 
prediction using the BTB to resolve branch instructions and improve the accuracy of branch 
predictions. Each of the 512 entries in the 4-way set associative address cache of branch target 
addresses includes a 2-bit saturating branch history counter, whose value is incremented or 
decremented depending on whether the branch was taken. These bits can take on four values 

Table 1-5. BTB Locking APU Instructions

Name Mnemonic Syntax

Branch Buffer Load Entry and Lock Set bblels —

Branch Buffer Entry Lock Reset bbelr —
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indicating strongly taken, weakly taken, weakly not taken, and strongly not taken. The BTB is used 
not only to predict branches, but to detect branches during the fetch stage, offering an efficient way 
to access instruction streams for branches predicted as taken.

In the e500, all branch instructions are assigned positions in the completion queue at dispatch. 
Speculative instructions in branch target streams are allowed to execute and proceed through the 
completion queue, although they can complete only after the branch prediction is resolved as 
correct and after the branch instruction itself completes. 

If a branch resolves as correct, instructions in the target stream are marked nonspeculative and are 
allowed to complete. If the branch history bits in the BTB indicated weakly taken or weakly not 
taken, the prediction is upgraded to strongly taken or strongly not taken. 

If a branch resolves as incorrect, instructions in the target stream are flushed from the execution 
pipeline, the branch history bits are updated in the BTB entry, and nonspeculative fetching begins 
from the correct path. 
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1.5.3 e500 Execution Pipeline

The seven stages of the e500 execution pipeline—fetch1, fetch2/predecode, decode/dispatch, 
issue, execute, complete, and write back—are highlighted in grey in Figure 1-5.

Figure 1-5. Instruction Pipeline Flow

The common pipeline stages are as follows:

• Instruction fetch—Includes the clock cycles necessary to request an instruction and the time 
the memory system takes to respond to the request. Instructions retrieved are latched into the 
instruction queue (IQ) for subsequent consideration by the dispatcher. 

Instruction fetch timing depends on many variables, such as whether an instruction is in the 
on-chip instruction cache or an L2 cache (if implemented). Those factors increase when it is 
necessary to fetch instructions from system memory and include the processor-to-bus clock 
ratio, the amount of bus traffic, and whether any cache coherency operations are required. 
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Because there are so many variables, unless otherwise specified, the instruction timing 
examples in this chapter assume optimal performance and show the portion of the fetch 
stage in which the instruction is in the instruction queue. The fetch1 and fetch2 stages are 
primarily involved in retrieving instructions. 

• The decode/dispatch stage fully decodes each instruction; most instructions are dispatched 
to the issue queues (however, isync, rfi, sc, nops, and some other instructions do not go to 
issue queues). 

• The two issue queues, BIQ and GIQ, can accept as many as one and two instructions, 
respectively, in a cycle. The behavior of instruction dispatch is covered in significant detail 
in the e500 Software Optimization Guide. The following simplification covers most cases: 

— Instructions dispatch only from the two lowest IQ entries—IQ0 and IQ1. 

— A total of two instructions can be dispatched to the issue queues per clock cycle.

— Space must be available in the CQ for an instruction to decode and dispatch (this includes 
instructions that are assigned a space in the CQ but not in an issue queue).

Dispatch is treated as an event at the end of the decode stage. The issue stage reads source 
operands from rename registers and register files and determines when instructions are 
latched into the execution unit reservation stations. Note that the e500 has 14 rename 
registers, one for each completion queue entry, so instructions cannot stall because of a 
shortage of rename registers. 

The general behavior of the two issue queues is described as follows: 

— The GIQ accepts as many as two instructions from the dispatch unit per cycle. SU1, 
SU2, MU, and all LSU instructions (including 64-bit loads and stores) are dispatched to 
the GIQ, shown in Figure 1-6. 

Figure 1-6. GPR Issue Queue (GIQ)

Instructions can be issued out-of-order from the bottom two GIQ entries (GIQ1–GIQ0). 
GIQ0 can issue to SU1, MU, and LSU. GIQ1 can issue to SU2, MU, and LSU. 

Note that SU2 executes a subset of the instructions that can be executed in SU1. The 
ability to identify and dispatch instructions to SU2 increases the availability of SU1 to 
execute more computational-intensive instructions.

An instruction in GIQ1 destined for SU2 or the LSU need not wait for an MU 
instruction in GIQ0 that is stalled behind a long-latency divide.
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• The execute stage accepts instructions from its issue queue when the appropriate 
reservation stations are not busy. In this stage, the operands assigned to the execution stage 
from the issue stage are latched.

The execution unit executes the instruction (perhaps over multiple cycles), writes results on 
its result bus, and notifies the CQ when the instruction finishes. The execution unit reports 
any exceptions to the completion stage. Instruction-generated exceptions are not taken until 
the excepting instruction is next to retire.

Most integer instructions have a 1-cycle latency, so results of these instructions are 
available 1 clock cycle after an instruction enters the execution unit. The MU and LSU are 
pipelined, as shown in Figure 1-5.

Branches resolve in execute stage. If a branch is mispredicted, it takes 5 cycles for the next 
instruction to reach the execute stage.

• The complete and write-back stages maintain the correct architectural machine state and 
commit results to the architecture-defined registers in the proper order. If completion logic 
detects an instruction containing an exception status or a mispredicted branch, all following 
instructions are cancelled, their execution results in rename registers are discarded, and the 
correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per 
clock cycle. If no dependencies exist, as many as two instructions are retired in program 
order. Section 4.7.4, “Completion Unit Resource Requirements,” describes completion 
dependencies. 

The write-back stage occurs in the clock cycle after the instruction is retired.

The e500 core also provides new instructions that perform single-instruction, multiple-data (SIMD) 
operations. These signal processing instructions consist of parallel operations on both the upper and 
lower 32 bits of two 64-bit GPR values and produce two 32-bit results written to a 64-bit GPR. 

As shown in Figure 1-5, the LSU, MU, and SU1 replicate logic to support 64-bit operations. 
Although a vector instruction generates separate, discrete results in the upper and lower halves of 
the target GPR, latency and throughput for vector instructions are the same as those for their scalar 
equivalents.

1.6 Programming Model
The following section describes the e500 core registers defined in Book E, the Freescale 
Semiconductor Book E implementation standards (EIS), and registers that are specific to the e500. 
Figure 1-7 shows the e500 register set. 
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Figure 1-7. e500 Core Programming Model
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1.7 On-Chip Cache Implementation
The core complex contains separate 32-Kbyte, eight-way set-associative, level 1 (L1) instruction 
and data caches to give rapid access to instructions and data. 

The data cache supports four-state MESI memory coherency protocol. The core complex 
broadcasts all cache management functions based on the setting of the address broadcast enable 
bit, HID1[ABE], allowing management of other caches in the system. 

The caches implement a pseudo-least-recently-used (PLRU) replacement algorithm. 

Parity generation and checking may be enabled for both caches, and each cache can be 
independently invalidated through L1CSR1 and L1CSR0. Additionally, instructions are provided 
to perform cache locking and unlocking on both data and instruction caches on a cache-block 
granularity. These are listed in Section 1.10.3, “Cache Control Instructions.” 

Individual instruction cache blocks and data cache blocks can be invalidated using the icbi and 
dcbi instructions, respectively. The entire data cache can be invalidated by setting L1CSR0[CFI]; 
the entire instruction cache can be invalidated by setting L1CSR1[ICFI]. 

1.8 Interrupts and Exception Handling
The e500 core supports an extended exception handling model, with nested interrupt capability 
and extensive interrupt vector programmability. The following sections define the exception 
model, including an overview of exception handling as implemented on the e500 core, a brief 
description of the exception classes, and an overview of the registers involved in the processes.

1.8.1 Exception Handling

In general, interrupt processing begins with an exception that occurs due to external conditions, 
errors, or program execution problems. When the exception occurs, the processor checks to verify 
interrupt processing is enabled for that particular exception. If enabled, the interrupt causes the 
state of the processor to be saved in the appropriate registers and prepares to begin execution of 
the handler located at the associated vector address for that particular exception. 

Once the handler is executing, the implementation may need to check one or more bits in the 
exception syndrome register (ESR) or the SPEFSCR, depending on the exception, to verify the 
specific cause of the exception and take appropriate action. 

The core complex provides the interrupts described in Section 1.8.5, “Interrupt Registers.” 
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1.8.2 Interrupt Classes

All interrupts may be categorized as asynchronous/synchronous and critical/noncritical.

• Asynchronous interrupts (such as machine check, critical input, and external interrupts) are 
caused by events that are independent of instruction execution. For asynchronous 
interrupts, the address reported in a save/restore register is the address of the instruction that 
would have executed next had the asynchronous interrupt not occurred.

• Synchronous interrupts are those that are caused directly by the execution or attempted 
execution of instructions. Synchronous inputs may be either precise or imprecise, which are 
described as follows:

— Synchronous precise interrupts are those that precisely indicate the address of the 
instruction causing the exception that generated the interrupt or, in some cases, the 
address of the immediately following instruction. The interrupt type and status bits 
indicate which instruction is addressed in the appropriate save/restore register.

— Synchronous imprecise interrupts are those that may indicate the address of the 
instruction causing the exception that generated the interrupt or some instruction after the 
instruction causing the interrupt. If the interrupt was caused by either the context 
synchronizing mechanism or the execution synchronizing mechanism, the address in the 
appropriate save/restore register is the address of the interrupt forcing instruction. If the 
interrupt was not caused by either of those mechanisms, the address in the save/restore 
register is the last instruction to start execution and may not have completed. No 
instruction following the instruction in the save/restore register has executed.

1.8.3 Interrupt Types

The e500 core processes all interrupts as either machine check, critical, or noncritical types. 
Separate control and status register sets are provided for each interrupt type. The core handles 
interrupts from these three types in the following priority order: 

1. Machine check interrupt (highest priority)—The e500 defines a separate set of resources 
for the machine check interrupt. They use the machine check save and restore registers 
(MCSRR0/MCSRR1) to save state when they are taken, and they use the rfmci instruction 
to restore state. These interrupts can be masked by the machine check enable bit, 
MSR[ME].

2. Noncritical interrupts—First-level interrupts that allow the processor to change program 
flow to handle conditions generated by external signals, errors, or unusual conditions 
arising from program execution or from programmable timer-related events. These 
interrupts are largely identical to those previously defined by the OEA portion of the 
Power PC architecture. They use save and restore registers (SRR0/SRR1) to save state 
when they are taken and they use the rfi instruction to restore state. Asynchronous 
noncritical interrupts can be masked by the external interrupt enable bit, MSR[EE].
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3. Critical interrupts—Critical interrupts can be taken during a noncritical interrupt or during 
regular program flow. They use the critical save and restore registers (CSRR0/CSRR1) to 
save state when they are taken and they use the rfci instruction to restore state. These 
interrupts can be masked by the critical enable bit, MSR[CE]. Book E defines the critical 
input, watchdog timer, and machine check interrupts as critical interrupts, but the e500 
defines a third set of resources for the machine check interrupt, as described in Table 1-6.

All interrupts except machine check are ordered within the two categories of noncritical and critical, 
such that only one interrupt of each category is reported, and when it is processed (taken), no 
program state is lost. Because save/restore register pairs are serially reusable, program state may be 
lost when an unordered interrupt is taken (see Section 5.10, “Interrupt Ordering and Masking”).

1.8.4 Upper Bound on Interrupt Latencies

Core complex interrupt latency is defined as the number of core clocks between the sampling of 
the interrupt signal as asserted and the initiation of the IVOR fetch (that is, the fetch of the first 
instruction in the handler). Core complex interrupt latency is determinate unless a guarded load or 
a cache-inhibited stwcx. is being executed, in which case the latency is indeterminate. The 
minimum latency is 3 core clocks and the maximum is 8, not including the 2 bus clock cycles 
required to synchronize the interrupt signal from the pad. 

When an interrupt is taken, all instructions in the IQ are thrown away unless the oldest instruction 
is a load/store instruction. That is, if an asynchronous interrupt is being serviced and the oldest 
instruction is not a load/store instruction, the core complex goes straight from sampling the 
interrupt to ensuring a recoverable state and issuing an exception. If a load/store instruction is 
oldest, the core complex waits 4 clocks before ensuring a recoverable state. During this time, any 
instruction finished by the LSU is deallocated. 

1.8.5 Interrupt Registers

The registers associated with interrupt and exception handling are described in Table 1-6.

Table 1-6. Interrupt Registers

Register Description

Noncritical Interrupt Registers

SRR0 Save/restore register 0—Holds the address of the instruction causing the exception or the address of the 
instruction that will execute after the rfi instruction.

SRR1 Save/restore register 1—Holds machine state on noncritical interrupts and restores machine state after an 
rfi instruction is executed.

Critical Interrupt Registers

CSRR0 Critical save/restore register 0—On critical interrupts, holds either the address of the instruction causing the 
exception or the address of the instruction that will execute after the rfci instruction.

CSRR1 Critical save/restore register 1—Holds machine state on critical interrupts and restores machine state after 
an rfci instruction is executed.
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Each interrupt has an associated interrupt vector address, obtained by concatenating the IVPR value 
with the address index in the associated IVOR (that is, IVPR[32–47] || IVORn[48–59] || 0b0000). 
The resulting address is that of the instruction to be executed when that interrupt occurs. IVPR and 
IVOR values are indeterminate on reset, and must be initialized by the system software using 
mtspr. Table 1-7 lists IVOR registers implemented on the e500 and the associated interrupts. For 
more information, see Chapter 5, “Interrupts and Exceptions.”

Machine Check Interrupt Registers

MCSRR0 Machine check save/restore register 0—Used to store the address of the instruction that will execute after 
an rfmci instruction is executed.

MCSRR1 Machine check save/restore register 1—Holds machine state on machine check interrupts and restores 
machine state (if recoverable) after an rfmci instruction is executed.

MCAR Machine check address register—Holds the address of the data or instruction that caused the machine 
check interrupt. MCAR contents are not meaningful if a signal triggered the machine check interrupt.

Syndrome Registers

MCSR Machine check syndrome register—Holds machine state information on machine check interrupts and 
restores machine state after an rfmci instruction is executed.

ESR Exception syndrome register—Provides a syndrome to differentiate between the different kinds of 
exceptions that generate the same interrupt type. Upon generation of a specific exception type, the 
associated bit is set and all other bits are cleared.

SPE APU Interrupt Registers

SPEFSCR Signal processing and embedded floating-point status and control register—Provides interrupt control and 
status as well as various condition bits associated with the operations performed by the SPE APU.

Other Interrupt Registers

DEAR Data exception address register—Holds the address that was referenced by a load, store, or cache 
management instruction that caused an alignment, data TLB miss, or data storage interrupt.

IVPR
IVORs

Together, IVPR[32–47] || IVORn [48–59] || 0b0000 define the address of an interrupt-processing routine. 
See Table 1-7 and the EREF for more information.

Table 1-7. Interrupt Vector Registers and Exception Conditions

Register Interrupt 

Book E–Defined IVORs

IVOR0 Critical input

IVOR1 Machine check interrupt offset

IVOR2 Data storage interrupt offset

IVOR3 Instruction storage interrupt offset

IVOR4 External input interrupt offset

IVOR5 Alignment interrupt offset

IVOR6 Program interrupt offset

IVOR7 Floating-point unavailable interrupt offset (not supported on the e500)

IVOR8 System call interrupt offset

Table 1-6. Interrupt Registers (continued)

Register Description
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1.9 Memory Management
The e500 core complex supports demand-paged virtual memory as well other memory 
management schemes that depend on precise control of effective-to-physical address translation 
and flexible memory protection as defined by Book E. The mapping mechanism consists of 
software-managed TLBs that support variable-sized pages with per-page properties and 
permissions. The following properties can be configured for each TLB:

• User-mode page execute access

• User-mode page read access

• User-mode page write access

• Supervisor-mode page execute access

• Supervisor-mode page read access

• Supervisor-mode page write access

• Write-through required (W)

• Caching inhibited (I)

• Memory coherency required (M)

• Guarded (G)

• Endianness (E)

• User-definable (U0–U3), a 4-bit implementation-specific field

The core complex employs a two-level memory management unit (MMU) architecture. There are 
separate instruction and data level-1 (L1) MMUs backed up by a unified level-2 (L2) MMU,

IVOR9 Auxiliary processor unavailable interrupt offset (not supported on the e500)

IVOR10 Decrementer interrupt offset

IVOR11 Fixed-interval timer interrupt offset

IVOR12 Watchdog timer interrupt offset

IVOR13 Data TLB error interrupt offset

IVOR14 Instruction TLB error interrupt offset

IVOR15 Debug interrupt offset

e500-Specific IVORs

IVOR32 SPE APU unavailable interrupt offset

IVOR33 SPE floating-point data exception interrupt offset

IVOR34 SPE floating-point round exception interrupt offset

IVOR35 Performance monitor

Table 1-7. Interrupt Vector Registers and Exception Conditions (continued)

Register Interrupt 
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This two-level structure is shown in Figure 1-8. 

Figure 1-8. MMU Structure
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— e500v2—512-entry, 4-way set-associative TLB array 

• Hardware assist for TLB miss exceptions
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1.9.1 Address Translation

The core complex fetch and load/store units generate 32-bit effective addresses. The MMU 
translates these addresses to real addresses (32-bit real addresses for the e500v1 core, 36-bit for 
the e500v2) (which are used for memory bus accesses) using an interim 41-bit virtual address. 

Figure 1-9 shows the translation flow for the e500v1 core.

Figure 1-9. Effective-to-Real Address Translation Flow
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Figure 1-10 shows the same translation flow for the e500v2 core.

Figure 1-10. Effective-to-Real Address Translation Flow (e500v2)
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counterparts using a true LRU algorithm.
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(RPN), the user attribute bits (U0–U3), and permission bits (UX, SX, UW, SW, UR, SR) that 
specify user and supervisor read, write, and execute permissions. 

The e500 does not implement MAS5. 

MAS registers are affected by the following instructions (see Section 12.4, “TLB 
Instructions—Implementation,” for more detailed information):

• MAS registers are accessed with the mtspr and mfspr instructions.

• The TLB Read Entry instruction (tlbre) causes the contents of a single TLB entry from the 
L2 MMU to be placed in defined locations in MAS0–MAS3 (and optionally MAS7 on the 
e500v2). The TLB entry to be extracted is determined by information written to MAS0 and 
MAS2 before the tlbre instruction is executed. 

• The TLB Write Entry instruction (tlbwe) causes the information stored in certain locations 
of MAS0–MAS3 (and MAS7 on the e500v2) to be written to the TLB specified in MAS0.

• The TLB Search Indexed instruction (tlbsx) updates MAS registers conditionally, based on 
success or failure of a lookup in the L2 MMU. The lookup is specified by the instruction 
encoding and specific search fields in MAS6. The values placed in the MAS registers may 
differ, depending on a successful or unsuccessful search.

For TLB miss and certain MMU-related DSI/ISI exceptions, MAS4 provides default values for 
updating MAS0–MAS2.

1.9.3 Process ID Registers (PID0–PID2)

The e500 core complex also implements three process ID (PID) registers that hold the values used 
to construct the three virtual addresses for each access. These process IDs provide an extended 
page sharing capability. Which of these three virtual addresses is used is controlled by the TID 
field of a matching TLB entry, and when TID = 0x00 (identifying a page as globally shared), the 
PID values are ignored. 

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) or a hit to 
multiple entries in the L2 MMU is considered to be a programming error.

1.9.4 TLB Coherency

The core complex provides the ability to invalidate a TLB entry, as defined in the Book E 
architecture. The tlbivax instruction invalidates a matching local TLB entry. Execution of this 
instruction is also broadcast on the core complex bus (CCB) if HID1[ABE] is set. The core 
complex also snoops TLB invalidate transactions on the CCB from other bus masters. 
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1.10 Memory Coherency
The core complex supports four-state memory coherency. Memory coherency is 
hardware-supported on the system bus through bus snooping and the retry/copyback bus protocol, 
and through broadcasting of cache management instructions. Translation coherency is also 
hardware-supported through broadcasting and bus snooping of TLB invalidate transactions. The 
four-state MESI protocol supports efficient large-scale real-time data sharing between multiple 
caching bus masters.

1.10.1 Atomic Update Memory References

The e500 core supports atomic update memory references for both aligned word forms of data 
using the load and reserve and store conditional instruction pair, lwarx and stwcx.. Typically, a 
load and reserve instruction establishes a reservation and is paired with a store conditional 
instruction to achieve the atomic operation. However, there are restrictions and requirements for 
this functionality. The processor revokes reservations during a context switch, so the programmer 
must reacquire the reservation after a context switch occurs.

1.10.2 Memory Access Ordering

The core complex supports weakly ordered references to memory. Thus the e500 manages the 
order and synchronization of instructions to ensure proper execution when memory is shared 
between multiple processes or programs. The cache and data memory control attributes, along 
with msync and mbar, provide the required access control; msync and mbar are also broadcast 
on the CCB to provide the appropriate control in the case of multiprocessor or shared memory 
systems.

1.10.3 Cache Control Instructions

The core complex supports Book E instructions for performing a full range of cache control 
functions, including cache locking by line. The core complex supports broadcasting and snooping 
of these cache control instructions on the CCB. The e500 core also supports the following 
e500-specific cache locking instructions:

• Data Cache Block Lock Clear (dcblc)

• Data Cache Block Touch and Lock Set (dcbtls)

• Data Cache Block Touch for Store and Lock Set (dcbtstls)

• Instruction Cache Block Lock Clear (icblc)

• Instruction Cache Block Touch and Lock Set (icbtls)
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1.10.4 Programmable Page Characteristics

Cache and memory attributes are programmable on a per-page basis. In addition to the 
write-through, caching-inhibited, memory coherency enforced, and guarded characteristics 
defined by the WIMG bits, Book E defines an endianness bit, E, that allows selection of big- or 
little-endian byte ordering on a per-page basis. 

In addition to the WIMGE bits, the Book E MMU model defines user-definable page attribute bits 
(U0–U3).

1.11 Core Complex Bus (CCB)
The core complex defines a versatile local bus interface that allows a wide range of system 
performance and system-complexity trade-offs. The interface defines the following buses.

• An address-out bus for mastering bus transactions 

• An address-in bus for snooping internal resources 

• Three tagged data buses 

Two of the data buses are general-purpose data-in buses for reads, and the third is a data-out bus 
for writes. The two data-in buses feature support for out-of-order read transactions from two 
different sources simultaneously, and all three data buses may be operated concurrently. The 
address-in bus supports snooping for external management of the L1 caches and TLBs by other 
bus masters. The core complex broadcasts and snoops the cache and TLB management 
instructions accordingly. It is envisioned that a wide range of system implementations can be 
constructed from the defined interface.

1.12 Performance Monitoring
The e500 core provides a performance monitoring capability that allows counting of events such 
as processor clocks, instruction cache misses, data cache misses, mispredicted branches, and 
others. The count of these events may be configured to trigger a performance monitor exception 
following the e500 interrupt model. This interrupt is assigned to vector offset register IVOR35.

The register set associated with the performance monitoring function consists of counter registers, 
a global control register, and local control registers. These registers are read/write from supervisor 
mode, and each register is reflected to a corresponding read-only register for user mode. Two 
instructions, mtpmr and mfpmr, are provided for moving data to and from these registers. An 
overview of the performance monitoring registers is provided in the following sections.
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1.12.1 Global Control Register

The PMGC0 register provides global control of the performance monitoring facility from 
supervisor mode. From this register all counters may be frozen, unfrozen, or configured to freeze 
on an enabled condition or event. Additionally, the performance monitoring facility may be 
disabled or enabled from this register. The contents of PMGC0 are reflected to UPMGC0, which 
may be read from user mode using the mfpmr instruction.

1.12.2 Performance Monitor Counter Registers

There are four counter registers (PCM0–PCM3) provided in the performance monitoring facility. 
These 32-bit registers hold the current count for software-selectable events and can be 
programmed to generate an exception on overflow. These registers may be written or read from 
supervisor mode using the mtpmr and mfpmr instructions. The contents of these registers are 
reflected to UPCM0–UPCM3, which can be read from user mode with mfpmr.

Performance monitor exceptions occur only if all of the following conditions are met:

• A counter is in the overflow state.

• The counter's overflow signaling is enabled.

• Overflow exception generation is enabled in PMGC0.

• MSR[EE] is set.

1.12.3 Local Control Registers

For each of the counter registers, there are two corresponding local control registers. These two 
registers specify which of the 128 available events is to be counted, what specific action is to be 
taken on overflow, and various options for freezing a counter value under given modes or 
conditions.

• PMLCa0–PMLCa3 provide fields that allow freezing of the corresponding counter in user 
mode, supervisor mode, or under software control. Additionally, the overflow condition 
may be enabled or disabled from this register. The contents of these registers are reflected 
to UPMLCa0–UPMLCa3, which can be read from user mode with mfpmr.

• PMLCb0–PMLCb3 provide count scaling for each counter register using configurable 
threshold and multiplier values. The threshold is a 6-bit value and the multiplier is a 3-bit 
encoded value, allowing eight multiplier values in the range of 1 to 128. Any counter may 
be configured to increment only when an event occurs more than [threshold × multiplier] 
times. The contents of these registers are reflected to UPMLCb0–UPMLCb3, which can be 
read from user mode with mfpmr.
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1.13 Legacy Support of PowerPC Architecture
This section provides an overview of the architectural differences and compatibilities of the e500 
core compared with the AIM PowerPC architecture. The two levels of the e500 programming 
environment are as follows:

• User level—This defines the base user-level instruction set, user-level registers, data types, 
memory conventions, and the memory and programming models seen by application 
programmers.

• Supervisor level—This defines supervisor-level resources typically required by an 
operating system, the memory management model, supervisor level registers, and the 
exception model.

In general, the e500 core supports the user-level architecture from the existing AIM architecture. 
The following subsections are intended to highlight the main differences. For specific 
implementation details refer to the relevant chapter.

1.13.1 Instruction Set Compatibility

The following sections generally describe the user and supervisor instruction sets.

1.13.1.1 User Instruction Set

The e500 core executes legacy user-mode binaries and object files except for the following:

• The e500 supports vector and scalar single-precision floating-point operations as APUs. 
The e500v2 supports scalar double-precision floating-point instructions. These instructions 
have different encoding than the AIM definition of the PowerPC architecture. Additionally, 
the e500 core uses GPRs for floating-point operations, rather than the FPRs defined by the 
UISA. Most porting of floating-point operations can be handled by recompiling.

• String instructions are not implemented on the e500; therefore, trap emulation must be 
provided to ensure backward compatibility.

1.13.1.2 Supervisor Instruction Set

The supervisor mode instruction set defined by the AIM version of the PowerPC architecture is 
compatible with the e500 with the following exceptions:

• The MMU architecture is different, so some TLB manipulation instructions have different 
semantics.

• Instructions that support the BATs and segment registers are not implemented. 
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1.13.2 Memory Subsystem

Both Book E and the AIM version of the PowerPC architecture provide separate instruction and 
data memory resources. The e500 provides additional cache control features, including cache 
locking.

1.13.3 Exception Handling

Exception handling is generally the same as that defined in the AIM version of the PowerPC 
architecture for the e500, with the following differences:

• Book E defines a new critical interrupt, providing an extra level of interrupt nesting. The 
critical interrupt includes external critical and watchdog timer time-out inputs.

• The machine check exception differs from the Book E and from the AIM definition. It 
defines the Return from Machine Check Interrupt instruction, rfmci, and two machine 
check save/restore registers, MCSRR0 and MCSRR1.

• Book E processors can use IVPR and IVORs to set exception vectors individually, but they 
can be set to the address offsets defined in the OEA to provide compatibility.

• Unlike the AIM version of the PowerPC architecture, Book E does not define a reset vector; 
execution begins at a fixed virtual address, 0xFFFF_FFFC.

• Some Book E and e500-specific SPRs are different from those defined in the AIM version 
of the PowerPC architecture, particularly those related to the MMU functions. Much of this 
information has been moved to a new exception syndrome register (ESR).

• Timer services are generally compatible, although Book E defines a new decrementer auto 
reload feature, the fixed-interval timer critical interrupt, and the watchdog timer interrupt, 
which are implemented in the e500 core. 

An overview of the interrupt and exception handling capabilities of the e500 core can be found in 
Section 1.8, “Interrupts and Exception Handling.” 

1.13.4 Memory Management

The e500 core implements a straightforward virtual address space that complies with the Book E 
MMU definition, which eliminates segment registers and block address translation resources. 
Book E defines resources for fixed 4-Kbyte pages and multiple, variable page sizes that can be 
configured in a single implementation. TLB management is provided with new instructions and 
SPRs.
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1.13.5 Reset

Book E–compliant cores do not share a common reset vector with the AIM version of the 
PowerPC architecture. Instead, at reset fetching begins at address 0xFFFF_FFFC. In addition to 
the Book E reset definition, the EIS and the e500 define specific aspects of the MMU page 
translation and protection mechanisms. Unlike the AIM version of the PowerPC core, as soon as 
instruction fetching begins, the e500 core is in virtual mode with a hardware-initialized TLB entry.

EIS–defined aspects of the MMU are described in the EREF. Specific details of how the e500 is 
initialized are provided in Section 12.6, “TLB States after Reset.”

1.13.6 Little-Endian Mode

Unlike the AIM version of the PowerPC architecture, where little-endian mode is controlled on a 
system basis, Book E allows control of byte ordering on a memory page basis. In addition, the 
little-endian mode used in Book E is true little endian.
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Chapter 2  
Register Model
This chapter describes implementation-specific details of the register model as it is implemented 
on the e500 core processors. It identifies all registers that are implemented on the e500 cores, but, 
with a few exceptions, does not include full descriptions of those registers and register fields that 
are implemented exactly as they are defined by the Book E architecture and by the Freescale 
Book E implementation standards (EIS). A full description of these registers is provided in the 
EREF: A Reference for Freescale Book E and the e500 Core (EREF).

It is important to note that a device that integrates the e500 core may not implement all of the fields 
and registers that are defined here, and may interpret some fields more specifically than can be 
defined here. For specific details, refer to the “Register Summary” chapter in the reference manual 
for the device that incorporates the e500 core. The register summary chapter fully describes all 
registers and register fields as they are implemented on the device. 

2.1 Overview
Although this chapter organizes registers according to their functionality, they can be 
differentiated according to how they are accessed, as follows: 

• General-purpose registers (GPRs)—Used as source and destination operands for most 
operations. The e500 implements 64-bit GPRs. Book E–defined instructions access only 
the lower word; SPE vector instructions and embedded vector single-precision and 
double-precision floating-point APUs (e500v2 only) use all 64 bits. See Section 2.3.1, 
“General-Purpose Registers (GPRs).” 

• Special-purpose registers (SPRs)—Accessed by using the Book E–defined Move to 
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr) 
instructions. Section 2.2.1, “Special-Purpose Registers (SPRs),” lists SPRs. 

• System-level registers that are not SPRs. These are as follows:

— Machine state register (MSR). MSR is accessed with the Move to Machine State 
Register (mtmsr) and Move from Machine State Register (mfmsr) instructions. See 
Section 2.5.1, “Machine State Register (MSR).”

— Condition register (CR) bits are grouped into eight 4-bit fields, CR0–CR7, which are set 
as follows:

– Specified CR fields can be set by a move to the CR from a GPR (mtcrf).

– A specified CR field can be set by a move to the CR from another CR field (mcrf), 
or from the XER (mcrxr).
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– CR0 can be set as the implicit result of an integer instruction.

– A specified CR field can be set as the result of an integer or floating-point compare 
instruction (including SPE and SPFP compare instructions).

See Section 2.4.1, “Condition Register (CR).”

— The EIS-defined accumulator, used by the SPE APU. See Section 2.14.2, “Accumulator 
(ACC).”

• Performance monitor registers (PMRs). Similar to SPRs, PMRs are accessed by using the 
EIS-defined Move to Performance Monitor Register (mtpmr) and Move from Performance 
Monitor Register (mfspr) instructions. See Section 2.15, “Performance Monitor Registers 
(PMRs).”

2.2 e500 Register Model
The following sections describe the e500 core register model as defined in Book E and the 
additional implementation-specific registers unique to the e500 core. Figure 2-1 shows the e500 
register set and identifies which are defined by Book E, which are defined by the EIS, and which 
are e500-specific.

Book E processors implement the following types of software-accessible registers:

• Book E–defined registers that are accessed as part of instruction execution. These include 
the following:

— Registers used for integer operations:

– General-purpose registers (GPRs)—Book E defines a set of 32 GPRs used to hold 
source and destination operands for load, store, arithmetic, and computational 
instructions, and to read and write to other registers.

– Integer exception register (XER)—Bits in this register are set based on the operation 
of an instruction considered as a whole, not on intermediate results. (For example, 
the Subtract from Carrying instruction (subfc), the result of which is specified as the 
sum of three values, sets bits in the XER based on the entire operation, not on an 
intermediate sum.)

These registers are described in Section 2.3, “Registers for Integer Operations.”

— Condition register (CR)—Used to record conditions such as overflows and carries that 
occur as a result of executing arithmetic instructions (including those implemented by 
the SPE and SPFP APUs). The CR is described in Section 2.4, “Registers for Branch 
Operations.”

— Machine state register (MSR)—Used by the operating system to configure parameters 
such as user/supervisor mode, address space, and enabling of asynchronous interrupts. 
MSR is described in Section 2.5.1, “Machine State Register (MSR).” 
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Figure 2-1. e500 Register Model
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• Book E–defined special-purpose registers (SPRs) that are accessed explicitly using mtspr 
and mfspr instructions. These registers are listed in Table 2-1 in Section 2.2.1, 
“Special-Purpose Registers (SPRs).”

• Freescale EIS–defined SPRs and e500-defined SPRs that are accessed explicitly using the 
mtspr and mfspr instructions. These registers are listed in Table 2-2 in Section 2.2.1, 
“Special-Purpose Registers (SPRs).”

• Freescale EIS–defined performance monitor registers (PMRs). These registers are similar 
to SPRs, but are accessed with EIS–defined move to and move from PMR instructions 
(mtpmr and mfpmr).

Book E– and e500-defined SPRs are grouped by function as follows:

• Section 2.4, “Registers for Branch Operations.” This section includes descriptions of the 
count register (CTR) and the link register (LR).

• Section 2.5, “Processor Control Registers”

• Section 2.6, “Timer Registers”

• Section 2.7, “Interrupt Registers”

• Section 2.8, “Software-Use SPRs (SPRG0–SPRG7 and USPRG0)”

• Section 2.9, “Branch Target Buffer (BTB) Registers”

• Section 2.10, “Hardware Implementation-Dependent Registers” 

• Section 2.11, “L1 Cache Configuration Registers” 

• Section 2.12, “MMU Registers”

• Section 2.13, “Debug Registers”

• Section 2.14, “SPE and SPFP APU Registers”

Book E defines 32- and 64-bit registers. All 32-bit registers are supported as defined in Book E. 
However, except for the 64-bit FPRs, which are not implemented on the e500, only bits 32–63 of 
Book E’s 64-bit registers (such as LR, CTR, the GPRs, SRR0, and CSRR0) are required to be 
implemented in hardware in a 32-bit Book E implementation. The e500 implements 64-bit GPRs, 
the upper 32 bits of which are used only with the e500-specific signal processing engine (SPE) 
APU, embedded vector single-precision floating-point APU, and the e500v2 embedded scalar 
double-precision floating-point APU instructions.

Likewise, all Book E integer instructions defined to return a 64-bit result return only bits 32–63 of 
the result on a 32-bit Book E implementation. SPE APU vector instructions return 64-bit values, 
as do DPFP APU instructions on the e500v2; SPFP APU instructions return single-precision 
32-bit values. 
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NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices.

This chapter describes how the e500 implements registers defined by Book E. As with the 
instruction set and other aspects of the architecture, Book E defines some features very specifically, 
for example, resources that ensure compatibility with implementations of the PowerPC ISA. 
However, because a principal goal of the Book E architecture is to offer flexibility among embedded 
processors and families of embedded processors, some resources are either defined as optional or 
are defined in a very general way, leaving specific details up to the implementation. 

2.2.1 Special-Purpose Registers (SPRs)

SPRs are on-chip registers that are architecturally part of the processor core. They control the use 
of the debug facilities, timers, interrupts, memory management unit, and other architected 
processor resources and are accessed with the mtspr and mfspr instructions. Unlisted encodings 
are reserved for future use.

Table 2-1 summarizes SPRs defined in Book E. The SPR numbers are used in the instruction 
mnemonics. Bit 5 in an SPR number indicates whether an SPR is accessible from user or 
supervisor software. An mtspr or mfspr instruction that specifies an unsupported SPR number is 
considered an invalid instruction. The e500 treats such invalid instructions as follows:

• If the invalid SPR falls within the range specified as user mode (SPR[5] = 0), an illegal 
exception is taken. 

• If supervisor software attempts to access an invalid supervisor-level SPR (SPR[5] = 1), 
results are undefined. 

• If user software attempts to access an invalid supervisor-level SPR, a privilege exception is 
taken.
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Table 2-1. Book E Special-Purpose Registers (by SPR Abbreviation)

SPR
Abbreviation

Name
Defined SPR Number

Access
Supervisor 

Only
Section/

PageDecimal Binary

ATBL Alternate time base register lower 526 10000 01110 Read-only No 2.6.6/2-16

ATBU Alternate time base register upper 527 10000 01111 Read-only No 2.6.6/2-16

CSRR0 Critical save/restore register 0 58 00001 11010 Read/Write Yes 2.7.1.1/2-18

CSRR1 Critical save/restore register 1 59 00001 11011 Read/Write Yes 2.7.1.1/2-18

CTR Count register 9 00000 01001 Read/Write No 2.4.3/2-10

DAC1 Data address compare 1 316 01001 11100 Read/Write Yes 2.13.4/2-48

DAC2 Data address compare 2 317 01001 11101 Read/Write Yes 2.13.4/2-48

DBCR0 Debug control register 0 1 308 01001 10100 Read/Write Yes 2.13.1/2-46

DBCR1 Debug control register 1 1 309 01001 10101 Read/Write Yes 2.13.1/2-46

DBCR2 Debug control register 2 1 310 01001 10110 Read/Write Yes 2.13.1/2-46

DBSR Debug status register 304 01001 10000 Read/Clear2 Yes 2.13.2/2-47

DEAR Data exception address register 61 00001 11101 Read/Write Yes 2.6.5/2-16

DEC Decrementer 22 00000 10110 Read/Write Yes 2.6.4/2-16

DECAR Decrementer auto-reload 54 00001 10110 Write-only Yes 2.6.4/2-16

ESR Exception syndrome register 62 00001 11110 Read/Write Yes 2.7.1.6/2-20

IAC1 Instruction address compare 1 312 01001 11000 Read/Write Yes 2.13.3/2-48

IAC2 Instruction address compare 2 313 01001 11001 Read/Write Yes 2.13.3/2-48

IVOR0 Critical input 400 01100 10000 Read/Write Yes 2.7.1.5/2-19

IVOR1 Machine check interrupt offset 401 01100 10001 Read/Write Yes 2.7.1.5/2-19

IVOR2 Data storage interrupt offset 402 01100 10010 Read/Write Yes 2.7.1.5/2-19

IVOR3 Instruction storage interrupt offset 403 01100 10011 Read/Write Yes 2.7.1.5/2-19

IVOR4 External input interrupt offset 404 01100 10100 Read/Write Yes 2.7.1.5/2-19

IVOR5 Alignment interrupt offset 405 01100 10101 Read/Write Yes 2.7.1.5/2-19

IVOR6 Program interrupt offset 406 01100 10110 Read/Write Yes 2.7.1.5/2-19

IVOR8 System call interrupt offset 408 01100 11000 Read/Write Yes 2.7.1.5/2-19

IVOR10 Decrementer interrupt offset 410 01100 11010 Read/Write Yes 2.7.1.5/2-19

IVOR11 Fixed-interval timer interrupt offset 411 01100 11011 Read/Write Yes 2.7.1.5/2-19

IVOR12 Watchdog timer interrupt offset 412 01100 11100 Read/Write Yes 2.7.1.5/2-19

IVOR13 Data TLB error interrupt offset 413 01100 11101 Read/Write Yes 2.7.1.5/2-19

IVOR14 Instruction TLB error interrupt offset 414 01100 11110 Read/Write Yes 2.7.1.5/2-19

IVOR15 Debug interrupt offset 415 01100 11111 Read/Write Yes 2.7.1.5/2-19

IVPR Interrupt vector 63 00001 11111 Read/Write Yes 2.7.1.4/2-19

LR Link register 8 00000 01000 Read/Write No 2.4.2/2-10
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PID Process ID register 3 48 00001 10000 Read/Write Yes 2.12.1/2-36

PIR Processor ID register 286 01000 11110 Read-only Yes 2.5.2/2-12

PVR Processor version register 287 01000 11111 Read-only Yes 2.5.3/2-13

SPRG0 SPR general 0 272 01000 10000 Read/Write Yes 2.8/2-24

SPRG1 SPR general 1 273 01000 10001 Read/Write Yes 2.8/2-24

SPRG2 SPR general 2 274 01000 10010 Read/Write Yes 2.8/2-24

SPRG3 SPR general 3 259 01000 00011 Read-only No4 2.8/2-24

275 01000 10011 Read/Write Yes

SPRG4 SPR general 4 260 01000 00100 Read-only No 2.8/2-24

276 01000 10100 Read/Write Yes

SPRG5 SPR general 5 261 01000 00101 Read-only No 2.8/2-24

277 01000 10101 Read/Write Yes

SPRG6 SPR general 6 262 01000 00110 Read-only No 2.8/2-24

278 01000 10110 Read/Write Yes

SPRG7 SPR general 7 263 01000 00111 Read-only No 2.8/2-24

279 01000 10111 Read/Write Yes

SRR0 Save/restore register 0 26 00000 11010 Read/Write Yes 2.7.1.1/2-18

SRR1 Save/restore register 1 27 00000 11011 Read/Write Yes 2.7.1.1/2-18

TBL Time base lower 268 01000 01100 Read-only No 2.6.3/2-16

284 01000 11100 Write-only Yes 2.6.3/2-16

TBU Time base upper 269 01000 01101 Read-only No 2.6.3/2-16

285 01000 11101 Write-only Yes 2.6.3/2-16

TCR Timer control register 340 01010 10100 Read/Write Yes 2.6.1/2-15

TSR Timer status register 336 01010 10000 Read/Clear5 Yes 2.6.2/2-16

USPRG0 User SPR general 06 256 01000 00000 Read/Write No 2.8/2-24

XER Integer exception register 1 00000 00001 Read/Write No 2.3.2/2-9

1 Writing to these registers requires synchronization, as described in Section 2.16, “Synchronization Requirements for SPRs.”
2 The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits in the GPR can be 

cleared using mtspr.
3 Implementations may support more than one PID. The e500 implements the Book E–defined PID as PID0.
4 User-mode read access to SPRG3 is implementation-dependent.
5 The TSR is read using mfspr. It cannot be directly written to. Instead, TSR bits corresponding to 1 bits in the GPR can be cleared 

using mtspr.
6 USPRG0 is a separate physical register from SPRG0.

Table 2-1. Book E Special-Purpose Registers (by SPR Abbreviation) (continued)

SPR
Abbreviation

Name
Defined SPR Number

Access
Supervisor 

Only
Section/

PageDecimal Binary
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Table 2-2 describes the implementation-specific SPRs of the core complex. Compilers should 
recognize the mnemonic name given in Table 2-2 when parsing instructions.

 

Table 2-2. Implementation-Specific SPRs (by SPR Abbreviation)

SPR
Abbreviation

Name SPR Number Access Supervisor Only Section/Page

BBEAR Branch buffer entry address register 1 513 Read/Write No 2.9.1/2-25

BBTAR Branch buffer target address register 1 514 Read/Write No 2.9.2/2-25

BUCSR Branch unit control and status register 1 1013 Read/Write Yes 2.9.3/2-26

HID0 Hardware implementation dependent register 0 1 1008 Read/Write Yes 2.10.1/2-27

HID1 Hardware implementation dependent register 11 1009 Read/Write Yes 2.10.1/2-27

IVOR32 SPE/embedded floating-point APU unavailable 
interrupt offset

528 Read/Write Yes 2.7.1.5/2-19

IVOR33 Embedded floating-point data exception interrupt 
offset

529 Read/Write Yes 2.7.1.5/2-19

IVOR34 Embedded floating-point round exception interrupt 
offset

530 Read/Write Yes 2.7.1.5/2-19

IVOR35 Performance monitor 531 Read/Write Yes 2.7.1.5/2-19

L1CFG0 L1 cache configuration register 0 515 Read-only No 2.11.3/2-34

L1CFG1 L1 cache configuration register 1 516 Read-only No 2.11.4/2-35

L1CSR0 L1 cache control and status register 0 1 1010 Read/Write Yes 2.11.1/2-31

L1CSR1 L1 cache control and status register 1 1 1011 Read/Write Yes 2.11.2/2-33

MAS0 MMU assist register 0 1 624 Read/Write Yes 2.12.5.1/2-40

MAS1 MMU assist register 1 1 625 Read/Write Yes 2.12.5.2/2-41

MAS2 MMU assist register 2 1 626 Read/Write Yes 2.12.5.3/2-42

MAS3 MMU assist register 3 1 627 Read/Write Yes 2.12.5.4/2-43

MAS4 MMU assist register 4 1 628 Read/Write Yes 2.12.5.5/2-43

MAS6 MMU assist register 6 1 630 Read/Write Yes 2.12.5.6/2-44

MAS7 MMU assist register 7 1 944 Read/Write Yes 2.12.5.7/2-45

MCAR Machine check address register 573 Read-only Yes 2.7.2.3/2-22

MCSR Machine check syndrome register 572 Read/Write Yes 2.7.2.4/2-23

MCSRR0 Machine-check save/restore register 0 570 Read/Write Yes 2.7.2.1/2-22

MCSRR1 Machine-check save/restore register 1 571 Read/Write Yes 2.7.2.2/2-22

MMUCFG MMU configuration register 1015 Read-only Yes 2.12.3/2-37

MMUCSR0 MMU control and status register 0 1 1012 Read/Write Yes 2.12.2/2-36

PID0 Process ID register 0. Book E defines only this PID 
register and refers to as PID, not PID0. 1

48 Read/Write Yes 2.12.1/2-36

PID1 Process ID register 1 1 633 Read/Write Yes 2.12.1/2-36

PID2 Process ID register 2 1 634 Read/Write Yes 2.12.1/2-36

SPEFSCR Signal processing and embedded floating-point 
status and control register 1

512 Read/Write No 2.14.1/2-49
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2.3 Registers for Integer Operations
The following sections describe registers defined for integer computational instructions. 

2.3.1 General-Purpose Registers (GPRs)

Book E implementations provide 32 GPRs (GPR0–GPR31) for integer operations. The instruction 
formats provide 5-bit fields for specifying the GPRs to be used in the execution of the instruction. 
Each GPR is a 64-bit register and can be used to contain address and integer data, although all 
instructions except SPE APU instructions, double-precision embedded floating-point instructions 
(e500v2 only), and single-precision embedded vector floating-point instructions use and return 
32-bit values in GPR bits 32–63.

2.3.2 Integer Exception Register (XER)

Bits in the integer exception register (XER) are set based on the operation of an instruction 
considered as a whole, not on intermediate results. (For example, the Subtract from Carrying 
instruction (subfc), the result of which is specified as the sum of three values, sets bits in the XER 
based on the entire operation, not on an intermediate sum.)

The e500 implements the XER as it is defined by Book E. 

2.4 Registers for Branch Operations
This section describes registers used by Book E branch and CR operations.

2.4.1 Condition Register (CR)

The e500 implements the CR as it is defined by Book E for integer instructions. Note that the 
embedded floating-point instructions do not use the CR. 

SVR System version register 1023 Read-only Yes 2.5.4/2-13

TLB0CFG TLB configuration register 0 688 Read-only Yes 2.12.4/2-37

TLB1CFG TLB configuration register 1 689 Read-only Yes 2.12.4.2/2-39

1 Writing to these registers requires synchronization, as described in Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-2. Implementation-Specific SPRs (by SPR Abbreviation) (continued)

SPR
Abbreviation

Name SPR Number Access Supervisor Only Section/Page
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2.4.2 Link Register (LR)

The e500 implements the LR as it is defined by Book E. 

The link register can be used to provide the branch target address for a Branch Conditional to LR 
instruction, and it holds the return address after branch and link instructions.

2.4.3 Count Register (CTR)

The e500 implements the CTR as it is defined by Book E. The CTR can be used to hold a loop 
count that can be decremented and tested during execution of branch instructions that contain an 
appropriately encoded BO field. If the CTR value is 0 before being decremented, it is –1 afterward. 
The entire CTR can be used to hold the branch target address for a Branch Conditional to CTR 
(bcctrx) instruction.

2.5 Processor Control Registers
This section addresses machine state, processor ID, and processor version registers.

2.5.1 Machine State Register (MSR)

The machine state register (MSR), shown in Figure 2-2, defines the state of the processor (that is, 
enabling and disabling of interrupts and debugging exceptions, enabling and disabling of address 
translation for instruction and data memory accesses, enabling and disabling some APUs, and 
specifying whether the processor is in supervisor or user mode).

MSR contents are automatically saved, altered, and restored by the interrupt-handling mechanism. 
If a non-critical interrupt is taken, MSR contents are automatically copied into SRR1. If a critical 
interrupt is taken, MSR contents are automatically copied into CSRR1. When an rfi or rfci is 
executed, MSR contents are restored from SRR1 or CSRR1. The e500 implements the machine 
check interrupt differently than it is defined in Book E. When a machine check interrupt is taken, 
MCSRR0 and MCSRR1 hold the return address and MSR information. The EIS defines the Return 
from Machine Check Interrupt instruction, rfmci, which restores MSR contents from MCSRR1 
when it is executed. 

Access: Supervisor-only

32 36 37 38 39 44 45 46 47 48 49 50 51 52 53 54 55 57 58 59 60 61 62 63

R
— UCLE SPE — WE CE — EE PR FP ME — UBLE DE — IS DS — PMM —

W

Reset All zeros

Figure 2-2. Machine State Register (MSR)
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MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to MSR 
using mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be used to set 
or clear MSR[EE] without affecting other MSR bits.

Table 2-3 describes e500-specific MSR fields. Note that other registers in this chapter describe 
only fields that are either e500-specific or that differ from the Book E definition. 

Table 2-3. MSR Field Descriptions

Bits Name Description

32–36 — Reserved, should be cleared.1

37 UCLE User-mode cache lock enable. (e500-specific). Used to restrict user-mode cache-line locking by the operating 
system. 
0 Any cache lock instruction executed in user-mode takes a cache-locking DSI exception and sets either 

ESR[DLK] or ESR[ILK]. This allows the operating system to manage and track the locking/unlocking of cache 
blocks by user-mode tasks.

1 Cache-locking instructions can be executed in user-mode and they do not take a DSI for cache-locking. (They 
may still take a DSI for access violations, though.)

38 SPE SPE enable. (e500-specific).
0 If software attempts to execute an instruction that accesses the upper word of a GPR, the SPE APU 

unavailable exception is taken. 
1 Software can execute the following instructions: 

On the e500v1, these instructions include the SPE instructions and both vector and scalar single-precision 
floating-point instructions.
On the e500v2, these instructions include the SPE instructions, embedded double-precision, and 
single-precision vector floating-point instructions. (That is, all instructions that access the upper half of the 
64-bit GPRs.)

39–44 — Reserved, should be cleared. 1

45 WE Wait state enable. On the e500, this allows the core complex to signal a request for power management, 
according to the states of HID0[DOZE], HID0[NAP], and HID0[SLEEP].
0 The processor is not in wait state and continues processing. On the e500, no power management request is 

signaled to external logic.
1 The processor enters wait state by ceasing to execute instructions and entering low-power mode. Details of 

how wait state is entered and exited and how the processor behaves in the wait state are implementation 
dependent. On the e500, MSR[WE] gates the DOZE, NAP, and SLEEP outputs from the core complex; as a 
result, these outputs negate to the external power management logic on entry to the interrupt and then return 
to their previous state on return from the interrupt. WE is cleared on entry to any interrupt and restored to its 
previous state upon return. 

46 CE Critical enable. Book E defines this bit as an enable for the critical input, watchdog timer, and machine check 
interrupts. On the e500, this bit does not affect machine check interrupts. 
0 Critical input and watchdog timer interrupts are disabled. 
1 Critical input and watchdog timer interrupts are enabled.

47 — Reserved, should be cleared. 

48 EE External enable
0 External input, decrementer, fixed-interval timer, and performance monitor interrupts are disabled.
1 External input, decrementer, fixed-interval timer, and performance monitor interrupts are enabled.

49 PR User mode (problem state)
0 The processor is in supervisor mode, can execute any instruction, and can access any resource (for example, 

GPRs, SPRs, and the MSR).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any privileged 

resource.
PR also affects memory access control.
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2.5.2 Processor ID Register (PIR)

The e500 implements the processor ID register (PIR) as defined by the Book E architecture. The 
PIR contains a value that can be used to distinguish the processor from other processors in the 
system. 

50 FP Floating-point available. Book E defines the operation of FP as follows:
0 The processor cannot execute floating-point instructions, including floating-point loads, stores, and moves.
1 The processor can execute floating-point instructions.
On the e500, this bit is reserved and permanently cleared, indicating that it does not implement a Book E 
floating-point unit (FPU). Setting it has no effect.

51 ME Machine check enable. 
0 Machine check interrupts are disabled. On e500 cores, a machine check condition causes a checkstop. 
1 Machine check interrupts are enabled.

52 FE0 Floating-point exception mode 0. On the e500, this bit is reserved and permanently cleared, indicating that the 
e500 does not implement a Book E FPU. Setting it has no effect. 

53 UBLE Allocated for implementation-dependent use. On the e500, it is the user BTB lock enable bit.
0 Execution of the BTB lock instructions for user mode is disabled; a privileged instruction exception is taken 

instead.
1 Execution of the BTB lock instructions for user mode is enabled.

54 DE Debug interrupt enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled if DBCR0[IDM] = 1.
For the e500, see the description of the DBSR[UDE] in Section 2.13.2, “Debug Status Register (DBSR).”

55 FE1 Floating-point exception mode 1. On the e500, this bit is reserved and permanently cleared, indicating that the 
e500 does not implement a Book E FPU. Setting it has no effect. 

56–57 — Reserved, should be cleared. 1

58 IS Instruction address space
0 The processor directs all instruction fetches to address space 0 (TS = 0 in the relevant TLB entry).
1 The processor directs all instruction fetches to address space 1 (TS = 1 in the relevant TLB entry).

59 DS Data address space
0 The processor directs data memory accesses to address space 0 (TS = 0 in the relevant TLB entry).
1 The processor directs data memory accesses to address space 1 (TS = 1 in the relevant TLB entry).

60 — Reserved, should be cleared. 1

61 PMM Performance monitor mark bit. System software can set PMM when a marked process is running to enable 
statistics to be gathered only during the execution of the marked process. MSR[PR] and MSR[PMM] together 
define a state that the processor (supervisor or user) and the process (marked or unmarked) may be in at any 
tim e. If this state matches an individual state specified in the PMLCan, the state for which monitoring is enabled, 
counting is enabled. 

62–63 — Reserved, should be cleared. 1

1 An MSR bit that is reserved may be altered by return from interrupt instructions.

Table 2-3. MSR Field Descriptions (continued)

Bits Name Description
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2.5.3 Processor Version Register (PVR)

The e500 implements the processor version register (PVR) as defined by the Book E architecture. 
The read-only PVR, shown in Figure 2-3, contains a value identifying the version and revision 
level of the processor. The PVR distinguishes between processors that differ in attributes that may 
affect software. 

Table 2-4 describes the PVR fields.

2.5.4 System Version Register (SVR)

The system version register (SVR), shown in Figure 2-4, contains a read-only SoC-dependent 
value; consult the documentation for the implementation.

 SPR 287 Access: Supervisor read-only

32 47 48 63

R Version Revision

W

Reset(e500v1) 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Reset (e500v2) 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 2-3. Processor Version Register (PVR)

Table 2-4. PVR Field Descriptions

Bits Name Description

32–47 Version A 16-bit number that identifies the version of the processor. Different version numbers indicate major 
differences between processors, such as which optional facilities and instructions are supported.

48–63 Revision A 16-bit number that distinguishes between implementations of the version. Different revision numbers 
indicate minor differences between processors having the same version number, such as clock rate and 
engineering change level. 

 SPR 1023 Access: Supervisor read-only

32 63

R System version

W

Reset SoC-dependent value (determined by svr[0:31]. See Section 13.2, “Signal Summary.”)

Figure 2-4. System Version Register (SVR)
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2.6 Timer Registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer provide 
timing functions for the system. The e500 provides the ability to select any of the TB bits to trigger 
watchdog and fixed-interval timer events, as shown in Figure 2-5.

Figure 2-5. Relationship of Timer Facilities to the Time Base

e500 registers involved in timing are described as follows:

• The TB is a long-period counter driven at an implementation-dependent frequency.

• The decrementer, updated at the same rate as the TB, provides a way to signal an exception 
after a specified period unless one of the following occurs:

— DEC is altered by software in the interim.

— The TB update frequency changes.

DEC is typically used as a general-purpose software timer.

• The time base for the TB and DEC is selected by the time base enable (TBEN) and select 
time base clock (SEL_TBCLK) bits in HID0, as follows:

— If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 0, the time base is updated every 8 bus 
clocks.

— If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 1, the time base is updated on the 
rising edge of tbclk (or an implementation-specific clock input). 

• Software can select one from of four TB bits to signal a fixed-interval interrupt whenever 
the bit transitions from 0 to 1. It is typically used to trigger periodic system maintenance 
functions. Bits that may be selected are implementation-dependent.

Timer Clock

Time Base (incrementer)

Decrementer event = 0/1 detect
63

DECAR

32

Auto-reload

6332

TBL

6332

TBU

Watchdog timer events based on one of the TB bits 
selected by the EIS–defined TCR[WPEXT] concatenated 
with the Book E–defined TCR[WP] (WPEXT || WP).

Fixed-interval timer events based on one of TB bits 
selected by the EIS–defined TCR[FPEXT] concatenated 
with the Book E–defined TCR[FP] (FPEXT || FP).

DEC

(Time Base Clock)
tbclk
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• The watchdog timer, also a selected TB bit, provides a way to signal a critical exception 
when the selected bit transitions from 0 to 1. It is typically used for system error recovery. 
If software does not respond in time to the initial interrupt by clearing the associated status 
bits in the TSR before the next expiration of the watchdog timer interval, a watchdog 
timer-generated processor reset may result, if so enabled. 

All timer facilities must be initialized during start-up.

2.6.1 Timer Control Register (TCR)

The e500 implements the TCR, shown in Figure 2-6, as defined by the Book E architecture except 
as follows:

• TCR[WPEXT] and TCR[FPEXT], not specified in Book E, are concatenated with 
TCR[WP] and TCR[FP] to select a bit that triggers the watchpoint timer and fixed-interval 
timer events. 

• The value programmed into WRC is reflected on the e500 wrs signals. 

Table 2-5 describes the e500 TCR fields that differ from the Book E definition.
 

 SPR 340 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 46 47 50 51 63

R
WP WRC WIE DIE FP FIE ARE — WPEXT FPEXT —

W

Reset All zeros

Figure 2-6. Timer Control Register (TCR)

Table 2-5. TCR Implementation-Specific Field Descriptions

Bits Name Description

32–33 WP Watchdog timer period. When concatenated with WPEXT, specifies one of 64-bit locations of the time base 
used to signal a watchdog timer exception on a transition from 0 to 1.
WPEXT,WP = 0000_00 selects TBU[32] (the msb of the TB) 
WPEXT,WP = 1111_11 selects TBL[63] (the lsb of the TB) 

34–35 WRC Watchdog timer reset control. When a watchdog reset event occurs, the value programmed into WRC is 
reflected on wrs and into TSR[WRS], but the WRC bits are reset to 00. At this point, software can reprogram 
WRC. Although WRC can be set by software, it cannot be cleared by software (except by a software-induced 
reset). Once written to a non-zero value, WRC may no longer be altered by software.
00 No watchdog timer reset will occur.
01 Force processor checkstop on second timeout of watchdog timer
10 Assert processor reset output (p_resetout_b) on second timeout of watchdog timer 
11 Reserved

38–39 FP Fixed interval timer period. When concatenated with FPEXT, FP specifies one of 64 bit locations of the time 
base used to signal a fixed-interval timer exception on a transition from 0 to 1.
FPEXT || FP = 0000_00 selects TBU[32] (the msb of the TB)
FPEXT || FP = 1111_11 selects TBL[63] (the lsb of the TB)
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2.6.2 Timer Status Register (TSR)

The e500 implements the TSR as it is defined by the Book E architecture. The 32-bit TSR contains 
status on timer events and the most recent watchdog timer-initiated processor reset. All TSR bits 
function as write-1-to-clear.

2.6.3 Time Base (TBU and TBL)

The e500 implements the time base registers as they are defined by the Book E architecture. The 
time base (TB) is composed of two 32-bit registers, the time base upper (TBU) concatenated on 
the right with the time base lower (TBL). TB provides timing functions for the system. TB is a 
volatile resource and must be initialized during start-up. 

2.6.4 Decrementer Register (DEC) 

The e500 implements the DEC as it is defined by the Book E architecture. DEC is a 32-bit 
decrementing counter that is updated at the same rate as the TB. It provides a way to signal a 
decrementer interrupt after a specified period unless one of the following occurs:

• DEC is altered by software in the interim.

• The TB update frequency changes.

DEC is typically used as a general-purpose software timer. The decrementer auto-reload register 
is used to automatically reload a programmed value into DEC, as described in Section 2.6.5, 
“Decrementer Auto-Reload Register (DECAR).”

2.6.5 Decrementer Auto-Reload Register (DECAR) 

The e500 implements the DECAR as it is defined by the Book E architecture. If the auto-reload 
function is enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when 
DEC decrements from 0x0000_0001 to 0x0000_0000. Note that writing DEC with zeros by using 
an mtspr[DEC] does not automatically generate a decrementer exception. 

2.6.6 Alternate Time Base Registers (ATBL and ATBU)

The alternate time base counter (ATB), shown in Figure 2-7, is formed by concatenating the upper
and lower alternate time base registers (ATBU and ATBL). ATBL (SPR 526) provides read-only

43–46 WPEXT Watchdog timer period extension (see the description for WP)

47–50 FPEXT Fixed-interval timer period extension (see the description for FP)

Table 2-5. TCR Implementation-Specific Field Descriptions (continued)

Bits Name Description



Register Model

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 2-17

access to the 64-bit alternate time base counter, which is incremented at an
implementation-defined frequency. On the e500v2, this frequency is the core frequency. The ATB
register is accessible in both user and supervisor mode. 

Like the TB implementation, the ATBL register is an aliased name for ATB. 

Table 2-6 describes the ATB fields.

2.6.6.1 Alternate Time Base Upper (ATBU)

The ATBU register, shown in Figure 2-8, provides read-only access to the upper 32 bits of the
alternate time base counter. It is accessible in both user and supervisor mode.

Table 2-7 describes the ATBU fields.

2.7 Interrupt Registers
Section 2.7.1, “Interrupt Registers Defined by Book E,” and Section 2.7.2, “e500-Specific 
Interrupt Registers,” describe registers used for interrupt handling.

 SPR 526 Access: User read-only

32 63

R ATBLU

W

Reset All zeros

Figure 2-7. Alternate Time Base Register Lower (ATBL)

Table 2-6. ATBL Field Descriptions

Bits Name Description

32–63 ATBCL Alternate time base counter lower
Lower 32 bits of the alternate time base counter

 SPR 527 Access: User read-only

32 63

R ATBCU

W

Reset All zeros

Figure 2-8. Alternate Time Base Register Upper (ATBU)

Table 2-7. ATBU Field Descriptions

Bits Name Description

32–63 ATBCU Alternate time base counter upper
Upper 32 bits of the alternate time base counter
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2.7.1 Interrupt Registers Defined by Book E

This section describes the following register bits and their fields:

• Section 2.7.1.1, “Save/Restore Register 0/1 (SRR0 and SRR1)”

• Section 2.7.1.2, “Critical Save/Restore Register 0/1 (CSRR0 and CSRR1)”

• Section 2.7.1.3, “Data Exception Address Register (DEAR)”

• Section 2.7.1.4, “Interrupt Vector Prefix Register (IVPR)”

• Section 2.7.1.5, “Interrupt Vector Offset Registers (IVORs)”

• Section 2.7.1.6, “Exception Syndrome Register (ESR)”

2.7.1.1 Save/Restore Register 0/1 (SRR0 and SRR1)

The e500 implements SRR0 and SRR1 as they are defined by the Book E architecture. On a 
noncritical interrupt, SRR0 holds the address of the instruction where the interrupted process 
should resume. The instruction is interrupt-specific, although for instruction-caused exceptions, it 
is typically the address of the instruction that caused the interrupt. When rfi executes, instruction 
execution continues at the address in SRR0.

SRR1 is provided to save and restore machine state on noncritical interrupts. When a noncritical 
interrupt is taken, MSR contents are placed in SRR1. When rfi executes, SRR1 contents are placed 
into MSR. SRR1 bits that correspond to reserved MSR bits are also reserved. These registers are 
not affected by rfci or rfmci. Reserved MSR bits may be altered by rfi, rfci, or rfmci.

2.7.1.2 Critical Save/Restore Register 0/1 (CSRR0 and CSRR1)

The e500 implements CSRR0 and CSRR1 as they are defined by the Book E architecture. On a 
critical interrupt, CSRR0 holds the address of the instruction where the interrupted process should 
resume. The instruction is interrupt-specific, although for instruction-caused exceptions, it is 
typically the address of the instruction that caused the interrupt. When rfci executes, instruction 
execution continues at the address in CSRR0.

CSRR1 is provided to save and restore machine state on critical interrupts. When a critical 
interrupt is taken, MSR contents are placed in CSRR1. When rfci executes, SRR1 contents are 
placed into MSR. CSRR1 bits that correspond to reserved MSR bits are also reserved. These 
registers are not affected by rfi or rfmci. Reserved MSR bits may be altered by rfi, rfci, or rfmci.

2.7.1.3 Data Exception Address Register (DEAR)

The e500 implements DEAR as it is defined by the Book E architecture. DEAR is loaded with the 
effective address of a data access (caused by a load, store, or cache management instruction) that 
results in an alignment, data TLB miss, or DSI exception. 
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2.7.1.4 Interrupt Vector Prefix Register (IVPR)

The e500 implements IVPR as it is defined by the Book E architecture. It is used with IVORs to 
determine the vector address. IVPR[32–47] provides the high-order 16 bits of the address of the 
exception processing routines. The 16-bit vector offsets are concatenated to the right of 
IVPR[32–47] to form the address of the exception processing routine. 

2.7.1.5 Interrupt Vector Offset Registers (IVORs)

The e500 implements the IVORs as defined by the Book E architecture, but use only 
IVORn[48–59], as shown in Figure 2-9, to hold the quad-word index from the base address 
provided by the IVPR for each interrupt type. 

Table 2-8 shows the IVORs implemented on the e500. IVOR0–IVOR15 are defined by the 
architecture. (Note that the e500 does not implement IVOR7 and IVOR9.) In addition, 
IVOR32–IVOR35 (SPR 528–531) are used by the e500 APUs. 

SPR (See Table 2-8.) Access: Supervisor-only

32 46 47 59 60 63

R
— Interrupt vector offset —

W

Reset All zeros

Figure 2-9. Interrupt Vector Offset Registers (IVORs)

Table 2-8. IVOR Assignments

IVOR Number SPR Interrupt Type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable (Not supported on the e500)

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable (Not supported on the e500)

IVOR10 410 Decrementer

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug
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2.7.1.6 Exception Syndrome Register (ESR)

Figure 2-10 shows the ESR as it is defined on the e500. 

The ESR provides a way to differentiate among exceptions that can generate an interrupt type. 
When an interrupt is generated, bits corresponding to the specific exception that generated the 
interrupt are set and all other ESR bits are cleared. Other interrupt types do not affect ESR 
contents. The ESR does not need to be cleared by software. Table 2-9 shows ESR bit definitions. 
The e500 defines ESR[SPE] as the SPE/embedded floating-point exception bit. It is set whenever 
the processor takes an exception related to the execution of SPE or SPFP instructions. Note that 
the e500 does not use the ESR for machine check interrupts, but instead uses the machine check 
syndrome register, MCSR, described in Section 2.7.2.4, “Machine Check Syndrome Register 
(MCSR).” The ESR is defined in Book E but differs in the following respects:

• The e500 defines ESR[DLK0] (bit 42) as ESR[DLK].

• The e500 defines ESR[DLK1] (bit 43) as ESR[ILK].

• The e500 defines ESR[SPE] (bit 56).

• The e500 does not implement FP, AP, PIE, or PUO.

IVOR16–IVOR31 — Reserved for future architectural use

IVOR32 528 (e500-specific) SPE APU unavailable

IVOR33 529 (e500-specific) Embedded floating-point data exception

IVOR34 530 (e500-specific) Embedded floating-point round exception

IVOR35 531 (e500-specific) Performance monitor

IVOR36–IVOR63 — Allocated for implementation-dependent use

SPR 62 Access: Supervisor-only

32 35 36 37 38 39 40 41 42 43 44 45 46 47 55 56 57 63

R
— PIL PPR PTR — ST — DLK ILK — BO — SPE —

W

Reset All zeros

Figure 2-10. Exception Syndrome Register (ESR)

Table 2-8. IVOR Assignments (continued)

IVOR Number SPR Interrupt Type
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Table 2-9 describes the ESR fields, showing the associated interrupts. Note that an implementation 
may implement additional ESR bits to identify implementation-specific or architected interrupt 
types.

NOTE
ESR information is incomplete, so system software may need to 
identify the type of instruction that caused the interrupt, examine the 
TLB entry, and examine the ESR to fully identify the exception or 
exceptions. For example, a data storage interrupt may be caused by 
both a protection violation exception and a byte-ordering exception. 
System software would have to look beyond ESR[BO], such as the 
state of MSR[PR] in SRR1 and the TLB entry page protection bits to 
determine if a protection violation also occurred.

Table 2-9. ESR Field Descriptions

Bits Name Syndrome Interrupt Types

32–35 — Reserved, should be cleared. (Defined by Book E as allocated.) —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 — Not supported on the e500. Defined by Book E as FP (floating-point operations). On the 
e500, this bit is reserved and permanently cleared, indicating that the e500 does not 
implement a Book E FPU. Setting it has no effect.

—

40 ST Store operation Alignment, DSI, 
DTLB error

41 — Reserved, should be cleared. —

42 DLK Data cache locking (defined by Book E as DLK0). Settings are implementation dependent. 
0 Default
1 On the e500, DLK is set when a DSI occurs because dcbtls, dcbtstls, or dcblc is 

executed in user mode while MSR[UCLE] = 0. 

DSI

43 ILK Instruction cache locking. (Book E defines this bit as DLK1.) Set when a DSI occurs 
because icbtl or icblc is executed in user mode (MSR[PR] = 1 and MSR[UCLE] = 0)

DSI

44 — Not supported on the e500. Defined by Book E as AP (auxiliary processor operation). —

45 — Not supported on the e500. Unimplemented operation exception. On the e500, 
unimplemented instructions are handled as illegal instructions.

Program

46 BO Byte-ordering exception DSI, ISI

47 — Not supported on the e500. Defined by Book E as PIE, Imprecise exception. —

48–55 — Reserved, should be cleared. —

56 SPE SPE/embedded floating-point exception bit (e500-specific)
0 Default
1 Any exception caused by an SPE or and SPFP instruction occurred.

57–63 — Reserved, should be cleared (defined by Book E as allocated). —
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2.7.2 e500-Specific Interrupt Registers

This section describes machine check save/store and syndrome registers.

2.7.2.1 Machine Check Save/Restore Register 0 (MCSRR0)

When a machine check interrupt is taken, MCSRR0, shown in Figure 2-11, is set to the address of 
the instruction where the interrupted process should resume. The instruction is interrupt-specific, 
although typically MCSRR0 holds the address of the instruction that caused the interrupt. After 
rfmci executes, instruction execution continues at this address. 

2.7.2.2 Machine Check Save/Restore Register 1 (MCSRR1)

MCSRR1 is used to save and restore machine state on machine check interrupts. When a machine 
check interrupt is taken, MSR contents are placed into MCSRR1, shown in Figure 2-12. When 
rfmci executes, MCSRR1 contents are restored to MSR. MCSRR1 bits that correspond to 
reserved MSR bits are also reserved; reserved MSR bits may be altered.

2.7.2.3 Machine Check Address Register (MCAR)

When the core complex takes a machine check interrupt, it updates MCAR (Figure 2-13) to 
indicate the address of the data associated with the machine check. Note that if a machine check 
interrupt is caused by a signal, the contents of MCAR are not meaningful.

SPR 570 Access: Supervisor-only

32 63

R
Next instruction address

W

Reset All zeros

Figure 2-11. Machine Check Save/Restore Register 0 (MCSRR0)

SPR 571 Access: Supervisor-only

32 63

R
MSR state information

W

Reset All zeros

Figure 2-12. Machine Check Save/Restore Register 1 (MCSRR1)

SPR 573 Access: Supervisor-only

32 63

R
Machine check address

W

Reset All zeros

Figure 2-13. Machine Check Address Register (MCAR)
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2.7.2.4 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates MCSR to differentiate between 
machine check conditions. The MCSR indicates whether a machine check condition is 
recoverable. When a condition bit is set, the core complex asserts MCP_OUT for system 
information. ABIST status is logged in MCSR[48–54]. These bits do not initiate machine check 
(or any other exception). An ABIST bit being set indicates an error being detected in the 
corresponding module. The MCSR is shown in Figure 2-14.

Table 2-10 describes the MCSR fields.
 

SPR 572 Access: Supervisor-only

 32 33 34 35 36 39

R
MCP ICPERR DCP_PERR DCPERR —

W

Reset All zeros

 40 47

R
—

W

Reset All zeros

48 55

R
—

W

Reset All zeros

56 57 58 59 60 61 62 63

R
BUS_IAERR BUS_RAERR BUS_WAERR BUS_IBERR BUS_RBERR BUS_WBERR BUS_IPERR BUS_RPERR

W

Reset All zeros

Figure 2-14. Machine Check Syndrome Register (MCSR)

Table 2-10. MCSR Field Descriptions

Bit Name Description

32 MCP Machine check input to core mcp

33 ICPERR Instruction cache parity error

34 DCP_PERR Data cache push parity error

35 DCPERR Data cache parity error

36–55 — Reserved, should be cleared.

56 BUS_IAERR Bus instruction address error

57 BUS_RAERR Bus read address error

58 BUS_WAERR Bus write address error
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2.8 Software-Use SPRs (SPRG0–SPRG7 and USPRG0)
The e500 implements the software-use SPRs (SPRG0–SPRG7 and USPRG0) as defined by the 
Book E architecture. They have no defined functionality and are accessed as follows: 

• SPRG0–SPRG2—These registers can be accessed only in supervisor mode.

• SPRG3—This register can be written only in supervisor mode. It is readable in supervisor 
mode, but whether it can be read in user mode is implementation-dependent. It is readable 
in user mode on the e500.

• SPRG4–SPRG7—These registers can be written only in supervisor mode. They are 
readable in supervisor or user mode.

• USPRG0—This register can be accessed in supervisor or user mode.

2.9 Branch Target Buffer (BTB) Registers 
SPRs are defined in the core complex for enabling the locking and unlocking of entries in the BTB. 
These are called the branch buffer entry address register (BBEAR), the branch buffer target address 
register (BBTAR), and branch unit control and status register (BUCSR). The user branch locking 
enable bit, MSR[UBLE], is defined to allow user-mode programs to lock or unlock BTB entries. 

See Section 3.9.1, “Branch Target Buffer (BTB) Locking Instructions,” for more information 
about BTB locking. Section 2.5.1, “Machine State Register (MSR),” describes MSR bits that 
support the BTB. 

59 BUS_IBERR Bus instruction data bus error

60 BUS_RBERR Bus read data bus error

61 BUS_WBERR Bus write bus error

62 BUS_IPERR Bus instruction parity error

63 BUS_RPERR Bus read parity error

Table 2-10. MCSR Field Descriptions (continued)

Bit Name Description
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2.9.1 Branch Buffer Entry Address Register (BBEAR)

BBEAR is shown in Figure 2-15. Writing to BBEAR requires synchronization, as described in 
Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-12 describes the BBEAR fields.

2.9.2 Branch Buffer Target Address Register (BBTAR)

Figure 2-16 shows the BBTAR. Writing to BBTAR requires synchronization, as described in 
Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-12 describes BBTAR fields.

SPR 513 Access: Supervisor/user

32 61 62 63

R
Branch buffer entry address IAB[0–1]

W

Reset All zeros

Figure 2-15. Branch Buffer Entry Address Register (BBEAR)

Table 2-11. BBEAR Field Descriptions

Bits Name Description

32–61 Branch buffer
entry address

Branch buffer effective entry address bits 0–29

62–63 IAB[0–1] Instruction after branch (with BBTAR[62]). 3-bit pointer that points to the instruction in the cache block 
after the branch. If the branch is the last instruction in the cache block, IAB = 000, to indicate the next 
sequential instruction, which resides in the zeroth position of the next cache block. 

SPR 513 Access: Supervisor/user

32 61 62 63

R
Branch buffer target address IAB2 BDIRPR

W

Reset All zeros

Figure 2-16. Branch Buffer Target Address Register (BBTAR)

Table 2-12. BBTAR Field Descriptions

Bits Name Description

32–61 Branch buffer 
target address

Branch buffer target address bits 0–29

62 IAB2 Instruction after branch bit 2 (with BBEAR[62–63]). IAB is a 3-bit pointer that points to the instruction in 
the cache block after the branch. See the bblels instruction description. 

63 BDIRPR Branch direction prediction. The user can pick the direction of the predicted branch. 
0 The locked address is always predicted as not taken.
1 The locked address is always predicted as taken.
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2.9.3 Branch Unit Control and Status Register (BUCSR)

The BUCSR, shown in Figure 2-17, is used for general control and status of the branch target 
buffer (BTB). Writing to BUCSR requires synchronization, as described in Section 2.16, 
“Synchronization Requirements for SPRs.”

BUCSR provides control of BTB locking, including the following:

• Enable or disable BTB locking 

• Invalidate all BTB entries at once (flash invalidate)

• Unlock all BTB entries at once (flash lock clear)

Table 2-13 describes the BUCSR fields.
 

SPR 1013 Access: Supervisor-only

32 53 54 55 56 57 58 62 63

R
— BBFI BBLO BBUL BBLFC — BPEN

W

Reset All zeros

Figure 2-17. Branch Unit Control and Status Register (BUCSR)

Table 2-13. BUCSR Field Descriptions

Bits Name Description

32–53 — Reserved, should be cleared.

54 BBFI Branch buffer flash invalidate. Clearing and then setting BBFI flash clears the valid bit of all entries in the branch 
buffer; clearing occurs independently from the value of the enable bit (BPEN). BBFI is always read as 0.

55 BBLO Branch buffer lock overflow status
0 Indicates a lock overflow condition was not encountered in the branch buffer
1 Indicates a lock overflow condition was encountered in the branch buffer
This sticky bit is set by hardware and is cleared by writing 0 to this bit location.

56 BBUL Branch buffer unable to lock
0 Indicates a lock overflow condition in the branch buffer
1 Indicates a lock set instruction failed in the branch buffer, for example, if the BTB is disabled
This sticky bit is set by hardware and is cleared by writing 0 to this bit location.

57 BBLFC Branch buffer lock bits flash clear. Clearing and then setting BBLFC flash clears the lock bit of all entries in the 
branch buffer; clearing occurs independently from the value of the enable bit (BPEN). BBLFC is always read as 0.

58–62 — Reserved, should be cleared.

63 BPEN Branch prediction enable
0 Branch prediction disabled
1 Branch prediction enabled (enables BTB to predict branches)
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2.10 Hardware Implementation-Dependent Registers 
This section describes the e500-specific HID0 and HID1 registers.

2.10.1 Hardware Implementation-Dependent Register 0 (HID0)

This section describes the HID0 register, shown in Figure 2-18, as it is defined by the e500 core. 

NOTE
Note that some HID fields may not be implemented in a device that 
incorporates the e500 core and that some fields may be defined more 
specifically by the incorporating device. For specific details it is 
important to refer to the “Register Summary” chapter in the device’s 
reference manual. 

HID0 is used for configuration and control. Writing to HID0 requires synchronization, as 
described in Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-14 describes the HID0 fields.
 

SPR 1008 Access: Supervisor-only

32 33 39 40 41 42 43 47

R
EMCP — DOZE NAP SLEEP —

W

Reset All zeros

48 49 50 51 55 56 57 58 62 63

R
— TBEN SEL_TBCLK — EN_MAS7_UPDATE DCFA — NOPTI

W

Reset All zeros

Figure 2-18. Hardware Implementation-Dependent Register 0 (HID0)

Table 2-14. HID0 Field Descriptions

Bits Name Description

32 EMCP Enable machine check signal, mcp. Used to mask out further machine check exceptions caused by 
asserting the internal mcp signal. 
0 mcp is disabled.
1 mcp is enabled. If MSE[ME] = 0, asserting mcp causes checkstop. If MSR[ME] = 1, asserting mcp 

causes a machine check exception.

33–39 — Reserved, should be cleared.

40 DOZE Doze power management mode. If MSR[WE] is set, this bit controls the doze output signal. 
Interpretation of this bit is handled by integrated system logic. 
0 doze is not asserted.
1 doze is asserted.
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41 NAP Nap power management mode. If MSR[WE] is set, this bit controls the nap output signal. 
Interpretation of this bit is handled by integrated system logic. 
0 nap is not asserted.
1 nap is asserted.

42 SLEEP Configure for sleep power management mode. If MSR[WE] is set, this bit controls the sleep output 
signal. Interpretation of this bit is handled by integrated system logic. 
0 sleep is not asserted
1 sleep is asserted

43–48 — Reserved, should be cleared.

49 TBEN Time base and decrementer enable
0 Time base disabled
1 Time base enabled

50 SEL_TBCLK Select time base clock
0 Time base is based on the processor clock
1 Time base is based on TBCLK input

51–55 — Reserved, should be cleared.

56 EN_MAS7_UPDATE Enable MAS7 update (e500v2 only). Enables updating MAS7 by tlbre and tlbsx.
0 MAS7 is not updated by a tlbre or tlbsx.
1 MAS7 is updated by a tlbre or tlbsx.

57 DCFA Data cache flush assist (e500v2 only). Force data cache to ignore invalid sets on miss replacement 
selection.
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence 

defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz instructions 
to eight per set. The bit should be set just before beginning a cache flush routine and should be 
cleared when the series of instructions is complete. 

58–62 — Reserved, should be cleared.

63 NOPTI No-op the data and instruction cache touch instructions.
0 dcbt, dcbtst, and icbt are enabled, as defined by the EIS. Note that on the e500, if CT = 0, icbt 

is always a no-op, regardless of the value of NOPTI. If CT = 1, icbt does a touch load to the L2 
cache.

1 dcbt, dcbtst, and icbt are treated as no-ops; dcblc and dcbtls are not treated as no-ops.

Table 2-14. HID0 Field Descriptions (continued)

Bits Name Description
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2.10.2 Hardware Implementation-Dependent Register 1 (HID1)

This section describes the HID1 register, shown in Figure 2-19, as it is defined by the e500 core. 

NOTE
Note that some HID fields may not be implemented in a device that 
incorporates the e500 core and that some fields may be defined more 
specifically by the incorporating device. For specific details it is 
important to refer to the “Register Summary” chapter in the device’s 
reference manual. 

HID1 is used for bus configuration and control. Writing to HID1 requires synchronization, as 
described in Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-15 describes the HID1 fields. 
 

SPR 1009 Access: Supervisor-only

32 37 38 45 46 47

R PLL_CFG
— RFXE —

W

Reset All zeros

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
R1DPE R2DPE ASTME ABE — MPXTT —

ATS
—

MID

W

Reset All zeros

Figure 2-19. Hardware Implementation-Dependent Register 1 (HID1)

Table 2-15. HID1 Field Descriptions

Bits Name Description

32–37 PLL_CFG Reflected directly from the PLL_CFG input pins (read-only)

38–46 — Reserved, should be cleared.
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46 RFXE Read fault exception enable. With MSR[ME], controls whether assertion of core_fault_in causes a machine 
check interrupt. The assertion of core_fault_in can result from an L2 multibit ECC error. It can also occur for 
a system error if logic on the integrated device signals a fault for a transaction initiated by the core (for 
example, a master abort of a PCI transaction). See Section 13.8, “Proper Reporting of Bus Faults,” for 
more information.
0 Normal operation. Assertion of core_fault_in does not cause a machine check. In normal operation RFXE 

should be left clear and an interrupt should be reported by the integrated device (possibly through int or 
cint) for core_fault_in conditions. If RFXE = 0, it is important that the integrated device be configured to 
generate an interrupt when core_fault_in is asserted. 

1 A machine check can occur due to assertion of core_fault_in. 
If MSR[ME] = 1 and a fault is signaled, a machine check interrupt occurs.
If MSR[ME] = 0 and a fault is signaled, a checkstop occurs.

Caveat for the e500v1.
CCB transactions that result in core_fault_in being asserted may contain bad data. On the e500v1, such 
transactions may complete and the core could continue executing with bad data. Note that even if the 
peripheral blocks are set up to signal an interrupt to the core for all possible causes of core_fault_in, there 
is some delay between the completion of the CCB transaction (with potentially bad data) and the 
processing of the peripheral block interrupt.Therefore, for the e500v1, if software requires that code 
execution stop immediately when a bus fault occurs, RFXE must be set to 1 so that at a minimum, a 
machine check exception is taken immediately and processing does not continue with potentially bad data. 
However, setting RFXE when a peripheral block is configured to also signal an interrupt for a core_fault_in 
case results in both a machine check interrupt (if MSR[ME] = 0) and potentially an external interrupt 
occuring when a bus fault is detected by that peripheral.þIn this case, the machine check interrupt handler 
can re-enable external interrupts and wait for the interrupt from the peripheral block, and handle the 
condition, before returning from the machine check exception, therefore protecting the system from using 
potentially bad data. Note that on the e500v2, the core never completes a CCB transaction for which 
core_fault_in is asserted, so the above precautions regarding execution with bad data do not apply.

RFXE should always be 0 for normal operation for the e500v2; it should be set only if it is necessary that the 
assertion of core_fault_in generate a machine check or a checkstop because peripherals are not properly 
configured to report bus faults. This would typically occur only during software or firmware development. 
Note that the L2 cache detects any assertion of core_fault_in and ensures that the L2 cache is not corrupted 
when data is dropped for this type of transaction. 
Machine check generation for bus parity errors is not affected by this bit.

47 — Reserved, should be cleared. 

48 R1DPE R1 data bus parity enable. The R1 and R2 data buses are described in Chapter 13, “Core Complex Bus 
(CCB).”
0 R1 data bus parity checking disabled
1 R1 data bus parity checking enabled

49 R2DPE R2 data bus parity enable. The R1 and R2 data buses are described in Chapter 13, “Core Complex Bus 
(CCB).”
0 R2 data bus parity checking disabled
1 R2 data bus parity checking enabled

50 ASTME Address bus streaming mode enable
0 Address bus streaming mode disabled
1 Address bus streaming mode enabled

Table 2-15. HID1 Field Descriptions (continued)

Bits Name Description
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2.11 L1 Cache Configuration Registers
The Freescale Book E standards define registers that provide control and configuration and status 
information for the L1 cache implementation.

2.11.1 L1 Cache Control and Status Register 0 (L1CSR0)

The L1CSR0 register, shown in Figure 2-20, is defined by the EIS. It is used for general control 
and status of the L1 data cache. Writing to L1CSR0 requires synchronization, as described in 
Section 2.16, “Synchronization Requirements for SPRs.”

51 ABE Address broadcast enable. The e500 broadcasts cache management instructions (dcbst, dcblc (CT = 1), 
icblc (CT = 1), dcbf, mbar, msync, tlbivax, tlbsync, icbi) based on ABE. On some implementations, ABE 
must be set to allow management of external L2 caches.
0 Address broadcasting disabled
1 Address broadcasting enabled

52 — Reserved, should be cleared. 

53 MPXTT MPX re-map transfer type
0 TTx codes are not remapped.
1 Certain TTx codes are remapped for MPX bus compatibility. See the integrated device documentation. 

54–55 — Reserved. should be cleared.

56 ATS Atomic status (read-only). Indicates state of atomic status bit in bus unit.

57–59 — Reserved, should be cleared.

60–63 MID Reflected directly from the MID input pins (read-only)

SPR 1010 Access: Supervisor-only

Line Locking APU Bits

32 46 47 48 49 51 52 53 54 55 56 61 62 63

R
— CPE CPI — CSLC CUL CLO CLFR — CFI CE

W

Reset All zeros

Figure 2-20. L1 Cache Control and Status Register 0 (L1CSR0)

Table 2-15. HID1 Field Descriptions (continued)

Bits Name Description
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Table 2-16 describes the L1CSR0 fields. 
 

Table 2-16. L1CSR0 Field Descriptions

Bits Name Description

32–46 — Reserved, should be cleared.

47 CPE (Data) Cache parity enable. See Section 5.7.2, “Machine Check Interrupt.” 
0 Parity checking of the cache disabled
1 Parity checking of the cache enabled
Note that if the programmer attempts to set L1CSR0[CPI] (using mtspr) without setting L1CSR0[CPE], 
L1CSR0[CPI] will not be set (enforced by hardware).

48 CPI (Data) Parity error injection enable. See Section 5.7.2.2, “Cache Parity Error Injection.”
0 Parity error injection disabled
1 Parity error injection enabled. Cache parity must also be enabled (CPE = 1) when this bit is set.
Note that if the programmer attempts to set L1CSR0[CPI] (using mtspr) without setting L1CSR0[CPE], 
L1CSR0[CPI] will not be set (enforced by hardware).

49–51 — Reserved, should be cleared.

52 CSLC (Data) Cache snoop lock clear. Sticky bit set by hardware if a dcbi snoop (either internally or externally 
generated) invalidated a locked cache block. Note that the lock bit for that line is cleared whenever the line is 
invalidated. This bit can be cleared only by software.
0 The cache has not encountered a dcbi snoop that invalidated a locked line.
1 The cache has encountered a dcbi snoop that invalidated a locked line.

53 CUL (Data) Cache unable to lock. Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache

54 CLO (Data) Cache lock overflow. Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55 CLFR (Data) Cache lock bits flash reset. Writing a 1 during a flash clear operation causes an undefined operation. 
Writing a 0 during a flash clear operation is ignored. Clearing occurs regardless of the enable (CE) value.
0 Default
1 Hardware initiates a cache lock bits flash clear operation. CLFR resets to 0 when the operation completes. 

56–61 — Reserved, should be cleared.

62 CFI (Data) Cache flash invalidate. (Invalidation occurs regardless of the enable (CE) value.)
0 No cache invalidate. Writing a 0 to CFI during an invalidation operation is ignored.
1 Cache invalidation operation. A cache invalidation operation is initiated by hardware. Once complete, CFI is 

cleared. Writing a 1 during an invalidation causes an undefined operation. 

63 CE (Data) Cache enable
0 The cache is neither accessed or updated.
1 Enables cache operation
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2.11.2 L1 Cache Control and Status Register 1 (L1CSR1)

The L1CSR1 register, defined as part of the EIS, is shown in Figure 2-21. It is used for general 
control and status of the L1 instruction cache. Writing to L1CSR1 requires synchronization, as 
described in Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-17 describes the L1CSR1 fields.
 

SPR 1011 Access: Supervisor-only

Line Locking APU Bits

32 46 47 48 49 51 52 53 54 55 56 61 62 63

R
— ICPE ICPI — ICSLC ICUL ICLO ICLFR — ICFI ICE

W

Reset All zeros

Figure 2-21. L1 Cache Control and Status Register 1 (L1CSR1)

Table 2-17. L1CSR1 Field Descriptions

Bits Name Description

32–46 — Reserved, should be cleared.

47 ICPE Instruction cache parity enable. See Section 5.7.2, “Machine Check Interrupt.”
0 Parity checking of the instruction cache disabled
1 Parity checking of the instruction cache enabled
Note that if the programmer attempts to set L1CSR1[ICPI] (using mtspr) without setting L1CSR1[ICPE], 
L1CSR1[ICPI] will not be set (enforced by hardware).

48 ICPI Instruction parity error injection enable. See Section 5.7.2.2, “Cache Parity Error Injection.”
0 Parity error injection into instruction cache disabled
1 Parity error injection into instruction cache enabled.Instruction cache parity must also be enabled (ICPE = 1) 

when this bit is set.
Note that if the programmer attempts to set L1CSR1[ICPI] (using mtspr) without setting L1CSR1[ICPE], 
L1CSR1[ICPI] will not be set (enforced by hardware).

49–51 — Reserved, should be cleared.

52 ICSLC Instruction cache snoop lock clear. Sticky bit set by hardware if an icbi snoop (either internally or externally 
generated) invalidated a locked line in the instruction cache. Note that the lock bit for that line is cleared whenever 
the line is invalidated. This bit can only be cleared by software.
0 The instruction cache has not encountered an icbi snoop that invalidated a locked line.
1 The instruction cache has encountered an icbi snoop that invalidated a locked line.

53 ICUL Instruction cache unable to lock. Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock set instruction was effective in the instruction cache
1 Indicates a lock set instruction was not effective in the instruction cache

54 ICLO Instruction cache lock overflow. Sticky bit set by hardware and cleared by writing 0 to this bit location.
0 Indicates a lock overflow condition was not encountered in the instruction cache
1 Indicates a lock overflow condition was encountered in the instruction cache

55 ICLFR Instruction cache lock bits flash reset. Writing 0 and then 1 flash clears the lock bit of all entries in the instruction 
cache; clearing occurs independently from the value of the enable bit (ICE). ICLFR is always read as 0. 

56–61 — Reserved, should be cleared.
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2.11.3 L1 Cache Configuration Register 0 (L1CFG0)

The L1CFG0 register, shown in Figure 2-22, is defined by the EIS to provide configuration 
information for the L1 data cache supplied with this version of the e500 core complex. 

Table 2-18 describes the L1CFG0 fields.
 

62 ICFI Instruction cache flash invalidate. Write to 0 and then write to 1 to flash clear the valid bit of all entries in the 
instruction cache; operates independently from the value of the enable bit (ICE). ICFI is always read as 0. 

63 ICE Instruction cache enable
0 The instruction cache is neither accessed or updated.
1 Enables instruction cache operation.

SPR 515 Access: Supervisor read-only

32 33 34 38 39 40 41 42 43 44 45 49 50 51 52 53 55 56 63

R CARCH — CBSIZE CREPL CLA CPA — CNWAY — CSIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-22. L1 Cache Configuration Register 0 (L1CFG0)

Table 2-18. L1CFG0 Field Descriptions

Bits Name Description

32–33 CARCH Cache architecture
00 Harvard
01 Unified

34–38 — Reserved, should be cleared.

39–40 CBSIZE Cache block size
0 32 bytes
1 64 bytes

41–42 CREPL Cache replacement policy 
0 True LRU
1 Pseudo LRU

43 CLA Cache locking APU available 
0 Unavailable
1 Available

44 CPA Cache parity available 
0 Unavailable
1 Available

45–49 — Reserved, should be cleared.

50–52 CNWAY Cache number of ways. 111 indicates eight ways

Table 2-17. L1CSR1 Field Descriptions (continued)

Bits Name Description
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2.11.4 L1 Cache Configuration Register 1 (L1CFG1)

The L1CFG1 register, shown in Figure 2-23, provides configuration information for the particular 
L1 instruction cache supplied with this version of the e500 core complex. 

Table 2-19 describes the L1CFG1 fields.
 

2.12 MMU Registers
This section describes the following MMU registers and their fields:

• Process ID registers (PID0–PID2)

• MMU control and status register 0 (MMUCSR0)

• MMU configuration register (MMUCFG)

• TLB configuration registers (TLBnCFG)

• MMU assist registers (MAS0–MAS4, MAS6–MAS7)

53–55 — Reserved, should be cleared.

56–63 CSIZE Cache size. 0x20 indicates 32 Kbytes.

SPR 516 Access: Supervisor read-only

32 38 39 40 41 42 43 44 45 52 53 63

R — ICBSIZE ICREPL ICLA ICPA ICNWAY ICSIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-23. L1 Cache Configuration Register 1 (L1CFG1)

Table 2-19. L1CFG1 Field Descriptions

Bits Name Description

32–38 — Reserved, should be cleared.

39–40 ICBSIZ Instruction cache block size. 00 indicates block size of 32 bytes

41–42 ICREPL Instruction cache replacement policy. 01 indicates pseudo-LRU policy.

43 ICLA Instruction cache locking available. 1 indicates available.

44 ICPA Instruction cache parity available. 1 indicates available.

45–52 ICNWAY Instruction cache number of ways. 111 indicates eight ways.

53–63 ICSIZE Instruction cache size. 0x20 indicates 32 Kbytes.

Table 2-18. L1CFG0 Field Descriptions (continued)

Bits Name Description
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2.12.1 Process ID Registers (PID0–PID2)

The Book E architecture specifies that a process ID (PID) value be associated with each effective 
address (instruction or data) generated by the processor. Book E defines one PID register that holds 
the PID value for the current process. The e500 implements two additional PID registers, PID1 
and PID2, shown in Figure 2-24. The number of PIDs implemented is indicated by the value of 
MMUCFG[NPIDS]. PID values are used to construct virtual addresses for accessing memory. The 
e500 implements only PID[54–63] for the process ID. Writing to PIDs requires synchronization, 
as described in Section 2.16, “Synchronization Requirements for SPRs.”

2.12.2 MMU Control and Status Register 0 (MMUCSR0) 

The MMUCSR0 register (Figure 2-25) is used for general control of the L1 and L2 MMUs. 
Writing to MMUCSR0 requires synchronization, as described in Section 2.16, “Synchronization 
Requirements for SPRs.”

Table 2-20 describes the MMUCSR0 fields.
 

SPR
SPR
SPR

48 (PID0: PID in Book E); 
633 (PID1: e500-specific); 
634 (PID2: e500-specific)

Access: Supervisor-only

32 53 54 63

R
— Process ID

W

Reset All zeros

Figure 2-24. Process ID Registers (PID0–PID2)

SPR 1012 Access: Supervisor-only

32 58 59 60 61 62 63

R
— L2TLB0_FI L2TLB1_FI —

W

Reset All zeros

Figure 2-25. MMU Control and Status Register 0 (MMUCSR0)

Table 2-20. MMUCSR0 Field Descriptions

Bits Name Description

32–60 — Reserved, should be cleared.

61 L2TLB0_FI TLB0 flash invalidate (write 1 to invalidate) 

62 L2TLB1_FI TLB1 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is 

complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation. 
This invalidation typically takes 1 cycle.

63 — Reserved, should be cleared.



Register Model

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 2-37

2.12.3 MMU Configuration Register (MMUCFG)

The MMUCFG register, shown in Figure 2-26, provides configuration information about the e500 
MMU. 

Table 2-21 describes the MMUCFG fields.
 

2.12.4 TLB Configuration Registers (TLBnCFG) 

The TLBnCFG read-only registers provide information about each specific TLB that is visible to 
the programming model.

SPR 1015 Access: Supervisor read-only

32 48 49 52 53 57 58 59 60 61 62 63

R — NPIDS PIDSIZE — NTLBS MAVN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0

Figure 2-26. MMU Configuration Register (MMUCFG)

Table 2-21. MMUCFG Field Descriptions

Bits Name Description

32–48 — Reserved, should be cleared.

49–52 NPIDS Number of PID registers. A 4-bit field that indicates the number of PID registers provided by the processor. 
The e500 implements three PIDs. 

53–57 PIDSIZE PID register size. The 5-bit value of PIDSIZE is one less than the number of bits in each of the PID registers 
implemented by the processor. The processor implements only the least significant PIDSIZE+1 bits in the 
PID registers.
00111 Indicates 8-bit registers. This is the value presented by the e500.

58–59 — Reserved, should be cleared.

60–61 NTLBS Number of TLBs. The value of NTLBS is one less than the number of software-accessible TLB structures 
that are implemented by the processor. NTLBS is set to one less than the number of TLB structures so that 
its value matches the maximum value of MAS0[TLBSEL].)
00 1 TLB
01 2 TLBs. This is the value presented by the e500.
10 3 TLBs
11 4 TLBs

62–63 MAVN MMU architecture version number. Indicates the version number of the architecture of the MMU implemented 
by the processor. 0b00 indicates version 1.0.



PowerPC e500 Core Family Reference Manual, Rev. 1

2-38 Freescale Semiconductor

Register Model

2.12.4.1 TLB0 Configuration Register (TLB0CFG)

TLB0CFG, shown in Figure 2-27, provides configuration information for TLB0 of the L2 MMU 
supplied with this version of the e500 core complex.

Table 2-22 describes the TLB0CFG fields and shows the values for the e500. 
 

SPR 688 Access: Supervisor read-only

32 39 40 43 44 47 48 49 50 51 52 63

R ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

W

Reset (e500v1) 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Reset (e500v2) 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 2-27. TLB Configuration Register 0 (TLB0CFG)

Table 2-22. TLB0CFG Field Descriptions

Bits Name Description

32–39 ASSOC Associativity of TLB0
0x02 Indicates associativity is 2-way set associative (e500v1 only)
0x04 Indicates associativity is 4-way set associative (e500v2 only)

40–43 MINSIZE Minimum page size of TLB0
0x1 Indicates smallest page size is 4 Kbytes

44–47 MAXSIZE Maximum page size of TLB0
0x1 Indicates maximum page size is 4 Kbytes

48 IPROT Invalidate protect capability of TLB0
0 Indicates invalidate protection capability not supported

49 AVAIL Page size availability of TLB0
0 No variable-sized pages available (MINSIZE = MAXSIZE) 

50–51 — Reserved, should be cleared.

52–63 NENTRY Number of entries in TLB0
0x100 TLB0 contains 256 entries (e500v1 only)
0x200 TLB0 contains 512 entries (e500v2 only)
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2.12.4.2 TLB1 Configuration Register 1 (TLB1CFG)

The TLB1CFG register, shown in Figure 2-28, provides configuration information for TLB1 of 
the L2 MMU supplied with this version of the e500 core complex. 

Table 2-23 describes the TLB1CFG fields.

2.12.5 MMU Assist Registers (MAS0–MAS4, MAS6–MAS7)

MMU assist registers, MASn are implementation-defined SPRs used by the MMU to manage 
pages and TLBs. They, along with MAS5 (which is not implemented in the e500), are defined by 
the Freescale implementation standard. Note that some fields in these registers are redefined on 
the e500.

SPR 689 Access: Supervisor read-only

32 39 40 43 44 47 48 49 50 51 52 63

R ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

W

Reset(e500v1) 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Reset (e500v2) 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 2-28. TLB Configuration Register 1 (TLB1CFG)

Table 2-23. TLB1CFG Field Descriptions

Bits Name Description

32–39 ASSOC Associativity of TLB1
0x10 Indicates associativity is 16

40–43 MINSIZE Minimum page size of TLB1
0x1 Indicates smallest page size is 4 Kbytes

44–47 MAXSIZE Maximum page size of TLB1
0x9 Indicates maximum page size is 256 Mbytes (e500v1)
0xB Indicates maximum page size is 4 Gbytes (e500v2)

48 IPROT Invalidate protect capability of TLB1
1 Indicates that TLB1 supports invalidate protection capability 

49 AVAIL Page size availability of TLB1
1 Indicates all page sizes between MINSIZE and MAXSIZE supported

50–51 — Reserved, should be cleared.

52–63 NENTRY Number of entries in TLB1
0x010 TLB1 contains 16 entries
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2.12.5.1 MAS Register 0 (MAS0)

Figure 2-29 shows MAS0 as it is implemented on the e500. For the e500, TLB0 is two-way set 
associative, so bits 45–51 of the effective address are used to index into TLB0. ESEL then 
identifies which of the two indexed entries is to be referenced by the TLB operation (ESEL selects 
the way). Writing to MAS0 requires synchronization, as described in Section 2.16, 
“Synchronization Requirements for SPRs.”

The MAS0 fields are described in Table 2-24. 
 

SPR 624 Access: Supervisor-only

32 34 35 36 43 44 47 48 61 62 63

R
— TLBSEL — ESEL — NV

W

Reset All zeros

Figure 2-29. MAS Register 0 (MAS0)

Table 2-24. MAS0 Field Descriptions—MMU Read/Write and Replacement Control

Bit Name Comments or Function when Set

32–34 — Reserved, should be cleared.

35 TLBSEL Selects TLB for access.
0 TLB0
1 TLB1

36–43 — Reserved, should be cleared. 

44–47 ESEL Entry select. Number of the entry in the selected array to be used for tlbwe. Updated on TLB error exceptions 
(misses) and tlbsx hit and miss cases. Only certain bits are valid, depending on the array selected in TLBSEL. 
Other bits should be 0. 
For the e500, ESEL serves as the way select for the corresponding TLB as follows:
When TLBSEL = 00 (TLB0 selected), bits 46–47 are used (and bits 44–45 should be cleared). This field selects 
between way 0, 1, 2, or 3 of TLB0. EA bits 45–51 from MAS2[EPN] are used to index into the TLB to further 
select the entry for the operation. Note that for the e500v1, bit 47 selects either way 0 or way 1, and bit 46 should 
remain cleared.
When TLBSEL = 01 (TLB1 selected), all four bits are used to select one of 16 entries in the array.

48–61 — Reserved, should be cleared.

62–63 NV Next victim. (Note that the Freescale standard allows NV to be as large as 12-bits on other implementations.) 
Can be used to identify the next victim to be targeted for a TLB miss replacement operation for those TLBs that 
support the NV field. If the TLB selected by MAS0[TLBSEL] does not support the NV field, then this field is 
undefined. The specific meaning of this field is implementation-dependent.
For the e500, NV is the next victim value to be written to TLB0[NV] on execution of tlbwe. This field is also 
updated on TLB error exceptions (misses), tlbsx hit and miss cases, and on execution of tlbre.
This field is updated based on the calculated next victim value for TLB0 (based on the round-robin replacement 
algorithm, described in Section 12.3.2.2, “Replacement Algorithms for L2 MMU”). Note that for the e500v1, bit 
62 should remain cleared and only bit 63 has significance.
Note that this field is not defined for operations that specify TLB1 (when TLBSEL = 01).
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2.12.5.2 MAS Register 1 (MAS1)

Figure 2-30 describes the format of MAS1. Note that while the Freescale Book E allows for a TID 
field of 12 bits, the TID field on the core complex is implemented as only 8 bits. Writing to MAS1 
requires synchronization, as described in Section 2.16, “Synchronization Requirements for 
SPRs.”

The MAS1 fields are described in Table 2-25.

