(

DSP56300 Family Manual

24-Bit Digital Signal Processors

DSP56300FM
Rev. 5, April 2005

\ )

>

“freescale"

semiconductor

\ X3



g |

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7

81829 Munchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Document Order Number: DSP56300FM
Rev. 5
4/2005

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 1996, 2005.

e

Z “freescale"
semiconductor



Introduction

Core Architecture Overview

Data Arithmetic Logic Unit
Address Generation Unit

Program Control Unit

PLL and Clock Generator
Debugging Support

Instruction Cache

External Memory Interface (Port A)
DMA Controller

Operating Modes and Memory Spaces
Guide to the Instruction Set
Instruction Set

Instruction Timing and Restrictions

Benchmark Programs

From CDR Process to HiP Process

Index

=
w

INDEX



Introduction

Core Architecture Overview
Data Arithmetic Logic Unit
Address Generation Unit
Program Control Unit

PLL and Clock Generator
Debugging Support
Instruction Cache

External Memory Interface (Port A)

[EEN
o

DMA Controller

=
[N

Operating Modes and Memory Spaces

[EEN
N

Guide to the Instruction Set

[EEN
w

Instiucivars§et

Instruction Timing and Restrictions

Benchmark Programs

From CDR Process to HiP Process

INDEX Index



Contents

1

11
111
112
12
1.3
14
15
16
1.7
1.8
19
1.10
111
112

21

22

23
231
232
2321
2322
2323
2324
2325
2326
2327
2328
233
234
235
236

31

311
3.1.2
3.13

Introduction
G0N OVEIVI B .« .ttt e e e e e e e e 1-2
Data Arithmetic Logic Unit (Data ALU). ... ... e 1-2
Address Generation Unit (AGU) . . ... ..o 1-3
Program Control Unit (PCU) . ... ... . i e e 1-4
Instruction Cache .. ... .. 1-4
Port A External Memory Interface. .. ... ..o 1-5
Phase Locked Loop (PLL) and Clock Generator . ........cooviii i i 1-6
Hardware Debugging SUPPOI . . . .ottt e e e e 1-6
Direct Memory Access (DM A ). . ..o 1-7
Introduction to Digital Signal Processing. . . ...t 1-7
Summary Of FEaIUNES . . . ... oo 1-10
Manual Organization. . . ... ..ottt e e e 1-11
Manual CoNVENLIONS. . . . ..ottt e e e e 1-13
Manual Revison History for ReviSiON 4 ... ... . i 1-14

Core Architecture Overview

GO BUSES . . ..o e 2-2
COre PrOCESSING. . . . ottt et 2-3
ProCESSING StalES. . . . oottt 2-4
Normal Processing State . . ... oot 2-5
Exception Processing State (Interrupt Processing) .. ... 2-6
Hardware Interrupt SOUICE. . . . ..ot e e 2-7
Software INterrupt SOUFCES. . . . .. oottt e e e e 2-8
Interrupt Priority StruCtUre. . .. .. o e 2-9
Instructions Preceding the Interrupt Instruction Fetch. ... ....... ... .. ... ... .... 2-11

I TUPE Ty S . . .ttt e e e e e 2-12
Interrupt ArDitration . . .. ... o 2-12
Interrupt Instruction Fetch . .. ... ... 2-13
Interrupt INStruction EXECULION. . . . ... .. o 2-13
Reset Processing Stale. . .. ..ot 2-15
Wait Processing State . . . ..o oot e 2-16
StOP Processing Stale. . . . . ..ot 2-16
DEbUG Stale . . . ..ot 2-17

Data Arithmetic Logic Unit

Data ALU Architecture. . ... ..o e e e e e e e 31
Data ALU Input Registers (X1, X0, Y1, YO) . ..ot 31
Multiplier-Accumulator (MAC) Unit . ... ... e 3-2
Data ALU Accumulator Registers (A2, A1,A0,B2,B1,B0) .................ccion... 3-3

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor v



ents

314
3.15
3.1.6
3.16.1
3.1.6.2
3.2
321
3.2.2
3221
3.22.2
3.23
3.24
3.24.1
3.25
3.3

34
341
3411
34.1.2
34.13
3414
34.2
3.5
351
352
3521

41

4.2

43

43.1
43.2
4.3.3
434
4.4

441
442
443
444
45

451
452
453
454

51
52

Accumulator Shifter. ... .. 34
Bit FieldUnit (BFU) .. ... 3-4
Data Shifter/Limiter. . . ... e 34
SCAliNG .« o oot 3-5
LimMitiNg . ..o 3-5
Data ALU Arithmeticand Rounding ... ....... .. e 3-6
Data Representation. . . . .. ...t 3-6
Rounding MOdES . . . ... oo 37
Convergent ROUNAING. . . .. ..ot e 37
Two'sComplement Rounding . . . .. ... oottt 3-8
Arithmetic Saturation Mode . . ... ... e 39
Multi-Precision Arithmetic SUPPOIt . . .. .. .ot 3-10
Double-Precision Multiply Mode. . . .. ... .. 3-12
Block Floating-Point FFT SUPPOrt . . ... oo e e e 3-13
Data ALU Programming Model . . ... ... 3-13
Sixteen-Bit ArithmeticMode . . . ... ... 314
Movesin Sixteen-Bit ArithmeticMode . .......... ... . 314
Movesinto Registersor ACCUMUIAIONS . .. .. ..ottt e 3-14
Moves from Registersor ACCUMUIALOrS. . . .. .. oo it 3-16
Short IMmMediate MOVES . . . . ..o 3-17
Scalingand Limiting . . ... ... i e 3-17
Sixteen-Bit ArthmeEtiC. . . ... ... e 3-18
Pipeline Conflicts . . ... .. e 3-19
Arithmetic Stall .. ... .. 3-19
Status Stall . . .o 3-19
Transfer Stall .. ... . 3-20

Address Generation Unit

AGU ArChiteCtUre. . . ..o e 4-1
Sixteen-Bit Compatibility Mode. . . ... . e 4-3
Programming Model . . ... .. e 4-4
Address Register Files. . ... .. e 4-4
Stack EXtension POINter . . . .. ..o 4-4
Offset Register FIles . ... ... e 4-5
Modifier Register Files. . . ... .o 4-5
Addressing MOOES . . . ..ot 4-5
Register DireCt MOAES. . . . ..ot e 4-6
Address Register Indirect MOOES. . . . . .. ..o 4-7
PC-Re@ive MOdeS . . . . ..o 4-8
Special AddressMOdeS . . . .. oot 4-8
Address Modifier TYPES . . . oot 4-9
Linear Modifier (Mn=S$XXFFFF) . . ... e 4-10
Reverse-Carry Modifier (MNn=$000000) . ... ....ciriiiii e 4-10
Modulo Modifier (MN=Modulus—1) .. ... . e 4-10
Multiple Wrap-Around Modulo Modifier ......... ... ... . i 4-11

Program Control Unit

OV VI BV .« o e e e e e e e e e e e e e e 5-1
PCU Hardware ArChiteCtUre. . . . ...t e e e e e e e e e 5-2

DSP56300 Family Manual, Rev. 5

Vi

Freescale Semiconductor



5.3

54
541
5411
541.2
542
543
5431
5432
5433
544
5441
5442
5443
5444

6.1

6.2
6.2.1
6.2.2
6.2.3
6.23.1
6.2.3.2
6.2.3.3

6.2.3.3.1
6.2.3.3.2
6.2.3.3.3

6.2.3.4
6.2.34.1

6.2.3.4.2

6.2.3.4.3
6.3
6.4
6.5

7.1
711
7.1.2
7.1.3
714
7141
7.14.2
7.1.4.3
7144
7.1.4.5
7.1.4.6

Contents

Instruction Pipeline. . . ... . e 5-3
PCU Programming Model .. ... ... 5-4
Configuration and StatUS RegIStErS . . . .. .ot i i e 5-5
Operating Mode Register . . . .. ..o it e 5-5
StatUS RegIStEr (SR) . . o oottt 5-10
Stack and Stack EXtENSION. . . .. ... e 5-16
System Stack Configuration and Operation Registers. . ... .. ...t 5-16
Stack Pointer (SP) Register . ... ..o 5-18
Stack Counter (SC) Register . ... ..ot 5-19
Stack Size (SZ) RegiSter . . . . oo 5-20
Program, Loop, and Exception Processing Control. .. ........... ... .. 5-20
Program Counter (PC) Register . .. ..ot 5-20
Loop Address (LA) Register ... ..o 5-20
Loop Counter (LC) RegiSter. . . ..ot 5-21
Vector Base Address (VBA) RegiSter . ... ..ot e 5-21

PLL and Clock Generator

PLL and CloCK SIgnalS. . . . oo 6-2
PLL BlOCK. . .ot e e e 6-2
Frequency Predivider. . ... ... o 6-2
Phase Detector and Charge Pump Loop Filter . ... . .. . 6-2
Voltage Controlled Oscillator (VCO) . ... ..ot e e 6-3
Divide by 2. .. 6-3
Frequency Divider .. ... ... 6-3
PLL Control Elements . ... ... o e 6-4
Clock INPUE DIVISION . ..o e e 6-4
Frequency Multiplication. . ... e 6-4
Skew Elimination. . . ... 6-4
ClOCK GENEIalOr . . . . ottt e e e e e e 6-4
Low-Power Divider (LPD) ... ..o e 6-5
Internal and External Clock Pulse Generator. . ............ ... 6-5
Operating FreqUeNCY . . ..ot e e e e 6-6
PLL Programming Model . . . ... ... 6-6
Clock Synchronization . . ... .. .. 6-10
Design Guidelinesfor Rippleand PCAP . . . .. ... e 6-10

Debugging Support

JTAG Test ACCESS POIT. . . . e e e e e e e 7-2
Boundary Scan ArchiteCture OVEIVIEW . . . . . .. oot e e e 7-2
TAP Controller ... 7-3
Boundary Scan Register . ... ... 7-3
INSIrUCtiON REgISIEr . . . . oo 7-3

EXTEST (B[3-0] =0000) . . ..\ttt e e e e e e e e e e e 7-6
SAMPLE/PRELOAD (B[3-0] =0001) . . ..ottt e e e 7-6
IDCODE (B[3-0] =0010) . . ottt ettt e e e e e e e e et e e et e 7-7
CLAMP (B[30] = 0010) . . ottt ettt e e e et e e e e e e e e 7-8
HI-Z (B[3-0] = 0100). . ..\ttt ettt e e e e e e e e e e e e 7-8
ENABLE _ONCE(B[3-0] =0120) . . ..ottt et e e e et et e e e e 7-8

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor vii



ents

7147 DEBUG_REQUEST(B[3-0] =0111) . . ..ottt e e e e 7-8
7.14.8 BYPASS (Bl3-0] = 1100) ..ottt ittt e e e e 7-9
7.15 DSP56300 JTAG RESLICHIONS. . . . o oottt e e e e e e 7-9
7.2 ONCE MOAUIE. . . .. e e e 7-10
721 ONCE Controller . ..o 7-11
7211 ONnCE Command Reglister (OCR) . ... .ottt 7-12
7212 ONCE Decoder (ODEC) . . ..ottt e e e e e e e e e 7-14
7.21.3 OnCE Status and Control Register (OSCR). ... ... e 7-14
722 ONCE Memory Breakpoint LOQIC . . . ..o ottt e e e e 7-15
7221 OnCE Memory Breakpoint Counter (OMBC) . . ... i 7-18
7.2.3 Cathe SUPPOIT . . .o 7-18
7231 ONCE TraCe Ll ogiC . . o oottt e e e e e e e 7-20
724 Methods of Entering DebugMode . ... ... 7-21
725 Trace BUffer. . ... 7-23
7.2.6 OnCE Commands and Serial Protocol ....... ... .. .. 7-24
727 ONCEModule EXamples. . .. ..ot e e e 7-26
7.2.7.1 Checking Whether the Chip Has Entered Debug Mode. . . ............ .. ... ... ..... 7-26
7.2.7.2 Polling the JTAG Instruction Register . .. ... ..ot e 7-26
7.2.7.3 Saving Pipeline Information. . . ... .. .. 7-26
7274 Readingthe Trace Buffer . . ... ... e 7-27
7.27.5 Displaying a Specified Register . . . ... ..ot 7-28
7.2.7.6 Displaying X Memory Area Starting at Address $XXXXXX ... .vvvieineiinn e 7-28
7.2.7.7 Returning From Debug M ode to Normal Modeto Current Program. . ................ 7-29
7.2.7.8 Returning from Debug Mode to Normal ModetoaNew Program .. ................. 7-29
7.3 Examples of JTAG-OnNCE INteraction . . ....... ...ttt e e 7-30
731 Address TraCeMoOde . . . ..o e 7-32
8 Instruction Cache

8.1 Instruction Cache Architecture. . ... ... ... e 8-1
8.2 Cache Programming Model . ... ... e 8-3
821 Cache Operation . . ... ... e 8-4
8211 Program FetCh . .. ... . 8-4
8212 Cathe Hit ..o 8-4
8.21.3 Cache Word Miss When Burst ModelsDisabled . . ............ ... ... . iiiin.. 8-4
8214 Cache Word Miss When Burst ModelsEnabled. .. ......... .. ... ... ... ... ... ... 84
8.2.15 S (0 1Y 8-5
8.2.2 Default Mode After Hardware ReSet. . .. .. ..ot e 8-5
8.3 Cache LOCKING . ..ot e 8-5
84 CacheUnlocking. . ... ... e 8-6
85 Flushingthe Cache . . ... ... e 8-6
8.6 Data Transfersto/from Instruction Cache. . . . ... ... . e 8-7
8.6.1 DM A T AN S . . ot 8-7
8.6.2 Software-Controlled Transfers . ... ... . e 8-7
8.7 Using the Instruction Cachein Real-Time Applications .. ........... ... ... ... oo .. 8-8
8.8 Debugging Instruction Cache Operation. ... ... ... it 8-9
9 External Memory Interface (Port A)

9.1 Signal DEeSCIIPLiON. . . . .ot e 9-1
9.2 POrt OperatioN. . . .. 9-5

DSP56300 Family Manual, Rev. 5

viii Freescale Semiconductor



921
9.2.2
9.23
9231
9.23.2
9.3

94

95
951
95.2
953
9531
953.2
9.5.3.3
9534
9535
9.5.3.6
9.6
9.6.1
9.6.2
9.6.3

10

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5

10.2

10.2.1
10.2.2

10.3

10.3.1
10.3.2

10.4

10.4.1
10.4.1.1
10.4.1.2
10.5

10.5.1
10.5.2
10.5.3
10.5.3.1
10.5.3.2
10.5.3.3
10.5.3.3.1
10.5.3.4
10.5.3.5
10.5.3.5.1

Contents

External Memory Addressing . . ..o oot 9-5
SRAM SUPPOI . . .ot e 9-6
DRAM SUPPOI . . et e e e 9-8
DRAM IN-Page ACCESS . . . o ittt it e e e e e e e e 9-10
DRAM OUt-0f-Page ACCESS. . . . o ittt et e e e e 9-10
Port A Disable. . ... 9-10
Bus Handshake and Arbitration . . ...... ... ... i e 9-11
Bus Arbitration Signals. . ... ... o e 9-11
The Arbitration Protocol . . ... ... e 9-11
Arbitration SCheme . . .. .. . e 9-13
Bus Arbitration EXample Cases. . . .. ..ottt 9-13
Case dl, NOMA . . o e e 9-13
Case 2, BUS BUSY ... .o e e 9-13
Case 3, LOW Priority. ..o e 9-14
Cased, Default . ... o e 9-14
Case 5, Bus Lock during Read-Modify-Write Instructions . .. ...................... 9-14
Case 6, BUSParking . .. ....oi i e 9-14
POrt A Control . . ... e 9-15
Address Attribute Registers (AAR[O=3]) . .. ..ot 9-15
BUs Control Register . .. ..o 9-19
DRAM Control Register . . ... ot 9-21

DMA Controller

DMA Operational OVEIVIEW. . . .. oottt e e et e et et 10-3
Basic ADAressS MOOES . . ..ot 10-3
Special AddressMOdeS . . . .. oo e 10-4
Unmatched Source and Destination Dimensions . ...t 10-4
DMA Triggers (REQUESE SOUMCES) . . . . o v ottt et e e e e et et et e e e 10-4
Transfer MOOe . . . ..o 10-5

Timing (Core Clock CyCles) . .. ..ot e e e 10-5
Non-Overlap Between DMA Channels. . ... .. ... e 10-5
Overlap between DMA Channel and Core . ... ... oot 10-6

Channel Priority ... ... 10-6
Priority Between DMA Channels . .. ... ... 10-6
Priority Between aDMA Channel andtheCore. . ... 10-7

Special Usesof DMA WiththeBusInterfaceUnit ............. .. ..., 10-8
BYte Packing . . .. .ot 10-8

DRAM In-Page AccessesuUsing DMA . . ... o 10-8
End-of-Block-Transfer Interrupt . . ... 10-8

DMA Controller Programming Model . . ... ... 10-9
DMA Source Address Registers (DSR[0-5]) - - -+ o oo e o 10-9
DMA Destination Address Registers(DDR[5-0]) . ...« c oo i 10-9
DMA CounterS (DCO[5—0]) -+ -« o vt et et et e e e e e e e 10-9

DMA Counter Mode A—SingleCounter. . . ...t 10-10
DMA Counter Mode B—Dual Counter. . ... ... 10-11
Circular Buffer (Length Less Than or Equal to 4096 Words) ... ................... 10-12
DMA Counter ModesC, D and E—TripleCounter .................... 10-13
Circular Buffer (Length Greater Than 4096 Words) . .........coviiii i, 10-14
DMA Control Registers (DCR[5-0]) - . -« o oo oo e 10-14
Non-3D Addressing Modes(D3D =0) . .. ..o iviii i e 10-20

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor iX



ents

10.5.3.5.2
10.5.3.6
10.5.3.7
10.6

11

111
1111
11.1.2
11.1.3
11131
11.1.3.2
11.1.3.3
1114
11141
11.1.4.2
11.1.4.3
11.1.4.4
11.1.4.5
1115
11151
11.15.2
11.15.3
11154
11.15.5
11.2
11.3

12

121

122

1221
12.2.2
12.2.3
1224
12.3

1231
12.3.2
12.33
12.34
12.35
12.3.6
12.3.7
124

1241
124.2
125

1251
125.2

BDMOAES(D3D = 1) . oot it 10-21
DMA Offsat Registers (DOR[3-0]) . .o oo oo i e e e et e 10-23
DMA Status Reglister (DSTR) .. ..o e 10-23

DMA RESIICHONS. . . oo e e e 10-25

Operating Modes and Memory Spaces

DSP56300 Family Core Memory Map. . ... oo oot e e 11-2
X DataMemory SPaCe. . . . ..ot e 11-3
Internal X /O SPace . . . oo oot 11-3
Switchable Internal or External X IOMeMOry .......... .. 11-4

Reserved Spacefor X ROM or RAM . . . ... i e 11-4
Externa X DataMemory . . .. ..ot 11-5
Internal X Memory . . . ..o 11-5

Y DataMemory SPaCe. . . . ..ot e 11-5
Internal/External Y 1/O SPace . . .. ..ot 11-5
Switchable Interna or External Y /OMemory . ... 11-5
Reserved Spacefor Y ROM or RAM . . .. .. i e 11-5
Externa Y DatlaMemory . . . ..ot 11-6
Internal Y MemoOry . . ... 11-6
Program Memory . . . ..o e 11-6
BOOtSIrap ROM SPaCE . . .. . oot e e e 11-6
Reserved Spacefor Program ROM ... ... 11-6
Externa Program MemoOry . . .. ... i 11-7
Internal Program MemOry . ... ... o 11-7
Internal Instruction Cache RAM . .. ... 11-7
Sixteen-Bit Compatibility Mode. . . ... ... ... 11-7
Memory SWitch Mode . . ... ... e 11-8

Guide to the Instruction Set

Instruction Formatsand SyntaX . . ... ... ..ottt e 12-1
Operand Lengths. . ... ..o 12-3
Data ALU ReQIStErS. . .. oo 12-4
AGU REGISEIS. . . oot e 12-5
Program Control RegiStErS . ... ..ot 12-5
Data Organization iN MemMOrY . . . . ...ttt 12-6
INSIFUCHION GIOUPS. . . o o ottt et e et e e e e e e e e e e et e e e 12-6
ArithmetiC INSLIUCHIONS . . . ... o e 12-7
Logical INStrUCIONS. . . . ..o 12-8
Bit Manipulation INStrUCtiONS . . . . .. ..o 12-9
LOOP INSLIUCLIONS. . . . oottt e e e e e e e e e e e 12-10
MOVEINSITUCLIONS . . . oot 12-10
Program Control INStrUCtionS . . .. ... .. e 12-11
Instruction Cache Control INStructions ... ... e 12-12
Guideto Instruction DeSCriptioNS. . . . . oo it 12-13
Nt ON . . . 12-13
Condition Code COMPULELION . . . .. ..ttt e et e 12-17
Instruction Partial EnCoding . .. ... ... oo 12-18
Partial Encodingsfor Usein IngtructionEncoding............. ... ... ... .. ... ... 12-18
Parallel Instruction Encoding of the OperationCode . . .......... ... .. ... 12-25

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor



12521
125.2.2

13

Al
A2
A21
A22
A23
A24
A25
A.2.6
A26.1
A.2.6.2
A.2.6.3
A.2.64
A.2.65
A.2.6.6
A3
A3l
A3.2
A.3.3
A34
A35
A.3.6
A3.7
A.3.8
A.3.9
A.3.10
A4
A4l
A4.2
A43
A5

B

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10

Contents

Multiply Instruction Encoding . . . .. .. ..ot 12-25
Non-Multiply Instruction Encoding . .. . ...t 12-25

Instruction Set

Instruction Timing and Restrictions

OV IV BV . . . ettt e e e e e A-1
Instruction Sequence Delays. . . .. .. ot e A-8
External BusWalt StaleS. . . ..ot A-9
Instruction Fetch Delays . . ... .. oo A-9
Data ALU Interlock . . . . ..o A-9
Address Register INterlocks. . . ... ..o A-9
Stack EXteNSiON DelaysS . . . .. oo A-11
Program Flow Control Delays. . .. ... e A-12
JMP IO LA OrtO LA — L. A-13
RTITOLA OrtO LA — L L e e e A-13
Conditional INSIrUCHIONS . . . . ... e A-13
Interrupt ADOrt . . . A-13
Degenerated DO I00P. . . .o oo A-13
Annulled REPand DO . . .. ... A-13
Instruction Sequence ReSLIICtiONS. . . . ... oot A-14
RestrictionsNear the End of DO LOOPS . . -« o oo v et A-14
General DO RESINCHIONS . . ..ottt e e e e A-16
ENDDO ReStICHONS. . . .ottt e e e e e e e e e A-20
BRKCC RESLICHIONS . . . . oo A-20
RTI and RTS RESIHCHONS . . . ..ot e e e e e A-20
SP/SC and SSH/SSL Manipulation Restrictions. . ............. ... A-20
Fast Interrupt ROULINES . . . ... oo e e e A-21
REP RESIICHIONS . . . .ot e e e e e e A-21
Stack EXtension ReSIFCHONS . . . . ..o A-22
Stack Extension Enable Restrictions. . . ... i A-23
Peripheral Pipeline ReSIFCtioNS . . . .. ... i A-23
Polling a Peripheral Devicefor Write. .......... .. . e A-24
WritingtoaRead-Only Register. . ... ...t e A-24
XY Memory DataMOove . .. ..o e A-24
Sixteen-Bit Compatibility Mode Restrictions. . .. .......... . i A-25

Benchmark Programs

Real MUIIPIY . ..o B-2
N Real MUIIPIIES . . . oo e e e e B-3
Real Update. . . ..o B-4
N Real Updates. . . ..ot e e B-4
Real Correlation or Convolution (FIRFilter) .. ... ... . B-5
Real * Complex Correlation or Convolution (FIRFilter). . ........... ... ... ... ..... B-6
Complex MUItIPlY . . .. B-7
N Complex MUItIpliES. . . ... e e e B-8
Complex Update . . . ..o B-9
N Complex Updates . . . . ..ot e e e B-10

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor xi



ents

B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27

C1
C.2
C3
C4

Complex Correlation or Convolution (FIRFilter) ....... ... ... . i .. B-12
Nth Order Power Series(Real) . . . .. ..ot e e B-13
Second Order Real Biquad IR Filter .. ... ... e B-14
N Cascaded Real Biquad IR Flter. . ... ... o e B-15
N Radix-2 FFT Butterflies (DIT, In-Place Algorithm). . . ....... ... .. ... ... ... ... ... B-16
True (Exact) LMS Adaptive Filter ... .. .. e B-18
Delayed LMS Adaptive Filter. . .. ... ... e B-20
FIR LattiCe Filter. . . .o e e e e e B-22
All PolellR Lattice Filter . . ... .. e B-23
General Lattice Filter .. ... o B-25
Normalized Lattice Filter . . ... .. . e B-27
[1x 3][3x 3] Matrix Multiplication. . .. .......... i B-29
N Point 3x32-DFIRConvOIUtioN . . .. ... . e B-30
Viterbi Add-Compare-Select (ACS). . ..ot e B-32
Parsing aData Stream . . . ... ..o e B-36
CreatingaData Stream . . .. ..o e B-38
Parsing aHoffman Code DataStream . . ... ...t e e B-40

From CDR Process to HiP Process

VO a0E . . o C-2
Operating FreqUENCY . . . . ..ot e C-2
POt A TiImMiNgS . . oot e e e C-2
Memory BIOCK SIze . .. ... C-3
Index

DSP56300 Family Manual, Rev. 5

Xii

Freescale Semiconductor



Introduction 1

The Freescale DSP56300 family of digital signal processors uses a programmable, 24-bit,
fixed-point core. This core is a high-performance, single-clock-cycle-per-instruction engine. A
variety of standard peripherals can be added around the DSP56300 family core (see Figure 1-1),
such as seria ports, parallel ports, timers, different memory configurations (RAM and/or ROM),
special-purpose coprocessors, and General-Purpose I nput/Output (GPIO) ports. Each peripheral
interfaces to the DSP56300 core through a standard peripheral bus, allowing easy connection to
standard or custom peripherals.

Special-Purpose . :Il > .
Memory Coprocessors Peripherals/GPIO <: I/O Pins

| |
1t 5
External <: Data
Memory :,|:
. | PLL Expansion
24-bit DSP Interface Address
(Port A)
CPU Core
Debug
JTAG/OnCE™
Port Interface

Figure 1-1. DSP56300 Family-Based DSP

The combination of powerful instruction set, multiple internal buses, DMA channels, on-chip
program and data memories, external buses, standard peripherals, and power management of the
DSP56300 family make it an excellent solution for wireless or wireline DSP applications from
individual subscriber to infrastructure, as well as multimedia and high-end audio applications,
including video conferencing.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-1



duction

Core Overview

One Million Instructions Per Second (MIPS) per MHz of operating speed
Object code compatible with the DSP56000 core

Highly parallel instruction set

Data Arithmetic Logic Unit (Data ALU)

Address Generation Unit (AGU)

Program Control Unit (PCU)

On-chip instruction cache controller

External memory interface (Port A)

Phase Locked Loop (PLL)

Hardware debugging support (JTAG TAP, OnCE™ module, and Address Trace Mode)
Six-channel Direct Memory Access (DMA) controller

Reduced power dissipation

— Very low power CMOS design
— Wait and Stop low-power standby modes
— Fully-static logic

=
=

1.1.1 Data Arithmetic Logic Unit (Data ALU)

The DataALU performs al the arithmetic and logical operations on data operandsin the
DSP56300 core. The components of the Data ALU are asfollows:

B Fully pipelined 24 x 24-bit parallel Multiplier-Accumulator (MAC) unit

B Bit Field Unit, comprising a 56-bit parallel barrel shifter (fast shift and normalization; bit
stream generation and parsing)

Conditional ALU instructions

24-bit or 16-bit arithmetic support under software control

Four 24-bit input general purpose registers: X1, X0, Y1,and YO

Six DataALU registers (A2, A1, A0, B2, B1, and BO) that are concatenated into two
general purpose 56-bit accumulators and accumulator shifters (A and B)

B Two data bus shifter/limiter circuits

The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus
(YDB) as 24- or 48-bit operands. The source operands for the Data ALU, which can be 24, 48, or
56 bits, always originate from the Data ALU registers. The results of all Data ALU operations are
stored in an accumulator. All Data ALU operations are performed in two clock cyclesin pipeline
fashion so that a new instruction can be initiated in every clock, yielding an effective execution
rate of one instruction per clock cycle.

DSP56300 Family Manual, Rev. 5

1-2 Freescale Semiconductor



Core Overview

The MAC unit comprises the main arithmetic processing unit of the DSP56300 core and
performs all of the calculations on data operands. For arithmetic instructions, the unit accepts as
many as three input operands and outputs one 56-bit result of the following form:

Extension:Most Significant Product:Least Significant Product (EXT:MSP:LSP)

The multiplier executes 24-bit x 24-bit, parallel fractional multiplies between two’s complement
signed, unsigned, or mixed operands. The 48-bit product isright-justified and added to the 56-bit
contents of either the A or B accumulator. A 56-bit result can be stored as a 24-bit operand by
truncating or rounding the L SP into the M SP.

1.1.2 Address Generation Unit (AGU)

The Address Generation Unit (AGU) performs the effective address calculations for addressing
data operandsin memory and contains the integer arithmetic and registers used to generate the
addresses. The AGU operatesin paralel with the other core resource, and so minimizes
address-generation overhead of instruction sequences. It implements four types of address
arithmetic:

B Linear

B Modulo

B Multiple wrap-around modulo
B Reverse-carry

These arithmetic types easily allow creation of data structures in memory for FIFOs (queues),
delay lines, circular buffers, stacks, and bit-reversed FFT buffers. Datais manipulated by
updating address registers (pointers) rather than moving large blocks of data. The contents of the
address modifier register, Mn, define the type of arithmetic to be performed for addressing mode
calculations. For modulo arithmetic, the contents of Mn also specify the modulus. All address
register indirect modes can be used with any address modifier. Each address register, Rn, has an
associated modifier register, Mn. The following address modifier types are available.

B Linear addressing—Useful for general-purpose addressing
B Modulo addressing—Useful for creating circular buffers for FIFOs
B Multiple wrap-around modul o addressing—Useful for decimation, interpolation and

waveform generation since the multiple wrap-around capability can be used for argument
reduction

B Reverse-carry (bit-reverse) addressing—Useful for 2k-poi nt FFT addressing

The AGU isdivided into halves, each with its own Address Arithmetic Logic Unit (Address
ALU), oneto generate 24-bit addresses every cyclefor the X space and onefor the Y space. Each
Address ALU can update one address register from its respective address register file during one
instruction cycle. Each Address ALU hasfour sets of register triplets; each triplet is composed of
an address register, an offset register, and amodifier register. The contents of the associated

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-3



duction

modifier register specify the type of arithmetic to use in the address register update calculation.
The modifier value is decoded in the Address ALU.

Each Address ALU contains a 24-bit full adder, which is an offset adder. A second full
adder—which is a modul o adder—adds the summed result of the first full adder to a modulo
value that is stored in its respective modifier register. A third full adder, which is areverse-carry
adder, is also provided. The offset adder and the reverse-carry adder operate in parallel and share
common inputs. The only difference between them is that the carry propagatesin opposite
directions. The modifier value determines which of the three summed results of the full addersis
output. For details on the AGU, see Chapter 4, Address Generation Unit.

1.2 Program Control Unit (PCU)

The Program Control Unit (PCU) performsinstruction fetch, instruction decoding, hardware DO
loop control, and exception processing. The PCU implements a seven-stage pipeline and controls
the different processing states of the DSP56300 core. The PCU consists of three hardware blocks:

B Program Decode Controller (PDC): Decodes the 24-bit instruction loaded into the
instruction latch and generates all necessary pipeline control signals

B Program Address Generator (PAG): Contains the hardware for program address
generation, system stack, and loop control

B Program Interrupt Controller (PIC): Arbitrates among all interrupt requests (interna
interrupts and the five external requests IRQA, IRQB, IRQC, IRQD, and NMI), and generates
the appropriate interrupt vector address

PCU features include:

B Position independent code (Pl C) support

Addressing modes optimized for DSP applications (including immediate offsets)
On-chip instruction cache controller

On-chip memory-expandable hardware stack

Nested hardware DO loops

Fast auto-return interrupts

Program Address Trace mode support

1.3 Instruction Cache

The instruction cache functions as a buffer memory between external memory and the DSP core
processor. When code executes, the code words at the locations requested by the instruction set
are copied into the instruction cache for direct access by the core processor. If the same codeis
used frequently in a set of program instructions, storage of these instructions in the cache yields
an increase in throughput, because external bus accesses are eliminated. In the DSP56300

DSP56300 Family Manual, Rev. 5

1-4 Freescale Semiconductor



Port A External Memory Interface

instruction set are specific cache instructions that permit you to lock sectors of the cache and to
flush the cache contents under software control. When enabled, the instruction cache has 1024
24-bit words (1 K words) of instruction cache memory, with the following features:

B Software controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the
Status Register (SR)

Instruction cache size of 1024 24-bit words

Eight-way, fully associative instruction cache with sectored placement policy

1- to 4-word transfer granularity

L east recently used (LRU) sector replacement agorithm

Transparent operation (that is, no user management is required)

Individual sector locking/unlocking

Global cache flush controlled by software

Cache controller status observable via the JTAG/OnCE port

For more information, refer to Chapter 8, Instruction Cache.

1.4 Port A External Memory Interface

Port A is an external memory interface for memory expansion or memory-mapped 1/0. Its
programmable nature supports alow part-count connection to fast or sow SRAMs, DRAMs, |/O
devices, and multiple bus master systems. The Port A data busis 24 bits wide with a separate
address bus that is 24 bits wide in some DSP56300 processors and less than 24 bitsin others.
External memory isdivided into three possible 16 M x 24-bit spaces: X data, Y data, and
program memory. Each or all spaces can be accessed to a given external memory under software
control. See the memory map in Chapter 11, Operating Modes and Memory Spaces for memory
space that is not accessible over Port A. Aninternal wait state generator can be programmed to
statically insert up to 31 wait states for accessto slower memory or 1/O devices. A Transfer
Acknowledge (TA) signal allows an external device to dynamically control the number of wait
states inserted in a bus access operation. Bus arbitration signals allow an external device to use
the bus while internal operations continue using internal memory. See the memory map in the
device-specific user’s manual for memory space that is not accessible.

The Address Attribute (AA) lines operate as memory-mapped chip selects or as address linesto
external devices, depending upon the mode selected. Some DSP56300 chips have eighteen
addresslines. For these DSPs, if all four AA lines are used as address lines, the total addressable
external memory per space (X data, Y data, and program) is4 M x 24-bit. If all four AA linesare
used, the memory must always be selected because no AA linesare availablefor chip select. Asa
result, an external read or write outside the 4M range could still go to the external memory
(depending on the settings of the AA registers).

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-5



duction

1.5 Phase Locked Loop (PLL) and Clock Generator

The clock generator in the DSP56300 core is composed of two main blocks:

B Phase Locked Loop (PLL): Clock-input division, frequency multiplication, and skew
elimination

B Clock Generator (CLKGEN): Low-power division and clock pulse generation and change
of low-power Divide Factor (DF) without loss of lock

The PLL alowsthe processor to operate at a high internal clock frequency using alow frequency
clock input, afeature that offers two immediate benefits:

B A lower frequency clock input reduces the overall el ectromagnetic interference generated
by a system.

B Theability to oscillate at different frequencies reduces costs by eliminating the need to
add additional oscillators to a system.

1.6 Hardware Debugging Support

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the
|[EEE 1149.1 Sandard Test Access Port and Boundary Scan Architecture. Problems associated
with testing high-density circuit boards have led to development of this standard under the
sponsorship of the Test Technology Committee of |EEE and the Joint Test Action Group
(JTAG). The DSP56300 core implementation supports circuit-board test strategies based on this
standard. Thetest logic includes a TAP consisting of four dedicated signal pins, a 16-state
controller, and three test data registers. A Boundary Scan Register (BSR) links all device signal
pinsinto asingle shift register. Thetest logic isimplemented utilizing static logic design and is
completely independent of the device system logic.

An On-chip Emulation (OnCE) port supports hardware and software development on the
DSP56300 core processor. It allows nonintrusive interaction with the core and its peripherals so
that devel opers can examine registers, memory, or on-chip peripherals. Thisfacilitates hardware
and software development on the DSP56300 core processor. OnCE module functions are
provided through the JTAG TAP pins. More information on the JTAG/OnCE port is provided in
Chapter 7, Debugging Support.

A third debugging feature is the Address Trace mode, which reflectsinternal Program RAM
accesses at the external port. Thismode isinvoked by setting the Address Tracing Enable (ATE),
which is bit 15 in the Operating M ode Register (OMR)™. Once active, both internal and external
program memory accesses are valid at the rising edge of cLkouT. The BRr signal distinguishes
internal from external accesses.

1. For details on the Operating M ode Register (OMR), see Section 5.4.1.1, Operating Mode Register, on page 5-5

DSP56300 Family Manual, Rev. 5

1-6 Freescale Semiconductor



Direct Memory Access (DMA)

1.7 Direct Memory Access (DMA)

The Direct Memory Access (DMA) block permits data transfers without the interaction of the
core. It supports any combination of internal memory, internal peripheral 1/0 and external
memory as source and destination during accesses. The DMA block has the following features:

B Six DMA channels supporting internal and external accesses

B One-, two-, and three-dimensional transfers (including circular buffering)
B End-of-block-transfer interrupts

B Triggering from interrupt lines and all peripherals

1.8 Introduction to Digital Signal Processing

Figure 1-2 shows an example of analog signal processing. The circuit in the illustration filters a
signal from a sensor using an operational amplifier and controls an actuator with the result. Since
the idedl filter isimpossible to design, the engineer must design the filter for acceptable response
considering variations in temperature, component aging, power supply variation, and component
accuracy. The resulting circuit typically has low noise immunity, requires adjustments, and is
difficult to modify.

Analog Filter
Ry
I
||Cf
()
== p S L,
p R; _ Output
From To
Sensor Actuator
t
Yw) _ fﬁf{%}
X(w) R,L1+JwRCp
Frequency Characteristics
|
Ideal | Actual
£ Filter I Filter
(O] 1
1
» f :

Frequency fe

Figure 1-2. Analog Signal Processing

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-7



duction

The equivalent circuit using aDSPis shown in Figure 1-3. This application requires an
Anaog-to-Digital (A/D) converter and Digital-to-Analog (D/A) converter in addition to the DSP.
Even with these additional parts, the component count can be lower using a DSP due to the high
Integration available with current components. Processing in this circuit begins by band-limiting
the input signal with an anti-aliasfilter, eliminating out-of-band signals that can be aliased back
into the pass band due to the sampling process. The signal isthen sampled, digitized with an A/D
converter and sent to the DSP. The filter implemented by the DSP is strictly a matter of software.
The DSP can directly employ any filter that can also be implemented using anal og techniques.
Also, adaptive filters are easy to implement using DSP but very difficult to implement using
analog techniques.

Low-Pass Sampler And DSP Operation Digital-to-Analog Reconstruction
Antialiasing Analog-to-Digital Converter Low-Pass
Filter Converter -
FIR Filter
N
Z c(k) x (n—k)
- G >
x(t) k=0 y()
x(n) Finite Impulse y(n)
Response
Analog In A Analog Out
Ideal <
Filter 8
f
fe
Frequency
A
Analog ¢
Filter 8
t f
fC
Frequency
A
Digital .%
Filter ©
} f
fC
Frequency

Figure 1-3. Digital Signal Processing

DSP56300 Family Manual, Rev. 5

1-8 Freescale Semiconductor



Introduction to Digital Signal Processing

The DSP output is processed by a D/A converter and islow-pass filtered to remove the effects of
digitizing. The advantages of using the DSP include:

Fewer components

Stable, deterministic performance
No filter adjustments

Wide range of applications

Filters with much closer tolerances
High noise immunity

Easily implemented adaptive filters
Built-in self-test capability

Better power supply rejection

The DSP56300 family is not a custom |C designed for a particular application; it isdesigned as a
general-purpose DSP architecture to efficiently execute commonly used DSP benchmarks and
controller code in minimal time.

Figure 1-4 shows the following key attributes of a DSP:

B Multiply/Accumulate (MAC) operation

B Fetching up to two operands per instruction cycle for the MAC
B Program control to provide versatile operation

B |nput/output to move datain and out of the DSP

The MAC operation is the fundamental operation used in DSP. The DSP56300 family of
processors has a modified dual Harvard architecture optimized for MAC operations. Figure 1-3
shows how the DSP56300 family architecture matches the shape of the MAC operation. The two
operands, C( ) and X( ), are directed to amultiply operation, and the result is summed. This
process is built into the chip using two separate memories (X and Y) to feed asingle-cycle MAC
unit. The entire process must occur under program control to direct the correct operands to the
multiplier and save the accumulator as needed. Since the two memories and the MAC unit are
Independent, the DSP can perform two moves, a multiply and an accumulate, in asingle
operation. As aresult, many DSP benchmarks execute very efficiently for a single-multiplier
architecture.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-9



duction

FIR Filter
N

> Zc(k)x(n—k) DIA

X(t) x|  K* OT T y(n) y(

X Y

Memory Memory
r —w | |
I I I I
I I >
I I
| I—> <€— Program
I I
I I

L — — 4

MAC

I
I
I
I
I
L

Figure 1-4. Mapping DSP Algorithms Into Hardware

1.9 Summary of Features

The high throughput of the DSP56300 family of processors makes them well-suited for wireless
and wireline communication, high-speed control, efficient signal processing, numeric processing,
and computer and audio applications. The main features that contribute to this high throughput
include the following:

Soeed: The DSP56300 family supports most high-performance DSP applications.

Precision: The data paths are 24 bits wide, providing 144 dB of dynamic range;
intermediate results held in the 56-bit accumulators can range over 336 dB.

Parallelism: Each on-chip execution unit, memory, and peripheral operatesindependently
and in parallel with the other units through a sophisticated bus system. The Data ALU,
AGU, and program controller operate in parallel so that the following can executein a
single instruction:

— An instruction pre-fetch

— A 24-bit x 24-bit multiplication

— A 54-bit addition

— Two data moves

— Two address-pointer updates using either linear or modulo arithmetic

Flexibility: While many other DSPs need external communications circuitry to interface
with peripheral circuits (such as A/D converters, D/A converters, or host processors), the
DSP56300 family provides on-chip serial and parallel interfaces that can support various

DSP56300 Family Manual, Rev. 5

1-10

Freescale Semiconductor



Manual Organization

configurations of memory and peripheral modules. The peripherals are interfaced to the
DSP56300 family core through a periphera interface bus that provides acommon
interface to many different peripherals.

Sophisticated Debugging: On-Chip Emulation (OnCE) technology allows simple,
Inexpensive, and speed independent access to the internal registers for debugging. With
the ONCE module, you can determine easily the exact status of the registers and memory
locations and what instructions were last executed.

Phase Locked Loop (PLL)-Based Clocking: The PLL allowsthe chip to use amost any
available external system clock for full-speed operation, while also supplying an output
clock synchronized to a synthesized internal core clock. It improves the synchronous
timing of the external memory port, eliminating the timing skew common on other
processors.

Invisible Pipeline: The seven-stage instruction pipeline is essentialy invisible to the
programmer, allowing straightforward program development in either assembly language
or high-level languages such as C or C++.

Instruction Set: The instruction mnemonics are similar to those used for microcontroller
units, making the transition from programming microprocessors to programming the chip
as easy as possible. New microcontroller instructions, addressing modes, and bit field
Instructions allow for significant decreases in program code size. The orthogonal syntax
controls the parallel execution units. The hardware DO loop instruction and the repeat
(REP) instruction make writing straight-line code obsolete.

Low Power: Designed in CMOS, the DSP56300 family consumes very little power. Two
additional low-power modes, Stop and Wait, further reduce power requirements. Wait isa
low-power mode in which the DSP56300 family core is shut down, but the peripheralsand
interrupt controller continue to operate so that an interrupt can bring the chip out of Wait
mode. In Stop mode, even more of the circuitry is shut down for the lowest power
consumption. Several different ways exist to bring the chip out of Stop mode: hardware
RESET, IRQA, and DE.

1.10 Manual Organization

This manual describes the DSP56300 core in detail. Use this manual in conjunction with the
appropriate DSP56300 family member user’ s manual, which describes the memory, operating
modes, and peripheral modules. The appropriate DSP56300 family technical data sheet describes
timing, pinout, and packaging. This manual presents practical information to help you:

Understand the operation and instruction set of the DSP56300 family
Write code for DSP algorithms

Write code for general control tasks

Write code for communication routines

Write code for data manipulation algorithms

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-11



duction
Table 1-1 describes the contents of each chapter and each appendix.

Table 1-1. DSP Family Manual Chapters

Chapter/ . .
Appendix Title and Description

2 Core Architecture Overview—The DSP56300 family core architecture consists of an External
Memory Interface (Port A), Data Arithmetic Logic Unit (Data ALU), Address Generation Unit
(AGU), Program Control Unit (PCU), Direct Memory Access (DMA) controller, Phase Locked
Loop (PLL) circuit, and a JTAG/On-Chip Emulation (OnCE) port. Chapter 2 describes each
subsystem and the buses interconnecting the major components in the DSP56300 family central
processing module. Chapter 2 also describes five of the six processing states (Normal,
Exception, Reset, Wait, and Stop). The sixth processing state (Debug) is covered more
completely in Chapter 7, Debugging Support.

3 Data Arithmetic Logic Unit—Data ALU architecture, its programming model, an introduction to
fractional and integer arithmetic, and a discussion of other topics such as unsigned and
multi-precision arithmetic on the DSP56300 family.

4 Address Generation Unit—AGU architecture, its programming model, addressing modes, and
address modifiers.

5 Program Control Unit—Program controller architecture, its programming model, and hardware
looping. Note, however, that the different processing states of the DSP56300 family core,
including interrupt processing, are described in Chapter 2, Core Architecture Overview.

6 PLL and Clock Generator—Details the PLL, its programming model, and its general operation.

7 Debugging Support—Combined JTAG/OnCE port and its functions. These two are integrally
related, sharing the same pins for 1/O.

8 Instruction Cache—Operation of the instruction cache and memory space.

9 External Memory Interface (Port A} —The External Memory Interface, its programming model,
and guidelines for interfacing SRAM and DRAM.

10 DMA Controller—The six-channel Direct Memory Access (DMA) controller, its programming
model, and interactions with the core and peripherals.

11 Operating Modes and Memory Spaces—Operating modes and memory spaces in the
DSP56300 family.

12 Guide to the Instruction Set — The DSP56300 family instruction format as well as partial
encodings for use in instruction encoding

13 Instruction Set — Each DSP56300 family instruction, its use, and its effect on the processor.

A Instruction Timing and Restrictions— Various aspects of execution timing analysis for each
instruction, sequences that may cause timing delays or stalls, and programming restrictions.

B Benchmark Programs—DSP56300 family benchmark example programs and results.

C From CDR Process to HiP Process — General differences between DSP56300 family
derivatives that use Communication Design Rules (CDR) process technology and derivatives
that use the Freescale High-Performance (HiP) process technology; software and hardware
design implications.

DSP56300 Family Manual, Rev. 5

1-12 Freescale Semiconductor



Manual Conventions

The latest electronic version of this document as well as other DSP documentation (including
user’ s manuals, product briefs, technical data sheets, and errata) can be found at the web site
listed on the back cover of this manual.

1.11 Manual Conventions

This manual uses the following conventions:

Bits within registers are always listed from most significant bit (M SB) to least significant
bit (LSB).

Bitswithin aregister are indicated by AA[n —m], when more than one bitisinvolved in a
description. For purposes of description, the bits are presented asif they are contiguous
within aregister. However, thisis not always the case. Refer to the programming model
diagrams in the device-specific user’s manual to see the exact location of bitswithin a
register.

When abit is described as “set,” itsvalueis 1. When abit is described as “ cleared,” its
valueisO.

The word “assert” means that a high true (active high) signal is pulled high to V ¢ or that
alow true (active low) signal is pulled low to ground. The word “deassert” means that a
high true signal is pulled low to ground or that alow truesignal ispulled highto V . See
Table 1-2.

Signalsin arange are indicated by the first and last signals in the range enclosed in square
brackets, for example A[0 — 23].

Table 1-2. High True/Low True Signal Conventions

Signal/Symbol Logic State Signal State Voltage
PIN® True Asserted Ground?
PIN False Deasserted Ve
PIN True Asserted Vee
PIN False Deasserted Ground

=

PIN is a generic term for any pin on the device.

2. Ground is an acceptable low voltage level. See the appropriate data sheet for the range of acceptable
low voltage levels (typically a TTL logic low).

3. V¢ is an acceptable high voltage level. See the appropriate data sheet for the range of acceptable

high voltage levels (typically a TTL logic high).

Pinsor signalsthat are asserted low (made active when pulled to ground) areindicated like
this:
— Intext, they have an overbar: for example, RESET is asserted low.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 1-13



duction

— In code examples, they have atilde in front of their names. In Example 1-1, line 3
refersto the SSo signal (shown as ~SS0).

B Setsof signals are indicated by the last and first signalsin the set, for instance HA[8 — 1].

B “Input/Output” indicates a bidirectional signal. “Input or Output” indicatesasignal that is
exclusively one or the other.

B Code examples are displayed in amonospaced font, as shown in Example 1-1.

Example 1-1. Sample Code Listing

BFSET#0x0007,X:PCC; Configure: line 1
MISOO0, MOSIO, SCKO for SPI master line 2
; ~SS0 as PC3 for GPIO line 3
B Hex valuesare indicated with adollar sign ($) preceding the hex value, asfollows:
$FFFFFF isthe X memory address for the core interrupt priority register.
B A Kilobyte (KB) is 1024 bytes.
B A Megabyte (MB) is 1024 x 1024 (1,048,576) bytes.
B A wordis 24 hits.
B Theword “reset” appearsin four different contexts in this manual:

— thereset signal, written as RESET

— thereset instruction, written as RESET
— thereset operating state, written as Reset
— thereset function, written as reset

1.12 Revision History for Revisions 4 and 5

Table 1-3 liststhe changes made in thismanual from Revision 3 to Revision 4 and from Revision
4to Revision 5.

Table 1-3. Change History, Revision 3 to Revision 4 and From Revsion 4 to Revision 5

Change Section Number Revision 3 Revision 4 Revision 5
9 Page Number | Page Number | Page Number
Change in required instructions to ensure that no Section 2.3.2 page 2-17 page 2-15

maskable interrupts occur during a
non-interruptible code sequence

Modified stack extension description Section 4.3.2 page 4-5 page 4-4 to
page 4-5
Operating Mode Register (OMR) bit 11 definition Section 5.4.1.1, page 5-9 page 5-8
Table 5-2
System stack configuration description Section 5.4.3 page 5-19 page 5-16

DSP56300 Family Manual, Rev. 5

1-14 Freescale Semiconductor




Revision History for Revisions 4 and 5

Table 1-3. Change History, Revision 3 to Revision 4 and From Revsion 4 to Revision 5

Change

Section Number

Revision 3
Page Number

Revision 4
Page Number

Revision 5
Page Number

Added note about the DSP56321 DPLL and

INSERT instruction

Chapter 6 page 6-1 page 6-1
clock modules
Updated VCO description Section 6.2.3 page 6-3 page 6-3
Modified design guidelines for ripple and PCAP Section 6.5 page 6-11 Figure 6-5,
Figure 6-3 page 6-11
Modified Port A descriptions Section 9.1 page 9-2 page 9-2
Table 9-2
Added note about DRAM support Section 9.2.3 page 9-8 page 9-8
Clarified BLH bit description and modified trailing Section 9.6.2 page 9-19 page 9-19
wait state definition for DSP56321 only Table 9-5
Added note for the DRAM control register Section 9.6.3 page 9-21 page 9-21
Redefined DMA end-of-block transfer operation Section 10.4.1.2 page 10-9 to page 10-9
Table 10-5 10-10 page 10-16
Modified X0 register description example for the Chapter 13 page 13-79 page 13-79

Replaced text and added scenarios in which a
non-interruptable code sequence is desired.

Section 2.3.2.8

page 2-15

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

1-15




duction

DSP56300 Family Manual, Rev. 5

1-16 Freescale Semiconductor



Core Architecture Overview 2

This chapter describes the DSP56300 family core, a powerful DSP engine that can execute an
instruction on every clock cycle. The parts of the DSP56300 core are described in the following
chapters:

Chapter 3, Data Arithmetic Logic Unit
Chapter 4, Address Generation Unit

Chapter 5, Program Control Unit

Chapter 6, PLL and Clock Generator

Chapter 7, Debugging Support

Chapter 8, Instruction Cache

Chapter 9, External Memory Interface (Port A)
Chapter 10, DMA Controller

To minimize the total system cost for customer applications, the DSP56300 core external
memory interface, Port A, is powerful and versatile, providing agluelessinterfaceto DRAMSs (in
some DSPs), SRAMs, and other memories viaan on-chip DRAM controller (in some DSPs) as
well as chip select logic. To assist with data movement over Port A and internally, the concurrent
six-channel DMA augments the data throughput that characterizes DSP applications.

The coreisdesigned for low power consumption in Normal and Wait and Stop modes. In Normal
mode, only the blocks demanded for processing are active. Wait and Stop modes take the power
savings astep further by closing down large portions of the core during periods of system
Inactivity. The integrated on-chip peripherals and memory (including instruction cache) also
reduce power consumption by reducing the external bus accesses. Asfor the core execution units,
only the memory modules being accessed consume power, so on-chip memory expansion does
not increase power significantly. Limiting the external bus accesses saves on system power.
Finally, the Phase Locked Loop (PLL) can scale power consumption down with lower clock
frequencies under user software control.

L ow-power features of the DSP56300 family core include the following:

B Vey low-power CMOS design
B Low-power Wait standby mode
B Ultra-low power Stop mode

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-1



h -

Architecture Overview

B Power management units for further power reduction
B Fully static logic, with operation frequency down to DC

Sixteen-bit Compatibility mode enables full compatibility to object code written for the
DSP56000 family of DSPs. Sixteen-bit Compatibility mode, which invokes 16-bit addressing
capability, differs from the Sixteen-bit Arithmetic mode, which invokes 16-bit arithmetic
operations. These modes are configured by two separate bits (SA and SC) in the Status Register
(SR), which are described in Chapter 5, Program Control Unit.

2.1 Core Buses

The following 24-bit buses provide data exchange between the main core blocks:

Global DataBus

Peripheral |/0O Expansion Bus

Program Memory Expansion
Bus

Program Data Bus

Program Address Bus

X Memory Expansion Bus
X Memory Data Bus
X Memory Address Bus

Y Memory Expansion Bus
Y Memory Data Bus
Y Memory Address Bus

DMA DataBus
DMA Address Bus

GBD

PIO_EB
PM_EB

PDB
PAB

XM_EB
XDB
XAB

YM_EB
YDB
YAB

DDB
DAB

Between Program Control Unit and other
core structures

To peripherals
To Program ROM

Carries program data throughout the core

Carries program memory addresses
throughout the core

To X memory
Carries X data throughout the core

Carries X memory addresses throughout the
core

ToY Memory
Carries Y datathroughout the core

CarriesY memory addresses throughout the
core

Transfers datawith DMA channels

Transfers address information with DMA
channels

DSP56300 Family Manual, Rev. 5

2-2

Freescale Semiconductor



Core Processing

Figure 2-1isablock diagram of the DSP56303, a member of the DSP56300 family. The
diagram illustrates the core blocks of the DSP56300 family and shows representative peripherals
for a DSP56300 family chip implementation.

AAA

oA

()]

16$
L]

A
L]

Yyvy
Program RAM
Triple Host ESSI scl 4096 x 24 X Data || Y Data
Timer I”ﬁlr(‘;"’éce Interface Interface or RAM RAM Memory
(3072 x 24 and (12048 x 24||2048 x 24 i
Instruction EXpanSIOn
+* 4 2 e é é* Cache Area
* 1024 x 24)
0 Peripheral AoA Aod A
“| Expansion Area 4, w w
o b= b= p=
o o YAB X > 18
Address XAB External
Generation [ ¢ Address -
| _ _Unit _ _ PAB SBl'JtSh IAddress
Six Channel A I DAB witc
DMA Unit ¢
A : External
24-Bit BUS 13
Boot DSP56300 Interface >
Strap and
ROM [ Core I - Cache ||Control
Control
35: ! External ”
Internal |- Data Bus
Data | XDB Switch [T€~>
Dat
SBl..ltSh g ZEBB ternal aa
witch | -—s
EXTAL ly L Power
clock |+ 5.~ - Program Control . " _ _, A Mngmnt. | ¢
TALT LSenerator ||~ Program | | Program | 1 Program || 24 x 24 + 56 — 56-bit MAC | [ JTAG
Interrupt - <— Decode <—» Address Two 56-hit Accumulators
PLL 'Controller I Controller, ~ Generator,|[ " sg-bit Barrel Shifter | [OnCE™
1 X DE
5 MODD/IRQD
MODC/IRQC
RESET MODB/IRQB
PINIT/NMI MODA/IRQA
Figure 2-1. DSP56303 Block Diagram
Note: Theregistersin the core are discussed in detail in the chapters on the individual

functional blocks.

2.2 Core Processing

Asfor all DSPs, the operation of the DSP56300 core is a combination of software and hardware
Interactions. This processing environment consists of the following components:

B Instruction Set: Theinstruction set provides the programming language for processing the
algorithms required by specific applications. Chapter 12, Guide to the Instruction Set,
presents the DSP56300 instruction format as well as partial encodings for usein

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

2-3



h -

Architecture Overview

instruction encoding. Chapter 13, Instruction Set, lists the instructions in al phabetical
order and describes each instruction in detail.

B Core Modules: These circuits transfer and modify data. They are generally configured
through internal registers and activated or disabled by a combination of hardware signals
(interrupts, request signals, and so on) and software. Chapters 3-10 of this document
describe the structure and function of the various core modules.

B Processing States. Core processing states modify the operation of the core processor and
the core modules that operate independently and in parallel to the core. These states

include:
— Normal: Thetypical operating mode in which code |oads into the core processor and
executes.

— Exception: An event interrupts the normal execution flow. The processor halts normal
processing and, depending on the event, may store the current operating environment,
load a special handler program to respond to the exception, execute the handler
program, and then return to normal execution flow. Typical exception causes can be
software processing events or hardware service requests, such as peripheral or external
device interrupts.

— Reset: All execution halts and the processor and itsregistersin all peripherasare
restored to a predetermined value that allows reloading of the executing code and
reinitiation of the execution flow. Typically, if an operation has caused an
unrecoverable error (that is, the handler cannot compensate for the exception event that
halted normal processing), invoking the Reset mode, either by software or by asserting
the physical RESET signal, restores operational functioning.

— Wait: Typically invoked by the WAIT instruction; the application requires only
minimal processing. To save power, most operations stop until an event occurs that
requires the processing to restart. Clock signals remain functional, so aquick restart is
possible.

— Sop: Typically invoked by using the STOP instruction; the application does not
require immediate processing and a slow restart is acceptable (only if the PLL is
disabled). All clock functions and operations halt, except for the ability to respond to
an initiating event (that is, RESET, DE, Of IRQA).

— Debug: Application devel opers can operate the system under the control of the JTAG
Test Access Port and Boundary Scan function or the OnCE module. In this mode, an
application can run asingleinstruction at atime, or sets of instructions at a time, until
some defined event occurs, typically called a breakpoint.

2.3 Processing States

The following paragraphs describe the DSP56300 core processing states.

DSP56300 Family Manual, Rev. 5

2-4 Freescale Semiconductor



Processing States
2.3.1 Normal Processing State

The Normal processing state is associated with instruction execution. DSP56300 core
Instructions execute in a seven-stage pipeline, typically at arate of one instruction every clock
cycle. However, the following instructions require additional time to execute:

B All double-word instructions

B Instructions with an addressing mode that requires more than one cycle for the address
calculation

B |nstructions causing a change of flow

Instruction pipelining allows overlapping of instruction execution so that a pipeline stage of a
given instruction occurs concurrently with pipeline stages of other instructions. Only oneword is
fetched per cycle, so for double-word instructions, the second word of an instruction is fetched
before the next instruction isfetched. Table 2-1 describes the seven stages of the DSP56300 core
pipeline. The first and second instructions in Table 2-1 are referred to as nl and n2. The third
instruction, n3, which contains an instruction extension word, n3e, takes two clock cyclesto
execute. The extension word is either an absol ute address or immediate data. Although it takes
seven clock cycles for the pipeline to fill and the first instruction to execute, a further instruction
usually completes on each clock cycle.

Table 2-1. Instruction Pipeline

Instruction Cycle
Operation

1 2 3 4 5 6 7 8 9 10 11
Fetch 1 nl n2 n3 n3e n4 n5 né n7 n8 n9 n10
Fetch 2 nl n2 n3 n3e n4 n5 n6 n7 n8 n9
Decode nl n2 n3 n3e n4 n5 n6 n7 n8
Address Gen 1 nl n2 n3 n3e n4 n5 né n7
Address Gen 2 nl n2 n3 n3e n4 n5 n6
Execute 1 nl n2 n3 n3e n4 n5
Execute 2 nl n2 n3 n3e n4
nl = first instruction; n2 = second instruction; and so forth
n3e = instruction extension word

Each instruction requires a minimum of seven clock cyclesto fetch, decode, and execute. This
resultsin adelay of seven clock cycles from power-up to fill the pipeline. A new instruction may
begin immediately following the previousinstruction. Two-word instructions require a minimum
of eight clock cycles to execute (seven cyclesfor the first instruction word to move through the
pipe and execute and one more cycle for the second word to execute). For a complete description
of the execution timing of the various instructions, see Chapter A, Instruction Timing and
Restrictions.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-5



h -

Architecture Overview
2.3.2 Exception Processing State (Interrupt Processing)

The Exception Processing state is associated with interrupts that are generated by conditions
inside the DSP or by external sources. There are many sources for interrupts to the DSP56300
core, some generating more than one interrupt. An interrupt vector scheme with 128 vectors of
defined priority provides fast interrupt service. Interrupt processing in the DSP56300 core
proceeds as follows:

1. A hardware interrupt is synchronized with the DSP56300 core clock, and the interrupt
pending flag for that particular hardware interrupt is set. An interrupt source can have
only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select the interrupt to be
processed. The arbiter automatically ignores any interrupts with an Interrupt Priority
Level (IPL) lower than the interrupt mask level in the SR and selects the remaining
interrupt with the highest IPL.

3. Theinterrupt controller freezes the Program Counter (PC) and fetches two instructions
at the two interrupt vector addresses associated with the selected interrupt.

4.  Theinterrupt controller inserts the two instructions into the instruction stream and
releases the PC, which is used for the next instruction fetch. The next interrupt
arbitration then begins.

When afast interrupt executes, the state of the machineis not saved on the stack if neither of the
two instructionsis a Jump To Subroutine (JSR) instruction (for example, aJSCLR). A long
interrupt executesif one of the interrupt instructions fetched isa JSR instruction. The PC is
immediately released, the SR and the PC are saved in the stack, and the jump instruction controls
from where the next instruction is fetched.

Note: Any Jump to Subroutine (JSR) instruction makes the interrupt long (for example, JScc,
BSSET, and so on.).

One of the main uses of interruptsisto transfer data between DSP memory or registers and a
peripheral device. When such an interrupt occurs, a limited context switch with minimum
overhead is often desirable. Thislimited context switch isaccomplished by afast interrupt. The
long interrupt is used when a more complex task must be accomplished to service the interrupt.

Exceptions can be generated from one of two groups, core and peripherals, and can originate
from any of the 128 vector locations listed in Table 2-2. The table lists only the sources
originating from the core. For sources originating from peripherals, see the device-specific user's
manual. Table 2-2 shows the corresponding interrupt starting address for each interrupt source.
These addresses reside in the 256 locations of program memory to which the Vector Base
Address Register (VBA) in the PCU points. When an interrupt is serviced, the instruction at the
interrupt starting addressis fetched first. Because the program flow is directed to a different
starting address for each interrupt, the interrupt structure of the DSP56300 coreis said to be

DSP56300 Family Manual, Rev. 5

2-6 Freescale Semiconductor



Processing States

vectored. A vectored interrupt structure has low overhead execution. If certain interrupts will
definitely not be used, their vector locations can be used for program or data storage.

Table 2-2. Interrupt Sources

Interrupt
Startlinntgr;\ud%tress Plileovrtletly Interrupt Source
(IPL)
VBA:$00 3 Hardware RESET
VBA:$02 3 Stack Error
VBA:$04 3 lllegal Instruction
VBA:$06 3 Debug Request Interrupt
VBA:$08 3 Trap
VBA:$0A 3 Non-Maskable Interrupt (NMI)
VBA:$0C 3 Reserved for Future Level—3 Interrupt Source
VBA:$0E 3 Reserved for Future Level—3 Interrupt Source
VBA:$10 0-2 IRQA
VBA:$12 0-2 IRQB
VBA:$14 0-2 IRQC
VBA:$16 0-2 IRQD
VBA:$18 0-2 DMA Channel 0
VBA:$1A 0-2 DMA Channel 1
VBA:$1C 0-2 DMA Channel 2
VBA:$1E 0-2 DMA Channel 3
VBA:$20 0-2 DMA Channel 4
VBA:$22 0-2 DMA Channel 5
VBA:$24 0-2 Peripheral interrupt request 1
VBA:$26 0-2 Peripheral interrupt request 2
VBA:$FE 0-2 Peripheral interrupt request 110

The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is not
maskable. Levels 0—2 are maskable. The interrupts within each level are prioritized.

2.3.2.1 Hardware Interrupt Source

Two types of hardware interrupts to the DSP56300 core exist: internal and external. The internal

Interrupts come from on-chip sources:

B Stack Error
B |llegal Instruction

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

2-7



h -

Architecture Overview

B Debug Request
W Trap

B DMA

B Peripherals

Each internal interrupt source is serviced if it is not masked. When serviced, the interrupt request
Is cleared. Each maskable, internal interrupt source has independent enable control. The external
hardware interrupts are: NMI, IRQA, IRQB, IRQC, and IRQD. The NmI interrupt is an edge-triggered,
Non-Maskable Interrupt (NMI) for use in software development, watch-dog, power fail detect,
and so on. The IRQA, IRQB, IRQC, and IRQD interrupts can be programmed to be level-sensitive or
edge-triggered. Since the level-sensitive interrupts are not automatically cleared when they are
serviced, they must be cleared by other means before the end of the interrupt routine because
multiple interrupts must be prevented. Usually, external hardware detects the interrupt
acknowledge of the core interrupt and removes the interrupt request source.

The edge-triggered interrupts are latched as pending on the high-to-low transition of the interrupt
input and are automatically cleared when theinterrupt is serviced. IRQA, IRQB, IRQC, and IRQD can
be programmed to one of three priority levels. 0, 1, or 2, al of which are maskable. Additionally,
these interrupts have independent enable control.