SPR 625 Access: Supervisor-only

32 33 34 39 40 47 48 50 51 52 55 56 63

R
V IPROT — TID — TS TSIZE —

W

Reset All zeros

Figure 2-30. MAS Register 1 (MAS1)

Table 2-25. MAS1 Field Descriptions—Descriptor Context and Configuration Control

Bits Name Descriptions

32 V TLB valid bit. 
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations due the execution of tlbivax (TLB1 
only). Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that support 
invalidate protection are denoted as such in the TLB configuration registers.
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation. 

34–39 — Reserved, should be cleared.

40–47 TID Translation identity. Defines the process ID for this TLB entry. TID is compared with the current process IDs 
of the three effective address to be translated. A TID value of 0 defines an entry as global and matches with 
all process IDs.

48–50 — Reserved, should be cleared.

51 TS Translation space. Compared with the IS or DS fields of the MSR (depending on the type of access) to 
determine if this TLB entry may be used for translation.

52–55 TSIZE Translation size. Defines the page size of the TLB entry. For TLB arrays that contain fixed-size TLB entries, 
this field is ignored. For variable page size TLB arrays, the page size is 4TSIZE Kbytes. Note that although the 
Freescale Book E standard supports all 16 page sizes defined in Book E, the e500 only supports the following 
page sizes:

0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte

0111 16 Mbyte
1000 64 Mbyte 
1001 256 Mbyte
1010 1 Gbyte
1011 4 Gbyte

56–63 — Reserved, should be cleared.
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2.12.5.3 MAS Register 2 (MAS2)

Figure 2-31 shows the format of MAS2. Writing to MAS2 requires synchronization, as described 
in Section 2.16, “Synchronization Requirements for SPRs.” 

The MAS2 fields are described in Table 2-26.

SPR 626 Access: Supervisor-only

32 51 52 56 57 58 59 60 61 62 63

R
EPN — X0 X1 W I M G E

W

Reset All zeros

Figure 2-31. MAS Register 2 (MAS2)

Table 2-26. MAS2 Field Descriptions—EPN and Page Attributes

Bits Name Description

32–51 EPN Effective page number. Depending on page size, only the bits associated with a page boundary are valid. Bits 
that represent offsets within a page are ignored and should be zero. 

52–56 — Reserved, should be cleared

57 X0 Implementation-dependent page attribute

58 X1 Implementation-dependent page attribute

59 W Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

60 I Caching-inhibited
0 Accesses to this page are considered cacheable.
1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and are 

performed directly to main memory. A read or write to a caching-inhibited page affects only the memory 
element specified by the operation. 

61 M Memory coherency required
0 Memory coherency is not required.
1 Memory coherency is required. This allows loads and stores to this page to be coherent with loads and 

stores from other processors (and devices) in the system, assuming all such devices are participating in the 
coherency protocol.

62 G Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are required by the 

sequential execution model.
1 All loads and stores to this page are performed without speculation (that is, they are known to be required). 

63 E Endianness. Determines endianness for the corresponding page. Little-endian operation is true little endian, 
which differs from the modified little-endian byte ordering model optionally available in previous devices that 
implement the PowerPC architecture. 
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order. 
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2.12.5.4 MAS Register 3 (MAS3)

Figure 2-32 shows the format of MAS3. Writing to MAS3 requires synchronization, as described 
in Section 2.16, “Synchronization Requirements for SPRs.”The core complex uses the same bit 
definitions as the Freescale Book E standard for MAS3 for 32-bit implementations.

The MAS3 fields are described in Table 2-27.

2.12.5.5 MAS Register 4 (MAS4)

Figure 2-33 shows the format of MAS4. Writing to MAS4 requires synchronization, as described 
in Section 2.16, “Synchronization Requirements for SPRs.” 

SPR 627 Access: Supervisor-only

32 51 52 53 54 57 58 59 60 61 62 63

R
RPN — U0–U3 UX SX UW SW UR SR

W

Reset All zeros

Figure 2-32. MAS Register 3 (MAS3)

Table 2-27. MAS3 Field Descriptions—RPN and Access Control

Bits Name Description

32–51 RPN Real page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that 
represent offsets within a page are ignored and should be zero. Note that, on the e500v2, additional bits of the 
RPN are contained in MAS7. See Section 2.12.5.7, “MAS Register 7 (MAS7)—e500v2 Only,” for more 
information.

52–53 — Reserved, should be cleared.

54–57 U0–U3 User attribute bits. These bits are associated with a TLB entry and can be used by system software. For 
example, these bits may be used to hold information useful to a page scanning algorithm or be used to mark 
more abstract page attributes.

58–63 PERMIS Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write, and execute permission bits. See 
the EREF for more information on the page permission bits as they are defined by Book E. 

SPR 628 Access: Supervisor-only

32 33 34 35 36 45 46 47 48 55 56 57 58 59 60 61 62 63

R
— TLBSELD — TIDSELD — TSIZED — X0D X1D WD ID MD GD ED

W

Reset All zeros

Figure 2-33. MAS Register 4 (MAS4)
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The MAS4 fields are described in Table 2-28.

2.12.5.6 MAS Register 6 (MAS6)

Figure 2-34 shows the format of MAS6. Note that while the Freescale Book E allows for an SPIDx 
field of 12 bits, SPID0 on the core complex is only an 8-bit field. Writing to MAS6 requires 
synchronization, as described in Section 2.16, “Synchronization Requirements for SPRs.”

Table 2-28. MAS4 Field Descriptions—Hardware Replacement Assist Configuration 

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSELD TLBSEL default value. 2-bit field that specifies the default value to be loaded in MAS0[TLBSEL] on 
a TLB miss exception. 

36–45 — Reserved, should be cleared.

46–47 TIDSELD TID default selection value. Defined by the EIS as a 4-bit field that specifies which of the current PID 
registers should be used to load the MAS1[TID] field on a TLB miss exception. 
The e500 implementation defines bits 44–45 as reserved and bits 46–47 as follows:
00 PID0
01 PID1
10 PID2
11 TIDZ (0x00) (all zeros)

48–51 — Reserved, should be cleared.

52–55 TSIZED Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss 
exception.

56 — Reserved, should be cleared.

57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.

58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.

59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.

60 ID Default I value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.

62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.

63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.

SPR 630 Access: Supervisor-only

32 39 40 47 48 62 63

R
— SPID0 — SAS

W

Reset All zeros

Figure 2-34. MAS Register 6 (MAS6)
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The MAS6 fields are described in Table 2-29.

2.12.5.7 MAS Register 7 (MAS7)—e500v2 Only

The MAS7 register contains the high-order address bits of the RPN for implementations that 
support more than 32 bits of physical address. (The e500v1 supports 32-bit addresses, while the 
e500v2 supports 36-bit real addresses.) Implementations that do not support more than 32 bits of 
physical addressing do not implement MAS7. Figure 2-35 shows the format of the MAS7 register. 
Writing to MAS0 requires synchronization, as described in Section 2.16, “Synchronization 
Requirements for SPRs

The MAS7 fields are described in Table 2-30.

2.13 Debug Registers
This section describes debug-related registers that are accessible to software running on the 
processor. These registers are intended for use by special debug tools and debug software, and not 
by general application or operating system code.

Table 2-29. MAS6 Field Descriptions

Bits Name Description

32–39 — Reserved, should be cleared.

40–47 SPID0 Search PID0. Specifies the value of PID0 used when searching the TLB during execution of tlbsx. For the e500 
implementation, this field contains the 8-bit search PID0 value. Specifies the value of PID0 used when searching 
the TLB during execution of tlbsx. 

48–62 — Reserved, should be cleared. 

63 SAS Address space (AS) value for searches. Specifies the value of AS used when searching the TLB during 
execution of tlbsx. 

SPR 944 Access: Supervisor-only

32 59 60 63

R
— RPN

W

Reset All zeros

Figure 2-35. MAS Register 7 (MAS7)

Table 2-30. MAS7 Field Descriptions—High-Order RPN

Bits Name Description

32–59 — Reserved, should be cleared. 

32–63 RPN Real page number, 4 high-order bits. MAS3 holds the remainder of the RPN. The byte offset 
within the page is provided by the EA and is not present in MAS3 or MAS7.
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2.13.1 Debug Control Registers (DBCR0–DBCR2)

The debug control registers are used to enable debug events, reset the processor, control timer 
operation during debug events, and set the debug mode of the processor.

2.13.1.1 Debug Control Register 0 (DBCR0)

The e500 implements DBCR0 as it is defined by Book E (see the EREF for further details) with 
the following exceptions:

• DBCR0[RST], bits 34–35, are implemented as shown in Table 2-31.

• IAC3 and IAC4 (DBCR0[42–43]) are not implemented.

Writing to DBCR0 requires synchronization, as described in Section 2.16, “Synchronization 
Requirements for SPRs.”

2.13.1.2 Debug Control Register 1 (DBCR1)

The e500 implements DBCR1 as it is defined by the Book E architecture (see the EREF for more 
information), except as follows:

• IAC1ER and IAC2ER values of 01 are reserved. 

• IAC3US, IAC3ER, IAC4US, IAC4ER, and IAC34M (DBCR1[48–57]) are not 
implemented. 

Writing to DBCR1 requires synchronization, as described in Section 2.16, “Synchronization 
Requirements for SPRs.” Table 2-32 describes the DBCR1 fields. 

Table 2-31. DBCR0 Field Descriptions

Bits Name Description

34–35 RST Reset. Book E defines this field such that 00 is always no action and all other settings are implementation 
specific. The e500 implements these bits as follows:
0x Default (No action)
1x Causes a hard reset if MSR[DE] and DBCR0[IDM] are set. Always cleared on subsequent cycle. 

Table 2-32. DBCR1 Implementation-Specific Field Descriptions

Bits Name Description

34–35 IAC1ER Instruction address compare 1 effective/real mode
00 IAC1 debug events are based on effective addresses.
01 Reserved on the e500.
10 IAC1 debug events are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC1 debug events are based on effective addresses and can occur only if MSR[IS] = 1.

38–39 IAC2ER Instruction address compare 2 effective/real mode
00 IAC2 debug events are based on effective addresses.
01 Reserved on the e500.
10 IAC2 debug events are based on effective addresses and can occur only if MSR[IS] = 0.
11 IAC2 debug events are based on effective addresses and can occur only if MSR[IS] = 1.
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2.13.1.3 Debug Control Register 2 (DBCR2)

The e500 implements DBCR2 as it is defined by the Book E architecture, except as follows:

• DAC1ER and DAC2ER values of 01 are reserved. 

• DVC1M, DVC2M, DVC1BE, and DVC2BE (DBCR[44–63]) are not implemented. 

Figure 2-36 shows the DBCR2. 

Table 2-33 provides bit definitions for DBCR2. 

2.13.2 Debug Status Register (DBSR)

The DBSR provides status information for debug events and for the most recent processor reset. 
The e500 implements the DBSR as it is defined by the Book E architecture, with the following 
exceptions: 

• It does not implement IAC3 and IAC4 (DBSR[42–43]).

• Implementation-specific events that cause an unconditional debug event are defined in 
Table 2-34 (DBSR[UDE]).

• The MRR field is affected by the e500 definition of the HRESET signal, as defined in 
Table 2-34.

SPR 310 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 63

R
DAC1US DAC1ER DAC2US DAC2ER DAC12M —

W

Reset All zeros

Figure 2-36. Debug Control Register 2 (DBCR2)

Table 2-33. DBCR2 Implementation-Specific Field Descriptions

Bits Name Description

34–35 DAC1ER Data address compare 1 effective/real mode
00 DAC1 debug events are based on effective addresses.
01 Reserved on the e500.
10 DAC1 debug events are based on effective addresses and can occur only if MSR[DS]=0.
11 DAC1 debug events are based on effective addresses and can occur only if MSR[DS]=1.

38–39 DAC2ER Data address compare 2 effective/real mode
00 DAC2 debug events are based on effective addresses.
01 Reserved on the e500.
10 DAC2 debug events are based on effective addresses and can occur only if MSR[DS]=0.
11 DAC2 debug events are based on effective addresses and can occur only if MSR[DS]=1.
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DBSR is shown in Figure 2-37.

The DBSR is set through hardware but is read and cleared through software. DBSR is read using 
mfspr. DBSR bits are cleared by writing ones to them; writing zeros has no effect. Table 2-34 
describes DBSR field definitions. 

2.13.3 Instruction Address Compare Registers (IAC1–IAC4)

The e500 implements the IAC1 and IAC2 as they are defined by the Book E architecture; it does 
not implement IAC3 and IAC4. 

A debug event may be enabled to occur upon an attempt to execute an instruction from an address 
specified in an IAC, inside or outside a range specified by IAC1 and IAC2, or to blocks of 
addresses specified by the combination of the IAC1 and IAC2. Because all instruction addresses 
are required to be word-aligned, the two low-order bits of the IACs are reserved and do not 
participate in the comparison to the instruction address. 

2.13.4 Data Address Compare Registers (DAC1–DAC2)

The e500 implements the DAC1 and DAC2 as they are defined by the Book E architecture. A 
debug event may be enabled to occur upon loads, stores, or cache operations to an address 
specified in either DAC1 or DAC2, inside or outside a range specified by the DAC1 and DAC2, 

SPR: 304 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 — DAC1R DAC1W DAC2R DAC2W

W

Reset 0 0 undefined 0 0 0 0 0 0 0 0 0 0 0 0

48 49 63

R
RET —

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-37. Debug Status Register (DBSR)

Table 2-34. DBSR Implementation-Specific Field Descriptions

Bits Name Description

33 UDE Unconditional debug event. Set if an unconditional debug event occurred. If the UDE signal (level sensitive, 
active low) is asserted, DBSR[UDE] is affected as follows:
MSR[DE] DBCR0[IDM] Action
X  0 No action.
0  1 DBSR[UDE] is set.
1 1 DBSR[UDE] is set and a debug interrupt is taken.

34–35 MRR Most recent reset. Set when a reset occurs. Undefined at power-up. The e500 implements HRESET as follows:
0x  No hard reset occurred since this bit was last cleared by software.
1x  The previous reset was a hard reset.
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or to blocks of addresses specified by the combination of DAC1 and DAC2. The contents of DAC1 
or DAC2 are compared to the address generated by a data storage access instruction.

2.14 SPE and SPFP APU Registers
The SPE and SPFP include the signal processing and embedded floating-point status and control 
register (SPEFSCR), described in Section 2.14.1, “Signal Processing and Embedded 
Floating-Point Status and Control Register (SPEFSCR).” The SPE implements a 64-bit 
accumulator, described in Section 2.14.2, “Accumulator (ACC).” 

NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices.

2.14.1 Signal Processing and Embedded Floating-Point Status and 
Control Register (SPEFSCR)

The SPEFSCR is used by the SPE and embedded floating-point APUs. Vector floating-point 
instructions affect both the high element (bits 34-39) and low element floating-point status flags 
(bits 50–55). Single- and double-precision (e500v2 only) floating-point instructions affect only the 
low-element floating-point status flags and leave the high-element floating-point status flags 
undefined.
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The SPEFSCR is shown in Figure 2-38.

Table 2-35 describes the SPEFSCR bits.

SPR: 512 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
SOVH OVH FGH FXH FINVH FDBZH FUNFH FOVFH — FINXS FINVS FDBZS FUNFS FOVFS

MODE

W

Reset 0 0 undefined 0 0 0 0 0 0 0 0 0 0 0 0

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
SOV OV FG FX FINV FDBZ FUNF FOVF — FINXE FINVE FDBZE FUNFE FOVFE FRMC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-38. Signal Processing and Embedded Floating-Point Status and Control
Register (SPEFSCR)

Table 2-35. SPEFSCR Field Descriptions

Bits Name Function

32 SOVH Summary integer overflow high. Set whenever an instruction (except mtspr) sets OVH. SOVH remains set until 
it is cleared by an mtspr instruction.

33 OVH Integer overflow high. An overflow occurred in the upper half of the register while executing an SPE integer 
instruction. 

34 FGH Embedded floating-point guard bit high. Floating-point guard bit from the upper half. The value is undefined if 
the processor takes a floating-point exception due to input error, floating-point overflow, or floating-point 
underflow. 

35 FXH Embedded floating-point sticky bit high. Floating bit from the upper half. The value is undefined if the processor 
takes a floating-point exception due to input error, floating-point overflow or floating-point underflow. 

36 FINVH Embedded floating-point invalid operation error high. Set when an input value on the high side is a NaN, Inf, or 
Denorm. Also set on a divide if both the dividend and divisor are zero. 

37 FDBZH Embedded floating-point divide-by-zero error high. Set if the dividend is non-zero and the divisor is zero. 

38 FUNFH Embedded floating-point underflow error high. 

39 FOVFH Embedded floating-point overflow error high.

40–41 — Reserved, should be cleared.

42 FINXS Embedded floating-point inexact sticky. FINXS = FINXS | FGH | FXH | FG | FX. 

43 FINVS Embedded floating-point invalid operation sticky. Location for software to use when implementing true IEEE 
floating point. 

44 FDBZS Embedded floating-point divide-by-zero sticky. FDBZS = FDBZS | FDBZH | FDBZ

45 FUNFS Embedded floating-point underflow sticky. Storage location for software to use when implementing true IEEE 
floating point. 

High-Word Error Bits Status Bits

Enable Bits
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46 FOVFS Embedded floating-point overflow sticky. Storage location for software to use when implementing true IEEE 
floating point. 

47 MODE Embedded floating-point mode (read-only on e500)

48 SOV Integer summary overflow. Set whenever an SPE instruction (except mtspr) sets OV. SOV remains set until it is 
cleared by mtspr[SPEFSCR]. 

49 OV Integer overflow. An overflow occurred in the lower half of the register while a SPE integer instruction is being 
executed. 

50 FG Embedded floating-point guard bit. Floating-point guard bit from the lower half. The value is undefined if the 
processor takes a floating-point exception due to input error, floating-point overflow, or floating-point underflow. 

51 FX Embedded floating-point sticky bit. Floating bit from the lower half. The value is undefined if the processor takes 
a floating-point exception due to input error, floating-point overflow or floating-point underflow. 

52 FINV Embedded floating-point invalid operation error. Set when an input value on the high side is a NaN, Inf, or 
Denorm. Also set on a divide if both the dividend and divisor are zero.

53 FDBZ Embedded floating-point divide-by-zero error. Set if the dividend is non-zero and the divisor is zero.

54 FUNF Embedded floating-point underflow error

55 FOVF Embedded floating-point overflow error

56 — Reserved, should be cleared.

57 FINXE Embedded floating-point inexact enable

58 FINVE Embedded floating-point invalid operation/input error exception enable. 
0 Exception disabled
1 Exception enabled. A floating-point data exception is taken if FINV or FINVH is set by a floating-point 

instruction.

59 FDBZE Embedded floating-point divide-by-zero exception enable
0 Exception disabled
1 Exception enabled. A floating-point data exception is taken if FDBZ or FDBZH is set by a floating-point 

instruction

60 FUNFE Embedded floating-point underflow exception enable
0 Exception disabled
1 Exception enabled. A floating-point data exception is taken if FUNF or FUNFH is set by a floating-point 

instruction.

61 FOVFE Embedded floating-point overflow exception enable
0 Exception disabled
1 Exception enabled. a floating-point data exception is taken if FOVF or FOVFH is set by a floating-point 

instruction.

62–63 FRMC Embedded floating-point rounding mode control
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward –infinity

Table 2-35. SPEFSCR Field Descriptions (continued)

Bits Name Function
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2.14.2 Accumulator (ACC)

The 64-bit architectural accumulator register holds the results of the multiply accumulate (MAC) 
forms of SPE integer instructions. The accumulator allows back-to-back execution of dependent 
MAC instructions, something that is found in the inner loops of DSP code such as finite impulse 
response (FIR) filters. The accumulator is partially visible to the programmer in that its results do 
not have to be explicitly read to use them. Instead, they are always copied into a 64-bit destination 
GPR specified as part of the instruction. The accumulator, however, has to be explicitly cleared 
when starting a new MAC loop. Based upon the type of instruction, an accumulator can hold either 
a single 64-bit value or a vector of two 32-bit elements. 

The Initialize Accumulator instruction (evmra) is provided to initialize the accumulator. 

2.15 Performance Monitor Registers (PMRs)
The Freescale Book E implementation standards defines a set of register resources used 
exclusively by the performance monitor. PMRs are similar to the SPRs defined in the Book E 
architecture and are accessed by mtpmr and mfpmr, which are also defined by the EIS. 
Table 2-36 lists supervisor-level PMRs. User-level software that attempts to read or write 
supervisor-level PMRs causes a privilege exception. 

Table 2-36. Performance Monitor Registers—Supervisor Level

Abbreviation Register Name PMR Number pmr[0–4] pmr[5–9] Section/Page

PMGC0 Performance monitor global control register 0 400 01100 10000 2.15.1/2-53

PMLCa0 Performance monitor local control a0 144 00100 10000 2.15.3/2-55

PMLCa1 Performance monitor local control a1 145 00100 10001

PMLCa2 Performance monitor local control a2 146 00100 10010

PMLCa3 Performance monitor local control a3 147 00100 10011

PMLCb0 Performance monitor local control b0 272 01000 10000 2.15.5/2-56

PMLCb1 Performance monitor local control b1 273 01000 10001

PMLCb2 Performance monitor local control b2 274 01000 10010

PMLCb3 Performance monitor local control b3 275 01000 10011

PMC0 Performance monitor counter 0 16 00000 10000 2.15.7/2-57

PMC1 Performance monitor counter 1 17 00000 10001

PMC2 Performance monitor counter 2 18 00000 10010

PMC3 Performance monitor counter 3 19 00000 10011
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User-level PMRs in Table 2-37 are read-only and are accessed with mfpmr. Attempting to write 
user-level registers in supervisor or user mode causes an illegal instruction exception.

2.15.1 Global Control Register 0 (PMGC0)

The performance monitor global control register (PMGC0), shown in Figure 2-39, controls all 
performance monitor counters.

PMGC0 is cleared by a hard reset. Reading this register does not change its contents. Table 2-38 
describes the PMGC0 fields.

Table 2-37. Performance Monitor Registers—User Level (Read-Only)

Abbreviation Register Name PMR Number pmr[0–4] pmr[5–9] Section/Page

UPMGC0 User performance monitor global control register 0 384 01100 00000 2.15.2/2-54

UPMLCa0 User performance monitor local control a0 128 00100 00000 2.15.4/2-56

UPMLCa1 User performance monitor local control a1 129 00100 00001

UPMLCa2 User performance monitor local control a2 130 00100 00010

UPMLCa3 User performance monitor local control a3 131 00100 00011

UPMLCb0 User performance monitor local control b0 256 01000 00000 2.15.6/2-57

UPMLCb1 User performance monitor local control b1 257 01000 00001

UPMLCb2 User performance monitor local control b2 258 01000 00010

UPMLCb3 User performance monitor local control b3 259 01000 00011

UPMC0 User performance monitor counter 0 0 00000 00000 2.15.8/2-58

UPMC1 User performance monitor counter 1 1 00000 00001

UPMC2 User performance monitor counter 2 2 00000 00010

UPMC3 User performance monitor counter 3 3 00000 00011

PMGC0 (PMR400)
UPMGC0 (PMR384)

Access: PMGC0: Supervisor-only
UPMGC0: Supervisor/user read-only

32 33 34 35 50 51 52 53 54 55 56 63

R
FAC PMIE FCECE — TBSEL1 — TBEE1 —

W

Reset All zeros
1 e500v2 only

Figure 2-39. Performance Monitor Global Control Register 0 (PMGC0)/
User Performance Monitor Global Control Register 0 (UPMGC0) 
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2.15.2 User Global Control Register 0 (UPMGC0)

The contents of PMGC0 are reflected to UPMGC0, which is read by user-level software. 
UPMGC0 is read with the mfpmr instruction using PMR384.

Table 2-38. PMGC0 Field Descriptions

Bits Name Description

32 FAC Freeze all counters. When FAC is set by hardware or software, PMLCx[FC] maintains its current value until it 
is changed by software.
0 The PMCs are incremented (if permitted by other PM control bits).
1 The PMCs are not incremented. 

33 PMIE Performance monitor interrupt enable
0 Performance monitor interrupts are disabled.
1 Performance monitor interrupts are enabled and occur when an enabled condition or event occurs.

34 FCECE Freeze counters on enabled condition or event 
0 The PMCs can be incremented (if permitted by other PM control bits).
1 The PMCs can be incremented (if permitted by other PM control bits) only until an enabled condition or 

event occurs. When an enabled condition or event occurs, PMGC0[FAC] is set. It is up to software to clear 
FAC.

35–50 — Reserved, should be cleared.

51–52 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs 
when the selected bit changes from 0 to 1). (e500v2 only)
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about processor activity. In 
multiprocessor systems in which TB registers are synchronized among processors, time base transition 
events can be used to correlate the performance monitor data obtained by the several processors. For this 
use, software must specify the same TBSEL value for all processors in the system. Because the time-base 
frequency is implementation-dependent, software should invoke a system service program to obtain the 
frequency before choosing a value for TBSEL. 

53–54 — Reserved, should be cleared.

55 TBEE Time base transition event exception enable. (e500v2 only)
0 Exceptions from time base transition events are disabled.
1 Exceptions from time base transition events are enabled. A time base transition is signaled to the 

performance monitor if the TB bit specified in PMGC0[TBSEL] changes from 0 to 1. Time base transition 
events can be used to freeze the counters (PMGC0[FCECE]) or signal an exception (PMGC0[PMIE]).
Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 0 to 1 transition that signals 
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may 
occur with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1.

56–63 — Reserved, should be cleared.
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2.15.3 Local Control A Registers (PMLCa0–PMLCa3)

The local control A registers 0–3 (PMLCa0–PMLCa3), shown in Figure 2-40, function as event 
selectors and give local control for the corresponding performance monitor counters. PMLCa 
works with the corresponding PMLCb register.

Table 2-39 describes the PMLCa fields.

PMLCa0 (PMR144)
PMLCa1 (PMR145)
PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa0 (PMR128)
UPMLCa1 (PMR129)
UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

Access: PMLCa0–PMLCa3: Supervisor-only
UPMLCa0–UPMLCa3: Supervisor/user read-only

32 33 34 35 36 37 38 40 41 47 48 63

R
FC FCS FCU FCM1 FCM0 CE — EVENT —

W

Reset All zeros

Figure 2-40. Local Control A Registers (PMLCa0–PMLCa3)/
User Local Control A Registers (UPMLCa0–UPMLCa3) 

Table 2-39. PMLCa0–PMLCa3 Field Descriptions

Bits Name Description

32 FC Freeze counter
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented.

33 FCS Freeze counter in supervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 0.

34 FCU Freeze counter in user state 
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 1.

35 FCM1 Freeze counter while mark = 1
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 1.

36 FCM0 Freeze counter while mark = 0
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 0.

37 CE Condition enable
0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts, cannot freeze counters.)
1 Overflow conditions occur when the most-significant-bit of PMCx is equal to one.
It is recommended that CE be cleared when counter PMCx is selected for chaining.

38–40 — Reserved, should be cleared.

41–47 EVENT Event selector. Up to 128 events selectable. 

48–63 — Reserved, should be cleared.
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2.15.4 User Local Control A Registers (UPMLCa0–UPMLCa3)

The contents of PMLCa0–PMLCa3 are reflected to UPMLCa0–UPMLCa3, which are read by 
user-level software with mfpmr using PMR numbers in Table 2-37.

2.15.5 Local Control B Registers (PMLCb0–PMLCb3)

Local control B registers (PMLCb0–PMLCb3), shown in Figure 2-41, specify a threshold value 
and a multiple to apply to a threshold event selected for the corresponding performance monitor 
counter. For the e500, thresholding is supported only for PMC0 and PMC1. PMLCb works with 
the corresponding PMLCa.

Table 2-40 describes the PMLCb fields.

PMLCb0 (PMR272)
PMLCb1 (PMR273)
PMLCb2 (PMR274)
PMLCb3 (PMR275)

UPMLCb0 (PMR256)
UPMLCb1 (PMR257)
UPMLCb2 (PMR258)
UPMLCb3 (PMR259)

Access: PMLCb0–PMLCb3: Supervisor-only
UPMLCb0–UPMLCb3: Supervisor/user read-only

32 51 52 53 55 56 57 58 63

R
— THRESHMUL — THRESHOLD

W

Reset All zeros

Figure 2-41. Local Control B Registers (PMLCb0–PMLCb3)/
User Local Control B Registers (UPMLCb0–UPMLCb3) 

Table 2-40. PMLCb0–PMLCb3 Field Descriptions

Bits Name Description

32–52 — Reserved, should be cleared.

53–55 THRESHMUL Threshold multiple
000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] × 1)
001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] × 2)
010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] × 4)
011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] × 8)
100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] × 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] × 32)
110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] × 64)
111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] × 128)

56–57 — Reserved, should be cleared.

58–63 THRESHOLD Threshold. Only events that exceed this value are counted. Events to which a threshold value applies 
are implementation-dependent as are the dimension (for example duration in cycles) and the granularity 
with which the threshold value is interpreted. 
By varying the threshold value, software can profile event characteristics. For example, if PMC1 is 
configured to count cache misses that last longer than the threshold value, software can obtain the 
distribution of cache miss durations for a given program by monitoring the program repeatedly using a 
different threshold value each time. 
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2.15.6 User Local Control B Registers (UPMLCb0–UPMLCb3)

The contents of PMLCb0–PMLCb3 are reflected to UPMLCb0–UPMLCb3, which are read by 
user-level software with mfpmr using the PMR numbers in Table 2-37.

2.15.7 Performance Monitor Counter Registers (PMC0–PMC3)

The performance monitor counter registers PMC0–PMC3, shown in Figure 2-42, are 32-bit 
counters that can be programmed to generate interrupt signals when they overflow. Each counter 
is enabled to count 128 events.

Table 2-41 describes the PMC register fields.

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the value 
2,147,483,648 (0x8000_0000). However, an exception is not signaled unless PMGC0[PMIE] and 
PMLCan[CE] are also set as appropriate.

The interrupts are masked by clearing MSR[EE]. An interrupt that is signaled while MSR[EE] is 
zero is not taken until MSR[EE] is set. Setting PMGC0[FCECE] forces counters to stop counting 
when an enabled condition or event occurs.

Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting an 
overflowed value may cause an erroneous exception. For example, if both PMGC0[PMIE] and 
PMLCan[CE] are set and the mtpmr loads an overflowed value into PMCx, an interrupt may be 
generated without an event counting having taken place.

PMC registers are accessed with mtpmr and mfpmr using the PMR numbers in Table 2-36.

PMC0 (PMR16)
PMC1 (PMR17)
PMC2 (PMR18)
PMC3 (PMR19)

UPMC0 (PMR0)
UPMC1 (PMR1)
UPMC2 (PMR2)
UPMC3 (PMR3)

Access: PMC0–PMC3: Supervisor-only
UPMC0–UPMC3: Supervisor/user read-only

32 33 63

R
OV Counter value

W

Reset All zeros

Figure 2-42. Performance Monitor Counter Registers (PMC0–PMC3)/
User Performance Monitor Counter Registers (UPMC0–UPMC3) 

Table 2-41. PMC0–PMC3 Field Descriptions

Bits Name Description

32 OV Overflow. When this bit is set, it indicates this counter reaches its maximum value.

33–63 Counter Value Indicates the number of occurrences of the specified event. 
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2.15.8 User Performance Monitor Counter Registers 
(UPMC0–UPMC3)

The contents of PMC0–PMC3 are reflected to UPMC0–UPMC3, which are read by user-level 
software with the mfpmr instruction using the PMR numbers in Table 2-37.

2.16 Synchronization Requirements for SPRs
Synchronization requirements for accessing certain SPRs are shown in Table 2-42. Except for 
these SPRs, there are no synchronization requirements for accessing SPRs beyond those stated in 
Book E.

Table 2-42. Synchronization Requirements for SPRs

Registers Instruction Instruction Required Before Instruction Required After

BBEAR mtspr bbear None isync

BBTAR mtspr bbtar None isync

BUCSR mtspr bucsr None isync

DBCR0 mtspr dbcr0 None isync

DBCR1 mtspr dbcr1 None isync

HID0 mtspr hid0 None isync

HID1 mtspr hid1 None isync

L1CSR0 mtspr l1csr0 msync, isync isync

L1CSR1 mtspr l1csr1 None isync

MAS[0-4,6] mtspr mas[0–4,6] None isync

MMUCSR0 mtspr mmucsr0 None isync

PID0–PID2 mtspr pid[0–2] None isync

SPEFSCR mtspr spefscr None isync
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Chapter 3  
Instruction Model
The e500 core complex is a 32-bit implementation of the Book E architecture as defined in the 
Book E architecture specification. This architecture specification allows for different processor 
implementations, which may provide extensions to or deviations from the architectural 
descriptions. This chapter provides information about the Book E architecture as it relates 
specifically to the e500v1 and e500v2. References to e500 apply to both the e500v1 and the 
e500v2.

Detailed, architectural descriptions of these instructions are provided in the EREF: A Reference for 
Freescale Book E and the e500 Core. The e500 core complex also implements several auxiliary 
processing units (APUs), which define additional instructions, registers, and interrupts. 
Instructions defined by APUs are summarized here. For a full description of APU functionality, 
see Chapter 10, “Auxiliary Processing Units (APUs).”

Specific information about how these instructions are executed is provided in Chapter 4, 
“Execution Timing.”

3.1 Operand Conventions
This section describes operand conventions as they are represented in the Book E architecture. 
These conventions follow the basic descriptions in the classic PowerPC architecture with some 
changes in terminology. For example, distinctions between user and supervisor-level instructions 
are maintained, but the designations—UISA, VEA, and OEA—do not apply. Detailed descriptions 
are provided of conventions used for storing values in registers and memory, accessing processor 
registers, and representing data in these registers. 

3.1.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with zero. Each number is the address of 
the corresponding byte.

Memory operands can be bytes, half words, words, or double words or, for the load/store multiple 
instruction type, a sequence of bytes or words. The address of a memory operand is the address of 
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.
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3.1.2 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary equal to its 
length. An operand’s address is misaligned if it is not a multiple of its width. 

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte 
data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment 
can affect performance. For single-register memory access instructions, the best performance is 
obtained when memory operands are aligned. 

Instructions are 32 bits (one word) long and must be word-aligned.

Memory operands for single-register memory access instructions have the characteristics 
described in Table 3-1.

Note that lmw, stmw, lwarx, and stwcx. instructions that are not word aligned cause an alignment 
exception. 

3.1.3 e500 Floating-Point Implementation

The e500 does not implement the floating-point instructions as they are defined in Book E. 
Attempts to execute a Book E–defined floating-point instruction result in an illegal instruction 
exception. 

The e500 implements the following:

• The vector single-precision floating-point APU supports single-precision vector (64-bit, 
two 32-bit operand) instructions.

• The scalar single-precision floating-point APU supports single-precision floating-point 
operations using the lower 32 bits of the GPRs. 

• The scalar double-precision floating-point APU (implemented on the e500v2) supports 
double-precision floating-point operations using both halves of the GPRs. 

Table 3-1. Address Characteristics of Aligned Operands

Operand Operand Length Addr[60–63] if Aligned

Byte  8 bits  xxxx1

1 An x in an address bit position indicates that the bit can be 0 or 1 
independent of the state of other bits in the address.

Half word  2 bytes  xxx0 

Word  4 bytes  xx00 

Double word  8 bytes  x000 



Instruction Model

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 3-3

These instructions are described in Section 3.8.1.4, “Embedded Floating-Point APU Instructions.” 
Unlike the PowerPC UISA, the SPFP APUs store floating-point operands as single-precision 
values in true 32-bit, single-precision format rather than in a 64-bit double-precision format used 
with FPRs. 

NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices..

3.1.4 Unsupported Book E Instructions

Because the e500 core complex uses a 32-bit Book E core, all of the instructions defined only for 
64-bit implementations of the Book E architecture are illegal in the e500. These instructions are 
not listed in Table 3-2. The e500 core complex takes an illegal instruction exception-type program 
interrupt upon encountering a 64-bit Book E instruction. 

NOTE
Extended addressing forms of all load and store instructions are illegal 
because they calculate a 64-bit effective address. Also, except for 
certain vector instructions, all double-word instruction forms are illegal 
because only 64-bit implementations allow double-word operands. 

The e500 does not support the Book E instructions listed in Table 3-2. An illegal instruction 
exception is generated if the processor attempts to execute one of these instructions. Some 
instructions have the following optional features indicated by square brackets:

• Condition register (CR) update—The dot (.) suffix on the mnemonic enables the update of 
the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.
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Table 3-2 lists 32-bit instructions that are not implemented in the e500. 

Table 3-2. Unsupported Book E Instructions (32-Bit)

Name Mnemonic

Floating Absolute Value [and record CR] fabs[.]

Floating Add [Single] [and record CR] fadd[s][.]

Floating Convert From Integer Double Word fcfid

Floating Compare Ordered fcmpo

Floating Compare Unordered fcmpu

Floating Convert To Integer Double Word fctid

Floating Convert To Integer Double Word [and round to Zero] fctid[z]

Floating Convert To Integer Word [and round to Zero] [and record CR] fctiw[z][.]

Floating Divide [Single] [and record CR] fdiv[s][.]

Floating Multiply-Add [Single] [and record CR] fmadd[s][.]

Floating Move Register [and record CR] fmr[.]

Floating Multiply-Subtract [Single] [and record CR] fmsub[s][.]

Floating Multiply [Single] [and record CR] fmul[s][.]

Floating Negative Absolute Value [and record CR] fnabs[.]

Floating Negate [and record CR] fneg[.]

Floating Negative Multiply-Add [Single] [and record CR] fnmadd[s][.]

Floating Negative Multiply-Subtract [Single] [and record CR] fnmsub[s][.]

Floating Reciprocal Estimate Single [and record CR] fres[.]

Floating Round to Single-Precision [and record CR] frsp[.]

Floating Reciprocal Square Root Estimate [and record CR] frsqrte[.]

Floating Select [and record CR] fsel[.]

Floating Square Root [Single] [and record CR] fsqrt[s][.]

Floating Subtract [Single] [and record CR] fsub[s][.]

Load Floating-Point Double [with Update] [Indexed] lfd[u][x]

Load Floating-Point Single [with Update] [Indexed] lfs[u][x]

Load String Word Immediate lswi

Load String Word Indexed lswx

Move From APID Indirect mfapidi

Move From Device Control Register mfdcr

Move From FPSCR [and record CR] mffs[.]

Move To Device Control Register mtdcr

Move To FPSCR Bit 0 [and record CR] mtfsb0[.]

Move To FPSCR Bit 1 [and record CR] mtfsb1[.]

Move To FPSCR Field [Immediate] [and record CR] mtfsf[i][.]

Store Floating-Point Double [with Update] [Indexed] stfd[u][x]
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3.2 Instruction Set Summary
This chapter describes instructions and addressing modes defined for the e500. These instructions 
are divided into the following functional categories: 

• Integer instructions—These include arithmetic and logical instructions. For more 
information, see Section 3.3.1.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point vector and scalar arithmetic 
instructions. See Section 3.8.1.4, “Embedded Floating-Point APU Instructions.” The e500 
does not support Book E–defined floating-point instructions or floating-point registers.

• Load and store instructions— See Section 3.3.1.2, “Load and Store Instructions.”

• Flow control instructions—These include branching instructions, CR logical instructions, 
trap instructions, and other instructions that affect the instruction flow. See Section 3.3.1.3, 
“Branch and Flow Control Instructions.”

• Processor control instructions—These instructions are used for synchronizing memory 
accesses. See Section 3.3.1.5, “Processor Control Instructions.”

• Memory synchronization instructions—These instructions are used for memory 
synchronizing. See Section 3.3.1.6, “Memory Synchronization Instructions.” 

• Memory control instructions—These instructions provide control of caches and TLBs. See 
Section 3.3.1.8, “Memory Control Instructions,” and Section 3.3.2.2, “Supervisor-Level 
Memory Control Instructions.”

• Signal processing instructions—These include a set of vector arithmetic and logic 
instructions optimized for signal processing tasks. See Section 3.8.1, “SPE and Embedded 
Floating-Point APUs.” 

Note that instruction groupings used here do not indicate the execution unit that processes a 
particular instruction or group of instructions. This information, which is useful for scheduling 
instructions most effectively, is provided in Chapter 4, “Execution Timing.”

Integer instructions operate on word operands. The PowerPC architecture uses instructions that are 
4 bytes long and word-aligned. It provides for byte, half-word, and word operand loads and stores 
between memory and a set of 32 general-purpose registers (GPRs).

Store Floating-Point as Integer Word Indexed stfiwx

Store Floating-Point Single [with Update] [Indexed] stfs[u][x]

Store String Word Immediate stswi

Store String Word Indexed stswx

Table 3-2. Unsupported Book E Instructions (32-Bit) (continued)

Name Mnemonic
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Arithmetic and logical instructions do not read or modify memory. To use the contents of a 
memory location in a computation and then modify the same or another location, the memory 
contents must be loaded into a register, modified, and then written to the target location using load 
and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To 
simplify assembly language programming, a set of simplified mnemonics and symbols is provided 
for some of the frequently used instructions; see Appendix C, “Simplified Mnemonics for 
PowerPC Instructions,” for a complete list of simplified mnemonics. Programs written to be 
portable across the various assemblers for the PowerPC architecture should not assume the 
existence of mnemonics not described in that document.

3.2.1 Classes of Instructions

The e500 instructions belong to one of the following four classes:

• Defined instructions 

• Allocated instructions

• Preserved instructions 

• Reserved (illegal or no-op) instructions 

These classes are defined in the “Instruction Model” chapter of the EREF. The class is determined 
by examining the primary opcode and any extended opcode. If the opcode, or combination of 
opcode and extended opcode, is not that of a defined, allocated, preserved, or reserved instruction, 
the instruction is illegal.

3.2.2 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can 
be said to be boundedly undefined. If a user-level program executes the incorrectly coded 
instruction, the resulting undefined results are bounded in that a spurious change from user to 
supervisor state is not allowed, and the level of privilege exercised by the program in relation to 
memory access and other system resources cannot be exceeded. Boundedly undefined results for 
a given instruction can vary between implementations and between execution attempts in the same 
implementation.

3.2.3 Synchronization Requirements

This section discusses synchronization requirements for special registers and TLBs. The 
synchronization described in this section refers to the state of the processor that is performing the 
synchronization.
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Changing a value in certain system registers and invalidating TLB entries can have the side effect 
of altering the context in which data addresses and instruction addresses are interpreted, and in 
which instructions are executed. For example, changing MSR[IS] from 0 to 1 has the side effect 
of changing address space. These effects need not occur in program order (that is, the strict order 
in which they occur in the program) and therefore may require explicit synchronization by 
software. 

An instruction that alters the context in which data addresses or instruction addresses are 
interpreted, or in which instructions are executed, is called a context-altering instruction. This 
section covers all of the context-altering instructions. The software synchronization required for 
each is shown in Table 3-3 and Table 3-5. 

A context-synchronizing interrupt (that is, any interrupt except non-recoverable machine check) 
can be used instead of a context-synchronizing instruction. If it is, references in this section to the 
synchronizing instruction should be interpreted as meaning the instruction at which the interrupt 
occurs. If no software synchronization is required either before or after a context-altering 
instruction, the phrase ‘the synchronizing instruction before (or after) the context-altering 
instruction’ should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all instructions 
up to and including that synchronizing instruction are fetched and executed in the context that 
existed before the alteration. The synchronizing instruction after the context-altering instruction 
ensures that all instructions after that synchronizing instruction are fetched and executed in the 
context established by the alteration. Instructions after the first synchronizing instruction, up to 
and including the second synchronizing instruction, may be fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no instructions that 
are affected by any of the context alterations, no software synchronization is required within the 
sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally in the 
program, such as the rfi at the end of an interrupt handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the WE 
bit) because mtmsr is execution synchronizing. No software synchronization is required before 
most other alterations shown in Table 3-5, because all instructions before the context-altering 
instruction are fetched and decoded before the context-altering instruction is executed. (The 
processor must determine whether any of the preceding instructions are context-synchronizing.)
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Table 3-3 identifies the software synchronization requirements for data access for all 
context-altering instructions.

3.2.3.1 Synchronization Requirements for e500-Specific SPRs

Software requirements for synchronization before and after accessing certain SPRs are shown in 
Table 3-4. Except for these registers, there are no synchronization requirements for accessing 
SPRs beyond those stated in Book E and described in Section 3.2.3, “Synchronization 
Requirements.” 

Table 3-3. Data Access Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes

Interrupt None None —

rfi None None —

rfci None None —

sc None None —

mtmsr (PR) None CSI1

1 CSI indicates any context-synchronizing instruction (that is, sc, isync, rfci, or rfi).

—

mtmsr (ME) None CSI 1 2

2 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent 
machine check interrupts, which may not be recoverable and therefore may not be context-synchronizing.

mtmsr (DS) None CSI 1 —

mtmsr (WE) msync isync 3

3 See Section 6.4.1, “Software Considerations for Power Management.”

mtspr (DAC1, DAC2) — — 4

4 Synchronization requirements for changing any of the debug facility registers are implementation dependent.

mtspr (DBCR0, DBCR2) — — 4

mtspr (DBSR) — — 4

mtspr (PID) CSI 1 CSI 1 —

tlbivax CSI 1 CSI 1 and possibly msync 5,6

5 For data accesses, the context-synchronizing instruction before tlbwe or tlbivax ensures that all memory accesses due to 
preceding instructions have completed to a point at which they have reported all exceptions they will cause.

6 The context-synchronizing instruction after tlbwe or tlbivax ensures that subsequent accesses (data and instruction) use the 
updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries being 
updated have completed with respect to memory; if these completions must be ensured, tlbwe or tlbivax must be followed by 
an msync and by a context-synchronizing instruction.

tlbwe CSI 1 CSI 1 and possibly msync 5, 6

Table 3-4. Synchronization Requirements for e500-Specific SPRs  

Registers Instruction Instruction Required Before Instruction Required After

BBEAR mtspr bbear None isync

BBTAR mtspr bbtar None isync
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Table 3-5 below identifies the software synchronization requirements for instruction fetch and/or 
execution for all context-altering instructions.

BUCSR mtspr bucsr None CSI1

DBCR0 mtspr dbcr0 None CSI 1

DBCR1 mtspr dbcr1 None CSI 1

HID0 mtspr hid0 CSI 1 CSI 1

HID1 mtspr hid1 msync CSI 1

L1CSR0 mtspr l1csr0 msync, isync CSI 1

L1CSR1 mtspr l1csr1 None isync

MMUCSR0 mtspr mmucsr0 CSI 1 CSI 1

PID0–PID2 mtspr pid[0–2] None isync

SPEFSCR mtspr spefscr None isync

1 CSI indicates any context-synchronizing instruction (that is, sc, isync, rfci, or rfi).

Table 3-5. Instruction Fetch and/or Execution Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes

Interrupt None None

mtmsr (CE) None None 1

mtmsr (DE) None CSI 4

mtmsr (EE) None None 1

mtmsr (FE0) None CSI 4

mtmsr (FE1) None CSI 4

mtmsr (FP) None CSI 4

mtmsr (IS) None CSI 4 2

mtmsr (ME) None CSI 4 5,3

mtmsr (PR) None CSI 4

mtmsr (WE) The e500 requires an msync. The e500 requires an isync. 5,6

mtpmr None CSI7

mtspr (DACn) — CSI 8

mtspr (DBCRn) — CSI 8

mtspr (DBSR) — CSI 8

mtspr (DEC) None None 9

mtspr (IACn) — CSI 8

mtspr (IVORn) None None

mtspr (IVPR) None None

Table 3-4. Synchronization Requirements for e500-Specific SPRs (continued) 

Registers Instruction Instruction Required Before Instruction Required After
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3.2.3.2 Synchronization with tlbwe and tlbivax Instructions

The following sequence shows why, for data accesses, it is necessary to ensure that all memory 
accesses due to instructions before the tlbwe or tlbivax have completed to a point at which they 

mtspr (PID) None CSI 4 2

mtspr (TCR) None None 9

mtspr (TSR) None None 9

rfci None None

rfi None None

sc None None

tlbivax None CSI 4 or msync 10,11

tlbwe None CSI 4 or msync 10,11

wrtee, wrteei None None 1

1 The effect of changing MSR[EE] or MSR[CE] is immediate.

If mtmsr, wrtee, or wrteei clears MSR[EE], an external input, decrementer or fixed-interval timer interrupt does not occur after 
the instruction is executed. 

If mtmsr, wrtee, or wrteei changes MSR[EE] from 0 to 1 when an external input, decrementer, fixed-interval timer, or higher 
priority enabled exception exists, the corresponding interrupt occurs immediately after the mtmsr, wrtee, or wrteei is executed, 
and before the next instruction executes in the program that set MSR[EE].

2 The alteration must not cause an implicit branch in real address space. Thus the real address of the context-altering instruction 
and of each subsequent instruction, up to and including the next context-synchronizing instruction, must be independent of 
whether the alteration has taken effect.

3 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent 
machine check interrupts, which may not be recoverable and so may not be context-synchronizing.

4 CSI indicates any context-synchronizing instruction (that is, sc, isync, rfci, rfmci, or rfi). 
5 Synchronization requirements for changing the wait state enable are implementation-dependent.
6  For more information about synchronization requirements with mtmsr (WE), see Section 6.4.1, “Software Considerations for 

Power Management.”
7 CSI indicates any context-synchronizing instruction (that is, sc, isync, rfci, rfmci, or rfi). 
8 Synchronization requirements for changing any debug facility registers are implementation-dependent.
9 The elapsed time between the DEC reaching zero, or the transition of the selected time base bit for the fixed-interval or 

watchdog timer, and the signalling of the decrementer, fixed-interval timer, or watchdog timer exception is not defined.
10 For data accesses, the context-synchronizing instruction before the tlbwe or tlbivax instruction ensures that all accesses due 

to preceding instructions have completed to a point at which they have reported all exceptions they will cause. See 
Section 3.2.3.2, “Synchronization with tlbwe and tlbivax Instructions.”

11 The context-synchronizing instruction after tlbwe or tlbivax ensures that subsequent accesses (data and instruction) use the 
updated value in the affected TLB entries. It does not ensure that all accesses previously translated by the TLB entries being 
updated have completed with respect to memory; if these completions must be ensured, tlbwe or tlbivax must be followed by 
an msync and by a context-synchronizing instruction. See Section 3.2.3.2, “Synchronization with tlbwe and tlbivax 
Instructions.”

Table 3-5. Instruction Fetch and/or Execution Synchronization Requirements (continued)

Context Altering Instruction or Event Required Before Required After Notes
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have reported all exceptions they cause. Assume that valid TLB entries exist for the target memory 
location when the sequence starts. 

1. A program issues a load or store to a page. 

2. The same program executes a tlbwe or tlbivax that invalidates the corresponding TLB 
entry. 

3. The load or store instruction finally executes, and gets a TLB miss exception. 

The TLB miss exception is semantically incorrect. To prevent it, a context-synchronizing 
instruction must be executed between steps 1 and 2. 

3.2.3.3 Context Synchronization

An instruction or event is context synchronizing if it satisfies the requirements listed below. 
Context-synchronizing operations include instructions isync, sc, rfi, rfci, and rfmci, and most 
interrupts.

1. The operation is not initiated or, in the case of isync, does not complete until all instructions 
already in execution have completed to a point at which they have reported all exceptions 
they cause.

2. The instructions that precede the operation complete execution in the context (including 
such parameters as privilege level, address space, and memory protection) in which they 
were initiated.

3. If the operation directly causes an interrupt (for example, sc directly causes a system call 
interrupt) or is an interrupt, the operation is not initiated until no interrupt-causing 
exception exists having higher priority than the exception associated with the interrupt. 
See Section 5.11, “Exception Priorities.”

4. The instructions that follow the operation are fetched and executed in the context established 
by the operation as required by the sequential execution model. (This requirement dictates 
that any prefetched instructions be discarded and that any effects and side effects of 
executing them speculatively may also be discarded, except as described in the “Cache and 
MMU Background” chapter in the EREF.)

As described in Section 3.2.3.4, “Execution Synchronization,” a context-synchronizing operation 
is necessarily execution synchronizing. Unlike msync and mbar, such operations do not affect the 
order of memory accesses with respect to other mechanisms.

3.2.3.4 Execution Synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the definition of context 
synchronization (see Section 3.2.3.3, “Context Synchronization”). msync is treated like isync 
with respect to item 1 (that is, the conditions described in item 1 apply to completion of msync). 
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Execution synchronizing instructions include msync, mtmsr, wrtee, and wrteei. All 
context-synchronizing instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not ensure 
that the instructions following it execute in the context established by that execution synchronizing 
instruction. This new context becomes effective sometime after the execution synchronizing 
instruction completes and before or at a subsequent context-synchronizing operation.

3.2.3.5 Instruction-Related Interrupts

Interrupts are caused either directly by the execution of an instruction or by an asynchronous 
event. In either case, an exception may cause one of several types of interrupts to be invoked.

Examples of interrupts that can be caused directly by the execution of an instruction include but 
are not limited to the following:

• An attempt to execute a reserved-illegal instruction (illegal instruction exception-type 
program interrupt)

• An attempt by an application program to execute a privileged instruction (privileged 
instruction exception-type program interrupt)

• An attempt by an application program to access a privileged SPR (privileged instruction 
exception-type program interrupt)

• An attempt by an application program to access an SPR that does not exist (unimplemented 
operation instruction exception-type program interrupt)

• An attempt by a system program to access an SPR that does not exist (boundedly undefined)

• Execution of a defined instruction using an invalid form (illegal instruction exception-type 
program interrupt, unimplemented operation exception-type program interrupt, or 
privileged instruction exception-type program interrupt)

• An attempt to access a memory location that is either unavailable (instruction TLB error 
interrupt or data TLB error interrupt) or not permitted (instruction storage interrupt or data 
storage interrupt)

• An attempt to access memory with an effective address alignment not supported by the 
implementation (alignment interrupt)

• Execution of a system call instruction (system call interrupt)

• Execution of a trap instruction whose trap condition is met (trap type program interrupt)

• Execution of a defined instruction that is not implemented by the implementation (illegal 
instruction exception or unimplemented operation exception-type program interrupt)

• Execution of an allocated instruction that is not implemented by the implementation (illegal 
instruction exception or unimplemented operation exception-type program interrupt)
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• Execution of an allocated instruction that causes an auxiliary enabled exception (enabled 
exception-type program interrupt).

APUs, such as the SPE, may define additional instruction-caused exceptions and interrupts. The 
invocation of an interrupt is precise, except that if one of the imprecise modes for invoking the 
floating-point enabled exception-type program interrupt is in effect the invocation of the 
floating-point enabled exception-type program interrupt may be imprecise. When the interrupt is 
invoked imprecisely, the excepting instruction does not appear to complete before the next 
instruction starts (because one of the effects of the excepting instruction, namely the invocation of 
the interrupt, has not yet occurred).

Chapter 5, “Interrupts and Exceptions,” describes interrupt conditions in detail.

3.3 Instruction Set Overview
This section provides a overview of the PowerPC instructions implemented in the e500 and 
highlights any special information with respect to how the e500 implements a particular 
instruction. Note that some instructions have the following optional features:

• CR update—The dot (.) suffix on the mnemonic enables the update of the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

3.3.1 Book E User-Level Instructions

This section discusses the user-level instructions defined in the Book E architecture.

3.3.1.1 Integer Instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs 
and the XER and CR fields. 

3.3.1.1.1 Integer Arithmetic Instructions 

Table 3-6 lists the integer arithmetic instructions for the PowerPC processors.
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Although there is no subtract immediate instruction, its effect can be achieved by using an addi 
instruction with the immediate operand negated. Simplified mnemonics are provided that include 
this negation. Subtract instructions subtract the second operand (rA) from the third operand (rB). 
Simplified mnemonics are provided in which the third operand is subtracted from the second. See 
Appendix C, “Simplified Mnemonics for PowerPC Instructions,” for examples.

According to Book E, an implementation that executes instructions with the overflow exception 
enable bit (OE) set or that sets the carry bit (CA) can either execute these instructions slowly or 
prevent execution of the subsequent instruction until the operation completes. Chapter 4, 
“Execution Timing,” describes how the e500 handles CR dependencies. The summary overflow 
(SO) and overflow (OV) bits in the XER are set to reflect an overflow condition of a 32-bit result 
only if the instruction’s OE bit is set.

Table 3-6. Integer Arithmetic Instructions

Name Mnemonic Syntax 

Add add (add. addo addo.) rD,rA,rB

Add Carrying addc (addc. addco addco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Add Immediate addi rD,rA,SIMM

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB

Negate neg (neg. nego nego.) rD,rA

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Subtract from Immediate Carrying subfic rD,rA,SIMM

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
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3.3.1.1.2 Integer Compare Instructions 

The integer compare instructions algebraically or logically compare the contents of register rA 
with either the zero-extended value of the UIMM operand, the sign-extended value of the SIMM 
operand, or the contents of rB. The comparison is signed for cmpi and cmp and unsigned for 
cmpli and cmpl. Table 3-7 lists integer compare instructions. Note that the L bit must be 0 for 
32-bit implementations.

The crD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise 
the target CR field must be specified in crD by using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix C, 
“Simplified Mnemonics for PowerPC Instructions.”

3.3.1.1.3 Integer Logical Instructions 

The logical instructions shown in Table 3-8 perform bit-parallel operations on the specified 
operands. Logical instructions with the CR updating enabled (uses dot suffix) and instructions 
andi. and andis. set CR field CR0 to characterize the result of the logical operation. Logical 
instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix C, “Simplified Mnemonics for PowerPC Instructions,” for simplified mnemonic 
examples for integer logical operations.

Table 3-7. Integer 32-Bit Compare Instructions (L = 0)

Name Mnemonic Syntax 

Compare cmp crD,L,rA,rB

Compare Immediate cmpi crD,L,rA,SIMM

Compare Logical cmpl crD,L,rA,rB

Compare Logical Immediate cmpli crD,L,rA,UIMM

Table 3-8. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND and (and.) rA,rS,rB —

AND Immediate andi. rA,rS,UIMM —

AND Immediate Shifted andis. rA,rS,UIMM —

AND with Complement andc (andc.) rA,rS,rB —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Equivalent eqv (eqv.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —
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3.3.1.1.4 Integer Rotate and Shift Instructions 

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is 
returned to a GPR. Integer rotate instructions, summarized in Table 3-9, rotate the contents of a 
register. The result is either inserted into the target register under control of a mask (if a mask bit is 
set the associated bit of the rotated data is placed into the target register, and if the mask bit is cleared 
the associated bit in the target register is unchanged) or ANDed with a mask before being placed 
into the target register. Appendix C, “Simplified Mnemonics for PowerPC Instructions,” lists 
simplified mnemonics that allow simpler coding of often-used functions such as clearing the left- 
or right-most bits of a register, left or right justifying an arbitrary field, and simple rotates and shifts. 

The integer shift instructions (Table 3-10) perform left and right shifts. Immediate-form logical 
(unsigned) shift operations are obtained by specifying masks and shift values for certain rotate 
instructions. Simplified mnemonics (shown in Appendix C, “Simplified Mnemonics for PowerPC 
Instructions”) are provided to simplify coding of such shifts. The integer shift instructions are 
summarized in Table 3-10.

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIMM Book E defines ori r0,r0,0 as the preferred form for a no-op. 
The dispatcher may discard this instruction and dispatch it 
only to the completion queue but not to any execution unit.

OR Immediate Shifted oris rA,rS,UIMM —

OR with Complement orc (orc.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted xoris rA,rS,UIMM —

Table 3-9. Integer Rotate Instructions

Name Mnemonic Syntax 

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 3-10. Integer Shift Instructions

Name Mnemonic Syntax 

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 3-8. Integer Logical Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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3.3.1.2 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can 
occur out of order. Synchronizing instructions are provided to enforce strict ordering. The e500 
supports load and store instructions as follows:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Memory synchronization instructions

• SPE APU load and store instructions for reading and writing 64-bit GPRs. These are 
described in Section 3.8.1, “SPE and Embedded Floating-Point APUs.”

The e500 does not implement Book E floating-point load and store instructions.

Implementation Notes—The following describes how the e500 handles misalignment: 

The e500 provides hardware support for misaligned memory accesses. It performs those accesses 
within a single cycle if the operand lies within a double-word boundary. Misaligned memory 
accesses that cross a double-word boundary degrade performance.

Although many misaligned memory accesses are supported in hardware, the frequent use of them 
is discouraged because they can compromise the overall performance of the processor. Only one 
outstanding misalignment at a time is supported, which means it is non-pipelined.

Accesses that cross a translation boundary can be restarted. That is, a misaligned access that 
crosses a page boundary is completely restarted if the second portion of the access causes a page 
fault. This can cause the first access to be repeated. 

3.3.1.2.1 Self-Modifying Code 

When a processor modifies any memory location that can contain an instruction, software must 
ensure that the instruction cache is made consistent with data memory and that the modifications 
are made visible to the instruction fetching mechanism. This must be done even if the cache is 
disabled or if the page is marked caching-inhibited. 

The following instruction sequence can be used to accomplish this when the instructions being 
modified are in memory that is memory-coherency required and one processor both modifies the 
instructions and executes them. (Additional synchronization is needed when one processor 
modifies instructions that another processor will execute.)
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The following sequence synchronizes the instruction stream (using either dcbst or dcbf):

dcbst (or dcbf) |update memory
msync |wait for update 
icbi |remove (invalidate) copy in instruction cache
msync |ensure the ICBI invalidate is complete
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because instruction 
fetching bypasses the data cache, changes to items in the data cache cannot be reflected in memory 
until the fetch operations complete. The msync after the icbi is required to ensure that the icbi 
invalidation has completed in the instruction cache.

Special care must be taken to avoid coherency paradoxes in systems that implement unified 
secondary caches (like the e500), and designers should carefully follow the guidelines for 
maintaining cache coherency discussed in Chapter 11, “L1 Caches.”

3.3.1.2.2 Integer Load and Store Address Generation 

Integer load and store operations generate effective addresses using register indirect with 
immediate index mode, register indirect with index mode, or register indirect mode, which are 
described as follows:

• Register indirect with immediate index addressing for integer loads and stores. Instructions 
using this addressing mode contain a signed 16-bit immediate index (d operand), which is 
sign extended and added to the contents of a general-purpose register specified in the 
instruction (rA operand), to generate the effective address. If the rA field of the instruction 
specifies r0, a value of zero is added to the immediate index (d operand) in place of the 
contents of r0. The option to specify rA or 0 is shown in the instruction descriptions as 
(rA|0). Figure 3-1 shows how an effective address is generated using this addressing mode. 

Figure 3-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores
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• Register indirect with index addressing for integer loads and stores. Instructions using this 
addressing mode cause the contents of two general-purpose registers (specified as operands 
rA and rB) to be added in the generation of the effective address. A zero in place of the rA 
operand causes a zero to be added to the contents of the general-purpose register specified 
in operand rB. The option to specify rA or 0 is shown in the instruction descriptions as 
(rA|0).

Figure 3-2 shows how an effective address is generated using this addressing mode.
 

Figure 3-2. Register Indirect with Index Addressing for Integer Loads/Stores

• Register indirect addressing for integer loads and stores. Instructions using this addressing 
mode use the contents of the GPR specified by the rA operand as the effective address. A 
zero in the rA operand causes an effective address of zero to be generated. The option to 
specify rA or 0 is shown in the instruction descriptions as (rA|0). 
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Figure 3-3 shows how an effective address is generated using register indirect addressing.

Figure 3-3. Register Indirect Addressing for Integer Loads/Stores

The instruction model chapter in the EREF describes effective address calculation. Note that in 
some implementations, operations that are not naturally aligned can suffer performance 
degradation. Section 5.7.6, “Alignment Interrupt,” for additional information about load and store 
address alignment interrupts.

3.3.1.2.3 Integer Load Instructions

Table 3-11 summarizes the integer load instructions.

Table 3-11. Integer Load Instructions

Name Mnemonic Syntax 

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)
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The following notes describe the e500 implementation of integer load instructions:

• Book E cautions programmers that some implementations of the architecture can execute 
the load half algebraic (lha, lhax) instructions with greater latency than other types of load 
instructions. This is not the case for the e500; these instructions operate with the same 
latency as other load instructions. 

• Book E cautions programmers that some implementations can run the load/store 
byte-reverse (lhbrx, lbrx, sthbrx, stwbrx) instructions with greater latency than other 
types of load/store instructions. This is not the case for the e500. These instructions operate 
with the same latency as the other load/store instructions.

• The Book E architecture defines lwarx and stwcx. as a way to update memory atomically. 
In the e500, reservations are made on behalf of aligned 32-byte sections of the memory 
address space. Executing lwarx and stwcx. to a page marked write-through causes a data 
storage interrupt if the page is marked cacheable write-through (WIM = 10x), but as with 
other memory accesses, data storage interrupts can result for other reasons such as 
protection violations or page faults.

3.3.1.2.4 Integer Store Instructions 

For integer store instructions, the rS contents are stored into the byte, half word, word, or double 
word in memory addressed by the EA (effective address). Many store instructions have an update 
form in which rA is updated with the EA. For these forms, the following rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element and the 
generated EA is placed into rA (rS). 

The Book E architecture defines store with update instructions with rA = 0 as an invalid form. In 
addition, it defines integer store instructions with the CR update option enabled (Rc field, bit 31, 
in the instruction encoding = 1) to be an invalid form. Table 3-12 summarizes integer store 
instructions.

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 3-12. Integer Store Instructions

Name Mnemonic Syntax 

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Table 3-11. Integer Load Instructions (continued)

Name Mnemonic Syntax 
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3.3.1.2.5 Integer Load and Store with Byte-Reverse Instructions 

Table 3-13 describes integer load and store with byte-reverse instructions. These books were 
defined in part to support the original PowerPC definition of little-endian byte ordering. Note that 
Book E supports true little endian on a per-page basis. 

3.3.1.2.6 Integer Load and Store Multiple Instructions 

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The 
load multiple and store multiple instructions can have operands that require memory accesses 
crossing a 4-Kbyte page boundary. As a result, these instructions can be interrupted by a data 
storage interrupt associated with the address translation of the second page. Note that if one of 
these instructions is interrupted, it may be restarted, requiring multiple memory accesses. 

The Book E architecture defines the Load Multiple Word (lmw) instruction with rA in the range 
of registers to be loaded as an invalid form. Load and store multiple accesses must be word 
aligned; otherwise, they cause an alignment exception.

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 3-13. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax 

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 3-12. Integer Store Instructions (continued)

Name Mnemonic Syntax 
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The load/store multiple instructions are listed in Table 3-14.

3.3.1.3 Branch and Flow Control Instructions 

Some branch instructions can redirect instruction execution conditionally based on the value of 
bits in the CR. Information about branch instruction address calculation is provided in the EREF. 

3.3.1.3.1 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the 
branch is taken. The first four bits of the BO operand specify how the branch is affected by or 
affects the condition and count registers. The fifth bit, shown in Table 3-16 as having the value y, 
is used by some implementations for branch prediction as described below. 

NOTE
The e500 does not implement the static branch prediction defined in 
Book E and described here. In the e500, the BO operand is ignored for 
branch prediction. The e500 instead implements dynamic branch 
prediction as part of the branch table buffer (BTB), described in 
Section 4.4.1, “Branch Unit Execution.”

The encodings for the BO operands are shown in Table 3-16.

Table 3-14. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax 

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 3-15. BO Bit Descriptions

BO Bits Description

0 Setting this bit causes the CR bit to be ignored.

1 Bit value to test against

2 Setting this causes the decrement to not be decremented.

3 Setting this bit reverses the sense of the CTR test.

4 Used for the y bit, which provides a hint about whether a conditional branch is likely to be 
taken (static branch prediction) and may be used by some implementations to improve 
performance. The e500 does not use static branch prediction and ignores this bit. 

Table 3-16. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.
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The branch always encoding of the BO operand does not have a y bit.

The 5-bit BI operand in branch conditional instructions specifies which CR bit represents the 
condition to test. The CR bit selected is BI +32

If the branch instructions contain immediate addressing operands, the target addresses can be 
computed sufficiently ahead of the branch instruction that instructions can be fetched along the 
target path. If the branch instructions use the link and count registers, instructions along the target 
path can be fetched if the link or count register is loaded sufficiently ahead of the branch 
instruction.

Branching can be conditional or unconditional, and optionally a branch return address is created by 
storing the effective address of the instruction following the branch instruction in the LR after the 
branch target address has been computed. This is done regardless of whether the branch is taken. 

3.3.1.3.2 Branch Instructions 

Table 3-17 lists branch instructions provided by the Book E processors. A set of simplified 
mnemonics and symbols is provided for the most frequently used forms of branch conditional, 
compare, trap, rotate and shift, and certain other instructions; see Appendix C, “Simplified 
Mnemonics for PowerPC Instructions.” Note that the e500 does not use the BO operand for static 
branch prediction. 

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored. Note that the z bits should be cleared, as they may be assigned 
a meaning in some future version of the architecture.
The y bit provides a hint about whether a conditional branch is likely to be taken and may be used by some 
implementations to improve performance. 

Table 3-17. Branch Instructions

Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 

Table 3-16. BO Operand Encodings (continued)

BO Description
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Note that the e500 implements the Integer Select instruction, isel, which can be used to more 
efficiently handle sequences with multiple conditional branches. Its syntax is given in 
Section 3.8.2, “Integer Select (isel) APU.” A detailed description including an example of how isel 
can be used can be found in the APUs chapter of the EREF. 

3.3.1.3.3 Condition Register Logical Instructions

CR logical instructions, shown in Table 3-18, and the Move Condition Register Field (mcrf) 
instruction are also defined as flow control instructions. 

Note that if the LR update option is enabled for any of these instructions, the Book E architecture 
defines these forms of the instructions as invalid. 

3.3.1.3.4 Trap Instructions 

The trap instructions shown in Table 3-19 test for a specified set of conditions. If any of the 
conditions tested by a trap instruction are met, the system trap type program interrupt is taken. For 
more information, see Section 5.7.7, “Program Interrupt.” If the tested conditions are not met, 
instruction execution continues normally. See Appendix C, “Simplified Mnemonics for PowerPC 
Instructions.”

Table 3-18. Condition Register Logical Instructions

Name Mnemonic Syntax 

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 3-19. Trap Instructions

Name Mnemonic Syntax 

Trap Word Immediate twi TO,rA,SIMM 

Trap Word tw TO,rA,rB 
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3.3.1.4 System Linkage Instruction 

The System Call (sc) instruction permits a program to call on the system to perform a service; see 
Table 3-20 and Section 3.3.2.1, “System Linkage Instructions.”

Executing this instruction causes the system call interrupt handler to be invoked. For more 
information, see Section 5.7.8, “System Call Interrupt.”

3.3.1.5 Processor Control Instructions

Processor control instructions are used to read from and write to the CR, machine state register 
(MSR), and special-purpose registers (SPRs). 

3.3.1.5.1 Move to/from Condition Register Instructions 

Table 3-21 summarizes the instructions for reading from or writing to the CR.

Implementation Note—The Book E architecture states that the Move to Condition Register 
Fields (mtcrf) instruction can perform more slowly when only a portion of the fields are updated 
as opposed to all the fields. This is not the case for the e500.

3.3.1.5.2 Move to/from Special-Purpose Register Instructions 

Table 3-22 lists the mtspr and mfspr instructions. 

Table 3-20. System Linkage Instruction 

Name Mnemonic Syntax 

System Call sc — 

Table 3-21. Move to/from Condition Register Instructions 

Name Mnemonic Syntax 

Move to Condition Register Fields mtcrf CRM,rS 

Move to Condition Register from XER mcrxr crD 

Move from Condition Register mfcr rD 

Table 3-22. Move to/from Special-Purpose Register Instructions

Name Mnemonic Syntax 

Move to Special-Purpose Register mtspr SPR,rS 

Move from Special-Purpose Register mfspr rD,SPR 
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Table 3-23 summarizes all SPRs defined in Book E, indicating which are user-level access. The 
SPR number column lists register numbers used in the instruction mnemonics.

Table 3-23. Book E Special-Purpose Registers (by SPR Abbreviation)

SPR
Abbreviation

Name
Defined SPR Number

Access
Supervisor 

Only
Section/

PageDecimal Binary

CSRR0 Critical save/restore register 0 58 00001 11010 Read/Write Yes 2.7.1.2/2-18

CSRR1 Critical save/restore register 1 59 00001 11011 Read/Write Yes 2.7.1.2/2-18

CTR Count register 9 00000 01001 Read/Write No 2.4.3/2-10

DAC1 Data address compare 1 316 01001 11100 Read/Write Yes 2.13.4/2-48

DAC2 Data address compare 2 317 01001 11101 Read/Write Yes 2.13.4/2-48

DBCR0 Debug control register 0 308 01001 10100 Read/Write Yes 2.13.1/2-46

DBCR1 Debug control register 1 309 01001 10101 Read/Write Yes 2.13.1/2-46

DBCR2 Debug control register 2 310 01001 10110 Read/Write Yes 2.13.1/2-46

DBSR Debug status register 304 01001 10000 Read/Clear1 Yes 2.13.2/2-47

DEAR Data exception address register 61 00001 11101 Read/Write Yes 2.7.1.3/2-18

DEC Decrementer 22 00000 10110 Read/Write Yes 2.6.4/2-16

DECAR Decrementer auto-reload 54 00001 10110 Write-only Yes 2.6.4/2-16

ESR Exception syndrome register 62 00001 11110 Read/Write Yes 2.7.1.6/2-20

IAC1 Instruction address compare 1 312 01001 11000 Read/Write Yes 2.13.3/2-48

IAC2 Instruction address compare 2 313 01001 11001 Read/Write Yes 2.13.3/2-48

IVOR0 Critical input 400 01100 10000 Read/Write Yes 2.7.1.5/2-19

IVOR1 Critical input interrupt offset 401 01100 10001 Read/Write Yes 2.7.1.5/2-19

IVOR2 Data storage interrupt offset 402 01100 10010 Read/Write Yes 2.7.1.5/2-19

IVOR3 Instruction storage interrupt offset 403 01100 10011 Read/Write Yes 2.7.1.5/2-19

IVOR4 External input interrupt offset 404 01100 10100 Read/Write Yes 2.7.1.5/2-19

IVOR5 Alignment interrupt offset 405 01100 10101 Read/Write Yes 2.7.1.5/2-19

IVOR6 Program interrupt offset 406 01100 10110 Read/Write Yes 2.7.1.5/2-19

IVOR8 System call interrupt offset 408 01100 11000 Read/Write Yes 2.7.1.5/2-19

IVOR10 Decrementer interrupt offset 410 01100 11010 Read/Write Yes 2.7.1.5/2-19

IVOR11 Fixed-interval timer interrupt offset 411 01100 11011 Read/Write Yes 2.7.1.5/2-19

IVOR12 Watchdog timer interrupt offset 412 01100 11100 Read/Write Yes 2.7.1.5/2-19

IVOR13 Data TLB error interrupt offset 413 01100 11101 Read/Write Yes 2.7.1.5/2-19

IVOR14 Instruction TLB error interrupt offset 414 01100 11110 Read/Write Yes 2.7.1.5/2-19

IVOR15 Debug interrupt offset 415 01100 11111 Read/Write Yes 2.7.1.5/2-19

IVPR Interrupt vector 63 00001 11111 Read/Write Yes 2.7.1.4/2-19

LR Link register 8 00000 01000 Read/Write No 2.4.2/2-10

PID Process ID register 2 48 00001 10000 Read/Write Yes 2.12.1/2-36

PIR Processor ID register 286 01000 11110 Read only Yes 2.5.2/2-12

PVR Processor version register 287 01000 11111 Read only Yes 2.5.3/2-13
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SPRG0 SPR general 0 272 01000 10000 Read/Write Yes 2.8/2-24

SPRG1 SPR general 1 273 01000 10001 Read/Write Yes 2.8/2-24

SPRG2 SPR general 2 274 01000 10010 Read/Write Yes 2.8/2-24

SPRG3 SPR general 3 259 01000 00011 Read only No3 2.8/2-24

275 01000 10011 Read/Write Yes 2.8/2-24

SPRG4 SPR general 4 260 01000 00100 Read only No 2.8/2-24

276 01000 10100 Read/Write Yes 2.8/2-24

SPRG5 SPR general 5 261 01000 00101 Read only No 2.8/2-24

277 01000 10101 Read/Write Yes 2.8/2-24

SPRG6 SPR general 6 262 01000 00110 Read only No 2.8/2-24

278 01000 10110 Read/Write Yes 2.8/2-24

SPRG7 SPR general 7 263 01000 00111 Read only No 2.8/2-24

279 01000 10111 Read/Write Yes 2.8/2-24

SRR0 Save/restore register 0 26 00000 11010 Read/Write Yes 2.7.1.1/2-18

SRR1 Save/restore register 1 27 00000 11011 Read/Write Yes 2.7.1.1/2-18

TBL Time base lower 268 01000 01100 Read only No 2.6.3/2-16

284 01000 11100 Write-only Yes 2.6.3/2-16

TBU Time base upper 269 01000 01101 Read only No 2.6.3/2-16

285 01000 11101 Write-only Yes 2.6.3/2-16

TCR Timer control register 340 01010 10100 Read/Write Yes 2.6.1/2-15

TSR Timer status register 336 01010 10000 Read/Clear4 Yes 2.6.2/2-16

USPRG0 User SPR general 05 256 01000 00000 Read/Write No 2.8/2-24

XER Integer exception register 1 00000 00001 Read/Write No 2.3.2/2-9

1 The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits in the GPR 
can be cleared using mtspr.

2 Implementations may support more than one PID. The e500 implements the Book E–defined PID as PID0.
3 User-mode read access to SPRG3 is implementation-dependent.
4 The TSR is read using mfspr. It cannot be directly written to. Instead, TSR bits corresponding to 1 bits in the GPR can 

be cleared using mtspr.
5 USPRG0 is a separate physical register from SPRG0.

Table 3-23. Book E Special-Purpose Registers (by SPR Abbreviation) (continued)

SPR
Abbreviation Name

Defined SPR Number
Access

Supervisor 
Only

Section/
PageDecimal Binary
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Table 3-24 lists e500-specific SPRs, indicating which can be accessed by user-level software. 
Compilers should recognize SPR names when parsing instructions. 

 

Table 3-24. Implementation-Specific SPRs (by SPR Abbreviation)

SPR
Abbreviation

Name
SPR 

Number
Access

Supervisor 
Only

Section/
Page

BBEAR Branch buffer entry address register 513 Read/Write No 2.9.1/2-25

BBTAR Branch buffer target address register 514 Read/Write No 2.9.2/2-25

BUCSR Branch unit control and status register 1013 Read/Write Yes 2.9.3/2-26

HID0 Hardware implementation dependent register 0 1008 Read/Write Yes 2.10.1/2-27

HID1 Hardware implementation dependent register 1 1009 Read/Write Yes 2.10.1/2-27

IVOR32 SPE APU unavailable interrupt offset 528 Read/Write Yes 2.7.1.5/2-19

IVOR33 Embedded floating-point data exception interrupt offset 529 Read/Write Yes 2.7.1.5/2-19

IVOR34 Embedded floating-point round exception interrupt offset 530 Read/Write Yes 2.7.1.5/2-19

IVOR35 Performance monitor 531 Read/Write Yes 2.7.1.5/2-19

L1CFG0 L1 cache configuration register 0 515 Read only No 2.11.3/2-34

L1CFG1 L1 cache configuration register 1 516 Read only No 2.11.4/2-35

L1CSR0 L1 cache control and status register 0 1010 Read/Write Yes 2.11.1/2-31

L1CSR1 L1 cache control and status register 1 1011 Read/Write Yes 2.11.2/2-33

MAS0 MMU assist register 0 624 Read/Write Yes 2.12.5.1/2-40

MAS1 MMU assist register 1 625 Read/Write Yes 2.12.5.2/2-41

MAS2 MMU assist register 2 626 Read/Write Yes 2.12.5.3/2-42

MAS3 MMU assist register 3 627 Read/Write Yes 2.12.5.4/2-43

MAS4 MMU assist register 4 628 Read/Write Yes 2.12.5.5/2-43

MAS6 MMU assist register 6 630 Read/Write Yes 2.12.5.6/2-44

MCAR Machine check address register 573 Read only Yes 2.7.2.3/2-22

MCSR Machine check syndrome register 572 Read/Write Yes 2.7.2.4/2-23

MCSRR0 Machine-check save/restore register 0 570 Read/Write Yes 2.7.2.1/2-22

MCSRR1 Machine-check save/restore register 1 571 Read/Write Yes 2.7.2.2/2-22

MMUCFG MMU configuration register 1015 Read only Yes 2.12.3/2-37

MMUCSR0 MMU control and status register 0 1012 Read/Write Yes 2.12.2/2-36

PID0 Process ID register 0. Book E defines only this PID 
register and refers to as PID rather than PID0. 

48 Read/Write Yes 2.12.1/2-36

PID1 Process ID register 1 633 Read/Write Yes

PID2 Process ID register 2 634 Read/Write Yes

SPEFSCR Signal processing and embedded floating-point status 
and control register

512 Read/Write No 2.14.1/2-49

TLB0CFG TLB configuration register 0 688 Read only Yes 2.12.4/2-37

TLB1CFG TLB configuration register 1 689 Read only Yes 2.12.4.2/2-39
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3.3.1.6 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations complete 
with respect to asynchronous events and the order in which memory operations are seen by other 
mechanisms that access memory. See Section 3.3.1.7, “Atomic Update Primitives Using lwarx 
and stwcx.,” for additional information about these instructions and about related aspects of 
memory synchronization. See Table 3-25 for a summary.

Table 3-25. Memory Synchronization Instructions

Name Mnemonic Syntax Implementation Notes

Instruction 
Synchronize

isync — isync is refetch serializing; the e500 waits for previous instructions (including any interrupts 
they generate) to complete before isync executes, which purges all instructions from the 
core and refetches the next instruction. isync does not wait for pending stores in the store 
queue to complete. Any subsequent instruction sees all effects of instructions before the 
isync.
Because it prevents execution of subsequent instructions until preceding instructions 
complete, if an isync follows a conditional branch instruction that depends on the value 
returned by a preceding load, the load on which the branch depends is performed before 
any loads caused by instructions after the isync even if the effects of the dependency are 
independent of the value loaded (for example, the value is compared to itself and the 
branch tests selected, CRn[EQ]), and even if the branch target is the next sequential 
instruction to be executed.

Load Word 
and 
Reserve 
Indexed 

lwarx rD,rA,rB lwarx with stwcx. can emulate semaphore operations such as test and set, compare and 
swap, exchange memory, and fetch and add. Both instructions must use the same EA. 
Reservation granularity is implementation-dependent. The e500 makes reservations on 
behalf of aligned 32-byte sections of address space. Executing lwarx and stwcx. to a page 
marked write-through (WIMG = 10xx) or when the data cache is locked causes a data 
storage interrupt. If the location is not word-aligned, an alignment interrupt occurs. 
See Section 3.3.1.7, “Atomic Update Primitives Using lwarx and stwcx.”

Memory 
Barrier

mbar MO mbar provides a memory barrier. (Note that mbar uses the same opcode as eieio, defined 
by the Classic PowerPC architecture, and with which mbar (MO=1) is identical, as defined 
by the EIS). The behavior of mbar depends on the value of MO operand. 
MO ≠ 0—mbar instruction provides a storage ordering function for all memory access 
instructions executed by the processor executing mbar. Executing mbar ensures that all 
data storage accesses caused by instructions preceding the mbar have completed before 
any data storage accesses caused by any instructions after the mbar. This order is seen 
by all mechanisms.
MO = 1—The EIS defines mbar to function identically to eieio, as defined by the classic 
PowerPC architecture. For more information, see Section 3.3.1.6.1, “mbar (MO = 1).”
The following sequence shows one use of mbar in supporting shared data, ensuring the 
action is completed before the lock is released.
P1 P2
lock . . .
read & write . . .
mbar . . .
free lock . . .
. . . lock
. . . read & write
. . . mbar
. . . free lock
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3.3.1.6.1 mbar (MO = 1)

As defined by the EIS, mbar (MO = 1) is functions like eieio, as it is defined by the Classic 
PowerPC architecture. It provides ordering for the effects of load and store instructions. These 
instructions consist of two sets, which are ordered separately. Memory accesses caused by a dcbz 
or a dcba are ordered like a store. The two sets follow:

• Caching-inhibited, guarded loads and stores to memory and write-through-required stores 
to memory. mbar (MO = 1) controls the order in which accesses are performed in main 
memory. It ensures that all applicable memory accesses caused by instructions preceding 
the mbar have completed with respect to main memory before any such accesses caused 
by instructions following mbar access main memory. It acts like a barrier that flows 
through the memory queues and to main memory, preventing the reordering of memory 
accesses across the barrier. No ordering is performed for dcbz if the instruction causes the 
system alignment error handler to be invoked.

Memory 
Synchronize 

msync — msync provides a memory barrier throughout the memory hierarchy. In the e500, msync 
waits for proceeding data memory accesses to become visible to the entire memory 
hierarchy; then it is broadcast on the bus. msync completes only after its address tenure 
is performed without being ARTRYed. Subsequent instructions can execute out of order but 
complete only after the msync completes. 
msync latency depends on the processor state when it is dispatched and on various 
system-level conditions. Frequent use of msync degrades performance. 
System designs with an external cache should take care to recognize the hardware 
signaling caused by an MSYNC bus operation and perform the appropriate actions to 
guarantee that memory references that can be queued internally to the external cache have 
been performed globally. 
Note the following:
 • msync is used to ensure that all stores into a data structure caused by store instructions 

executed in a critical section of a program are performed with respect to another 
processor before the store that releases the lock is performed with respect to that 
processor. mbar is preferable in many cases.

 • The Freescale EIS further requires that, unlike a context-synchronizing operation, 
msync does not discard prefetched instructions. 

The e500 broadcasts mbar only if ABE = 1 to allow management of external L2 caches and 
other L1 caches in the system. 

Section 3.5.1, “Lock Acquisition and Import Barriers,” describes how the msync and mbar 
instructions can be used to control memory access ordering when memory is shared 
between programs. 

Store Word 
Conditional 
Indexed 

stwcx. rS,rA,rB lwarx with stwcx. can emulate semaphore operations such as test and set, compare and 
swap, exchange memory, and fetch and add. Both instructions must use the same EA. 
Reservation granularity is implementation-dependent. The e500 makes reservations on 
behalf of aligned 32-byte sections of address space. Executing lwarx and stwcx. to a page 
marked write-through (WIMG = 10xx) or when the data cache is locked causes a data 
storage interrupt. If the location is not word-aligned, an alignment interrupt occurs. 
See Section 3.3.1.7, “Atomic Update Primitives Using lwarx and stwcx..”

Table 3-25. Memory Synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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All accesses in this set are ordered as one set; there is not one order for guarded, 
caching-inhibited loads and stores and another for write-through-required stores.

• Stores to memory that are caching-allowed, write-through not required, and 
memory-coherency required. mbar (MO = 1) controls the order in which accesses are 
performed with respect to coherent memory. It ensures that, with respect to coherent 
memory, applicable stores caused by instructions before the mbar complete before any 
applicable stores caused by instructions after it. 

Except for dcbz and dcba, mbar (MO = 1) does not affect the order of cache operations (whether 
caused explicitly by a cache management instruction or implicitly by the cache coherency 
mechanism). Also. mbar does not affect the order of accesses in one set with respect to accesses 
in the other.

mbar (MO = 1) may complete before memory accesses caused by instructions preceding it have 
been performed with respect to main memory or coherent memory as appropriate. mbar (MO = 1) 
is intended for use in managing shared data structures, in accessing memory-mapped I/O, and in 
preventing load/store combining operations in main memory. For the first use, the shared data 
structure and the lock that protects it must be altered only by stores that are in the same set (for 
both cases described above). For the second use, mbar (MO = 1) can be thought of as placing a 
barrier into the stream of memory accesses issued by a core, such that any given memory access 
appears to be on the same side of the barrier to both the core and the I/O device.

Because the core performs store operations in order to memory that is designated as both 
caching-inhibited and guarded, mbar (MO = 1) is needed for such memory only when loads must 
be ordered with respect to stores or with respect to other loads.

Note that mbar (MO = 1) does not connect hardware considerations to it such as multiprocessor 
implementations that send an mbar (MO = 1) address-only broadcast (useful in some designs). 
For example, if a design has an external buffer that re-orders loads and stores for better bus 
efficiency, mbar (MO = 1) broadcasts signals to that buffer that previous loads/stores (marked 
caching-inhibited, guarded, or write-through required) must complete before any following 
loads/stores (marked caching-inhibited, guarded, or write-through required).

Section 3.5.1, “Lock Acquisition and Import Barriers,” describes how the msync and mbar 
instructions can be used to control memory access ordering when memory is shared between 
programs. 

3.3.1.7 Atomic Update Primitives Using lwarx and stwcx.

The lwarx and stwcx. instructions together permit atomic update of a memory location. Book E 
provides word and double-word forms of each of these instructions. Described here is the 
operation of lwarx and stwcx..
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A specified memory location that may be modified by other processors or mechanisms requires 
memory coherency. If the location is in write-through-required or caching-inhibited memory, the 
implementation determines whether these instructions function correctly or cause the system data 
storage error handler to be invoked. The e500 takes a data storage interrupt if the location is 
write-through but does not take the interrupt if the location is caching inhibited. 

Note the following: 

• The memory coherency required attribute on other processors and mechanisms ensures that 
their stores to the specified location cause the reservation created by the lwarx to be 
cancelled.

• Warning: Support for load and reserve and store conditional instructions for which the 
specified location is in caching-inhibited memory is being phased out of Book E. It is likely 
not to be provided on future implementations. New programs should not use these 
instructions to access caching inhibited memory.

A lwarx instruction is a load from a word-aligned location with the following side effects.

• A reservation for a subsequent stwcx. instruction is created.

• The memory coherency mechanism is notified that a reservation exists for the location 
accessed by the lwarx.

The stwcx. is a store to a word-aligned location that is conditioned on the existence of the 
reservation created by the lwarx and on whether both instructions specify the same location. To 
emulate an atomic operation, both lwarx and stwcx. must access the same location. lwarx and 
stwcx. are ordered by a dependence on the reservation, and the program is not required to insert 
other instructions to maintain the order of memory accesses caused by these two instructions.

A stwcx. performs a store to the target location only if the location accessed by the lwarx that 
established the reservation has not been stored into by another processor or mechanism between 
supplying a value for the lwarx and storing the value supplied by the stwcx.. If the instructions 
specify different locations, the store is not necessarily performed. CR0 is modified to indicate 
whether the store was performed, as follows:

CR0[LT,GT,EQ,SO] = 0b00 || store_performed || XER[SO]

If a stwcx. completes but does not perform the store because a reservation no longer exists, CR0 
is modified to indicate that the stwcx. completed without altering memory.

A stwcx. that performs its store is said to succeed.

A successful stwcx. to a given location may complete before its store has been performed with 
respect to other processors and mechanisms. As a result, a subsequent load or lwarx from the given 
location on another processor may return a stale value. However, a subsequent lwarx from the 
given location on the other processor followed by a successful stwcx. on that processor is 
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guaranteed to have returned the value stored by the first processor’s stwcx. (in the absence of other 
stores to the given location).

3.3.1.7.1 Reservations

The ability to emulate an atomic operation using lwarx and stwcx. is based on the conditional 
behavior of stwcx., the reservation set by lwarx, and the clearing of that reservation if the target 
location is modified by another processor or mechanism before the stwcx. performs its store.

A reservation is held on an aligned unit of real memory called a reservation granule. The size of 
the reservation granule is implementation-dependent, but is a multiple of 4 bytes for lwarx. The 
reservation granule associated with effective address EA contains the real address to which EA 
maps. (‘real_addr(EA)’ in the RTL for the load and reserve and store conditional instructions 
stands for ‘real address to which EA maps.’) When one processor holds a reservation and another 
processor performs a store, the first processor’s reservation is cleared if the store affects any bytes 
in the reservation granule.

NOTE
One use of lwarx and stwcx. is to emulate a compare and swap 
primitive like that provided by the IBM System/370 compare and 
swap instruction, which checks only that the old and current values of 
the word being tested are equal, with the result that programs that use 
such a compare and swap to control a shared resource can err if the 
word has been modified and the old value is subsequently restored.

The use of lwarx and stwcx. improves on such a compare and swap 
because the reservation reliably binds lwarx and stwcx. together. The 
reservation is always lost if the word is modified by another processor 
or mechanism between the lwarx and stwcx., so the stwcx. never 
succeeds unless the word has not been stored into (by another 
processor or mechanism) since the lwarx.

A processor has at most one reservation at any time. Book E states that a reservation is established 
by executing a lwarx and is lost (or may be lost, in the case of the fourth and fifth bullets) if any 
of the following occurs.

• The processor holding the reservation executes another lwarx; this clears the first 
reservation and establishes a new one.

• The processor holding the reservation executes any stwcx., regardless of whether the 
specified address matches that of the lwarx.

• Another processor executes a store or dcbz to the same reservation granule.

• Another processor executes a dcbtst, dcbst, or dcbf to the same reservation granule; 
whether the reservation is lost is undefined.
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• Another processor executes a dcba to the reservation granule. The reservation is lost if the 
instruction causes the target block to be newly established in the data cache or to be 
modified; otherwise, whether the reservation is lost is undefined.

• Some other mechanism modifies a location in the same reservation granule.

Interrupts are not guaranteed to clear reservations. (However, system software invoked by 
interrupts may clear reservations.)

In general, programming conventions must ensure that lwarx and stwcx. specify addresses that 
match; a stwcx. should be paired with a specific lwarx to the same location. Situations in which a 
stwcx. may erroneously be issued after some lwarx other than that with which it is intended to be 
paired must be scrupulously avoided. For example, there must not be a context switch in which 
the processor holds a reservation on behalf of the old context, and the new context resumes after 
a lwarx and before the paired stwcx.. The stwcx. in the new context might succeed, which is not 
what was intended by the programmer.

Such a situation must be prevented by issuing a stwcx. to a dummy writable word-aligned location 
as part of the context switch, thereby clearing any reservation established by the old context. 
Executing stwcx. to a word-aligned location is enough to clear the reservation.

In the e500, a reservation is lost for any of the following reasons:

• Execution of a stwcx. 

• Any of the following interrupts occur: 

— External 

— Performance monitor

— Critical input interrupt

— Machine check 

— Fixed-interval timer 

— Decrementer 

— Unconditional debug event 

— Watchdog timer 

• Snoops

— RWITM, RCLAIM 

— Writes, flush, kill, dkill 

• Another processor executes any of the following to the reservation granule:

— dcbtst 

— dcbf 

— dcba
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— dcbst (The e500 broadcasts dcbst as a flush; if another processor implements dcbst as 
a clean, the reservation is not cleared.) 

3.3.1.7.2 Forward Progress

Forward progress in loops that use lwarx and stwcx. is achieved by a cooperative effort among 
hardware, operating system software, and application software.

Book E guarantees one of the following when a processor executes a lwarx to obtain a reservation 
for location X and then a stwcx. to store a value to location X:

1. The stwcx. succeeds and the value is written to location X.

2. The stwcx. fails because some other processor or mechanism modified location X.

3. The stwcx. fails because the processor’s reservation was lost for some other reason.

In cases 1 and 2, the system as a whole makes progress in the sense that some processor 
successfully modifies location X. Case 3 covers reservation loss required for correct operation of 
the rest of the system. This includes cancellation caused by some other processor writing 
elsewhere in the reservation granule for X, as well as cancellation caused by the operating system 
in managing certain limited resources such as real memory or context switches. It may also include 
implementation-dependent causes of reservation loss.

An implementation may make a forward progress guarantee, defining the conditions under which 
the system as a whole makes progress. Such a guarantee must specify the possible causes of 
reservation loss in case 3. Although Book E alone cannot provide such a guarantee, the conditions 
in cases 1 and 2 are necessary for a guarantee. An implementation and operating system can build 
on them to provide such a guarantee.

Note that Book E does not guarantee fairness. In competing for a reservation, two processors can 
indefinitely lock out a third.

3.3.1.7.3 Reservation Loss Due to Granularity

Lock words should be allocated such that contention for the locks and updates to nearby data 
structures do not cause excessive reservation losses due to false indications of sharing that can 
occur due to the reservation granularity.

A processor holding a reservation on any word in a reservation granule loses its reservation if some 
other processor stores anywhere in that granule. Such problems can be avoided only by ensuring 
that few such stores occur. This can most easily be accomplished by allocating an entire granule 
for a lock and wasting all but one word.

Reservation granularity may vary for each implementation. There are no architectural restrictions 
bounding the granularity implementations must support, so reasonably portable code must 
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dynamically allocate aligned and padded memory for locks to guarantee absence of 
granularity-induced reservation loss.

3.3.1.8 Memory Control Instructions 

Memory control instructions can be classified as follows: 

• User- and supervisor-level cache management instructions. 

• Supervisor-level–only translation lookaside buffer management instructions 

This section describes the user-level cache management instructions. See Section 3.3.2.2, 
“Supervisor-Level Memory Control Instructions,” for information about supervisor-level cache 
and translation lookaside buffer management instructions. 

This section does not describe the cache-locking APU instructions, which are described in 
Section 3.8.4, “Cache Locking APU.” 

3.3.1.8.1 User-Level Cache Instructions

The instructions listed in Table 3-26 help user-level programs manage on-chip caches if they are 
implemented. See Chapter 11, “L1 Caches,” for more information about cache topics. The 
following sections describe how these operations are treated with respect to the e500’s caches. The 
e500 supports the following CT values, defined by the EIS:

• CT = 0 indicates the L1 cache.

• CT = 1 indicates the L2 cache.

As with other memory-related instructions, the effects of cache management instructions on 
memory are weakly-ordered. If the programmer must ensure that cache or other instructions have 
been performed with respect to all other processors and system mechanisms, an msync must be 
placed after those instructions.

Note that the e500 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and dcbst) as if 
they pertain only to local caches. On some implementations, HID1[ABE] must be set to allow 
management of external L2 caches as well as other L1 caches in the system.

Section 3.8.4, “Cache Locking APU,” describes cache-locking APU instructions. 
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Table 3-26. User-Level Cache Instructions 

Name Mnemonic Syntax Implementation Notes

Data Cache 
Block 
Allocate 

dcba rA,rB The EA is computed, translated, and checked for protection violations. For cache hits, 32 
bytes of zeros are written to the cache block and the tag is marked modified. For cache 
misses with the replacement block marked non-dirty, a zero reload is performed and the 
block is marked modified. However, if the replacement block is marked modified, the 
contents are written back to memory first. If WIMG = xx1x (coherency enforced), the 
address is broadcast to the bus before the zero reload fill.
A no-op occurs if the cache is disabled or locked, if the page is marked write-through or 
cache-inhibited, or if a TLB protection violation occurs. 

Data Cache 
Block Flush1

dcbf rA,rB The EA is computed, translated, and checked for protection violations: 
 • For cache hits with the tag marked modified, the cache block is written back to memory 

and the cache entry is invalidated. 
 • For cache hits with the tag marked not modified, the entry is invalidated. 
 • For cache misses, no further action is taken. 
A dcbf is broadcast if WIMG = xx1x (coherency enforced).dcbf acts like a load with 
respect to address translation and memory protection. It executes in the LSU regardless 
of whether the cache is disabled or locked.

Data Cache 
Block Set to 
Zero 1

dcbz rA,rB The EA is computed, translated, and checked for protection violations. For cache hits, 32 
bytes of zeros are written to the cache block and the tag is marked modified. For cache 
misses with the replacement block marked not modified, the zero reload is performed and 
the cache block is marked modified. However, if the replacement block is marked modified, 
the contents are written back to memory first. dcbz takes an alignment interrupt if the 
cache is locked or disabled or if the cache is marked WT or CI. If WIMG = xx1x (coherency 
enforced), the address is broadcast to the bus before the zero reload fill.
The interrupt priorities (from highest to lowest) are as follows:
1 Cache Is locked—alignment interrupt
2 Page marked write-through or cache-inhibited—alignment interrupt
3 TLB protection violation—data storage interrupt
dcbz is broadcast if WIMG = xx1x (coherency enforced).

Data Cache 
Block Store 
1

dcbst rA,rB The EA is computed, translated, and checked for protection violations. 
 • For cache hits with the tag marked not modified, no further action is taken. 
 • For cache hits with the tag marked modified, the cache block is written back to memory 

and marked exclusive. 
If WIMG = xx1x (coherency enforced) dcbst is broadcast. dcbst acts like a load with 
respect to address translation and memory protection. It executes regardless of whether 
the cache is disabled or locked. 

Data Cache 
Block Touch 
2

dcbt CT,rA,rB dcbt allows potential performance enhancements through software-initiated prefetch 
hints. Implementations are not required to take action based on execution of dcbt but can 
prefetch the cache block corresponding to the EA into their cache. When dcbt executes, 
the e500 checks for protection violations (as for a load instruction). dcbt is treated as a 
no-op in the following cases:
 • The access causes a protection violation.The page is mapped cache-inhibited.
 • All lines that this entry maps to are locked or the cache is disabled. 
 • HID0[NOPTI] = 1
Otherwise, if no data is in the cache location, the e500 requests a cache line fill. Data 
brought into the cache is validated as if it were a load instruction. The memory reference 
of a dcbt sets the reference bit.
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3.3.2 Supervisor-Level Instructions 

The Book E architecture includes the structure of the memory management model, 
supervisor-level registers, and the interrupt model. This section describes the supervisor-level 
instructions implemented by e500. 

3.3.2.1 System Linkage Instructions 

This section describes the system linkage instructions (see Table 3-27). The user-level sc 
instruction lets a user program call on the system to perform a service and causes the processor to 
take a system call interrupt. The supervisor-level rfi instruction is used for returning from an 
interrupt handler. The rfci instruction is used for critical interrupts; rfmci is used for machine 
check interrupts.

Data Cache 
Block Touch 
for Store 1, 2

dcbtst CT,rA,rB dcbtst can be no-oped by setting HID0[NOPTI]. dcbtst behaves similarly to dcbt, except 
that the line-fill request on the bus is signaled as read or read-claim, and the data is 
marked as exclusive in the L1 data cache if there is no shared response on the bus. More 
specifically, the following cases occur depending on where the block currently exists or 
does not exist in the e500.
 • dcbtst hits in the L1 data cache. In this case, the dcbtst does nothing and the state of 

the block in the cache is not changed. Thus, if the block was in the shared state, a 
subsequent store hits on this shared block and incur the associated latency penalties. 

 • dcbtst misses in the L1 data cache and hits in the L2 cache. In this case, dcbtst 
reloads the L1 data cache with the state found in the L2 cache. Again, if the block was 
in the shared state in the L2, a subsequent store hits on this shared block and incur the 
associated latency penalties.

 • dcbtst misses in L1 data cache, L2 caches. In this case, e500 requests the block from 
memory with read or read-claim and reload the L1 data cache in the exclusive state. As 
subsequent store hits on exclusive and can perform the store to the L1 data cache 
immediately.

dcbtst is no-oped if its target address is mapped as write-through.

Instruction 
Cache Block 
Invalidate1

icbi rA,rB icbi is broadcast on the bus. It should always be followed by an msync and an isync to 
make sure its effects are seen by instruction fetches following the icbi itself.

Instruction 
Cache Block 
Touch 

icbt CT,rA,rB If CT = 0, the e500 treats icbt as a no-op. 
If CT = 1, icbt executes as follows:
 • For L1 data cache hit-to-modified, icbt performs like a load on the bus; e500 ignores 

data (for L2).
 • For L1 data cache hit-to-modified—cast out (for L2)
 • If NOPTI is 0, icbt does a touch load to the L2 cache.

1 On some implementations, such as the e500, HID1[ABE] must be set to allow management of external L2 caches (for 
implementations with L2 caches) as well as other L1 caches in the system.

2 A program that uses dcbt and dcbtst improperly is less efficient. To improve performance, HID0[NOPTI] can be set, which 
causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock execution 
latency. The default state of this bit is zero, which enables the use of these instructions. 

Table 3-26. User-Level Cache Instructions  (continued)

Name Mnemonic Syntax Implementation Notes



PowerPC e500 Core Family Reference Manual, Rev. 1

3-40 Freescale Semiconductor

Instruction Model

Table 3-28 lists instructions for accessing the MSR. 

Certain encodings of the SPR field of mtspr and mfspr instructions (shown in Table 3-22) provide 
access to supervisor-level SPRs. Table 3-23 lists encodings for architecture-defined SPRs. 
Encodings for e500-specific, supervisor-level SPRs are listed in Table 3-24. Simplified 
mnemonics are provided for mtspr and mfspr. See the EREF for more information on context 
synchronization requirements when altering certain SPRs.

3.3.2.2 Supervisor-Level Memory Control Instructions 

Memory control instructions include the following: 

• Cache management instructions (supervisor-level and user-level) 
• Translation lookaside buffer management instructions 

This section describes supervisor-level memory control instructions. Section 3.3.1.8, “Memory 
Control Instructions,” describes user-level memory control instructions. 

3.3.2.2.1 Supervisor-Level Cache Instruction

Table 3-29 lists the only supervisor-level cache management instruction. 

Table 3-27. System Linkage Instructions—Supervisor-Level 

Name Mnemonic Syntax Implementation Notes

Return from 
Interrupt 

rfi — rfi is context-synchronizing, which for the e500 means it works its way to the final execute 
stage, updates architected registers, and redirects the instruction flow. 

Return from 
Machine Check 
Interrupt

rfmci — (e500-specific) When rfmci is executed, the values in the machine check interrupt save 
and restore registers (MCSRR0 and MCSRR1) are restored. rfmci is 
context-synchronizing; it works its way to the final execute stage, updates architected 
registers, and redirects instruction flow. 

Return from 
Critical Interrupt

rfci — When rfci executes, the values in the critical interrupt save and restore registers (CSRR0 
and CSRR1) are restored. rfci is context-synchronizing, which for the e500 means it 
works its way to the final execute stage, updates architected registers, and redirects the 
instruction flow. 

System Call sc — The sc instruction is context-synchronizing. 

Table 3-28. Move to/from Machine State Register Instructions

Name Mnemonic Syntax Description 

Move from Machine State Register mfmsr rD —

Move to Machine State Register mtmsr rS —

Write MSR External Enable wrtee rS Bit 48 of the contents of rS is placed into MSR[EE]. No 
other MSR bits are affected.

Write MSR External Enable Immediate wrteei E The value specified in the E field is placed into MSR[EE]. 
No other MSR bits are affected.
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See Section 3.3.1.8.1, “User-Level Cache Instructions,” for cache instructions that provide 
user-level programs the ability to manage the on-chip caches. 

3.3.2.2.2 Supervisor-Level TLB Management Instructions

The address translation mechanism is defined in terms of TLBs and page table entries (PTEs) 
Book E processors use to locate the logical-to-physical address mapping for a particular access. 
See Chapter 12, “Memory Management Units,” for more information about TLB operations. 
Table 3-30 summarizes the operation of the TLB instructions in the e500.

Table 3-29. Supervisor-Level Cache Management Instruction 

Name Mnemonic Syntax Implementation Notes

Data 
Cache 
Block 

Invalidate

dcbi rA,rB dcbi executes as described in Book E. The e500 core invalidates the cache block without 
pushing it out to memory. See Section 3.3.1.8.1, “User-Level Cache Instructions.” In the e500, 
dcbi cannot generate a cache-locking exception. The e500 broadcasts dcbi only if HID1[ABE] 
is set. ABE must be set to allow management of external L2 caches (for implementations with 
L2 caches) and other L1 caches in the system.

Table 3-30. TLB Management Instructions

Name Mnemonic Syntax Implementation Notes

TLB 
Invalidate 

Virtual 
Address 
Indexed

tlbivax rA, rB A TLB invalidate operation is performed whenever tlbivax is executed. tlbivax invalidates 
any TLB entry that corresponds to the virtual address calculated by this instruction as long 
as IPROT is not set; this includes invalidating TLB entries contained in TLBs on other 
processors and devices in addition to the processor executing tlbivax. Thus, an invalidate 
operation is broadcast throughout the coherent domain of the processor executing tlbivax. 
For more information see Section 12.3, “Translation Lookaside Buffers (TLBs).”
On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

TLB Read 
Entry

tlbre — tlbre causes the contents of a single TLB entry to be extracted from the MMU and be placed 
in the corresponding fields of the MMU assist (MAS) registers. The entry extracted is 
specified by the TLBSEL, ESEL, and EPN fields of MAS0 and MAS2. The contents 
extracted from the MMU are placed in MAS0–MAS3. Note that for the e500v2, if 
HID0[EN_MAS7_UPDATE] = 1, MAS7 is also updated with the four highest-order bits of 
physical address for the TLB entry. See Section 12.3, “Translation Lookaside Buffers 
(TLBs).”
The RTL for the Freescale implementation of tlbre is as follows:

tlb_entry_id = MAS0(TLBSEL, ESEL | MAS2(EPN)
result = MMU(tlb_entry_id)
MAS0, MAS1, MAS2, MAS3, (and MAS7 if HID0[EN_MAS7_UPDATE] = 1) = 
result 
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Implementation Note—The presence and exact semantics of the TLB management instructions 
are implementation dependent. To minimize compatibility problems, system software should 
incorporate uses of these instructions into subroutines. 

3.3.3 Recommended Simplified Mnemonics 

The description of each instruction includes the mnemonic and a formatted list of operands. 
Book E–compliant assemblers support the mnemonics and operand listed. To simplify assembly 
language programming, a set of simplified mnemonics and symbols is provided for some of the 
most frequently used instructions; refer to Appendix C, “Simplified Mnemonics for PowerPC 
Instructions,” for a complete list. Programs written to be portable across the various assemblers 
for the Book E architecture should not assume the existence of mnemonics not described in this 
document. 

TLB Search 
Indexed

tlbsx rA, rB tlbsx updates the MAS registers conditionally based on the success or failure of a lookup 
in the MMU. The lookup is controlled by the EA provided by GPR[rB] specified in the 
instruction encoding and MAS6[SAS,SPID]. The values placed into MAS registers differ, 
depending on whether a successful or unsuccessful search occurred. See Section 12.3, 
“Translation Lookaside Buffers (TLBs).”
The RTL for the e500 implementation of tlbsx is as follows:
if RA!=0 then generate exception
EA = 320 || GPR(RB)32:63
ProcessID = MAS6(SPID), 0b0000_0000
AS = MAS6(SAS)
VA = AS || ProcessID || EA
if Valid_TLB_matching_entry_exists (VA)
then result = see Table 12-15, column “tlbsx hit”
else result = see Table 12-15, column “tlbsx miss”
MAS0, MAS1, MAS2, MAS3, and MAS7 = result
Note that RA=0 is a preferred form for tlbsx and that some Freescale implementations, 
such as the e500, take an illegal instruction exception program interrupt if RA != 0. 

TLB 
Synchronize

tlbsync — Causes a TLBSYNC transaction on the e500 core complex bus. This transaction is retried 
if any processor, including the one that executed the tlbsync, has pending memory 
accesses issued before any previous tlbivax completed.See Section 12.3, “Translation 
Lookaside Buffers (TLBs).” 
The e500 broadcasts cache tlbsync only if ABE = 1 to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system

TLB Write 
Entry

tlbwe — tlbwe causes the contents of certain fields of MAS0, MAS1, MAS2, and MAS3 (and MAS7 
on e500v2) to be written into a single TLB entry in the MMU. The entry written is specified 
by the TLBSEL, ESEL, and EPN fields of MAS0 and MAS2. Execution of tlbwe on the 
e500v2 core also causes the upper 4 bits of the RPN that reside in MAS7 to be written to 
the selected TLB entry. See Section 12.3, “Translation Lookaside Buffers (TLBs).”
The RTL for the e500 implementation of tlbwe is as follows:

tlb_entry_id = MAS0(TLBSEL, ESEL)|| MAS2(EPN)
MMU(tlb_entry_id) = MAS0, MAS1, MAS2, MAS3, (and MAS7 on e500v2) 

Table 3-30. TLB Management Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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3.3.4 Book E Instructions with Implementation-Specific Features

Book E defines several instructions in a general way, leaving the details of the execution up to the 
implementation. These are listed in Table 3-31. This section describes how the e500 core complex 
implements those instructions. The implementation-specific TLB instructions (listed below) are 
described in more detail in Section 12.4, “TLB Instructions—Implementation.”

A list of user-level instructions defined by both the classic PowerPC architecture and Book E can 
be found in Section 3.10, “Instruction Listing.” 

3.3.5 e500 Instructions

The e500 core complex implements the new instructions listed in Table 3-32 (with cross 
references to more detailed descriptions) that extend the Book E instruction set in accordance with 
Book E. SPE and embedded floating-point APU instructions are listed in Table 3-36 and 
Table 3-37. 

Table 3-31. Implementation-Specific Instructions Summary

Name Mnemonic Syntax Category

TLB Invalidate Virtual Address Indexed tlbivax rA, rB These are described generally in Section 3.3.2.2.2, 
“Supervisor-Level TLB Management Instructions.” They are 
described in greater detail in Section 12.4, “TLB 
Instructions—Implementation.”

TLB Read Entry tlbre —

TLB Search Indexed tlbsx rA, rB

TLB Write Entry tlbwe —

Table 3-32. e500-Specific Instructions (Except SPE and SPFP Instructions)

Name Mnemonic Syntax Section #/Page

Branch Buffer Load Entry and Lock Set bblels — 3.9.1/3-63

Branch Buffer Entry Lock Reset bbelr —

Data Cache Block Lock Clear dcblc CT, rA, rB 3.8.4/3-61

Data Cache Block Touch and Lock Set dcbtls CT, rA, rB 

Data Cache Block Touch for Store and Lock Set dcbtstls CT, rA, rB

Instruction Cache Block Lock Clear icblc CT, rA, rB 

Instruction Cache Block Touch and Lock Set icbtls CT, rA, rB 

Integer Select isel rD, rA, rB, crB 3.8.2/3-60

Move from Performance Monitor Register mfpmr rD,PMRN 3.8.2/3-60

Move to Performance Monitor Register mtpmr PMRN,rS

Return from Machine Check Interrupt rfmci — 3.8.5/3-63
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3.3.6 Context Synchronization

Context synchronization is achieved by post- and presynchronizing instructions. An instruction is 
presynchronized by completing all instructions before dispatching the presynchronized 
instruction. Post-synchronizing is implemented by not dispatching any later instructions until the 
post-synchronized instruction is completely finished. 

3.4 Memory Access Alignment Support
The e500 core complex provides hardware support for misaligned memory accesses, but at the cost 
of performance degradation. For loads that hit in the cache, the LSU’s throughput degrades to one 
misaligned load every 3 cycles. Similarly, stores can be translated at a rate of one misaligned store 
every 3 cycles. Additionally, after translation, each misaligned store is treated as two distinct 
entries in the store queue, each requiring a cache access.

A word or half-word memory access requires multiple accesses if it crosses a double-word 
boundary but not if it crosses a natural boundary. Vector loads and stores cause alignment 
interrupts if they cross natural alignment boundaries (as shown in Table 3-33).

Frequent use of misaligned memory accesses can greatly degrade performance.

Any load word or load half word that crosses a double-word boundary is interruptible, and 
therefore can restart. If the first access has been performed when the interrupt occurs, it is 
performed again when the instruction is restarted, even if it is to a page marked as guarded. Any 
load word or load half word that crosses a translation boundary may take a translation exception 
on the second access. In this case, the first access may have already occurred.

 

Table 3-33. Natural Alignment Boundaries for Extended Vector Instructions

Instruction Boundary

evld{d,w,h}
evld{d,w,h}x
evstd{d,w,h}

evstd{d,w,h}x

Double word

evlwwsplat{x}
evlwhe{x}

evlwhou{x}
evlwhos{x}

evlwhsplat{x}
evstwwe{x}
evstwwo{x}
evstwhe{x}
evstwho{x}

Word

evlhhesplat{x}
evlhhousplat{x}
evlhhossplat{x}

Half word
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Accesses that cross a translation boundary where the endianness changes cause a byte-ordering 
data storage interrupt.

3.5 Using msync and mbar to Order Memory Accesses
This section gives examples of how dependencies and the msync and mbar instructions can be used to 
control memory access ordering when memory is shared between programs.

3.5.1 Lock Acquisition and Import Barriers
An import barrier is an instruction or sequence of instructions that prevents memory accesses caused by 
instructions following the barrier from being performed before memory accesses that acquire a lock have 
been performed. An import barrier can be used to ensure that a shared data structure protected by a lock is 
not accessed until the lock is acquired. An msync can always be used as an import barrier, but the 
approaches shown in this section generally yield better performance because they order only the relevant 
memory accesses.

3.5.1.1 Acquire Lock and Import Shared Memory
If lwarx and stwcx. instructions are used to obtain the lock, an import barrier can be constructed by placing 
an isync instruction immediately following the loop containing the lwarx and stwcx.. The following 
example uses the ‘Compare and Swap’ primitive to acquire the lock.

In this example it is assumed that the address of the lock is in GPR 3, the value indicating that the lock is 
free is in GPR 4, the value to which the lock should be set is in GPR 5, the old value of the lock is returned 
in GPR 6, and the address of the shared data structure is in GPR 9.

loop: lwarx r6,0,r3 # load lock and reserve
cmp cr0,0,r4,r6 # skip ahead if
bc 4,2,wait # lock not free
stwcx. r5,0,r3 # try to set lock
bc 4,2,loop # loop if lost reservation
isync # import barrier
lwz r7,data1(r9) # load shared data
.
.

wait: ... # wait for lock to free

The second bc does not complete until CR0 has been set by the stwcx.. The stwcx. does not set CR0 until 
it has completed (successfully or unsuccessfully). The lock is acquired when the stwcx. completes 
successfully. Together, the second bc and the subsequent isync create an import barrier that prevents the 
load from data1 from being performed until the branch has been resolved not to be taken.

3.5.1.2 Obtain Pointer and Import Shared Memory
If lwarx and stwcx. instructions are used to obtain a pointer into a shared data structure, an import barrier 
is not needed if all the accesses to the shared data structure depend on the value obtained for the pointer. 



PowerPC e500 Core Family Reference Manual, Rev. 1

3-46 Freescale Semiconductor

Instruction Model

The following example uses the ‘Fetch and Add’ primitive (see the section entitled ‘Synchronization 
Primitives’ in Section I) to obtain and increment the pointer.

In this example it is assumed that the address of the pointer is in GPR 3, the value to be added to the pointer 
is in GPR 4, and the old value of the pointer is returned in GPR 5.

loop: lwarx r5,0,r3 # load pointer and reserve
add r0,r4,r5 # increment the pointer
stwcx. r0,0,r3 # try to store new value
bc 4,2,loop # loop if lost reservation
lwz r7,data1(r5) # load shared data

The load from data1 cannot be performed until the pointer value has been loaded into GPR 5 by the lwarx. 
The load from data1 may be performed out-of-order before the stwcx.. But if the stwcx. fails, the branch 
is taken and the value returned by the load from data1 is discarded. If the stwcx. succeeds, the value 
returned by the load from data1 is valid even if the load is performed out-of-order, because the load uses 
the pointer value returned by the instance of the lwarx that created the reservation used by the successful 
stwcx..

An isync could be placed between the bne- and the subsequent lwz, but no isync is needed if all accesses 
to the shared data structure depend on the value returned by the lwarx.

3.5.1.3 Lock Release and Export Barriers
An export barrier is an instruction or sequence of instructions that prevents the store that releases a lock 
from being performed before stores caused by instructions preceding the barrier have been performed. An 
export barrier can be used to ensure that all stores to a shared data structure protected by a lock be 
performed with respect to any other processor (to the extent required by the associated memory coherence 
required attributes) before the store that releases the lock is performed with respect to that processor.

3.5.1.3.1 Export Shared Memory and Release Lock

An msync instruction can always be used as an export barrier, independent of the memory control 
attributes (for example, presence or absence of the caching inhibited attribute) of the memory containing 
the lock and the shared data structure. Unless both the lock and the shared data structure are in memory 
that is neither caching inhibited nor write-through required, an msync instruction must be used as the 
export barrier.

In this example it is assumed that the lock is in memory that is caching inhibited, the shared data structure 
is in memory that is not caching inhibited, the address of the lock is in GPR 3, the value indicating that the 
lock is free is in GPR 4, and the address of the shared data structure is in GPR 9.

stw r7,data1(r9) # store shared data (last)
msync # export barrier
stw r4,lock(r3) # release lock

The msync ensures that the store that releases the lock are not performed with respect to any other 
processor until all stores caused by instructions preceding the msync have been performed with respect to 
that processor.
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3.5.1.3.2 Export Shared Memory and Release Lock using mbar (MO = 0)

If both the lock and the shared data structure are in memory that is neither caching inhibited nor 
write-through required, an mbar (MO = 0) instruction can be used as the export barrier. Using mbar rather 
than msync yields better performance in most systems.

In this example it is assumed that both the lock and the shared data structure are in memory that is neither 
caching inhibited nor write-through required, the address of the lock is in GPR 3, the value indicating that 
the lock is free is in GPR 4, and the address of the shared data structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
mbar 0 #export barrier
stw r4,lock(r3) #release lock

The mbar (MO = 0) ensures that the store that releases the lock is not performed with respect to any other 
processor until all stores caused by instructions preceding the mbar have been performed with respect to 
that processor.

Recall that, for memory that is neither caching inhibited nor write-through required, mbar orders only 
stores and has no effect on loads. If the portion of the program preceding the mbar contains loads from 
the shared data structure and the stores to the shared data structure do not depend on the values returned 
by those loads, the store that releases the lock could be performed before those loads. If it is necessary to 
ensure that those loads are performed before the store that releases the lock, the programmer can either use 
the msync instruction as in Section 3.5.1.3.1, “Export Shared Memory and Release Lock,” or use the 
technique described in Section 3.5.2, “Safe Fetch.”

3.5.2 Safe Fetch
If a load must be performed before a subsequent store (for example, the store that releases a lock protecting 
a shared data structure), a technique similar to the following can be used.

In this example it is assumed that the address of the memory operand to be loaded is in GPR 3, the contents 
of the memory operand are returned in GPR 4, and the address of the memory operand to be stored is in 
GPR 5.

lwz r4,0(r3) #load shared data
cmp cr0,0,r4,r4 #set CR0 to ‘equal’
bc 4,2,$-8 #branch never taken
stw r7,0(r5) #store other shared data

Alternatively, a technique similar to that described in Section 3.5.1.2, “Obtain Pointer and Import Shared 
Memory,” can be used, by causing the stw to depend on the value returned by the lwz and omitting the 
cmp and bc. The dependency could be created by ANDing the value returned by the lwz with zero and 
then adding the result to the value to be stored by the stw.

3.6 Update Instructions 
Load-with-update and store-with-update instructions are described in Book E. Internally, the e500 
breaks these instructions into two sub-instructions. The update portion of the instruction is 
executed by one of the simple units, and the load portion is executed by the load/store unit. 
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Programmers should be aware that the simple unit used is busy for one cycle executing the update 
portion of the update instruction.

3.7 Memory Synchronization
The msync instruction provides a memory barrier throughout the memory hierarchy. It waits for 
preceding data memory accesses to reach the point of coherency (that is, visible to the entire 
memory hierarchy); then it is broadcast on the e500 core complex bus. Only after the address bus 
tenure of the msync is successful (that is, without being ARTRYed) is msync completed. No 
subsequent instructions in the stream are initiated until after msync completes. Note that msync 
uses the same opcode as the sync instruction. 

The msync instruction is described in Section 3.3.1.6, “Memory Synchronization Instructions.”

The e500 core complex implements two variations of the mbar instruction. The desired behavior 
is selected with the MO field (bits 6–10) of mbar, as follows:

• When MO = 0, mbar behaves as defined by the Book E architecture. 

• When MO = 1, the EIS defines mbar to function identically to the Classic PowerPC 
architecture definition of eieio.

• If MO is not 1, the e500 executes mbar as though MO = 0.

The e500 core complex implements lwarx and stwcx. as described in Book E. If the EA is not a 
multiple of four for either instruction, an alignment interrupt is invoked. If either instruction tries 
to access a page marked as write-through required, a DSI interrupt is invoked.

As specified in Book E, the e500 core complex requires that, for stwcx. to succeed, the EA of 
stwcx. must be to the same reservation granule as the EA of a preceding lwarx. Reservation 
granularity is implementation dependent. The e500 core complex makes reservations on behalf of 
aligned 32-byte sections of the memory address space. 

For the purposes of memory coherency, the reservation granule for lwarx and stwcx. is also a 
cache block. A reservation-killing snoop to any address within a cache block that contains the 
reservation causes the reservation to be invalidated.

The reservation is invalidated when an external interrupt is signaled.

3.8 EIS-Defined Instructions and APUs Implemented on 
the e500

Instructions that are specific to the e500 core are implemented as auxiliary processing units 
(APUs) and are described in the following sections.
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3.8.1 SPE and Embedded Floating-Point APUs

The e500 core complex provides a GPR file with 32, 64-bit registers. The 32-bit Book E 
instructions operate on the lower (least-significant) 32 bits of the 64-bit register. SPE APU vector 
instructions and embedded vector SPFP instructions treat 64-bit registers as containing two 32-bit 
elements or four 16-bit elements as described in Section 3.8.1.3, “SPE APU Instructions.” 
However, like 32-bit Book E instructions, scalar SPFP APU floating-point instructions use bits 
32–63 of the GPRs to hold 32-bit single-precision operands, as described in Section 3.8.1.4, 
“Embedded Floating-Point APU Instructions.”

The embedded double-precision floating-point APU (e500v2 only) uses the 64-bit GPRs to hold 
64-bit, double-precision operands. 

Figure 3-4 shows how the SPE and floating-point APU programming models compare, indicating 
how each APU uses the GPRs. 
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There is no record form of SPE or embedded floating-point instructions. Vector compare 
instructions store the result of the comparison into the CR. The meaning of the CR bits is now 
overloaded for vector operations. Vector compare instructions specify a CR field and two source 
registers as well as the type of compare: greater than, less than, or equal. Two bits in the CR field 

Register Model Instruction Model

User-Level Registers Supervisor-Level Registers Computation Load/Store

0 31 32 63 32 63 brinc 
evmra
evm…
evabs 
evadd…
evand…
evfsctuiz
evcntl…
evdiv…
evmerge…
evsub… 
logical, rotate, 
shift, extend, 
round, select, 
compare

evldh…
evldw…
evldd…
evl…splat…
evlwhos…
evlwh…
evstdd…
evstdh…
evstdw…
evstwh…

Int/Frac Int/Frac

General-purpose 
registers (GPRs)

MSR[SPE] Machine state 

Int/Frac Int/Frac
Interrupt Registers

Int/Frac Int/Frac
 spr 62 ESR[SPE] Exception syndrome

SPE APU
… …

Int/Frac Int/Frac Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point Original SPE 
APU 

SPE/floating-point
status/control 

spr 512 SPEFSCR 

Vector
Single-Precision

Floating-Point
APU

0 31 32 63 32 63 efvcf… 
efvct…
efvabs 
efvadd 
efvcmp… 
efvdiv 
efvmul
efvneg 
efvnabs
efvsub
efvtst…
From SPE: 
evmergehi 
evmergelo 

From SPE: 
evldd
evlddx
evstdd
evstddx

Single-prec. Single-prec.

General-purpose 
registers (GPRs)1

MSR[SPE] Machine state 

Single-prec. Single-prec.
Interrupt Registers

Single-prec. Single-prec.
 spr 62 ESR[SPE] Exception syndrome

… …

Single-prec. Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 

Scalar
Single-Precision

Floating-Point
APU

0 31 32 63 32 63 efscf… 
efsct…
efsabs 
efsadd 
efscmp… 
efsdiv 
efsmul
efsneg 
efsnabs
efssub
efstst…

Uses 
PowerPC 
UISA 32-bit 
loads and 
stores

Single-prec.

General-purpose 
registers (GPRs) 1

MSR[SPE] Machine state 
(e500v1 only)

Single-prec.
Interrupt Registers

Single-prec.
 spr 62 ESR[SPE] Exception syndrome

…

Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 

Scalar
Double-Precision

Floating-Point
APU

(e500v2 only)

0 31 32 63 32 63 efdcf… 
efdct…
efdabs 
efdadd 
efdcmp… 
efddiv 
efdmul
efdneg 
efdnabs
efdsub
efdtst…
From SPE: 
evmergehi 
evmergelo 

From SPE:
evldd
evlddx
evstdd
evstddx

Double-precision

General-purpose 
registers (GPRs) 1

MSR[SPE] Machine state 

Double-precision
Interrupt Registers

Double-precision
 spr 62 ESR[SPE] Exception syndrome

…

Double-precision Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 

Note:  Gray text indicates that APU does not use this register or register field. 
1 Formatting of floating-point operands is as defined by IEEE 754, as described in the APU chapter of the EREF. 

Figure 3-4. SPE and Floating-Point APU GPR Usage
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are written with the result of the vector compare, one for each element. The two defined bits could 
be used either by a vector select instruction or by a UISA branch instruction. 

A partially visible accumulator register is architected for the integer and fractional multiply 
accumulate SPE instructions. It is described in Section 2.14.2, “Accumulator (ACC).”

Full descriptions of these instructions can be found in the “Instruction Set” chapter of the EREF. 

3.8.1.1 SPE Operands: Signed Fractions

In signed fractional format, the N-bit operand is represented in a 1.[N–1] format (1 sign bit, N–1 
fraction bits). Signed fractional numbers are in the following range: 

The real value of the binary operand SF[0:N–1] is as follows:

The most negative and positive numbers representable in fractional format are as follows:

• The most negative number is represented by SF(0) = 1 and SF[1:N–1] = 0 (that is, N=32; 
0x8000_0000 = –1.0).

• The most positive number is represented by SF(0) = 0 and SF[1:N–1] = all 1s (that is, N=32; 
0x7FFF_FFFF = 1.0 – 2–(N–1)).

1.0 SF 1.0 2
N 1–( )–

–≤ ≤–

SF 1.0 SF 0( )•–= SF i( ) 2
i–•

i 1=

N 1–

∑+
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3.8.1.2 SPE Integer and Fractional Operations

Figure 3-5 shows data formats for signed integer and fractional multiplication. Note that low word 
versions of signed saturate and signed modulo fractional instructions are not supported. 
Attempting to execute an opcode corresponding to these instructions causes boundedly undefined 
results.

Figure 3-5. Integer and Fractional Operations

3.8.1.3 SPE APU Instructions

SPE APU instructions treat 64-bit GPRs as being composed of a vector of two 32-bit elements. 
(Some instructions also read or write 16-bit elements.) The SPE APU supports a number of forms 
of multiply and multiply-accumulate operations, and of add and subtract to accumulator 
operations. The SPE supports signed and unsigned forms, and optional fractional forms. For these 
instructions, the fractional form does not apply to unsigned forms because integer and fractional 
forms are identical for unsigned operands. 

Table 3-34 shows how SPE APU vector multiply instruction mnemonics are structured.

Table 3-34. SPE APU Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho 
he 

hog
heg
wh 
wl 

whg
wlg
w 

half odd (16x16→32)
half even (16x16→32)
half odd guarded (16x16→32)
half even guarded (16x16→32)
word high (32x32→32)
word low (32x32→32)
word high guarded (32x32→32)
word low guarded (32x32→32)
word (32x32→64)

usi
umi
ssi
ssf1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute 
an opcode corresponding to these instructions causes boundedly undefined results. 

unsigned saturate integer
unsigned modulo integer
signed saturate integer
signed saturate fractional
signed modulo integer
signed modulo fractional

a
aa
an

aaw
anw

write to ACC
write to ACC & added ACC
write to ACC & negate ACC
write to ACC & ACC in words
write to ACC & negate ACC in words

S S

×

S S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Sign Extension

S S

×

0S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Zero fill

Integer Fractional
Signed Multiplication N × N → 2N – 1 Bits
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Table 3-35 defines mnemonic extensions for these instructions.
 

Table 3-36 lists SPE APU instructions.

Table 3-35. Mnemonic Extensions for Multiply-Accumulate Instructions

Extension Meaning Comments

Multiply Form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Data Type

smf Signed modulo fractional (Wrap, no saturate)

smi Signed modulo integer (Wrap, no saturate)

ssf Signed saturate fractional

ssi Signed saturate integer

umi Unsigned modulo integer (Wrap, no saturate)

usi Unsigned saturate integer

Accumulate Options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw Add negated to accumulator (words) Add negated word results to accumulator words (pair of 32-bit sums)

Table 3-36. SPE APU Vector Instructions

Instruction Mnemonic Syntax

Bit Reversed Increment brinc rD,rA,rB

Initialize Accumulator evmra rD,rA

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate evmhegsmfaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhegsmfan rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhegsmian rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate evmhegumiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhegumian rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate evmhogsmfaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative evmhogsmfan rD,rA,rB
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Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative evmhogsmian rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate evmhogumiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative evmhogumian rD,rA,rB

Vector Absolute Value evabs rD,rA

Vector Add Immediate Word evaddiw rD,rB,UIMM

Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA,rB

Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA

Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA

Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA

Vector Add Word evaddw rD,rA,rB

Vector AND evand rD,rA,rB

Vector AND with Complement evandc rD,rA,rB

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Convert Floating-Point to Unsigned Integer with Round toward Zero evfsctuiz rD,rB

Vector Count Leading Sign Bits Word evcntlsw rD,rA

Vector Count Leading Zeros Word evcntlzw rD,rA

Vector Divide Word Signed evdivws rD,rA,rB

Vector Divide Word Unsigned evdivwu rD,rA,rB

Vector Equivalent eveqv rD,rA,rB

Vector Extend Sign Byte evextsb rD,rA

Vector Extend Sign Half Word evextsh rD,rA

Vector Load Double into Half Words evldh rD,d(rA)

Vector Load Double into Half Words Indexed evldhx rD,rA,rB

Vector Load Double into Two Words evldw rD,d(rA)

Vector Load Double into Two Words Indexed evldwx rD,rA,rB

Vector Load Double Word into Double Word 1 evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed 1 evlddx rD,rA,rB

Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)

Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx rD,rA,rB

Vector Load Half Word into Half Word Odd Unsigned and Splat evlhhousplat rD,d(rA)

Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evlhhousplatx rD,rA,rB

Vector Load Half Word into Half Words Even and Splat evlhhesplat rD,d(rA)

Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB

Table 3-36. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax
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Vector Load Word into Half Words and Splat evlwhsplat rD,d(rA)

Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB

Vector Load Word into Half Words Odd Signed (with sign extension) evlwhos rD,d(rA)

Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB

Vector Load Word into Two Half Words Even evlwhe rD,d(rA)

Vector Load Word into Two Half Words Even Indexed evlwhex rD,rA,rB

Vector Load Word into Two Half Words Odd Unsigned (zero-extended) evlwhou rD,d(rA)

Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) evlwhoux rD,rA,rB

Vector Load Word into Word and Splat evlwwsplat rD,d(rA)

Vector Load Word into Word and Splat Indexed evlwwsplatx rD,rA,rB

Vector Merge High 1 evmergehi rD,rA,rB

Vector Merge High/Low evmergehilo rD,rA,rB

Vector Merge Low 1 evmergelo rD,rA,rB

Vector Merge Low/High evmergelohi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words evmhesmfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into 
Words 

evmhesmfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words evmhesmiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words evmhesmianw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words evmhessfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into 
Words 

evmhessfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words evmhessiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into 
Words 

evmhessianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words evmheumiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into 
Words 

evmheumianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words evmheusiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into 
Words 

evmheusianw rD,rA,rB

Table 3-36. SPE APU Vector Instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words evmhosmfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into 
Words 

evmhosmfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words evmhosmiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words evmhosmianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words evmhossfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into 
Words 

evmhossfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words evmhossiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words evmhossianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words evmhoumiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into 
Words 

evmhoumianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words evmhousiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into 
Words 

evmhousianw rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlsmiaaw rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words evmwlsmianw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words evmwlssianw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer evmwlumi rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw rD,rA,rB

Table 3-36. SPE APU Vector Instructions (continued)
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Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words evmwlumianw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words evmwlusiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words evmwlusianw rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional evmwssf2 rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa 2 rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate 3 evmwssfaa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative 3 evmwssfan rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB

Vector NAND evnand rD,rA,rB

Vector Negate evneg rD,rA

Vector NOR evnor rD,rA,rB

Vector OR evor rD,rA,rB

Vector OR with Complement evorc rD,rA,rB

Vector Rotate Left Word evrlw rD,rA,rB

Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM

Vector Round Word evrndw rD,rA

Vector Select evsel rD,rA,rB,crS

Vector Shift Left Word evslw rD,rA,rB

Vector Shift Left Word Immediate evslwi rD,rA,UIMM

Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM

Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM

Vector Shift Right Word Signed evsrws rD,rA,rB

Vector Shift Right Word Unsigned evsrwu rD,rA,rB

Vector Splat Fractional Immediate evsplatfi rD,SIMM

Vector Splat Immediate evsplati rD,SIMM

Vector Store Double of Double 1 evstdd rS,d(rA)

Vector Store Double of Double Indexed 1 evstddx rS,rA,rB

Table 3-36. SPE APU Vector Instructions (continued)
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3.8.1.4 Embedded Floating-Point APU Instructions

The vector and scalar SPFP APUs perform floating-point operations on single-precision operands. 
These operations are IEEE 754–compliant with software exception handlers and offer a simpler 
exception model than the floating-point instructions defined by the PowerPC ISA. Instead of 
FPRs, these instructions use GPRs to offer improved performance for converting between 
floating-point, integer, and fractional values. Sharing GPRs allows vector floating-point 
instructions to use SPE load and store instructions. 

Vector Store Double of Four Half Words evstdh rS,d(rA)

Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB

Vector Store Double of Two Words evstdw rS,d(rA)

Vector Store Double of Two Words Indexed evstdwx rS,rA,rB

Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)

Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB

Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)

Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB

Vector Store Word of Word from Even evstwwe rS,d(rA)

Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB

Vector Store Word of Word from Odd evstwwo rS,d(rA)

Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB

Vector Subtract from Word evsubfw rD,rA,rB

Vector Subtract Immediate from Word evsubifw rD,UIMM,rB

Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA

Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA

Vector XOR evxor rD,rA,rB

1 These instructions are also used by the vector and double-precision scalar floating-point APUs. 
2 The architecture specifies that if the final result cannot be represented in 64 bits, SPEFSCR[OV] should be set (along with the 

SOV bit, if it is not already set). The e500 violates the architectural specification for these instructions because it sets the 
overflow bit in cases where there is no overflow.

3 Although the e500 records any overflow resulting from the addition/subtraction portion of these instructions, a saturate value 
is not saved to rD or the accumulator. The architecture specifies that the intermediate result should be saturated if it cannot 
be represented in 64 bits. The also architecture specifies that the final result should be saturated if it cannot be represented 
in 64 bits. The e500 does not saturate in either case.

Table 3-36. SPE APU Vector Instructions (continued)
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The embedded floating-point APUs are described as follows:

• Vector SPFP instructions operate on a vector of two 32-bit, single-precision floating-point 
numbers that reside in the upper and lower halves of the 64-bit GPRs. 

• Scalar SPFP instructions operate on single 32-bit operands that reside in the lower 32-bits 
of the GPRs. 

• Scalar DPFP instructions (e500v2 only) operate on single 64-bit operands that reside in the 
64-bit GPRs. Full descriptions of these instructions is provided in Section 10.4, 
“Double-Precision Floating-Point APU (e500 v2 Only).”

These instructions are listed in Table 3-37.

NOTE
Vector and scalar versions of the instructions have the same syntax. 

Table 3-37. Vector and Scalar Floating-Point APU Instructions

Instruction
Single-Precision

Scalar
Double-Precision
Scalar (e500v2)

Vector Syntax

Convert Floating-Point Double- from Single-Precision — efdcfs — rD,rB 

Convert Floating-Point from Signed Fraction efscfsf efdcfsf evfscfsf rD,rB 

Convert Floating-Point from Signed Integer efscfsi efdcfsi evfscfsi rD,rB 

Convert Floating-Point from Unsigned Fraction efscfuf efdcfuf evfscfuf rD,rB 

Convert Floating-Point from Unsigned Integer efscfui efdcfui evfscfui rD,rB 

Convert Floating-Point Single- from Double-Precision — efscfd — rD,rB 

Convert Floating-Point to Signed Fraction efsctsf efdctsf evfsctsf rD,rB 

Convert Floating-Point to Signed Integer efsctsi efdctsi evfsctsi rD,rB 

Convert Floating-Point to Signed Integer with Round toward 
Zero 

efsctsiz efdctsiz evfsctsiz rD,rB 

Convert Floating-Point to Unsigned Fraction efsctuf efdctuf evfsctuf rD,rB 

Convert Floating-Point to Unsigned Integer efsctui efdctui evfsctui rD,rB 

Convert Floating-Point to Unsigned Integer with Round 
toward Zero 

efsctuiz efdctuiz evfsctuiz rD,rB 

Floating-Point Absolute Value efsabs 1 efdabs evfsabs rD,rA

Floating-Point Add efsadd efdadd evfsadd rD,rA,rB 

Floating-Point Compare Equal efscmpeq efdcmpeq evfscmpeq crD,rA,rB 

Floating-Point Compare Greater Than efscmpgt efdcmpgt evfscmpgt crD,rA,rB 

Floating-Point Compare Less Than efscmplt efdcmplt evfscmplt crD,rA,rB 

Floating-Point Divide efsdiv efddiv evfsdiv rD,rA,rB 

Floating-Point Multiply efsmul efdmul evfsmul rD,rA,rB 

Floating-Point Negate efsneg 1 efdneg evfsneg rD,rA

Floating-Point Negative Absolute Value efsnabs 1 efdnabs evfsnabs rD,rA

Floating-Point Subtract efssub efdsub evfssub  rD,rA,rB 
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3.8.2 Integer Select (isel) APU

The integer select APU consists of the isel instruction, a conditional register move that helps 
eliminate branches. Further information about isel may be found in the APUs chapter of the EREF.

3.8.3 Performance Monitor APU

The e500 core complex implements a performance monitor as an APU. Software communication 
with the performance monitor APU is achieved through performance monitor registers (PMRs) 
rather than SPRs. New instructions are provided to move to and from these PMRs. Performance 
monitor APU instructions are described in Table 3-39. Full descriptions of these instructions can 
be found in the EREF chapter, “Instruction Set.” 

Floating-Point Test Equal efststeq efdtsteq evfststeq crD,rA,rB 

Floating-Point Test Greater Than efststgt efdtstgt evfststgt crD,rA,rB 

Floating-Point Test Less Than efststlt efdtstlt evfststlt crD,rA,rB 

SPE Double Word Load/Store Instructions

Vector Load Double Word into Double Word — evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed — evlddx rD,rA,rB

Vector Merge High — evmergehi rD,rA,rB

Vector Merge Low — evmergelo rD,rA,rB

Vector Store Double of Double — evstdd rS,d(rA)

Vector Store Double of Double Indexed — evstddx rS,rA,rB

Note:  on e500v1, floating-point operations that produce a result of zero may generate an incorrect sign. 

1 Exception detection for these instructions is implementation dependent. On the e500, Infinities, NaNs, and Denorms are 
always be treated as Norms. No exceptions are taken if SPEFSCR[FINVE] = 1.

Table 3-38. Integer Select APU Instruction

Name Mnemonic Syntax

Integer Select isel rD,rA,rB,crB

Table 3-39. Performance Monitor APU Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS

Table 3-37. Vector and Scalar Floating-Point APU Instructions (continued)

Instruction
Single-Precision

Scalar
Double-Precision
Scalar (e500v2)

Vector Syntax
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PMR encodings are shown in Table 3-40.

3.8.4 Cache Locking APU

This section describes the instructions in the cache locking APU, which consists of the instructions 
described in Table 3-41. 

Table 3-40. e500-Defined PMR Encodings  

Register Name 
PMR

Privilege Access
Decimal pmr[5–9] pmr[0–4]

UMMCR0 936 11101 01000 User Read only

UMMCR1 940 11101 01100 User Read only

UMMCR2 928 11101 00111 User Read only

UPMC1 937 11101 01001 User Read only

UPMC2 938 11101 01010 User Read only

UPMC3 941 11101 01101 User Read only

UPMC4 942 11101 01110 User Read only

USIAR 939 11101 01011 User Read only

Table 3-41. Cache Locking APU Instructions

Name
Mnemoni

c
Syntax Implementation Details

Data Cache 
Block Lock 
Clear

dcblc CT,rA,rB If CT=0 and the line is in the L1 data cache, the data cache lock bit for that line is cleared, 
making it eligible for replacement. If CT=1 and the line is in the L2 cache, the lock bit for 
that line is cleared, making it eligible for replacement.

Data Cache 
Block Touch 
and Lock Set

dcbtls CT,rA,rB If CT=0, the line is loaded and locked into the L1 data cache. If CT=1, the line is loaded 
and locked in the unified L2 cache. If CT=1 and the block is already in the L2 cache, dcbtls 
marks the block so it is not a candidate for replacement. 

Data Cache 
Block Touch 
for Store and 
Lock Set

dcbtstls CT,rA,rB If CT = 0, the e500 core fetches the block containing the byte addressed by EA into the 
data cache. After the block containing the byte is fetched, it is locked. If CT = 0 and the 
block is in the data cache, dcbtstls marks the block locked so it is no longer eligible for 
replacement.
If CT=1 and the block is in the L2 cache, dcbtstls marks the block such that it should not 
be selected for replacement.
If CT is not 0 or 1, dcbtstls is no-oped. In the L1 data cache, the e500 implements a lock 
bit for every index and way, allowing a line locking granularity.

Instruction 
Cache Block 
Lock Clear

icblc CT,rA,rB If CT=0 and the line is in the instruction cache, the lock bit for that line is cleared, making 
it eligible for replacement. 
If CT=1 and the line is in the L2 cache, the lock bit for that line is cleared in the L2 cache, 
making it eligible for replacement.
If CT is not 0 or 1, the icblc is no-oped.

Instruction 
Cache Block 
Touch and 
Lock Set

icbtls CT,rA,rB If CT=0, the line is loaded and locked into the L1 instruction cache. If CT=1, the line is 
loaded into the unified L2 cache and the line is locked into the L2 cache.
If CT=1 and the block already exists in the L2 cache, icbtls marks it such that it should not 
be selected for replacement.
If CT is not 0 or 1, icbtls is no-oped.
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Full descriptions of these instructions can be found in the EREF chapter, “Instruction Set.” Note 
the following:

• In the L1 data cache the e500 implements a lock bit for every index and way, allowing a 
line locking granularity. Setting CT = 0 specifies the L1 cache.

• The e500 supports CT = 0 and CT = 1. If CT = 0, the L1 cache is targeted. If CT = 1, the 
unified L2 cache is targeted. 

• If the CT value is not supported, the instruction is treated as a no-op.

• Note that setting L1CSR0[DCLFI] flash invalidates all data cache lock bits and setting 
L1CSR0[ICLFI] flash invalidates all instruction cache lock bits, allowing system software 
to clear all cache locking in the L1 cache without knowing the addresses of the lines locked.

• Overlocking occurs when dcbtls, dcbtstls, or icbtls is performed to an index in either the 
L1 or L2 cache that already has all ways locked. In the e500, overlocking does not generate 
an exception; instead, if a touch and lock set is performed with CT = 0 to an index in which 
all cache ways are already locked, the least recently used way is evicted and L1CSR0[CLO] 
is set indicating an overlock; the new line is not locked or cached.

To precisely detect an overlock condition in the data cache, system software must perform 
the following code sequence:

dcbtls
msync
mfspr (L1CSR0)
(check L1CSR0[CUL] for data cache index unable-to-lock condition)
(check L1CSR0[CLO] for data cache index overlock condition)

The following code sequence is used to precisely detect an overlock in the instruction 
cache:

icbtls
msync
mfspr (L1CSR1)
check L1CSR1[ICUL] for instruction cache index unable-to-lock condition
check L1CSR1[ICLO] for instruction cache index overlock condition

• Touch and lock set instructions (icbtls, dcbtls, and dcbtstls) are always executed and are 
not treated as hints. When one of these instructions is performed to an index and the way 
cannot be locked, L1CSR1[ICUL] or L1CSR0[CUL] is set to indicate an unable-to-lock 
condition. This occurs if the instruction must be no-oped.

The e500 implements a flash clear for all data cache lock bits (using L1CSR0[CLFR]) and in the 
instruction cache (using L1CSR1[ICLFR]). This allows system software to clear all data cache 
locking bits without knowing the addresses of the lines locked.
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3.8.5 Machine Check APU 

The machine check APU defines a separate interrupt type for machine check interrupts. It provides 
additional save and restore SPRs (MCSRR and MCSRR1). The Return from Machine Check 
Interrupt instruction (rfmci), is described in Table 3-42.

3.9 e500-Specific Instructions
The e500 implements the branch target buffer locking APU, which is not part of the EIS. It defines 
the two instructions described in the following section.

3.9.1 Branch Target Buffer (BTB) Locking Instructions

The e500 core complex provides a 512-entry BTB for efficient processing of branch instructions. 
The BTB is a branch target address cache (BTAC), organized as 128 rows with four-way set 
associativity, that holds the address of the target instruction of the 512 most-recently taken 
branches. Table 3-43 lists the BTB instructions.

The branch buffer entry address register (BBEAR) and the branch buffer target address register 
(BBTAR) are defined in the e500 core complex for enabling the locking and unlocking of BTB 
entries. They can be read and written in both user and supervisor modes with mfspr and mtspr. 
The user branch locking enable bit, MSR[UBLE], is defined to allow user mode programs to lock 
or unlock entries in the BTB. See Chapter 4, “Execution Timing.”

Table 3-42. Machine Check APU Instruction

Name Mnemonic Syntax Implementation Notes

Return from 
Machine Check 
Interrupt

rfmci — When rfmci is executed, the values in MCSRR0 and MCSRR1 are restored. rfmci 
is context-synchronizing; it works its way to the final execute stage, updates 
architected registers, and redirects instruction flow. 

Table 3-43. Branch Target Buffer (BTB) Instructions

Name Mnemonic Syntax

Branch Buffer Entry Lock Reset bbelr —

Branch Buffer Load Entry and Lock Set bblels —
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bbelr bbelr 
Branch Buffer Entry Lock Reset

bbelr

bbea ← BBEAR0:29
BranchBufferEntryLockReset(bbea)

A BTB entry associated with the effective address specified in BBEAR has its lock reset. If no 
BTB entry is associated with the address, or if the entry exists but it is not locked, the instruction 
is a no-op and no other status is reported. After bbelr executes, the entry continues to be valid in 
the BTB with all its attributes unchanged.

This instruction can always be executed in supervisor mode. In user mode, if MSR[UBLE] is 
cleared, a privileged instruction exception is taken; if MSR[UBLE] is set, the instruction executes 
without a privileged instruction exception.

0 5 6 20 21 31

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0

BTB APU User
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bblels bblels
Branch Buffer Load Entry and Lock Set

bblels

bbea ← BBEAR0:29
bbta ← BBTAR0:29
bbiab ← BBEAR30:31, BBTAR30
bbdir ← BBTAR31
BranchBufferLoadEntryAndLockSet(bbea, bbta)

An effective address associated with a branch instruction and the corresponding branch target 
address are loaded into a BTB entry and locked. It is marked with the prediction that the user 
supplies in BBTAR[31]. 1 is taken, 0 is not taken. 

If the BTB is disabled, the instruction is a no-op and BUCSR[BBUL] is set. If there already exists 
another entry in the BTB associated with the address in the BBEAR and that entry is not locked, 
the target address of that entry is overwritten and the entry is then locked. If there already exists a 
locked entry in the BTB associated with the address in the BBEAR, the target address of that entry 
is overwritten with the target address in the BBTAR and BUCSR[BBLO] is set. If all the ways of 
the BTB are locked for the index to which the BBEAR maps, one of the existing entries is 
overwritten with the new one and BUCSR[BBLO] is set.

The user can pick the direction of the locked branch target address by programming bit 31 of 
BBTAR (BBTAR[BDIR]). If BDIR = 1, the locked address is always predicted as taken; if BDIR 
= 0, the locked address is always predicted as not taken.

The bbiab is a 3-bit pointer (BBEAR[IAB0,IAB1]|BBTAR[IAB2]) to the instruction after the 
branch. It has values from 0 to 7, based on the location in the cache block of the instruction 
following the branch.

This instruction can always be executed in supervisor mode. In user mode, if MSR[UBLE] is 
cleared, a privileged instruction exception is taken; if MSR[UBLE] is set, the instruction executes 
without a privileged instruction exception.

0 5 6 20 21 31

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

BTB APU User
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3.10 Instruction Listing
Table 3-44 lists instructions defined in Book E, in the PowerPC architecture, and in the e500. A 
check mark (√) or text in a column indicates that the instruction is defined or implemented. The 
e500-specific instructions are indicated in the e500 column by the name of the facility (BTB 
locking, SPE APU, cache locking) that defines the instruction. 

Table 3-44. List of Instructions

Mnemonic Book E PowerPC AIM e500 Mnemonic Book E PowerPC AIM e500

addc[o][.] √ √ √ evmwsmiaa SPE APU

adde[o][.] √ √ √ evmwsmian SPE APU

addi √ √ √ evmwssf SPE APU

addic[.] √ √ √ evmwssfa SPE APU

addis √ √ √ evmwssfaa SPE APU

addme[o][.] √ √ √ evmwssfan SPE APU

add[o].] √ √ √ evmwumi SPE APU

addze[o][.] √ √ √ evmwumia SPE APU

andc[.] √ √ √ evmwumiaa SPE APU

andi. √ √ √ evmwumian SPE APU

andis. √ √ √ evnand SPE APU

and[.] √ √ √ evneg SPE APU

b √ √ √ evnor SPE APU

ba √ √ √ evor SPE APU

bbelr BTB evorc SPE APU

bblels BTB evrlw SPE APU

bc √ √ √ evrlwi SPE APU

bca √ √ √ evrndw SPE APU

bcctr √ √ √ evsel SPE APU

bcctrl √ √ √ evslw SPE APU

bcl √ √ √ evslwi SPE APU

bcla √ √ √ evsplatfi SPE APU

bclr √ √ √ evsplati SPE APU

bclrl √ √ √ evsrwis SPE APU

bl √ √ √ evsrwiu SPE APU

bla √ √ √ evsrws SPE APU

brinc SPE APU evsrwu SPE APU

cmp √ √ √ evstdd SPE APU

cmpi √ √ √ evstddx SPE APU

cmpl √ √ √ evstdh SPE APU

cmpli √ √ √ evstdhx SPE APU

cntlzw[.] √ √ √ evstdw SPE APU

crand √ √ √ evstdwx SPE APU
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crandc √ √ √ evstwhe SPE APU

creqv √ √ √ evstwhex SPE APU

crnand √ √ √ evstwho SPE APU

crnor √ √ √ evstwhox SPE APU

cror √ √ √ evstwwex SPE APU

crorc √ √ √ evstwwex SPE APU

crxor √ √ √ evstwwo SPE APU

dcba √ √ √ evstwwox SPE APU

dcbf √ √ √ evsubfsmiaaw SPE APU

dcbi √ √ √ evsubfssiaaw SPE APU

dcblc Cache locking evsubfumiaaw SPE APU

dcbst √ √ √ evsubfusiaaw SPE APU

dcbt √ √ √ evsubfw SPE APU

dcbtls Cache locking evsubifw SPE APU

dcbtst √ √ √ evxor SPE APU

dcbtstls Cache locking extsb[.] √ √ √

dcbz √ √ √ extsh[.] √ √ √

divw[o][.] √ √ √ extsw. 64-bit only

divwu[o][.] √ √ √ fabs[.] √ √

eciwx √ fadds[.] √ √

ecowx √ fadd[.] √ √

efdabs DPFP (e500v2) fcfid[.] √ √

efdadd DPFP (e500v2) fcmpo √ √

efdcfs DPFP (e500v2)

efdcfsf DPFP (e500v2) fcmpu √ √

efdcfsi DPFP (e500v2) fctidz[.] √ √

efdcfuf DPFP (e500v2) fctid[.] √ √

efdcfui DPFP (e500v2) fctiwz[.] √ √

efdcmpeq DPFP (e500v2) fctiw[.] √ √

efdcmpgt DPFP (e500v2) fdivs[.] √ √

efdcmplt DPFP (e500v2) fdiv[.] √ √

efdctsf DPFP (e500v2) fmadds[.] √ √

efdctsi DPFP (e500v2) fmadd[.] √ √

efdctsiz DPFP (e500v2) fmr[.] √ √

efdctuf DPFP (e500v2) fmsubs[.] √ √

efdctui DPFP (e500v2) fmsub[.] √ √

efdctuiz DPFP (e500v2) fmuls[.] √ √

efddiv DPFP (e500v2) fmul[.] √ √

efdmul DPFP (e500v2) fnabs[.] √ √

Table 3-44. List of Instructions (continued)
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efdnabs DPFP (e500v2) fneg[.] √ √

efdneg DPFP (e500v2) fnmadds[.] √ √

efdsub DPFP (e500v2) fnmadd[.] √ √

efdtsteq DPFP (e500v2) fnmsubs[.] √ √

efdtstgt DPFP (e500v2) fnmsub[.] √ √

efdtstlt DPFP (e500v2) fres[.] √ √

efsabs Scalar SPFP frsp[.] √ √

efsadd Scalar SPFP frsqrte[.] √ √

efscfd DPFP (e500v2) fsel[.] √ √

efscfsf Scalar SPFP fsqrts[.] √ √

efscfsi Scalar SPFP fsqrt[.] √ √

efscfuf Scalar SPFP fsubs[.] √ √

efscfui Scalar SPFP fsub[.] √ √

efscmpeq Scalar SPFP icbi √ √ √

efscmpgt Scalar SPFP icblc Cache locking

efscmplt Scalar SPFP icbt √ √

efsctsf Scalar SPFP icbtls Cache locking

efsctsi Scalar SPFP isel Integer select

efsctsiz Scalar SPFP isync √ √ √

efsctuf Scalar SPFP lbz √ √ √

efsctui Scalar SPFP lbzu √ √ √

efsctuiz Scalar SPFP lbzux √ √ √

efsdiv Scalar SPFP lbzx √ √ √

efsmul Scalar SPFP ld √

efsnabs Scalar SPFP ldarx √

efsneg Scalar SPFP ldu √

efssub Scalar SPFP ldux √

efststeq Scalar SPFP ldx √

efststgt Scalar SPFP lfd √ √

efststlt Scalar SPFP lfdu √ √

eieio Replaced
with mbar

√ lfdux √ √

eqv[.] √ √ √ lfdx √ √

evabs SPE APU lfs √ √

evaddiw SPE APU lfsu √ √

evaddsmiaaw SPE APU lfsux √ √

evaddssiaaw SPE APU lfsx √ √

evaddumiaaw SPE APU lha √ √ √

evaddusiaaw SPE APU lhau √ √ √

Table 3-44. List of Instructions (continued)

Mnemonic Book E PowerPC AIM e500 Mnemonic Book E PowerPC AIM e500



Instruction Model

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 3-69

evaddw SPE APU lhaux √ √ √

evand SPE APU lhax √ √ √

evandc SPE APU lhbrx √ √ √

evcmpeq SPE APU lhz √ √ √

evcmpgts SPE APU lhzu √ √ √

evcmpgtu SPE APU lhzux √ √ √

evcmplts SPE APU lhzx √ √ √

evcmpltu SPE APU lmw √ √ √

evcntlsw SPE APU lswi √ √

evcntlzw SPE APU lswx √ √

evdivws SPE APU lwa √

evdivwu SPE APU lwarx √ √ √

eveqv SPE APU lwaux √

evextsb SPE APU lwax √

evextsh SPE APU lwbrx √ √ √

evfsabs Vector SPFP lwz √ √ √

evfsadd Vector SPFP lwzu √ √ √

evfscfsf Vector SPFP lwzux √ √ √

evfscfsi Vector SPFP lwzx √ √ √

evfscfuf Vector SPFP mbar √ √

evfscfui Vector SPFP mcrf √ √ √

evfscmpeq Vector SPFP mcrfs √ √

evfscmpgt Vector SPFP mcrxr √ √ √

evfscmplt Vector SPFP mfapidi √

evfsctsf Vector SPFP mfcr √ √ √

evfsctsi Vector SPFP mfdcr √

evfsctsiz Vector SPFP mffs[.] √ √

evfsctuf Vector SPFP mfmsr √ √ √

evfsctui Vector SPFP mfpmr Performance
monitor

evfsctuiz Vector SPFP mfspr √ √ √

evfsdiv Vector SPFP mfsr √

evfsmul Vector SPFP mfsrin √

evfsnabs Vector SPFP mftb √

evfsneg Vector SPFP msync √ √

evfssub Vector SPFP mtcrf √ √ √

evfststeq Vector SPFP mtdcr √

evfststgt Vector SPFP mtfsb0[.] √ √

evfststlt Vector SPFP mtfsb1[.] √ √

Table 3-44. List of Instructions (continued)
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evldd SPE APU mtfsfi[.] √ √

evlddx SPE APU mtfsf[.] √ √

evldh SPE APU mtmsr √ √ √

evldhx SPE APU mtmsrd 64-bit only

evldw SPE APU mtpmr Performance 
monitor

evldwx SPE APU mtspr √ √ √

evlhhesplat SPE APU mtsr √

evlhhesplatx SPE APU mtsrd √

evlhhossplat SPE APU mtsrdin √

evlhhossplatx SPE APU mtsrin √

evlhhousplat SPE APU mulhd. √

evlhhousplatx SPE APU mulhdu. √

evlwhe SPE APU mulhwu[.] √ √ √

evlwhex SPE APU mulhw[.] √ √ √

evlwhos SPE APU mulld. √

evlwhosx SPE APU mulldo. √

evlwhou SPE APU mulli √ √ √

evlwhoux SPE APU mullw[o][.] √ √ √

evlwhsplat SPE APU nand[.] √ √ √

evlwhsplatx SPE APU neg[o][.] √ √ √

evlwwsplat SPE APU nor[.] √ √ √

evlwwsplatx SPE APU orc[.] √ √ √

evmergehi SPE APU ori √ √ √

evmergehilo SPE APU oris √ √ √

evmergelo SPE APU or[.] √ √ √

evmergelohi SPE APU rfci √ √

evmhegsmfaa SPE APU rfi √ √ √

evmhegsmfan SPE APU rfid √

evmhegsmiaa SPE APU rfmci Machine check

evmhegsmian SPE APU rldcl. √

evmhegumiaa SPE APU rldcr. √

evmhegumian SPE APU rldic. √

evmhesmf SPE APU rldicl. √

evmhesmfa SPE APU rldicr. √

evmhesmfaaw SPE APU rldimi. √

evmhesmfanw SPE APU rlwimi[.] √ √ √

evmhesmi SPE APU rlwinm[.] √ √ √

evmhesmia SPE APU rlwnm[.] √ √ √

Table 3-44. List of Instructions (continued)
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evmhesmiaaw SPE APU sc √ √ √

evmhesmianw SPE APU slbia √

evmhessf SPE APU slbie √

evmhessfa SPE APU sldi √

evmhessfaaw SPE APU slw[.] √ √ √

evmhessfanw SPE APU srad. √

evmhessiaaw SPE APU sradi. √

evmhessianw SPE APU srawi[.] √ √ √

evmheumi SPE APU sraw[.] √ √ √

evmheumia SPE APU srd. √

evmheumiaaw SPE APU srw[.] √ √ √

evmheumianw SPE APU stb √ √ √

evmheusiaaw SPE APU stbu √ √ √

evmheusianw SPE APU stbux √ √ √

evmhogsmfaa SPE APU stbx √ √ √

evmhogsmfan SPE APU std √

evmhogsmiaa SPE APU stdcx. √

evmhogsmian SPE APU stdu √

evmhogumiaa SPE APU stdux √

evmhogumian SPE APU stdx √

evmhosmf SPE APU stfd √ √

evmhosmfa SPE APU stfdu √ √

evmhosmfaaw SPE APU stfdux √ √

evmhosmfanw SPE APU stfdx √ √

evmhosmi SPE APU stfiwx √ √

evmhosmia SPE APU stfs √ √

evmhosmiaaw SPE APU stfsu √ √

evmhosmianw SPE APU stfsux √ √

evmhossf SPE APU stfsx √ √

evmhossfa SPE APU sth √ √ √

evmhossfaaw SPE APU sthbrx √ √ √

evmhossfanw SPE APU sthu √ √ √

evmhossiaaw SPE APU sthux √ √ √

evmhossianw SPE APU sthx √ √ √

evmhoumi SPE APU stmw √ √ √

evmhoumia SPE APU stswi √ √

evmhoumiaaw SPE APU stswx √ √

evmhoumianw SPE APU stw √ √ √

evmhousiaaw SPE APU stwbrx √ √ √

Table 3-44. List of Instructions (continued)
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evmhousianw SPE APU stwcx. √ √ √

evmra SPE APU stwu √ √ √

evmwhsmf SPE APU stwux √ √ √

evmwhsmfa SPE APU stwx √ √ √

evmwhsmi SPE APU subfc[o][.] √ √ √

evmwhsmia SPE APU subfe[o][.] √ √ √

evmwhssf SPE APU subfic √ √ √

evmwhssfa SPE APU subfme[o][.] √ √ √

evmwhumi SPE APU subf[o][.] √ √ √

evmwhumia SPE APU subfze[o][.] √ √ √

evmwlsmiaaw SPE APU sync Replaced
with msync

√ Replaced
with msync

evmwlsmianw SPE APU tlbia √

evmwlssiaaw SPE APU tlbie √

evmwlssianw SPE APU tlbivax √ √

evmwlumi SPE APU tlbre √ √

evmwlumia SPE APU tlbsx √ √

evmwlumiaaw SPE APU tlbsync √ √ √

evmwlumianw SPE APU tlbwe √ √

evmwlusiaaw SPE APU tw √ √ √

evmwlusianw SPE APU twi √ √ √

evmwsmf SPE APU wrtee √ √

evmwsmfa SPE APU wrteei √ √

evmwsmfaa SPE APU xori[.] √ √ √

evmwsmfan SPE APU xor[.] √ √ √

evmwsmi SPE APU

evmwsmia SPE APU

Table 3-44. List of Instructions (continued)
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Chapter 4  
Execution Timing
This chapter describes how the e500 core performs operations defined by instructions and how it 
reports the results of instruction execution. It gives detailed descriptions of how the core execution 
units work and how these units interact with other parts of the processor, such as the instruction 
fetching mechanism, cache register files, and other architected registers. It gives examples of 
instruction sequences, showing potential bottlenecks and how to minimize their effects. Finally, it 
includes tables that identify the unit that executes each instruction implemented on the core, the 
latency for each instruction, and other information useful to assembly language programmers.

References to e500 apply to both e500v1 and e500v2. 

For specific timing guidelines and diagrams, refer to the e500 Software Optimization Guide.

4.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. These definitions offer 
a review of commonly used terms and point out specific ways these terms are used in this chapter. 

NOTE
Some of these definitions differ slightly from those used to describe 
previous processors that implement the PowerPC architecture, in 
particular with respect to dispatch, issue, finishing, retirement, and 
write back, so please read this glossary carefully. 

• Branch prediction—The process of guessing the direction and target of a branch. Branch 
direction prediction involves guessing whether a branch will be taken. Branch target 
prediction involves guessing the target address of a branch. The e500 does not use the 
Book E–defined hint bits in the BO operand for static prediction. Clearing BUCSR[BPEN] 
disables dynamic branch prediction; in this case the e500 predicts every branch as not taken. 

• Branch resolution—The determination of whether a branch prediction is correct. If it is, 
instructions following the predicted branch that may have been speculatively executed can 
complete (see Completion). If it is incorrect, the processor redirects fetching to the proper 
path and marks instructions on the mispredicted path (and any of their results) for purging 
when the mispredicted branch completes.

• Complete—An instruction is eligible to complete after it finishes executing and makes its 
results available for subsequent instructions. Instructions must complete in order from the 
bottom two entries of the completion queue (CQ). The completion unit coordinates how 
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instructions (which may have executed out of order) affect architected registers to ensure 
the appearance of serial execution. This guarantees that the completed instruction and all 
previous instructions can cause no exceptions. An instruction completes when it is retired, 
that is, deleted from the CQ. 

• Decode—The decode stage determines the issue queue to which each instruction is 
dispatched (see Dispatch) and determines whether the required space is available in both 
that issue queue and the completion queue. If space is available, it decodes instructions 
supplied by the instruction queue, renames any source/target operands, and dispatches them 
to the appropriate issue queues. 

• Dispatch—Dispatch is the event at the end of the decode stage during which instructions 
are passed to the issue queues and tracking of program order is passed to the completion 
queue.

• Fetch—The process of bringing instructions from memory (such as a cache or system 
memory) into the instruction queue. 

• Finish—An executed instruction finishes by signaling the completion queue that execution 
has concluded. An instruction is said to be finished (but not complete) when the execution 
results have been saved in rename registers and made available to subsequent instructions, 
but the completion unit has not yet updated the architected registers. 

• Issue—The stage responsible for reading source operands from rename registers and 
register files. This stage also assigns instructions to the proper execution unit.

• Latency— The number of clock cycles necessary to execute an instruction and make the 
results of that execution available to subsequent instructions.

• Pipeline—In the context of instruction timing, this term refers to interconnected stages. The 
events necessary to process an instruction are broken into several cycle-length tasks to 
allow work to be performed on several instructions simultaneously—analogous to an 
assembly line. As an instruction is processed, it passes from one stage to the next. When 
work at one stage is done and the instruction passes to the next stage, another instruction 
can begin work in the vacated stage. 

Although an individual instruction may have multiple-cycle latency, pipelining makes it 
possible to overlap processing so the number of instructions processed per clock cycle 
(throughput) is greater than if pipelining were not implemented.

• Program order—The order of instructions in an executing program. More specifically, this 
term is used to refer to the original order in which program instructions are fetched into the 
instruction queue from the cache. 

• Rename registers—Temporary buffers for holding results of instructions that have finished 
execution but have not completed. The ability to forward results to rename registers allows 
subsequent instructions to access the new values before they have been written back to the 
architectural registers. 
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• Reservation station—A buffer between the issue and execute stages that allows instructions 
to be issued even though resources necessary for execution or results of other instructions 
on which the issued instruction may depend are not yet available. 

• Retirement—Removal of a completed instruction from the completion queue at the end of 
the completion stage. (In other documents, this is often called deallocation.)

• Speculative instruction—Any instruction that is currently behind an older branch 
instruction that has not been resolved.

• Stage—Used in two different senses, depending on whether the pipeline is being discussed 
as a physical entity or a sequence of events. As a physical entity, a stage can be viewed as 
the hardware that handles operations on an instruction in that part of the pipeline. When 
viewing the pipeline as a sequence of events, a stage is an element in the pipeline during 
which certain actions are performed, such as decoding the instruction, performing an 
arithmetic operation, or writing back the results. Typically, the latency of a stage is one 
processor clock cycle. Some events, such as dispatch, write-back, and completion, happen 
instantaneously and may be thought to occur at the end of a stage. 

An instruction can spend multiple cycles in one stage; for example, a divide takes multiple 
cycles in the execute stage. 

An instruction can also be represented in more than one stage simultaneously, especially in 
the sense that a stage can be seen as a physical resource. For example, when instructions 
are dispatched, they are assigned a place in the CQ at the same time they are passed to the 
issue queues. 

• Stall—An occurrence when an instruction cannot proceed to the next stage. Such a delay is 
initiated to resolve a data or resource hazard, that is, a situation in which a planned 
instruction cannot execute in the proper clock cycle because data or resources needed to 
process the instruction are not yet available.

• Superscalar—A superscalar processor is one that can issue multiple instructions 
concurrently from a conventional linear instruction stream. In a superscalar 
implementation, multiple instructions can execute in parallel at the same time.

• Throughput—The number of instructions processed per cycle. In particular, throughput 
describes the performance of a multiple-stage pipeline where a sequence of instructions 
may pass through with a throughput that is much faster than the latency of an individual 
instruction. For example, in the four-stage multiple-cycle pipeline (MU), a series of mulli 
instructions has a throughput of one instruction per clock cycle even though it takes 4 cycles 
for one mulli instruction to execute. 

• Write-back—Write-back (in the context of instruction handling) occurs when a result is 
written into the architecture-defined registers (typically the GPRs). On the e500, write-back 
occurs in the clock cycle after the completion stage. Results in the write-back buffer cannot 
be flushed. If an exception occurs, results from previous instructions must write back 
before the exception is taken. 
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4.2 Instruction Timing Overview
The e500 design minimizes the number of clock cycles it takes to fetch, decode, dispatch, issue, 
and execute instructions and to make the results available for a subsequent instruction. To improve 
throughput, the e500 implements pipelining, superscalar instruction issue, and multiple execution 
units that operate independently and in parallel.

Figure 4-1 shows the path instructions take through the seven stages (shaded in the figure) of the 
e500 master pipeline: two fetch stages, decode/dispatch, issue, execute, complete, and write-back 
stages. The LSU and MU execution units are also multiple-stage pipelines.

Figure 4-1. Instruction Flow Pipeline Diagram Showing Pipeline Stages
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Figure 4-2. e500 Instruction Flow Diagram—Details
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The widths of the execution units shown in Figure 4-1 and Figure 4-2 indicate whether a unit can 
execute instructions with 64-bit operands. LSU, MU, and SU1 have upper and lower halves. Scalar 
instructions use only the lower halves and update GPR bits 32–63. 

Some instructions, such as loads and stores, access memory and require additional clock cycles 
between the execute and write-back phases. Latencies may be greater if the access is to 
noncacheable memory, causes a TLB miss, misses in the L1 cache, generates a write-back to 
memory, causes a snoop hit from another device that generates additional activity, or encounters 
other conditions that affect memory accesses.

The e500 can complete as many as two instructions on each clock cycle. 

The instruction pipeline stages are described as follows:

• Instruction fetch—Includes the clock cycles necessary to request an instruction and the 
time the memory system takes to respond to the request. Fetched instructions are latched 
into the instruction queue (IQ) for consideration by the dispatcher. 

The fetcher tries to initiate a fetch in every cycle in which it is guaranteed that the IQ has 
room for fetched instructions. Instructions are typically fetched from the L1 instruction 
cache; if caching is disabled, instructions are fetched from the instruction line fill buffer 
(ILFB), shown in Figure 4-8. Likewise, on a cache miss, as many as four instructions can 
be forwarded to the fetch unit from the line-fill buffer as the cache line is passed to the 
instruction cache.

Fetch timing is affected by many things, such as whether an instruction is in the on-chip 
instruction cache or an L2 cache (if implemented). Those factors increase when it is 
necessary to fetch instructions from system memory and include the processor-to-bus clock 
ratio, the amount of bus traffic, and whether any cache coherency operations are required. 

Fetch timing is also affected by whether effective address translation is available in a TLB, 
as described in Section 4.3.2.1, “L1 and L2 TLB Access Times.” 

• The decode/dispatch stage fully decodes each instruction; most instructions are dispatched 
to the issue queues, but isync, rfi, sc, nops, and others are not. Every dispatched instruction 
is assigned a GPR rename register and a CR field rename register, even if they do not 
specify a GPR or CR operand. There is a pair of GPR/CRF rename registers for each CQ 
entry (even for instructions that do not access the CR or GPRs).

The two issue queues, BIQ and GIQ, can accept as many as one and two instructions, 
respectively, in a cycle. Instruction dispatch requires the following:

— Instructions dispatch only from IQ0 and IQ1. 

— As many as two instructions can be dispatched per clock cycle.

— Space must be available in the CQ for an instruction to decode and dispatch.

In this chapter, dispatch is treated as an event at the end of the decode stage. Dispatch 
dependencies are described in Section 4.7.2, “Dispatch Unit Resource Requirements.” 
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• The issue stage reads source operands from rename registers and register files and 
determines when instructions are latched into reservation stations. 

The general behavior of the two issue queues is described as follows:

— The GIQ accepts as many as two instructions from the dispatch unit per cycle. SU1, 
SU2, MU, and all LSU instructions (including SPE APU loads and stores) are 
dispatched to the GIQ, shown in Figure 4-3. 

Figure 4-3. GPR Issue Queue (GIQ)

Instructions can be issued out-of-order from GIQ1–GIQ0. GIQ0 can issue to SU1, MU, 
and LSU. GIQ1 can issue to SU2, MU, and LSU. 

SU2 executes a subset of the instructions that can be executed in SU1. The ability to 
identify and dispatch instructions to SU2 increases the availability of SU1 to execute 
more computationally intensive instructions.

An instruction in GIQ1 destined for SU2 or the LSU need not wait for an MU 
instruction in GIQ0 that is stalled behind a long-latency divide.

• The execute stage is comprised of individual non-blocking execution units implemented in 
parallel. Each execution unit has a reservation station that must be available for an 
instruction issue to occur. In most cases, instructions are issued both to the reservation 
station and to the execution unit simultaneously. However, under some circumstances, an 
instruction may issue only to a reservation station. 

In this stage, operands assigned to the execution stage are latched.

The e500 has the following execution units:

— Branch unit (BU)—executes branches and CR logical operations

— Load/store unit (LSU)—executes loads from and stores to memory, as well as some 
MMU control, cache control, and cache locking instructions. This includes byte, 
half-word, and word instructions defined by the PowerPC architecture and 64-bit load 
and store instructions defined as part of the SPE APU. The load/store queues are 
described in Section 4.4.2.1, “Load/Store Unit Queueing Structures.”

— Two simple units (SU1 and SU2)—execute move to/from SPR instructions, logical 
instructions, and all computational instructions except multiply and divide instructions. 
These execution units also execute all vector and scalar computational instructions 

GIQ1

GIQ3

GIQ0

GIQ2

To SU2, MU, or LSU

From IQ0/IQ1 

To SU1, MU, or LSU
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(except multiply and divide instructions) defined by the SPE and embedded 
floating-point APUs, as follows:

– SU1 executes 32- and 64-bit SPE and floating-point logical instructions, simple 
integer arithmetic, and bit manipulation instructions, such as merges and splats. 

– SU2 executes a subset of the instructions that can be executed in SU1. These include 
brinc and the embedded floating-point logical instructions, efsabs, efsnabs, efsneg, 
efststeq, efststgt, and efststlt, and efdabs, efdnabs, efdneg, efdtsteq, efdtstgt, and 
efdtstlt in the e500v2. 

Most SU instructions execute in 1 cycle. Table 4-6 identifies which Book E instructions 
execute in SU1 and SU2 and shows their latencies; Table 4-8 identifies which SPE and 
floating-point APU instructions execute in SU1 and SU2 and shows their latencies. 
Note that most SU instructions execute in 1 cycle, while some instructions (such as 
mtspr and mfspr) take longer. 

— Multiple-cycle IU (MU) executes integer multiplication and division instructions, and 
addition, subtraction, multiplication, and division for all vector and scalar instructions.

NOTE
As suggested by Figure 4-1, the MU and SU1 each have upper and 
lower halves. Both halves are used for SPE and floating-point vector 
instructions. Only the lower half is used by scalar instructions, 
including embedded single-precision floating-point instructions. 

The execution unit executes the instruction (perhaps over multiple cycles), writes results on 
its result bus, and notifies the CQ when the instruction finishes. The execution unit reports 
any exceptions to the completion stage. Instruction-generated exceptions are not taken until 
the excepting instruction is next to retire.

Most integer instructions have a 1-cycle latency, so results of these instructions are 
available 1 clock cycle after an instruction enters the execution unit. The LSU and MU are 
pipelined, as shown in Figure 4-4.

• The complete and write-back stages maintain the correct architectural machine state and 
commit results to the architecture-defined registers in the proper order. If completion logic 
detects an instruction containing an exception status or a mispredicted branch, all following 
instructions are cancelled, their execution results in rename registers are discarded, and the 
correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per 
clock cycle. If no dependencies exist, as many as two instructions are retired in program 
order. Section 4.7.4, “Completion Unit Resource Requirements” describes completion 
dependencies. 

The write-back stage occurs in the clock cycle after the instruction is retired.
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Conventions used in the instruction timing examples are as follows:

 Fetch—Instructions are fetched from memory and placed in the 12-entry 
IQ. The latency associated with accessing an instruction depends on 
whether the instruction is in the on-chip cache or system memory (in which 
case latency is further affected by bus traffic, bus clock speed, and address 
translation issues). Therefore, in the examples in this chapter, the diagrams 
and fetch stage shown is for the common case of instructions hitting in the 
instruction cache.

Decode—As many as two eligible instructions dispatch from IQ0–IQ1 to 
the appropriate issue queue. Note that isync, rfi, sc, and some other 
instructions do not go to issue queues. At the same time, the instruction is 
assigned an entry in the completion queue.

Issue—Instructions are dispatched to issue queues from the instruction 
queue entries. At the end of the issue stage, instructions and their operands, 
if available, are latched into execution unit reservation stations. The black 
stripe is a reminder that the instruction occupies an entry in the CQ, 
described in Figure 4-4. 

 Execute—The operations specified by an instruction are being performed 
by the appropriate execution unit. The black stripe is a reminder that the 
instruction occupies an entry in the CQ, described in Figure 4-4.

 Complete—Execution has finished. When all completion requirements are 
met, the instruction is retired from the CQ. The results are written back to 
architecture-defined registers in the clock cycle after retirement.

 Write back—The instruction has retired and its results are written back to 
the architecture-defined registers. 

Figure 4-4 shows the relationships between stages and events associated with them. 

Figure 4-4. Execution Pipeline Stages and Events

The events are described as follows:

• Dispatch (at the end of decode)—An instruction is dispatched to the appropriate issue 
queue at the end of the decode stage. At dispatch, the instruction passes to the issue pipeline 
stage by taking a place in the CQ and in one of the two issue queues. 

• Issue (at the end of the issue stage)—The issue stage ends when the instruction is issued to 
the appropriate execution unit. 

Fetch2 Decode Execute CompleteIssue

Dispatch Issue Finish Retire

Write back

Write Back

Fetch1
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• Finish (at the end of the execute stage)—An instruction finishes when the CQ is signaled 
that execution results are available to subsequent instructions. Architecture-defined 
registers are not updated until the instruction is retired. 

• Retire (at the end of the complete stage)—An instruction retires from the CQ after 
execution is finished and serializing conditions are met. 

• Write back (at the end of the write-back stage)—The results of a retired instruction are 
written back to the architecture-defined register.

Figure 4-5 shows the stages of e500 execution units. 

Figure 4-5. Execution Stages

4.3 General Timing Considerations
As many as four instructions can be fetched to the IQ during each clock cycle. Two instructions 
per clock cycle can be dispatched to the issue queues. Two instructions from the GIQ and one 
instruction from the BIQ can issue per clock cycle to the appropriate execution units. Two 
instructions can retire and two can write back per cycle. 

The e500 executes multiple instructions in parallel, using hardware to handle dependencies. When 
an instruction is issued, source data is provided to the appropriate reservation station from either 
the architected register (GPR or CRF) or from a rename register. 
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Branch prediction is performed in parallel with the fetch stages using the branch prediction unit 
(BPU), which incorporates the branch target buffer (BTB). Predictions are resolved in the branch 
unit (BU). Incorrect predictions are handled as follows:

1. Fetch is redirected to the correct path, and mispredicted instructions are purged. 

2. The mispredicted branch is marked as such in the CQ. 

3. Eventually, the branch is retired and the CQ, issue queue, and execution units are flushed. 
If the correct-path instructions reach the IQ before the back half of the pipeline is flushed, 
they stall in the IQ until the flush occurs.

After an instruction executes, results are made available to subsequent instructions in the 
appropriate rename registers. The architecture-defined GPRs are updated in the write-back stage. 
Branch instructions that update LR or CTR write back in a similar fashion.

If a later instruction needs the result as a source operand, the result is simultaneously made 
available to the appropriate execution unit, which allows a data-dependent instruction to be 
decoded and dispatched without waiting to read the data from the architected register file. Results 
are then stored into the correct architected GPR during the write-back stage. Branch instructions 
that update either the LR or CTR write back their results in a similar fashion. 

Section 4.3.1, “General Instruction Flow,” describes this process. 

4.3.1 General Instruction Flow

To resolve branch instructions and improve the accuracy of branch predictions, the e500 
implements a dynamic branch prediction mechanism using the 512-entry BTB, a four-way set 
associative cache of branch target effective addresses. A BTB entry is allocated whenever a branch 
resolves as taken—unallocated branches are always predicted as not taken. Each BTB entry holds 
a 2-bit saturating branch history counter whose value is incremented or decremented depending 
on whether the branch was taken. These bits can take four values: strongly taken, weakly taken, 
weakly not taken, and strongly not taken. This mechanism is described in Section 4.4.1.2, “BTB 
Branch Prediction and Resolution.”

The e500 does not implement the static branch prediction that is defined by the PowerPC 
architecture. The BO[y] prediction in branch encodings is ignored. 

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing BUCSR[BPEN] 
disables dynamic branch prediction, in which case the e500 predicts every branch as not taken.

Branch instructions are treated like any other instruction and are assigned CQ entries to ensure that 
the CTR and LR are updated sequentially.

The dispatch rate is affected by the serializing behavior of some instructions and the availability 
of issue queues and CQ entries. Instructions are dispatched in program order; an instruction in IQ1 
cannot be dispatched ahead of one in IQ0.
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4.3.2 Instruction Fetch Timing Considerations

Instruction fetch latency depends on the following factors:

• Whether the page translation for the effective address of an instruction fetch is in a TLB. 
This is described in Section 4.3.2.1, “L1 and L2 TLB Access Times.”

• If a page translation is not in a TLB, an instruction TLB miss interrupt is taken. 
Section 4.3.2.2, “Interrupts Associated with Instruction Fetching,” describes other 
conditions that cause an instruction fetch to take an interrupt. General interrupt latency and 
pipeline behavior are described in Section 4.3.4, “Interrupt Latency.”

• If an L1 instruction cache miss occurs, a memory transaction is required in which fetch 
latency is affected by bus traffic and bus clock speed. These issues are discussed further in 
Section 4.3.2.3, “Cache-Related Latency.”

4.3.2.1 L1 and L2 TLB Access Times

The L1 TLB arrays are checked for a translation hit in parallel with the on-chip L1 cache lookups 
and incur no penalty on an L1 TLB hit. If the L1 TLB arrays miss, the access proceeds to the L2 
TLB arrays. For L1 instruction address translation misses, the L2 TLB latency is at least 5 clocks; 
for L1 data address translation misses, the L2 TLB latency is at least 6 clocks. These access times 
may be longer, depending on arbitration performed by the L2 arrays for simultaneous instruction 
L1 TLB misses, data L1 TLB misses, the execution of TLB instructions, and TLB snoop 
operations (snooping of TLBINV operations on the CCB). 

Note that when a TLBINV operation is detected, the L2 MMU arrays become inaccessible due to 
the snooping activity caused by the TLBINV.

If the MMU is busy due to a higher priority operation, such as a tlbivax, instructions cannot be 
fetched until that operation completes. 

If the page translation is in neither TLB, an instruction TLB error interrupt occurs, as described in 
Section 5.7.13, “Instruction TLB Error Interrupt.”

TLBs are described in detail in Chapter 12, “Memory Management Units.” 

4.3.2.2 Interrupts Associated with Instruction Fetching 

An instruction fetch can generate the following interrupts:

• An instruction TLB error interrupt occurs when the effective address translation for a fetch 
is not found in the TLBs. This interrupt is described in detail in Section 5.7.13, “Instruction 
TLB Error Interrupt.”
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• An instruction storage interrupt is caused when one of the following occurs during an 
attempt to fetch instructions:

— An execute access control exception is caused when one of the following conditions 
exist:

– In user mode, an instruction fetch attempts to access a memory location that is not 
user mode execute enabled (page access control bit UX = 0).

– In supervisor mode, an instruction fetch attempts to access a memory location that is 
not supervisor mode execute enabled (page access control bit SX = 0).

— A byte ordering exception occurs when the implementation cannot fetch the instruction 
in the byte order specified by the page’s endian attribute. On the e500, accesses that 
cross a page boundary such that endianness changes causes a byte ordering exception. 

When an instruction storage interrupt occurs, the processor suppresses execution of the 
instruction causing the exception. For more information, see Section 5.7.4, “Instruction 
Storage Interrupt.”

4.3.2.3 Cache-Related Latency

The following may happen when instructions are fetched from the instruction cache,:

• If the fetch hits the cache, it takes 2 clock cycles after the request for as many as four 
instructions to enter the IQ. The cache is not blocked to internal accesses during a cache 
reload (hits under misses). 

The cache allows a hit under one miss and is only blocked by a cache line reload for the 
cycle during the cache write. For example, if a cache miss is discarded by a misprediction 
and a new fetch hits, the cache allows instructions to come back. As many as four 
instructions per cycle are fetched from the cache until the original miss comes back and a 
cache reload is performed, which blocks the cache for 1 cycle.

If the cache is busy due to a higher priority operation, such as an icbi or a cache line reload, 
instructions cannot be fetched until that operation completes. 

• If an instruction fetch misses the on-chip instruction cache, the e500 initiates a core 
complex bus transaction to the non-core memory system. 

To minimize the effect of bus contention, the Book E architecture defines WIM bits that define 
caching characteristics for the corresponding page. Accesses to caching-inhibited memory 
locations never update the L1 caches.

If a cache-inhibited access hits in the cache, the cache block is invalidated. If the cache block is 
marked modified, it is copied back to memory before being invalidated. Where caching is 
permitted, memory is configured as either write-back or write-through, as described in 
Section 11.3.4, “WIMGE Settings and Effect on L1 Caches.”
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4.3.3 Dispatch, Issue, and Completion Considerations

The core’s ability to dispatch as many as two instructions per cycle depends on the mix of 
instructions and on the availability of issue queues and CQ entries. As many as two instructions 
can be dispatched in parallel, but an instruction in IQ1 cannot be dispatched ahead of an instruction 
in IQ0. 

Instructions can issue out of order from GIQ0 and GIQ1. GIQ0 can issue to SU1, MU, and LSU. 
GIQ1 can issue to SU2, MU, and LSU. If an instruction stalls in GIQ0 (reservation station busy), 
an instruction in GIQ1 can issue if its reservation station is available.

Issue queues and reservation stations allow the e500 to dispatch instructions even if execution 
units are busy. The issue logic reads operands from register files and rename registers and routes 
instructions to the proper execution unit. Execution begins when all operands are available, the 
instruction is in the reservation station, and any execution serialization requirements are met. 

Instructions pass through a single-entry reservation station associated with each execution unit. If 
a data dependency keeps an instruction from starting execution, that instruction is held in a 
reservation station. Execution begins during the same clock cycle that the rename register is 
updated with the data the instruction is dependent on. 

The CQ maintains program order after instructions are dispatched, guaranteeing in-order 
completion and a precise exception model. Instruction state and other information required for 
completion are kept in this 14-entry FIFO. All instructions complete in order; none can retire 
ahead of a previous instruction. In-order completion ensures the correct architectural state when 
the e500 must recover from a mispredicted branch or exception. 

Instructions are retired much as they are dispatched: as many as two can be retired simultaneously, 
but never out of order. Note the following:

• Instructions must be non-speculative to complete.

• As many as two rename registers can be updated per clock cycle. Because load and store 
with update instructions require two rename registers they are broken into two instructions 
at dispatch (lwzu is broken into lwz and addi). As described in Section 4.3.3.1, “GPR and 
CR Rename Register Operation,” these two instructions are assigned two CQ entries and 
each is assigned CR and GPR renames at dispatch. 

• Some instructions have retirement restrictions, such as retiring only out of CQ0. See 
Section 4.3.3.3, “Instruction Serialization.”

Program-related exceptions are signaled when the instruction causing the exception reaches CQ0. 
Previous instructions are allowed to complete before the exception is taken, which ensures that any 
exceptions those instructions may cause are taken. 
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4.3.3.1 GPR and CR Rename Register Operation

To avoid contention for a given register file location during out-of-order execution, the e500 
provides 14 rename registers for holding instruction results before the completion commits them 
to the architecture-defined registers. In addition to the 14 GPR renames, the e500 provides 
fourteen 4-bit CR field renames. Because there are 14 rename pairs and 14 CQ entries, the e500 
cannot run out of renames as long as CQ entries are available. 

Results from rename registers are transferred to the architecture-defined registers in the write-back 
stage, at which point renames are deallocated.

If branch prediction is incorrect, instructions after the branch are flushed from the CQ. Any results 
of those instructions are flushed from the rename registers.

4.3.3.2 LR and CTR Shadow (Speculative) Registers 

The decode stage manages one speculative copy each of the LR and of the CTR. This allows 
one-level-deep speculation for branch-to-LR and branch-to-CTR instructions.

4.3.3.3 Instruction Serialization

Although the e500 core can dispatch and complete two instructions per cycle, some serializing 
instructions limit dispatch and completion to one per cycle. There are six basic types of instruction 
serialization:

• Presync serialization—Presync-serialized instructions are held in the instruction queue 
until all prior instructions have completed. They are then decoded and execute. For 
example, instructions such as mfspr that read a non-renamed status register are marked as 
presync-serialized.

• Postsync serialization—Postsync-serialized instructions, such as mtspr[XER], prevent 
other instructions from decoding until the serialized instruction completes. For example, 
instructions that modify processor state in a way that affects the handling of future 
instruction execution are marked with postsync-serialization. These instructions are 
identified in the latency tables in Section 4.6, “Instruction Latency Summary.”

• Move-from serialization—Move-from serialization is a weaker synchronization than 
presync serialization. A move-from serialized instruction can decode, but stalls in an 
execution unit’s reservation station until all prior instructions have completed. If the 
instruction is currently in the reservation station and is the oldest instruction, it can begin 
execution in the next cycle. Note that subsequent instructions can decode and execute while 
a move-from serialized instruction is pending. Only mfcr and mfspr[XER] are move-from 
serialized, so that they do not examine architectural state until all older instructions that 
could affect the architectural state have completed.
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• Move-to serialization—A move-to serialized instruction cannot execute until the cycle 
after it is in CQ0, that is, the cycle after it becomes the oldest instruction. This serialization 
is weaker than move-from serialization in that the instruction need not spend an extra cycle 
in the reservation station. Move-to serializing instructions include tlbre, tlbsx, tlbwe, 
mtmsr, wrtee, wrteei, and all mtspr instructions. 

• Refetch serialization—Refetch-serialized instructions force refetching of subsequent 
instructions after completion. Refetch serialization is used when an instruction has changed 
or may change a particular context needed by subsequent instructions. Examples include 
isync, sc, rfi, rfci, rfmci, and any instruction that toggles the summary-overflow (SO) bit.

• Store serialization (applicable to stores and some LSU instructions that access the data 
cache)—Store-serialized instructions are dispatched and held in the LSU’s finished store 
queue. They are not committed to memory until all prior instructions have completed. 
Although a store-serialized instruction waits in the finished store queue, other load/store 
instructions can be freely executed. Some store-serialized instructions are further restricted 
to complete only from CQ0. Only one store-serialized instruction can complete per cycle, 
although non-serialized instructions can complete in the same cycle as a store-serialized 
instruction. In general, all stores and cache operation instructions are store serialized.

4.3.4 Interrupt Latency

The e500v1 flushes all instructions in the completion queue when an interrupt is taken, except for 
guarded load or cache-inhibited stwcx. instructions in CQ0. 

Core complex interrupt latency (the number of core clocks between the sampling of the interrupt 
signal as asserted and the fetch of the first instruction in the handler) is at most 8 cycles unless a 
guarded load or a cache-inhibited stwcx. is in CQ0. This latency does not include the 2 bus cycles 
needed to synchronize the interrupt signal from the pad of the device. When an interrupt is 
detected, only guarded load and cache-inhibited stwcx. instructions in CQ0 are allowed to 
complete; in such cases, interrupt latency is affected by bus latency. 

Note that a load instruction that misses in the cache may generate a bus read operation, even 
though the load instruction does not complete because of an interrupt. In this case, data is returned 
to the line fill buffer and the cache line is updated, but not the GPR specified by the load 
instruction. When the same load is executed again, the load is performed again, most likely from 
the cache or from the line fill buffer, and the GPR write back occurs after the instruction completes 
and is deallocated from CQ0. 

On the e500v2, if an interrupt is asserted during a guarded load (that misses in the L1 cache) or a 
caching-inhibited stwcx., the interrupt is not taken until the instruction completes. So, the interrupt 
latency depends on the memory latency. 

• For guarded loads, the data must be returned. If a bus error occurs on a guarded load, the 
load is aborted and the interrupt is taken.
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• For a caching-inhibited stwcx. instructions, the address tenure must complete on the CCB. 
If a bus error occurs, the stwcx. completes and clears CR0[EQ], indicating that the stwcx. 
did not succeed.

Guarded lmw and stmw instructions can be interrupted before the instruction completes and 
restarted after the interrupt is serviced. 

4.3.5 Memory Synchronization Timing Considerations

This section describes the behavior of the msync and mbar instructions as they are implemented 
by the e500.

4.3.5.1 msync Instruction Timing Considerations

The msync instruction provides a memory barrier throughout the memory hierarchy. It may be 
used, for example, to ensure that a control bit has finally been written to its destination control 
register in the system before the next instruction begins execution (such as to clear a pending 
interrupt). By its nature, it also provides an ordering boundary for pre- and post-msync storage 
transactions.

On the e500, msync waits for preceding data memory accesses to reach the point of coherency 
(that is, visible to the entire memory hierarchy), then it is broadcast on the e500 bus. An msync 
does not finish execution until all storage transactions caused by prior instructions complete 
entirely in its caches and externally on the bus (address and data complete on the bus, excluding 
instruction fetches). No subsequent instructions and associated storage transactions are initiated 
until such completion.

It completes only after its successful address bus tenure (without being ARTRYed). Execution of 
msync also generates a SYNC command on the bus (if HID1[ABE] is set), which also must 
complete normally (without address retry) for the msync instruction to complete. Subsequent 
instructions can execute out of order, but they can complete only after msync completes.

It is the responsibility of the system to guarantee the intention of the SYNC command on the 
bus—usually by ensuring that any bus transactions received before the SYNC command from the 
core complex complete in its queues or at their destinations before completing the SYNC 
command on the CCB.

4.3.5.2  mbar Instruction Timing Considerations

The mbar instruction provides an ordering boundary for storage operations. Its architectural intent 
is to guarantee that storage operations resulting from previous instructions occur before any 
subsequent storage operations occur, thereby ensuring an order between pre- and post-mbar 
memory operations. It may be used, for example, to ensure that reads and writes to an I/O device 
or between I/O devices occur in program order or to ensure that memory updates occur before a 
semaphore is released.
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The Book E architecture allows an implementation to support several classes of storage ordering, 
selected by the MO field of the mbar instruction. The core complex supports two classes for 
system flexibility. 

The e500 implements two variations of mbar, as follows:

• When MO = 0, mbar behaves as defined by Book E. 

• When MO = 1, mbar is a weaker, faster memory barrier; the e500 executes it as a pipelined 
or flowing ordering barrier for potentially higher performance. This ordering barrier flows 
along with pre- and post-mbar memory transactions through the memory hierarchy (L1 
cache, bus, and system). On the bus, this ordering barrier is issued as an ORDER command 
(if HID1[ABE] is set). 

mbar ensures that all data accesses caused by previous instructions complete before any 
caused by subsequent instructions. This order is seen by all mechanisms. However, unlike 
msync and mbar with MO = 0, subsequent instructions can complete without waiting for 
mbar to perform its address bus tenure. This provides a faster way to order data accesses. 

4.4 Execution 
The following sections describe instruction execution behavior within each of the respective 
execution units in the e500. 

4.4.1 Branch Unit Execution 

When branch or trap instructions change program flow, the IQ must be reloaded with the target 
instruction stream. Previously issued instructions continue executing while the new instruction 
stream makes its way into the IQ. Depending on whether target instructions are cached, 
opportunities may be missed to execute instructions. 

The e500 minimizes penalties associated with flow control operations by features such as the 
branch target buffer (BTB), BTB locking, dynamic branch prediction, speculative link and counter 
registers, and nonblocking caches. 

4.4.1.1 Branch Instructions and Completion

Branch instructions are not folded on the e500; all branch instructions receive a CQ entry (and 
CRF and GPR renames) at dispatch and must write back in program order. 
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Branch instructions are dispatched to the BIQ and are assigned a CQ slot, as shown in Figure 4-6.

Figure 4-6. Branch Completion (LR/CTR Write-Back)

In this example, the bc depends on cmp and is predicted as not taken. At the end of clock cycle 1, 
cmp and bc are dispatched to the GIQ and BIQ, respectively, and are issued to SU1 and the BU at 
the end of clock 2. 

In clock cycle 3, the cmp executes in SU1 but the bc cannot resolve and complete until the cmp 
results are available; add1 and add2 are dispatched to the GIQ. 

In cycle 4, the bc resolves as correctly predicted; add1 and add2 are issued to the SUs and are 
marked as nonspeculative, and add3 is dispatched to the GIQ. The cmp is retired from the CQ at 
the end of cycle 4. 

In cycle 5, bc, add1, and add2 finish execution, and bc and add1 retire.
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.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
CQ6
CQ5
CQ4
CQ3 add2 add2 (SU2) add3 (SU1)
CQ2 add1 add1 (SU1) add2√
CQ1 bc bc (BU) bc (BU) add1√
CQ0 cmp cmp (SU1) cmp√ bc √

√ indicates that the instruction has finished execution. 
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4.4.1.2 BTB Branch Prediction and Resolution 

The e500 dynamic branch prediction mechanism differs from its predecessors in that branches are 
detected and predicted earlier, in the two fetch stages. This processor-specific hardware 
mechanism monitors and records branch instruction behavior, from which the next occurrence of 
the branch instruction is predicted. 

The e500 does not support static branch prediction—the BO prediction in branch instructions is 
ignored. 

The valid bit in each BTB entry is zero (invalid) at reset. When a branch instruction first enters the 
instruction pipeline, it is not allocated in the BTB and so by default is predicted as not taken. If the 
branch is not taken, nothing is allocated in the BTB. If it is taken, the misprediction allocates a 
BTB entry for this branch with an initial prediction of strongly taken, as is shown in the example 
in Table 4-6. 

Figure 4-7. Updating Branch History

Note that unconditional branches are allocated in the BTB the first time they are encountered. This 
example shows how the prediction is updated depending on whether a branch is taken. 

The BPU detects whether a fetch group includes any branches that hit in the BTB, and if so, 
determines the fetching path based on the prediction and the target address. 

If the prediction is wrong, subsequent instructions and their results are purged. Instructions ahead 
of the predicted branch proceed normally, instruction fetching resumes along the correct path, and 
the history bits are revised. 

The number of speculative branches that have not yet been allocated (and are predicted as not taken) 
is limited only by the space available in the pipeline (the branch execute unit, the BIQ, and the IQ). 
The presence of speculative branches allocated in the BTB slightly reduces speculation depth. 
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Instructions after an unresolved branch can execute speculatively, but in-order completion ensures 
that mispredicted speculative instructions do not complete. When misprediction occurs, the e500 
easily redirects fetching and repairs its machine state because the architectural state is not updated. 
Any instructions dispatched after a mispredicted branch instruction are flushed from the CQ, and 
any results are flushed from the rename registers.

4.4.1.3 BTB Operations

Understanding how the BTB is indexed requires a discussion of the fetch mechanism. The e500 
tries to fetch as many as four instructions per access. Simultaneously fetched instructions comprise 
a fetch group; and the address issued by the fetch unit is called a fetch group address (FGA). 

A fetch group cannot straddle a cache-line boundary. As shown in Figure 4-8, if instructions in a 
cache line are numbered 0–7 and the fetch group address maps to the nth instruction, where n = 0, 
1, 2, 3, or 4, instructions n, n+1, n+2, n+3 are in the fetch group. If n ≥ 4, instructions n through 7 
are the fetch group.

Figure 4-8. Fetch Groups and Cache Line Alignment

If the cache is disabled, instructions are loaded eight instructions at a time and placed in the 
eight-entry instruction line fill buffer (ILFB), from which a fetch group is delivered to the core 
following the pattern described in Figure 4-8. 

To reduce the size and complexity of the branch predictor, the e500 indexes the BTB using the 
FGA to identify the first predicted branch within the fetch group. Because the same branch can be 
fetched at different times as a part of a different fetch group, the BTB locking APU can be used to 
lock all possible addresses whose fetch groups may contain the branch instruction.

0 2 4 5 6 71 3

Fetch Group

Instruction Cache Block

2 4 53

Fetch group address (FGA) (n = 2)

0 2 4 5 6 71 3

Instruction Cache Block
Fetch group address (n = 6)

Fetch Group

6 7
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The following factors affect the FGA of a branch instruction:

• The location of the branch instruction in the cache block

• A control flow that may allow multiple execution paths to reach the branch from different 
fetch group addresses

• The presence of other branch instructions in the fetch group that precede the branch 
instruction under consideration

• Interrupts taken as a result of accepting an external interrupt or exceptions in instructions 
preceding the branch instruction in the fetch group

• Events inside the core causing a synchronization in the pipeline during the execution of an 
instruction preceding the branch instruction in the fetch group

• The presence of instructions such as isync before the branch instruction 

Figure 4-9 shows all possible fetch group addresses (FGAs) that can be associated with a branch 
instruction. The location of an instruction is i if it is the ith instruction (i=0…7) from the beginning 
of a cache line. The address of an instruction ai refers to the address of the ith instruction in the 
cache block. The condition IB occurs where either a synchronizing instruction (such as isync) or 
a branch instruction whose prediction is locked in the BTB occurs at some location. The branch 
instruction under consideration is identified as b. 

Figure 4-9. Fetch Group Addresses

Is b at location i Yes

No

No

Yes

No

Begin

Is an IB at location jwhere i=0,1,2?
where j<i?

Possible FGAs are aj+1…ai

Possible FGAs are a0…ai

Is an IB
at location j where

j=i-1,i-2,i-3?
Possible FGAs are aj+1…ai

Possible FGAs are ai-3,
ai-2, ai-1, ai End

Yes
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Note that branch instructions that are not allocated into the BTB (either because they have never 
been taken or because they have been cast out of the BTB) can fall in the same fetch group. For 
example, the following code sequence has two branch instructions that fall into the same fetch 
group the first time the sequence is executed:

A: add
b1

A+8: add
b2

Assuming that fetching begins at A and that the sequence lies within a cache block, all four 
instructions are included in the same fetch group, including both branches because they have not 
been taken and therefore do not have BTB entries. 

At execution, b1 is not taken, but b2 mispredicts and resolves as taken in the execute stage, at 
which point the branch instruction prediction (strongly taken) is allocated for b2 at A for the fetch 
group address of A.

Later, b1 is taken and thus mispredicted. The BTB entry for address A becomes allocated for b1, 
replacing the prediction for b2 for the FGA of A. If we fetch b2 again using the FGA of (A+8), it 
is now a BTB miss and the default prediction is used. However, if the default prediction is 
incorrect, a separate BTB entry is allocated for b2 (at fetch group address A+8).

Now that both branch instructions are allocated in the BTB, they can no longer be in the same fetch 
group.

4.4.1.3.1 BTB Locking

Note that rather than allowing branch predictions to change dynamically, the programmer can 
explicitly lock the predictions into the BTB.

The typical sequence of instructions to lock a branch address into a BTB entry is as follows:

mtspr BBEAR, rS
mtspr BBTAR, rS
bblels

The typical sequence of instructions to clear locked entries individually is as follows:

mtspr BBEAR, rS
bbelr

To guarantee atomicity, these instruction sequences should be protected by lwarx and stwcx. 
instructions.
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4.4.1.3.2 BTB Locking APU Programming Model 

The BTB APU programming model includes the following register resources:

• The following BTB locking APU registers.

— Branch buffer entry address register (BBEAR)

— Branch buffer target address register (BBTAR)

— Branch unit control and status register (BUCSR)

These registers are described in Section 2.9, “Branch Target Buffer (BTB) Registers.”

• MSR[UBLE]. The user branch locking enable bit (UBLE) is defined in the MSR. Setting 
MSR[UBLE] allows user mode programs to lock or unlock BTB entries. See Section 2.5.1, 
“Machine State Register (MSR).”

The BTB also defines the following instructions, described in Section 3.9.1, “Branch Target 
Buffer (BTB) Locking Instructions”:

• Branch Buffer Load Entry and Lock Set (bblels)

• Branch Buffer Entry Lock Reset (bbelr)

4.4.1.3.3 BTB Operations Controlled by BUCSR

This following BTB operations are controlled through BUCSR:

• BTB disabling. BUCSR[BPEN] is used to enable or disable the BTB. The BTB is enabled 
when the bit is set and disabled when it is cleared.When it is disabled, BTB contents are not 
used to predict the branch targets and the BTB is not updated as a result of executing 
branch, bblels, or bbelr instructions. However, when it is disabled, the BTB maintains its 
contents and any locks, which can be used again when the BTB is reenabled.

• BTB overlocking. BUCSR[BBLO] is used to report an overlocking status to the program. 
It is a sticky bit and once set, remains set until explicitly cleared by writing a 0 to it with an 
mtspr instruction.

• BTB unable to lock. If bblels cannot set the BTB lock, BUCSR[BBUL] is set. It is a sticky 
bit.

• BTB invalidation. Flash invalidation of the BTB is accomplished by writing 
BUCSR[BBFI] with a 0 and then a 1 using mtspr instructions. 

• BTB lock clearing. BUCSR[BBLFC] is used to perform a flash lock clear (unlocking) of 
all locked BTB entries. Writing BUCSR[BBLFC] with a 0 and then a 1 flash lock clears all 
locked BTB entries. 
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4.4.1.3.4 BTB Special Cases—Phantom Branches and Multiple Matches

The following describes special cases:

• Phantom branches. BTB entries hold effective addresses associated with a branch 
instruction. A process context switch might bring in another task whose MMU translations 
are such that it uses the same effective address for another non-branch instruction for which 
the BTB has an entry for a previously encountered branch. This causes the fetch unit to 
redirect instruction fetch to the BTB’s target address. Later, during execution of the 
instruction, the hardware realizes the error and evicts the BTB entry. However, locked BTB 
entries are not evicted. Hardware guarantees correct execution under locked phantom 
branches, but performance may suffer.

• Multiple matches. By ensuring that an entry is unique when it is allocated, the e500 
hardware prevents multiple matches for the same fetch address. 

4.4.2 Load/Store Unit Execution 

The data cache supplies data to the GPRs by means of the LSU. The core complex LSU is directly 
coupled to the data cache with a 64-bit (8-byte) interface to allow efficient movement of data to 
and from the GPRs. The LSU provides all of the logic required to calculate effective addresses, 
handles data alignment to and from the data cache, provides sequencing for load/store multiple 
operations, and interfaces with the core interface unit. Write operations to the data cache can be 
performed on a byte, half-word, word, or double-word basis.

When free of data dependencies, cacheable loads execute in the LSU in a speculative manner with 
a maximum throughput of one per cycle and a total 3-cycle latency for integer loads. Data returned 
from the cache on a load is held in a rename buffer until the completion logic commits the value 
to the processor state.

4.4.2.1 Load/Store Unit Queueing Structures

This section describes the LSU queues that support the L1 data cache. See Section 11.3.5, 
“Load/Store Operations,” for more information on architectural coherency implications of 
load/store operations and the LSU on the core complex. Also, see Section 4.4.4, “Load/Store 
Execution,” for more information on other aspects of the LSU and instruction scheduling 
considerations.
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The instruction and data caches are integrated with the LSU, instruction unit, and core interface 
unit in the memory subsystem of the core complex as shown in Figure 4-10.

Figure 4-10. Cache/Core Interface Unit Integration

When free of data dependencies, cacheable loads execute in the LSU in a speculative manner with 
a maximum throughput of one per cycle and a total 3-cycle latency for integer loads. Data returned 
from the cache on a load is held in a rename buffer until the completion logic commits the value 
to the processor state.

Table 4-1. Load and Store Queues

Queue Description

LSU store 
queue

Stores cannot execute speculatively and are held in the seven-entry store queue, shown in Figure 4-10, until 
completion logic indicates that the store instruction is to be committed. The store queue arbitrates for L1 data cache 
access. When arbitration succeeds, data is written to the data cache and the store is removed from the store queue. 
If a store is caching-inhibited, the operation moves through the store queue to the rest of the memory subsystem.

LSU L1 
load miss 

queue 
(LMQ)

As loads reach the LSU, it tries to access the cache. On a hit, the cache returns the data. If there is a miss, the LSU 
allocates an LMQ entry and a DLFB entry. The LSU then queues a bus transaction to read the line. If a subsequent 
load hits, the cache returns the results. If a subsequent load misses, the LSU allocates a second LMQ entry and, if 
the load is to a different cache line than the outstanding miss, it allocates the second DLFB entry and queues a 
second read transaction on the bus. If the load miss is to the same cache line as an outstanding miss, the LSU need 
not allocate a new DLFB entry. 
The LSU continues processing load hits and load misses until one of the following conditions occurs:
 • The LMQ is full and another load miss occurs.
 • The LSU tries to perform a load miss, all of the DLFB entries are full, and the load is not to any of the cache lines 

that are represented in the DLFB.

Instruction
MMU

4 

Load Miss
Queue 

Data
MMU

Core Complex Bus

L1 Store 
Queue

Core Interface Unit

I-Cache
Tags

I-Cache
Status

I-Cache

D-Cache
Tags

D-Cache
Status

D-Cache

8 instructions
(cache block)

DWB

1–4
 instructions 
forwarded on 
cache miss

8-byte

LSU Queues

ILFB

I-Cache

DLFB

instructions

Queues

(LMQ)

Up to a 
 double 
word 
forwarded

32-byte
(8 word)

on a 
cache 
miss

Instruction Unit Load/Store Unit

e500v1

e500v2

e500v1

e500v2
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The core interface unit handles all bus transactions initiated by the ILFB, DLFB, and DWB. The 
core interface unit handles all ordering and bus protocol and is the interface between the core 
complex and the external memory and caches.

The core interface unit performs transactions through the core complex bus by transferring either 
the critical–double-word first (8 bytes) or the critical–quad-word first (16 bytes). It then forwards 
the transaction to the instruction or data line fill buffer critical double word first. The core complex 
bus also captures snoop addresses for the L1 data cache and the memory reservation (lwarx and 
stwcx.) operations.