When the IRQA, IRQB, IRQC, and IRQD interrupts are disabled in the interrupt priority register, the
pending request is ignored, regardless of whether the interrupt input was defined as
level-sensitive or edge-triggered. Additionally, aslong as an interrupt (edge or level sensitive) is
disabled, its detection latch remainsin the Reset state. If the level-sensitive interrupt is disabled
while the interrupt is pending, the pending interrupt is cancelled. However, if the interrupt has
been fetched, it is not cancelled.

Note: On all external, level-sensitive interrupt sources, the interrupt should be serviced (that
IS, the interrupt source cleared) by the instructions at the interrupt vector for afast
interrupt, or by along interrupt routine.

2.3.2.2 Software Interrupt Sources
There are two software interrupt sources:

B |Illegal Instruction Interrupt (111): A Non-Maskable Interrupt (IPL 3) that is serviced
immediately after theillegal instruction executes or attemptsto execute (any undefined
operation code)

B TRAP: A Non-Maskable Interrupt (IPL 3) that is serviced immediately after the TRAP or
TRAPcc instruction executes (condition true)

DSP56300 Family Manual, Rev. 5

2-8 Freescale Semiconductor



Processing States
2.3.2.3 Interrupt Priority Structure

Four Interrupt Priority Levels (IPLs) exist. IPLs are numbered from O (the lowest level) to 3 (the
highest level). IPLs O, 1, and 2 are maskable. Level 3is non-maskable. The IPL 3 interrupts are:

B Hardware Reset

[llegal Instruction Interrupt (111)
Stack Error

TRAP

NMI

Debug

The interrupt mask bits (11, 10) in the SR reflect the current processor priority level and indicate
the IPL needed for an interrupt source to interrupt the processor (see Table 2-3). Interrupts are
inhibited for all priority levelsless than the current processor priority level. However, level 3
Interrupts are not maskable and therefore can always interrupt the processor.

Table 2-3. Status Register Interrupt Mask Bits

11 10 Interrupts Permitted Interrupts Masked
0 0 IPLO, 1, 2,3 None
0 1 IPL1,2,3 IPLO
1 0 IPL2,3 IPLO, 1
1 1 IPL 3 IPLO, 1,2
Note:  For details on the Status Register, see Chapter 5, Program
Control Unit.

The DSP56300 core has two interrupt priority registers: IPRC that is dedicated for DSP56300
core interrupt sources and IPRP that is dedicated for the peripheral interrupt sources specific to
the chip. These control registers are mapped on the internal X [/O memory space. The Interrupt
Priority Level (IPL) for each interrupt source is software programmable. Each on-chip or external
peripheral device can be programmed to one of the three maskable priority levels (IPL O, 1, or 2).
IPLs are set by writing to the interrupt priority registers shown in Figure 2-2 and Figure 2-3.
These two read/write registers specify the IPL for each of the interrupting devices. In addition,
the IPRC register specifies the trigger mode of each external interrupt source and enables or
disablesthe individual external interrupts. These registers are cleared on hardware reset or by the
RESET instruction. Table 2-4 definesthe IPL bits. Table 2-5 defines the External Interrupt
Trigger mode bit.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-9



Architecture Overview

23 22 21 20 19 18 17 16 15 14 13 12

D5L1 D5L0 D4L1 D4L0 D3L1 D3L0 D2L1 D2L0 D1L1 D1LO DOL1 DOLO

DXL[1-0] DMA 0/1/2/3/4/5 IPL

11 10 9 8 7 6 5 4 3 2 1

IDL2 IDL1 IDLO ICL2 ICL1 ICLO IBL2 IBL1 IBLO IAL2 IAL1 IALO

IxL2 (See Table 2-5) IRQ A/B/C/D mode

IXL[1-0] (See Table 2-4) IRQ A/B/C/D IPL
Figure 2-2. Interrupt Priority Register C (IPRC)

23 22 21 20 19 18 17 16 15 14 13 12

PerCL1 | PerCLO | PerBL1 | PerBLO | PerAL1 | PerALO | Per9L1 | Per9LO0 | Per8L1 | Per8LO | Per7L1 | Per7L0

11 10 9 8 7 6 5 4 3 2 1 0

Per6L1 | Per6L0 | Per5L1 | Per5L0 | PerdlLl | Perd4LO | Per3L1 | Per3L0O | Per2L1 | Per2L0 | PerllL1 | PerllLO

Figure 2-3. Interrupt Priority Register P (IPRP)

Table 2-4. Interrupt Priority Level Bits

IxL1 IXLO Enabled IPL
0 0 No —
0 1 Yes 0
1 0 Yes 1
1 1 Yes 2

Table 2-5. External Interrupt Trigger Mode Bit

IxL2 Trigger Mode
0 Level
1 Negative Edge

If more than one exception is pending when an instruction executes, the interrupt with the highest
priority level is serviced first. When multiple interrupt requests with the same IPL are pending, a
second fixed-priority structure within that IPL determines which interrupt is serviced. Table 2-6

shows the interrupt priority for al interrupts.

DSP56300 Family Manual, Rev. 5

2-10 Freescale Semiconductor



Processing States

Table 2-6. Exception Priorities Within an IPL

Priority Exception

Level 3 (Nonmaskable)

Highest Stack Error

lllegal Instruction

Debug Request Interrupt

Trap

Non-Maskable Interrupt (NMI)

Lowest Non-Maskable Peripheral Interrupt

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt)

IRQB (External Interrupt)

IRQC (External Interrupt)

IRQD (External Interrupt)

DMA Channel 0 Interrupt

DMA Channel 1 Interrupt

DMA Channel 2 Interrupt

DMA Channel 3 Interrupt

DMA Channel 4 Interrupt

DMA Channel 5 Interrupt

Lowest Peripheral interrupt sources*

*See device-specific user's manual
Note:  The higher-priority interrupt is at the lower vector address.

2.3.2.4 Instructions Preceding the Interrupt Instruction Fetch
The following conditions apply to instructions preceding an interrupt instruction fetch:

B Every instruction requiring more than one cycle to execute is aborted when it isfetched in
the cycle preceding the fetch of the first interrupt instruction word.

B Aborted instructions are fetched again when program control returns from the interrupt
routine. The PC is adjusted appropriately before the end of the decode cycle of the aborted
Instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-11



h -

Architecture Overview

B If thefirst interrupt word fetch occurs in the cycle following the fetch of a
one-word-one-cycle instruction, that instruction completes normally before the start of the
interrupt routine.

B During an interrupt instruction fetch, two instruction words are fetched — the first from
the interrupt starting address and the second from the next address.

2.3.2.5 Interrupt Types

Two types of interrupt routines can be used: fast and long. The fast routine consists of the two
automatically inserted interrupt instruction words. These words can be any unrestricted, single
two-word instruction or any two unrestricted one-word instructions, except RTI or RTS. Fast
interrupt routines are not interruptible.

Note: Statusis not preserved during afast interrupt routine; therefore, instructions that
modify status should not be used at the interrupt starting address or next address.

If one of the instructions in the fast routine is a JSR, then along interrupt routine is formed. The
following actions occur during execution of the JSR instruction when it occurs in the interrupt
starting address or in the next address:

The PC (containing the return address) and the SR are stacked.

The Loop Flag is cleared.

The Scaling mode bits (§)1-0]) in the Status Register (SR) are cleared.

The Sixteen-bit Arithmetic (SA) mode bit is cleared.

The IPL israised to disallow further interrupts of the same or lower levels.
See Table 2-6.

o kr wDdp PR

Only the long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptible by higher-priority interrupts.

Note: Do not use RTI for fast interrupts.

2.3.2.6 Interrupt Arbitration

External interrupts are internally synchronized with the processor clock before their
interrupt-pending flags are set. Each external interrupt and internal interrupt has its own flag.
After each instruction executes, all interrupts are arbitrated (that is, all hardware interrupts that
have been latched into their respective interrupt-pending flagsand all internal interrupts). During
arbitration, each interrupt’s IPL is compared with the interrupt mask in the SR, and the interrupt
Iseither allowed or disallowed. The remaining interrupts are prioritized according to the priority
shown in Table 2-6, and the highest priority interrupt is chosen. The interrupt vector is then
calculated so that the program interrupt controller can fetch the first interrupt instruction. The
interrupt-pending flag for the chosen interrupt is not cleared until the second interrupt vector of

DSP56300 Family Manual, Rev. 5

2-12 Freescale Semiconductor



Processing States

the chosen interrupt isfetched. A new interrupt from the same source is not accepted for the next
interrupt arbitration until the interrupt-pending flag is cleared.

2.3.2.7 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which pointsto the first
instruction word of atwo-word interrupt routine. This addressis used for the next instruction
fetch, instead of the contents of the PC, and again for the subsequent address after that. While the
Interrupt instructions are being fetched, the PC is not updated. After the two interrupt words have
been fetched, the PC is used for any subsequent instruction fetches.

2.3.2.8 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the interrupt
service routine cause a change of flow. A JSR within afast interrupt routine forms along
interrupt, which isterminated with an RTI instruction to restore the PC and SR from the stack and
return to normal program execution. Reset is aspecia exception that normally containsonly a
JMP instruction at the exception start address. Almost any instruction can be used in afast
interrupt routine. A fast interrupt routine may contain either two single-word instructions or one
double-word instruction. Table 2-7 shows the effect of afast interrupt routine on the instruction
pipeline. The fast interrupt executes only two instructions (iil and ii2) and then automatically
resumes execution of the main program. T able 2-8 shows the effect of along interrupt routine on
the instruction pipeline. A short JSR (iil) isused to call the long interrupt routine which includes
the four instructions srl, sr2, sr3, and an rti. Instructionsii2, n3, sr5, and sr6 are neither decoded
nor executed.

Table 2-7. Fast Interrupt Pipeline

Instruction Cycle
Operation

1 2 3 4 5 6 7 8 9 10 11 12
Fetch 1 nl n2 il ii2 n3 n4
Fetch 2 nl n2 il ii2 n3 n4
Decode nl n2 il ii2 n3 n4
Address Gen 1 nl n2 il ii2 n3 n4
Address Gen 2 nl n2 il ii2 n3 n4
Execute 1 nl n2 il ii2 n3 n4
Execute 2 nl n2 il ii2 n3 n4
Notes: 1. n=normal instruction word

2. i = interrupt instruction word

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-13



Architecture Overview

Execution of afast interrupt routine always conforms to the following rules:

B The processor statusis not saved.

B Thefast interrupt routine can modify the status of the normal instruction stream (for
example, use the DO instruction, but such instructions should not be used in order to
assure proper operation).

B The PC, which contains the address of the next instruction to be executed in normal
processing, remains unchanged during afast interrupt routine.

B Thefast interrupt returns without an RTI.

B Normal instruction fetching resumes using the PC following the completion of the fast
interrupt routine.

B A fast interrupt is not interruptible.

B A JSR instruction within the fast interrupt routine forms along interrupt routine.

Table 2-8. Long Interrupt Pipeline
Instruction Cycle
Operation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Fetch 1 nl | n2 il i2 n3 | srl | sr2 | sr3 | sr4 | sr5 | sr6 | n3 n4 | n5 né | n7
Fetch 2 nl | n2 | jsr | ii2 n3 | srl | sr2 | sr3 | rti [sr5|s6| n3 | nd | n5 | n6
Decode nt | n2 | jsr | — | — | srl |sr2|sr3 | rti — | — | n3 | nd | n5
Addr. Gen 1 nl | n2 | jsr | — | — | srl |sr2 | sr3 | rti — | — | n3 | nd
Addr. Gen 2 nl | n2 | jsr | — | — | srl | sr2|sr3 | rti — | — | n3
Execute 1 nl n2 | jsr | — | — | srl |sr2 | sr3 | rti — | —
Execute 2 nl | n2 | jsr | — | — |srl | sr2 | sr3 | ri —
Notes: 1. n=normal instruction word
2. i = interrupt instruction word
3. sr=service routine word

Execution of along interrupt routine always adheres to the following rules:

A JSR to the starting address of the interrupt service routine islocated at one of the two
interrupt vector addresses.

During execution of the JSR instruction, the PC and SR are stacked. The interrupt mask
bits of the SR are updated to mask interrupts of the same or lower priority. The Loop Flag
and Scaling mode bits in the Status Register are cleared.

The interrupt service routine can be interrupted (that is, nested interrupts are supported),
but can only be interrupted by a higher priority interrupt.

Thelong interrupt routine, which can be any length, should terminate with an RTI, which
restores the PC and SR from the stack.

DSP56300 Family Manual, Rev. 5

2-14

Freescale Semiconductor



Processing States

Either of the two instructions of the fast interrupt can be the JSR instruction that forms the long
interrupt.

Note: A REP instruction is treated as a single two-word instruction, regardless of how many
timesit repeats the second instruction of the pair. Instruction fetches are suspended and
will bereactivated only after the L C is decremented to one. During the execution of the
repeated instruction, no interrupts are serviced. When LC finally decrements to one,
the fetches are reinitiated, and pending interrupts are serviced.

If anon-interruptible code sequence is desired, change the I PL bitsto the desired mask level. Due
to pipeline latency, the number of cyclesrequired after the IPL is masked in the status register
depends on the following.

B The number of levels of maskable interrupts for long interrupts only. Fast interrupts are
not an issue because they execute differently.

B The number of cycles required to execute the first instruction that is fetched in the cycle
preceding the fetch of the first interrupt instruction word.

In scenarios 1 and 2, the status register (SR) change occurs in the main program flow or within an
interrupt routine, and then one higher-level interrupt occurs.

Scenario 1. A 3-cycle ORI instruction using a double-cycle instruction in the protected region
requires four NOP instructions, as follows:

1. ORI -Firstcycle.

2. - Second cycle.
3. - Third cycle.
4. NOP.

5. NOP.

6. NOP.

7.  NOP.

8.

First instruction in protected region - 2 cycles.

In scenario 1, if aninterrupt occursimmediately after the first instruction in the protected region
Isfetched and that instruction is atwo-cycle instruction, then that instruction isremoved from the
pipeline and not executed until after the interrupt service routine compl etes. Therefore, the region
remains protected.

Scenario 2: A 3-cycle ORI instruction using a single-cycle instruction in the protected region
requires five NOP instructions:

1. ORI -Firstcycle.
2. - Second cycle.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-15



h -

Architecture Overview

- Third cycle.
NOP
NOP
NOP
NOP
NOP
First instruction in protected region - 1 cycle.

© ® N o 0 AW

Scenario 2 requires afifth NOP since aone-cycle instruction executes normally before the start of
the interrupt service routine.

Scenarios 3-5 use multiple levels of maskableinterrupts. In addition to the requirements from the
first two scenarios, 5 cycles are required for every level of interrupt change that can occur.

Scenario 3: After a status register change in the main program flow, an IPLO and IPL1 interrupt
sequence OCCurs:

4 -5 NOPs (for IPLO) + 5 NOPs (change from IPLO to IPL1).

Scenario 4: After a status register change in the main program flow, an IPLO, IPL1, and IPL2
Interrupt sequence occurs:

4-5 NOPs (for IPLO) + 2 x 5 NOPs (change from IPLO to IPL1 and change from IPL1 to IPL2).

Scenario 5: After a status register changein an IPLO service routine, an IPL1 and IPL2 interrupt
seguence OcCurs:

4-5 NOPs (change from IPLO to IPL1) + 5 NOPs (change from IPL1 to IPL2)

2.3.3 Reset Processing State

The DSP device enters reset processing state when the external RESET pin is asserted (ahardware
reset). In the Reset state:

Internal peripheral devices are reset.

The modifier registers (M[0-7]) are set to $FFFFFF.

The interrupt priority registers are cleared.

The Bus Control Register (BCR), the Address Attribute Registers (AAR[3-0]) and the
DRAM Control Register (DCR) are set to their initial values as described in Chapter 9,

External Memory Interface (Port A). Theinitial value causes a maximum number of wait
states to be added to every external memory access.

The Stack Pointer (SP) and the Stack Counter (SC) are cleared.
B Thefollowing bits of the SR are cleared:

DSP56300 Family Manual, Rev. 5

2-16 Freescale Semiconductor



Processing States

— Rounding mode (RM) bit (bit 21)
— Arithmetic Saturation mode (SM) bit (bit 20)
— Cache Enable (CE) hit (bit 19)
— Sixteen-bit Arithmetic (SA) mode bit (bit 17)
— DO Forever (FV) flag bit (bit 16)
— DO Loop Flag (LF) bit (bit 15)
— Double Precision Multiply (DM) mode bit (bit 14)
— Sixteen-bit Compatibility (SC) mode bit (bit 13)
— Scaling (§]1-0]) bits (bit 11 and bit 10)
— Condition Code bits (SR[7-0])

B Thefollowing bits of the SR are set:

— Core Priority (CP[1-0]) bits (bit 23 and bit 22)
— Interrupt (I[1-0]) mask bits (bit 9 and bit 8)

B The Instruction Cache Controller isinitialized as described in Chapter 8, Instruction
Cache.

B The Cache Enable (CE) bit in SR and the Burst mode bit in OMR are cleared.

B ThePLL Control register isinitialized as described in Chapter 6, PLL and Clock
Generator.

B The Vector Base Address Register (VBA) is cleared.

The DSP56300 core remai.ns in the Reset state until RESET is deasserted. Upon leaving the Reset
state, the Chip Operating mode bits of the OMR are loaded from the external mode select pins
(MOD[A-D]), and program execution begins at the program memory address as described in
Chapter 11, Operating Modes and Memory Spaces.

2.3.4 Wait Processing State

The Wait processing state is alow-power consumption state that occurs when the WAIT
Instruction executes. In the Wait state, the internal clock is disabled from all internal circuitry
except theinternal peripherals. All internal processing halts until an unmasked interrupt occurs,
the DSPisreset, or DE is asserted. If the exit from Wait state is caused by asserting DE, the
processor enters the Debug mode.

2.3.5 Stop Processing State

The Stop processing state is the lowest power consumption mode that occurs when the STOP
Instruction executes. In Stop mode, the clock oscillator activity depends on the PSTP bit in the
PLL control register. If thisbit is cleared, the clock oscillator isturned off. If the bit is set, the
VCO remains active and the global clock to the entire chip is disabled. All activity in the
processor halts until one of the following actions occurs:

B A low level isapplied to the IRQA pin (IRQA asserted).

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-17



Architecture Overview

B A low level isapplied to the RESET pin (RESET asserted).
B A low level isapplied to the DE pin.

Any of these actions enablesthe oscillator. After a clock stabilization delay, clocks to the
processor and peripherals are re-enabled. If re-enabled, one of the following occurs:

B If the exit from Stop state was caused by alow level on the RESET pin, then the processor
enters the Reset processing state.

B [f the exit from Stop state was caused by alow level on the IRQA pin, then the processor
services the highest-priority pending interrupt. If no interrupt is pending (that is, IRQA was
negated before interrupts were arbitrated), or if no interrupt is enabled, the processor
resumes execution at the instruction following the STOP instruction that caused the entry
into the Stop state.

B [f the exit from Stop state was caused by alow level on the DE pin, then the processor
enters the Debug mode.

For minimum power consumption during the Stop state at the cost of longer recovery time, clear
the PSTP bit of the PLL Control Register. To enable rapid recovery when exiting the Stop state,
at the cost of higher power consumption, set PSTP. PSTP is cleared by hardware reset.

2.3.6 Debug State

Debug state is invoked and used with the JTAG/OnCE port. See Chapter 7, Debugging
Supportfor a description of the Debug state.

DSP56300 Family Manual, Rev. 5

2-18 Freescale Semiconductor



Data Arithmetic Logic Unit 3

This chapter describes the architecture and the operation of the data arithmetic logic unit (data
ALU), the block where all the arithmetic and logical operations on data operands are performed.

3.1 Data ALU Architecture

The data ALU contains the following components:

B Four 24-bit input registers

A fully pipelined Multiplier-Accumulator (MAC)
Two 48-bit accumulator registers

Two 8-hit accumulator extension registers

A Bit Field Unit (BFU) with a 56-bit barrel shifter
An accumulator shifter

Two data bus shifter/limiter circuits

Figure 3-1isablock diagram of the data ALU. The data ALU registers can be read or written
over the X DataBus (XDB) and the Y DataBus (Y DB) as 24- or 48-bit operands. The source
operands for the data ALU, which can be 24, 48, or 56 bits, always originate from data ALU
registers. Theresultsof all data ALU operations are stored in an accumulator. The data ALU runs
in 16-bit Arithmetic mode when the SA bit in the Status Register (SR) is set. For details on the
SR, see Chapter 5, Program Control Unit.

All the data ALU operations are performed in two clock cycles in pipeline fashion so that a new
instruction can be initiated in every clock, yielding an effective execution rate of one instruction
per clock cycle.

3.1.1 Data ALU Input Registers (X1, X0, Y1, YO)

X1, X0, Y1, and YO are four 24-hit, general-purpose data registers. They can be treated as four
Independent 24-bit registers or as two 48-bit registers called X and Y, formed by concatenation of
X1:X0and Y1:YO, respectively. X1 isthe most significant word in X, and Y 1 is the most
significant word in Y. The registers serve as input buffers between the X Data Bus (XDB) or Y
Data Bus (YDB) and the MAC unit or barrel shifter. They are used as data AL U source operands,
allowing new operands to be loaded for the next instruction while the current contents are used
by the current instruction. The registers can also be read back out to the appropriate data bus.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-1



P N

Arithmetic Logic Unit

X Data Bus
Y Data Bus A A
A A
P Data Bus
24 24
Y Y
X0
X1
Y0
Immediate Field Y1
"24 ¢24

MUX ( Multiplier )

Y Y

| Pipeline Register |

/ \
Bit Field Unit
and Barrel Shifter

A Y

56
Accumulator
and Rounding Unit
56 56 56

48

Forwarding Register

56
| B Y Y
( Accumulator ) A (56)
Shifter B (56)
A 56 56 l 56
Y

C Shifter/Limiter )

24

Figure 3-1. Data ALU Block Diagram

3.1.2 Multiplier-Accumulator (MAC) Unit

The multiplier-accumulator (MAC) unit is the main arithmetic processing unit of the DSP56300
core. It accepts up to three input operands and outputs one 56-bit result of the following form:

Extension:Most Significant Product:Least Significant Product (EXT:MSP:LSP)

The operation of the MAC unit occurs independently and in parallel with XDB and Y DB activity,
and itsregisters facilitate buffering for both data ALU inputs and outputs. Latches on the MAC

DSP56300 Family Manual, Rev. 5

3-2 Freescale Semiconductor



Data ALU Architecture

unit input permit writing new data to an input register while the data ALU processes the current
data. The input to the multiplier can come only fromthe X or Y registers. The multiplier executes
24-bit x 24-bit, paralel fractional multiplies, between two’ s-complement signed, unsigned, or
mixed operands. The 48-bit product isright-justified into 56 bits and added to the 56-bit contents
of either the A or B accumulator.

The 56-bit sum is stored back in the same accumulator. The multiply/accumulate operation is
fully pipelined and takes two clock cycles to complete. In the first clock the multiply is
performed and the product is stored in the pipeline register. In the second clock the accumulator
Is added or subtracted. If amultiply without accumulation (MPY') is specified in the instruction,
the MAC clears the accumulator and then adds the contentsto the product. When a 56-bit resultis
to be stored as a 24-hit operand, the L SP can simply be truncated, or it can be rounded into the
MSP. Rounding is performed if specified in the DSP instruction, for example, in the signed
multiply-accumul ate and round (MACR) instruction; the rounding is either convergent rounding
(round-to-nearest-even) or two’ s-complement rounding. The type of rounding is specified by the
rounding bit in the Status Register (SR). The bit in the accumulator that isrounded is specified by
the scaling mode bits in the SR.

The arithmetic unit’ s result going into the accumulator can be saturated so that it fitsinto 48 bits
(MSP and LSP). This process is commonly referred to as arithmetic saturation. It is activated by
the Arithmetic Saturation Mode (SM) bit in the SR. The purpose of this mode isto provide for
algorithms that do not recognize or cannot take advantage of the extension accumulator (EXT).
For details, refer to Section 3.2.3, Arithmetic Saturation Mode, on page 3-9.

3.1.3 Data ALU Accumulator Registers (A2, Al, A0, B2, B1, BO)

Thesix data ALU registers (A2, A1, AQ, B2, B1, and BO) form two general-purpose, 56-bit
accumulators, A and B. Each of these two accumulators consists of three concatenated registers
(A2:A1:A0 and B2:B1:BO, respectively). The 24-bit MSPisstored in Al or B1; the 24-bit LSPis
storedin AO or BO. The 8-bit EXT isstored in A2 or B2. If an ALU operation resultsin overflow
into A2 (or B2), reading the A (or B) accumulator over the XDB or Y DB substitutes alimiting
constant in place of the value in the accumulator. The content of A or B isnot affected if limiting
occurs; only the value transferred over the XDB or YDB is limited. This process is commonly
referred to as transfer saturation and should not be confused with the Arithmetic Saturation mode.

The overflow protection is performed after the contents of the accumulator are shifted according
to the Scaling mode. Shifting and limiting is performed only when the entire 56-bit A or B
register is specified as the source for a paralel datamove over the XDB or YDB. When A2, Al,
A0, B2, B1, or BO isthe source for a parallel data move, shifting and limiting are not performed.
When the 8-bit wide accumulator extension register (A2 or B2) is the source for aparallel data
move, it is sign-extended to produce the full 24-bit wide word. The accumulator registers (A or
B) serve as buffer registers between the arithmetic unit and the XDB and/or Y DB. These registers
are used as both data ALU source and destination operands.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-3



h -

Arithmetic Logic Unit

Automatic sign extension of the 56-bit accumulators occurs when the A or B register iswritten
with a smaller operand. Sign extension can occur when A or B iswritten from the XDB and/or
Y DB or with the results of certain data ALU operations such as the Transfer Conditionally (Tcc)
or Transfer Data ALU Register (TFR) instructions. If aword operand is to be written to an
accumul ator register (A or B), the most significant product (MSP)—A1 or B1—of the

accumul ator iswritten with the word operand, the least significant product (L SP)—AO or BO—is
zero-filled, and the extended (EXT) portion —A2 or B2—is sign-extended from M SP.

L ong-word operands are written into the low-order portion, MSP:LSP, of the Accumulator
Register, and the EXT portion is sign-extended from MSP. No sign extension is performed if an
individual 24-bit register iswritten (A1, AO, B1, or BO). Test logic in each accumulator register
supports operation of the data shifter/limiter circuits. This test logic detects overflows out of the
data shifter so that the limiter can substitute one of several constants to minimize errors due to the
overflow.

3.1.4 Accumulator Shifter

The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 56-bit output
that isimplemented immediately before the MAC unit accumulator input. The source
accumulator shifting operations are as follows:

B No shift (unmodified)

B 24-bit right shift (arithmetic) for DMAC

B 16-bit right shift (arithmetic) for DMAC in Sixteen-bit Arithmetic mode
B Forceto zero

3.1.5 Bit Field Unit (BFU)

The BFU contains a 56-bit parallel bidirectional shifter with a 56-bit input and a 56-bit output,
mask generation unit and logic unit. The BFU is used in the following operations:

Multi-bit left shift (arithmetic or logical) for ASL, LSL

Multi-bit right shift (arithmetic or logical) for ASR, LSR

1-Bit rotate (right or left) for ROR, ROL

Bit field merge, insert and extract for MERGE, INSERT, EXTRACT and EXTRACTU
Count leading bitsfor CLB

Fast normalization for NORMF

Logical operations for AND, OR, EOR, and NOT

3.1.6 Data Shifter/Limiter

The data shifter/limiter circuits provide specia post-processing on data read from the ALU
accumul ator registers A and B out to the XDB or YDB. Each of the two independent

DSP56300 Family Manual, Rev. 5

3-4 Freescale Semiconductor



Data ALU Architecture

shifter/limiter circuits (one for XDB and one for the Y DB) consists of a shifter followed by a
limiting circuit.

3.1.6.1 Scaling

The data shifters in the shifters/limiters unit can perform the following data shift operations:

B Scale up—shift data one bit to the left
B Scale down—shift data one bit to the right
B No scaling—pass the data unshifted

Each data shifter has a 24-bit output with overflow indication. These shifters permit dynamic
scaling of fixed-point data without modifying the program code. For example, this permits block
floating-point algorithms such as Fast Fourier Transforms (FFTs) to be implemented in aregular
fashion. The data shifters are controlled by the Scaling Mode bits (SO and S1, bits 11 and 10) in
the SR.

3.1.6.2 Limiting

In the DSP56300 core, the data ALU accumulators A and B have eight extension bits. Limiting
occurs when the extension bits are in use and either A or B isthe source being read over XDB or
YDB. The limitersin the DSP56300 core place a shifted and limited value on XDB or YDB
without changing the contents of the A or B registers. Having two limiters allows two-word
operandsto be limited independently in the same instruction cycle. The two data limiters can also
be combined to form one 48-bit data limiter for long-word operands.

If the contents of the selected source accumulator are represented without overflow in the
destination operand size (that is, signed integer portion of the accumulator is not in use), the data
limiter is disabled, and the operand is not modified. If the contents of the selected source
accumul ator are not represented without overflow in the destination operand size, the datalimiter
substitutes a limited data val ue having maximum magnitude (saturated) and having the same sign
as the source accumulator contents:

B $7FFFFF for 24-bit positive numbers

B $7FFFFF FFFFFF for 48-bit positive numbers
B $800000 for 24-bit negative numbers

W $800000 000000 for 48-bit negative numbers

This processis called transfer saturation. The value in the accumulator register is not shifted or
limited and can be reused within the data ALU. When limiting does occur, aflagis set and
latched in the SR.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-5



h -

Arithmetic Logic Unit

3.2 Data ALU Arithmetic and Rounding

The following paragraphs describe the data AL U data representation, rounding modes, and
arithmetic methods.

3.2.1 Data Representation

The DSP56300 core uses afractional datarepresentation for all data ALU operations. Figure 3-2
shows the bit weighting of words, long words, and accumulator operands for this representation.
The decimal points are all aligned and are left-justified. For words and long words, the most
negative number that can be represented is—1.0 whose internal representation is $800000 and
$800000000000, respectively. The most positive word is $7FFFFF or 1-223, and the most
positive long word is $7FFFFFFFFFFF or 1-2~%7. These limitations apply to all data stored in
memory and to data stored in the data ALU input buffer registers. The extension registers
associated with the accumulators allow word growth so that the most positive number is
approximately 256, and the most negative number is—256. To maintain alignment of the radix
point when aword operand is written to accumulator A or B, the operand is written to the most
significant accumulator register (Al or B1), and its most significant byte is automatically
sign-extended through the accumul ator extension register (A2 or B2). The least significant
accumulator register (A0 or BO) isautomatically cleared. When along-word operand is written to
an accumulator, the least significant word of the operand is written to the least significant
accumul ator register (see Figure 3-2).

Data ALU
Word Operand

20 223

X1, X0
Y1, YO
Al, AO
B1, BO

2—24 2—47

Long - Word Operand *

X1:X0 = X
Y1:YO = Y
A1:A0 = Al10
B1:BO = B10

_o8 ' 90 124 47

Accumulator A or B A2, B2 Al, Bl AO, BO

! | |
! | |
Sign Extension Operand Zero

Figure 3-2. Bit Weighting and Alignment of Operands

DSP56300 Family Manual, Rev. 5

3-6 Freescale Semiconductor



Data ALU Arithmetic and Rounding

The number representation for integersis between + 2 (N1 \whereas, the fractional
representation is limited to numbers between + 1. To convert from an integer to afractional
number, the integer must be multiplied by a scaling factor so the result is always between + 1.
The representation of integer and fractional numbersis the same if the numbers are added or
subtracted, but it is different if the numbers are multiplied or divided. An example of two
numbers multiplied together isgiven in Figure 3-3.

Signed Multiplication N x N — 2N — 1 Bits

Integer Fractional
I S || S | S || S |
| Signed Multiplier | | Signed Multiplier |
[s MSP Z LSP .| B MSP LSP |
~¢——— 2N-1Product —» ~—— 2N-1Product ——»
Sign Extension Zero Fill
-« 2N Bits > < 2N Bits >

Figure 3-3. Integer/Fractional Multiplication

The key difference isin the aignment of the 2N—1 bit product. In fractional multiplication, the
2N-1 significant product bits are |eft-aligned, and azero isfilled in the Least Significant Bit
(LSB), to maintain fractional representation. In integer multiplication, the 2N—1 significant
product bits are right-aligned, and the sign bit should be duplicated to maintain integer
representation.

Note: Be aware when multiplying integer numbers that since the DSP56300 core
incorporates afractional array multiplier, it always aligns the 2N-1 significant product
bits to the left.

3.2.2 Rounding Modes

The DSP56300 core data ALU rounds the accumulator register to single precision if requested in
the instruction. The upper portion of the accumulator is rounded according to the contents of the
lower portion of the accumulator. The boundary between the lower portion and the upper portion
Is determined by the Scaling Mode bits SO and S1 in the Status Register (SR). Two types of
rounding are implemented: convergent rounding and two’ s-complement rounding. The type of
rounding is selected by the Rounding Mode (RM) bit in the EMR portion of the SR.

3.2.2.1 Convergent Rounding

Convergent rounding (also called round-to-nearest even number) is the default rounding mode.

The traditional rounding method rounds up any value greater than one-half and rounds down any
value |less than one-half. The question arises as to which way one-half should be rounded. If it is
always rounded one way, the results are eventually biased in that direction. Convergent rounding

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-7



h -

Arithmetic Logic Unit

solves the problem by rounding down if the number is even (LSB = 0) and rounding up if the

number isodd (LSB = 1). Figure 3-4 shows the four cases for rounding a number in the A1 (or
B1) register. If scaling is set in the SR, the rounding position is updated to reflect the alignment
of the result when it is put on the data bus. However, the contents of the register are not scal ed.

Case [: If A0 < $800000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding
0
A2 Al A0 A2 Al AO*
[XX . XX[XXX...XxXX0100[011XXX....XXX | [x x .. xx[xxXx...xxx0100[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case II: If AO > $800000 (1/2), then Round Up (Add 1 to A1)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
[XX .. XX[XxXX...XxXX0100[1110XX....X XX | [x x .. xx[xxXx...xxx0101[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case llI: If AO = $800000 (1/2), and the LSB of Al = 0, then Round Down (Add Nothing)

Before Rounding After Rounding
0
A2 Al : 7 A0 A2 Al AO*
[xX .. xx[xXX...xxXx0100[1000........ 000 | [x x .. xx[xxXx...xxx0100[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case IV: If A0 = $800000 (1/2), and the LSB = 1, then Round Up (Add 1 to A1)

Before Rounding After Rounding
1
A2 Al : 7 A0 A2 Al AQ*
xx . xx|xxx..xxx0101|1000........ 000 | [x x .. xx[xxXx...xxx0110[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

*AO is always clear; performed during RND, MPYR, MACR
Figure 3-4. Convergent Rounding (No Scaling)
3.2.2.2 Two’s Complement Rounding

When two’ s complement rounding is selected by setting the Rounding Mode (RM) bit in the SR,
all values greater than or equal to one-half are rounded up, and all values less than one-half are

rounded down. Therefore, asmall positive biasisintroduced. Figur e 3-5 showsthefour casesfor
rounding anumber inthe Al (or B1) register. If scaling is set in the SR, the rounding position is

DSP56300 Family Manual, Rev. 5

3-8 Freescale Semiconductor



Data ALU Arithmetic and Rounding

updated to reflect the alignment of the result when it is put on the data bus. However, the contents
of the register are not scaled.

Case [: If A0 < $800000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding
0
A2 Al A0 A2 Al AO*
[X X .. X X|XxxX..xXxXx0100[011XXX....XxXX]| [x X .. X x|xxXx...xxx0100[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case II: If AO > $800000 (1/2), then Round Up (Add 1 to Al)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
[xx .. xX|xxX...xxx0100[1110XX....Xx XX | [x X .. X x|xxXx...xxx0101[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case llI: If AO = $800000 (1/2), and the LSB of Al = 0, then Round Up (Add 1 to Al)

Before Rounding After Rounding
1
A2 Al : 7 A0 A2 Al AO*
XX .. xX|xxX...xxXx0100[1000........ 000 | XX, . xx]xxx...xxxo0101[o00......... 000
55 48 47 24 23 0 55 48 47 24 23 0

Case IV: If A0 = $800000 (1/2), and the LSB of A1 =1, then Round Up (Add 1 to Al)

Before Rounding After Rounding
1
A2 Al : 7 A0 A2 Al AO*
[xx .. xX[xxX...xxx0101[1000........ 000 | [x X .. X x|xxXx...xxx0110[000......... 000
55 48 47 24 23 0 55 48 47 24 23 0

*A0 is always clear; performed during RND, MPYR, MACR

Figure 3-5. Two’'s Complement Rounding (No Scaling)

3.2.3 Arithmetic Saturation Mode

Setting the Arithmetic Saturation Mode (SM) bit in the SR limits the arithmetic unit’ sresult to 48
bits (M SP and L SP). The highest dynamic range of the machineis then limited to 48 bits. The
purpose of the SM hit is to provide a saturation mode for algorithms that do not recognize or
cannot take advantage of the extension accumulator. The arithmetic saturation logic operates by
checking 3 bits of the 56-bit result after rounding: two bits of the extension byte (EXT[7] and

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-9



h -

Arithmetic Logic Unit

EXT[Q]) and one bit on the MSP (MSP[23]). The result obtained in the accumulator when SM =
lisshownin Table 3-1.

Table 3-1. Actions of the Arithmetic Saturation Mode (SM = 1)

EXT[7] EXT[O] MSP[23] Result in Accumulator

Unchanged

$00 7FFFFF FFFFFF
$00 7FFFFF FFFFFF
$00 7FFFFF FFFFFF
$FF 800000 000000
$FF 800000 000000
$FF 800000 000000

FP|lFP|RFP[PRP]O|lO|O| O
PP O|O|F|FL|O]|] O
| O|PFRP|O|FRP|O|FL]| O

Unchanged

The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not affected by the
Scaling mode. Similarly, rounding of the saturation constant during execution of MPYR, MACR,
and RND instructionsis independent of the scaling mode: $007FFFFFFFFFFF is rounded to
$007FFFFFO00000, and $FF800000000000 is rounded to $FF800000000000.

In Arithmetic Saturation mode, the Overflow bit (V bit) inthe SR is set if thedata ALU result is
not representable in the 48-bit accumulator (that is, an arithmetic saturation has occurred). This
also impliesthat the Limiting bit (L bit) in the SR is set when an arithmetic saturation occurs.

Note: The Arithmetic Saturation mode is always disabled during execution of the following
instructions: TFR, Tcc, DMACsu, DMACuu, MACsu, MACuu, MPY su, MPY uu,
CMPU, and all BFU operations. If the result of these instructions should be saturated, a
MOVE A,A (or B,B) instruction must be added after the original instruction if no
scaling is set. However, the“V” bit of the SR is never set by the arithmetic saturation
of the accumulator during execution of aMOVE A,A (or B,B) instruction. Only the
“L” bit is set.

3.2.4 Multi-Precision Arithmetic Support

A set of data ALU operations facilitate multi-precision multiplications. When these instructions
are used, the multiplier accepts some combinations of signed two’s-complement format and
unsigned format. Table 3-2 shows these instructions.

DSP56300 Family Manual, Rev. 5

3-10 Freescale Semiconductor



Data ALU Arithmetic and Rounding

Table 3-2. Acceptable Signed and Unsigned Two’s-Complement Multiplication

Instruction Description
MPY/MAC su Multiplication and multiply-accumulate with signed times unsigned operands
MPY/MAC uu Multiplication and multiply-accumulate with unsigned times unsigned operands
DMACss Multiplication with signed times signed operands and 24-bit arithmetic right shift of the

accumulator before accumulation

DMACsu Multiplication with signed times unsigned operands and 24-bit arithmetic right shift of
the accumulator before accumulation

DMACuu Multiplication with unsigned times unsigned operands and 24-bit arithmetic right shift of
the accumulator before accumulation

Figure 3-6 shows how the DMAC instruction isimplemented inside the data ALU.

Y Y

>> 24 Multiply
+
Y Y
Accumulate

Y

Figure 3-6. DMAC Implementation

A

Accumulator Shifter

Figure 3-7 illustrates the use of these instructions for a double-precision multiplication. The
signed x signed operation multiplies or multiply-accumul ates the two upper signed portions of
two signed double-precision numbers. The unsigned x signed operation multiplies or
multiply-accumul ates the upper signed portion of one double-precision number with the lower
unsigned portion of the other double-precision number. The unsigned x unsigned operation
multiplies or multiply-accumulates the lower unsigned portion of one double-precision number
with the lower unsigned portion of the other double-precision number.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-11



h -

Arithmetic Logic Unit

~——— 48 bits ——»

XH XL
X1 X X0
YH YL
Y1 = YO
- Unsigned X Unsigned
mpyuu  x0,y0,a
mgze aO,)l;O > XLXYL

Signed X Unsigned
dmacsu x1,y0,a - > XH XYL

macsu  y1,x0,a
move a0,bl

> YH X XL

Signed X Signhed

dmacss xlyl,a -3 XH X YH

S Ext
A2 Al A0 Bl BO

< 96 bits >

Figure 3-7. Double-Precision Multiplication Using the DMAC Instruction
3.2.4.1 Double-Precision Multiply Mode

Double-precision multiply operations can also be performed within a dedicated
“Double-Precision Multiply” mode using a double-precision algorithm with four multiply
operations. Select the Double-Precision Multiply mode by setting Bit 14 (DM) of the SR. The
mode is disabled by clearing the DM bit. The double-precision multiply algorithm is shownin
Figure 3-8. The ORI instruction sets the DM mode bit, but due to the instruction execution
pipeline the data ALU enters the Double-Precision Multiply mode after only one cycle. The
ANDI instruction clearsthe DM mode bit in the MR, but due to the instruction execution pipeline
the data AL U leaves the mode after one cycle. To alow for the pipeline delay, do not follow the
ANDI instruction immediately with arestricted data ALU instruction.

In Double-Precision Multiply mode, the behavior of the four specific operations listed in the
double-precision algorithm is modified. Therefore, in Double-Precision Multiply mode, do not
use these operations with the specified register combinations for any purpose other than the
double-precision multiply algorithm. Also, in this mode, do not use any other data ALU
operations (or the four listed operations with other register combinations).

Note: Since the double-precision multiply algorithm uses the Y O register for all stages, do
not change Y 0 when running the double-precision multiply agorithm. If the data ALU
Isrequired by an interrupt service routine, save the contents of Y 0 with the contents of
the other data AL U registers before processing the interrupt routine, and restore them
before |eaving the interrupt routine.

DSP56300 Family Manual, Rev. 5

3-12 Freescale Semiconductor



Data ALU Programming Model

X: Y
R1—>| MsP1 MSP2 |[€——R5
LSP1 LSP2
RO — | DP3 DP2  |e—Ro
DP1 DPO

DP3_DP2_DP1 DPO = MSP1 LSP1 x MSP2_LSP2
ori#s$40,mr ;enter mode
move x: (rl)+,x0 y: (r5)+,y0;load operands

mpyy0,x0,ax: (rl)+,x1  vy:(r5)+,yl;LSP*LSP->a

macxl,y0,a a0,y: (x0);shifted(a)+
MSP*LSP->a

macx0,yl,a ;a+LSP*MSP->a

macyl,xl,aa0,x: (r0)+ ;shifted(a)+

Figure 3-8. Double-Precision Multiply Algorithm
3.2.5 Block Floating-Point FFT Support

The Block Floating Point FFT operation requires the early detection of data growth between FFT
butterfly passes. If data growth is detected, suitable down-scaling must be applied to ensure that
no overflow occurs during the next butterfly calculation pass. The total scaling applied isthe
block exponent of the FFT output. Data growth detection isimplemented as a status bit in the SR.
The FFT scaling bit S, bit 7 of the SR, is set when aresult moves from accumulator A or B to the
XDB or YDB Bus (during an accumulator to memory or accumulator to register move) and
remains set until explicitly cleared (that is, the“S” bitisa*“sticky” bit).

3.3 Data ALU Programming Model

The data ALU features 24-bit input/output data registers that can be concatenated to
accommodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-bit
pieces that can be transferred over the buses. Figur e 3-9 illustrates how the registersin the
programming model are grouped.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-13



Arithmetic Logic Unit

Data ALU
Input Registers
X Y
47 0 47 0
X1 X0 | | Y1 YO
23 023 0 23 023 0
Data ALU
Accumulator Registers
A B
55 0 55 0
[ « [a2] Al | AO [ [ + [B2] B1 BO
23 7 023 023 0 23 7 023 023 0

*Read as sign extension bits, written as either 0 or 1.
Figure 3-9. Data ALU Core Programming Model

3.4 Sixteen-Bit Arithmetic Mode

Setting the SA bit in the SR enables the Sixteen-bit Arithmetic operating mode. In this mode, the
16-bit dataisright-aligned in the 24-bit memory word, that is, in the 16 L SBs of the 24-bit word.
Y ou can use 16-bit wide data memories either by leaving the eight M SBs unconnected or by
tying these bitsto GND. In Sixteen-bit Arithmetic mode, the source operands can be 16-hbit, 32-bit,
or 40-bit. The numerical results have a 40-bit accuracy. These 40 bits consist of a16-bit LSP, a
16-bit MSP, and an 8-bit EXT. Figure 3-10 shows the bit positions in the memory and data ALU
registers in Sixteen-bit Arithmetic mode.

3.4.1 Moves in Sixteen-Bit Arithmetic Mode

In Sixteen-bit Arithmetic mode, the data ALU registers are still read or written as 24- or 48-bit
operations over the XDB and the YDB. No 16- or 32-bit moves are supported. The mapping of
the 16-bit data to the 24-bit buses is described in the following paragraphs. Table 3-3 shows the
result of moving data into registers or accumulators. Table 3-4 shows the result of moving data
from registers or accumulators.

3.4.1.1 Moves into Registers or Accumulators

When XDB or YDB are moved into afull data ALU accumulator (A or B), the 16 L SBs of the
bus are placed in bits 32—47 of the accumulator (16 MSBs of A1 or B1). Bits 8-23 of the
accumulator (16 MSBs of AO or BO) are cleared and the EXT of the accumulator (A2 or B2) is
loaded with the sign extension. When XDB and Y DB (48 hits) are moved into afull data ALU
accumulator (A or B), the 16 LSBsfrom XDB are placed into bits 32—47 of the accumulator (16
MSBsof Al or B1). The 16 LSBsfrom Y DB are placed into bits 8-23 of the accumulator (16
MSBs of AO or BO). The EXT of the accumulator (A2 or B2) is loaded with the sign extension.

DSP56300 Family Manual, Rev. 5

3-14 Freescale Semiconductor



Sixteen-Bit Arithmetic Mode

Memory Locations
and Non-Data-ALU Registers

Memory Word Memory Long Word
[ | Data | [ | pata [ | Data |
23 15 0 23 15 023 15 0
Data ALU
X Input Registers v
47 0 47 0
xt [ ] xo [ | vi [ ] vyo [ ]
23 7 023 70 23 7 023 70
Data ALU
A Accumulator Registers B
55 0 55 0
« Jpel m ] a0 [ [+ e[ e [ ] B [ ]
23 70 23 7 0 23 7 0 23 70 23 7 0 23 70

* Read as sign extension bits; written as either 0 or 1.

[ ] Undefined

Notes: 1. When switching to and from Sixteen-bit Arithmetic mode, no arithmetic instruction or a MOVE
instruction should be performed for two instruction cycles. The programmer must insert two NOP
instructions. There is no automatic stall insertion for this change.

2. Be cautious about exchanging data between Sixteen-bit Arithmetic mode and 24-bit arithmetic mode
via write-read operations on data ALU registers and accumulators. Since the write operations in
Sixteen-bit Arithmetic mode corrupt the information in the least significant bytes of the registers or
accumulators, do not use these registers or accumulators for 24-bit data without some processing.

Figure 3-10. Sixteen-Bit Arithmetic Mode Data Organization

When XDB or YDB ismoved into aregister (X0, X1, YO, or Y1) or partial accumulator (AO, A1,
BO or B1), the 16 L SBs of the bus are loaded into the 16 M SBs of the destination register. No
other portion of the accumulator is affected.

When XDB or Y DB is moved into the accumulator extension register (A2 or B2), theeight LSBs
of the bus are loaded into the eight L SBs of the destination register and the 16 M SBs of the bus
are not used. The remaining parts of the accumulator are not affected.

When XDB and YDB are moved into a48-hbit register (X or Y) or partial accumulator (A10 or
B10), the 16 L SBs of XDB bus are loaded into the 16 MSBs of the MSP (X1, Y1, Al, or B1) and
the 16 LSBs of YDB bus are loaded into the 16 MSBs of the LSP (X0, YO, AO, or BO). The EXT
part of the accumulator (A2 or B2) is not affected.

Table 3-3. Moves into Registers or Accumulators

Data Source Destination Result

XDB or YDB Full data ALU accumulator (A » 16 LSBs of bus into bits 32-47 of accumulator
or B) » Accumulator bits 8-23 cleared
» EXT of accumulator (A2 or B2) loaded with sign extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-15



h -

Arithmetic Logic Unit

Table 3-3. Moves into Registers or Accumulators (Continued)

Data Source Destination Result

XDB and YDB | Full data ALU accumulator (A » 16 LSBs of XDB into bits 32-47 of accumulator
or B) » 16 LSBs of YDB into bits 8-23 of the accumulator
» EXT of accumulator (A2 or B2) loaded with sign extension

XDB or YDB Register (X0, X1, YO, or Y1) or » 16 LSBs of bus into 16 MSBs of destination register
partial accumulator (AO, A1, BO, | * Remaining parts of accumulator not affected
or B1)

XDB or YDB Accumulator extension register | ¢ Eight LSBs of bus into eight LSBs of destination register
(A2 or B2) » 16 MSBs of bus not used
» Remaining parts of accumulator not affected

XDB and YDB | 48-bit register (X or Y) or partial | « 16 LSBs of XDB into 16 MSBs of MSP
accumulator (A10 or B10) » 16 LSBs of YDB into 16 MSBs of LSP
» EXT of accumulator (A2 or B2) not affected

3.4.1.2 Moves from Registers or Accumulators

When a partial accumulator (AO, A1, BO, or B1) ismoved to the XDB or YDB, the 16 MSBs of
the source are transferred to the 16 L SBs of the bus with eight zerosin the MSBs. No scaling or
limiting is performed. When the source is the accumulator extension register (A2 or B2), it
occupies the eight L SBs of the bus while the next 16 bits are the sign extension of bit 7.

When a partial accumulator (A10 or B10) is moved to XDB and Y DB, the 16 MSBs of the MSP
of the source (Al or B1) aretransferred to the 16 L SBs of XDB with eight zerosin the MSBs,
while the 16 M SBs of the LSP of the source (AO or BO) are transferred to the 16 LSBs of YDB
with eight zeros in the MSBs. No scaling or limiting is performed.

When afull data ALU accumulator (A or B) ismoved to XDB or YDB, scaling and limiting is
performed, and then the 16-bit scaled and limited word is placed on the 16 L SBs of the bus and
the sign extension is placed in the eight M SBs on the bus.

When afull data ALU accumulator (A or B) ismoved to XDB and YDB, scaling and limiting is
performed, and then the 16 M SBs of the 32-bit scaled and limited double word are placed on
XDB 16 LSBs, and the sign extension is placed in the eight M SBs on the bus. The 16 L SBs of the
32-bit scaled and limited double word are placed on the 16 L SBs of the Y DB with eight zeros on
the eight MSBs of the bus.

When aregister (X0, X1, YO, or Y1) ismoved to XDB or YDB, the 16 MSBs of the source are
transferred to the 16 L SBs of the bus with eight zeros in the M SBs.

When a 48-bit register (X or Y) ismoved to XDB and Y DB, the 16 M SBs of the high register
(X1 or Y1) are placed on the 16 L SBs of the XDB, and eight zeroes are placed on the eight MSBs
of the bus. The 16 LSBs of the low register (X0 or Y 0) are placed on the 16 L SBs of the YDB
with eight zeros on the eight M SBs of the bus.

DSP56300 Family Manual, Rev. 5

3-16 Freescale Semiconductor



Sixteen-Bit Arithmetic Mode

Note: When aread operation of adata ALU register (X, Y, X0, X1, YO, or Y1) immediately
follows awrite operation to the same register, the value placed on the eight M SBs of
the XDB or YDB is undefined.

Table 3-4. Moves From Registers or Accumulators

Data Source Destination Result
Partial accumulator (A0, | XDB or YDB » 16 MSBs of source into 16 LSBs of bus with eight zeros in MSBs
Al, BO, or B1) » No scaling or limiting
Accumulator extension XDB or YDB » Source occupies eight LSBs of bus
register (A2 or B2) » Next 16 bits are sign extension of bit 7
Partial accumulator (A10 | XDB and YDB » 16 MSB of MSP of source (Al or B1) transferred to 16 LSBs of XDB
or B10) with eight zeros in MSBs

» 16 MSBs of the LSP of source (A0 or BO) transferred to 16 LSBs of
YDB with eight zeros in the MSBs.
» No scaling or limiting

Full data ALU XDB or YDB » Scaling and limiting performed
accumulator (A or B) » 16-bit scaled word placed on 16 LSBs of bus
 Sign extension placed in eight MSBs of bus
Full data ALU XDB and YDB » Scaling and limiting performed
accumulator (A or B) » 16 MSBs of 32-bit scaled and limited double word placed on XDB 16
LSBs

 Sign extension placed in eight MSBs on bus
» 16 LSBs of 32-bit scaled and limited double word placed on 16 LSBs of
YDB with eight zeros on the eight MSBs of bus

Register (X0, X1, YOor | XDB or YDB » 16 MSBs transferred to 16 LSBs of bus with eight zeros in MSBs
Y1)
48-bit register (X or Y) XDB and YDB » 16 MSBs of high register (X1 or Y1) placed on 16 LSBs of XDB with

eight zeros on eight MSBs of bus
» 16 LSBs of low register (X0 or Y0) placed on 16 LSBs of YDB with eight
zeros on eight MSBs of bus

3.4.1.3 Short Immediate moves

When an Immediate Short Data MOV E is performed in Sixteen-bit Arithmetic mode and the
destination register isAOQ, A1, BO, or B1, the 8-bit immediate short operand is interpreted as an
unsigned integer and istherefore stored in bits 15-8 of the register (which correspond to the eight
L SBs of a 16-bit number). If the destination register is A2 or B2, the 8-bit immediate short
operand is stored in bits 7-0 of the register.

When the destination register is A, B, X0, X1, YO, or Y1, the 8-bit immediate short operand is
interpreted as a signed fraction and is stored in bits 47—40 of the accumulator or bits 23-16 of a
register (which correspond to the eight MSBs of a 16-bit number).

3.4.1.4 Scaling and Limiting

If scaling is specified, the data shifter virtually concatenates the 16-bit L SP to the 16-bit MSP to
provide a numerically correct shift.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-17



h -

Arithmetic Logic Unit

During the Sixteen-bit Arithmetic mode of operation, the limiting is affected as described below:

The maximum positive value is $007FFF ($007FFFOOFFFF for double precision).
The maximum negative value is $008000 ($008000000000 for double precision).

3.4.2 Sixteen-Bit Arithmetic

When an operand isread from adata AL U register or accumulator to the arithmetic unit, the eight
L SBs of the 24-bit word are ignored (that is, read as zeros). The arithmetic unit forces these bits
to zero when generating aresult.

The arithmetic unit virtually concatenates the 16-bit L SP with the 16-bit MSP to form a
continuous number. Therefore, all arithmetic operations, including shifts, are numerically
correct. The execution of data ALU instructions in Sixteen-bit Arithmetic mode is not affected,
except for the following:

The operand and result widths are 16/32/40 instead of 24/48/56.

Therounding, if specified by the operation, is performed on the Most Significant Bit of the
16-bit Least Significant Portion (LSP) of the result, that is on the bit corresponding to bit
23 of AO/BO (the Scaling mode affects this position accordingly). For details, seethe RND
instruction in Chapter 13, Instruction Set.

The arithmetic saturation detection is unchanged, but the saturated values change to
$007FFFOOFFFFO0 and $FF800000000000.

In ADC/SBC instructions, the Carry bit C is added/subtracted to the LSB of the 16-bit
LSP.

L ogic operations affect only the 16-bit wide word.

Rotation in rotate instructions is performed on a 16-bit wide word.

The possible normalization range changes, thus affecting the CLB instruction.

The DMAC instruction performs a 16-bit arithmetic right shift of the accumulator before
accumul ation.

The double-precision multiplication algorithm is not supported, even if the
Double-Precision Multiply mode bit is set.

The bit parsing instructions (MERGE, EXTRACT, EXTRACTU, and INSERT) are
modified by the Sixteen-bit Arithmetic mode to perform on the appropriate bit positions of
the 16-bit data. For the INSERT instruction, you must update the offset by adding a bias
value of 16. For details on specific instructions, refer to Chapter 13, Instruction Set.

In the read-modify-write instructions (BCHG, BCLR, BSET and BTST) and in the
Jump/Branch on bit instructions (BRCLR, BRSET, BSCLR, BSSET, JCLR, JSET,
JSCLR, and JSSET), the bit numbering in Sixteen-bit Arithmetic modeisrelativeto 16-bit
widewords (that is, Bit 0 isthe LSB and Bit 15 is the MSB). Do not use bit numbers
greater than 15.

DSP56300 Family Manual, Rev. 5

3-18

Freescale Semiconductor



Pipeline Conflicts

3.5 Pipeline Conflicts

No pipeline dependencies exist when the result of the data ALU is used as a source operand for
the immediately following data ALU instruction. However, data ALU operations can produce
pipeline conflicts as described in the following paragraphs.

3.5.1 Arithmetic Stall

Since every data ALU instruction completes in two clock cycles, an interlock condition occurs
during an attempt to read an accumulator (or parts of an accumulator) if the preceding instruction
iIsadata ALU instruction that specifies the same accumulator as the destination. This interlock
condition, arithmetic stall, is detected in hardware, and an idle cycle (no op) isinserted, thereby
guaranteeing the correctness of the result. Y ou can optimize code by inserting a useful instruction
before the read instruction. Figur e 3-11 describes cases in which the pipelined nature of the data
ALU generates an arithmetic stall.

;following example illustrates a one-clock pipeline delay when
;trying to read an accumulator as source for move:

mac x0,vy0,a ;data ALU operation

move al,x: (xr0)+ ;one clock delay is added to

;allow mac to complete

;following example illustrates a one-clock pipeline delay when
;trying to read an accumulator as source for bset:

tfr a,b ;data ALU operation

bset #3,b ;one clock delay is added to

;allow tfr to complete

following example illustrates a way to find useful usage of

;the pipeline delay clock:

mac x0,vy0,a ;data ALU operation
mac x1l,yl,b ;insert a useful instruction
move a,x: (r0)+ ;read accumulator A without

;any time penalty
Figure 3-11. Pipeline Conflicts—Arithmetic Stall

3.5.2 Status Stall

A second interlock condition, status stall, occurs during an attempt to read the Status Register
(SR) if the preceding or the second preceding instruction isadata ALU instruction or an
accumulator read that updates the Scale (S) and Limit (L) condition codes in the SR. The

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-19



h -

Arithmetic Logic Unit

hardware inserts two or oneidle cycles (no op) accordingly, thereby guaranteeing the correctness
of the resullt.

Note: Read Status Register impliesa MOVE from SR. Bit manipulation instructions (for
example, BSET) act on an SR bit. Program control instructions (for example, BSCLR)
test for abit in the SR.

Figure 3-12 describes the casesin which the pipelining of the data ALU generates a status stall.

;following example illustrates a two-clock pipeline delay when
;trying to read the status register as source for move:

mac x0,vy0,a ;data ALU operation

move sr,x: (r0)+ ;TWO clock delay is added to

;allow mac to update SR

;following example illustrates a one-clock pipeline delay when
;trying to read the status register as source for bit

;manipulation instruction:

move a,x: (r0)+ ;read full accumulator
nop
btst #5,sr ;ONE clock delay is added (and

;not two) due to the previous nop

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for program control

;instruction:
insert x0,y1l,a ;data ALU operation
bsclr #5,sr,$Sff00ff ;ONE clock delay is added (and not

;two) since bsclr is a two word

;instruction

Figure 3-12. Pipeline Conflicts—Status Stall

3.5.2.1 Transfer Stall

A third interlock condition, transfer stall, occurs when the source data ALU accumulator of the
move portion of an instruction isidentical to the destination data ALU accumulator of the move
portion of the preceding instruction. Identical accumulators for this matter are any combination
of portions (including the full width) of the same data ALU accumulator (for example, Aland A,
A2 and AO, and so on). The hardware inserts one idle cycle (no op), thereby guaranteeing the
correctness of the resullt.

DSP56300 Family Manual, Rev. 5

3-20 Freescale Semiconductor



Pipeline Conflicts

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator that was written by the preceding

;instruction:
move y:(rl)+,al ;write into partial accumulator
move a2,x:(r0)+ ;one clock delay is added

;following example illustrates a way to find useful usage of

;the pipeline delay clock:

move y:(rl)+,al ;write into partial accumulator
mac x1l,yl,b ;insert a useful instruction
move a,x: (r0)+ ;no time penalty for this read

Figure 3-13. Pipeline Conflicts—Transfer Stall

Note: A special case of interlock occurs when a 24-bit logic instruction is used and awrite
operation occurs concurrently to the EXT or the LSP of the same accumulator. The
hardware inserts one idle cycle (no op), thereby guaranteeing the correctness of the
result. An example of thiscaseis. or x1,a y1,a0

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 3-21



|
Arithmetic Logic Unit

DSP56300 Family Manual, Rev. 5

3-22 Freescale Semiconductor



Address Generation Unit 4

The address generation unit (AGU) is one of three execution units on the DSP56300 core. The
AGU performs the effective address calculations (using integer arithmetic) necessary to address
data operandsin memory and contains the registers used to generate the addresses. To minimize
address-generation overhead, the AGU operatesin parallel with other chip resources. It
implements four types of arithmetic:

B Linear

B Modulo

B Multiple wrap-around modulo
B Reverse-carry

4.1 AGU Architecture

The AGU is divided into halves, each with its own address arithmetic logic unit (address ALU).
Each address ALU has four sets of register triplets, and each register triplet is composed of an
address register, an offset register, and a modifier register. The two address ALUs are identical.
Each contains a 24-bit full adder—an offset adder—which can perform the following
additions/subtractions on an address register:

B Plusone

B Minusone

B Plus the contents of the respective offset register N
B Minus the contents of the respective offset register N

A second full adder—a modulo adder—adds the summed result of thefirst full adder to amodulo
value, M or minus M, where M is stored in the respective modifier register. A third full adder—a
reverse-carry adder—can perform the following additions, with the carry propagating in the

reverse direction (that is, from the Most Significant Bit (M SB) to the Least Significant Bit (L SB):

B Plusone

B Minusone

B Theoffset N (stored in the respective offset register)
B Minus N to the selected address register

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-1



ess Generation Unit

The offset adder and the reverse-carry adder operate in parallel and share common inputs. The
only difference between them isthat the carry propagates in opposite directions. Test logic
determines which of the three summed results of the full addersisoutput. Figure 4-1. shows a
block diagram of the AGU.

’4— Low Address ALU >i< High Address ALU 4%

XAB YAB PAB

Pt 4

[ Triple Multiplexer |
A

)
Y EP ‘ Y
NO MO RO R4 M4 N4
N1 M1 Address R1 R5 Address M5 N5
N2 | M2 ALU R2 | R6 ALU M6 | N6
N3 M3 R3 R7 M7 N7

A A A

 J Global Data Bus

Program Address Bus

Figure 4-1. AGU Block Diagram

Each address ALU can update one address register from its respective address register file during
oneinstruction cycle. The contents of the associated modifier register specify the type of
arithmetic to be used in the address register update calculation. The modifier valueis decoded in
the address ALU. The two address ALUs can generate up to two addresses every instruction
cycle:

B Onefor the PAB, or
B Onefor the XAB, or
B Oneforthe YAB, or
B Onefor the XAB and one for the YAB

The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and PAB. Using
aregister triplet to address each operand, the two independent ALUs can work with the two data
memories to feed two operandsto the data AL U in asingle cycle. The registers are:

B Address Registers R[0-3] on the Low Address ALU and R[4—7] on the High Address
ALU

B Offset Registers N[0-3] on the Low Address ALU and N[4—7] on the High AddressALU

B Modifier Registers M[0-3] on the Low Address ALU and M[4-7] on the High Address
ALU

DSP56300 Family Manual, Rev. 5

4-2 Freescale Semiconductor



Sixteen-Bit Compatibility Mode

Theseregisters are referred to as Rn for any address register, Nn for any offset register, and Mn
for any modifier register. The Rn, Nn, and Mn registers are register triplets—that is, the offset
and modulo registers of onetriplet can be used only with an address register that belongsto the
same triplet. For example, only N2 and M2 can be used with R2. The eight triplets are asfollows:

B Low Address ALU register triplets
— RO:NO:MO
— R1L:N1:M1
— R2:N2:M2
— R3:N3:M3
B High Address ALU register triplets
— R4:N4:M4
— R5:N5:M5
— R6:N6:M6
— R7:N7:M7

The global data bus (GDB) can read from or write to each register. The address output
multiplexers select the address for the XAB, YAB, and PAB, where the address originates from
the R[0-3] or R[4—7] registers.

4.2 Sixteen-Bit Compatibility Mode

When the Sixteen-bit Compatibility (SC) mode bit is set in the SR, AGU operations are
modified in the following ways.

B MOVE operationsto/from any of the AGU registers (R[0—7], N[0 — 7] and M[0 —7]) clear
the eight M SBs of the destination.

B Theeight MSBs of any AGU address calculation result are cleared.
B Thesign bit of the selected N register is bit 15 instead of bit 23.
B Theeight MSBs of the address are ignored in the calculations of memory regions.

In Sixteen-bit Compatibility (SC) mode, proper memory access is not guaranteed for an address
register in which the eight MSBs are not all zeros. If SC mode isinvoked dynamically, take care
to ensure that the eight MSBs of an address register used to access memory are cleared, since the
switch to SC mode does not automatically clear these bits. Due to pipelining, achange in the SC
bit takes effect only after three additional instruction cycles. Therefore, to ensure proper
operation, insert three NOP instructions after the instruction that sets the SC bit.

1. For details on the Status Register (SR), see Section 5.4.1.2, Satus Register (SR), on page 5-10.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-3



ess Generation Unit

4.3 Programming Model

The programmer views the AGU as eight sets of three registers, as shown in Figure 4-2.. These
registers can be used as temporary data registers and indirect memory pointers. Automatic
updating is available when address register indirect addressing isin use. The addressregisterscan
be programmed for linear addressing, modulo addressing (regular or multiple wrap-around), and
bit-reverse addressing.