4.4.3 Simple and Multiple Unit Execution 

The e500 has two simple units (SU1, SU2) and one multiple unit (MU). On the e500v2, the MU 
has an additional six-stage subunit through which all double-precision floating-point instructions 
pass. The SUs execute all Book E logical and computational instructions except multiplies and 
divides, SPE single-cycle arithmetic, logical, shift, and splat instructions, and embedded 
floating-point APU arithmetic and logical instructions. The MU executes multiplies, divides, and 
multi-cycle arithmetic instructions defined by the SPE and embedded floating-point APUs. 

Divide latency depends upon the operand data and ranges from 4 to 35 cycles, as shown in 
Table 4-2.

LSU data 
line fill 
buffer 

(DLFB)

DLFB entries are used for loads and cacheable stores. Stores are allocated in the DLFB so loads can access data 
from the store immediately (loads cannot access data from the L1 store queue). Also, by using the DLFB entries for 
stores, the LSU frees L1 store queue entries, even on store misses. Multiple cacheable store misses to the same 
cache line are merged in a DLFB. 

LSU data 
write buffer 

(DWB)

When a full line of data is available in the DLFB, the data cache is updated. If a data cache update requires a cache 
line to be evicted, the line is cast out and placed in the DWB until the data has been transferred through the core 
interface unit to the core complex bus. If global memory’s coherency needs to be maintained as a result of bus 
snooping, the L1 cache can also evict a line to the DWB. (This is a snoop push.) Cast-out and snoop push writes 
from the L1 cache are cache-line aligned (critical word is not written first), regardless of which word in a modified 
cache line is accessed.
One DWB entry is dedicated for snoop pushes, one is for cast outs, and one can be used for either.

Table 4-2. The Effect of Operand Size on Divide Latency

Instruction Condition Latency

efsdivx rA or rB is 0.0 4

All others 29

efddivx All double-precision floating-point divides (e500v2 only) 32

evfsdivx rA or rB are 0.0 for both upper and lower 4

All others 29

Table 4-1. Load and Store Queues (continued)

Queue Description
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4.4.3.1 MU Divide Execution

The MU provides a bypass path for divides, as shown in Figure 4-11, so the iterative portion of 
divide execution is performed outside of the MU pipeline, allowing subsequent instructions 
(except other divides) to execute in the main MU pipeline. Figure 4-11 shows the path that integer 
divides and both scalar and vector single-precision divide instructions take. The double-precision 
portion of the MU has a six-stage pipeline, but has a similar divide bypass that splits from the main 
path after the first stage and before the last. 

Figure 4-11. MU Divide Bypass Path (Showing an 11-Cycle Divide) 

divwx rA or rB is 0 4

rA representable in 8 bits 11

rA representable in 16 bits 19

All other cases 35

evdivwx Both the lower and upper words match the criteria described above for the divwx 4-cycle case. 4

Assuming the 4-cycle evdivwx case does not apply, the lower and upper words match the 
criteria described above for the divwx 4- or 11-cycle case. 

11

Assuming neither the 4- or 11-cycle evdivwx cases apply, the lower and upper words match the 
criteria described above for the divwx 4-, 11-, or 19-cycle case. 

19

All other cases 35

Table 4-2. The Effect of Operand Size on Divide Latency (continued)

Instruction Condition Latency

divw 1  Bypass
Path mulli 1

divw 1

mulli 2

mulli 1
divw 1

mulli 1

mulli 3

mulli 2
divw 1

mulli 2

mulli 4

mulli 1

mulli 3
divw 1

mulli 3

mulli 5

mulli 2

mulli 4
divw 1

 Clock 0  Clock 5 Clock 1  Clock 2  Clock 3  Clock 4

mulli 4

mulli 6

mulli 3

mulli 5 divw 1

mulli 5

mulli 4

mulli 7

divw 1

mulli 8

mulli 5

 divw 1

mulli 8

mulli 6

mulli 7

divw 1
mulli 7

divw 2

divw 1 

mulli 8

mulli 8

mulli 9

mulli 7

divw 2

 Clock 6  Clock 11 Clock 7  Clock 8  Clock 9  Clock 10

mulli 7mulli 6

mulli 6
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This example shows the pipeline for two divw instructions interspersed among mulli instructions 
(although any non-divide instructions that use the MU could have been used in place of the mulli 
instructions). The stages occupied by divw instructions are highlighted in grey. In clock cycle 0, 
the first divw is issued to the first stage of the MU. In clock cycle 1, the divw moves out of the 
MU main pipeline into an iterative stage in the two-stage bypass path while the first mulli is issued 
to MU stage 1. 

The divw iterates in the first stage of the bypass path while a series of mulli instructions passes 
through the main MU pipeline. At the end of clock 4, the first of the mulli instructions finishes 
and leaves the MU pipeline. Although the mulli can finish out of order with respect to the divd, it 
cannot complete ahead of it.

In clock cycle 6, a signal is passed to the issue logic to indicate that divw 1 will reenter the main 
MU pipeline in 4 cycles. This creates a bubble that passes down the pipeline, making a space for 
the divw instruction to reenter the main pipeline in clock cycle 10. 

A second divw enters the first MU stage in clock cycle 10. Had divw 2 been issued earlier, it would 
have stalled in the reservation station until divw 1 vacated the second stage of the bypass path. In 
other words, the MU can hold as many as two divide instructions only if one is in the MU fourth 
stage (as is the case in clock cycle 10). 

Table 4-6 lists SU and MU execution latencies. As Table 4-6 shows, most instructions executed in 
the SU have a single-cycle execution latency. 

4.4.3.2 MU Floating-Point Execution 

The MU executes all floating-point arithmetic operations except efststx, efdtstx and evfststx. 
Embedded floating-point operations largely comply with the IEEE-754 floating-point standard. 
Software exception handling is required to achieve full IEEE 754-compliance because the IEEE 
floating-point exception model is not fully implemented in hardware. 

Floating-point arithmetic instructions, except for divide, execute with 4-cycle latency and 1-cycle 
throughput. Single-precision floating-point multiply, add, and subtract instructions execute in the 
four-stage pipeline MU.

If rA or rB is zero, a floating-point divide takes 4 cycles. All other cases take 29 cycles. 

Table 4-8 shows floating-point instruction execution timing.

4.4.4 Load/Store Execution

The LSU executes instructions that move data between the GPRs and the memory unit of the core 
(made up of the L1 caches and the core interface unit buffers). Figure 4-10 shows the block 
diagram for the LSU. 
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The execution of most load instructions is pipelined in the three LSU stages, during which the 
effective address is calculated, MMU translations are performed, the data cache array and tags are 
read, and cache way selection and data alignment are performed. Cacheable loads, when free of 
data dependencies, execute in a speculative manner with a maximum throughput of one instruction 
per cycle and 3-cycle latency. Data returned from the cache is held in a rename register until the 
completion logic commits the value to the processor state. 

Stores cannot be executed speculatively and must be held in the store queue until completion logic 
signals that the store instruction is to be committed, at which point the data cache array is updated.

If operands are misaligned, additional latency may be incurred either for an alignment exception 
or for additional cache or bus accesses. Table 4-7 gives load and store instruction execution 
latencies.

4.4.4.1 Effect of Operand Placement on Performance

The location and alignment of operands in memory may affect performance of memory accesses, 
in some cases significantly, as shown in Table 4-4. 

Alignment of memory operands on natural boundaries guarantees the best performance. For the 
best performance across the widest range of implementations, the programmer should assume the 
performance model described in Section 3.1, “Operand Conventions.” 

The effect of alignment on memory operation performance is the same for big- and little-endian 
addressing modes, including load-multiple and store-multiple operations.

In Table 4-4, optimal means that one effective address (EA) calculation occurs during the memory 
operation. Fair means that multiple EA calculations occur during the operation, which may cause 
additional cache or bus activities with multiple transfers. Poor means that an alignment interrupt 
is generated by the memory operation.

4.5 Memory Performance Considerations
Because the e500 has a maximum instruction throughput of two instructions per clock cycle, lack 
of memory bandwidth can affect performance. To maximize performance, the e500 must be able 
to read and write data efficiently. If a system has multiple bus devices, one device may experience 
long memory latencies while another device (for example, a direct-memory access controller) is 
using the external bus. 
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4.6 Instruction Latency Summary
Instruction timing is shown in Table 4-3 through Table 4-7. The latency tables use the following 
conventions:

• Pipelined load/store and floating-point instructions are shown with cycles of total latency 
and throughput cycles separated by a colon.

• Floating-point instructions with a single entry in the cycles column are not pipelined. 
Integer divide instructions are also not pipelined with other divides.

Table 4-3 through Table 4-7 list latencies associated with instructions executed by each execution 
unit. Figure 4-3 describes branch instruction latencies.

Table 4-4 lists system operation instruction latencies. The instructions in Table 4-4 are grouped by 
the serialization they require. Except where otherwise noted, throughput is the same for the 
instructions within each serialization grouping.

Table 4-3. Branch Operation Execution Latencies

Mnemonic Cycles Serialization 

bbelr 1 Pre- and postsync

bblels 1 Pre- and postsync

bcctr[l] 1 —

bclr[l] 1 —

bc[l][a] 1 —

b[l][a] 1 —

Table 4-4. System Operation Instruction Execution Latencies

Mnemonic Serialization 1 Unit Cycles 

isync Refetch —2 0

mbar Store LSU 3:1 

msync Store and postsync. LSU Latency depends on bus response time. 

mfcr Move-from SU1 only 4

mfspr[XER]

mfmsr None SU1 4

mfpmr None SU1 only 4 7

mfspr[CTR] 3, 4 None SU1 or SU2 1

mfspr[LR] 3,5

mfspr[DBSR] Presync, postsync SU1 only 4

mfspr[SSCR] Presync SU1 only 4
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mfspr (all others6) None SU1 only 4 7

mtcrf (single field) None SU1 or SU2 1 (one instruction per execution unit per clock cycle 
throughput)

mtpmr Move-to SU1 1

mtspr[CTR] 8 Move-to SU1 only 1

mtspr[LR]9

mtcrf (multiple field) Move-to, presync, postsync SU1 only 1

mtmsr 

mtspr[CSRR0]

mtspr[DBCR0]

mtspr[DBSR]

mtspr[SSCR] Move-to, postsync SU1 only 1

mtspr[XER]

mtspr[PIDn] Move-to, presync SU1 only 1

mtspr (all others) Move-to SU1 only 1 (one instruction per clock cycle throughput)

msync Store and postsync serialized LSU Latency depends on bus response time

rfi Refetch —1 0

rfci Refetch —1 0

rfmci Refetch —1 0

sc Refetch —1 0

tlbsync Store LSU 3 (1instruction per 18 cycle throughput)

wrtee Postsync, move-to SU1 1 

wrteei Postsync, move-to SU1 1 

1 Section 4.3.3.3, “Instruction Serialization,” describes the different types of serializations listed here. 
2 Refetch serialized instructions (if marked with a 0-cycle execution time) do not have an execute stage, and all refetch 

serialized instructions have 1 cycle between the time they are completed and the time the target/sequential instruction 
enters the fetch1 stage.

3 Decode out of IQ0 only
4 mfctr stalls in decode until any outstanding mtctr finishes
5 mflr stalls in decode until any outstanding mtlr finishes
6 Includes BBTAR, BBEAR, MSR, CSRRn, L1CFGn, DACn, DBCRn, DEAR, DEC, DECAR, ESR, IVPR, IACn, IVORn, 

MASn, PIDn, TLBCFGn, HIDn, L1CSRn, MMUSCR0, BUCSR, MMUCFG, PIR, PVR, SPRGn, SVR, MCSR, MCSRRn, 
SRRn, TBL (read and write), TBU (read and write), TCR, TSR, USPRG0,

7 This instruction take 4 cycles to execute in the single-stage SU1. It occupies SU1 for all 4 cycles, so subsequent 
instructions cannot enter SU1 until this instruction finishes.

8 mtctr stalls in decode until any other outstanding mtctr finishes.Throughput of 1 per 4 cycles for mtctr followed by mtctr. 
9 mtlr stalls in decode until any other outstanding mtlr finishes. Throughput of 1 per 4 cycles for mtlr followed by mtlr. 

Table 4-4. System Operation Instruction Execution Latencies (continued)

Mnemonic Serialization 1 Unit Cycles 
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Table 4-5 lists condition register logical instruction latencies.

Table 4-6 lists integer instruction latencies.

Table 4-5. Condition Register Logical Execution Latencies

Mnemonic Unit Cycles Serialization 1

1 Section 4.3.3.3, “Instruction Serialization,” describes the different types of serializations listed here. 

crand BU 1 —

crandc BU 1 —

creqv BU 1 —

crnand BU 1 —

crnor BU 1 —

cror BU 1 —

crorc BU 1 —

crxor BU 1 —

mcrf BU 1 —

mcrxr BU 1 Presync, postsync

mfcr SU1 1 Move-from

mtcrf (single field) SU1 1 —

mtcrf (multiple fields) BU 2 Move-to, presync, postsync

Table 4-6. SU and MU PowerPC Instruction Execution Latencies 

Mnemonic Unit Cycles

addc[o][.] SU1 or SU2 1 1

adde[o][.] SU1 or SU2 1 1

addi SU1 or SU2 1

addic SU1 or SU2 1

addic. SU1 or SU2 1 1

addis SU1 or SU2 1

addme[o][.] SU1 or SU2 1 1

addze[o][.] SU1 or SU2 1 1

add[o][.] SU1 or SU2 1 1

andc[.] SU1 or SU2 1 1

andi. SU1 or SU2 1 1

andis. SU1 or SU2 1 1

and[.] SU1 or SU2 1 1

cmp SU1 or SU2 1

cmpi SU1 or SU2 1
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cmpl SU1 or SU2 1

cmpli SU1 or SU2 1

cntlzw[.] SU1 1 1

divwu[o][.]
divw[o][.]

MU 4 (rA or rB = 0, minint/-1) 1,2

11 (rA can be represented as an 8-bit value within context (signed or unsigned)) 1, 2

19 (rA operand can be represented as a 16-bit value within context (signed or unsigned)) 1, 2

35 (all others) 1, 2

eqv[.] SU1 or SU2 1 1

extsb[.] SU1 or SU2 1 1

extsh[.] SU1 or SU2 1 1

isel SU1 or SU2 1

mulhwu[.] MU 4:1 1, 3

mulhw[.] MU 4:1 1, 3

mulli MU 4:1 3

mullw[o][.] MU 4:1 1, 3 

nand[.] SU1 or SU2 1 1

neg[o][.] SU1 or SU2 1 1

nor[.] SU1 or SU2 1 1

orc[.] SU1 or SU2 1 1

ori SU1 or SU2 1

oris SU1 or SU2 1

or[.] SU1 or SU2 1 1

rlwimi[.] SU1 or SU2 1 1 

rlwinm[.] SU1 or SU2 1 1

rlwnm[.] SU1 or SU2 1 1

slw[.] SU1 or SU2 1 1

srawi[.] SU1 or SU2 1 1

sraw[.] SU1 or SU2 1 1

srw[.] SU1 or SU2 1 1

subfc[o][.] SU1 or SU2 1 1

subfe[o][.] SU1 or SU2 1 1

subfic SU1 or SU2 1

subfme[o][.] SU1 or SU2 1 1

subfze[o][.] SU1 or SU2 1 1

Table 4-6. SU and MU PowerPC Instruction Execution Latencies  (continued)

Mnemonic Unit Cycles
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Table 4-7 shows load and store instruction latencies. Load/store multiple instruction cycles are 
represented as a fixed number of cycles plus a variable number of cycles, where n represents the 
number of words accessed by the instruction. Pipelined load/store instructions are shown with total 
latency and throughput separated by a colon (latency:throughput). 

subf[o][.] SU1 or SU2 1 1

tw SU1 or SU2 1

twi SU1 or SU2 1

xori SU1 or SU2 1

xoris SU1 or SU2 1

xor[.] SU1 or SU2 1 1

1 If the record bit is set, CR results are not available until after one more cycle. A subsequent instruction can execute 
while CR results are generated.

2 The MU provides a bypass path that allows divide instructions to perform the iterative operations necessary for 
division without blocking the MU pipeline (except to other divide instructions). Therefore, multiply instructions than 
come after a divide instruction can finish execution ahead of the divide.

3 4:1 indicates 4-cycle latency. Once the pipeline is full, throughput is 1 instruction per clock cycle).

Table 4-7. LSU Instruction Latencies

Mnemonic Cycles (Latency:Throughput) 1 Serialization 2

dcba 3:1 Store

dcbf 3:1 Store

dcbi 3:1 —

dcblc 3:1 —

dcbst 3:1 Store

dcbt 3:1 —

dcbtls 3:1 —

dcbtst 3:1 —

dcbtstls 3:1 —

dcbz 3:1 Store

evldd 3:1 —

evlddx 3:1 —

evldh 3:1 —

evldhx 3:1 —

evldw 3:1 —

evldwx 3:1 —

evlhhesplat 3:1 —

Table 4-6. SU and MU PowerPC Instruction Execution Latencies  (continued)

Mnemonic Unit Cycles
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evlhhesplatx 3:1 —

evlhhossplat 3:1 —

evlhhossplatx 3:1 —

evlhhousplat 3:1 —

evlhhousplatx 3:1 —

evlwhe 3:1 —

evlwhex 3:1 —

evlwhos 3:1 —

evlwhosx 3:1 —

evlwhou 3:1 —

evlwhoux 3:1 —

evlwhsplat 3:1 —

evlwhsplatx 3:1 —

evlwwsplat 3:1 —

evlwwsplatx 3:1 —

evstdd 3:1 Store

evstddx 3:1 Store

evstdh 3:1 Store

evstdhx 3:1 Store

evstdw 3:1 Store

evstdwx 3:1 Store

evstwhe 3:1 Store

evstwhex 3:1 Store

evstwho 3:1 Store

evstwhox 3:1 Store

evstwwe 3:1 Store

evstwwex 3:1 Store

evstwwo 3:1 Store

evstwwox 3:1 Store

icbi 3:1 Store

icblc 3:1 Store serialized,

icbt CT=0 0 (no-op ) —

icbt CT=1 3:1 —

icbtls Latency is long and depends on memory 
latency, as well as other resource availability.

Pre- and postsync serialized. 

Table 4-7. LSU Instruction Latencies (continued)

Mnemonic Cycles (Latency:Throughput) 1 Serialization 2
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lbz 3:1 —

lbzu 3:1 3 —

lbzux 3:1 3 —

lbzx 3:1 —

lha 3:1 —

lhau 3:1 3 —

lhaux 3:1 3 —

lhax 3:1 —

lhbrx 3:1 —

lhz 3:1 —

lhzu 3:1 3 —

lhzux 3:1 3 —

lhzx 3:1 —

lmw 2 + n —

lwarx 3 Presync

lwbrx 3:1 —

lwz 3:1 —

lwzu 3:1 3 —

lwzux 3:1 3 —

lwzx 3:1 —

mbar 3:1 Store serialized

msync Latency depends on bus response time. Store and postsync serialized. 

stb 3:1 Store

stbu 3:1 3 Store

stbux 3:1 3 Store

stbx 3:1 Store

sth 3:1 Store

sthbrx Store

sthu 3:1 3 Store

sthux 3:1 3 Store

sthx 3:1 Store

stmw 3 + n Store

stw 3:1 Store

stwbrx 3:1 Store

Table 4-7. LSU Instruction Latencies (continued)

Mnemonic Cycles (Latency:Throughput) 1 Serialization 2
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Table 4-8 lists instruction latencies for SPE and embedded floating-point computational and 
logical instructions. SPE loads and stores are executed by the LSU and are described in Table 4-7.

stwcx. 3:1 Store, presync, postsync

stwu 3:1 3 Store

stwux 3:1 3 Store

stwx 3:1 Store

tlbivax 3:1 —

tlbre 3:1 Presync, postsync, move-to

tlbsx 3:1 Presync, postsync, move-to

tlbwe 3:1 Presync, postsync, move-to

1 For cache operations, the first number indicates the latency for finishing a single instruction; the second indicates the throughput 
for a large number of back-to-back cache operations. The throughput cycle may be larger than the initial latency because more 
cycles may be needed for the data to reach the cache. If the cache remains busy, subsequent cache operations cannot execute. 

2 Section 4.3.3.3, “Instruction Serialization,” describes the different types of serializations listed here. 
3 Load and store update instructions are broken into two instructions at dispatch, a load or store instruction that executes in the 

LSU and an addi that executes in either SU. See Section 4.3.3.1, “GPR and CR Rename Register Operation.”

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies

Mnemonic Unit Cycles (Latency:Throughput)

brinc SU1 or SU2 1

efdabs MU 6:1 

efdadd MU 6:1

efdcfsf MU 6:1 

efdcfsi MU 6:1

efdcfuf MU 6:1 

efdcfui MU 6:1 

efdcmpeq MU 6:1 

efdcmpgt MU 6:1

efdcmplt MU 6:1 

efdctsf MU 6:1

efdctsi MU 6:1 

efdctsiz MU 6:1

efdctuf MU 6:1

efdctui MU 6:1 

efdctuiz MU 6:1

efddiv MU 1 32

efdmul MU 6:1

Table 4-7. LSU Instruction Latencies (continued)

Mnemonic Cycles (Latency:Throughput) 1 Serialization 2
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efdnabs MU 6:1 

efdneg MU 6:1 

efdsub MU 6:1

efdtsteq MU 6:1 

efdtstgt MU 6:1

efdtstlt MU 6:1 

efsabs SU1 or SU2 1

efsadd MU 4:1 

efscfsf MU 4:1

efscfsi MU 4:1 

efscfuf MU 4:1

efscfui MU 4:1 

efscmpeq SU1 4:1

efscmpgt SU1 1

efscmplt SU1 1

efsctsf MU 4:1 

efsctsi MU 4:1

efsctsiz MU 4:1 

efsctuf MU 4:1

efsctui MU 4:1 

efsctuiz MU 4:1

efsdiv MU 1 4 (if either rA or rB is 0.0) 

29 (all other cases)

efsmul MU 4:1 

efsnabs SU1 or SU2 4:1

efsneg SU1 or SU2 1

efssub MU 4:1 

efststeq SU1 or SU2 4:1

efststgt SU1 or SU2 1

efststlt SU1 or SU2 1

evabs SU1 1

evaddiw SU1 1

evaddsmiaaw MU 4:1 

evaddssiaaw MU 4:1

evaddumiaaw MU 4:1 

evaddusiaaw MU 4:1

evaddw SU1 1

evand SU1 1

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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evandc SU1 1

evcmpeq SU1 1

evcmpgts SU1 1

evcmpgtu SU1 1

evcmplts SU1 1

evcmpltu SU1 1

evcntlsw SU1 1

evcntlzw SU1 1

evdivws
evdivwu

MU Both the lower and upper words match the criteria described for the divwx 4-cycle case. 1

Assuming the 4-cycle evdivwx case does not apply, the lower and upper words match the 
criteria described for the divwx 4- or 11-cycle case. 1

Assuming neither the 4- or 11-cycle evdivwx cases apply, the lower and upper words match 
the criteria described for the divwx 4-, 11-, or 19-cycle case. 1

All other cases1

1eveqv SU1

evextsb SU1 1

evextsh SU1 1

evfsabs SU1 1

evfsadd MU 4:1 

evfscfsf MU 4:1

evfscfsi MU 4:1 

evfscfuf MU 4:1

evfscfui MU 4:1 

evfscmpeq MU 4:1

evfscmpgt MU 4:1 

evfscmplt MU 4:1

evfsctsf MU 4:1 

evfsctsi MU 4:1

evfsctsiz MU 4:1 

evfsctuf MU 4:1

evfsctui MU 4:1 

evfsctuiz MU 4:1

evfsdiv MU 4 (if either rA or rB is 0.0) 

29 (all other cases)

evfsmul MU 4:1 

evfsnabs SU1 1

evfsneg SU1 1

evfssub MU 4:1 

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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evfststeq SU1 1

evfststgt SU1 1

evfststlt SU1 1

evmergehi SU1 1

evmergehilo SU1 1

evmergelo SU1 1

evmergelohi SU1 1

evmhegsmfaa MU 4:1 

evmhegsmfan MU 4:1

evmhegsmiaa MU 4:1 

evmhegsmian MU 4:1

evmhegumiaa MU 4:1 

evmhegumian MU 4:1

evmhesmf MU 4:1 

evmhesmfa MU 4:1

evmhesmfaaw MU 4:1 

evmhesmfanw MU 4:1

evmhesmi MU 4:1 

evmhesmia MU 4:1

evmhesmiaaw MU 4:1 

evmhesmianw MU 4:1

evmhessf MU 4:1 

evmhessfa MU 4:1

evmhessfaaw MU 4:1 

evmhessfanw MU 4:1

evmhessiaaw MU 4:1 

evmhessianw MU 4:1

evmheumi MU 4:1 

evmheumia MU 4:1

evmheumiaaw MU 4:1 

evmheumianw MU 4:1

evmheusiaaw MU 4:1 

evmheusianw MU 4:1

evmhogsmfaa MU 4:1 

evmhogsmfan MU 4:1 

evmhogsmiaa MU 4:1

evmhogsmian MU 4:1 

evmhogumiaa MU 4:1 

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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evmhogumian MU 4:1

evmhosmf MU 4:1 

evmhosmfa MU 4:1

evmhosmfaaw MU 4:1 

evmhosmfanw MU 4:1

evmhosmi MU 4:1 

evmhosmia MU 4:1

evmhosmiaaw MU 4:1 

evmhosmianw MU 4:1

evmhossf MU 4:1 

evmhossfa MU 4:1

evmhossfaaw MU 4:1 

evmhossfanw MU 4:1

evmhossiaaw MU 4:1 

evmhossianw MU 4:1

evmhoumi MU 4:1 

evmhoumia MU 4:1

evmhoumiaaw MU 4:1 

evmhoumianw MU 4:1

evmhousiaaw MU 4:1 

evmhousianw MU 4:1

evmra MU 4:1 

evmwhsmf MU 4:1

evmwhsmfa MU 4:1 

evmwhsmi MU 4:1

evmwhsmia MU 4:1 

evmwhssf MU 4:1

evmwhssfa MU 4:1 

evmwhumi MU 4:1

evmwhumia MU 4:1 

evmwlsmiaaw MU 4:1 

evmwlsmianw MU 4:1

evmwlssiaaw MU 4:1 

evmwlssianw MU 4:1

evmwlumi MU 4:1 

evmwlumia MU 4:1

evmwlumiaaw MU 4:1 

evmwlumianw MU 4:1

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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evmwlusiaaw MU 4:1 

evmwlusianw MU 4:1

evmwsmf MU 4:1 

evmwsmfa MU 4:1

evmwsmfaa MU 4:1 

evmwsmfan MU 4:1

evmwsmi MU 4:1 

evmwsmia MU 4:1 

evmwsmiaa MU 4:1

evmwsmian MU 4:1 

evmwssf MU 4:1 

evmwssfa MU 4:1

evmwssfaa MU 4:1 

evmwssfan MU 4:1

evmwumi MU 4:1 

evmwumia MU 4:1

evmwumiaa MU 4:1 

evmwumian MU 4:1

evnand SU1 1

evneg SU1 1

evnor SU1 1

evor SU1 1

evorc SU1 1

evrlw SU1 1

evrlwi SU1 1

evrndw SU1 1

evsel SU1 1

evslw SU1 1

evslwi SU1 1

evsplatfi SU1 1

evsplati SU1 1

evsrwis SU1 1

evsrwiu SU1 1

evsrws SU1 1

evsrwu SU1 1

evsubfsmiaaw MU 4:1 

evsubfssiaaw MU 4:1 

evsubfumiaaw MU 4:1 

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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4.7 Instruction Scheduling Guidelines
This section provides an overview of instruction scheduling guidelines, followed by detailed 
examples showing how to optimize scheduling with respect to various pipeline stages. 
Performance can be improved by avoiding resource conflicts and scheduling instructions to take 
fullest advantage of the parallel execution units. Instruction scheduling can be improved by 
observing the following guidelines:

• To reduce branch mispredictions, separate the instruction that sets CR bits from the branch 
instruction that evaluates them. Because there can be no more than 26 instructions in the 
processor (with the instruction that sets CR in CQ0 and the dependent branch instruction in 
IQ11), there is no advantage to having more than 24 instructions between them. 

• When branching to a location specified by the CTR or LR, separate the mtspr instruction 
that initializes the CTR or LR from the dependent branch instruction. This ensures the 
register values are immediately available to the branch instruction.

• Schedule instructions so two can be dispatched at a time.

• Schedule instructions to minimize stalls due to busy execution units. 

• Avoid scheduling high-latency instructions close together. Interspersing single-cycle 
latency instructions between longer-latency instructions minimizes the effect that 
instructions such as integer divide can have on throughput. 

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls. As many as 14 instructions can be assigned 
CR and GPR renames and can be assigned CQ entries; therefore, 14 instructions can be in 
the execute stages at any one time. (However, note the exception of load or store with 
update instructions, which are broken into two instructions at dispatch.)

• Avoid branches where possible; favor not-taken branches over taken branches.

The following sections give detailed information on optimizing code for e500 pipeline stages. 

evsubfusiaaw MU 4:1 

evsubfw SU1 1

evsubifw SU1 1

evxor SU1 1

1 The MU bypass path allows divide instructions to perform the iterative operations necessary for division without blocking the 
MU pipeline (except to other divide instructions). Therefore, multiply instructions than follow a divide instruction can finish 
execution ahead of the divide. See Section 4.4.3, “Simple and Multiple Unit Execution.”

Table 4-8. SPE and Embedded Floating-Point APU Instruction Latencies (continued)

Mnemonic Unit Cycles (Latency:Throughput)
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4.7.1 Fetch/Branch Considerations

The following lists the resources required to avoid stalling the fetch unit in the course of branch 
resolution:

• The bclr instruction requires LR availability for resolution. 

• The branch conditional on counter decrement and the CR condition requires CTR 
availability or the CR condition must be false.

4.7.1.1 Dynamic Prediction versus No Branch Prediction

No branch prediction (BUCSR[BPEN] = 0) means that the e500 predicts every branch as not 
taken. The dynamic predictor is ignored. Sometimes this simplistic prediction is superior, either 
through informed guessing or through available profile-directed feedback. Run time for code with 
no prediction is more nearly deterministic, which can be useful in embedded systems. 

Note that disabling and enabling the BTB (by clearing and setting BPEN) do not affect the BTB’s 
contents or locks. 

4.7.1.1.1 Position-Independent Code

Position-independent code is used when not all addresses are known at compile time or link time. 
Because performance is typically not good, position-independent code should be avoided when 
possible.

4.7.2 Dispatch Unit Resource Requirements

The following is a general list of the most common reasons that instructions may stall in the 
dispatch unit:

• Presync serializing instructions cannot decode until all previous instructions have completed.

• Postsync serializing instructions inhibit the decoding of any further instructions until they 
have completed. 

• Decode stalls if there is no room in the CQ for two instructions, regardless of how many are 
eligible for decode. 

• When an unconditional branch misses in the BTB, the decoder stalls any further decode 
until it receives an indication that the unconditional branch executed and redirected fetch.

• A branch-class instruction cannot be decoded if there is no room in the BIQ. Although 
mtctr and mtlr do not go to the BIQ, they are also affected by this stall.

• The decode stage cannot decode a second branch-class instruction in a single cycle. This 
applies only to IQ1.

• Decoding stops if there are no free entries in the GIQ, even if the next instruction to decode 
is to the BU or does not require an issues queue slot.
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Additional conditions are described in the e500 Software Optimization Guide. The following 
sections describe how to optimize code for dispatch. 

4.7.2.1 Dispatch Groupings

Maximum dispatch throughput is two instructions per cycle. The dispatch process includes 
checking for availability of CQ and issue queue entries and a branch ready check.

The dispatcher can send two instructions to the two issues queues, with a maximum of two to the 
GIQ and one to the BIQ. 

The dispatcher can rename as many as two GPRs per cycle, so a two-instruction dispatch window 
composed of add and mulli could be dispatched in one cycle.

Note that a load/store update form (for example, lwzu), requires a rename register for the update. 
This means an lwzu needs two GPR renames. The restriction to two GPR renames in a dispatch 
group means that the sequence, lwzu, add, cannot be dispatched in one cycle.

4.7.3 Issue Queue Resource Requirements

Instructions cannot be issued unless the specified execution unit is available. The following 
sections describe how to optimize use of the issue queues.

4.7.3.1 General Issue Queue (GIQ)

As many as two instructions can be dispatched to the four-entry general issue queue (GIQ) per 
cycle. As many as two instructions can be issued in any order from GIQ0 and GIQ1 to the LSU, 
MU, SU1, and SU2 reservation stations.

Issuing instructions out-of-order can help in a number of situations. For example, if the MU is busy 
and a multiply is stalled at the bottom GIQ entry, the instruction in the next GIQ entry can be issued 
to LSU or SU1, bypassing that multiply. 

4.7.3.2 Branch Issue Queue (BIQ)

One instruction per clock cycle can be dispatched to the BIQ. One instruction can be issued to the 
branch execution unit out of BIQ0. 

4.7.4 Completion Unit Resource Requirements

The e500 completion queue has 14 entries, so as many as 14 instructions can be in execution. The 
following resources are required to avoid stalls in the completion unit; note that the two 
completion entries are described as CQ0–CQ1, where CQ0 is located at the end of the CQ (see 
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Figure 4-2). The following list describes some of the common conditions that may cause 
instructions to stall in the completion stage: 

• A refetch-serialized instruction has generated a pending flush of the instruction pipeline.

• There are no finished instructions in the CQ.

• Only one store instruction can complete per cycle.

• A store cannot complete out of CQ1 if the instruction producing its data value is completing 
out of CQ0 at the same time.

• Some instructions must complete out of CQ0.

• All refetch-serialized instructions except for isync must stall an extra cycle before 
completing. This includes phantom branches, as described in Section 4.4.1.3.4, “BTB 
Special Cases—Phantom Branches and Multiple Matches.”

• If the instruction in CQ0 is a refetch-serialized instruction, the entry in CQ1 should not be 
considered valid.

• If the instruction in CQ0 is a mispredicted branch, the entry in CQ1 should not be 
considered valid. 

These and other less common conditions are described in the e500 Software Optimization Guide. 

4.7.4.1 Completion Groupings

The e500 can retire as many as two instructions per cycle. Only two renames can be retired per 
cycle. For example, an lwzu, add sequence has three GPR rename targets so both instructions 
cannot retire in the same cycle. The lwzu is broken during decode into two parts, each of which 
updates one rename. Both halves of the lwzu instruction can retire in one cycle. The add retires 
1 cycle later.

4.7.5 Serialization Effects

The e500 supports the serialization described in Section 4.3.3.3, “Instruction Serialization.” 

Tables in Section 4.6, “Instruction Latency Summary,” indicate which instructions require 
serialization.

4.7.6 Execution Unit Considerations

The following sections describe how to optimize use of the execution units. 

4.7.6.1 SU Considerations

Each SU has one reservation station in which instructions are held until operands are available. 
Also note that some SU1 instructions take more than one cycle and that some are not fully 
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pipelined. A new instruction cannot begin execution if the previous instruction is still executing. 
Although the majority of instructions executed by the SUs require only a single cycle, mfcr and 
many mfspr instructions require several cycles and can cause stalls.

A new instruction cannot execute if one of its operands is not yet available. A new instruction that 
is marked as completion-serialized cannot begin execution until it is signalled from the completion 
unit that it is the oldest instruction.

4.7.6.2 MU Considerations

The MU is similar to the SUs. The MU has one reservation station. The bypass unit, described in 
Section 4.4.3, “Simple and Multiple Unit Execution,” allows divide instructions to execute in 
parallel with other MU instructions. Note the following:

• A new instruction cannot execute if one of its operands is not yet available.

• A new instruction that is marked as completion-serialized cannot begin execution until it is 
signaled from the completion unit that it is the oldest instruction.

• A new divide instruction cannot begin execution if the previous divide instruction is still 
executing.

• A new instruction cannot begin execution if it would finish execution at the same time as 
an executing divide instruction. As shown in Figure 4-1 and Figure 4-1, the MU consists of 
a multiply subunit and a divide subunit. These subunits share the same reservation station 
and result bus. In general, when a divide is in progress (which could take up to 35 cycles), 
new multiply instructions can proceed down the four-stage multiply subunit. However, 
because there is only one result bus, the processor ensures that a divide and a multiply do 
not collide on the result bus, with both attempting to write results at the same time. When 
a divide is 4 cycles away from providing its result, it blocks a new 4-cycle multiply from 
beginning execution (inserting a bubble in the multiply subunit) so that when the divide 
provides its result, no multiply will collide with it.

4.7.6.3 LSU Considerations

The following sections describe situations that can affect LSU timing. 

4.7.6.3.1 Load/Store Interaction

When loads and stores are intermixed, stores normally lose arbitration to the cache. A store that 
repeatedly loses arbitration can stay in the core interface unit store queue much longer than 
3 cycles, which is not normally a performance problem because a store in this queue is effectively 
part of the architecture-defined state. However, sometimes—including if the store queue fills up 
or if a store causes a pipeline stall (as in a partial address alias case of store to load)—the arbiter 
gives higher priority to the store, guaranteeing forward progress.
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4.7.6.3.2 Misalignment Effects

Misalignment, particularly the back-to-back misalignment of loads, can cause strange 
performance effects. The e500 splits misaligned transactions into two transactions, so misaligned 
load latency is at least 1 cycle greater than the default latency. 

For loads that hit in the cache, the throughput of the LSU degrades to one misaligned load every 
3 cycles. Similarly, stores can be translated at a rate of one store per 3 cycles. Additionally, after 
translation, each misaligned store is treated as two separate store queue entries, each requiring a 
cache access.

A word or half-word storage access requires multiple accesses if it crosses a double-word 
boundary. Extended vector loads and stores cause alignment exceptions if they cross their natural 
alignment boundaries (as show in Figure 4-9).

 

Frequent unaligned accesses are discouraged because of the impact on performance.

Note the following:

• Accesses that cross a translation boundary may be restarted—that is, a misaligned access 
that crosses a page boundary is entirely restarted if the second portion of the access causes 
a TLB miss. This may result in the first portion being accessed twice.

• Accesses that cross a translation boundary where the endianness changes cause a 
byte-ordering DSI exception.

• Future generations of high-performance microprocessors that implement the PowerPC 
architecture may experience greater misalignment penalties.

Table 4-9. Natural Alignment Boundaries for Extended Vector Instructions

Instruction Boundary

evld{d,w,h}
evld{d,w,h}x
evstd{d,w,h}
evstd{d,w,h}x

Double-word

evlwwsplat{x}
evlwhe{x}
evlwhou{x}
evlwhos{x}
evlwhsplat{x}
evstwwe{x}
evstwwo{x}
evstwhe{x}
evstwho{x}

Word

evlhhesplat{x}
evlhhousplat{x}
evlhhossplat{x}

Half
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If a load misses in the L1 data cache, critical data forwarding occurs, followed shortly by the rest 
of the cache line.

4.7.6.3.3 Load Miss Pipeline

As shown in Figure 4-10, the e500v1 supports as many as four outstanding load misses in the load 
miss queue (LMQ); the e500v2 LMQ supports as many as nine. Table 4-10 shows a load followed 
by a dependent add. Here, the load misses in the data cache and the full line is reloaded into the 
data cache. 

 

Table 4-10. Data Cache Miss, L2 Cache Hit Timing 

Instruction 0 1 2 3 4 5 6

lwz r4,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 C

add r5,r4,r3 — — — — — E C
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Chapter 5  
Interrupts and Exceptions
This chapter provides a general description of the PowerPC Book E interrupt and exception model 
as it is implemented in the e500 core complex. It identifies and describes the portions of the 
interrupt model that are defined by the Book E architecture and by the Freescale implementation 
standards (EIS).

5.1 Overview
A note on terminology:

The Book E architecture has defined additional resources for interrupt handling. As a result, the 
terms ‘interrupt’ and ‘exception’ differ somewhat from their use in previous Freescale 
documentation, such as the Programming Environments Manual. Use of these terms in this 
document are as follows:

• An interrupt is the action in which the processor saves its context (typically the machine 
state register (MSR) and next instruction address) and begins execution at a predetermined 
interrupt handler address with a modified MSR.

• An exception is the event that, if enabled, causes the processor to take an interrupt. Book E 
describes exceptions as being generated by signals from internal and external peripherals, 
instructions, the internal timer facility, debug events, or error conditions.

There are three categories of interrupts, described as follows:

• Noncritical interrupts—First-level interrupts that let the processor change program flow to 
handle conditions generated by external signals, errors, or unusual conditions arising from 
program execution, or from programmable timer-related events.

These interrupts are largely identical to those defined by the OEA portion of the PowerPC 
architecture. They use save and restore registers (SRR0/SRR1) to save state when they are 
taken, and they use the rfi instruction to restore state. Asynchronous noncritical interrupts 
can be masked by the external interrupt enable bit, MSR[EE].

• Critical interrupts—Critical interrupts (critical input, watchdog timer, and debug interrupts) 
can be taken during a noncritical interrupt or during regular program flow. They use the 
critical save and restore registers (CSRR0/CSRR1) to save state when they are taken, and 
they use the rfci instruction to restore state.

Critical input and watchdog timer critical interrupts can be masked by the critical enable 
bit, MSR[CE]. Debug events can be masked by the debug enable bit MSR[DE]. Book E 
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defines the critical input, watchdog timer, debug, and machine check interrupts as critical 
interrupts, but the EIS defines a third set of resources for the machine check interrupt, as 
described below.

• Machine check interrupt—The EIS defines a separate set of resources for the machine check 
interrupt, which is similar to the Book E–defined critical interrupt type. Machine check 
interrupts on an EIS device use the machine check save and restore registers 
(MCSRR0/MCSRR1) to save state when they are taken, and they use the rfmci instruction 
to restore state. These interrupts can be masked by the machine check enable bit, MSR[ME].

All interrupts except the machine check interrupt are ordered within the two categories of 
noncritical and critical, such that only one interrupt of each category is reported, and when it is 
processed (taken), no program state is lost. Because save/restore register pairs are serially 
reusable, program state may be lost when an unordered interrupt is taken. (See Section 5.10, 
“Interrupt Ordering and Masking”.)

All interrupts except the machine check interrupt are context synchronizing as defined in the 
instruction model chapter of the EREF. A machine check interrupt acts like a 
context-synchronizing operation with respect to subsequent instructions. 

5.2 e500 Interrupt Definitions
This section gives an overview of additions and modifications to the Book E interrupt model 
defined by the EIS and implemented on the e500. Specific details are also provided throughout 
this chapter. Except for the following, the core complex reports exceptions as specified in Book E:

• The machine check exception differs as follows:

— It is not processed as a critical interrupt, but uses MCSRR0 and MCSRR1 for saving the 
return address and the MSR in case the machine check is recoverable.

— Return From Machine Check Interrupt instruction (rfmci) is implemented to support 
the return to the address saved in MCSRR0.

— A machine check syndrome register, MCSR, is used to log the cause of the machine 
check (instead of ESR). See Section 2.7.2.4, “Machine Check Syndrome Register 
(MCSR),” for a description of the MCSR.

The core complex reports the machine check exception as described in Section 5.7.2, 
“Machine Check Interrupt.” 
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• The following interrupts are defined for use with the embedded floating-point and 
signal-processing (SPE) APUs:

— SPE/embedded floating-point unavailable interrupt. IVOR32 (SPR 528) contains the 
vector offset. See Section 5.7.15.1, “SPE/Embedded Floating-Point APU Unavailable 
Interrupt.”

— Embedded floating-point data interrupt. IVOR33 (SPR 529) contains the vector offset. 
See Section 5.7.15.2, “Embedded Floating-Point Data Interrupt.”

— Embedded floating-point round interrupt. IVOR34 (SPR 530) contains the vector offset. 
See Section 5.7.15.3, “Embedded Floating-Point Round Interrupt.”

The following additional bits are defined to support SPE and SPFP exceptions:

— MSR[38] is defined as the vector available bit (SPE). If this bit is clear and software 
attempts to execute any of the SPE instructions, the SPE unavailable interrupt is taken. 
If this bit is set, software can execute any SPE instructions.

NOTE
On the e500v1, all SPFP instructions also require MSR[SPE] to be set. 
Any attempt to execute a vector or scalar SPFP instruction when 
MSR[SPE] is 0 causes an SPE APU unavailable interrupt. On the 
e500v2, when MSR[SPE] is 0, this interrupt is caused by DPFP 
instructions and SPFP vector instructions, but not by SPFP scalar 
instructions (in other words, only those instructions that access the 
upper half of the GPRs).

Table 5-1 presents this information in table form.

For more information, see the “Embedded Vector and Scalar 
Single-Precision Floating-Point APU Instructions,” section of the 
“Instruction Model” chapter of the EREF.

Table 5-1. SPE APU Unavailable Interrupt Generation When MSR[SPE] = 0

APU e500v1 e500v2

SPE x x

Single-Precision Floating-Point Vector x x

Single-Precision Floating-Point Scalar x —

Double-Precision Floating-Point N/A x
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— ESR[SPE], the SPE exception bit, is set when the processor reports an exception related 
to the execution of SPFP or SPE instructions.

NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices.

• The debug exception implementation does not support IAC3, IAC4, DAC3, and DAC4 
comparisons.

• The core complex supports instruction address compare (IAC1 and IAC2) and data address 
compare (DAC1 and DAC2) for effective addresses only. Real-address support is not 
provided.

• The e500 does not support the Book E–defined floating-point unavailable and auxiliary 
processor unavailable interrupts.

• Data value compare (DVC) debug exceptions are not supported.

• The interrupt priorities differ from those specified in Book E as described in Section 5.11.1, 
“e500 Exception Priorities.”

• Alignment exceptions. Vector operations can cause alignment exceptions as described in 
Section 5.7.6, “Alignment Interrupt.”

• Book E and the machine check APU define sources of externally generated interrupts. 

5.2.1 Recoverability from Interrupts

All interrupts except some machine check interrupts are recoverable. The state of the core complex 
(return address and MSR contents) is saved when a machine check interrupt is taken. The 
conditions that cause a machine check may or may not prohibit recovery. Section 5.7.2.1, “Core 
Complex Bus (CCB) and L1 Cache Machine Check Errors,” provides additional information 
about machine check recoverability.
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5.3 Interrupt Registers
Table 5-2 summarizes registers used for interrupt handling.

Table 5-2. Interrupt Registers Defined by the PowerPC Architecture

Register Description

Book E Interrupt Registers

Save/restore register 0 
(SRR0)

On a noncritical interrupt, SRR0 is set to the current or next instruction address. When rfi is executed, 
instruction execution continues at the address in SRR0. In general, SRR0 contains the address of the 
instruction that caused the noncritical interrupt or the address of the instruction to return to after a 
noncritical interrupt is serviced.

Save/restore register 1 
(SRR1)

When a noncritical interrupt is taken, MSR contents are placed into SRR1. When rfi is executed, SRR1 
contents are placed into the MSR. SRR1 bits that correspond to reserved MSR bits are also reserved. 
Note that an MSR bit that is reserved may be altered by rfi.

Critical save/restore 
register 0 (CSRR0)

When a critical interrupt is taken, CSRR0 is set to the current or next instruction address. When rfci is 
executed, instruction execution continues at the address in CSRR0. In general, CSRR0 contains the 
address of the instruction that caused the critical interrupt, or the address of the instruction to return to 
after a critical interrupt is serviced.

Critical save/restore 
register 1 (CSRR1)

When a critical interrupt is taken, MSR contents are placed into CSRR1. When rfci is executed, CSRR1 
contents are placed into the MSR. CSRR1 bits that correspond to reserved MSR bits are also reserved. 
Note that an MSR bit that is reserved may be altered by rfci.

Data exception address 
register (DEAR)

DEAR contains the address referenced by a load, store, or cache management instruction that caused 
an alignment, data TLB miss, or data storage interrupt.

Interrupt vector prefix 
register (IVPR)

IVPR[32–47] provides the high-order 48 bits of the address of the interrupt handling routine for each 
interrupt type. The 16-bit vector offsets are concatenated to the right of IVPR to form the address of the 
interrupt handling routine. IVPR[48–63] are reserved. 

Exception syndrome 
register (ESR)

Provides a syndrome to differentiate between exceptions that can generate the same interrupt type. 
When one of these types of interrupts is generated, bits corresponding to the specific exception that 
generated the interrupt are set and all other ESR bits are cleared. Other interrupt types do not affect 
the ESR. ESR does not need to be cleared by software. Table 5-3 shows ESR bit definitions.
The EIS defines ESR[56] as the SPE exception bit (SPE). It is set when the processor reports an 
exception related to the execution of an embedded floating-point or SPE instruction. Note that the EIS 
definition of the machine check interrupt uses the machine check syndrome register (MCSR) rather 
than the ESR. 

Interrupt vector offset 
registers (IVORs)

Holds the quad-word index from the base address provided by the IVPR for each interrupt type. 
IVOR0–IVOR15 are provided for defined interrupt types. SPR numbers corresponding to 
IVOR16–IVOR31 are reserved. IVOR[32–47,60–63] are reserved. SPR numbers for IVOR32–IVOR63 
are allocated for implementation-dependent use. (IVOR32–IVOR34 (SPR 528–530) are used by 
interrupts defined by the EIS.) IVOR assignments are shown below.

IVOR Number Interrupt Type
IVOR0 Critical input
IVOR1 Machine check
IVOR2 Data storage
IVOR3 Instruction storage
IVOR4 External input
IVOR5 Alignment
IVOR6 Program
IVOR8 System call
IVOR10 Decrementer

IVOR Number Interrupt Type
IVOR11 Fixed-interval timer interrupt
IVOR12 Watchdog timer interrupt
IVOR13 Data TLB error
IVOR14 Instruction TLB error
IVOR15 Debug
VOR32 SPE APU unavailable
IVOR33 Embedded floating-point data 
IVOR34 Embedded floating-point round
IVOR35 Performance monitor
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Table 5-3 shows ESR bit definitions.

Machine state register 
(MSR)

MSR[38] is defined as the vector available bit (SPE). It functions as follows:
0 For the e500v2, if software attempts to execute an instruction that tries to access the upper word of 

a 64-bit GPR, an SPE APU unavailable interrupt is taken. For the e500v1, the interrupt is also taken 
if an attempt is made to execute an embedded SPFP scalar instruction.

1 Software can execute any embedded floating-point or SPE instructions.

EIS-Specific Interrupt Registers

Machine check 
save/restore register 0 
(MCSRR0)

When a machine check interrupt is taken, MCSRR0 is set to the current or next instruction address. 
When rfmci is executed, instruction execution continues at the address in MCSRR0. In general, 
MCSRR0 contains the address of the instruction that caused the machine check interrupt, or the 
address of the instruction to return to after a machine check interrupt is serviced.

Machine check 
save/restore register 1 
(MCSRR1)

When a machine check interrupt is taken, MSR contents are placed into MCSRR1. When rfmci is 
executed, MCSRR1 contents are restored to MSR. MCSRR1 bits that correspond to reserved MSR bits 
are also reserved. Note that an MSR bit that is reserved may be altered by rfmci.

Machine check 
syndrome register 
(MCSR)

When a machine check interrupt is taken, the MCSR is updated to differentiate between machine check 
conditions. Table 5-4 lists e500 bit assignments. The MCSR also indicates whether a machine check 
condition is recoverable. ABIST status is logged in MCSR[48–54]. These read-only bits do not initiate 
machine check (or any other interrupt). An ABIST bit being set indicates an error being detected in the 
corresponding module. 
Note that processors that do not implement the machine check APU use the Book E–defined ESR for 
this purpose. 

Machine check address 
register (MCAR)

When a machine check interrupt is taken, MCAR is updated with the address of the data associated 
with the machine check. Note that if a machine check interrupt is caused by a signal, the MCAR 
contents are not meaningful. See Section 2.7.2.3, “Machine Check Address Register (MCAR).”

Table 5-3. Exception Syndrome Register (ESR) Definition

Bits Name Syndrome Interrupt Types

32–35 — Allocated —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 — Reserved, should be cleared. —

40 ST Store operation Alignment, data storage, data 
TLB error

41 — Reserved, should be cleared. —

42 DLK Cache locking. Settings are implementation-dependent. On the e500, DLK is 
set when a DSI occurs because dcbtls, dcbtstls, or dcblc is executed in user 
mode and MSR[UCLE] = 0. 

Data storage

43 ILK (EIS) Set when a DSI occurs because icbtl or icblc is executed in user mode 
(MSR[PR] = 1) and MSR[UCLE] = 0

Data storage

44–45 — Reserved, should be cleared. 1 —

Table 5-2. Interrupt Registers Defined by the PowerPC Architecture (continued)

Register Description



Interrupts and Exceptions

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 5-7

An implementation may define additional ESR bits to identify implementation-specific or 
architected interrupt types; the EIS defines ESR[ILK] and ESR[SPE].

NOTE
System software may need to identify the type of instruction that 
caused the interrupt and examine the TLB entry and ESR to fully 
identify the exception or exceptions. For example, because both 
protection violation and byte-ordering exception conditions may be 
present, and either causes a data storage interrupt, system software 
would have to look beyond ESR[BO], such as the state of MSR[PR] 
in SRR1 and the TLB entry page protection bits, to determine if a 
protection violation also occurred.

Table 5-4 shows MCSR bit definitions. Section 5.7.2.1, “Core Complex Bus (CCB) and L1 Cache 
Machine Check Errors,” provides information about machine check recoverability. 

 

46 BO Byte-ordering exception Data storage, instruction 
storage

47–55 — Reserved, should be cleared. —

56 SPE SPE exception bit. Book E allocates this bit for implementation-dependent use, 
so it may have different functions on other implementations. 

—

57–63 — Allocated for implementation-dependent use. Reserved, should be cleared. —

1 Book E defines bit 45 as PUO (unimplemented operation exception). On the e500, unimplemented instructions are handled 
as illegal instructions.

Table 5-4. Machine Check Syndrome Register (MCSR) Field Descriptions

Bits Name Description

32 MCP Machine check input signal

33 ICPERR Instruction cache parity error

34 DCP_PERR Data cache push parity error

35 DCPERR Data cache parity error

36–55 — Reserved, should be cleared.

56 BUS_IAERR Bus instruction address error

57 BUS_RAERR Bus read address error

58 BUS_WAERR Bus write address error

59 BUS_IBERR Bus instruction data bus error

60 BUS_RBERR Bus read data bus error

61 BUS_WBERR Bus write bus error

62 BUS_IPERR Bus instruction parity error

63 BUS_RPERR Bus read parity error

Table 5-3. Exception Syndrome Register (ESR) Definition (continued)

Bits Name Syndrome Interrupt Types



PowerPC e500 Core Family Reference Manual, Rev. 1

5-8 Freescale Semiconductor

Interrupts and Exceptions

5.4 Exceptions
Exceptions are caused directly by instruction execution or by an asynchronous event. In either 
case, the exception may cause one of several types of interrupts to be invoked.

The following examples are of exceptions caused directly by instruction execution:

• An attempt to execute a reserved-illegal instruction (illegal instruction exception-type 
program interrupt)

• An attempt by an application program to execute a privileged instruction or to access a 
privileged SPR (privileged instruction exception-type program interrupt)

• In general, an attempt by an application program to access a nonexistent SPR 
(unimplemented operation instruction exception-type program interrupt). Note the 
following behavior defined by the EIS:

— If MSR[PR] = 1 (user mode), SPR bit 5 = 0 (user-accessible SPR), and the SPR number 
is invalid, an illegal instruction exception is taken. 

— If MSR[PR] = 0 (supervisor mode) and the SPR number is invalid, an illegal instruction 
exception is taken. 

— If MSR[PR] = 1, SPR bit 5 = 1, and invalid SPR address (supervisor-only SPR), a 
privileged instruction exception-type program interrupt is taken.

• Execution of a defined instruction using an invalid form (illegal instruction exception-type 
program interrupt, unimplemented operation exception-type program interrupt, or 
privileged instruction exception-type program interrupt). The e500 does not support 
unimplemented operation exceptions. Such conditions are processed as illegal instruction 
exceptions.

• An attempt to access a location that is either unavailable (instruction or data TLB error 
interrupt) or not permitted (instruction or data storage interrupt)

• An attempt to access a location with an effective address alignment not supported by the 
implementation (alignment interrupt)

• Execution of a System Call (sc) instruction (system call interrupt)

• Execution of a trap instruction whose trap condition is met (trap interrupt type)

• Execution of a defined instruction that is not implemented (illegal instruction exception or 
unimplemented operation exception-type program interrupt)

• Execution of an allocated instruction that is not implemented (illegal instruction exception 
or unimplemented operation exception-type program interrupt)

Invocation of an interrupt is precise. When the interrupt is invoked imprecisely, the excepting 
instruction does not appear to complete before the next instruction starts (because the invocation 
of the interrupt required to complete execution has not occurred).
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5.5 Interrupt Classes
All interrupts except machine check are categorized by two independent characteristics:

• Critical/noncritical. Some interrupt types demand immediate attention even if other 
interrupt types being processed have not had the opportunity to save the machine state (that 
is, return address and captured state of the MSR). To enable taking a critical interrupt 
immediately after a noncritical interrupt is taken (that is, before the machine state is saved), 
two sets of save/restore register pairs are provided. Critical interrupts use CSRR0/CSRR1, 
and noncritical interrupts use SRR0/SRR1. 

• Asynchronous/synchronous. Asynchronous interrupts are caused by events external to 
instruction execution; synchronous interrupts are caused by instruction execution and are 
either precise or imprecise. 

Table 5-5 describes asynchronous and synchronous interrupts.

Table 5-5. Asynchronous and Synchronous Interrupts

Class Description

Asynchronous Caused by events independent from instruction execution. For asynchronous interrupts, the address reported to 
the interrupt handling routine is the address of the instruction that would have executed next, had the 
asynchronous interrupt not occurred.

Synchronous,
Precise

Caused directly by instruction execution. Synchronous interrupts are precise or imprecise. 
These interrupts precisely indicate the address of the instruction causing the exception or, for certain 
synchronous, precise interrupt types, the address of the immediately following instruction. When the execution 
or attempted execution of an instruction causes a synchronous, precise interrupt, the following conditions exist 
at the interrupt point:
 • Whether SRR0 or CSRR0 addresses the instruction causing the exception or the next instruction is 

determined by the interrupt type and status bits.
 • An interrupt is generated such that all instructions before the instruction causing the exception appear to have 

completed with respect to the executing processor. However, some accesses associated with these preceding 
instructions may not have been performed with respect to other processors and mechanisms.

 • The exception-causing instruction may appear not to have begun execution (except for causing the exception), 
may be partially executed, or may have completed, depending on the interrupt type. See Section 5.9, “Partially 
Executed Instructions.”

 • Architecturally, no instruction beyond the exception-causing instruction executed.



PowerPC e500 Core Family Reference Manual, Rev. 1

5-10 Freescale Semiconductor

Interrupts and Exceptions

5.5.1 Requirements for System Reset Generation

Book E does not specify a system reset interrupt as was defined in the AIM version of the 
PowerPC architecture. On the e500, a system reset is initiated in one of the following ways:

• By asserting hreset, which resets the internal state of the core complex

• By writing a 1 to DBCR0[34], if MSR[DE] = 1 

5.6 Interrupt Processing
Associated with each kind of interrupt is an interrupt vector, the address of the initial instruction 
that is executed when an interrupt occurs.

Interrupt processing consists of saving a small part of the processor’s state in certain registers, 
identifying the cause of the interrupt in another register, and continuing execution at the 
corresponding interrupt vector location. When an exception exists that causes an interrupt to be 
generated and it has been determined that the interrupt can be taken, the following steps are 
performed:

1. SRR0 (for noncritical class interrupts) or CSRR0 (for critical class interrupts) or MCSRR0 
for machine check interrupts is loaded with an instruction address that depends on the type 
of interrupt; see the specific interrupt description for details.

2. The ESR or MCSR is loaded with information specific to the exception type. Note that 
many interrupt types can only be caused by a single type of exception event, and thus do 
not need nor use an ESR setting to indicate the cause of the interrupt.

Synchronous,
Imprecise

Imprecise interrupts may indicate the address of the instruction causing the exception that generated the interrupt 
or some instruction after that instruction. When execution or attempted execution of an instruction causes an 
imprecise interrupt, the following conditions exist at the interrupt point.
 • SRR0 or CSRR0 addresses either the exception-causing instruction or some instruction following the 

exception-causing instruction that generated the interrupt.
 • An interrupt is generated such that all instructions preceding the instruction addressed by SRR0 or CSRR0 

appear to have completed with respect to the executing processor.
 • If context synchronization forces the imprecise interrupt due to an instruction that causes another exception 

that generates an interrupt (for example, alignment or data storage interrupt), SRR0 addresses the 
interrupt-forcing instruction, which may have partially executed (see Section 5.9, “Partially Executed 
Instructions”).

 • If execution synchronization forces an imprecise interrupt due to an execution-synchronizing instruction other than 
msync or isync, SRR0 or CSRR0 addresses the interrupt-forcing instruction, which appears not to have begun 
execution (except for its forcing the imprecise interrupt). If the interrupt is forced by msync or isync, SRR0 or 
CSRR0 may address msync or isync, or the following instruction.

 • If context or execution synchronization forces an imprecise interrupt, the instruction addressed by SRR0 or 
CSRR0 may have partially executed (see Section 5.9, “Partially Executed Instructions”). No instruction 
following the instruction addressed by SRR0 or CSRR0 has executed.

Table 5-5. Asynchronous and Synchronous Interrupts (continued)

Class Description
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3. SRR1 (for noncritical class interrupts) or CSRR1 (for critical class interrupts) or MCSRR1 
for machine check interrupts is loaded with a copy of the MSR contents.

4. New MSR values take effect beginning with the first instruction following the interrupt. 
The MSR is updated as follows:

— MSR[SPE,WE,EE,PR,FP,FE0,FE1,IS,DS] are cleared by all interrupts.

— MSR[CE,DE] are cleared by critical class interrupts and unchanged by noncritical class 
interrupts.

— MSR[ME] is cleared by machine check interrupts and unchanged by other interrupts.

— Other defined MSR bits are unchanged by all interrupts.

MSR fields are described in Section 2.5.1, “Machine State Register (MSR).”

5. Instruction fetching and execution resumes, using the new MSR value, at a location 
specific to the interrupt type (IVPR[32–47] || IVORn[48–59] || 0b0000)

The IVORn for the interrupt type is described in Table 5-6. IVPR and IVOR contents are 
indeterminate upon reset and must be initialized by system software.

Interrupts do not clear reservations obtained with load and reserve instructions. The operating 
system should do so at appropriate points, such as at process switch.

At the end of a noncritical interrupt handling routine, executing rfi causes the MSR to be restored 
from SRR1 and instruction execution to resume at the address contained in SRR0. Likewise, rfci 
and rfmci perform the same function at the end of critical and machine check interrupt handling 
routines respectively, using the critical and machine check save/restore registers. 

NOTE
In general, at process switch, due to possible process interlocks and 
possible data availability requirements, the operating system needs to 
consider executing the following:

• stwcx.—Clear outstanding reservations to prevent pairing a lwarx 
in the old process with a stwcx. in the new one

• msync—Ensure that memory operations of an interrupted process 
complete with respect to other processors before that process 
begins executing on another processor

• rfi, rfci, rfmci, or isync—Ensure that instructions in the new 
process execute in the new context
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5.7 Interrupt Definitions
Table 5-6 summarizes each interrupt type, the various exception types that may cause that 
interrupt, the interrupt classification, which ESR bits can be set, which MSR bits can mask the 
interrupt type, and which IVOR is used to specify the vector address.

Table 5-6. Interrupt and Exception Types

IVOR Interrupt Type Exception Type
Exception 

Class1 ESR2 Mask Bits Notes Page

IVOR0 Critical input Critical input A, C  — MSR[CE] 3 5-13

IVOR1 Machine check Machine check C — MSR[ME] 4,5 5-14

IVOR2 Data storage 
(DSI)

Access SP [SPE],[ST] — 6 5-19

Load reserve or store 
conditional to write- through 
required location (W = 1)

SP [ST] — 6

Cache locking SP [DLK,ILK],[ST] — 7

Byte ordering SP [ST],BO — —

IVOR3 Instruction 
storage (ISI)

Access SP — — — 5-20

Byte ordering SP BO — —

IVOR4 External input A — MSR[EE] 3 5-21

IVOR5 Alignment SP [ST],[SPE,ST] — — 5-22

IVOR6 Program Illegal SP PIL — — 5-24

Privileged SP PPR — —

Trap SP PTR — —

IVOR8 System call SP — — — 5-25

IVOR10 Decrementer A — MSR[EE], TCR[DIE] — 5-25

IVOR11 Fixed interval timer A — MSR[EE], TCR[FIE] — 5-26

IVOR12 Watchdog A, C — MSR[CE], TCR[WIE] — 5-27

IVOR13 Data TLB error Data TLB miss SP [SPE],[ST] — — 5-27

IVOR14 Instruction TLB 
error

Instruction TLB miss SP — — — 5-29

IVOR15 Debug Trap (synchronous) A, SP, C — MSR[DE], DBCR0[IDM] — 5-30

Instruction address 
compare (synchronous)

A, SP, C — MSR[DE], DBCR0[IDM] —

Data address compare 
(synchronous)

A, SP, C — MSR[DE], DBCR0[IDM] —

Instruction complete SP, C — MSR[DE], DBCR0[IDM] 8

Branch taken SP, C — MSR[DE], DBCR0[IDM] 8

Return from interrupt SP, C — MSR[DE], DBCR0[IDM] —

Interrupt taken SI, C — MSR[DE], DBCR0[IDM] —

Unconditional debug event SI, C — MSR[DE], DBCR0[IDM] —
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5.7.1 Critical Input Interrupt

A critical input interrupt occurs when no higher priority exception exists, a critical input exception 
is presented to the interrupt mechanism, and MSR[CE] = 1. The specific definition of a critical 
input exception is implementation-dependent but is typically caused by assertion of an 
asynchronous signal that is part of the system. In addition to MSR[CE], implementations may 
provide other ways to mask the critical input interrupt.

IVOR32 SPE/
embedded 
floating-point 
APU unavailable

SPE/embedded 
floating-point APU 
unavailable

SP — — 9 5-31

IVOR33 Embedded 
floating-point 
data

Embedded floating-point 
data exception

SP — — 9 5-32

IVOR34 Embedded 
floating-point 
round

Embedded floating-point 
round exception

SP — — 9 5-32

1 A = asynchronous, C = critical, SI = synchronous, imprecise, SP = synchronous, precise
2 In general, when an interrupt causes an ESR bit or bits to be set (or cleared) as indicated in the table, it also causes all other 

ESR bits to be cleared. Special rules may apply for implementation-specific ESR bits

Legend:

xxx (no brackets) means ESR[xxx] is set.
[xxx] means ESR[xxx] could be set.
[xxx,yyy] means either ESR[xxx] or ESR[yyy] may be set, but never both.
{xxx,yyy} means either ESR[xxx] or ESR[yyy] may be set, or possibly both.

3 Although not part of Book E, system interrupt controllers commonly provide independent mask and status bits for critical input 
and external input interrupt sources.

4 Machine check interrupts are not asynchronous or synchronous. See Section 5.7.2, “Machine Check Interrupt.”
5 Machine check status information is commonly provided as part of the system implementation but is not part of Book E. 
6 Software must examine the instruction and the subject TLB entry to determine the exact cause of the interrupt.
7 Cache locking and cache locking exceptions are implementation-dependent. 
8 Instruction complete and branch taken debug events are defined only for MSR[DE] = 1 for internal debug mode (DBCR0[IDM] 

= 1). In other words, for internal debug mode with MSR[DE] = 0, instruction complete and branch taken debug events cannot 
occur, no DBSR status bits are set, and no subsequent imprecise debug interrupt can occur.

9 EIS-defined exception

Table 5-6. Interrupt and Exception Types (continued)

IVOR Interrupt Type Exception Type
Exception 

Class1 ESR2 Mask Bits Notes Page
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CSRR0, CSRR1, and MSR are updated as shown in Table 5-7.

Instruction execution resumes at address IVPR[32–47] || IVOR0[48–59] || 0b0000.

On the e500, to guarantee that the core complex can take a critical input interrupt, the critical input 
interrupt signal must be asserted until the interrupt is taken. Otherwise, whether the core complex 
takes an external interrupt depends on whether MSR[CE] is set when the critical interrupt signal 
is asserted. 

NOTE
To avoid redundant critical input interrupts, software must take any 
actions required by the implementation to clear any critical input 
exception status before reenabling MSR[CE].

5.7.2 Machine Check Interrupt 

The EIS defines the machine check APU, which differs from the Book E definition of the machine 
check interrupt as follows:

• Book E defines machine check interrupts as critical interrupts, but the machine check APU 
treats them as a distinct interrupt type.

• Machine check is no longer a critical interrupt but uses MCSRR0 and MCSRR1 to save the 
return address and the MSR in case the machine check is recoverable.

• Return From Machine Check Interrupt instruction (rfmci) is implemented to support the 
return to the address saved in MCSRR0.

• An address related to the machine check may be stored in MCAR, according to Table 5-10.

• A machine check syndrome register, MCSR, is used to log the cause of the machine check 
(instead of ESR). The MCSR is described in Table 5-4.

The following general information applies to both the Book E and EIS definitions. A machine 
check interrupt occurs when no higher priority exception exists, a machine check exception is 
presented to the interrupt mechanism, and MSR[ME] = 1. Specific causes of machine check 
exceptions are implementation-dependent, as are the details of the actions taken on a machine 
check interrupt. 

Machine check interrupts are typically caused by a hardware or memory subsystem failure or by 
an attempt to access an invalid address. They may be caused indirectly by execution of an 

Table 5-7. Critical Input Interrupt Register Settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR ME is unchanged. All other MSR bits are cleared.
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instruction, but may not be recognized or reported until long after the processor has executed past 
the instruction that caused the machine check. As such, machine check interrupts are not thought 
of as synchronous or asynchronous nor as precise or imprecise. 

The following general rules apply:

• No instruction after the one whose address is reported to the machine check interrupt 
handler in MCSRR0 has begun execution.

• The instruction whose address is reported to the machine check interrupt handler in 
MCSRR0 and all prior instructions may or may not have completed successfully. All 
instructions certain to complete appear to have done so within the context existing before 
the machine check interrupt. No further interrupts (other than possible additional machine 
check interrupts) occur as a result of those instructions.

e500 machine check exceptions are specified in Table 5-8.

If MSR[ME] is cleared, the processor enters checkstop state immediately on detecting the machine 
check condition.

Table 5-8. e500 Machine Check Exception Sources

Source Signal Additional Enable Bits

Negative edge on machine check signal (mcp) mcp HID0[EMCP] 

Data cache parity error dcperr L1CSR0[CPE]

Instruction cache parity error icperr L1CSR1[ICPE]

Data cache push parity error dcp_perr L1CSR0[CPE]

Bus instruction address error bus_iaerr No enable bit

Bus read address error bus_raerr No enable bit

Bus write address error bus_waerr No enable bit

Bus instruction data bus error bus_iberr No enable bit

Read data bus error bus_rberr No enable bit

Write bus error bus_wberr No enable bit

Instruction parity error bus_iperr HID1[R1DPE], HID1[R2DPE] (depending on which bus the 
instruction fetch arrived)

Read parity error bus_rperr HID1[R1DPE], HID1[R2DPE] (on whichever bus the data read 
arrived)

 Bus fault core_fault_in HID1[RFXE] = 1. This interrupt should not occur during normal 
operation because RFXE should be zero and such errors shold 
be reported instead by peripherals as external interrupts or 
critical interrupts. For information about bus faults, see 
Section 13.8, “Proper Reporting of Bus Faults.” For additional 
information, see Section 2.10.2, “Hardware 
Implementation-Dependent Register 1 (HID1).”
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When a machine check interrupt is taken, registers are updated as shown in Table 5-9.

Instruction execution resumes at address IVPR[32–47] || IVOR1[48–59] || 0b0000.

NOTES
If a machine check interrupt is caused by a memory subsystem error, 
the subsystem may return incorrect data, which may be placed into 
registers or on-chip caches.

For implementations on which a machine check interrupt is caused by 
referring to an invalid physical address, executing dcbz or dcba can 
cause a delayed machine check interrupt by establishing a data cache 
block associated with an invalid physical address. A machine check 
interrupt can occur later if and when an attempt is made to write that 
block to main memory, for example as the result of executing an 
instruction that causes a cache miss for which the block is the target 
for replacement or as the result of executing dcbst or dcbf.

5.7.2.1 Core Complex Bus (CCB) and L1 Cache Machine Check Errors

This section describes machine checks caused by bus and L1 cache errors. It describes error 
signaling and detection, and it contains information about error recoverability. 

The L1 caches in the e500 core complex are protected by parity. Parity information is written into 
the L1 caches when one of the following occurs: 

• A store instruction, dcbz, or dcba modifies the data cache.

• A line fill occurs into the instruction or data cache. 

L1 cache parity is checked when one of the following occurs: 

• A load instruction hits in the L1 data cache.

• An instruction fetch hits in the L1 instruction cache.

• A line is cast out of the L1 data cache. 

Table 5-9. Machine Check Interrupt Settings

Register Setting

MCSRR0 On a best-effort basis, the core complex sets this to an effective address of some instruction that was 
executing or about to be executing when the machine check condition occurred. 

MCSRR1 MSR[37–38,46–55,57–59,61–63] are loaded with equivalent MSR bits. All other bits are reserved.

MCAR When a machine check interrupt is taken, the machine check address register is updated with the address 
of the data associated with the machine check. Note that if a machine check interrupt is caused by a signal, 
the MCAR contents are not meaningful. See Section 2.7.2.3, “Machine Check Address Register (MCAR).”

MCSR Set according to the machine check condition. See Table 5-4.
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For loads that hit in the cache, parity is enforced at a double-word granularity. So, if a byte load 
lies within a double word that contains a parity error, an interrupt is generated. These interrupts do 
not occur if the load is on a speculative path and never completes.

L1 cache parity checking is disabled by default and can be enabled by setting L1CSR0[CPE] and 
L1CSR1[ICPE]. 

The e500’s core complex bus (CCB) is also protected by parity. Parity is checked whenever data 
is read on either of the two CCB read buses; a machine check interrupt is generated if errors occur. 
Parity is also generated whenever data is written on the CCB write bus, giving an opportunity to 
identify and report errors when data is cast out of the cache or written with a cache-inhibited or 
write-through store. For cache pushes (or castouts), a parity error is generated if there is any bad 
parity on the cache line.

For bus reads, a parity error occurs whenever bad data is read on the bus, regardless of whether the 
data is ever used. CCB read bus parity checking is disabled by default and is enabled by setting 
HID1[R1DPE] and HID1[R2DPE].  

Table 5-10 is an expanded list of the scenarios listed above. For each scenario, there is a list of 
what kind of machine check error can occur as indicated by the MCSR bit that is set. For each 
condition, the table provides comments about recoverability, whether the MCAR has the address 
of the bad data, whether the exception is precise, and how far corrupted data can go into the GPRs, 
cache, or memory. 

Table 5-10. Parity Error Exception Scenarios

Scenario MCSR Bit Description MCSRR0 and MCAR Values Comments

Load
(cache hit)

DCPERR Detection of a data cache parity 
error

MCSRR0 has the instruction 
address of the failing load 
instruction.
MCAR is not set.

Data does not get into 
GPR.

Store
(cache hit)

No cases to consider

Load (cache 
miss or cache 
inhibited)

BUS_RAERR Address bus error MCSRR0 points to some 
instruction near the failing load.
MCAR is set to an address on the 
cache line with the error.

Data does not get into 
GPR.
Line-fill data does not get 
into L1 cache (if 
cacheable).

BUS_RBERR Read data bus error

BUS_RPERR Detection of a read data bus parity 
error

Store
(cache miss)

BUS_RAERR Address bus error MCSRR0 points to some 
instruction after the failing store. 
(It is not particularly meaningful.)
MCAR is set to an address on the 
cache line with the error.

Line-fill data does not get 
into L1 cache. (Stores to 
that line may be lost.)

BUS_RBERR Read data bus error

BUS_RPERR Detection of read data bus parity 
error

Store (cache-
inhibited or 
write-through)

BUS_WAERR Address bus error MCSRR0 points to some 
instruction near the failing store. 
(It is not particularly meaningful.)
MCAR is set to an address on the 
cache line with the error.

The system has enough 
information to prevent 
memory corruption.

BUS_WBERR Write data bus error signaled by 
assertion of core_wr_errin_b input
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5.7.2.2 Cache Parity Error Injection

Cache parity error injection provides a way to test error recovery software by intentionally 
injecting parity errors into the instruction and data caches, as follows:

• If L1CSR1[ICPI] is set, any instruction cache line fill has all of its parity bits inverted in 
the instruction cache. 

• If L1CSR0[CPI] is set, any data line fill has all of its parity bits inverted in the data cache. 
Additionally, inverted parity bits are generated for any bytes stored into the data cache by 
store instructions, dcbz, and dcba.

NOTE
L1 cache parity checking for the instruction cache must be enabled 
(L1CSR1[ICPE] = 1,) when L1CSR1[ICPI] is set. Similarly for the 
data cache, L1CSR0[CPE] must be set if L1CSR0[CPI] is set. If the 
programmer attempts to set the field L1CSR0[CPI] (using mtspr) 
without setting the field L1CSR0[CPE], then the field L1CSR0[CPI] 
will not be set. If the programmer attempts to set the field 
L1CSR1[ICPI] without setting the field L1CSR1[ICPE], then the field 
L1CSR1[ICPI] will not be set.

Castout or 
snoop push

BUS_WAERR Address bus error MCSRR0 is not meaningful.
MCAR is set to an address on the 
cache line with the error.

The system has enough 
information to prevent 
memory corruption.
A front-side L2 does not 
cache the bad data.

BUS_WBERR Write data bus error signaled by 
assertion of core_wr_errin_b input

DCP_PERR Detection of an L1 data cache 
parity error in the data being 
pushed

A front-side L2 does not 
cache the bad data.
The system has enough 
information to prevent 
memory corruption.

Instruction 
fetch
(cache hit)

ICPERR Detection of an L1 instruction 
cache parity error

MCSRR0 has an address on the 
line of the failing instruction.
MCAR is not set.

The instruction that 
causes the exception is not 
executed.

Instruction 
fetch (cache 
miss or cache 
inhibited)

BUS_IAERR Address bus error MCSRR0 has an address on the 
line of the failing instruction.
MCAR is set to an address on the 
cache line with the error.

The instruction that 
causes the exception is not 
executed.
Line-fill data does not get 
into the L1 cache.

BUS_IBERR Read data bus error

BUS_IPERR Detection of a read data bus parity 
error

Table 5-10. Parity Error Exception Scenarios (continued)

Scenario MCSR Bit Description MCSRR0 and MCAR Values Comments
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5.7.3 Data Storage Interrupt

A data storage interrupt (DSI) occurs when no higher priority exception exists and a data storage 
exception is presented to the interrupt mechanism. Table 5-11 describes exception conditions for 
a data storage interrupt as defined by Book E.

icbt, dcbt, dcbtst, and dcba instructions cannot cause a data storage interrupt, regardless of the 
effective address.

Table 5-11. Data Storage Interrupt Exception Conditions

Exception Cause

Read access 
control 
exception

Occurs when either of the following conditions exists:
 • In user mode (MSR[PR] = 1), a load or load-class cache management instruction attempts to access a 

memory location that is not user-mode read enabled (page access control bit UR = 0).
 • In supervisor mode (MSR[PR] = 0), a load or load-class cache management instruction attempts to access 

a location that is not supervisor-mode read enabled (page access control bit SR = 0).

Write access 
control 
exception

Occurs when either of the following conditions exists:
 • In user mode (MSR[PR] = 1), a store or store-class cache management instruction attempts to access a 

location that is not user-mode write enabled (page access control bit UW = 0).
 • In supervisor mode (MSR[PR] = 0), a store or store-class cache management instruction attempts to access 

a location that is not supervisor-mode write enabled (page access control bit SW = 0).

Byte-ordering 
exception

The implementation cannot access data in the byte order specified by the page’s endian attribute.
Note: The byte-ordering exception is provided to assist implementations that cannot support dynamically 
switching byte ordering between consecutive accesses, the byte order for a class of accesses, or misaligned 
accesses using a specific byte order.
On the e500, load/store accesses that cross a page boundary such that endianness changes cause a 
byte-ordering exception. 

Cache locking 
exception 

(EIS) The locked state of one or more cache lines has the potential to be altered. This exception is 
implementation-dependent. A cache locking exception occurs with the execution of icbtls, icblc, dcbtls, 
dcbtstls, or dcblc when (MSR[PR] = 1) and (MSR[UCLE] = 0). ESR is set as follows:
 • For icbtls and icblc, ESR[ILK] is set. 
 • For dcbtls, dcbtstls, or dcblc, ESR[DLK] is set. Book E refers to this as a cache-locking exception.

Storage 
synchronization 
exception

Occurs when either of the following conditions exists:
 • An attempt is made to execute a load and reserve or store conditional instruction from or to a location that 

is write-through required or caching inhibited. (If the interrupt does not occur, the instruction executes 
correctly.) 

 • A store conditional instruction produces an effective address for which a normal store would cause a data 
storage interrupt but the processor does not have the reservation from a load and reserve instruction. Book E 
states that it is implementation-dependent whether a data storage interrupt occurs. The EIS defines that the 
data storage interrupt is taken.

See the section, “Atomic Update Primitives Using lwarx and stwcx.,” in the “Instruction Model” chapter of the 
EREF. 
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NOTE
icbi and icbt are treated as loads from the addressed byte with respect 
to address translation and protection. They use MSR[DS], not 
MSR[IS], to determine translation for their operands. Instruction 
storage interrupts and instruction TLB error interrupts are associated 
with instruction fetching and not execution. Data storage interrupts 
and data TLB error interrupts are associated with the execution of 
instruction cache management instructions.

When a data storage interrupt occurs, the processor suppresses execution of the instruction causing 
the data storage exception. SRR0, SRR1, ESR, MSR, and DEAR, are updated as follows:

Instruction execution resumes at address IVPR[32–47] || IVOR2[48–59] || 0b0000.

5.7.4 Instruction Storage Interrupt

An instruction storage interrupt occurs when no higher priority exception exists and an instruction 
storage exception is presented to the interrupt mechanism. Instruction storage exception 
conditions are described in Table 5-13.

Table 5-12. Data Storage Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt

SRR1 Set to the MSR contents at the time of the interrupt

ESR ST Set if the instruction causing the interrupt is a store or store-class cache management instruction; otherwise 
cleared

DLK DLK is set when a DSI occurs because dcbtls, dcbtstls, or dcblc is executed in user mode and MSR[UCLE] = 0.
BO Set if the instruction caused a byte-ordering exception; otherwise cleared

All other defined ESR bits are cleared.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR Set to the effective address of a byte that lies both within the range of bytes being accessed by the access or cache 
management instruction and within the page whose access caused the exception

Table 5-13. Instruction Storage Interrupt Exception Conditions

Exception Cause

Execute access 
control exception

In user mode, an instruction fetch attempts to access a memory location that is not user mode execute 
enabled (page access control bit UX = 0).
In supervisor mode, an instruction fetch attempts to access a memory location that is not supervisor mode 
execute enabled (page access control bit SX = 0).

Byte-ordering 
exception

The implementation cannot fetch the instruction in the byte order specified by the page’s endian attribute. 
The EIS defines that accesses that cross a page boundary such that endianness changes cause a 
byte-ordering exception. 
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Note that Book E provides this exception to assist implementations that cannot dynamically 
switch byte ordering between consecutive accesses, do not support the byte order for a class of 
accesses, or do not support misaligned accesses using a specific byte order.

When an instruction storage interrupt occurs, the processor suppresses execution of the instruction 
causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as shown in Table 5-14.

NOTE
Permissions violations and byte-ordering exceptions are not mutually 
exclusive. Even if ESR[BO] is set, system software must examine the 
TLB entry accessed by the fetch to determine whether a permissions 
violation also may have occurred.

Instruction execution resumes at address IVPR[32–47] || IVOR3[48–59] || 0b0000.

5.7.5 External Input Interrupt 

An external input interrupt occurs when no higher priority exception exists, an external input 
exception is presented to the interrupt mechanism, and MSR[EE] = 1. The specific definition of 
an external input exception is implementation-dependent and is typically caused by assertion of 
an asynchronous signal that is part of the processing system. On the e500, this is the external 
interrupt signal.

To guarantee that the core complex can take an external interrupt, the external interrupt pin must 
be asserted until the interrupt is taken. Otherwise, whether the external interrupt is taken depends 
on whether MSR[EE] is set when the external interrupt signal is asserted. 

In addition to MSR[EE], implementations may provide other ways to mask this interrupt. The 
e500 does not support additional masking mechanisms.

Table 5-14. Instruction Storage Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the instruction storage interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR BO is set if the instruction fetch caused a byte-ordering exception; otherwise cleared. 
All other defined ESR bits are cleared.
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SRR0, SRR1, and MSR are updated as shown in Table 5-15.

Instruction execution resumes at address IVPR[32–47] || IVOR4[48–59] || 0b0000.

NOTE
To avoid redundant external input interrupts, software must take any 
actions required to clear any external input exception status before 
reenabling MSR[EE].

5.7.6 Alignment Interrupt

An alignment interrupt occurs when no higher priority exception exists and an alignment 
exception is presented to the interrupt mechanism. An alignment exception may occur when an 
implementation cannot perform a data access for one of the following reasons:

• The operand of a load or store is not aligned.

• The instruction is a move assist, load multiple, or store multiple.

• A dcbz operand is in write-through-required or caching-inhibited memory, or dcbz is 
executed in an implementation with no data cache or a write-through data cache.

• The operand of a store, except store conditional, is in write-through required memory.

The EIS defines the following alignment exception conditions:

• Execution of a dcbz references a page marked as write-through or cache inhibited. 

• A load multiple word instruction (lmw) reads an address that is not a multiple of four. 

• A lwarx or stwcx. instruction references an address that is not a multiple of four.

• SPFP and SPE APU instructions are not aligned on a natural boundary. A natural boundary 
is defined by the size of the data element being accessed. 

• A vector operation reports an exception if the physical address of the following instructions 
is not aligned to the 64-bit boundary: evldd, evlddx, evldw, evldwx, evldh, evldhx, 
evstdd, evstddx, evstdw, evstdwx, evstdh, and evstdhx. Table 5-16 describes additional 
ESR settings. 

For lmw and stmw with a non–word-aligned operand and for load and reserve and store 
conditional instructions with an misaligned operand, an implementation may yield boundedly 
undefined results instead of causing an alignment interrupt. A store conditional to a 

Table 5-15. External Input Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.
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write-through-required location may either cause an alignment or data storage interrupt or may 
correctly execute the instruction. For all other cases listed above, an implementation may execute 
the instruction correctly instead of causing an alignment interrupt. For dcbz, correct execution 
means clearing each byte of the block in main memory.

NOTE
Book E does not support use of a misaligned effective address by load 
and reserve and store conditional instructions. If a misaligned 
effective address is specified, the alignment interrupt handler should 
treat the instruction as a programming error and must not attempt to 
emulate the instruction.

When an alignment interrupt occurs, the processor suppresses the execution of the instruction 
causing the alignment exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as shown in Table 5-16.

Instruction execution resumes at address IVPR[32–47] || IVOR5[48–59] || 0b0000.

Table 5-16. Alignment Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the alignment interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR Set to the EA of a byte that is both within the range of the bytes being accessed by the memory access or 
cache management instruction, and within the page whose access caused the alignment exception

ESR The following bits may be affected for vector alignment exception conditions:
SPE Set
ST Set only if the instruction causing the exception is a store and is cleared for a load
All other defined ESR bits are cleared.



PowerPC e500 Core Family Reference Manual, Rev. 1

5-24 Freescale Semiconductor

Interrupts and Exceptions

5.7.7 Program Interrupt

A program interrupt occurs when no higher priority exception exists and a program exception is 
presented to the interrupt mechanism. A program interrupt is caused when any of the following 
exceptions occurs during execution of an instruction.

SRR0, SRR1, MSR, and ESR are updated as shown in Table 5-18.

Table 5-17. Program Interrupt Exception Conditions

Exception Cause

Illegal instruction
exception

An illegal instruction exception always occurs when execution of any of the following kinds of instructions 
is attempted.
 • A reserved-illegal instruction
 • In user mode, an mtspr or mfspr that specifies an SPRN value with SPRN[5] = 0 (user-mode 

accessible) that represents an unimplemented SPR
 • (EIS) If an invalid SPR address is accessible only in supervisor mode and the processor is in 

supervisor mode (MSR[PR] = 0), results are undefined. 
 • (EIS) If the invalid SPR address is accessible only in the supervisor mode and the processor is in user 

mode (MSR[PR] = 1), a privileged instruction exception is taken.
An illegal instruction exception may occur when execution is attempted of any of the following kinds of 
instructions. If the exception does not occur, the alternative is shown in parentheses. 
 • An instruction that is in invalid form (boundedly undefined results). On the e500, all instructions have 

invalid forms cause boundedly undefined results.
 • A reserved no-op instruction (no-operation performed is preferred). There are no reserved no-ops for 

the e500. 
 • A defined or allocated instruction that is not implemented (unimplemented operation exception). 

Unimplemented Book E instructions such as mfapidi, mfdcr, and mtdcr take an illegal instruction 
exception. 

 • The EIS defines that an attempt to execute a 64-bit Book E instruction causes an illegal instruction 
exception.

Privileged instruction
exception

Occurs when MSR[PR] = 1 and execution is attempted of any of the following:
 • A privileged instruction
 • An mtspr or mfspr instruction that specifies a privileged SPR (SPRN[5] = 1)
 • (EIS) An mtpmr or mfpmr instruction that specifies a privileged PMR (PMRN[5] = 1)

Trap exception A trap exception occurs when any of the conditions specified in a trap instruction are met.

Unimplemented
operation exception

An unimplemented operation exception may occur when a defined or allocated instruction is encountered 
that is not implemented. Otherwise an illegal instruction exception occurs. On the e500, these instructions 
are mfapidi, mfdcr, and mtdcr and they take an illegal instruction exception. 

Table 5-18. Program Interrupt Register Settings

Register Description

SRR0 For all program interrupts except an enabled exception when in an imprecise mode (see Table 5-19), set to 
the EA of the instruction that caused the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.
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Instruction execution resumes at address IVPR[32–47] || IVOR6[48–59] || 0b0000.

5.7.8 System Call Interrupt

A system call interrupt occurs when no higher priority exception exists and a System Call (sc) 
instruction is executed. SRR0, SRR1, and MSR are updated as shown in Table 5-19.

Instruction execution resumes at address IVPR[32–47] || IVOR8[48–59] || 0b0000.

5.7.9 Decrementer Interrupt

A decrementer interrupt occurs when no higher priority exception exists, a decrementer exception 
exists (TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and MSR[EE] = 1). 

NOTE
MSR[EE] also enables external input and fixed-interval timer 
interrupts.

SRR0, SRR1, MSR, and TSR are updated as shown in Table 5-20.

Instruction execution resumes at address IVPR[32–47] || IVOR10[48–59] || 0b0000.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR PIL Set if an illegal instruction exception-type program interrupt; otherwise cleared.
PPR Set if a privileged instruction exception-type program interrupt; otherwise cleared.
PTR Set if a trap exception-type program interrupt; otherwise cleared.
All other defined ESR bits are cleared.

Table 5-19. System Call Interrupt Register Settings

Register Description

SRR0 Set to the effective address of the instruction after the sc instruction.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

Table 5-20. Decrementer Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

TSR DIS is set. 

Table 5-18. Program Interrupt Register Settings (continued)

Register Description



PowerPC e500 Core Family Reference Manual, Rev. 1

5-26 Freescale Semiconductor

Interrupts and Exceptions

NOTE
To avoid redundant decrementer interrupts, before reenabling 
MSR[EE], the interrupt handling routine must clear TSR[DIS] by 
writing a word to TSR using mtspr with a 1 in any bit position to be 
cleared and 0 in all others. The data written to the TSR is not direct 
data, but a mask. Writing a 1 to this bit causes it to be cleared; writing 
a 0 has no effect.

5.7.10 Fixed-Interval Timer Interrupt

A fixed-interval timer interrupt occurs when no higher priority exception exists, a fixed-interval 
timer exception exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 and 
MSR[EE] = 1). The “Timers” chapter in the EREF describes Book E and EIS aspects of the 
fixed-interval timer. 

The fixed-interval timer period is determined by TCR[FP], which, when concatenated with 
TCR[FPEXT], specifies one of 64 bit locations of the time base used to signal a fixed-interval 
timer exception on a transition from 0 to 1.

TCR[FPEXT],TCR[FP] = 000000 selects TBU[32]. TCR[FPEXT],TCR[FP] = 111111 selects 
TBL[63].

NOTE
MSR[EE] also enables external input and decrementer interrupts.

SRR0, SRR1, MSR, and TSR are updated as shown in Table 5-21.

Instruction execution resumes at address IVPR[32–47] || IVOR11[48–59] || 0b0000.

NOTE
To avoid redundant fixed-interval timer interrupts, before reenabling 
MSR[EE], the interrupt handling routine must clear TSR[FIS] by 
writing a word to TSR using mtspr with a 1 in any bit position to be 
cleared and 0 in all others. The data written to the TSR is not direct 
data, but a mask. Writing a 1 causes the bit to be cleared; writing a 0 
has no effect.

Table 5-21. Fixed-Interval Timer Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

TSR FIS is set. 
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5.7.11 Watchdog Timer Interrupt

A watchdog timer interrupt occurs when no higher priority exception exists, a watchdog timer 
exception exists (TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and MSR[CE] = 1). 
The “Timers” chapter in the EREF describes Book E and EIS aspects of the watchdog timer. 

NOTE
MSR[CE] also enables the critical input interrupt.

CSRR0, CSRR1, MSR, and TSR are updated as shown in Table 5-22.

Instruction execution resumes at address IVPR[32–47] || IVOR12[48–59] || 0b0000.

NOTE
To avoid redundant watchdog timer interrupts, before reenabling 
MSR[CE], the interrupt handling routine must clear TSR[WIS] by 
writing a word to TSR using mtspr with a 1 in any bit position to be 
cleared and 0 in all others. The data written to the TSR is not direct 
data, but a mask. Writing a 1 to this bit causes it to be cleared; writing 
a 0 has no effect.

5.7.12 Data TLB Error Interrupt

A data TLB error interrupt occurs when no higher priority exception exists and the exception 
described in Table 5-23 is presented to the interrupt mechanism. 

If a store conditional instruction produces an effective address for which a normal store would 
cause a data TLB error interrupt, but the processor does not have the reservation from a load and 
reserve instruction, Book E defines it as implementation-dependent whether a data TLB error 
interrupt occurs. The EIS defines that the interrupt is taken. 

Table 5-22. Watchdog Timer Interrupt Register Settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR ME is unchanged; all other MSR bits are cleared.

TSR WIS is set. 

Table 5-23. Data TLB Error Interrupt Exception Conditions

Exception Description

Data TLB miss exception Virtual addresses associated with a data fetch do not match any valid TLB entry.
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When a data TLB error interrupt occurs, the processor suppresses execution of the instruction 
causing the data TLB error exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as shown in Table 5-24. 

Table 5-25 shows MAS register settings for data and instruction TLB error interrupts as 
implemented on the e500. The “Cache and MMU Background” chapter of the EREF describes 
how these values are set as defined by the EIS. 

Table 5-24. Data TLB Error Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the data TLB error interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR Set to the EA of a byte that is both within the range of the bytes being accessed by the memory access or 
cache management instruction and within the page whose access caused the data TLB error exception.

ESR ST Set if the instruction causing the interrupt is a store, dcbi, or dcbz instruction; otherwise cleared.
All other defined ESR bits are cleared.

MASn See Table 5-25.

Table 5-25. MMU Assist Register Field Updates for TLB Error Interrupts

MAS Register Bit/Field Value Loaded for Each Case

TLBSEL TLBSELD

ESEL if TLBSELD = 0:
TLB0[NV]

else, undefined

NV if TLBSELD = 0:
¬TLB0[NV]

else, undefined

V 1

IPROT 0

TID[0–7] Value of PID register selected by TIDSELD 

TS MSR[IS/DS]

TSIZE[0–3] TSIZED

EPN[32–51]  EPN of access

X0, X1
W, I, M, G, E

X0D, X1D
WD, ID, MD, GD, ED

RPN[32–51] Zeros

PERMIS Zeros

TLBSELD —

TIDSELD[0–1] —

TSIZED[0–3] —
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Instruction execution resumes at address IVPR[32–47] || IVOR13[48–59] || 0b0000.

5.7.13 Instruction TLB Error Interrupt

An instruction TLB error interrupt occurs when no higher priority exception exists and the 
exception described in Table 5-26 is presented to the interrupt mechanism. 

When an instruction TLB error interrupt occurs, the processor suppresses execution of the 
instruction causing the instruction TLB miss exception.

SRR0, SRR1, and MSR are updated as shown in Table 5-27.

Table 5-25 shows MAS register settings for data and instruction TLB error interrupts as 
implemented on the e500. The “Cache and MMU Background” chapter of the EREF describes 
how these values are set as defined by the EIS. 

Instruction execution resumes at address IVPR[32–47] || IVOR14[48–59] || 0b0000.

WD, ID, MD, GD, ED —

SPID0 PID0

SAS MSR[IS] for instruction access;
MSR[DS] for data access

Table 5-26. Instruction TLB Error Interrupt Exception Conditions

Exception Description

Instruction TLB miss exception Virtual addresses associated with an instruction fetch do not match any valid TLB entry.

Table 5-27. Instruction TLB Error Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the instruction TLB error interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

MASn See Table 5-25.

Table 5-25. MMU Assist Register Field Updates for TLB Error Interrupts (continued)

MAS Register Bit/Field Value Loaded for Each Case
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5.7.14 Debug Interrupt

A debug interrupt occurs when no higher priority interrupt exists, a debug exception exists in the 
DBSR, and debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1). A debug 
exception occurs when a debug event causes a corresponding DBSR bit to be set. The “Debug 
Support” chapter of the EREF describes Book E and EIS aspects of the debug interrupt. 

Note that on the e500, if DBCR0[IDM] is cleared, no debug events occur. That is, irrespective of 
MSR, DBCR0, DBCR1, and DBCR2 settings, no debug events are logged in DBSR and no debug 
interrupts are taken. If DBCR0[IDM] is set, Book E debug mode functions as specified in Book E 
(according to the value of MSR[DE] and the values of DBCR0, DBCR1, and DBCR2).

The e500 core complex complies with the Book E debug definition, except as follows:

• Data address compare is only supported for effective addresses.
• Instruction address compares IAC3 and IAC4 are not supported.
• Instruction address compare is only supported for effective addresses.
• DVC is not supported.

CSRR0, CSRR1, MSR, and DBSR are updated as shown in Table 5-28.

Instruction execution resumes at address IVPR[32–47] || IVOR15[48–59] || 0b0000.

Table 5-28. Debug Interrupt Register Settings

Register Setting

CSRR0 For debug exceptions that occur while debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1), 
CSRR0 is set as follows:
 • For instruction address compare (IAC registers), data address compare (DAC1R, DAC1W, DAC2R, and 

DAC2W), trap (TRAP), or branch taken (BRT) debug exceptions, set to the address of the instruction 
causing the debug interrupt.

 • For instruction complete (ICMP) debug exceptions, set to the address of the instruction that would have 
executed after the one that caused the debug interrupt.

 • For unconditional debug event (UDE) debug exceptions, set to the address of the instruction that would 
have executed next if the debug interrupt had not occurred.

 • For interrupt taken (IRPT) debug exceptions, set to the interrupt vector value of the interrupt that caused 
the interrupt taken debug event.

 • For return from interrupt (RET) debug exceptions, set to the address of the instruction that would have 
executed after the rfi, rfci, or rfmci that caused the debug interrupt.

 • For debug exceptions that occur while debug interrupts are disabled (DBCR0[IDM] = 0 or MSR[DE] = 0), 
a debug interrupt occurs at the next synchronizing event if DBCR0[IDM] and MSR[DE] are modified such 
that they are both set and if the debug exception status is still set in the DBSR. When this occurs, CSRR0 
holds the address of the instruction that would have executed next, not the address of the instruction that 
modified DBCR0 or MSR and thus caused the interrupt.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR ME is unchanged. All other MSR bits are cleared.

DBSR Set to indicate type of debug event. (See Section 2.13.2, “Debug Status Register (DBSR).”)
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5.7.15 EIS-Defined Interrupts

The interrupts in this section are defined by the EIS and supported by the e500.

NOTE
The SPE APU and embedded floating-point APU functionality is 
implemented in all PowerQUICC III devices. However, these 
instructions will not be supported in devices subsequent to 
PowerQUICC III. Freescale Semiconductor strongly recommends 
that use of these instructions be confined to libraries and device 
drivers. Customer software that uses SPE or embedded floating-point 
APU instructions at the assembly level or that uses SPE intrinsics will 
require rewriting for upward compatibility with next-generation 
PowerQUICC devices.

Freescale Semiconductor offers a libmoto_e500 library that uses SPE 
instructions. Freescale will also provide libraries to support 
next-generation PowerQUICC devices.

5.7.15.1 SPE/Embedded Floating-Point APU Unavailable Interrupt

As defined by the EIS, an SPE APU unavailable interrupt is taken if MSR[SPE] is cleared and an 
SPE, embedded scalar double-precision (e500v2 only), or embedded vector single-precision 
floating-point instruction is executed. It is not used by the embedded scalar single-precision 
floating-point APU. However, on the e500v1, MSR[SPE] affects the SPE and both the vector and 
scalar single-precision floating-point APUs.

On the e500v2, MSR[SPE] affects only instructions that affect the upper and lower portions of the 
64-bit GPRs, that is, instructions defined by the SPE, the vector single-precision floating-point 
APU, and the double-precision floating-point APUs. It does not affect scalar single-precision 
floating-point APU instructions.

When an SPE unavailable interrupt occurs, the processor suppresses execution of the instruction 
causing the interrupt. The SRR0, SRR1, MSR, and ESR registers are modified as shown in 
Table 5-29.

Instruction execution resumes at address IVPR[32–47] || IVOR32[48–59] || 0b0000.

Table 5-29. SPE/Embedded Floating-Point APU Unavailable Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt. 

MSR CE, ME, and DE are unchanged. All other bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.
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5.7.15.2 Embedded Floating-Point Data Interrupt 

An embedded floating-point data interrupt is generated in the following cases:

• SPEFSCR[FINVE] = 1 and either SPEFSCR[FINVH,FINV] = 1

• SPEFSCR[FDBZE] = 1and either SPEFSCR[FDBZH,FDBZ] = 1

• SPEFSCR[FUNFE] = 1 and either SPEFSCR[FUNFH,FUNF] = 1

• SPEFSCR[FOVFE] = 1 and either SPEFSCR[FOVFH,FOVF] = 1

Note that although SPEFSCR status bits can be updated by using mtspr, interrupts occur only if 
they are set as the result of an arithmetic operation. 

When an embedded floating-point data interrupt occurs, the processor suppresses execution of the 
instruction causing the interrupt. Table 5-30 shows register settings.

Instruction execution resumes at address IVPR[32–47] || IVOR33[48–59] || 0b0000.

5.7.15.3 Embedded Floating-Point Round Interrupt

The embedded floating-point round interrupt is taken on any of the following conditions:

• SPEFSCR[FINXE] = 1 and any of the SPEFSCR[FGH,FXH,FG,FX] bits = 1

• SPEFSCR[FRMC] = 0b10 (+∞)

• SPEFSCR[FRMC] = 0b11 (–∞)

Note that although these SPEFSCR status bits can be updated by using an mtspr[SPEFSCR], 
interrupts occur only if they are set as the result of an arithmetic operation. 

Table 5-30. Embedded Floating-Point Data Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.

SPEFSCR One or more of the FINVH, FINV, FDBZH, FDBZ, FUNFH, FUNF, FOVFH, or FOVF bits are set to indicate 
the interrupt type. 
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When an embedded floating-point round interrupt occurs, the unrounded (truncated) result is 
placed in the target register. Table 5-31 describes register settings.

Instruction execution resumes at address IVPR[32–47] || IVOR34[48–59] || 0b0000.

5.8  Performance Monitor Interrupt
The performance monitor provides a performance monitor interrupt that is triggered by an enabled 
condition or event. An enabled condition or event is as follows:

A PMCn register overflow condition occurs with the following settings:

• PMLCan[CE] = 1; that is, for the given counter the overflow condition is enabled.
• PMCn[OV] = 1; that is, the given counter indicates an overflow.

For a performance monitor interrupt to be signaled on an enabled condition or event, 
PMGC0[PMIE] must be set.

The performance monitor can also freeze the performance monitor counters triggered by an 
enabled condition or event. For the performance monitor counters to freeze on an enabled 
condition or event, PMGC0[FCECE] must be set.

Although the interrupt condition could occur with MSR[EE] = 0, the interrupt cannot be taken 
until MSR[EE] = 1. If a counter overflows while PMGC0[FCECE] = 0, PMLCan[CE] = 1, and 
MSR[EE] = 0, it is possible for the counter to wrap around to all zeros again without the 
performance monitor interrupt being taken.

The priority of the performance monitor interrupt is below that of the fixed-interval interrupt and 
above that of the decrementer interrupt. 

The APUs chapter of the EREF describes Book E and EIS aspects of the debug interrupt.

5.9 Partially Executed Instructions
In general, the PowerPC architecture permits load and store instructions to be partially executed, 
interrupted, and then restarted from the beginning upon return from the interrupt. To guarantee that 
a particular load or store instruction completes without being interrupted and restarted, software 

Table 5-31. Embedded Floating-Point Round Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction following the instruction causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.

SPEFSCR FGH, FXH, FG, FX, and FRMC are set appropriately to indicate the interrupt type.
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must mark the memory as guarded and use an elementary (non-string or non-multiple) load or 
store aligned on an operand-sized boundary.

To guarantee that load and store instructions can, in general, be restarted and completed correctly 
without software intervention, the following rules apply when an execution is partially executed 
and then interrupted:

• For an elementary load, no part of a target register rD has been altered.

• For update forms of load or store, the update register, rA, will not have been altered.

The following effects are permissible when certain instructions are partially executed and then 
restarted:

• For any store, bytes at the target location may have been altered (if write access to that page 
in which bytes were altered is permitted by the access control mechanism). In addition, for 
store conditional instructions, CR0 has been set to an undefined value, and it is undefined 
whether the reservation has been cleared or not.

• For any load, bytes at the addressed location may have been accessed (if read access to that page 
in which bytes were accessed is permitted by the access control mechanism).

• For load multiple or load string, some registers in the range to be loaded may have been 
altered. Including the addressing registers rA and possibly rB in the range to be loaded is 
a programming error, and thus the rules for partial execution do not protect these registers 
against overwriting.

In no case is access control violated.

As previously stated, elementary, aligned, guarded loads and stores are the only access instructions 
guaranteed not to be interrupted after being partially executed. The following list identifies the 
specific instruction types for which interruption after partial execution may occur, as well as the 
specific interrupt types that could cause the interruption:

1. Any load or store (except elementary, aligned, or guarded):
— Any asynchronous interrupt
— Machine check
— Decrementer
— Fixed-interval timer
— Watchdog timer
— Debug (unconditional debug event)

2. Misaligned elementary load or store, or any multiple or string:
All of the above listed under item 1, plus the following:
— Alignment 
— Data storage (if the access crosses a protection boundary)
— Debug (data address compare)



Interrupts and Exceptions

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 5-35

5.10 Interrupt Ordering and Masking
Multiple exceptions that can each generate an interrupt can exist simultaneously. However, the 
PowerPC architecture does not provide for reporting multiple simultaneous interrupts of the same 
class (critical or noncritical). Therefore, the PowerPC architecture defines that interrupts must be 
ordered with one another and provides a way to mask certain persistent interrupt types.

When an interrupt type is masked (disabled) and an event causes an exception that would normally 
generate an interrupt of that type, the exception persists as a status bit in a register (which register 
depends upon the exception type) but no interrupt is generated. Later, if the interrupt type is 
enabled (unmasked) and the exception status has not been cleared by software, the interrupt due 
to the original exception event is finally generated. (The e500 only has such a mechanism for 
certain debug events. A signal that triggers an asynchronous interrupt, such as external input, must 
be asserted until they are taken. There is no mechanism for saving the external interrupt if the 
signal is negated before the interrupt is taken. All interrupts are level-sensitive except for machine 
check, which is edge-triggered.)

All asynchronous interrupt types and some synchronous interrupt types can be masked. The 
PowerPC architecture allows implementations to avoid situations in which an interrupt would 
cause state information (saved in save/restore registers) from a previous interrupt to be overwritten 
and lost. As a first step, upon any noncritical class interrupt, hardware automatically disables 
further asynchronous, noncritical class interrupts (external input) by clearing MSR[EE]. Likewise, 
upon any critical class interrupt, hardware automatically disables further asynchronous interrupts, 
both critical and noncritical, by clearing MSR[CE] and MSR[EE]. Critical input, watchdog timer, 
and debug interrupts are disabled by clearing MSR[CE,DE]. Note that machine check interrupts, 
while considered neither asynchronous nor synchronous, are not maskable by MSR[CE,DE,EE] 
and could be presented in a situation that could cause loss of state information.

This first step of clearing MSR[EE] (and MSR[CE,DE] for critical class interrupts) prevents 
subsequent asynchronous interrupts from overwriting save/restore registers before software can 
save their contents. On any interrupt, hardware also clears MSR[WE,PR,FP,FE0,FE1,IS,DS] 
automatically, which helps avoid subsequent interrupts of certain other types. However, 
guaranteeing that these interrupt types do not occur also requires system software to avoid 
executing instructions that could cause (or enable) a subsequent interrupt, if SRR1 contents have 
not been saved.
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5.10.1 Guidelines for System Software 

Table 5-32 lists actions system software must avoid before saving save/restore register contents.

It is unnecessary for hardware or software to avoid critical-class interrupts from within 
noncritical-class interrupt handlers (hence hardware does not automatically clear 
MSR[CE,ME,DE] on a noncritical interrupt), since the two interrupt classes use different 
save/restore registers. However, because a critical-class interrupt can occur within a noncritical 
handler before the noncritical handler saves SRR0/SRR1, hardware and software must cooperate 
to avoid both critical and noncritical-class interrupts from within critical class-interrupt handlers. 
Therefore, within the critical-class interrupt handler, both pairs of save/restore registers may 
contain data necessary to system software. 

Table 5-32. Operations to Avoid

Operation Reason

Reenabling MSR[EE] (or MSR[CE,DE] in critical 
class interrupt handlers)

Prevents any asynchronous interrupts, as well as (in the case of MSR[DE]) 
any debug interrupts, including synchronous and asynchronous types

Branching (or sequential execution) to addresses 
not mapped by the TLB, mapped without UX = 1 or 
SX = 1 permission, or causing large address or 
instruction address overflow exceptions.

Prevents instruction storage, instruction TLB error, and instruction address 
overflow interrupts

Load, store, or cache management instructions to 
addresses not mapped by the TLB or not having 
required access permissions.

Prevents data storage and data TLB error interrupts

Execution of System Call (sc) or trap (tw, twi, td, 
tdi) instructions 

Prevents system call and trap exception-type program interrupts

Reenabling of MSR[PR] Prevents privileged instruction exception-type program interrupts. 
Alternatively, software could reenable MSR[PR] but avoid executing any 
privileged instructions.

Execution of any illegal instructions Prevents illegal instruction exception-type program interrupts

Execution of any instruction that could cause an 
alignment interrupt

Prevents alignment interrupts, including string or multiple instructions and 
misaligned elementary load or store instructions. Section 5.7.6, “Alignment 
Interrupt,” lists instructions that cause alignment interrupts.
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5.10.2 Interrupt Order

Enabled interrupt types for which simultaneous exceptions can exist are prioritized as follows:

1. Synchronous (non-debug) interrupts: 

— Data storage

— Instruction storage

— Alignment

— Program

— System call

— Data TLB error

— Instruction TLB error

Only one of the above synchronous interrupt types may have an existing exception 
generating it at a given time. This is guaranteed by the exception priority mechanism (see 
Section 5.11, “Exception Priorities”) and the sequential execution model.

2. Machine check

3. Debug

4. Critical input

5. Watchdog timer

6. External input

7. Fixed-interval timer

8. Decrementer

Although, as indicated above, noncritical, synchronous exception types listed under item 1 are 
generated with higher priority than critical interrupt types in items 2–5, noncritical interrupts are 
immediately followed by the highest priority existing critical interrupt type, without executing any 
instructions at the noncritical interrupt handler. This is because noncritical interrupt types do not 
automatically disable MSR mask bits for critical interrupt types (CE and ME). In all other cases, 
a particular interrupt type listed above automatically disables subsequent interrupts of the same 
type, as well as all lower priority interrupt types.

5.11 Exception Priorities
Book E requires all synchronous (precise and imprecise) interrupts to be reported in program 
order, as required by the sequential execution model. The one exception to this rule is the case of 
multiple synchronous imprecise interrupts. Upon a synchronizing event, all previously executed 
instructions are required to report any synchronous imprecise interrupt-generating exceptions, and 
the interrupt is then generated with all of those exception types reported cumulatively in the ESR 
and in any status registers associated with the particular exception type (such as the SPEFSCR).
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For any single instruction attempting to cause multiple exceptions for which the corresponding 
synchronous interrupt types are enabled, this section defines the priority order by which the 
instruction is permitted to cause a single enabled exception, thus generating a particular 
synchronous interrupt. Note that it is this exception priority mechanism, along with the 
requirement that synchronous interrupts be generated in program order, that guarantees that at any 
given time there exists for consideration only one of the synchronous interrupt types listed in 
item 1 of Section 5.10.2, “Interrupt Order.” The exception priority mechanism also prevents 
certain debug exceptions from existing in combination with certain other synchronous 
interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the 
corresponding interrupt types are disabled. The generation of exceptions for which the 
corresponding interrupt types are disabled has no effect on the generation of other exceptions for 
which the corresponding interrupt types are enabled. Conversely, if a particular exception for 
which the corresponding interrupt type is enabled is shown in the following sections to be of a 
higher priority than another exception, it prevents the setting of that other exception, independent 
of whether that other exception’s corresponding interrupt type is enabled or disabled.

Except as specifically noted, only one of the exception types listed for a given instruction type is 
permitted to be generated at any given time.

NOTE
Some exception types may even be mutually exclusive of each other 
and could otherwise be considered the same priority. In these cases, 
the exceptions are listed in the order suggested by the sequential 
execution model.

Exception priorities within each instruction type are listed in the following sections. Priority is 
shown highest to lowest. 
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5.11.1 e500 Exception Priorities

The following is a prioritized listing of e500 exceptions:

1. HRESET (Note that hard reset is not defined as a true interrupt in Book E, but is included 
here to show its relationship to the interrupt structure.) 

2. Machine_check

3. Debug_ude_exc

4. Critical input

5. Debug interrupt

6. External input

7. Debug—trap | instruction address compare

8. ITLB miss

9. ISI

10. SPE/embedded floating-point APU unavailable

11. Program

12. DTLB miss

13. DSI

14. Alignment

15. Embedded floating-point data interrupt

16. Embedded floating-point round interrupt 

17. System call

18. Debug—data address compare | branch taken | instruction compare | return from interrupt

19. Watchdog

20. Fixed interval timer

21. Performance monitor 

22. Decrementer

5.12 e500 Interrupt Latency
Interrupt latency of the core complex is 8 cycles or less unless a guarded load or a cache-inhibited 
stwcx. instruction is in the last completion queue entry (CQ0). For specific information, see 
Section 4.3.4, “Interrupt Latency.”
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5.13 Guarded Load and Cache-Inhibited stwcx. 
Instructions 

The e500v2 does not service an interrupt (including machine check) if a guarded load or 
cache-inhibited stwcx. is pending, but if bus errors occur, the load or stwcx. instruction may never 
complete. 

If a guarded load gets a bus error, the guarded attribute is cleared on the load. Note that a guarded 
load cannot go out on the bus until it reaches the bottom of the completion queue (CQ), so only a 
guarded load in the bottom of the completion queue (CQ0) can get a bus error. When a load hits 
bad data in the line-fill buffer, lac_ldst_finish is squashed (as described above), but 
lac_clear_guarded is asserted in its place (along with the tag). If the tag of CQ0 matches the 
load/store tag when lac_clear_guarded is asserted, the guarded attribute in CQ0 is cleared. 

This process allows the completion unit to take an interrupt. If a cache-inhibited stwcx. gets an 
address error, the action taken is effectively the same as what happens if a snoop causes the loss 
of the reservation. The reservation is cleared, and the cache-inhibited stwcx. finishes and reports 
CR = 0, indicating that the stwcx. did not succeed. This allows the stwcx. to complete and the 
completion unit can then take an interrupt. 

Note the following:

• This implementation does not make address errors precache-inhibited for cache-inhibited 
stwcx., as they are for loads. However, if the stwcx. failed due to an was an address error, 
the software is likely to spin in the lwarx/stwcx. loop until an interrupt occurs. Bus errors 
on other stores are not precise either. 

• Because a cache-inhibited stwcx. finishes as soon as the address tenure completes, there is 
no concern about hanging a cache-inhibited stwcx. in completion due to a write bus data 
error.
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Chapter 6  
Power Management 
This chapter describes the power management facilities as they are defined by Book E and 
implemented in devices that contain the e500 core. The scope of this chapter is limited to the 
features of the core complex only. Additional power management capabilities associated with a 
device that integrates this core (referenced as the integrated device throughout the chapter) are 
documented separately.

6.1 Overview
A complete power management scheme for a system using the core complex requires the support 
of logic in the integrated device. The core complex provides software a way to signal a need for 
power management to the integrated device. It also provides a signal interface that the integrated 
device can use to transition the core complex into its different power management states. 

6.2 Power Management Signals
Table 6-1 summarizes the power management signals of the core complex.

Table 6-1. Power Management Signals of Core Complex

Signal I/O Description

halt I Asserted by integrated device logic to initiate actions that cause the core complex to enter core-halted state, 
as follows:
 • Suspend instruction fetching.
 • Complete all previously fetched instructions. 
 • When the instruction pipeline is empty, the core asserts the halted output. 
The core clock continues running. 
Negating halt returns the core complex to full-on state. If it is negated before the core complex has entered 
core-halted state, the negation may not be recognized. 

halted O Asserted by the core complex when it reaches core-halted state. Indicates to the integrated device logic that 
it is safe to power-down; that is, no data is lost on transition to the core-stopped state.

stop I Asserted by integrated device logic to initiate the required actions that cause the core complex to go from 
core-halted into core-stopped state (as described in Table 6-2). 
Negating stop returns the core complex to core-halted state. 
Once asserted, stop must not be negated until after the core complex has entered the core-stopped state; 
otherwise the negation may not be recognized. For power management purposes, stop must be asserted only 
while the core complex is in the core-halted state.

stopped O Asserted by the core anytime the internal functional clocks of the core complex are stopped (for example after 
integrated device logic asserts stop). 
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6.3 Core and Integrated Device Power Management States
The notion of nap, doze, and sleep modes (or states) pertains to the integrated device as a whole. 
As shown in Figure 6-1, an integrated device may interpret the assertion of nap, doze, and sleep to 
trigger actions that affect the device-level power state, which in turn may use the halt, stop, and 
tben inputs to determine how the core transitions between the core-specific power states: full on, 
core halted, and core stopped. 

 

Figure 6-1. Core Power Management State Diagram

In addition to the power-management states, dynamic power management automatically stops 
clocking individual internal functional units whenever they are idle. The integrated logic may 
similarly stop clocking to idle device-level blocks. 

tben I Asserted by the integrated device logic to enable the time base.

tbint O Asserted when a time base interrupt is signaled. This ordinarily prompts logic in the integrated device to bring 
the core out of core-stopped state to service the interrupt. 

doze O Reflect the state of corresponding HID0[DOZE,NAP,SLEEP] bits (if MSR[WE] = 1); both must be set for the 
respective output to assert. These signals do not affect the core’s power-down state, but indicate to the 
integrated device of power management requests made by software.
Integrated device logic may use these signals to affect device-level power state, which in turn may affect the 
core complex power state (signaled through the halt, stop, and tben). 

nap O

sleep O

Table 6-1. Power Management Signals of Core Complex (continued)

Signal I/O Description

Core Halted

Core Stopped

halt & ¬stop

stop

¬halthalt

¬stopstop & halt

Full On ¬halt

(Device doze state)

(Device nap or sleep state)
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Table 6-2 describes the core power management states.

6.4 Power Management Control Bits
Although the core can signal power management through the bits shown in Table 6-3, core power 
management is controlled by the integrated device, which may provide additional ways to put the 
core into a power-saving state. Interlocks between the core and the integrated device prevent data 
loss that could occur if one part of the system powered down before the other had time to prepare. 

Table 6-2. Core Power States

State Descriptions

Full on 
(default)

Default. All internal units are operating at the full clock speed defined at power-up. Dynamic power management 
automatically stops clocking individual internal functional units that are idle.

Core 
halted

Initiated by asserting the halt input. The core complex responds by stopping instruction execution. It then it asserts the 
halted output to indicate that it is in the core-halted state. Core complex clocks continue running, and bus snooping 
continues to maintain L1 cache coherency. As Figure 6-1 shows, the core complex is in core-halted state when the 
integrated device is in doze state.

Core 
stopped

Initiated entered when stop is asserted to the core while it is in core-halted state. The core responds by inhibiting clock 
distribution to most of its functional units (after the CCB interface idles), and then asserting the stopped output. Internal 
PLL clock generation is maintained to allow quick recovery to core-halted or full-on state. 
Although snooping cannot occur in core-stopped state, cache coherency can be maintained by allowing the core to 
temporarily return to core-halted state, as described below. 

Disabling the timer facility and PLL. Additional power reduction is achieved by negating the time base enable (tben) 
input, which suspends timer facility operations. Note that tben controls the time base (and decrementer) in all power 
management states. Timer operation is independent of power management except for software considerations required 
for processing timer interrupts that occur during core-stopped state. For example, if the timer facility is stopped, 
software ordinarily uses an external time reference to update the various timing counters upon restart.

Core power can be further reduced by stopping the internal PLL unit (through the pll_cfg[0:5] inputs) and optionally by 
stopping pll_clk. To recover from this complete shutdown, the system must first restart the PLL (through pll_cfg[0:5], 
and pll_clk if it was stopped) and allow time for the PLL to lock before any external interrupt is signaled to the core. This 
state is unsuitable for dynamic snooping because of the PLL’s long start-up and lock time. Refer to Table 13-1 for the 
encodings of the PLL_CFG[0:5] inputs.

Dynamic bus snooping.  To maintain L1 cache coherency, the core complex can be momentarily restored to core-halted 
state (by negating stop; halt remains asserted) to perform snoop operations. After the core complex exits core-stopped 
state (stopped negated), the core complex can recognize snoop transactions on the CCB. While the core is in 
core-halted state and stop and stopped are negated, snoops are issued only to the core complex.

The core returns to core-stopped state when snooping (and any required snoop response and snoop copy-back 
transactions on the CCB) completes.

Table 6-3. Core Power Management Control Bits

Bit Description

MSR[WE] Must be set for HID0[DOZE,NAP,SLEEP] to cause assertion of doze, nap, and sleep to system logic.

HID0[DOZE] If MSR[WE] = 1, signals power management logic to initiate device-level doze state. The core complex enters 
core-halted state after integrated device logic asserts halt.

HID0[NAP] If MSR[WE] = 1, signals power management logic to initiate device nap mode. The core complex enters 
core-stopped state (with its time base enabled) after integrated device logic asserts stop. 
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NOTE
The e500 does not implement its own doze, nap, and sleep modes. The 
core-halted and core-stopped states may correlate to the integrated 
device’s doze, nap, and sleep modes, but the e500 cannot be put into 
core-halted or core-stopped state without interaction with system 
integration logic. 

6.4.1 Software Considerations for Power Management

Setting MSR[WE] generates a request to the power management logic of the integrated device 
(external to the core complex) to enter a power-saving state. It is assumed that the desired 
power-saving state (doze, nap, or sleep) has been previously set up by setting the appropriate HID0 
bit, typically at system start-up time. Setting MSR[WE] does not directly affect instruction 
execution, but it is reflected on the core doze, nap, and sleep signals, depending on the 
HID0[DOZE,NAP,SLEEP] settings. 

To ensure a clean transition into and out of a power-saving mode, the following program sequence 
is recommended: 

msync
mtmsr (WE)
isync

loop: br loop

HID0[SLEEP] If MSR[WE] = 1, signals power management logic to initiate device sleep mode. The core complex remains in 
core-stopped state and stops its time base after integrated device logic negates tben.

HID0[TBEN] Time base and decrementer enable
0 Time base disabled (no counting)
 • 1Time base enabled

Table 6-3. Core Power Management Control Bits (continued)

Bit Description
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6.5 Power Management Protocol
The e500 outputs the doze, nap, and sleep signals to the integrated device logic, which controls 
power states both for the device as a whole and for the core (namely the core-halted and 
core-stopped states). Figure 6-2 shows how device integration logic would typically respond to 
doze, nap, and sleep and control the core’s power state through the halt/halted, stop/stopped, and 
tben/tbint signal pairs.

Figure 6-2. Example Core Power Management Handshaking 
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6.6 Interrupts and Power Management
In core-halted or core-stopped state, the core complex does not recognize interrupts. The power 
management logic of the integrated device must monitor all external interrupt requests (as well as 
the e500 tbint output) to detect interrupt requests. Upon sensing an interrupt request, the integrated 
device ordinarily negates stop and halt to restore the core to full-on state, allowing it to service the 
interrupt request.

MSR[WE], which gates the doze, nap, and sleep power management outputs from the core 
complex, is always saved to save/restore register (SRR1, CSRR1, or MCSRR1, depending on the 
interrupt) when an interrupt is taken and restored to the MSR when the handler issues an rfi, rfci, 
or rfmci. As a result, doze, nap, and sleep outputs negate to the external power management logic 
on entry to the interrupt service routine and then return to their previous state on return from the 
interrupt when MSR[WE] value is restored. This function of MSR[WE] has the following 
implications for the design of power management software:

• In previous devices, when the processor exits a low-power state, MSR[POW], which 
enables power-down requests, is cleared without being automatically restored, unlike 
Book E implementations which restore WE. 

• Assuming that the system entered a low-power state in response to the assertion of doze, 
nap, or sleep, the integrated device’s power management logic must recognize that these 
outputs remain asserted for some time after the core complex is restored to full-on state (due 
to the normal latency of restarting internal clock distribution and initiating the interrupt 
request), and then negate as the interrupt is serviced.
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Chapter 7  
Performance Monitor 
This chapter describes the performance monitor, which is generally defined by the Freescale 
Book E implementation standards (EIS) and implemented as an APU on the e500 core. Although 
the programming model is defined by the EIS, some features are defined by the e500 
implementation, in particular, the events that can be counted. 

References to e500 apply to both e500v1 and e500v2. 

7.1 Overview
The performance monitor provides the ability to count predefined events and processor clocks 
associated with particular operations, for example cache misses, mispredicted branches, or the 
number of cycles an execution unit stalls. The count of such events can be used to trigger the 
performance monitor interrupt.

The performance monitor can be used to do the following:

• Improve system performance by monitoring software execution and then recoding 
algorithms for more efficiency. For example, memory hierarchy behavior can be monitored 
and analyzed to optimize task scheduling or data distribution algorithms. 

• Characterize processors in environments not easily characterized by benchmarking.

• Help system developers bring up and debug their systems.

The performance monitor uses the following resources: 

• The performance monitor mark bit in the MSR (MSR[PMM]). This bit controls which 
programs are monitored.

• The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.

• The external input, pm_event.
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• PMRs:

— The performance monitor counter registers (PMC0–PMC3) are 32-bit counters used to 
count software-selectable events. Each counter counts up to 128 events. 
UPMC0–UPMC3 provide user-level read access to these registers. Reference events are 
those that should be applicable to most microprocessor microarchitectures and be of 
general value. They are identified in Table 7-10.

— The performance monitor global control register (PMGC0) controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa3, 
PMLCb0–PMLCb3) control each individual performance monitor counter. Each 
counter has a corresponding PMLCa and PMLCb register. UPMLCa0–UPMLCa3 and 
UPMLCb0–UPMLCb3 provide user-level read access to PMLCa0–PMLCa3, 
PMLCb0–PMLCb3).

• The performance monitor interrupt follows the Book E interrupt model and is assigned to 
interrupt vector offset register 35 (IVOR35). Its priority is less than the fixed-interval 
interrupt and greater than the decrementer interrupt. 

Software communication with the performance monitor APU is achieved through PMRs rather 
than SPRs. The PMRs are used for enabling conditions that can trigger a APU-defined 
performance monitor interrupt. 

7.2 Performance Monitor APU Registers
The performance monitor APU provides a set of PMRs for defining, enabling, and counting 
conditions that trigger the performance interrupt. It also defines IVOR35 (SPR 531) for indicating 
the address of the performance monitor interrupt vector. IVOR35 is described in Section 2.7.1.5, 
“Interrupt Vector Offset Registers (IVORs).” 

The supervisor-level performance monitor registers in Table 7-1 are accessed with mtpmr and 
mfpmr. Attempting to read or write supervisor-level registers in user-mode causes a privilege 
exception.

Table 7-1. Performance Monitor Registers–Supervisor Level

Number PMR[0–4] PMR[5–9] Name Abbreviation

16 00000 10000 Performance monitor counter 0 PMC0

17 00000 10001 Performance monitor counter 1 PMC1

18 00000 10010 Performance monitor counter 2 PMC2

19 00000 10011 Performance monitor counter 3 PMC3

144 00100 10000 Performance monitor local control a0 PMLCa0
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The user-level performance monitor registers in Table 7-2 are read-only and are accessed with the 
mfpmr instruction. Attempting to write these user-level registers in either supervisor or user mode 
causes an illegal instruction exception.

145 00100 10001 Performance monitor local control a1 PMLCa1

146 00100 10010 Performance monitor local control a2 PMLCa2

147 00100 10011 Performance monitor local control a3 PMLCa3

272 01000 10000 Performance monitor local control b0 PMLCb0

273 01000 10001 Performance monitor local control b1 PMLCb1

274 01000 10010 Performance monitor local control b2 PMLCb2

275 01000 10011 Performance monitor local control b3 PMLCb3

400 01100 10000 Performance monitor global control 0 PMGC0

Table 7-2. Performance Monitor Registers–User Level (Read-Only)

Number PMR[0–4] PMR[5–9] Name Abbreviation

0 00000 00000 Performance monitor counter 0 UPMC0

1 00000 00001 Performance monitor counter 1 UPMC1

2 00000 00010 Performance monitor counter 2 UPMC2

3 00000 00011 Performance monitor counter 3 UPMC3

128 00100 00000 Performance monitor local control a0 UPMLCa0

129 00100 00001 Performance monitor local control a1 UPMLCa1

130 00100 00010 Performance monitor local control a2 UPMLCa2

131 00100 00011 Performance monitor local control a3 UPMLCa3

256 01000 00000 Performance monitor local control b0 UPMLCb0

257 01000 00001 Performance monitor local control b1 UPMLCb1

258 01000 00010 Performance monitor local control b2 UPMLCb2

259 01000 00011 Performance monitor local control b3 UPMLCb3

384 01100 00000 Performance monitor global control 0 UPMGC0

Table 7-1. Performance Monitor Registers–Supervisor Level (continued)

Number PMR[0–4] PMR[5–9] Name Abbreviation
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7.2.1 Global Control Register 0 (PMGC0)

The performance monitor global control register (PMGC0), shown in Figure 7-1, controls all 
performance monitor counters.

PMGC0 is cleared by a hard reset. Reading this register does not change its contents. Table 7-3 
describes PMGC0 fields.

PMGC0 (PMR400)
UPMGC0 (PMR384)

Access: PMGC0: Supervisor-only
UPMGC0: Supervisor/user read-only

32 33 34 35 50 51 52 53 54 55 56 63

R
FAC PMIE FCECE — TBSEL1 — TBEE1 —

W

Reset All zeros
1 e500v2 only

Figure 7-1. Performance Monitor Global Control Register 0 (PMGC0)/
User Performance Monitor Global Control Register 0 (UPMGC0) 

Table 7-3. PMGC0 Field Descriptions

Bits Name Description

32 FAC Freeze all counters. When FAC is set by hardware or software, PMLCx[FC] maintains its current value until it 
is changed by software.
0 The PMCs are incremented (if permitted by other PM control bits).
1 The PMCs are not incremented. 

33 PMIE Performance monitor interrupt enable
0 Performance monitor interrupts are disabled.
1 Performance monitor interrupts are enabled and occur when an enabled condition or event occurs, at which 

time PMGC0[PMIE] is cleared
Software can clear PMIE to prevent performance monitor interrupts. Performance monitor interrupts are 
caused by time base events or PMCx overflow.

34 FCECE Freeze counters on enabled condition or event 
0 The PMCs can be incremented (if permitted by other PM control bits).
1 The PMCs can be incremented (if permitted by other PM control bits) only until an enabled condition or event 

occurs. When an enabled condition or event occurs, PMGC0[FAC] is set. It is up to software to clear FAC.
An enabled condition or event is defined as one of the following:
 • When the msb = 1 in PMCx and PMLCax[CE] = 1.
 • When the time-base bit specified by TBSEL=1 and TBEE=1.

35–50 — Reserved, should be cleared.
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7.2.2 User Global Control Register 0 (UPMGC0)

The contents of PMGC0 are reflected to UPMGC0, which can be read by user-level software. 
UPMGC0 can be read with the mfpmr instruction using PMR384.

7.2.3 Local Control A Registers (PMLCa0–PMLCa3)

The local control A registers (PMLCa0–PMLCa3) function as event selectors and give local 
control for the corresponding performance monitor counters. PMLCa works with the 
corresponding PMLCb register. PMLCa registers are shown in Figure 7-2.

51–52 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs 
when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about processor activity. In 
multiprocessor systems in which TB registers are synchronized across processors, these events can be used 
to correlate performance monitor data obtained by the several processors. For this use, software must specify 
the same TBSEL value for all processors in the system. Time-base frequency is implementation-dependent, so 
software should invoke a system service program to obtain the frequency before choosing a TBSEL value. 

53–54 — Reserved, should be cleared.

55 TBEE Time base transition event exception enable 
0 Exceptions from time base transition events are disabled.
1 Exceptions from time base transition events are enabled. A time base transition is signalled to the 

performance monitor if the TB bit specified in PMGC0[TBSEL] changes from 0 to 1. Time base transition 
events can be used to freeze counters (PMGC0[FCECE]) or signal an exception (PMGC0[PMIE]).
Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 0 to 1 transition that signals 
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may 
occur with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1. 

56–63 — Reserved, should be cleared.

PMLCa0 (PMR144)
PMLCa1 (PMR145)
PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa0 (PMR128)
UPMLCa1 (PMR129)
UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

Access: PMLCa0–PMLCa3: Supervisor-only
UPMLCa0–UPMLCa3: Supervisor/user read-only

32 33 34 35 36 37 38 40 41 47 48 63

R
FC FCS FCU FCM1 FCM0 CE — EVENT —

W

Reset All zeros

Figure 7-2. Local Control A Registers (PMLCa0–PMLCa3)/
User Local Control A Registers (UPMLCa0–UPMLCa3) 

Table 7-3. PMGC0 Field Descriptions (continued)

Bits Name Description
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PMLCa registers are cleared by a hard reset. Table 7-4 describes PMLCa fields.

7.2.4 User Local Control A Registers (UPMLCa0–UPMLCa3)

The PMLCa contents are reflected to UPMLCa0–UPMLCa3, which can be read by user-level 
software with mfpmr using PMR numbers in Table 7-2.

7.2.5 Local Control B Registers (PMLCb0–PMLCb3)

Local control B registers 0 through 3 (PMLCb0–PMLCb3) specify a threshold value and a 
multiple to apply to a threshold event selected for the corresponding performance monitor counter. 
For the e500, thresholding is supported only for PMC0 and PMC1. PMLCb works with the 
corresponding PMLCa register. 

Table 7-4. PMLCa0–PMLCa3 Field Descriptions

Bits Name Description

32 FC Freeze counter. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented.

33 FCS Freeze counter in supervisor state. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PR] is cleared.

34 FCU Freeze counter in user state. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PR] is set.

35 FCM1 Freeze counter while mark is set. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PMM] is set.

36 FCM0 Freeze counter while mark is cleared. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PMM] is cleared.

37 CE Condition enable.
0 Overflow conditions for PMCn cannot occur (PMCn cannot cause interrupts or freeze counters)
1 Overflow conditions occur when the most-significant-bit of PMCn is equal to 1.
It is recommended that CE be cleared when counter PMCn is selected for chaining.

38–40 — Reserved, should be cleared.

41–47 EVENT Event selector. Up to 128 events selectable. See Section 7.7, “Event Selection”

48–63 — Reserved, should be cleared.
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PMLCb registers are shown in Figure 7-3.

PMLCb is cleared by a hard reset. Table 7-5 describes PMLCb fields.

7.2.6 User Local Control B Registers (UPMLCb0–UPMLCb3)

The contents of PMLCb0–PMLCb3 are reflected to UPMLCb0–UPMLCb3, which can be read by 
user-level software with mfpmr using PMR numbers in Table 7-2.

PMLCb0 (PMR272)
PMLCb1 (PMR273)
PMLCb2 (PMR274)
PMLCb3 (PMR275)

UPMLCb0 (PMR256)
UPMLCb1 (PMR257)
UPMLCb2 (PMR258)
UPMLCb3 (PMR259)

Access: PMLCb0–PMLCb3: Supervisor-only
UPMLCb0–UPMLCb3: Supervisor/user read-only

32 51 52 53 55 56 57 58 63

R
— THRESHMUL — THRESHOLD

W

Reset All zeros

Figure 7-3. Local Control B Registers (PMLCb0–PMLCb3)/
User Local Control B Registers (UPMLCb0–UPMLCb3) 

Table 7-5. PMLCb0–PMLCb3 Field Descriptions

Bits Name Description

32–52 — Reserved, should be cleared.

53–55 THRESHMUL Threshold multiple.
000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] × 1)
001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] × 2)
010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] × 4)
011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] × 8)
100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] × 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] × 32)
110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] × 64)
111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] × 128)

56–57 — Reserved, should be cleared.

58–63 THRESHOLD Threshold. Only events that exceed this value are counted. Events to which a threshold value 
applies are implementation dependent, as are the unit (for example duration in cycles) and the 
granularity with which the threshold value is interpreted. 
By varying the threshold value, software can obtain a profile of the event characteristics 
subject to thresholding. For example, if PMC1 is configured to count cache misses that exceed 
the threshold value, software can measure the distribution of cache miss durations for a given 
program by monitoring the program repeatedly using a different threshold value each time. 
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7.2.7 Performance Monitor Counter Registers (PMC0–PMC3)

The performance monitor counter registers (PMC0–PMC3), shown in Figure 7-4, are 32-bit 
counters that can be programmed to generate interrupt signals when they overflow. Each counter 
is enabled to count up to 128 events.

PMCs are cleared by a hard reset. Table 7-6 describes PMC register fields.

The minimum counter value is 0x0000_0000; 4,294,967,295 (0xFFFF_FFFF) is the maximum. A 
counter can increment by 0, 1, 2, 3, or 4 up to the maximum value and then wraps to the minimum 
value. 

A counter enters overflow state when the high-order bit is set by entering the overflow state at the 
halfway point between the minimum and maximum values. A performance monitor interrupt 
handler can easily identify overflowed counters, even if the interrupt is masked for many cycles 
(during which the counters may continue incrementing). A high-order bit is set normally only 
when the counter increments from a value below 2,147,483,648 (0x8000_0000) to a value greater 
than or equal to 2,147,483,648 (0x8000_0000). 

NOTE
Initializing PMCs to overflowed values is strongly discouraged. If an 
overflowed value is loaded into a PMCn that held a non-overflowed 
value (and PMGC0[PMIE], PMLCan[CE], and MSR[EE] are set), an 
interrupt is generated before any events are counted.

PMC0 (PMR16)
PMC1 (PMR17)
PMC2 (PMR18)
PMC3 (PMR19)

UPMC0 (PMR0)
UPMC1 (PMR1)
UPMC2 (PMR2)
UPMC3 (PMR3)

Access: PMC0–PMC3: Supervisor-only
UPMC0–UPMC3: Supervisor/user read-only

32 33 63

R
OV Counter value

W

Reset All zeros

Figure 7-4. Performance Monitor Counter Registers (PMC0–PMC3)/
User Performance Monitor Counter Registers (UPMC0–UPMC3) 

Table 7-6. PMC0–PMC3 Field Descriptions

Bits Name Description

32 OV Overflow. 
0 Counter has not reached an overflow state.
1 Counter has reached an overflow state. 

33–63 Counter Value Indicates the number of occurrences of the specified event. 
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The response to an overflow depends on the configuration, as follows:

• If PMLCan[CE] is clear, no special actions occur on overflow: the counter continues 
incrementing, and no exception is signaled.

• If PMLCan[CE] and PMGC0[FCECE] are set, all counters are frozen when PMCn 
overflows.

• If PMLCan[CE] and PMGC0[PMIE] are set, an exception is signaled when PMCn reaches 
overflow. Interrupts are masked by clearing MSR[EE]. An exception may be signaled while 
EE is zero, but the interrupt is not taken until it is set and only if the overflow condition is 
still present and the configuration has not been changed in the meantime to disable the 
exception. 

However, if EE remains clear until after the counter leaves the overflow state (msb becomes 
0), or if EE remains clear until after PMLCan[CE] or PMGC0[PMIE] cleared, the 
exception is not signaled.

The following sequence is recommended for setting counter values and configurations:

1. Set PMGC0[FAC] to freeze the counters. 

2. Using mtpmr instructions, initialize counters and configure control registers.

3. Release the counters by clearing PMGC0[FAC] with a final mtpmr.

7.2.8 User Performance Monitor Counter Registers 
(UPMC0–UPMC3)

The contents of PMC0–PMC3 are reflected to UPMC0–UPMC3, which can be read by user-level 
software with the mfpmr instruction using PMR numbers in Table 7-2.

7.3 Performance Monitor APU Instructions
The APU defines instructions for reading and writing the PMRs as shown in Table 7-7. 

Table 7-7. Performance Monitor APU Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS
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7.4 Performance Monitor Interrupt
The performance monitor interrupt is triggered by an enabled condition or event. The only enabled 
condition or event defined for the e500 is the following:

• A PMCn overflow condition occurs when both of the following are true:

— The counter’s overflow condition is enabled; PMLCan[CE] is set.

— The counter indicates an overflow; PMCn[OV] is set.

If PMGC0[PMIE] is set, an enabled condition or event triggers the signaling of a performance 
monitor exception.

If PMGC0[FCECE] is set, an enabled condition or event also triggers all performance monitor 
counters to freeze.

Although the performance monitor exception condition could occur with MSR[EE] cleared, the 
interrupt cannot be taken until MSR[EE] is set. If PMCn overflows and would signal an exception 
(PMLCan[CE] and PMGC0[PMIE] are set) while interrupts are disabled (MSR[EE] is clear), and 
freezing of the counters is not enabled (PMGC0[FCECE] is clear), PMCn can wrap around to all 
zeros again without the performance monitor interrupt being taken.

7.5 Event Counting
This section describes configurability and specific unconditional counting modes. 

7.5.1 Processor Context Configurability

Counting can be enabled if conditions in the processor state match a software-specified condition. 
Because a software task scheduler may switch a processor’s execution among multiple processes 
and because statistics on only a particular process may be of interest, a facility is provided to mark 
a process. The performance monitor mark bit, MSR[PMM], is used for this purpose. System 
software may set this bit when a marked process is running. This enables statistics to be gathered 
only during the execution of the marked process. The states of MSR[PR,PMM] together define a 
state that the processor (supervisor or user) and the process (marked or unmarked) may be in at 
any time. If this state matches an individual state specified by the 
PMLCan[FCS,FCU,FCM1,FCM0] fields, the state for which monitoring is enabled, counting is 
enabled for PMCn.
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The processor states and the settings of the FCS, FCU, FCM1, and FCM0 fields in PMLCan 
necessary to enable monitoring of each processor state are shown in Table 7-8.

Two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PMM] and MSR[PR]. 
This can be accomplished by clearing PMLCan[FCS], PMLCan[FCU], PMLCan[FCM1], 
and PMLCan[FCM0] for each counter control.

• Counting is unconditionally disabled regardless of the states of MSR[PMM] and MSR[PR]. 
This can be accomplished by setting PMGC0[FAC] or by setting PMLCan[FC] for each 
counter control. Alternatively, this can be accomplished by setting PMLCan[FCM1] and 
PMLCan[FCM0] for each counter control or by setting PMLCan[FCS] and PMLCan[FCU] 
for each counter control.

7.6 Examples 
The following sections provide examples of how to use the performance monitor facility:

7.6.1 Chaining Counters

The counter chaining feature can be used to decrease the processing pollution caused by 
performance monitor interrupts (such as cache contamination and pipeline effects) by allowing a 
higher event count than is possible with a single counter. Chaining two counters together 
effectively adds 32 bits to a counter register where the first counter’s overflow event acts like a 
carry out feeding the second counter. By defining the event of interest to be another PMC’s 

Table 7-8. Processor States and PMLCa0–PMLCa3 Bit Settings

Processor State FCS FCU FCM1 FCM0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

User 1 0 0 0

Marked and supervisor 0 1 0 1

Marked and user 1 0 0 1

Not marked and supervisor 0 1 1 0

Not mark and user 1 0 1 0

All 0 0 0 0

None X X 1 1

None 1 1 X X
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overflow generation, the chained counter increments each time the first counter rolls over to zero. 
Multiple counters may be chained together. 

Because the entire chained value cannot be read in a single instruction, an overflow may occur 
between counter reads, producing an inaccurate value. A sequence like the following is necessary 
to read the complete chained value when it spans multiple counters and the counters are not frozen. 
The example shown is for a two-counter case.

loop: mfpmr  Rx,pmctr1 #load from upper counter
mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop #loop if carry occurred between reads

The comparison and loop are necessary to ensure that a consistent set of values has been obtained. 
The above sequence is not necessary if the counters are frozen.

7.6.2 Thresholding

Threshold event measurement enables the counting of duration and usage events. For example, 
data line fill buffer (DLFB) load miss cycles (event C0:76 and C1:76) require a threshold value. 
A DLFB load miss cycles event is counted only when the number of cycles spent recovering from 
the miss is greater than the threshold. Because this event is counted on two counters and each 
counter has an individual threshold, one execution of a performance monitor program can sample 
two different threshold values. Measuring code performance with multiple concurrent thresholds 
expedites code profiling significantly. 

7.7 Event Selection
Event selection is specified through the PMLCan registers described in Section 7.2.3, “Local 
Control A Registers (PMLCa0–PMLCa3).” The event-select fields in PMLCan[EVENT] are 
described in Table 7-10, which lists encodings for the selectable events to be monitored. 
Table 7-10 establishes a correlation between each counter, events to be traced, and the pattern 
required for the desired selection. 

The Spec/Nonspec column indicates whether the event count includes any occurrences due to 
processing that was not architecturally required by the PowerPC sequential execution model 
(speculative processing). 

• Speculative counts include speculative instructions that were later flushed.

• Nonspeculative counts do not include speculative operations, which are flushed.
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Table 7-9 describes how event types are indicated in Table 7-10.

Table 7-10 describes performance monitor events. Pipeline events in Table 7-10 are defined in 
Chapter 4, “Execution Timing.” 

Table 7-9. Event Types

Event Type Label Description

Reference Ref:# Shared across counters PMC0—PMC3. Applicable to most microprocessors. 

Common Com:# Shared across counters PMC0–PMC3. Fairly specific to e500 microarchitectures. 

Counter-specific C[0–3]:# Counted only on one or more specific counters. The notation indicates the counter to which 
an event is assigned. For example, an event assigned to counter PMC2 is shown as C2:#.

Table 7-10. Performance Monitor Event Selection

Number Event
Spec/

Nonspec
Count Description

General Events

Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2 Instructions completed Nonspec Completed instructions. 0, 1, or 2 per cycle.

Com:3 Micro-ops completed 1 Nonspec Completed micro-ops. 0, 1, or 2 per cycle. (1 for each standard 
instruction, 2 for load/store-with-update. 1–32 for load or store 
multiple instructions)

Com:4 Instructions fetched Spec Fetched instructions. 0, 1, 2, 3, or 4 per cycle. (instructions written to 
the IQ.)

Com:5 Micro-ops decoded 1 Spec Micro-ops decoded. 0, 1, or 2 per cycle. (2 for load/store-with-update)

Com:6 PM_EVENT transitions Spec 0 to 1 transitions on the pm_event input.

Com:7 PM_EVENT cycles Spec Processor cycles that occur when the pm_event input is asserted.

Instruction Types Completed

Com:8 Branch instructions completed Nonspec Completed branch instructions.

Com:9 Load micro-ops completed 1 Nonspec Completed load micro-ops. (l*, evl*, load-update (1 load micro-op), 
load-multiple (1–32 micro-ops), dcbt(L1, CT = 0), and dcbtst(L1, CT 
= 0)

Com:10 Store micro-ops completed 1 Nonspec Completed store micro-ops. (st*, evst*, store-update (1 store 
micro-op), store-multiple (1–32 micro-ops), tlbivax, icbi, icblc, 
icbtls, dcba, dcbf, dcblc, dcbst, dcbt(L2, CT = 1), dcbtls, 
dcbtst(L2, CT = 1), dcbtstls, dcbz, icbt(L2, CT = 1), mbar, and 
msync)

Com:11 Number of CQ redirects Nonspec Fetch redirects initiated from the completion unit. (for example, 
resulting from sc, rfi, rfci, rfmci, isync, and interrupts)

Branch Prediction and Execution Events

Com:12 Branches finished Spec Includes all branch instructions

Com:13 Taken branches finished Spec Includes all taken branch instructions
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Com:14 Finished unconditional branches 
that miss the BTB

Spec Includes all taken branch instructions not allocated in the BTB

Com:15 Branches mispredicted (for any 
reason)

Spec Counts branch instructions mispredicted due to direction, target (for 
example if the CTR contents change), or IAB prediction. Does not 
count instructions that the branch predictor incorrectly predicted to 
be branches. 

Com:16 Branches in the BTB mispredicted 
due to direction prediction.

Spec Counts branch instructions mispredicted due to direction prediction.

Com:17 BTB hits and pseudo-hits Spec Branch instructions that hit in the BTB or miss in the BTB and are 
not-taken (a pseudo-hit). Characterizes upper bound on prediction 
rate.

Pipeline Stalls

Com:18 Cycles decode stalled Spec Cycles the IQ is not empty but 0 instructions decoded

Com:19 Cycles issue stalled Spec Cycles the issue buffer is not empty but 0 instructions issued

Com:20 Cycles branch issue stalled Spec Cycles the branch buffer is not empty but 0 instructions issued

Com:21 Cycles SU1 schedule stalled Spec Cycles SU1 is not empty but 0 instructions scheduled

Com:22 Cycles SU2 schedule stalled Spec Cycles SU2 is not empty but 0 instructions scheduled

Com:23 Cycles MU schedule stalled Spec Cycles MU is not empty but 0 instructions scheduled

Com:24 Cycles LRU schedule stalled Spec Cycles LRU is not empty but 0 instructions scheduled

Com:25 Cycles BU schedule stalled Spec Cycles BU is not empty but 0 instructions scheduled

Load/Store, Data Cache, and Data Line Fill Buffer (DLFB) Events

Com:26 Total translated Spec Total of load and store micro-ops that reach the second stage of the 
LSU 1, 2

Com:27 Loads translated Spec Cacheable l* or evl* micro-ops translated. (includes load micro-ops 
from load-multiple and load-update instructions) 1,2 

Com:28 Stores translated Spec Cacheable st* or evst* micro-ops translated. (includes micro-ops 
from store-multiple, and store-update instructions) 1,2

Com:29 Touches translated Spec Cacheable dcbt and dcbtst instructions translated (L1 only) (Doesn’t 
count touches that are converted to nops i.e. exceptions, 
noncacheable, HID0[NOPTI] is set.)

Com:30 Cacheops translated Spec dcba, dcbf, dcbst, and dcbz instructions translated. 

Com:31 Cache-inhibited accesses 
translated

Spec Cache inhibited accesses translated

Com:32 Guarded loads translated Spec Guarded loads translated

Com:33 Write-through stores translated Spec Write-through stores translated

Com:34 Misaligned load or store accesses 
translated

Spec Misaligned load or store accesses translated.

Com:35 Total allocated to DLFB Spec —

Com:36 Loads translated and allocated to 
DLFB

Spec Applies to same class of instructions as loads translated.

Table 7-10. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:37 Stores completed and allocated to 
DLFB

Nonspec Applies to same class of instructions as stores translated.

Com:38 Touches translated and allocated to 
DLFB

Spec Applies to same class of instructions as touches translated.

Com:39 Stores completed Nonspec Cacheable st* or evst* micro-ops completed. (Applies to the same 
class of instructions as stores translated.) 1,2

Com:40 Data L1 cache locks Nonspec Cache lines locked in the data L1 cache. (Counts a lock even if an 
overlock condition occurs.)

Com:41 Data L1 cache reloads Spec Counts cache reloads for any reason. Typically used to determine 
data cache miss rate (along with loads/stores completed). 

Com:42 Data L1 cache castouts Spec Does not count castouts due to dcbf.

Data Side Replay Conditions: Times Detected

Com:43 Load miss with DLFB full. Spec Counts number of stalls; Com:51 counts cycles stalled.

Com:44 Load miss with load queue full. Spec Counts number of stalls; Com:52 counts cycles stalled.

Com:45 Load guarded miss when the load is 
not yet at the bottom of the CQ.

Spec Counts number of stalls; Com:53 counts cycles stalled.

Com:46 Translate a store when the store 
queue is full.

Spec Counts number of stalls; Com:54 counts cycles stalled.

Com:47 Address collision. Spec Counts number of stalls; Com:55 counts cycles stalled.

Com:48 Data MMU miss. Spec Counts number of stalls; Com:56 counts cycles stalled.

Com:49 Data MMU busy. Spec Counts number of stalls; Com:57 counts cycles stalled.

Com:50 Second part of misaligned access 
when first part missed in cache.

Spec Counts number of stalls; Com:58 counts cycles stalled.

Data Side Replay Conditions: Cycles Stalled

Com:51 Load miss with DLFB full. Spec Counts cycles stalled; Com:43 counts number of stalls.

Com:52 Load miss with load queue full. Spec Counts cycles stalled; Com:44 counts number of stalls.

Com:53 Load guarded miss when the load is 
not yet at the bottom of the CQ.

Spec Counts cycles stalled; Com:45 counts number of stalls.

Com:54 Translate a store when the store 
queue is full.

Spec Counts cycles stalled; Com:46 counts number of stalls.

Com:55 Address collision. Spec Counts cycles stalled; Com:47 counts number of stalls.

Com:56 Data MMU miss. Spec Counts cycles stalled; Com:48 counts number of stalls.

Com:57 Data MMU busy. Spec Counts cycles stalled; Com:49 counts number of stalls.

Com:58 Second part of misaligned access 
when first part missed in cache.

Spec Counts cycles stalled; Com:50 counts number of stalls.

Fetch, Instruction Cache, Instruction Line Fill Buffer (ILFB), and Instruction Prefetch Events

Com:59 Instruction L1 cache locks Nonspec Counts cache lines locked in the instruction L1 cache. (Counts a lock 
even if an overlock occurs.)

Table 7-10. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description



PowerPC e500 Core Family Reference Manual, Rev. 1

7-16 Freescale Semiconductor

Performance Monitor

Com:60 Instruction L1 cache reloads from 
fetch

Spec Counts reloads due to demand fetch. Typically used to determine 
instruction cache miss rate (along with instructions completed) 

Com:61 Number of fetches Spec Counts fetches that write at least one instruction to the IQ. (With 
instruction fetched (com:4), can used to compute 
instructions-per-fetch)

Instruction MMU, Data MMU and L2 MMU Events

Com:62 Instruction MMU TLB4K reloads Spec Counts reloads in the level 1 instruction MMU TLB4K.þA reload in the 
level 2 MMU TLB4Kis not counted.

Com:63 Instruction MMU VSP reloads Spec Counts reloads in the level 1 instruction MMU VSP.þA reload in the 
level 2 MMU VSP is not counted.

Com:64 Data MMU TLB4K reloads Spec Counts reloads in the level 1 data MMU TLB4K.þA reload in the level 
2 MMU TLB4K is not counted.

Com:65 Data MMU VSP reloads Spec Counts reloads in the level 1 data MMU VSP.þA reload in the level 2 
MMU VSP is not counted.

Com:66 L2MMU misses Nonspec Counts instruction TLB/data TLB error interrupts

BIU Interface Usage

Com:67 BIU master requests Spec Master transaction starts (assertions of ts

Com:68 BIU master instruction-side 
requests

Spec Master instruction-side assertions of ts

Com:69 BIU master data-side requests Spec Master data-side assertions of ts

Com:70 BIU master data-side castout 
requests

Spec Includes replacement pushes and snoop pushes, but not DCBF 
castouts. (ts assertions caused by master data-side 
non-program-demand castouts)

Com:71 BIU master retries Spec Transactions initiated by this processor that were retried on the BIU 
interface. (The e500 is master and another device retries the e500 
transaction.)

Snoop

Com:72 Snoop requests N/A Externally generated snoop requests. (Counts snoop TSs.)

Com:73 Snoop hits N/A Snoop hits on all data-side resources regardless of the cache state 
(modified or exclusive)

Com:74 Snoop pushes N/A Snoop pushes from all data-side resources. (Counts snoop ARTRYs 
and WOPs.)

Com:75 Snoop retries N/A Retried snoop requests. (Counts snoop ARTRYs.) (opposite of com 
71—another device drives artry).

Threshold Events

C0:76
C1:76

Data line fill buffer load miss cycles Spec Instances when the number of cycles between a load allocation in the 
data line fill buffer (entry 0) and write-back to the data L1 cache 
exceeds the threshold. 

C0:77
C1:77

ILFB fetch miss cycles Spec Instances when the number of cycles between allocation in the ILFB 
(entry 0) and write-back to the instruction L1 cache exceeds the 
threshold. 

Table 7-10. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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C0:78
C1:78

External input interrupt latency 
cycles

N/A Instances when the number of cycles between request for interrupt 
(int) asserted (but possibly masked/disabled) and redirecting fetch to 
external interrupt vector exceeds threshold.

C0:79
C1:79

Critical input interrupt latency 
cycles

N/A Instances when the number of cycles between request for critical 
interrupt (cint) is asserted (but possibly masked/disabled) and 
redirecting fetch to the critical interrupt vector exceeds threshold.

C0:80
C1:80

External input interrupt pending 
latency cycles

N/A Instances when the number of cycles between external interrupt 
pending (enabled and pin asserted) and redirecting fetch to the 
external interrupt vector exceeds the threshold. Note that this and the 
next event may count multiple times for a single interrupt if the 
threshold is very small and the interrupt is masked a few cycles after 
it is asserted and later becomes unmasked.

C0:81
C1:81

Critical input interrupt pending 
latency cycles

N/A Instances when the number of cycles between pin request for critical 
interrupt pending (enabled and pin asserted) and redirecting fetch to 
the critical interrupt vector exceeds the threshold. See note for 
previous event.

Chaining Events3

Com:82 PMC0 overflow N/A PMC0[32] transitions from 1 to 0.

Com:83 PMC1 overflow N/A PMC1[32] transitions from 1 to 0.

Com:84 PMC2 overflow N/A PMC2[32] transitions from 1 to 0.

Com:85 PMC3 overflow N/A PMC3[32] transitioned from 1 to 0.

Interrupt Events

Com:86 Interrupts taken Nonspec —

Com:87 External input interrupts taken Nonspec —

Com:88 Critical input interrupts taken Nonspec —

Com:89 System call and trap interrupts Nonspec —

Ref:90 (e500v2 only) Transitions of TBL bit 
selected by PMGC0[TBSEL]. 

Nonspec Counts transitions of the TBL bit selected by PMGC0[TBSEL]. 

1 Basic instructions are counted as one micro-op; load and store with update instructions count as one load or store micro-op 
and one add micro-op; and load or store multiple instructions are counted as from 1–32 load or store micro-ops, depending 
on how the instruction is encoded. 

2 For load/store events, a micro-op is described as translated when the micro-op has successfully translated and is in the 
second stage of the load/store translate pipeline.

3 For chaining events, if a counter is configured to count its own overflow bit, that counter does not increment. For example, if 
PMC2 is selected to count PMC2 overflow events, PMC2 does not increment.

Table 7-10. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Chapter 8  
Debug Support
This chapter discusses the debug features of the e500v1 and e500v2 core complex, with particular 
attention given to the e500 debug facility as an implementation of the Book E–defined debug 
architecture. Additional debug capabilities associated with an integrated device that implements 
the e500 core are documented in the reference manual for that device. 

References to e500 apply to both the e500v1 and the e500v2. 

8.1 Overview
Internal debug mechanisms allow for software and hardware debug by providing debug functions, 
such as instruction and data breakpoints and program trace mode. e500 debug facilities consist of 
a set of software-accessible debug registers and interrupt mechanisms largely defined by the 
Book E PowerPC architecture.

8.2 Programming Model 
This section describes the registers, instructions, and interrupts defined by the Book E architecture 
to support the debug facility. 

8.2.1 Register Set 

The Book E architecture defines the special-purpose registers (SPRs) listed in Table 8-1 for use 
with the debug facilities. SPRs not implemented on the e500 are indicated. This table gives 
cross-references to full descriptions of these SPRs in Chapter 2, “Register Model.” 

Table 8-1. Debug SPRs

SPR Name
Defined SPR Number

Access
Supervisor

Only
Section/

PageDecimal Binary

CSRR0 Critical save/restore register 0 58 00001 11010 R/W Yes 2.7.1.1/2-18

CSRR1 Critical save/restore register 1 59 00001 11011 R/W Yes 2.7.1.1/2-18

DAC11 Data address compare 1 316 01001 11100 R/W Yes 2.13.4/2-48

DAC2 1 Data address compare 2 317 01001 11101

DBCR0 Debug control register 0 308 01001 10100 R/W Yes 2.13.1/2-46

DBCR1 Debug control register 1 309 01001 10101 R/W Yes

DBCR2 Debug control register 2 310 01001 10110 R/W Yes
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In addition, Book E defines the debug enable bit in the machine state register, MSR[DE], which 
must be set for debug events to cause debug interrupts to be taken. This bit is described in 
Section 2.5.1, “Machine State Register (MSR).” Note that debug interrupts are not affected by the 
critical enable bit (MSR[CE]). 

8.2.2 Instruction Set

The SPRs listed in Table 8-1 are accessed by the mtspr and mfspr instructions. The MSR is 
accessed with mtmsr and mfmsr instructions. Also, the MSR is updated with the contents of 
CSRR1 when an rfmci instruction is executed, typically at the end of an interrupt handler. 

8.2.3 Debug Interrupt Model

Book E defines the debug interrupt as a critical class interrupt. Critical class interrupts use a 
separate pair of save and restore registers (CSRR0 and CSRR1) whose contents are updated when 
a critical interrupt is taken. The Return from Critical Interrupt (rfci) instruction uses these registers 
to restore state at the end of the interrupt handler. Debug interrupts do not affect the save/restore 
registers, SRR0 and SRR1, and CSRR registers are not affected by the Return from Interrupt (rfi) 
instruction. 

DBSR Debug status register 304 01001 10000 Read/Clear2 Yes 2.13.2/2-47

DEAR Data exception address register 61 00001 11101 R/W Yes 2.7.1.3/2-18

DEC Decrementer 22 00000 10110 R/W Yes 2.6.4/2-16

DECAR Decrementer auto-reload 54 00001 10110 Write-only

ESR Exception syndrome register 62 00001 11110 R/W Yes 2.7.1.6/2-20

IAC11 Instruction address compare 1 312 01001 11000 R/W Yes 2.13.3/2-48

IAC21 Instruction address compare 2 313 01001 11001

IAC3 Instruction address compare 3 (not implemented) 314 01001 11010

IAC4 Instruction address compare 4 (not implemented) 315 01001 11011

IVOR15 Debug interrupt offset 415 01100 11111 R/W Yes 2.7.1.5/2-19

1 Address comparisons only compare effective, not real, addresses. 
2 The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits in the GPR can be 

cleared using mtspr.

Table 8-1. Debug SPRs (continued)

SPR Name
Defined SPR Number

Access
Supervisor

Only
Section/

PageDecimal Binary
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A debug interrupt occurs when no higher priority interrupt exists, a debug exception is indicated 
in the DBSR, and debug interrupts are enabled (DBCR0[IDM] = MSR[DE] = 1). CSRR0, CSRR1, 
MSR, and DBSR are updated as shown in Table 8-2.

Instruction execution resumes at address IVPR[32–47] || IVOR15[48–59] || 0b0000.

8.2.4 Deviations from the Book E Debug Model

The e500 core complex supports Book E debug mode with the following exceptions:

• Instruction address compare registers 3 and 4 (IAC3, IAC4) and data address compare 
registers 3 and 4 (DAC3, DAC4) along with their debug exceptions, are not implemented. 

• Only effective addresses are compared with instruction address compare (IAC1 or IAC2 
debug events), and data address compare (DAC1 or DAC2 debug events).

• Return debug events for the rfci instruction are not logged if MSR[DE] is cleared (debug 
interrupts are disabled).

Table 8-2. Debug Interrupt Register Settings

Register Setting

CSRR0 For debug exceptions that occur while debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1), CSRR0 is 
set as follows:
 • For instruction address compare (IAC1 and IAC2 debug events), data address compare (DAC1R, DAC1W, DAC2R, 

and DAC2W debug events), trap, or branch taken debug exceptions, set to the address of the instruction causing 
the debug interrupt.

 • For instruction complete debug exceptions, set to the address of the instruction that would have executed after the 
one that caused the debug interrupt.

 • For unconditional debug event (UDE) debug exceptions, set to the address of the instruction that would have 
executed next if the debug interrupt had not occurred.

 • For interrupt taken debug exceptions, set to the interrupt vector value of the interrupt that caused the interrupt taken 
debug event.

 • For return from interrupt (RET) debug exceptions, set to the address of the instruction that would have executed 
after the rfi or rfci that caused the debug interrupt.

 • For debug exceptions that occur while debug interrupts are disabled (DBCR0[IDM] = 0 or MSR[DE] = 0), a debug 
interrupt occurs at the next synchronizing event if DBCR0[IDM] and MSR[DE] are modified such that they are both 
set and if the debug exception status is still set in the DBSR. When this occurs, CSRR0 holds the address of the 
instruction that would have executed next, not with the address of the instruction that modified DBCR0 or MSR and 
thus caused the interrupt.

CSRR1 Set to the contents of the MSR at the time of the interrupt.

MSR ME is unchanged. All other MSR bits are cleared.

DBSR Set to indicate type of debug event (see Chapter 8, “Debug Support”).
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Table 8-3 describes the differences in DBCR0 and DBSR.
 

8.2.5 Hardware Facilities

The TAP (test access port) unit is a modified IEEE 1149.1 communication interface that facilitates 
external test and debugging. However, because the core complex is a building block for further 
integration, it does not contain IEEE 1149.1 standard boundary cells on its I/O periphery, so it 
should not be considered IEEE 1149.1 compliant.

Private instructions allow an external debugger to freeze or halt the core complex, read and write 
internal state, and resume normal execution.

8.3 TAP Controller and Register Model
JTAG (joint test action group) is a serial protocol that specifies data flow though special registers 
connected between test data in (TDI) and test data out (TDO). Figure 8-1 shows the TAP registers 
implemented by the core complex. For more information, refer to IEEE Standard Test Access Port 
and Boundary Scan Architecture IEEE STD 1149-1a-1993.

Figure 8-1. TAP Controller with Supported Registers

Table 8-3. DBCR0 and DBSR Field Differences

Bits Name Description

DBCR0[34–35] RST Reset
0x Default
1x A hard reset occurs if MSR[DE] and DBCR0[IDM] are set. Cleared on subsequent cycle.

DBSR[34–35] MRR Most recent reset. Undefined at power-up. 
0x No hard reset occurred since this bit was last cleared by software.
1x The previous reset was a hard reset.

Service bus address register

Auxiliary data register (LSRL)

Service bus data register

Bypass register

TAP instruction register

TAP
Controller

tap_en

trst

tck

tms TDO
MUX logic

tdi tdo

tdo_en
tlmsel
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8.3.1 TAP Interface Signals

The TAP interface signals are summarized in Table 8-4 and discussed briefly in the following 
sections. The test data input (TDI) and test data output (TDO) scan ports are used to scan 
instructions and data into the various scan registers for JTAG operations. The scan operation is 
controlled by the TAP controller, which in turn is controlled by the test mode select (TMS) input 
sequence. The scan data is latched at the rising edge of test clock (TCK). 

The TAP and boundary-scan logic are not used under typical operating conditions. Detailed 
discussion of all e500 test functions is beyond the scope of this document. However, sufficient 
information is provided to allow the system designer to disable test functions that would impede 
normal operation.

Test reset (TRST) is an optional JTAG signal used in the e500 to reset the TAP controller 
asynchronously. This signal is not used during normal operation. It is recommended that TRST be 
asserted and negated coincident with the assertion of HRESET to ensure that the test logic does 
not affect normal operation of the core complex. 

TRST must be asserted sometime during power-up for JTAG logic initialization. Note that if 
TRST is connected low, unnecessary power is consumed.

Table 8-4. TAP/IEEE/JTAG Interface Signal Summary

Signal Name Description Input/Output IEEE 1149.1a Function

TCK Test clock In Scan clock

TDI Test data input In Serial scan input signal

TDO Test data output Out Serial scan output signal

TMS Test mode select In TAP controller mode signal

TRST Test reset In TAP controller reset

TAP_EN TAP enable In N/A

TDO_EN Test data output enable Out N/A

TLMSEL TLM selected Out N/A
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Table 8-5 describes JTAG signals in detail.

8.4 Book E Debug Events
Debug events cause debug exceptions to be recorded in the DBSR (see Section 2.13.2, “Debug 
Status Register (DBSR)”). Except for an unconditional debug event, the specific event type must 
be enabled by corresponding bits in the debug control registers (DBCR0–DBCR2) for any debug 
event to set a DBSR bit and thereby cause a debug exception. Setting a DBSR bit causes a debug 
interrupt only if debug interrupts are enabled. 

Table 8-5. JTAG Signal Details

Signal I/O Description

TCK I JTAG test clock. Primary clock input for the test logic on the e500. May be asynchronous with respect to all other 
core complex clocks. 

State
Meaning

Asserted/Negated—This input should be driven by a free-running clock signal. Input signals to the 
test access port are sampled on the rising edge of TCK. TAP output signal changes occur on 
the falling edge of TCK. The test logic allows TCK to be stopped.

TDI I JTAG test data input. Primary JTAG data input to both scan chain and test control registers.

State
Meaning

Asserted/Negated—The value present on the rising edge of TCK is loaded into the selected JTAG 
test instruction or data register.

TDO O JTAG test data output. Primary JTAG data output.

State
Meaning

Asserted/Negated—The contents of the selected internal instruction or data register are shifted out 
onto this signal. Valid data appears on the falling edge of TCK. Quiescent except when scanning 
of data is in progress.

TMS I JTAG test mode select. Primary JTAG mode control input. 

State
Meaning

Asserted/Negated—Decoded by the internal JTAG TAP controller to determine the primary operation 
of the test support circuitry. 

TRST I JTAG test reset. JTAG initialization input. 

State
Meaning

Asserted—Causes asynchronous initialization of the internal JTAG test access port controller. Must 
be asserted sometime during the assertion of HRESET to properly initialize the JTAG test 
access port. 

Negated—Indicates normal operation.

TAP_EN I  TAP enable. Used by the TAP linking module (TLM) logic external to the core complex to select the core complex 
TAP module. When there is no TLM connected to the TAP, the TAP_EN is connected high via an internal pull-up 
resistor.

State
Meaning

Asserted—A valid TMS signal is applied to the TAP controller. 
Negated—A valid TMS signal is not being applied to the TAP controller.

TDO_EN O TDO enable. Provides feedback to the external TAP linking module logic.

State
Meaning

Asserted—Valid data is available on TDO.
Negated—Value of TDO is meaningless.

TLMSEL O TLM selected. Provides feedback to the external TAP linking module logic.

State
Meaning

Asserted—The core complex is currently executing a TLM TAP instruction.
Negated—The core complex is not currently executing a TLM TAP instruction 
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If interrupts are disabled, some debug events are not recorded; that is, no DBSR bit is set by the 
event. However, some debug events can cause exceptions and set DBSR bits regardless of the state 
of MSR[DE]. Interrupts resulting from such exceptions are delayed until MSR[DE] is set (unless 
they have been cleared from the DBSR in the meantime).

Any time a DBSR bit can be set while MSR[DE] is cleared, the imprecise debug event bit 
(DBSR[IDE]) is also set. IDE indicates whether the associated DBSR bit was set while debug 
interrupts were disabled. Debug interrupt handler software can use this bit to interpret the address 
in CSRR0. If IDE is zero, CSRR0 holds the address of the instruction causing the debug exception; 
otherwise, it holds the address of the instruction following the one that enabled the delayed debug 
interrupt. 

Debug exceptions are prioritized with respect to other exceptions (see Section 5.11.1, “e500 
Exception Priorities”).

Table 8-6 lists the types of debug events, which are discussed in subsequent sections.

8.4.1 Instruction Address Compare Debug Event

One or more instruction address compare debug events (IAC1 and IAC2) occur if they are enabled 
and execution is attempted of an instruction at an address that meets the criteria specified in 
DBCR0, DBCR1, and the IAC registers.

8.4.1.1 Instruction Address Compare User and Supervisor Modes

The debug control registers specify user and supervisor modes as follows:

• DBCR1[IAC1US] specifies whether IAC1 debug events can occur in user mode, in 
supervisor mode, or in both.

• DBCR1[IAC2US] specifies whether IAC2 debug events can occur in user mode, in 
supervisor mode, or in both.

Table 8-6. Debug Events

Event Type Description Section

Instruction address 
compare

Each instruction address is compared in a specific way with a specific value. A debug 
event occurs when they match.

8.4.1

Data address compare Each data address is compared with a value. A debug event occurs when they match. 8.4.2

Trap A debug event occurs when a trap is set. 8.4.3

Branch taken A debug event occurs when any branch is taken. 8.4.4

Instruction complete A debug event occurs when any instruction completes. 8.4.5

Interrupt taken A debug event occurs when an interrupt is taken. 8.4.6

Return A debug event occurs when a return from interrupt occurs. 8.4.7

Unconditional A debug event occurs whenever this instruction is executed. 8.4.8
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8.4.1.2 Effective Address Mode

The debug control registers specify effective address modes as follows:

• DBCR1[IAC1ER] specifies whether effective addresses alone, effective addresses and 
MSR[IS] cleared, or effective addresses and MSR[IS] set are used in determining an 
address match on IAC1 debug events.

• DBCR1[IAC2ER] specifies whether effective addresses alone, effective addresses and 
MSR[IS] cleared, or effective addresses and MSR[IS] set are used in determining an 
address match on IAC2 debug events.

8.4.1.3 Instruction Address Compare Mode

The debug control registers specify instruction address compare modes as follows:

• DBCR1[IAC12M] specifies the following:

— Whether all or some of the bits of the address of the instruction fetch must match the 
contents of IAC1 or IAC2

— Whether the address must be inside or outside of a specific range specified by IAC1 and 
IAC2 to trigger a corresponding debug event.

The four instruction address compare modes are described in Table 8-7.

Section 2.13.1, “Debug Control Registers (DBCR0–DBCR2),” describes DBCR0 and DBCR1 
and modes for detecting IAC register debug events. Instruction address compare debug events can 
occur regardless of the values of MSR[DE] or DBCR0[IDM].

When an instruction address compare debug event occurs, the corresponding DBSR[IACn] bits 
are set to record the debug exception. If MSR[DE] is cleared, DBSR[IDE] is also set to capture 
the imprecise debug event.

If MSR[DE] is set at the time of the instruction address compare debug exception, a debug 
interrupt occurs immediately (if no higher priority exception has caused an interrupt). Execution 
of the instruction causing the exception is suppressed, and CSRR0 is set to the address of the 
excepting instruction.

Table 8-7. Instruction Address Compare Modes

Mode Instruction Address Match Condition

Exact address compare The fetch address equals the value in the enabled IAC register.

Address bit match For IAC1 and IAC2 debug events, if the fetch address, ANDed with the contents of IAC2, is 
equal to the contents of IAC1, also ANDed with the contents of IAC2.

Inclusive address range 
compare mode

For IAC1 and IAC2 debug events, if the fetch address is greater than or equal to the contents 
of IAC1 and less than the contents of IAC2.

Exclusive address 
range compare mode

For IAC1 and IAC2 debug events, if the instruction fetch address is less than the contents of 
IAC1 or greater than or equal to the contents of IAC2.
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If MSR[DE] is cleared at the time of the instruction address compare debug exception, a debug 
interrupt does not occur and the instruction completes execution (provided the instruction is not 
causing another exception that generates an enabled interrupt).

Later, if the debug exception has not been reset by clearing the appropriate DBSR[IACn], bits and 
MSR[DE] is set, a delayed debug interrupt occurs. In this case, CSRR0 contains the address of the 
instruction following the one that set DE. Software in the debug interrupt handler can observe 
DBSR[IDE] to determine how to interpret the CSRR0 value.

8.4.2 Data Address Compare Debug Event

One or more data address compare debug events (DAC1R, DAC1W, DAC2R, or DAC2W) can 
occur if they are enabled, execution of a data access instruction is attempted, and the type, address, 
and possibly even the data value of the data access meet the criteria specified in DBCR0, DBCR2, 
DAC1, and DAC2.

8.4.2.1 Data Address Compare Read/Write Enable

DBCR0[DAC1] specifies whether DAC1R debug events can occur on read-type data accesses and 
whether DAC1W debug events can occur on write-type data accesses.

DBCR0[DAC2] specifies whether DAC2R debug events can occur on read-type data accesses and 
whether DAC2W debug events can occur on write-type data accesses.

All load instructions are considered reads with respect to debug events, and all store instructions 
are considered writes with respect to debug events. In addition, cache management instructions, 
and certain special cases, are handled as follows.

• dcbt, dcbtst, icbt, and icbi are all considered reads with respect to debug events. Note that 
dcbt, dcbtst, and icbt are treated as no-ops when they report data storage or data TLB miss 
exceptions, instead of being allowed to cause interrupts. However, these instructions are 
allowed to cause debug interrupts, even when no-op would have been asserted due to a data 
storage or data TLB miss exception.

• dcbz, dcbi, dcbf, and dcbst are all considered writes with respect to debug events. Note 
that dcbf and dcbst are considered reads with respect to data storage exceptions because 
they do not change the data at a given address. However, because execution of these 
instructions may generate write activity on the processor’s data bus, they are treated as 
writes with respect to debug events.
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8.4.2.2 Data Address Compare User/Supervisor Mode

User/supervisor mode options in data address compare debug events occur as follows:

• DBCR2[DAC1US] specifies whether DAC1R and DAC1W debug events can occur in user 
mode, supervisor mode, or both.

• DBCR2[DAC2US] specifies whether DAC2R and DAC2W debug events can occur in user 
mode, supervisor mode, or both.

8.4.2.3 Effective Address Mode

Effective address mode options in debug events occur as follows:

• DBCR2[DAC1ER] specifies whether effective addresses alone, effective addresses and 
MSR[DS] cleared, or effective addresses and MSR[DS] set, are used to determine an 
address match on DAC1R and DAC1W debug events.

• DBCR2[DAC2ER] specifies whether effective addresses alone, effective addresses and 
MSR[DS] cleared, or effective addresses and MSR[DS] set, are used to determine an 
address match on DAC2R and DAC2W debug events.

8.4.2.4 Data Address Compare (DAC) Mode

DBCR2[DAC12M] specifies the following:

• Whether all or some of the address bits for the data access must match the contents of 
DAC1 or DAC2

• Whether the address must be inside or outside of a range specified by DAC1 and DAC2 for 
a DAC1R, DAC1W, DAC2R, or DAC2W debug event to occur.

Table 8-8 describes the four data address compare modes.

Section 2.13.1, “Debug Control Registers (DBCR0–DBCR2),” describes DBCR0 and DBCR2 
and the modes for detecting DAC debug events, which can occur regardless of the values of 
MSR[DE] or DBCR0[IDM]. When a DAC debug event occurs, the corresponding DBSR bit 
(DAC1R, DAC1W, DAC2R, or DAC2W) is set to record the exception. 

Table 8-8. Data Address Compare Modes

Mode Name Data Address Match Condition

Exact address compare The data access address is equal to the value in the enabled DACn.

Address bit match The data access address, ANDed with the contents of DAC2, is equal to the contents of DAC1, 
also ANDed with the contents of DAC2.

Inclusive address range 
compare 

The data access address is greater than or equal to the contents of DAC1 and less than the 
contents of DAC2.

Exclusive address 
range compare 

The data access address is less than the contents of DAC1 or greater than or equal to the 
contents of DAC2. 
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If MSR[DE] is cleared, DBSR[IDE] is set to capture the imprecise debug event. However, if DE 
is set, a DAC debug exception causes the following events:

• A debug interrupt is taken immediately (if no higher priority exception has caused an 
interrupt).

• Execution of the instruction causing the exception is suppressed.

• CSRR0 is loaded with the address of the excepting instruction.

Depending on the type of instruction and the alignment of the access, the instruction causing the 
exception may have been partially executed (see Section 5.9, “Partially Executed Instructions”).

If debug interrupts are disabled when a DAC debug exception occurs, no interrupt is taken and the 
instruction completes normally (provided the instruction is not causing some other exception that 
generates an enabled interrupt). Also, DBSR[IDE] is set to indicate that the exception occurred 
while debug interrupts were disabled.

Later, if MSR[DE] is set and the debug exception has not been reset by clearing the appropriate 
DBSR bit (DAC1R, DAC1W, DAC2R, or DAC2W), a delayed debug interrupt occurs. In this 
case, CSRR0 contains the address of the instruction following the instruction that enabled the 
debug interrupt. The debug interrupt handler can observe DBSR[IDE] to determine how to 
interpret the CSRR0 value.

8.4.3 Trap Debug Event

A trap debug event occurs if DBCR0[TRAP] is set (trap debug events are enabled) and a trap 
instruction (tw or twi) is executed and the trap conditions specified by the instruction are met. The 
event can occur regardless of the values of MSR[DE] or DBCR0[IDM].

When a trap debug event occurs, DBSR[TRAP] is set to capture the debug exception. If MSR[DE] 
is cleared, DBSR[IDE] is also set to record the imprecise debug event.

If MSR[DE] is set at the time of the trap debug exception, a debug interrupt occurs immediately 
(if no higher priority exception has caused an interrupt), and CSRR0 is set to the address of the 
excepting instruction. 

If debug interrupts are disabled at the time of the exception, no interrupt is taken and a trap 
exception type program interrupt occurs.

Later, if MSR[DE] is set, and the debug exception has not been reset by clearing DBSR[TRAP], 
a delayed debug interrupt occurs. In this case, CSRR0 contains the address of the instruction 
following the one that enabled the debug interrupt (by setting MSR[DE]). The debug interrupt 
handler can observe DBSR[IDE] to determine how to interpret the CSRR0 value.
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8.4.4 Branch Taken Debug Event

A branch taken debug event occurs if both MSR[DE] and DBCR0[BRT] are set (branch taken 
debug events are enabled) and execution is attempted of a branch instruction whose direction is 
taken (an unconditional branch or a conditional branch whose branch condition is met).

Because branch instructions occur very frequently, branch taken debug events are not recognized 
if MSR[DE] is cleared when the branch instruction executes and thus DBSR[IDE] cannot be set 
by a branch taken debug event. Allowing these common events to be recorded as exceptions in the 
DBSR while debug interrupts are disabled would cause an inordinate number of imprecise debug 
interrupts.

The following actions are taken when a branch taken debug event occurs:

• DBSR[BRT] is set (to capture the debug exception).

• A debug interrupt occurs immediately (if no higher priority exception has caused an 
interrupt).

• Execution of the exception-causing instruction is suppressed.

• CSRR0 is set to the address of the excepting instruction.

8.4.5 Instruction Complete Debug Event

An instruction complete debug event occurs when any instruction completes execution so long as 
MSR[DE] and DBCR0[ICMP] are both set (instruction complete debug events are enabled). Note 
that no instruction complete debug event occurs if execution of an instruction is suppressed 
because it caused some other interrupt-generating exception. The sc instruction does not fall into 
the category of an instruction whose execution is suppressed, because the instruction actually 
completes execution and then generates a system call interrupt. In this case, the instruction 
complete debug exception is also set.

Instruction complete debug events are not recognized if MSR[DE] is cleared at the time of the 
instruction execution. DBSR[IDE] cannot be set by an instruction complete debug event because 
allowing the common instruction completion event to log an exception in the DBSR while debug 
interrupts are disabled would cause the debug interrupt handler software to receive an inordinate 
number of imprecise debug interrupts whenever debug interrupts were reenabled.

The following actions are taken when an instruction complete debug event occurs:

• DBSR[ICMP] is set (to record the debug exception).

• A debug interrupt occurs immediately (if no higher priority exception has caused an 
interrupt).

• CSRR0 is set to the address of the instruction following the one that caused the instruction 
complete debug exception.
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8.4.6 Interrupt Taken Debug Event

An interrupt taken debug event occurs if DBCR0[IRPT] is set (interrupt taken debug events are 
enabled) and a noncritical interrupt occurs. Interrupt taken debug events can occur regardless of 
the value of MSR[DE].

Only noncritical interrupts can cause an interrupt taken debug event because all critical interrupts 
automatically clear DE and thus would always prevent the associated debug interrupt from 
occurring precisely. Also, debug interrupts themselves are critical interrupts, so any additional 
debug interrupt (for a second debug event) would always set the additional DBSR[IRPT] 
exception when it entered the debug interrupt handler. At this point, the debug interrupt handler 
could not determine if the second interrupt taken debug event was related to the original event.

When an interrupt taken debug event occurs, IRPT is set to capture the debug exception. If DE is 
zero, DBSR[IDE] is also set to record the imprecise debug event. If DE is set at the time of the 
event, the following occurs:

• A debug interrupt occurs immediately if no higher priority exception caused an interrupt.

• CSRR0 is set to the address of the noncritical interrupt vector that caused the event. No 
instructions at the noncritical interrupt handler are executed. 

If debug interrupts are disabled when the event occurs, no interrupt is generated. However, if the 
debug exception has not been reset by clearing DBSR[IRPT], a delayed debug interrupt occurs 
when interrupts are reenabled (MSR[DE] is set). In this case, CSRR0 contains the address of the 
instruction following the one that set DE. The interrupt handler can observe DBSR[IDE] to 
determine how to interpret CSRR0.

8.4.7 Return Debug Event

A return debug event occurs if DBCR0[RET] is set (enabling return debug events) and an attempt 
is made to execute an rfi. Results from executing an rfci while RET is set are implementation 
dependent; the e500 does the following: 

• If MSR[DE] is set, a debug interrupt is generated.

• If DE is cleared, no debug interrupt is generated and no debug event is logged.

When a return debug event occurs, DBSR[RET] is set to capture the debug exception. If MSR[DE] 
is cleared when rfi executes (before the MSR is updated by the rfi), DBSR[IDE] is also set to 
record the imprecise debug event. If DE is set at the time of the return debug exception, the 
following events occur:

• A debug interrupt is taken immediately (unless the rfi or rfci causing the event clears 
MSR[DE] or a higher priority exception has caused an interrupt).

• CSRR0 is loaded with the address of the instruction that would have executed next had the 
interrupt not occurred.
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If DE is zero (either at the time of the execution of the rfi or after the MSR is updated by the rfi) 
at the time of the return debug exception, a debug interrupt does not occur.

Provided the debug exception has not been reset by clearing DBSR[RET], a delayed imprecise 
debug interrupt occurs when MSR[DE] is set. In this case, CSRR0 contains the address of the 
instruction following the one that set MSR[DE]. The interrupt handler can observe DBSR[IDE] to 
determine how to interpret the value in CSRR0 unless MSR[DE] was cleared by the rfi. In that 
case, DBSR[IDE] has not been set and the software cannot determine that the interrupt was 
precise.

8.4.8 Unconditional Debug Event

An unconditional debug event occurs when the debug mechanism asserts the ude signal. The exact 
definition of ude and how it is activated are implementation dependent. See the reference manual 
for the device that implements the e500 core for details. An unconditional debug event can occur 
regardless of the value of MSR[DE] and is the only debug event that does not have a corresponding 
debug control register enable bit. 

If MSR[DE] is set, an unconditional debug event causes the following:

• A debug interrupt is taken immediately, if no higher priority exception caused an interrupt.

• CSRR0 is loaded with the address of the instruction that would have executed next had the 
interrupt not occurred.

When an unconditional debug event occurs, DBSR[UDE] is set to record the exception. If the 
event occurs while debug interrupts are disabled, DBSR[IDE] is set and the interrupt is delayed 
until MSR[DE] is set, provided the exception has not been cleared from the DBSR in the 
meantime. IDE indicates whether the associated DBSR exception bit was set while debug 
interrupts were disabled. Debug interrupt handler software can use this bit to determine whether 
the address recorded in CSRR0 should be interpreted as the address associated with the instruction 
causing the debug exception or is simply the address of the instruction after the one that set 
MSR[DE], thereby enabling the delayed debug interrupt.
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Part II  
e500 Core Complex

This part describes the features of the e500 core complex that comprise its memory subsystem and
auxiliary features. It contains the following chapters:

• Chapter 9, “Timer Facilities,” describes the Book E-defined timer facilities implemented in 
the e500 core. These resources include the time base (TB), decrementer (DEC), 
fixed-interval timer (FIT), and watchdog timer.

• Chapter 10, “Auxiliary Processing Units (APUs),” describes APUs implemented on the 
e500, such as the isel instruction, performance monitor, signal processing engine, branch 
target buffer (BTB) locking, cache block lock and unlock, and machine check APUs.

• Chapter 11, “L1 Caches,” describes the organization of the on-chip level-one instruction 
and data caches, cache coherency protocols, cache control instructions, and various cache 
operations. It describes the interaction that occurs in the memory subsystem, which consists 
of the memory management unit (MMU), caches, load/store unit (LSU), and core complex 
bus (CCB). The chapter also describes the replacement algorithms used for each of the L1 
caches.

• Chapter 12, “Memory Management Units,” describes the implementation details of the 
e500 core complex MMU relative to the Book E architecture and the Motorola Book E 
standards.

• Chapter 13, “Core Complex Bus (CCB),” describes those aspects of the CCB that are 
configurable or that provide status information through the programming interface. It 
provides a glossary of those signals that are mentioned in other chapters to offer a clearer 
understanding of how the core is integrated as part of a larger device. 
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Chapter 9  
Timer Facilities
This chapter describes specific implementation details of the e500v1 and e500v2 implementations 
of the Book E–defined timer facilities. These resources, which include the time base (TB), 
decrementer (DEC), fixed-interval timer (FIT), and watchdog timer, are described in detail in the 
EREF: A Reference for Freescale Book E and the e500 Core. 

Section 9.3.2, “Performance Monitor Time Base Event,” describes the time base event 
implemented by the e500v2 performance monitor.

9.1 Timer Facilities
The TB, DEC, FIT, and watchdog timer provide timing functions for the system. All of these must 
be initialized during start-up.

• The TB provides a long-period counter driven by a frequency that is implementation 
dependent.

• The decrementer, a counter that is updated at the same rate as the TB, provides a means of 
signaling an exception after a specified amount of time has elapsed unless one of the 
following occurs:

— DEC is altered by software in the interim.

— The TB update frequency changes.

The DEC is typically used as a general-purpose software timer.

• The clock source for the TB and the DEC is specified by two fields in HID0: time base 
enable (TBEN), and select time base clock (SEL_TBCLK). If the TB is enabled 
(HID0[TBEN] = 1) the clock source is determined as follows:

— If [SEL_TBCLK] = 0, the TB is updated every 8 core complex bus (CCB) clocks.

— If HID0[SEL_TBCLK] = 1, the time base is updated on the rising edge of tbclk (or a 
clock input specified by the implementation). The exact frequency range is specified in 
the hardware specification for the integrated device, but the maximum value should not 
exceed 1/ 8th the core frequency.

See Section 2.10.1, “Hardware Implementation-Dependent Register 0 (HID0).”

• The fixed-interval timer is essentially a selected bit of the TB, which provides a means of 
signaling an exception whenever the selected bit transitions from 0 to 1, in a repetitive 
fashion. The fixed-interval timer is typically used to trigger periodic system maintenance 
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functions. Software may select one of four bits in the TB to serve as the fixed-interval timer. 
Which bits may be selected depends on the implementation.

• The watchdog timer is also a selected bit of the TB, which provides a means of signalling 
a critical class exception whenever the selected bit transitions from 0 to 1. In addition, if 
software does not respond in time to the initial exception (by clearing the associated status 
bits in the TSR before the next expiration of the watchdog timer interval), then a watchdog 
timer-generated processor reset may result, if so enabled. The watchdog timer is typically 
used to provide a system error recovery function.

The relationship of these timer facilities to each other is shown in Figure 9-1.

Figure 9-1. Relationship of Timer Facilities to Time Base

9.2 Timer Registers
This section describes registers used by the timer facilities.

• HID0—Clock source select and enable: The clock source for the core timer facilities is 
specified by two fields in the hardware implementation-dependent register 0 (HID0): time 
base enable (TBEN), and select time base clock (SEL_TBCLK). HID0[TBEN] enables the 
time base, and HID0[SEL_TBCLK] selects the time base clock, tbclk. (Some 
implementations may use a signal with a different name.) For more information, see 
Section 2.10.1, “Hardware Implementation-Dependent Register 0 (HID0).” Section 9.3, 
“The e500 Timer Implementation,” describes how these bits interact with other registers. 

• Timer control register (TCR). Provides control information for the on-chip timer of the core 
complex. The core complex implements two fields not specified in Book E: TCR[WPEXT] 
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and TCR[FPEXT]. The TCR controls decrementer, fixed-interval timer, and watchdog 
timer options. 

Section 2.6.1, “Timer Control Register (TCR),” describes the TCR in detail.

• Timer status register (TSR). Contains status on timer events and the most recent 
watchdog-timer-initiated processor reset. Section 2.6.2, “Timer Status Register (TSR),” 
describes the TSR in detail.

• Decrementer register (DEC). DEC contents can be read into bits 32–63 of a GPR using 
mfspr, clearing bits 0–31. GPR contents can be written to the decrementer using mtspr. 
See Section 2.6.4, “Decrementer Register (DEC),” for more information.

• Decrementer auto-reload register (DECAR). Supports the auto-reload feature of the 
decrementer. The DECAR contents cannot be read. See Section 2.6.5, “Decrementer 
Auto-Reload Register (DECAR),” for more information.

9.3 The e500 Timer Implementation
The clock source for the e500 timer facilities is specified by two fields in HID0: time base enable 
(TBEN) and select time base clock (SEL_TBCLK). If HID0[TBEN] = 0, the time base is static; 
there is no counting. If the time base is enabled (HID0[TBEN] is set), the clock source is 
determined as follows:

• If HID0[SEL_TBCLK] = 0, the timer facilities are updated every 8 CCB clocks.

• If HID0[SEL_TBCLK] = 1, the timer facilities are updated on the rising edge of RTC.

The default source is the CCB clock divided by eight. For more details see Section 2.10.1, 
“Hardware Implementation-Dependent Register 0 (HID0).”

• If HID0[TBEN] = 0, the time base is static (no counting)

• If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 0, the time base is updated every 8 bus 
clocks

• If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 1, the time base is sampled at the bus rate; 
that is, it is updated on the rising edge of tbclk. (Some implementations may use a signal 
with a different name.) The maximum supported frequency can be found in the electrical 
specifications, but this value is approximately 25% of the bus clock frequency.

The decrementer, TBL, and TBU are updated in that order during three successive internal 
processor clock cycles.

The core output signals wrs[0:1] reflect the value of TSR[WRS]. The intention is to signal to the 
system that a watchdog reset event has occurred. The system can then implement a reset strategy. 
The core can be reset by asserting hreset. No automatic resetting is done when a watchdog reset 
occurs.
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9.3.1 Alternate Time Base APU

The alternate time base APU defines a time base counter similar to the time base defined in
PowerPC architecture. It is intended to be used for measuring time in implementation-defined
intervals. It differs from the PowerPC defined time base in that it is not writable, it counts at a
different frequency, and it always counts up, wrapping when the 64-bit count overflows.

The alternate time base is a 64-bit counter that counts up at an implementation-dependent rate.
While not required, the rate is encouraged to be at the core clock frequency or as small a multiple
of the frequency as practical for the implementation. On the e500v2, this frequency is the core
frequency. 

The ATBU and ATBL registers can be read by executing an mfspr instruction, but cannot be
written. Reading the ATB (or ATBL) register places the lower 32 bits of the counter into the target
register. A second SPR, ATBU, is defined that accesses only the upper 32 bits of the counter. Thus
the upper 32 bits of the counter may be read into a register by reading the ATBU register regardless
of computation mode.

The ATB registers are described in Section 2.6.6, “Alternate Time Base Registers (ATBL and
ATBU).”

The effect of power-savings mode or core frequency changes on counting in the alternate time base
is implementation dependent. See the User’s Manual for details. 

9.3.2 Performance Monitor Time Base Event

The e500v2 has added the ability to count transitions of the TBL bit selected by PMGC0[TBSEL]. 
This count is enabled by setting PMGC0[TBEE]. For specific information, see Chapter 7, 
“Performance Monitor.”



PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 10-1

Chapter 10  
Auxiliary Processing Units (APUs)
This chapter describes the e500 APU support. It fully describes those APUs that are specific to the 
e500 and the double-precision floating-point APU implemented on the e500v2. Full descriptions 
of the APUs defined by the Freescale Book E implementation standards (EIS) are provided in the 
EREF: A Reference for Freescale Book E and the e500 Core (EREF).

References to e500 apply to both e500v1 and e500v2. 

10.1 Overview
The e500 supports the following APUs defined by the EIS:

• Integer select APU

• Performance monitor APU

• Signal processing engine APU (SPE APU)

• Embedded floating-point APUs 

— Embedded vector single-precision floating-point APU

— Embedded scalar single-precision floating-point APUs 

— Embedded scalar double-precision floating-point APUs. See 10.4, “Double-Precision 
Floating-Point APU (e500 v2 Only).”

Note that the e500 diverges from the architected definition provided in the EREF. Details 
are provided in Section 3.8.1.4, “Embedded Floating-Point APU Instructions,” and in 
Section 2.5.1, “Machine State Register (MSR).”

• Cache block lock and unlock APU

• Machine check APU

• The e500v2 supports the alternate time base APU, described in Section 10.3, “Alternate 
Time Base APU.”
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Note that the SPE APU and the two single-precision floating-point APUs were combined in the 
original implementation of the e500v1, as shown in Figure 10-1.

The e500 also implements the branch target buffer (BTB) locking APU, which is not defined by 
the EIS. See Section 10.2, “Branch Target Buffer (BTB) Locking APU.”

10.2 Branch Target Buffer (BTB) Locking APU
The core complex provides a 512-entry BTB for efficient processing of branch instructions. The 
BTB is a branch target address cache, organized as 128 rows with four-way set associativity, that 
holds the address and target instruction of the 512 most-recently taken branches, each with a 2-bit, 
dynamically updated branch history table that indicates four levels of likelihood that the branch 
will be taken (strongly taken, taken, not taken, strongly not taken). The BTB provides quick access 
to branch targets and history bits that allow efficient branch prediction.

The core complex also provides support for locking and unlocking BTB entries for deterministic 
branch behavior. In particular, the BTB locking APU gives the user the ability to lock, unlock, and 
invalidate BTB entries. 

10.2.1 BTB Locking APU Programming Model

The BTB locking APU defines additional instructions and register resources, which are described 
in the following sections. It does not define additional interrupts.

10.2.1.1 BTB Locking APU Instructions

Table 10-1 lists the BTB locking instructions, which are described in detail in Section 3.9.1, 
“Branch Target Buffer (BTB) Locking Instructions.”

Vector and Floating-Point APUs e500 v1 e500 v2

Original SPE 
Definition

SPE vector instructions ev… √ √

Vector single-precision floating-point evfs… √ √

Scalar single-precision floating-point efs… √ √

Scalar double-precision floating-point efd… √

Figure 10-1. Vector and Floating-Point APUs

Table 10-1. BTB Locking APU Instructions

Name Mnemonic Syntax

Branch Buffer Load Entry and Lock Set bblels —

Branch Buffer Entry Lock Reset bbelr —
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10.2.1.2 BTB Locking APU Registers 

The BTB APU register model includes the following register resources for enabling the locking 
and unlocking of BTB entries:

• Branch unit control and status register (BUCSR)—SPR 1013. This register has bits that are 
used to enable or disable BTB locking and to control unlocking, invalidation, and 
overlocking of BTB entries. See Section 2.9.3, “Branch Unit Control and Status Register 
(BUCSR).”

• Branch buffer entry address register (BBEAR)—SPR 512. This register holds the address of a 
BTB entry. See Section 2.9.1, “Branch Buffer Entry Address Register (BBEAR).”

• Branch buffer target address register (BBTAR)—SPR 513. This register includes branch 
target address bits and a field that allows the programmer to specify whether a branch 
should be predicted as taken or not taken. See Section 2.9.2, “Branch Buffer Target Address 
Register (BBTAR).”

• MSR[UBLE], the user branch locking enable bit, determines whether user mode programs 
can lock or unlock BTB entries. See Section 2.5.1, “Machine State Register (MSR).”

10.3 Alternate Time Base APU
The alternate time base APU defines a time base counter similar to the time base defined in
PowerPC architecture. It is intended to be used for measuring time in implementation-defined
intervals. It differs from the PowerPC defined time base in that it is not writable, it counts at a
different frequency, and it always counts up, wrapping when the 64-bit count overflows.

10.3.1 Programming Model

The alternate time base is a 64-bit counter that counts up at an implementation-dependent rate.
While not required, the rate is encouraged to be at the core clock frequency or as small a multiple
of the frequency as practical for the implementation. On the e500v2, this frequency is the core
frequency. 

The ATBU and ATBL registers can be read by executing a mfspr instruction, but cannot be
written. Reading the ATB (or ATBL) register places the lower 32 bits of the counter into the target
register. A second SPR, ATBU, is defined that accesses only the upper 32 bits of the counter. Thus
the upper 32 bits of the counter may be read into a register by reading the ATBU register regardless
of computation mode.

ATB registers are described in Section 2.6.6, “Alternate Time Base Registers (ATBL and ATBU).”

The effect of power-savings mode or core frequency changes on counting in the alternate time base
is implementation-dependent. See the User’s Manual for details. 
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10.4 Double-Precision Floating-Point APU (e500 v2 Only)
This section describes the double-precision floating-point APU. The vector and scalar 
floating-point APUs are described in the EREF. 

Except where otherwise noted, the double-precision floating-point APU adheres to the embedded 
floating-point APUs programming model and notation conventions as described in the EREF. 

10.4.1 Programming Model

Floating-point double-precision instructions operate on the entire 64 bits of the GPRs where a
floating-point data item consists of 64 bits. The double-precision floating-point APU uses the
thirty-two 64-bit GPRs, which is also used by the vector single-precision floating-point APU and
the signal-processing engine (SPE) APU. 

There are no record forms of embedded floating-point instructions. Floating-point compare
instructions treat NaNs, Infinity and Denorm as normalized numbers for the comparison
calculation when default results are provided. 

• SPE floating-point status and control register (SPEFSCR)—Double-precision 
floating-point operations use the SPEFSCR as it is described in the EREF. 
Double-precision floating-point instructions affect only the low element floating-point 
status flags and leave the high element floating-point status flags undefined.

• Embedded floating-point exception bit in ESR. The double-precision floating-point APU is 
affected by the embedded floating-point exception bit, ESR[SPE], as it is described in the 
EREF. This bit is set whenever the processor takes an interrupt related to the execution of 
the embedded floating-point instructions. 

The double-precision floating-point APU can generate the following embedded floating-point
APU interrupts as described in the EREF:

• SPE/embedded floating-point unavailable interrupt—IVOR32 (SPR 528)

• Embedded floating-point data interrupt—IVOR33 (SPR 529)

• Embedded floating-point round interrupt—IVOR34 (SPR 530)

10.4.2 Double-Precision Floating-Point APU Operations

This section describes operational modes and formats. Note that IEEE 754–compliance and sticky 
bit handling for exception conditions is as described in the EREF. 

10.4.2.1 Operational Modes

Double-precision floating-point operations are governed by the setting of the mode bit in SPESCR.
The mode bit defines how floating-point results are computed and how floating-point exceptions
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are handled. Mode 0 defines a real-time, default results–oriented mode that saturates results. No
other modes are currently defined.

10.4.2.2 Floating-Point Data Formats

As shown in Figure 10-2, double-precision floating-point data elements are 64 bits wide with 1
sign bit (s), 11 bits of biased exponent (e) and 52 bits of fraction (f). 

Figure 10-2. Floating-Point Data Format

For double-precision normalized numbers, the biased exponent value ‘e’ lies in the range of 1 to
2046 corresponding to an actual exponent value E in the range -1022 to +1023. With the hidden
bit implied to be ‘1’ (for normalized numbers), the value of the number is interpreted as follows:

where E is the unbiased exponent and 1.fraction is the mantissa (or significand) consisting of a
leading ‘1’ (the hidden bit) and a fractional part (fraction field). The maximum positive normalized
number (pmax) is represented by the encoding 0x7FEF_FFFF_FFFF_FFFF which is
approximately 1.8E+307 ( ), and the minimum positive normalized value (pmin) is
represented by the encoding 0x0010_0000_0000_0000, approximately 2.2E-308 ( )

Biased exponent values 0 and 2047 are reserved for encoding special values of +0, -0, +infinity,
-infinity, and NaNs. 

Zeros of both positive and negative sign are represented by a biased exponent value e of zero and
a fraction f which is zero. 

Infinities of both positive and negative sign are represented by a maximum exponent field value
(2047) and a fraction which is zero.

Denormalized numbers of both positive and negative sign are represented by a biased exponent
value e of 0 and a fraction f, which is non-zero. For these numbers, the hidden bit is defined by the
IEEE 754 standard to be ‘0’. This number type is not directly supported in hardware. Instead,
either a software interrupt handler is invoked, or a default value is defined.

Double-precision not-a-Numbers (NaNs) are represented by a maximum exponent field value
(2047) and a fraction f which is non-zero.
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10.4.2.3 Overflow and Underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest
positive normalized value (closest to zero), nmax the most negative normalized value (farthest
from zero) and nmin the smallest normalized negative value (closest to zero), an overflow is said
to have occurred if the numerically correct result of an instruction is such that r>pmax or r<nmax.
Additionally, an implementation may also signal overflow by comparing the exponents of the
operands. In this case, the hardware examines both exponents ignoring the fractional values. If it
is determined that the operation to be performed may overflow (ignoring the fractional values), an
overflow may be said to occur. For addition and subtraction this can occur if the larger exponent
of both operands is 2046 for double-precision. For multiplication this can occur if the sum of the
exponents of the operands less the bias is 2046 for double-precision. Thus:

double-precision addition:
if Aexp >= 2046 | Bexp >= 2046 then overflow

double-precision multiplication:
if Aexp + Bexp - 1023 >= 2046 then overflow

An underflow is said to have occurred if the numerically correct result of an instruction is such that
0<r<pmin or nmin<r<0. In this case, r may be denormalized, or may be smaller than the smallest
denormalized number. As with overflow detection, an implementation may also signal underflow
by comparing the exponents of the operands. In this case, the hardware examines both exponents
regardless of the fractional values. If it is determined that the operation to be performed may
underflow (ignoring the fractional values), an underflow may be said to occur. For division this can
occur if the difference of the exponent of the A operand less the exponent of the B operand less
the bias is 1. Thus:

double-precision multiplication:
if Aexp - Bexp - 1023 <= 1 then underflow

10.4.3 Instruction Descriptions

This section describes double-precision floating-point computational and logical instructions. The
following load and store instructions defined by the SPE APU are used to load and store operands: 

• evldd—Vector Load Double Word into Double Word

• evlddx—Vector Load Double Word into Double Word Indexed

• evstdd—Vector Store Double Word of Double Word

• evstddx—Vector Store Double Word of Double Word

• evmergehi—Vector Merge High

• evmergelo—Vector Merge Low

These instruction descriptions follow the conventions used in the EREF. 
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efdabs efdabs
Floating-Point Double-Precision Absolute Value

efdabs rD,rA

rD0:63 ← 0b0 || rA1:63 

The sign bit of rA is cleared and the result is placed into rD.

Exception detection for efdabs is implementation dependent. On the e500v2, the exception is
handled as follows: If rA is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are
cleared. If SPEFSCR[FINVE] = 0, the results are the same as for a normalized number. If
SPEFSCR[FINVE] = 1, an interrupt is taken and rD is not updated.

efdadd efdadd
Floating-Point Double-Precision Add

efdadd rD,rA,rB

rD0:63 ← rA0:63 +dp rB0:63

rA is added to rB and the result is stored in rD. If rA is NaN or infinity, the result is either pmax
(asign==0), or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is either pmax
(bsign==0), or nmax (bsign==1). Otherwise, if overflow occurs, pmax or nmax (as appropriate) is
stored in rD. If underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode
RM) is stored in rD.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If
SPEFSCR[FINVE] is set, an interrupt is taken and rD is not updated. Otherwise, if overflow or
underflow occurs, SPEFSCR[FOVF] or SPEFSCR[FUNF] is set, and, if the underflow or overflow
exception is enabled, an interrupt is taken. If any of these interrupts is taken, rD is not updated.

If the result is inexact or if an overflow occurs but overflow exceptions are disabled, and no other
interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, a
floating-point round interrupt is taken, rD is updated with the truncated result, and FG and FX are
updated to allow rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled,
regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0
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efdcfs efdcfs
Floating-Point Double-Precision Convert from Single-Precision 

efdcfs rD,rB

FP32format f;
FP64format result;

f ← rB32:63

if (fexp = 0) & (ffrac = 0)) then
result ← fsign || 

630 // signed zero value
else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then

SPEFSCRFINV ← 1
result ← fsign || 0b11111111110 || 

521 // max value
else if Isa32Denorm(f) then

SPEFSCRFINV ← 1
result ← fsign || 

630
else

resultsign ← fsign
resultexp ← fexp - 127 + 1023
resultfrac ← ffrac || 

290

rD0:63 = result

The single-precision floating-point value in the low element of rB is converted to a
double-precision floating-point value and the result is placed into rD. The rounding mode is not
used since this conversion is always exact.

Exceptions:

If the low element of rB is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If
SPEFSCR[FINVE] is set, an interrupt is taken, and rD is not updated.

FG and FX are always cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1
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efdcfsf efdcfsf
Convert Floating-Point Double-Precision from Signed Fraction 

efdcfsf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, SIGN, F)

The signed fractional low element in rB is converted to a double-precision floating-point value
using the current rounding mode and the result is placed into rD.

Exceptions: None

efdcfsi efdcfsi 
Convert Floating-Point Double-Precision from Signed Integer 

efdcfsi rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, SIGN, I)

The signed integer low element in rB is converted to a double-precision floating-point value using
the current rounding mode and the result is placed into rD.

Exceptions: None

efdcfuf efdcfuf
Convert Floating-Point Double-Precision from Unsigned Fraction 

efdcfuf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, UNSIGN, F)

The unsigned fractional low element in rB is converted to a double-precision floating-point value
using the current rounding mode and the result is placed into rD.

Exceptions: None

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 1 1

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 0 1

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 1 0
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efdcfui efdcfui 
Convert Floating-Point Double-Precision from Unsigned Integer 

efdcfui rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, UNSIGN, I)

The unsigned integer low element in rB is converted to a double-precision floating-point value
using the current rounding mode and the result is placed into rD.

Exceptions: None

efdcmpeq efdcmpeq
Floating-Point Double-Precision Compare Equal

efdcmpeq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and the FGH
FXH, FG and FX bits are cleared. If floating-point invalid input exceptions are enabled, an
interrupt is taken and the condition register is not updated. Otherwise, the comparison proceeds
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and
‘f’ directly.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 0 0 0

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 1 0
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efdcmpgt efdcmpgt
Floating-Point Double-Precision Compare Greater Than

efdcmpgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and the FGH
FXH, FG and FX bits are cleared. If floating-point invalid input exceptions are enabled, an
interrupt is taken and the condition register is not updated. Otherwise, the comparison proceeds
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and
‘f’ directly.

efdcmplt efdcmplt
Floating-Point Double-Precision Compare Less Than

efdcmplt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. and FGH FXH,
FG and FX are cleared. If floating-point invalid input exceptions are enabled, an interrupt is taken
and the condition register is not updated. Otherwise, the comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 0 0

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 0 1
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efdctsf efdctsf
Convert Floating-Point Double-Precision to Signed Fraction 

efdctsf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, F)

The double-precision floating-point value in rB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero. 

Exceptions:

If the rB contents are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is set
and FG and FX are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken and rD is not
updated.

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated so the handler can perform rounding.

efdctsi efdctsi 
Convert Floating-Point Double-Precision to Signed Integer 

efdctsi rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, I)

The double-precision floating-point value in rB is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are
converted as though they were zero.

Exceptions:

If rB contents are Infinity, Denorm, or NaN or if an overflow occurs, SPEFSCR[FINV] is set and
FG and FX are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, rD is not updated, and
no other status bits are set. 