23 0 23 0 23 0
R7 N7 M7
R6 N6 M6
R5 NG M5 Upper File
R4 N4 M4
R3 - N3 T M3 T
R2 N2 M2 Lower File
R1 N1 M1
RO NO MO
Ep Offset Registers Modifier Registers

Address Registers

Figure 4-2. AGU Programming Model

4.3.1 Address Register Files

The eight 24-bit address registers R[0 — 7] can contain addresses or general-purpose data. The
24-bit addressin a selected address register is used in calculating the effective address of an
operand. During parallel X and'Y datamemory moves, the address registers must be programmed
astwo separate files, R[0-3] and R[4—7]. The contents of an address register can point directly to
data, or they can be offset.

In addition, an address register (Rn) can be pre-updated or post-updated according to the
addressing mode selected. If an Rnis updated, the corresponding modifier register (Mn) specifies
the type of update arithmetic. Offset registers (Nn) are used for the update-by-offset addressing
modes.

The address register modification is performed by one of the two modulo arithmetic units. Most
addressing modes modify the selected address register in a read-modify-write fashion. The
address register is read, the associated modul o arithmetic unit modifies its contents, and the
register is written with the appropriate output of the modulo arithmetic unit. The contents of the
offset and modifier registers control the form of address register modification performed by the
modulo arithmetic unit. These registers are discussed in Section 4.3.3 and Section 4.3.4.

4.3.2 Stack Extension Pointer

The stack extension isin an areain internal memory (extending the hardware stack, thus the
name). The stack extension existsin either the X data memory or the Y data memory, as selected

DSP56300 Family Manual, Rev. 5

4-4 Freescale Semiconductor



Addressing Modes

by the XY S bit in the Operating Mode Register (OMR) (refer to Section 5, Program Control
Unit, on page 5-1for a detailed description of the OMR). The stack uses push operations to add
datato the stack and pull operations to retrieve data from the stack.

The contents of the 24-bit stack Extension Pointer (EP) register point to the stack extension
whenever the stack extension is enabled and move operations to or from the on-chip hardware
stack are needed. The EP register points to the next available location to which a push can be
made (that is, it pointsjust past the last item on the stack). The EP register is aread/write register
and is referenced implicitly (for example, by the DO, JSR, or RTI instructions) or directly (for
example, by the MOVEC instruction). The EP register is not initialized during hardware reset,
and must be set (using a MOV EC instruction) prior to enabling the stack extension. For more
information on the operation of the stack extension, see Chapter 5, Program Control Unit.

4.3.3 Offset Register Files

The eight 24-bit offset registers, N[0-7], contain offset values to increment or decrement address
registers in address register update calculations. For example, the contents of an offset register
are used to step through a table at some rate (for example, five locations per step for waveform
generation), or the contents can specify the offset into atable or the base of the table for indexed
addressing. Each address register has its own associated offset register. Each offset register can
also be used for 24-bit general-purpose storage if it is not required as an address register offset.

4.3.4 Modifier Register Files

The eight 24-bit modifier registers, M[0—7], define the type of address arithmetic performed for
addressing mode calculations. The Address ALU supports linear, modulo, and reverse-carry
arithmetic types for all address register indirect addressing modes. For modul o arithmetic, the
contents of Mn also specify the modulus. Each address register hasits own associated modifier
register. Each modifier register is set to $FFFFFF on processor reset, which specifies linear
arithmetic as the default type for address register update calculations. Each modifier register can
also be used for 24-bit general purpose storage if it isnot required as an address register modifier.

4.4 Addressing Modes
Aslisted in Table 4-1, the DSP56300 family core provides four different addressing modes:

B Register Direct

B Address Register Indirect
B PC-relative

W Specia

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-5



ess Generation Unit

Table 4-1. Addressing Modes Summary

Addressing Modes Uses_ Mn Operand Reference Assembler
Modifier S‘C‘D‘A‘P‘X‘Y‘L‘XY Syntax
Register Direct
Data or Control Register No v A
Address Register Rn No N
Address Modifier Register Mn No N
Address Offset Register Nn No N
Address Register Indirect
No Update No NN AN (Rn)
Post-increment by 1 Yes NN AN A (Rn) +
Post-decrement by 1 Yes NN AN A (Rn) —
Post-increment by Offset Nn Yes NN AN (Rn) + Nn
Post-decrement by Offset Nn Yes NEEERE (Rn) — Nn
Indexed by Offset Nn Yes NN AN (Rn + Nn)
Pre-decrement by 1 Yes N AN A — (Rn)
Short/Long Displacement Yes N A (Rn + displ)
PC-relative
Short/Long Displacement No N (PC + displ)
PC-relative
Address Register No N (PC + Rn)
Special
Short/Long Immediate Data No N
Absolute Address No ViV AN
Absolute Short Address No ViV A
Short Jump Address No N
I/O Short Address No VoY
Implicit No N N
Note:  Note:Use this key to the Operand Reference columns:
S = System Stack ReferenceX = X Memory reference
C= Program Control Unit Register Reference Y =Y Memory Reference
D = Data ALU Register Reference L = L Memory reference
A = Address ALU Register ReferenceXY = XY Memory Reference
P = Program Memory Reference

4.4.1 Register Direct Modes

The Register Direct addressing modes specify that the operand isin one or more of the ten Data
ALU registers, 24 address registers, or seven control registers.

B Data or Control Register Direct. The operand isin one, two, or three Data ALU
register(s), as specified in aportion of the data bus movement field in the instruction. This
addressing mode al so specifies a control register operand for special instructions. This
reference is classified as aregister reference.

B Address Register Direct. The operand isin one of the 24 address registers specified by an
effective address in the instruction. This reference is classified as aregister reference.

DSP56300 Family Manual, Rev. 5

4-6 Freescale Semiconductor



Addressing Modes

4.4.2 Address Register Indirect Modes

The Address Register Indirect modes specify that the address register pointsto a memory
location. The term “indirect” signifies that the register contents are not the operand itself, but
rather the operand address. These addressing modes specify that an operand isin memory and
give the effective address of that operand. In several of the following calculations, the type of
arithmetic used to calculate the address is determined by the Mn register.

No Update (Rn). The operand address is in the address register. The contents of the
address register are unchanged by executing the instruction.

Example: MOVE x:(Rn),x0

Post-1ncrement By One (Rn) +. The operand address isin the address register. After the
operand addressis used, it isincremented by one and stored in the same address register.
The Nn register isignored.

Example: MOVE x:(Rn)+,x0

Post-Decrement By One (Rn). The operand addressis in the address register. After the
operand address is used, it is decremented by one and stored in the same address register.
The Nn register isignored.

Example: MOVE x:(Rn)-,x0

Post-1ncrement By Offset Nn (Rn) + Nn. The operand addressis in the address register.
After the operand address is used, it isincremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged.
Example: MOV E x:(Rn)+Nn,x0

Post-Decrement By Offset Nn (Rn) — Nn. The operand address isin the address register.
After the operand addressis used, it is decremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged.
Example: MOVE x:(Rn)-Nn,x0

Indexed By Offset Nn (Rn + Nn). The operand address is the sum of the contents of the
address register and the contents of the address offset register, Nn. The contents of the Rn
and Nn registers are unchanged.

Example: MOVE x:(Rn+Nn),x0

Pre-Decrement By One -(Rn). The operand address is the contents of the address register
decremented by one. The contents of Rn are decremented by one and stored in the same
address register before the memory access. The Nn register isignored.

Example: MOVE x:-(Rn),x0
Short Displacement (Rn + Short Displacement). The operand address is the sum of the
contents of the address register Rn and a short signed displacement occupying seven bits
in the instruction word. The displacement isfirst sign-extended to 24 bits (16 bitsin SC
mode) and then added to Rn to obtain the operand address. The contents of the Rn register

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-7



ess Generation Unit

are unchanged. The Nn register isignored. This referenceis classified asa memory
reference. Example: MOVE x:(Rn+63),x0

B Long Displacement (Rn + Long Displacement). This addressing mode requires one word
(label) of instruction extension. The operand address is the sum of the contents of the
address register and the extension word. The contents of the address register are
unchanged. The Nn register isignored. Thisreferenceis classified as a memory reference.

Example: MOV E x:(Rn+64),x0

4.4.3 PC-Relative Modes

In the PC-relative addressing modes, the operand address is obtained by adding a displacement,
represented in two’ s-complement format, to the value of the Program Counter (PC). The PC
points to the address of the instruction opcode word. The Nn and Mn registers are ignored, and
the arithmetic used is alwayslinear.

B Short Displacement PC-Relative. The short displacement occupies nine bitsin the
Instruction operation word. The displacement isfirst sign-extended to 24 bits and then
added to the PC to obtain the operand address.

B Long Displacement PC-Relative. This addressing mode requires one word of instruction
extension. The operand address is the sum of the contents of the PC and the extension
word.

B Address Register PC-Relative. The operand addressis the sum of the contents of the PC
and the addressregister. The Mn and Nn registers are ignored. The contents of the address
register are unchanged.

4.4.4 Special Address Modes

The special address modes do not use an address register in specifying an effective address.
These modes either specify the operand or the operand addressin afield of the instruction, or
they implicitly reference an operand.

B Immediate Data. This addressing mode requires one word of instruction extension. The
iImmediate data is a word operand in the extension word of the instruction. This reference
Is classified as a program reference.

B Immediate Short Data. The 8-bit or 12-bit operand is part of the instruction operation
word. An 8-bit operand is used for an immediate move to register, ANDI, and ORI
Instructions. It is zero-extended. A 12-bit operand is used for DO and REP instructions. It
Is also zero-extended. Thisreferenceis classified as a program reference.

B Absolute Address. This addressing mode requires one word of instruction extension. The
operand addressis in the extension word. Thisreferenceis classified as a memory
reference and a program reference.

DSP56300 Family Manual, Rev. 5

4-8 Freescale Semiconductor



4.5

Address Modifier Types

Absolute Short Address. The operand address occupies six bitsin theinstruction operation
word, and it is zero-extended. Thisreference is classified as a memory reference.

Short Jump Address. The operand occupies 12 bitsin the instruction operation word. The
address is zero-extended to 24 bits. Thisreferenceis classified as a program reference.

[/0O Short Address. The operand address occupies 6 bits in the instruction operation word,
and it is one-extended. The 1/O short addressing mode is used with the bit manipulation
and move peripheral data instructions.

Implicit Reference. Some instructions make implicit reference to the Program Counter
(PC), System Stack (SSH, SSL), Loop Address (LA) register, Loop Counter (LC), or
Status Register (SR). These registers are implied by the instruction, and their useis
defined by the individual instruction descriptions. See Chapter 12, Guide to the
Instruction Set.

Address Modifier Types

The DSP56300 family core Address ALU supports linear, reverse-carry, modulo, and multiple
wrap-around modulo arithmetic types for al address register indirect modes. These arithmetic
types easily allow the creation of data structuresin memory for First-In, First-Out (FIFO) queues,
delay lines, circular buffers, stacks, and bit-reversed Fast Fourier Transform (FFT) buffers. Data
Is manipulated by updating address registers (pointers) rather than moving large blocks of data.
The contents of the address modifier register define the type of arithmetic to be performed for
addressing mode cal cul ations. For modul o arithmetic, the address modifier register aso specifies
the modulus. Each address register has its own associated modifier register. All address register
indirect modes can be used with any address modifier type. The following address modifier types
areavailable:

Linear addressing. Useful for general-purpose addressing
Reverse-carry addressing. Useful for 2¢-point FFT addressing

Modulo addressing. Useful for creating circular buffers for FIFO queues, delay lines and
sample buffers

Multiple wrap-around modulo addressing. Useful for decimation, interpolation, and

waveform generation, since the multiple wrap-around capability can be used for argument
reduction

Table 4-2 lists the address modifier types.

Table 4-2. Address Modifier Type Encoding Summary

Modifier Mn Address Calculation Arithmetic
$XX0000 Reverse-Carry (Bit-Reverse)
$XX0001 Modulo 2

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-9



ess Generation Unit

Table 4-2. Address Modifier Type Encoding Summary (Continued)

Modifier Mn Address Calculation Arithmetic
$XX0002 Modulo 3
$XX7FFE Modulo 32767 (215-1)
$XX7FFF Modulo 32768 (215)
$XX8001 Multiple Wrap-Around Modulo 2
$XX8003 Multiple Wrap-Around Modulo 4
$XX8007 Multiple Wrap-Around Modulo 8
$XX9FFF Multiple Wrap-Around Modulo 213
$XXBFFF Multiple Wrap-Around Modulo 214
$XXFFFF Linear (Modulo 224)

Notes: 1. Notes:1. All other combinations are reserved.
2. 2. XX can be any value.

4.5.1 Linear Modifier (Mn = $XXFFFF)

Address modification is performed using normal 24-bit linear (modulo 16,777,216) arithmetic. A
24-bit offset, Nn, and £1 can be used in the address calculations. The range of values can be
considered as signed (Nn from —8,388,608 to +8,388,607) or unsigned (Nn from O to
+16,777,216), since there is no arithmetic difference between these two data representations.

4.5.2 Reverse-Carry Modifier (Mn = $000000)

Reverse carry is selected by setting the modifier register to zero. Address modification is
performed in hardware by propagating the carry in the reverse direction (that is, from the MSB to
the LSB). Reverse carry is equivalent to bit reversing the contents of Rn (redefining the MSB as
the LSB, the next MSB asbit 1, and so on) and the offset value, Nn, adding normally, and then bit
reversing the result. If the +Nn addressing mode is used with this address modifier and Nn
contains avalue 2K~ (apower of two), this addressing modifier is equivalent to bit reversing
the k LSBs of Rn, incrementing Rn by one, and bit reversing the k LSBs of Rn again. This
address modification is useful for addressing the two middle factorsin 2%-point FFT addressing
and unscrambling 2¢-point FFT data. The range of valuesfor Nnis0to + 8 M (that is, Nn = 229),
which allows bit-reverse addressing for FFTs up to 16,777,216 points.

4.5.3 Modulo Modifier (Mn = Modulus — 1)

Address modification is performed using modulo M, where M ranges from 2 to +32,768. M odulo
M arithmetic causes the address register value to remain within an address range of size M,
defined by alower and upper address boundary.

DSP56300 Family Manual, Rev. 5

4-10 Freescale Semiconductor



Address Modifier Types

Thevaluem =M — 1 isstored in the modifier register. The lower boundary (base address) value
must have zeros in the k LSBs, where 2¢ > M, and therefore must be a multi ple of 2% The upper
boundary is the lower boundary plus the modulo size minus one (base address+ M —1). Since M
< 2% once M is chosen, a sequential series of memory blocks, each of length 2% is created where
these circular buffers can be located. If M < 2K, thereis a space between sequential circular
buffers of (2€) — M.

The address pointer is not required to start at the lower address boundary or to end on the upper
address boundary; it can initially point anywhere within the defined modulo address range.
Neither the lower nor the upper boundary of the modulo region is stored; only the size of the
modulo region is stored in Mn. The boundaries are determined by the contents of Rn. Assuming
the Address Register Indirect with post-increment addressing mode, (Rn)+, if the address register
pointer increments past the upper boundary of the buffer (base address+ M — 1), it wraps around
through the base address (lower boundary). Alternatively, assuming the Address Register Indirect
with post-decrement addressing mode, (Rn)-, if the address decrements past the lower boundary
(base address), it wraps around through the base address + M — 1 (upper boundary).

If an offset, Nn, is used in the address calculations, the 24-bit absolute value, [Nn|, must be less
than or equal to M for proper modulo addressing. If Nn > M, the result is data dependent and
unpredictable, except for the special case where Nn= Px 2¢, amultiple of the block size where P
Isapositive integer. For this special case, when using the (Rn) + Nn addressing mode, the
pointer, Rn, jumps linearly to the same relative address in a new buffer, which is P blocks
forward in memory. Similarly, for (Rn) — Nn, the pointer jumps P blocks backward in memory.

Thistechniqueis useful in sequentially processing multiple tables or N-dimensional arrays. The
range of values for Nn is—8,388,608 to +8,388,607. The modulo arithmetic unit automatically
wraps around the address pointer by the required amount. This type of address modification is
useful for creating circular buffersfor FIFO queues, delay lines, and sample buffers up to
8,388,607 words long, and for decimation, interpolation, and waveform generation. The special
case of (Rn) £ Nn modulo M with Nn =P x 2X is useful for performing the same algorithm on
multiple blocks of datain memory, for example, when performing parallel Infinite Impulse
Response (1IR) filtering.

4.5.4 Multiple Wrap-Around Modulo Modifier

The Multiple Wrap-Around Addressing mode is selected by setting bit 15 of the Mn register to
one and clearing bit 14 to zero, as shown in Table 4-2 on page 4-9. The address modification is
performed using modulo M, where M is a power of 2 in the range from 2* to 2. Modulo M
arithmetic causes the address register value to remain within an address range of size M defined
by alower and upper address boundary. The value M — 1 is stored in the Mn register’s 14 L east
Significant Bits (bits 13-0), while bit 15 is set to one and bit 14 is cleared to zero. The lower
boundary (base address) value must have zerosin the k LSBs, where 2K = M, and therefore must

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 4-11



ess Generation Unit

be a multiple of 2K The upper boundary isthe lower boundary plus the modulo size minus one
(base address+ M —1).

The address pointer is not required to start at the lower address boundary and may begin
anywhere within the defined modulo address range (between the lower and upper boundaries). If
the address register pointer increments past the upper boundary of the buffer (base address + M —
1), it wraps around to the base address. If the address decrements past the lower boundary (base
address), it wraps around to the base address + M — 1. If an offset Nn is used in the address
calculations, it is not required to be less than or equal to M for proper modulo addressing, since
multiple wrap around is supported for (Rn) + Nn, (Rn) — Nn, and (Rn + Nn) address updates.
Multiple wrap around cannot occur with (Rn)+, (Rn)—, and —-(Rn) addressing modes.

DSP56300 Family Manual, Rev. 5

4-12 Freescale Semiconductor



Program Control Unit 5

The program control unit (PCU) of the DSP56300 family core coordinates execution of program
Instructions and instructions for processing interrupts and exceptions. The PCU also controls
which of the five DSP56300 core processing states (Normal, Exception, Reset, Wait, or Stop) is
currently selected. The PCU functions through a seven-stage instruction pipeline and severa
programmable registers. This chapter describes the PCU hardware, instruction pipeline, and
programming model.

5.1 Overview

The PCU coordinates execution of instructions using three hardware blocks: the Program
Address Generator (PAG), the Program Decode Controller (PDC), and the Program Interrupt
Controller (PIC). These blocks perform the following functions:

B Fetch instructions

Decode instructions

Execute instructions

Control hardware DO loops and REP
Process interrupts and exceptions

Operation of the seven-stage pipeline depends on the current core processing state. The seven
stages of the pipeline are as follows:

Fetch-|
Fetch-I|
Decode
Address gen-I
Address gen-Il
Execute-
Execute-l|

To preserve current operation and status values while processing exceptions and interrupts, the
PCU provides a System Stack to store current register contents before executing the
exception/interrupt handler program. These contents are restored when control returns to the
current program. In addition to these standard program flow-control resources, the PCU provides

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-1



ram Control Unit

special support for hardware DO loops and an instruction REPEAT mechanism. To perform its
functions, the PCU uses a number of programmable registers. The organization of these registers
forms the programming model for the PCU:

B Genera configuration and status:
— Operating Mode Register (OMR)—24-bit, read/write
— Status Register (SR)—24-hbit, read/write
B System Stack configuration and operation:
— System Stack (SS) register file—hardware stack, 48-bit x 16 locations, read/write
— System Stack High (SSH) Register—24-bit, read/write
— System Stack Low (SSL) Register—24-bit, read/write
— Stack Pointer (SP) Register—24-hit, read/write
— Stack Counter (SC) Register—5-bit, read/write
— Stack Size (SZ) Register—24-bit, read/write

The stack Extension Pointer (EP) Register is also used with the System Stack, but is physically
part of the Address Generation Unit. For a description of thisregister, refer to Appendix 4,
Address Generation Unit.

B Program/L oop/Exception processing control:
— Program Counter (PC) Register—24-bit, read/write
— Loop Address (LA) Register—24-bit, read/write
— Loop Counter (LC) Register—24-bit, read/write
— Vector Base Address (VBA) Register—24-bit, read/write

5.2 PCU Hardware Architecture

The three PCU hardware blocks are:

B Program Address Generator (PAG)—Contains al the hardware needed for program
address generation, System Stack, and loop control

B Program Decode Controller (PDC)
— Decodes the 24-bit instruction loaded into the instruction latch

— Generates all signalsfor pipeline control
— Performs required data transfers between the Data Arithmetic Logic Unit (Data ALU)

and memory
B Program Interrupt Controller (PIC)—Arbitrates among all interrupt requests (internal
interrupts and the five external interrupts: IRQA, IRQB, IRQC, IRQD, and Nmi) and
generates the appropriate interrupt vector address

Figure 5-1 shows a block diagram of the PCU.

DSP56300 Family Manual, Rev. 5

5-2 Freescale Semiconductor



Instruction Pipeline

PDB PAB PDB GDB
F_*___*_‘I I'__!__‘I I'__i__‘l
Program Program Program
l Address l < ,l Decode l < > l Interrupt l
| Generator | | Controller | | Controller |
L - - —_ = - S - |
A A
Legend: Interrupt Request Inputs
GDB—Global Data Bus

RESET
PAB—Program Address Bus

PDB—Program Data Bus
Figure 5-1. PCU Architecture

5.3 Instruction Pipeline

Within the seven-stage pipelined architecture of the PCU, instructions execute concurrently.
Execution of a given pipeline stage for one instruction occurs concurrently with execution of
other pipeline stages for other instructions. Table 5-1 and Figur e 5-2 show that these stages
include two fetch stages, one decode stage, two address generation stages, and two execute
stages. The pipelined operation is essentially transparent, thus easing programmability.
Transparency is achieved by means of interlock hardware present in every execution unit of the
processor so that programs written for the DSP56000 family devices execute correctly on the
DSP56300 core without any modification. However, code can be optimized to reduce interlocks
and improve execution speed.

Table 5-1. Seven-Stage Pipeline

Pipeline Stage Description

Fetch-I » Address generation for Program Fetch
* Increment PC register

Fetch-II * Instruction word read from memory
Decode * Instruction Decode
AddressGen-I » Address generation for Data Load/Store operations
AddressGen-lI » Address pointer update
Execute-I Read source operands to Multiplier and Adder

Read source register for memory store operations
Multiply
Write destination register for memory load operations

Execute-II Read source operands for Adder if written by previous ALU operation
Add
Write Adder results to the Adder destination operand

Write Multiplier results to the Multiplier destination operands

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-3



ram Control Unit

Fetch Fetch

Address
Gen |

Decode

Address
Gen ll

Execute
I

Execute
Il

Figure 5-2. Seven-Stage Pipeline

5.4 PCU Programming Model

The PCU programming model comprises three functional areas:

B Configuration and status registers
B System Stack configuration and operation registers
B Program/L oop/Exception processing control registers

Figure 5-3 shows the PCU programming model with the registers and the system stack. The
following paragraphs describe each register.

Configuration and
Status Registers

System Stack and its
Configuration and Operation Registers

23 1615 87 0

47 SSH 24 23

— SSL

0

Processing Control
Registers

23

0

[scs | Eom [ com |
Operating Mode
Register (OMR)

23 1615 87 0
[ EMR [ MR | cCR |
Status Register (SR)

A

15

Stack Size (S2)

System Stack (SS)
23 65430

Lp[s ~0]

Stack Pointer (SP)

4 0
Stack Counter(SC)

Notes: 1.
of the Address Generation Unit (AGU).

Program Counter (PC)
23 0

Loop Counter (LC)

23 0

Loop Address Register
(LA)

23 8 70

Vector Base Address
(VBA)

[] Read as 0. Write
with zero for future
compatibility.

The Extension Pointer (EP) Register is also used with the System Stack, but it is physically part

2. SSH and SSL point to the upper and lower halves of the stack location specified by the SP.

Figure 5-3. PCU Programming Model

DSP56300 Family Manual, Rev. 5

5-4

Freescale Semiconductor



PCU Programming Model
5.4.1 Configuration and Status Registers

Bitsthat arelisted asreserved in the following sections can be defined for specific devices within
the DSP56300 family. Refer to the device-specific user’ s manual to determine whether areserved
bitis defined for that device. The PCU contains two registersthat configure and report the current
status of the PCU:

B Operating Mode Register (OMR)
B Status Register (SR)

5.4.1.1 Operating Mode Register
The OMR (Figure 6) isa 24-bit register that is partitioned into the following three bytes:

B OMR[23-16], System Stack Control/Status (SCS) Byte. Controls and monitors the stack
extension in the data memory. The SCS byteis referenced implicitly by some
Instructions—such as DO, JSR, and RTI—or directly by the MOV EC instruction.

B OMR[15-8], Extended Chip Operating Mode (EOM) Byte. Determines the operating
mode of the chip. Thisbyteis affected only by hardware reset and by instructions directly
referencing the OMR (that is, ANDI, ORI, and other instructions, such as MOV EC, that
specify OMR as adestination).

B OMR[7-0], Chip Operating Mode (COM) Byte. Determines the operating mode of the
chip. This byteis affected only by hardware reset and by instructions directly referencing
the OMR (that is, ANDI, ORI, and other instructions, such as MOV EC, that specify OMR
as adestination). During hardware reset, the chip operating mode bits (MD, MC, MB, and
MA) are loaded from the external mode select pinsMODD, MODC, MODB, and MODA,
respectively.

The following sections describe all defined bit functions; however, not all defined functions are
implemented on all DSP56300 family devices. Alwayswrite non-implemented functions as zeros
to ensure future compatibility. Refer to the latest device-specific user’s manuals, technical data
sheets, and technical bulletins for detailed information about implementation and usage for a
particular device.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-5



ram Control Unit

Stack Control/Status (SCS)

Extended Operating Mode (EOM) Chip Operating Mode (COM)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

PENMSW[1-0,
]

SEN|WR EOV
P

EUN|XYSJATE

APDIABEBRT|TAS| BE [CDP[1-0} MS | SD EBD|{MD |MC | MB | MA

]

Reset:

[oJofJofofJofofofoJoJo[ofoJoJo[sfa]JoJofofo[~]=*[~][~]

*  After reset, these bits reflect the corresponding value of the mode input (that is, MODD, MODC, MODB, or

MODA, re

spectively).

I:l Reserved bit. Read as zero; write to zero for future compatibility

Figure 5-6. Operating Mode Register (OMR)

Table 5-2. Operating Mode Register Bit Definitions

Bit Number

Bit Name

Reset Value

Description

23

PEN

0

Patch Enable

Enables/Disables the memory patch function, if implemented. Refer to the
device-specific user's manual to determine whether and how this function
is used on a specific device. Hardware reset clears this bit.

22-21

MSW[1-0]

Memory Switch Configuration

Determine what portion of the higher locations of internal X and Y data
memory are switched to internal program memory when Memory Switch
mode is enabled. Memory Switch mode allows reallocation of portions of X
and Y data RAM as program RAM. Memory Switch mode is enabled when
the Memory Switch bit, OMR[7] is set. For details on how much memory is
switched, see the device-specific user’'s manual for a particular DSP56300
family device. The MSW bits are not available on all members of the
DSP56300 family.

20

SEN

Stack Extension Enable

Enables/ Disables the stack extension in data memory. If SEN is set, the
extension is enabled. Hardware reset clears this bit, so the default out of
reset is a disabled stack extension.

19

WRP

Stack Extension Wrap

During the debugging phase of the software development, this flag can be
used to evaluate and increase the speed of software-implemented
algorithms. WRP is set when copying from the on-chip hardware stack
(System Stack Register file) to the stack extension memory begins. The
WRP flag is a sticky bit (that is, cleared only by hardware reset or by an
explicit MOVE operation to the OMR). Hardware reset clears the WRP
flag.

18

EOV

Stack Extension Overflow

Set when a stack overflow occurs in Stack Extended mode. Extended
stack overflow is recognized when a push operation is requested while SP
= SZ (Stack Size register), and the Extended mode is enabled by the SEN
bit. The EQV flag is a sticky bit (that is, cleared only by hardware reset or
by an explicit MOVE operation to the OMR). The transition of the EOV flag
from zero to one causes a Priority Level 3 (Non-maskable) stack error
exception. Hardware reset clears the EQV flag.

DSP56300 Family Manual, Rev. 5

5-6

Freescale Semiconductor



PCU Programming Model

Table 5-2. Operating Mode Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

17

EUN

0

Stack Extension Underflow

Set when a stack underflow occurs in the Stack Extended mode. Stack
extended underflow is recognized when a pull operation is requested, SP =
0, and the Extended mode is enabled by the SEN bit. The EUN flag is a
sticky bit (that is, cleared only by hardware reset or by an explicit MOVE
operation to the OMR). Transition of the EUN flag from zero to one causes
a Priority Level 3 (Non-maskable) stack error exception. Hardware reset
clears the EUN flag.

NOTE: While the chip is in Extended Stack mode, the UF bit in the SP acts
like a normal counter bit.

16

XYS

Stack Extension XY Select

Determines if the stack extension is mapped onto the X memory space or
onto the Y memory space. If XYS is clear, then the stack extension is
mapped onto the X memory space. If XYS is set, the stack extension is
mapped to the Y memory space. Hardware reset clears the XYS bit.

15

ATE

Address Trace Enable

Enables Address Trace mode. The Address Trace mode is a debugging
tool that reflects internal memory accesses at the external address lines.
Refer to device-specific user's manuals and technical data sheets to
determine if this feature is implemented for a specific device and how to
use it during debugging. Hardware reset clears the ATE bit.

14

APD

Address Attribute Priority Disable

Disables the priority assigned to the Address Attribute signals (AAO-AA3).
When APD = 0 (default setting), the four Address Attribute signals each
have a certain priority: AA3 has the highest priority, AAO has the lowest
priority. Therefore, only one AA signal can be active at one time. This
allows continuous partitioning of external memory; however, certain
functions, such as using the AA signals as additional address lines, require
additional interface hardware. When APD = 1, the priority mechanism is
disabled, allowing more than one AA signal to be active simultaneously.
Therefore, the AA signals can be used as additional address lines without
the need for additional interface hardware. To determine whether this
feature is implemented for a particular device, refer to the user’'s manual
and technical data sheets relating to that device. For details on the
Address Attribute Registers, see Appendix 9, External Memory Interface
(Port A). Hardware reset clears the APD bit.

13

ABE

Asynchronous Bus Arbitration Enable

Eliminates the setup and hold time requirements (with respect to CLKOUT)
for BB and BG, and substitutes a required non-overlap interval between
the deassertion of onei_G input to a DSP56300 family device and the
assertion of a second BG input to a second DSP56300 family device on
the same bus. When the ABE bit is set, the BG and BB inputs are
synchronized. This synchronization causes a delay between a change in
BG or BB until the receiving device actually accepts the change. Hardware
reset clears the ABE bit.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

5-7



ram Control Unit

Table 5-2. Operating Mode Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

12

BRT

0

Bus Release Timing

Selects between fast or slow bus release. If BRT is cleared, a Fast Bus
Release mode is selected (that is, no additional cycles are added to the
access and BB is not guaranteed to be the last Port A pin that is tri-stated
at the end of the access). If BRT is set, a Slow Bus Release mode is
selected (that is, an additional cycle is added to the access, and BB is the
last Port A pin that is tri-stated at the end of the access). Hardware reset
clears the BRT bit. For details on the bus release modes and their
applications, refer to Appendix 9, External Memory Interface (Port A).

11

TAS

TA Synchronize Select .

Selects the synchronization method for the input Port A pin—TA (Transfer
Acknowledge). At operating frequencies < 100 MHz, you can use TA with
external synchronization with respect to CLKOUT or asynchronously
(which synchronizes the TA signal with the clock internally) depending on
the setting of the TAS bit in the Operating Mode Register (OMR). If
external synchronous mode is selected (TAS = 0), you are responsible for
ensuring that TA transitions occur synchronous to CLKOUT to ensure
correct operation. External synchronous operation is not supported above
100 MHz; therefore, when using TA above 100 MHz, the OMR[TAS] bit
must be set to synchronize the TA signal internally with the system clock.

10

BE

Cache Burst Mode Enable

Enables/Disables the Burst mode in the memory expansion port during an
instruction cache miss. If the bit is cleared, the Burst mode is disabled and
only one program word is fetched from the external memory when an
instruction cache miss condition is detected. If the bit is set, the Burst
mode is enabled, and up to four program words are fetched from the
external memory when an instruction cache miss is detected. For details
on the Burst mode, see Appendix 8, Instruction Cache. Hardware reset
clears the BE bit.

CDP[1-0]

Core-DMA Priority

Specify the priority between core accesses and DMA accesses to the
external bus. Following are the core-DMA priorities for these bits. The
CDP[1-0] bits are set during hardware reset.

CDP[1-0] Core-DMA Priority

00 Determined by comparing status register CP[1-0] to
the active DMA channel priority

01 DMA accesses have higher priority than core accesses

10 DMA accesses have the same priority as the core
accesses

11 DMA accesses have lower priority than the core
accesses

DSP56300 Family Manual, Rev. 5

5-8

Freescale Semiconductor




PCU Programming Model

Table 5-2. Operating Mode Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

7

MS

0

Memory Switch Mode
Allows some internal memory modules to be switched from Program RAM
to data RAM (X, Y, or both) or vice versa. The MS bit is cleared during
hardware reset.
NOTES:
1. For some DSP56300 family devices (for example, the
DSP56301), the Program RAM reserved for the Instruction
Cache area changes its physical location in memory after the
MS bit is set, because the instruction cache always uses the
highest internal Program RAM addresses in those chips.
Check your device-specific user's manual.
1. To ensure proper operation, place six NOP instructions after
the instruction that changes the MS bit.
2. To ensure proper operation, do not change the MS bit while
the instruction cache is enabled (CE bit is set in SR).
3. Actual memory configuration is device-specific; refer to the
device-specific technical data sheets and user’s manuals for
implementation information.

SD

Stop Delay Mode

Determines the length of the delay invoked when the core exits the Stop
state. The STOP instruction suspends core processing indefinitely until a
defined event occurs to restart it. If the Stop Delay (SD) mode bit is
cleared, a 128 K words clock cycle delay is invoked before a STOP
instruction cycle continues. However, if the SD bit is set, the delay before
the instruction cycle resumes is 16 clock cycles. The long delay allows a
clock stabilization period for the internal clock to begin oscillating. When a
stable external clock is used, the shorter delay allows faster start-up of the
DSP56300 core. The SD bit is cleared during hardware reset.

Reserved
Write to zero for future compatibility.

EBD

External Bus Disable

Disables the external bus controller in order to reduce power consumption
when external memories are not used. When the EBD bit is set, the
external bus controller is disabled and external memory cannot be
accessed. When the EBD bit is cleared, the external bus controller is
enabled and external access can be performed. Hardware reset clears the
EBD bit.

3-0

M[D-A]

Chip Operating Mode

Indicate the operating mode of the DSP56300 core. On hardware reset,
these bits are loaded from the external mode select pins, MODD, MODC,
MODB, and MODA, respectively. After the DSP56300 core leaves the
Reset state, MD, MC, MB, and MA can be changed under program control.

*After reset, these bits reflect the corresponding value of the mode input
(that is, MODD, MODC, MODB, or MODA, respectively).

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

5-9



ram Control Unit
5.4.1.2 Status Register (SR)

The Status Register (SR) (Figure 5-4) isa24-bit register that consists of the following three 8-bit
special-purpose control registers:

B Extended Mode Register (EMR) (SR[23-16]). Defines the current system state of the
processor. The EMR bits are affected by hardware reset, exception processing, DO
FOREVER instructions, ENDDO (end current DO loop) instructions, BRK cc instructions,
RTI (return from interrupt) instructions, TRAP instructions, and instructions that specify
SR astheir destination (for example, MOV EC). During hardware reset, al EMR bitsare
cleared.

B Mode Register (MR) (SR[15-8]). Defines the current system state of the processor. The
MR bits are affected by hardware reset, exception processing, DO instructions, ENDDO
(end current DO loop) instructions, RTI (return from interrupt) instructions, TRAP
Instructions, and instructions that directly reference the MR (for example, ANDI, ORI, or
Instructions, such as MOV EC, that specify SR as the destination). During hardware reset,
the interrupt mask bits are set and al other bits are cleared.

B Condition Code Register (CCR) (SR[7-0]). Defines the results of previous arithmetic
computations. The CCR bhits are affected by Data Arithmetic Logic Unit (Data ALU)
operations, parallel move operations, instructions that directly reference the CCR (ORI
and ANDI), and by instructions that specify SR as adestination (for example, MOVEC).
Parallel move operations affect only the S and L bits of the CCR. During hardware reset,
all CCR bhits are cleared.

The SR is pushed onto the system stack when:

B Program looping isinitialized
B A JSRisperformed, including long interrupts
B Thethree 8-bit registers are defined within the SR primarily for compatibility with other

Freescale DSPs.

Extended Mode Register (EMR) Mode Register (MR) I Condition Code Register (CCR)
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CP[I-0][RM[SM]CE] [SA[FVJLF[DM[SC] [ SIOJ [ -0 [S[L[EJU N[ Z]JV]C

Reset:
[1[I1]OJO0OJO[OJOJOJO[OJOJOJOJO[I[]IJOJOJOJO[OJOJOJO

I:l Reserved bit. Read as zero; write to zero for future compatibility

Figure 5-4. Status Register (SR)

DSP56300 Family Manual, Rev. 5

5-10 Freescale Semiconductor



PCU Programming Model

Table 5-1. Status Register Bit Definitions

Bit Number

Bit Name

Reset Value

Description

23-22

CP[1-0]

1

Core Priority

Under the control of CDP[1-0] bits in the Operating Mode Register (OMR), the
Core Priority bits, CP1 and CPO, specify the priority of core accesses to
external memory. These bits are compared against the priority bits of the
active DMA channel. If the core priority is greater than the DMA priority, the
DMA waits for a free time slot on the external bus. If the core priority is less
than the DMA priority, the core waits for a free time slot on the external bus. If
the core priority equals the DMA priority, the core and DMA access the
external bus in a round robin pattern (for example, ... P, X, Y, DMA, P, X, Y,
...). The core priority bits are set during hardware reset.

Core
Priority

Priority
Mode

OMR (CDP

DMA Priority [1-0])

SR (CP[1-0])

0 00 00
(Lowest) Determined
by DCRn
(DPR[1-0])
2 for active 00 10

DMA channel
3 00 11

(Highest)

1 00 01

Dynamic

core < DMA 01 XX

Static core = DMA 10 XX

core > DMA 11 XX

21

RM

Rounding Mode

Selects the type of rounding performed by the Data ALU during arithmetic
operations. If the bit is cleared, convergent rounding is selected. If the bit is
set, two’s-complement rounding is selected. The RM bit is cleared during
hardware reset.

20

SM

Arithmetic Saturation Mode

Selects automatic saturation on 48 bits for the results going to the
accumulator. A special circuit inside the MAC unit performs the saturation.
This bit provides an Arithmetic Saturation mode for algorithms that do not
recognize or cannot take advantage of the extension accumulator. The SM bit
is cleared during hardware reset.

19

CE

Cache Enable

Enables/Disables the operation of the instruction cache controller. If the bit is

set, the cache is enabled, and instructions are cached into and fetched from

the internal Program RAM. If the bit is cleared, the cache is disabled and the

DSP56300 core fetches instructions from external or internal program

memory, according to the memory space table of the specific DSP56300

core-based device. The CE bit is cleared during a hardware reset.

Note:  To ensure proper operation, do not clear Cache Enable mode (CE bit
in SR) while Burst mode is enabled (BE bit in OMR is set).

18

Reserved

Write to zero for future compatibility.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

5-11



ram Control Unit

Table 5-1. Status Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

17

SA

0

Sixteen-Bit Arithmetic Mode

Enables the Sixteen-bit Arithmetic mode of operation. When SA is set, the
core uses 16-bit operations instead of 24-bit operations. In this mode, 16-bit
data is right-aligned in the 24-bit memory locations, registers, and 24-bit
register portions. Shifting, limiting, rounding, arithmetic instructions, and
moves are performed accordingly. For details on the operation of Sixteen-bit
Arithmetic mode, see Appendix 3, Data Arithmetic Logic Unit. Hardware reset
clears the SA bit.

16

FV

DO FOREVER Flag

Set when a DO FOREVER loop executes. The FV flag, like the LF flag, is
restored from the stack when a DO FOREVER loop terminates. Stacking and
restoring the FV flag when initiating and exiting a DO FOREVER loop,
respectively, allow the nesting of program loops. When returning from the long
interrupt with an RTI instruction, the System Stack is pulled and the value of
the FV bit is restored. Hardware reset clears the FV bit.

15

LF

DO Loop Flag

Enables the detection of the end of a program loop. The LF is restored from
stack when a program loop terminates. Stacking and restoring the LF when
initiating and exiting a program loop, respectively, allow the nesting of program
loops. When returning from the long interrupt with an RTI instruction, the
System Stack is pulled and the LF bit value is restored. Hardware reset clears
the LF bit.

14

DM

Double-Precision Multiply Mode

Enables the operation of four multiply/MAC operations to implement a double
precision algorithm. This algorithm multiplies two 48-bit operands with a 96-bit
result. Clearing the DM bit disables the mode.

The Double Precision Multiply mode is supported in order to maintain object
code compatibility with devices in the DSP56000 family. For a more efficient
way of executing double-precision multiply, refer to Appendix 3, Data
Arithmetic Logic Unit.

In Double-Precision Multiply mode, the behavior of the four specific operations
listed in the double-precision algorithm is modified. Therefore, do not use
these operations (with those specific register combinations) in Double
Precision Multiply mode for any purpose other than the double-precision
multiply algorithm. All other Data ALU operations (or the four listed operations,
but with other register combinations) can be used.

The double-precision multiply algorithm uses the YO Register at all stages.
Therefore, do not change YO when running the double-precision multiply
algorithm. If the Data ALU must be used in an interrupt service routine, YO
should be saved with other Data ALU registers to be used and restored before
leaving the interrupt routine. The DM bit is cleared during a hardware reset.

DSP56300 Family Manual, Rev. 5

5-12

Freescale Semiconductor



PCU Programming Model

Table 5-1. Status Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

13

SC

0

Sixteen-Bit Compatibility Mode

Enables full compatibility with object code written for the DSP56000 family.
When the SC bit is set, MOVE operations to/from any of the following PCU
registers clear the eight MSBs of the destination: LA, LC, SP, SSL, SSH, EP,
SZ, VBA and SC. If the source is either the SR or OMR, then the eight MSBs
of the destination are also cleared. If the destination is either the SR or OMR,
then the eight MSBs of the destination are left unchanged. In order to change
the value of one of the eight MSBs of the SR or OMR, clear the SC mode bit.
The SC mode bit also affects the contents of the Loop Counter Register. If the
SC bit is cleared (normal operation), then a loop count value of zero causes
the loop body to be skipped, and a loop count value of $FFFFFF causes the

loop to execute the maximum number of 224 _ 1 times. If the SC bit is set, a
loop count value of zero causes the loop to be executed 216times, and a loop

count value of $FFFFFF causes the loop to be executed 216 _ 1 times. The
AGU also uses this bit. When SC is set, the 8 MSBs are ignored while
checking whether the address is internal or external. Refer to the memory
configuration chapter of the device-specific user's manual for a full description
of the memory map when this bit is set. A read to/from the AGU registers
clears the 8 MSBs.
Note:  Due to pipelining, a change in the SC bit takes effect only after three
instruction cycles. Insert three NOP instructions after the instruction
that changes the value of this bit to ensure proper operation.

12

Reserved
Write to zero for future compatibility.

11-10

S[1-0]

Scaling Mode

The following table shows that the Scaling mode bits, S1 and SO0, specify the
scaling to be performed in the Data ALU shifter/limiter and the rounding
position in the Data ALU MAC unit. The Shifter/limiter Scaling mode affects
data read from the A or B accumulator registers out to the X-data bus (XDB)
and Y-data bus (YDB). Different scaling modes can be used with the same
program code to allow dynamic scaling. One application of dynamic scaling is
to facilitate block floating-point arithmetic. The scaling mode also affects the
MAC rounding position to maintain proper rounding when different portions of
the accumulator registers are read out to the XDB and YDB. Scaling mode bits
are cleared at the start of a long Interrupt Service Routine and during a
hardware reset.

Scaling . . .

S1 SO Mode Rounding Bit S Equation

0 0 No scaling 23 S = (A46 XOR A45)
OR (B46 XOR B45)
OR S (previous)

0 1 Scale down 24 S = (A47 XOR A46)
OR (B7 XOR B46)
OR S (previous)

1 0 Scale up 22 S = (A45 XOR A44)
OR (B45 XOR B44)
OR S (previous)

1 1 Reserved — S undefined

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

5-13



ram Control Unit

Table 5-1. Status Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

9-8

I[1-0]

1

Interrupt Mask

Reflects the current Interrupt Priority Level (IPL) of the processor and indicates
the IPL needed for an interrupt source to interrupt the processor. The current
IPL of the processor can be changed under software control. The interrupt
mask bits are set during hardware reset, but not during software reset. For
details about how I1 and I0 are automatically altered during a long interrupt,
see Appendix 2, Core Architecture Overview.

Exceptions
Permitted

Exceptions

Priority 11 0] Masked

Lowest IPLO, 1,2, 3 None

IPL1, 2,3 IPL O

IPL 2,3 IPLO, 1

|| O] O
| O| kL, | O

IPL 3 IPLO, 1,2

Highest

Scaling

Set when a result moves from accumulator A or B to the XDB or YDB buses
(during an accumulator-to-memory or accumulator-to-register move) and
remains set until explicitly cleared by an instruction or by a hardware rest; that
is, the Scaling (S) bit is a sticky bit. This bit is computed, according to the
logical equations shown here when an instruction or a parallel move reads the
contents of accumulator A or B

to the XDB or YDB bus.

Scaling

SO S1 Mode

S Bit Equation

No scaling S = (A46 XOR A45) OR (B46 XOR

B45) OR S (previous)

0 0

Scale up S = (A47 XOR A46) OR (B47 XOR

B46) OR S (previous)

Scale down S = (A45 XOR A44) OR (B45 XOR

B44) OR S (previous)

Reserved S undefined

1 1

The S bit detects data growth, which is required in Block Floating-Point FFT
operation. The S bit is set if the absolute value in the accumulator, before
scaling, is greater than or equal to 0.25 and smaller than 0.75. Typically, the bit
is tested after each pass of a radix 2 decimation-in-time FFT and, if it is set, the
appropriate scaling mode should be activated in the next pass.

Limit

Set if the Overflow bit (V) is set or if an instruction or a parallel move causes
the data shifter/limiters to perform a limiting operation while reading the
contents of accumulator A or B to the XDB or YDB bus. In Arithmetic
Saturation mode, the Limit bit (L) is also set when an arithmetic saturation
occurs in the Data ALU result. Otherwise, it is not affected. The L bit is a sticky
bit and it is cleared only by an instruction that specifically clears it or by a
hardware reset. This allows

the L bit to be used as a latching overflow bit. The L bit is affected by data
movement operations that read the A or B accumulator registers.

DSP56300 Family Manual, Rev. 5

5-14

Freescale Semiconductor




PCU Programming Model

Table 5-1. Status Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

5

E

0

Extension

Indicates when the accumulator extension register is in use. This bit is cleared
if all the bits of the signed integer portion of the Data ALU result are the same
(that is, the bit patterns are either 00. .. 00 or 11. . . 11). Otherwise, this bit is

set. The signed integer portion is defined by the scaling mode, as shown here.

Scaling

S1 SO Mode

S Bit Equation

No scaling Bits 55, 54.............. 48, 47

0 0

Scale down Bits 55, 54.............. 49, 48

0 1

Scale up Bits 55, 54.............. 47, 46

1 0

The signed integer portion of an accumulator is not necessarily the same as its
extension register portion. It consists of the most significant 8, 9, or 10 bits of
that accumulator, depending on the Scaling mode. The extension register
portion of an accumulator (A2 or B2) is always the eight Most Significant Bits
(MSBs) of that accumulator. The E bit refers to the signed integer portion of an
accumulator and not the extension register portion of that accumulator. For
example, if the current scaling mode is set for no scaling (S1 = SO = 0), the
signed integer portion of the A or B accumulator consists of bits 47 through 55.
If the A accumulator contains the signed 56-bit value $00:800000:000000 as a
result of a Data ALU operation, the E bit is set (E = 1) since the 9 MSBs of that
accumulator are not all the same (that is, neither 00...00 nor 11...11). Thus,
data limiting occurs if that 56-bit value is specified as a source operand in a
move-type operation. This limiting operation results in either a positive or
negative 24-bit or 48-bit saturation constant stored in the specified destination.
The signed integer portion of an accumulator and the extension register
portion of an accumulator are the same only in the “Scale Down” scaling mode
(thatis, S1 =0 and SO = 1).

Unnormalized

Set if the two Most Significant Bits (MSBs) of the Most Significant Portion
(MSP) of the Data ALU result are identical. Otherwise, this bit is cleared. The
MSP portion of the A or B accumulators is defined by the Scaling mode. The U
bit is computed as follows.

s1 S0 Scaling

Mode

U Bit Computation

0

0

No Scaling

U = (Bit 47 xor Bit 46)

0

1

Scale Down

U = (Bit 48 xor Bit 47)

1

0

Scale Up

U = (Bit 46 xor Bit 45)

The result of calculating the U bit in this fashion is that the definition of a
positive normalized number p is 0.5 < p < 1.0 and the definition of negative

normalized number nis —1.0 < n <-0.5.

Negative
Set if the MS bit (bit 55 in arithmetic instructions or bit 47 in logical instructions)
of the Data ALU result is set. Otherwise, this bit is cleared.

Zero
Set if the Data ALU result equals zero; otherwise, this bit is cleared.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

5-15



ram Control Unit

Table 5-1. Status Register Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

1 \% 0 Overflow

Set if an arithmetic overflow occurs in the 56-bit Data ALU result. Otherwise,
this bit is cleared. This bit indicates that the result cannot be represented in the
56-bit accumulator, so the accumulator overflows. In Arithmetic Saturation
mode, an arithmetic overflow occurs if the Data ALU result is not representable
in the accumulator without the extension part (that is, 48-bit accumulator, or
32-bit accumulator in Sixteen-bit Arithmetic mode.

0 C 0 Carry

Set if a carry is generated from the MSB of the Data ALU result in an addition
operation. This bit also is set if a borrow is generated from the MSB of the Data
ALU result in a subtraction operation. Otherwise, this bit is cleared. The carry
or borrow is generated from bit 55 of the Data ALU result. The C bit is also
affected by bit manipulation, rotate, shift, and compare instructions. The C bit
is not affected by Arithmetic Saturation mode.

5.4.2 Stack and Stack Extension
The following registers control the operation of the System Stack:

B System Stack High (SSH) and System Stack Low (SSL) registers
Stack Pointer (SP)

Stack Counter (SC)

Stack Sizeregister (SZ) (used for stack extension)

Extension Pointer (EP) Register (used for stack extension)

The 24-bit stack Extension Pointer (EP) register points to the stack extension in data memory
whenever the stack extension is enabled and move operations to/from the on-chip hardware stack
are needed. The EP register islocated in the Address Generation Unit (AGU). For details, refer to
Appendix 4, Address Generation Unit.

5.4.3 System Stack Configuration and Operation Registers

The PCU hardware System Stack is a 16-level by 48-bit separate internal memory that stores the
PC and SR contents during subroutine calls and long interrupts. For hardware |oops, the System
Stack also automatically storesthe contents of the LC and LA registers. All other dataand control
register contents can be stored in the System Stack via software control. Each location in the
System Stack is addressable as two 24-bit registers, System Stack High (SSH) and System Stack
Low (SSL), to which the four L SBs of the SP register collectively point. The main tasks
performed by the system stack include:

B Storing return address and status for subroutine calls (including long interrupts)
B Storing LA, LC, PC, and SR for the hardware DO loops

When a subroutine is called (for example, using the JSR instruction), the return address (PC) is
automatically stored in the SSH, and the status register (SR) is automatically stored in the SSL.

DSP56300 Family Manual, Rev. 5

5-16 Freescale Semiconductor



PCU Programming Model

When the RTS instruction initiates a return from the subroutine, the contents of the top location
in the SSH are pulled and loaded into the PC, and the SR is not affected. When the RTI
Instruction initiates areturn, the contents of the top location in the System Stack are pulled and
loaded into the PC and SR (from SSH and SSL, respectively).

The System Stack is also used to implement no-overhead nested hardware DO loops. When a
hardware DO loop isinitiated (for example, by using the DO instruction), the previous contents
of the LC Register are automatically stored in the SSL, the previous contents of the LA Register
are automatically stored in the SSH, and the Stack Pointer (SP) isincremented. After the SPis
incremented, the address of the loop’ sfirst instruction (PC) is also stored in the SSH, and the SR
Isstored in the SSL.

Note: Moving datato or from SSH increments or decrementsthe SP. The SSL does not affect
the SP.

The System Stack can be extended into 24-bit wide X or Y data memory viacontrol hardware
that monitors the accesses to the System Stack. This extension is enabled by the Stack Extension
Enable (SEN) bit in the chip Operating Mode Register (OMR). If this bit is cleared, the extension
of the system stack is disabled, and the amount of nesting is determined by the limited size of the
hardware stack (that is, 15 available locations; one location is unusable when the stack extension
Isdisabled). The System Stack can accommodate up to 15 long interrupts, seven DO loops, or 15
JSRs, (or equivalent combinations of these) when its extension into data memory is disabled.
When the System Stack limit is exceeded (either in Extended or in the Non-extended mode), a
nonmaskable stack error interrupt occurs. By enabling the Stack extension, the limits on the level
of nesting of subroutines or DO loops can be set to any desired value, subject to available
internal/external memory. The XY S bit in the OMR Register determines whether X or Y data
memory is used.

When enabled, a stack extension algorithm is applied to all accesses to the stack:

B If an explicit (for example, MOV E to SSH) or implicit (for example, JSR) push operation
Is performed, then the stack extension control logic examines the stack after that push has
finished. If the on-chip hardware stack isfull, the least recently used word is moved into
data memory to the location specified by the stack Extension Pointer (EP). The push is
always made to the System Stack, and the extension memory space always has the |east
recently used words moved into it. This aways moves one or two 48-bit items or two or
four 24-bit words into the next extension memory space to which the stack Extension
Pointer (EP) points.

B If an explicit (for example, MOVE from SSH) or implicit (for example, RTS) pull
operation is performed, then the stack extension control logic examines the stack after that
pull finishes. If the on-chip hardware stack is empty, then the stack is loaded from the
location (in data memory) specified by the stack Extension Pointer (EP). For information
on stack extension delays, see Appendix A, Instruction Timing and Restrictions.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-17



ram Control Unit

B External memory can be used for stack extension, and wait states affect it in the same way
asthey affect any other external memory access.

5.4.3.1 Stack Pointer (SP) Register

The 24-bit Stack Pointer (SP) register indicates the location of the top of the System Stack. The
status of the System Stack is also indicated in SP when the Extended mode is disabled
(underflow, empty, full, and overflow functions). The SP register isreferenced implicitly by
someinstructions (for example, DO, JSR, RTI, and so on) or directly by the MOV EC instruction.
The following paragraphs describe the SP register format, shown in

Figure 5-5. The SP register isa24-bit counter that addresses (selects) a 16-location stack with its
four LSBs. The possible SP values in the Non-extended mode are shown in

Table 5-2 in the description for the SE bit

23 22 21 20 19 18 17 16 15 14 13 12
P
11 10 9 8 7 6 5 4 3 2 1 0
P UF/P5 | SE/P4 P

Figure 5-5. Stack Pointer (SP) Register Format

Immediately after hardware reset, the SP bits are cleared (SP = 0), so SP pointsto location O,
indicating that the System Stack is empty. Datais pushed onto the System Stack by incrementing
the SP, then writing data to the location to which the SP points (the first push after reset isto
location 1). Anitem is pulled off the stack by copying it from the location to which the SP points
and then decrementing SP.

Table 5-2. Stack Pointer (SP) Register Bit Definitions

Bit Number Bit Name Reset Value Description

23-6 P[23-6] 0 P[23-6]
In extended mode, these bits act as bits 6 through 23 of the Stack Pointer as
part of a 24-bit up/down counter.

5 UF/PF 0 Underflow Flag / P5

In the Extended mode, UF acts as bit 5 of the Stack Pointer as part of a 24-bit
up/down counter. In the Non-extended mode, UF is set when a stack underflow
occurs. The stack UF is a sticky bit (that is, once the Stack Error flag is set, the
UF does not change state until explicitly written by a MOVE instruction). The
combination of “underflow = 1" and “stack error = 0” is an illegal combination
and does not occur unless you force it. Also see the description for the Stack
Error flag.

DSP56300 Family Manual, Rev. 5

5-18 Freescale Semiconductor



PCU Programming Model

Table 5-2. Stack Pointer (SP) Register Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

4 SE/P4 0 Stack Error/P4

In Extended mode, SE acts as bit 4 of the Stack Pointer as part of a 24-bit
up/down counter. In the Non-extended mode, it serves as the Stack Error (SE)
flag that indicates that a stack error has occurred. The transition of the SE flag
from zero to one in the Non-extended mode causes a Priority Level 3
(Non-maskable) stack error exception. When the non-extended stack is
completely full, the SP reads 001111, and any operation that pushes data onto
the stack causes a stack error exception. The SP reads 010000 (or 010001 if
an implied double push occurs). Any implied pull operation with SP equal to
zero causes a stack error exception, and the SP reads $00003F (or $00003E if
an implied double pull occurs). In extended mode, the SP reads $FFFFFF (or
$FFFFFE if an implied double pull occurs). During such cases, the stack error
bit is set as shown here.

NOTE: The stack error flag is a sticky bit which, once set, remains set until you
clear it. The overflow/underflow bit remains latched until the first move to SP
executes.

SP Register Values in Non-extended Mode

UF| SE| P3| P2 | P1| PO Description

1 1 1 1 1 o0 | Stack Underflow condition after double
pull

1 1 1 1 1 1 | Stack Underflow condition

0 0 0 0 0 o0 | Stack Empty (Reset); pull causes
underflow

0 0 0 0 0 1 |Stack Location 1

0 0 * * * * | Stack Locations 2-13

0 0 1 1 1 o0 |Stack Location 14

0 0 1 1 1 1 | Stack Location 15; push causes overflow

0 1 0 0 0 o0 | Stack Overflow condition

0 1 0 0 0 1 | Stack Overflow condition after double
push

*Equal to Stack Locations 2—-13

3-0 P[3-0] 0 Stack Pointer

Point to the 48-bit entry in the System Stack into which the last push was
made. In the Non-extended mode, SP is a physical pointer,

P[3-0], always having a value less than or equal to the highest physical
location in the System Stack. In the extended mode, SP becomes a logical
pointer, possibly having a value greater than the highest physical location in
the System Stack. However, P[3-0] still point to the top of the stack, which is
always in the System Stack.

5.4.3.2 Stack Counter (SC) Register

The 5-bit Stack Counter (SC) register monitors how many entries of the hardware stack arein
use. The SC is aread/write register and is referenced implicitly by some instructions (for

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-19



ram Control Unit

example, DO, JSR, and RTI) or directly by the MOV EC instruction. The stack counter register is
cleared during hardware reset. During normal operation, do not write to the SC register. If atask
switch is needed, writing a value greater than 14 or smaller than 2 automatically activates the
stack extension control hardware. For proper operation, the SC should not be written with values
greater than 16.

5.4.3.3 Stack Size (SZ) Register

The 24-hit Stack Size (SZ) register determines the number of datawords allocated in memory for
the stack in the Extended mode. The necessary value of the SZ register can be determined by SZ
=15 + software_buffer_size/ 2, where the buffer sizeis the number of 24-bit words allocated for
the stack extension in data memory. (Fifteen is the maximum number of 48-bit entriesthat can be
occupied in the 16-entry hardware stack at any given time.) The extended stack overflow flagis
generated when the value in SP equals the value in SZ and then a push is done.

Note: A stack exception can occur only when the stack is used in Non-extended mode.

The SZ register is not initialized during hardware reset, and must be set, usingaMOVEC
instruction, prior to enabling the stack extension.

5.4.4 Program, Loop, and Exception Processing Control
The code execution flow control is performed using four registersin the PCU:

B Program Counter (PC) Register

B Loop Address (LA) Register

B | oop Counter (LC) Register

B Vector Base Address (VBA) Register

5.4.4.1 Program Counter (PC) Register

The Program Counter (PC) Register is a special-purpose 24-bit address register that contains the
address of instruction wordsin the program memory space. The PC can point to instructions, data
operands, or addresses of operands. References to this register are always inherent and are
implied by most instructions. The PC is stacked when hardware loops are initialized, when a JSR
Is performed, or when a long interrupt occurs. The PC isthe source for the calculation of the real
addressin all position-independent instructions (such as the instruction BRA).

5.4.4.2 Loop Address (LA) Register

The contents of the 24-bit Loop Address (LA) register indicate the location of the last instruction
word in a hardware loop. Thisregister is stacked into the SSH by a DO instruction and is
unstacked either by end-of-loop processing or by execution of ENDDO and BRK cc instructions.
The LA register, aread/write register, is written by a DO instruction and read by the System
Stack when the register is stacked.

DSP56300 Family Manual, Rev. 5

5-20 Freescale Semiconductor



PCU Programming Model

5.4.4.3 Loop Counter (LC) Register

The Loop Counter (LC) register isa special read/write 24-bit counter that specifies the number of
times a hardware program loop repeats, in the range of 0to (2% —1). Thisregister is stacked into
the SSL by a DO instruction and unstacked by end-of-loop processing or by execution of
ENDDO and BRK cc instructions. The LC is aso used in the REP instruction to specify how
many times to repeat the repeated instruction.

5.4.4.4 Vector Base Address (VBA) Register

The Vector Base Address Register (VBA) is a 24-bit register. Eight of the bits VBA[7-0] are
read-only and always cleared. The VBA isused as a base address of the interrupt vector table
(discussed in Chapter 2, Core Architecture Overview). When afast or long interrupt executes,
VBA[7- 0] are driven from the program interrupt control unit, and bits 23-8 are driven from the
VBA. The VBA Register is aread/write register that is referenced implicitly by interrupt
processing or directly by the MOV EC instruction. The VBA is cleared during hardware reset.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-21



ram Control Unit

DSP56300 Family Manual, Rev. 5

5-22 Freescale Semiconductor



PLL and Clock Generator 6

Note: The DSP56321 device uses adigital phase-lock loop (DPLL) and a different clock
modul e than other members of the DSP56300 family. Refer to Chapter 5 of the
DSP56321 Reference Manual.

The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central
processing module. The PLL allows the processor to operate at a high internal clock frequency
derived from alow-frequency clock input, afeature that offers two immediate benefits. The
lower frequency clock input reduces the overall electromagnetic interference generated by a
system. The ability to oscillate at different frequencies reduces costs by eliminating the need to
add additional oscillators to a system. Figure 6-1 shows the two main blocks of the clock
generator in the DSP56300 core:

B Phase Locked Loop (PLL) that performs:
— Clock input division
— Frequency multiplication
— Skew elimination

B Clock Generator (CLKGEN) that performs:
— Low-power division
— Internal and external clock generation

Ext. | EXTAL PLL CLKGEN
° - o
Clock/ - I Core
Predivider PLL Loop Low-Power z Clock
|:|' e B L B N B
| ut . t
-FEXTALFEXTAL FexTALXMFx2 >l > FEXTALXMEX2 {o_ Divide (feore)
\ ‘XTAL PDF PDF PDFxDF v by 2 CLKOUT
\ —o —[F»————b»
7/ o ;' 1 (feore)
= | PDF=1t016 MF = 1 to 4096 DF=20t02 z 8
Pas o O

+| Veer
|GNDP
ccp
CAP

ji4efi
Notes: The clock source can be either an external source applied to EXTAL, or a crystal connected to

EXTAL and XTAL as a crystal oscillator configuration or connection.

Figure 6-1. PLL Clock Generator Block Diagram

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 6-1



and Clock Generator

6.1 PLL and Clock Signals

The PLL and clock pin configuration for each DSP56300 family member is available in the
device-specific technical data sheet. The following pins are dedicated to the PLL and clock
operation:

B pcap. Connects an off-chip capacitor to the PLL filter. One terminal of the capacitor
connects to PCAP, the other connects to V cp. The value of this capacitor depends on the
PLL Multiplication Factor (MF). See the device-specific technical data sheet for the
correct formulato use for this calculation.

B cLkouT. Provides a 50 percent duty cycle output clock synchronized to the internal
processor clock when the PLL is enabled and locked. When the PLL is disabled, the
output clock at cLkouT is derived from ExTAL, and has half the frequency of, EXTAL. This
pinisoperational in all device processing states except when the PLL Control (PCTL)
Register Clock Out Disable (COD) hit is set, and during the Stop state. When the deviceis
in the Wait state, the cLkouT pin continues to provide a signal.

B pPiNIT. During assertion of hardware reset, the value of the PINIT input pin iswritten into the
PCTL PLL Enable (PEN) bit. After hardware reset is deasserted, the PLL ignoresthe PINIT
pin, and it can have a different function in the device.

6.2 PLL Block

This section describes the PLL control mechanisms. Figure 6-2 showsthe PLL block diagram.

EXTAL Predivider 1 Phase Loop PLL Out
1to 16 Detector Filter veo -
PD[3-0]
Frequency Divide
Divider < by 2
MF[11-0] 1 to 4096 e la——-

Figure 6-2. PLL Block Diagram
6.2.1 Frequency Predivider

Clock input frequency division is accomplished by means of afrequency predivider of the input
frequency. The programmable Division Factor ranges from 1 to 16.

6.2.2 Phase Detector and Charge Pump Loop Filter

The Phase Detector (PD) detects any phase difference between the external clock (ExTAL) and the
phase of the clock generated by the frequency divider. At the point where thereis negligible
phase difference and the frequency of the two inputsisidentical, the PLL isin the Locked state.

DSP56300 Family Manual, Rev. 5

6-2 Freescale Semiconductor



PLL Block

The charge pump loop filter receives signals from the PD and either increases or decreases the
phase based on the PD signals. An external capacitor is connected to the PCAP input to determine
low passfilter corner frequencies. The value of this capacitor depends on the Multiplication
Factor (MF) of the PLL. See the Specifications section in the device-specific technical data sheet
for the formulato determine the proper value for the PLL capacitor. After the PLL locks onto the
proper phase and frequency, it reverts to the Narrow Bandwidth mode, which is useful for
tracking small changes due to frequency drift of the ExTAL clock.

6.2.3 Voltage Controlled Oscillator (VCO)

The voltage controlled oscillator (VCO) operates at frequencies from 30 MHz to twice the
maximum device operating frequency. The minimum frequency is required to ensure VCO
stability. See Table 2-6 in the device-specific Technical Data sheet for the maximum frequency
for each device. Also refer to Table 2-5 in the same Technical Data sheet for the external clock
signal characteristics.

Note: When the PLL is enabled, the maximum device operating frequency is half the VCO
frequency.