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated so the handler can perform rounding.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 1 1

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 0 1



Auxiliary Processing Units (APUs)

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 10-13

efdctsiz efdctsiz 
Convert Floating-Point Double-Precision to Signed Integer with Round toward Zero

efdctsiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, TRUNC, I

The double-precision floating-point value in rB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is
set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, rD is
not updated, and no other status bits are set. 

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated so the handler can perform rounding.

efdctuf efdctuf
Convert Floating-Point Double-Precision to Unsigned Fraction 

efdctuf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, F)

The double-precision floating-point value in rB is converted to an unsigned fraction using the
current rounding mode and the result is saturated if it cannot be represented in a 32-bit unsigned
fraction. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] is
set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and rD
is not updated.

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated so the handler can perform rounding.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 1 0 1 0

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 1 0
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efdctui efdctui 
Convert Floating-Point Double-Precision to Unsigned Integer 

efdctui rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, I

The double-precision floating-point value in rB is converted to an unsigned integer using the
current rounding mode and the result is saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Exceptions:

If rB contents are Infinity, Denorm, or NaN or if an overflow occurs, SPEFSCR[FINV] is set, and
FG and FX are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken and rD is not updated. 

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated so the handler can perform rounding.

efdctuiz efdctuiz 
Convert Floating-Point Double-Precision to Unsigned Integer with Round toward Zero

efdctuiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, TRUNC, I)

The double-precision floating-point value in rB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit
integer. NaNs are converted as though they were zero.

Exceptions:

If rB contents are Infinity, Denorm, or NaN or if an overflow occurs, SPEFSCR[FINV] is set and
FG and FX are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, and rD is not updated. 

If conversion is inexact, inexact status is signalled and SPEFSCR[FINXS] is set. If the
floating-point inexact exception is enabled, a floating-point round interrupt is taken, rD is updated
with the truncated result, and FG and FX are updated to allow the handler to perform rounding .

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 0 1 0 0

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 1 1 0 0 0
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efddiv efddiv
Floating-Point Double-Precision Divide

efddiv rD,rA,rB

rD0:63 ← rA0:63 ÷dp rB0:63

rA is divided by rB and the result is stored in rD. If rB is a NaN or infinity, the result is a properly
signed zero. Otherwise, if rB is a zero (or a denormalized number optionally transformed to zero
by the implementation), or if rA is either NaN or infinity, the result is either pmax (asign==bsign),
or nmax (asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored
in rD. If an underflow occurs, +0 or -0 (as appropriate) is stored in rD.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, or if both rA and rB are +/-0,
SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is set, an interrupt is taken, and rD is not updated.
Otherwise, if the content of rB is +/-0 and the content of rA is a finite normalized non-zero
number, SPEFSCR[FDBZ] is set. If floating-point divide by zero Exceptions are enabled, an
interrupt is then taken. Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an
underflow occurs, SPEFSCR[FUNF] is set. If either underflow or overflow exceptions are enabled
and the corresponding bit is set, an interrupt is taken. If any of these interrupts are taken, rD is not
updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact
exception is enabled, an interrupt is taken using the floating-point round interrupt vector. In this
case, rD is updated with the truncated result, FG and FX are updated to allow rounding to be
performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, divide by zero, or invalid operation/input error
is signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0



PowerPC e500 Core Family Reference Manual, Rev. 1

10-16 Freescale Semiconductor

Auxiliary Processing Units (APUs)

efdmul efdmul
Floating-Point Double-Precision Multiply

efdmul rD,rA,rB

rD0:63 ← rA0:63 ×dp rB0:63

rA is multiplied by rB and the result is stored in rD. If rA or rB are zero (or a denormalized
number optionally transformed to zero by the implementation), the result is a properly signed zero.
Otherwise, if rA or rB are either NaN or infinity, the result is either pmax (asign==bsign), or nmax
(asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in rD. If
an underflow occurs, +0 or -0 (as appropriate) is stored in rD. 

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If
SPEFSCR[FINVE] is set, an interrupt is taken, and rD is not updated. Otherwise, if an overflow
occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken.
If any of these interrupts are taken, rD is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact
exception is enabled, an interrupt is taken using the floating-point round interrupt vector. In this
case, rD is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled,
regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0
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efdnabs efdnabs
Floating-Point Double-Precision Negative Absolute Value

efdnabs rD,rA

rD0:63 ← 0b1 || rA1:63

The sign bit of rA is set to 1 and the result is placed into rD.

Exception detection for efdnabs is implementation dependent. On the e500v2, the exception is
handled as follows: If rA is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are
cleared. If SPEFSCR[FINVE] = 0, the results are the same as for a normalized number. If
SPEFSCR[FINVE] = 1, an interrupt is taken and rD is not updated.

efdneg efdneg
Floating-Point Double-Precision Negate

efdneg rD,rA

rD0:63 ← ¬rA0 || rA1:63

The sign bit of rA is complemented and the result is placed into rD.

Exception detection for efdneg is implementation dependent. On the e500v2, the exception is
handled as follows: If rA is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are
cleared. If SPEFSCR[FINVE] = 0, the results are the same as for a normalized number. If
SPEFSCR[FINVE] = 1, an interrupt is taken and rD is not updated.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0
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efdsub efdsub
Floating-Point Double-Precision Subtract

efdsub rD,rA,rB

rD0:63 ← rA0:63 -dp rB0:63

rB is subtracted from rA and the result is stored in rD. If rA is NaN or infinity, the result is either
pmax (asign==0), or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is either nmax
(bsign==0), or pmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is
stored in rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding
mode RM) is stored in rD. 

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If
SPEFSCR[FINVE] is set, an interrupt is taken, and rD is not updated. Otherwise, if an overflow
occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt is taken.
If any of these interrupts are taken, rD is not updated.

If the result is inexact or if overflow occurs but overflow exceptions are disabled, and no other
interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, a
floating-point round interrupt is taken, rD is updated with the truncated result, and FG and FX are
updated to allow the interrupt handler to perform rounding.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled,
regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1
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efdtsteq efdtsteq
Floating-Point Double-Precision Test Equal

efdtsteq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are generated during the execution of efdtsteq If strict IEEE 754 compliance is
required, the program should use efdcmpeq.

efdtstgt efdtstgt
Floating-Point Double-Precision Test Greater Than

efdtstgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are generated during the execution of efdtstgt. If strict IEEE 754 compliance is
required, the program should use efdcmpgt.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 1 1 1 1 0

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 1 1 1 0 0
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efdtstlt efdtstlt
Floating-Point Double-Precision Test Less Than

efdtstlt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is cleared.
Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly. 

No exceptions are generated during the execution of efdtstlt. If strict IEEE 754 compliance is
required, the program should use efdcmplt.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 1 1 1 0 1
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efscfd efscfd
Floating-Point Single-Precision Convert from Double-Precision 

efscfd rD,rB

FP64format f;
FP32format result;
f ← rB0:63
if (fexp = 0) & (ffrac = 0)) then

result ← fsign || 
310 // signed zero value

else if Isa64NaNorInfinity(f) then
SPEFSCRFINV ← 1
result ← fsign || 0b11111110 || 

231 // max value
else if Isa64Denorm(f) then

SPEFSCRFINV ← 1
result ← fsign || 

310
else

unbias ← fexp - 1023
if unbias > 127 then

result ← fsign || 0b11111110 || 
231 // max value

SPEFSCRFOVF ← 1
else if unbias < -126 then

result ← fsign || 0b00000001 || 
230 // min value

SPEFSCRFUNF ← 1
else

resultsign ← fsign
resultexp ← unbias + 127
resultfrac ← ffrac[0:22]
guard ← ffrac[23]
sticky ← (ffrac[24:51] ≠ 0)
result ← Round32(result, LOWER, guard, sticky)
SPEFSCRFG ← guard
SPEFSCRFX ← sticky
if guard | sticky then

SPEFSCRFINXS ← 1
rD32:63 ← result

The double-precision floating-point value in rB is converted to a single-precision floating-point
value using the current rounding mode and the result is placed into the low element of rD.

Exceptions:

If the rB value is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is set,
an interrupt is taken and rD is not updated. Otherwise, if overflow occurs, SPEFSCR[FOVF] is
set; if underflow occurs, SPEFSCR[FUNF] is set. If underflow or overflow exceptions are enabled
and the corresponding bit is set, an interrupt is taken. If an interrupts is taken, rD is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point inexact
exception is enabled, a floating-point round interrupt is taken, rD is updated with the truncated
result, FG and FX are updated so the interrupt handler can perform rounding.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled,
regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1
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10.4.4 Embedded Floating-Point Results Summary

Tables in the “Embedded Floating-Point Results” appendix in the EREF summarize the results of
various types of floating-point operations on various combinations of input operands. Flag settings
are performed on appropriate element flags. Double-precision values appropriate to those tables
are as follows:

• pmax denotes the maximum normalized positive number. The encoding for 
double-precision is 0x7FEF_FFFF_FFFF_FFFF.

• nmax denotes the maximum normalized negative number. The encoding for 
double-precision is 0xFFEF_FFFF_FFFF_FFFF.

• pmin denotes the minimum normalized positive number. The encoding for 
double-precision is 0x0010_0000_0000_0000.

• nmin denotes the minimum normalized negative number. The encoding for 
double-precision is0x8010_0000_0000_0000.

10.4.5 Floating-Point Conversion Models

The floating-point to and from non–floating-point conversion model pseudo RTL is provided here
as a group of functions that is called from the individual instruction pseudo RTL descriptions.

10.4.5.1 Common Functions
// Determine if fp value is a NaN or Infinity

Isa32NaNorInfinity(fp)

return (fpexp = 255)

Isa32NaN(fp)

return ((fpexp = 255) & (fpfrac ≠ 0))

Isa32Infinity(fp)

return ((fpexp = 255) & (fpfrac = 0))

// Determine if fp value is denormalized

Isa32Denorm(fp)

return ((fpexp = 0) & (fpfrac ≠ 0))

// Determine if fp value is a NaN or Infinity

Isa64NaNorInfinity(fp)

return (fpexp = 2047)

Isa64NaN(fp)

return ((fpexp = 2047) & (fpfrac ≠ 0))

Isa64Infinity(fp)

return ((fpexp = 2047) & (fpfrac = 0))
// Determine if fp value is denormalized

Isa64Denorm(fp)
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return ((fpexp = 0) & (fpfrac ≠ 0))

// Signal a Floating Point Error in the SPEFSCR

SignalFPError(upper_lower, bits)

if (upper_lower = UPPER) then
bits ← bits << 15

SPEFSCR ← SPEFSCR | bits
bits ← (FG | FX)
if (upper_lower = UPPER) then

bits ← bits << 15
SPEFSCR ← SPEFSCR & ¬bits

// Round a result

Round32(fp, guard, sticky)

FP32format fp;

if (SPEFSCRFINXE = 0) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | fpfrac[22]) then

v0:23 ← fpfrac + 1
if v0 then

if (fpexp >= 254) then
// overflow
fp ← fpsign || 0b11111110 || 

231
else

fpexp ← fpexp + 1
fpfrac ← v1:23

else
fpfrac ← v1:23

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

// Round a result

Round64(fp, guard, sticky)

FP32format fp;

if (SPEFSCRFINXE = 0) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | fpfrac[51]) then

v0:52 ← fpfrac + 1
if v0 then

if (fpexp >= 2046) then
// overflow
fp ← fpsign || 0b11111111110 || 

521
else

fpexp ← fpexp + 1
fpfrac ← v1:52

else
fpfrac ← v1:52

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

10.4.5.2 Convert from Double-Precision Floating-Point to Integer Word with 
Saturation

// Convert 64 bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC
// fractional = F (fractional) or I (integer)
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CnvtFP64ToI32Sat(fp, signed, round, fractional)

FP64format fp;
if (Isa64NaNorInfinity(fp)) then // SNaN, QNaN, +-INF

SignalFPError(LOWER, FINV)
if (Isa64NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LOWER, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(LOWER, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp ← 1054
shift ← 1054 - fpexp
if (signed ← SIGN) then

if ((fpexp ≠ 1054) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

else // fractional conversion
max_exp ← 1022
shift ← 1022 - fpexp
if (signed = SIGN) then

shift ← shift + 1

if (fpexp > max_exp) then
SignalFPError(LOWER, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result ← 0b1 || fpfrac[0:30] // add U to frac
guard ← fpfrac[31]
sticky ← (fpfrac[32:63] ≠ 0)
for (n ← 0; n < shift; n ← n + 1) do

sticky ← sticky | guard
guard ← result & 0x00000001
result ← result > 1

// Report sticky and guard bits
SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest
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if (guard) then
if (sticky | (result & 0x00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

10.4.5.3 Convert to Double-Precision Floating-Point from Integer Word with 
Saturation

// Convert from integer/fractional to 64 bit floating point
// signed = SIGN or UNSIGN
// fractional = F (fractional) or I (integer)

CnvtI32ToFP64Sat(v, signed, fractional)

FP64format result;

resultsign ← 0
if (v = 0) then

result ← 0
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v0 = 1) then
v ← ¬v + 1
resultsign ← 1

if (fractional = F) then // fractional bit pos alignment
maxexp ← 1023
if (signed = UNSIGN) then

maxexp ← maxexp - 1
else

maxexp ← 1054 // integer bit pos alignment
sc ← 0
while (v0 = 0)

v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc

// Report sticky and guard bits
SPEFSCRFG ← 0
SPEFSCRFX ← 0

resultfrac ← v1:31 || 
210

return result
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Chapter 11  
L1 Caches
The e500 core complex contains separate 32-Kbyte, eight-way set associative level 1 (L1) 
instruction and data caches to provide the execution units and registers rapid access to instructions 
and data.

This chapter describes the organization of the on-chip L1 instruction and data caches, cache 
coherency protocols, cache control instructions, and various cache operations. It describes the 
interaction that occurs in the memory subsystem, which consists of the memory management unit 
(MMU), the caches, the load/store unit (LSU), and the core complex bus (CCB). This chapter also 
describes the replacement algorithms used for L1 caches.

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache 
coherency. These multiprocessor devices could be actual processors or other devices that can 
access system memory, maintain their own caches, and function as bus masters requiring cache 
coherency.

11.1 Overview
The core complex L1 cache implementation has the following characteristics:

• Separate 32-Kbyte instruction and data caches (Harvard architecture)

• Eight-way set associative, non-blocking caches

• Physically addressed cache directories. The physical (real) address tag is stored in the cache 
directory. 

• 2-cycle access time provides 3-cycle read latency for instruction and data caches accesses; 
pipelined accesses provide single-cycle throughput from caches.

• Instruction and data caches have 32-byte cache blocks. A cache block is the block of 
memory that a coherency state describes, also referred to as a cache line.

• Four-state modified/exclusive/shared/invalid (MESI) protocol supported for the data cache. 
See Section 11.3.1, “Data Cache Coherency Model.”

• Both L1 caches support parity generation and checking (enabled through L1CSR0 and 
L1CSR1 bits), as follows:

— Instruction cache: 1 parity bit per byte of instruction

— Data cache: 1 parity bit per byte of data

See Section 11.2.3, “L1 Cache Parity.”
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• Both caches also support parity error injection, which provides a way to test error recovery 
software by intentionally injecting parity errors into the instruction and data caches. See 
Section 11.2.4, “Cache Parity Error Injection.”

• Each cache can be independently invalidated through cache flash invalidate (CFI) control 
bits located in L1CSR1 and L1CSR0. See Section 11.4.3, “L1 Instruction and Data Cache 
Flash Invalidation.”

• Pseudo–least-recently-used (PLRU) replacement algorithm. See Section 11.6.2.1, “PLRU 
Replacement.”

• Support for individual line locking. See Section 11.4.4, “L1 Instruction and Data Cache 
Line Locking/Unlocking.”

Bus snooping ensures the coherency of global memory with respect to the data cache. 

Both instruction and data cache lines are filled in a single-cycle 32-byte write from line fill buffers 
as described in Section 11.1.1.1, “Load/Store Unit (LSU),” and Section 11.1.1.2, “Instruction 
Unit.” Cache line fills write all 32 bytes at once, and therefore do not occur until all four 8-byte 
data beats have been loaded into the line fill buffer from the CCB.

Both instruction and data accesses are performed critical double word first on the CCB. For data 
accesses, the LSU receives the critical double word as soon as it is available; it does not wait for 
all 32 bytes. That data is then forwarded to the requesting unit before being written to the cache, 
thus minimizing stalls due to cache fill latency. For instruction accesses, instruction fetching 
cannot resume until the entire cache line is loaded in the instruction line fill buffer (ILFB). Then, 
the critical double word is written to the cache and instruction fetching can resume. 
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11.1.1 Block Diagram

The instruction and data caches are integrated with the LSU, the instruction unit, and the core 
interface unit in the memory subsystem of the core complex as shown in Figure 11-1. 

Figure 11-1. Cache/Core Interface Unit Integration

The following sections briefly describe the LSU, the instruction unit, the core interface unit, and 
the CCB. 

11.1.1.1 Load/Store Unit (LSU)

The data cache supplies data to the general-purpose registers (GPRs) by means of the LSU. The 
core complex LSU is directly coupled to the data cache with a 32-byte interface (the width of a 
cache block) to allow efficient movement of data to and from the GPRs. The LSU provides all of 
the logic required to calculate effective addresses, handles data alignment to and from the data 
cache, provides sequencing for load/store multiple operations, and interfaces with the core 
interface unit. Write operations to the data cache can be performed on a byte, half-word, word, or 
double-word basis.

This section describes the LSU queues that support the L1 data cache. See Section 11.3.5, 
“Load/Store Operations,” for more information on architectural coherency implications of 
load/store operations and the LSU on the core complex. Also, see Section 4.4.4, “Load/Store 
Execution,” for more information on other aspects of the LSU and instruction scheduling 
considerations.
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11.1.1.1.1 Caching-Allowed Loads and the LSU

When free of data dependencies, caching-allowed loads execute in the LSU in a speculative 
manner with a maximum throughput of one instruction per cycle and a total 3-cycle latency for 
integer loads. Data returned from the cache on a load is held in a rename buffer until the 
completion logic commits the value to the processor state.

11.1.1.1.2 Store Queue

Stores cannot be executed speculatively and are held in the seven-entry store queue, shown in 
Figure 11-1, until the completion logic indicates that the store instruction is to be committed. The 
store queue arbitrates for access to the L1 data cache. When arbitration is successful, the data is 
written to the data cache and the store is removed from the store queue. If a store is 
caching-inhibited, the operation moves through the store queue on to the rest of the memory 
subsystem.

11.1.1.1.3 L1 Load Miss Queue (LMQ)

As loads reach the LSU, the LSU tries to access the cache. If there is a hit, the cache returns the 
data. If there is a miss, the LSU allocates an entry in the four-entry load miss queue (LMQ) 
(nine-entry in the e500v2) and the three-entry data line fill buffer (DLFB) (five-entry in the 
e500v2); see Section 4.4.2.1, “Load/Store Unit Queueing Structures.” The LSU then queues a bus 
transaction to read the line. If a subsequent load hits, the cache returns the results. If a subsequent 
load misses, the LSU allocates a second LMQ entry and, if the load is to a different cache line than 
the outstanding miss, allocates a second DLFB entry and queues a second read transaction on the 
bus. If the load miss is to the same cache line as the already outstanding miss, the LSU does not 
allocate a second DLFB entry. 

The LSU continues processing load hits and load misses until one of the following conditions 
occurs:

• A load miss occurs and the LMQ is full.

• The LSU tries to perform a load miss, all DLFB entries are full, and the load is not to any 
of the cache lines represented in the DLFB.

11.1.1.1.4 Data Line Fill Buffer (DLFB)

The data line fill buffer (DLFB) is located in the LSU; there are three entries in the e500v1 DLFB 
and five in the e500v2 DLFB. DLFB entries are used for loads and caching-allowed stores. Stores 
are allocated in the DLFB so that loads can access data from the store immediately (loads cannot 
access data from the L1 store queue). Also, using DLFB entries for stores, frees up entries in the 
L1 store queue. Multiple caching-allowed store misses are merged in the DLFB. See 
Section 11.6.1.4, “Store Miss Merging,” for more information.
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The e500v2 implements an extra status bit in each LFB entry, indicating whether data in the entry 
is bad (due to address errors, data bus errors or faults, or data bus parity). Any load that hits in an 
entry marked bad does not finish. Therefore, completion eventually stalls on the unfinished load 
until an interrupt occurs. (Under normal operation, this generates an interrupt from the system 
logic; however, if HID0[RFXE] = 1 (and MSR[ME] = 1), a machine check interrupt is generated.)

11.1.1.1.5 Data Write Buffer (DWB)

When a full line of data is available in the DLFB, the data cache is updated. If a data cache update 
requires that a line currently in the cache be evicted, that line is cast out and placed in the data write 
buffer (DWB) until the data has been transferred through the core interface unit to the CCB. If 
global memory’s coherency needs to be maintained, as a result of bus snooping, the L1 cache can 
also evict a line to the DWB. This write is called a snoop push operation. Note that all cast-out and 
snoop push writes from the L1 cache are cache-line aligned (critical word is not written first). This 
is independent of which word in a modified cache line is accessed.

There are three DWB entries: one for snoop pushes, one for castouts, and one that can be used for 
either.

11.1.1.2 Instruction Unit

The instruction unit interfaces with the L1 instruction cache and the core interface unit. When 
instructions miss in the instruction cache they are accumulated in the two-entry instruction line fill 
buffer (ILFB) as they are fetched. After an entire line is available, it is written into the instruction 
cache and the ILFB is emptied. 

The e500v2 implements an extra status bit in each LFB entry, indicating whether data in the entry 
is bad (due to address errors, data bus errors or faults, or data bus parity). Any load that hits in an 
entry marked bad does not finish. Therefore, completion eventually stalls on the unfinished load 
until an interrupt occurs. (Under normal operation, this generates an interrupt from the system 
logic; however, if HID0[RFXE] = 1 (and MSR[ME] = 1), a machine check interrupt is generated.)

11.1.1.3 Core Interface Unit

The core interface unit handles all bus transactions initiated by the ILFB, DLFB, and DWB. The 
core interface unit handles all ordering and bus protocol and is the interface between the core 
complex and the external memory and caches.

The core interface unit performs transactions through the CCB by transferring either the critical 
double word first (8 bytes) or the critical quad word first (16 bytes). It then forwards the 
transaction to the instruction or data line fill buffer critical double word first. The CCB also 
captures snoop addresses for the L1 data cache and the memory reservation (lwarx and stwcx.) 
operations.
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11.2 L1 Cache Organization
The L1 instruction and data caches of the core complex are both organized as 128 sets of eight 
blocks with 32 bytes in each cache line. The following subsections describe the differences in the 
organization of the instruction and data caches.

11.2.1 L1 Data Cache Organization

The L1 data cache is organized as shown in Figure 11-2. 

Figure 11-2. L1 Data Cache Organization

Each block consists of 32 bytes of data, 3 status bits, 1 lock bit, and an address tag. For the L1 data 
cache, a cache block is the 32-byte cache line. Also, although it is not shown in Figure 11-2, the 
data cache has 1 parity bit/byte (4 parity bits/word).

Each cache block contains 8 contiguous words from memory that are loaded from an 8-word 
boundary (that is, physical addresses bits 27–31 are zero). Cache blocks are also aligned on page 
boundaries. Physical address bits PA[20:26] provide the index to select a cache set. The tags 
consist of physical address bits PA[0:19]. Address translation occurs in parallel with set selection 
(from PA[20:26]). Lower address bits PA[27:31] locate a byte within the selected block.

The data cache can be accessed internally while a fill for a miss is pending (allowing hits under 
misses) and the data from a hit can be used as soon as it is available. The LSU forwards the critical 
word to any pending load misses and allows them to finish. Later, when all the data for the miss 
has arrived, the entire cache line is reloaded. In addition, subsequent misses can also be sent to the 
memory subsystem before the original miss is serviced (allowing misses under misses). Up to four 
misses can be pending in the load miss queue. See Section 4.4.2.1, “Load/Store Unit Queueing 
Structures,” for more information.
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There are status bits associated with each cache block, used to implement the 
modified/exclusive/shared/invalid (MESI) cache coherency protocol. The coherency protocols are 
described in Section 11.3, “Cache Coherency Support.”

11.2.2 L1 Instruction Cache Organization

The L1 instruction cache is organized as shown in Figure 11-3. 

Figure 11-3. L1 Instruction Cache Organization

Each block consists of eight instructions, 1 status bit, 1 lock bit, and an address tag. Also, although 
it is not shown in Figure 11-3, the instruction cache has 1 parity bit/byte, yielding 32 parity bits for 
each line.

As with the data cache, each instruction cache block is loaded from an 8-word boundary (that is, 
bits 27–31 of the physical addresses are zero). Instruction cache blocks are also aligned on page 
boundaries. Also, PA[20:26] provides the index to select a set, and PA[27:28] selects an instruction 
within a block. The tags consist of physical address bits PA[0:19]. Address translation occurs in 
parallel with set selection (from PA[20:26]).

The instruction cache can be accessed internally while a fill for a miss is pending (allowing hits 
under misses). Although the data cannot be used, the hit information stops a subsequent miss from 
requesting a fill. In addition, subsequent misses can also be sent to the memory subsystem before 
the original miss is serviced (allowing misses under misses). When a miss is actually updating the 
cache, subsequent accesses are blocked for 1 cycle. (But up to four instructions being loaded into 
the instruction cache can be forwarded to the instruction unit simultaneously.)
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The instruction cache differs from the data cache in that it does not implement a multiple-state 
cache coherency protocol. A single status bit indicates whether a cache block is valid or invalid 
and there is a single bit for locking.

NOTE
On the e500v1, it is possible for multiple entries in the L1 instruction 
cache to contain data for the same physical memory location. This 
error can occur when two different effective addresses (EA) map to 
the same physical address and accesses to these two EAs occur within 
the same context and relatively close together in time.

This is avoided by not fetching instructions from one physical address 
through two or more different EAs within any given context. 

11.2.3 L1 Cache Parity

The L1 caches are protected by parity. Parity information is written into the L1 caches whenever 
one of the following occurs:

• A store instruction (or dcbz or dcba) modifies the data cache

• A line fill occurs into the instruction or data cache

L1 cache parity is checked whenever:

• A load instruction hits in the L1 data cache

• An instruction fetch hits in the L1 instruction cache

• A line is cast out of the L1 data cache

L1 cache parity checking is disabled by default, and can be enabled by setting L1CSR0[CPE] and 
L1CSR1[ICPE].

The CCB is also protected by parity. Parity is checked whenever data is read on either of the two 
CCB read buses; a machine check is generated if errors occur. Additionally, parity is generated 
whenever data is written on the CCB write bus, giving the SoC platform an opportunity to identify 
and report errors when data is cast out of the cache or written with a cache-inhibited or 
write-through store. Parity checking on the CCB read buses is disabled by default and can be 
enabled by setting HID1[R1DPE] and HID1[R2DPE].

If a cache parity error is detected, a machine check interrupt occurs (as described in Section 5.7.2, 
“Machine Check Interrupt”).
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11.2.4 Cache Parity Error Injection

Cache parity error injection provides a way to test error recovery software by intentionally 
injecting parity errors into the instruction and data caches, as follows:

• If L1CSR1[ICPI] is set, any instruction cache line fill has all of its parity bits inverted in 
the instruction cache. 

• If L1CSR0[CPI] is set, any data line fill has all of its parity bits inverted in the data cache. 
Additionally, inverted parity bits are generated for any bytes stored into the data cache by 
store instructions, dcbz, and dcba.

NOTE

L1 cache parity checking for the instruction cache must be enabled (L1CSR1[ICPE] = 1) when 
L1CSR1[ICPI] is set. Similarly for the data cache, L1CSR0[CPE] must be set if L1CSR0[CPI] is 
set. If the programmer attempts to set L1CSR0[CPI] (using mtspr) without setting L1CSR0[CPE], 
then L1CSR0[CPI] will not be set. If the programmer attempts to set L1CSR1[ICPI] without 
setting L1CSR1[ICPE], then L1CSR1[ICPI] will not be set. 

As described above, if a cache parity error is detected, a machine check interrupt occurs. Sources 
for cache parity errors are described in Section 5.7.2, “Machine Check Interrupt.”

11.3 Cache Coherency Support
This section describes the L1 cache coherency models and coherency support.

11.3.1 Data Cache Coherency Model

The core complex data cache supports four-state cache coherency protocol for cache lines in the 
data cache.The four-state protocol (also referred to as MESI protocol) includes the additional 
shared state. This protocol supports efficient and frequent sharing of data between bus masters. 
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Each 32-byte data cache block contains status bits that define the MESI state of the cache line. The 
core complex uses these bits to support coherency protocols and to direct reload operations. 
Table 11-1 describes data cache states.

Every data cache block state is defined by its status bits. Note that in a multiprocessor system, a 
cache line can exist in the exclusive state in at most one L1 data cache at a time. 

Table 11-2 describes how execution of some instructions affects L1 data cache coherency states 
and WIM bit settings. For more information, see Section 11.3.4, “WIMGE Settings and Effect on 
L1 Caches.”

Table 11-1. Cache Line State Definitions

Status Bits Name Description

101 Modified (M) The line is in the cache and has been modified with respect to main memory. It does not reside in 
any other coherent caches.

100 Exclusive (E) The line is present in the cache, and this cache has exclusive ownership of the line. It is not present 
in any other coherent cache and it is the same as main memory. This processor may subsequently 
modify this line without notifying other bus masters.

110 Shared (S) The addressed line is in the cache, it may be in another coherent cache, and it is the same as main 
memory. It cannot be modified by any processor.

0xx Invalid (I) The cache location does not contain valid data.

Table 11-2. L1 Data Cache Coherency State Transitions

Event WIM Initial State Final State

dcba 00x1 Any M

dcbf xxx Any I

dcbi xxx Any I

dcblc (CT = 0) xxx Any same

dcblc (CT = 1) xxx Any same

dcbst xxx Any I

dcbt (CT = 0) x0x M, E, or S same

dcbt (CT = 0) x0x I S or E

dcbt (CT = 1) x0x Any I

dcbtls (CT = 0) x0x M, E, or S same

dcbtls (CT = 0) x0x I S or E 

dcbtls (CT = 1) x0x Any I

dcbtst (CT = 0) 00x M, E, or S same

dcbtst (CT = 0) 00x I E

dcbtst (CT = 1) 00x Any I

dcbtstls (CT = 0) 00x M or E same

dcbtstls (CT = 0) 00x S or I E
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The core complex provides full hardware support for PowerPC cache coherency and ordering 
instructions and full hardware implementation of the TLB management instructions. 

The core complex broadcasts cache management instructions (dcbst, dcblc (CT = 1), icblc 
(CT = 1), dcbf, dcbi, mbar, msync, tlbsync, icbi) only if the address broadcast enable bit 
(HID1[ABE]) is set. On some implementations, ABE must be set to allow management of external 
L2 caches.

11.3.2 Instruction Cache Coherency Model

The instruction cache supports only invalid and valid state. Table 11-3 describes how execution of 
instruction cache control instructions affect L1 instruction cache coherency states.

dcbtstls (CT = 1) 00x Any I

dcbz 00x Any M

icblc (CT = 1) xxx Any same

icbt (CT = 1) x0x Any I

icbtls (CT = 1) x0x Any I

Load xxx M, E, or S same

Load x0x I S or E 

Load x1x Any same

lwarx 00x M, E, or S same

lwarx 00x I S or E 

lwarx 01x Any same

Store 00x Any M

Store 10x M or E same

Store 10x S or I I

Store 01x Any same

stwcx 00x Any M

1 The x indicates that the value is either 0 or 1

Table 11-3. L1 Instruction Cache Coherency State Transitions

Event WIM Initial State Final State

icbi xxx V or I I

icblc (CT = 0) xxx V or I same

icbtls (CT = 0) x01 V or I V

Table 11-2. L1 Data Cache Coherency State Transitions (continued)

Event WIM Initial State Final State



PowerPC e500 Core Family Reference Manual, Rev. 1

11-12 Freescale Semiconductor

L1 Caches

The instruction cache is loaded only as a result of instruction fetching or by an Instruction Cache 
Block Touch and Lock Set (icbtls) instruction. It is not snooped for general coherency with other 
caches; however, it is snooped when the Instruction Cache Block Invalidate (icbi) instruction is 
executed by this processor or any other processor in the system. Instruction cache coherency must 
be maintained by software and is supported by a fast hardware flash invalidation capability as 
described in Section 11.5, “L1 Data Cache Flushing.” Also, the flushing of self-modifying code 
from the data cache is described in Section 3.3.1.2.1, “Self-Modifying Code.”

11.3.3 Snoop Signaling

Cache coherency is maintained automatically by hardware through snooping the CCB. A bus 
transaction is enabled for snooping by setting the coherency-required bit (M) in the TLBs 
(WIMGE = 0bxx1xx). The M bit state is sent with the address on the internal global signal (gbl). 
If gbl is asserted, the CCB transaction should be snooped by other bus masters.

To determine the action to take due to a snoop, the cache coherency protocol uses transfer type 
(ttx) encodings, which are transmitted on the CCB with the address. See Section 13.2, “Signal 
Summary.” These encodings indicate whether a transaction is a read or write and whether a 
reading bus master has an intent to modify the cache line. The core complex uses these encodings 
as a CCB master to signal its intent to other snooping caches. 

Clean, flush, and kill are three basic snoops that affect the L1 data cache. Table 11-4 describes the 
state changes caused by these snoops.

The instruction cache is not snooped, except in the case of the ikill, so coherency must be 
maintained by software. However, the core complex does support a fast instruction cache 
invalidation capability as described in Section 11.4.3, “L1 Instruction and Data Cache Flash 
Invalidation.” Also, Section 3.3.1.2.1, “Self-Modifying Code,” describes flushing of 
self-modifying code.

Table 11-5 describes state changes caused by the ikill snoop.

Table 11-4. Data Cache Snoop Coherency State Transitions

Event Initial State Final State

clean M, E, or S S

clean I I

flush Any I

kill Any I

Table 11-5. Instruction Cache Snoop Coherency State Transitions

Event Initial State Final State

ikill V or I I



L1 Caches

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 11-13

11.3.4 WIMGE Settings and Effect on L1 Caches

All instruction and data accesses are performed under control of the WIMGE bits. This section 
describes how WIMGE bit settings affect the behavior of the L1 caches. For more information see 
the EREF.

11.3.4.1 Write-Back Stores

A write-back store that hits a line that is already in exclusive state is immediately stored to the line; 
the state is changed to modified. If a write-back store hits a line that is already in the modified state, 
it is immediately stored to the line, and the line stays as modified.

11.3.4.2 Write-Through Stores

A write-through store operation (WIMGE = 0b10xxx) may hit an exclusive cache line. In this 
case, the store data is written into the data cache and the write-through store goes to the CCB as a 
single-beat write. The cache line stays exclusive.

A write-through store may also hit in a cache line that is already in the modified state. This 
situation normally occurs as a result of page table aliasing in which two effective addresses are 
mapped to the same physical page, but with one mapped as write-through and the other mapped 
as write-back (that is, non-write-through). In this case, the cache line remains in its current state, 
the store data is written into the data cache, and the store goes to the CCB as a single-beat write.

11.3.4.3 Caching-Inhibited Loads and Stores

A caching-inhibited load or store (WIMGE = 0bx1xxx) that hits in the cache presents a cache 
coherency paradox and is normally considered a programming error. If a caching-inhibited load 
hits in the cache, the cache data is ignored and the load is provided from the CCB as a single-beat 
read. If a caching-inhibited store hits in the cache, the cache may be altered but the store is 
performed on the CCB anyway as a single-beat write.

11.3.4.4 Misaligned Accesses and the Endian (E) Bit

Misaligned accesses that cross page boundaries could cause data corruption if the two pages are not 
set to have the same endianness (that is, one page is big endian while the other is little endian) and 
the access is allowed. When this situation occurs, the core complex takes a DSI exception and sets 
the BO (byte ordering) bit in the exception syndrome register (ESR) instead of performing the 
accesses.

11.3.4.5 Speculative Accesses to Guarded Memory

There is no restriction on how the core complex performs instruction fetching from guarded 
memory, if the memory area is marked as execute-permitted (UX/SX = 1) in the TLBs. Note that 
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software should mark guarded space as no-execute (UX = 0 and SX = 0) to prevent inadvertent 
instruction fetching from guarded areas of memory. Then, if the effective address of the current 
instruction is in guarded, no-execute memory, an execute access control exception occurs, 
generating an instruction storage interrupt.

The core complex does not perform speculative stores to guarded memory. However, loads from 
guarded memory may be accessed speculatively if one of the following applies:

• The target location is valid in the data cache.

• The load is guaranteed to be executed. In this case, the entire cache block containing the 
referenced data may be loaded into the cache. 

For more information, see the EREF.

NOTE
On the e500 v1, memory areas must never be set up to be both 
cacheable and guarded. This is because if the processor detects an 
error (such as an uncorrectable L2 ECC error) to an area that is both 
cacheable and guarded, the processor may hang (requiring a hard reset 
to recover). This is because on the e500v1, if a guarded load 
encounters a bus error, the transaction never completes and external 
interrupts cannot be recognized. On the e500v2, external interrupts 
can be recognized when a guarded load is in progress so the above 
precautions do not apply.

11.3.5 Load/Store Operations

Load and store operations are assumed to be weakly ordered on the core complex. The LSU can 
perform load operations that occur later in the program ahead of store operations, even when the 
data cache is disabled (see Section 11.3.5.2, “Sequential Consistency of Memory Accesses”).

11.3.5.1 Performed Loads and Stores

The architecture defines a performed load operation as one that has the addressed memory location 
bound to the target register of the load instruction. The architecture defines a performed store 
operation as one where the stored value is the value that any other processor will receive when 
executing a load operation (that is, of course, until it is changed again). With respect to the core 
complex, caching-allowed (WIMGE = 0bx0xxx) loads and caching-allowed, write-back (WIMGE 
= 0b00xxx) stores are performed when they have arbitrated to address the cache block in the L1 
data cache or the CCB and therefore gained coherency ownership of the cache line (that is, they 
have gained M or E, or S rights to the line). The e500 considers caching-inhibited (WIMGE = 
0bx1xxx) loads and stores, and write-through (WIMGE = 0b10xxx) stores performed when they 
have been successfully presented onto the CCB. Note that loads are considered performed at the 
L1 data cache only if the respective cache contains a valid copy of that address. Write-back stores 
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are considered performed at the L1 data cache only if the respective cache contains a valid, 
nonshared copy of that address.

11.3.5.2 Sequential Consistency of Memory Accesses

The architecture requires that all memory operations executed by a single processor be 
sequentially consistent with respect to that processor as described in the EREF. This means that 
memory accesses appear to occur in program order with respect to exceptions and data 
dependencies.

The core complex achieves sequential consistency by operating a single data pipeline to the 
cache/MMU. Therefore, all memory accesses are presented to the MMU in program order and 
exceptions are determined in order. Loads are allowed to bypass stores after exception checking 
has been performed for the store, but data dependency checking is handled in the load/store unit 
so that a load does not bypass a store with an address match. Newer non-guarded, caching-allowed 
loads can bypass older non-guarded, caching-allowed loads. Newer non-guarded. 
caching-allowed write-back stores can bypass older non-guarded, caching-allowed write-back 
stores if they do not store to overlapping bytes of data.

Note that although memory accesses that miss in the L1 cache are forwarded onto the core 
interface unit for future arbitration onto the CCB, all potential synchronous exceptions are 
resolved before the cache access. In addition, although subsequent memory accesses can address 
the cache, full coherency checking between the cache and the core interface unit is provided to 
avoid dependency conflicts.

11.3.5.3 Enforcing Store Ordering with Respect to Loads

The e500 core complex guarantees that any load followed by any store is performed in order (with 
respect to each other). The reverse, however, is not guaranteed. An mbar instruction must be 
inserted between a store followed by a load to ensure sequential ordering between that store and 
that load.

11.3.5.4 Atomic Memory References

The core complex implements lwarx and stwcx. as described in Book E and in Section 3.3.1.7, 
“Atomic Update Primitives Using lwarx and stwcx..” If the EA is not a multiple of 4 for either 
instruction, an alignment interrupt is invoked. Executing lwarx or stwcx. to areas marked 
write-through causes a DSI exception.

As specified in Book E, the core complex requires that, for stwcx. to succeed, its EA must be to 
the same reservation granule as the EA of a preceding lwarx. The core complex makes 
reservations on behalf of aligned 32-byte blocks of the memory address space. 
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If the reservation has been canceled for any reason, then stwcx. fails and clears CR0[EQ]. The 
architectural intent is to follow the lwarx/stwcx. instruction pair with a conditional branch that 
checks whether stwcx. failed.

The state of the reservation coherency bit is always signaled. This can be used to determine when 
an internal condition caused the coherency bit to be reset. 

The reservation is invalidated when any asynchronous interrupt is signaled. External interrupts 
and watchdog timer interrupts are examples of asynchronous interrupts.

11.4 L1 Cache Control
The core complex L1 caches are controlled by programming specific L1CSRn bits and by issuing 
dedicated cache control instructions. Section 11.4.1, “Cache Control Instructions,” describes the 
cache control instructions and gives implementation-specific information. The remainder of this 
section describes how the cache control instructions and the L1CSRn bits are used to control the 
L1 cache.

11.4.1 Cache Control Instructions

The following instructions can be used for management of the e500 L1 caches—dcba, dcbf, dcbi, 
dcblc, dcbst, dcbt, dcbtls, dcbtst, dcbtstls, dcbz, icbi, icblc, icbt, and icbtls.

Table 11-6 shows how cache-control instructions apply to the e500 core, Book E architecture, and 
the AIM definition of the PowerPC architecture.

Table 11-6. Cache Instruction Comparison

Mnemonic Instruction e500 Core Book E AIM Architecture

dcba Data Cache Block Allocate x x x

dcbf Data Cache Block Flush x x x

dcbi Data Cache Block Invalidate x x x

dcblc Data Cache Block Lock Clear x

dcbst Data Cache Block Store mapped to dcbf x x

dcbt Data Cache Block Touch x x x

dcbtls Data Cache Block Touch and Lock Set x

dcbtst Data Cache Block Touch for Store x x x

dcbtstls Data Cache Block Touch for Store and Lock Set x

dcbz Data Cache Block Zero x x x

icbi Instruction Cache Block Invalidate x x x

icblc Instruction Cache Block Lock Clear x
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If a cache instruction causes multiple no-op or exception conditions, the results are determined by 
the order of precedence described in Table 11-7. The priority of the conditions decreases from left 
to right and the dashes indicate that the operation executes normally. Note that a dash in this table 
indicates that a failure does not occur under the conditions described. 

Note that CE corresponds to the cache enable bit in L1CSR1 (for the instruction cache) or L1CSR0 
(for the data cache). DLK and ILK indicate that the condition causes a data storage interrupt and 
sets the ESR[DLK] or ESR[ILK]. CUL indicates the unable-to-lock condition that results in a 
no-op and sets L1CSR1[ICUL] or L1CSR0[CUL].

Acronyms are used to signify the following interrupts:

• DTLB (data TLB interrupt)

• ALI (alignment interrupt)

• DSI (data storage interrupt)

icbt Instruction Cache Touch no-op x

icbtls Instruction Cache Block Touch and Lock Set x

Table 11-7. Failed Cache Events

Operation MMU Miss
MSR[PR] = 1

MSR[UCLE] = 0
Protection Violation CT = CE = 0 CT ≠ 0 or 1 CI WT

dcbt
dcbtst

no-op
no-op

—1

—

1 These instructions are not affected by the value of UCLE

no-op
no-op

—
—

no-op
no-op

no-op
no-op

—
no-op

dcbtls
dcbtstls

dcblc

DTLB
DTLB
DTLB

DLK
DLK
DLK

DSI
DSI
DSI

CUL
CUL
no-op

CUL
CUL
no-op

CUL
CUL
—

—
CUL
—

icbtls
icblc

DTLB
DTLB

ILK
ILK

DSI
DSI

CUL
no-op

CUL
no-op

CUL
—

—
—

dcbz 2

dcba 2

2 These instructions do not use a CT operand. 

DTLB
no-op

—
—

DSI
no-op

—— —
—

ALI
no-op

ALI
no-op

dcbf 2

dcbi 2

icbi 2

DTLB
DTLB
DTLB

—
—
—

DSI
DSI
DSI

—
—
—

—
—
—

—
—
—

—
—
—

lwarx 2

stwcx. 2
DTLB
DTLB

—
—

DSI
DSI

—
—

—
—

—
—

DSI
DSI

Load 2

Store 2
DTLB
DTLB

—
—

DSI
DSI

—
—

—
—

—
—

—
—

Table 11-6. Cache Instruction Comparison (continued)

Mnemonic Instruction e500 Core Book E AIM Architecture
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All cache control instructions except dcba, dcbt, and dcbtst generate TLB miss exceptions if the 
effective address cannot be translated. The dcba, dcbt, and dcbtst instructions are treated as 
no-ops if the address cannot be translated. 

If a dcbt or dcbtst instruction accesses a page marked caching-inhibited, it is treated as a no-op. 
The icbt instruction is treated as a no-op when the CT operand is equal to zero. The dcbst 
instruction maps to dcbf.

The core complex broadcasts the cache control instructions according to the value of HID1[ABE]. 
If ABE is cleared, most cache control instructions are not broadcast. If it is set, cache control 
instructions are broadcast.

11.4.2 L1 Instruction and Data Cache Enabling/Disabling

The instruction and data caches are enabled and disabled with the cache enable (CE) bits in 
L1CSR1 and L1CSR0, respectively. Disabling a cache does not cause all memory accesses to be 
performed as caching inhibited. When caching-inhibited accesses are desired, the pages must be 
marked as caching inhibited in the MMU pages.

When either the instruction or data cache is disabled, the cache tag state bits are ignored and the 
corresponding cache is not accessed. The default power-up state of L1CSR0[CE] and 
L1CSR1[ICE] is zero (caches disabled). 

When the data cache is disabled, snooping of lines in the cache is not performed. Before the data 
cache is disabled it must be invalidated to prevent coherency problems when it is enabled again. 

All cache operations are affected by disabling the cache. Touch instructions (dcbt, dcbtst, dcblc, 
dcbtls, dcbtstls, icblc, and icbtls) performed on the CCB by the e500 do not affect the cache when 
it is disabled. A dcba or dcbz instruction to a disabled data cache zeros the cache line in memory, 
but does not affect the cache when it is disabled.

If CE = 0, the dcbi and dcbf instructions do not affect the L1 data cache. 

The setting of L1CSR0[CE] must be preceded by an msync and isync instruction, to prevent a 
cache from being disabled or enabled in the middle of a data or instruction access. See Table 2-42 
for more information on synchronization requirements.

11.4.3 L1 Instruction and Data Cache Flash Invalidation

The data cache can be invalidated by executing a series of dcbi instructions or by setting 
L1CSR0[CFI]. 

If software can guarantee that data is not modified, the cache can be invalidated without updating 
system memory; if a modified line is invalidated, the data is lost. To prevent the loss of data, 
modified cache lines must be flushed, as described in Section 11.5, “L1 Data Cache Flushing.” 
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Because the instruction cache never contains modified data, there is no need to flush the 
instruction cache before it is invalidated. 

The instruction cache can be invalidated by setting L1CSR1[ICFI]. The L1 caches can be flash 
invalidated independently. The setting of L1CSR0[CFI] and L1CSR1[ICFI] must be preceded by 
an msync and isync, respectively.

Both caches are invalidated automatically at power-up. Because a subsequent reset does not 
invalidate caches automatically, software must set the CFI bits if invalidation is desired after a 
warm reset. This causes a flash invalidation performed in a single CPU cycle, after which the CFI 
bits are cleared automatically (CFI bits are not sticky). Note that flash invalidate operations are not 
broadcast on the CCB.

Note that when an L2 tag parity error occurs on an attempt to write a new line, the L2 cache must 
be flash invalidated. Performing a dcbi does not invalidate the line because it, like the write, is 
treated as a cache miss, so the status of that line is not changed. L2 functionality is not guaranteed 
if flash invalidation is not performed after a tag parity error.

Individual instruction or data cache blocks can be invalidated using icbi and dcbi, respectively. 
Note that invalidating the caches resets all cache status bits, including lock bits. Also note that with 
dcbi, the e500 core invalidates the cache block without pushing it out to memory. See 
Section 3.3.1.8.1, “User-Level Cache Instructions.”

Exceptions and other events that can access the L1 cache should be disabled during this time so 
that the PLRU algorithm can function undisturbed.

11.4.4 L1 Instruction and Data Cache Line Locking/Unlocking

User-mode instructions perform cache line locking/unlocking based on the complete address of 
the cache line. dcblc, dcbtls, and dcbtstls are for data cache locking and unlocking and icblc and 
icbtls are for instruction cache locking. For descriptions, see Section 3.8.4, “Cache Locking 
APU.”

The CT operand is used to indicate the cache target of the cache line locking instruction.

Lock instructions are treated as loads when translated by the data TLB, and they cause exceptions 
when data TLB errors or data storage interrupts occur.

The user-mode cache lock enable bit, MSR[UCLE], is used to restrict user-mode cache line 
locking by the operating system. If MSR[UCLE] = 0, any cache lock instruction executed in user 
mode (MSR[PR] = 1) causes a cache-locking DSI exception and sets either ESR[DLK] or 
ESR[ILK]. This allows the OS to manage and track the locking/unlocking of cache lines by 
user-mode tasks. If MSR[UCLE] is set, the cache-locking instructions can be executed in user 
mode and do not cause a DSI for cache locking. However, they may still cause a DSI for access 
violations.
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If all of the ways are locked in a cache set, an attempt to lock another line in that set results in an 
overlocking situation. The new line is not placed in the cache, and either the data cache overlock 
bit L1CSR0[CLO] or instruction cache overlock bit L1CSR1[ICLO] is set. This does not cause an 
exception condition.

The following cases cause an attempted lock to fail:

• The target address is marked caching-inhibited.

• The corresponding cache is disabled and the CT operand of the cache locking 
instruction = 0.

• The cache target operand (CT[6–10]) is greater than 1.

• dcbtstls is used for a target address of a write-through page.

In these cases, the lock set instruction is treated as a no-op and the data cache unable-to-lock bit 
(L1CSR0[CUL]) or the instruction cache unable-to-lock bit (L1CSR1[ICUL]) is set. This 
condition does not cause an exception.

It is acceptable to lock all ways of a cache set. A non-locking line fill for a new address in a 
completely locked cache set will not be put into the cache. It is, however, loaded into a DWB and 
creates the appropriate normal burst write transfer.

The cache-locking DSI handler must decide whether to lock a given cache line based on available 
cache resources.

If the locking instruction is a set lock instruction, to lock the line, the handler should do the 
following:

1. Add the line address to its list of locked lines.

2. Execute the appropriate set lock instruction to lock the cache line.

3. Modify save/restore register 0 (SRR0) to point to the instruction immediately after the 
locking instruction that caused the DSI.

4. Execute an rfi.

If the locking instruction is a clear lock instruction, to unlock the line, the handler should do the 
following:

1. Remove the line address from its list of locked lines.

2. Execute the appropriate clear lock instruction to unlock the cache line.

3. Modify SRR0 to point to the instruction immediately after the locking instruction that 
caused the DSI.

4. Execute an rfi.

Failure to update SRR0 to point to the instruction after the locking/unlocking instruction causes 
the exception handler to be repeatedly invoked for the same instruction.
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11.4.4.1 Effects of Other Cache Instructions on Locked Lines

The following cache instructions do not affect the state of a cache line's lock bit: 

• dcbt (CT = 0) 

• dcbtst (CT = 0) 

If dcbt is performed to a line that is locked in the cache in the modified or exclusive state, dcbt 
takes no action. However, if the line is invalid, and therefore not locked, dcbt causes a state 
change. 

If a dcbtst (CT=0) is performed to a line that is locked in the cache in the modified or exclusive 
state, dcbtst takes no action. If the line is invalid, and therefore not locked, dcbtst causes a state 
change.

The following cache instructions are treated as stores and may cause the invalidation and 
unlocking of a cache line in another processor in a multiprocessor system: 

• dcba 

• dcbz 

In implementations with an L2 cache, the following instructions, when directed to the L2 cache 
(CT = 1), flush/invalidate and unlock a line in the L1 data cache of the current processor: 

• dcbt 

• dcbtst 

• dcbtls 

• dcbtstls 

• icbt 

• icbtls 

The following cache instructions flush/invalidate and unlock a line in the cache of the current 
processor, and may also flush/invalidate and unlock a cache line in other processors in a 
multiprocessor system:

• dcbf 

• dcbst 

• icbi 

• dcbi 

11.4.4.2 Flash Clearing of Lock Bits

The core complex allows flash clearing of the instruction and data cache lock bits under software 
control. Each cache’s lock bits can be independently flash cleared through the CLFC control bits 
in L1CSR0 and L1CSR1.



PowerPC e500 Core Family Reference Manual, Rev. 1

11-22 Freescale Semiconductor

L1 Caches

Lock bits in both caches are cleared automatically upon power-up. A subsequent reset operation 
does not clear the lock bits automatically. Software must use the CLFC controls if flash clearing 
of the lock bits is desired after a warm reset. Setting CLFC bits causes a flash invalidation 
performed in a single CPU cycle, after which the CLFC bits are automatically cleared (CLFC bits 
are not sticky).

11.5 L1 Data Cache Flushing
Any modified entries in the data cache can be copied back to memory (flushed) by using a dcbf 
instruction or by executing a series of 12 uniquely addressed load or dcbz instructions to each of 
the 128 sets. The address space should not be shared with any other process to prevent snoop hit 
invalidations during the flushing routine. Exceptions should be disabled during this time so that 
the PLRU algorithm is not disturbed. 

The following methods can be used to flush a region in the L1 cache:

• Perform reads to any 48-Kbyte region, then execute dcbf instructions to that region. Note 
that a 48-Kbyte region must be used to ensure that the PLRU algorithm flushes all of the 
cache entries (12 x 128 sets x 32 bits = 48 Kbytes).

• Perform reads from any 48-Kbyte region that is guaranteed to not be modified in the L1 
cache (for example, a ROM region).

• Execute dcbz instructions to any 48-Kbyte scratch section, then invalidate the cache. Note 
that it is necessary to use a scratch region because some zeroed lines will be cast out.

For each of these methods, the following is necessary: 

• Interrupts must be disabled. 

• The 48-Kbyte region chosen is not being used by the system—that is, that snoops do not 
occur to this region.

On the e500v2 the HID0 register contains a field, DCFA (data cache flush assist), that, when set, 
forces the data cache to ignore invalid sets on miss replacement selection and follow the 
replacement sequence defined by the PLRU bits. This reduces the series of uniquely addressed 
load or dcbz instructions to eight per set. The bit should be set just before beginning a cache flush 
routine and should be cleared when the series of instructions is complete. 

11.6 L1 Cache Operation
This section describes operations performed by the L1 instruction and data caches.
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11.6.1 Cache Miss and Reload Operations

This section describes the actions taken by the L1 caches on misses for caching-allowed accesses. 
It also describes what happens on cache misses for caching-inhibited accesses as well as disabled 
and locked L1 cache conditions.

11.6.1.1 Data Cache Fills

The core complex data cache blocks are filled (sometimes referred to as a cache reload) from an 
L2 cache or the memory subsystem when cache misses occur for caching-allowed accesses, as 
described in Section 11.1.1.1, “Load/Store Unit (LSU),” and Section 11.1.1.2, “Instruction Unit.” 

When the data cache is disabled (L1CSR0[CE] = 0), data accesses bypass the data cache, are 
forwarded to the memory subsystem as caching-allowed, and proceed to the CCB. Returned data 
is forwarded to the requesting execution unit, but is not loaded into any of the caches.

Each of the eight ways of each set in the data cache can be locked (by locking all of the cache lines 
in the way with the dcbtls or dcbtstls instruction). When at least one way is unlocked, misses are 
treated normally and are allocated to one of the unlocked ways on a reload. If all eight ways are 
locked, store/load misses proceed to the memory subsystem as normal caching-allowed accesses. 
In this case, the data is forwarded to the requesting execution unit when it returns, but it is not 
loaded into the data cache. If the data is modified, it is loaded into a DWB and creates the 
appropriate normal burst write transfer.

Each of the eight ways of each set in the instruction cache can be locked (by locking all of the 
cache lines in the way with the icbtls instruction). When at least one way is unlocked, misses are 
treated normally and they are allocated to one of the unlocked ways on a reload. If all of the ways 
are locked, instruction misses proceed to the memory subsystem as normal caching-allowed 
accesses. In this case, the instruction is forwarded to the instruction unit when it returns, but it is 
not loaded into the instruction cache.

Note that caching-inhibited stores should not access any of the caches (see Section 11.3.4.3, 
“Caching-Inhibited Loads and Stores,” for more information). See Section 11.6.1.4, “Store Miss 
Merging,” for more information on the handling of caching-allowed store misses.

11.6.1.2 Instruction Cache Fills

The instruction cache provides a 128-bit interface to the instruction unit, so as many as four 
instructions can be made available to the instruction unit in a single clock cycle on an L1 
instruction cache hit. On a miss, the core complex instruction cache blocks are loaded in one 
32-byte beat from the CCB; the instruction cache is nonblocking, providing for hits under misses. 

The instruction cache operates similarly to the data cache when all eight ways of a set are locked. 
When the instruction cache is disabled (L1CSR1[ICE] = 0), instruction accesses bypass the 
instruction cache. These accesses are forwarded to the memory subsystem as caching-allowed and 
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proceed to the CCB. When the instructions are returned, they are forwarded to the instruction unit 
but are not loaded into the instruction cache.

The instruction unit fetches a total of four instructions at a time directly from the memory 
subsystem for caching-inhibited instruction fetches. Similar to the data cache, when the 
instructions are returned, they are forwarded to the instruction unit but are not loaded into any of 
the caches in this case.

11.6.1.3 Cache Allocation on Misses

Instruction cache misses cause a new line to be allocated into the instruction cache on a PLRU 
basis, provided the cache is not completely locked or disabled.

If there is a data cache miss for a caching-allowed load or store (including touch instructions) and 
the line is not already going to be allocated into the data cache as a result of a previous load/store 
miss, the miss causes a new line to be allocated into the data cache on a PLRU basis, provided the 
cache is not completely locked or disabled. A store that is write-through or caching-inhibited that 
misses in the data cache does not cause a fill. Also, cache operations such as dcbi and dcbf that 
miss in the cache do not cause a fill.

11.6.1.4 Store Miss Merging

When a caching-allowed store misses in the data cache, an entry is allocated in the DLFB. The 
store data is written into the DLFB. The remainder of the bytes not written by the store data are 
filled in when the cache block is eventually fetched from memory through the CCB. When all 32 
bytes are valid, the cache block is reloaded into the data cache. 

If a subsequent store miss hits on a DLFB entry for a previous store miss, the subsequent store 
miss also writes its data into the DLFB for that entry. Any number of stores that hit the DLFB entry 
created by the original store miss can be written in to the DLFB before it reloads the data into the 
data cache. This behavior is known as store miss merging

11.6.1.5 Store Hit to a Data Cache Block Marked Shared 

When a write-back store hits in the L1 data cache and the block is in the shared state, the target 
block is invalidated in the data cache. The store is then treated as a miss.

11.6.1.6 Data Cache Block Push Operation

When an L1 cache block in the core complex is snooped (by another bus master) and the data hits 
and is modified, the cache block must be written to memory and made available to the snooping 
device. The push operation propagates to the DWB and then to the CCB.
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11.6.2 L1 Cache Block Replacement 

When a new block needs to be placed in the instruction or data cache, the 
pseudo–least-recently-used (PLRU) replacement algorithm is used. Note that data cache 
replacement selection is performed at reload time and not when the miss occurs. Instruction cache 
replacement selection occurs when an instruction cache miss is first recognized.

When a cache line is accessed, it is tagged as the most-recently-used line of the set. When a miss 
occurs, if all lines in the set are valid (occupied), the least-recently-used line is replaced with the 
new data. The PLRU bits in the cache are updated each time a cache hit occurs based on the 
most-recently-used cache line.

Modified data to be replaced is written into a DWB and eventually is written back to main memory.

Data load or write-back store accesses that miss in the L1 data cache function similarly to L1 
instruction cache misses. They cause a new line to be allocated on a PLRU basis, provided the 
cache is not completely locked or disabled. 

Note that modified data in the replacement line of any cache can cause a castout to occur to the 
CCB. In all such cases, the castout is not initiated until new data is ready to be loaded. 

11.6.2.1 PLRU Replacement

Block replacement is performed using a binary decision tree, PLRU algorithm. There is an 
identifying bit for each cache way, L[0–7]. There are seven PLRU bits, B[0–6] for each set in the 
cache to determine the line to be cast out (replacement victim). The PLRU bits are updated when 
a new line is allocated or replaced and when there is a hit in the set. 

This algorithm prioritizes the replacement of invalid entries over valid ones (starting with way 0). 
Otherwise, if all ways are valid, one is selected for replacement according to the PLRU bit 
encodings shown in Table 11-8.

Table 11-8. L1 PLRU Replacement Way Selection

PLRU Bits Way Selected for Replacement

B0 0 B1 0 B3 0 L0

0 0 1 L1

0 1 B4 0 L2

0 1 1 L3

1 B2 0 B5 0 L4

1 0 1 L5

1 1 B6 0 L6

1 1 1 L7
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Figure 11-4 shows the decision tree used to generate the victim line in the PLRU algorithm.

Figure 11-4. PLRU Replacement Algorithm

During power-up or hard reset, the valid bits of the L1 caches are automatically cleared to point to 
way L0 of each set.

11.6.2.2 PLRU Bit Updates

Except for snoop accesses, each time a cache block is accessed, it is tagged as the 
most-recently-used way of the set. For every hit in the cache or when a new block is reloaded, the 
PLRU bits for the set are updated using the rules specified in Table 11-9.

Note that only three PLRU bits are updated for any access. 

Table 11-9. PLRU Bit Update Rules

Current Access
New State of the PLRU Bits

B0 B1 B2 B3 B4 B5 B6

L0 1 1 No change 1 No change No change No change

L1 1 1 No change 0 No change No change No change

L2 1 0 No change No change 1 No change No change

L3 1 0 No change No change 0 No change No change

L4 0 No change 1 No change No change 1 No change

L5 0 No change 1 No change No change 0 No change

L6 0 No change 0 No change No change No change 1

L7 0 No change 0 No change No change No change 0

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1
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11.6.2.3 Cache Locking and PLRU

The core complex does not replace locked lines. Each L1 cache line has a lock bit, which can be 
set through the cache locking instructions and cleared through the cache unlocking instructions or 
line invalidation. Lock bits are used at reload time to steer the PLRU algorithm away from 
selecting locked cache lines.

11.7  L2 Cache Support
This section describes interactions between the e500 core and an L2 cache implementation.

11.7.1 Invalidating the L2 Cache after a Cache Tag Parity Error

If an L2 cache tag parity error occurs on an attempt to write a new line, the L2 cache must be flash 
invalidated. Performing a dcbi does not invalidate the line because it, like the write, is treated as 
a cache miss, so the status of that line is not changed. L2 functionality is not guaranteed if flash 
invalidation is not performed after a tag parity error.

See Section 11.4.3, “L1 Instruction and Data Cache Flash Invalidation.” 

11.7.2  L2 Locking

The core complex implements specific instructions to selectively lock and unlock lines in its L1 
caches or in an L2 cache. To facilitate locking and unlocking of an L2 cache (usually located 
directly on the CCB), the core complex provides an address lock attribute (CL) on the bus, which 
can be used in conjunction with the transfer type, ttx, encodings to identify which addresses to lock 
or unlock.

When the core complex executes an instruction to lock a line in an L2 cache (dcbtls, dcbtstls, or 
icbtls, with CT = 1), it normally performs the associated bus operation as a burst read transaction 
with a reading-type ttx code (READ, RWITM, or RCLAIM) and with the lock attribute asserted. 
An L2 cache may recognize this transaction as a direction to establish the cache line (if not already 
valid) and to mark it as locked. Note that this is a complete address/data transaction by the core 
complex to memory that requires read data to be returned to the core complex. The read data, 
however, is not used or cached internally by the core complex. The purpose for the bus transaction 
is to establish a locked line in the L2 cache and to make data available from system memory for 
the L2 cache to capture.

If a cache locking instruction targeted at an L2 cache also hits to a line modified in the L1 data 
cache, the core complex pushes the line from the L1 data cache as a non-global burst write 
operation (similar to a regular L1 castout) with the lock attribute set and the write-through attribute 
negated, rather than performing a read bus operation as described above. An L2 cache may also 
recognize this transaction as a direction to establish and capture the cache line and mark it as 
locked.
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11.7.2.1 L2 Unlocking

When the core complex executes an instruction (dcblc, icblc) to unlock an L2 cache line, it 
performs the associated bus operation as an address-only transaction with a ttx encoding of 
CLEAN and with the lock attribute asserted. An L2 cache may recognize this transaction as a 
direction to unlock the specified address from its cache. This transaction always is performed as 
non-global because it is specifically targeted at an L2 cache. 

An L2 cache may also use other bus transactions to cause locks to be cleared, such as bus 
transactions as a result of dcbf (identified on the bus as an address-only FLUSH, or as an L1 push 
due to dcbf).

11.7.2.2 L1 Overlock

A program may attempt to establish a ninth locked entry at a cache index that already has all eight 
of its ways locked. In this overlock case, the core complex performs a reading transaction on the 
bus to initially bring in the ninth (newest) line and then immediately push that line out to bus as a 
nonglobal burst write with the lock attribute asserted, rather than attempt to allocate that line in the 
L1 data cache. This write operation looks identical on the bus to the hit-to-modified case described 
in Section 11.7.2, “L2 Locking.” 
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Chapter 12  
Memory Management Units
This chapter describes the implementation details of the e500v1 core complex MMU relative to 
the Book E architecture and the Freescale Book E standards. In addition, it describes the e500v2 
core with its extended page sizes and extended physical addressing. All text denoted as e500 
applies to both the e500v1 and the e500v2, unless specifically noted as applying to only one core 
or the other. For background on the MMU definition in Book E and the Freescale Book E 
standards, see the EREF: A Reference for Freescale Book E and the e500 Core (EREF).

12.1 e500 MMU Overview
The e500 core complex employs a two-level memory management unit (MMU) architecture. 
There are separate data and instruction level 1 (L1) MMUs in hardware backed up by a unified 
level 2 (L2) MMU. The L1 MMUs are completely invisible with respect to the architecture. The 
programming model for implementing translation lookaside buffers (TLBs) provided in Book E 
and the Freescale Book E standard applies to the L2 MMU of the core complex. 

12.1.1 MMU Features

The e500 core has the following features:

• 32-bit effective address translated to 32-bit real address (using a 41-bit interim virtual 
address) for the e500v1 core and 36-bit real address for the e500v2 core

• Two-level MMU containing a total of six TLBs for maximizing TLB hit rates

• Three 8-bit PID registers (PID0–PID2) for supporting up to 255 translation IDs at any time 
in the TLB, with three concurrent translation IDs as potential matches for each access

• TLB entries for variable-sized (4-Kbyte–256-Mbyte pages for the e500v1 and 
4-Kbyte–4-Gbyte pages for the e500v2) and fixed-size (4-Kbyte) pages

• No page table format is defined; software is free to use its own page table format.

• TLBs maintained by system software through the TLB instructions and six (e500v1) or 
seven (e500v2) MAS registers
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The level 1 MMUs have the following features:

• Two 4-entry, fully-associative TLB arrays (one for instruction accesses and one for data 
accesses) supporting the nine (e500v1) or eleven (e500v2) page sizes shown in Table 12-2

• Two 64-entry, 4-way set-associative TLB arrays (one for instruction accesses and one for 
data accesses) that support only 4-Kbyte pages

• L1 MMU access occurs in parallel with L1 cache access time (address translation/L1 cache 
access can be fully pipelined so one load/store can be completed on every clock). 

• Performs an L1 TLB lookup for an instruction access in parallel with an L1 TLB lookup 
for a data access

• All L1 TLB entries are a proper subset of TLB entries resident in L2 MMU (completely 
maintained by the hardware).

• Automatically performs invalidations to maintain consistency with L2 TLBs

The level 2 MMU has the following features:

• A 16-entry, fully-associative unified (for instruction and data accesses) L2 TLB array 
(TLB1) supports the nine (e500v1) or eleven (e500v2) page sizes shown in Table 12-2.

• A 256-entry, 2-way (e500v1) or 512-entry, 4-way (e500v2) set-associative unified (for 
instruction and data accesses) L2 TLB array (TLB0) supports only 4-Kbyte pages.

• Hardware assistance for TLB miss exceptions

• TLB1 and TLB0 managed by tlbre, tlbwe, tlbsx, tlbsync, tlbivax, and mtspr instructions

• Performs invalidations in TLB1 and TLB0 caused by tlbivax instructions executed by this 
core. Also supports snooping of TLB1 and TLB0 for invalidation caused by tlbivax 
instructions executed by other masters. 

• IPROT bit implemented in TLB1 prevents invalidations, protecting critical entries (so 
designated by having the IPROT bit set) from being invalidated.
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12.1.2 TLB Entry Maintenance Features

The TLB entries of the e500 core complex must be loaded and maintained by the system software; 
this includes performing any required table search operations in memory. The e500 provides 
support for maintaining TLB entries in software with the resources shown in Table 12-1. Note that 
many of these features are defined at the Freescale Book E level.

t

Other hardware assistance features for maintenance of the TLBs on the e500 are described in 
Section 12.5, “TLB Entry Maintenance—Details.”

Table 12-1. TLB Maintenance Programming Model

Features Description
More Information

Section/Page

TLB 
Instructions

tlbre TLB Read Entry instruction 12.4.1/12-18

tlbwe TLB Write Entry instruction 12.4.2/12-19

tlbsx rA, rB 
(preferred form is tlbsx 0, rB)

TLB Search for entry instruction 12.4.3/12-19

tlbivax rA, rB TLB Invalidate entries instruction 12.4.4/12-20

tlbsync TLB Synchronize invalidations with other 
masters’ instruction

12.4.5/12-22

Registers PID0–PID2 Process ID registers See Table 12-7 for 
more 

comprehensive 
cross references

MMUCSR0 MMU control and status register

MMUCFG MMU configuration register

TLB0CFG–TLB1CFG TLB configuration registers

MAS0–MAS4, MAS6;
e500v2 also implements MAS7

MMU assist registers. Note that MAS5 is not 
implemented on the e500.

DEAR Data exception address register

Interrupts Instruction TLB miss exception Causes instruction TLB error interrupt 12.5.1/12-23

Data TLB miss exception Causes data TLB error interrupt

Instruction permissions violation exception Causes ISI interrupt 12.5.2.1/12-24

Data permissions violation exception Causes DSI interrupt
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12.2 Effective-to-Real Address Translation
The core complex fetch and load/store units generate 32-bit effective addresses. The MMU 
translates each of these addresses to 32-bit real addresses, (36 bits for the e500v2) which are then 
used for memory bus accesses. Figure 12-1 illustrates the high-level translation flow with 32-bit 
real addressing for the e500v1core, showing that because the smallest page size supported by the 
e500 core complex is 4 Kbytes, the least-significant 12 bits always index within the page and are 
untranslated. The appropriate L1 MMU (instruction or data) is checked for a matching address 
translation first. If it misses, the request for translation is forwarded to the unified (instruction and 
data) L2 MMU. 

Figure 12-1. Effective-to-Real Address Translation Flow (e500v1)

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit Effective Address (EA)

32-bit Real Address

4–20 bits* 12–28 bits*

4–20 bits* 12–28 bits*

L2 MMU (unified)

Three 41-bit Virtual Addresses (VAs)

8 bits

MSR••• IS DS •••

Instruction Access

Data Access

AS PID0

PID1

PID2

L1 MMUs

Instruction L1 MMU Data L1 MMU
2 TLBs 2 TLBs

* Number of bits depends on page size 
(4 Kbytes–256 Mbytes)

16-Entry Fully-Assoc. VSP Array (TLB1)

256-Entry 2-Way Set Assoc. Array (TLB0)
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Figure 12-2 shows the same translation flow for the e500v2 core.

Figure 12-2. Effective-to-Real Address Translation Flow (e500v2)

12.2.1 Virtual Addresses with Three PID Registers 

As shown in Figure 12-1 and Figure 12-2, the address translation process starts with an effective 
address that is prepended with an address space (AS) value and a process ID to construct a virtual 
address (VA). A virtual address is then translated into a real address based on the translation 
information found in the on-chip TLB of the appropriate L1 MMU. The AS bit for the access is 
selected from the value of MSR[IS] or MSR[DS] for instruction or data accesses, respectively.

The e500 constructs three virtual addresses for each access. The core complex implements three 
process ID (PID) registers, PID0–PID2, as SPRs shown in Section 2.12.1, “Process ID Registers 
(PID0–PID2).” All of the current values in the PID registers are used in the TLB look-up process 
and compared with the TID field in all the TLBs. If any of the PID values in PID0–PID2 matches 
with a TLB entry in which all the other match criteria are met, that entry is used for translation.

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit Effective Address (EA)

36-bit Real Address

0–20 bits*

4–24 bits* 12–32 bits*

L2 MMU (unified)

Three 41-bit Virtual Addresses (VAs)

8 bits
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Instruction Access
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PID2

L1 MMUs

Instruction L1 MMU Data L1 MMU
2 TLBs 2 TLBs

* Number of bits depends on page size 
(4 Kbytes–4 Gbytes)

16-Entry Fully-Assoc. VSP Array (TLB1)

512-Entry 4-Way Set Assoc. Array (TLB0)

12–32 bits*
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Note that when a TID value in a TLB entry is all zeros, it causes a match in the PID compare 
(effectively ignoring the values of the PID registers). Thus, the operating system can set the values 
of all the TIDs to zero, effectively eliminating the PID values from all translation comparisons.

The simplest method of using multiple PID registers is to use one PID register for each protected 
process address space, and a second PID register if the operating system wishes to share TLB 
entries that map shared memory among different address spaces.

12.2.2 Variable-Sized Pages

There are two kinds of TLBs on the e500 core complex as follows:

• TLBs that translate addresses for 4-Kbyte pages only. These TLBs are set-associative based 
on the page number (page address).

• TLBs that translate addresses for variable-sized pages. These TLBs are fully-associative.

Table 12-2 shows the nine (e500v1) or eleven (e500v2) page sizes supported by the 
fully-associative TLBs that support variable-sized pages (VSPs) on the e500 core complex.

For more information on the bit ranges of effective page numbers and offsets that are translated 
for these pages sizes, see the EREF.

Table 12-2. Page Sizes for L1VSPs and TLB1 (L2 MMU) on the e500 Core

Core Page Sizes

e500 (both e500v1 
and e500v2)

4 Kbyte

16 Kbyte

64 Kbyte

256 Kbyte

1 Mbyte

4 Mbyte

16 Mbyte

64 Mbyte

256 Mbyte

e500v2 1 Gbyte

4 Gbyte
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12.2.3 Checking for TLB Entry Hit

Figure 12-3 shows the compare function used by the e500 to check the MMU structures for a hit 
for the three virtual addresses that correspond to the instruction or data access (one virtual address 
for each current PID register value). Note that this figure is functionally similar to the figure in the 
EREF that shows the Book E algorithm, except that this figure shows that three PID values are 
compared for each access.

A hit to multiple matching TLB entries is considered a programming error. If this occurs, the TLB 
generates an invalid address and TLB entries may be corrupted (an exception is not reported).

Figure 12-3. Virtual Address and TLB-Entry Compare Process

12.2.4 Checking for Access Permissions

When a TLB entry matches with one of the three virtual addresses of an access, the permission bits 
of the TLB entry are compared with attribute information of the access (read/write, 
instruction/data, user/supervisor) to see if the access is allowed to that page. The checking of 
permissions on the e500 functions as described in the EREF.
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12.3 Translation Lookaside Buffers (TLBs)
The e500 core complex implements six TLB arrays to maximize address translation performance 
and to provide ample flexibility for the operating system. Figure 12-4 contains a more detailed 
description of the 2-level MMU structure. Note that for an instruction access, both the I-L1VSP 
and the I-L1TLB4K are checked in parallel for a TLB hit. Similarly, for a data access, both the 
D-L1VSP and the D-L1TLB4K are checked in parallel for a TLB hit. The instruction L1 MMU 
and data L1 MMU operate independently and can be accessed in parallel, so that hits for 
instruction accesses and data accesses can occur in the same clock. This figure shows both the 
32-bit real addresses used in the e500v1 and the 36-bit real addresses used in the e500v2. It also 
shows both the 2-way set associative TLB0 in the e500v1 and the 4-way set associative TLB0 in 
the e500v2.

Figure 12-4. Two-Level MMU Structure

Additionally, Figure 12-4 shows that when the L2 MMU is checked for a TLB entry, both TLB1 
and TLB0 are checked in parallel. It also identifies the L1 MMUs as invisible to the programming 
model (not accessible to the operating system); they are managed completely by the hardware as 
inclusive caches of the corresponding L2 MMU TLB entries. Conversely, the L2 MMU is 
accessed by the TLB instructions by way of the MAS registers.

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) is considered to 
be a programming error. This is also the case if an access results in a hit to multiple TLB entries 
in the L2 MMU. If this occurs, the TLB generates an invalid address and TLB entries may be 
corrupted (an exception is not reported).
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32 (or 36)-bit Real Address’
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Table 12-3 lists the various TLBs and describes their characteristics. Note that the e500v2 supports 
eleven page sizes (as shown in parentheses).

12.3.1 L1 TLB Arrays

As shown in Figure 12-1, there are two level 1 (L1) MMUs in the core complex. As shown in 
Figure 12-4 and Table 12-3, the instruction and data L1 MMUs each implement a 4-entry, fully 
associative L1VSP array and a 64-entry, 4-way set associative L1TLB4K array, comprising the 
following L1 MMU arrays:

• Instruction L1VSP—4-entry, fully-associative

• Instruction L1TLB4K—64-entry, 4-way set-associative

• Data L1VSP—4-entry, fully associative

• Data L1TLB4K—64-entry, 4-way set-associative

As their names imply, the L1TLB4K arrays only support a 4-Kbyte page size while the L1VSP 
arrays support nine (e500v1) or eleven (e500v2) page sizes. To perform a lookup for instruction 
accesses, both the L1TLB4K and the L1VSP TLBs in the instruction MMU are searched in parallel 
for the matching TLB entry. Similarly, for data accesses, both the L1TLB4K and the L1VSP TLBs 
in the data MMU are searched in parallel for the matching TLB entry. The contents of a matching 
TLB entry are then concatenated with the page offset of the original effective address; the bit range 
that is translated is determined by the page size. The result constitutes the real (physical) address 
for the access. 

Table 12-3. Index of TLBs

Location Name Page Sizes Supported Associativity
Size of TLB
(# of entries)

Instruction/Data
Translations

Filled by

Instruction
L1 MMU

I-L1VSP 9 (or 11) page sizes 1

1 See Table 12-2 for supported page sizes.

Fully associative 4 Instruction TLB1 hit

I-L1TLB4K 4 Kbyte 4-way 64 Instruction TLB0 hit

Data 
L1 MMU

D-L1VSP 9 (or 11) page sizes 1 Fully associative 4 Data TLB1 hit

D-L1TLB4K 4 Kbyte 4-way 64 Data TLB0 hit

L2 MMU TLB1 9 (or 11) page sizes 1 Fully associative 16 Unified (I and D) tlbwe instruction

TLB0 4 Kbyte 2-way (e500v1)
4-way (e500v2)

256 (e500v1)
512 (e500v2)

Unified (I and D) tlbwe instruction
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Figure 12-5 shows the organization of the L1 TLBs in both the instruction and data L1 MMUs.

Figure 12-5. L1 MMU TLB Organization

L1TLB4K TLB entries are replaced based on a true LRU algorithm. The L1VSP entries are also 
replaced based on a true LRU replacement algorithm. The LRU bits are updated each time a TLB 
entry is accessed for translation. However, there are other speculative accesses performed to the 
L1 MMUs that cause the LRU bits to be updated. The performance of the L1 MMUs is high, even 
though it is not possible to predict (externally) exactly which entry is the next to be replaced.
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12.3.2 L2 TLB Arrays

The level 1 MMUs are backed up by a unified level 2 MMU that translates both instruction and 
data addresses. Like each L1 MMU, the L2 MMU consists of two TLB arrays:

• TLB1: a 16-entry, fully associative array that supports nine (e500v1) or eleven (e500v2) 
page sizes.

• TLB0: a 256-entry, 2-way (e500v1) or 512-entry, 4-way (e500 v2) set associative array that 
supports only 4-Kbyte page sizes. 

The two L2 TLBs on the e500v1, which are the only TLBs accessible to the software, are shown 
in Figure 12-6.

Figure 12-6. L2 MMU TLB Organization—e500v1
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The equivalent figure for the e500v2 is shown in Figure 12-7.

Figure 12-7. L2 MMU TLB Organization—e500v2

12.3.2.1 IPROT Invalidation Protection in TLB1

The IPROT bit in TLB1 is used to protect TLB entries from invalidation. TLB1 entries with 
IPROT set can never be invalidated by a tlbivax instruction executed by this processor (even when 
the INV_ALL command is indicated) (internal case), by an external tlbivax instruction, or by a 
flash invalidate initiated by writing to the MMUCSR0. The IPROT bit can be used to protect 
critical code and data such as interrupt vectors/handlers in order to guarantee that the instruction 
fetch of those vectors never takes a TLB miss exception. Entries with IPROT set can only be 
invalidated by writing a 0 to the valid bit of the entry (by using the MAS registers and executing 
the tlbwe instruction).

V

0

15

TLB1

Select

Compare

Compare

way 3

way 2

MUX

RPN

 hit

Compare

Compare

RPN hitTLB0

Real Address
(translated bits,

depending on page size)

Virtual Addresses

VAs

127

0

Compare

Compare

way 1

way 0

V

V

V



Memory Management Units

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor 12-13

Only TLB entries in TLB1 can be protected from invalidation; entries in TLB0 and in the level 1 
MMUs cannot be protected from invalidation (they don’t implement the IPROT bit). See the 
EREF for more background information on the IPROT attribute.

Invalidation operations are guaranteed to invalidate the entry that translates the address specified 
in the operand of the tlbivax instruction. Other entries may also be invalidated by this operation 
if they are not protected with IPROT. A precise invalidation can be performed by writing a 0 to 
the valid bit of a TLB entry. Note that successful invalidation operations in the L2 MMU also 
invalidate matching entries in the L1 MMU.

If HID1[ABE] = 1, enabling broadcast operations on the core complex bus (CCB), execution of 
tlbivax is broadcast onto the CCB, regardless of whether or not the invalidation was successful. 
Flash invalidations (initiated by writing to the appropriate bits in MMUCSR0) are never broadcast. 

12.3.2.2 Replacement Algorithms for L2 MMU

The replacement algorithm for TLB1 (the fully associative TLB in the L2 MMU) must be 
implemented completely by the system software. Thus, when an entry in TLB1 is to be replaced, 
the software selects which entry to replace and writes the entry number to the MAS0[ESEL] field 
before executing a tlbwe instruction.

TLB0 entry replacement is also implemented by software. To assist the software with TLB0 
replacement, the e500 core complex provides a hint that can be used for implementing a 
round-robin replacement algorithm. The only parameter required to select the entry to replace is 
the way select value for the new entry. (The entry within the way is selected by EA[45–51].) The 
mechanism for the round-robin replacement uses the following bits:

• TLB0[NV]—the next victim field within TLB0

• MAS0[NV]—the next victim field of MAS0

• MAS0[ESEL]—selects the way to be replaced on tlbwe

See Table 12-15 for a complete description of MAS register updates on various exception 
conditions.

Note that the system software can load any value into MAS0[ESEL] and MAS0[NV] prior to 
execution of tlbwe, effectively overwriting this round robin replacement algorithm. In this case, 
the value written by software into MAS0[NV] is used as the next TLB0[NV] value on a TLB miss.

Also, note that the value of MAS0[NV] is indeterminate after any TLB entry invalidate operation 
(including a flash invalidate). If the software must know its value after an invalidate operation, 
MAS0[NV] must be explicitly read.
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12.3.2.2.1 Round-Robin Replacement for TLB0—e500v1

Figure 12-8 shows the round-robin replacement algorithm for the e500v1 core. Note that for the 
e500v1, TLB[NV] is implemented as a single bit that corresponds to the least significant bit of the 
MAS0[NV] field.

Figure 12-8. Round Robin Replacement for TLB0—e500v1

On execution of a tlbwe instruction, MAS0[ESEL] selects the way of TLB0 to be loaded (way 0 
or way 1). Also, when MAS0[TLBSEL] = 00 (selecting TLB0), TLB0[NV] is loaded with the 
MAS0[NVlsb] value on execution of a tlbwe instruction. In addition, when a TLB miss exception 
occurs (causing a TLB error interrupt), if MAS4[TLBSELD] = 00, the hardware automatically 
loads the current value of TLB0[NV1] into MAS0[ESEL] and the complement of TLB0[NV] into 
MAS0[NVlsb]. This sets up MAS0 such that if those values are not overwritten, the alternate way 
will be selected on the next execution of a tlbwe instruction, effectively alternating between way 
0 and way 1 for writing TLB0 entries.

12.3.2.2.2 Round-Robin Replacement for TLB0—e500v2

The e500v2 core has a 4-way set associative TLB0, and so fully implements the round-robin 
scheme with a simple 2-bit counter that increments the 2-bit value of NV from TLB0 on each TLB 
miss and loads the incremented value into MAS0[NV] for use by the next tlbwe instruction.

Figure 12-9. Round Robin Replacement for TLB0—e500v2
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On execution of a tlbwe instruction, MAS0[ESEL] selects the way of TLB0 to be loaded (way 0, 
1, 2, or 3). Also, when MAS0[TLBSEL] = 00 (selecting TLB0), the two-bit TLB0[NV] field is 
loaded with the MAS0[NV] value on execution of a tlbwe instruction. When a TLB miss 
exception occurs (causing a TLB error interrupt), if MAS4[TLBSELD] = 00, the hardware 
automatically loads the current value of TLB0[NV] into MAS0[ESEL] and the incremented value 
of TLB0[NV] into MAS0[NV]. This sets up MAS0 such that if those values are not overwritten, 
the next way will be selected on the next execution of a tlbwe instruction.

12.3.3 Consistency Between L1 and L2 TLBs

The contents of the L1 TLBs are always a proper subset of the TLB entries currently resident in 
the L2 MMU. They serve to improve performance because they have a faster access time than the 
larger L2 TLBs. The relationships between the six TLBs are shown in Figure 12-10.

Figure 12-10. L1 MMU TLB Relationships with L2 TLBs

On an L1 MMU miss, L1 MMU array entries are automatically reloaded using entries from their 
level 2 array equivalent. For example, if the L1 data MMU misses but there is a hit for one of the 
three virtual addresses in TLB1, the matching entry is automatically loaded into the data L1VSP 
array. Likewise, if the L1 data MMU misses, but there is a hit for the access in TLB0, the matching 
entry is automatically loaded into the data L1TLB4K array.

A hit for a single access to multiple TLB entries in the L2 MMU (even if they are in separate 
arrays) is considered to be a programming error. If this occurs, the TLB generates an invalid 
address and TLB entries may be corrupted (an exception is not reported).

A write to any field of a valid L2 TLB entry causes any corresponding L1 TLB entry to be 
invalidated. Also, changing the value of any PID register causes all L1 TLB entries to be 
invalidated, except for L1 TLB entries created for TID = 0. Therefore, it is recommended that 
TID = 0 be used as much as possible to maximize L1 TLB hit rates.
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Note that when an L2 TLB entry is invalidated by executing a tlbwe instruction that clears a valid 
bit, any corresponding entry in the L1 TLB arrays is also automatically invalidated. In addition, 
when L2 TLB entries are invalidated by the execution of tlbivax, by the detection of a TLB 
invalidate command broadcast by another processor, or by a flash invalidate operation, 
corresponding L1 TLB entries are also invalidated as described in Section 12.4.4, “TLB Invalidate 
(tlbivax) Instruction.”

12.3.4 L1 and L2 TLB Access Times

The L1 TLB arrays are checked for a translation hit in parallel with the on-chip L1 cache lookups 
and incur no penalty on an L1 TLB hit. If the L1 TLB arrays miss, the access proceeds to the L2 
TLB arrays. For L1 instruction address translation misses, the L2 TLB latency is at least 5 clocks; 
for L1 data address translation misses, the L2 TLB latency is at least 6 clocks. These access times 
may be longer depending on some arbitration performed by the L2 arrays for simultaneous 
instruction L1 TLB misses, data L1 TLB misses, the execution of TLB instructions, and TLB 
snoop operations (snooping of TLBINV operations on the CCB). 

Note that when a TLBINV operation is detected on the CCB, the L2 MMU arrays become 
inaccessible due to the snooping activity caused by the TLBINV.

12.3.5 The G Bit (of WIMGE)

The G bit provides protection from bus accesses due to speculative and faultable instruction 
execution. A speculative access is defined as an access caused by an instruction that is downstream 
from an unresolved branch. A faultable access is defined as an access that could be cancelled due 
to an exception on an uncompleted instruction.

On the e500, if the page for this type of access is marked with G = 0 (unguarded), this type of 
access may be issued to the CCB regardless of the completion status of other instructions. If G = 1 
(guarded), the access stalls (if it misses in the cache) until the exception status of any instructions 
in progress is known. 

When G = 1 for the page, data accesses that miss in the cache are not issued to the CCB until the 
instruction is known to be required by the program execution model; that is, all previous 
instructions will have completed without exception and no asynchronous interrupts occur between 
the time that the access is issued to the CCB and the time that the CCB transaction request 
completes. For reads, this requires that the data be returned and the instruction is retired. For 
writes, the instruction retires when the write transaction is committed to be sent to the CCB. 

Note that after an access with G = 1 is begun to the CCB, it is guaranteed to be completed. That 
is, after the address tenure is acknowledged on the CCB, the core completes the access, even if an 
asynchronous interrupt is pending.
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The G bit is ignored for instruction fetches, and instructions are speculatively fetched from 
guarded pages. To prevent speculative fetches from pages that do not contain instructions and are 
guarded, the page should be also designated as no-execute (with the UX/SX page permission bits 
cleared).

12.3.6 TLB Entry Field Definitions

Table 12-4 summarizes the fields of e500 TLB entries. Note that all of these fields are defined at 
the Freescale Book E level. See the EREF for the definition of TLB fields at the Freescale Book E 
level. 

12.4 TLB Instructions—Implementation
As described in the Cache and MMU Background chapter of the EREF, the TLBs are accessed 
indirectly through MMU assist (MAS) registers. Software can write and read the MMU assist 
registers with mtspr and mfspr instructions. These registers contain information related to 
reading and writing a given entry within the TLBs. For example, data is read from the TLBs into 
the MAS registers with a TLB Read Entry (tlbre) instruction, and data is written to the TLBs from 
the MAS registers with a TLB Write Entry (tlbwe) instruction.

Table 12-4. TLB Entry Bit Definitions for e500

Field Comments

V Valid bit for entry

TS Translation address space (compared with AS bit of the current access)

TID[0–7] Translation ID (compared with PID0, PID1, PID2 or TIDZ (all zeros)) 

EPN[0–19] Effective page number (compared with EA[32–51] for 4-Kbyte pages)

RPN[0–19] (e500v1);
RPN[0–23] (e500v2)

Real page number
Translated address RA[32–51] for 4-Kbyte pages for e500v1
Translated address RA[28–51] for 4-Kbyte pages for e500v1

SIZE[0–3] Encoded page size
0000 Reserved
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte

0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
1010 1 Gbyte (for e500v2 only)
1011 4 Gbyte (for e500v2 only)
all others—reserved

PERMIS[0–5] Supervisor execute, write, and read permission bits, and user execute, write, and read permission bits. 

WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence required, guarded, endian)

X0, X1 Extra system attribute bits (for definition by system software)

U0–U3 User attribute bits—used only by software. These bits exist in the L2 MMU TLBs only (TLB1 and TLB0)

IPROT Invalidation protection (exists in TLB1 only)
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The implementation of the tlbre, tlbwe, tlbsx, tlbivax, and tlbsync instructions is summarized in 
this section. The extended (64-bit) forms of these instructions are invalid for the core complex. See 
Section 3.1.4, “Unsupported Book E Instructions.” Although the tlbre, tlbwe, tlbsx, tlbivax, and 
tlbsync instructions are defined by Book E, their specific functions are defined by Freescale 
Book E.

12.4.1 TLB Read Entry (tlbre) Instruction 

The tlbre instruction causes the contents of a single TLB entry to be extracted from the L2 MMU 
and placed in the corresponding fields of the MMU assist (MAS) registers. The entry extracted is 
specified by the TLBSEL, ESEL, and EPN fields of the MAS0, and MAS2 registers. The contents 
extracted from the L2 MMU are placed in MAS1, MAS2, and MAS3. Note that for the e500v2, if 
HID0[EN_MAS7_UPDATE] = 1, MAS7 is also updated with the four highest-order bits of 
physical address for the TLB entry. See Section 12.7.2, “MAS Register Updates,” for details on 
which MAS register fields are updated.

The following RTL describes the e500 core complex tlbre implementation:

tlb_entry_id = MAS0(TLBSEL, ESEL) || MAS2(EPN)
result = L2MMU(tlb_entry_id)
MAS0, MAS1, MAS2, MAS3, (and MAS7 if HID0[EN_MAS7_UPDATE] = 1) = result 

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results 
placed in MAS0–MAS3 (and optionally, MAS7) are undefined. However, for the e500, the 
TLBSEL, ESEL and EPN fields always index to an existing L2 TLB entry and that indexed entry 
is read. Note that EPN bits are only used to index into TLB0. In the case of TLB1, the EPN field 
is unused for tlbre.  See the EREF for information at the Freescale Book E level.

12.4.1.1 Reading Entries from the TLB1 Array

Entries in TLB1 can be read by first writing the necessary entry-identifying information into 
MAS0 using mtspr and then executing the tlbre instruction. To read an entry from TLB1, 
MAS0[TLBSEL] must be = 01 and MAS0[ESEL] must be set to point to the desired entry. After 
executing the tlbre instruction, MAS0–MAS3 (and optionally, MAS7 for the e500v2) are updated 
with the data from the selected TLB entry in TLB1.

12.4.1.2 Reading Entries from the TLB0 Array

Entries in TLB0 can be read by first writing the necessary entry-identifying information into 
MAS0 and MAS2 using mtspr and then executing the tlbre instruction. To read an entry from 
TLB0, MAS0[TLBSEL] must be = 00, MAS0[ESEL] must be set to point to the desired way, and 
EPN[45–51] in MAS2 must be loaded with the desired index. After executing the tlbre 
instruction, MAS0–MAS3 (and optionally, MAS7 for the e500v2) are updated with the data from 
the selected TLB entry in TLB0. 
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12.4.2 TLB Write Entry (tlbwe) Instruction 

The tlbwe instruction causes the contents of certain fields of the MAS registers (MAS0, MAS1, 
MAS2, and MAS3) to be written into a single TLB entry in the L2 MMU. Execution of the tlbwe 
instruction on the e500v2 core also causes the upper 4 bits of the RPN that reside in MAS7 to be 
written to the selected TLB entry. The entry written is specified by the TLBSEL, ESEL, and EPN 
fields of the MAS0, and MAS2 registers.

The following RTL describes the e500 core complex tlbwe implementation: 

tlb_entry_id = MAS0(TLBSEL, ESEL) || MAS2(EPN)
L2MMU(tlb_entry_id) = MAS0, MAS1, MAS2, MAS3, (and MAS7 on e500v2)

Note that when an L2 TLB entry is written, it may be displacing an already valid entry in the same 
L2 TLB location (a victim). If a valid L1 TLB entry corresponds to the L2 MMU victim entry, that 
L1 TLB entry is automatically invalidated. See the EREF for synchronization requirements 
defined at the Freescale Book E level for the use of tlbwe.

12.4.2.1 Writing to the TLB1 Array

TLB1 can be written by first writing the necessary information into MAS0–MAS3 (and MAS7 for 
the e500v2) using mtspr and then executing the tlbwe instruction. To write an entry into TLB1, 
MAS0[TLBSEL] must = 01, and MAS0[ESEL] must point to the desired entry. When the tlbwe 
instruction is executed, the TLB entry information stored in MAS0–MAS3 (and MAS7 for the 
e500v2) is written into the selected TLB entry in the TLB1 array.

12.4.2.2 Writing to the TLB0 Array

TLB0 can be written by first writing the necessary information into MAS0–MAS3 (and MAS7 for 
the e500v2) using mtspr and then executing the tlbwe instruction. To write an entry into TLB0, 
MAS0[TLBSEL] must = 00, MAS0[ESEL] must point to the desired way, and EPN[45–51] in 
MAS2 must be loaded with the desired index. When the tlbwe instruction is executed, the TLB 
entry information stored in MAS0–MAS3 (and MAS7 for the e500v2) is written into the selected 
TLB entry in TLB0.

12.4.3 TLB Search (tlbsx) Instruction—Searching the TLB1 and 
TLB0 Arrays

The tlbsx instruction updates the MAS registers conditionally based on the success or failure of a 
TLB lookup in the L2 MMU. The lookup is controlled by the effective address provided by 
GPR[rA] + GPR[rB] specified in the instruction encoding, as well as by the SAS and SPID0 search 
fields in MAS6. The values placed into MAS0, MAS1, MAS2, MAS3, and optionally, MAS7 
differ, depending on whether a successful or unsuccessful search occurred. See Section 12.7.2, 
“MAS Register Updates,” for details on which MAS register fields are updated for these cases.
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Note that rA = 0 is the preferred form for tlbsx and that some Freescale implementations, such as 
the e500, take an illegal instruction exception program interrupt if rA!=0. 

The following RTL describes the e500 core complex tlbsx implementation:

if RA!=0 then generate illegal exception
EA = 320 || GPR(RB)32:63
ProcessID = MAS6(SPID0), 0b0000_0000
AS = MAS6(SAS)
VA = AS || ProcessID || EA
if Valid_TLB_matching_entry_exists (VA)

then result = see Table 12-15, column labelled “tlbsx hit”
else result = see Table 12-15, column labelled “tlbsx miss”
MAS0, MAS1, MAS2, MAS3 = result

The tlbsx instruction searches both the TLB1 and TLB0 arrays using EPN[32–51] from the GPR 
used as the instruction operand, and the SAS (search AS bit) and SPID0 (search PID) values from 
MAS6. If the search results in a hit, the information for the TLB entry that hit is loaded into 
MAS0–MAS3 and optionally, MAS7. The valid bit in MAS1 is used as the success flag as follows:

• If the search is successful, MAS1[V] is set.

• If the search is unsuccessful, MAS1[V] is cleared. 

The tlbsx instruction is especially useful for finding the TLB entry that caused a DSI or ISI 
exception. In this case, at most three tlbsx instructions are required: one for each of the current 
PID values. Note that TID values of 0x00 always match with any PID value. Thus, if software only 
uses one PID register, only one search is required.

12.4.4 TLB Invalidate (tlbivax) Instruction

The following RTL describes the e500 core complex tlbivax implementation:

if RA = 0, a = 0
else, a = GPR(RA)
EA = a + GPR(RB)
if (valid_TLB_matching_entry exists or INV_ALL) and Entry_IPROT_not_set
then invalidate entry

A TLB invalidate operation is performed whenever a tlbivax instruction is executed. This 
instruction invalidates any TLB entry that corresponds to the virtual addresses calculated by this 
instruction. This operation includes invalidating TLB entries contained in TLBs on other 
processors and devices in addition to the processor executing the tlbivax instruction. Thus an 
invalidate operation is broadcast throughout the coherent domain of the processor executing this 
instruction. 

Because the virtual address can be much larger than the physical address, the full virtual address 
specified by the tlbivax instruction cannot be broadcast to all devices. Instead, a subset address is 
broadcast that fits within the space of the implemented physical addressing model. 
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The address that is used by the processor executing the tlbivax instruction is detailed in 
Table 12-5. Note that this subset address is also the address broadcast to other processors. Thus, 
no other information except for that shown in Table 12-5 is used for the invalidation. As shown in 
the table, the bits of effective address used to perform the tlbivax invalidation of TLB1, TLB0, 
and the L1 TLBs are bits 32–51 of rA + rB.

t

The limited virtual address used to invalidate TLB entries has the side effect that a single tlbivax 
instruction can invalidate more than a single entry in a targeted TLB. This is because the tlbivax 
does not compare the values of the PID or AS bits. A tlbivax targeted at TLB0 can invalidate either 
or both ways within an TLB0 index (for e500v1), up to all four ways for e500v2, and up to all four 
ways within an L1TLB4K index. Also, a tlbivax targeted at TLB1 can invalidate up to all 16 
entries in the array, or up to all 8 entries of the L1VSPs (instruction and data). 

The tlbivax instruction invalidates all matching entries in the instruction and data L1 TLBs 
simultaneously. Also, the core complex always snoops TLB invalidate transactions from other 
CCB bus masters (if any) and invalidates matching TLB entries accordingly.

Note that entries in TLB1 can be protected from invalidation by the tlbivax instruction by setting 
the IPROT bit for those entries. See the EREF for more information on the use of the IPROT bit 
defined for Freescale Book E processors.

12.4.4.1 TLB Selection for tlbivax Instruction

Because only a limited subset of the virtual address can be broadcast, extra information about the 
targeted TLB entries is encoded in two of the lower bits of the effective address calculated by the 
tlbivax instruction. Bit 60 of the tlbivax effective address is interpreted as the TLBSEL field. This 
bit indicates whether TLB1 or TLB0 is targeted by the invalidate operation. Because only a few 
bits (32–51) of address are broadcast and can be used in the invalidate comparison for TLB1, and 
most of those bits are masked out for larger page sizes, the TLBSEL field avoids unnecessary 
invalidations of large superpages in TLB1 when the tlbivax is targeting TLB0.

Table 12-5. tlbivax EA Bit Definitions

Bits of (rA + rB)
(preferred form is for rA = 0)

Meaning
More Information

Section/Page

32–51 EA[32–51] for invalidation matching —

52–59 Reserved; should be zero —

60 TLBSEL. Selects which TLB is targeted for invalidation
0 TLB0
1 TLB1

12.4.4.1/12-21

 61 INV_ALL command 12.4.4.2/12-22

 62–63 Reserved —
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12.4.4.2 Invalidate All Address Encoding for tlbivax Instruction

Bit 61 of the tlbivax effective address is interpreted as the INV_ALL command. If this bit is set, 
it indicates that the invalidate operation should completely invalidate all entries of either TLB1 or 
TLB0 as indicated by the TLBSEL field, and invalidate all corresponding L1 TLB entries. Note 
that entries in TLB1 can be protected from this type of invalidation by setting the IPROT bit as 
described in Section 12.3.2.1, “IPROT Invalidation Protection in TLB1.”

12.4.4.3 TLB Invalidate Broadcast Enabling

In addition to invalidating the local matching TLB entries, the tlbivax instruction operation is also 
broadcast on the bus (causing a TLBINV address-only transaction) according to the value of the 
ABE (address broadcast enable) bit in the HID1 register as follows:

• If HID1[ABE] = 0, tlbivax instructions are not broadcast. 

• If HID1[ABE] = 1, tlbivax instructions are broadcast.

12.4.5 TLB Synchronize (tlbsync) Instruction

The tlbsync instruction causes a TLBSYNC transaction on the CCB. This transaction is retried if 
any processor, including the one that executed the tlbsync instruction, has pending memory 
accesses that were issued before any previous tlbivax instructions were completed. This 
instruction effectively synchronizes the invalidation of TLB entries; tlbsync does not complete 
until all memory accesses caused by instructions issued before an earlier tlbivax instruction have 
completed.

12.5 TLB Entry Maintenance—Details
The TLB entries of the e500 core complex must be loaded and maintained by the system software, 
including performing the required table search operations in memory. However, the e500 provides 
some hardware assistance for these software tasks. Note that the system software cannot directly 
access the L1 TLBs, and the L1 TLBs are completely and automatically maintained in hardware 
as a subset of the contents of the L2 TLBs.

In addition to the resources described in Table 12-1, hardware assistance on the core complex for 
maintenance of TLB entries includes:

• Automatic loading of MAS0–2 based on the default values in MAS4 on TLB miss 
exceptions. This automatically generates most fields of the required TLB entry on a miss. 
Thus software should load MAS4 with likely values to be used in the event of a TLB miss 
condition.

• Automatic loading of the data exception address register (DEAR) with the effective address 
of the load, store, or cache management instruction that caused an alignment, data TLB 
miss (data TLB error interrupt), or permissions violation (DSI interrupt).
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• Automatic loading into SRR0 of the effective address of the instruction that causes a TLB 
miss exception or a permissions violation.

• Automatic updates of the next victim (NV) field and MAS0[ESEL] fields for TLB0 entry 
replacement on TLB misses (TLB error interrupts); this occurs if TLBSELD = 00. See 
Section 12.3.2.2, “Replacement Algorithms for L2 MMU.”

• When tlbwe is executed, the information for the selected victim is read from the selected 
L2 TLB (TLB1 or TLB0). The victim’s EPN and TS are sent to both L1 MMUs to provide 
back-invalidation. Thus if the selected victim in the L2 MMU is also resident in an L1 
MMU, it is invalidated (or victimized) in the L1 MMU. This forces inclusion in the TLB 
hierarchy. Additionally, the new TLB entry contained in MAS0–MAS3 (and MAS7 on the 
e500v2) is written into the selected TLB. 

Note that while the tlbwe instruction loads an entry in the L2 TLB array, it does not load an entry 
in the L1 TLB array. The L1 arrays are loaded with new entries (automatically by the hardware) 
only when an access misses in the L1 array, but hits in a corresponding L2 array.

See Section 12.7.2, “MAS Register Updates,” for a complete description of automatic fields loaded 
into the MAS registers on execution of TLB instructions and for various exception conditions.

The EREF provides more information on some of the actions taken by Freescale Book E devices 
on MMU exceptions. 

The following subsections provide supplementary information that applies for the e500.

12.5.1 Automatic Updates—TLB Miss Exceptions

When a TLB miss exception occurs, MAS0–MAS2 are automatically updated using the defaults 
specified in MAS4, as well as the AS and EPN[32–51] values corresponding to the access that 
caused the exception, as described in Section 12.7.2, “MAS Register Updates.” 

In addition, if TLBSELD = 00 (selecting TLB0), MAS0[ESEL] is updated with the next victim 
information for TLB0. Finally, the MAS0[NV] field is updated with the incremented value of 
TLB0[NV]. Thus, ESEL points to the current victim (the entry to be replaced), while MAS0[NV] 
points to the next victim to be used if a TLB0 entry is replaced. See Section 12.3.2.2, 
“Replacement Algorithms for L2 MMU,” for more information.

The process described above sets up all the TLB entry data necessary for a TLB write except for 
RPN[32–51] and RPN[28–31], the U0–U3 user attribute bits, and the UX, SX, UW, SW, UR, and 
SR permission bits for the new entry, all of which are stored in MAS3 (and MAS7). Thus, if the 
defaults stored in MAS4 are applicable to the TLB entry to be loaded, the TLB miss exception 
handler only has to update MAS3 (and MAS7) with an mtspr before executing tlbwe. If the 
defaults are not applicable to the TLB entry being loaded, then the TLB miss exception handler 
must update MAS0–MAS2 appropriately before performing the TLB write. See Section 12.5.2, 
“TLB Interrupt Routines,” for more information on the handling of TLB miss exceptions.



PowerPC e500 Core Family Reference Manual, Rev. 1

12-24 Freescale Semiconductor

Memory Management Units

12.5.2 TLB Interrupt Routines

When an exception is reported by the MMUs, the machine drains (that is, all instructions 
dispatched prior to the exception are executed). After all instructions are completed, the interrupt 
is acknowledged and MAS0–MAS2 are loaded as described in Section 12.5.1, “Automatic 
Updates—TLB Miss Exceptions.”

As is recommended for most interrupt handler routines, the TLB miss, DSI, and ISI exception 
handlers must first save the values of enough GPRs so that the handler has enough GPRs available 
for its own use. The handler should then perform an mfcr to copy the CR data into one of the 
GPRs. Before exiting the handler, an mtcrf must be executed to restore the CR, and then the 
original GPR data must be restored. 

The PID0–2 registers must also be restored (if modified) before exiting the handler. Note that PID 
register updates must be followed by an isync. This isync instruction must reside in an instruction 
page that is valid before the changes are made to the PID.

12.5.2.1  Permissions Violations (ISI, DSI) Interrupt Handlers

The only differences between the definition of actions on a permissions violation for Freescale 
Book E devices and for the e500 is that the e500 only uses MAS6[SPID0] and the e500 does not 
implement MAS5. Note that for a permissions violation case, software must explicitly load a value 
into MAS6[SPID0] (this value will most likely be the value of PID0).

The permissions violations handlers can use the tlbsx instruction to load all necessary information 
about the faulting access into the MAS registers and make the appropriate changes. If the access 
was an instruction or data access, the handler can load the following effective address into rB in 
order to load the faulting TLB entry into the MAS registers:

• Instruction access: load SRR0 value into rB

• Data access: load DEAR value into rB

See Section 12.4.3, “TLB Search (tlbsx) Instruction—Searching the TLB1 and TLB0 Arrays,” for 
more information about the actions performed by the tlbsx instruction.

The guidelines for the saving and restoring of resources for permissions violations interrupt 
handlers are the same as that for TLB error interrupts.

12.6 TLB States after Reset
During reset, all TLB entries in the L1 and L2 MMUs are flash invalidated. Then entry 0 of TLB1 
is loaded with the values shown in Table 12-6. Note that only the valid bits for other TLB entries 
are cleared. Other fields of TLB entries are set not set to a known state and software should be 
careful to insure that all fields of a TLB entry are appropriately initialized through the MAS 
registers before it is used for translation.
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Note also that because the core complex fetches from effective address 0xFFFF_FFFC out of reset, 
the first access out of reset is automatically translated with this default TLB entry. The instruction 
located at 0xFFFF_FFFC should be a branch instruction to the beginning of this 4-Kbyte page. 

Because this default entry only translates a 4-Kbyte page, the initial code in this page needs to set 
up more valid TLB entries (and pages) so that the program can branch out of this 4-Kbyte page 
into other pages for booting the operating system. In particular, the interrupt vector area and the 
pages that contain the interrupt handlers should be set up so that exceptions can be handled early 
in the booting process. 

 

12.7 Core Complex MMU Registers
Table 12-7 provides cross-references to other sections that have more detailed bit descriptions for 
the e500 registers related to the MMU. Also, the EREF lists the Freescale Book E definitions for 
these registers.

 

Table 12-6. TLB1 Entry 0 Values after Reset

Field Reset Value Comments

V 1 Entry is valid

TS 0 Address space 0

TID[0–7] 0x00 TID value for shared (global) page

EPN[32–51] 0xFFFFF Address of last 4-Kbyte page in address space

RPN[32–51] 0xFFFFF Address of last 4-Kbyte page in address space

SIZE[0–3] 0001 4-Kbyte page size

SX/SR/SW 111 Full supervisor mode access allowed

UX/UR/UW 000 No user mode access allowed

WIMGE 01000 Caching-inhibited, non-coherent, big-endian

X0–X1 00 Reserved system attributes

U0–U3 0000 User attribute bits

IPROT 1 Page is protected from invalidation

Table 12-7. Registers Used for MMU Functions

Registers
Comprehensive 

Reference 
(Section/Page)

Additional 
e500-Only Reference

(Section/Page)

Process ID (PID0–PID2) 2.12.1/2-36 —

MMU control and status register (MMUCSR0) 2.12.2/2-36 —

MMU configuration register (MMUCFG) 2.12.3/2-37 —

TLB configuration registers (TLB0CFG–TLB1CFG) 2.12.4/2-37 —
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12.7.1 e500 MAS Registers

The core complex uses seven special purpose registers (MAS0, MAS1, MAS2, MAS3, MAS4, 
MAS6, and MAS7) to facilitate reading, writing, and searching the TLBs. The MAS registers can 
be read or written using the mfspr and mtspr instructions. The core complex does not implement 
the MAS5 register, because the tlbsx instruction on the e500 only searches based on a single PID 
value (the value of MAS6[SPID0]). 

For the core complex, TLB0 is 2 (e500v1) or 4 (e500v2)-way set associative, so bits 45–51 of the 
effective address are used to index into TLB0 when it is accessed. For TLB0, ESEL is defined as 
a 2-bit field (bits 46–47) that identifies which of the indexed entries is to be referenced by the TLB 
operation (ESEL selects the way). For TLB1, ESEL selects one of the 16 entries in the array.

Figure 12-11 describes the format of MAS0 on the e500 core complex.

Table 12-8 shows the core complex MAS0 bit definitions. 

MMU assist registers (MAS0–MAS4, MAS6 (and MAS7 for 
the e500v2))

2.12.5/2-39 12.7.1/12-26

Data exception address register (DEAR) 2.7.1.3/2-18 —

SPR 624 Access: Supervisor-only

32 34 35 36 43 44 47 48 61 62 63

R
— TLBSEL — ESEL — NV

W

Reset All zeros

Figure 12-11. MAS Register 0 (MAS0)

Table 12-8. MAS0 Field Descriptions—MMU Read/Write and Replacement Control

Bits Name Descriptions

32–34 — Reserved, should be cleared.

35 TLBSEL Selects TLB for access
0 TLB0
1 TLB1

36–43 — Reserved, should be cleared.

Table 12-7. Registers Used for MMU Functions (continued)

Registers
Comprehensive 

Reference 
(Section/Page)

Additional 
e500-Only Reference

(Section/Page)
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Figure 12-12 describes the format of MAS1 on the e500 core complex. Note that while Freescale 
Book E allows for a TID field of 12 bits, the TID field on the core complex is implemented as only 
8 bits.

Table 12-9 shows the core complex MAS1 bit definitions.

44–47 ESEL Entry select. Number of the entry in the selected array to be used for tlbwe. This field is also updated on TLB 
error exceptions (misses), and tlbsx hit and miss cases as shown in Table 12-15.
For the e500, ESEL serves as the way select for the corresponding TLB as follows:
When TLBSEL = 00 (TLB0 selected), bits 46–47 are used (and bits 44–45 should be cleared). This field 
selects between way 0, 1, 2, or 3 of TLB0. EA bits 45–51 from MAS2[EPN] are used to index into the TLB to 
further select the entry for the operation. Note that for the e500v1, bit 47 selects either way 0 or way 1, and 
bit 46 should remain cleared.
When TLBSEL = 01 (TLB1 selected), all four bits are used to select one of 16 entries in the array.

48–61 — Reserved, should be cleared.

62–63 NV Next victim. Next victim value to be written to TLB0[NV] on execution of tlbwe. This field is also updated on 
TLB error exceptions (misses), tlbsx hit and miss cases as shown in Table 12-15, and on execution of tlbre.
This field is updated based on the calculated next victim value for TLB0 (based on the round-robin 
replacement algorithm, described in Section 12.3.2.2, “Replacement Algorithms for L2 MMU”). Note that for 
the e500v1, bit 62 should remain cleared and only bit 63 has significance.
Note that this field is not defined for operations that specify TLB1 (when TLBSEL = 01).

SPR 625 Access: Supervisor-only

32 33 34 39 40 47 48 50 51 52 55 56 63

R
V IPROT — TID — TS TSIZE —

W

Reset All zeros

Figure 12-12. MAS Register 1 (MAS1)

Table 12-9. MAS1 Field Descriptions—Descriptor Context and Configuration 
Control

Bits Name Descriptions

32 V TLB valid bit
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPROT Invalidate protect. Set to protect this TLB entry from invalidate operations due to the execution of tlbiva[x] (TLB1 
only). Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that support 
invalidate protection are denoted as such in the TLB configuration registers.
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation. See Section 12.3.2.1, “IPROT Invalidation Protection in TLB1.”

34–39 — Reserved, should be cleared.

40–47 TID Translation identity. An 8-bit field that defines the process ID for this TLB entry. TID is compared with the current 
process IDs of the three virtual address to be translated. A TID value of 0 defines an entry as global and 
matches with all process IDs.

Table 12-8. MAS0 Field Descriptions—MMU Read/Write and Replacement Control 

Bits Name Descriptions
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Figure 12-13 describes the format of MAS2 on the e500 core complex. 

Table 12-10 shows the core complex MAS2 bit definitions.

48–50 — Reserved, should be cleared.

51 TS Translation space. This bit is compared with the IS or DS fields of the MSR (depending on the type of access) 
to determine if this TLB entry may be used for translation.

52–55 TSIZE Translation size. Defines the page size of the TLB entry. For TLB arrays that contain fixed-size TLB entries, this 
field is ignored. For variable page size TLB arrays, the page size is 4TSIZE Kbytes. Note that although the 
Freescale Book E standard supports all 16 page sizes defined in Book E, the e500 only supports the following 
page sizes:
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte

0111 16 Mbyte
1000 64 Mbyte
1001 256 Mbyte
1010 1 Gbyte
1011 4 Gbyte

56–63 — Reserved, should be cleared.

SPR 626 Access: Supervisor-only

32 51 52 56 57 58 59 60 61 62 63

R
EPN — X0 X1 W I M G E

W

Reset All zeros

Figure 12-13. MAS Register 2 (MAS2)

Table 12-10. MAS2 Field Descriptions—EPN and Page Attributes

Bits Name Description

32–51 EPN Effective page number. Depending on page size, only the bits associated with a page boundary are 
valid. Bits that represent offsets within a page are ignored and should be cleared.

52–56 — Reserved, should be cleared.

57 X0 Implementation-dependent page attribute

58 X1 Implementation-dependent page attribute

59 W Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

60 I Caching-inhibited
0 Accesses to this page are considered cacheable.
1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and 

are performed directly to main memory.

Table 12-9. MAS1 Field Descriptions—Descriptor Context and Configuration 
Control (continued)

Bits Name Descriptions
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Figure 12-14 describes the format of MAS3. The core complex uses the same bit definitions as the 
Freescale Book E standard for MAS3 for 32-bit implementations.

Table 12-11 shows the core complex MAS3 bit definitions.

61 M Memory coherence required
0 Memory coherence is not required.
1 Memory coherence is required. This allows loads and stores to this page to be coherent with loads 

and stores from other processors (and devices) in the system, assuming all such devices are 
participating in the coherence protocol.

62 G Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are 

required by the sequential execution model.
1 All loads and stores to this page that miss in the L1 cache are performed without speculation (that 

is, they are known to be required). Speculative loads can be performed if they hit in the L1 cache. 
In addition, accesses to caching-inhibited pages are performed using only the memory element 
that is explicitly specified. 

63 E Endianness. Determines endianness for the corresponding page. Little-endian operation is true little 
endian, which differs from the modified little-endian byte-ordering model optionally available in 
previous devices that implement the original PowerPC architecture. 
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order. 

SPR 627 Access: Supervisor-only

32 51 52 53 54 57 58 59 60 61 62 63

R
RPN — U0–U3 UX SX UW SW UR SR

W

Reset All zeros

Figure 12-14. MAS Register 3 (MAS3)

Table 12-11. MAS3 Field Descriptions–RPN and Access Control

Bits Name Description

32–51 RPN Real page number. Depending on page size, only the bits associated with a page boundary are valid. 
Bits that represent offsets within a page are ignored and should be cleared. Note that, on the e500v2, 
additional bits of the RPN are contained in MAS7. See Section 12.7.1.1, “MAS Register 7 (MAS7),” for 
more information.

52–53 — Reserved, should be cleared.

54–57 U0–U3 User attribute bits. These bits are associated with a TLB entry and can be used by system software. 
For example, these bits may be used to hold information useful to a page scanning algorithm or be 
used to mark more abstract page attributes.

58–63 PERMIS Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write, and execute permission 
bits. See the EREF:. for more information on the page permission bits as they are defined by Book E. 

Table 12-10. MAS2 Field Descriptions—EPN and Page Attributes (continued)

Bits Name Description
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Figure 12-15 describes the format of MAS4 on the e500 core complex. 

Table 12-12 shows the core complex MAS4 bit definitions.

Note that MAS5 is not implemented in the e500 core complex.

SPR 628 Access: Supervisor-only

32 33 34 35 36 45 46 47 48 55 56 57 58 59 60 61 62 63

R
— TLBSELD — TIDSELD — TSIZED — X0D X1D WD ID MD GD ED

W

Reset All zeros

Figure 12-15. MAS Register 4 (MAS4)

Table 12-12. MAS4 Field Descriptions—Hardware Replacement Assist 
Configuration

Bits Name Description

32–34 — Reserved, should be cleared.

35 TLBSELD TLBSEL default value. The default value to be loaded in MAS0[TLBSEL] on a TLB miss exception. See the 
EREF for more information.
0 TLB0
1 TLB1

36–45 — Reserved, should be cleared.

46–47 TIDSELD TID default selection value. A 2-bit field that specifies which of the current PID registers should be used to 
load the MAS1[TID] field on a TLB miss exception. 
The e500 implementation defines this field as follows:
00 PID0
01 PID1
10 PID2
11 TIDZ (0x00) (all zeros)

48–51 — Reserved, should be cleared.

52–55 TSIZED Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss exception.

56 — Reserved, should be cleared.

57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.

58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.

59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.

60 ID Default I value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.

62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.

63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.
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Figure 12-16 shows the format of MAS6.

Table 12-13 shows the core complex MAS6 bit definitions. Note that while the Freescale Book E 
allows for a SPIDx field of 12 bits, SPID0 on the core complex is only an 8-bit field. 

 

12.7.1.1 MAS Register 7 (MAS7)

The MAS7 register contains the high-order address bits of the RPN for implementations that 
support more than 32 bits of physical address. (It contains 4 bits in the case of the e500v2.) 
Implementations that do not support more than 32 bits of physical addressing do not implement 
MAS7. Note that MAS7 can be automatically updated as a result of execution of tlbre and tlbsx 
instructions (as is MAS3); this functionality is controlled by HID0[EN_MAS7_UPDATE].

Figure 12-17 shows the format of the MAS7 register.

The MAS7 fields are described in Table 12-14.

SPR 630 Access: Supervisor-only

32 39 40 47 48 62 63

R
— SPID0 — SAS

W

Reset All zeros

Figure 12-16. MAS Register 6 (MAS6)

Table 12-13. MAS6—TLB Search Context Register 0

Bits Name Comments, or Function when Set

32–39 — Reserved, should be cleared.

40–47 SPID0 Specifies the PID value (recent value of PID0) used when searching the TLB during execution of tlbsx.

48–62 — Reserved, should be cleared.

63 SAS Address space (AS) value for searches. Specifies the value of AS used when searching the TLB (during 
execution of tlbsx). 

SPR 944 Access: Supervisor-only

32 59 60 63

R
— RPN

W

Reset All zeros

Figure 12-17. MAS Register 7 (MAS7)

Table 12-14. MAS7 Field Descriptions—High Order RPN

Bits Name Description

32–59 — Reserved, should be cleared. 

60–63 RPN Real page number, 4 high-order bits. MAS3 holds only RPN[4–23]. The byte offset within 
the page is provided by the EA and is not present in MAS3 or MAS7.
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12.7.2 MAS Register Updates

Table 12-15 summarizes the updates to each MAS register field for each update stimulus. 
 

Table 12-15. MMU Assist Register Field Updates

MAS Register 
Bit/Field

Value Loaded for Each Case

Instr/Data TLB Error tlbsx Hit tlbsx Miss ISI DSI tlbre tlbwe

TLBSEL TLBSELD Which TLB hit TLBSELD — — — —

ESEL if TLBSELD = 0:
TLB0[NV]

else, undefined

Number of entry 
that hit

if TLBSELD = 0:
TLB0[NV]

else, undefined

— — — —

NV if TLBSELD = 0:
~TLB0[NV]

else, undefined

if TLBSEL = 0:
TLB0[NV]

else, undefined

if TLBSELD = 0:
~TLB0[NV]

else, undefined

— — if TLBSEL = 0:
TLB0[NV]

else, undefined

—

V 1 1 0 — — V(array) —

IPROT 0 Matched IPROT 
if TLB1 hit; 

else 0

0 — — IPROT (array) 
if TLB1; else 0

—

TID[0–7] Value of PID register 
selected by TIDSELD 

TID (array) SPID0 — — TID (array) —

TS MSR[IS/DS] SAS SAS — — TS(array) —

TSIZE[0–3] TSIZED TSIZE(array) TSIZED — — TSIZE(array) —

EPN[32–51]  EPN of access EPN (array) — — — EPN (array) —

X0, X1
WIMGE

X0D, X1D
WIMGED

X0, X1 (array)
WIMGE (array)

X0D, X1D
WIMGED

— — X0, X1 (array)
WIMGE (array)

—

RPN[28–51] Zeros RPN (array) Zeros — — RPN (array) —

Access
(PERMIS + U0–U3)

Zeros Access (array) Zeros — — Access (array) —

TLBSELD — — — — — — —

TIDSELD[0–1] — — — — — — —

TSIZED[0–3] — — — — — — —

WIMGED — — — — — — —

SPID0 PID0 — — — — — —

SAS MSR[IS] for 
instruction access;

MSR[DS] for data 
access

— — — — — —
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Chapter 13  
Core Complex Bus (CCB)
This chapter provides a very general description of the core complex bus (CCB), which is the 
interface between the core and the integrating device. Because most of the behavior of the CCB is 
not directly programmable, or even visible, to the user, this chapter does not attempt to describe 
all aspects of the CCB or even the most important CCB signals. 

Instead it describes only those aspects of the CCB that are configurable or that provide status 
information through the programming interface. It provides a glossary of those signals that are 
mentioned in other chapters to offer a clearer understanding of how the core is integrated as part 
of a larger device. 

13.1 Overview 
The CCB is the internal interface of the core complex and is derived from the 60x bus. The CCB 
allows a wide range of system-performance and system-complexity trade-offs, which are largely 
configured by the device that integrates the core. The CCB is defined as follows:

• High-speed, on-chip local bus interface

• 32-bit address bus

• Address protocol with address pipelining and retry/copyback derived from bus used by 
previous generations of PowerPC processors (referred to as the 60x bus)

• An address-out bus for mastering bus transactions 

• An address-in bus for snooping internal resources 

• Three tagged data buses 

Two of the data buses are general-purpose data-in buses for reads, and the third is a data-out bus 
for writes. The two data-in buses feature support for out-of-order read transactions from two 
different sources simultaneously, and all three data buses may be operated concurrently. The 
address-in bus supports snooping for external management of the L1 caches and TLBs by other 
bus masters. The core complex broadcasts and snoops the cache and TLB management 
instructions accordingly. It is envisioned that a wide range of system implementations can be 
constructed from the defined interface.

The CCB derivation starts with the 60x bus, separates the bidirectional pins into unidirectional 
components (for system-on-chip use), and adds new attributes and capabilities to enhance data 
flow implementation or parallelism in certain system configurations. Note that this chapter does 
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not attempt to characterize 60x bus behavior. Figure 13-1 shows the subset of CCB signals that 
are discussed in this document. 

 

Figure 13-1. CCB Interface Signals

13.2 Signal Summary
Table 13-1 briefly describes selected internal signals of the CCB. 

Table 13-1. Summary of Selected Internal Signals

Signal I/O Comments, or Meaning when Asserted

Bus Signals: Master Address Bus

ci O Cache inhibit. Normally reflected from the I bit of the WIMGE bits (regardless of whether the cache is enabled)

For burst writes and address-only transactions, ci is always negated.

cl O Cache lock. Indicates L2 (level 2) cache lock status for the transaction; also asserted during a burst write for 
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gbl O Global. Normally reflected from the M bit of the WIMGE bits; asserted indicates transaction is enabled for 
snooping by other masters.

 • For burst writes, always negated
 • For lock-clear instructions to an L2 cache, always negated
 • For address-only transactions that bypass translation, always asserted

ts O Transfer start. Asserted by the core to indicate a valid address with attributes.

tt [0:4] O Transfer type. Indicates the type of transaction (such as RWITM, WR w/Kill).

wt O Write through. Used as a general-purpose information bit for the transaction.

 • For tt[0:4] = READ, 1 indicates instruction-side fetch; 0 indicates data-side read.
 • For tt[0:4] = RWITM/RCLAIM, 1 indicates intent-to-modify at the L1 level.
 • For single-beat writes, reflected from the EIMGE bits for that page
 • For burst writes, 0 indicates a push for dcbf/dcbst or for snoop.
 • For address-only transactions, always negated

Bus Signals: Snoop Address Bus

sgbl I Snoop global. Indicates the transaction is enabled for cache snooping. (Reservation-only snooping also occurs 
for non-global write transactions.)

sts I Snoop transfer start. Asserted to indicate that the core complex should snoop the transaction this cycle

Bus Signals: Read-1 Data Bus (Read-2 Data Bus is Analogous)

Test and Debug

clkout O Clock out mux. Selects the appropriate e500 clock. Refer to Chapter 8, “Debug Support.”

ckstp_out O Checkstop interrupt. Assertion of this signal by the e500 core is used by system to generate a chip-wide hard 
stop and to signal an external CKSTP_OUT.

ude I Unconditional debug event interrupt. Asserting ude sets DBSR[UDE] and, if MSR[DE] is set, causes a debug 
interrupt to be taken. Several bits in the debug control registers can be used to override this behavior. See 
Section 2.13.1, “Debug Control Registers (DBCR0–DBCR2),” for more information.

Provides extra COP functions when enabled by COP control bits.

waitr I WAITR select. Assertion results in global waitr to be selected for the e500 core.

JTAG and TAP

trst I JTAG test reset. 

Asserted—This input causes asynchronous initialization of the internal JTAG test access port controller. Note 
that this signal must be asserted during the assertion of hreset to properly initialize the JTAG test access port.

tck I JTAG test clock. Driven by a free-running clock signal. Input signals to the test access port are sampled on 
the rising edge of tck. TAP output signal changes occur on the falling edge of tck. The test logic allows TCK to 
be stopped. asynchronously with respect to all other core complex clocks.

tms I JTAG test mode select. Decoded by the internal JTAG TAP controller to determine the primary operation of 
the test support circuitry

tdi I JTAG test data input. The value present on the rising edge of tck is loaded into the selected JTAG test 
instruction or data register.

Table 13-1. Summary of Selected Internal Signals (continued)

Signal I/O Comments, or Meaning when Asserted
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tdo O JTAG test data output. The contents of the selected internal instruction or data register are shifted out onto 
this signal on the falling edge of tck. 

tdo_ien O Test data out enable. tdo provides feedback to the external TAP linking module logic.

tlmsel O TLM selected. tlmsel provides feedback to the external TAP linking module logic.

tap_en I TAP enable. tap_en is used by the TAP linking module (TLM) logic external to the core complex.

Clocks

pll_cfg[0:5] I PLL configuration select. Configurations are as follows:

00000_x PLL off
00001_0 or 00001_1 PLL 1x or 1.5x
00010_0 or 00010_1 PLL 2x or 2.5x
00011_0 or 00011_1 PLL 3x or 3.5x
00100_0 or 00100_1 PLL 4x or 4.5x
... similar pattern up to 24x for even multipliers, or 12.5x for odd multipliers.

pll_clk I PLL clock. Clock reference for the CCB.

Time Base

tbclk I Sampled by the system logic to CCB clock. Required to be no more than 1/4 platform clock frequency. If 
selected, it can be a source of the time base.

tben I Asserted by the system logic to enable the time base

tbint O Asserted when a time base interrupt is signaled. This ordinarily prompts external logic to bring the core out of 
power-down mode by negating stop and then halt so the interrupt can be serviced.

wrs[0:1] O Watchdog timer reset status. These two bits are set to one of three values when a reset is caused by the 
watchdog timer. These bits are undefined at power-up.

00 Implementation-dependent reset information.
01 Implementation-dependent reset information.
10 Implementation-dependent reset information.
11 Idle

External Interrupts

hreset_req O Hard reset request. When DBCRO[RST] is set, the core sends an HRESET_REQ to the system. The system 
recognizes the assertion of this request and then stops the core using power management. With hreset_req 
being asserted and the core being in STOPPED state, hreset is asserted and core flushing starts.

hreset I Hard reset. Assertion flushes the core. When hreset is negated, the 256 CCB clocks core flush starts. 

int I External interrupt. Initiates an external interrupt. If int is asserted and MSR[EE] is set, the e500 vectors to 
IVOR4.

cint I Critical interrupt. Initiates a critical interrupt. If cint is asserted and MSR[CE] is set, the e500 vectors to IVOR0. 
If MSR[CE] is 0, critical interrupts are disabled and the e500 does not sample cint. 

mcp I Machine check interrupt. Initiates a machine check operation. If MSR[ME] is set, the e500 vectors to IVOR1. 
If MSR[ME] is clear, then the e500 goes into checkstop state. MCSR is updated as defined in Section 2.7.2.4, 
“Machine Check Syndrome Register (MCSR).” 

Table 13-1. Summary of Selected Internal Signals (continued)

Signal I/O Comments, or Meaning when Asserted
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13.3 Core Interface Behavior
This section describes the behavior of the core interface with respect to parity and the 
synchronizing instructions, mbar and msync.

13.3.1 Parity Specification

The CCB supports byte parity (odd parity) on each data bus. Parity checking for the read data 
buses is enabled by setting HID1[R1DPE,R2DPE].

For write transactions, the core complex always supplies correct data parity across all byte lanes 
of the write data bus. If an internal parity error is detected in the L1 data cache during a castout 

core_fault_in I Core bus fault input. When asserted, signals a bus fault. On the e500v2, prevents the core transaction from 
completing, protecting the code from executing with potentially bad data. Thus, the transaction stalls waiting 
for an interrupt. If HID1[RFXE] = 1 and MSR[ME] = 1, assertion of core_fault_in causes a machine check 
interrupt and if HID1[RFXE] = 1 and MSR[ME] = 0, it causes a checkstop. For more information about bus 
faults, see Section 13.8, “Proper Reporting of Bus Faults.” For proper handling of bus faults, see 
Section 2.10.2, “Hardware Implementation-Dependent Register 1 (HID1).”

Power Management Signals for the Core Complex

halt I Asserted by system logic to request the core complex to go into halted state. Negating halt causes the core 
complex to transition back into the full-on state. Once asserted, halt must not be negated until after the core 
complex has entered halted state (otherwise the negation may not be recognized).

stop I Asserted by system logic to request that the core complex go from the halted state into the power-down state. 
Negating this signal causes the core complex to transition back into the halted state. Once asserted, stop must 
not be negated until after the core complex has entered the stopped state (otherwise the negation may not be 
recognized). For power management purposes, stop must be asserted only while the core complex is in halted 
state.

halted O Asserted when the core complex is in the halted state. It is the indication that it is safe for e500 core to go into 
the power-down state.

stopped O Asserted any time the internal functional clocks of the core complex are stopped.

doze O Reflect the state of the corresponding HID0 DOZE, NAP, and SLEEP bits, further qualified with MSR[WE] = 1 
(both must be 1 for the respective output to be asserted). The state of these signals has no effect on the 
power-down state of the core complex. They serve only as indicators to external logic of power management 
requests by software.

nap O

sleep O

Miscellaneous Signals

pm_event I External event. A level-sensitive input to e500 performance monitor to count external events.

pvr[0:31] O Processor version. The processor version information is provided for reading through a system SPR. Static 
signals during functional mode.

svr[0:31] I System version. The system version information is directly readable through an SPR in the core complex. 
Static signals during functional mode.

Table 13-1. Summary of Selected Internal Signals (continued)

Signal I/O Comments, or Meaning when Asserted
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(burst write) operation from the core complex MCSR[DCP_PERR] is set. A front-side L2 does 
not cache the bad data. The system has enough information to prevent memory corruption. 

The address attribute signal, wt, is also asserted during the address tenure for that transaction. By 
setting L1CSR0[CPE], the core complex may be configured to also take a data cache parity error 
exception. 

Parity error handling is described in Section 5.7.2, “Machine Check Interrupt.”

13.3.2 msync Operation and the Bus 

The msync instruction provides a synchronization boundary for instruction execution. Its 
architectural intent is to guarantee that the effects of all instructions prior to the msync instruction 
have occurred before any subsequent instructions begin execution. It may be used, for example, to 
ensure that a control bit has finally been written to its destination control register in the system 
before the next instruction begins execution (such as to clear a pending interrupt). By its nature, it 
also provides an ordering boundary for pre- and post-msync memory transactions.

For the core complex, an msync does not finish execution until all memory transactions caused by 
prior instructions complete entirely in its caches and externally on the bus (address and data 
transactions complete, excluding instruction fetches). No subsequent instructions and associated 
memory transactions are initiated until such completion occurs. Execution of msync also 
generates a SYNC command on the bus (if HID1[ABE] is set through the tt[0:4] signals), which 
also must complete normally (without address retry) for the msync instruction to complete.

13.3.3 mbar Operation and the Bus 

The mbar instruction provides an ordering boundary for memory operations. Its architectural 
intent is to guarantee that memory operations resulting from instructions prior to the mbar 
instruction occur before any subsequent memory operations occur (thereby ensuring an order 
between pre- and post-mbar memory operations). It may be used, for example, to ensure that reads 
and writes to an I/O device or between I/O devices occur in program order, or to ensure that 
memory updates occur before a semaphore is released.

The Book E architecture allows an implementation to support several classes of memory ordering, 
selected by the MO field of the mbar instruction. The core complex supports two classes for 
system flexibility. For MO ≥ 0, the core complex re-interprets and executes mbar as an msync, 
which by its nature guarantees an order between all pre- and post-mbar memory transactions.

For MO = 1, the core complex executes the mbar instruction as a pipelined or flowing ordering 
barrier for potentially higher performance. For this case, an ordering barrier is established by the 
mbar instruction and flows along with the pre- and post-mbar memory transactions through the 
memory hierarchy (L1 cache, bus, and system). On the bus, this ordering barrier is issued as an 
ORDER command (if HID1[ABE] is set through tt[0:4]). 
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The system ensures that the ordering barrier established by the ORDER command between any 
pre- and post-mbar bus transactions (excluding instruction fetches) is honored in any system 
queues and out to the transactions’ destinations. If transaction ordering does not occur naturally or 
is not easily controlled in the system, a simple method could be to not complete the ORDER 
command on the bus (similar to the SYNC command) until all prior bus transactions have 
completed or to withhold bus grant for any further transactions until such completion.

13.4 Address Streaming Mode 
Address streaming mode (selected by setting HID1[ASTE]) provides a way to increase address 
bus throughput on the CCB. Address streaming is useful for systems that must normally extend 
the address tenure by delaying address acknowledge after transfer start, thereby reducing bus 
transactions during a given period, as in the following examples: 

• A system where addresses cannot be decoded or accepted immediately after transfer start 
by the system 

• A snooping system where address acknowledge must be delayed to allow snooping caches 
(including the L1 caches of the core complex in certain clock modes) to process a snoop 
transaction

Note that address streaming, as defined here, differs from address pipelining, which is the issue of 
multiple address tenures independent of whether associated data tenures were started or 
completed.

Address streaming allows one additional bus transaction from the same bus master to start on the 
address bus during a current address tenure. This mode effectively overlaps and staggers two 
address tenures from the same bus master at any given time. It also effectively pipelines address 
tenures with respect to the address acknowledge/retry window.

13.5 L2 Cache Support
The e500 implements specific instructions to selectively lock and unlock lines in its L1 caches or 
in an L2 cache. To facilitate locking and unlocking of a front-side L2 cache (usually located 
directly on the CCB), the core complex provides an address lock attribute (CL) on the bus, which 
can be used in conjunction with the internal transfer type, tt[0:4], encodings to identify which 
addresses to lock or unlock. 

13.5.1 L2 Locking 

When the core complex executes an instruction to lock a line in an L2 cache (dcbtls, dcbtstls, or 
icbtls, with CT = 1), it performs the associated bus operation as a burst read transaction with the 
lock attribute asserted. A front-side L2 cache may recognize this transaction as a direction to 
establish the cache line (if not already valid) and to mark it as locked. Note that this is a complete 
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address/data transaction by the core complex to memory that requires read data to be returned to 
the core complex. The read data, however, is not used or cached internally by the core complex. 
The purpose for the bus transaction is to establish a locked line in the L2 cache and to make data 
available from system memory for the L2 cache to capture.

Cache locking instructions targeted at an L2 cache may also hit to modified data in the L1 data 
cache when they are executed. In this case, the core complex pushes the line from the L1 data 
cache as a non-global burst write operation (similar to a regular L1 castout) and with the lock 
attribute set and the write-through attribute negated, rather than performing a read bus operation 
as described above. A front-side L2 cache may also recognize this transaction as a direction to 
establish and capture the cache line and mark it as locked.

13.5.2 L2 Unlocking

When the core complex executes an instruction (dcblc, icblc) to unlock an L2 cache line, it 
performs the associated bus operation as an address-only transaction with a tt[0:4] encoding of 
CLEAN and with the lock attribute asserted. A front-side L2 cache may recognize this transaction 
as a direction to unlock the specified address from its cache. This transaction is always performed 
as non-global because it is specifically targeted at an L2 cache. 

An L2 cache may also use other bus transactions to cause locks to be cleared, such as bus 
transactions as a result of dcbf (identified on the bus as an address-only FLUSH) or as an L1 push 
due to dcbf.

13.5.3 L1 Overlock

A program can attempt to over-lock the core complex’s L1 data cache by trying to establish a ninth 
locked entry at a cache index that already has all of its 8 ways locked. In this case, the core complex 
performs a reading transaction on the bus to initially bring in the ninth (newest) line and then 
immediately pushes that line out to the bus as a nonglobal burst write with the lock attribute 
asserted, rather than attempting to allocate that line in the L1 data cache. This write operation looks 
identical on the bus as the one described in Section 13.5.1, “L2 Locking,” for hit-to-modified 
cases.

13.6 Reservation Management
The core complex supports standard reservation management through the lwarx/stwcx. 
instruction pair. This method of reservation management relies exclusively on bus snooping to 
detect whether an atomic access to a reservation granule was successful. 

For systems that require the implementation of atomic accesses without a requirement for bus 
snooping, a following option is recommended. A system-defined atomic operation could be 
implemented directly in the memory subsystem and keyed off of a unique bus transaction (such as 
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by tt[0:4] code and/or address decoding). By implementing such an operation directly in the 
memory system, a system may avoid the problems of having to lock multiple bus transactions by 
a processor throughout the system hierarchy, such as is typically done with the traditional LOCK 
pin of other bus protocols. 

An example of a system-defined atomic operation that could be implemented directly in the 
memory system is an atomic set. For this operation, the memory system recognizes a unique read 
transaction on the bus, returns the read data from the specified field in memory, and then 
atomically writes the specified field to all ones. The field in memory might represent a high-true 
semaphore flag to indicate that a resource has been claimed. The atomic-set operation (as well as 
atomic-clear, atomic-increment, and atomic-decrement) is also defined for the RapidIO bus 
protocol. 

The triggering of such an atomic transaction could be done, for instance, by the READ-atomic 
tt[0:4] code for a non-burst read, which occurs exclusively by the core complex for a 
cache-inhibited lwarx, or it could be triggered by simple address decoding or other mechanisms. 
Note that use of cache-inhibited lwarx would allow mixing of regular reads with atomic reads in 
a memory system for robustness; however, because it is not compatible with the usual 
lwarx/stwcx. behavior defined by the PowerPC architecture, such use would have to be carefully 
controlled by the system. 

13.7 Remote Atomic Status Monitoring
For system convenience, the core complex provides a system-defined atomic status bit 
HID1[ATS] that a system may use for remote reservation management. If supported by the system, 
this bit could be monitored by a program internally until an atomic location in the memory system 
has been altered or cleared, thereby eliminating the bus bandwidth typically consumed by spinning 
on the bus waiting for the release of a semaphore as in traditional systems. This bit is automatically 
set whenever the core complex performs a lwarx(CI) transaction on the CCB. The memory system 
can clear this bit by asserting the atomic status clear (ATSC) input to the CCB according to a 
system-defined event. Such an event could be a write to a page of semaphore bits, indicating that 
a semaphore in the system has been released and that each processor may then attempt to claim a 
semaphore it is targeting. 

13.8 Proper Reporting of Bus Faults
Except for one case in the e500v1 (described in the HID1[RFXE] bit description of Section 2.10.2, 
“Hardware Implementation-Dependent Register 1 (HID1)), the following applies for bus faults in 
the e500 core. When a bus fault is detected on a CCB transaction through the assertion of 
core_fault_in (and HID1[RFXE] = 0), the transaction stalls (to protect the register file and to avoid 
executing bad instructions), and does not complete until it receives an interrupt signalled by a 
peripheral block through the assertion of int or cint, for example. This interrupt signalling typically 
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occurs though an interrupt controller that is reporting enabled interrupts from either the peripheral 
block that detected the bus fault or from a watchdog timer. 

Therefore, to ensure forward progress during normal operation, peripheral error-reporting logic 
must be configured to signal an interrupt (such as int or cint) for all possible sources of 
core_fault_in. Otherwise, the core stalls indefinitely on a bus fault, waiting for an interrupt. 

However, during software or firmware development, when peripheral error-reporting may not yet 
be properly configured, the core can be configured (by setting HID1[RFXE]) to generate a 
machine check (or checkstop) on every assertion of core_fault_in. This forces bus faulted 
transactions to complete and allows processing to continue, even though little bus fault-specific 
information is saved that indicates the cause of the machine check. This is the only instance where 
RFXE should be set (except for the case for the e500v1, described in the HID1[RFXE] bit 
description of Section 2.10.2, “Hardware Implementation-Dependent Register 1 (HID1)).

Care must be taken if HID1[RFXE] is set = 1 during debug and some sources of core_fault_in are 
configured to signal an interrupt to the core (through int or cint), because in this case, two 
interrupts (machine check and external) could be reported on a bus fault, but the less-specific 
machine check interrupt enabled by RFXE = 1 (and MSR[ME] = 1) may occur first, giving little 
information about the cause of the fault. 

Therefore, for normal operation, RFXE should always be cleared so that bus faults associated with 
peripheral devices do not generate a machine check interrupt or checkstop, but generate only the 
more useful interrupt provided by the peripheral. Thus, peripheral error reporting for all possible 
causes of core_fault_in should always be enabled for normal operation. 

See Section 11.3.4.5, “Speculative Accesses to Guarded Memory,” for a cautionary statement 
regarding memory areas that are set up as both cacheable and guarded.
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Appendix A
Programming Examples
This appendix gives examples of how memory synchronization instructions can be used to 
emulate various synchronization primitives and to provide more complex forms of 
synchronization. It also describes multiple-precision shifts.

A.1 Synchronization
Examples in this appendix have a common form. After possible initialization, a conditional 
sequence begins with a load and reserve instruction that may be followed by memory accesses and 
computations that include neither a load and reserve nor a store conditional. The sequence ends 
with a store conditional with the same target address as the initial load and reserve. In most of the 
examples, failure of the store conditional causes a branch back to the load and reserve for a 
repeated attempt. On the assumption that contention is low, the conditional branch in the examples 
is optimized for the case in which the store conditional succeeds, by setting the branch-prediction 
bit appropriately. These examples focus on techniques for the correct modification of shared 
storage locations: see note 4 in Section A.1.3.1, “Notes,” for a discussion of how the retry strategy 
can affect performance.

Load and reserve and store conditional instructions depend on the coherence mechanism of the 
system. Stores to a given location are coherent if they are serialized in some order, and no 
processor is able to observe a subset of those stores as occurring in a conflicting order. The 
“Memory and Cache Background” chapter of the EREF provides details about memory access 
ordering.

Each load operation, whether ordinary or load and reserve, returns a value that has a well-defined 
source. The source can be the store or store conditional instruction that wrote the value, an 
operation by some other mechanism that accesses storage (for example, an I/O device), or the 
initial state of storage.

The function of an atomic read/modify/write operation is to read a location and write its next value, 
possibly as a function of its current value, all as a single atomic operation. We assume that 
locations accessed by read/modify/write operations are accessed coherently, so the concept of a 
value being the next in the sequence of values for a location is well defined. The conditional 
sequence, as defined above, provides the effect of an atomic read/modify/write operation, but not 
with a single atomic instruction. Let addr be the location that is the common target of the load and 
reserve and store conditional instructions. Then the guarantee the architecture makes for the 
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successful execution of the conditional sequence is that no store into addr by another processor or 
mechanism has intervened between the source of the load and reserve and the store conditional.

For each of these examples, it is assumed that a similar sequence of instructions is used by all 
processes requiring synchronization on the accessed data.

NOTE
Because memory synchronization instructions have implementation 
dependencies (for example, the granularity at which reservations are 
managed), they must be used with care. The operating system should 
provide system library programs that use these instructions to 
implement the high-level synchronization functions (such as test and 
set or compare and swap) needed by application programs. 
Application programs should use these library programs, rather than 
use storage synchronization instructions directly.

A.1.1 Synchronization Primitives

The following examples show how the lwarx and stwcx. instructions can be used to implement
various synchronization primitives.

The sequences used to emulate the various primitives consist primarily of a loop using lwarx and
stwcx.. No additional synchronization is necessary, because the stwcx. will fail, clearing EQ, if the
word loaded by lwarx has changed before the stwcx. is executed: see Section 3.3.1.7, “Atomic
Update Primitives Using lwarx and stwcx.,” for details.

A.1.1.1 Fetch and No-op

The fetch and no-op primitive atomically loads the current value in a word in storage.

In this example, it is assumed that the address of the word to be loaded is in GPR3 and the data
loaded is returned in GPR4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bc 4,2,loop #loop if lost reservation

If the stwcx. succeeds, it stores to the target location the same value that was loaded by the
preceding lwarx. While the store is redundant with respect to the value in the location, its success
ensures that the value loaded by the lwarx was the current value, that is, that the source of the value
loaded by the lwarx was the last store to the location that preceded the stwcx. in the coherence
order for the location.
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A.1.1.2 Fetch and Store

The fetch and store primitive atomically loads and replaces a word in storage. In this example it is
assumed that the address of the word to be loaded and replaced is in GPR3, the new value is in
GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

A.1.1.3 Fetch and Add

The fetch and add primitive atomically increments a word in storage. In this example it is assumed
that the address of the word to be incremented is in GPR3, the increment is in GPR4, and the old
value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

A.1.1.4 Fetch and AND

The Fetch and AND primitive atomically ANDs a value into a word in storage.

In this example it is assumed that the address of the word to be ANDed is in GPR3, the value to
AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word in
memory by changing the and to the desired Boolean instruction (or, xor, etc.).
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A.1.1.5 Test and Set

This version of the test and set primitive atomically loads a word from memory, sets the word in
memory to a nonzero value if the value loaded is zero, and sets the EQ bit of CR Field 0 to indicate
whether the value loaded is zero.

In this example it is assumed that the address of the word to be tested is in GPR3, the new value
(nonzero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bc 4,2,done # not equal to 0
stwcx. r4,0,r3 #try to store non-0
bc 4,2,loop #loop if lost reservation

done:

A.1.1.6 Compare and Swap

The compare and swap primitive atomically compares a value in a register with a word in memory,
if they are equal stores the value from a second register into the word in memory, if they are
unequal loads the word from memory into the first register, and sets CR0[EQ] to indicate the result
of the comparison.

In this example it is assumed that the address of the word to be tested is in GPR3, the comparand
is in GPR4 and the old value is returned there, and the new value is in GPR5.

loop: lwarx r6,0,r3   #load and reserve
cmpw r4,r6     #1st 2 operands equal?
bc 4,2,exit  #skip if not
stwcx. r5,0,r3   #store new value if still reserved
bc     4,2,loop  #loop if lost reservation

exit: or     r4,r6,r6  #return value from memory

A.1.1.7 Notes
1. The semantics given for compare and swap above are based on those of the IBM 

System/370 compare and swap instruction. Other architectures may define a compare and 
swap instruction differently.

2. Compare and swap is shown primarily for pedagogical reasons. It is useful on machines 
that lack the better synchronization facilities provided by lwarx and stwcx.. A major 
weakness of a System/370-style compare and swap instruction is that, although the 
instruction itself is atomic, it checks only that the old and current values of the word being 
tested are equal, with the result that programs that use such a compare and swap to control 
a shared resource can err if the word has been modified and the old value subsequently 
restored. The sequence shown above has the same weakness.
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3. In some applications the second bc and/or the or can be omitted. The bc is needed only if 
the application requires that if CR0[EQ] on exit indicates not equal then GPR4 and GPR6 
are not equal. The or is needed only if the application requires that if the comparands are 
not equal then the word from memory is loaded into the register with which it was 
compared (rather than into a third register). If any of these instructions is omitted, the 
resulting compare and swap does not obey System/370 semantics.

A.1.2 Lock Acquisition and Release

This example gives an algorithm for locking that demonstrates the use of synchronization with an
atomic read/modify/write operation. A shared memory location, the address of which is an
argument of the lock and unlock procedures given by GPR3, is used as a lock, to control access to
some shared resource such as a shared data structure. The lock is open when its value is 0 and
closed (locked) when its value is 1. Before accessing the shared resource the program executes the
lock procedure, which sets the lock by changing its value from 0 to 1. To do this, the lock
procedure calls test_and_set, which executes the code sequence shown in the test and set example
of Section A.1.1, “Synchronization Primitives,” thereby atomically loading the old value of the
lock, writing to the lock the new value (1) given in GPR4, returning the old value in GPR5 (not
used below), and setting the EQ bit of CR Field 0 according to whether the value loaded is 0. The
lock procedure repeats the test_and_set until it succeeds in changing the value of the lock from 0
to 1.

Because the shared resource must not be accessed until the lock has been set, the lock procedure
contains an isync after the bc that checks for the success of test_and_set. The isync delays all
subsequent instructions until all preceding instructions have completed.

lock: mfspr r6,LR #save Link Register
addi r4,r0,1 #obtain lock:

loop: bl test_and_set # test-and-set
bc 4,2,loop # retry till old = 0

# Delay subsequent instructions till prior instructions finish
isync
mtspr LR,r6 #restore Link Register
blr #return

The unlock procedure stores a 0 to the lock location. Most applications that use locking require,
for correctness, that if the access to the shared resource includes stores, the program must execute
an msync before releasing the lock. The msync ensures that the program’s modifications are
performed with respect to other processors before the store that releases the lock is performed with
respect to those processors. In this example, the unlock procedure begins with an msync for this
purpose.

unlock: msync #order prior stores
addi r1,r0,0 #before lock release
stw  r1,0(r3) #store 0 to lock location
blr #return
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A.1.3 List Insertion

This example shows how lwarx and stwcx. can be used to implement simple insertion into a singly
linked list. (Complicated list insertion, in which multiple values must be changed atomically, or in
which the correct order of insertion depends on the contents of the elements, cannot be
implemented in the manner shown below and requires a more complicated strategy such as using
locks.)

The next element pointer from the list element after which the new element is to be inserted, here
called the parent element, is stored into the new element, so that the new element points to the next
element in the list: this store is performed unconditionally. Then the address of the new element is
conditionally stored into the parent element, thereby adding the new element to the list.

In this example it is assumed that the address of the parent element is in GPR3, the address of the
new element is in GPR4, and the next element pointer is at offset 0 from the start of the element.
It is also assumed that the next element pointer of each list element is in a reservation granule
separate from that of the next element pointer of all other list elements. See Section 3.3.1.7,
“Atomic Update Primitives Using lwarx and stwcx.”

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
msync #order stw before stwcx.(can omit if not MP)
stwcx. r4,0,r3 #add new element to list
bc 4,2,loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the same reservation
granule then, in a multiprocessor, livelock can occur. (Livelock is a state in which processors
interact in a way such that no processor makes progress.)

If it is not possible to allocate list elements such that each element's next element pointer is in a
different reservation granule, livelock can be avoided by using the following, more complicated,
sequence.

lwz r2,0(r3) #get next pointer
loop1: or r5,r2,r2 #keep a copy

stw r2,0(r4) #store in new element
msync #order stw before stwcx.

loop2: lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bc 4,2,loop1 # else progressed)
stwcx. r4,0,r3 #add new element to list
bc 4,2,loop #loop if failed
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A.1.3.1 Notes
1. In general, lwarx and stwcx. should be paired, with the same effective address used for 

both. The only exception is that an unpaired stwcx. to any (scratch) effective address can 
be used to clear any reservation held by the processor.

2. It is acceptable to execute a lwarx for which no stwcx. is executed. For example, this 
occurs in the test and set sequence shown above if the value loaded is not zero.

3. To increase the likelihood that forward progress is made, it is important that looping on 
lwarx/stwcx. pairs be minimized. For example, in the sequence shown above for test and 
set, this is achieved by testing the old value before attempting the store: were the order 
reversed, more stwcx. instructions might be executed, and reservations might more often 
be lost between the lwarx and the stwcx..

4. The manner in which lwarx and stwcx. are communicated to other processors and 
mechanisms, and between levels of the memory subsystem within a given processor is 
implementation dependent (see Section 3.3.1.7, “Atomic Update Primitives Using lwarx 
and stwcx.”). In some implementations performance may be improved by minimizing 
looping on a lwarx instruction that fails to return a desired value. For example, in the test 
and set example shown above, if the programmer wishes to stay in the loop until the word 
loaded is zero, he could change the bne- $+12 to bne- loop. However, in some 
implementations better performance may be obtained by using an ordinary load 
instruction to do the initial checking of the value, as follows.

loop: lwz r5,0(r3) #load the word
cmpi cr0,0,r5,0 #loop back if word 
bc 4,2,loop # not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpi cr0,0,r5,0 # (likely to succeed)
bc 4,2,loop
stwcx. r4,0,r3 #try to store non-0
bc 4,2,loop #loop if lost reservation

5. In a multiprocessor, livelock is possible if a loop containing a lwarx/stwcx. pair also 
contains an ordinary store instruction for which any byte of the affected memory area is in 
the reservation granule: see Section 3.3.1.7, “Atomic Update Primitives Using lwarx and 
stwcx.” For example, the first code sequence shown in Section A.1.3, “List Insertion,” can 
cause livelock if two list elements have next element pointers in the same reservation 
granule.
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Appendix B
Guidelines for 32-Bit Book E
This appendix provides guidelines used by 32-bit Book E implementations. Likewise, a set of 
guidelines is also outlined for software developers. Application software written to these 
guidelines can be labelled 32-bit Book E applications and can expect to execute properly on all 
implementations of Book E, both 32-bit and 64-bit implementations.

32-bit Book E implementations execute applications that adhere to the software guidelines for 
32-bit Book E software outlined in this appendix and are not expected to properly execute 64-bit 
Book E applications or any applications not adhering to these guidelines (that is, 64-bit Book E 
applications).

B.1 64-Bit–Specific Book E Instructions
A subset of Book E instructions are restricted to 64-bit Book E processing. A 32-bit Book E 
implementation need not implement any of the following instructions. Likewise, neither should 
32-bit Book E applications use any of these instructions. All other Book E instructions are either 
supported directly by the implementation or sufficient infrastructure is provided to enable software 
emulation of the instructions.

The 64-bit Book E instructions are as follows:

• 64-bit integer arithmetic, compare, shift and rotate instructions

— adde64[o], addme64[o], addze64[o] 

— subfe64[o], subfme64[o], subfze64[o] 

— mulhd, mulhdu, mulld[o], divd, divdu, extsw 

— cmp (L=1), cmpi (L=1), cmpl (L=1), cmpli (L=1) 

— rldcl, rldcr, rldic, rldicl, rldicr, rldimi, sld, srad, sradi, srd 

— cntlzd, td, tdi 

• 64-bit extended addressing branch instructions—bcctre[l], bce[l][a], bclre[l], be[l][a]

• 64-bit extended addressing cache management instructions—dcbae, dcbfe, dcbie, dcbste, 
dcbte, dcbtste, dcbze, icbie, icbte 
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• 64-bit extended addressing load instructions—lbze, lbzue, lbzxe, lbzxue, ldarxe, lde, 
ldue, ldxe, ldxue, lfde, lfdue, lfdxe, lfdxue, lfse, lfsue, lfsxe, lfsxue, lhae, lhaue, lhaxe, 
lhaxue, lhbrxe, lhze, lhzue, lhzxe, lhzxue, lwarxe, lwbrxe, lwze, lwzue, lwzxe, lwzxue 

• 64-bit extended addressing store instructions—stbe, stbue, stbxe, stbxue, stdcxe., stde, 
stdue, stdxe, stdxue, stfde, stfdue, stfdxe, stfdxue, stfiwxe, stfse, stfsue, stfsxe, stfsxue, 
sthbrxe, sthe, sthue, sthxe, sthxue, stwbrxe, stwcxe., stwe, stwue, stwxe, stwxue 

B.2 Registers on 32-Bit Book E Implementations
Book E defines 32- and 64-bit registers. All 32-bit registers are supported as defined in Book E. 
However, only bits 32–63 of Book E’s 64-bit registers are required to be implemented in hardware 
in 32-bit Book E implementation. Such 64-bit registers include LR, CTR, 32 GPRs, SRR0, and 
CSRR0. Book E makes no restrictions regarding implementing a subset of the 64-bit 
floating-point architecture.

Likewise, other than floating-point instructions, all instructions defined to return a 64-bit result 
return only bits 32–63 of the result on a 32-bit Book E implementation.

B.3 Addressing on 32-Bit Book E Implementations
Only bits 32–63 of the 64-bit Book E instruction and data memory effective addresses need to be 
calculated and presented to main memory. Given that only branch and data memory access 
instructions not included in Section B.1, “64-Bit–Specific Book E Instructions,” are defined to 
prepend 32 zeros to bits 32–63 of the effective address computation, a 32-bit implementation can 
bypass the prepending of the 32 zeros when implementing these instructions. For branch to LR 
and branch to CR instructions, given that LR and CTR are implemented as 32-bit registers, 
concatenating only 2 zeros to the right of bits 32–61 of these registers is necessary to form the 
32-bit branch target address.

The simplest implementation of next sequential instruction address computation suggests 
allowing effective address computations to wrap from 0xFFFF_FFFC to 0x0000_0000. This 
wrapping is required of PowerPC implementations. For 32-bit Book E applications, there appears 
little if any benefit to allowing this wrapping behavior. Book E specifies that the situation where 
the computation of the next sequential instruction address after address 0xFFFF_FFFC is 
undefined (note that the next sequential instruction address after address 0xFFFF_FFFC on a 
64-bit Book E implementation is 0x0000_0001_0000_0000).

B.4 TLB Fields on 32-bit Book E Implementations
32-bit Book E implementations should support bits 32–53 of the effective page number (EPN) 
field in the TLB. This size provides support for a 32-bit effective address, which PowerPC ABIs 
may have come to expect to be available. 32-bit Book E implementations may support greater than 
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32-bit real addresses by supporting more than bits 32–53 of the real page number (RPN) field in 
the TLB.

B.5 32-Bit Book E Software Guidelines
This section describes instruction selection and addressing of 32-bit software. 

B.5.1 32-Bit Instruction Selection

Any Book E software that uses any of the instructions listed in Section B.1, “64-Bit–Specific Book 
E Instructions,” is considered 64-bit Book E software, and correct execution cannot be guaranteed 
on 32-bit Book E implementations. Generally speaking, 32-bit software should avoid instructions 
that depend on any particular setting of bits 0–31 of any 64-bit application-accessible system 
register, including GPRs, for producing the correct 32-bit results. Context switching is not required 
to preserve the upper 32 bits of application-accessible 64-bit system registers and insertion of 
arbitrary settings of those upper 32 bits at arbitrary times during the execution of the 32-bit 
application must not affect the final result.

B.5.2 32-Bit Addressing

Book E provides a complete set of data memory access instructions that perform a modulo 232 on 
the computed effective address and then prepend 32 zeros to produce the full 64-bit address. 
Book E also provides a complete set of branch instructions that perform a modulo 232 on the 
computed branch target effective address and then prepend 32 zeros to produce the full 64-bit 
branch target address. On a 32-bit Book E implementation, these instructions are executed as 
defined, but without prepending the 32 zeros (only the low-order 32 bits of the address are 
calculated). On a 64-bit implementation, executing these instructions as defined provides the 
effect of restricting the application to lowest 32-bit address space.

However, there is one exception. Next sequential instruction address computations (not a taken 
branch) are not defined for 32-bit Book E applications when the current instruction address is 
0xFFFF_FFFC. On a 32-bit Book E implementation, the instruction address could simply wrap to 
0x0000_0000, providing the same effect that is required in the PowerPC Architecture. However, 
when the 32-bit Book E application is executed on a 64-bit Book E implementation, the next 
sequential instruction address calculated will be 0x0000_0001_0000_0000 and not 
0x0000_0000_0000_0000. To avoid this problem the 32-bit Book E application must either avoid 
this situation by not allowing code to span this address boundary, or requiring a branch absolute 
to address 0 be placed at address 0xFFFF_FFFC to emulate the wrap. Either of these approaches 
allows the application to execute on 32-bit and 64-bit Book E implementations.
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Appendix C
Simplified Mnemonics for PowerPC 

Instructions
This chapter describes simplified mnemonics, which are provided for easier coding of assembly 
language programs. Simplified mnemonics are defined for the most frequently used forms of 
branch conditional, compare, trap, rotate and shift, and certain other instructions defined by the 
PowerPC™ architecture and by implementations of and extensions to the PowerPC architecture. 

Most of this information is also provided in the appendixes of reference manuals and the 
Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture 
(referred to as the Programming Environment Manual). However, Section C.11, “Comprehensive 
List of Simplified Mnemonics,” provides an alphabetical listing of simplified mnemonics that are 
used by a variety of processors. Some assemblers may define additional simplified mnemonics not 
included here. The simplified mnemonics listed here should be supported by all compilers. 

C.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to program using 
more intuitive mnemonics and symbols than the instructions and syntax defined by the instruction 
set architecture. For example, to code the conditional call “branch to an absolute target if CR4 
specifies a greater than condition, setting the LR without simplified mnemonics, the programmer 
would write the branch conditional instruction, bc 12,17,target. The simplified mnemonic, branch 
if greater than, bgt cr4,target, incorporates the conditions. Not only is it easier to remember the 
symbols than the numbers when programming, it is also easier to interpret simplified mnemonics 
when reading existing code. 

Although the original PowerPC architecture documents include a set of simplified mnemonics, 
these are not a formal part of the architecture, but rather a recommendation for assemblers that 
support the instruction set. 

Many simplified mnemonics have been added to those originally included in the architecture 
documentation. Some assemblers created their own, and others have been added to support 
extensions to the instruction set (for example, AltiVec instructions and Book E auxiliary 
processing units (APUs)). Simplified mnemonics have been added for new architecturally defined 
and new implementation-specific special-purpose registers (SPRs). These simplified mnemonics 
are described only in a very general way. 
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C.2 Subtract Simplified Mnemonics 
This section describes simplified mnemonics for subtract instructions.

C.2.1 Subtract Immediate

There is no subtract immediate instruction, however, its effect is achieved by negating the 
immediate operand of an Add Immediate instruction, addi. Simplified mnemonics include this 
negation, making the intent of the computation more clear. These are listed in Table C-1.

C.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The simplified 
mnemonics in Table C-2 use the more common order in which the third operand is subtracted from 
the second. 

C.3 Rotate and Shift Simplified Mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents, but 
can be difficult to understand. Simplified mnemonics are provided for the following operations:

• Extract—Select a field of n bits starting at bit position b in the source register; left or right 
justify this field in the target register; clear all other bits of the target register.

• Insert—Select a left- or right-justified field of n bits in the source register; insert this field 
starting at bit position b of the target register; leave other bits of the target register 
unchanged.

• Rotate—Rotate the contents of a register right or left n bits without masking.

Table C-1. Subtract Immediate Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic

subi rD,rA,value addi rD,rA,–value

subis rD,rA,value addis rD,rA,–value

subic rD,rA,value addic rD,rA,–value

subic. rD,rA,value addic. rD,rA,–value

Table C-2. Subtract Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic 1

1 rD,rB,rA is not the standard order for the operands. The order of rB and rA is 
reversed to show the equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA
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• Shift—Shift the contents of a register right or left n bits, clearing vacated bits (logical shift).

• Clear—Clear the leftmost or rightmost n bits of a register.

• Clear left and shift left—Clear the leftmost b bits of a register, then shift the register left by 
n bits. This operation can be used to scale a (known non-negative) array index by the width 
of an element. 

C.3.1 Operations on Words

The simplified mnemonics in Table C-3 can be coded with a dot (.) suffix to cause the Rc bit to be 
set in the underlying instruction.

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
extrwi rA,rS,1,0 equivalent to rlwinm rA,rS,1,31,31

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrwi rB,rA,1,0 equivalent to rlwimi rB,rA,31,0,0

3. Shift the contents of rA left 8 bits.
slwi rA,rA,8 equivalent to rlwinm rA,rA,8,0,23

4. Clear the high-order 16 bits of rS and place the result into rA.
clrlwi rA,rS,16 equivalent to rlwinm rA,rS,0,16,31

Table C-3. Word Rotate and Shift Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Extract and left justify word immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify word immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left word immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left word immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right word immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate word left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left word immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right word immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left word immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right word immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left word immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n
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C.4 Branch Instruction Simplified Mnemonics 
Branch conditional instructions can be coded with the operations, a condition to be tested, and a 
prediction, as part of the instruction mnemonic rather than as numeric operands (the BO and BI 
operands). Table C-4 shows the four general types of branch instructions. Simplified mnemonics 
are defined only for branch instructions that include BO and BI operands; there is no need to 
simplify unconditional branch mnemonics. 

The BO and BI operands correspond to two fields in the instruction opcode, as Figure C-1 shows 
for Branch Conditional (bc, bca, bcl, and bcla) instructions. 

Figure C-1. Branch Conditional (bc) Instruction Format

The BO operand specifies branch operations that involve decrementing CTR. It is also used to 
determine whether testing a CR bit causes a branch to occur if the condition is true or false. 

The BI operand identifies a CR bit to test (whether a comparison is less than or greater than, for 
example). The simplified mnemonics avoid the need to memorize the numerical values for BO and 
BI. 

For example, bc 16,0,target is a conditional branch that, as a BO value of 16 (0b1_0000) indicates, 
decrements the CTR, then branches if the decremented CTR is not zero. The operation specified 
by BO is abbreviated as d (for decrement) and nz (for not zero), which replace the c in the original 
mnemonic; so the simplified mnemonic for bc becomes bdnz. The branch does not depend on a 
condition in the CR, so BI can be eliminated, reducing the expression to bdnz target. 

In addition to CTR operations, the BO operand provides an optional prediction bit and a true or 
false indicator can be added. For example, if the previous instruction should branch only on an 
equal condition in CR0, the instruction becomes bc 8,2,target. To incorporate a true condition, the 
BO value becomes 8 (as shown in Table C-6); the CR0 equal field is indicated by a BI value of 2 
(as shown in Table C-7). Incorporating the branch-if-true condition adds a ‘t’ to the simplified 
mnemonic, bdnzt. The equal condition that is specified by a BI value of 2 (indicating the EQ bit 

Table C-4. Branch Instructions 

Instruction Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 

0 5 6 10 11 15 16 29 30 31

0 0 1 0 0 0 BO BI BD AA LK
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in CR0) is replaced by the eq symbol. Using the simplified mnemonic and the eq operand, the 
expression becomes bdnzt eq,target. 

This example tests CR0[EQ]; however, to test the equal condition in CR5 (CR bit 22), the 
expression becomes bc 8,22,target. The BI operand of 22 indicates CR[22] (CR5[2], or BI field 
0b10110), as shown in Table C-7. This can be expressed as the simplified mnemonic. 
bdnzt 4 * cr5 + eq,target. 

The notation, 4 * cr5 + eq may at first seem awkward, but it eliminates computing the value of the 
CR bit. It can be seen that (4 * 5) + 2 = 22. Note that although 32-bit registers in Book E processors 
are numbered 32–63, only values 0–31 are valid (or possible) for BI operands. As shown in 
Table C-8, a Book E–compliant processor automatically translates the bit values; specifying a BI 
value of 22 selects bit 54 on a Book E processor, or CR5[2] = CR5[EQ]. 

C.4.1 Key Facts about Simplified Branch Mnemonics

The following key points are helpful in understanding how to use simplified branch mnemonics:

• All simplified branch mnemonics eliminate the BO operand, so if any operand is present in 
a branch simplified mnemonic, it is the BI operand (or a reduced form of it). 

• If the CR is not involved in the branch, the BI operand can be deleted

• If the CR is involved in the branch, the BI operand can be treated in the following ways:

— It can be specified as a numeric value, just as it is in the architecturally defined 
instruction, or it can be indicated with an easier to remember formula, 4 * crn + [test bit 
symbol], where n indicates the CR field number.

— The condition of the test bit (eq, lt, gt, and so) can be incorporated into the mnemonic, 
leaving the need for an operand that defines only the CR field. 

– If the test bit is in CR0, no operand is needed.

– If the test bit is in CR1–CR7, the BI operand can be replaced with a crS operand (that 
is, cr1, cr2, cr3, and so forth. 

C.4.2 Eliminating the BO Operand

The 5-bit BO field, shown in Figure C-2, encodes the following operations in conditional branch 
instructions:

• Decrement count register (CTR) 

— And test if result is equal to zero

— And test if result is not equal to zero
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• Test condition register (CR)

— Test condition true

— Test condition false

• Branch prediction (taken, fall through). If the prediction bit, y, is needed, it is signified by 
appending a plus or minus sign as described in Section C.4.3, “Incorporating the BO 
Branch Prediction.”

BO bits can be interpreted individually as described in Table C-5.

Thus, a BO encoding of 10100 (decimal 20) means ignore the CR bit comparison and do not 
decrement the CTR—in other words, branch unconditionally. Encodings for the BO operand are 
shown in Table C-6. A z bit indicates that the bit is ignored. However, these bits should be cleared, 
as they may be assigned a meaning in a future version of the architecture. 

As shown in Table C-6, the ‘c’ in the standard mnemonic is replaced with the operations otherwise 
specified in the BO field, (d for decrement, z for zero, nz for non-zero, t for true, and f for false). 

0 1 2 3 4

Figure C-2. BO Field (Bits 6–10 of the Instruction Encoding) 

Table C-5. BO Bit Encodings

BO Bit Description

0 If set, ignore the CR bit comparison.

1 If set, the CR bit comparison is against true, if not set the CR bit comparison is against false

2 If set, the CTR is not decremented. 

3 If BO[2] is set, this bit determines whether the CTR comparison is for equal to zero or not equal to zero.

4 The y bit. If set, reverse the static prediction. Use of the this bit is optional and independent from the 
interpretation of the rest of the BO operand. Because simplified branch mnemonics eliminate the BO operand, 
this bit is programmed by adding a plus or minus sign to the simplified mnemonic, as described in 
Section C.4.3, “Incorporating the BO Branch Prediction.”

Table C-6. BO Operand Encodings

BO Field
Value 1

(Decimal)
Description Symbol

0000y 0 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is FALSE. dnzf

0001y 2 Decrement the CTR, then branch if the decremented CTR = 0; condition is FALSE. dzf

001zy 4 Branch if the condition is FALSE. 2 Note that ‘false’ and ‘four’ both start with ‘f’. f

0100y 8 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is TRUE. dnzt 

0101y 10 Decrement the CTR, then branch if the decremented CTR = 0; condition is TRUE. dzt 
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C.4.3 Incorporating the BO Branch Prediction 

As shown in Table C-6, the low-order bit (y bit) of the BO field provides a hint about whether the 
branch is likely to be taken (static branch prediction). Assemblers should clear this bit unless 
otherwise directed. This default action indicates the following:

• A branch conditional with a negative displacement field is predicted to be taken.

• A branch conditional with a non-negative displacement field is predicted not to be taken 
(fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall 
through).

If the likely outcome (branch or fall through) of a given branch conditional instruction is known, 
a suffix can be added to the mnemonic that tells the assembler how to set the y bit. That is, ‘+’ 
indicates that the branch is to be taken and ‘–’ indicates that the branch is not to be taken. This 
suffix can be added to any branch conditional mnemonic, either standard or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on whether the 
displacement field is negative or non-negative. For negative displacement fields, coding the suffix 
‘+’ causes the bit to be cleared, and coding the suffix ‘–’ causes the bit to be set. For non-negative 
displacement fields, coding the suffix ‘+’ causes the bit to be set, and coding the suffix ‘–’ causes 
the bit to be cleared.

For branches to an address in the LR or CTR (bclr[l] or bcctr[l]), coding the suffix ‘+’ causes the 
y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

011z 3y 12 Branch if the condition is TRUE. 2 Note that ‘true’ and ‘twelve’ both start with ‘t’. t

1z00y  4 16 Decrement the CTR, then branch if the decremented CTR ≠ 0. dnz 5

1z01y 4 18 Decrement the CTR, then branch if the decremented CTR = 0. dz 5

1z1zz 4 20 Branch always. —

1 Assumes y = z = 0. Section C.4.3, “Incorporating the BO Branch Prediction,” describes how to use simplified 
mnemonics to program the y bit for static prediction. 

2 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR 
value and can be alternately coded by incorporating the condition specified by the BI field, as described in 
Section C.4.6, “Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

3  A z bit indicates a bit that is ignored. However, these bits should be cleared, as they may be assigned a meaning in 
a future version of the architecture.

4 Simplified mnemonics for branch instructions that do not test CR bits (BO = 16, 18, and 20) should specify only a 
target. Otherwise a programming error may occur. 

5 Notice that these instructions do not use the branch if condition true or false operations. For that reason, simplified 
mnemonics for these should not specify a BI operand. 

Table C-6. BO Operand Encodings (continued)

BO Field
Value 1

(Decimal)
Description Symbol
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Examples of branch prediction follow:

1. Branch if CR0 reflects less than condition, specifying that the branch should be predicted 
as taken.

blt+ target 

2. Same as (1), but target address is in the LR and the branch should be predicted as not 
taken.

bltlr–

C.4.4 The BI Operand—CR Bit and Field Representations

With standard branch mnemonics, the BI operand is used when it is necessary to test a CR bit, as 
shown in the example in Section C.4, “Branch Instruction Simplified Mnemonics,” 

With simplified mnemonics, the BI operand is handled differently depending on whether the 
simplified mnemonic incorporates a CR condition to test, as follows:

• Some branch simplified mnemonics incorporate only the BO operand. These simplified 
mnemonics can use the architecturally defined BI operand to specify the CR bit, as follows:

— The BI operand can be presented exactly as it is with standard mnemonics—as a 
decimal number, 0–31.

— Symbols can be used to replace the decimal operand, as shown in the example in 
Section C.4, “Branch Instruction Simplified Mnemonics,” where bdnzt 4 * cr5 + 
eq,target could be used instead of bdnzt 22,target. This is described in 
Section C.4.4.1.1, “Specifying a CR Bit.”

The simplified mnemonics in Section C.4.5, “Simplified Mnemonics that Incorporate the 
BO Operand,” use one of these two methods to specify a CR bit. 

• Additional simplified mnemonics are specified that incorporate CR conditions that would 
otherwise be specified by the BI operand, so the BI operand is replaced by the crS operand 
to specify the CR field, CR0–CR7. See Section C.4.4.1, “BI Operand Instruction 
Encoding.” 

These mnemonics are described in Section C.4.6, “Simplified Mnemonics that Incorporate 
CR Conditions (Eliminates BO and Replaces BI with crS).”

C.4.4.1 BI Operand Instruction Encoding

The entire 5-bit BI field, shown in Figure C-3, represents the bit number for the CR bit to be tested. 
For standard branch mnemonics and for branch simplified mnemonics that do not incorporate a 
CR condition, the BI operand provides all 5 bits. 

For simplified branch mnemonics described in Section C.4.6, “Simplified Mnemonics that 
Incorporate CR Conditions (Eliminates BO and Replaces BI with crS),” the BI operand is 
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replaced by a crS operand. To understand this, it is useful to view the BI operand as comprised of 
two parts. As Figure C-3 shows, BI[0–2] indicates the CR field and BI[3–4] represents the 
condition to test.

Figure C-3. BI Field (Bits 11–14 of the Instruction Encoding)

Integer record-form instructions update CR0, as described in Table C-7. 

C.4.4.1.1 Specifying a CR Bit

Note that the AIM version the PowerPC architecture numbers CR bits 0–31 and Book E numbers 
them 32–63. However, no adjustment is necessary to the code; in Book E devices, 32 is 
automatically added to the BI value, as shown in Table C-7 and Table C-8.

Some simplified mnemonics incorporate only the BO field (as described Section C.4.2, 
“Eliminating the BO Operand”). If one of these simplified mnemonics is used and the CR must be 
accessed, the BI operand can be specified either as a numeric value or by using the symbols in 
Table C-8. 

Compare word instructions (described in Section C.5, “Compare Word Simplified Mnemonics”), 
move to CR instructions, and others can also modify CR fields, so CR0 and CR1 may hold values 
that do not adhere to the meanings described in Table C-7. CR logical instructions, described in 
Section C.6, “Condition Register Logical Simplified Mnemonics,” can update individual CR bits. 

Table C-7. CR0 and CR1 Fields as Updated by Integer Instructions

 CRn Bit
CR Bits BI

Description
AIM Book E 0–2 3–4

CR0[0] 0 32 000 00 Negative (LT)—Set when the result is negative.

CR0[1] 1 33 000 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 2 34 000 10 Zero (EQ)—Set when the result is zero.

CR0[3] 3 35 000 11 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.

0 1 2 3 4

BI[0–2] specifies CR field, CR0–CR7. BI[3–4] specifies one of the 
4 bits in a CR field. (LT, GT, EQ,SO) 

Simplified mnemonics based on CR
conditions but not CTR values—BO = 12

(branch if true) and BO = 4 branch if false)

Specified by a separate,
reduced BI operand (crS)

Incorporated into the simplified 
mnemonic.

Standard branch mnemonics and
simplified mnemonics based on CTR

values

The BI operand specifies the entire 5-bit field. If CR0 is used, the bit can 
be identified by LT, GT, EQ, or SO. If CR1–CR7 are used, the form
4 * crS + LT|GT|EQ|SO can be used. 

BI Opcode Field
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To provide simplified mnemonics for every possible combination of BO and BI (that is, including 
bits that identified the CR field) would require 210 = 1024 mnemonics, most of which would be 
only marginally useful. The abbreviated set in Section C.4.5, “Simplified Mnemonics that 
Incorporate the BO Operand,” covers useful cases. Unusual cases can be coded using a standard 
branch conditional syntax.

C.4.4.1.2 The crS Operand 

The crS symbols are shown in Table C-9. Note that either the symbol or the operand value can be 
used in the syntax used with the simplified mnemonic. 

Table C-8. BI Operand Settings for CR Fields for Branch Comparisons

 CRn 
Bit

Bit Expression 

CR Bits BI

DescriptionAIM (BI
Operand) Book E 0–2 3–4

CRn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0
4
8

12
16
20
24
28

32
36
40
44
48
52
56
60

000
001
010
011
100
101
110
111

00 Less than (LT).
For integer compare instructions: 
rA < SIMM or rB (signed comparison) or rA < 
UIMM or rB (unsigned comparison). 

CRn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1
5
9

13
17
21
25
29

33
37
41
45
49
53
57
61

000
001
010
011
100
101
110
111

01 Greater than (GT).
For integer compare instructions: 
rA > SIMM or rB (signed comparison) or rA > 
UIMM or rB (unsigned comparison).

CRn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq 
4 * cr3+ eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2
6

10
14
18
22
26
30

34
38
42
46
50
54
58
62

000
001
010
011
100
101
110
111

10 Equal (EQ).
For integer compare instructions: rA = SIMM, 
UIMM, or rB. 

CRn[3] 4 * cr0 + so/un (or so/un)
4 * cr1 + so/un
4 * cr2 + so/un
4 * cr3 + so/un
4 * cr4 + so/un
4 * cr5 + so/un
4 * cr6 + so/un
4 * cr7 + so/un

3
7

11
15
19
23
27
31

35
39
43
47
51
55
59
63

000
001
010
011
100
101
110
111

11 Summary overflow (SO).
For integer compare instructions, this is a copy of 
XER[SO] at instruction completion. 
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To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added 
to a bit-number-within-CR-field symbol can be used, (for example, cr0 * 4 + eq). 

C.4.5 Simplified Mnemonics that Incorporate the BO Operand

The mnemonics in Table C-10 allow common BO operand encodings to be specified as part of the 
mnemonic, along with the absolute address (AA) and set link register bits (LK). There are no 
simplified mnemonics for relative and absolute unconditional branches. For these, the basic 
mnemonics b, ba, bl, and bla are used. 

Table C-9. CR Field Identification Symbols

Symbol BI[0–2] CR Bits

cr0 (default, can be eliminated from syntax) 000 32–35

cr1 001 36–39

cr2 010 40–43

cr3 011 44–47

cr4 100 48–51

cr5 101 52–55

cr6 110 56–59

cr7 111 60–63

Table C-10. Branch Simplified Mnemonics

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch unconditionally  1

1 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a 
programming error may occur. 

— — blr bctr — — blrl bctrl 

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if 
CTR ≠ 0 1

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR, branch if 
CTR = 0 1

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR, branch if 
CTR = 0 and condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if 
CTR = 0 and condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —
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Table C-10 shows the syntax for basic simplified branch mnemonics

The simplified mnemonics in Table C-10 that test a condition require a corresponding CR bit as 
the first operand (as examples 2–5 below illustrate). The symbols in Table C-9 can be used in place 
of a numeric value.

C.4.5.1 Examples that Eliminate the BO Operand

The simplified mnemonics in Table C-10 are used in the following examples: 

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count 
loaded into CTR) (note that no CR bits are tested).
bdnz target  equivalent to bc 16,0,target

Because this instruction does not test a CR bit, the simplified mnemonic should specify 
only a target operand. Specifying a CR (for example, bdnz 0,target or bdnz cr0,target) may 
be considered a programming error. Subsequent examples test conditions).

2. Same as (1) but branch only if CTR is nonzero and equal condition in CR0.
bdnzt eq,target  equivalent to bc 8,2,target

Other equivalents include bdnzt 2,target or the unlikely bdnzt 4*cr0+eq,target

3. Same as (2), but equal condition is in CR5.
bdnzt 4 * cr5 + eq,target equivalent to bc 8,22,target

bdnzt 22,target would also work

4. Branch if bit 59 of CR is false.
bf 27,target  equivalent to bc 4,27,target

bf 4*cr6+so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target  equivalent to bcl 4,27,target

Table C-11. Branch Instructions 

Instruction
Standard 

Mnemonic
Syntax 

Simplified 
Mnemonic 

Syntax 

Branch b (ba bl bla) target_addr N/A, syntax does not include BO 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx  1(bxa bxl bxla)

1 x stands for one of the symbols in Table C-6, where applicable.

BI 2,target_addr 

2 BI can be a numeric value or an expression as shown in Table C-9.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) BI 
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Table C-12 lists simplified mnemonics and syntax for bc and bca without LR updating. 

Table C-13 lists simplified mnemonics and syntax for bclr and bcctr without LR updating. 

Table C-12. Simplified Mnemonics for bc and bca without LR Update

Branch Semantics bc
Simplified
Mnemonic

bca
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true 1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value 
and can be alternately coded by incorporating the condition specified by the BI field, as described in Section C.4.6, “Simplified 
Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

bc 12,BI,target  bt BI,target bca 12,BI,target bta BI,target 

Branch if condition false 1 bc 4,BI,target bf BI,target bca 4,BI,target bfa BI,target 

Decrement CTR, branch if CTR ≠ 0 bc 16,0,target bdnz target  2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a programming 
error may occur. 

bca 16,0,target bdnza target 2

Decrement CTR, branch if CTR ≠ 0 and condition true bc 8,BI,target bdnzt BI,target bca 8,BI,target bdnzta BI,target

Decrement CTR, branch if CTR ≠ 0 and condition false bc 0,BI,target bdnzf BI,target bca 0,BI,target bdnzfa BI,target

Decrement CTR, branch if CTR = 0 bc 18,0,target bdz target2 bca 18,0,target bdza target2

Decrement CTR, branch if CTR = 0 and condition true bc 10,BI,target bdzt BI,target bca 10,BI,target bdzta BI,target 

Decrement CTR, branch if CTR = 0 and condition false bc 2,BI,target bdzf BI,target bca 2,BI,target bdzfa BI,target 

Table C-13. Simplified Mnemonics for bclr and bcctr without LR Update

Branch Semantics bclr
Simplified
Mnemonic

bcctr
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr  1

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error 
may occur.

bcctr 20,0 bctr 1

Branch if condition true  2

2 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on a CTR 
value and can be alternately coded by incorporating the condition specified by the BI field. See Section C.4.6, 
“Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

bclr 12,BI btlr BI bcctr 12,BI btctr BI 

Branch if condition false 2 bclr 4,BI bflr BI bcctr 4,BI bfctr BI 

Decrement CTR, branch if CTR ≠ 0 bclr 16,BI bdnzlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclr 0,BI bdnzflr BI — —

Decrement CTR, branch if CTR = 0 bclr 18,0 bdzlr 1 — —

Decrement CTR, branch if CTR = 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR = 0 and condition false bclr 2,BI bdzflr BI — —
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Table C-14 provides simplified mnemonics and syntax for bcl and bcla.

Table C-15 provides simplified mnemonics and syntax for bclrl and bcctrl with LR updating. 

Table C-14. Simplified Mnemonics for bcl and bcla with LR Update

Branch Semantics bcl
Simplified
Mnemonic

bcla
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true  1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the 
CTR value and can be alternately coded by incorporating the condition specified by the BI field. See Section C.4.6, 
“Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

bcl 12,BI,target  btl BI,target bcla 12,BI,target btla BI,target 

Branch if condition false 1 bcl 4,BI,target bfl BI,target bcla 4,BI,target bfla BI,target 

Decrement CTR, branch if CTR ≠ 0 bcl 16,0,target bdnzl target  2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. A programming 
error may occur. 

bcla 16,0,target bdnzla target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bcl 8,0,target bdnztl BI,target bcla 8,BI,target bdnztla BI,target 

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bcl 0,BI,target bdnzfl BI,target bcla 0,BI,target bdnzfla BI,target 

Decrement CTR, branch if CTR = 0 bcl 18,BI,target bdzl target 2 bcla 18,BI,target bdzla target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bcl 10,BI,target bdztl BI,target bcla 10,BI,target bdztla BI,target 

Decrement CTR, branch if CTR = 0 and 
condition false

bcl 2,BI,target bdzfl BI,target bcla 2,BI,target bdzfla BI,target 

Table C-15. Simplified Mnemonics for bclrl and bcctrl with LR Update

Branch Semantics bclrl Simplified
Mnemonic

bcctrl Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl  1

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one. A programming 
error may occur.

bcctrl 20,0 bctrl 1

Branch if condition true bclrl 12,BI btlrl BI bcctrl 12,BI btctrl BI 

Branch if condition false bclrl 4,BI bflrl BI bcctrl 4,BI bfctrl BI 

Decrement CTR, branch if CTR ≠ 0 bclrl 16,0 bdnzlrl 1 — —

Decrement CTR, branch if CTR ≠ 0 and condition true bclrl 8,BI bdnztlrl BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclrl 0,BI bdnzflrl BI — —

Decrement CTR, branch if CTR = 0 bclrl 18,0 bdzlrl 1 — —

Decrement CTR, branch if CTR = 0 and condition true bclrl 10, BI bdztlrl BI — —

Decrement CTR, branch if CTR = 0 and condition false bclrl 2,BI bdzflrl BI — —
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C.4.6 Simplified Mnemonics that Incorporate CR Conditions 
(Eliminates BO and Replaces BI with crS)

The mnemonics in Table C-18 are variations of the branch-if-condition-true (BO = 12) and 
branch-if-condition-false (BO = 4) encodings. Because these instructions do not depend on the 
CTR, the true/false conditions specified by BO can be combined with the CR test bit specified by 
BI to create a different set of simplified mnemonics that eliminates the BO operand and the portion 
of the BI operand (BI[3–4]) that specifies one of the four possible test bits. However, the simplified 
mnemonic cannot specify in which of the eight CR fields the test bit falls, so the BI operand is 
replaced by a crS operand. 

The standard codes shown in Table C-16 are used for the most common combinations of branch 
conditions. Note that for ease of programming, these codes include synonyms; for example, less 
than or equal (le) and not greater than (ng) achieve the same result. 

NOTE
A CR field symbol, cr0–cr7, is used as the first operand after the 
simplified mnemonic. If the default, CR0, is used, no crS is necessary, 

Table C-16. Standard Coding for Branch Conditions

Code Description Equivalent Bit Tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

un Unordered (after floating-point comparison) — SO

nu Not unordered (after floating-point comparison) — SO



PowerPC e500 Core Family Reference Manual, Rev. 1

C-16 Freescale Semiconductor

Simplified Mnemonics for PowerPC Instructions

Table C-17 shows the syntax for simplified branch mnemonics that incorporate CR conditions. 
Here, crS replaces a BI operand to specify only a CR field (because the specific CR bit within the 
field is now part of the simplified mnemonic. Note that the default is CR0; if no crS is specified, 
CR0 is used.

Table C-18 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table C-18 indicate the condition bit, but not the CR field. If 
no field is specified, CR0 is used. The CR field symbols defined in Table C-9 (cr0–cr7) are used 
for this operand, as shown in examples 2–4 below. 

Table C-17. Branch Instructions and Simplified Mnemonics that Incorporate CR 
Conditions

Instruction
Standard 

Mnemonic Syntax 
Simplified 
Mnemonic Syntax 

Branch b (ba bl bla) target_addr —

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx  1(bxa bxl bxla)

1 x stands for one of the symbols in Table C-16, where applicable.

crS 2,target_addr 

2 BI can be a numeric value or an expression as shown in Table C-9.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) crS 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) crS 

Table C-18. Simplified Mnemonics with Comparison Conditions

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl
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C.4.6.1 Branch Simplified Mnemonics that Incorporate CR Conditions: 
Examples

The following examples use the simplified mnemonics shown in Table C-18:

1. Branch if CR0 reflects not-equal condition.
bne target equivalent to bc 4,2,target

2. Same as (1) but condition is in CR3.
bne cr3,target equivalent to bc 4,14,target

3. Branch to an absolute target if CR4 specifies greater than condition, setting the LR. This is 
a form of conditional call.
bgtla cr4,target equivalent to bcla 12,17,target

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 equivalent to bcctrl 12,17

C.4.6.2 Branch Simplified Mnemonics that Incorporate CR Conditions: 
Listings

Table C-19 shows simplified branch mnemonics and syntax for bc and bca without LR updating. 

Table C-19. Simplified Mnemonics for bc and bca without Comparison Conditions or
LR Updating

Branch Semantics bc Simplified Mnemonic bca Simplified Mnemonic

Branch if less than bc 12,BI 1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

blt crS target bca 12,BI1,target blta crS target

Branch if less than or equal bc 4,BI 2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

ble crS target bca 4,BI2,target blea crS target

Branch if not greater than bng crS target bnga crS target

Branch if equal bc 12,BI 3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beq crS target bca 12,BI3,target beqa crS target

Branch if greater than or equal bc 4,BI1,target bge crS target bca 4,BI1,target bgea crS target

Branch if not less than bnl crS target bnla crS target

Branch if greater than bc 12,BI2,target bgt crS target bca 12,BI2,target bgta crS target

Branch if not equal bc 4,BI3,target bne crS target bca 4,BI3,target bnea crS target

Branch if summary overflow bc 12,BI 4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bso crS target bca 12,BI4,target bsoa crS target

Branch if unordered bun crS target buna crS target

Branch if not summary overflow bc 4,BI4,target bns crS target bca 4,BI4,target bnsa crS target

Branch if not unordered bnu crS target bnua crS target
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Table C-20 shows simplified branch mnemonics and syntax for bclr and bcctr without LR 
updating. 

Table C-21 shows simplified branch mnemonics and syntax for bcl and bcla. 

Table C-20. Simplified Mnemonics for bclr and bcctr without Comparison Conditions
and LR Updating

Branch Semantics bclr Simplified 
Mnemonic

bcctr Simplified 
Mnemonic

Branch if less than bclr 12,BI 1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlr crS target bcctr 12,BI1,target bltctr crS target

Branch if less than or equal bclr 4,BI 2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelr crS target bcctr 4,BI2,target blectr crS target

Branch if not greater than bnglr crS target bngctr crS target

Branch if equal bclr 12,BI 3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlr crS target bcctr 12,BI3,target beqctr crS target

Branch if greater than or equal bclr 4,BI1,target bgelr crS target bcctr 4,BI1,target bgectr crS target

Branch if not less than bnllr crS target bnlctr crS target

Branch if greater than bclr 12,BI2,target bgtlr crS target bcctr 12,BI2,target bgtctr crS target

Branch if not equal bclr 4,BI3,target bnelr crS target bcctr 4,BI3,target bnectr crS target

Branch if summary overflow bclr 12,BI 4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolr crS target bcctr 12,BI4,target bsoctr crS target

Branch if unordered bunlr crS target bunctr crS target

Branch if not summary overflow bclr 4,BI4,target bnslr crS target bcctr 4,BI4,target bnsctr crS target

Branch if not unordered bnulr crS target bnuctr crS target

Table C-21. Simplified Mnemonics for bcl and bcla with Comparison Conditions
and LR Updating

Branch Semantics bcl
Simplified 
Mnemonic

bcla
Simplified 
Mnemonic

Branch if less than bcl 12,BI 1,target bltl crS target bcla 12,BI1,target bltla crS target

Branch if less than or equal bcl 4,BI 2,target blel crS target bcla 4,BI2,target blela crS target

Branch if not greater than bngl crS target bngla crS target

Branch if equal bcl 12,BI 3,target beql crS target bcla 12,BI3,target beqla crS target

Branch if greater than or equal bcl 4,BI1,target bgel crS target bcla 4,BI1,target bgela crS target

Branch if not less than bnll crS target bnlla crS target

Branch if greater than bcl 12,BI2,target bgtl crS target bcla 12,BI2,target bgtla crS target

Branch if not equal bcl 4,BI3,target bnel crS target bcla 4,BI3,target bnela crS target

Branch if summary overflow bcl 12,BI 4,target bsol crS target bcla 12,BI4,target bsola crS target

Branch if unordered bunl crS target bunla crS target
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Table C-22 shows the simplified branch mnemonics and syntax for bclrl and bcctrl with LR 
updating. 

Branch if not summary overflow bcl 4,BI4,target bnsl crS target bcla 4,BI4,target bnsla crS target

Branch if not unordered bnul crS target bnula crS target

1 The value in the BI operand selects CRn[0], the LT bit. 
2 The value in the BI operand selects CRn[1], the GT bit. 
3 The value in the BI operand selects CRn[2], the EQ bit. 
4 The value in the BI operand selects CRn[3], the SO bit. 

Table C-22. Simplified Mnemonics for bclrl and bcctrl with Comparison Conditions
and LR Updating

Branch Semantics bclrl
Simplified 
Mnemonic

bcctrl
Simplified 
Mnemonic

Branch if less than bclrl 12,BI 1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlrl crS target bcctrl 12,BI1,target bltctrl crS target

Branch if less than or equal bclrl 4,BI 2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelrl crS target bcctrl 4,BI2,target blectrl crS target

Branch if not greater than bnglrl crS target bngctrl crS target

Branch if equal bclrl 12,BI 3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlrl crS target bcctrl 12,BI3,target beqctrl crS target

Branch if greater than or equal bclrl 4,BI1,target bgelrl crS target bcctrl 4,BI1,target bgectrl crS target

Branch if not less than bnllrl crS target bnlctrl crS target

Branch if greater than bclrl 12,BI2,target bgtlrl crS target bcctrl 12,BI2,target bgtctrl crS target

Branch if not equal bclrl 4,BI3,target bnelrl crS target bcctrl 4,BI3,target bnectrl crS target

Branch if summary overflow bclrl 12,BI 4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolrl crS target bcctrl 12,BI4,target bsoctrl crS target

Branch if unordered bunlrl crS target bunctrl crS target

Branch if not summary overflow bclrl 4,BI4,target bnslrl crS target bcctrl 4,BI4,target bnsctrl crS target

Branch if not unordered bnulrl crS target bnuctrl crS target

Table C-21. Simplified Mnemonics for bcl and bcla with Comparison Conditions
and LR Updating (continued)

Branch Semantics bcl
Simplified 
Mnemonic

bcla
Simplified 
Mnemonic
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C.5 Compare Word Simplified Mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or double-word (L = 1). 
Simplified mnemonics in Table C-23 eliminate the L operand for word comparisons. 

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, 
as shown in examples 1 and 3 below. Otherwise, the target CR field must be specified as the first 
operand. The following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in CR0.
cmpwi rA,100 equivalent to cmpi 0,0,rA,100

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 equivalent to cmpi 4,0,rA,100

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB equivalent to cmpl 0,0,rA,rB

C.6 Condition Register Logical Simplified Mnemonics 
The CR logical instructions, shown in Table C-24, can be used to set, clear, copy, or invert a given 
CR bit. Simplified mnemonics allow these operations to be coded easily. Note that the symbols 
defined in Table C-8 can be used to identify the CR bit.

Table C-23. Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crD,rA,SIMM cmpi crD,0,rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate cmplwi crD,rA,UIMM cmpli crD,0,rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB

Table C-24. Condition Register Logical Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by
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Examples using the CR logical mnemonics follow:

1. Set CR[57].
crset 25 equivalent to creqv 25,25,25

2. Clear CR0[SO].
crclr so equivalent to crxor 3,3,3

3. Same as (2), but clear CR3[SO].
crclr 4 * cr3 + so equivalent to crxor 15,15,15

4. Invert the CR0[EQ].
crnot eq,eq equivalent to crnor 2,2,2

5. Same as (4), but CR4[EQ] is inverted and the result is placed into CR5[EQ].
crnot 4 * cr5 + eq, 4 * cr4 + eq equivalent to crnor 22,18,18

C.7 Trap Instructions Simplified Mnemonics 
The codes in Table C-25 have been adopted for the most common combinations of trap conditions. 

Table C-25. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U 1

1 The symbol ‘<U’ indicates an unsigned less-than evaluation is performed. 

>U  2

2 The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1
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The mnemonics in Table C-26 are variations of trap instructions, with the most useful TO values 
represented in the mnemonic rather than specified as a numeric operand.

The following examples use the trap mnemonics shown in Table C-26:

1. Trap if rA is not zero.
twnei rA,0 equivalent to twi 24,rA,0

2. Trap if rA is not equal to rB.
twne rA, rB equivalent to tw 24,rA,rB

3. Trap if rA is logically greater than 0x7FF.
twlgti rA, 0x7FF equivalent to twi 1,rA, 0x7FF

4. Trap unconditionally.
trap equivalent to  tw 31,0,0

Trap instructions evaluate a trap condition as follows: The contents of rA are compared with either 
the sign-extended SIMM field or the contents of rB, depending on the trap instruction. 

Table C-26. Trap Simplified Mnemonics

Trap Semantics
32-Bit Comparison 

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng
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The comparison results in five conditions that are ANDed with operand TO. If the result is not 0, 
the trap exception handler is invoked. See Table C-27 for these conditions.

C.8 Simplified Mnemonics for Accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand. 
Simplified mnemonics are provided that represent the SPR in the mnemonic rather than requiring 
it to be coded as a numeric operand. The pattern for mtspr and mfspr simplified mnemonics is 
straightforward: replace the -spr portion of the mnemonic with the abbreviation for the spr (for 
example XER, SRR0, or LR), eliminate the SPRN operand, leaving the source or destination GPR 
operand, rS or rD. 

Following are examples using the SPR simplified mnemonics:

1. Copy the contents of rS to the XER.
mtxer rS  equivalent to mtspr 1,rS

2. Copy the contents of the LR to rS.
mflr rD  equivalent to mfspr rD,8

3. Copy the contents of rS to the CTR.
mtctr rS  equivalent to mtspr 9,rS

The examples above show simplified mnemonics for accessing SPRs defined by the AIM version 
of the PowerPC architecture; however, the same formula is used for Book E, EIS, and 
implementation-specific SPRs, as shown in the following examples:

1. Copy the contents of rS to CSRR0.
mtcsrr0 rS equivalent to mtspr 58,rS

2. Copy the contents of IVOR0 to rS.
mfivor0 rD equivalent to mfspr rD,400

3. Copy the contents of rS to the MAS1.
mtmas1 rS equivalent to mtspr 625,rS

Table C-27. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison
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There is an additional simplified mnemonic formula for accessing SPRGs, although not all of 
these more complicated simplified mnemonics are supported by all assemblers. These are shown 
in Table C-28 along with the equivalent simplified mnemonic using the formula described above.

C.9 Recommended Simplified Mnemonics
This section describes commonly-used operations (such as no-op, load immediate, load address, 
move register, and complement register). 

C.9.1 No-Op (nop)

Many instructions can be coded in a way that, effectively, no operation is performed. An additional 
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of 
run-time optimization related to no-ops, the preferred form is the following:

nop  equivalent toori 0,0,0

C.9.2 Load Immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. Additional 
mnemonics are provided to convey the idea that no addition is being performed but that data is 
being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value equivalent to addi rD,0,value

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD. 
lis rD,value equivalent to addis rD,0,value

C.9.3 Load Address (la) 

This mnemonic permits computing the value of a base-displacement operand, using the addi 
instruction that normally requires a separate register and immediate operands.

la rD,d(rA) equivalent to addi rD,rA,d

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the 
assembler to supply the base register number and compute the displacement. If the variable v is 

Table C-28. Additional Simplified Mnemonics for Accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

SPRGs mtsprg n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

mtsprgn, rS mfsprgn rD
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located at offset dv bytes from the address in rv, and the assembler has been told to use rv as a 
base for references to the data structure containing v, the following line causes the address of v to 
be loaded into rD:

la rD,v equivalent to addi rD,rv,dv

C.9.4 Move Register (mr)

Several instructions can be coded to copy the contents of one register to another. A simplified 
mnemonic is provided that signifies that no computation is being performed, but merely that data 
is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a 
dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

C.9.5 Complement Register (not)

Several instructions can be coded in a way that they complement the contents of one register and 
place the result into another register. A simplified mnemonic is provided that allows this operation 
to be coded easily.

The following instruction complements the contents of rS and places the result into rA. This 
mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying 
instruction.

not rA,rS equivalent to nor rA,rS,rS

C.9.6 Move to Condition Register (mtcr)

This mnemonic permits copying the contents of a GPR to the CR, using the same syntax as the 
mfcr instruction.

mtcr rS equivalent to mtcrf 0xFF,rS
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C.10 EIS-Specific Simplified Mnemonics
This section describes simplified mnemonics for instructions defines by auxiliary processing units 
(APUs) defined as part of the Motorola Book E implementation standards (EIS). 

C.10.1 Integer Select (isel)

The following mnemonics simplify the most common variants of the isel instruction that access 
CR0:

Integer Select Less Than 

isellt rD,rA,rB equivalent to isel rD,rA,rB,0 

Integer Select Greater Than 

iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 

Integer Select Equal 

iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

C.10.2 SPE Mnemonics

The following mnemonic handles moving of the full 64-bit SPE GPR:

Vector Move

evmr rD,rA equivalent to evor rD,rA,rA

The following mnemonic performs a complement register:

Vector Not

evnot rD,rA equivalent toevnor rD,rA,rA

C.11 Comprehensive List of Simplified Mnemonics
Table C-29 lists simplified mnemonics that are supported by the e500 processor. Note that 
compiler designers may implement additional simplified mnemonics not listed here.