Because the reset value of all clock dividers and multiplieris 1, if EXTAL islessthan 30 MHz,
the VCO cannot operate correctly during reset and the PLL must be disabled. For such cases, the
hardware design must hold the PINIT input low during reset to disable the PLL. After reset, the
software can change the pre-divider (PD) and MF to the desired values (ensuring that the input to
the VCO is not less than 30 MHz) and then set the PCTL[PEN] bit to enable the PLL.

Note: The DSP56321 DPLL clock circuit differs from the circuit used in the rest of the
DSP56300 family. ItsV CO operates differently from this description. Refer to Section
5.5 in the DSP56321 Reference Manual.

6.2.3.1 Divide by 2

As part of the PLL feedback loop, the output of the VCO isdivided by 2. The resulting constant
multiplication by 2 of the VCO/PLL output allows for the generation of the special internal clock
phases required by the device.

6.2.3.2 Frequency Divider

The Frequency Divider portion of the PLL feedback loop dividesthe VVCO output by a
programmable 12-bit value before entering the Phase Detector. The net result is a multiplication
of theincoming external clock by the programmed value. Thisis called the Multiplication Factor
and is programmed using the PCTL[MF] bits. The Multiplication Factor can range from 1 to
4096.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 6-3



and Clock Generator

6.2.3.3 PLL Control Elements
The PLL uses three magjor control elementsin its circuitry:

B Clock input division
B Frequency multiplication
B Skew elimination

6.2.3.3.1 Clock Input Division

The PLL can divide the input frequency by any integer between 1 and 16. The combination of
input division and output low-power division enables you to generate almost every frequency
value out of the PLL (see Section 6.2.3.4.3, Operating Freguency, on page 6-6). The Division
Factor can be modified by changing the value of the PCTL Predivider Factor (PDF) bits
(PD[3-0]). The output frequency of the predivider is determined using the following formula

FexTAL
PDF

6.2.3.3.2 Frequency Multiplication

The PLL can multiply theinput frequency by any integer between 1 and 4096. The Multiplication
Factor can be modified by changing the value of the PCTL Multiplication Factor (MF[11-0])
bits. The output frequency of the PLL (that is, PLL Out as shown in Figure 6-6-1 on page-1) is
computed using the following formula:

FEXTAL X MF % 2
PDF

6.2.3.3.3 Skew Elimination

The phase skew of the PLL is defined as the time difference between the falling edges of ExTAL
and cLkouT for a given capacitive load on cLKOUT, over the entire process, temperature, and
voltage ranges. The PLL can eliminate the skew between the external clock (ExTAL), the internal
clock phases, and the cLkouT signal, allowing tighter synchronous timings. Skew elimination is
active only when the PLL is enabled and programmed with a Multiplication Factor less than or
equal to 4. When the PLL is disabled, or when the Multiplication Factor is greater than 4, clock
skew can exist. Skew elimination isassured only if EXTAL isgreater than the minimum frequency
specified in the device-specific technical data sheet (typically 15 MHz).

6.2.3.4 Clock Generator

Figur e 6-3 shows the Clock Generator block diagram. The components of the Clock Generator
are described in the following sections.

DSP56300 Family Manual, Rev. 5

6-4 Freescale Semiconductor



PLL Block

2-Phase
EXTAL > Core
Clock
F
Divide (Feore)
Low-Power by 2
Divider
PLL OUT —» >
4[>—> CLKOUT
2010 27 (Fcore)
DF[2-0]

Figure 6-3. CLKGEN Block Diagram
6.2.3.4.1 Low-Power Divider (LPD)

The Clock Generator has adivider connected to the output of the PLL. The Low-Power Divider
(LPD) divides the output frequency of the VCO by any power of 2 from 2° to 2’. The Division
Factor (DF) of the LPD can be modified by changing the value of the PLL Control Register
(PCTL) Division Factor bits DF[2—0]. Since the LPD isnot in the closed loop of the PLL,
changesin the DF do not cause aloss of lock condition. The result isasignificant power savings
when the LPD operates in low-power consumption modes as the deviceis not involved in
intensive calculations. When the device isrequired to exit alow-power mode, it can immediately
do so with no time needed for clock recovery or PLL lock.

6.2.3.4.2 Internal and External Clock Pulse Generator

The output stage of the Clock Generator generates the clock signals to the core and the device
peripherals, and drives the cLkouT pin. The output stage divides the frequency by two. The input
source to the output stage is selected between:

B exTAL (PEN =0, PLL disabled), which generates a device frequency defined by the
following formula:

FexTAL
2

B L ow-Power Divider output (PEN = 1, PLL enabled), which generates a device frequency
defined by the following formula

FEXTAL x MF
PDF x DF

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 6-5



P N

and Clock Generator
6.2.3.4.3 Operating Frequency
When PEN = 1, the operating frequency of the core is governed by the frequency control bitsin
the PCTL Register according to the following formula:

FExTAL x MF
FCORE = “PDF xDF

MF isthe Multiplication Factor defined by MF[11-0]
PDF isthe Predivider Factor defined by PD[3-0]

DF is the Division Factor defined by DF[2-0]

Fcore 1S the device operating frequency

FextaL isthe external EXTAL input

6.3 PLL Programming Model

The PLL clock generator uses a single register, the PCTL Register. The PCTL isan X I/O
mapped 24-bit read/write register used to direct the operation of the on-chip PLL.
Figure 6-4 shows the PCTL control bits.

23 22 21 20 19 18 17 16 15 14 13 12

PD3 PD2 PD1 PDO COD PEN PSTP | XTLD | XTLR DF2 DF1 DFO

Reset:
a a a a 0 b 0 a a 0 0 0
11 10 9 8 7 6 5 4 3 2 1 0

MF11 | MF10 MF9 MF8 MF7 MF6 MF5 MF4 MF3 MF2 MF1 MFO

Reset:

a a a a a a a a a a a a

a  The reset value is implementation dependent and is listed in the device-specific user’'s manual.
b The reset value of the PEN bit is based on the value of the PLL PINIT input.

Figure 6-4. PLL Control (PCTL) Register

DSP56300 Family Manual, Rev. 5

6-6 Freescale Semiconductor



PLL Programming Model

Table 6-1. PLL Control (PCTL) Register Bit Definitions

Bit Number| Bit Name | Reset Value Description
23-20 PD[3-0] a Predivider Factor
Define the PDF value that is applied to the input frequency. PDF can be any integer
from 1 to 16. The VCO oscillates at a frequency defined by the following formula:
FEXTAL x MF x 2
PDF
PDF must be chosen to ensure that the resulting VCO output frequency lies in the
range specified in the device-specific technical data sheet. Any time a new value is
written into the PD[3-0] bits, the PLL loses the lock condition. After a time delay (zero
to 1,000 clock cycles), the PLL relocks. The PDF bits (PD[3-0]) are set to a
predetermined value during hardware reset. The reset value is implementation
dependent and is listed in the device-specific user's manual.
PD[3-0] PDF Value

0000 1

0001 2

0010 3

0011 4

0100 5

0101 6

0110 7

0111 8

1000 9

1001 10

1010 11

1011 12

1100 13

1101 14

1110 15

1111 16

19 COoD 0 Clock Output Disable

Controls the output buffer of the clock at the CLKOUT pin. When COD is set, the
CLKOUT output is pulled high. When COD is cleared, the CLKOUT pin provides a 50
percent duty cycle clock synchronized to the internal core clock. If CLKOUT is not
connected to external circuits, set COD (disabling clock output) to minimize RFI noise
and power dissipation. The CLKOUT pin oscillates during all operating states except
Stop state and when COD = 1.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

6-7



and Clock Generator

Table 6-1. PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

18

PEN

PLL Enable

Enables PLL operation. When PEN is set, the PLL is enabled and the internal clocks
are derived from the PLL VCO output. When PEN is cleared, the PLL is disabled and
the internal clocks are derived directly from the EXTAL signal. When the PLL is
disabled, the VCO stops to minimize power consumption. The PEN bit may be set or
cleared by software any time during the device operation. During hardware reset, this
bit is set or cleared based on the value of the PLL PINIT input.

17

PSTP

PLL Stop State

Controls PLL and on-chip crystal oscillator behavior during the Stop processing state.
When PSTP is set, the PLL and the on-chip crystal oscillator remain operating when
the chip is in the Stop state. When PSTP is cleared and the device enters the Stop
state to support minimum power consumption, the PLL and the on-chip crystal
oscillator are disabled, to further reduce power consumption; this however results in
longer recovery time upon exit from the Stop state. To enable rapid recovery when
exiting the Stop state (but at the cost of higher power consumption during the Stop
state), PSTP should be set.

NOTE: PSTP and PEN are related. When PSTP is set, and PEN is cleared, the
on-chip crystal oscillator remains operating in the Stop state, but the PLL is disabled.
This power saving feature enables rapid recovery from the Stop state when you
operate the device with an on-chip oscillator and with the PLL disabled.

Power
Consumption
During Stop

State

Operation During Stop State | Recovery Time

PSTP From Stop State

PEN

PLL Oscillator

0 X Disabled Disabled Long Minimal

1 0 Disabled Enabled Short Lower

1 1 Enabled Enabled Short Higher

16

XTLD

XTAL Disable

Controls the XTAL output from the crystal oscillator on-chip driver. When XTLD is
cleared, the XTAL output pin is active, permitting normal operation of the crystal
oscillator. When XTLD is set, the XTAL output pin is pulled high, disabling the on-chip
oscillator driver. If the on-chip crystal oscillator driver is not used (that is, EXTAL is
driven from an external clock source), set XTLD (disabling XTAL) to minimize RFI
noise and power dissipation.

NOTE: The XTLD bit is set to a predetermined value during hardware reset. The value
is implementation dependent and may vary between different DSP56300-based
devices.

DSP56300 Family Manual, Rev. 5

6-8

Freescale Semiconductor



PLL Programming Model

Table 6-1. PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

15

XTLR

a

Crystal Range

Controls the on-chip crystal oscillator transconductance. If the external crystal
frequency is less than 200 kHz (that is, a 32 KHz clock crystal), set this bit to decrease
the transconductance of the input amplifier. Otherwise, the internal clocks may not be
stable. If the external crystal frequency is greater than 200 kHz, clear this bit in order
to have full transconductance. Otherwise, the crystal oscillator may not function at all.

NOTE: The XTLR bit is set to a predetermined value during hardware reset. The value
is implementation dependent and may vary between different DSP56300-based
devices.

14-12

DF[2-0]

Division Factor
Define the DF of the low-power divider. These bits specify the DF as a power of two in

the range from 2010 27. Changing the value of the DF[2—0] bits does not cause a loss
of lock condition. Whenever possible, changes of the operating frequency of the
device (for example, to enter a low-power mode) should be made by changing the
value of the DF[2-0] bits rather than changing the

MF[11-0] bits.

For MF < 4, changing DF[2—0] may lengthen the instruction cycle following the PLL
control register update; this ensures synchronization between EXTAL and the internal
device clock. For MF > 4 such synchronization is not ensured, and the instruction
cycle is not lengthened.

DF[2-0] DF Value
000 20
001 ol
010 22
011 23
100 24
101 25
110 26
111 o7

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

6-9



and Clock Generator

Table 6-1. PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number| Bit Name | Reset Value Description

11-0 MF[11-0] a Multiplication Factor

Defines the Multiplication Factor (MF) that is applied to the PLL input frequency. The
MF can be any integer from 1 to 4096. The VCO oscillates at a frequency defined by
the following formula where PDF is the Predivider Division Factor:

FEXTAL x MF x 2
PDF

The MF must be chosen to ensure that the resulting VCO output frequency is in the
range specified in the device-specific technical data sheet. Any time a new value is
written into the MF[11-0] bits, the PLL loses the lock condition. After a time delay
(provided in the device-specific technical data sheet), the PLL relocks. The
Multiplication Factor bits MF[11-0] are set to a predetermined value during hardware
reset; the value is implementation dependent and is provided in the device-specific
user’'s manual.

MF[11-0] Multiplication Factor MF
$000 1
$001 2
$002 3
$FFE 4095
$FFF 4096
a The reset value is implementation dependent and is listed in the device-specific user’'s manual.
b The reset value of the PEN bit is based on the value of the PLL PINIT input

6.4 Clock Synchronization

When the PLL isenabled, (the PEN bit inthe PCTL register is set), low clock skew between
EXTAL and cLkouT is guaranteed if MF < 5. cLkouT and the internal device clock are fully
synchronized. See the device-specific technical data sheet for more information.

6.5 Design Guidelines for Ripple and PCAP

The voltage noise on the VCCP piniscritical to the PLL operation, since the PLL loop filter
capacitor connects to it. The following recommendations for filtering the PLL power supply
apply to all DSP56300 family devices.

B ThePLL power supply should be very well regulated and noise-free. Here are some
recommendations for aVcc noise filter for the PLL power supply:

— The Wn (bandwidth) of the PLL is 2 MHz/(Multiplication Factor). The cutoff
frequency of the V . filter should be less than Wn/100.

DSP56300 Family Manual, Rev. 5

6-10 Freescale Semiconductor



Design Guidelines for Ripple and PCAP

— The maximum allowed accumulated noise at frequencies from Wn/10 to infinity is6
mV. The maximum allowed accumulated noise at frequencies from 0 Hz to Wn/10 is
30 mV.

— Thefilter should have as low as possible impedance for DC, in order to minimize
voltage drop to the PLL power supplies.

— Take care to ensure that no more than 0.5V voltage differential exists between the
PLL power supply and the DSP power supplies at al times.

B When using arelatively high Multiplication Factor (MF > ~10), you should use a PCAP
capacitor that is polystyrene, polypropylene, or teflon. Such capacitors have a much lower
dielectric absorption, which is needed for the PLL with ahigh MF, than ceramic
capacitors

Inthe PLL filter circuit in Figure 6-5:

B Notethat the 0.1 pF capacitor should be in parallel with the 22 uF, since the high
frequency current needsfor the PLL cannot be met with aregular 22 pF. If high-frequency
noise is not attenuated due to the lack of this capacitor, it will come through PCAP and
cause jitter on the VCO. Beside that, the 12 Q with 22 pF gives Fc = 1/(2* 3.14* 12* 22y) ~
600 Hz.

B Wn=2MHz/8=125kHz, so the noise attenuation is expected to be about 50 dB near
DC, meaning that up to about 1 V p-p high-frequency noise may occur before thefilter. For
4 mA current consumption of the PLL, it means Vdrop = 12 *4 mA = 50 mV, whichis

also acceptable.
Vee
]
FB JI 0.1 UF
GND
% Pcap % 22 UF ]I'; 0.1 UF
Veep PCAP G-NDP ENDP

Notes: 1. FB = Ferrite Bead with 600 Q impedance at 100 MHz, 12 Q at DC.
2. PCAP value calculated according to datasheet.

Figure 6-5. PLL Filter Circuit

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 6-11



and Clock Generator

DSP56300 Family Manual, Rev. 5

6-12 Freescale Semiconductor



Debugging Support 4

The DSP56300 modules and features for debugging applications during system development are
asfollows:

B JTAG Test Access Port (TAP). Provides the TAP and Boundary Scan functionality based
on the IEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE 1149.1),
which can test acircuit board containing a DSP56300 family device including signal
levels at the chip-to-board interface (that is, the boundary), but not the internal chip
functions. The TAP also provides external access to the On-Chip Emulation (OnCE)
module.

B OnCE module. Debugs software used with a DSP56300 family device and tests the
hardware interface. The OnCE module has one dedicated external pin connection, the
Debug Event (DE) pin. All other communication with the module occurs through the TAP
pins.

B Address Trace Mode. Thisfeature, enabled by the ATE bit in the Operating M ode Register
(OMR), allows tracing of internal accesses by monitoring the external address lines
(A[23-0] Or A[17-0]).

The debugging interface uses six interface signals. Asdescribed in the |IEEE 1149.1 standard, the
JTAG TAP requires a minimum of four pins to support the o1, TDO, TCK, and TMs signals. The
DSP56300 family also provides a pin for the optional TRST signal. The OnCE module uses one
pin for the DE signal. Table 7-1 describes the signals.

Table 7-1. Debugging Control Signals

Name Pin Type Module Signal Description
Test Clock TCK Input TAP The external clock that synchronizes the test logic.
Test Mode T™MS Input TAP Sequences the TAP controller state machine. TMS is sampled on
Select the rising edge of TCK and has an internal pull-up resistor.
Test Data TDI Input TAP Receives serial test instruction and data, which is sampled on the
Input rising edge of TCK and has an internal pull-up resistor. Register

values are shifted in Least Significant Bit (LSB) first.

Test Data TDO Output TAP The serial output for test instructions and data. TDO is tri-stateable
Output and is actively driven in the shift-IR and shift-DR controller states.

TDO changes on the falling edge of TCK. Register values are shifted
out LSB first.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-1



lgging Support

Table 7-1. Debugging Control Signals (Continued)

Name Pin Type Module Signal Description

Test Reset TRST Input TAP Initializes the test controller asynchronously. TRST has an internal
pull-up resistor. To reset the TAP controller synchronously, use TCK
to clock five consecutive 1s into TMS. To reset the remaining parts
of the DSP core and the peripherals (or in some cases, such as the
HI32, only the internal portion of a peripheral), use the RESET input

signal.
Debug Event DE Input or OnCE An open-drain signal providing, as an input, a means of entering the
Output Debug mode of operation from an external command controller, and,

as an output, a means of acknowledging that the chip has entered
the Debug mode. This signal, when asserted as an input, causes the
DSP56300 core to finish executing the current instruction, save the
instruction pipeline information, enter Debug mode, and wait for
commands to be entered from the debug serial input line. This signal
is asserted as an output for three clock cycles when the chip enters
Debug mode as a result of a debug request or as a result of meeting
a breakpoint condition. The DE has an internal pull-up resistor.

This is not a standard part of the JTAG Test Access Port (TAP)
Controller. The signal connects directly to the OnCE module to
initiate Debug mode directly or to provide a direct external indication
that the chip has entered Debug mode. All other interaction with the
OnCE module must occur through the JTAG port.

7.1 JTAG Test Access Port

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the
|[EEE Standard Test Access Port and Boundary-Scan Architecture (IEEE 1149.1). Problems of
testing high density circuit boards led to development of this standard under the sponsorship of
the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The
DSP56300 core implementation supports circuit-board test strategies based on this standard.

7.1.1 Boundary Scan Architecture Overview

Thetest logic includes a TAP consisting of four dedicated signal pins, a 16-state controller, and
threetest dataregisters. A Boundary Scan Register (BSR) links all devicesignal pinsintoasingle
shift register. Thetest logic, implemented with static logic design, is independent of the device
system logic. The DSP56300 core has the following capabilitiesinitiated by the associated JTAG
commands (listed in parentheses):

B Perform boundary scan operationsto test circuit-board electrical continuity (EXTEST)

B Bypass the DSP56300 core for agiven circuit board test by effectively reducing the BSR
toasinglecel (BYPASS)

B Sample the DSP56300 core-based device system pins during operation and transparently
shift out the result in the BSR; preload values to output pins prior to invoking the
EXTEST instruction (SAMPLE/PRELOAD)

B Disable the output drive to pins during circuit-board testing (HI-Z)

DSP56300 Family Manual, Rev. 5

7-2 Freescale Semiconductor



JTAG Test Access Port

B Access the OnCE controller and circuits to control atarget system (ENABLE_ONCE)
Enter the Debug mode of operation (DEBUG_REQUEST)

B Query identification information on manufacturer, part number, and version from a
DSP56300 core-based device (IDCODE)

B Forcetest data onto the outputs of a DSP56300 core-based device whilereplacing itsBSR
in the serial data path with a single-bit register (CLAMP)

This section discusses aspects of the JTAG implementation that are specific to the DSP56300
core and is to be used with the supporting | EEE Std. 1149.1™ standards document. The
discussion covers items the standard requires to be defined and includes additional information
specific to the DSP56300 core implementation. Figur e 7-7-1 shows the block diagram of the
DSP56300 core implementation of JTAG, which includes a 4-bit Instruction Register and three
test registers: a 1-hit Bypass Register, a 32-bit Identification Register, and a Boundary Scan
Register (BSR) whose size is chip-specific. This implementation includes a dedicated TAP and
five pins.

7.1.2 TAP Controller

The TAP controller interprets the sequence of logical values onthe TMSsignal. Itisa
synchronous state machine that controls the operation of the JTAG logic. Figure 7-7-2 shows the
state machine. The value shown adjacent to each change-of-state arrow represents the val ue of
the Tms signal sampled on the rising edge of the Tck signal. For a description of the TAP
controller states, see the IEEE 1149.1 specification.

7.1.3 Boundary Scan Register

The Boundary Scan Register (BSR) in the DSP56300 core JTAG implementation contains bits
for al device signal and clock pins and associated control signals. All bidirectional pins are
controlled by an associated control bit in the BSR. The boundary scan bit definitions vary
according to specific chip implementations. See the device-specific user’s manual for a complete
description of the BSR contents.

7.1.4 Instruction Register

The DSP56300 core JTAG implementation includes the three mandatory public instructions
(EXTEST, SAMPLE/PRELOAD, and BYPASS) and supports the optional CLAMP instruction
defined by IEEE 1149.1. The HI-Z public instruction can disable all device output drivers. The
ENABLE_ONCE public instruction enables the JTAG port to communicate with the OnCE
circuitry. The DEBUG_REQUEST public instruction enables the JTAG port to force the
DSP56300 core into Debug mode. The DSP56300 core includes a 4-bit instruction register
without parity consisting of ashift register with four parallel outputs. Dataistransferred from the
shift register to the parallel outputs during the Update-IR controller state. Figure 7-3 shows the
Instruction Register configuration.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-3



lgging Support

Boundary Scan Register >
Tﬁ, A
> ID Register >
A
Y
> Bypass Register [ > 2 []
OnCE
_g > Module >
DE
-«
A
> Decoder
A T A T
3 2 1 0 ol x TDO
-
> =

4-Bit Instruction Register

A

TMS %

JSLSEG R\

Control

TRST

Note: All shown pull-up resistors are internal.

Figure 7-1. Test Access Port With OnCE Module Block Diagram

DSP56300 Family Manual, Rev. 5

7-4 Freescale Semiconductor



JTAG Test Access Port

‘ Test-Logic-Reset

Run-Test/Idle

Select-IR-Scan

Figure 7-2. TAP Controller State Machine

JTAG Instruction
Register (IR) B3

B2

Bl

BO

Figure 7-3. JTAG Instruction Register Format

The four bits decode the eight instructions shown in Table 8. The 0101 code is reserved for

future enhancements. All other encodings (1000-1110) are decoded as BY PASS.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

7-5



lgging Support

Table 7-8. JTAG Instructions

Code
Instruction
B3 B2 B1 BO
0 0 0 0 EXTEST
0 0 0 1 SAMPLE/PRELOAD
0 0 1 0 IDCODE
0 0 1 1 RESERVED
0 1 0 1 CLAMP
0 1 0 0 HI-Z
0 1 1 0 ENABLE_ONCE?
0 1 1 1 DEBUG_REQUEST!
1 X X X BYPASS
Notes: 1. Notes:1. The ENABLE_ONCE and DEBUG_REQUEST public
instructions are not part of the IEEE 1149.1 standard.
2. 2. x =eitherlorO.

The parallel output of the instruction register is reset to 0010 in the Test-Logic-Reset controller
state, which is equivalent to the IDCODE instruction. During the Capture-IR controller state, the
paralel inputsto the instruction shift register are loaded with 01 in the Least Significant Bits
(LSBs) asrequired by the standard. The two Most Significant Bits (MSBs) are loaded with the
values of the core status bits OS1 and OS0O from the OnCE controller.

7.1.4.1 EXTEST (B[3-0] = 0000)

The external test (EXTEST) instruction selects the BSR. The EXTEST instruction also asserts
internal reset for the DSP56300 core system logic to force a predictable internal state while
performing external boundary scan operations. Using the TAP, the BSR can:

B Scan user-defined valuesinto the output buffers

B Capture values presented to input pins

B Control the direction of bidirectiona pins

B Control the output drive of tri-stateable output pins

For details on the function and use of EXTEST, refer to the IEEE 1149.1 standards document.

7.1.4.2 SAMPLE/PRELOAD (B[3-0] = 0001)

The SAMPLE/PRELOAD instruction performs two separate functions. First, it obtainsa
snapshot of system data and control signals that occurs on the rising edge of TCK in the
Capture-DR controller state. The datais observed by shifting it transparently through the BSR.

DSP56300 Family Manual, Rev. 5

7-6 Freescale Semiconductor



JTAG Test Access Port

Since no internal synchronization exists between the JTAG clock (TCK) and the system clock
(CLK), you must provide some form of external synchronization to achieve meaningful results.
Secondly, SAMPLE/PRELOAD can initialize the BSR output cells prior to selection of
EXTEST. Thisinitialization ensures that known data appears on the outputs when the EXTEST
Instruction starts executing.

7.1.4.3 IDCODE (B[3-0] = 0010)

The IDCODE instruction selects the ID register. This public instruction allows identification of
the manufacturer, part number, and version of a component through the TAP. Figure 7-4 shows
the ID register configuration.

31 28 27 22 21 17,16 12 11 10
Version |Manufacturer’s Sequence Number Manufacturer IEEE 1149.1
Number Use Identity Requirement
Design Core Chip .
Center Number Derivative
nnnn 000110 00000 nnnnn 0000000111012

Figure 7-4. Identification Register Configuration

One application of the ID register isto distinguish the manufacturer(s) of components on a board
when multiple sourcing is used. As more components that conform to the IEEE 1149.1 standard
emerge, it isdesirable for a system diagnostic controller unit to blindly interrogate a board design
in order to determine the type of each component in each location. Thisinformation isaso
available for factory process monitoring and for failure mode analysis of assembled boards.

Version Number The major revision or mask set change of the device (for example, 0000 =
Revision 0; 0001 = Revision A). Thisinformation is in the boundary-scan
description language (BSDL) file for the device. The BSDL file for each
device in the DSP56300 family is available for download from the web site
listed on the back cover of this manual. Note that there are no revision
changesfor individual masks of achip. Revision changes apply to groupings
of masks (that is, mask sets). For example, for the DSP56301, a mask set of
OF92R and 1F92R has the revision number of $1. A different mask set
consisting of OF48S, 1F48S, and 3F48S comprises Revision $2.

Manufacturer's Use  The Freescale Design Center Number (bits 27-22). The Freescale
Semiconductor Israel Ltd (FIL) Design Center Number is 000110.

Sequence Number  Djvided into two parts: Core Number (bits 21-17) and Chip Derivative
Number (bits 16-12). the DSP56300 core number is 00000.

Manufacturer The Freescale Manufacturer Identity is 00000001110.

Identity

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-7



lgging Support

Once the IDCODE instruction is decoded, it selectsthe ID register, which is a 32-bit data
register. The Bypass register loads alogic O at the start of a scan cycle, whereas the ID register
loadsalogic 1 intoitsLSB. Examination of thefirst bit of data shifted out of a component during
atest data scan sequence immediately following exit from Test-L ogic-Reset controller state
shows whether such aregister isincluded in the design. When the IDCODE instruction is
selected, the operation of the test logic has no effect on the operation of the on-chip system logic
asrequired by the IEEE 1149.1 standard.

7.1.4.4 CLAMP (B[3-0] = 0011)

CLAMP isan optional instruction defined by the IEEE 1149.1 standard. It selects the 1-bit
Bypass register as the serial path between TDI and TDO, while alowing signals driven from the
component pins to be determined from the BSR. During testing of ICson aPCB, it may be
necessary to place static guarding values on signalsthat control operation of logic not involved in
thetest. The EXTEST instruction could be used for this purpose, but since it selectsthe BSR, the
required guarding signals would be loaded as part of the complete serial data stream shifted in,
both at the start of the test and each time a new test pattern is entered. Since the CLAMP
instruction allows guarding values to be applied using the BSR of the appropriate ICswhile
selecting their Bypass registers, it allows much faster testing than EXTEST. Datain the boundary
scan cell remains unchanged until a new instruction is shifted in or the JTAG state machineis set
toitsreset state. The CLAMP instruction also assertsinternal reset for the DSP56300 core system
logic to force a predictable internal state while performing external boundary scan operations.

7.1.4.5 HI-Z (B[3-0] = 0100)

HI-Z is a manufacturer’s optional public instruction to prevent the need to backdrive the output
pins during circuit-board testing. When HI-Z isinvoked, all output drivers, including the
two-state drivers, are turned off (that is, high impedance). The instruction selects the Bypass
register. HI-Z also assertsinternal reset for the DSP56300 core system logic to force apredictable
internal state while performing external boundary scan operations.

7.1.4.6 ENABLE_ONCE(B[3-0] = 0110)

ENABLE_ONCE is not included in the IEEE 1149.1 standard. It is a public instruction that
enables you to perform system debug functions. When ENABLE_ONCE is decoded, the Tpi and
TDO pins connect directly to the OnCE registers. The particular OnCE register connected between
TDI and TDO at agiven timeis selected by the OnCE controller, depending on the OnCE
instruction currently executing. All communication with the OnCE controller occurs through the
Select-DR-Scan path of the JTAG TAP Controller.

7.1.4.7 DEBUG_REQUEST(B[3-0] = 0111)

DEBUG_REQUEST isnot included in the IEEE 1149.1 standard. It isa public instruction that
enables you to generate a debug request signal to the DSP56300 core. When
DEBUG_REQUEST is decoded, the TpI and TDO pins connect to the instruction registers. In the

DSP56300 Family Manual, Rev. 5

7-8 Freescale Semiconductor



JTAG Test Access Port

Capture-IR state of the TAP, the OnCE status bits are captured in the Instruction shift register, so
the external JTAG controller must continue to shift in the DEBUG_REQUEST while polling the
status bits that are shifted out until the Debug mode of operation is entered (acknowledged by the
combination 11 on OF[1-0]). After acknowledgment of Debug mode is received, the external
JTAG controller must issue the ENABLE_ONCE instruction so you can perform system debug
functions.

7.1.4.8 BYPASS (B[3-0] = 1111)

BY PASS selects the single-bit Bypass register, as shown in Figure 7-5. This creates a
shift-register path from TDI to the Bypass register, and finally to TDO, circumventing the BSR.
Thisinstruction enhancestest efficiency when acomponent other than the DSP56300 core-based
device becomes the device under test. When the current instruction selects the Bypass register,
the shift-register stageis set to alogic 0 on the rising edge of Tck in the Capture-DR controller
state. Therefore, the first bit shifted out after selection of the Bypass register is always alogic O.

Shift DR 4@

0 1 D
Multiplex S C To TDO
From TDI 1 ‘
CLOCKDR

Figure 7-5. Bypass Register

7.1.5 DSP56300 JTAG Restrictions

The control afforded by the output enable signals using the BSR and the EXTEST instruction
requires acompatible circuit-board test environment to avoid device-destructive configurations.
Y ou must avoid situations in which the DSP56300 core output drivers are enabled into actively
driven networks. In addition, EXTEST can execute only after power-up or regular hardware reset
while EXTAL is provided. While EXTEST executes, EXTAL can remain inactive.

Two constraints rel ate to the JTAG interface. First, the Tck input does not include an internal
pull-up resistor and should not be left unconnected. The second constraint isto ensure that the
JTAG test logic is kept transparent to the system logic by forcing the TAP into the
Test-Logic-Reset controller state, using either of two methods. During power-up, TRST must be
externally asserted to force the TAP controller into this state. After power-up finishes, TMS must
be sampled asalogic 1 for five consecutive Tck rising edges. If TMs either remains unconnected
or is connected to V ¢, then the TAP controller cannot |eave the Test-L ogic-Reset state,
regardless of the state of Tck.The DSP56300 core features a low-power Stop mode, which is
invoked using the STOP instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-9



lgging Support
The interaction of the JTAG interface with low-power Stop modeis as follows:

1. TheTAPcontroller must bein the Test-L ogic-Reset state to either enter or remain in the
low-power Stop mode. Leaving the TAP controller Test-L ogic-Reset state negates the
ability to achieve low power, but does not otherwise affect device functionality.

2. TheTck input is not blocked in low-power Stop mode. To consume minimal power, the
TCK input should be externally pulled to V ¢ or GND.

3. Thetwms and DI pinsinclude on-chip pull-up resistors. In low-power Stop mode, these
two pins should remain either unconnected or connected to V - to achieve minimal
power consumption.

During Stop mode all DSP56300 core clocks are disabled, so the JTAG interface provides the
means for polling the device status (sampled in the Capture-IR state). For aDSP56300 derivative
that does not include the bE pin, the JTAG interface provides the DEBUG_REQUEST
instruction for entering Debug mode.

7.2 OnCE Module

The DSP56300 core On-Chip Emulation (OnCE) modul e interacts with the DSP56300 core and
its peripherals non-intrusively so that you can examine registers, memory, or on-chip peripherals,
thus facilitating hardware and software development on the DSP56300 core processor. Special
circuits and dedicated pins on the DSP56300 core are defined to avoid sacrificing any
user-accessi ble on-chip resource.

The OnCE module controller functionality is accessed through the JTAG test access port (TAP).
In addition to describing OnCE features and functionality, this section gives examples of
debugging procedures using the ONnCE module. The OnCE module resources can be accessed
only after the JTAG ENABLE_ONCE executes instruction (these resources are accessible even
when the chip operates in Normal mode). Figur e 7-8 shows the block diagram of the OnCE
module.

DSP56300 Family Manual, Rev. 5

7-10 Freescale Semiconductor



OnCE Module

PDB PIL GDB
Pipeline T Logi
Information race Logic
«—— TCK
A A AA |
Control Bus «— TDI
-
XAB Cg)r?t(r:jler —» TDO
YAB
PAB «— TRST
vy Y +V \ I
—>» DE
Trace Tags Breakpoint
Buffer Buffer Logic

Figure 7-8. OnCE Block Diagram

The OnCE module controller functionality is accessed through the JTAG port. The JTAG TcK,
TDI, and TDO pins shift data and instructions in and out.

DE

RESET
(Optional)

TDI—TDI TDO TDI TDO TDI TDO—TDO

[

TMS
TCK

TRST

Figure 7-9. OnCE Multiprocessor Configuration

7.2.1 OnCE Controller

The OnCE Controller contains the following blocks: OnCE Command Register (OCR), OnCE
Decoder, and the OnCE Status and Control Register (OSCR). Figur e 7-6 shows a block diagram
of the OnCE controller.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-11



P N

lgging Support

.t
OnCE Command Register $2L
TCE
ISBKPT —|
Update
ISTRACE ONCE Decoder | ¥
ISDR ISDEBUG
ISSWDBG *
» Status and Control f
» Register —e—» TDO
\)
Register Read  Register Write Mode Select

Figure 7-6. OnCE Controller
7.2.1.1 OnCE Command Register (OCR)

The OnCE Command Register (OCR) is ashift register that receives its serial datafrom the Toi
pin. It holds the 8-bit commandsto be used as input for the OnCE Decoder. The OCR isshownin
Figure 7-7-7.

7 6 5 4 3 2 1 0
R/W GO EX RS4 RS3 RS2 RS1 RSO
Reset: $00

Figure 7-7. OnCE Command Register (OCR)

Table 7-1. OnCE Command Register (OCR) Bit Definitions

Bit Number Bit Name Description
7 R/W Read/Write Command
Specifies the direction of the data transfer.
R/W Action

0 Write the data associated with the command into the
register specified by RS[4-0].

1 Read the data contained in the register specified by
RS[4-0].

6 GO Go Command

If the GO bit is set, executes the instruction that resides in the OnCE PIL register. To execute
the instruction, the core leaves Debug mode. The core returns to the Debug mode immediately
after executing the instruction if the EX bit is cleared. The core continues normal operation if
the EX bit is set. The GO command executes only if the operation is a write to the OnCE
Program Data Bus Register (OPDBR) or a read/write to No Register Selected. Otherwise, the
GO bit is ignored.

5 EX Exit Command

If the EX bit is set, the core exits Debug mode and resumes normal operation. The EXIT
command executes only if the GO command is issued, and the operation writes to OPDBR or
reads/writes to No Register Selected. Otherwise, the EX bit is ignored.

DSP56300 Family Manual, Rev. 5

7-12 Freescale Semiconductor



Table 7-1. OnCE Command Register (OCR) Bit Definitions (Continued)

OnCE Module

Bit Number

Bit Name

Description

4-0

RS

Register Select

Defines which register is the source/destination for the read/write operation. Following is the

OnCe Register Select Encoding:

RS[4-0] Register Selected
00000 OnCE Status and Control Register (OSCR)
00001 OnCE Memory Breakpoint Counter (OMBC)
00010 OnCE Breakpoint Control Register (OBCR)
00011 Reserved
00100 Reserved
00101 OnCE Memory Limit Register 0 (OMLRO)
00110 OnCE Memory Limit Register 1 (OMLR1)
00111 Reserved
01000 Reserved
01001 OnCE GDB Register (OGDBR)

01010 OnCE PDB Register (OPDBR)

01011 OnCE PIL Register (OPILR)

01100 PDB GO-TO Register (for GO TO command)
01101 OnCE Trace Counter (OTC)

01110 Reserved

01111 OnCE PAB Register for Fetch (OPABFR)
10000 OnCE PAB Register for Decode (OPABDR)
10001 OnCE PAB Register for Execute (OPABEX)
10010 Trace Buffer and Increment Pointer

10011 Reserved

101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

7-13



lgging Support
7.2.1.2 OnCE Decoder (ODEC)

The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives asinput the
8-bit command from the OCR, a signal from the JTAG Controller (indicating that 8/24 bits have
been received and that the selected data register must be updated), and asignal indicating that the
core halted. The ODEC generates all the strobes required for reading and writing the selected
OnCE registers.

7.2.1.3 OnCE Status and Control Register (OSCR)

The OnCE Status and Control Register (OSCR) enabl es the Trace mode of operation and
indicates the reason for entering Debug mode. The control bits are read/write, and the status bits
are read-only. The OSCR bhits are cleared by hardware reset. The OSCR is shown in Figure 7-8.
See Table 8 for OSCR bit definitions.

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

0s1 0So HIT TO MBO SWO IME TME

Reserved bit. Read as zero; write to zero for future compatibility

Figure 7-8. OnCE Status and Control Register (OSCR

Table 7-8. OnCE Status and Control Register (OSCR) Bit Definitions

Bit Number Bit Name Reset Value Description
23-8 0 Reserved. Write to zero for future compatibility.
7-6 (O 0 Core Status

Read-only status bits that provide core status information. Examining the
status bits, you can determine whether the chip has entered Debug mode. To
find the reason for entering Debug mode, consult the OSCR SWO, MBO, and
TO bits. You can also examine these bits to determine why the chip has not
entered the Debug mode after debug event assertion (DE) or execution of the
JTAG Debug Request instruction (core waiting for the bus, STOP or WAIT
instruction, and so on). The OS bits are also reflected in the JTAG instruction
shift register, which allows the polling of the core status information at the
JTAG level so that you can read the OSCR after the DSP56300 core
executes the STOP instruction (and therefore there are no clocks).

0s1 0so Description
DSP56300 core is executing instructions

DSP56300 core is in Wait or Stop mode

0 0
0 1
1 0 DSP56300 core is waiting for bus
1 1 DSP56300 core is in Debug mode

DSP56300 Family Manual, Rev. 5

7-14 Freescale Semiconductor



OnCE Module

Table 7-8. OnCE Status and Control Register (OSCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

5 HIT 0 Cache Hit
A read-only status bit that is set when a cache hit occurs in Cache mode in
the Debug mode of operation. In PRAM mode, this bit reads as one.

4 TO 0 Trace Occurrence
A read-only status bit that is set when all the following occur:
B Trace Counter =0

B Trace mode is enabled
B Debug mode of operation is entered
This bit is cleared when the DSP leaves Debug mode.

3 MBO 0 Memory Breakpoint Occurrence

A read-only status bit that is set when the DSP enters Debug mode because
a memory breakpoint has been encountered. This bit is cleared when the
DSP leaves Debug mode.

2 SWO 0 Software Debug Occurrence

A read-only status bit that is set when the DSP enters Debug mode because
of the execution of the DEBUG or DEBUGcc instruction with condition true.
This bit is cleared when the DSP leaves Debug mode.

1 IME 0 Interrupt Mode Enable
When this control bit is set, the chip executes a vectored interrupt to the
address VBA:$06 instead of entering Debug mode.

0 TME 0 Trace Mode Enable
When set, this control bit enables Trace mode.

7.2.2 OnCE Memory Breakpoint Logic

Memory breakpoints can be set on program memory or data memory locations. In addition, the
breakpoint does not have to be in a specific memory address, but within an approximate address
range of where the program may be executing. This significantly increases your ability to
monitor what the program is doing in real-time. The breakpoint logic, shown in Figure 7-9,
contains alatch for the addresses, registers that store the upper and lower address limit, address
comparators, and a breakpoint counter. Address comparators are useful in determining where a
program may be getting lost or when data is written where it should not be written. They are also
useful in halting a program at a specific point to examine/change registers or memory. Using
address comparators to set breakpoints enables you to set breakpointsin RAM or ROM in any
operating mode. Memory accesses are monitored according to the contents of the OBCR depicted
in Figure 7-9.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-15



lgging Support

TCK PAB XAB YAB
TDO| TDI + + +
Memory Address Latch -<«—— Memory Bus Select
¢ TDI TCK TDO
w4 h
Address Comparator 0 -
Breakpoint Control
ﬂ\
- — Memory Limit Register 0 l
> Memory
NV Breakp.oint
Address Comparator 1 »|  Selection
< : Memory Limit Register 1 i
> Breakpoint
Occurred
> DEC
- — Breakpoint Counter
Count=0 ; l \

: ISBKPT

Figure 7-9. OnCE Memory Breakpoint Logic O

See Table 9 for OBCR bhit definitions.

OnCE Memory Address Latch (OMAL). A 24-bit register that latches the PAB, XAB or
Y AB on every instruction cycle according to the MBS[1-0] bitsin the OBCR.

OnCE Memory Limit Register 0 (OMLRO). A 24-bit register that stores the memory
breakpoint limit. OMLRO can be read or written through the JTAG port. Before enabling
breakpoints, OMLRO must be loaded by the external command controller.

OnCE Memory Address Comparator 0 (OMACO0). Compares the current memory address
(stored in OMAL) with the OMLRO contents.

OnCE Memory Limit Register 1 (OMLRL1). A 24-bit register that stores the memory
breakpoint limit. OMLR1 can be read or written through the JTAG port. Before enabling
breakpoints, OMLR1 must be loaded by the external command controller.

OnCE Memory Address Comparator 1 (OMAC1). Compares the current memory address
(stored in OMAL) with the OMLR1 contents.

OnCE Breakpoint Control Register (OBCR). Defines the memory breakpoint events. The
OBCR can be read or written through the JTAG port. All OBCR bits are cleared on
hardware reset.

DSP56300 Family Manual, Rev. 5

7-16

Freescale Semiconductor



OnCE Module

23 22 21 20 19 18 17 16 15 14 13 12
11 10 9 8 7 6 5 4 3 2 1 0
BT1 BTO CC11 CC10 | RW11 | RW10 | CCoO01 CCO00 | RW01 | RW0OO | MBS1 | MBSO
Reserved bit. Read as zero; write to zero for future compatibility
Figure 7-10. OnCE Breakpoint Control Register (OBCR
Table 7-9. OnCE Breakpoint Control Register (OBCR) Bit Definitions
Bit Number Bit Name Reset Value Description
23-12 0 Reserved. Write to zero for future compatibility.
11-10 BT 0 Breakpoint Event Bits
Define the sequence between breakpoints 0 and 1. If the condition defined by
BT[1-0] is met, then the Breakpoint Counter (OMBC) is decremented.
BT[1-0] Description
00 Breakpoint 0 and Breakpoint 1
o1 Breakpoint O or Breakpoint 1
10 Breakpoint 1 after Breakpoint O
11 Breakpoint 0 after Breakpoint 1
9-8 CC1 0 Breakpoint 1 Condition Code
Define the condition of the comparison between the current memory address
(OMAL) and the OnCE Memory Limit Register 1 (OMLR1).
CC1[1-0] Description
00 Breakpoint on not equal
o1 Breakpoint on equal
10 Breakpoint on less than
11 Breakpoint on greater than
7-6 RwW1 0 Breakpoint 1 Read/Write
Define memory breakpoint 1 to occur when a memory address access is
performed for read, write or both.
RW1[1-0] Description
00 Breakpoint disabled
01 Breakpoint on write access
10 Breakpoint on read access
11 Breakpoint read or write access

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

7-17



lgging Support

Table 7-9. OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

5-4 CCo 0 Breakpoint 0 Condition Code
Define the condition of the comparison between the current Memory Address
(OMAL) and the Memory Limit Register 0 (OMLRO).

CCO0[1-0] Description
00 Breakpoint on not equal
01 Breakpoint on equal
10 Breakpoint on less than
11 Breakpoint on greater than
3-2 RWO 0 Breakpoint 0 Read/Write

Define the memory breakpoint 0 to occur when a memory address access is
performed for read, write, or both.

RWO0[1-0] Description
00 Breakpoint disabled
01 Breakpoint on write access
10 Breakpoint on read access
11 Breakpoint on read or write access
1-0 MBS 0 Memory Breakpoint

Enable memory breakpoints 0 and 1, allowing them to occur when a memory
access is performed on P, X, or Y memory.

MBS[1-0] Description
00 Reserved
01 Breakpoint on P access
10 Breakpoint on X access
11 Breakpoint on Y access

7.2.2.1 OnCE Memory Breakpoint Counter (OMBC)

The OnCE Memory Breakpoint Counter is a 24-bit counter that is loaded with a value equal to
the number of times minus one that a memory access event should occur before a memory
breakpoint is declared. The memory access event is specified by the OBCR and by the memory
limit registers. On each occurrence of the memory access event, the breakpoint counter
decrements. When the counter reaches 0 and a new event occurs, the chip enters Debug mode.
The OMBC can be read or written through the JTAG port. Each time the limit register changes or
adifferent breakpoint event is selected in the OBCR, the breakpoint counter must be written
afterwards. This ensures that the OnCE breakpoint logic is reset and that no previous events can
affect the new breakpoint event selected. The breakpoint counter is cleared by hardware reset.

7.2.3 Cache Support

To keep track of the cache contents and status, the eight Tag values, Tag lock/unlock status, and
L RU status can be read viathe OnCE module. Nine 24-bit registers areimplemented asa circular

DSP56300 Family Manual, Rev. 5

7-18 Freescale Semiconductor



OnCE Module

buffer with a 4-bit counter. All registers have the same address, but any access to the Tag buffer

Increments the counter, thus pointing to the next register in the circular buffer. When Debug

mode is exited, the counter is cleared, so when Debug mode is re-entered, the first read from the

Tag buffer address always starts from the first register of the nine (Tag number 0) and circles
continuously among these nine registers. The register mapping in the circular Tag buffer is

shown in Figure 7-11.

At any time, at least one LRU bit in the LRU/Lock Status Register is set, but multiple LRU bits
can be set at the same time because locked sectors can be the Least Recently Used sector even
though they cannot be replaced. Therefore, the next sector to be replaced isthe only sector whose
LRU bit is set and whose lock bit is cleared. The one exception to this rule occurs when all eight

sectors are locked and LRU, in which case there is no next sector to be replaced, because no
sector can be replaced until at least one sector is unlocked.

23 7 6 0
msp| Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
mshb Isb | O 0
Iru [lock| Iru [lock Iru [lock| O 0
O]J]O0 1|1 717

23 22 21 20 11 8 7 0

Figure 7-11. Circular Tags Buffer (TAGB)

DSP56300 Family Manual, Rev. 5

TAG number 0

TAG number 1

TAG number 2

TAG number 3

TAG number 4

TAG number 5

TAG number 6

TAG number 7

LRU/LOCK status

Freescale Semiconductor

7-19



lgging Support
7.2.3.1 OnCE Trace Logic

The 24-bit OnCE Trace Counter (OTC) can be read or written through the JTAG port. If N
Instructions are to be executed before Debug mode is entered, the Trace Counter should be
loaded with N — 1. The Trace Counter is cleared by hardware reset. When the OnCE Trace Logic
Isused, instructions can execute in single or multiple steps. The OnCE Trace Logic causes the
chip to enter Debug mode after one or more instructions execute and to wait for OnCE
commands from the debug serial port. The OnCE Trace Logic block diagram is shown in Figure
7-12.

End of Instruction

TDI

—> DEC
TDO —— Trace Counter
—>

TCK
Count=0

ISTRACE

Figure 7-12. OnCE Trace Logic Block Diagram

Trace mode has an associated counter so that more than one instruction can be executed before
returning to Debug mode. The counter allows you to take multiple real-time instruction steps
before entering Debug mode. This feature helps you to debug sections of code that do not have a
normal flow or are hanging up in infinite loops. The Trace Counter also enables you to count the
number of instructions executed in a code segment.

To enable Trace mode, the counter isloaded with avalue, the program counter is set to the start
location of the instruction(s) to be executed real-time, the TME bit is set in the OSCR and the
DSP56300 core exits Debug mode by executing the appropriate command issued by the external
command controller.

When Debug mode is exited, the counter decrements after each execution of an instruction.
Interrupts are serviceable and all instructions executed—including fast interrupt services and
repeated instructions—decrement the Trace Counter. When it decrements to 0, the DSP56300
core re-enters Debug mode, the Trace Occurrence bit (TO) inthe OSCR is set, the Core Status
bits OS[1-0] are set to 11, and the DE pin (if provided) is asserted to indicate that the DSP56300
core has entered Debug mode and is requesting service.

DSP56300 Family Manual, Rev. 5

7-20 Freescale Semiconductor



OnCE Module

7.2.4 Methods of Entering Debug Mode

The chip acknowledges entering Debug mode by setting the Core Status bits OS1 and OSO and
asserting the bE line. This informs the external command controller that the chip isin Debug
mode and awaiting commands. The DSP56300 core can disable the OnCE module if the ROM
Security option isimplemented. If the ROM Security isimplemented, the OnCE module remains
inactive until the DSP56300 core executes awrite operation to the OGDBR. Following isalist of
ways to enter Debug mode:

External Debug Request During RESET Assertion. Holding the DE line asserted during the
assertion of RESET causes the chip to enter the Debug mode. After receiving the
acknowledge, the external command controller must negate the bE line before sending the
first command. In this case, the chip does not execute any instruction before entering the
Debug mode.

External Debug Request During Normal Activity. Holding the DE line asserted during
normal chip activity causes the chip to finish executing the current instruction and then
enter Debug mode. After receiving the acknowledge, the external command controller
must negate the DE line before sending the first command. This processisthe samefor any
newly fetched instruction, including instructions fetched by the interrupt processing or
instructions that are aborted by the interrupt processing. In this case the chip finishes
executing the current instruction and stops after the newly fetched instruction enters the
Instruction latch.

Executing the JTAG DEBUG_REQUEST Instruction. Executing the JTAG instruction
DEBUG_REQUEST asserts an internal debug request signal. The chip finishes executing
the current instruction and stops after the newly fetched instruction enters the instruction
latch. After entering the Debug mode, the Core Status bits OS1 and OS0 are set and the DE
lineis asserted, thus acknowledging the external command controller that the Debug mode
of operation has been entered.

External Debug Request During Stop. Executing the JTAG instruction
DEBUG_REQUEST (or asserting bE) while the chip isin Stop state (that is, has executed
a STOP instruction) causes the chip to exit the Stop state and enter Debug mode. After
receiving the acknowledge, the external command controller must negate DE before
sending the first command. In this case, the chip finishes executing the STOP instruction
and halts after the next instruction enters the instruction latch.

External Debug Request During Wait. Executing the JTAG instruction
DEBUG_REQUEST (or asserting DE) while the chip isin the Wait state (that is, has
executed aWAIT instruction) causesthe chip to exit the Wait state and enter Debug mode.
After receiving the acknowledge, the external command controller must negate De before
sending the first command. In this case, the chip completes the execution of the WAIT
instruction and halts after the next instruction enters the instruction latch.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-21



lgging Support

B Software Request During Normal Activity. Upon executing the DSP56300 core instruction
DEBUG (or DEBUGcc when the specified condition istrue), the chip enters Debug mode
after the instruction following the DEBUG instruction enters the instruction latch.

B Enabling Trace Mode. When the Trace mode mechanism is enabled and the Trace
Counter is greater than O, the Trace Counter decrements after each instruction executes.
Execution of an instruction when the Trace Counter = O causes the chip to enter the Debug
mode after completing the execution of the instruction. Only instructions actually
executed cause the Trace Counter to decrement. An aborted instruction does not
decrement the Trace Counter and does not cause the chip to enter Debug mode.

B Enabling Memory Breakpoints. When the memory breakpoint mechanism is enabled with
a Breakpoint Counter value of 0, the chip enters Debug mode after executing the
instruction that caused the memory breakpoint to occur. For breakpoints on executed
Program memory fetches, the breakpoint is acknowledged immediately after the fetched
Instruction executes. For breakpoints on accessesto X, Y or P memory spaces by MOVE
Instructions, the breakpoint is acknowledged after execution of the instruction following
the instruction that accessed the specified address.

To restore the pipeline and to resume normal chip activity upon returning from the Debug mode,
anumber of on-chip registers store the chip pipeline status. Figur e 7-13 shows the block diagram
of the Pipeline Information Registers with the exception of the PAB registers, which are shownin
Figure 7-8 on page 7-25.

< - GDB Register (OGDBR)
* N GDB
> PDB Register (OPDBR) ~— TDI
* N » PDB
< - PIL Register (OPILR)
TDO TCK * N\ PIL

N

Figure 7-13. OnCE Pipeline Information and GDB Registers

B OnCE PDB Register (OPDBR). A 24-bit latch that stores the value of the Program Data
Bus generated by the last program memory access of the core before Debug mode is
entered. The OPDBR isread or written through the JTAG port. Thisregister is affected by
the operations performed during the Debug mode and must be restored by the external
command controller when returning to Normal mode.

B OnCE PIL Register (OPILR). A 24-hit latch that stores the value of the Instruction Latch
before Debug mode is entered. OPILR can only be read through the JTAG port. Since the

DSP56300 Family Manual, Rev. 5

7-22 Freescale Semiconductor



OnCE Module

Instruction Latch is affected by the operations performed during Debug mode, it must be
restored by the external command controller when returning to Normal mode. Since there
Is no direct write access to the Instruction Latch, restoration is accomplished by writing to
the OPDBR with no-GO and no-EX. The datawritten on PDB is transferred into the
Instruction Latch.

B OnCE GDB Register (OGDBR). A 24-bit latch that can only be read through the JTAG
port. The OGDBR isnot actually required for a pipeline status restore, but is required for
passing information between the chip and the external command controller. The OGDBR
is mapped on the X internal 1/0 space at address $FFFFFC. When the external command
controller needs the contents of aregister or memory location, it forces the chip to execute
an instruction that brings this information to the OGDBR. Then the contents of the
OGDBR are delivered serialy to the external command controller by the command READ
GDB REGISTER.

7.2.5 Trace Buffer

To ease debugging activity and keep track of program flow, the DSP56300 core provides a
number of on-chip dedicated resources. Three read-only PAB registers give pipeline information
when Debug mode is entered, and a Trace Buffer stores the address of the last instruction
executed, as well as the addresses of the last eight change of flow instructions.

B OnCE PAB Register for Fetch (OPABFR). A 24-bit register that stores the address of the
last instruction whose fetch started before Debug mode was entered. The OPABFR can
only be read through the JTAG port. This register is not affected by the operations
performed during Debug mode.

B PAB Register for Decode (OPABDR). A 24-bit register that stores the address of the
instruction currently on the PDB. Thisis the instruction whose fetch completed before the
chip entered Debug mode. The OPABDR can only be read through the JTAG port. This
register is not affected by the operations performed during Debug mode.

B PAB Register for Execute (OPABEX). A 24-bit register that stores the address of the
instruction currently in the Instruction Latch. Thisisthe instruction that would have
decoded and executed if the chip had not entered Debug mode. The OPABEX register can
only be read through the JTAG port. This register is not affected by the operations
performed during Debug mode.

The Trace Buffer stores the addresses of thelast twelve change of flow instructions that executed,
aswell asthe address of the last executed instruction. It isimplemented as a circular buffer
containing twelve 25-hit registers and one 4-bit counter. All the registers have the same address,
but any read access to the Trace Buffer address causes the counter to increment, thus pointing to
the next Trace Buffer register. The registers are serially available to the external command
controller through their common Trace Buffer address. Figur e 8 shows the block diagram of the
Trace Buffer. The Trace Buffer isnot affected by the operations performed during Debug mode

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-23



lgging Support

except for the Trace Buffer pointer increment when reading the Trace Buffer. When Debug mode
Is entered, the Trace Buffer counter points to the Trace Buffer register containing the address of
the last executed instructions. Thefirst Trace Buffer read obtains the oldest address and the
following Trace Buffer reads get the other addresses from the oldest to the newest, in order of
execution.

Note: To ensure Trace Buffer coherence, a complete set of twelve reads of the Trace Buffer
must be performed because each read increments the Trace Buffer pointer, thus
pointing to the next location. After twelve reads, the pointer indicates the same
location as before starting the read procedure.

On any change of flow instruction, the Trace Buffer stores both the address of the change of flow
instruction, as well asthe address of the target of the change of flow instruction. In the case of
conditional change of flows, the address of the change of flow instruction is aways stored
(regardless of the fact that the change of flow istrue or false), but if the conditional change of
flow isfalse (that is, not taken) the address of the target is not stored. In order to facilitate the
program trace reconstruction, every Trace Buffer location has an additional invalid bit (the 25th
bit). If aconditional change of flow instruction has a condition false, theinvalid bit is set, thus
marking thisinstruction as not taken. Therefore, it isimperative to read twenty-five bits of data
when reading the twelve Trace Buffer registers. Since dataisread LSB first, theinvalid bit isthe
first bit to be read.

7.2.6 OnCE Commands and Serial Protocol

To permit an efficient means of communication between the external command controller and the
DSP56300 core chip, the following protocol is adopted. Before starting any debugging activity,
the external command controller must wait for an acknowledge on the DE line indicating that the
chip has entered Debug mode (optionally the external command controller can poll the OS1 and
OS0 bitsin the JTAG instruction shift register). The externa command controller communicates
with the chip by sending 8-bit commands that can be accompanied by 24 bits of data. Both
commands and data are sent or received Least Significant Bit first. After sending acommand, the
external command controller should wait for the DSP56300 core chip to acknowledge execution
of the command. The external command controller can send a new command only after the chip
acknowledges execution of the previous command.

DSP56300 Family Manual, Rev. 5

7-24 Freescale Semiconductor



OnCE Module

PAB

Fetch Address (OPABFR)

Ly

Y
Decode Address (OPABDR)

L

Execute Address (OPABEX)

r

Trace BUF Register 0 <
*. Circular
Trace BUF Register 1 < Buffer
| ] Pointer

Y

Trace BUF Register 2

A

Y

Trace BUF Register 7

L]
Y Y

TDl ——— Trace BUF Shift Register

l«— TCK
——» TDO

Figure 7-8. OnCE Trace Buffer Block Diagram

The OnCE commands are classified as follows:

B Read commands (when the chip delivers the required data)

B Write commands (when the chip receives data and writes the datain one of the OnCE
registers)

B Commands that do not have data transfers associated with them

The commands are 8 bitslong and have the format shown in Figure 7-7-7, OnCE Command
Register (OCR), on page 7-12.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-25



lgging Support
7.2.7 OnCE Module Examples

The following examples of debugging procedures using the OnCE module assume that the DSP
Isthe only devicein the JTAG chain. If more than one device in the chain exists (other DSPs or
even other devices), the other devices can be forced to execute the JTAG BY PASS instruction so
that their effect in the serial stream is one bit per additional device. The events select-DR,
select-IR, update-DR, shift-DR, and so on refer to bringing the JTAG TAP in the corresponding
state.

7.2.7.1 Checking Whether the Chip Has Entered Debug Mode
There are two methods of verifying that the chip has entered Debug mode:

B Every timethe chip enters Debug mode, a pulseis generated on the DE line. A pulseisaso
generated every time the chip acknowledges the execution of an instruction in Debug
mode. An external command controller can connect the bE lineto an interrupt pin to sense
the acknowledge.

B Anexternal command controller can poll the JTAG instruction shift register for the status
bits O 1-0]. When the chip isin Debug mode these bits are set to the value 11.

In the following paragraphs, the ACK notation denotes the operation performed by the command
controller to check whether the chip has entered Debug mode (either by sensing DE or by polling
JTAG instruction shift register).

7.2.7.2 Polling the JTAG Instruction Register

To poll the core status bits in the JTAG Instruction Register, the following sequence must be
performed:

1.  Select shift-IR. Passing through capture-IR loads the core status bits into the instruction
shift register.

2. Shiftin ENABLE_ONCE. While shifting-in the new instruction the captured status
information is shifted out. Pass through update-IR.

3.  Returnto Run-Test/Idle.

The external command controller can analyze the information shifted out and detect whether the
chip has entered Debug mode.

7.2.7.3 Saving Pipeline Information

The debugging activity is accomplished by DSP56300 core instructions supplied from the
external command controller. Therefore the current state of the DSP56300 core pipeline must be
saved before the debug activity starts and the state must be restored before returning to the
Normal Mode of operation. The following description of the saving procedure assumes that

DSP56300 Family Manual, Rev. 5

7-26 Freescale Semiconductor



OnCE Module

ENABLE_ONCE has executed and Debug mode has been entered and verified as described in
Section 7.2.7.1, Checking Whether the Chip Has Entered Debug Mode, on page 7-26:

1. Select shift-DR. Shift in the Read PDB. Pass through update-DR.

2.  Select shift-DR. Shift out the 24-bit OPDB register. Pass through update-DR.

3.  Sdect shift-DR. Shift in the Read PIL. Pass through update-DR.

4.  Select shift-DR. Shift out the 24-bit OPILR register. Pass through update-DR.

Y ou do not need to verify acknowledge between Steps 1 and 2 or between Steps 3 and 4, because
completion is guaranteed by design.

7.2.7.4 Reading the Trace Buffer

An optional step during debugging activity is reading the information associated with the Trace
Buffer in order to enable an externa program to reconstruct the full trace of the executed
program. In the following description of the read Trace Buffer procedure, assume that all actions
described in Section 7.2.7.3 have executed:

Select shift-DR. Shift in the Read PABFR. Pass through update-DR.

Select shift-DR. Shift out the 24-bit OPABFR register. Pass through update-DR.
Select shift-DR. Shift in the Read PABDR. Pass through update-DR.

Select shift-DR. Shift out the 24-bit OPABDR register. Pass through update-DR.
Select shift-DR. Shift in the Read PABEX. Pass through update-DR.

Select shift-DR. Shift out the 24-bit OPABEX register. Pass through update-DR.
Select shift-DR. Shift in the Read FIFO. Pass through update-DR.

Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-DR.

Repeat Steps 7 and 8 for the entire FIFO (12 times).

© © N o 00 bk~ 0D PE

Y ou must read the entire FIFO since each read increments the FIFO pointer thus pointing to the
next FIFO location. At the end of this procedure the FIFO pointer points back to the beginning of
the FIFO. The information read by the externa command controller contains the address of the
newly fetched instruction, the address of the instruction currently on the PDB, the address of the
instruction currently on the instruction latch, and the addresses of the last twelve instructions that
have been executed. A user program can now reconstruct the flow of afull trace based on this
information and on the original source code of the currently running program.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-27



lgging Support

7.2.7.5 Displaying a Specified Register

The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have

been executed:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

2.  Select shift-DR. Shift in the 24-bit opcode: MOVE reg, X:OGDB. Pass through
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.
Wait for DSP to reenter Debug mode (wait for DE or poll core status).

4.  Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this
selects OGDBR as the dataregister for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. Wait for next

command.

7.2.7.6 Displaying X Memory Area Starting at Address $XxXxxxx

The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must be
complete. Since RO is used as pointer for the memory, RO is saved first:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

2.  Select shift-DR. Shift in the 24-bit opcode: MOVE RO, X:OGDB. Pass through
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.
Wait for DSP to reenter Debug mode (wait for DE or poll core status).

4.  Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this
selects OGDBR as the data register for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. RO is now
saved.

6. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

7.  Select shift-DR. Shift in the 24-bit opcode: MOV E #$xxxxxx,R0. Pass through
update-DR to actually write OPDBR.
Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
Select shift-DR. Shift in the second word of the 24-bit opcode: MOV E #3xxxxxx,R0
(the $xxxxxx field). Pass through update-DR to actually write OPDBR and execute the
instruction. RO is loaded with the base address of the memory block to be read.

10. Wait for DSP to reenter Debug mode (wait for DE or poll core status).

11. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

12. Select shift-DR. Shift in the 24-bit opcode: MOVE X:(R0)+, X:OGDB. Pass through
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.

DSP56300 Family Manual, Rev. 5
7-28 Freescale Semiconductor



13.
14.

15.

16.

17.

7.2.7.7

OnCE Module

Wait for DSP to reenter Debug mode (wait for DE or poll core status).

Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this
selects OGDBR as the data register for read).

Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. The memory
contents of address $xxxxxx has been read.

Select shift-DR. Shift inthe NO SELECT with GO no-EX. Pass through update-DR.
This re-executes the same MOVE X:(R0)+, X:OGDB instruction.

Repeat from Step 14 to compl ete the reading of the entire block. When finished, restore
the original value of RO.

Returning From Debug Mode to Normal Mode to Current Program

When you have finished examining the current state of the machine, changed some of the
registers, and wish to return and continue execution of its program form the point where it

stopped,

follows:

1.
2.

7.2.7.8

you must restore the machine pipeline and enable normal instruction execution, as

Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

Select shift-DR. Shift in the 24 bits of saved PIL (instruction latch value). Pass through
update-DR to actually write the Instruction Latch.

Select shift-DR. Shift in the Write PDB with GO and EX. Pass through update-DR.

Select shift-DR. Shift in the 24 bits of saved PDB. Pass through update-DR to actually
write the PDB. At the same time the internally saved value of the PAB is driven back
from the PABFR register onto the PAB, the ODEC releases the chip from Debug mode
and the normal flow of execution is continued.

Returning from Debug Mode to Normal Mode to a New Program

When you have finished examining the current state of the machine, changed some of the
registers and wish to start the execution of anew program (the GOTO command), you must force
achange-of-flow to the starting address of the new program ($xxxxxx), as follows:

1.
2.

Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

Select shift-DR. Shift in the 24 bits of $0AF080 which is the opcode of the JUMP
Instruction. Pass through update-DR to actually write the Instruction Latch.

Select shift-DR. Shift in the Write PDB-GO-TO with GO and EX. Pass through
update-DR.

Select shift-DR. Shift in the 24 bits of $xxxxxx. Pass through update-DR to actually
write the PDB. At this time the ODEC releases the chip from Debug mode and the
execution is started from the address $xxxxxx.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-29



lgging Support

If Debug mode entry occurred during a DO LOOP, REP instruction, or other special case (that is,
interrupt processing, STOP, WAIT, conditional branching, and so on), you must reset the
DSP56300 before executing the new program.

7.3 Examples of JTAG-OnCE Interaction

This section presents the details of the JTAG-OnCE interaction by describing the TMS
sequencing required to achieve the communication described in Section 7.2.7. The external
command controller can force the DSP56300 into Debug mode by executing the JTAG
DEBUG_REQUEST instruction. To verify that the DSP56300 has entered Debug mode, the
external command controller must poll the status by reading the OS[1-0] bitsin the JTAG
Instruction Shift Register. The TMS sequencing is listed in Figure 7-7-1. The sequencing for
enabling the ONCE module is described in Table 7-2. After executing the JTAG instructions
DEBUG_REQUEST and ENABLE_ONCE and after the core statusis polled to verify that the
chip isin Debug mode, the pipeline saving procedure must occur. The TMS sequencing for this

procedureislisted in Table 7-3.

Table 7-1. TMS Sequencing for DEBUG_REQUEST and Poll the Status

Step TMS JTAG OnCE Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 1 Select-IR-Scan Idle

d 0 Capture-IR Idle status is sampled in shifter

e 0 Shift-IR Idle the 4 bits of the JTAG DEBUG_REQUEST (0111) are
shifted in while status is shifted out

e 0 Shift-IR Idle

f 1 Exit1-IR Idle

g 1 Update-IR Idle debug req is generated

h 1 Select-DR-Scan Idle

i 1 Select-IR-Scan Idle

j 0 Capture-IR Idle status is sampled in shifter

k 0 Shift-IR Idle the 4 bits of the JTAG DEBUG_REQUEST (0111) are
shifted in while status is shifted out

k 0 Shift-IR Idle

I 1 Exit1-IR Idle

m 1 Update-IR Idle

n 0 Run-Test/Idle Idle This step is repeated enabling an external command
controller to poll the status

n 0 Run-Test/Idle Idle

DSP56300 Family Manual, Rev. 5

7-30

Freescale Semiconductor



Examples of JTAG-OnCE Interaction

In Step n the external command controller verifiesthat OS5 1-0] = 11, indicating that the chip has
entered the Debug mode. If the chip has not yet entered the Debug mode, the external command
controller goesto Step b, Step ¢, and so forth, until the Debug mode is acknowledged.

Table 7-2. TMS Sequencing for ENABLE_ONCE

Step TMS JTAG OnCE Note
a 1 Test-Logic-Reset Idle
b 0 Run-Test/Idle Idle
c 1 Select-DR-Scan Idle
d 1 Select-IR-Scan Idle
e 0 Capture-IR Idle Capture core status bits
f 0 Shift-IR Idle the 4 bits of the JTAG ENABLE_ONCE instruction
g 0 ShiftIR dle \(Isk%iiLeO)S;rtisski]slftsehdif;ggogEte JTAG instruction register
h 0 Shift-IR Idle
i 0 Shift-IR Idle
j 1 Exit1-IR dle
k 1 Update-IR Idle OnCE is enabled
I 0 Run-Test/Idle Idle This step can be repeated enabling an external
command controller to poll the status
I 0 ‘ Run-Test/Idle Idle
Table 7-3. TMS Sequencing for Reading Pipeline Register
Step T™MS JTAG OnCE Note
a 0 Run-Test/Idle Idle
b 1 Select-DR-Scan Idle
c 0 Capture-DR Idle
d 0 Shift-DR Idle the 8 bits of the OnCE “Read PIL"
(10001011) are shifted in
d 0 Shift-DR Idle
e 1 Exitl-DR Idle
f 1 Update-DR Execute “Read PIL" PIL value is loaded in shifter
g 1 Select-DR-Scan Idle
h 0 Capture-DR Idle
i 0 Shift-DR Idle the 24 bits of the PIL are shifted out (24
steps)
i 0 Shift-DR Idle
j 1 Exit1-DR Idle

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-31



lgging Support

Table 7-3. TMS Sequencing for Reading Pipeline Register (Continued)

Step T™MS JTAG OnCE Note

k 1 Update-DR Idle

I 1 Select-DR-Scan Idle

m 0 Capture-DR Idle

n 0 Shift-DR Idle the 8 bits of the OnCE “Read PDB”
(10001010) are shifted in

n 0 Shift-DR Idle

0 1 Exitl-DR Idle

p 1 Update-DR Execute “Read PDB” PDB value is loaded in shifter

q 1 Select-DR-Scan Idle

r 0 Capture-DR Idle

s 0 Shift-DR Idle The 24 bits of the PDB are shifted out
(24 steps)

s 0 Shift-DR Idle

t 1 Exit1-DR Idle

u 1 Update-DR Idle

% 0 Run-Test/Idle Idle This step can be repeated enabling an
external command controller to analyze

"""""""""""""""""""""""" the information.
v ‘ 0 ‘ Run-Test/Idle ‘ Idle

During Step v, the external command controller stores the pipeline information and afterwards it
can proceed with the debug activities, as requested by the user.

7.3.1 Address Trace Mode

Address Trace mode allows you to determine the address of internal accesses. The modeis
disabled after reset and enabled by setting the ATE bit in the Operating Mode Register (OMR).
When the mode is enabled and there is no simultaneous external access, the internal accessis
reflected on the external address lines. Use the status of BR to determine whether the access
referenced by A[0-23]/A[0-17] isinternal or external, when thismode is enabled. BR is
deasserted for internal accesses and asserted for external accesses.

DSP56300 Family Manual, Rev. 5

7-32 Freescale Semiconductor



Instruction Cache 8

The instruction cache (ICache) acts as a buffer memory between external memory and the DSP
core processor. When code executes, the code words at the locations requested by the instruction
set are copied into the |Cache for direct access by the core processor. If the same code is used
frequently in a set of program instructions, storage of these instructions in the cache yields an
Increase in throughput because external bus accesses are eliminated. In the DSP56300 instruction
set are specific cache instructions that permit you to lock sectors of the cache and to flush the
cache contents under software control. When enabled, the | Cache comprises 1024 24-bit words
(1 K words) of program memory that is not accessible to the user. The address space used by the
|Cachein internal program memory is reallocated to external program memory when the | Cache
Is enabled. The enabled | Cache has the following features:

Note:

8.1

Software-controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the
Status Register (SR)!

Eight-way, fully associative | Cache with sectored placement policy

1- to 4-word transfer granularity

L east Recently Used (LRU) sector replacement algorithm

Transparent operation (that is, no user management is required)

Individual sector locking/unlocking

Global cache flush controlled by software

Cache controller status observable via the JTAG/OnCE port

Supported | Cache size is device-dependent. Refer to the device-specific technical data
sheet to determine the | Cache size for a device.

Instruction Cache Architecture

The ICache is composed of the following:

Memory Array. The actual memory space defined for use by the Cache Controller is 1024
24-bit words and is logically divided into eight 128-word cache sectors. The sector
placement algorithm isfully associative. Each word has an associated source address to

1. For details on the Status Register (SR), see Section 5.4.1.2, Satus Register (SR), on page 5-10.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 8-1



Jction Cache

identify the cache contents. Since the Cache Controller treats Program RAM as 128-word
sectors, the 24-bit addressis divided into the following two fields:

— VBIT field: 7 LSBs for the word displacement in the sector
— TAG field: 17 MSBsfor the sector base address

B Tag Register File. Contains the TAG fields of the base addresses of the memory sectors
currently mapped into the cache.

B Valid Bit Array. Contains a set of valid bits for each possible address in a referenced
memory sector. There are valid bits arranged as eight banks of 128 bits each, one bank for
every sector. A bitisset if the address location isalready in the cache. If the bit is cleared,
an external memory fetch is required. Notice that you cannot directly access these valid
bits. Processor hardware reset clears the valid bitsto indicate that the Program RAM
content is not initialized.

B Cache Controller. When the Program Control Unit (PCU) initiates a program fetch
request, the Cache Controller compares the TAG field of the requested address to tags in
each of the eight Memory Array sectors. All eight sectors are searched in parallel using the
eight comparatorsin the Cache Controller. Then the Cache Controller determines whether
the request is a cache hit or miss. For cache hits, the address contents are transferred as
directed by the PCU for execution. For cache misses, the Cache Controller initiatesafetch
in coordination with the Sector Replacement Unit.

B Sector Replacement Unit (SRU). When a sector miss occurst, the SRU determines which
sector is flushed from the cache by monitoring requested addresses and sector usage and
replacing the least recently used (LRU) sector. The LRU stack statusis affected by
instruction fetch operations and PFLUSH, PLOCK, and PUNLOCK program cache
instructions. Locked cache sectors continue to move up and down the LRU stack, but
when the LRU sector is picked, locked sectors are skipped. When initialized by reset, the
LRU stack default is from sector number 0 (Most Recently Used) to sector number 7
(LRU).

Figure 8-1 shows a block diagram of the ICache.

1. If there is no match between the tag field and all sector tag registers, meaning that the memory sector containing
the requested word is not present in the cache, the situation is called a sector miss. A sector missis another form of
acache miss.

DSP56300 Family Manual, Rev. 5

8-2 Freescale Semiconductor



Cache Programming Model

24-bit Program Address

TAG Field VBIT Field
17 MSBs (for 1 K words |7 LSBs (for 1 K words

I 1 Z I 1 I 1 Y Z | |
C Z = = Z= L]
I 1 I/ 1 1 ‘ } r 1 I/ | M iy
) = vO " Instruction Word 0 H1H
Tag Register/Comparator 0 [TH : ) vl Instruction Word 1 H]
- /

//

v127/255 | Instruction Word 127/255 [IF

Hit/Miss
Figure 8-1. Instruction Cache Block Diagram

8.2 Cache Programming Model
The ICacheis controlled by two control bits:

B Cache Enable (CE) bit in the Extended Mode Register (EMR) part of the Status Register
(SR Bit 19)

When CE is cleared, the ICache is disabled. When CE is set, the |Cache is enabled.
B Burst Enable (BE) bit in the Extended Operating Mode (EOM) part of the Operating Mode
Register (OMR Bit 10)
When BE is cleared, the |Cache transfer on amissis one word. When BE is set, the
| Cache transfer on amissincreases to aburst block of one to four words.

To ensure proper operation, do not clear the Cache Enable mode (CE bit in SR) while Burst mode
iIsenabled (OMR[BE] = 1). Refer to Chapter 5, Program Control Unit, for details on the SR and
OMR.

B Theinstruction set supports the | Cache via the following instructions:
— PLOCK
— PLOCKR
— PUNLOCK
— PUNLOCKR
— PFREE
— PFLUSH
— PFLUSHUN

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 8-3



Jction Cache

8.2.1 Cache Operation

When enabled, the cacheisinvolved in every instruction fetch. Its actions depend on several
conditions, including whether the program addressis (cache hit) or is not (cache miss) in the

| Cache and whether Burst mode is enabled or disabled. The following paragraphs describe the
conditions under which the | Cache operates.

8.2.1.1 Program Fetch

When the core generates an address for an instruction fetch, the cache controller compares its
TAG field to the tag values currently stored in the Tag Register File.

8.2.1.2 Cache Hit

If atag match (that is, sector hit) exists, then the valid bit of the corresponding word in that cache
sector is checked using the VBIT field as an address to the Valid Bit Array. If the valid bit is set,
meaning the word in the cache is valid, then that word is fetched from the cache location
corresponding to the desired address. This situation is called a cache hit, meaning that both
corresponding sector and corresponding instruction word are present and valid in the |Cache. The
Sector Replacement Unit (SRU) flags the sector as the M ost Recently Used (MRU).

8.2.1.3 Cache Word Miss When Burst Mode Is Disabled

If atag match (that is, sector hit) exists, and Burst Mode is disabled, but the desired word is not
flagged as valid (corresponding valid bit is cleared), then the cache initiates a read access to the
external program memory, introducing wait states into the pipeline. The number of wait statesis
the number of wait states programmed into the Bus Control registers (BCRs) plus one, reflecting
the type of memory used. The Sector Replacement Unit (SRU) flags the sector asthe Most
Recently Used (MRU), and the fetched instruction is sent to the core and copied to the relevant
sector location. Then the valid bit of that word is set.

8.2.1.4 Cache Word Miss When Burst Mode Is Enabled

If atag match (that is, sector hit) exists, and Burst Mode is enabled, but the desired word is not
flagged as valid (that is, the corresponding valid bit is cleared), then the cache initiates a burst of
up to four read accesses to the external program memory. The exact number of fetch requests
depends on the value of the two LSBs of the address of the initiating fetch that was detected as a
miss, asindicated in Table 8-1.

Table 8-1. Number of Required Fetches in Burst Mode

Value of the 2 LSBs of

the Requested Address Number of Fetch Requests Initiated

00 Four requests are initiated

01 Three requests are initiated

DSP56300 Family Manual, Rev. 5

8-4 Freescale Semiconductor



Cache Locking

Table 8-1. Number of Required Fetches in Burst Mode (Continued)

Value of the 2 LSBs of

the Requested Address Number of Fetch Requests Initiated

10 Two requests are initiated

11 Only one request is initiated (that is, same as if the Burst mode is disabled)

These external read accesses introduce wait states into the pipeline. The number of wait states for
each fetch is the number of wait states that are programmed into the bus control registers (BCRsS)
plus one, reflecting the type of memory used. The Sector Replacement Unit (SRU) flags the
sector asthe Most Recently Used (MRU), and each of the fetched instructions is copied to the
relevant sector location. Then the valid bit of that word is set.

8.2.1.5 Sector Miss

If thereis no match between the TAG field and all sector Tag registers, meaning that the memory
sector containing the requested word is not in the cache, the situation is called a sector miss,
which is another form of a cache miss. If a sector miss occurs, the SRU selects the sector to be
replaced. The cache controller then flushes the selected cache sector by clearing all
corresponding valid bits, loads the corresponding Tag register with the new TAG field, and
simultaneoudly initiates an access to the external Program RAM, as described in Section 8.2.1.3
and Section 8.2.1.4. The sector is flagged as MRU, the fetched instruction is sent to the core and
copied to the relevant sector location, and the valid bit of that word is set.

8.2.2 Default Mode After Hardware Reset
After hardware reset, the ICache is disabled. The cacheisinitialized as follows:

B All valid bits are cleared.

B All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a1 K words cache
(17-bit Tag Register).

B The LRU stack holds a default descending order of sectors (from seven to zero).

B All cache sectors arein the unlocked state.

8.3 Cache Locking

Cache locking is useful for locking some time-critical code partsin the cache memory. When a
cache sector islocked, the Sector Replacement Unit (SRU) cannot replace this sector, evenif it
becomes the Least Recently Used (LRU) sector (bottom of LRU stack). A sector can be locked
by the instructions PLOCK or PLOCKR. The operand for these instructions is an effective
memory address (absolute or program counter-relative). The cache sector to which this address
belongs, if one exists, islocked. If the specified effective address does not belong to one of the
current cache sectors, amemory sector containing this addressisallocated into the cache, thereby

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 8-5



Jction Cache

replacing the LRU cache sector. This cache sector is locked, but empty. If all the cache sectors
are already locked, this memory sector is not allocated into the cache, and the lock operation is
not executed. The locked cache sector becomes MRU. Locking a cache sector aready in the
cache does not affect its contents, the value of itsvalid bits, or the corresponding Tag Register
contents. PLOCK and PLOCKR are detected as illegal opcodes when the ICache is not enabled.
I ssuing these instructions when the cache is disabled initiates the lllegal Interrupt. A distance of
at least 3 instruction cycles (equivalent to three NOP instructions) should be maintained between
an instruction that changes the value of the Cache Enable bit (CE) and one of the instructions
PLOCK and PLOCKR.

8.4 Cache Unlocking

A locked sector can be unlocked to alow sector replacement from that cache sector. Unlocking
can be performed in three different ways.

B A locked sector isunlocked by the PFREE, PUNLOCK, or PUNLOCKR instructions. The
operands of the PUNLOCK and PUNL OCKR instructions are effective memory addresses
(absolute or program counter-relative). The memory sector containing this addressis
allocated into a cache sector, if it is not already in a cache sector, and this cache sector is
unlocked. If al the cache sectors are already locked, this memory sector is not allocated
into the cache, and the unlock operation is not executed. The unlocked cache sector
becomes MRU and is enabled for replacement by the LRU algorithm. Unlocking alocked
cache sector using these instructions does not affect its contents, itstag, or its valid bits.

B All locked sectors are unlocked simultaneously using the instruction PFREE, which
allows you to reset the locking mechanism. Unlocking the sectors using PFREE neither
affects the sector contents (instructions already fetched into the sector storage area), valid
bits, tags, nor the LRU stack status.

B Thelocked sectors are unlocked by the PFLUSH instruction. Unlocking the sectors via
PFLUSH clears al the sectors’ valid bits and sets the LRU stack and Tag registersto their
default values.

PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes when the ICache is not
enabled. Issuing these instructions when the cache is disabled initiates the Illegal Interrupt. A
distance of at least three instruction cycles (equivalent to three NOP instructions) should be
maintai ned between an instruction that changesthe value of the Cache Enable bit (CE) and one of
the instructions PFREE, PUNLOCK and PUNLOCKR.

8.5 Flushing the Cache

Executing the PFLUSH or PFLUSHUN instructions flushes the cache. Executing PFLUSH
causes aglobal cache flush that brings the cache to the following hardware reset initial condition:

B All valid bits are cleared.

DSP56300 Family Manual, Rev. 5

8-6 Freescale Semiconductor



Data Transfers to/from Instruction Cache

B All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a1 K words cache
(17-bit Tag Register).

B The LRU stack holds a default descending order of sectors (from 7 to 0).

B All cache sectors arein the unlocked state.

Executing PFLUSHUN causes a flush only to the unlocked sectors and initializes the cache as
follows:

B All valid bits of the unlocked sectors are cleared.

B All Tag Registers of the unlocked sectors areinitialized to ‘al ones,’ that is, $1FFFF for a
1 K words cache (17-bit Tag Register).
B The LRU stack holds a default descending order of sectors (from 7 to 0).

Coherency between Program RAM mode and Cache mode is not supported by the ICache
Controller. It isnot possible to fill the cache whilein Program RAM mode and use the contents
after switching to Cache mode. The cacheis automatically flushed when switching from Cacheto
Program RAM mode.

PFLUSH and PFLUSHUN are detected asillegal opcodes when the ICacheis not enabled.

I ssuing these instructions when the cache is disabled initiates the Illegal Interrupt. At least three
instruction cycles (equivalent to three NOP instructions) should be maintained between an
instruction that changes the value of the Cache Enable bit (CE) and one of the instructions
PFLUSH and PFLUSHUN.

8.6 Data Transfers to/from Instruction Cache

Datatransfers to/from the program memory can be accomplished by the DMA or by software,
using MOVE instructions. Only PMOVE instructions can transfer data to/from the |Cache.

8.6.1 DMA Transfers

DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Stack, even
when the cache is enabled. When the cache is disabled, the | Cache memory space is considered
part of the internal program memory space. DMA transfers to/from this space execute without
any limitation. When the cache is enabled, the | Cache memory space is considered part of the
external program memory space. DMA transfers to/from this space execute through the external
memory expansion port. Coherency between the external program memory and the contents of
the |Cache is not maintained.

8.6.2 Software-Controlled Transfers

Theterm “PMOVE” indicates use of a MOVE instruction to transfer data between the program
memory space and any other source/destination. PMOVE data transfers do not affect the Tag
Register Fileand LRU Stack, even if the cache is enabled. Theterm “PMOVEW” indicates a

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 8-7



Jction Cache

PMOVE transfer with the program memory space as the destination. The term “PMOVER”
indicates a PMOVE transfer with the program memory space as the source.

When the cache is disabled, the |Cache memory space is considered part of the internal program
memory space. PMOVER from this space or PMOVEW to this space execute without any
limitation. When the cache is enabled, the cache controller checksthe PMOVER transfersfor a

hit or miss:

If the cache controller generates a hit on the program memory space address, the datais
read from the cache memory array. Since PMOVE is not considered an instruction fetch
operation, the LRU state is not changed by this transfer.

If the cache controller generates a miss on the program memory space address, the datais
read from the external program memory. The Cache state is not changed by thistransfer.
In Burst mode, no burst isinitiated. Be aware that the core is delayed by the number of
wait states specified in the BCR.

When the cache is enabled, the cache controller checks the PM OV EW transfers for a hit or miss:

If the cache controller generates a sector hit on the program memory space address, the
datais written both to the cache memory array and to the external program memory. The
valid bit of theword is set. The LRU stack is not changed by this transfer. Be aware that
the core is delayed by the number of wait states specified in the BCR.

If the cache controller generates a sector miss on the program memory space address, the
datais written only to the external program memory. The Cache state is not changed by
thistransfer. In Burst mode, no burst isinitiated. Be aware that the core is delayed by the
number of wait states specified in the BCR.

For proper operation, none of the three instructions before a PMOVE transfer should clear or set
the Status Register CE hit.

8.7

Using the Instruction Cache in Real-Time Applications

The following tips help you to use the |Cache in real-time applications:

Each sector (out of the 8, 128 words) can be individually locked.

Locking a sector prevents its replacement in case of amiss even if it would have been its
turn to be replaced.

It istypical to lock the interrupt vector tables and routines to ensure the fastest response.
Furthermore, these routines can be loaded beforehand using PMOVEs to ensure a hit on
thefirst access.

The cache can be globally flushed (for example, for task switching) with one instruction.
The cache can be globally unlocked (that is any sector can be replaced in case of amiss) or
any individual sector can be unlocked allowing its replacement.

DSP56300 Family Manual, Rev. 5

8-8

Freescale Semiconductor



Debugging Instruction Cache Operation

B The penalty incurred for acache missisidentical with the one for aregular instruction
fetch from external memory (1 wait state with 15 ns SRAM at 66 MHz).

B The software simulator permits application tailoring since it provides clock exact
behavior.

B Ingeneral, an algorithm that requires N clocks to execute and is repeated M times,
requires (WS is anumber of wait states):

(N+NXWSM =N x M(WS + 1) clocks.
B |n acache environment, the same algorithm requires:
N(WS+ 1)+ N(M - 1) =N(M + WS) clocks.

8.8 Debugging Instruction Cache Operation

While the cache is enabled, full non-intrusive system debug capability in Debug mode includes
being able to observe:

B \What memory sectors are currently mapped into cache
B Which cache sectors are locked

B Which cache sector isthe LRU

B When cache hits occur

Debug mode alows you to read the Tag register contents, lock bits, LRU bits, and hit-status
serialy from the OnCE module viathe JTAG port. You can aso read the valid bits of specific
cache locations. To check whether an addresswith MSBsin a Tag register isin the cache, send
the opcode of aMOVEM from this address. Bit 5 of the OnCE Status and Control register
(OSCR) indicates the value of the valid bit. See Chapter 7, Debugging Support, for more
information.

Note: Each read of the cache status viathe OnCE module should occur only when the device
Isin the Debug mode and should access all nineregisters, so that reads start with tag #0
every time.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 8-9



Jction Cache

DSP56300 Family Manual, Rev. 5

8-10 Freescale Semiconductor



External Memory Interface (Port A) 9

The external memory expansion port, Port A, can be used either for memory expansion or for
memory-mapped I/O. External memory is easily and quickly retrieved through the use of DMA
or simple MOV E commands. For more information on Port A programming see application note
AN1751D, DSP563xx Port A Programming. Several features make Port A versatile and easy to
use, resulting in alow part-count connection with fast or slow static memories, dynamic
memories, 1/O devices and multiple bus master system. The Port A data busis 24 bits wide with
aseparate 18-bit or 24-bit address bus.

External memory isdivided into three possible 16 M x 24-bit spaces: X data, Y data, and
program memory. Each space or all spaces can access agiven external memory. Access type and
attributes are under software control. See the memory map in Chapter 11, Operating Modes and
Memory Spaces, for memory space that is not accessible through Port A. Aninternal wait state
generator can be programmed to statically insert up to 31 wait states for access to slower memory
or 1/0O devices. A Transfer Acknowledge (TA) signal allows an external device to dynamically
control the number of wait states inserted into a bus access operation. The bus arbitration allows
multiple potential masters of the Port A bus. One DSP56300 processor can use the Port A bus to
access external devices while other potential masters perform internal operations that do not
require the Port A bus. See the memory map in the device-specific user’s manual for memory
space that is not accessible.

9.1 Signal Description

Table 9-1 through Table 9-3 show the signals that the external memory interface uses for
controlling and transferring data.

Table 9-1. External Address Bus Signals

. State During . .
Signal Name Type Reset Signal Description
A[0-17)/ Output Tri-stated Address Bus
A[0-23] When the DSP is the bus master,

A[0-17]/A[0-23] are active-high outputs that specify the address for
external program and data memory accesses. Otherwise, the
signals are tri-stated. To minimize power dissipation,
A[0-17]/A[0-23] do not change state when external memory
spaces are not being accessed.

Note:  The total number of address lines is device-specific.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-1



‘nal Memory Interface (Port A)

Table 9-2. External Data Bus Signals

State During

Signal Name Type
g yp Reset!:?

Signal Description

D[0-23] Input/Output Tri-stated Data Bus

When the DSP is the bus master, D[0—23] are active-high,
bidirectional input/outputs that provide the bidirectional data bus
for external program and data memory accesses. Otherwise,
D[0-23] are tri-stated.

Notes: 1. Inthe Stop state, the signal maintains the last state as follows:

« If the last state is input, the signal is an ignored input.
« If the last state is output, these lines are tri-stated internally.
However, some DSP56300 devices have internal keeper circuits that maintain last output level even
when the internal drivers are tri-stated. Refer to the specific device technical data sheet, user’'s
manual, or reference manual for details.

2.  The Wait processing state does not affect the signal state.

Table 9-3. External Bus Control Signals

Signal
Name

State During Reset,

Stop, or Wait Signal Description

Type

AA[0-3] Output Tri-stated Address Attribute

When defined as AA, these signals can be used as chip selects or
additional address lines. The default use defines a priority scheme under
which only one AA signal can be asserted at a time. Setting the AA priority
disable (APD) bit (Bit 14) of the OMR, the priority mechanism is disabled
and the lines can be used together as four external lines that can be
decoded externally into 16 chip select signals. Unlike address lines, these
lines are deasserted between external accesses. See Section 9.6.1
Address Attribute Registers (AAR[0-3]) for details.

RAS[0-3] |Output Row Address Strobe

When defined as RAS, these signals can be used as RAS for the DRAM
interface. These signals are tri-stateable outputs with programmable
polarity.

Note: DRAM access is not supported above 100 MHz. Also, the
DSP56321 does not support DRAM at any frequency.

RD Output Tri-stated Read Enable e

When the DSP is the bus master, RD is an active-low output that is
asserted to read external memory on the data bus

(D[0-23]). Otherwise, RD is tri-stated.

WR Output Tri-stated Write Enable _

When the DSP is the bus master, WR is an active-low output that is
asserted to write external memory on the data bus (D[0-23]). Otherwise,
the signal is tri-stated.

DSP56300 Family Manual, Rev. 5

9-2 Freescale Semiconductor



Signal Description

Table 9-3. External Bus Control Signals (Continued)

Signal
Name

Type

State During Reset,
Stop, or Wait

Signal Description

BS

Output

Tri-stated

Bus Strobe _

When the DSP is the bus master, BS is asserted for half a clock cycle at
the start of a bus cycle to provide an “early bus start” signal for a bus
controller. If the external bus is not used during an instruction cycle, BS
remains deasserted until the next external bus cycle.

Note:  This signal is not implemented on all devices in the DSP56300
family.

Input

Ignored Input

Transfer Acknowledge

If the DSP56300 device is the bus master and there is no external bus
activity, or the device is not the bus master, the TA input is ignored. The
TA input is a data transfer acknowledge (DTACK) function that can extend
an external bus cycle indefinitely. Any number of wait states (1,

2. . .infinity) can be added to the wait states inserted by the bus control
register (BCR) by keeping TA deasserted. In typical operation, TA is
deasserted at the start of a bus cycle, asserted to enable completion of
the bus cycle, and deasserted before the next bus cycle. The current bus
cycle completes one clock period after TA is deasserted. The number of
wait states is determined by the TA input or by the BCR, whichever is
longer. The BCR sets the minimum number of wait states in external bus
cycles. In order to use the TA functionality, the BCR must be programmed
to at least one wait state. A zero wait state access cannot be extended by
TA deassertion.

At operating frequencies < 100 MHz, TA can operate synchronously (with
respect to CLKOUT) or asynchronously depending on the setting of the
TAS bit in the Operating Mode Register (OMR). If synchronous mode is
selected, the user is responsible for ensuring that TA transitions occur
synchronous to CLKOUT to ensure correct operation. Synchronous
operation is not supported above 100 MHz and the OMR[TAS] bit must be
set to synchronize the TA signal with the internal clock.

Note: Do not use TA while performing DRAM accesses; otherwise,
improper operation may result. Also, when the DSP56300 device
is the bus master, but TA is not used for external bus control, TA
must be pulled down (asserted).

Output

Reset: Output
(deasserted)

State during Stop/Wait

depends on BCR[BRH]

bit setting:

* BRH = 0: Output,
deasserted

* BRH = 1: Maintains
last state (that is, if
asserted, remains
asserted)

Bus Request

Never tri-stated. BR is asserted when the DSP requests bus mastership.
BR is deasserted when the DSP no longer needs the bus. BR may be
asserted or deasserted independent of whether the DSP56300 family
device is a bus master or not. Bus “parking” allows bus access without
asserting BR (see the descriptions of bus “parking” in Section 9.5.3.4 and
Section 9.5.3.6). The Bus Request Hold (BRH) bit in the Bus Control
Register (BCR) allows BR to be asserted under software control, even
though the DSP does not need the bus. BR is typically sent to an external
bus arbiter that controls the priority, parking, and tenure of each master on
the same external bus. BR is only affected by DSP requests for the
external bus, never for the internal bus. During hardware reset, BR is
deasserted; arbitration is reset to the bus slave state.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

9-3



‘nal Memory Interface (Port A)

Table 9-3. External Bus Control Signals (Continued)

Signal
Name

Type

State During Reset,
Stop, or Wait

Signal Description

BG

Input

Ignored Input

Bus Grant

Asserted by an external bus arbitration circuit when the DSP56300 family
device becomes the next bus master. BG must be asserted/deasserted
synchronous to CLKOUT for proper operation. When BG is asserted, the
DSP56300 family device must wait until BB is deasserted before taking
bus mastership. When BG is deasserted, bus mastership is typically given
up at the end of the current bus cycle. This may occur in the middle of an
instruction that requires more than one external bus cycle for execution.

BB

Input/
Output

Ignored input

Bus Busy _

Indicates that the bus is active. BB must be asserted and deasserted
synchronous to CLKOUT. Only after BB is deasserted can a pending bus
master become the bus master (and assert BB). Some designs allow a
bus master to keep BB asserted after ceasing bus activity. This is called
“bus parking” and allows the current bus master to reuse the bus without
re-arbitration until another device requires the bus (see Section 9.5.3.4
and Section 9.5.3.6). Deassertion of BB uses an “active pull-up” method
(that is, BB is driven high and then released and held high by an external
pull-up resistor).

Note: BB requires an external pull-up resistor.

BL

Output

Driven high

Bus Lock

Asserted at the start of an external divisible read-modify-write bus cycle,
remains asserted between the read and write cycles, and is deasserted at
the end of the write bus cycle. This provides an “early bus start” signal for
the bus controller. BL may be used to “resource lock” an external
multi-port memory for secure semaphore updates. Early deassertion
provides an “early bus end” signal useful for external bus control. If the
external bus is not used during an instruction cycle, BL remains
deasserted until the next external indivisible read-modify-write cycle. The
only instructions that assert BL automatically are BSET, BCLR, and
BCHG when the access is to external memory. An operation can also
assert BL by setting the BLH bit in the BCR.

This signal is not implemented on all devices in the DSP56300 family.

CAS

Output

Tri-stated

Column Address Strobe _

When the DSP is the bus master, CAS is an active-low output used by
DRAM to strobe the column address. Otherwise, if the Bus Mastership
Enable (BME) bit in the DRAM control register is cleared, the signal is
tri-stated.

Note: DRAM access is not supported above 100 MHz. Also, the
DSP56321 does not support DRAM at any frequency.

DSP56300 Family Manual, Rev. 5

9-4

Freescale Semiconductor



Port Operation

Table 9-3. External Bus Control Signals (Continued)

Signal
Name

State During Reset,

Stop, or Wait Signal Description

Type

BCLK Output Tri-stated Bus Clock

When the DSP is the bus master, BCLK is active when the ATE bit in the
Operating Mode Register is set. When BCLK is active and synchronized
to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth
of a clock cycle. You can use the rising edge of BCLK to sample the
address lines to determine where an internal Program memory access is
occurring.

Note: At operating frequencies above 100 MHz, this signal produces a
low-amplitude waveform that is not usable externally by other
devices. Also, the DSP56321 does not support BCLK at any
frequency.

BCLK Output Tri-stated Bus Clock Not
When the DSP is the bus master, BCLK is the inverse of the BCLK signal.
Otherwise, the signal is tri-stated.

Note: At operating frequencies above 100 MHz, this signal produces a
low-amplitude waveform that is not usable externally by other
devices. Also, the DSP56321 does not support BCLK at any
frequency.

9.2 Port Operation

External bustiming is defined by the operation of the Address Bus, Data Bus, and Bus Control
pins as described in the previous sections. The DSP56300 core external portsinterface with a
wide variety of memory and peripheral devices, high speed SRAMs and DRAMs, and slower
memory devices. The TA control signal and the Bus Control Register (BCR) described in Section
9.6.2 control the external bustiming. The BCR provides constant bus access timing through the
insertion of wait states. TA provides dynamic bus access timing. The number of wait states for
each external accessis determined by the TA input or by the BCR, whichever specifiesthe longest
time.

9.2.1 External Memory Addressing

The external memory address is defined by the Address Bus (A[0-17]/A[0-23]) and the memory
Address Attribute signals (AA[0-3]). The AA signals can operate as memory-mapped chip selects
or address lines to external devices, depending on the mode selected. The AA signals have the
same timing as the Address Bus signals and can be used as additional addresslines. The AA
signals are also used to generate Chip Select (CS) signals for the appropriate memory chips.
These CS signal's change the memory chips from low power Standby mode to Active mode and
begin the access time. This allows slower memoriesto be used since the AA signalsare
address-based rather than read or write enable-based.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-5



‘nal Memory Interface (Port A)

For DSP56300 parts with 18 address lines, the AA signals can be used to extend memory access,
If used as upper addressing bits. If all four AA signals are used as address lines, the total
addressable external memory can be 4 M x 24-bit if the OMR[APD] bit is set. When the APD bit
IS set, it disables the priority assigned to AA[0-3] thereby enabling more than one AA signal to be
active simultaneously. Additionally, if al four AA signals are used as address lines, then the
memory must always be selected, because no AA signals are available for chip select. Asaresult,
an external read or write outside the 4 M range could still go to the external memory (depending
on the settings of the AA registers). Be aware that unlike standard address bus lines, AA[0-3] do
not hold their state after a read or write operation.

9.2.2 SRAM Support

The DSP56300 core can interface easily with SRAMs. Because the address must remain stable
during the entire bus cycle, however, at least one wait state must be inserted regardless of the
speed of the SRAM. Figure 9-1 shows an SRAM access timing example (for detailed timing
information, see the specific technical data sheet for the device used in the design). Figure 9-2
shows atypical DSP56300 family device-to-SRAM connection. SRAM access consists of the
following steps:

1. Address Bus (A[0-17)/A[0-23]), Address Attributes (AA[0-3), and Bus Strobe (BS) are
asserted in the middle of cLkouT high phase.

2. Writeenable (WR) is asserted with the falling edge of cLkouT (for asingle wait state
access). Read enable (RD) is asserted in the middle of cLkouT low phase.

3.  For awrite operation, dataisdriven in the middle of cLkouT high phase. For aread
operation, datais sampled in the middle of cLkouT last low phase of the external access.

For accessing slower memories, wait states (from the BCR or by the TA signal) postpone the
disappearance of the external address and increase memory access time. In any case, SRAM
access requires at least one wait state—that is, above 100 MHz SRAM access requires two wait
states.

DSP56300 Family Manual, Rev. 5

9-6 Freescale Semiconductor



Port Operation

T0 | T1 | T0 | Tw | Tw | T1 |

CLKOUTM
| | | | | |
Address Bus
(Al AA][O—S]) | /
|
s\ /

|
i
|
RD | | (Data Sampled)
Data In | |
l | | | |
| | | | |
WR .
(Write) I \ )
|

\

Figure 9-1. SRAM Access With One Wait State Example

A A
D D Static
DSP563xx RAM
AA E
RD G
WR w

Figure 9-2. Example SRAM Connection Diagram

The assertion of wr depends on the number of wait states programmed in the BCR. If one wait
state is programmed, WR is asserted with the falling edge of cLkouT. If two or three wait states
are programmed, WRr assertion is delayed by half a clock cycle (half cLkouT cycle). If four or
more wait states are programmed, WR assertion is delayed by afull clock cycle. This feature
enables the connection of slow external devices that require long address setup time before write
assertion in order to prevent false writes.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-7



‘nal Memory Interface (Port A)

9.2.3 DRAM Support

Note: DSP56300 devices do not support the DRAM interface above 100 MHz. The
DSP56321 does not support DRAM at any frequency.

Port A bus control signals are an efficient interface to DRAM devices in both random read/write
cycles and Fast Access mode (Page mode). An on-chip DRAM controller controls the page hit
circuit, address multiplexing (row address and column address), control signal generation (CAS
and RAS), and refresh access generation (CAS before RAS) for alarge variety of DRAM module
sizes and different access times. The DRAM controller operation and programming is described
in Section 9.6.3, DRAM Control Register, on page 9-21.

External bustiming is controlled by the DRAM Control Register (DCR) described in Section
9.6.3. The DCR controlsinsertion of wait states to provide constant bus access timing. The
external memory address is defined by the Address Bus (A[0-23)/A[0-17]). The“n” low order
address bits are multiplexed inside the DSP56300 core, and the new 24-bit addressis driven to
the external bus. The address multiplexing enables a gluelessinterface to DRAMs by simply
connecting the “n” low order bits to the memory address pins. When the BAT bitsin the
corresponding AAR are programmed, an Address Attribute signal can function asa Row Address
Strobe (RAS). An in-page access is assumed, and RAS is therefore kept asserted until one of the
following events occurs:

B An out-of-page access is detected

B An accessto another bank of dynamic memory is attempted
B A refresh accessis attempted (CAS before RAS)

B A writeto one of the following registers is detected:

— BCR
— DCR
— AARS
— AAR2
— AAR1
— AARO

B A lossof bus mastership is detected while the BME bit in the DCR register is cleared
B WAIT or STOP instruction is detected
B Hardware or software reset is detected

Figure 9-3 and Figure 9-4 show DRAM in-page access timing examples. For detailed timing
information, see the technical data sheet for the device used in the design.
Figure 9-5 shows atypical DSP56300 family device-to-DRAM connection.

DSP56300 Family Manual, Rev. 5

9-8 Freescale Semiconductor



Port Operation

|
TO T1 | TO Tw Tw Tw Tw

|

|

| | | |

| | | |

| | | | |

CLKOUT | | | |
| | |

|

|

|

| 2 WS >
| |
| |
| |
| |
| |

|
Address Bus
AA[0-3]) ’ . .

| | | |
g_\_:_/ | | |
| | |

' | I

|‘\ ...Then Column) / |
| | |
| | |
|

|

1
CAS |

| |
RAS (Rowfirst...: :

|

|

|

s N/

Figure 9-3. DRAM Read Access (In-Page) With Two Wait States

TO T1 TO Tw Tw Tw Tw

|

|

| | | | |

| | | | |

| | | | |

CLKOUT | | | | |
| | | |

|

]

|

| 2 WS -
| |
| |
| |
| |
| |

Address Bus
AA[0-3]) . . .

@M

|
CAS | |
| | |
=AS | | |
| |

NN e

Figure 9-4. DRAM Write Access (In-Page) With Two Wait States Example

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-9



‘nal Memory Interface (Port A)

(multiplexed) A A
D D
DSP563xx DRAM
CAS CAS
AAIRAS RAS
RD G
WR w

Figure 9-5. Typical DRAM Connection Diagram

9.2.3.1 DRAM In-Page Access
A DRAM in-page access consists of the following steps:

1.  Column address (asubset of A[o-23]/A17, as determined by the BPS bitsin the DCR) and
Bus Strobe (BS) are asserted in the middle of cLkouT high phase.

2. Write (wR) or Read (RD) is asserted with the cLkouT falling edge.

3. CAS assertion timing depends on the number of in-page wait states selected by the
DCR[BCW] hits and on the access purpose (read or write). (See Figure 9-3 and Figure
9-4 for examples of DRAM in-page read and write accesses using two wait states).

4. CcAs isdeasserted before the end of the external accessin order to meet the cas
precharge timing.

Note: Inall cases, DRAM access requires at least one wait state.
9.2.3.2 DRAM Out-of-Page Access
An out-of -page access consists of the following steps:

1. Deassertion of RAS
Assertion of the control signals (WR/RD)

3. After RAS precharge time, the assertion of RAS. RAS assertion and CAs timing depend on
the number of out-of-page wait states selected by the BRW bits in the DCR.

9.3 Port A Disable

In applications sensitive to power consumption, Port A may not be required because the memory
that is used resides in the processor. A special feature of the Port A controller allows you to
reduce the power consumption significantly by setting the EBD bit in the Operating Mode
Register (OMR) to disable the Port A controller. This causes the DSP56300 device to release the

DSP56300 Family Manual, Rev. 5

9-10 Freescale Semiconductor



Bus Handshake and Arbitration

bus (that is, deassert BR and BL, tri-state BB, and ignore BG). With the controller disabled, no
external DMA accesses or refresh accesses can be performed.

Note: To prevent improper operation when OMR[EBD] is set, do not access external
memory, and always clear Refresh Enable (BREN—DCR[13)]) to prevent any external
DRAM refresh attempts.

9.4 Bus Handshake and Arbitration

Bus transactions are governed by a single bus master. Bus arbitration determines which device
becomes the bus master. The arbitration logic implementation is system-dependent but must
result in, at most, one device becoming the bus master (even if multiple devices request bus
ownership). The arbitration signals permit simple implementation of a variety of bus arbitration
schemes (for example, fairness, priority, and so on). The system designer must provide the
external logic to implement the arbitration scheme.

9.5 Bus Arbitration Signals

There are three bus arbitration signals. Two of them (BR and BG) are local arbitration signals
between a potential bus master and the arbitration logic; BB isa system arbitration signal:

B BusRequest (BR). Asserted by adevice to request use of the bus; it is held asserted until
the device no longer needs the bus. Thisincludes time when it is the bus master as well as
when it is not the bus master.

B BusGrant (BG). Asserted by the bus arbitration controller to signal the requesting device
that it is the bus master elect, BG isvalid only when the busis not busy (that is, BB is not
asserted).

B BusBusy (BB). Thissignal is driven by the current bus master and controls the hand-over
of bus ownership by the bus master at the end of bus possession. BB is an active pull-up
signal (that is, it is driven high before rel ease and then held high by an external pull-up
resistor).

9.5.1 The Arbitration Protocol

The busis arbitrated by a central bus arbiter, using individual request/grant lines to each bus
master. The arbitration protocol can operate in parallel with bus transfer activity so that the bus
can be handed over without much performance penalty. The arbitration sequence occurs as
follows:

1. BusRequested by Device. All candidates for bus ownership assert their respective BR
signals as soon as they need the bus.

2. BusGranted by Arbiter. The arbitration logic designates a bus master-elect by asserting
the BG signal for that device.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-11



‘nal Memory Interface (Port A)

3. BusReleased by Current Master. The master-elect tests BB to ensure that the previous
master has relinquished the bus. If BB is deasserted, then the master-elect asserts BB,
which designates the device as the new bus master. If a higher priority bus request
occurs before the BB signal is deasserted, then the arbitration logic may replace the
current master-elect with the higher priority candidate. However, only one BG signal
may be asserted at one time.

4.  BusControl Assumed by New Master. The new bus master beginsits bus transfers after
asserting BB.

5.  Bus Grant Withdrawn by Arbiter. The arbitration logic signals the new bus master to
relinquish the bus by deasserting BG at any time.

6. BusReleased by Current Master. A DSP56300 core bus master releases its ownership
(drives BB high and then releases the bus) after completing the current external bus
access (except for the cases described in the following note). If an instruction is
executing a read-modify-write external access, a DSP56300 core master asserts the BL
signal and only relinquishes the bus (and deasserts BL) after completing the entire
read-modify-write sequence. When the current bus master releases BB, it first drives the
BB signal high and then the BB signal is held by the pull-up resistor. The next bus
master-elect has received its BG signal and is waiting for BB to be deasserted before
claiming ownership.

Note: The three packing accesses, the two accesses of a read-modify-write instruction
(BSET, BCLR, BCHG), and the up-to-four fetch burst accesses are treated as one
access from an arbitration point of view (that is, the bus mastership is not released
during the execution of these accesses).

The DSP56300 core has two control bits (BRH and BLH) and one status bit (BBS), in the Bus
Control Register (BCR), to permit software control of the BR and BL signals and to verify whether
the device is the bus master. See Section 9.6.2 for more information about the BCR.

B BusRequest Hold (BRH) Bit. If the BCR[BRH] bit is cleared, the DSP56300 core asserts
its BR signal only as long as requests for bus transfers are pending or being attempted. If
the BCR[BRH] bit is set, BR remains asserted.

B BusLock Hold (BLH) Bit. If the BCR[BLH] bit is cleared, the DSP56300 core asserts its
BL signal only during a read-modify-write bus access. If the BCR[BLH] is set, BL remains
asserted (even when not a bus master).

B Bus State (BBS) Bit. Thisread-only bit in the BCR is set when the DSP is the bus master
and cleared when it is not.

The DSP56300 core uses the OMR[BRT] bit control bit to enable Fast or Slow Bus Release
mode. In Fast Bus Release mode, all Port A pins are tri-stated in the same cycle. In Slow Bus
Release mode an extra cycle isadded and all Port A pins except BB are released first. Only in the
next cycleis BB released. Therefore, in Slow Bus Release mode, BB is guaranteed to be the last

DSP56300 Family Manual, Rev. 5

9-12 Freescale Semiconductor



Bus Arbitration Signals

pin that istri-stated. This may be useful in systems where a possibility for contention exists. A
more detailed explanation (including timing diagrams) is provided in the appropriate technical
data sheet.

Note: During the execution of WAIT and STOP instructions, the DSP56300 rel eases the bus
(that is, deasserts BR and BB), and ignores BG.

9.5.2 Arbitration Scheme

Bus arbitration is implementati on-dependent. Figur e 9-6 illustrates a common bus arbitration
scheme. The arbitration logic determines device priorities and assigns bus ownership depending
on those priorities. For example, an implementation may hold BG asserted for the current bus
owner if none of the other devices are requesting the bus. As a consequence, the current bus
master may keep BB asserted after ceasing bus activity, regardless of whether BR is asserted or
deasserted. Thissituation is called “bus parking” and allows the current bus master to use the bus
repeatedly without re-arbitration until some other device requests the bus.

Vee
DSP56300 % DSP56300
BB - BB
BG | - » BG
_ Arbitration -
BR > Logic < BR
BL > - BL

Figure 9-6. Example Bus Arbitration Scheme

9.5.3 Bus Arbitration Example Cases

The following paragraphs describe various bus arbitration examples.

9.5.3.1 Case 1, Normal

The BB signal is high, indicating that no deviceis controlling the bus (that is, the bus is not busy).
A device requests mastership by asserting Br. The arbiter then assertsthe BG signal for the
requesting devices. Since BB is high, indicating that the bus is not busy, the requesting device
asserts BB and takes control of the bus.

9.5.3.2 Case 2, Bus Busy

The BB signal is asserted indicating that a device is aready the bus master. If a second device
requests mastership by asserting BR, the arbiter responds by asserting the BG signal for the
requesting device. However, since the busis busy (that is, BB is already asserted by the current

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-13



‘nal Memory Interface (Port A)

master), the requesting device cannot assert BB until the current master drives BB high to release
the bus. After the first master drives BB high, the requesting device can then assert BB and take
control of the bus.

9.5.3.3 Case 3, Low Priority

If multiple devices assert BR at the same time, the arbiter grants the bus to the device with the
highest priority. The arbiter withholds the assertion of BG for alower priority device until the BR
for the higher priority device is deasserted. The lower device cannot take control of the bus until
the higher priority device deasserts BR, the arbiter asserts BG to the lower priority device, and the
current master deasserts BB.

9.5.3.4 Case 4, Default

The arbiter design may specify a default bus master. Such a design asserts BG for the default
device whenever no other device requests the bus. Thus, whenever BB is deasserted (that is, the
busis not busy), the default device can take control of the bus by asserting BB without asserting
BR first. Aslong asthe bus arbiter leaves BG asserted because no other requests are pending, then
the default device continues to assert BB and maintain its bus mastership. This condition is called
bus parking and eliminates the need for the default bus master to rearbitrate for the bus during its
next external access.

9.5.3.5 Case 5, Bus Lock during Read-Modify-Write Instructions

Typically, if adevice asserts BR to request bus mastership and the arbiter then asserts BG to the
requesting device and BB is deasserted (that is, the busis not busy), then the requesting device
asserts BB and takes control of the bus. If the master device executes a read-modify-write
instruction that accesses external memory, then BB remains asserted until the entire
read-modify-write instruction completes execution, even if the bus arbiter deasserts BG. After the
execution is complete, the device then drives BB high thereby relinguishing the bus. In DSP56300
family devicesin which it isimplemented, the BL signal can be used to ensure that a multi-port
memory can only be written by one master at atime.

Note: During external read-modify-write instruction execution, BL is asserted.

9.5.3.6 Case 6, Bus Parking

Asdescribed in Section 9.5.3.4, bus parking is a strategy that permits a device to take control of
the bus without asserting BR. In addition to designs which use a default bus master device, an
arbiter design may allow the last bus master to retain control of the bus until mastership is
requested by another device. In such adesign, adevice asserts BR to request bus mastership and
the arbiter responds by asserting BG to the requesting device. When BB is deasserted (that is, the
busis not busy), the requesting device asserts BB to assume bus mastership. When the requesting
device no longer requires the bus, it deasserts BR, but if no other requests are pending, the bus

DSP56300 Family Manual, Rev. 5

9-14 Freescale Semiconductor



Port A Control

arbiter leaves BG asserted and BB remains asserted for that device (that is, the last device
maintains its bus mastership). Thus, the last device to control the bus is parked on the bus. This
eliminates the need for the last bus master to rearbitrate for the bus during its next external
access.

9.6 Port A Control

Port A control consists of four Address Attribute Registers (AAR[0-3]), the Bus Control Register
(BCR), and the DRAM Control Register (DCR).

9.6.1 Address Attribute Registers (AAR[0-3])

The four Address Attribute Registers (AAR[0-3]) are 24-bit read/write registers that control the
activity of the AA[0-3]/RAS[0-3] pins. The associated AAn/RASK pin is asserted if the address
defined by the BAC bitsin the associated AAR matches the exact number of external address bits
defined by BNC bits, and the external address space (X data, Y data, or program) is enabled by
the AAR. All AARsaredisabled (that is, all the AAR bits are cleared) during hardware reset. The
AAR bitsare shown in Figure 9-7 and described in this section. All AAR bits are read/write
control bits.

A priority mechanism to resolve selection conflicts exists among the four AAR control registers.
AAR3 has the highest priority and AARO has the lowest priority (for example, if the external
address matches the address and the space that is specified isin both AAR1 and AAR2, the
external accesstype is selected according to AAR?2). The priority mechanism allows continuous
partitioning of the external address space.

When a selection conflict occurs, that isthe external address matches the address and the space
that is specified in more than one AAR, the assertion of the lower priority AA/RAS pin(s) is
programmable. When the OMR[APD] bitiscleared (see Chapter 6, PLL and Clock Generator),
only one AA/RAS pin of higher priority is asserted. When the OMR[APD] bit is set, the lower
priority AA/RAS pin(s) are asserted in addition to the highest priority AA/RAs pin. The AAR of
higher priority defines the external memory access type (memory type, wait states, and so on).
The lower-priority AA/RAs pin(s) associated with DRAM memory type (BAT[1-0]) = 10) are not
activated. This allows glueless support of Long Move (move L:) instruction to/from external
memory as shown in Figure 9-7.

23 22 21 20 19 18 17 16 15 14 13 12

BAC11 | BAC10 | BAC9 | BAC8 | BAC7 | BAC6 | BAC5 | BAC4 | BAC3 | BAC2 | BAC1 | BACO

11 10 9 8 7 6 5 4 3 2 1 0

BNC3 | BNC2 | BNC1 | BNCO | BPAC BAM BYEN | BXEN | BPEN | BAAP | BAT1 BATO

Figure 9-7. Address Attribute Registers (AAR[0-3])

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-15



‘nal Memory Interface (Port A)

Table 9-4. AAR Bit Definitions

Bit Number

Bit Name

Reset Value

Description

23-12

BAC[11-0]

Bus Address to Compare

Defines the upper 12 bits of the 24-bit address with which to compare the
external address to decide whether to assert the corresponding AA/RAS signal.
This is also true when 16-bit compatibility mode is in use. The BNC[3-0] bits
define the number of address bits to compare.

11-8

BNC[3-0]

Bus Number of Address Bits to Compare

Defines the number of bits (from the BAC bits) that are compared to the
external address. The BAC bits are always compared to the Most Significant
Portion of the external address (for example, if BNC[3-0] = 0011, then the
BAC[11-9] bits are compared to the 3 MSBs of the external address). If no bits
are specified (that is, BNC[3-0] = 0000), the AA signal is activated for the entire
16 M words space identified by the space enable bits (BPEN, BXEN, BYEN),
but only when the address is external to the internal memory map. The
combinations BNC[3-0] = 1111, 1110, 1101 are reserved.

BPAC

Bus Packing Enable

Defines whether the internal packing/unpacking logic is enabled. When the
BPAC bit is set, packing is enabled. In this mode each DMA external access
initiates three external accesses to 8-bit wide external memory (the addresses
for these accesses are DAB, then DAB + 1 and then DAB + 2). Packing to a
24-bit word (or unpacking from a 24-bit word to three 8-bit words) is done
automatically by the expansion port control hardware. The external memory
should reside in the eight Least Significant Bits (LSBs) of the external data bus,
and the packing (or unpacking for external write accesses) is done in “Little
Endian” order (that is, the low byte is stored in the lowest of the three memory
locations and is transferred first; the middle byte is stored/transferred next; and
the high byte is stored/transferred last). When this bit is cleared, the expansion
port control logic assumes a 24-bit wide external memory.

NOTE: The BPAC bit is used only for DMA accesses and not core accesses. To
ensure sequential external accesses, the DMA address should advance three
steps at a time in two-dimensional mode with a row length of one and an offset
size of three. For details, see Freescale application note, APR23/D, Using the
DSP56300 Direct Memory Access Controller.

To prevent improper operation, DMA address + 1 and DMA
address + 2 should not cross the AAR bank borders.

Arbitration is not allowed during the packing access (that is, the three accesses
are treated as one access with respect to arbitration, and bus mastership is not
released during these accesses)

DSP56300 Family Manual, Rev. 5

9-16

Freescale Semiconductor



Port A Control

Table 9-4. AAR Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

BAM

Bus Address Multiplexing

Defines whether the eight LSBs of the address appear on address lines AO-A7
(Least Significant Portion of the external address bus) or on address lines
A16—-A23 (Most Significant Portion of the external address bus). When BAM is
set, the eight LSBs appear on address lines A16—-A23. When BAM is cleared,
the eight LSBs appear normally on address lines AO—A7. This feature enables
you to connect an external peripheral to the MSBs of the address, thus
decreasing the load on the Least Significant Portion of the external address and
enabling a more efficient interface to external memories. BAM is ignored during
DRAM access (BAT[1-0] = 10).

NOTE: The BAM bit has no effect in DSP56300 core devices with only eighteen
address lines.

BYEN

Bus Y Data Memory Enable

Defines whether the AA/RAS pin and logic should be activated during external
Y data space accesses. When set, BYEN enables the comparison of the
external address to the BAC bits during external Y data space accesses. If
BYEN is cleared, no address comparison is performed during external Y data
space accesses.

BXEN

Bus X Data Memory Enable

Defines whether the AA/RAS pin and logic should be activated during external
X data space accesses. When set, BXEN enables the comparison of the
external address to the BAC bits during external X data space accesses. If
BXEN is cleared, no address comparison is performed during external X data
space accesses.

BPEN

Bus Program Memory Enable

Defines whether or not the AA/RAS pin and logic should be activated during
external program space accesses. When set, BPEN enables the comparison of
the external address to the BAC bits during external program space accesses.
If BPEN is cleared, no address comparison is performed during external
program space accesses.

BAAP

Bus Address Attribute Polarity

Defines whether the AA/RAS signal is active low or active high. When BAAP is
cleared, the AA/RAS signal is active low (useful for enabling memory modules
or for DRAM Row Address Strobe). If BAAP is set, the appropriate AA/RAS
signal is active high (useful as an additional address bit).

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

9-17



‘nal Memory Interface (Port A)

Table 9-4. AAR Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

1-0

BAT[1-0]

Bus Access Type

Define the type of external memory (DRAM or SRAM) to access for the area
defined by the BAC[11-0], BYEN, BXEN, and BPEN bits. The encoding of
BAT[1-0] is:

00 = Reserved

01 = SRAM access

10 = DRAM access

11 = Reserved

When the external access type is defined as DRAM access (BAT[1-0] = 10),
AA/RAS acts as a Row Address Strobe (RAS) signal. Otherwise, it acts as an
Address Attribute signal. External accesses to the default area are always
executed as if BAT[1-0] = 01 (that is, SRAM access).

NOTE: If Port A is used for external accesses, the BAT bits in

AAR[0-3] must be initialized to the SRAM access type (that is, BAT = 01) or to
the DRAM access type (that is, BAT = 10). To ensure proper operation of Port
A, this initialization must occur even for an AAR register that is not used during
a Port A access. At reset the BAT bits are initialized to 00.

DSP56300 Family Manual, Rev. 5

9-18

Freescale Semiconductor



9.6.2 Bus Control Register

Port A Control

The Bus Control Register (BCR), depicted in Figure 9-8, is a 24-bit read/write register that
controls the external bus activity and Bus Interface Unit operation. All BCR bits except bit 21,
BBS, are read/write bits. The BCR bits are defined in Table 9-5.

23

22 21

20

19 18 17 16 15 14 13 12

BRH

BLH BBS

BDFwW4

BDFW3

BDFW2 | BDFW1 | BDFWO | BA3W2 | BA3W1 | BA3WO | BA2W2

11

10 9

8

7 6 5 4 3 2 1 0

BA2W1

BA2WO

BA1W4

BA1W3

BA1W2

BA1W1 | BA1IWO | BAOW4 | BAOW3 | BAOW2 | BAOW1 | BAOWO

Figure 9-8. Bus Control Register (BCR)

Table 9-5. Bus Control Register (BCR) Bit Definitions

Bit Number

Bit Name

Reset Value

Description

23

BRH

Bus Request Hold

Asserts the BR signal, even if no external access is needed. When BRH is set,
the BR signal is always asserted. If BRH is cleared, the BR is asserted only if
an external access is attempted or pending.

22

BLH

Bus Lock Hold

Asserts the BL signal, even if no read-modify-write access is occurring. When
BLH is set, the BL signal is always asserted. If BLH is cleared, the BL signal is
asserted only if a read-modify-write external access is attempted.

Note: Not all devices in the DSP56300 family support this bit.

21

BBS

Bus State
This read-only bit is set when the DSP is the bus master and is cleared
otherwise.

20-16

BDFW[4-0]

11111
(31 wait
states)

Bus Default Area Wait State Control

Defines the number of wait states (one through 31) inserted into each external
access to an area that is not defined by any of the AAR registers. The access
type for this area is SRAM only. These bits should not be programmed as zero
since SRAM memory access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is
inserted at the end of the access. When selecting eight or more wait states, two
additional wait states are inserted at the end of the access. These trailing wait
states increase the data hold time and the memory release time and do not
increase the memory access time.

Note: Forthe DSP56321 device, when three through seven wait states are
selected, one additional wait state is inserted at the end of the access.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

9-19



‘nal Memory Interface (Port A)

Table 9-5. Bus Control Register (BCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

15-13

BA3W[2-0]

1
(7 wait states)

Bus Area 3 Wait State Control

Defines the number of wait states (one through seven) inserted in each
external SRAM access to Area 3 (DRAM accesses are not affected by these
bits). Area 3 is the area defined by AARS3.

Note: Do not program the value of these bits as zero since SRAM memory
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is
inserted at the end of the access. This trailing wait state increases the data hold
time and the memory release time and does not increase the memory access
time.
Note: Forthe DSP56321 device, when three through seven wait states are
selected, one additional wait state is inserted at the end of the access.

12-10

BA2W[2-0]

111
(7 wait states)

Bus Area 2 Wait State Control

Defines the number of wait states (one through seven) inserted into each
external SRAM access to Area 2 (DRAM accesses are not affected by these
bits). Area 2 is the area defined by AAR2.

Note: Do not program the value of these bits as zero, since SRAM memory
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is
inserted at the end of the access. This trailing wait state increases the data hold
time and the memory release time and does not increase the memory access
time.
Note: Forthe DSP56321 device, when three through seven wait states are
selected, one additional wait state is inserted at the end of the access.

BALW[4-0]

11111
(31 wait
states)

Bus Area 1 Wait State Control

Defines the number of wait states (one through 31) inserted into each external
SRAM access to Area 1 (DRAM accesses are not affected by these bits). Area
1 is the area defined by AARL.

Note: Do not program the value of these bits as zero, since SRAM memory
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is
inserted at the end of the access. When selecting eight or more wait states, two
additional wait states are inserted at the end of the access. These trailing wait
states increase the data hold time and the memory release time and do not
increase the memory access time.

Note: Forthe DSP56321 device, when three through seven wait states are
selected, one additional wait state is inserted at the end of the access.

DSP56300 Family Manual, Rev. 5

9-20

Freescale Semiconductor



Port A Control

Table 9-5. Bus Control Register (BCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

4-0 BAOW[4-0] 11111 Bus Area 0 Wait State Control

(31 wait Defines the number of wait states (one through 31) inserted in each external
states) SRAM access to Area 0 (DRAM accesses are not affected by these bits). Area
0 is the area defined by AARO.

Note: Do not program the value of these bits as zero, since SRAM memory
access requires at least one wait state.

When selecting four through seven wait states, one additional wait state is
inserted at the end of the access. When selecting eight or more wait states, two
additional wait states are inserted at the end of the access. These trailing wait
states increase the data hold time and the memory release time and do not
increase the memory access time.

Note: Forthe DSP56321 device, when three through seven wait states are
selected, one additional wait state is inserted at the end of the access.

9.6.3 DRAM Control Register

Note: DSP56300 devices do not support the DRAM interface above 100 MHz. The
DSP56321 does not support DRAM at any frequency.

The DRAM controller is an efficient interface to dynamic RAM devices in both random
read/write cycles and Fast Access mode (Page mode). An on-chip DRAM controller controls the
page hit circuit, the address multiplexing (row address and column address), the control signal
generation (CAs and RAS) and the refresh access generation (CAS before RAS) for a variety of
DRAM module sizes and access times. The on-chip DRAM controller configuration is
determined by the DRAM Control Register (DCR). The DRAM Control Register (DCR) isa
24-bit read/write register that controls and configures the external DRAM accesses. The DCR
bits are shown in Figure 9-9.

Note: To prevent improper device operation, you must guaranteethat all the DCR bits except
BSTR are not changed during a DRAM access.

23 22 21 20 19 18 17 16 15 14 13 12

BRP BRF7 | BRF6 | BRF5 | BRF4 | BRF3 | BRF2 | BRF1 | BRFO | BSTR | BREN BME

11 10 9 8 7 6 5 4 3 2 1 0

BPLE BPS1 | BPSO BRW1 | BRWO | BCW1 | BCWO

Reserved bit. Read as zero; write to zero for future compatibility

Figure 9-9. DRAM Control Register (DCR)

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-21



‘nal Memory Interface (Port A)

Table 9-6. DRAM Control Register (DCR) Bit Definitions

Bit Number

Bit Name

Reset Value

Description

23

BRP

Bus Refresh Prescaler

Controls a prescaler in series with the refresh clock divider. If BPR is set, a
divide-by-64 prescaler is connected in series with the refresh clock divider. If
BPR is cleared, the prescaler is bypassed. The refresh request rate (in clock
cycles) is the value written to BRF[7-0] bits + 1, multiplied by 64 (if BRP is set) or
by one (if BRP is cleared).

Note:  Refresh requests are not accumulated and, therefore, in a fast refresh
request rate not all the refresh requests are served (for example, the
combination BRF[7-0] = $00 and BRP = 0 generates a refresh request
every clock cycle, but a refresh access takes at least five clock cycles).

When programming the periodic refresh rate, you must consider the RAS
time-out period. Hardware support for the RAS time-out restriction does not

exist.

22-15

BRF[7-0]

Bus Refresh Rate

Controls the refresh request rate. The BRF[7-0] bits specify a divide rate of
1-256 (BRF[7-0] = $00-$FF). A refresh request is generated each time the
refresh counter reaches zero if the refresh counter is enabled (BRE = 1).

14

BSTR

Bus Software Triggered Reset

Generates a software-triggered refresh request. When BSTR is set, a refresh
request is generated and a refresh access is executed to all DRAM banks (the
exact timing of the refresh access depends on the pending external accesses
and the status of the BME bit). After the refresh access (CAS before RAS) is
executed, the DRAM controller hardware clears the BSTR bit. The refresh cycle
length depends on the BRW[1-0] bits (a refresh access is as long as the
out-of-page access).

13

BREN

Bus Refresh Enable

Enables/disables the internal refresh counter. When BREN is set, the refresh
counter is enabled and a refresh request (CAS before RAS) is generated each
time the refresh counter reaches zero. A refresh cycle occurs for all DRAM
banks together (that is, all pins that are defined as RAS are asserted together).
When this bit is cleared, the refresh counter is disabled and a refresh request
may be software triggered by using the BSTR bit.

In a system in which DSPs share the same DRAM, the DRAM controller of more
than one DSP may be active, but it is recommended that only one DSP have its
BREN bit set and that bus mastership is requested for a refresh access.

If BREN is set and a WAIT instruction is executed, periodic refresh is still
generated each time the refresh counter reaches zero.

If BREN is set and a STOP instruction is executed, periodic refresh is not
generated and the refresh counter is disabled. The contents of the DRAM are
lost.

DSP56300 Family Manual, Rev. 5

9-22

Freescale Semiconductor




Port A Control

Table 9-6. DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

12

BME

Bus Mastership Enable

Enables/disables interface to a local DRAM for the DSP. When BME is cleared,
the RAS and CAS pins are tri-stated when mastership is lost. Therefore, you
must connect an external pull-up resistor to these pins. In this case (BME = 0),
the DSP DRAM controller assumes a page fault each time the mastership is lost.
A DRAM refresh requires a bus mastership. If the BME bit is set, the RAS and
CAS pins are always driven from the DSP. Therefore, DRAM refresh can be
performed, even if the DSP is not the bus master.