Table C-29. Simplified Mnemonics

Simplified Mnemonic Mnemonic Instruction

bctr  1 bcctr 20,0 Branch unconditionally (bcctr without LR update)

bctrl 1 bcctrl 20,0 Branch unconditionally (bcctrl with LR Update)

bdnz target 1 bc 16,0,target Decrement CTR, branch if CTR ≠ 0 (bc without LR 
update)

bdnza target 1 bca 16,0,target Decrement CTR, branch if CTR ≠ 0 (bca without LR 
update)
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bdnzf BI,target bc 0,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
false (bc without LR update)

bdnzfa BI,target bca 0,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
false (bca without LR update)

bdnzfl BI,target bcl 0,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
false (bcl with LR update)

bdnzfla BI,target bcla 0,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
false (bcla with LR update)

bdnzflr BI bclr 0,BI Decrement CTR, branch if CTR ≠ 0 and condition 
false (bclr without LR update)

bdnzflrl BI bclrl 0,BI Decrement CTR, branch if CTR ≠ 0 and condition 
false (bclrl with LR Update)

bdnzl target 1 bcl 16,0,target Decrement CTR, branch if CTR ≠ 0 (bcl with LR 
update)

bdnzla target 1 bcla 16,0,target Decrement CTR, branch if CTR ≠ 0 (bcla with LR 
update)

bdnzlr BI bclr 16,BI Decrement CTR, branch if CTR ≠ 0 (bclr without 
LR update)

bdnzlrl 1 bclrl 16,0 Decrement CTR, branch if CTR ≠ 0 (bclrl with LR 
Update)

bdnzt BI,target bc 8,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
true (bc without LR update)

bdnzta BI,target bca 8,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
true (bca without LR update)

bdnztl BI,target bcl 8,0,target Decrement CTR, branch if CTR ≠ 0 and condition 
true (bcl with LR update)

bdnztla BI,target bcla 8,BI,target Decrement CTR, branch if CTR ≠ 0 and condition 
true (bcla with LR update)

bdnztlr BI bclr 8,BI Decrement CTR, branch if CTR ≠ 0 and condition 
true (bclr without LR update)

bdnztlr BI bclr 8,BI Decrement CTR, branch if CTR = 0 and condition 
true (bclr without LR update)

bdnztlrl BI bclrl 8,BI Decrement CTR, branch if CTR ≠ 0 and condition 
true (bclrl with LR Update)

bdz target 1 bc 18,0,target Decrement CTR, branch if CTR = 0 (bc without LR 
update)

bdza target 1 bca 18,0,target Decrement CTR, branch if CTR = 0 (bca without 
LR update)

bdzf BI,target bc 2,BI,target Decrement CTR, branch if CTR = 0 and condition 
false (bc without LR update)

bdzfa BI,target bca 2,BI,target Decrement CTR, branch if CTR = 0 and condition 
false (bca without LR update)
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bdzfl BI,target bcl 2,BI,target Decrement CTR, branch if CTR = 0 and condition 
false (bcl with LR update)

bdzfla BI,target bcla 2,BI,target Decrement CTR, branch if CTR = 0 and condition 
false (bcla with LR update)

bdzflr BI bclr 2,BI Decrement CTR, branch if CTR = 0 and condition 
false (bclr without LR update)

bdzflrl BI bclrl 2,BI Decrement CTR, branch if CTR = 0 and condition 
false (bclrl with LR Update)

bdzl target 1 bcl 18,BI,target Decrement CTR, branch if CTR = 0 (bcl with LR 
update)

bdzla target 1 bcla 18,BI,target Decrement CTR, branch if CTR = 0 (bcla with LR 
update)

bdzlr 1 bclr 18,0 Decrement CTR, branch if CTR = 0 (bclr without 
LR update)

bdzlrl 1 bclrl 18,0 Decrement CTR, branch if CTR = 0 (bclrl with LR 
Update)

bdzt BI,target bc 10,BI,target Decrement CTR, branch if CTR = 0 and condition 
true (bc without LR update)

bdzta BI,target bca 10,BI,target Decrement CTR, branch if CTR = 0 and condition 
true (bca without LR update)

bdztl BI,target bcl 10,BI,target Decrement CTR, branch if CTR = 0 and condition 
true (bcl with LR update)

bdztla BI,target bcla 10,BI,target Decrement CTR, branch if CTR = 0 and condition 
true (bcla with LR update)

bdztlrl BI bclrl 10, BI Decrement CTR, branch if CTR = 0 and condition 
true (bclrl with LR Update)

beq crS target bc 12,BI 2,target Branch if equal (bc without comparison conditions 
or LR updating)

beqa crS target bca 12,BI2,target Branch if equal (bca without comparison conditions 
or LR updating)

beqctr crS target bcctr 12,BI2,target Branch if equal (bcctr without comparison 
conditions and LR updating)

beqctrl crS target bcctrl 12,BI2,target Branch if equal (bcctrl with comparison conditions 
and LR update)

beql crS target bcl 12,BI2,target Branch if equal (bcl with comparison conditions 
and LR updating)

beqla crS target bcla 12,BI2,target Branch if equal (bcla with comparison conditions 
and LR updating)

beqlr crS target bclr 12,BI2,target Branch if equal (bclr without comparison 
conditions and LR updating)

beqlrl crS target bclrl 12,BI2,target Branch if equal (bclrl with comparison conditions 
and LR update)

bf BI,target bc 4,BI,target Branch if condition false  3 (bc without LR update)
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bfa BI,target bca 4,BI,target Branch if condition false 3 (bca without LR update)

bfctr BI bcctr 4,BI Branch if condition false 3 (bcctr without LR 
update)

bfctrl BI bcctrl 4,BI Branch if condition false 3(bcctrl with LR Update)

bfl BI,target bcl 4,BI,target Branch if condition false 3 (bcl with LR update)

bfla BI,target bcla 4,BI,target Branch if condition false 3 (bcla with LR update)

bflr BI bclr 4,BI Branch if condition false 3 (bclr without LR update)

bflrl BI bclrl 4,BI Branch if condition false 3(bclrl with LR Update)

bge crS target bc 4,BI 4,target Branch if greater than or equal (bc without 
comparison conditions or LR updating)

bgea crS target bca 4,BI4,target Branch if greater than or equal (bca without 
comparison conditions or LR updating)

bgectr crS target bcctr 4,BI4,target Branch if greater than or equal (bcctr without 
comparison conditions and LR updating)

bgectrl crS target bcctrl 4,BI4,target Branch if greater than or equal (bcctrl with 
comparison conditions and LR update)

bgel crS target bcl 4,BI4,target Branch if greater than or equal (bcl with 
comparison conditions and LR updating)

bgela crS target bcla 4,BI4,target Branch if greater than or equal (bcla with 
comparison conditions and LR updating)

bgelr crS target bclr 4,BI4,target Branch if greater than or equal (bclr without 
comparison conditions and LR updating)

bgelrl crS target bclrl 4,BI4,target Branch if greater than or equal (bclrl with 
comparison conditions and LR update)

bgt crS target bc 12,BI 5,target Branch if greater than (bc without comparison 
conditions or LR updating)

bgta crS target bca 12,BI5,target Branch if greater than (bca without comparison 
conditions or LR updating)

bgtctr crS target bcctr 12,BI5,target Branch if greater than (bcctr without comparison 
conditions and LR updating)

bgtctrl crS target bcctrl 12,BI5,target Branch if greater than (bcctrl with comparison 
conditions and LR update)

bgtl crS target bcl 12,BI5,target Branch if greater than (bcl with comparison 
conditions and LR updating)

bgtla crS target bcla 12,BI5,target Branch if greater than (bcla with comparison 
conditions and LR updating)

bgtlr crS target bclr 12,BI5,target Branch if greater than (bclr without comparison 
conditions and LR updating)

bgtlrl crS target bclrl 12,BI5,target Branch if greater than (bclrl with comparison 
conditions and LR update)

ble crS target bc 4,BI5,target Branch if less than or equal (bc without comparison 
conditions or LR updating)
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blea crS target bca 4,BI5,target Branch if less than or equal (bca without 
comparison conditions or LR updating)

blectr crS target bcctr 4,BI5,target Branch if less than or equal (bcctr without 
comparison conditions and LR updating)

blectrl crS target bcctrl 4,BI5,target Branch if less than or equal (bcctrl with 
comparison conditions and LR update)

blel crS target bcl 4,BI5,target Branch if less than or equal (bcl with comparison 
conditions and LR updating)

blela crS target bcla 4,BI5,target Branch if less than or equal (bcla with comparison 
conditions and LR updating)

blelr crS target bclr 4,BI5,target Branch if less than or equal (bclr without 
comparison conditions and LR updating)

blelrl crS target bclrl 4,BI5,target Branch if less than or equal (bclrl with comparison 
conditions and LR update)

blr 1 bclr 20,0 Branch unconditionally (bclr without LR update)

blrl 1 bclrl 20,0 Branch unconditionally (bclrl with LR Update)

blt crS target bc 12,BI,target Branch if less than (bc without comparison 
conditions or LR updating)

blta crS target bca 12,BI4,target Branch if less than (bca without comparison 
conditions or LR updating)

bltctr crS target bcctr 12,BI4,target Branch if less than (bcctr without comparison 
conditions and LR updating)

bltctrl crS target bcctrl 12,BI4,target Branch if less than (bcctrl with comparison 
conditions and LR update)

bltl crS target bcl 12,BI4,target Branch if less than (bcl with comparison conditions 
and LR updating)

bltla crS target bcla 12,BI4,target Branch if less than (bcla with comparison 
conditions and LR updating)

bltlr crS target bclr 12,BI4,target Branch if less than (bclr without comparison 
conditions and LR updating)

bltlrl crS target bclrl 12,BI4,target Branch if less than (bclrl with comparison 
conditions and LR update)

bne crS target bc 4,BI3,target Branch if not equal (bc without comparison 
conditions or LR updating)

bnea crS target bca 4,BI3,target Branch if not equal (bca without comparison 
conditions or LR updating)

bnectr crS target bcctr 4,BI3,target Branch if not equal (bcctr without comparison 
conditions and LR updating)

bnectrl crS target bcctrl 4,BI3,target Branch if not equal (bcctrl with comparison 
conditions and LR update)

bnel crS target bcl 4,BI3,target Branch if not equal (bcl with comparison conditions 
and LR updating)
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bnela crS target bcla 4,BI3,target Branch if not equal (bcla with comparison 
conditions and LR updating)

bnelr crS target bclr 4,BI3,target Branch if not equal (bclr without comparison 
conditions and LR updating)

bnelrl crS target bclrl 4,BI3,target Branch if not equal (bclrl with comparison 
conditions and LR update)

bng crS target bc 4,BI5,target Branch if not greater than (bc without comparison 
conditions or LR updating)

bnga crS target bca 4,BI5,target Branch if not greater than (bca without comparison 
conditions or LR updating)

bngctr crS target bcctr 4,BI5,target Branch if not greater than (bcctr without 
comparison conditions and LR updating)

bngctrl crS target bcctrl 4,BI5,target Branch if not greater than (bcctrl with comparison 
conditions and LR update)

bngl crS target bcl 4,BI5,target Branch if not greater than (bcl with comparison 
conditions and LR updating)

bngla crS target bcla 4,BI5,target Branch if not greater than (bcla with comparison 
conditions and LR updating)

bnglr crS target bclr 4,BI5,target Branch if not greater than (bclr without comparison 
conditions and LR updating)

bnglrl crS target bclrl 4,BI5,target Branch if not greater than (bclrl with comparison 
conditions and LR update)

bnl crS target bc 4,BI4,target Branch if not less than (bc without comparison 
conditions or LR updating)

bnla crS target bca 4,BI4,target Branch if not less than (bca without comparison 
conditions or LR updating)

bnlctr crS target bcctr 4,BI4,target Branch if not less than (bcctr without comparison 
conditions and LR updating)

bnlctrl crS target bcctrl 4,BI4,target Branch if not less than (bcctrl with comparison 
conditions and LR update)

bnll crS target bcl 4,BI4,target Branch if not less than (bcl with comparison 
conditions and LR updating)

bnlla crS target bcla 4,BI4,target Branch if not less than (bcla with comparison 
conditions and LR updating)

bnllr crS target bclr 4,BI4,target Branch if not less than (bclr without comparison 
conditions and LR updating)

bnllrl crS target bclrl 4,BI4,target Branch if not less than (bclrl with comparison 
conditions and LR update)

bns crS target bc 4,BI 6,target Branch if not summary overflow (bc without 
comparison conditions or LR updating)

bnsa crS target bca 4,BI6,target Branch if not summary overflow (bca without 
comparison conditions or LR updating)
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bnsctr crS target bcctr 4,BI6,target Branch if not summary overflow (bcctr without 
comparison conditions and LR updating)

bnsctrl crS target bcctrl 4,BI6,target Branch if not summary overflow (bcctrl with 
comparison conditions and LR update)

bnsl crS target bcl 4,BI6,target Branch if not summary overflow (bcl with 
comparison conditions and LR updating)

bnsla crS target bcla 4,BI6,target Branch if not summary overflow (bcla with 
comparison conditions and LR updating)

bnslr crS target bclr 4,BI6,target Branch if not summary overflow (bclr without 
comparison conditions and LR updating)

bnslrl crS target bclrl 4,BI6,target Branch if not summary overflow (bclrl with 
comparison conditions and LR update)

bnu crS target bc 4,BI6,target Branch if not unordered (bc without comparison 
conditions or LR updating)

bnua crS target bca 4,BI6,target Branch if not unordered (bca without comparison 
conditions or LR updating)

bnuctr crS target bcctr 4,BI6,target Branch if not unordered (bcctr without comparison 
conditions and LR updating)

bnuctrl crS target bcctrl 4,BI6,target Branch if not unordered (bcctrl with comparison 
conditions and LR update)

bnul crS target bcl 4,BI6,target Branch if not unordered (bcl with comparison 
conditions and LR updating)

bnula crS target bcla 4,BI6,target Branch if not unordered (bcla with comparison 
conditions and LR updating)

bnulr crS target bclr 4,BI6,target Branch if not unordered (bclr without comparison 
conditions and LR updating)

bnulrl crS target bclrl 4,BI6,target Branch if not unordered (bclrl with comparison 
conditions and LR update)

bso crS target bc 12,BI6,target Branch if summary overflow (bc without 
comparison conditions or LR updating)

bsoa crS target bca 12,BI6,target Branch if summary overflow (bca without 
comparison conditions or LR updating)

bsoctr crS target bcctr 12,BI6,target Branch if summary overflow (bcctr without 
comparison conditions and LR updating)

bsoctrl crS target bcctrl 12,BI6,target Branch if summary overflow (bcctrl with 
comparison conditions and LR update)

bsol crS target bcl 12,BI6,target Branch if summary overflow (bcl with comparison 
conditions and LR updating)

bsola crS target bcla 12,BI6,target Branch if summary overflow (bcla with comparison 
conditions and LR updating)

bsolr crS target bclr 12,BI6,target Branch if summary overflow (bclr without 
comparison conditions and LR updating)
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bsolrl crS target bclrl 12,BI6,target Branch if summary overflow (bclrl with comparison 
conditions and LR update)

bt BI,target bc 12,BI,target Branch if condition true3 (bc without LR update)

bta BI,target bca 12,BI,target Branch if condition true3 (bca without LR update)

btctr BI bcctr 12,BI Branch if condition true 3 (bcctr without LR update)

btctrl BI bcctrl 12,BI Branch if condition true 3 (bcctrl with LR Update)

btl BI,target bcl 12,BI,target Branch if condition true 3 (bcl with LR update)

btla BI,target bcla 12,BI,target Branch if condition true 3 (bcla with LR update)

btlr BI bclr 12,BI Branch if condition true 3 (bclr without LR update)

btlrl BI bclrl 12,BI Branch if condition true 3 (bclrl with LR Update)

bun crS target bc 12,BI6,target Branch if unordered (bc without comparison 
conditions or LR updating)

buna crS target bca 12,BI6,target Branch if unordered (bca without comparison 
conditions or LR updating)

bunctr crS target bcctr 12,BI6,target Branch if unordered (bcctr without comparison 
conditions and LR updating)

bunctrl crS target bcctrl 12,BI6,target Branch if unordered (bcctrl with comparison 
conditions and LR update)

bunl crS target bcl 12,BI6,target Branch if unordered (bcl with comparison 
conditions and LR updating)

bunla crS target bcla 12,BI6,target Branch if unordered (bcla with comparison 
conditions and LR updating)

bunlr crS target bclr 12,BI6,target Branch if unordered (bclr without comparison 
conditions and LR updating)

bunlrl crS target bclrl 12,BI6,target Branch if unordered (bclrl with comparison 
conditions and LR update)

clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n Clear left and shift left word immediate

clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31 Clear left word immediate

clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n Clear right word immediate

cmplw crD,rA,rB cmpl crD,0,rA,rB Compare logical word

cmplwi crD,rA,UIMM cmpli crD,0,rA,UIMM Compare logical word immediate

cmpw crD,rA,rB cmp crD,0,rA,rB Compare word

cmpwi crD,rA,SIMM cmpi crD,0,rA,SIMM Compare word immediate

crclr bx crxor bx,bx,bx Condition register clear

crmove bx,by cror bx,by,by Condition register move

crnot bx,by crnor bx,by,by Condition register not

crset bx creqv bx,bx,bx Condition register set

evmr rD,rA evor rD,rA,rA Vector Move Register

evnot rD,rA evnor rD,rA,rA Vector Complement Register
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evsubiw rD,rB,UIMM evsubifw rD,UIMM,rB Vector subtract word immediate

evsubw rD,rB,rA evsubfw rD,rA,rB Vector subtract word

extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1 Extract and left justify word immediate

extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31 Extract and right justify word immediate

inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1 Insert from left word immediate

insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1 Insert from right word immediate

iseleq rD,rA,rB isel rD,rA,rB,2 Integer Select Equal 

iselgt rD,rA,rB isel rD,rA,rB,1 Integer Select Greater Than 

isellt rD,rA,rB isel rD,rA,rB,0 Integer Select Less Than 

la rD,d(rA) addi rD,rA,d Load address

li rD,value addi rD,0,value Load immediate

lis rD,value addis rD,0,value Load immediate signed

mfspr rD mfspr rD,SPRN Move from SPR (see Section C.8, “Simplified 
Mnemonics for Accessing SPRs.”)

mr rA,rS or rA,rS,rS Move register

mtcr rS mtcrf 0xFF,rS Move to Condition Register 

mtspr rS mfspr SPRN,rS Move to SPR (see Section C.8, “Simplified 
Mnemonics for Accessing SPRs.”)

nop ori 0,0,0 No-op

not rA,rS nor rA,rS,rS NOT

not rA,rS nor rA,rS,rS Complement register

rotlw rA,rS,rB rlwnm rA,rS,rB,0,31 Rotate left word 

rotlwi rA,rS,n rlwinm rA,rS,n,0,31 Rotate left word immediate

rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31 Rotate right word immediate

slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n Shift left word immediate

srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31 Shift right word immediate

sub rD,rA,rB subf rD,rB,rA Subtract from

subc rD,rA,rB subfc rD,rB,rA Subtract from carrying

subi rD,rA,value addi rD,rA,–value Subtract immediate

subic rD,rA,value addic rD,rA,–value Subtract immediate carrying

subic. rD,rA,value addic. rD,rA,–value Subtract immediate carrying

subis rD,rA,value addis rD,rA,–value Subtract immediate signed

tweq rA,SIMM tw 4,rA,SIMM Trap if equal

tweqi rA,SIMM twi 4,rA,SIMM Trap immediate if equal

twge rA,SIMM tw 12,rA,SIMM Trap if greater than or equal

twgei rA,SIMM twi 12,rA,SIMM Trap immediate if greater than or equal

twgt rA,SIMM tw 8,rA,SIMM Trap if greater than
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twgti rA,SIMM twi 8,rA,SIMM Trap immediate if greater than

twle rA,SIMM tw 20,rA,SIMM Trap if less than or equal

twlei rA,SIMM twi 20,rA,SIMM Trap immediate if less than or equal

twlge rA,SIMM tw 12,rA,SIMM Trap if logically greater than or equal

twlgei rA,SIMM twi 12,rA,SIMM Trap immediate if logically greater than or equal

twlgt rA,SIMM tw 1,rA,SIMM Trap if logically greater than

twlgti rA,SIMM twi 1,rA,SIMM Trap immediate if logically greater than

twlle rA,SIMM tw 6,rA,SIMM Trap if logically less than or equal

twllei rA,SIMM twi 6,rA,SIMM Trap immediate if logically less than or equal

twllt rA,SIMM tw 2,rA,SIMM Trap if logically less than

twllti rA,SIMM twi 2,rA,SIMM Trap immediate if logically less than

twlng rA,SIMM tw 6,rA,SIMM Trap if logically not greater than

twlngi rA,SIMM twi 6,rA,SIMM Trap immediate if logically not greater than

twlnl rA,SIMM tw 5,rA,SIMM Trap if logically not less than

twlnli rA,SIMM twi 5,rA,SIMM Trap immediate if logically not less than

twlt rA,SIMM tw 16,rA,SIMM Trap if less than

twlti rA,SIMM twi 16,rA,SIMM Trap immediate if less than

twne rA,SIMM tw 24,rA,SIMM Trap if not equal

twnei rA,SIMM twi 24,rA,SIMM Trap immediate if not equal

twng rA,SIMM tw 20,rA,SIMM Trap if not greater than

twngi rA,SIMM twi 20,rA,SIMM Trap immediate if not greater than

twnl rA,SIMM tw 12,rA,SIMM Trap if not less than

twnli rA,SIMM twi 12,rA,SIMM Trap immediate if not less than

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may 
occur.

2 The value in the BI operand selects CRn[2], the EQ bit. 
3 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR 

value and can be alternately coded by incorporating the condition specified by the BI field, as described in Section C.4.6, 
“Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

4 The value in the BI operand selects CRn[0], the LT bit. 
5 The value in the BI operand selects CRn[1], the GT bit. 
6 The value in the BI operand selects CRn[3], the SO bit. 
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Appendix D
Opcode Listings
This appendix lists instructions as follows:

• Table D-1 lists opcodes alphabetically by mnemonic. It also includes simplified mnemonics 
showing the syntax for their standard mnemonic equivalents. 

• Table D-2 lists opcodes in numerical order, showing both the decimal and the hexadecimal value 
for the primary opcodes. 

• Table D-3 lists opcodes by form, showing the opcodes in binary. 

D.1 Instructions (Binary) by Mnemonic
Table D-1 lists e500 instructions by mnemonic. 

Table D-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

add 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

addc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

addco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

adde 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

addeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

addi 0 0 1 1 1 0 rD rA SIMM D addi

addic 0 0 1 1 0 0 rD rA SIMM D addic

addic. 0 0 1 1 0 1 rD rA SIMM D addic.

addis 0 0 1 1 1 1 rD rA SIMM D addis

addme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

addmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.
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addo 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

addze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

addzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

and 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

andc 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

andi. 0 1 1 1 0 0 rS rA UIMM D andi.

andis. 0 1 1 1 0 1 rS rA UIMM D andis.

b 0 1 0 0 1 0 LI 0 0 I b

ba 0 1 0 0 1 0 LI 1 0 I ba

bbelr 0 1 1 1 1 1 /// 1 0 0 0 1 0 0 1 1 0 0 X bbelr

bblels 0 1 1 1 1 1 /// 1 0 0 0 1 0 0 1 1 0 0 X bblels

bc 0 1 0 0 0 0 BO BI BD 0 0 B bc

bca 0 1 0 0 0 0 BO BI BD 1 0 B bca

bcctr 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

bcl 0 1 0 0 0 0 BO BI BD 0 1 B bcl

bcla 0 1 0 0 0 0 BO BI BD 1 1 B bcla

bclr 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

bctr bctr1 equivalent to bcctr 20,0 bctr

bctrl bctrl 1 equivalent to bcctrl 20,0 bctrl

bdnz bdnz target 1 equivalent to bc 16,0,target bdnz

bdnza bdnza target 1 equivalent to bca 16,0,target bdnza

bdnzf bdnzf BI,target equivalent to bc 0,BI,target bdnzf

bdnzfa bdnzfa BI,target equivalent to bca 0,BI,target bdnzfa

bdnzfl bdnzfl BI,target equivalent to bcl 0,BI,target bdnzfl

bdnzfla bdnzfla BI,target equivalent to bcla 0,BI,target bdnzfla

bdnzflr bdnzflr BI equivalent to bclr 0,BI bdnzflr
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bdnzflrl bdnzflrl BI equivalent to bclrl 0,BI bdnzflrl

bdnzl bdnzl target 1 equivalent to bcl 16,0,target bdnzl

bdnzla bdnzla target 1 equivalent to bcla 16,0,target bdnzla

bdnzlr bdnzlr BI equivalent to bclr 16,BI bdnzlr

bdnzlrl bdnzlrl 1 equivalent to bclrl 16,0 bdnzlrl

bdnzt bdnzt BI,target equivalent to bc 8,BI,target bdnzt

bdnzta bdnzta BI,target equivalent to bca 8,BI,target bdnzta

bdnztl bdnztl BI,target equivalent to bcl 8,0,target bdnztl

bdnztla bdnztla BI,target equivalent to bcla 8,BI,target bdnztla

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

bdnztlrl bdnztlrl BI equivalent to bclrl 8,BI bdnztlrl

bdz bdz target 1 equivalent to bc 18,0,target bdz

bdza bdza target 1 equivalent to bca 18,0,target bdza

bdzf bdzf BI,target equivalent to bc 2,BI,target bdzf

bdzfa bdzfa BI,target equivalent to bca 2,BI,target bdzfa

bdzfl bdzfl BI,target equivalent to bcl 2,BI,target bdzfl

bdzfla bdzfla BI,target equivalent to bcla 2,BI,target bdzfla

bdzflr bdzflr BI equivalent to bclr 2,BI bdzflr

bdzflrl bdzflrl BI equivalent to bclrl 2,BI bdzflrl

bdzl bdzl target 1 equivalent to bcl 18,BI,target bdzl

bdzla bdzla target 1 equivalent to bcla 18,BI,target bdzla

bdzlr bdzlr 1 equivalent to bclr 18,0 bdzlr

bdzlrl bdzlrl 1 equivalent to bclrl 18,0 bdzlrl

bdzt bdzt BI,target equivalent to bc 10,BI,target bdzt

bdzta bdzta BI,target equivalent to bca 10,BI,target bdzta

bdztl bdztl BI,target equivalent to bcl 10,BI,target bdztl

bdztla bdztla BI,target equivalent to bcla 10,BI,target bdztla

bdztlrl bdztlrl BI equivalent to bclrl 10, BI bdztlrl

beq beq crS,target equivalent to bc 12,BI2,target beq

beqa beqa crS,target equivalent to bca 12,BI2,target beqa

beqctr beqctr crS,target equivalent to bcctr 12,BI2,target beqctr

beqctrl beqctrl crS,target equivalent to bcctrl 12,BI2,target beqctrl
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beql beql crS,target equivalent to bcl 12,BI2,target beql

beqla beqla crS,target equivalent to bcla 12,BI2,target beqla

beqlr beqlr crS,target equivalent to bclr 12,BI2,target beqlr

beqlrl beqlrl crS,target equivalent to bclrl 12,BI2,target beqlrl

bf bf BI,target equivalent to bc 4,BI,target bf

bfa bfa BI,target equivalent to bca 4,BI,target bfa

bfctr bfctr BI equivalent to bcctr 4,BI bfctr

bfctrl bfctrl BI equivalent to bcctrl 4,BI bfctrl

bfl bfl BI,target equivalent to bcl 4,BI,target bfl

bfla bfla BI,target equivalent to bcla 4,BI,target bfla

bflr bflr BI equivalent to bclr 4,BI bflr

bflrl bflrl BI equivalent to bclrl 4,BI bflrl

bge bge crS,target equivalent to bc 4,BI3,target bge

bgea bgea crS,target equivalent to bca 4,BI3,target bgea

bgectr bgectr crS,target equivalent to bcctr 4,BI3,target bgectr

bgectrl bgectrl crS,target equivalent to bcctrl 4,BI3,target bgectrl

bgel bgel crS,target equivalent to bcl 4,BI3,target bgel

bgela bgela crS,target equivalent to bcla 4,BI3,target bgela

bgelr bgelr crS,target equivalent to bclr 4,BI3,target bgelr

bgelrl bgelrl crS,target equivalent to bclrl 4,BI3,target bgelrl

bgt bgt crS,target equivalent to bc 12,BI4,target bgt

bgta bgta crS,target equivalent to bca 12,BI4,target bgta

bgtctr bgtctr crS,target equivalent to bcctr 12,BI4,target bgtctr

bgtctrl bgtctrl crS,target equivalent to bcctrl 12,BI4,target bgtctrl

bgtl bgtl crS,target equivalent to bcl 12,BI4,target bgtl

bgtla bgtla crS,target equivalent to bcla 12,BI4,target bgtla

bgtlr bgtlr crS,target equivalent to bclr 12,BI4,target bgtlr

bgtlrl bgtlrl crS,target equivalent to bclrl 12,BI4,target bgtlrl

bl 0 1 0 0 1 0 LI 0 1 I bl

bla 0 1 0 0 1 0 LI 1 1 I bla

ble ble crS,target equivalent to bc 4,BI4,target ble

blea blea crS,target equivalent to bca 4,BI4,target blea

blectr blectr crS,target equivalent to bcctr 4,BI4,target blectr
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blectrl blectrl crS,target equivalent to bcctrl 4,BI4,target blectrl

blel blel crS,target equivalent to bcl 4,BI4,target blel

blela blela crS,target equivalent to bcla 4,BI4,target blela

blelr blelr crS,target equivalent to bclr 4,BI4,target blelr

blelrl blelrl crS,target equivalent to bclrl 4,BI4,target blelrl

blr blr 1 equivalent to bclr 20,0 blr

blrl blrl 1 equivalent to bclrl 20,0 blrl

blt blt crS,target equivalent to bc 12,BI,target blt

blta blta crS,target equivalent to bca 12,BI3,target blta

bltctr bltctr crS,target equivalent to bcctr 12,BI3,target bltctr

bltctrl bltctrl crS,target equivalent to bcctrl 12,BI3,target bltctrl

bltl bltl crS,target equivalent to bcl 12,BI3,target bltl

bltla bltla crS,target equivalent to bcla 12,BI3,target bltla

bltlr bltlr crS,target equivalent to bclr 12,BI3,target bltlr

bltlrl bltlrl crS,target equivalent to bclrl 12,BI3,target bltlrl

bne bne crS,target equivalent to bc 4,BI3,target bne

bnea bnea crS,target equivalent to bca 4,BI3,target bnea

bnectr bnectr crS,target equivalent to bcctr 4,BI3,target bnectr

bnectrl bnectrl crS,target equivalent to bcctrl 4,BI3,target bnectrl

bnel bnel crS,target equivalent to bcl 4,BI3,target bnel

bnela bnela crS,target equivalent to bcla 4,BI3,target bnela

bnelr bnelr crS,target equivalent to bclr 4,BI3,target bnelr

bnelrl bnelrl crS,target equivalent to bclrl 4,BI3,target bnelrl

bng bng crS,target equivalent to bc 4,BI4,target bng

bnga bnga crS,target equivalent to bca 4,BI4,target bnga

bngctr bngctr crS,target equivalent to bcctr 4,BI4,target bngctr

bngctrl bngctrl crS,target equivalent to bcctrl 4,BI4,target bngctrl

bngl bngl crS,target equivalent to bcl 4,BI4,target bngl

bngla bngla crS,target equivalent to bcla 4,BI4,target bngla

bnglr bnglr crS,target equivalent to bclr 4,BI4,target bnglr

bnglrl bnglrl crS,target equivalent to bclrl 4,BI4,target bnglrl

bnl bnl crS,target equivalent to bc 4,BI3,target bnl

bnla bnla crS,target equivalent to bca 4,BI3,target bnla
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bnlctr bnlctr crS,target equivalent to bcctr 4,BI3,target bnlctr

bnlctrl bnlctrl crS,target equivalent to bcctrl 4,BI3,target bnlctrl

bnll bnll crS,target equivalent to bcl 4,BI3,target bnll

bnlla bnlla crS,target equivalent to bcla 4,BI3,target bnlla

bnllr bnllr crS,target equivalent to bclr 4,BI3,target bnllr

bnllrl bnllrl crS,target equivalent to bclrl 4,BI3,target bnllrl

bns bns crS,target equivalent to bc 4,BI5,target bns

bnsa bnsa crS,target equivalent to bca 4,BI5,target bnsa

bnsctr bnsctr crS,target equivalent to bcctr 4,BI5,target bnsctr

bnsctrl bnsctrl crS,target equivalent to bcctrl 4,BI5,target bnsctrl

bnsl bnsl crS,target equivalent to bcl 4,BI5,target bnsl

bnsla bnsla crS,target equivalent to bcla 4,BI5,target bnsla

bnslr bnslr crS,target equivalent to bclr 4,BI5,target bnslr

bnslrl bnslrl crS,target equivalent to bclrl 4,BI5,target bnslrl

bnu bnu crS,target equivalent to bc 4,BI5,target bnu

bnua bnua crS,target equivalent to bca 4,BI5,target bnua

bnuctr bnuctr crS,target equivalent to bcctr 4,BI5,target bnuctr

bnuctrl bnuctrl crS,target equivalent to bcctrl 4,BI5,target bnuctrl

bnul bnul crS,target equivalent to bcl 4,BI5,target bnul

bnula bnula crS,target equivalent to bcla 4,BI5,target bnula

bnulr bnulr crS,target equivalent to bclr 4,BI5,target bnulr

bnulrl bnulrl crS,target equivalent to bclrl 4,BI5,target bnulrl

brinc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

bso bso crS,target equivalent to bc 12,BI5,target bso

bsoa bsoa crS,target equivalent to bca 12,BI5,target bsoa

bsoctr bsoctr crS,target equivalent to bcctr 12,BI5,target bsoctr

bsoctrl bsoctrl crS,target equivalent to bcctrl 12,BI5,target bsoctrl

bsol bsol crS,target equivalent to bcl 12,BI5,target bsol

bsola bsola crS,target equivalent to bcla 12,BI5,target bsola

bsolr bsolr crS,target equivalent to bclr 12,BI5,target bsolr

bsolrl bsolrl crS,target equivalent to bclrl 12,BI5,target bsolrl

bt bt BI,target equivalent to bc 12,BI,target bt

bta bta BI,target equivalent to bca 12,BI,target bta

Table D-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



Opcode Listings

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor D-7
 

btctr btctr BI equivalent to bcctr 12,BI btctr

btctrl btctrl BI equivalent to bcctrl 12,BI btctrl

btl btl BI,target equivalent to bcl 12,BI,target btl

btla btla BI,target equivalent to bcla 12,BI,target btla

btlr btlr BI equivalent to bclr 12,BI btlr

btlrl btlrl BI equivalent to bclrl 12,BI btlrl

bun bun crS,target equivalent to bc 12,BI5,target bun

buna buna crS,target equivalent to bca 12,BI5,target buna

bunctr bunctr crS,target equivalent to bcctr 12,BI5,target bunctr

bunctrl bunctrl crS,target equivalent to bcctrl 12,BI5,target bunctrl

bunl bunl crS,target equivalent to bcl 12,BI5,target bunl

bunla bunla crS,target equivalent to bcla 12,BI5,target bunla

bunlr bunlr crS,target equivalent to bclr 12,BI5,target bunlr

bunlrl bunlrl crS,target equivalent to bclrl 12,BI5,target bunlrl

clrlslwi clrlslwi rA,rS,b,n (n ≤ b ≤ 31) equivalent to rlwinm rA,rS,n,b – n,31 – n clrlslwi

clrlwi clrlwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,n,31 clrlwi

clrrwi clrrwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,0,31 – n clrrwi

cmp 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

cmpi 0 0 1 0 1 1 crfD / L rA SIMM D cmpi

cmpl 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 1 0 0 0 0 0 / X cmpl

cmpli 0 0 1 0 1 0 crfD / L rA UIMM D cmpli

cmplw cmplw crD,rA,rB equivalent to cmpl crD,0,rA,rB cmplw

cmplwi cmplwi crD,rA,UIMM equivalent to cmpli crD,0,rA,UIMM cmplwi

cmpw cmpw crD,rA,rB equivalent to cmp crD,0,rA,rB cmpw

cmpwi cmpwi crD,rA,SIMM equivalent to cmpi crD,0,rA,SIMM cmpwi

cntlzw 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

crclr crclr bx equivalent to crxor bx,bx,bx crclr

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crmove crmove bx,by equivalent to cror bx,by,by crmove

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand
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crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

crnot crnot bx,by equivalent to crnor bx,by,by crnot

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

crset crset bx equivalent to creqv bx,bx,bx crset

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

dcba 0 1 1 1 1 1 /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

dcbf 0 1 1 1 1 1 /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

dcbi 0 1 1 1 1 1 /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

dcblc 0 1 1 1 1 1 CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbst 0 1 1 1 1 1 /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

dcbt 0 1 1 1 1 1 CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

dcbtls 0 1 1 1 1 1 CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtst 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

dcbtstls 0 1 1 1 1 1 CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

dcbz 0 1 1 1 1 1 /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

divw 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

divwo 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

divwu 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.

divwuo 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

dss dss STRM equivalent to  dss STRM,0 dss

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

Table D-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



Opcode Listings

PowerPC e500 Core Family Reference Manual, Rev. 1

Freescale Semiconductor D-9
 

efdcmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv
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efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

eqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

evabs 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf
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evfscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 0 0 1 0 0 rD rA UIMM6 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 0 0 1 0 0 rD rA UIMM 6 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 0 0 1 0 0 rD rA UIMM 6 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 0 0 0 1 0 0 rD rA UIMM7 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat

evlhhesplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 0 0 0 1 0 0 rD rA UIMM 7 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 0 0 0 1 0 0 rD rA UIMM 7 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 0 0 0 1 0 0 rD rA UIMM8 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

Table D-1. Instructions (Binary) by Mnemonic

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



Opcode Listings

PowerPC e500 Core Family Reference Manual, Rev. 1

D-12 Freescale Semiconductor
 

evlwhex 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 0 0 1 0 0 rD rA UIMM 8 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 0 0 0 1 0 0 rD rA UIMM 8 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 0 0 0 1 0 0 rD rA UIMM 8 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx

evlwwsplat 0 0 0 1 0 0 rD rA UIMM 8 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

evmhesmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw

evmhessf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw
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evmheumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw

evmhogsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa

evmhogsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw

evmhossfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi

evmhoumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmr evmr rD,rA equivalent to evor rD,rA,rA evmr
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evmra 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa

evmwhumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

evmwhumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa

evmwsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa

evmwssfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian
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evnand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evnot evnot rD,rA equivalent to evnor rD,rA,rA evnot

evor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 0 0 1 0 0 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 0 0 1 0 0 rD rA UIMM 6 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 0 0 1 0 0 rS rA UIMM 6 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 0 0 1 0 0 rS rA UIMM 6 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 0 0 1 0 0 rS rA UIMM 8 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 0 0 0 1 0 0 rS rA UIMM 8 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 0 0 0 1 0 0 rS rA UIMM 8 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 0 0 0 1 0 0 rS rA UIMM 8 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw
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evsubfssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evsubiw evsubiw rD,rB,UIMM equivalent to evsubifw rD,UIMM,rB evsubiw

evsubw evsubw rD,rB,rA equivalent to evsubfw rD,rA,rB evsubw

evxor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

extlwi extlwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b,0,n – 1 extlwi

extrwi extrwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b + n, 32 – n,31 extrwi

extsb 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

extsh 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

icbi 0 1 1 1 1 1 /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

icblc 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 0 1 1 1 1 1 CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 0 1 1 1 1 1 CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

inslwi inslwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – b,b,(b + n) – 1 inslwi

insrwi insrwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – (b + n),b,(b + n) – 1 insrwi

isel 0 1 1 1 1 1 rD rA rB crb 0 1 1 1 1 0 X isel

iseleq iseleq rD,rA,rB equivalent to isel rD,rA,rB,2 iseleq

iselgt iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 iselgt

isellt isellt rD,rA,rB equivalent to isel rD,rA,rB,0 isellt

isync 0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 / XL isync

la la rD,d(rA) equivalent to addi rD,rA,d la

lbz 1 0 0 0 1 0 rD rA D D lbz

lbzu 1 0 0 0 1 1 rD rA D D lbzu

lbzux 0 1 1 1 1 1 rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

lbzx 0 1 1 1 1 1 rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

lha 1 0 1 0 1 0 rD rA D D lha

lhau 1 0 1 0 1 1 rD rA D D lhau

lhaux 0 1 1 1 1 1 rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux
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lhax 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhbrx 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

lhz 1 0 1 0 0 0 rD rA D D lhz

lhzu 1 0 1 0 0 1 rD rA D D lhzu

lhzux 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

lhzx 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

li li rD,value equivalent to addi rD,0,value li

lis lis rD,value equivalent to addis rD,0,value lis

lmw 1 0 1 1 1 0 rD rA D D lmw

lwarx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwbrx 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

lwz 1 0 0 0 0 0 rD rA D D lwz

lwzu 1 0 0 0 0 1 rD rA D D lwzu

lwzux 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

lwzx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

mbar 0 1 1 1 1 1 MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mcrf 0 1 0 0 1 1 crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

mcrxr 0 1 1 1 1 1 crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

mfcr 0 1 1 1 1 1 rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

mfcr mtcr rS equivalent to mtcrf 0xFF,rS mfcr

mfmsr 0 1 1 1 1 1 rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

mfpmr 0 1 1 1 1 1 rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

mfregname mfregname rD equivalent to mfspr rD,SPRn mfasr

mfspr 0 1 1 1 1 1 rD SPRN5–9 SPRN0–4 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

mr mr rA,rS equivalent to or rA,rS,rS mr

msync 0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtcr mtcr rS equivalent to mtcrf 0xFF,rS mtcr

mtcrf 0 1 1 1 1 1 rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtmsr 0 1 1 1 1 1 rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

mtpmr 0 1 1 1 1 1 rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

mtregname mtregname rS equivalent to mtspr SPRn rS mtregname

mtspr 0 1 1 1 1 1 rS SPRN5–9 SPRN0–4 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

mulhw 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw
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mulhw. 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mulhwu 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mulli 0 0 0 1 1 1 rD rA SIMM D mulli

mullw 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

mullwo 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

nand 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

neg 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

nego 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

nop nop equivalent to ori 0,0,0 nop

nor 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

not not rA,rS equivalent to nor rA,rS,rS not

or 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

orc 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

ori 0 1 1 0 0 0 rS rA UIMM D ori

oris 0 1 1 0 0 1 rS rA UIMM D oris

rfci 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfi 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

rfmci 0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

rlwimi 0 1 0 1 0 0 rS rA SH MB ME Rc M rlwimi

rlwimi. 0 1 0 1 0 0 rS rA SH MB ME Rc M rlwimi.

rlwinm 0 1 0 1 0 1 rS rA SH MB ME 0 M rlwinm

rlwinm. 0 1 0 1 0 1 rS rA SH MB ME 1 M rlwinm.

rlwnm 0 1 0 1 1 1 rS rA rB MB ME Rc M rlwnm

rlwnm. 0 1 0 1 1 1 rS rA rB MB ME Rc M rlwnm.
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rotlw rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31 rotlw

rotlwi rotlwi rA,rS,n equivalent to rlwinm rA,rS,n,0,31 rotlwi

rotrwi rotrwi rA,rS,n equivalent to rlwinm rA,rS,32 – n,0,31 rotrwi

sc 0 1 0 0 0 1 /// 1 / SC sc

slw 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

slwi slwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,n,0,31 – n slwi

sraw 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

srw 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

srwi srwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,32 – n,n,31 srwi

stb 1 0 0 1 1 0 rS rA D D stb

stbu 1 0 0 1 1 1 rS rA D D stbu

stbux 0 1 1 1 1 1 rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

stbx 0 1 1 1 1 1 rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

sth 1 0 1 1 0 0 rS rA D D sth

sthbrx 0 1 1 1 1 1 rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

sthu 1 0 1 1 0 1 rS rA D D sthu

sthux 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

sthx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

stmw 1 0 1 1 1 1 rS rA D D stmw

stw 1 0 0 1 0 0 rS rA D D stw

stwbrx 0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

stwcx. 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

stwu 1 0 0 1 0 1 rS rA D D stwu

stwux 0 1 1 1 1 1 rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

stwx 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

sub sub rD,rA,rB equivalent to subf rD,rB,rA sub

subc subc rD,rA,rB equivalent to subfc rD,rB,rA subc

subf 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf
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subf. 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

subfc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

subfco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

subfe 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

subfeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

subfic 0 0 1 0 0 0 rD rA SIMM D subfic

subfme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

subfmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo.

subfo 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

subfze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

subfzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

subi subi rD,rA,value equivalent to addi rD,rA,–value subi

subic subic rD,rA,value equivalent to addic rD,rA,–value subic

subic. subic. rD,rA,value equivalent to addic. rD,rA,–value subic.

subis subis rD,rA,value equivalent to addis rD,rA,–value subis

tlbivax 0 1 1 1 1 1 /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 0 1 1 1 1 1 ///9 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 0 1 1 1 1 1 /// rA rB 1 1 1 0 0 1 0 0 1 0 / X tlbsx

tlbsync 0 1 1 1 1 1 /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

tlbwe 0 1 1 1 1 1 /// 1 1 1 1 0 1 0 0 1 0 / X tlbwe

tw 0 1 1 1 1 1 TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

tweq tweq rA,SIMM equivalent to tw 4,rA,SIMM tweq

tweqi tweqi rA,SIMM equivalent to twi 4,rA,SIMM tweqi

twge twge rA,SIMM equivalent to tw 12,rA,SIMM twge
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twgei twgei rA,SIMM equivalent to twi 12,rA,SIMM twgei

twgt twgt rA,SIMM equivalent to tw 8,rA,SIMM twgt

twgti twgti rA,SIMM equivalent to twi 8,rA,SIMM twgti

twi 0 0 0 0 1 1 TO rA SIMM D twi

twle twle rA,SIMM equivalent to tw 20,rA,SIMM twle

twlei twlei rA,SIMM equivalent to twi 20,rA,SIMM twlei

twlge twlge rA,SIMM equivalent to tw 12,rA,SIMM twlge

twlgei twlgei rA,SIMM equivalent to twi 12,rA,SIMM twlgei

twlgt twlgt rA,SIMM equivalent to tw 1,rA,SIMM twlgt

twlgti twlgti rA,SIMM equivalent to twi 1,rA,SIMM twlgti

twlle twlle rA,SIMM equivalent to tw 6,rA,SIMM twlle

twllei twllei rA,SIMM equivalent to twi 6,rA,SIMM twllei

twllt twllt rA,SIMM equivalent to tw 2,rA,SIMM twllt

twllti twllti rA,SIMM equivalent to twi 2,rA,SIMM twllti

twlng twlng rA,SIMM equivalent to tw 6,rA,SIMM twlng

twlngi twlngi rA,SIMM equivalent to twi 6,rA,SIMM twlngi

twlnl twlnl rA,SIMM equivalent to tw 5,rA,SIMM twlnl

twlnli twlnli rA,SIMM equivalent to twi 5,rA,SIMM twlnli

twlt twlt rA,SIMM equivalent to tw 16,rA,SIMM twlt

twlti twlti rA,SIMM equivalent to twi 16,rA,SIMM twlti

twne twne rA,SIMM equivalent to tw 24,rA,SIMM twne

twnei twnei rA,SIMM equivalent to twi 24,rA,SIMM twnei

twng twng rA,SIMM equivalent to tw 20,rA,SIMM twng

twngi twngi rA,SIMM equivalent to twi 20,rA,SIMM twngi

twnl twnl rA,SIMM equivalent to tw 12,rA,SIMM twnl

twnli twnli rA,SIMM equivalent to twi 12,rA,SIMM twnli

wrtee 0 1 1 1 1 1 rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

xor 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

xori 0 1 1 0 1 0 rS rA UIMM D xori

xoris 0 1 1 0 1 1 rS rA UIMM D xoris

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.
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D.2 Instructions (Decimal and Hexadecimal) by Opcode
Table D-2  lists e500 instructions by opcode. 

2 The value in the BI operand selects CRn[2], the EQ bit. 
3 The value in the BI operand selects CRn[0], the LT bit. 
4 The value in the BI operand selects CRn[1], the GT bit. 
5 The value in the BI operand selects CRn[3], the SO bit. 
6 d = UIMM * 8
7 d = UIMM * 2
8 d = UIMM * 4
9 This field is defined as allocated by the Book E architecture, for possible use in an implementation. These bits are not implemented in 

the e500. 

Table D-2. Instructions (Decimal and Hexadecimal) by Opcode
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twi 03 TO rA SIMM D twi

brinc 04 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

efsabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfsf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 04 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt
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efststlt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

evabs 04 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 04 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 04 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 04 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 04 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 04 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 04 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 04 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 04 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 04 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 04 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 04 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 04 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 04 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 04 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 04 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 04 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 04 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 04 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 04 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 04 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 04 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 04 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi
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evfsctsiz 04 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 04 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 04 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 04 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 04 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 04 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 04 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 04 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 04 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 04 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

efscfd 04 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efdcfs 04 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

evldd 04 rD rA UIMM1 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 04 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 04 rD rA UIMM 1 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 04 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 04 rD rA UIMM 1 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 04 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 04 rD rA UIMM2 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat

evlhhesplatx 04 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 04 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 04 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 04 rD rA UIMM 2 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 04 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 04 rD rA UIMM3 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 04 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 04 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 04 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 04 rD rA UIMM 3 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 04 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 04 rD rA UIMM 3 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat
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evlwhsplatx 04 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx

evlwwsplat 04 rD rA UIMM 3 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 04 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 04 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 04 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 04 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 04 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 04 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 04 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 04 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 04 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 04 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 04 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 04 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

evmhesmi 04 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 04 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 04 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw

evmhessf 04 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 04 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 04 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 04 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw

evmheumi 04 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 04 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 04 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 04 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw
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evmhogsmfaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa

evmhogsmfan 04 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 04 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 04 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 04 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 04 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 04 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 04 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 04 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 04 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 04 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 04 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 04 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw

evmhossfanw 04 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 04 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 04 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi

evmhoumia 04 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 04 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 04 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 04 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 04 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmra 04 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 04 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 04 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 04 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 04 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 04 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 04 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa
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evmwhumi 04 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

evmwhumia 04 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 04 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 04 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 04 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 04 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 04 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 04 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 04 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 04 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 04 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 04 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 04 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 04 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 04 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa

evmwsmian 04 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 04 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 04 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 04 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa

evmwssfan 04 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 04 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 04 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 04 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 04 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian

evnand 04 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 04 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 04 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 04 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 04 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 04 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 04 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi
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evrndw 04 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 04 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 04 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 04 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 04 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 04 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 04 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 04 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 04 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 04 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 04 rD rA UIMM 1 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 04 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 04 rS rA UIMM 1 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 04 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 04 rS rA UIMM 1 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 04 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 04 rS rA UIMM 3 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 04 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 04 rS rA UIMM 3 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 04 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 04 rS rA UIMM 3 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 04 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 04 rS rA UIMM 3 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 04 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw

evsubfssiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 04 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 04 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 04 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 04 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evxor 04 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

mulli 07 rD rA SIMM D mulli

subfic 08 rD rA SIMM D subfic
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cmpli 10 (0x0A) crfD / L rA UIMM D cmpli

cmpi 11 (0x0B) crfD / L rA SIMM D cmpi

addic 12 (0x0C) rD rA SIMM D addic

addic. 13 (0x0D) rD rA SIMM D addic.

addi 14 (0x0E) rD rA SIMM D addi

addis 15 (0x0F) rD rA SIMM D addis

bc 16 (0x10) BO BI BD 0 0 B bc

bca 16 (0x10) BO BI BD 1 0 B bca

bcl 16 (0x10) BO BI BD 0 1 B bcl

bcla 16 (0x10) BO BI BD 1 1 B bcla

sc 17 (0x11) /// 1 / SC sc

b 18 (0x12) LI 0 0 I b

ba 18 (0x12) LI 1 0 I ba

bl 18 (0x12) LI 0 1 I bl

bla 18 (0x12) LI 1 1 I bla

bcctr 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

bclr 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

crand 19 (0x13) crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crandc 19 (0x13) crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

creqv 19 (0x13) crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crnand 19 (0x13) crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

crnor 19 (0x13) crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

cror 19 (0x13) crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

crorc 19 (0x13) crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

crxor 19 (0x13) crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

isync 19 (0x13) /// 0 0 1 0 0 1 0 1 1 0 / XL isync

mcrf 19 (0x13) crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

rfci 19 (0x13) /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfi 19 (0x13) /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

rfmci 19 (0x13) /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

rlwimi 20 (0x14) rS rA SH MB ME Rc M rlwimi
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rlwimi. 20 (0x14) rS rA SH MB ME Rc M rlwimi.

rlwinm 21 (0x15) rS rA SH MB ME 0 M rlwinm

rlwinm. 21 (0x15) rS rA SH MB ME 1 M rlwinm.

rlwnm 23 (0x17) rS rA rB MB ME Rc M rlwnm

rlwnm. 23 (0x17) rS rA rB MB ME Rc M rlwnm.

ori 24 (0x18) rS rA UIMM D ori

oris 25 (0x19) rS rA UIMM D oris

xori 26 (0x1A) rS rA UIMM D xori

xoris 27 (0x1B) rS rA UIMM D xoris

andi. 28 (0x1C) rS rA UIMM D andi.

andis. 29 (0x1D) rS rA UIMM D andis.

add 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

addc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

addco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

adde 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

addeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

addme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

addmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

addo 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

addze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

addzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

and 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.
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andc 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

bbelr 31 (0x1F) /// 1 0 0 0 1 0 0 1 1 0 0 X bbelr

bblels 31 (0x1F) /// 1 0 0 0 1 0 0 1 1 0 0 X bblels

cmp 31 (0x1F) crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

cmpl 31 (0x1F) crfD / L rA rB 0 0 0 0 1 0 0 0 0 0 / X cmpl

cntlzw 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

dcba 31 (0x1F) /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

dcbf 31 (0x1F) /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

dcbi 31 (0x1F) /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

dcblc 31 (0x1F) CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbst 31 (0x1F) /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

dcbt 31 (0x1F) CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

dcbtls 31 (0x1F) CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtst 31 (0x1F) CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

dcbtstls 31 (0x1F) CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

dcbz 31 (0x1F) /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

divw 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

divwo 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

divwu 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.

divwuo 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

eqv 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

extsb 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

extsh 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

icbi 31 (0x1F) /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi
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icblc 31 (0x1F) CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 31 (0x1F) CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 31 (0x1F) CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

isel 31 (0x1F) rD rA rB crb 0 1 1 1 1 0 X isel

lbzux 31 (0x1F) rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

lbzx 31 (0x1F) rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

lhaux 31 (0x1F) rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

lhax 31 (0x1F) rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhbrx 31 (0x1F) rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

lhzux 31 (0x1F) rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

lhzx 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

lwarx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwbrx 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

lwzux 31 (0x1F) rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

lwzx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

mbar 31 (0x1F) MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mcrxr 31 (0x1F) crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

mfcr 31 (0x1F) rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

mfmsr 31 (0x1F) rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

mfpmr 31 (0x1F) rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

mfspr 31 (0x1F) rD SPRN5–9 SPRN0–4 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

msync 31 (0x1F) /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtcrf 31 (0x1F) rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtmsr 31 (0x1F) rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

mtpmr 31 (0x1F) rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

mtspr 31 (0x1F) rS SPRN5–9 SPRN0–4 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

mulhw 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mulhwu 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mullw 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

mullwo 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo
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mullwo. 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

nand 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

neg 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

nego 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

nor 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

or 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

orc 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

slw 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

sraw 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

srw 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

stbux 31 (0x1F) rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

stbx 31 (0x1F) rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

sthbrx 31 (0x1F) rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

sthux 31 (0x1F) rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

sthx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

stwbrx 31 (0x1F) rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

stwcx. 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

stwux 31 (0x1F) rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

stwx 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

subf 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

subfc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc
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subfc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

subfco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

subfe 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

subfeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

subfme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

subfmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo.

subfo 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

subfze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

subfzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

tlbivax 31 (0x1F) /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 31 (0x1F) ///4 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 31 (0x1F) /// 4 rA rB 1 1 1 0 0 1 0 0 1 0 /4 X tlbsx

tlbsync 31 (0x1F) /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

tlbwe 31 (0x1F) /// 4 1 1 1 1 0 1 0 0 1 0 / X tlbwe

tw 31 (0x1F) TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

wrtee 31 (0x1F) rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 31 (0x1F) /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

xor 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

lwz 32 (0x20) rD rA D D lwz

lwzu 33 (0x21) rD rA D D lwzu

lbz 34 (0x22) rD rA D D lbz

lbzu 35 (0x23) rD rA D D lbzu

stw 36 (0x24) rS rA D D stw

stwu 37 (0x25) rS rA D D stwu
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D.3 Instructions by Form
Table D-3 lists e500 instructions by form.

stb 38 (0x26) rS rA D D stb

stbu 39 (0x27) rS rA D D stbu

lhz 40 (0x28) rD rA D D lhz

lhzu 41 (0x29) rD rA D D lhzu

lha 42 (0x2A) rD rA D D lha

lhau 43 (0x2B) rD rA D D lhau

sth 44 (0x2C) rS rA D D sth

sthu 45 (0x2D) rS rA D D sthu

lmw 46 (0x2E) rD rA D D lmw

stmw 47 (0x2F) rS rA D D stmw

1 d = UIMM * 8
2 d = UIMM * 2
3 d = UIMM * 4
4 This field is defined as allocated by the Book E architecture for possible use in an implementation. These bits are not implemented in 

the e500. 

Table D-3. Instructions (Binary) by Form
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add 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

addc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

addco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

adde 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

addeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

addme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

addmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

Table D-2. Instructions (Decimal and Hexadecimal) by Opcode

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



Opcode Listings

PowerPC e500 Core Family Reference Manual, Rev. 1

D-36 Freescale Semiconductor
 

addo 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

addze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

addzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

and 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

andc 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

bbelr 0 1 1 1 1 1 /// 1 0 0 0 1 0 0 1 1 0 0 X bbelr

bblels 0 1 1 1 1 1 /// 1 0 0 0 1 0 0 1 1 0 0 X bblels

cmp 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

cmpl 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 1 0 0 0 0 0 / X cmpl

cntlzw 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

dcba 0 1 1 1 1 1 /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

dcbf 0 1 1 1 1 1 /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

dcbi 0 1 1 1 1 1 /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

dcblc 0 1 1 1 1 1 CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbst 0 1 1 1 1 1 /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

dcbt 0 1 1 1 1 1 CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

dcbtls 0 1 1 1 1 1 CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtst 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

dcbtstls 0 1 1 1 1 1 CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

dcbz 0 1 1 1 1 1 /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

divw 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

divwo 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

divwu 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.

divwuo 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo
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divwuo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

eqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

extsb 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

extsh 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

icbi 0 1 1 1 1 1 /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

icblc 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 0 1 1 1 1 1 CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 0 1 1 1 1 1 CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

isel 0 1 1 1 1 1 rD rA rB crb 0 1 1 1 1 0 X isel

lbzux 0 1 1 1 1 1 rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

lbzx 0 1 1 1 1 1 rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

lhaux 0 1 1 1 1 1 rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

lhax 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhbrx 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

lhzux 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

lhzx 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

lwarx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwbrx 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

lwzux 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

lwzx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

mbar 0 1 1 1 1 1 MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mcrxr 0 1 1 1 1 1 crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

mfcr 0 1 1 1 1 1 rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

mfmsr 0 1 1 1 1 1 rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

msync 0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtmsr 0 1 1 1 1 1 rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

mulhw 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mulhwu 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.
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mullw 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

mullwo 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

nand 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

neg 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

nego 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

nor 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

or 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

orc 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

slw 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

sraw 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

srw 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

stbux 0 1 1 1 1 1 rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

stbx 0 1 1 1 1 1 rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

sthbrx 0 1 1 1 1 1 rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

sthux 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

sthx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

stwbrx 0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

stwcx. 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

subf 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.
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subfc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

subfco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

subfe 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

subfeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

subfme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

subfmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo.

subfo 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

subfze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

subfzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

tlbivax 0 1 1 1 1 1 /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 0 1 1 1 1 1 ///1 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 0 1 1 1 1 1 /// rA rB 1 1 1 0 0 1 0 0 1 0 / X tlbsx

tlbsync 0 1 1 1 1 1 /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

tlbwe 0 1 1 1 1 1 /// 1 1 1 1 0 1 0 0 1 0 / X tlbwe

tw 0 1 1 1 1 1 TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

wrtee 0 1 1 1 1 1 rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

xor 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

bc 0 1 0 0 0 0 BO BI BD 0 0 B bc

bca 0 1 0 0 0 0 BO BI BD 1 0 B bca

bcl 0 1 0 0 0 0 BO BI BD 0 1 B bcl

bcla 0 1 0 0 0 0 BO BI BD 1 1 B bcla

addi 0 0 1 1 1 0 rD rA SIMM D addi
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addic 0 0 1 1 0 0 rD rA SIMM D addic

addic. 0 0 1 1 0 1 rD rA SIMM D addic.

addis 0 0 1 1 1 1 rD rA SIMM D addis

andi. 0 1 1 1 0 0 rS rA UIMM D andi.

andis. 0 1 1 1 0 1 rS rA UIMM D andis.

cmpi 0 0 1 0 1 1 crfD / L rA SIMM D cmpi

cmpli 0 0 1 0 1 0 crfD / L rA UIMM D cmpli

lbz 1 0 0 0 1 0 rD rA D D lbz

lbzu 1 0 0 0 1 1 rD rA D D lbzu

lha 1 0 1 0 1 0 rD rA D D lha

lhau 1 0 1 0 1 1 rD rA D D lhau

lhz 1 0 1 0 0 0 rD rA D D lhz

lhzu 1 0 1 0 0 1 rD rA D D lhzu

lmw 1 0 1 1 1 0 rD rA D D lmw

lwz 1 0 0 0 0 0 rD rA D D lwz

lwzu 1 0 0 0 0 1 rD rA D D lwzu

mulli 0 0 0 1 1 1 rD rA SIMM D mulli

ori 0 1 1 0 0 0 rS rA UIMM D ori

oris 0 1 1 0 0 1 rS rA UIMM D oris

stb 1 0 0 1 1 0 rS rA D D stb

stbu 1 0 0 1 1 1 rS rA D D stbu

sth 1 0 1 1 0 0 rS rA D D sth

sthu 1 0 1 1 0 1 rS rA D D sthu

stmw 1 0 1 1 1 1 rS rA D D stmw

stw 1 0 0 1 0 0 rS rA D D stw

stwu 1 0 0 1 0 1 rS rA D D stwu

stwux 0 1 1 1 1 1 rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

stwx 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

subfic 0 0 1 0 0 0 rD rA SIMM D subfic

twi 0 0 0 0 1 1 TO rA SIMM D twi

xori 0 1 1 0 1 0 rS rA UIMM D xori

xoris 0 1 1 0 1 1 rS rA UIMM D xoris

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs
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efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt
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efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

brinc2 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

evabs 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmiaaw

evaddssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssiaaw

evaddumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumiaaw

evaddusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusiaaw

evaddw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 0 0 0 1 0 0 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu
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eveqv 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 0 0 1 0 0 rD rA UIMM2 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesplat 0 0 0 1 0 0 rD rA UIMM3 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesplat
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evlhhesplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesplatx

evlhhossplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhossplat

evlhhossplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhossplatx

evlhhousplat 0 0 0 1 0 0 rD rA UIMM 3 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhousplat

evlhhousplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhousplatx

evlwhe 0 0 0 1 0 0 rD rA UIMM4 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 0 0 1 0 0 rD rA UIMM 4 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 0 0 0 1 0 0 rD rA UIMM 4 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 0 0 0 1 0 0 rD rA UIMM 4 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhsplatx

evlwwsplat 0 0 0 1 0 0 rD rA UIMM 4 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsplat

evlwwsplatx 0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsplatx

evmergehi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergehi

evmergehilo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergehilo

evmergelo 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergelohi 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergelohi

evmhegsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegsmfaa

evmhegsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegsmfan

evmhegsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegsmiaa

evmhegsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegsmian

evmhegumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegumiaa

evmhegumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegumian

evmhesmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesmf

evmhesmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesmfa

evmhesmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesmfaaw

evmhesmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesmfanw

evmhesmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesmi

evmhesmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesmia

evmhesmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesmiaaw

evmhesmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesmianw
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evmhessf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhessfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessfaaw

evmhessfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessfanw

evmhessiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessiaaw

evmhessianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessianw

evmheumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheumi

evmheumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheumia

evmheumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheumiaaw

evmheumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheumianw

evmheusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusiaaw

evmheusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusianw

evmhogsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogsmfaa

evmhogsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogsmfan

evmhogsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogsmiaa

evmhogsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogsmian

evmhogumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogumiaa

evmhogumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogumian

evmhosmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosmf

evmhosmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosmfa

evmhosmfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosmfaaw

evmhosmfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosmfanw

evmhosmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosmi

evmhosmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosmia

evmhosmiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosmiaaw

evmhosmianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosmianw

evmhossf 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossfa

evmhossfaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossfaaw

evmhossfanw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossfanw

evmhossiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossiaaw

evmhossianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossianw

evmhoumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoumi
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evmhoumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoumia

evmhoumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoumiaaw

evmhoumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoumianw

evmhousiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousiaaw

evmhousianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousianw

evmra 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsmf

evmwhsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsmfa

evmwhsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsmi

evmwhsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsmia

evmwhssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssfa

evmwhumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhumi

evmwhumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhumia

evmwhusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusiaaw

evmwhusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusianw

evmwlumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumia

evmwlumiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumiaaw

evmwlumianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumianw

evmwlusiaaw 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusiaaw

evmwlusianw 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusianw

evmwsmf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmfa

evmwsmfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmfaa

evmwsmfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmfan

evmwsmi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmia

evmwsmiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmiaa

evmwsmian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmian

evmwssf 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssfa 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssfaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfaa
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evmwssfan 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfan

evmwumi 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumia 0 0 0 1 0 0 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumia

evmwumiaa 0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumiaa

evmwumian 0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumian

evnand 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 0 0 1 0 0 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 0 0 1 0 0 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 0 0 1 0 0 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 0 0 0 1 0 0 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 0 0 1 0 0 rD rA UIMM 2 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 0 0 1 0 0 rS rA UIMM 2 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 0 0 1 0 0 rS rA UIMM 2 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 0 0 1 0 0 rS rA UIMM 4 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 0 0 0 1 0 0 rS rA UIMM 4 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 0 0 0 1 0 0 rS rA UIMM 4 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe
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evstwwex 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 0 0 0 1 0 0 rS rA UIMM 4 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 0 0 0 1 0 0 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsmiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsmiaaw

evsubfssiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssiaaw

evsubfumiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfumiaaw

evsubfusiaaw 0 0 0 1 0 0 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusiaaw

evsubfw 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 0 0 0 1 0 0 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evxor 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

b 0 1 0 0 1 0 LI 0 0 I b

ba 0 1 0 0 1 0 LI 1 0 I ba

bl 0 1 0 0 1 0 LI 0 1 I bl

bla 0 1 0 0 1 0 LI 1 1 I bla

rlwimi 0 1 0 1 0 0 rS rA SH MB ME Rc M rlwimi

rlwimi. 0 1 0 1 0 0 rS rA SH MB ME Rc M rlwimi.

rlwinm 0 1 0 1 0 1 rS rA SH MB ME 0 M rlwinm

rlwinm. 0 1 0 1 0 1 rS rA SH MB ME 1 M rlwinm.

rlwnm 0 1 0 1 1 1 rS rA rB MB ME Rc M rlwnm

rlwnm. 0 1 0 1 1 1 rS rA rB MB ME Rc M rlwnm.

sc 0 1 0 0 0 1 /// 1 / SC sc

mfpmr 0 1 1 1 1 1 rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

mfspr 0 1 1 1 1 1 rD SPRN5–9 SPRN0–4 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

mtcrf 0 1 1 1 1 1 rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtpmr 0 1 1 1 1 1 rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

mtspr 0 1 1 1 1 1 rS SPRN5–9 SPRN0–4 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

bcctr 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

bclr 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv
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crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

isync 0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 / XL isync

mcrf 0 1 0 0 1 1 crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

rfci 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfi 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

rfmci 0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

1 This field is defined as allocated by the Book E architecture, for possible use in an implementation. These bits are not implemented in 
the e500.

2 d = UIMM * 8
3 d = UIMM * 2
4 d = UIMM * 4
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Appendix E
Revision History
This appendix provides a list of major differences between revisions of the PowerPC e500 Core 
Reference Manual.

NOTE
While previous revisions of this manual covered only the e500v1 core, 
referring to it simply as the e500 core, this revision includes coverage 
of both the e500v1 and e500v2 cores. As a result, substantial portions 
of the manual were altered.

E.1 Major Changes From Revision 0 to Revision 1
Table E-1. Revision History

Chapter or Section Description

Throughout Revised manual to include coverage of e500v2 core. See Section 1.3.1, “e500v2 Differences,” for 
a list of key differences between the e500v1 and e500v2 cores.

The coverage of Book E and Freescale Book E MMU architecture (formerly in Chapter 13, Cache 
and MMU Background) was removed. See the EREF: A reference for Freescale Book E and the 
e500 Core for more information on this subject.

Section 1.9.1, “Address 
Translation”

Replaced Figure 1-9 to reflect corrections to address translation bit compositions made in MMU 
chapter. Added Figure 1-10 for the e500v2 core.

Chapter 2, “Register Model” Deleted MCSR bits 48–54.
Also removed “Recoverable” column of bit descriptions

Removed SHAREN/SHAREND references in MAS2 and MAS4.

Section 2.10.2, “Hardware 
Implementation-Dependent 
Register 1 (HID1)”

Modified description of HID1[RFXE]

Section 2.12.2, “MMU 
Control and Status Register 
0 (MMUCSR0)

Deleted bits 59–60. They are now reserved.

Section 2.12.5, “MMU Assist 
Registers (MAS0–MAS4, 
MAS6–MAS7)”

Modified MAS register descriptions to correspond to those of MMU chapter
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Chapter 3, “Instruction 
Model”

Scalar and vector embedded floating-point instructions are now considered to be in separate 
APUs from the SPE APU. 

Added material on double-precision floating-point APU

Notes have been added discouraging use of SPE and embedded floating-point instructions in 
PowerQUICC III applications. 

Section 3.2.3.1, 
“Synchronization 
Requirements for 
e500-Specific SPRs”

In Table 3-4, all of the mtspr to debug register (IAC, DAC, DBCR0, DBCR1, DBSR) instructions 
must be followed by a context-synchronizing instruction, but no synchronization is required before 
them. Previously, no post-synchronization was shown. 

Section 3.3.1.6.1, “mbar 
(MO = 1)”

Added section to provide an EIS architectural definition for mbar (MO = 1), which is the classic 
PowerPC architecture definition of eieio.

Section 3.3.1.8.1, 
“User-Level Cache 
Instructions”

In Table 3-26, the dcbz instruction does not take an alignment interrupt if the cache is disabled. 

Section 3.5, “Using msync 
and mbar to Order Memory 
Accesses”

Added section

Section 3.10, “Instruction 
Listing”

Book E 64-bit instructions were removed from Table 3-44. 

Section 5.3, “Interrupt 
Registers

Deleted MCSR[GL_CI] from Table 5-4. Also removed column “Recoverable” in same table

Section 5.7, “Interrupt 
Definitions”

Deleted references to ESR[AP], which is not implemented on the e500. 

Chapter 9, “Timer Facilities” Corrected concatenation order of WPEXT || WP and (FPEXT || FP)
TCR[WPEXT] and TCR[FPEXT], not specified in Book E, are concatenated with TCR[WP] and 
TCR[FP]

Chapter 10, “Auxiliary 
Processing Units (APUs)”

Removed coverage of Freescale Book E–defined APUs. See the EREF for more information.

Chapter 11, “L1 Caches” Removed references to MEI.

Deleted the ‘D’ from the acronyms for the L1CSR0 bit fields

Section 11.2.2, “L1 
Instruction Cache 
Organization”

Added note: On the e500v1, it is possible for multiple entries in the L1 instruction cache to contain 
data for the same physical memory location. This error can occur when two different effective 
addresses (EA) map to the same physical address and accesses to these two EAs occur within 
the same context and relatively close together in time.
This is avoided by not fetching instructions from one physical address through two or more 
different EAs within any given context. 

Section 11.2.3, “L1 Cache 
Parity”

Added section. .

Section 11.2.4, “Cache 
Parity Error Injection”

Changed name of L1CSR0[PEIE] to CPI and L1CSR1[IPEIE] to ICPI. Added requirement to have 
cache parity checking enabled if cache parity injection is enabled. 

Table E-1. Revision History

Chapter or Section Description
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Section 11.3.4.5, 
“Speculative Accesses to 
Guarded Memory”

Added caution about cacheable and guarded loads for e500v1

Section 11.3.5.2, 
“Sequential Consistency of 
Memory Accesses”

Replaced “Newer caching-allowed loads can bypass older caching-allowed loads only if the two 
loads are to different 32-byte address granules” with “Newer non-guarded, caching-allowed loads 
can bypass older non-guarded, caching-allowed loads.”

Chapter 12, “Memory 
Management Units”

Removed references to SHAREN, SHAREND, MEI

Section 12.2, 
“Effective-to-Real Address 
Translation”

Corrected bit number compositions in effective-to-real address translation figures, Figure 12-1 
and Figure 12-2

Chapter 13, “Core Complex 
Bus (CCB)”

Added chapter

Table E-1. Revision History

Chapter or Section Description
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Index

Numerics

Numerics
36-bit real addressing, 2-45, 12-1, 12-5, 12-8
64-bit–specific Book E instructions, B-1

A
Accumulator

signal processing engine (SPE) APU, 2-52
addi, C-24
addis, C-24
Address streaming mode on CCB, 13-7
Address translation

see Memory management unit (MMU), 1-26
Addresses

36-bit physical addressing, 12-31
Addressing modes

32-bit Book E implementations, B-2
register indirect

integer, 3-19
with immediate index, integer, 3-18
with index, integer, 3-19

Aliasing of addresses, see Caches, coherency
Alignment

misaligned accesses, 3-2
relation to Endian (E) bit, 11-13

natural boundaries for extended vector instructions, 3-44
Alignment interrupt, 5-22

see also Interrupt handling
Arithmetic instructions

integer, 3-5, 3-13
Atomic memory references, 1-29, 3-21

update primitives lwarx and stwcx., 3-32–3-37, 11-15, 
13-8

Auxiliary processing units (APUs)
branch target buffer locking APU (BPU), 10-2

see also Branch target buffer (BTB)
cache block lock and unlock APU, 3-61, 11-19, 11-21
embedded double-precision floating-point (DPFP) APU, 

3-49, 3-59
embedded single-precision floating-point (SPFP) APUs, 

3-2, 3-58, 5-3
isel (instruction select) APU, 3-25, 3-60
machine check interrupt APU, 3-63, 5-2

see also Interrupt handling, interrupt types, machine 
check interrupt

performance monitor APU, 3-60, 3-61, 5-33, 7-2
signal processing engine (SPE) APU, 3-49, 3-52, 5-3

B
BBEAR (branch buffer entry address register), 2-25
bbelr, 3-64
bblels, 3-65
BBTAR (branch buffer target address register), 2-25
Block diagram

e500 core complex, 1-2
BO encodings, 3-23
Book E architecture

32-bit addressing, B-3
32-bit instruction selection, B-3
auxiliary processing units (APUs), 1-3
debug model

debug model deviations, 8-3
events defined, 8-6

future upward compatibility and SPE APU, 1-3
instruction listing, 3-66
instructions with implementation-specific features, 3-43
interrupt and exception model, 5-1

exception priorities, 5-37–5-39
interrupt registers, 2-18, 5-5–5-6
terminology definitions, 5-1

supervisor-level instructions in the e500, 3-39
user-level instructions, 3-13

Boundedly undefined, definition, 3-6
Branch instructions

BO operand encodings, 3-23
condition register logical, 3-25, C-20
control of conditional branches, 3-23
list, 3-24
simplified mnemonics list, C-4, C-12, C-16
system linkage, 3-26, 3-40
trap, 3-25

Branch issue queue (BIQ), 4-6, 4-46
Branch registers, 2-9–2-10

condition register (CR), 2-9
count register (CTR), 2-10
link register (LR), 2-10
speculative copies of LR and CTR, 4-15

Branch target buffer (BTB)
branch unit control and status register (BUCSR), 2-26
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C–C Index

BTB locking APU, 4-23, 10-2–10-3
entry address register (BBEAR), 2-25
instructions, 3-63
instructions for locking, 10-2
operation, 4-11, 4-20–4-25

fetch group, 4-21
registers, 10-3
target address register (BBTAR), 2-25

Branch unit (BU)
branch prediction, 4-1, 4-11, 4-20–4-25

see also Branch target buffer (BTB)
completion, 4-18
debug events

branch taken (BRT), 8-12
execution timing, 4-18–4-25, 4-31

resources required to minimize stalls, 4-45
fetch/branch considerations, 4-45
resolution, 4-1

Breakpoints, see Instruction address compare registers 
(IAC1–IAC4)

BUCSR (branch unit control and status register), 2-26
Bus faults, 2-30, 13-9
Byte ordering

byte-reverse instructions, 3-22
misaligned accesses and Endian (E) bit, 11-13

C
Caches

block diagram with core interface, 4-26, 11-3
cache block lock and unlock APU, 3-61, 11-19

effects on PLRU, 11-27
flash clearing of lock bits, 11-21

cache control
cache management instructions, 3-37–3-39, 11-10, 11-16

comparison by architecture/implementation, 11-16
effects on locked lines, 11-21
overview, 1-29

enabling/disabling, 11-18
flushing with dcbf or dcbz, 11-22
invalidating, 11-18
overview, 11-16
registers

L1 configuration register 0 (L1CFG0), 2-34
L1 configuration register 1 (L1CFG1), 2-35

WIMGE bits, see Memory/cache access attributes 
(WIMGE bits)

coherency
4-state (MESI) coherency model, 11-7
coherency model, 11-9
coherency required bit (M bit), 11-12
global signaling, M bit , and snooping, 11-12
instruction cache coherency model, 11-8, 11-11

address aliasing errors, 11-8
maintaining in power down mode, 6-3
see also Memory/cache access attributes (WIMGE bits)

features of e500 L1 caches, 11-1
L2 cache

cache line locking, 11-19, 11-27, 13-2, 13-7
invalidating after a parity error, 11-27
operand to support L2 cache touch (CT=1), 3-37, 3-62

latency
cacheable loads from data cache, 11-4
instruction cache accesses, 4-13, 11-1

caching-inhibited accesses, 4-13
load/store unit (LSU) interactions, 4-25–4-27

store queue, 4-26
operation, 11-22

allocation on misses, 11-24
block replacement, 11-25

PLRU algorithm, 11-25, 11-26
cacheable loads and LSU, 11-4
data block push, 11-24
data cache block fills, 11-23
hits under misses, 11-6, 11-7
instruction cache block fills, 11-5, 11-23
misses and reloads, 11-23
store hit to a data cache block marked shared, 11-24
store miss merging, 11-4, 11-24

organization, 11-6
coupling with load/store unit (LSU), 11-3
L1 data cache, 11-6
L1 instruction cache, 11-7

overview, 1-20
parity checking, 5-17, 11-8

see also HID1 register
parity errors

parity error injection, 5-18, 11-9
see also Interrupt handling, interrupt types, machine 

check interrupt
status bits (MESI) per line, 11-7, 11-10

Classes of instructions, 3-6
Coherency

cache coherency, overview, 1-29
see also Caches, coherency

Completion (instruction completion), 4-6
completion queue (CQ), 4-1, 4-14
considerations, 4-14
definition, 4-1, 4-8, 4-9
pairs of instructions, 4-47
resource requirements, 4-46

Conditional branch control, 3-23
Context synchronization, 3-11, 3-44
Conventions

execution timing terminology, 4-1
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notational, 1-xxxiv
terminology, 1-xxxv

Core complex bus (CCB)
address streaming mode, 13-7
core interface unit, 11-5
L2 cache transactions, 13-7
memory ops boundary with mbar, 13-6
overview, 1-30, 13-1
parity checking, 13-5
signals described, 13-2
synchronization boundary with msync, 13-6

core_fault_in signal and interrupts, 2-30, 13-9
CR (condition register), 2-9

bit and identification symbols, C-11
execution latencies, 4-33
logical instructions, 3-25, C-20
move to/from CR instructions, 3-26
simplified mnemonics, C-20

Critical input interrupt (cint), 5-13
see also Interrupt handling

CSRR0–1 (critical save/restore reg’s 0–1), 2-18, 5-5
CTR (count register), 2-10

D
d, 1-xxxiv
DAC1–DAC2 (data address compare registers), 2-48
Data address compare, 2-48

debug events, 8-9
DAC modes, 8-10
effective address (EA) selection, 8-10
read/write selection, 8-9
user/supervisor selection, 8-10

Data cache, see Caches
Data organization in memory and data transfers, 3-1
Data TLB error interrupt, 5-27

see also Interrupt handling, interrupt types, TLB miss
DBCR0–DBCR2 (debug control registers), 2-46
DBSR (debug status register), 2-47
dcba, 3-38
dcbf, 3-38
dcbi, 3-40
dcbst, 3-38
dcbt, 3-38
dcbtst, 3-39
dcbz, 3-38
DEAR (data exception address register), 2-18, 5-5
Debug facilities

debug events, 8-6–8-14
branch taken, 8-12
data address compare, 8-9
instruction address compare, 8-7
instruction complete debug event, 8-12

interrupt taken debug event, 8-13
return debug event, 8-13
trap debug event, 8-11
unconditional debug event (UDE), 8-14

debug interrupts, 8-2
deviations from Book E debug model, 8-3
interrupts, 5-30

see also Interrupt handling
overview, 8-1
performance monitor uses, 7-1
programming model, 8-1

instructions used, 8-2
registers, 8-1

registers, 2-45–2-49
TAP controller, 8-4

Debug interrupt, 8-2
DEC (decrementer register), 2-16, 9-3
DECAR (decrementer auto-reload register), 2-16, 9-3
Decrementer

decrementer interrupt, 5-25
see also Interrupt handling

decrementer registers
DEC (decrementer register), 2-16, 9-3
DECAR (decrementer auto-reload register), 9-3
DECAR (decrementer auto-reload), 2-16

Dispatch, see Execution timing
D-L1TLB4K, see Memory management unit (MMU), TLBs
D-L1VSP, see Memory management unit (MMU), TLBs
Double-precision, see Embedded double-precision 

floating-point (DPFP) APU
Doze mode, 6-2

see also Power management
DSI (data storage interrupt), 5-19–5-20

see also Interrupt handling

E
e500 overview, 1-1

auxiliary processing units (APUs), 1-3
features, 1-5
future upward compatibility and SPE APU, 1-3

Effective address (EA)
loads/stores, 3-18
operand placement and performance, 4-30
translation to real address, see Memory management unit 

(MMU)
EIS, see Freescale Book E implementation standards (EIS)
Embedded double-precision floating-point (DPFP) APU, 

2-1, 3-49, 3-59, 10-4
instructions, 1-13
interrupts, 5-32

see also Interrupt handling
Embedded single-precision floating-point (SPFP) APUs
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instructions, 1-13, 3-2, 3-58
execution latencies, 4-38

interrupts, 5-3
FP data interrupt, 5-32
FP round interrupt, 5-32
see also Interrupt handling
SPE/FP unavailable interrupt, 5-31

Endianness
byte-reverse instructions, 3-22
little-endian pages, 2-42

ESR (exception syndrome register), 2-20, 5-5, 5-6
Event counting, see Performance monitor APU
Exceptions

definition, 5-1
exception handling, 1-20

extended model, 1-20
overview, 1-33
see also Interrupt handling

exception priorities, 5-37–5-39
exception syndrome register (ESR), 2-20, 5-5
exception type information

ESR or MCSR, 5-10
instruction exceptions that cause interrupts, 3-12, 5-8, 5-38
SPE exception bit (ESR[SPE]), 5-4, 5-7
types (more granular than interrupts)

data access exceptions, 5-12
byte ordering exception (DSI or ISI), 5-7, 5-12
cache locking exception (DSI), 5-12
lwarx or stwcx. with W = 1 exception, 5-12

debug exceptions, 5-12
illegal instr. exception (program interrupt), 5-6, 5-12, 

5-24
instruction access exceptions (ISI), 5-12
machine check exception sources, 5-15–5-18

bus and L1 cache (parity) errors, 5-7, 5-16
cache parity error injection, 5-7, 5-18

permissions violations (DSI or ISI), 12-24
privileged instr. exception (program interrupt), 5-6, 5-12, 

5-24
see also Interrupt handling, interrupt types
TLB misses (I or D TLB error interrupt), 5-12
TLB misses (TLB error interrupts—I or D), 12-2, 12-12, 

12-20, 12-22, 12-23, 12-24
trap instr. exceptions (program interrupt), 5-6, 5-12, 5-24

Execution model
self-modifying code, 3-17

Execution synchronization, 3-11
Execution timing

branch instructions, 4-18–4-25
branch prediction, 4-1, 4-11, 4-20–4-25

see also Branch target buffer (BTB)
completion, 4-18

latencies, 4-31
resolution, 4-1
resources for resolution of branches, 4-45

cache-related latency, instruction cache, 4-13
CR execution latencies, 4-33
definitions, 4-1

completion, 4-1, 4-6, 4-8, 4-9
decode, 4-2, 4-9
dispatch, 4-2
fetch, 4-2, 4-6, 4-9
finish, 4-2
issue, 4-2, 4-9
stages, 4-3
write-back, 4-8

execution units, 4-10, 4-18
multiple cycle unit (MU)

instructions executed, 4-8
performance considerations, 4-48

single cycle units (SUs)
instructions executed, 4-8
performance considerations, 4-47

FP instructions, 4-29
execution latencies, 4-38

instruction fetch timing considerations, 4-12–4-13
instruction flow, 4-4, 4-11
instruction pipeline, 1-14

complete stage, 1-18
decode/dispatch stage, 1-17
definition, 4-2
execute stages, 1-18
fetch stages (2), 1-16
issue queues (BIQ, GIQ), 1-17
write-back stage, 1-18

instruction pipeline stages, 4-4–4-10
completion, 4-1, 4-6, 4-8, 4-9

completion queue (CQ), 4-1, 4-14
pairs of instructions that can complete together, 4-47
resource requirements, 4-46

decode/dispatch, 4-2, 4-6, 4-9
considerations, 4-14
resource requirements, 4-45

execute stage, 4-7, 4-9
fetch stage, 4-2, 4-6, 4-9

and branch considerations, 4-45
instruction queue (IQ), 4-6, 4-10

flow diagram, 4-4, 4-5
issue, 4-2, 4-7, 4-9

resource requirements, 4-46
write-back, 4-8, 4-9

instruction unit
instruction line fill buffer (ILFB), 11-5

integer instructions
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execution latencies, 4-27, 4-33
issue queues (BIQ and GIQ), 4-6

GPR issue queue (GIQ), 4-46
latencies, 4-31–??
load/store instructions

execution latencies, 4-29, 4-35
LSU considerations

caches and pipelining in queues, 4-48
misalignment effects, 4-30, 4-49

memory performance considerations, 4-30
rename register operation, 4-7, 4-11, 4-15
scheduling guidelines, 4-44–4-50
SPE instruction latencies, 4-38
synchronization timing considerations, 4-17–4-18

mbar, 4-17
msync, 4-17

Execution units
see also Execution timing
timing examples, 4-18

F
Features list, 1-5
Fetch group, 4-21

see also Branch target buffer (BTB)
Fetch, see Execution timing
Finish definition, see Execution timing, definitions
Fixed-interval timer, 9-1

fixed-interval timer interrupt, 5-26
see also Interrupt handling

Floating-point model, 3-58
embedded double-precision (DPFP) instructions, 3-49, 

3-59
execution timing, 4-29
interrupt handling, see Interrupt handling, interrupt types, 

EIS-defined
single-precision (SPFP) instructions, 3-49

Fractions
integer and fractional operations, 3-52
signed fractions, format, 3-51

Freescale Book E architecture
interrupt model modifications, 5-2, 5-5, 5-6, 5-7, 5-8, 5-13, 

5-14, 5-19, 5-20, 5-22, 5-24, 5-27, 5-28, 5-31
interrupt registers, 5-6–5-7
interrupts and APUs

embedded single-precision floating-point (SPFP) APUs, 
5-3

machine check interrupt APU, 5-2
see also Auxiliary processing units (APUs)
signal processing engine (SPE) APU, 5-3

Freescale Book E implementation standards (EIS)
oveview, 1-3

G
Global accesses

signaling and snooping, 11-12
GPR issue queue (GIQ), 4-6, 4-46
GPRn (general-purpose registers 0–31), 2-9
Guarded memory (G bit), 12-16

see also Memory/cache access attributes (WIMGE bits)

H
Halted state, see Power management, core states
HIDn (hardware implementation-dependent registers)

HID0, 2-27, 9-2
HID1, 2-29

I
I/O accesses

ordering boundary with mbar, 13-6
IAC1–IAC2 (instruction address compare registers), 2-48
icbi, 3-39
icbt, 3-39
I-L1TLB4K, see Memory management unit (MMU), TLBs
I-L1VSP, see Memory management unit (MMU), TLBs
ILFB (instruction line fill buffer), 4-6

see also Execution timing, instruction fetch
Instruction address compare

as breakpoints, 2-48
debug event, 2-46
debug events

effective address (EA) selection, 8-8
IAC modes, 8-8
user/supervisor selection, 8-7

Instruction cache, see Caches
Instruction complete debug event, 8-12
Instruction fetching, see Execution timing
Instruction queue (IQ), 4-6, 4-10

see also Execution timing, instruction fetch
Instruction set

compatibility, 1-32
complete listing, 3-66
overview, 1-12, 3-13
summary, 3-5

Instruction TLB error interrupt, 5-29
see also Interrupt handling, interrupt types, TLB miss

Instructions
bbelr, 3-64
bblels, 3-65
Book E

64-bit–specific, B-1
Book E, see Book E architecture
branch, 4-18–4-25

condition register logical, 3-25
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conditional branch control, 3-23
predicting and resolution, 4-20
simplified mnemonics, C-4

branch target buffer (BTB), 3-63
branch target buffer (BTB) locking, 10-2
cache block lock and unlock instructions, 3-61
cache management instructions, 1-29, 11-10

supervisor, 3-40
user, 3-37–3-39

classes, one of four, 3-6
context synchronization, 3-11
e500-specific, 3-43
exceptions, 3-12
execution latencies, see Execution timing
execution synchronization, 3-11
floating-point, 1-13, 3-2, 3-58

compare, C-20
see also Embedded double-precision floating-point
see also SPE, and SPFP

flow diagram for e500, 4-5
incorrect settings, 3-6
integer

arithmetic, 3-13
compare, 3-15, C-20
logical, 3-15
rotate and shift, 3-16
rotate/shift, C-2
store, 3-21

isel (instruction select) APU, 3-25, 3-60
load and store, 3-17

address generation, 3-18
byte reverse, 3-22
execution latencies, 4-35
ld/st multiple, 3-22
load instructions, 3-20
memory synchronization, 3-30
misalignment handling, 3-17
store instructions, 3-21

memory synchronization, 3-48
reservations with lwarx and stwcx., 3-32–3-37, 3-48

no-op, C-24
performance monitor, 7-9
processor control, 3-26–3-29

move to/from CR, 3-26
move to/from MSR, 3-40
move to/from SPR, 3-26

refetch serialization, 4-16
serialization, 4-15, 4-47
SPE (signal processing engine) APU, 3-52
SPE and SPFP descriptions, 3-49
speculative instructions, 4-3
SPFP (single-precision floating-point) APUs, 3-58

store serialization, 4-16
system linkage, 3-26, 3-40
system register instruction latencies, 4-31
TLB management instructions, 3-41, 12-17–12-24

synchronization requirements, 3-10
trap, 3-25
unsupported, 3-3
update feature for loads and stores, 3-47

int (external input) interrupt, 5-21
see also Interrupt handling

Integer exception register (XER), 2-9
Integer instructions, 3-13–3-16

execution latencies, 4-27, 4-33
rotate/shift instructions, C-2

Interrupt classes
categories, 1-21

Interrupt handling
cache-inhibited stwcx.  with bus error, 5-40
categories of interrupts

critical interrupts, 5-1
machine check interrupt APU (EIS), 5-2

see also Interrupt handling, interrupt types, machine 
check interrupt

noncritical interrupts, 5-1
classes of interrupts

asynchronous interrupts, 5-9
synchronous, imprecise, 5-10
synchronous, precise, 5-9

debug event (interrupt taken), 8-13
definition of ’interrupt’, 5-1
guarded load pending with bus error, 5-40
guidelines for system software, 5-36
interrupt priorities

e500-specific priorities, 5-39
ordering of interrupts and masking, 5-37

interrupt types, 1-21
alignment interrupt, 5-22
critical input interrupt (cint), 5-13
debug interrupt, 8-2, 8-3
debug interrupts, 5-30
decrementer, 5-25
DSI (data storage interrupt), 5-19–5-20, 12-24
EIS-defined

embedded floating-point data interrupt, 5-32
embedded floating-point round interrupt, 5-32
SPE/FP APU unavailable interrupt, 5-31

external input interrupt (int), 5-21–5-22
fixed-interval timer, 5-26
instruction-caused interrupts, 3-12
ISI (instruction storage interrupt), 5-20–5-21, 12-24
machine check interrupt, 1-22, 2-30, 5-2, 5-14–5-18, 

13-9
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performance monitor interrupt, 5-33, 7-1, 7-10
program interrupt, 5-24–5-25
summary table, 5-12
system call, 5-25
TLB error, 12-2, 12-12, 12-20, 12-22, 12-23

data TLB error interrupt, 5-27
handler routines, 12-24
instruction TLB error interrupt, 5-29
MAS register updates for TLB error interrupts, 5-28

watchdog timer, 5-27
IVOR assignments, 5-12
latencies (upper bound), 1-22, 4-16, 5-39
machine check interrupt APU, 3-63
ordering of interrupts and masking, 5-35–5-37
overview, 5-1
power management considerations, 6-6
processing of interrupts, 5-10

instructions to consider in interrupt handler, 5-11
partially executed instructions, 5-33

recoverability from interrupts, 5-4
registers, 5-5–5-7

critical save/restore 0–1 (CSRR0–1), 2-18, 5-5
data exception address (DEAR), 2-18
data exception address register (DEAR), 5-5
debug settings, 8-3
defined by Book E for interrupts, 2-18, 5-5–5-6
defined by Freescale Book E for interrupts, 5-6–5-7
e500-specific, 2-22
exception syndrome register (ESR), 2-20, 5-5, 5-6
machine check address register (MCAR), 2-22, 5-6, 5-17
machine check save/restore 0–1 (MCSRR0–1), 2-22, 5-6
machine check syndrome (MCSR), 2-23
machine check syndrome register (MCSR), 5-6, 5-7
machine state register (MSR), 2-10, 5-6
overview, 1-22
save/restore 0–1 (SRR0–1), 2-18, 5-5
vector offset registers (IVOR0–IVOR15, 

IVOR32–IVOR35), 2-19, 5-5
vector prefix (IVPR32–IVPR47), 2-19, 5-5

Interrupt taken debug event, 8-13
IPROT invalidation protection, 12-12

see also Memory management unit (MMU), TLBs
isel (instruction select) APU, 3-25, 3-60
ISI (instruction storage interrupt), 5-20

see also Interrupt handling
Issue stage, see Execution timing
isync, 3-30
IVOR0–IVOR15, IVOR32–IVOR35 (vector offset 

registers), 2-19, 5-5
IVPR32–IVPR47 (vector prefix registers), 2-19, 5-5

J
JTAG signals, 8-5, 13-3

details, 8-6

L
L1 and L2 TLB access times, 4-12
L1 data cache, see Caches
L1 instruction cache, see Caches
L1CFG0 (L1 cache configuration register 0), 2-34
L1CFG1 (L1 cache configuration register 1), 2-35
L2 cache

CT value in cache line locking, 11-19, 11-27, 13-2, 13-7
CT value in cache touch instructions, 3-37, 3-62
invalidating after a parity error, 11-27

Latency, definition, 4-2
List insertion, A-6
Load miss queue (LMQ), 4-50

see also Load/store unit (LSU)
Load/store unit (LSU), 11-3

address generation, 3-18
byte reverse instructions, 3-22
cacheable loads

execution, 11-4
latency, 11-4

data line fill buffer (DLFB), 11-4
data write buffer (DWB), 11-5
execution latencies, 4-25–4-27, 4-29, 4-35

laod miss queue (LMQ), 4-50
store queue, 4-26

L1 load miss queue (LMQ), 11-4
ld/st multiple instructions, 3-22
load instructions, 3-20
misalignment handling, 3-17
operation, 4-25, 11-14
performed loads and stores, definition, 11-14
store instructions, 3-21
store ordering

mbar to enforce store ordering with respect to loads, 
11-15, 13-6

store queue (7-entry), 11-4
Lock acquisition and release, A-5
Locking lines in the caches, see Caches, cache block lock and 

unlock APU
LR (link register), 2-10
lwarx, 3-30, 3-48, 11-15, 13-8

M
Machine check interrupt APU, 1-22, 3-63, 5-14–5-18

see also Interrupt handling
MAS0–MAS4, MAS6–MAS7 (MMU assist registers), 1-27, 

2-39–2-45, 12-26–12-31
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mbar, 3-30, 3-47, 4-17, 13-6
MCAR (machine check address register), 2-22, 5-6, 5-17
mcp input, 5-7

see also Interrupt handling, interrupt types, machine check 
interrupt

MCSR (machine check syndrome register), 2-23, 5-6, 5-7
MCSRR0–1 (machine check save/restore reg’s 0–1), 2-22, 

5-6
Memory management unit (MMU)

address translation (EA to real address), 12-4
page sizes, variable-sized pages (VSPs), 12-6
virtual addresses and PIDs (process IDs), 12-5

features, 12-1
instructions, 12-17–12-24

tlbivax (invalidate), 12-20, 12-21
tlbre (read entry), 12-18
tlbsx (search), 12-19
tlbsync (synchronize), 12-22
tlbwe (write entry), 12-19

overview, 1-24, 1-33
process IDs (PID0–2), 12-5, 12-21
registers, 2-35–2-45, 12-25–12-32

MAS register updates, 12-32
process ID (PID0–2), 12-5, 12-21

TLBs, 12-8–12-25
access times, 4-12, 12-16
consistency between L1, L2 TLB arrays, 12-15
default TLB entries (on reset), 12-24
error on multiple TLB entry hit, 12-8, 12-15
field definitions of TLB entries, 12-17
fields compared to determine a hit, 12-7

access permissions, 12-7
fields on 32-bit Book E implementations, B-2
instructions, 3-41, 11-11
invalidation

invalidate all address encoding, 12-22
invalidate broadcast enabling, 12-22
invalidate selection for tlbivax, 12-21
IPROT (protect from invalidate), 12-12

L1 TLB arrays (not programmable), 12-8
D-L1TLB4K, 12-8
D-L1VSP, 12-8
I-L1TLB4K, 12-8
I-L1VSP, 12-8
replacement algorithm (true LRU), 12-10
structure, 12-9

L2 TLB arrays (programmable), 12-8
replacement algorithm (general), 12-13
replacement algorithm, hints for round robin (TLB0), 

12-13
structure, 12-11
TLB0 (4 Kbyte page sizes), 12-11, 12-18

TLB1 (variable page sizes), 12-11, 12-15, 12-18
maintenance, 12-3, 12-18, 12-22
misses (TLB error interrupts), 12-2, 12-12, 12-20, 12-22

automatic updates, 12-23
handler routines, 12-24

synchronization requirements, 3-6, 3-10
TLB coherency, 1-28
writing to TLB0, 12-19
writing to TLB1, 12-19

Memory model
access ordering, 1-29, 3-45
alignment support, 3-44
atomic updates, 1-29
data organization and transfers, 3-1
reservations, 3-32–3-37, 3-45, 3-48
sequential consistency of accesses, 11-15

and mbar, 3-47, 13-6
synchronization boundary with msync, 3-46, 13-6

Memory subsystem
overview, 1-33

Memory synchronization, 3-30
synchronization instructions, 3-48

Memory/cache access attributes (WIMGE bits), 1-30
caching-inhibited accesses (I bit), 2-42, 11-13

ci  internal signal, 13-2
Endianness (little-endian) bit (E bit), 2-42, 11-13
guarded memory bit (G bit), 2-42

guarded memory, 12-16
speculative accesses, 11-13

L1 caches effects, 11-13
memory coherency required bit (M bit), 2-42, 11-12

gbl  internal signal, 13-3
write-through mode (W bit), 2-42

write-back stores, 11-13
write-through stores, 11-13
wt  internal signal, 13-3

mfmsr, 3-40
mfspr, 3-26
Misaligned accesses, 3-2, 4-49, 11-13
MMUCFG (MMU configuration register), 2-37
MMUCSR0 (MMU control and status register), 2-36
Mnemonics

recommended, C-24
simplified, C-1

MSR (machine state register), 2-10, 5-6
move to/from MSR instructions, 3-40
writing to MSR[EE], 3-40

msync, 3-31, 3-46, 4-17, 13-6
mtmsr, 3-40
mtspr, 3-26
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N
Nap mode, 6-2

see also Power management
No-op, C-24

O
Operands

BO encodings, 3-23
conventions, 3-1
placement and performance, 4-30

P
Page characteristics

see Memory/cache access attributes (WIMGE bits), 1-30
Parity checking, 5-17, 11-8

on internal buses, 13-5
see also Caches, parity checking

Parity errors, see Interrupt handling, interrupt types, machine 
check interrupt

Performance
characterizing through performance monitor event 

counting, 7-1
Performance monitor APU, 7-1

event counting, 7-10
chaining counters, 7-11
event types, 7-12–7-17
processor context marking, 7-10
setting multiple thresholds, 7-12
time base event, 9-4
unconditional counting, 7-11

examples of uses, 7-11
instructions, 3-60, 7-9
interrupt triggered by events, 5-33, 7-1, 7-10

see also Interrupt handling
overview, 1-30
PMR encodings, 3-61
purposes, 1-5
registers (PMRs), 1-31, 2-52–2-58, 7-2–7-9

Performed loads and stores, 11-14
Permissions

controlled by TLB entries in MMU, 12-7
violations and ISI or DSI interrupts, 12-24

Physical addresses
36-bit physical addresses, 12-31

PID0–2 (process ID registers), 2-36, 12-5, 12-21
Pipeline

see also Execution timing
superscalar diagram, 4-4, 4-5

PIR (processor ID register), 2-12
PLL

disabling for power savings, 6-3

PLRU algorithm, 11-25
see also Caches, operation, block replacement

PMC0–3 (performance monitor counter registers), 2-57, 7-8
PMGC0 (global control register 0), 1-31, 2-53, 7-4
PMLCa0–PMLCa3 (performance monitor local control 

registers A, 0–3), 2-55, 7-5
PMLCb0–PMLCb3 (performance monitor local control 

registers B, 0–3), 2-56, 7-6
Position-independent code example, 4-45
Power management

control bits, 6-3
core states

full on state, 6-3
halted state, 6-3
stopped state, 6-3

device modes (doze, nap, and sleep), 6-2
dynamic power management, 6-2
interrupt recognition and servicing, 6-6
PLL and timer, disabling, 6-3
protocol between core and other device logic, 6-5
signals, 6-1, 13-5
snooping

maintaining L1 cache coherency in power down mode, 
6-3

software considerations, 6-4
PowerPC architecture

legacy support, overview, 1-32
user instruction set (UISA), 1-xxxi

Process ID
registers (PID0–2), 1-28, 2-36, 12-5, 12-21
see also Memory management unit (MMU)

Processor control instructions, 3-26–3-29
Program interrupt, 5-24–5-25

see also Interrupt handling
Program order, definition, 4-2
Programming model

overview, 1-18
register summary, 1-19, 2-1
updating the architectural state of registers, 4-21

PVR (processor version register), 1-5, 2-13

R
Read fault exception enable (RFXE), 2-30, 13-9
Real addresses

36-bit physical addresses, 12-31
see also Memory management unit (MMU)

Registers
branch operations, 2-9–2-10

condition register (CR), 2-9
count register (CTR), 2-10
link register (LR), 2-10

BTB, 10-3
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branch buffer entry address register (BBEAR), 2-25
branch buffer target address (BBTAR), 2-25
branch unit control and status (BUCSR), 2-26

cache control
L1 cache configuration 0 (L1CFG0), 2-34
L1 cache configuration 1 (L1CFG1), 2-35

debug, 8-1, 8-4
data address compare (DAC1–2), 2-48
debug control registers (DBCR0–2), 2-46
debug status register (DBSR), 2-47
instruction address compare (IAC1–2), 2-48

decrementer auto-reload (DECAR), 2-16, 9-3
decrementer register (DEC), 2-16, 9-3
general-purpose registers 0–31 (GPRn), 2-9
hardware implementation-dependent (HID)

HID0, 2-27, 9-2
HID1, 2-29

integer exception (XER), 2-9
interrupt, 2-17, 5-5–5-7

critical save/restore 0–1 (CSRR0–1), 2-18, 5-5
data exception address (DEAR), 2-18
data exception address register (DEAR), 5-5
debug settings, 8-3
defined by Book E, 2-18
exception syndrome register (ESR), 2-20, 5-5, 5-6
machine check address register (MCAR), 2-22, 5-6, 5-17
machine check save/restore 0–1 (MCSRR0–1), 2-22, 5-6
machine check syndrome (MCSR), 2-23, 5-6, 5-7
machine state register (MSR), 5-6
save/restore 0–1 (SRR0–1), 2-18, 5-5
vector offset registers (IVOR0–IVOR15, 

IVOR32–IVOR35), 2-19, 5-5
vector prefix (IVPR32–IVPR47), 2-19, 5-5

MMU, 1-27, 2-35–2-45, 12-25–12-32
configuration

MMU configuration (MMUCFG), 2-37
MMU control and status (MMUCSR0), 2-36
TLB configuration 0–1 (TLBnCFG), 2-37

MMU assist (MAS0–MAS4, MAS6–MAS7), 2-39–2-45
process ID (PID0–2), 2-36

performance monitor, 7-2–7-9
counter registers (PMC0–3), 1-31, 2-57, 7-8
global control 0 (PMGC0), 7-4
global control register 0 (PMGC0), 1-31, 2-53
local control A (PMLCa0–PMLCa3), 2-55, 7-5
local control B (PMLCb0–PMLCb3), 2-56, 7-6
PMR encodings, 3-61
user counter registers (UPMC0–3), 2-58, 7-9
user global control 0 (UPMG0), 2-54
user global control 0 (UPMGC0), 7-5
user local control A (UPMLCa0–UPMLCa3), 2-56, 7-6
user local control B (UPMLCb0–UPMLCb3), 2-57, 7-7

processor control
machine state register (MSR), 2-10
processor ID register (PIR), 2-12
processor version register (PVR), 1-5, 2-13
system version register (SVR), 1-5, 2-13

rename register operation, 4-7, 4-11, 4-15
signal processing engine (SPE) APU

accumulator, 2-52
SPEFSCR, 2-49

special-purpose (SPRs), 2-5, 3-27–3-29
software-use SPRs, USPRG0, 2-24
SPRG0–SPRG7 (software-use SPRs), 2-24
synchronization requirements for SPRs, 2-58, 3-8

time base
TBL and TBU, 2-16
timer control register (TCR), 2-15, 9-2
timer status register (TSR), 2-16, 9-3

Rename buffer, definition, 4-2
Rename registers, 4-7, 4-11, 4-15

see also Execution timing
Reservation stations

and serialization, 4-15
data dependencies, 4-14, 4-47, 4-48
definition, 4-3
flow diagram, 4-5
relationship with issue stage, 4-7, 4-9, 4-10, 4-14, 4-46
stalls for divides, 4-29

Reservations (memory) with lwarx and stwcx., 3-32–3-37, 
3-48, 11-15, 13-8

Reset
common vector, 1-34
default TLB entry (MMU), 12-24
reset generation, 5-10

Retirement, definition, 4-3
Return debug event, 8-13
rfci, 3-40
rfi, 3-40
rfmci, 3-40
Rotate/shift instructions, 3-16, C-2
Round-robin replacement algorithm

hints for TLB0, 12-13

S
sc, 3-40
Sequential consistency of memory accesses, 11-15
Serialization instructions, 4-15, 4-47
Shift/rotate instructions, 3-16, C-2
Signal processing engine (SPE) APU

instructions, 3-49, 3-52
execution latencies, 4-38

interrupts, 5-3
registers
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accumulator, 2-52
SPEFSCR, 2-49

Signals
core complex bus (CCB) internal signals, 13-2
JTAG, 8-5, 8-6, 13-3
power management, 6-1, 13-5

Simplified mnemonics, 3-42
branch instructions, C-4
compare instructions, C-20
CR logical instructions, C-20
recommended, C-24
rotate and shift, C-2
special-purpose registers (SPRs), C-23
subtract instructions, C-2
trap instructions, C-21

Single-precision floating-point (SPFP) APUs
floating-point instructions, 3-58

Sleep mode, 6-2
see also Power management

Snooping
global signaling (and M bit), 11-12

SPE/FP APU unavailable interrupt, 5-31
see also Interrupt handling

Speculative instruction, 4-3
SPEFSCR (SPE floating-point status and control register), 

2-49
SPR model

invalid SPR references, 2-5
move to/from SPR instructions, 3-26

simplified mnemonics, C-23
SPR summary, 3-27–3-29
synchronization requirements for SPRs, 2-58

SPRG0–SPRG7 (software-use SPRs), 2-24
SRR0–1 (save/restore registers 0–1), 2-18, 5-5
Stall, definition, 4-3
Stopped state, see Power management, core states
Store instructions, 3-21
Store miss merging

and data cache misses, 11-4, 11-24
stwcx., 3-31, 3-48, 11-15, 13-8
Subtract instructions, C-2
Suggested reading list, 1-xxxiii
Superscalar pipeline

definition, 4-3
e500, 4-5

SVR (system version register), 1-5, 2-13
Synchronization

context synchronization, 3-11, 3-44
execution synchronization, 3-11
general, A-1
memory instructions, 3-30

timing considerations, 4-17–4-18

primitives, A-2
compare and swap, A-4
fetch and add, A-3
fetch and AND, A-3
fetch and no-op, A-2
fetch and store, A-3

requirements for special registers and TLBs, 3-6
requirements for TLB instructions, 3-10
synchronization boundary with msync, 13-6

Synchronization requirements for SPRs, 2-58
System call

system call interrupt, 5-25
see also Interrupt handling

System linkage instructions, 3-26, 3-40
System register execution latencies, 4-31

T
TAP interface

signals, 8-5
TBL and TBU (time base registers), 2-16
TCR (timer control register), 2-15, 9-2
Terminology conventions, 1-xxxv
Test and set function, A-4
Throughput, definition, 4-3
Time base, 2-14–2-16

disabling for power savings, 6-3
e500 implementation, 9-1, 9-3
performance monitor time base event, 9-4
registers

TBL and TBU, 2-16
timer control register (TCR), 2-15, 9-2
timer status register (TSR), 2-16, 9-3

TLB1 and TLB0, see Memory management unit (MMU), L2 
TLB arrays

tlbivax, 3-41, 12-20, 12-21
TLBnCFG (TLB configuration registers 0–1), 2-37
tlbre, 3-41, 12-18
TLBs (translation lookaside buffers), 12-8–12-25

coherency, 1-28
entry reload facilities, 12-22
fields on 32-bit Book E implementations, B-2
instructions for managing TLBs, 3-41, 11-11
maintenance features, 12-3

programming model, 12-17–12-24
misses, 12-2, 12-12, 12-20, 12-22, 12-23, 12-24

see also Interrupt handling, TLB error
see also Memory management unit (MMU)
six TLBs, 12-8–12-17

L1 TLB arrays, 12-9
L2 TLB arrays, 12-11

synchronization requirements, 3-6, 3-10
TLB entry field definitions, 12-17
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TLB miss, see Interrupt handling, interrupt types, TLB 
miss

writing to TLBs, 12-19
tlbsx, 3-42, 12-19
tlbsync, 3-42, 12-22
tlbwe, 3-42, 12-19
TO operand, C-23
Trap debug event, 8-11
Trap instructions, 3-25

simplified mnemonics, C-21
True little-endian pages, 2-42
TSR (timer status register), 2-16, 9-3

U
Unconditional debug event (UDE), 8-14
Unsupported instructions and instruction forms, 3-3
Update instructions (load and store), 3-47
UPMC0–3 (user performance monitor counter registers), 

2-58, 7-9
UPMGC0 (user global control register 0), 2-54, 7-5
UPMLCa0–UPMLCa3 (user performance monitor local 

control A registers), 2-56
UPMLCa0–UPMLCa3 (user performance monitor local 

control registers A, 0–3), 7-6
UPMLCb0–UPMLCb3 (user performance monitor local 

control B registers), 2-57
UPMLCb0–UPMLCb3 (user performance monitor local 

control registers B, 0–3), 7-7
User instruction set architecture (UISA) description, 1-xxxi
USPRG0 (user SPR), 2-24

W
Watchdog timer

watchdog timer interrupt, 5-27
see also Interrupt handling

Weakly ordered memory references, 1-29, 11-14
Write-back

definition, 4-3, 4-8, 4-9
wrtee, 3-40
wrteei, 3-40

X
XER (integer exception register), 2-2, 2-9
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