11

BPLE

Bus Page Logic Enable

Enables/disables the in-page identifying logic. When BPLE is set, it enables the
page logic (the page size is defined by BPS[1-0] bits). Each in-page
identification causes the DRAM controller to drive only the column address (and
the associated CAS signal). When BPLE is cleared, the page logic is disabled,
and the DRAM controller always accesses the external DRAM in out-of-page
accesses (for example, row address with RAS assertion and then column
address with CAS assertion). This mode is useful for low power dissipation. Only
one in-page identifying logic exists. Therefore, during switches from one DRAM
external bank to another DRAM bank (the DRAM external banks are defined by
the access type bits in the AARs, different external banks are accessed through
different AA/RAS pins), a page fault occurs.

10

Reserved. Write to zero for future compatibility.

BPS[1-0]

Bus DRAM Page Size

Defines the size of the external DRAM page and thus the number of the column
address bits. The internal page mechanism works according to these bits only if
the page logic is enabled (by the BPLE bit). The four combinations of BPS[1-0]
enable the use of many DRAM sizes (1 M bit, 4 M bit, 16 M bit, and 64 M bit).
The encoding of BPS[1-0] is:

00 = 9-bit column width, 512 words
01 = 10-bit column width, 1 K words
10 = 11-bit column width, 2 K words
11 = 12-bit column width, 4 K words

When the row address is driven, all 24 bits of the external address bus are
driven [for example, if BPS[1-0] = 01, when driving the row address, the 14
MSBs of the internal address (XAB, YAB, PAB, or DAB) are driven on address
lines A[0-13], and the address lines A[14-23] are driven with the 10 MSBs of the
internal address. This method enables the use of different DRAMs with the same
page size.

7-4

Reserved. Write to zero for future compatibility.

BRW[1-0]

Bus Row Out-of-page Wait States
Defines the number of wait states that should be inserted into each DRAM
out-of-page access. The encoding of BRW[1-0] is:

00 = 4 wait states for each out-of-page access
01 = 8 wait states for each out-of-page access
10 = 11 wait states for each out-of-page access
11 = 15 wait states for each out-of-page access

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

9-23




‘nal Memory Interface (Port A)

Table 9-6. DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

1-0 BCWI[1-0] 0 Bus Column In-Page Wait State
Defines the number of wait states to insert for each DRAM in-page access. The
encoding of BCW[1-0] is:

00 = 1 wait state for each in-page access

01 = 2 wait states for each in-page access
10 = 3 wait states for each in-page access
11 = 4 wait states for each in-page access

DSP56300 Family Manual, Rev. 5

9-24 Freescale Semiconductor



DMA Controller 10

Direct memory access (DMA) is one of several methods for coordinating the timing of data
transfers between an input/output (1/0) device and the core processing unit or memory in a
computer. DMA is one of the faster types of synchronization mechanisms, generally providing
significant improvement over interrupts, in terms of both latency and throughput. An I/O device
often operates at a much slower speed than the core.2 DMA allows the I/0 device to access the
memory directly, without using the core. DMA can lead to a significant improvement in
performance because data movement is one of the most common operations performed in
processing applications. There are several advantages of using DMA, rather than the core, in the
DSP56300 family:

B DMA saves core MIPS because the core can operatein paralel.

B DMA saves power because it requiresless circuitry than the core to move data.
B DMA saves pointers because core AGU pointer registers are not needed.

B DMA hasno modulo block size restrictions, unlike the core AGU.

Traditionally, DMA uses the same internal address and data buses as the core. Consequently,
when DMA performs one or more word transfers, it can temporarily cause the coreto halt
activity for one or more cycleswhilethe DMA controller movesthe data. The core and the DMA
controller cannot both perform data movesin the same core clock cycle. To overcome data
movement restrictions imposed by sharing resources with the core, the DMA system in the
DSP56300 family contains its own dedicated internal address and data buses. Internal memory is
partitioned so that the program control unit (PCU) and DMA controller can both perform internal
memory accesses in the same core clock cycle, aslong they access different memory partitions.
Also, if one of these two controllers accesses internal memory, the other controller can perform
an external memory access in the same core clock cycle.

In addition to data moves between I/O and internal or external memory, the DMA in the
DSP56300 can perform memory-to-memory transfers (internal, external, or mixed).

Table 10-1 summarizes by source/destination type the various types of data transfersthat the
DMA controller can perform.

2. Theterm “core” has a special meaning when described in the context of DMA. Technically, the DSP56300 core
contains all circuitry that is common to al devices in the DSP56300 family, including the DMA controller and
buses. However, in the context of DMA, the core actions referred to are those caused by data movement instruc-
tions executed by the PCU, not data movement performed by the DMA controller.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-1



h -
P N

Controller

Table 10-1. DMA Controller Data Transfers

Type of Transfer

Clock Cycles per Single Word Transfer?

Internal Memory - Internal Memory 2
External Memory > Internal Memory 2 + wait states
External Memory - External Memory? 2 + wait states
Internal Memory > Internal I/O 2
External Memory > Internal I/O 2 + wait states
Internal I/O - Internal I/O 2

2. External memory includes external 1/O.

Notes: 1. Data transfer for one channel takes a minimum of two clock cycles per single word.

The DMA unit contains the necessary counters, offset registers, and pointers to transparently
handle one-, two-, and three-dimensional data matrix transfers. These registers can be given
values that result in special addressing modes, for example, access to circular buffers and linear
buffers with non-unit stride. The data structure dimensionality can be chosen independently for
the source access versus the destination access involved in the data move. The DSP56300
contains six DMA channels that share buses and offset registers but are otherwise independent.
Each DMA channel can be triggered by interrupt pins, peripheral actions, or other DMA events,
and assigned a priority relative to other channels and relative to the core. Each of the six DMA
channels containsits own set of four operational registers, all of which are memory-mapped in
the internal 1/0 memory space and all of which are 24-bit registers:

B DMA Source Address Register (DSR). A read/write register that contains the source
address for the next DMA transfer for its channel. Each DM A channel has one DSR:

DSRO, DSR1, DSR2, DSR3, DSR4, and DSRS.

B DMA Destination Address Register (DDR). A read/write register that contains the
destination address for the next DM A transfer for its channel. Each DMA channel has one
DDR: DDRO, DDR1, DDR2, DDR3, DDR4, and DDR5.

B DMA Counter (DCO). A read/write register that contains the number of DMA data
transfers to be performed by its channel. The DCO has five modes of operation
determined by the DMA channel Address Generation mode defined inthe DMA channel’s
Control Register. Each DMA channel has one DCO: DCOO0, DCO1, DCO2, DCOS,

DCO4, and DCOS.

B DMA Control Register (DCR). A read/write register that controls the operation of aDMA
channel. Each DMA channel has one DCR: DCRO, DCR1, DCR2, DCR3, DCR4 and

DCRS.

The DMA Controller also has supporting 24-hit registers available to all the DMA channels:

DSP56300 Family Manual, Rev. 5

10-2

Freescale Semiconductor



DMA Operational Overview

B DMA Offset Register (DOR). Each DOR is a read/write register that contains the offset
value to be used in some of the DMA addressing modes. The DMA controller has four
common offset registers (DORO, DOR1, DOR2, and DOR3) that can be used by all the
channels according to their Address Generation mode.

B DMA Status Register (DSTR). Thisread-only register reflects the overall operating status
of al channelsinthe DMA Controller.

In summary, the DSP56300 DMA can perform 1/0O and memory accesses that are independent of
and frequently simultaneous with PCU operations. The DMA controller can transfer
memory-to-memory and handle mixed multi-dimensional and special address mode transfers.
DMA contains six highly independent channels with separate priorities and multiple trigger
choices. These capabilities significantly enhance code performance.

10.1 DMA Operational Overview

The following subsections describe how the DSP56300 DM A operates. These subsections are
organized by function, rather than by event sequence. The DMA register description section
contains detailed operational information.

10.1.1 Basic Address Modes
The DSP56300 DMA controller can deal with the following basic types of data structures:

B Constant Addressing. Uses a single address throughout the data transfer. Typically thisis
used by 1/0O devices that use a single address to transfer information.

B One-dimensional. A matrix consisting of oneitem or a“line”’ of itemsin consecutive
memory locations.

B Two-dimensional. A matrix or table that is stored in row-column order with equal spacing
In memory between each row or line.

B Three-dimensional. A matrix or collection of tables that are equally spaced in memory.

The type of data structure is specified in the counter mode for the DMA channel. The counter
mode divides a given 24-bit counter register into one or more sections, one for each dimension
used. The appropriate counter fields either decrement or reload each time the DMA transfers a
dataword. A counter field isreloaded with itsinitial value after that field is decremented to zero.
For details on counter operation, see Section 10.5.3, DMA Counters (DCO[5-0]), on page 10-9.
Once all fieldsin the counter are exhausted, one or more data moves are performed and all words,
lines, and tables are transferred. The total collection of data moved is called the “block.”
Exhaustion of the entire counter resultsin asingle “block transfer.” The automatic counter
register updates are directly performed on the user-visible counter register. In other words, the
counter register isused for both the count load/reload function and the count decrement function.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-3



h -

P N

Controller

10.1.2 Special Address Modes

The counter and offset registers can be loaded with special valuesto produce variants of the basic
addressing modes. Some examples covered in more detail in later sections include:

B Circular buffer. Use atwo-dimensional counter and a negative offset that wraps back to
the buffer start address.

B Linear buffer with non-unit stride. Use atwo-dimensional counter with one word per row.
This method must be used with byte packing, which has a stride of three.

B Alarger-than-normal field width in a two-dimensional counter. Concatenate two fieldsin
athree-dimensional counter by specifying an offset value of one between them.

10.1.3 Unmatched Source and Destination Dimensions

The source and destination data structures can have different dimensions. The data structure with
the largest dimension is read or written once during the block transfer; the data structure with the
smaller dimension can be written or read repeatedly. For this situation, a single counter register
handles both sides of the transfer. The high-dimension (three-dimensional or two-dimensional)
side of the transfer determines the counter mode and thus the number of available counter fields.
Each “tick” of the counter counts one word transfer; that is, one source read and one destination
write. The data structure on the low-dimension side of the transfer is fully described by a
right-justified subset of the counter—the number of counter fields being the same as its
dimension (two-dimensional or one-dimensional). This data structure accessis repeated (using
the exact same addressing sequence) the number of times specified by the upper field(s) of the
counter. The pointer wraparound back to the beginning of this data structure is accomplished
using a negative offset register value, similar to a circular buffer.

10.1.4 DMA Triggers (Request Sources)

Data movement in by aparticular DMA channel isinitiated by either a hardware or a software
trigger. Following is an example list of some of the hardware and software DMA triggers, also
known as DMA request sources. Peripheral triggers are device-dependent. A DMA channel can
be configured for triggering by only one source at atime.

B Hardwaretriggers
— External interrupt pins (IRQ[A-D])
— DMA channel block transfer completion (by thisor adifferent DMA channel)
— Peripheral status bits

* Receiver has new datum to be read by the DMA controller
» Transmitter needs new datum from the DMA controller
* Timer compare event
B Software triggers
— DMA enable bit for this DMA channel

DSP56300 Family Manual, Rev. 5

10-4 Freescale Semiconductor



Timing (Core Clock Cycles)

A peripheral status bit that triggers an enabled DMA transfer also typically can trigger an enabled
peripheral interrupt. The DMA transfer istriggered by the status bit change, not by the peripheral
interrupt event, and the DMA transfer occurs whether or not the peripheral interrupt is enabled.
Furthermore, avoid triggering a DMA transfer and a peripheral interrupt from the same event;
this can result in alack of coordination regarding resources and status bit changes.

10.1.5 Transfer Mode

When aDMA channel is enabled and receives atrigger from its configured trigger source, it
begins moving data as soon as the needed resources become available (for example, internal
DMA buses and memory locations). As aresult of the trigger event, the channel transfers either
all or a subset of the block (thisis configurable). The amount of data that istransferred in
response to each trigger event is determined by the DMA transfer mode. Besides the trigger data
structure, the transfer mode also selects either a hardware or software trigger, and automatic
block repeat enable. The available transfer modes are single word, line, and block. Typically, a
DMA channel used in conjunction with a peripheral operates in a single word transfer mode
(triggered by areceiver full or transmitter empty condition).

10.2 Timing (Core Clock Cycles)

This section describes the timing of core and DMA data transfers in the context of integral core
clock cycle counts. When the needed resources are available, each word transfer performed by
the DMA takes at least two core clock cycles:

B Source read (at least one cycle)
B Destination write (at least one cycle)

Any wait states incurred during external memory accesses are added to the DMA word transfer
time (for external source and/or destination). Some peripherals (generally those using
first-in-first-out (FIFO) for data transfer) may act as “fast DM A request sources.” These
peripherals can trigger anew DMA request as often as every two core clock cycles, thereby using
the DMA at its maximum throughput rate with zero overhead time.

10.2.1 Non-Overlap Between DMA Channels

Data movement can never be performed by more than one DMA channel within a given core
clock cycle. For example, it is not possible for Channel 1 to commence its source read before
Channel 0 completesits destination write. This non-overlap limitation exists for al situations,
including the following cases:

B One channel needs to read (write) from external memory, and another channel needs to
write (read) to internal memory.

B One of the DMA channelsiswaiting on the Bus Interface Unit (BIU) for an external
access to complete, and the BIU isin turn waiting because of

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-5



h -

P N

Controller

— Static wait states (determined by Bus Control Register)
— Dynamic wait states (controlled by TA pin)
— Byte packing

Thislimitation is necessary because there is only one internal DMA address bus and one internal
DMA data bus. Theinternal DMA buses are in use by aDMA channel even during the external
memory access phase of the DMA word transfer. Although channel overlap during DMA channel
transfers cannot exist, zero overhead between two DMA channel transfers can exist. Once the
word transfer performed by a DMA channel is completed, another DMA channel can begin data
movement in the very next core clock cycle—if the second DMA channel has aready been
triggered and is not being delayed by contention or priority iSsues.

10.2.2 Overlap between DMA Channel and Core

Since the core and DMA use separate address and data buses, both can perform datamovement in
agiven core clock cycle. Thisoverlap of data movement can occur for the following cases:

B Thecoreis accessing internal memory while DMA is accessing a different internal
memory partition:

— RAM: 1/4 K words partition size (this size is device-dependent)
— ROM: 2, 3, or 4 K words device-specific partition size

If the core and DMA try to accessthe same internal memory partition, the core has priority
and DMA is delayed.

B Thecoreisaccessing internal (external) memory while DMA is accessing externa
(internal) memory

10.3 Channel Priority

DMA channel priority determinesif and when aDMA channel can be interrupted during a block
transfer. An interruption occurs between word transfers. The current DMA word transfer is
allowed to compl ete before the core or another DM A channel can take control of the resource that
Isunder contention. The DMA channel priority arbitration occurs for each DMA word transfer;
only enabled and already triggered channels can take part in this arbitration.

10.3.1 Priority Between DMA Channels

Each DMA channel can be independently assigned one of four possible priority levels. The
treatment of prioritiesis asfollows:

B Channels with different priorities:

A higher-priority DMA channel can interrupt alower-priority DMA channel and complete
its block transfer before control transfers back to the lower-priority channel.

B Channels with the same priority, one of two different modes can be selected:

DSP56300 Family Manual, Rev. 5

10-6 Freescale Semiconductor



Channel Priority

— Continuous mode: A DMA channel cannot interrupt another DMA channel of the same
priority.

— Non-continuous mode: Control istransferred in around-robin fashion between each
channel of the same priority. Each channel transfers one word before control transfers
to the next channel in this group.

DMA channels cannot interrupt each other in the middle of word transfers, regardless of their
relative priorities. A word transfer made by one DMA channel must finish before another DMA
channel can commence aword transfer.

10.3.2 Priority Between a DMA Channel and the Core

If the coreand aDMA channel are both contending for the same partition of internal memory, but
neither has begun the word transfer, the core always takes precedence. The DMA channel must
wait until the core is not accessing this memory partition for at least one core clock cycle before it
can begin to access the partition.

If the DMA channel and the core are each attempting to access a different internal memory
partition in RAM or ROM, no contention exists. In this case, the accesses can be made
simultaneously (data movement can occur in both of these data pathsin a given core clock cycle).
If the core and a DMA channel are both contending to make an external memory access, the
prioritizing between that channel and the core is performed according to one of two selectable
modes:

B Satic DMA/Core Prioritizing mode—The core priority is configured to have a constant
fixed relationship with the DMA priority, regardless of which DMA channel is
considered. The core priority is set to be either lower, equal, or greater than that of the
DMA. Theindividua DMA channels have equal priority when compared to the core,
although they may still have unequal prioritieswhen compared to each other. Thismodeis
set using bits CDP[1-0] of the Operating Mode Register.

B Dynamic DMA/Core Prioritizing mode—The priority of each DMA channel is
individually compared with that of the core. The DMA channel priority setting used for
comparison with other DMA channelsis also used for comparison with the core. This
mode is set using bits CP[1-0] of the Status Register.

Note: Even though DMA and the core have separate address and data buses, thereis only one
external address and data bus.

The core cannot interrupt aDMA channel in the middle of aword transfer to or from a contended
resource (an internal memory partition, or external memory), regardless of the core/DMA relative
priority. If the DMA channel is already performing an access to the resource, the core must wait
until the current DMA word transfer finishes accessing the resource before the core can access
that resource. The core may haveto wait for the entire DMA word transfer to complete, or it may
have to wait only for the DMA source read to complete. This depends on the destination address

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-7



h -

P N

Controller

of the DMA channdl. If the destination of the DMA word transfer is not in the contended
resource, then the core can proceed with its access to the resource while the DMA performsits
destination write somewhere else.

10.4 Special Uses of DMA With the Bus Interface Unit

The following subsections describe Bus Interface Unit (BlU) operations that can only be
performed using DMA.

10.4.1 Byte Packing

Byte packing is used when the 24-bit data width DSP core interfaces with an 8-bit wide external
memory device. Byte packing can be performed only in conjunction with aDMA data move.3
When the DMA channel attempts to read aword from the external memory, it expects a 24-bit
value. In accordance with the DMA read, the BIU reads three consecutive bytes from the
memory, packs them into one 24-bit word, and then passes this word to the DMA. A reverse
sequence occurs for a DMA write to the external memory. The BIU takes the 24-bit word from
the DMA channel, unpacks it, and writes it as three consecutive bytes, to the external memory.
For both read and write, the DMA views each 24-bit word transfer as a single external access.
However, the byte packing operation is not completely transparent to the DMA. To read or write
several 24-bit words to or from consecutive locations in the 8-bit memory, the DMA must be
programmed to either increase or decrease its external memory address pointer by three for each
24-bit transfer.

10.4.1.1 DRAM In-Page Accesses using DMA

When a DMA channel handles several consecutive in-page DRAM word accesses, a special
situation can occur if an in-page access isinterrupted by an external memory access initiated
either by the core or a different DM A channel. The interrupting operation could be a
higher-priority access to external SRAM. After the interrupting operation usesthe BIU, the
original DMA channel can resume reading or writing the DRAM without losing in-page access.
This can occur aslong as all in-page access conditions (described in Chapter 9, External
Memory Interface (Port A)) remain satisfied.

10.4.1.2 End-of-Block-Transfer Interrupt

Upon completion of ablock transfer by a DMA channel, an optional end-of-block-transfer DMA
interrupt can be generated. The interrupt service routine (ISR) called by such an interrupt can
perform any functions needed at this time. For example, the ISR could reconfigure the DMA
channel for the next data block transfer or restart the DMA channel (if it isused in atransfer
mode for which no automatic restart is available). Do not confuse an end-of-block-transfer DMA

3. SeethePort A Address Attribute Register description in Chapter 9, External Memory Interface (Port A), and the
Freescal e application report, APR23/D, Using the DSP56300 Direct Memory Access Controller.

DSP56300 Family Manual, Rev. 5

10-8 Freescale Semiconductor



DMA Controller Programming Model

interrupt, also known asa“DMA interrupt,” with a peripheral interrupt. A peripheral interrupt
can be generated by the same event that triggers the DMA channel to move part or al of the
block. When DE is not cleared at the end of the block transfer (that is, if DTM = 100 or 101), the
DMA end-of-block transfer interrupt may not be latched when the bus grant (BG) signal is
asserted by the external bus arbiter. This causes the end-of-block interrupt to be lost.

10.5 DMA Controller Programming Model

Figure 10-1 showsthe DMA Controller programming model. The following paragraphs describe
the registers and how they are used. Since the six channels share identical sets of registers, each
of the four registersin each set is described once.

10.5.1 DMA Source Address Registers (DSR[0-5])

The DSR stores the initial source address specified by and loaded from the DMA requesting
device. During the DMA transfer, the DSR contents increment as defined by the D3D and DAM
bit settings (except in No Update mode). In two-dimensional mode, the specified DOR updates
the DSR after the first set of datatransfers completes. In three-dimensional mode, the specified
DORs update the DSR twice during the transfer.

10.5.2 DMA Destination Address Registers (DDR[5-0])

The DDR storesthe initial destination address specified by and loaded from the DMA requesting
device. During the DMA transfer, the DDR contents increment as defined by the D3D and DAM
bit settings (except in No Update mode). In two-dimensional mode, the specified DOR updates
the DDR after the first set of data transfers completes. In three-dimensional mode, the specified
DORs update the DDR twice during the transfer.

10.5.3 DMA Counters (DCO[5-0])

During DMA operation, a Source Address Register (DSR) is associated with one of the counter
modes, and the Destination Address Register (DDR) can be associated with another counter
mode. The following examples use DSR as an example of the address register used, but the same
exampleisvalid for the DDR.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-9



P N

Controller

24

24

DMA Control Register (DCRO0)

DMA Control Register (DCR3)

DMA Source Address Register (DSRO)

DMA Source Address Register (DSR3)

DMA Destination Address Register (DDRO)

DMA Destination Address Register (DDR3)

DMA Counter (DCOO0)

DMA Counter (DCO3)

Channel 0 Registers

24

Channel 3 Registers

24

DMA Control Register (DCR1)

DMA Control Register (DCR4)

DMA Source Address Register (DSR1)

DMA Source Address Register (DSR4)

DMA Destination Address Register (DDR1)

DMA Destination Address Register (DDR4)

DMA Counter (DCO1)

DMA Counter (DCO4)

Channel 1 Registers

24

Channel 4 Registers

24

DMA Control Register (DCR2)

DMA Control Register (DCR5)

DMA Source Address Register (DSR2)

DMA Source Address Register (DSR5)

DMA Destination Address Register (DDR2)

DMA Destination Address Register (DDR5)

DMA Counter (DCOZ2)

DMA Counter (DCO5)

Channel 2 Registers
24

DMA Offset Register 0 (DORO)

DMA Offset Register 1 (DOR1)

Channel 5 Registers

24

DMA Offset Register 2 (DOR2)

DMA Status Register (DSR)

DMA Offset Register 3 (DOR3)

DMA Offset Registers

DMA Status Register

Figure 10-1. DMA Controller Programming Model
10.5.3.1 DMA Counter Mode A—Single Counter
Figure 10-2 showsthat in DMA Counter Mode A, the DCO operates as a single counter.

23 0
DCO

Figure 10-2. DMA Counter Mode A Layout

DSP56300 Family Manual, Rev. 5

10-10 Freescale Semiconductor



DMA Controller Programming Model

The number of transfersisequal to the value loaded into DCO plus one (DCO + 1). Before each
DMA transfer, the DCO is tested for zero, and the following actions occur based on the test
result:

B DCO>0. A transfer isinitiated with an address equal to the addressregister. Then DCO is
decremented by one and the address register is updated according to the address
generation mode.

B DCO =0. Thelast transfer isinitiated with an address equal to the address register, the
address register is updated according to the address generation mode, and DCO is loaded
with its preloaded value.

For example, if the DCO is preloaded with the value 5, the DSR is loaded with the value S, and
the address generation mode is postincrement-by-1. Table 10-2 indicates the changesin the DSR
and the DCO during the DMA transfer.

Table 10-2. Interaction Between the DSR and DCO in Mode A

Before the Transfer After the Transfer
DSR DCO DSR DCO
S 5 S+1 4
S+1 4 S+2 3
S+2 3 S+3 2
S+3 2 S+4 1
S+4 1 S+5 0
S+5 0 S+6 5

10.5.3.2 DMA Counter Mode B—Dual Counter

Figure 10-3 shows that in DMA Counter Mode B, which is useful for two-dimensional block
transfers, the DCO is separated into two sections: DCOH[23 -12] and
DCOL[11- Q] bits.

23 12 11 0
DCOH | DCOL

Figure 10-3. DMA Counter Mode B Layout

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-11



h -
P N

Controller

Before each DMA transfer, DCOH and DCOL are tested for zero, and the following actions
occur based on the test results:

B DCOH > 0and DCOL > 0. A transfer isinitiated with an address equal to the address
register. Then DCOL is decremented by one and the address register isincremented by
one.

B DCOH > 0and DCOL = 0. A transfer isinitiated with an address equal to the address
register. The address register isincremented with the specified offset register, DCOH is
decremented by one, and DCOL is loaded with its preloaded value.

B DCOH =0and DCOL = 0. Thelast transfer isinitiated with an address equal to the
address register. The address register isincremented with the specified offset register, and
both DCOH and DCOL are loaded with their preloaded values.

The number of transfersin this mode isequal to (DCOL + 1) x (DCOH + 1). For example,
assume DCOH is preloaded with the value 1, DCOL is preloaded with the value 2, DOR is
preloaded with thevalue T, and DSR isloaded with thevalue S. Table 10-3 indicates the changes
in the DSR and the DCO during the DMA transfer.

Table 10-3. Interaction Between the DSR and DCO in Mode B

Before the Transfer After the Transfer

DSR DCOH DCOL DSR DCOH DCOL
S 1 2 S+1 1 1
S+1 1 1 S+2 1 0
S+2 1 0 S+T+2 0 2
S+T+2 0 2 S+T+3 0 1
S+T+3 0 1 S+T+4 0 0
S+T+4 0 0 S+2T+4 1 2

10.5.3.3 Circular Buffer (Length Less Than or Equal to 4096 Words)

In Dual Counter mode, aDMA channel can function asacircular buffer. A negative offset causes
the buffer pointer to wrap back to the start of the buffer. Since the buffer pointer does not
auto-increment after the last word in the buffer istransferred (that is, just after DCOL decrements
past zero), the distance for it to jump backwards is one less than the buffer size. Therefore, the
offset register (DOR) valueis (BUFFER_SIZE —1). The 12-bit DCOL fieldisset to
(BUFFER_SIZE —1), providing a maximum buffer length of 4096 words. DCOH determinesthe
number of buffer wraparounds during asingle block transfer (ablock transfer is complete when
both DCOH and DCOL decrement past zero). To allow for continuous circular operation of the
buffer, after the block transfer completesin DMA channel n, the DCRn (DE) bit either remains
set (according to DCRn(DTM2-0)), or it is set again (by an end-of-block-transfer DMA
interrupt). A circular buffer longer than 4096 words can be implemented using Counter Mode E.

DSP56300 Family Manual, Rev. 5

10-12 Freescale Semiconductor



DMA Controller Programming Model

10.5.3.3.1 DMA Counter Modes C, D and E—Triple Counter

In DMA Counter Modes C, D, and E, which are useful for three-dimensional block transfers, the
DCO is separated into three sections: DCOH, DCOM and DCOL..

Figure 10-4 shows that the size of each section varies depending on the selected mode. The total
transfersin this mode are equal to (DCOL + 1) x (DCOM + 1) x (DCOH + 1).

Mode C—DCOH (DCO[23-12]), DCOM (DCO[11-6]), and DCOL (DCO[5-0])

23 12 11 6 5 0
DCOH | DCOM | DCOL

Mode D—DCOH (DCO[23-18]), DCOM (DCO[17-6]), and DCOL (DCO[5-0])

23 18 17 6 5 0
DCOH | DCOM | DCOL

Mode E—DCOH (DCO[23-18]), DCOM (DCO[17-12]), and DCOL (DCO[11-0])

23 18 17 12 11 0
DCOH | DCOM | DCOL

Figure 10-4. DMA Counter Modes C, D, and E Layouts

Before each DMA transfer, DCOH, DCOM, and DCOL are tested for zero, and the following
actions occur based on the test results:

B DCOH>0,DCOM >0, and DCOL > 0. A transfer isinitiated with an address equal to the
address register. Then DCOL decrements by one and the address register increments by
one.

B DCOH >0,DCOM >0, and DCOL = 0. A transfer isinitiated with an address equal to the
address register. Then the address register increments with the first specified offset
register, DCOM decrements by one, and DCOL is loaded with its preloaded value.

B DCOH >0,DCOM =0, and DCOL = 0. A transfer isinitiated with an address equal to the
address register. The address register then increments with the second specified offset
register, DCOH decrements by one, and both DCOM and DCOL are loaded with their
preloaded value.

B DCOH=0,DCOM =0, and DCOL = 0. Thelast transfer isinitiated with an address equal
to the address register. The address register then increments with the second specified
offset register and DCOH, DCOM, and DCOL are loaded with their preloaded values.

Assume that DCOH is preloaded with the value 1, DCOM is aso preloaded with the value 1,
DCOL is preloaded with the value 2, DORO is preloaded with the value TO, DORL1 is preloaded
with thevalue T1, and the DSR is |oaded with the value S. Table 10-4 indicates the changesin
the DSR and the DCO during the DMA transfer.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-13



h -

P N

Controller

Table 10-4. Interaction Between the DSR and DCO in Mode C, D, or E

Before the Transfer After the Transfer
D D D D D D
DSR N D DSR N D
H M L H M L
S 1 1 2 S+1 1 1 1
S+1 1 1 1 S+2 1 1 0
S+2 1 1 0 S+TO0+2 1 0 2
S+TO+2 1 0 2 S+TO0+3 1 0 1
S+TO+3 1 0 1 S+T0+4 1 0 0
S+TO0+4 1 0 0 S+TO+T1l+4 0 1 2
S+TO0O+T1l+4 0 1 2 S+TO+T1+5 0 1 1
S+TO+T1+5 0 1 1 S+TO+T1+6 0 1 0
S+TO+T1+6 0 1 0 S+2T0+T1+6 0 0 2
S+2T0+T1l+6 0 0 2 S+2T0+T1+7 0 0 1
S+2TO+T1+7 0 0 1 S+2T0+T1+8 0 0 0
S+2T0+T1+8 0 0 0 S+2T0+2T1+8 1 1 2

10.5.3.4 Circular Buffer (Length Greater Than 4096 Words)

A circular buffer of length greater than 4096 words can be implemented using aDMA channel in
Counter Mode E. The 12-bit DCOL and 6-bit DCOM fields are concatenated into one 18-bit
counter field, allowing a buffer length of up to approximately 256 K words (218 words). The
counter field is concatenated using a primary offset of one (that is,

DORI = 0). The remainder of the setup is done the same way asfor acircular buffer
implementation using Dual Counter mode (see Section 10.5.3.2)—that is,

DCOM:DCOL = (BUFFER_SIZE - 1), and the secondary offset DORj = -(BUFFER_SIZE - 1).
For an even longer circular buffer (up to 224 words), it is necessary to use an
end-of-block-transfer DMA interrupt to perform the buffer pointer wraparound. The interrupt
service routine must explicitly modify the DMA source and/or destination address registers. For
this case, Single-Counter mode is used.

10.5.3.5 DMA Control Registers (DCR[5-0])

The DMA Control Registers (DCR[5-0]) are read/write registers that control the DMA operation
for each of their respective channels. All DCR bits are cleared during processor reset.

DSP56300 Family Manual, Rev. 5

10-14 Freescale Semiconductor



DMA Controller Programming Model

23 22 21 20 19 18 17 16 15 14 13 12
DE DIE DTM2 | DTM1 | DTMO | DPR1 | DPRO | DCON | DRS4 | DRS3 | DRS2 | DRS1
11 10 9 8 7 6 5 4 3 2 1 0
DRSO D3D DAM5 | DAM4 | DAM3 | DAM2 | DAM1 | DAMO | DDS1 | DDSO | DSS1 | DSSO
Figure 10-5. DMA Control Register (DCR)
Table 10-5. DMA Control Register (DCR) Bit Definitions
Bit Number| Bit Name | Reset Value Description
23 DE 0 DMA Channel Enable
Enables the channel operation. Setting DE either triggers a single block DMA transfer
in the DMA transfer mode that uses DE as a trigger or enables a single-block,
single-line, or single-word DMA transfer in the transfer modes that use a requesting
device as a trigger. DE is cleared by the end of DMA transfer in some of the transfer
modes defined by the DTM bits. If software explicitly clears DE during a DMA
operation, the channel operation stops only after the current DMA transfer completes
(that is, the current word is stored into the destination).
22 DIE 0 DMA Interrupt Enable

Generates a DMA interrupt at the end of a DMA block transfer after the counter is
loaded with its preloaded value. A DMA interrupt is also generated when software
explicitly clears DE during a DMA operation. Once asserted, a DMA interrupt request
can be cleared only by the service of a DMA interrupt routine. To ensure that a new
interrupt request is not generated, clear DIE while the DMA interrupt is serviced and
before a new DMA request is generated at the end of a DMA block transfer—that is, at
the beginning of the DMA channel interrupt service routine. When DIE is cleared, the
DMA interrupt is disabled.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

10-15



h -
P

Controller

Table 10-5. DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

21-19

DTM[2-0]

DMA Transfer Mode
Specify the operating modes of the DMA channel, as follows:

DE Cleared

After Transfer Mode

DTM[2 -0] | Trigger

000 Block Transfer

DE enabled and DMA request initiated. The
transfer is complete when the counter
decrements to zero and the DMA controller

reloads the counter with the original value.

request Yes

Word Transfer

A word-by-word block transfer (length set by
the counter) that is DE enabled. The transfer is
complete when the counter decrements to zero
and the DMA controller reloads the counter
with the original value.

001 request Yes

Line Transfer

A line by line block transfer (length set by the
counter) that is DE enabled. The transfer is
complete when the counter decrements to zero
and the DMA controller reloads the counter
with the original value.

010 request Yes

Block Transfer

The DE-initiated transfer is complete when the
counter decrements to zero and the DMA
controller reloads the counter with the original
value.

011 DE Yes

Block Transfer

The transfer is enabled by DE and initiated by
the first DMA request. The transfer is
completed when the counter decrements to
zero and reloads itself with the original value.
The DE bit is not cleared at the end of the
block, so the DMA channel waits for a new
request.

100 request No

Word Transfer

The transfer is enabled by DE and initiated by
every DMA request. When the counter
decrements to zero, it is reloaded with its
original value. The DE bit is not automatically
cleared, so the DMA channel waits for a new
request.

101 request No

110 Reserved

DSP56300 Family Manual, Rev. 5

10-16

Freescale Semiconductor



DMA Controller Programming Model

Table 10-5. DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number| Bit Name | Reset Value Description
21-19 DTM[2-0] DMA Transfer Mode (Continued)
cont DE Cleared
. eare
DTM[2 -0] | Trigger After Transfer Mode
111 Reserved

NOTE: When DTM[2-0] = 001 or 101, some peripherals can generate a second DMA
request while the DMA controller is still processing the first request (see the
description of the DRS bits).

18-17 DPR[1-0] 0 DMA Channel Priority

Define the DMA channel priority relative to the other DMA channels and to the core
priority if an external bus access is required. For pending DMA transfers, the DMA

controller compares channel priority levels to determine which channel can activate
the next word transfer. This decision is required because all channels use common
resources, such as the DMA address generation logic, buses, and so forth.

DPR[1-0] Channel Priority
00 Priority level O (lowest)
o1 Priority level 1
10 Priority level 2
11 Priority level 3 (highest)

« If all or some channels have the same priority, then channels are activated in a
round-robin fashion—that is, channel 0 is activated to transfer one word, followed by
channel 1, then channel 2, and so on.

« If channels have different priorities, the highest priority channel executes DMA
transfers and continues for its pending DMA transfers.

« If a lower-priority channel is executing DMA transfers when a higher priority channel
receives a transfer request, the lower-priority channel finishes the current word
transfer and arbitration starts again.

« If some channels with the same priority are active in a round-robin fashion and a
new higher-priority channel receives a transfer request, the higher-priority channel
is granted transfer access after the current word transfer is complete. After the
higher-priority channel transfers are complete, the round-robin transfers continue.
The order of transfers in the round-robin mode may change, but the algorithm
remains the same.

» The DPR bits also determine the DMA priority relative to the core priority for
external bus access. Arbitration uses the current active DMA priority, the core
priority defined by the SR bits CP[1-0], and the core-DMA priority defined by the
OMR bits CDP[1-0]. Priority of core accesses to external memory is as follows:

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

10-17



h -

P

Controller

Table 10-5. DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

18-17 cont.

DPR[1-0]

OMR - CDP[1-0] CP[1-0] Core Priority

00 00 0 (lowest)

00 01 1

00 10 2

00 11 3 (highest)

DMA accesses have higher priority
than core accesses

01 XX

DMA accesses have the same priority
as core accesses

10 XX

DMA accesses have lower priority
than core accesses

11 XX

« If DMA priority > core priority (for example, if CDP = 01, or CDP = 00 and
DPR > CP), the DMA performs the external bus access first and the core waits for
the DMA channel to complete the current transfer.

« If DMA priority = core priority (for example, if CDP = 10, or CDP = 00 and
DPR = CP), the core performs all its external accesses first and then the DMA
channel performs its access.

« If DMA priority < core priority (for example, if CDP=11, or CDP = 00 and
DPR < CP), the core performs its external accesses and the DMA waits for a free
slot in which the core does not require the external bus.

 In Dynamic Priority mode (CDP = 00), the DMA channel can be halted before
executing both the source and destination accesses if the core has higher priority. If
another higher-priority DMA channel requests access, the halted channel finishes
its previous access with a new higher priority before the new requesting DMA
channel is serviced.

16

DCON

DMA Continuous Mode Enable

Enables/disables DMA Continuous mode. When DCON is set, the channel enters the
Continuous Transfer mode and cannot be interrupted during a transfer by any other
DMA channel of equal priority. DMA transfers in the continuous mode of operation can
be interrupted if a DMA channel of higher priority is enabled after the continuous mode
transfer starts. If the priority of the DMA transfer in continuous mode (that is, DCON =
1) is higher than the core priority (CDP =01, or CDP = 00 and DPR > CP), and if the
DMA requires an external access, the DMA gets the external bus and the core is not
able to use the external bus in the next cycle after the DMA access even if the DMA
does not need the bus in this cycle. However, if a refresh cycle from the DRAM
controller is requested, the refresh cycle interrupts the DMA transfer. When DCON is
cleared, the priority algorithm operates as for the DPR bits.

DSP56300 Family Manual, Rev. 5

10-18

Freescale Semiconductor



DMA Controller Programming Model

Table 10-5. DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number

Bit Name | Reset Value

Description

15-11

DRS[4-0] 0

DMA Request Source

Encodes the source of DMA requests that trigger the DMA transfers. The DMA
request sources may be external devices requesting service through the IRQA, IRQB,
IRQC and IRQD pins, triggering by transfers done from a DMA channel, or transfers
from the internal peripherals. All the request sources behave as edge-triggered
synchronous inputs.

DRS[4-0] Requesting Device

00000 External (IRQA pin)

00001 External (IRQB pin)

00010 External (IRQC pin)

00011 External (IRQD pin)

00100 Transfer done from channel 0

00101 Transfer done from channel 1

00110 Transfer done from channel 2

00111 Transfer done from channel 3

01000 Transfer done from channel 4

01001 Transfer done from channel 5

01010 Peripheral request MDRQO

11111 Peripheral request MDRQ21

Peripheral requests 18—-21 (DRS[4-0] = 111xx) can serve as fast request sources.
Unlike a regular peripheral request in which the peripheral can not generate a second
request until the first one is served, a fast peripheral has a full duplex handshake to
the DMA, enabling a maximum throughput of a trigger every two clock cycles. This
mode is functional only in the Word Transfer mode (that is, DTM = 001 or 101). In the
Fast Request mode, the DMA sets an enable line to the peripheral. If required, the
peripheral can send the DMA a one cycle triggering pulse. This pulse resets the
enable line. If the DMA decides by the priority algorithm that this trigger will be served
in the next cycle, the enable line is set again, even before the corresponding register
in the peripheral is accessed.

This is a default list of encodings. For a detailed listing of encodings for a specific
device, refer to the Core Configuration section in the device-specific user's manual.

10

D3D 0

Three-Dimensional Mode

Indicates whether a DMA channel is currently using three-dimensional (D3D = 1) or
non-three-dimensional (D3D = 0) addressing modes. The addressing modes are
specified by the DAM bits.

9-4

DAM[5-0] 0

DMA Address Mode
Defines the address generation mode for the DMA transfer. These bits are encoded in
two different ways according to the D3D bit.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

10-19



h -

P N

Controller
Table 10-5. DMA Control Register (DCR) Bit Definitions (Continued)
Bit Number| Bit Name | Reset Value Description
3-2 DDS[1-0] 0 DMA Destination Space
Specify the memory space referenced as a destination by the DMA.
NOTE: In Cache mode, a DMA to Program memory space has some limitations (as
described in Chapter 8, Instruction Cache, and Chapter 11, Operating Modes and
Memory Spaces).
DDS1 DDSO0 DMA Destination Memory Space
0 0 X Memory Space
0 1 Y Memory Space
1 0 P Memory Space
1 1 Reserved
1-0 DSS[1-0] 0 DMA Source Space

Specify the memory space referenced as a source by the DMA.

NOTE: In Cache mode, a DMA to Program memory space has some limitations (as
described in Chapter 8, Instruction Cache, and Chapter 11, Operating Modes and
Memory Spaces).

DSS1 DSSO0 DMA Source Memory Space
0 0 X Memory Space
0 1 Y Memory Space
1 0 P Memory Space
1 1 Reserved

10.5.3.5.1 Non-3D Addressing Modes (D3D = 0)

If D3D = 0, the DAM bhits are separated into two groups as described in Table 10-6:

B DAMI[5-3]. Defines the destination address generation mode
B DAM[2-0]. Defines the source address generation mode

The destination and source address modes can be chosen independently, but they always use the
same counter and, depending on the selected modes, they can also use the same offset register.

DSP56300 Family Manual, Rev. 5

10-20

Freescale Semiconductor



DMA Controller Programming Model

Table 10-6. Address Generation Mode (D3D = 0)

Destination Source Addressing Mode Counter Offset Re_gister
DAM[5-3] DAM[2-0] Mode2 Selection
000 000 2D B DORO
001 001 2D B DOR1
010 010 2D B DOR2
011 011 2D B DOR3
100 100 No Update A None
101 101 Postincrement-by —1 A None
110 110 Reserved
111 111 Reserved
Notes: 1. If the destination address generation mode specifies a different counter mode than the source address
generation mode, then the counter mode is B.
2. In Mode A, the counter is a single 24-bit register (DCO). In Mode B, the counter is two 12-bit registers (DCOH
and DCOL, the upper and lower halves of DCO, respectively).

The address generation mode can be one of the following:

B No Update mode. The DMA controller accesses a constant address for the entire transfer.
This addressing mode is useful when accessing peripheral devices aswell as other single
address devices such as FIFOs.

B Postincrement-by-1 mode. The DMA controller accesses consecutive addresses. This
addressing mode is useful when accessing data structures in memories in which the data
elements are placed in successive memory locations.

B Two-dimensional mode. The DMA controller accesses data at consecutive addresses for a
given number of times (DCOL) and adds the contents of an offset register to the generated
address and repeats the entire process for another given number of times (DCOH). DCOL
and DCOH are the two sections of the DCO counter. See Section 10.5.3 for details on
DCO operation. This addressing mode is useful when for two-dimensional arrays of data.

10.5.3.5.2 3D Modes (D3D = 1)

When D3D = 1 (three-dimensional mode), the source addressing mode, the destination
addressing mode, or both are three-dimensional. In three-dimensional mode, a pair of offset
registers (either DORO/DOR1 or DOR2/DOR3) are used for a three-dimensional source (or
destination) access. The other side of the access—destination (or source)—can use the same or
different offset registers. Specifically, the offset register pair in a corresponding
three-dimensional destination (or source) access can be the same register pair or adifferent
register pair. Similarly, the offset register in a corresponding two-dimensional destination (or
source) access can be any one of the four offset registers. These offset register choices are

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-21



P N

Controller

indicated in Table 10-7 and in Table 10-8. In three-dimensional mode, the address and counter
modes are controlled by the DAM[5-0] bits, which are separated into three groups:

B DAM[5-3]. Defines the address generation mode (See Table 10-7)
B DAM]2]. Defines the address mode select (See Table 10-8)
B DAM[1-0]. Definesthe DMA counter mode (See Table 10-9)

Table 10-7. Address Generation Mode (D3D = 1)

DAM[5-3] Addressing Mode Offset Select
000 Two-dimensional DORO
001 Two-dimensional DOR1
010 Two-dimensional DOR2
011 Two-dimensional DOR3
100 No Update None
101 Postincrement-by-1 None
110 Three-dimensional DORJ[0-1]
111 Three-dimensional DOR[2-3]

Table 10-8. Address Mode Select (D3D =1)

DAM[2] Addressing Mode Offset Select
0 Source: Three-dimensional Source: DOR[0-1]
Destination: Defined by DAM[5-3] Destination: Defined by DAM[5-3]
1 Source: Defined by DAM[5-3] Source: Defined by DAM[5-3]
Destination: 3D Destination: DOR[2-3]

Table 10-9. Counter Mode (D3D = 1)

DAM[1-0] Counter Mode DCO Layout
00 Mode C DCOH[23-12] ‘ DCOM[11-6] DCOL[5-0]
01 Mode D DCOH[23-18] DCOM[17-6] DCOL[5-0]
10 Mode E DCOH[23-18] | DCOM [17-12] ‘ DCOL[11-0]
11 — Reserved

In Three-dimensional Address Generation mode, the DMA controller accesses data at
consecutive addresses for a given number of times (DCOL) and then adds the contents of an
offset register to the generated address. This process repeats for another given number of times
(DCOM) after which another offset is added to the generated address. The entire process repeats
for a given number of times (DCOH). DCOL, DCOM, and DCOH are the three sections of the
DCO counter. See Section 10.5.3, DMA Counters (DCO[5-0] ), on page 10-9 for details on the

DSP56300 Family Manual, Rev. 5

10-22 Freescale Semiconductor



DMA Controller Programming Model

DCO operation. This addressing mode is useful when a number of two-dimensional arrays of
data are accessed. The Offset Select entriesin Table 10-7 and Table 10-8 define the offset
registers that are selected to increment the address register. If one side of the transfer uses
two-dimensional mode, only one offset register is needed to increment the address register for
that side of the transfer. In three-dimensional mode, two offset registers are needed.

10.5.3.6 DMA Offset Registers (DOR[3-0])

The DMA Offset Registers (DOR[3-0]) are four 24-bit read/write registers that store the offset
values required by some DMA addressing modes. All two-dimensional transfers use one offset
register. All three-dimensional transfers use two offset registers. For details on how DORs are
assigned and used, refer to Section 10.5.3.5.1, Non-3D Addressing Modes (D3D = 0), on page
10-20 and Section 10.5.3.5.2, 3D Modes (D3D = 1), on page 10-21.

10.5.3.7 DMA Status Register (DSTR)

The DMA Status Register (DSTR) isa 24-bit read only register that reflects the status of the
DMA operation.

23 22 21 20 19 18 17 16 15 14 13 12
11 10 9 8 7 6 5 4 3 2 1 0
DCH2 | DCH1 | DCHO | DACT DTD5 | DTD4 | DTD3 | DTD2 | DTD1 | DTDO

Reserved bit. Read as zero.

Figure 10-6. DMA Status Register (DSTR)

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-23



Controller

Table 10-10. DMA Status Register (DSTR) Bit Definitions

Bit Number Bit Name Reset Value Description
23-12 0 Reserved. The value is always zero.
11-9 DCH[2-0] 0 DMA Active Channel
Indicate the currently active channel. The value of the DCH bits is
valid only if bit 8 DACT = 1.
DCH(2-0) Active Channel

000 DMA Channel 0
001 DMA Channel 1
010 DMA Channel 2
011 DMA Channel 3
100 DMA Channel 4
101 DMA Channel 5
110 Reserved

111 Reserved

Note:  When activity passes from one DMA channel to another and
the DMA interface accesses external memory (which
requires one or more wait states), the DACT and DCH status
bits in the DSTR may indicate improper activity status for
DMA Channel 0 (DACT =1 and
DCH[2-0] = 000). There is no workaround for this problem.

8 DACT 0 DMA Active

Set if the DMA is in the middle of a transfer. This bit is cleared if all the

DMA channels are disabled or are awaiting DMA requests. This bit

should be polled and tested for zero before entering a low power

mode by executing a STOP instruction.

Note:  When activity passes from one DMA channel to another and
the DMA interface accesses external memory (which
requires one or more wait states), the DACT and DCH status
bits in the DSTR may indicate improper activity status for
DMA Channel 0 (DACT =1 and
DCH[2-0] = 000). There is no workaround for this problem.

DSP56300 Family Manual, Rev. 5
10-24 Freescale Semiconductor



DMA Restrictions

Table 10-10. DMA Status Register (DSTR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
7-6 0 Reserved. Write to zero for future compatibility.
5-0 DTD[5-0] 1 DMA Transfer Done

Each DTD bit is assigned for its specific DMA channel (for example,
DTD[5] = DMA Channel 5). A DTD bit is set when the last word of a
single block transfer is stored in the destination, stopping channel
operation. At the same time, the DE bit in the related DCR register
may be cleared according to the transfer mode as defined by
DTM[2-0]. The last transfer is defined as the one in which the DMA
counter reloads its initial value or when software explicitly clears DE. If
the related DCR[DIE] bit is set, then the assertion of the DTD bit
causes a DMA interrupt request. When the DMA Interrupt is disabled,
the core may verify the channel status by polling this bit. The DTD bit
for a channel is reset when software sets the DE bit in the
corresponding DCR.

NOTES:

» Because of pipeline dependencies, after the DCR[DE] bit is set, the
corresponding DTDx bit is cleared only after an additional three
instruction cycles.

« If the DMA channel is in a word transfer mode, clearing DE sets the
corresponding DTD bit only after a trigger previously captured by
the DMA is handled. _

* When any DMA channel is set in the infinitive transfer mode (DE is
not cleared at end of block) the DTD bit may never be set due to
continuous triggering of this channel. However, a DMA interrupt is
generated, as defined above, regardless of the DTD bit value.

10.6 DMA Restrictions

The following restrictions apply to the DMA operation:

1.

Before executing the STOP instruction, poll the DACT status bit until it is read as zero.
When the chip enters the Stop state, all previously latched DMA triggers are cleared.

The core exitsthe Wait state when aDMA channel accepts atrigger that i s programmed
as the selected source trigger. The DMA prevents the core from entering the Wait state
If the DMA isactive.

The DMA Controller can access only the Transmit/Receive Data registers of peripheral
Interfaces when a source or destination is specified in internal 1/0 space.

If aDMA channel accessto external memory is delayed due to bus arbitration or
memory wait, the other DMA channels aso stop, since the DMA mechanism does not
distinguish between the different channels.

Depending on the DSP563xx derivative, theinternal RAM is divided into banks of
either 256 or 1024 words. If the core and the DMA access different banks, they do not
interfere with one another; each continues operations at its maximum speed. If both the
core and the DMA access the same bank, then the core has priority and the DMA is

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-25



h -

P N

Controller

10.

delayed until afree dot isavailable. If the DSP563xx derivative contains an EFCOP, the
DMA cannot access the derivative' s lower banks—that is, the DMA cannot access the
lower 16 banks (4 K) of the DSP56307 X and Y memory or the lower 10 banks (10 K)
of the DSP56311 X and Y memory. These lower banks are shared between the core and
the EFCOP.

Write to the DMA Address Registers and the DMA Counter only when the channel that
usesthemisdisabled (DE = 0 and DTD = 1). The operation of the DMA Controller
cannot be guaranteed if one of these registersis written while the DMA channel that
usesit is busy.

A changein the request source should beinitiated only when the corresponding DM A
channel isidle. If the channel isforced to enter the idle state by clearing the DMA
Enable (DE) control bit, the corresponding DMA Transfer Done (DTD) status bit should
be polled until itisread as‘1’.

If aDMA channel is programmed to perform accesses in the word transfer mode, the
corresponding DTD status bit is set only after the current captured request is serviced by
an appropriate transfer. This ensures that the last captured request is not lost.

If the channel priority islow, the DTD is set only when it receives the priority to
perform its accesses. In order to shorten this time, the channel priority may be raised
before DE is cleared.

WhileaDMA channel is enabled (DE = 1), do not modify any of the channel DCR hits,
except for the DE bit itself.

Dueto pipelining, after the DE bit in DCRXx is set, the corresponding DTDx bit in DSTR
Isnot cleared until after three more instruction cycles.

The DMA Controller cannot access GPIO pins.

DSP56300 Family Manual, Rev. 5

10-26

Freescale Semiconductor



Operating Modes and Memory Spaces 11

The DSP56300 family core mode pins (MODA, MODB, MODC, and MODD) determine the
reset vector address that pointsto the start-up procedure when the device leaves the Reset state.
The mode pins are sampled as the device exits from Reset. The sampled state of these pinsis
subject to a mask-programmed look-up table that can be used as afilter to disable the user from
entering some of the operating modes. Thisfiltered state is written tothe MD, MC, MB, and MA
bitsin the Operating Mode Register (OMR). When the Reset state is exited, the mode pins
become general-purposeinterrupt pins, IRQA, IRQB, IRQC, and IRQD. When the deviceisnot in the
Reset state, software can change the OMR mode bits (MA, MB, MC, and MD). Table 11-1 lists
the mode assignments in the DSP56300 family core. The reset vector is chosen from
device-specific addresses: RESET1, RESET 2, and RESET3. Each reset vector in a specific
DSP56300 family deviceis assigned one of two different values. Table 11-2 shows typical
values. These reset vectors are implementation-specific.

Table 11-1. DSP Core Operating Modes

MOD[D-A] Mode Description Reset Vector
0000 0 Expanded Mode 0 RESET1

0001-0111 1-7 System Configuration Mode 1-7 RESET3
1000 8 Expanded Mode 8 RESET2

1001-1111 9-F System Configuration Mode 9-F RESET3

Table 11-2. DSP Core Reset Vectors, Possible Values

RESET1 RESET2 RESET3
$000000 $004000 $000000
$C00000 $008000 $FF0000

In Expanded Modes 0 and 8, a hardware reset causes the DSP56300 family core to jump to the
mask-programmed external program memory location RESET1 or RESET?2, respectively, and
execute the code fetched from this location. These locations are implementation specific. See the
appropriate user’ s manual for more information.

In the System Configuration Modes 1-7 and 9+, a hardware reset causes the DSP56300 family
core to jump to the mask-programmed internal program memory (usualy ROM) location

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 11-1



ating Modes and Memory Spaces

RESET3, and execute the code fetched from this location. These routines are typically
Implementation-specific, and can be contained in the bootstrap code.

11.1 DSP56300 Family Core Memory Map

The memory space of the DSP56300 family core is partitioned into program memory space (P),
X data memory space, and Y data memory space. The data memory space is divided into X data
memory and Y data memory in order to work with the two Address Arithmetic Logic Units
(Address ALUs) and to feed two operands simultaneously to the Data ALU. Each memory space
may include internal RAM, and/or internal ROM and can be expanded off-chip under software
control. Figure 11-1 shows the three independent memory spaces of the DSP56300 family core:

X data, Y data, and program.

Program X Data Y Data
$FFFFFF $FFFFFF $FFFFFF Internal I/O
Internal I/0 External I/0
$FFFF80
RInternald $FFFF80 Internal /O Internal 1/O
eserve OIMEXternal oR/IExternaI
emor emor
SFFF000 y $FFF000 y
Internal Internal
Bootstrap ROM Reserved Reserved
$FF0000 $FF0000 $FF0000
External
External External
Internal Internal Internal
$000000 $000000 $000000

NOTE 1: The size of the Bootstrap ROM is device-specific.

NOTE 2: External program memory begins immediately after the internal program memory. When the
I-Cache is enabled, the address range that defines cache location (which is device-dependent) in internal P
memory is redirected to address external memory at that range. When enabled, the cache memory space is

inaccessible to the user.

Figure 11-1. DSP56300 Core Memory Map

Individual members of the DSP56300 family can have different amounts of X data, Y data, and
program memory. Consult the appropriate user’s manual and technical data sheet for more

information.

DSP56300 Family Manual, Rev. 5

11-2 Freescale Semiconductor



DSP56300 Family Core Memory Map
11.1.1 X Data Memory Space
The X data memory spaceis divided into five parts:

Internal X 1/0O space

Switchable internal or external X I/O memory space
Reserved space for X ROM or RAM

External X data memory

Internal X data RAM

11.1.2 Internal X I/O Space

The on-chip X 1/O peripheral registers occupy the top 128 locations of the X data memory space
($FFFF80-$FFFFFF) and can be accessed by the MOV E and MOV EP instructions, as well as by
bit-oriented instructions, such asthe BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR,
BSSET, JCLR, JSET, JSCLR, and JSSET. Some of the DSP56300 family core registers are
mapped to the internal X 1/0O space aswell, as Table 11-3 shows.

Table 11-3. Internal X I/O Space Map

Register Block Address Register Name and Description
IPRC PIC $FFFFFF Interrupt Priority Register Core
IPRP $FFFFFE Interrupt Priority Register Peripheral
PCTL PLL $FFFFFD PLL Control Register
OGDB OnCE $FFFFFC OnCE GDB Register
BCR PORT A $FFFFFB Bus Control Register
DCR $FFFFFA DRAM Control Register
AARO $FFFFF9 Address Attribute Register 0
AAR1 $FFFFF8 Address Attribute Register 1
AAR2 $FFFFF7 Address Attribute Register 2
AAR3 $FFFFF6 Address Attribute Register 3

IDR $FFFFF5 ID Register
DSTR DMA $FFFFF4 DMA Status Register
DORO $FFFFF3 DMA Offset Register 0
DOR1 $FFFFF2 DMA Offset Register 1
DOR2 $FFFFF1 DMA Offset Register 2
DOR3 $FFFFFO DMA Offset Register 3
DSRO DMAChannel | $FFFFEF DMA Source Address Register
DDRO 0 $FFFFEE DMA Destination Address Register
DCOO0 $FFFFED DMA Counter
DCRO $FFFFEC DMA Control Register

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 11-3



ating Modes and Memory Spaces

Table 11-3. Internal X I/O Space Map (Continued)

Register Block Address Register Name and Description
DSR1 DMAChannel | $FFFFEB DMA Source Address Register
DDR1 1 $FFFFEA DMA Destination Address Register
DCO1 $FFFFEQ DMA Counter
DCR1 $FFFFES8 DMA Control Register
DSR2 DMAChannel | $FFFFE7 DMA Source Address Register
DDR2 2 $FFFFEG DMA Destination Address Register
DCO2 $FFFFES DMA Counter
DCR2 $FFFFE4 DMA Control Register
DSR3 DMAChannel | $FFFFE3 DMA Source Address Register
DDR3 3 $FFFFE2 DMA Destination Address Register
DCO3 $FFFFEL DMA Counter
DCR3 $FFFFEO DMA Control Register
DSR4 DMAChannel | $FFFFDF DMA Source Address Register
DDRA4 4 $FFFFDE DMA Destination Address Register
DCO4 $FFFFDD DMA Counter
DCR4 $FFFFDC DMA Control Register
DSR5 DMAChannel | $FFFFDB DMA Source Address Register
DDR5 > $FFFFDA DMA Destination Address Register
DCO5 $FFFFD9 DMA Counter
DCR5 $FFFFD8 DMA Control Register
Reserved On-Chip $FFFFD7 Reserved for On-Chip X-1/0 mapped Register
X-::/ggssezgfsed Reserved for On-Chip X-1/0 mapped Register
Reserved for On-Chip X-1/0 mapped Register
Reserved for On-Chip X-1/0 mapped Register
$FFFF80 Reserved for On-Chip X- I1/0 mapped Register

11.1.3 Switchable Internal or External X I/O Memory

The X memory space $FFFO00-$FFFF7F is device-specific and is either external X data memory
or internal X 1/O space for on-chip memory-mapped peripheral registers.

11.1.3.1 Reserved Space for X ROM or RAM

The X memory space $FFO000-$FFEFFF is reserved for inclusion of X data ROM or RAM
modules (2048 locations each). The importance of modular organization of the X ROM/RAM
becomes apparent in the case of aDMA access to the internal X memory simultaneous with a
core access to the same space. DMA and core accessesto different banks can be completed at full
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

DSP56300 Family Manual, Rev. 5

11-4 Freescale Semiconductor



DSP56300 Family Core Memory Map

11.1.3.2 External X Data Memory

The external X memory space is for expanding available X memory. The starting address of the
external X data memory space is device-dependent. Refer to the appropriate user’s manual to
determine the actual address used in that device.

11.1.3.3 Internal X Memory

The X memory space $000000-$00FFFF is for internal X RAM modules.? The last address of
theinternal X memory is device-dependent. Refer to the appropriate user’s manual to determine
the actual address used in that device. The importance of modular organization of the X RAM
becomes apparent during a DMA accessto the internal X memory simultaneous with a core
access to the same space. DM A and core accesses to different banks can be completed at full
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.4 Y Data Memory Space
TheY data memory spaceis divided into five parts:

Internal/External Y 1/O space

Switchable internal or external Y |/O memory space
Reserved spacefor Y ROM or RAM

External Y data memory

Internal Y data RAM

11.1.4.1 Internal/External Y I/O Space

The off-chip or on-chip Y 1/O peripheral registers occupy the top 128 locations of the Y data
memory space ($FFFF80-$FFFFFF) and can be accessed by MOV E and MOV EP instructions
and by bit-oriented instructions (BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR,
BSSET, JCLR, JSET, JSCLR and JSSET). This space is partitioned into eight equal parts (16
locations each). Each part is device-specific and is either external

Y 1/O or internal Y 1/O space.

11.1.4.2 Switchable Internal or External Y I/O Memory

TheY memory space $FFFO00-$FFFF7F is device-specific and is either external Y data memory
or internal Y 1/O space for on-chip memory-mapped peripheral registers.

11.1.4.3 Reserved Space for Y ROM or RAM

The' Y memory space $FFO000-$FFEFFF is reserved for inclusion of Y data ROM or RAM
modules (2048 locations each). The importance of modular organization of the Y ROM/RAM

4. The size of modules is device dependent. See the device user’'s manual.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 11-5



ating Modes and Memory Spaces

becomes apparent in the case of aDMA accessto theinternal Y memory simultaneous with a
core access to the same space. DMA and core accessesto different banks can be completed at full
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.4.4 External Y Data Memory

The externa Y data memory spaceis for expanding available Y datamemory. The starting
address of the external Y data memory space is device-dependent. Refer to the appropriate user’s
manual to determine the actual address used in that device.

11.1.4.5 Internal Y Memory

The'Y memory space $000000-$00FFFF is for internal Y RAM modules.? The last address of
theinternal Y memory is device-dependent. Refer to the appropriate user’ s manual to determine
the actual address used in that device. The importance of modular organization of the Y RAM
becomes apparent in the case of aDMA access to theinternal Y memory simultaneous with a
core access to the same space. DMA and core accessesto different banks can be completed at full
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.5 Program Memory
The program memory space is divided into five parts:

Bootstrap ROM

Reserved space for Program ROM
External program memory
Internal program memory

Internal instruction cache memory

11.1.5.1 Bootstrap ROM Space

The bootstrap ROM space contains factory programming that allows the DSP to initialize when
power is applied. Some DSPs use a 192-word space ($FF0000-$FFO0BF) and some usea 3 K
words space ($FFO0000-$FFOCQ00). The bootstrap ROM space cannot be accessed by the DMA.

11.1.5.2 Reserved Space for Program ROM

The program memory space $FFO0CO-$FFFFFF is reserved for inclusion of Program ROM
modules (2048 locations each). Program ROM may be used to contain some operating system
program or other application-specific pre-defined user programs. The importance of modular
organization of the Program ROM space is apparent in the case of DMA access to theinternal
program memory simultaneous with core access to the same space. DMA and core accesses to

5. The size of modules is device dependent. See the device user’'s manual.

DSP56300 Family Manual, Rev. 5

11-6 Freescale Semiconductor



Sixteen-Bit Compatibility Mode

different banks can be completed at full speed, while accesses to the same bank halt the DMA
until aprogram memory slot isavailable.

11.1.5.3 External Program Memory

The external program memory space isfor expanding internal program memory. The starting
address of the external program memory space is device-dependent and also depends on the
amount of on-chip Program RAM and the instruction cache size. Refer to the appropriate user’s
manual to determine the actual address used in that device.

11.1.5.4 Internal Program Memory

The program memory space $000000-$00FFFF is for internal Program RAM modules.® The last
address of the internal program memory is device-dependent. Refer to the appropriate user’s
manual to determine the actual address used in that device. The importance of modular
organization of the program memory becomes apparent in the case of aDMA access to the
internal program memory simultaneous with a core access to the same space. DMA and core
accesses to different banks can be completed at full speed, while accesses to the same bank halt
the DMA until aprogram memory slot is available. The Program RAM provides a method of
changing the program dynamically, allowing efficient overlaying of DSP software algorithms.

11.1.5.5 Internal Instruction Cache RAM

The size of the instruction cache is 1024 24-bit words if it is enabled. The starting address of the
Instruction cache space is device-dependent. The instruction cache can be disabled by clearing
the Cache Enable (CE) bit in the Status Register (SR). If the CE hit is cleared, the instruction
cache RAM becomes part of the internal Program RAM. The instruction cacheis used to
minimize access time for accesses to external program memory space. If the CE bit is set, the
instruction is enabled and no longer accessible to the user and its address space is assigned to
external memory. A complete description of the instruction cacheis provided in Chapter 8,
Instruction Cache.

11.2 Sixteen-Bit Compatibility Mode

When the Sixteen Bit Compatibility (SC) mode bit is set, the memory map is changed to allow
easy access to memory mapped 1/O, as described in Figure 11-2.

6. The size of modules is device dependent. See the device user’'s manual.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 11-7



ating Modes and Memory Spaces

Program X Data Y Data
$FFFF $FFFF o SFFFF [ 1 omal 10
nierna or External 1/0
$FF80 $FF80
Internal I/O Internal 1/0
External or External or External
Memor I/O Memory I/O Memory
y $F000 $F000
External External
Memory Memory
Internal Internal Internal
RAM RAM RAM
$0000 $0000 $0000

NOTE 1: External program memory begins immediately after the internal program memory.
When the SR[CE] bit is enabled, the cache memory space is inaccessible to the user.

Figure 11-2. DSP56300 Core Memory Map (SC =1)

For details on thismode, how it affects AGU operations, and functional restrictions, see Chapter
4, Address Generation Unit.

11.3 Memory Switch Mode

Each device has from four to eight memory switch modes, which are set by bits in the Operating
Mode Register (OMR). Refer to the individual device user’s manual for specific information.

DSP56300 Family Manual, Rev. 5

11-8 Freescale Semiconductor



Guide to the Instruction Set 12

This chapter presents the DSP56300 instruction format as well as partial encodings for usein
instruction encoding. The alphabetical instruction descriptions are presented in Chapter 13,
Instruction Set. The complete range of instruction capabilities combined with the flexible
DSP56300 addressing modes provide avery powerful assembly language for implementing DSP
algorithms. The instruction set allows efficient coding for DSP high-level language compilers,
such as the C Compiler. Hardware looping capabilities, an instruction pipeline, and paralel
moves minimize execution time.

12.1 Instruction Formats and Syntax

The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an
optional extension word. This extension word can be either an effective address extension word
or an immediate data extension word. While the extension word occupies the full 24-bit width of
the program memory, only the sixteen Least Significant Bits (LSBs) are relevant for effective
address extension or for immediate data. Therefore, the extension word is effectively sixteen bits
wide. Figure 12-1 shows the general formats of the instruction word. Most instructions specify
data movement on the X Data Bus (XDB), Y DataBus (YDB), and Data ALU operationsin the
same operation word. The DSP56300 core performs each of these operationsin parallel.

23 8 7 0
OPCODE
XXX [x[x]x

Optional Effective Address Extension

Data Bus Movement

23 8 7 0
OPCODE
XXX x[x[x]x

Optional Immediate Data Extension

Data Bus Movement

23 0

Non-parallel Operation Code

Optional Effective Address Extension

Figure 12-1. General Formats of an Instruction Word

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-1



e to the Instruction Set

The Data Bus Movement field provides the operand reference type, which selects the type of
memory or register reference to be made, the direction of transfer, and the effective address(es)
for data movement on the XDB and/or YDB. Thisfield may require additional information to
fully specify the operand for certain addressing modes. An extension word following the
operation word is used to provide immediate data, absolute address or address displacement, if
required. Examples of operations that may include the extension word include move operation
such as MOVE X:$100,X0.

The Opcodefield of the operation word specifiesthe Data ALU operation or the Program Control
Unit (PCU) operation to be performed.

Theinstruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2
show. A paralél instruction is organized into five columns. opcode, operands, two optional
parallel-move fields, and an optional condition field. The condition field disablesthe execution of
the opcode if the condition isnot true, and it cannot be used in conjunction with the parallel move
fields.

Table 12-1. Parallel Instruction Format

Example Opcode Operands XDB YDB Condition
Example 1: MAC X0,Y0,A X:(R0O)+,X0 Y:(R4)+,Y0
Example 2: MOVE X:-(R1),X1
Example 3: MAC X1,Y1,B
Example 4: MPY X0,Y0,A IFeq

Assembly-language source codes for some typical one-word instructions are shown in Table
12-1. Because of the multiple bus structure and the parallelism of the DSP56300 core, as many as
three data transfers can be specified in the instruction word—one on the XDB, one on the YDB,
and one within the Data ALU. Thesetransfers are explicitly specified. A fourth data transfer is
implied and occurs in the PCU (instruction word prefetch, program looping control, and so on).
The opcode column indicates the Data ALU operation to be performed, but may be excluded if
only aM OV E operation is needed. The operands column specifies the operands to be used by the
opcode. The XDB and Y DB columns specify optional datatransfersover the XDB and Y DB and
the associated addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which
address space is being referenced.

A non-parallel instruction is organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown in Table
12-2. Non-parallel instructions include all the program control, looping, and peripherals
read/write instructions. They also include some Data AL U instructions that are impossible to
encode in the Opcode field of the parallel format.

DSP56300 Family Manual, Rev. 5

12-2 Freescale Semiconductor



Operand Lengths

Table 12-2. Non-Parallel Instruction Format

Example Opcode Operands
Example 1: JEQ (R5)
Example 2: MOVEP #data,X:ipr
Example 3: RTS

12.2 Operand Lengths

Operand lengths are defined as follows:. abyte is 8 bits, aword is 24 bits, along word is 48 hits,
and an accumulator is 56 bits, as shown in Figure 12-2. The operand size for each instruction is
either explicitly encoded in the instruction or implicitly defined by the instruction operation.

70
[ I eye
23 0

| | word

48 0
| | Long Word

56 0
| | Accumulator

Figure 12-2. Operand Lengths

In Sixteen-bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, aword is 16
bits, along word is 32 bits, and an accumulator is 40 bits.

7 0
[ 1 Bye
23 0
| | | Word
47 0
| | | | | Long Word

55 0
| Accumulator

Figure 12-3. Operand Lengths in Sixteen-Bit Mode

Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-3



e to the Instruction Set

Table 12-3. Register Operand Lengths

Registers '\I:I;ggik;?;g Operand Lengths Supported Sixteen-Bit Mode
ALU 10 8- or 24-bit data 16-bit data
With concatenation: 48- or 56-bit data With concatenation: 32- or

40-bit data

AGU address registers 8 24-bit address or data No

AGU offset registers 8 24-bit offsets or 24-bit address or data No

AGU modifier registers 8 24-bit modifiers or 24-bit address or data | No

Program Counter (PC) 1 24-bit address No

Status Register (SR) 1 8- or 24-bit data 16-bit data

Operating Mode 1 8- or 24-bit data 16-bit data

Register (OMR)

Loop Counter (LC) 1 24-bit address No

Loop Address (LA) 1 24-bit address No

12.2.1 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register; long-word
operands occupy two concatenated registers. The Least Significant Bit (L SB) isthe right-most bit
(bit 0) and the Most Significant Bit (MSB) isthe left-most bit (bit 23 for word operands and bit
47 for long-word operands). In Sixteen-Bit mode, the LSB isbit 8 and bits 24 to 31 areignored
for long-word operands. The MSB is the leftmost bit.

Thetwo accumulator extension registers are 8 bits wide. When an accumulator extension register
IS a source operand, it occupies the low-order portion (bits 0-7) of the word; the high-order
portion (bits 8-23) is sign-extended (see Figur e 12-5). As a destination operand, this register
receives the low-order portion of the word, and the high-order portion is not used. Accumulator
operands occupy an entire group of three registers (for example, A2:A1:A0 or B2:B1:B0). The
L SB isthe right-most bit (bit O in 24-bit mode and bit 8 for 16-bit mode), and the MSB isthe
leftmost bit (bit 55).

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator valueis
optionally shifted according to the Scaling mode bits SO and S1 in the Mode Register (MR). If the
data out of the shifter indicates that the accumulator extension register isin use and the dataisto
be moved into a 24-bit destination, the value stored in the destination is limited to a maximum
positive or negative saturation constant to minimize truncation error. Limiting does not occur if
an individual 24-bit accumulator register (A1, A0, B1, or BO) is specified as a source operand
instead of the full 56-bit accumulator (A or B). Thislimiting feature allows block floating-point
operations to be performed with error detection since the L bit in the Condition Code Register
(CCR) islatched.

DSP56300 Family Manual, Rev. 5

12-4 Freescale Semiconductor



Operand Lengths

15 8 7 0
Bus
—
Register A2 and B2 g LSB of
Used as a Destination Not Use Y Word Y
15 87 0
Register A2 and B2 Not Used A2/B2 Register A2, B2
Used as a Source
\j
15 8 7 0
Sign Extension Contents Bus
of A2/B2 of A2/B2

Figure 12-4. Reading and Writing ALU Extension Registers

When a 56-bit accumulator (A or B) is specified as adestination operand D, any 24-bit source
datato be moved into that accumulator is automatically extended to 56 bits by sign-extending the
MSB of the source operand (bit 23) and appending the source operand with 24 zerosin the L SBs.
For 24-bit source operands, both the automatic sign extension and zeroing features can be
disabled by specifying the destination register to be one of the individual 24-bit accumulator
registers (Al or B1).

12.2.2 AGU Registers

The twenty-four 24-bit AGU registers can be accessed as word operands for address, address
offset, address modifier, and data storage. The Rn notation designates one of the eight address
registers, R[0-7]. The Nn notation designates one of the eight address offset registers, N[0-7].
The Mn notation designates one of the eight address modifier registers, M[0—7].

12.2.3 Program Control Registers

Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register
occupies the low-order 8 bits, the Extended chip Operating Mode (EOM) register occupies the
middle-order 8 bits, and the System Stack Control Status (SCS) register occupies the high-order 8
bits. The OMR and the V ector Base Address (VBA) are accessed as word operands,; however, not
all of their bits are defined. Reserved bits are read as zero and should be written with zero for
future compatibility.

Within the 24-bit SR, the user Condition Code Register (CCR) occupies the low-order 8 bits, the
system Mode Register (MR) occupies the middle-order 8 bits, and the Extended Mode Register
(EMR) occupies the high-order 8 bits. The SR can be accessed as aword operand. The MR and
CCR can be accessed individually as word operands (see

Figure 12-5). The Loop Counter (LC), Loop Address (LA), stack Size (SZ), System Stack High
(SSH), and System Stack Low (SSL) registers are 24 bits wide and are accessed as word

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-5



e to the Instruction Set

operands. The system Stack Pointer (SP) is a 24-bit register that is accessed as a word operand.
The PC, aspecia 24-bit-wide Program Counter register, is generally referenced implicitly asa
word operand, but it can also be referenced explicitly (by all PC-relative operation codes) as a

word operand (see Figure 12-5).

23 8 7 0

Bus

MR, CCR, and COM

Used as a Destination Not Used '
MR, CCR, and COM MR, CCR, COM
Used as a Source
23 8 7 ¢ oY
Zero Fill Bus

Figure 12-5. Reading and Writing Control Registers

12.2.4 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction extension
words. The 48-bit System Stack (SS) can store the concatenated PC and SR registers (PC:SR) for
subroutine calls, interrupts, and program looping. The SS also supports the concatenated LA and
LC registers (LA:LC) for program looping. The 16-bit-wide X and Y memories can store word
and byte operands. Byte operands, which usually occupy the low-order portion of the X or Y
memory word, are either zero extended or sign-extended on the XDB or YDB.

12.3 Instruction Groups
Theinstruction set is divided into the following groups:

B Arithmetic

Logical

Bit Manipulation

Loop

Move

Program Control

B Instruction Cache Control

Each instruction group is described in the following paragraphs. See Chapter 13, Instruction Set,
for a description of each instruction.

DSP56300 Family Manual, Rev. 5

12-6 Freescale Semiconductor



Instruction Groups
12.3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These
instructions may affect all of the CCR bits. Arithmetic instructions are register-based (register
direct addressing modes used for operands), so that the Data ALU operation indicated by the
instruction does not use the XDB, the Y DB, or the Global Data Bus (GDB). Optional data
transfers may be specified with most arithmetic instructions, which alowsfor paralel data
movement over the XDB and Y DB or over the GDB during a Data ALU operation. This parallel
movement allows new data to be prefetched for use in subsequent instructions and results
calculated in previous instructions to be stored. The move operation that can be specified in
parallel to the instruction marked is one of the parallel instructions listed in Table 12-8, Move
Instructions, on page 12-11. Arithmetic instructions can be executed conditionally, based on the
condition codes generated by the previous instructions. Conditional arithmetic instructions do not
allow parallel data movement over the various data buses. Table 12-4 lists the arithmetic
Instructions.

Table 12-4. Arithmetic Instructions

Parallel

Mnemonic Description -
Instruction

* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

ABS Absolute Value
ADC Add Long With Carry
ADD Add
ADD (imm.) Add (immediate operand)
ADDL Shift Left and Add
ADDR Shift Right and Add
ASL Arithmetic Shift Left
ASL (mb.) Arithmetic Shift Left (multi-bit)
ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)
ASR Arithmetic Shift Right \
ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear Accumulator
CMP Compare
CMP (imm.) Compare (immediate operand)
CMPM Compare Magnitude \
CMPU Compare Unsigned
DEC Decrement by One
DIV Divide Iteration

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-7



e to the Instruction Set

Table 12-4. Arithmetic Instructions (Continued)

Mnemonic Description Inst?LrJ?:ltliec:n*
* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

DMAC Double Precision Multiply-Accumulate With Right Shift
INC Increment by One
MAC Signed Multiply-Accumulate \
MAC (su,uu) Mixed Multiply-Accumulate
MACI Signed Multiply-Accumulate With Immediate Operand
MACR Signed Multiply-Accumulate and Round \
MACRI Signed Multiply-Accumulate and Round With Immediate Operand
MAX Transfer by Signed Value
MAXM Transfer by Magnitude
MPY Signed Multiply
MPY (su,uu) Mixed Multiply
MPYI Signed Multiply With Immediate Operand
MPYR Signed Multiply and Round \
MPYRI Signed Multiply and Round With Immediate Operand
NEG Negate Accumulator \
NORM Norm Accumulator Iteration
NORMF Fast Accumulator Normalization
RND Round Accumulator
SBC Subtract Long With Carry
SuUB Subtract
SUB (imm.) Subtract (immediate operand)
SUBL Shift Left and Subtract Accumulators
SUBR Shift Right and Subtract Accumulators
Tcc Transfer Conditionally
TFR Transfer Data ALU Register \
TST Test Accumulator V

12.3.2 Logical Instructions

Thelogical instructions execute in one instruction cycle and perform al logical operations within

the Data ALU (except ANDI and ORI). They can affect all of the CCR bits and, like the

arithmetic instructions, are register-based. Optional data transfers can be specified with most
logical instructions, allowing parallel data movement over the XDB and YDB or over the GDB
during aData ALU operation. This parallel movement allows new datato be prefetched for usein
subsequent instructions and results calculated in previous instructions to be stored. The move

DSP56300 Family Manual, Rev. 5

12-8

Freescale Semiconductor




Instruction Groups

operation that can be specified in parallel to the instruction marked is one of the parallel
instructions listed in Table 12-8, Move Instructions, on page 12-11. Table 12-5 lists the logical

instructions.

Table 12-5. Logical Instructions

Mnemonic

Description

Parallel
Instruction*

* A in the “Parallel Instruc
indicates that the instruction is not a parallel instruction.

tion” column means that the instruction is a parallel instruction. A bla

nk table cell

AND Logical AND \
AND (imm.) Logical AND (immediate operand)
ANDI AND Immediate to Control Register
CLB Count Leading Bits
EOR Logical Exclusive OR \
EOR (imm.) Logical Exclusive OR (immediate operand)
EXTRACT Extract Bit Field
EXTRACT (imm.) Extract Bit Field (immediate operand)
EXTRACTU Extract Unsigned Bit Field
EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)
INSERT INSERT Bit Field
INSERT (imm.) INSERT Bit Field (immediate operand)
LSL Logical Shift Left \
LSL (mb.) Logical Shift Left (multi-bit )
LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)
LSR Logical Shift Right \
LSR (mb.) Logical Shift Right (multi-bit)
LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)
MERGE Merge Two Half Words
NOT Logical Complement
OR Logical Inclusive OR
OR (imm.) Logical Inclusive OR (immediate operand)
ORI OR Immediate With Control Register
ROL Rotate Left
ROR Rotate Right

12.3.3 Bit Manipulation Instructions

The bit manipulation instructionstest the state of any single bit in amemory location and then
optionally set, clear, or invert the bit. The carry bit of the CCR contains the result of the bit test.
Table 12-6 lists the bit manipul ation instructions.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

12-9



e to the Instruction Set

Table 12-6. Bit Manipulation Instructions

Mnemonic Description Parallel Instruction*

* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BCHG Bit Test and Change
BCLR Bit Test and Clear
BSET Bit Test and Set
BTST Bit Test

12.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line
code. Replacing straight-line code with DO loops can significantly reduce program memory
usage. The loop instructions control hardware looping either by initiating a program loop and
establishing looping parameters or by restoring the registers by pulling the SSwhen terminating a
loop. Initialization includes saving registers used by aprogram loop (LA and LC) on the SS so
that program loops can nest The address of the first instruction in aprogram loop is also saved to
allow no-overhead looping. The ENDDO instruction is not used for normal termination of aDO
loop; it terminates a DO loop before the LC is decremented to 1. Table 12-7 lists the loop
Instructions.

Table 12-7. Loop Instructions

Parallel

Mnemonic Description N
Instruction

* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BRKcc Conditionally Break the current Hardware Loop
DO Start Hardware Loop
DO FOREVER Start Infinite Loop
DOR Start PC-Relative Hardware Loop

DOR FOREVER Start PC-Relative Infinite Loop

ENDDO End Current DO Loop

12.3.5 Move Instructions

The move instructions perform data movement over the XDB and Y DB or over the GDB. Move
Instructions, most of which allow Data ALU opcode in paralel, do not affect the CCR, except the
limit bit L, if limiting is performed when reading a Data ALU accumulator register. Table 12-8
lists the move instructions.

DSP56300 Family Manual, Rev. 5

12-10 Freescale Semiconductor



Table 12-8. Move Instructions

Instruction Groups

Mnemonic Description Parallel Instruction
* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
LUA Load Updated Address
LRA Load PC-Relative Address
MOVE Move Data Register \
No Parallel Data Move
I Immediate Short Data Move \
R Register-to-Register Data Move \
U Address Register Update \
X: X Memory Data Move \
X:R X Memory and Register Data Move \
Y Y Memory Data Move \
R:Y Register and Y Memory Data Move \
L: Long Memory Data Move \
XY X Y Memory Data Move \
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data
VSL Viterbi Shift Left

12.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as specified in the
instruction. Optional data transfers over the XDB and Y DB may be specified in some of the
program control instructions. Table 12-9 lists the program control instructions.

Table 12-9. Program Control Instructions

Mnemonic Description Parallel Instruction*
* A+ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
Bcc Branch Conditionally
BRA Branch Always
BRCLR Branch if Bit Clear
BRSET Branch if Bit Set
BScc Branch to Subroutine Conditionally
BSCLR Branch to Subroutine if Bit Clear

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-11



e to the Instruction Set

Table 12-9. Program Control Instructions (Continued)

Mnemonic Description Parallel Instruction*
* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BSR Branch to Subroutine
BSSET Branch to Subroutine if Bit Set
DEBUG Enter Debug Mode
DEBUGcc Enter Debug Mode Conditionally
IFcc Execute Conditionally Without CCR Update
IFcc.U Execute Conditionally and Update CCR
ILLEGAL lllegal Instruction Interrupt
Jcc Jump Conditionally
JCLR Jump if Bit Clear
JMP Jump
JScc Jump to Subroutine Conditionally
JSCLR Jump to Subroutine if Bit Clear
JSET Jump if Bit Set
JSR Jump to Subroutine
JSSET Jump to Subroutine if Bit Set
NOP No Operation
REP Repeat Next Instruction
RESET Reset On-Chip Peripheral Devices
RTI Return From Interrupt
RTS Return From Subroutine
STOP Stop Instruction Processing
TRAP Software Interrupt
TRAPcc Conditional Software Interrupt
WAIT Wait for Interrupt or DMA Request

12.3.7 Instruction Cache Control Instructions

The instruction cache control instructionsinclude flushes and locks. They enable the programmer
to lock/unlock sectors of the cache and to flush the cache contents under software control. Table
12-10 lists the instruction cache control instructions.

DSP56300 Family Manual, Rev. 5

12-12 Freescale Semiconductor



Guide to Instruction Descriptions

Table 12-10. Instruction Cache Control Instructions

Mnemonic Description Parallel Instruction*
* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
PFLUSH Program Cache Flush
PFLUSHUN Program Cache Flush Unlocked Sectors
PFREE Program Cache Global Unlock
PLOCK Lock Instruction Cache Sector
PLOCKR Lock Instruction Cache Relative Sector
PUNLOCK Unlock Instruction Cache Sector
PUNLOCKR Unlock Instruction Cache Relative Sector

12.4 Guide to Instruction Descriptions

The following information isincluded in each instruction description:

Name and Mnemonic: Highlighted in bold type for easy reference.

Assembler Syntax and Operation: The syntax line for each instruction symbolically
describes the corresponding operation. If several operations are indicated on asingle line
in the operation field, those operations may not occur in the order shown, but are generally
assumed to occur in paralel. Any parallel datamove isindicated in parenthesesin both the
assembler syntax and operation fields. An optional |etter in the mnemonic appearsin
parentheses in the assembler syntax field.

Description: Includes any special cases and/or condition code anomalies.

Condition Codes: The Status Register (SR) is depicted with the condition code bits that
can be affected by the instruction. Not all bitsin the SR are used. Reserved bits are
indicated with gray boxes.

Instruction Format: Theinstruction fields, the instruction opcode, and the instruction
extension word are specified in the instruction syntax. Optional extension words are so
indicated. The values that can be assumed by each of the variables in the various
instruction fields are shown under the instruction field heading.

12.4.1 Notation

Each instruction description contains symbols to abbreviate certain operands and operations.
Table 12-11 lists the symbols and their respective meanings. Depending on the context, registers
refer either to the register itself or to the contents of the register.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-13



e to the Instruction Set

Table 12-11. Instruction Description Notation

Symbol Meaning
Data ALU Registers Operands
Xn Input Register X1 or X0 (24 bits)
Yn Input Register Y1 or YO (24 bits)
An Accumulator Registers A2, A1, A0 (A2—S8 bits, A1 and A0—24 bits)
Bn Accumulator Registers B2, B1, BO (B2—38 bits, B1 and B0—24 bits)
Input Register X = X1: X0 (48 bits)
Input Register Y = Y1: YO 48 bits)
Accumulator A = A2: Al: AO (56 bits)
B Accumulator B = B2: B1: BO (56 bits)
AB Accumulators A and B = Al: B1 (48 bits)
BA Accumulators B and A = B1: Al (48 bits)
Al0 Accumulator A = Al: AO (48 bits)
B10 Accumulator B = B1:B0 (48 bits)
Program Control Unit Registers Operands
PC Program Counter Register (24 bits)
MR Mode Register (8 bits)
CCR Condition Code Register (8 bits)
SR Status Register = EMR:MR:CCR (24 hits)
EOM Extended Chip Operating Mode Register (8 bits)
COoM Chip Operating Mode Register (8 bits)
OMR Operating Mode Register = EOM:COM (24 bits)
Sz System Stack Size Register (24 bits)
SC System Stack Counter Register (5 bits)
VBA Vector Base Address (24 bits, eight set to 0)
LA Hardware Loop Address Register (24 bits)
LC Hardware Loop Counter Register (24 bits)
SP System Stack Pointer Register (24 bits)
SSH Upper Portion of the Current Top of the Stack (24 bits)
SSL Lower Portion of the Current Top of the Stack (24 bits)
SS System Stack RAM = SSH: SSL (16 locations by 32 bits)
Address Operands
ea Effective Address
eax Effective Address for X Bus
eay Effective Address for Y Bus
XXXXXX Absolute or Long Displacement Address (24 bits)

DSP56300 Family Manual, Rev. 5

12-14

Freescale Semiconductor



Guide to Instruction Descriptions

Table 12-11. Instruction Description Notation (Continued)

Symbol Meaning
XXX Short or Short Displacement Jump Address (12 bits)
XXX Short Displacement Jump Address (9 bits)
aaa Short Displacement Address (7 bits, sign-extended)
aa Absolute Short Address (6 bits, zero-extended)
pp High 1/0 Short Address (6 bits, ones-extended)
qq Low I/O Short Address (6 bits)

<...> Specifies the Contents of the Specified Address
X: X Memory Reference
Y: Y Memory Reference
L: Long Memory Reference = X Concatenated with Y
P: Program Memory Reference
Miscellaneous Operands
S, Sn Source Operand Register
D, Dn Destination Operand Register
D [n] Bit n of D Destination Operand Register
#n Immediate Short Data (5 bits)
#XX Immediate Short Data (8 bits)
H#XXX Immediate Short Data (12 bits)
HXXXXXX Immediate Data (24 bits)
r Rounding Constant
#bbbbb Operand Bit Select (5 bits)
Unary Operands
- Negation Operator
— Logical NOT Operator (Overbar)
PUSH Push Specified Value Onto the System Stack (SS) Operator
PULL Pull Specified Value From the SS Operator
READ Read the Top of the SS Operator
PURGE Delete the Top Value on the SS Operator
[l Absolute Value Operator
Binary Operands
+ Addition Operator
- Subtraction Operator
* Multiplication Operator
+,/ Division Operator
+ Logical Inclusive OR Operator
. Logical AND Operator

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

12-15



e to the Instruction Set

Table 12-11. Instruction Description Notation (Continued)

Symbol Meaning
S Logical Exclusive OR Operator
? “Is Transferred To” Operator

Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

# Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator
#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop Is in Progress
DM Double-Precision Multiply Bit Indicating if the Chip Is in Double-Precision Multiply Mode
SB Sixteen-Bit Arithmetic Mode
RM Rounding Mode
S1, SO Scaling Mode Bits Indicating the Current Scaling Mode
11, 10 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection
L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting
E Extension Bit Indicating if the Integer Portion of Data ALU Result Is in Use
U Unnormalized Bit Indicating if the Data ALU Result Is Unnormalized
N Negative Bit Indicating if bit 55 of the Data ALU Result Is Set
z Zero Bit Indicating if the Data ALU Result Equals Zero
Y, Overflow Bit Indicating if Arithmetic Overflow Occurred in Data ALU
C Carry Bit Indicating if a Carry or Borrow Occurred in Data ALU Result
() Optional Letter, Operand, or Operation

(...) Any Arithmetic or Logical Instruction That Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (AO or BO)

MS Most Significant

MSP Most Significant Portion of an Accumulator (Al or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register
Zero Zeroing of a Data ALU Register

DSP56300 Family Manual, Rev. 5

12-16 Freescale Semiconductor



Guide to Instruction Descriptions

Table 12-11. Instruction Description Notation (Continued)

Symbol Meaning

Address ALU Registers Operands

Rn Address Registers R[0-7] (24 bits)
Nn Address Offset Registers N[0-7] (24 bits)
Mn Address Modifier Registers M[0-7] (24 bits)

12.4.2 Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR[7-0]) consists of eight
bits depicted in Figure 12-6. For a complete description of the CCR bits, refer to Section 5.4.1.2,
Satus Register (SR), on page5-10. TheE, U, N, Z, V, and C bits are true condition code bits that
reflect the condition of the result of a Data ALU operation. These condition code bits are not
sticky and are not affected by Address AL U calculations or by datatransfersover the XDB, YDB,
or GDB. TheL bit isasticky overflow bit that indicates an overflow in the Data ALU or data
limiting when the contents of the A and/or B accumulators are moved. The Shit is asticky bit
used in block floating-point operations to indicate the need to scale the number in A or B.

7 6 5 4 3 2 1 0
S L E U N z \% C
CCR
S — Scaling bit N — Negative bit

L — Limit bit Z — Zero bit
E — Extension bit V — Overflow bit
U — Unnormalized bit C — Carry bhit

Figure 12-6. Condition Code Register (CCR)

Every instruction contains an illustration showing how the instruction affects the various
condition codes. An instruction can affect a condition code according to three different rules, as
described in Table 12-12.

Table 12-12. Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction.

\ This bit is changed by the instruction, according to the standard definition of the condition code.

* This bit is changed by the instruction, according to a special definition of the condition code depicted
as part of the instruction description.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-17



e to the Instruction Set

12.5 Instruction Partial Encoding

This section gives the encodings for the following:

B Various groupings of registers used in the instruction encodings
B Condition Code combinations
B Addressing

B Addressing modes

The symbols used in decoding the various fields of an instruction are identical to those used in
the Opcode section of the individual instruction descriptions.

12.5.1 Partial Encodings for Use in Instruction Encoding

Table 12-13. Partial Encodings for Use in Instruction Encoding

Destination/Sourc_e Accumulator Data ALU Operands Encoding 1 Data ALU Sourc_e Operands
Encoding Encoding

D/S d/s/D S J S JJ

A 0 X 0 X0 00

B 1 1 YO 01

X1 10

Y1 11
Program ControI_Unit Register Data ALU Operands Encoding 2 Effective Addr_essing Mode

Encoding Encoding 1
Register EE S JJJ Mode MMMRRR
MR 00 B/A* 001 (Rn)-Nn 00O0rrr
CCR 01 X 010 (Rn)+Nn 001rrr
COM 10 Y 011 (Rn)— 010rrr
EOM 11 X0 100 (Rn)+ O11rrr
YO 101 (Rn) 100rrr
X1 110 (Rn+Nn) 1021rrr
Y1 111 —(Rn) 111rrr
* The source accumulator is B if the Absolute address 110000
gestnaton ccumutr seleced [ immedaedoa | 110100
destination accumulator is B. “r r r" refers to an address register
R[0-7]
Data ALU Operands Encoding 3

SSS/sss S,D qaq S,D ggg S,D

000 Reserved 000 Reserved 000 B/A*
001 Reserved 001 Reserved 001 Reserved

DSP56300 Family Manual, Rev. 5

12-18

Freescale Semiconductor




Instruction Partial Encoding

Table 12-13. Partial Encodings for Use in Instruction Encoding (Continued)

010 Al 010 A0 010 Reserved
011 B1 011 BO 011 Reserved
100 X0 100 X0 100 X0
101 YO 101 YO 101 YO
110 X1 110 X1 110 X1
111 Y1 111 Y1 111 Y1

* The selected accumulator is B if the so
two accumulator is B.

urce two accumulator (selected by the d b

it in the opcode) is A, or A if the source

Memory/Peripheral Space

Effective Addressing Mode

Effective Addressing Mode

Encoding 2 Encoding 3
Space S Mode MMMRRR Mode MMMRRR
X Memory 0 (Rn)-Nn 00O0rrr (Rn)-Nn 00O0rrr
Y Memory 1 (Rn)+Nn 001rrr (Rn)+Nn 001rrr
(Rn)— 010rrr (Rn)— 010rrr
(Rn)+ Ollrrr (Rn)+ Ollrrr
(Rn) 100rrr (Rn) 100rrr
(Rn+Nn) 101rrr (Rn+Nn) 101rrr
—(Rn) 111rrr —(Rn) 111rrr
Absolute address 110000
“rr r" refers to an address register R[0-7]
EffectiveE,:((:d:JiensgsTg Mode Six-Bit Encoding for All On-Chip Registers
Mode MMRRR Destination Register DdDdDdl?jg Ig/
(Rn)-Nn 00rrr 4 registers in Data ALU 0001DD
(Rn)+Nn Olrrr 8 accumulators in Data ALU 001DDD
(Rn)— 10rrr 8 address registers in AGU O10TTT
(Rn)+ 1lrrr 8 address offset registers in AGU O11NNN
“rr r” refers to an address register 8 address modifier registers in AGU 100FFF
R[0-7]
1 address register in AGU 101EEE
2 program controller registers 110VVVv
8 program controller registers 111GGG

See Table 12-14 for the specific encodings.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

12-19



e to the Instruction Set

Table 12-14. Triple-Bit Register Encoding

Code 10D DDD TTT NNN FFF EEE VVV GGG
000 — A0 RO NO MO — VBA SZ
001 — BO R1 N1 M1 — SC SR
010 — A2 R2 N2 M2 EP — OMR
011 — B2 R3 N3 M3 — — SP
100 X0 Al R4 N4 M4 — — SSH
101 X1 B1 R5 N5 M5 — — SSL
110 YO A R6 N6 M6 — — LA
111 Y1 B R7 N7 M7 — — LC

Table 12-15. Long Move Register Encoding

S S1 S2 S?L D D1 D2 SingIDExt ZEI’O LLL
Al0 Al A0 no A10 Al A0 no no 000
B10 Bl BO no B10 Bl BO no no 001

X X1 X0 no X X1 X0 no no 010

Y1 YO no Y Y1 YO no no 011
Al A0 yes A Al A0 A2 no 100

B B1 BO yes B B1 BO B2 no 101
AB A B yes AB A B A2,B2 A0,BO 110
BA B A yes BA B A B2,A2 BO,A0 111

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

Data ALU Sourge Registers AGU Address and Offset Registers Encoding
Encoding

S JJJ Destination Address Register D dddd
B/A* 000 R[0-7] onnn
X0 100 N[0-7] 1nnn
YO 101

X1 110

Y1 111

DSP56300 Family Manual, Rev. 5

12-20 Freescale Semiconductor



Instruction Partial Encoding

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2 (Continued)

Data ALU Multiply Operands Encoding 1

Data ALU Multiply Operands

Encoding 2
S1*S2 QQQ S1*S2 QQQ S QQ
X0,X0 000 X0,Y1 100 Y1 00
Y0,Y0 001 Y0,X0 101 X0 01
X1,X0 010 X1,Y0 110 YO 10
Y1,YO 011 Y1,X1 111 X1 11
Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 * Y1 are
not valid.
Data ALLIJEQACUCJSF;;/ é)perands Data ALU Multiply Operands Encoding 4
S aq S1*s2 QQQQ S1*S2 QQQQ
X0 00 X0,X0 0000 X0,Y1 0100
YO 01 Y0,Y0 0001 Y0,X0 0101
X1 10 X1,X0 0010 X1,Y0 0110
Y1 11 Y1,Y0 0011 Y1,X1 0111
Data ALU Multiply Sign Encoding X1,X1 1000 Y1,X0 1100
Sign k Y1,Y1l 1001 X0,Y0 1101
+ 0 X0,X1 1010 Y0,X1 1110
- 1 Y0,Y1 1011 X1,Y1 1111
Five-Bit Register Encoding 1 Write Control Encoding
D/S ddddd / eeeee D/S ddddd / eeeee Operation w
X0 00100 B2 01011 Read Register or 0
Peripheral
X1 00101 Al 01100 Write Register or 1
Peripheral
YO 00110 Bl 01101 ALU Registers Encoding
Y1 00111 A 01110 inati
“Register | DDDD
A0 01000 B 01111 4 registers in 01DD
Data ALU
BO 01001 RO-R7 10rrr 8 accumulators 1DDD
in Data ALU
A2 01010 NO-N7 l1lnnn See Table 12-14, Triple-Bit Register

specific encodings.

Encoding, on page 12-20 for the

“r r i = Rn number, “n n n” = Nn number

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

12-21



e to the Instruction Set

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2 (Continued)

Immediate Data ALU Operand Encoding

Write Control Encoding

n SSss constant Operation w
1 00001 010000000000000000000000 Read Register or 0
Peripheral
2 00010 001000000000000000000000 Write Register or 1
Peripheral
4 00100 000010000000000000000000 Destination
. DDDD
Register
5 00101 000001000000000000000000 4 registers in 01DD
Data ALU
6 00110 000000100000000000000000 8 accumulators 1DDD
in Data ALU
7 00111 000000010000000000000000 See Table 12-14 on page -20 for the
specific encodings.
8 01000 000000001000000000000000 X:Y: Move Operands Encoding
9 01001 000000000100000000000000 X Effective
Addressing MMRRR
Mode
10 01010 000000000010000000000000 (Rn)+Nn Olsss
11 01011 000000000001000000000000 (Rn)- 10sss
12 01100 000000000000100000000000 (Rn)+ l1lsss
13 01101 000000000000010000000000 (Rn) 00sss
14 01110 000000000000001000000000
Y Effective
Addressing mmrr
Mode
15 01111 00000000000000010000000000 (Rn)+Nn 0O1tt
16 10000 00000000000000001000000000 (Rn)- 10tt
17 10001 000000000000000001000000 (Rn)+ 11tt
18 10010 000000000000000000100000 (Rn) oott
19 10011 000000000000000000010000 where the following apply:
“s s s” refers to an address register
R[0-7] and “t t” refers to an address
register R[4—7] or R[0-3] in the
opposite address register bank from
that used in the X effective address
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010

X:R Operand Registers Encoding

Signed/Unsigned Partial
Encoding 1

DSP56300 Family Manual, Rev. 5

12-22

Freescale Semiconductor




Instruction Partial Encoding

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2 (Continued)

S1,D1 ff D2 F ss/su/uu Ss
X0 00 YO 0 SS 00
X1 01 Y1 1 su 10

10 uu 11
B 11 (Reserved) 01
R:Y Operand Registers Encoding Signedél:gzidgizzdzPartial
D1 e S2,D2 ff su/uu S
X0 0 YO 00 su 0
X1 1 Y1 01 uu 1
A 10
B 11
Single-Bit Special Register Encoding Five-Bit Register Encoding 2
d x'oRpCC'j‘dS: ! Rgpi':ds: ! 1,01 ddddd
0 A — X:<ea>, X0 YO A,A— MO-M7 00nnn
- A Y:<ea>
1 B — X:<ea>, X0 YO—-B,B—> EP 01010
—B Y:<ea>
Move Operand Encoding VBA 10000

S1,D1 ee S2,D2 ff SC 10001
X0 00 YO 00 Sz 11000
X1 01 Y1 01 SR 11001
A 10 A 10 OMR 11010
B 11 B 11 SP 11011

SSH 11100
SSL 11101
LA 11110
LC 11111
where “n n n” = Mn number
(M[0 —7])

Table 12-17. Condition Code Computation Equation

Mnemonic “cc” Mnemonic Condition
CC(HS) Carry Clear (higher or same) C=0
CS(LO) Carry Set (lower) Cc=1

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-23



e to the Instruction Set

Table 12-17. Condition Code Computation Equation (Continued)

Mnemonic “cc” Mnemonic Condition

EC Extension Clear E=0
EQ Equal zZ=1
ES Extension Set E=1
GE Greater than or Equal N @ v=0
GT Greater Than z+(N @ v)=0
LC Limit Clear L=0
LE Less than or Equal Z+(N &) V)=1
LS Limit Set L=1
LT Less Than N @ v=1
Ml Minus N=1
NE Not Equal Z=0
NR Normalized Z+(U0E)=1
PL Plus N=0
NN Not Normalized Z+(U0E)=O

NOTES

U denotes the logical complement of U.

=+ denotes the logical OR operator.

® denotes the logical AND operator.

@ denotes the logical Exclusive OR operator.

Table 12-18. Condition Codes Encoding

Mnemonic cCcccC Mnemonic cCcccC
CC(HS) 0000 CS(LO) 1000

GE 0001 LT 1001

NE 0010 EQ 1010

PL 0011 Ml 1011

NN 0100 NR 1100

EC 0101 ES 1101

LC 0110 LS 1110

GT 0111 LE 1111

The condition code computation equations are listed in Table 12-17.

DSP56300 Family Manual, Rev. 5

12-24 Freescale Semiconductor



Instruction Partial Encoding
12.5.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel movesis divided into the
multiply and non-multiply instruction encodings shown in the following subsections.

12.5.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different fields
than the non-multiply instruction operation code. The 8-bit operation code = 1QQQ dkkk where

B QQQ = selectsthe inputs to the multiplier (see Table 12-17)
B kkk = three unencoded bits k2, k1, kO

B d = destination accumulator
d=0—>A
d=1—-B

Table 12-19. Operation Code K[0—-2] Decode

Code k2 k1l kO
0 positive mpy only don’t round
1 negative mpy and acc round

12.5.2.2 Non-Multiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destination
accumulator register. The 8-bit operation code=0JJ J D k k k where

B JJJ= 1/2 instruction number
B Kk k k =1/2 instruction number

B D=0->A
D=1->B
Table 12-20. Non-Multiply Instruction Encoding
D=0 | D=1 k k k
JJJ Src Src
Oper | Oper 000 001 010 011 | 100 | 101 | 110 111
000 B A vovel | TFR | ADDR | TST CMP | SUBR | CMPM
001 B A ADD RND | ADDL | CLR | SUB * SUBL NOT
010 B A — — ASR LSR — — ABS ROR
011 B A — — ASL LSL — — NEG ROL
010 | X1X0 | X1X0 ADD ADC — — SUB | SBC — —
011 | YLYO | Y1YO ADD ADC — — SUB | SBC — —

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 12-25



e to the Instruction Set

Table 12-20. Non-Multiply Instruction Encoding (Continued)

D=0 D=1 k k k
JJJ Src Src

Oper Oper 000 001 010 011 100 101 110 111
100 X0 0 X0 0 ADD TFR OR EOR SUB CMP AND CMPM
101 Y0 O Y0 O ADD TFR OR EOR SUB CMP AND CMPM
110 X1 0 X1 0 ADD TFR OR EOR SUB CMP AND CMPM
111 Y1 0 Y10 ADD TFR OR EOR SUB CMP AND CMPM
NOTES:
1. Special case 1.
2. * = Reserved

Table 12-21. Special Casel

OPCODE Operation
00000000 MOVE
00001000 Reserved

DSP56300 Family Manual, Rev. 5

12-26 Freescale Semiconductor



13

This chapter describes each instruction in the DSP56300 (family) core instruction set. If an
instruction allows parallel moves, thisis noted in both the Oper ation and the Assembler Syntax
fields. The MOVE instruction is equivalent to aNOP with parallel moves, so a description of
each parallel move accompanies the MOVE instruction details. When an instruction uses an
accumulator as both a destination operand for data ALU operation and a source for a parallel
move operation, the parallel move operation uses the value in the accumulator before any data
ALU operation executes. Table 13-1 gives the page number of each instruction. See Chapter 12
for details on instruction formats, syntax, descriptions, groups, operand lengths, and encoding.

Instruction Set

Table 13-1. DSP56300 Instruction Summary

Instruction Page Instruction Page
ABS page 13-5 BRA page 13-25
Absolute Value Branch Always
ADC page 13-6 BRCLR page 13-26
Add Long With Carry Branch if Bit Clear
ADD page 13-7 BRKcc page 13-28
Add Exit Current DO Loop Conditionally
ADDL page 13-9 BRSET page 13-29
Shift Left and Add Accumulators Branch if Bit Set
ADDR page 13-10 | BScc page 13-31
Shift Right and Add Accumulators Branch to Subroutine Conditionally
AND page 13-11 | BSCLR page 13-32
Logical AND Branch to Subroutine if Bit Clear
ANDI page 13-13 | BSET page 13-34
AND Immediate With Control Register Bit Set and Test
ASL page 13-14 | BSR page 13-37
Arithmetic Shift Accumulator Left Branch to Subroutine
ASR page 13-16 | BSSET page 13-38
Arithmetic Shift Accumulator Right Branch to Subroutine if Bit Set
Bcc page 13-18 | BTST page 13-40
Branch Conditionally Bit Test
BCHG page 13-19 | CLB page 13-42
Bit Test and Change Count Leading Bits
BCLR page 13-22 | CLR page 13-44
Bit Test and Clear Clear Accumulator
CMP page 13-45 | INC page 13-77
Compare Increment by One
CMPM page 13-47 | INSERT page 13-78
Compare Magnitude Insert Bit Field

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-1




Jction Set

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page

CMPU page 13-48 | Jcc page 13-80
Compare Unsigned Jump Conditionally
DEBUG page 13-49 | JCLR page 13-81
Enter Debug Mode Jump if Bit Clear
DEBUGcc page 13-50 | JMP page 13-83
Enter Debug Mode Conditionally Jump
DEC page 13-51 | JScc page 13-84
Decrement by One Jump to Subroutine Conditionally
DIV page 13-51 | JSCLR page 13-85
Divide Iteration Jump to Subroutine if Bit Clear
DMAC page 13-55 | JSET page 13-87
Double-Precision Multiply-Accumulate Jump if Bit Set
With Right Shift
DO page 13-56 | JSR page 13-89
Start Hardware Loop Jump to Subroutine
DO FOREVER page 13-59 | JSSET page 13-90
Start Infinite Loop Jump to Subroutine if Bit Set
DOR page 13-61 | L:
Start PC-Relative Hardware Loop Long Memory Data Move
DOR FOREVER page 13-65 | LRA page 13-92
Start PC-Relative Infinite Loop Load PC-Relative Address
ENDDO page 13-67 |LSL page 13-93
End Current DO Loop Logical Shift Left
EOR page 13-68 | LSR page 13-96
Logical Exclusive OR Logical Shift Right
EXTRACT page 13-70 | LUA page 13-98
Extract Bit Field Load Updated Address
EXTRACTU page 13-72 | MAC page 13-99
Extract Unsigned Bit Field Signed Multiply Accumulate
I page 13-113 | MAC(su,uu) page 13-102
Immediate Short Data Move Mixed Multiply Accumulate
IFcc page 13-74 | MACI page 13-101
Execute Conditionally Without CCR Signed Multiply Accumulate With
Update Immediate Operand
IFcc.U page 13-75 | MACR page 13-103
Execute Conditionally With CCR Update Signed Multiply Accumulate and

Round
ILLEGAL page 13-76 | MACRI page 13-105
lllegal Instruction Interrupt Signed Multiply Accumulate and

Round With Immediate Operand
MAX page 13-106 M_PYRI _ _ page 13-143
Transfer by Signed Value Signed Multiply and Round With

Immediate Operand
MAXM page 13-107 | NEG page 13-144

Transfer by Magnitude

Negate Accumulator

DSP56300 Family Manual, Rev. 5

13-2

Freescale Semiconductor




Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
MERGE page 13-108 | No Parallel Data Move page 13-112
Merge Two Half Words
MOVE page 13-110 | NOP page 13-145
Move Data No Operation
No Parallel Data Move page 13-112 | NORM page 13-147
Norm Accumulator Iteration
| page 13-113 NORMF page 13-147
Immediate Short Data Move Fast Accumulator Normalization
R page 13-115 | NOT page 13-149
Register-to-Register Data Move Logical Complement
U page 13-117 | OR _ page 13-150
Address Register Update Logical Inclusive OR
X page 13-118 | ORI page 13-152
X Memory Data Move OR Immediate With Control Register
X:R page 13-120 | PFLUSH page 13-153
X Memory and Register Data Program Cache Flush
Move
Y: page 13-122 PFLUSHUN page 13-154
Y Memory Data Move Program cache Flush Unlocked Sectors
R:Y page 13-124 PFREE page 13-155
Register and Y Memory Data Move Program Cache Global Unlock
L: page 13-126 PLOCK page 13-156
Long Memory Data Move Lock Instruction Cache Sector
X:Y: page 13-123 PLOCKR page 13-157
XY Memory Data Move Lock Instruction Cache Relative Sector
MOVEC page 13-130 PUNLOCK page 13-158
Move Control Register Unlock Instruction Cache Sector
MOVEM page 13-132 PUNLOCKR page 13-159
Move Program Memory Unlock Instruction Cache Relative Sector
MOVEP page 13-134 R page 13-115
Move Peripheral Data Register-to-Register Data Move
MPY page 13-137 REP page 13-160
Signed Multiply Repeat Next Instruction
MPY (su,uu) page 13-139 RESET page 13-162
Mixed Multiply Reset On-Chip Peripheral Devices
MPYI page 13-140 RND page 13-163
Signed Multiply With Immediate Operand Round Accumulator
MPYR page 13-141 ROL page 13-165
Signed Multiply and Round Rotate Left
ROR page 13-166 TRAP page 13-179
Rotate Right Software Interrupt
RTI page 13-168 TRAPcc page 13-180
Return From Interrupt Conditional Software Interrupt
RTS page 13-168 TST page 13-181
Return From Subroutine Test Accumulator
R:Y page 13-124 U page 13-117

Register and Y Memory Data Move

Address Register Update

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-3




Jction Set

Table 13-1. DSP56300 Instruction Summary (Continued)

Transfer Data ALU Register

Instruction Page Instruction Page
SBC page 13-169 VSL page 13-182
Subtract Long With Carry Viterbi Shift Left
STOP page 13-170 WAIT page 13-183
Stop Instruction Processing Wait for Interrupt or DMA Request
SUB page 13-172 X: page 13-118
Subtract X Memory Data Move
SUBL page 13-174 | X:R page 13-120
Shift Left and Subtract Accumulators X Memory and Register Data Move
SUBR page 13-175 X:Y: page 13-123
Shift Right and Subtract Accumulators XY Memory Data Move
Tcc page 13-176 Y: page 13-122
Transfer Conditionally Y Memory Data Move
TFR page 13-178

DSP56300 Family Manual, Rev. 5

13-4

Freescale Semiconductor




ABS Absolute Value ABS

Operation Assembler Syntax

|[D|—> D (parallel move) ABS D (parallel move)

Instruction Fields
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Take the absolute value of the destination operand D and store the result in the
destination accumulator.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N z \Y C
v v v V1 V1 I 1 -
CCR
v Changed according to the standard definition.
- Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
ABS D Data Bus Move Field 0 01 0jd11O0

Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-5



Jction Set

ADC Add Long With Carry ADC

Operation Assembler Syntax

S+C+D—>D (parallel move) ADC S,D (parallel move)

Instruction Fields

{S} J Sourceregister [X,Y] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Add the source operand S and the Carry bit (C) of the Condition Code Register
(CCR) to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) can be added to the 56-bit destination accumulator. Note that the Carry bit is set
correctly for multiple-precision arithmetic using long-word operands if the extension register of
the destination accumulator (A2 or B2) isthe sign extension of bit 47 of the destination
accumulator (A or B).

Condition Codes

7 6 5 4 3 2 1 0
s L E_ U _N_Z VvV __C
v vV V v Vv J
CCR

\ Changed according to the standard definition.

Instruction Formats and Opcodes

23 16 15 8 7 0
ADC S,D Data Bus Move Field 001JdOoO0o1
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-6 Freescale Semiconductor



ADD Add ADD

Operation Assembler Syntax

S+D—->D (parallel move) ADD S,D (parallel move)
#xx+D—>D ADD #xx,D

#xxxx + D — D ADD #xxxx,D

Instruction Fields

{S} JJJ  Sourceregister [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on page
12-18)

{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)

{#xx} liiii - 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate L ong Data extension word

Description Add the source operand S to the destination operand D and store the result in the
destination accumulator. The source can be aregister (24-bit word, 48-bit long word, or 56-bit
accumulator), 6-bit short immediate, or 24-bit long immediate. When 6-bit immediate datais
used, the datais interpreted as an unsigned integer. That is, the six bits are right-aligned and the
remaining bits are zeroed to form a 24-bit source operand. Note that the Carry bit (C) is set
correctly using word or long-word source operands if the extension register of the destination
accumulator (A2 or B2) isthe sign extension of bit 47 of the destination accumulator (A or B).
Thus, the C bit is always set correctly using accumulator source operands, but it can be set
incorrectly if Al, B1, A10, B10 or immediate operand are used as source operands and A2 and
B2 are not replicas of bit 47.

Condition Codes

s L E U N zZ VvV cC
T v V1 J 1 V1 J 3
CCR
V Changed according to the standard definition.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-7



Jction Set

ADD Add ADD

Instruction Formats and Opcodes

23 16 15 8 7 0
ADD S,D Data Bus Move Field }O JJJdooo

Optional Effective Address Extension

23 16 15 8 7 0
ADD #xx,D b oooo0o001 0 1 iiiiii1000do00O0|

23 16 15 8 7 0
ADD #xxxx,D 000O00OO0O1 0O 10000O0O0O1100dOO0ODO

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

13-8 Freescale Semiconductor



ADDL Shift Left and Add Accumulators ADDL

Operation Assembler Syntax

S+2+DD (parallel move) ADDL S,D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} The source accumulator is B if the destination accumulator (selected by thed
bit in the opcode) isA, or A if the destination accumulator is B.

Description Add the source operand S to two times the destination operand D and store the result
In the destination accumulator. The destination operand D is arithmetically shifted one bit to the
left, and a 0 is shifted into the LSB of D prior to the addition operation. The Carry bit (C) is set
correctly if the source operand does not overflow as aresult of the left shift operation. The
Overflow bit (V) may be set asaresult of either the shifting or addition operation (or both). This
instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N \ C
= = = = = = * =
CCR

* v Set if overflow has occurred in the A or B result or the MSB of the destination
operand is changed as aresult of the instruction’ s left shift.
v Changed according to the standard definition.

Instruction Formats and Opcodes

23 16 15 8 7 0
ADDL S,D Data Bus Move Field 0 001dO10
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-9



Jction Set

ADDR Shift Right and Add Accumulators ADDR

Operation Assembler Syntax

S+D/2—-D (parallel move) ADDR S,D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{s} The source accumulator is B if the destination accumulator (selected by thed
bit in the opcode) is A, or A if the destination accumulator is B.

Description Add the source operand S to one-half the destination operand D and store the result
In the destination accumulator. The destination operand D is arithmetically shifted one bit to the
right while the MS bit of D is held constant prior to the addition operation. In contrast to the
ADDL instruction, the Carry bit (C) isaways set correctly, and the Overflow bit (V) can only be
set by the addition operation and not by an overflow due to the initial shifting operation. This
instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

7 6 5 4 3 2 1 0
s L E U N zZ VvV _cC
v v v J J v
CCR

V Changed according to the standard definition.

Instruction Formats and Opcodes

23 16 15 8 7 0
ADDR S,D Data Bus Move Field 0O 00O0OdOT1D0
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-10 Freescale Semiconductor



AND Logical AND AND

Operation Assembler Syntax

S « D[47-24] — D[47-24] (parallel move) AND S,D (parallel move)
#xx » D[47—-24] — D[47-24] AND #xx,D

#xXXX » D[47-24] — D[47-24] AND #xxxx,D

where ¢ denotes the logical AND operator

Instruction Fields

{s} 33 Source input register [X0,X1,Y0,Y 1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)

{#xx} i 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate L ong Data extension word

Description Logicaly AND the source operand S with bits 47—24 of the destination operand D
and store the result in bits 47—24 of the destination accumulator. The source can be a 24-bit
register, 6-bit short immediate, or 24-bit long immediate. Thisinstruction is a 24-bit operation.
The remaining bits of the destination operand D are not affected. When 6-bit immediate datais
used, the datais interpreted as an unsigned integer. That is, the six bits are right aligned and the
remaining bits are zeroed to form a 24-bit source operand.

Condition Codes

7 6 5 4 3 2 1 0

S
\/ J— _ _ * * *
CCR

* N Set if bit 47 of the result is set.

* z Set if bits 47-24 of theresult are 0.

* vV Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-11



Jction Set

AND Logical AND AND

Instruction Formats and Opcodes

23 16 15 8 7 0
AND S,D Data Bus Move Field b1JJfd110

Optional Effective Address Extension

23 16 15 8 7 0
AND #xx,D boooooo0101iiiiii1oo0o0d11o0 |

23 16 15 8 7 0
AND #xxxx,D 000000101 0000001100d110O0

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

13-12 Freescale Semiconductor



AND| AND Immediate With Control Register AND|

Operation Assembler Syntax
#xx*D—->D AND(l) #xx,D
where « denotes the logical AND operator

Instruction Fields

{D} EE Program Controller register  MR,CCR,COM,EOM] (see Table 12-13 on
page 12-18)
{#xx} iifiiii Immediate Short Data

Description Logicaly AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The condition
codes are affected only when the Condition Code Register (CCR) is specified as the destination
operand.

Condition Codes

For CCR Operand

Cleared if bit 7 of the immediate operand is cleared.
Cleared if bit 6 of the immediate operand is cleared.
Cleared if bit 5 of the immediate operand is cleared.
Cleared if bit 4 of the immediate operand is cleared.
Cleared if bit 3 of the immediate operand is cleared.
Cleared if bit 2 of the immediate operand is cleared.
Cleared if bit 1 of the immediate operand is cleared.
Cleared if bit O of the immediate operand is cleared.

*
O < N Z Ccm - O»

For MR and OMR Operands

The condition codes are not affected using these operands.
Instruction Formats and Opcodes

23 16 15 8 7 0
AND(l) #xx,D booo0OO0OO0OOO i i i i iiiil101110EE

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-13



Jction Set
ASL Arithmetic Shift Accumulator Left ASL

Operation

55 48 47 24 23 0
C - - l«e— O

Assembler Syntax

ASL D (parallel move)

ASL #ii,sS2,D

ASL S1,S2,D
Instruction Fields
{s2} S Source accumulator [A,B] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{sy sss Control register [X0,X1,YO,Y1,A1,B1]
{#ii} i 6-bit unsigned integer [0—40] denoting the shift amount

In the control register S1: bits 5-0 (LSB) are used asthe #ii field, and the rest of theregister is
ignored.

Description

B Sngle bit shift: Arithmetically shift the destination accumulator D one bit to the left and
store the result in the destination accumulator. The MSB of D prior to instruction
execution is shifted into the Carry bit (C) and a0 is shifted into the LSB of the destination
accumulator D.

B Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits
shifted out of position 55 are lost except for the last bit, which is latched in the C bit. The
vacated positions on the right are zero-filled. Theresult is placed into destination
accumulator D. The number of bits to shift is determined by the 6-bit immediate field in
the instruction, or by the 6-bit unsigned integer located in the six LSBs of the control
register S1. If a zero shift count is specified, the C bit is cleared. The difference between
ASL and LSL isthat ASL operates on the entire 56 bits of the accumulator, and therefore,
sets the Overflow bit (V) if the number overflows.

Thisis a56-bit operation.

DSP56300 Family Manual, Rev. 5

13-14 Freescale Semiconductor



ASL Arithmetic Shift Accumulator Left ASL

Condition Codes

CCR

* v Set if bit 55 is changed any time during the shift operation, cleared otherwise.

* c Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and
cleared otherwise.

v Changed according to the standard definition.

Example
ASL #7,A, B 3 1

1 6 0
A [t[o[s]o[1]o[ofoft[o]1]o]1]o]o[s]o[+][+]2]o]o[+]s]o[s]1[o]o[s]oft[o]1]o]1]o[o]1]
P L7 7 L7 e
- s - s

g 7 - //
Pd e 7 .
- - - .7 Shift left 7 o7
s e 7 Ve -
- . 1 -
Pd

4

7

Ve }/ 6 & ’// 0
lo[2]2]x[x]o]o]t]2]o[1]2]o[o]1[o[1]o[2]o]1[o]o]t o]0 o[o]o]o]o]

P lhw

,/
® [o[1]o[1]o[1]o[o]

Instruction Formats and Opcodes

23 8 7 0
ASL D Data Bus Move Field 001 1dO010
Optional Effective Address Extension

23 16 15 8 7 0
ASL #ii,S2,D loooo110000011101S i iiiiiD]
23 16 15 8 7 0
ASL S1,82,D lo 0001100000111 10010SsssD|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-15



Jction Set

ASR Arithmetic Shift Accumulator Right ASR

55 48 47 24 23 0
Operation: [:t__J c
Assembler Syntax
ASR D (parallel move)
ASR #ii, S2,D
ASR S1,S82,D
Instruction Fields
{s2} S Source accumulator [A,B]
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{s1} sss Control register [X0,X1,Y0,Y1,A1,B1]
{#ii} i 6-bit unsigned integer [0—40] denoting the
shift amount

In the control register S1: bits 5-0 (LSB) are used asthe #ii field, and the rest of theregister is
ignored.

Description

B Singlebit shift: Arithmetically shift the destination operand D one bit to the right and store
the result in the destination accumulator. The LSB of D prior to instruction execution is
shifted into the Carry bit (C), and the MSB of D is held constant.

B Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits
shifted out of position O are lost except for the last bit, which islatched in the C bit. Copies
of the MSB are supplied to the vacated positions on the left. The result is placed into
destination accumulator D. The number of bits to shift is determined by the 6-bit
immediate field in the instruction, or by the 6-bit unsigned integer located in the six LSBs
of the control register S1. If azero shift count is specified, the C bit is cleared.

Thisisa56- or 40-bit operation, depending on the SA bit value in the SR.

Note: If the number of shiftsindicated by the six LSBs of the control register or by the
immediate field exceeds the value of 55 (40 in Sixteen-bit Arithmetic mode), then the
result is undefined.

DSP56300 Family Manual, Rev. 5

13-16 Freescale Semiconductor



ASR Arithmetic Shift Accumulator Right ASR

Condition Codes

CCR

* v Thisbit isaways cleared.

* C  Thishitissetif thelast bit shifted out of the operand is set, cleared for a shift count of
0, and cleared otherwise.

v Changed according to the standard definition.
Example
ASR X0,A,B
5 0
R 1 o e R R S E
shift =3
5 4 2

5 7 4 0
A [2fafafaf2s]s[s]s[s[x]s]olo[o]olo]s[s[4]]s]o]o]olo|o][4]s]s]s[s[]x]s]ololo]oofs[s[s]s]s]o]d]olclo][4]o]s]s

. Shift right 3 Shift right 3
4 2
5 7 4 0
® laulfolfaifofselaelafslloflfolselafsfolefolfeffelsffsefsolloblolsslselfelloiosls) 2
Instruction Formats and Opcodes
23 8 7 0
ASR D Data Bus Move Field 001 0dO010O0
Optional Effective Address Extension
23 16 15 8 7 0
ASR #ii,S2,D loooo0o110000011100S i i i i i iD
23 16 15 8 7 0
ASR S1,82,D lo 00011 0000011110011SsssD|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-17



Jction Set

Bcc Branch Conditionally Bcc
Operation Assembler Syntax
If cc, then PC + xxxx — PC Bcc xxxx

elsePC+1— PC

If cc, then PC + xxx — PC Bcc xxx
else PC+1— PC

If cc, then PC + Rn — PC Bcc Rn
elsePC+1— PC

Instruction Fields

{cc} cccce Condition code (see Table 12-13 on page 12-18)
(xxxx) 24-bit PC Relative Long Displacement

{xxx} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [R[0-7]]

Description |f the specified condition is true, program execution continues at location PC +
displacement. If the specified condition is false, the PC isincremented and program execution
continues sequentially. The displacement is atwo’ s-complement 24-bit integer that representsthe
relative distance from the current PC to the destination PC. Short Displacement and Address
Register PC Relative addressing modes can be used. The Short Displacement 9-bit datais
sign-extended to form the PC relative displacement. The conditionsthat the term “cc” can specify
arelisted on Table 12-17 on page 12-23.

Condition Codes

7 5 4 3 2 1 0
S L E ) N Z C
CCR

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
Bcc XXXX ‘OOOOOlOlCCCCO1aaaa0aaaaa‘

PC Relative Placement

23 16 15 8 7 0
Bcc XXX ‘OOOOOlOlCCCCO1aaaa0aaaaa‘

23 16 15 8 7 0
Bcc RN b000110100011RRRO100CCCC|

DSP56300 Family Manual, Rev. 5

13-18 Freescale Semiconductor



BCHG Bit Test and Change BCHG

Operation Assembler Syntax

D[n] » C D_[n] — DI[n] BCHG #n,[X or Y]:ea
D[n] » C D_[n] — DI[n] BCHG #n,[X or Y]:aa
D[n] » C D_[n] — DI[n] BCHG #n,[X or Y]:pp
D[n] » C D_[n] — DI[n] BCHG #n,[X or Y]:qq
D[n] - C D[n] - D[n] BCHG #n,D

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{xny s Memory Space [X,Y] (see Table 12-13 on page 12-18)

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO-$FFFFFF]

{qa} qqq9q9qq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table 12-13

on page 12-18)

Description Test the nt" bit of the destination operand D, complement it, and store theresult in
the destination location. The state of the n'" bit is stored in the Carry bit (C) of the CCR. The bit
to be tested is selected by an immediate bit number from 0-23. This instruction performs a
read-modify-write operation on the destination location using two destination accesses before
releasing the bus. Thisinstruction provides a test-and-change capability, which is useful for
synchronizing multiple processors using a shared memory. This instruction can use all memory
alterable addressing modes.

Condition Codes

CCR

For destination operand SR:

* c Complemented if bit O is specified, unaffected otherwise.
* v Complemented if bit 1 is specified, unaffected otherwise.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-19



Jction Set

nw r m Cc Z2 N

Complemented if bit 2 is specified, unaffected otherwise.
Complemented if bit 3 is specified, unaffected otherwise.
Complemented if bit 4 is specified, unaffected otherwise.
Complemented if bit 5 is specified, unaffected otherwise.
Complemented if bit 6 is specified, unaffected otherwise.
Complemented if bit 7 is specified, unaffected otherwise.

For other destination operands.

C

nw rmaCaczZz NI

Set if bit tested is set, and cleared otherwise.
Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set according to the standard definition.

Set according to the standard definition.

MR Status Bits
For destination operand SR:

10
11
SO
S1
FV
SM
RM
LF

Changed if bit 8 is specified, unaffected otherwise.

Changed if bit 9 is specified, unaffected otherwise.

Changed if bit 10 is specified, unaffected otherwise.
Changed if bit 11 is specified, unaffected otherwise.
Changed if bit 12 is specified, unaffected otherwise.
Changed if bit 13 is specified, unaffected otherwise.
Changed if bit 14 is specified, unaffected otherwise.
Changed if bit 15 is specified, unaffected otherwise.

For other destination operands. MR status bits are not affected.

DSP56300 Family Manual, Rev. 5

13-20

Freescale Semiconductor



BCHG

Instruction Formats and Opcodes

BCHG #n,[X or Y]:ea

BCHG #n,[X or Y]:aa

BCHG #n,[X or Y]:pp

BCHG #n,[X or Y]:qq

BCHG #n,D

23

Bit Test and Change

16 15 8 7
00101101 MMMRRROS
Optional Effective Address Extension

16 15 8 7
001 01100 aawawawaa6o0s

16 15 8 7
00101110 ppppPppP©pP=~OS

16 15 8
00000101 q99g9ggggqo0S

16 15 8
0 01 01111DDDUDDUDO0O 1

DSP56300 Family Manual, Rev. 5

BCHG

Freescale Semiconductor

13-21



Jction Set

BCLR Bit Test and Clear BCLR

Operation Assembler Syntax

D[n] » C 0 — D[n] BCLR #n,[X or Y]:ea
D[n] » C 0 — D[n] BCLR #n,[X or Y]:aa
D[n] » C 0 — D[n] BCLR #n,[X or Y]:pp
D[n] » C 0 — D[n] BCLR #n,[X or Y]:qq
D[n] » C 0 — D[n] BCLR #n,D

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{Xrv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]

{qq} g9a9aq I/O Short Address [64 addresses. $FFFF80-$FFFFBF]

{D} DDDDDD Destination register [all on chip registers, except A and B; however, you

canuse AQ, A1,A2, BO, B1, and B2] (see Table 12-13 on page 12-18)

Description Test the " bit of the destination operand D, clear it and store the result in the
destination location. The state of the n'" bit is stored in the Carry bit (C) of the CCR. The bit to be
tested is selected by an immediate bit number from 0—23. Thisinstruction performs a
read-modify-write operation on the destination location using two destination accesses before
releasing the bus. Thisinstruction provides a test-and-clear capability, which isuseful for
synchronizing multiple processors using a shared memory. This instruction can use all memory
alterable addressing modes.

Condition Codes

CCR

For destination operand SR:

* C  Clearedif bit Ois specified, unaffected otherwise.
* v Cleared if bit 1 is specified, unaffected otherwise.
* z Cleared if bit 2 is specified, unaffected otherwise.

DSP56300 Family Manual, Rev. 5

13-22 Freescale Semiconductor



Cleared if bit 3 is specified, unaffected otherwise.
Cleared if bit 4 is specified, unaffected otherwise.
Cleared if bit 5is specified, unaffected otherwise.
Cleared if bit 6 is specified, unaffected otherwise.
Cleared if bit 7 is specified, unaffected otherwise.

*
nw r m Cc 2

For other destination operands.
* C  Thishitissetif bit tested is set, and cleared otherwise.

* vV Unaffected.

* Z  Unaffected.

* N Unaffected.

* U Unaffected.

* E  Unaffected.

* L This bit is set according to the standard definition.
* S

This bit is set according to the standard definition.

MR Status Bits

For destination operand SR:

* 10 Changed if bit 8 is specified, unaffected otherwise.
* 11 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV. Changed if bit 12 is specified, unaffected otherwise.
* SM  Changed if bit 13 is specified, unaffected otherwise.
* RM  Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-23



Jction Set

BCLR

Instruction Formats and Opcodes

BCLR #n,[X or Y]:ea

BCLR #n,[X or Y]:aa

BCLR #n,[X or Y]:pp

BCLR #n,[X or Y]:qq

BCLR #n,D

23

Bit Test and Clear

16 15 8 7
0oo0101001IMMMRRROEOS
Optional Effective Address Extension

BCLR

23 16 15 8 7 0
|0 00 0101000aaaaaa0SO00bbbb]
23 16 15 8 7 0
|0 000101010ppppppo0S0O00DbLbLLbLOLb
23 16 15 8

|0 00 00001009gggqgqgqgqO0S0O0Dbbbohb]
23 16 15 8

|0 000101011 DDDDDDO1006bbbhb]|

DSP56300 Family Manual, Rev. 5

13-24

Freescale Semiconductor



BRA

Operation
PC + xxxx — Pc
PC + xxx — Pc

PC + Rn — Pc

Instruction Fields

{xxxx}
{xxx} aaaaaaaaa
{Rn} RRR

Branch Always

Assembler Syntax
BRA xxxx
BRA xxXx

BRA Rn

24-bit PC-Relative Long Displacement
Signed PC-Relative Short Displacement
Address register [R[0-7]]

BRA

Description Program execution continues at location PC + displacement. The displacement isa
two’ s-complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. Short Displacement and Address Register PC Relative addressing modes may be
used. The Short Displacement 9-bit data is sign-extended to form the PC relative displacement.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

BRA XXXX
BRA XXX
BRA Rn

23 16 15 8 7 0
000011010001 000011000000
PC-Relative Displacement
23 16 15 8 7 0
|0 0000101000011 aaaa0aaaaal
23 16 15 8 7 0
loo00110100011RRR11100000O0]|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-25



Jction Set

BRCLR Branch if Bit Clear BRCLR

Operation Assembler Syntax
If S{n}=0 then PC + xxxx - PC BRCLR #n,[X or Y]:ea,xxxx
else PC+1 - PC
If S{n}=0 then PC + xxxx - PC BRCLR #n,[X or Y],aa,xxxx
else PC+1 - PC
If S{n}=0 then PC + xxxx - PC BRCLR #n,[X or Y]:pp,XXxx
else PC+1 - PC
If S{n}=0 then PC + xxxx - PC BRCLR #n,[X or Y]:qq,xxxx
else PC+1 - PC
If S{n}=0 then PC + xxxx - PC BRCLR #n,S XXXX
else PC+1 - PC
Instruction Fields
{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X1v} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} PPPPPP I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]
{qq} gq99qq I/O Short Address [64 addresses. $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)

Description  The nth bit in the source operand is tested. If the tested bit is cleared, program
execution continues at location PC+displacement. If the tested bit is set, the PC is incremented
and program execution continues sequentially. However, the address register specified in the
effective address field is always updated independently of the condition. The displacement isa
two’'s complement 24-hbit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of theinstruction. All
memory alterable addressing modes may be used to reference the source operand. Absolute
Short, I/0 Short and Register Direct addressing modes may also be used. Note that if the
specified source operand Sisthe SSH, the stack pointer register will be decremented by one. The
bit to be tested is selected by an immediate bit number 0-23.

DSP56300 Family Manual, Rev. 5

13-26 Freescale Semiconductor



BRCLR Branch if Bit Clear BRCLR

Condition Codes

CCR

v Changed according to the standard definition
— Unchanged by the instruction

Instruction Formats and Opcodes
23 16 15 8 7 0

BRCLR  #n,[X or Y]:ea,xxxx 000011001 O0MMMRRROSODbDUDDbDDbDb
PC-Relative Displacement

23 16 15 8 7 0
BRCLR  #n,[X or Y]:aa,xxxx 0 0O0O0O110010aaaaaalsSO0Obwbbbob
PC-Relative Displacement

23 16 15 8 7 0
BRCLR  #n,[X or Y]:pp,XXxx 0000110011 ppppppoO0SO0ODbbbbhb
PC-Relative Displacement

23 16 15 8 7 0
BRCLR  #n,[X or Y]:qqg,Xxxx 0000010010999 99g9g0S0Dbbbbob
PC-Relative Displacement

23 16 15 8 7 0
BRCLR  #n,S,xxxx 0000110011 DDDDDDZ11IO0UO0DbDbDbUb@Db
PC-Relative Displacement

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-27



Jction Set

BRKcc Exit Current DO Loop Conditionally BRKcc
Operation Assembler Syntax
lfcc LA+ 1-PC;SSL(LF,FV) - SR;SP—-1 — SP BRKcc

SSH - LA;SSL - LC;SP-1 - SP
else PC+1—-PC

Instruction Fields
{cc} elelele Condition code (see Table 12-18 on page 12-24)

Description EXits conditionally the current hardware DO loop before the current Loop Counter
(LC) equals 1. It also terminates the DO FOREVER loop. If the value of the current DO LC is
needed, it must be read before the execution of the BRK cc instruction. Initially, the PC is updated
from the LA, the Loop Flag (LF) and the DO Forever flag (FV) are restored and the remaining
portion of the Status Register (SR) is purged from the system stack. The Loop Address (LA) and
the LC registers are then restored from the system stack. The conditions that the term “cc” can
specify arelisted in Table 12-18 on page 12-24.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
BRKcc 0 0O0OO0OOOOOOOOOOOI1O0O0OO0OO0OBI1TCCCC

DSP56300 Family Manual, Rev. 5

13-28 Freescale Semiconductor



B RSET Branch if Bit Set B RSET

Operation Assembler Syntax
If S{n}=1 then PC + xxxx — PC BRSET #n,[X or Y]:ea,xxxx
else PC+1 — PC
If S{n}=1 then PC + xxxx — PC BRSET #n,[X or Y],aa,xxxx
else PC+1 - PC
If S{n}=1 then PC + xxxx — PC BRSET #n,[X or Y]:pp,Xxxxx
else PC+1 — PC
If S{n}=1 then PC + xxxx — PC BRSET #n,[X or Y]:qg,xxxx
else PC+1 — PC
If S{n}=1 then PC + xxxx - PC BRSET #n,S,XXXX
else PC+1 - PC
Instruction Fields
{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{XIv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO-$FFFFFF]
{qa} qadqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)

Description  Then" bit in the source operand is tested. If the tested bit is set, program execution
continues at location PC+displacement. If the tested bit is cleared, the PC is incremented and
program execution continues sequentially. However, the address register specified in the
effective addressfield is always updated independently of the condition. The displacement isa
two’'s complement 24-hbit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of theinstruction. All
memory alterable addressing modes may be used to reference the source operand. Absolute
Short, I/0 Short and Register Direct addressing modes may also be used. Notice that if the
specified source operand Sisthe SSH, the stack pointer register will be decremented by one. The
bit to be tested is selected by an immediate bit number 0-23.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-29



Jction Set

BRSET Branch if Bit Set

Condition Codes

CCR

v Changed according to the standard definition
— Unchanged by the instruction

Instruction Formats and Opcodes

23 16 15

8 7

BRSET  #n,[X or Y]:ea,xxxx 000011001 O0MMMRRRDO

PC-Relative Displacement

BRSET

23 16 15

8 7

BRSET  #n,[X or Y]:aa,xxxx 0 0O0O0O110010waawaaaal

PC-Relative Displacement

23 16 15

8 7

BRSET  #n,[X or Y]:pp,XXxx 0000110011 ppppppo

PC-Relative Displacement

23 16 15

8 7

BRSET  #n,[X or Y]:qqg,Xxxx 000001001 09999gg9ggq6o0

PC-Relative Displacement

23 16 15

8 7

BRSET  #n,S,xxxx 000011001 1DDDDDD121
PC-Relative Displacement

DSP56300 Family Manual, Rev. 5

13-30

Freescale Semiconductor



BScc Branch to Subroutine Conditionally BScc

Operation Assembler Syntax

If cc, then PC — SSH;SR — SSL;PC + xxxx — PC BScc xxxx
else PC+1—>PC

If cc, then PC — SSH;SR — SSL;PC + xxx — PC BScc xxx
else PC+1—>PC

If cc, then PC — SSH;SR — SSL;PC + Rn —» PC BScc Rn
else PC+1—>PC

Instruction Fields

{cc} cccc Condition code (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC-Relative Long Displacement

{xxx} aaaaaaaaa Signed PC-Relative Short Displacement

{Rn} RRR Addressregister [R[0-7]]

Description |f the specified condition is true, the address of the instruction immediately
following the BScc instruction and the SR are pushed onto the stack. Program execution then
continues at location PC + displacement. If the specified condition isfalse, the PC isincremented
and program execution continues sequentially. The displacement is atwao’s complement 24-bit
integer that represents the relative distance from the current PC to the destination PC. Short
Displacement and Address Register PC Relative addressing modes can be used. The Short
Displacement 9-bit datais sign extended to form the PC relative displacement. The conditions
that the term “cc” can specify are listed on Table 12-18 on page 12-24.

Condition Codes

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BScc XXXX 000011010001 0000O0O0O0O0O0OCTCTCOC
PC-Relative Displacement

23 16 15 8 7 0
BScc XXX |OOOOO101CCCCOOaaaaOaaaaa|
23 16 15 8 7 0
BScc RN lo 00 0110100011RRRO0000CCCC]

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-31



Jction Set

BSCLR Branch to Subroutine if Bit Clear BSCLR

Operation Assembler Syntax

If S{n}=0 then PC — SSH;SR — SSL;PC+xxxx — PC BSCLR #n,[X or Y]:ea,xxxx
else PC+1—PC

If S{n}=0 then PC — SSH;SR — SSL;PC+xxxx — PC BSCLR #n,[X or Y],aa,xxxx
else PC+1—PC

If S{n}=0 then PC — SSH;SR — SSL;PC+xxxx — PC BSCLR #n,[X or Y]:pp,XXxx
else PC+1—PC

If S{n}=0 then PC — SSH;SR — SSL;PC+xxxx — PC BSCLR #n,[X or Y]:qqg,Xxxx
else PC+1— PC

If S{n}=0 then PC — SSH;SR — SSL;PC+xxxx — PC BSCLR #n,S,XXXX
else PC+1—PC

Instruction Fields

{#n} bbbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{Xrv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{xxxx} 24-bit Relative Long Displacement

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO-$FFFFFF]

{qq} gq99qq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{s} DDDDDD Source register [al on-chip registers] (see Table 12-13 on page 12-18)

Description  The n bit in the source operand is tested. If the tested bit is cleared, the address of
the instruction immediately following the BSCLR instruction and the status register are pushed
onto the stack. Program execution then continues at |ocation PC+displacement. If the tested bit is
set, the PC is incremented and program execution continues sequentially. However, the address
register specified in the effective addressfield is always updated independently of the condition.
The displacement is atwo’s complement 24-bit integer that represents the relative distance from
the current PC to the destination PC. The 24-bit displacement is contained in the extension word
of theinstruction. All memory alterable addressing modes can reference the source operand.
Absolute Short, I/0 Short and Register Direct addressing modes can also be used. Note that if the
specified source operand S isthe SSH, the stack pointer register decrements by

DSP56300 Family Manual, Rev. 5

13-32 Freescale Semiconductor



BSCLR Branch to Subroutine if Bit Clear BSCLR

one; if the condition istrue, the push operation writes over the stack level where the SSH valueis
taken. The bit to be tested is selected by an immediate bit number 0-23.

Condition Codes

7 6 5 4 3 2 1 0
S L U N Z
CCR
v Changed according to the standard definition

— Unchanged by the instruction
Instruction Formats and Opcodes
23 16 15 8 7 0

BSCLR  #n,[X or Y]:ea,xxxx 000011011 O0MMMRRROSODbDUDDUDbDb
PC-Relative Displacement

23 16 15 8 7 0
BSCLR  #n,[X or Y]:aa,xxxx 00O 0O0O110110awawaaaa
PC-Relative Displacement

-
n
o
o
o
o
o
o

23 16 15 8 7 0
BSCLR  #n,[X or Y]:qqg,Xxxx 00000100109 09949ggQq
PC-Relative Displacement

-
n
o
o
o
o
o
o

23 16 15 8 7 0
BSCLR  #n,[X or Y]:pp,XXxx 0000110111 pppppep
PC-Relative Displacement

o
n
o
o
o
o
o
o

23 16 15 8 7 0
BSCLR  #n,S,xxxx 000011011 1DDDUDTDD
PC-Relative Displacement

-
o
o
o
o
o
o
o

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-33



Jction Set

BSET Bit Set and Test BSET

Operation Assembler Syntax

D[n] » C 1 — DI[n] BSET #n,[X or Y]:ea
D[n] » C 1 — DI[n] BSET #n,[X or Y]:aa
D[n] » C 1 — DI[n] BSET #n,[X or Y]:pp
D[n] » C 1 — DI[n] BSET #n,[X or Y]:qq
D[n] > C 1 - D[n] BSET #n,D

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

Xrv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{aa} aaaaaa Absolute Address [0—63]

{pp} PPPPPP I/O Short Address [64 addresses; $FFFFCO-$FFFFFF]

{aa} 499999 1/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{D} DDDDDD Destination register [all on chip registers, except A and B; however, you

canuse AQ, Al, A2, B0, B1, and B2] (see Table 12-13 on page 12-18)

Description Test the nt" bit of the destination operand D, set it, and store the result in the
destination location. The state of the n'" bit is stored in the Carry bit (C) of the CCR. The bit to be
tested is selected by an immediate bit number from 0-23. Thisinstruction performs a
read-modify-write operation on the destination location using two destination accesses before
releasing the bus. Thisinstruction provides a test-and-set capability that is useful for
synchronizing multiple processors using a shared memory. This instruction can use all memory
alterable addressing modes. When this instruction performs a bit manipulation/test on either the
A or B 56-bit accumulator, it optionally shifts the accumulator value according to scaling mode
bits SO and S1 in the system Status Register (SR). If the data out of the shifter indicates that the
accumul ator extension

register isin use, the instruction acts on the limited value (limited on the maximum positive or
negative saturation constant). The “L” flag in the SR is set accordingly.

DSP56300 Family Manual, Rev. 5

13-34 Freescale Semiconductor



BSET Bit Set and Test BSET

Condition Codes

CCR Condition Codes

For destination operand SR:

* C Set if bit O is specified, unaffected otherwise.
Set if bit 1 is specified, unaffected otherwise.
Set if bit 2 is specified, unaffected otherwise.
Set if bit 3 is specified, unaffected otherwise.
Set if bit 4 is specified, unaffected otherwise.
Set if bit 5 is specified, unaffected otherwise.
Set if bit 6 is specified, unaffected otherwise.
Set if bit 7 is specified, unaffected otherwise.

*
n r m c Z2 N <

For other destination operands:
* c Set if bit tested is set, and cleared otherwise.

* v Unaffected.

* z Unaffected.

* N Unaffected.

* U Unaffected.

* E Unaffected.

* L Set according to the standard definition.
* S

Set according to the standard definition.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-35



Jction Set

BSET Bit Set and Test

MR Status Bits
For destination operand SR:

*

*

*

*

10
11
SO
S1
FV
SM
RM
LF

Changed if bit 8 is specified, unaffected otherwise.
Changed if bit 9 is specified, unaffected otherwise.

Changed if bit 10 is specified, unaffected otherwise.
Changed if bit 11 is specified, unaffected otherwise.
Changed if bit 12 is specified, unaffected otherwise.
Changed if bit 13 is specified, unaffected otherwise.
Changed if bit 14 is specified, unaffected otherwise.
Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.

Instruction Formats and Opcodes

23 16 15

8 7

BSET

BSET #n,[X or Y]:ea 0000101001 MMMRRROSTI1IO0WDbDWDbDUDD
OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8

BSET #n,[X or Y]:aa |O 000101000 aaa a 1 0bbob b|
23 16 15 8 7

BSET #n,[X or Y]:pp |O 000101010 ppeP p 1 0b b b b|
23 16 15 8 7

BSET #n,[X or Y]:qq lo 00 00001004ggqq q 10bbb bl
23 16 15 8 7

BSET #n,D lo o0 0101011DDD D 10bbb bl

DSP56300 Family Manual, Rev. 5

13-36

Freescale Semiconductor



BSR Branch to Subroutine BSR

Operation Assembler Syntax
PC — SSH;SR — SSL;PC + xxxx — PC BSR XXXX

PC — SSH;SR — SSL;PC + xxx —» PC BSR XXX

PC — SSH;SR — SSL;PC + Rn— PC BSR Rn

Instruction Fields

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R[0-7]]

Description  The address of the instruction immediately following the BSR instruction and the
SR are pushed onto the stack. Program execution then continues at |ocation PC + displacement.
The displacement is atwo’ s-complement 24-bit integer that represents the relative distance from
the current PC to the destination PC. Short Displacement and Address Register PC-Relative
addressing modes can be used. The Short Displacement 9-bit data is sign-extended to form the
PC-Relative displacement.

Condition Codes

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
BSR XXXX 000011010001 0000100O0O0O0OO0COD0
PC-Relative Displacement

23 16 15 8 7 0
BSR XXX |0 00 00101000010aaaa0aaaaal
23 16 15 8 7 0
BSR RN 0000110100011 RRR10000000

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-37



Jction Set

BSSET Branch to Subroutine if Bit Set BSSET

Operation Assembler Syntax

If S{n}=1 then PC — SSH;SR — SSL;PC + xxxx — PC BSSET #n,[X or Y]:ea,xxxx
else PC+1—-PC

If S{n}=1 then PC — SSH;SR — SSL;PC + xxxx — PC BSSET #n,[X or Y],aa,xxxx
else PC+1—-PC

If S{n}=1 then PC — SSH;SR — SSL;PC + xxxx — PC BSSET #n,[X or Y]:pp,XXxx
else PC+1—PC

If S{n}=1 then PC — SSH;SR — SSL;PC + xxxx — PC BSSET #n,[X or Y]:qqg,Xxxx
else PC+1—PC

If S{n}=1 then PC — SSH;SR — SSL;PC + xxxx — PC BSSET #n,S,XXXX
else PC+1-—-PC

Instruction Fields

{#n} bbbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{Xrv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{xxxx} 24-bit Relative Long Displacement

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO-$FFFFFF

{qq} g9a9aq |/O Short Address [64 addresses. $FFFF80-$FFFFBF]

{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)

Description  The n bit in the source operand is tested. If the tested bit is set, the address of the
instruction immediately following the BSSET instruction and the status register is pushed onto
the stack. Program execution then continues at location PC+displacement. If the tested bit is
cleared, the PC isincremented and program execution continues sequentially. However, the
address register specified in the effective address field is always updated independently of the
condition. The displacement is atwo’s complement 24-bit integer that represents the relative
distance from the current PC to the destination PC. The 24-bit displacement is contained in the
extension word of the instruction. All memory alterable addressing modes can reference the
source operand. Absolute Short, 1/0 Short and Register Direct addressing modes can aso be
used. Note that if the specified source operand Sisthe SSH, the stack pointer register is
decremented by one; if the condition istrue, the push operation writes over the stack level where
the SSH value is taken. The bit to be tested is selected by an immediate bit number 0—23.

DSP56300 Family Manual, Rev. 5

13-38 Freescale Semiconductor



BSSET Branch to Subroutine if Bit Set

Condition Codes

7 6 5 4 3 2 1
S L E U N Z
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes

BSSET

23 16 15 8 7 0

BSSET  #n,[X or Y]:ea,xxxx 000011011 O0MMMRRRDO b bbb bb
PC-Relative Displacement

23 16 15 8 7 0

BSSET  #n,[X or Y]:aa,xxxx 000011011 0waawawaaal b bbb bb
PC-Relative Displacement

23 16 15 8 7 0

BSSET  #n,[X or Y]:pp,XXxx 0000110111 ppppppo b bbbob
PC-Relative Displacement

23 16 15 8 7 0

BSSET  #n,[X or Y]:qqg,Xxxx 0000010010099 9q99gg9ggq?1l b bbbob
PC-Relative Displacement

23 16 15 8 7 0

BSSET  #n,S,xxxx 0000110111 DDDDDPDI1 b bbbob
PC-Relative Displacement

DSP56300 Family Manual, Rev. 5
Freescale Semiconductor 13-39



Jction Set

BTST Bit Test BTST

Operation Assembler Syntax

D[n] » C BTST #n,[X or Y]:ea
D[n] » C BTST #n,[X or Y]:aa
D[n] » C BTST #n,[X or Y]:pp
D[n] » C BTST #n,[X or Y]:qq
D[n] > C BTST #n,D

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{XIv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP |/O Short Address [64 addresses: $FFFFCO-$FFFFFF]

{qq} gq99qq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{D} DDDDDD Destination register [all on-chip registers] (see Table 12-13

on page 12-18)

Description  Test the nt" bit of the destination operand D. The state of the " bit is stored in the
Carry bit (C) of the CCR. The bit to test is selected by an immediate bit number from 0-23.
BTST isuseful for performing serial-to-parallel conversion with appropriate rotate instructions.
Thisinstruction can use all memory alterable addressing modes.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N A \Y C
v v — — -

CCR

* c Set if bit tested is set, and cleared otherwise.
v Changed according to the standard definition.
— Unchanged by the instruction.

SP—Stack Pointer
For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.

DSP56300 Family Manual, Rev. 5

13-40 Freescale Semiconductor



BTST

Instruction Formats and Opcodes

BTST #n,[X or Y]:ea

BTST #n,[X or Y]:aa

BTST #n,[X or Y]:pp

BTST #n,[X or Y]:qq

BTST #n,D

BTST

Bit Test
23 16 15 8 7
0000101101MMMRRROSTIO0DbUbEbOD
OPTIONAL EFFECTIVE ADDRESS EXTENSION
23 16 15 8 7 0
lo 00 0101100aaaaaa0S10bbbb]
23 16 15 8 7 0
|0 000101110pppppp0S10bbbohb|
23 16 15 8
|0 000000101 9ggggqqq0S105bbbhb]
23 16 15 8
|0 000101111 DDDDDDOU1105bbbhb]

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-41



Jction Set
CLB Count Leading Bits CLB

Operation Assembler Syntax

If S[39] = 0 then CLB S,D
9 — (Number of consecutive leading zeros in S[55-0]) — D[47-24]

else
9 — (Number of consecutive leading ones in S[55-0]) — D[47-24]

Instruction Fields

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} S Source accumulator [A,B] (see Table 12-13 on page 12-18)

Description  Count leading zeros or ones according to bit 55 of the source accumulator. Scan bits
55-0 of the source accumulator starting from bit 55. The M SP of the destination accumulator is
loaded with nine minus the number of consecutive leading 1sor Osfound. Theresult is a signed
integer in M SP whose range of possible valuesisfrom +8 to —47. Thisisa 56-bit operation. The
L SP of the destination accumulator D isfilled with Os. The EXP of the destination accumulator D
IS sign-extended.

Note:

1. If the source accumulator isall zeros, the result isO.

2. In Sixteen-bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of
the MSP and L SP of the source accumulator. Therefore, the result is a signed integer
whose range of possible valuesisfrom +8 to —31.

3. CLB can be used in conjunction with NORMF instruction to specify the shift direction
and amount needed for normalization.

Condition Codes

CCR

* N Set if bit 47 of the result is set, and cleared otherwise.
* z Set if bits 47-24 of the result are dl O.

* vV Always cleared.

- Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-42 Freescale Semiconductor



CLB Count Leading Bits CLB

Example

CLB B,A

4 2
0

7 4
8 [1]2]2]1]1/o]]sf1]a]s]1]1[o]o]o]s[s[o]c]s]o][o]s]o]o[4]o]olof]1[o]o]]1]o[o]os]1[o]o]1]o][o[s]o]o][o]clo]s

5 Leading ones

4 2
4 0

7
A ololofololofo]olololofo]olofo]o]olofo]c|o[o]o]o|o[o]elo]o]]o]ofoole[o]o]o]ofo]o]o]o]o]o]o]o]e]lo[o]e]o]]o]o]

ResultinAis9-5=4

Instruction Formats and Opcodes

23 16 15 8 7 0
CLB S,D |OOOOllOOOOO111100000008D

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-43



Jction Set

CLR Clear Accumulator CLR

Operation Assembler Syntax

0—-D (parallel move) CLRD (parallel move)
Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Clear the destination accumulator. Thisis a56-bit clear instruction.

Condition Codes

7 6 5 4 3 2 1 0
S L Z C
N N * * * * * —
CCR

* E Always cleared.

* U Always set.

* N Always cleared.

* z Always set.

* v Always cleared.

\ Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
CLR D Data Bus Move Field 0 00 1(d 0 11
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-44 Freescale Semiconductor



CMP Compare CMP

Operation Assembler Syntax

S2-S1 (parallel move) CMP S1,S2 (parallel move)
S2—#xx CMP #xx, S2

S2—HXXXXXX CMP #XXXXXX, S2

Instruction Fields

{s1} 333 Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{s2} d Source accumulator [A/B] (see Table 12-13 on page 12-18)

{#xx} iiii 6-bit Immediate Short Data

{#xxxxxx} 24-bit Immediate L ong Data extension word

Description  Subtract the source one operand from the source two accumulator, S2, and update
the CCR. Theresult of the subtraction operation is not stored. The source one operand can be a
register (24-bit word or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate.
When using 6-bit immediate data, the dataisinterpreted as an unsigned integer. That is, the six
bits will be right-aligned and the remaining bits will be zeroed to form a 24-bit source operand.

Thisinstruction subtracts 56-bit operands. When aword is specified as the source one operand, it
Issign-extended and zero-filled to form avalid 56-bit operand. For the carry to be set correctly as
aresult of the subtraction, S2 must be properly sign-extended. S2 can be improperly
sign-extended by writing A1 or B1 explicitly prior to executing the compare so that A2 or B2,
respectively, may not represent the correct sign extension. This particularly appliesto the case
whereit is extended to compare 24-bit operands, such as X0 with A1.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
v v v <V v v v
CCR
\ Changed according to the standard definition.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-45



Jction Set

CMP Compare CMP

Instruction Formats and Opcodes

23 16 15 8 7 0
CMP S1, S2 Data Bus Move Field 0J JJjd101
Optional Effective Address Extension

23 16 15 8 7 0
CMP #xx, S2 | 0o00O0O0OOO11IO0OT11 i i i i i i1 000d41%01 |
23 16 15 8 7

0
CMP #xxxx,S2 00000ODO0O0101000O0O0O0O110O0GdT?11O0T1
Immediate Data Extension

DSP56300 Family Manual, Rev. 5

13-46 Freescale Semiconductor



CMPM Compare Magnitude CMPM

Operation Assembler Syntax

|S2]-|S1] (parallel move) CMPM S1, S2 (parallel move)

Instruction Fields

{s1} SAN Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{s2} d Source accumulator [A,B] (see Table 12-13 on page 12-18)

Description Subtract the absolute value (magnitude) of the source one operand, S1, from the
absolute value of the source two accumulator, S2, and update the CCR. The result of the
subtraction operation is not stored. Note that this instruction subtracts 56-bit operands. When a
word is specified as S1, it is sign-extended and zero-filled to form avalid 56-bit operand. For the
carry to be set correctly as aresult of the subtraction, S2 must be properly sign-extended. S2 can
be improperly sign-extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This applies especially
when it is extended to compare 24-bit operands, such as X0 with A1.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
v v v Vv v v V1
CCR
\ Changed according to the standard definition.

Instruction Formats and Opcodes

23 16 15 8 7 0

CMPM S1, S2 Data Bus Move Field 0 J JJjd111
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-47



Jction Set

CMPU Compare Unsigned CMPU

Operation Assembler Syntax

S2-S1 CMPU S1, S2

Instruction Fields

{s1} 999 Source register [A,B,X0,Y0,X1,Y1] (see Table 12-13 on page 12-18)
{s2} d Source accumulator [A,B] (see Table 12-13 on page 12-18)

Description Subtract the source one operand, S1, from the source two accumulator, S2, and
update the CCR. The result of the subtraction operation is not stored. Note that this instruction
subtracts a 24- or 48-bit unsigned operand from a48-bit unsigned operand. When a24-bit word is
specified as S1, it is aligned to the left and zero-filled to form avalid 48-bit operand. If an
accumulator is specified as an operand, the value in the EXP does not affect the operation.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N z C

—_ — — — v * * v
CCR

* vV Always cleared.

* z Set if bits 47-0 of the result are 0.

— Unchanged by the instruction.

v Changed according to the standard definition.

Instruction Formats and Opcodes

23 16 15 8 7 0
CMPU S1, S2 loooo1100/00011111/1111¢9ggd

DSP56300 Family Manual, Rev. 5

13-48 Freescale Semiconductor



DEB UG Enter Debug Mode DEB UG

Operation Assembler Syntax

Enter the Debug mode DEBUG

Instruction Fields None

Description Enter the Debug mode and wait for OnCE commands.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
DEBUG |OOOOOOOOOOOOOOlOOOOOOOOO

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-49



Jction Set

DEBUGCcC DEBUGcC

Enter Debug Mode Conditionally

Operation Assembler Syntax

If cc, then enter the Debug mode DEBUGcc

Instruction Fields
{cc} elelele Condition code (see Table 12-18 on page 12-24)

Description |f the specified condition istrue, enter the Debug mode and wait for OnCE
commands. If the specified condition is false, continue with the next instruction. The conditions
that theterm “cc” can specify arelisted on Table 12-18 on page 12-24.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
DEBUGcc |OOOOOOOOOOOOOOl1000OCCCC

DSP56300 Family Manual, Rev. 5

13-50 Freescale Semiconductor



DEC Decrement by One D

Operation Assembler Syntax

D-1-D DEC D

Instruction Fields
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Decrement by one the specified operand and store the result in the destination
accumulator. One is subtracted from the LSB of D.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— v 1 v Vv i v
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7
DEC D |OOOOOOOOOOOOOOOOOOOOlOl

EC

0
d

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-51



Jction Set

D|V Divide Iteration D|V

Operation Assembler Syntax
IF  D[39]®S[15] =1 DIV S,D

then 2xD+C+S—>D

else 2xD+C-S—->D

where @ denotes the logical exclusive OR operator.

Instruction Fields

{S} N Source input register [ X0,X1,Y0,Y 1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Divide the destination operand D by the source operand S and store the result in the
destination accumulator D. The 48-bit dividend must be a positive fraction that is sign-extended
to 56 bits and stored in the full 56-bit destination accumulator D. The 24-bit divisor isasigned
fraction stored in the source operand S. Each DIV iteration calculates one quotient bit using a
nonrestoring fractional division algorithm. After the first DIV instruction executes, the
destination operand holds both the partial remainder and the formed quotient. The partial
remainder occupies the high-order portion of the destination accumulator D and isasigned
fraction. The formed quotient occupies the low-order portion of the destination accumulator D
(A0 or BO) andisapositive fraction. One bit of the formed quotient is shifted into the LSB of the
destination accumulator at the start of each DIV iteration. The formed quotient is the true
guotient if the true quotient is positive. If the true quotient is negative, the formed quotient must
be negated. Valid results are obtained only when |D| < |S] and the operands are interpreted as
fractions. This condition ensures that the magnitude of the quotient islessthan 1 (that is, a
fractional quotient) and precludes division by O.

DIV calculates one gquotient bit based on the divisor and the previous partial remainder. To
produce an N-bit quotient, the DIV instruction executes N times, where N isthe number of bits of
precision desired in the quotient, 1 < N < 24. Thus, for afull-precision (24-bit) quotient, sixteen
DIV iterations are required. In general, executing the DIV instruction N times produces an N-bit
quotient and a 48-bit remainder that has (48 — N) bits of precision and whose N MSBs are zeros.
The partial remainder isnot atrue remainder and must be corrected due to the nonrestoring nature
of the division algorithm before it can be used. Therefore, once the divide is complete, it is
necessary to reverse the last DIV operation and restore the remainder to obtain the true
remainder.

DSP56300 Family Manual, Rev. 5

13-52 Freescale Semiconductor



DIV

Divide Iteration D|V

DIV uses a nonrestoring fractional division algorithm that consists of the following operations:

1.

Compare the sour ce and destination operand sign bits. An exclusive OR operation is
performed on bit 55 of the destination operand D and Bit 23 of the source operand S.

Shift the partial remainder and the quotient. The 39-bit destination accumulator D is
shifted one bit to the left. The Carry bit (C) is moved into the LSB (bit 0) of the
accumulator.

Calculate the next quotient bit and the new partial remainder. The 24-bit source
operand S (signed divisor) is either added to or subtracted from the Most Significant
Portion (MSP) of the destination accumulator (A1 or B1), and the result is stored back
into the M SP of that destination accumulator. If the result of the exclusive OR operation
previously described was 1 (that is, the sign bits were different), the source operand Sis
added to the accumulator. If the result of the exclusive OR operation was O (that is, the
sign bits were the same), the source operand S is subtracted from the accumulator.
Because of the automatic sign extension of the 24-bit signed divisor, the addition or
subtraction operation correctly sets the C bit with the next quotient bit.

For extended precision division (for example., N-bit quotients where N > 24), the DIV instruction
Isno longer applicable, and a user-defined N-bit division routine is required. For more
information on division algorithms, see pages 524-530 of Theory and Application of Digital
Sgnal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190-199 of Computer
Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages 213223 of
Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang (John Wiley and
Sons, 1979), or other references as required.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-53



P N

Jction Set
D|V Divide Iteration D|V

Condition Codes

7 6 5 4 3 2 1 0
S L E ) N Z Vv C
CCR

* L Set if the Overflow bit (V) is set.

* v Set if the MSB of the destination operand is changed as aresult of the instruction’s
left shift operation.

* C Set if bit 55 of the result is cleared.
— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
DIV S,D |OOOOOOOllOOOOOOOOlJJdOOO

DSP56300 Family Manual, Rev. 5

13-54 Freescale Semiconductor



DMAC DMAC

Double-Precision Multiply-Accumulate With Right Shift

Operation Assembler Syntax

[D—16]F S1% S2 > D DMACss #*)s1,52,D (no parallel move)
(S1 signed, S2 signed)

[D—16]% S1% S2 > D DMACsu #*)s1,52,D (no parallel move)
(S1 signed, S2 unsigned)

[D—16]% S1% S2 > D DMACuu #*)s1,52,D (no parallel move)
(S1 unsigned, S2 unsigned)

Instruction Fields

{S1,52} QQQQ  Sourceregisters S1,S2 [all combinations of X0,X1,YO, and Y 1] (see
Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

=} k Sign [+,—] (see Table 12-16 on page 12-20)

{ss.su,uu} ss [ss,su,uu] (see Table 12-16 on page 12-20)

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the product
to/from the specified 56-bit destination accumulator D, which has been previously shifted 24 bits
to the right. The multiplication can be performed on signed numbers (ss), unsigned numbers (uu),
or mixed (unsigned * signed, (su)). The “—" sign option is used to negate the specified product
prior to accumulation. The default sign option is“+”. Thisinstruction is optimized for
multi-precision multiplication support.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— Vv v v v v —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
DMAC (+)S1,52,D 000000010010010s|lsdkQQQQ

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-55



Jction Set

DO Start Hardware Loop DO

Operation Assembler Syntax
SP +1 — SP;LA — SSH;LC — SSL;[X or Y]:ea — LC DO [Xor Y]:ea,expr
SP +1 — SP;PC —» SSH;SR — SSL;expr—-1 — LA

1—-LF

SP +1 — SP;LA — SSH;LC — SSL;[X or Y]:aa — LC DO [Xor Y]:aa,expr
SP +1 —» SP;PC — SSH;SR — SSL;expr—1 — LA

1—>LF

SP +1 — SP;LA — SSH;LC — SSL;#xxx — LC DO #xxx,expr
SP+1 — SP;PC — SSH;SR — SSL;expr—1 — LA

1—-LF

SP +1 — SP;LA — SSH;LC - SSL;S —> LC DO S,expr

SP +1 — SP;PC —» SSH;SR — SSL;expr—-1 — LA

1—-LF

End of Loop:

SSL(LF) - SR;SP -1 — SP
SSH — LA;SSL - LC;SP -1 — SP

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{Xrv} S Memory space [X,Y] (see Table 12-13 on page 12-18)

{expr} 24-bit Absolute Addressin 16-bit extension word

{aa} aaaaaa Absolute Address [0-63]

{#xxx} hhhhiiiiiii Immediate Short Data [0—4095]

{S} DDDDDD Source register [all on-chip registers, except SSH] (see Table 12-13

on page 12-18)

For the DO SP, expr instruction, the actual value that isloaded into the Loop Counter (LC) isthe
value of the Stack Pointer (SP) before the DO instruction executes, incremented by one. Thus, if
SP = 3, the execution of the DO SP,expr instruction loads the L C with the value LC = 4. For the
DO SSL, expr instruction, the LC isloaded with its previous val ue, which was saved on the stack
by the DO instruction itself.

Description Begin ahardware DO loop that isto be repeated the number of times specified in the
Instruction’ s source operand and whose range of execution is terminated by the destination
operand (previously shown as “expr”). No overhead other than the execution of this DO
instruction is required to set up thisloop. DO loops can be nested and the loop count can be
passed as a parameter.

DSP56300 Family Manual, Rev. 5

13-56 Freescale Semiconductor



DO Start Hardware Loop DO

During thefirst instruction cycle, the current contents of the Loop Address (LA) and the Loop
Counter (LC) registers are pushed onto the System Stack. The DO source operand then loads into
the L C register, which contains the remaining number of timesthe DO loop isto execute and can
be accessed from inside the DO loop under certain restrictions. If theinitial value of LC is0 and
the Sixteen-bit Compatibility mode bit (bit 13, SC, inthe Chip Status Register) iscleared, the DO
loop does not execute.If LC initial valueis zero but SCis set, the DO loop executes 65,536 times.
All address register indirect addressing modes can be used to generate the effective address of the
source operand. If immediate short data is specified, the twelve L SBs of the LC register are
loaded with the 12-bit immediate value, and the twelve M SBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter (PC) register
and the Status Register (SR) are pushed onto the System Stack. The stacking of the LA, LC, PC,
and SR registers is the mechanism that permits the nesting of DO loops. The DO destination
operand (shown as “expr”) isthen loaded into the LA register. This 24-bit operand islocated in
the instruction’s 24-bit absol ute address extension word, as shown in the opcode section. The
value in the PC register pushed onto the system stack is the address of the first instruction
following the DO instruction (that is, the first actual instruction in the DO loop). Thisvaueis
read (copied but not pulled) from the top of the system stack to return to the top of the loop for
another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set, resulting in arepeated comparison of
PC with LA to determine whether the last instruction in the loop has been fetched. If LA equals
PC, the last instruction in the loop has been fetched and the LC istested. If the LC is not equal to
1, it isdecremented by one and SSH isloaded into the PC to fetch the first instruction in the loop
again. When LC = 1, the “end-of-loop” processing begins.

When a DO loop executes, the instructions are actually fetched each time through the loop.
Therefore, aDO loop can be interrupted. DO loops can also be nested. When DO loops are
nested, the end-of-loop addresses must also be nested and are not allowed to be equal. The
assembler generates an error message when DO loops are improperly nested.

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the
Stack Pointer is written into the SR, the contents of the LA register are restored from the upper
portion (SSH) of (SP— 1), the contents of L C are restored from the lower portion (SSL) of (SP—
1), and the Stack Pointer is decremented by two. Instruction fetches continue at the address of the
instruction following the last instruction in the DO loop. Note that LF is the only bit in the SR
that is restored after a hardware DO loop is exited.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-57



Jction Set

DO

Note:

2.

Start Hardware Loop DO

The assembler calcul ates the end-of-loop address to be loaded into LA (the absolute
address extension word) by evaluating the end-of-loop expression “expr” and
subtracting 1. Thisis done to accommodate the case where the last word in the DO loop
Isatwo-word instruction. Thus, the end-of-loop expression “expr” in the source code
must represent the address of the instruction AFTER the last instruction in the loop.

The Loop Flag (LF) iscleared by a hardware reset.

Condition Codes

S

CCR

Set if the instruction sends A/B accumulator contentsto XDB or Y DB.
Set if datalimiting occurred [see Note above].
Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
DO [X or Y]:ea, expr 0000011001 MMMRRROSOOOTO OD
Absolute Address Extension Word
23 16 15 8 7 0
DO [X or Y]:aa, expr 000O0O0O1100O0aaaaaadsOO0OO0O0OO0ODdO0
Absolute Address Extension Word
23 16 15 8 7
DO #XXX, expr 0 O0O0O0OOO1211O0 i i i i i i i 1 100 0hhN nH -
Absolute Address Extension Word
23 16 15 8 7 0
DO S, expr 000001101 1DDDDDDGO0OOO0O0O0O0O0O0D0O
Absolute Address Extension Word
DSP56300 Family Manual, Rev. 5
13-58 Freescale Semiconductor



DO FOREVER DO FOREVER

Start Infinite Loop

Operation Assembler Syntax

SP +1 — SP;LA — SSH;LC — SSL DO FOREVER,expr
SP +1— SP;PC —» SSH;SR — SSL;expr—1 — LA
1->LF1->FV

Instruction Fields None

Description Begin a hardware DO loop that isto repeat forever with arange of execution
terminated by the destination operand (“expr”). No overhead other than the execution of this DO
FOREVER instruction is required to set up thisloop. DO FOREVER loops can nest with other
types of instructions. During the first instruction cycle, the contents of the Loop Address (LA)
and the Loop Counter (LC) registers are pushed onto the system stack. The L C register is pushed
onto the stack but is not updated by this instruction.

During the second instruction cycle, the contents of the Program Counter (PC) register and the
Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC, and SR registers
permits nesting DO FOREVER loops. The DO FOREVER destination operand (shown as
“expr”) isthen loaded into the LA register. This 24-bit operand resides in the instruction’ s 24-bit
absolute address extension word, as shown in the opcode section. The value in the PC register
pushed onto the system stack is the address of the first instruction following the DO FOREVER
instruction (that is, thefirst actual instruction in the DO FOREVER loop). Thisvaueisread
(copied, but not pulled) from the top of the system stack to return to the top of the loop for
another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC
Is repeatedly compared with LA to determine whether the last instruction in the loop has been
fetched. When LA equals PC, the last instruction in the loop has been fetched and SSH is loaded
into the PC to fetch the first instruction in the loop again. The LC register is then decremented by
one without being tested. Y ou can use this register to count the number of loops already
executed.

Because the instructions are fetched each time through the DO FOREV ER loop, the loop can be
interrupted. DO FOREVER loops can also be nested. When DO FOREVER loops are nested, the
end of loop addresses must also be nested and are not allowed to be equal. The assembler
generates an error message when DO FOREVER loops are improperly nested.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-59



Jction Set

DO FOREVER DO FOREVER

Start Infinite Loop

Note:

1. Theassembler calculates the end-of-loop address to be loaded into LA (the absolute
address extension word) by evaluating the end-of-loop expression “expr” and
subtracting one. This is done to accommodate the case where the last word in the DO
loop is atwo-word instruction. Thus, the end-of-loop expression “expr” in the source
code must represent the address of the instruction AFTER the last instruction in the
loop.

2.  TheLCregister is never tested by the DO FOREVER instruction, and the only way of
terminating the loop processis to use either the ENDDO or BRK cc instructions. LC is
decremented every time PC = LA so that it can be used by the programmer to keep track
of the number of timesthe DO FOREVER loop has been executed. If the programer
wantsto initialize LC to a particular value before the DO FOREVER, care should be
taken to save it before if the DO loop is nested. If so, LC should also be restored
Immediately after exiting the nested DO FOREVER loop.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
DO FOREVER 0 0O0OO0OOOOOOOOOOOI1IO0O0OO0OODO0OO0OO0OT11
Absolute Address Extension Word

DSP56300 Family Manual, Rev. 5

13-60 Freescale Semiconductor



DOR Start PC-Relative Hardware Loop DOR

Operation Assembler Syntax

SP+1 — SP;LA — SSH;LC — SSL;[X or Y]:ea — LC DOR [X or Y]:ea,label
SP+1 — SP;PC — SSH;SR — SSL;PC + xxxx — LA
1-LF

SP+1 — SP;LA — SSH;LC — SSL;[X or Y]:ea — LC DOR [X or Y]:aa,label
SP+1 — SP;PC — SSH;SR — SSL;PC + xxxx — LA
1->LF

SP+1 — SP;LA — SSH;LC — SSL;#xxx — LC DOR  #xxx,label
SP+1 — SP;PC — SSH;SR — SSL;PC + xxxx — LA
1-LF

SP+1 — SP;LA — SSH;LC —» SSL;S —» LC DOR S label

SP+1 — SP;PC — SSH;SR — SSL;PC + xxxx — LA
1-LF

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{X/v} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{label} 24-bit Address Displacement in 24-bit extension word

{aa} aaaaaa Absolute Address [0-63]

{#xxx} hhhhiiiiiii Immediate Short Data [0—4095]

{S} bDDDDD Source register [all on-chip registers except SSH] (see Table 12-13

on page 12-18)

Description I nitiates the beginning of a PC-relative hardware program loop. The Loop Address
(LA) and Loop Counter (LC) values are pushed onto the system stack. With proper system stack
management, this allows unlimited nested hardware DO loops. The PC and SR are pushed onto
the system stack. The PC is added to the 24-bit address displacement extension word and the
resulting addressis loaded into the Loop Address (LA) register. The effective address specifies
the address of the loop count that isloaded into the LC. The DO loop executes L C times. If the
LCinitial valueis zero and the 16-bit Compatibility mode bit (bit 13, SC, in the Status Register)
Iscleared, the DO loop is not executed. If LC initial valueis zero but SCis set, the DO loop
executes 65,536 times. All address register indirect addressing modes (less Long Displacement)
can be used. Register Direct addressing mode can also be used. If immediate short datais
specified, the LC isloaded with the zero extended 12-bit immediate data. During hardware loop
operation, each instruction is fetched each time through the program loop. Therefore, instructions

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-61



Jction Set

executing in ahardware loop are interruptible and can be nested. The value of the PC pushed onto
the system stack is the location of the first

DSP56300 Family Manual, Rev. 5

13-62 Freescale Semiconductor



DOR Start PC-Relative Hardware Loop DOR

instruction after the DOR instruction. Thisvalue isread from the top of the system stack to return
to the start of the program loop. When DOR instructions are nested, the end of loop addresses
must also be nested and are not allowed to be equal.

The assembler calculates the end of LA (PC-relative address extension word xxxx) by evaluating
the end of 1oop expression and subtracting one. Thus, the end of the loop expression in the source
code represents the “next address’ after the end of the loop. If a simple end of loop address |abel
Isused, it should be placed after the last instruction in the loop.

Since the end of loop comparison occurs at fetch time ahead of the end of loop execution,
Instructions that change program flow or the system stack cannot be used near the end of the loop
without some restrictions. Proper hardware |oop operation is guaranteed if no instruction starting
at address LA-2, LA-1 or LA specifiesthe program controller registers SR, SP, SSL, LA, LC or
(implicitly) PC asadestination register; or specifies SSH as a source or destination register. Also,
SSH cannot be specified as a source register in the DOR instruction itself. The assembler
generates awarning if the restricted instructions are found within their restricted boundaries.

Implementation Notes

DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR
Instruction incremented by one.

DOR SSL ,xxxx The LC isloaded with its previous value saved in the stack by the DOR
instruction itself.

Condition Codes

CCR

* S Set if the instruction sends A/B accumulator contentsto XDB or YDB.
* L Set if datalimiting occurred
— Unchanged by the instruction

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-63



Jction Set

DOR Start PC-Relative Hardware Loop DOR

Instruction Formats and Opcodes

23 16 15 8 7
DOR [Xor Y]:ea,label 0oo0oo0oo0011001MMMRRR R
PC-Relative Displacement

o
(02]
o
=
o
o
o
o

23 16 15 8 7 0
DOR [X or Y]:aa,label 000O0O0O1100O0aaaaaalbsOo?1IO0O0O0O0
PC-Relative Displacement

23 16 15 8
DOR  #xxx, label 000O0O0O1112O0 i i i i i:iiii1i112001hhnhHhHHhn
PC-Relative Displacement

23 16 15 8 7 0
DOR S, label 000O0O11011DDDUDTDD
PC-Relative Displacement

o
o
o
=
o
o
o
o

DSP56300 Family Manual, Rev. 5

13-64 Freescale Semiconductor



DOR FOREVER DOR FOREVER

Start PC-Relative Infinite Loop

Operation Assembler Syntax

SP+1 — SP;LA — SSH;LC — SSL DOR FOREVER,label
SP+1 — SP;PC — SSH;SR — SSL;PC + xxxx — LA
1—-LF,1—>FV

Instruction Fields None

Description Begin a hardware DO loop that isto repeat forever with arange of execution
terminated by the destination operand (“label”). No overhead other than the execution of this
DOR FOREVER instruction isrequired to set up thisloop. DOR FOREV ER loops can be nested.
During thefirst instruction cycle, the contents of the Loop Address (LA) and the Loop Counter
(LC) registers are pushed onto the system stack. The LC register is pushed onto the stack but is
not updated.

During the second instruction cycle, the contents of the Program Counter (PC) register and the
Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC, and SR registers
permits nesting DOR FOREV ER loops. The DOR FOREVER destination operand (shown as
label) isthen loaded into the LA register after it isadded to the PC. This 24-bit operand residesin
theinstruction’ s 24-bit rel ative address extension word as shown in the opcode section. Thevalue
in the PC register pushed onto the system stack is the address of the first instruction following the
DOR FOREVER instruction (that is, the first actual instruction in the DOR FOREVER loop).
Thisvalueisread (that is, copied but not pulled) from the top of the system stack to return to the
top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. Asaresult,
the PC is repeatedly compared with LA to determine whether the last instruction in the loop has
been fetched. If LA equals PC, the last instruction in the loop has been fetched and SSH is read
(that is, copied but not pulled) into the PC to fetch the first instruction in the loop again. The LC
register is then decremented by one without being tested. Y ou can use this register to count the
number of loops already executed.

When a DOR FOREVER loop executes, the instructions are fetched each time through the loop.
Therefore, aDOR FOREVER loop can beinterrupted. DOR FOREV ER loops can also be nested.
When DOR FOREVER loops are nested, the end of 1oop addresses must also be nested and
cannot be equal. The assembler generates an error message when DOR FOREVER loops are
improperly nested.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-65



Jction Set

DOR FOREVER DOR FOREVER

Start PC-Relative Infinite Loops

Note: The assembler calculates the end of LA (PC-relative address extension word xxxx) by
evaluating the end of 1oop expression and subtracting one. Thus the end of loop
expression in the source code represents the “next address’ after the end of the loop. If
asimple end of loop address label is used, it should be placed after the last instruction
in the loop.

The DOR FOREVER instruction never tests the LC register. The only way to terminate the loop
process is to use either the ENDDO or BRK cc instruction. LC is decremented every time PC =
LA, so you can use it to keep track of the number of times the DOR FOREVER loop has
executed. If you want to initialize LC to a particular value before the DOR FOREVER, take care
to saveit beforeif the DO loop is nested. If so, LC should also be restored immediately after
exiting the nested DOR FOREVER loop.

Condition Codes

— Unchanged by the instruction
Instruction Formats and Opcodes

23 16 15 8 7 0
DOR FOREVER 00 000O0O0OOO0OOOOOOO1IO0O0OO0OO0OO0OO0OO0TZ11OQ0
PC-Relative Displacement

DSP56300 Family Manual, Rev. 5

13-66 Freescale Semiconductor



EN DDO End Current DO Loop ENDDO

Operation Assembler Syntax

SSL(LF) > SR;SP -1 — SP ENDDO
SSH — LA; SSL > LC;SP-1 — SP

Instruction Fields None

Description Terminate the current hardware DO loop before the current Loop Counter (LC)
equals one. If the value of the current DO LC is needed, it must be read before the execution of
the ENDDO instruction. Initialy, the Loop Flag (LF) is restored from the system stack and the
remaining portion of the Status Register (SR) and the Program Counter (PC) are purged from the
system stack. The Loop Address (LA) and the LC registers are then restored from the system
stack.

Condition Codes

n
—
m
C
P
N
<
(@]

CCR
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
ENDDO |OOOOOOOOOOOOOOOOlOOOllOO

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-67



Jction Set

EOR Logical Exclusive OR EOR

Operation Assembler Syntax

S ® D[47-24] — D[47-24] (parallel move) EOR S,D (parallel move)
#xx ® D[47-24] — D[47-24] EOR #xx,D

#xxxx @ D[47-24] — D[47-24] EOR #xxxx,D

where @ denotes the logical XOR operator.

Instruction Fields

{S} 3 Source register [X0,X1,YO0,Y 1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiii 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate L ong Data extension word

Description Logically exclusive OR the source operand S with bits 47—-24 of the destination
operand D and store the result in bits 47—24 of the destination accumulator. The source can be a
24-bit register, 6-bit short immediate or 24-bit long immediate. Thisinstruction is a 24-bit
operation. The remaining bits of the destination operand D are not affected. When 6-bit
Immediate datais used, the dataisinterpreted as an unsigned integer. That is, the 6 bitsare
right-aligned, and the remaining bits are zeroed to form a 24-bit source operand.

Condition Codes

\,
r o
m o
c
Zz w
N N

-
0 o

=l
<_|

|

*

*

*

CCR

* N Set if bit 47 of theresult is set.

* z Set if bits 47-24 of theresult are 0.

vV Alwayscleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-68 Freescale Semiconductor



PR 4

EOR Logical Exclusive OR EOR

Instruction Formats and Opcodes

23 16 15 8 7 0
EOR S,D Data Bus Move Field 01 JJ|do 11
Optional Effective Address Extension

23 16 15 8 7 0
EOR #xx,D lo oo0000101 i i iiii1o0004do11]
23 16 15 8 7 0
EOR #xxxx,D 000000101 000000O11004d©0T11
Immediate Data Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-69



Jction Set

EXTRACT Extract Bit Field EXTRACT

Operation Assembler Syntax

Offset = S1[5-0] EXTRACT S1,S2,D
Width = S1[17-12]

S2[(offset + width — 1):0ffset] — D[(width — 1):0]
S2[offset + width — 1] — D[39:width] (sign extension)

Offset = #CO[5-0] EXTRACT #CO,S2,D
Width = #CO[17-12]

S2[(offset + width — 1):0ffset] — D[(width — 1):0]
S2[offset + width — 1] — D[39:width] (sign extension)

Instruction Fields

{82} s Source accumulator [A,B] (see Table 12-13 on page 12-18)

{0} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{s1} SSS Control register [X0,X1,Y0,Y 1,A1,B1] (see Table 12-13 on page 12-18)
{(#CO} Control word extension.

Description EXxtract a bit-field from source accumulator S2. The bit-field width is specified by
bits 17-12 in the S1 register or in the immediate control word #CO. The offset from the L east
Significant Bit is specified by bits 5-0 in the S1 register or in the immediate control word #CO.
The extracted field is placed into destination accumulator D, aligned to the right. The control
register can be constructed by the MERGE instruction. EXTRACT isa56-bit operation. Bits
outside the field are filled with sign extension according to the Most Significant Bit of the
extracted bit field.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field islocated in bits 13-8 of the control
register and the width field islocated in bits 21-16 of the control register. These fields
corresponds to the definition of the fields in the MERGE instruction.

2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be
undefined.

3. If offset + width exceeds the value of 56, the result is undefined.

DSP56300 Family Manual, Rev. 5

13-70 Freescale Semiconductor



EXTRACT Extract Bit Field EXTRACT

Condition Codes

7 6 5 4 3 2 1 0

S L E ) N Z C

— — Vv v 1 v -
CCR

* v Always cleared.

* C  Alwayscleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example
EXTRACT B1,AA

4 2

4

a1 [9o[ololo[o[ofo[o]1[o]1]olo]o]oo]ofo[o]1[o]1]x
Width =5 Offset =11

1 1

5 4
5 7 5 1 0
e e e e x| ] o ] ]

Al AO

5 4

5 7
(o[ o[ [aa]a]a]a]a]a]a]a]a]a]a]a]a] o] a] ] a[ o] a] o] a]aa|afa|]a]a]a]a]a[a]a]a] 2| a]a]a]a] 1] a]a]a] ] a]0]x

Al AO

Instruction Formats and Opcodes

23 16 15 8 7 0
EXTRACT S1,S2,D |O 0001100O0O0O0O11010O0O0O0SsSSSD
23 16 15 8 7 0
EXTRACT #CO,S2,D 0000110000011 0O0O0O0O0O0DLSUO0O0®O0D

Control Word Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-71



Jction Set

EXTRACTU EXTRACTU

Extract Unsigned Bit Field

Operation Assembler Syntax

Offset = S1[5-0] EXTRACTU S1,S2,D
Width = S1[17-12]

S2[(offset + width — 1):offset] — D[(width — 1):0]
zero — D[55:width]

Offset = #CO[5-0] EXTRACTU #CO,S2,D
Width = #CO[17-12]

S2[(offset + width — 1):offset] — D[(width—1):0]
zero — D[39:width]

Instruction Fields

{S2} s Source accumulator [A,B] (see Table 12-13 on page 12-18)

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{s1} Sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#CO} Control word extension

Description Extract an unsigned bit-field from source accumulator S2. The bit-field width is
specified by bits 17-12 in the S1 register or in the immediate control word #CO. The offset from
the LSB is specified by bits 5-0 in the S1 register or in the immediate control word #CO. The
extracted field is placed into destination accumulator D, aligned to the right. The control register
can be constructed using the MERGE instruction. EXTRACTU is a56-bit operation. Bits outside
thefield are filled with zeros.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field islocated in bits 13-8 of the control
register and the width field islocated in bits 21-16 of the control register. These fields
correspond to the definition of the fields in the MERGE instruction.

2.  If offset + width exceeds the value of 56, the result is undefined.

DSP56300 Family Manual, Rev. 5

13-72

Freescale Semiconductor



EXTRACTU EXTRACTU

Extract Unsigned Bit Field

Condition Codes

7 6 5 4 3 2 1 0

S L E ) N Z C

— — Vv v V1 v -
CCR

* vV Alwayscleared.

* C  Alwayscleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example
EXTRACTU B1,AA

4 2
7 4
g1 |ololo[ololo]ololo]s[1[4lolo]olo]olo[o[o]s]d[x]s
width =7 Offset =11
5 4
5 7 0
A e A R R R R SR R R A A R R
Al A0
5 4
5 7 C
A lolololofolo[ofololo]olo]olo[oolo]o]o[o|o[o]o]o]e]o[o]o]o] dofo]olo]olo[o]o]o]o]o] d o o]o]o]o]o]1][1]o[4]o]3
Al AO

Instruction Formats and Opcodes

23 16 15 8 7 0
EXTRACTU S1,S2,D |O 000110000011 010100ssSsSSsSD
23 16 15 8 7 0
EXTRACTU #CO,S2,D 0000110000011 00O010O0s00O0O0D

Control Word Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-73



Jction Set

IFcc Execute Conditionally Without CCR Update IFcc
Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

Instruction Fields
{cc} ccce Condition code (see Table 12-18 on page 12-24)

Description |f the specified condition istrue, execute and store result of the specified Data ALU
operation. If the specified condition isfalse, no destination is altered. The CCR is never updated
with the condition codes generated by the Data ALU operation. The instructions that can
conditionally be executed using | Fcc are the parallel arithmetic and logical instructions. See
Table 12-4 on page 12-7and T able 12-5 on page 12-9for alist of those instructions. The
conditions specified by “cc” arelisted in Table 12-18 on page 12-24.

Condition Codes

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
IFcc |O 01 00000001 0CCCC Instruction opcode

DSP56300 Family Manual, Rev. 5

13-74 Freescale Semiconductor



IFcc.U Execute Conditionally With CCR Update IFcc.U

Operation Assembler Syntax

If cc, then opcode operation opcode-Operands IFcc

Instruction Fields

{cc} ccce Condition code (see Table 12-18 on page 12-24)

Description |f the specified condition istrue, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data ALU operation.
If the specified condition isfalse, no destination is altered and the CCR is not affected. The
Instructions that can conditionally be executed using IFcc.U are the parallel arithmetic and
logical instructions. See Table 12-4 on page 12-7and T able 12-5 on page 12-9 for alist of these
Instructions. The conditions specified by “cc” are listed on Table 12-18 on page 12-24.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
CCR
* If the specified condition is true, changes are made according to the instruction.

Otherwisg, it is not changed.
Instruction Formats and Opcodes

23 16 15 8 7 0
IFcc.U |O 01 000000011 CCCC Instruction opcode

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-75



Jction Set

”_LEGAL lllegal Instruction Interrupt ”_LEGAL

Operation Assembler Syntax

Begin lllegal Instruction exception processing ILLEGAL

Instruction Fields None

Description The ILLEGAL instruction executes as if it were a NOP instruction. Normal
Instruction execution is suspended and illegal instruction exception processing isinitiated. The
interrupt vector addressislocated at address P.$3E. The Interrupt Priority Level (11, 10) issetto 3
in the Status Register if along interrupt service routine is used. The purpose of the ILLEGAL
instruction isto force the DSP into an illegal instruction exception for test purposes. Exiting an
illegal instruction isafatal error. A long exception routine should be used to indicate this
condition and cause the system to be restarted.

If the ILLEGAL instructionisinaDO loop at LA and the instruction at LA — 1 is being
interrupted, then LC is decremented twice due to the same mechanism that causes L C to be
decremented twice if JSR, REP, and so on arelocated at LA. Thisis why JSR, REP, and other
instructions at LA are restricted. Restrictions cannot be imposed on illegal instructions. Since
REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt not being
initiated until after the REP completes. After the interrupt is serviced, program control returnsto
the address of the second word following the ILLEGAL instruction. Of course, the ILLEGAL
interrupt service routine should abort further processing, and the processor should be
reinitialized.

Condition Codes

%)
[
m
c
| 11z
N
<
g)

CCR
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
ILLEGAL |OOOOOOOOOOOOOOOOOOOOOlOl

DSP56300 Family Manual, Rev. 5

13-76 Freescale Semiconductor



|NC Increment by One |NC

Operation Assembler Syntax

D+1—->D INC D

Instruction Fields
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Increment by one the specified operand and store the result in the destination
accumulator. One is added from the LSB of D.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— v 1 v Vv i v
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7

INC D |OOOOOOOOOOOOOOOOOOOOlOOd

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-77



Jction Set

|NSERT Insert Bit Field |NSERT

Operation Assembler Syntax

Offset = S1[5-0] INSERT S1,S2,D
Width = S1[17-12]

S2[(width — 1):0] — D[(offset + width — 1):offset]

Offset = #CO[5-0] INSERT #CO,S2,D
Width = #CO[17-12]

S2[(width-1):0] — D[(offset + width — 1):offset]

Instruction Fields

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{s1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{s2} qqq Source register [X0,X1,Y0,Y 1,A0,B0] (see Table 12-13 on page 12-18)
{#CO} Control word extension

Description  Insert abit-field into the destination accumulator D. The bit-field whose width is
specified by bits 17-12 in S1 register begins at the LSB of the S2 register. This bit-field is
inserted in the destination accumulator D, with an offset according to bits 5-0 in the S1 register.
The S1 operand can be an immediate control word #CO. The width specified by S1 should not
exceed a value of 24. The construction of the control register can be done by using the MERGE
instruction. Thisis a56-bit operation. Any bits outside the field remain unchanged.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field islocated in bits 13-8 of the control
register and the width field islocated in bits 21-16 of the control register. These fields
corresponds to the definition of the fieldsin the MERGE instruction. Width specified by
S1 should not exceed avalue of 16.

2. InSixteen-bit Arithmetic mode, the offset value, located in the offset field, should be the
needed offset you pre-incremented by a bias of 16.

3. If offset + width > 56, the result is undefined.

DSP56300 Family Manual, Rev. 5

13-78 Freescale Semiconductor



|NSERT Insert Bit Field |NSERT

Condition Codes

7 6 5 4 3 2 1 0

S L E ) N Z C

— — Vv v 1 v -
CCR

* V. Alwayscleared.

* € Alwayscleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example

INSERT B1,X0,A

4 2

7 3
a1 |9o[olo[o[o[o]o[o]1[o]1[o[o[o]o]c]o[o]o]1[o]1]o]
| width = 5 | Offset=10 |
2 0
3
O B B S EEE
4
7 0
I e e e e e S B A R R M R
Al AO

Instruction Formats and Opcodes

23 16 15 8 7 0
INSERT S1,52,D 000011000001 101100q9ggqgg$SSSD

23 16 15 8 7 0
INSERT #C0O,S2,D 000011000001 1004104q9ggqgo0O0O0D

Control Word Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-79



Jction Set

Jcc Jump Conditionally Jcc
Operation Assembler Syntax
If cc, then Oxxx — PC Jce xXxx

else PC+1 - PC

If cc, then ea — PC Jcc ea
else PC+1 - PC

Instruction Fields

{cc} ccee Condition code (see Table 12-18 on page 12-24)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

Description Jump to the location in program memory given by theinstruction’ s effective address
If the specified condition istrue. If the specified condition isfalse, the Program Counter (PC) is
incremented and the effective address isignored. However, the address register specified in the
effective address field is always updated independently of the specified condition. All
memory-alterable addressing modes can be used for the effective address. A Fast Short Jump
addressing mode can also be used. The 12-bit datais zero-extended to form the effective address.
The conditions specified by “cc” arelisted on Table 12-18 on page 12-24.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
Jcc XXX |00001110CCCCaaaaaaaaaaaa|
23 16 15 8 7 0
Jec ea 60000101011 MMMRRRI1O01O0CCCC

Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-80 Freescale Semiconductor



JCLR Jump if Bit Clear JCLR

Operation Assembler Syntax
If S{n}=0 then  xxxx - PC JCLR #n,[X or Y]:ea,xxxx
else PC+1 - PC
If S{n}=0 then  xxxx - PC JCLR #n,[X or Y],aa,xxxx
else PC+1 - PC
If S{n}=0 then  xxxx - PC JCLR #n,[X or Y]:pp,xxxx
else PC+1 - PC
If S{n}=0 then  xxxx - PC JCLR #n,[X or Y]:qq,xxxx
else PC+1 - PC
If S{n}=0 then XXXX - PC JCLR #n,S,XXXX
else PC+1 - PC
Instruction Fields
{#n} bbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{XIY} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-hit absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} PPPPPP I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]
{qq} gq99qq I/O Short Address [64 addresses. $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’ s 24-bit extension word if the n'" bit of the source operand Sisclear. The bit to be
tested is selected by an immediate bit number from 0-23. If the specified memory bit is not clear,
the Program Counter (PC) isincremented and the absolute address in the extension word is
ignored. However, the address register specified in the effective addressfield is always updated
independently of the state of the nt" bit. All address register indirect addressing modes can
reference the source operand S. Absolute Short and 1/0O Short addressing modes can aso be used.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-81



Jction Set

JCLR

Condition Codes

Instruction Formats and Opcodes

JCLR

JCLR

JCLR

JCLR

JCLR

Jump if Bit Clear

6 5 4 3 2 1 0

L E U N Z C

Ny - - - - - =
CCR

#n,[X or Y]:ea,xxxx

#n,[X or Y]:aa,xxxx

#n,[X or Y]:pp,Xxxx

#n,[X or Y]:qq,xxxx

#n,S,XXXX

Changed according to the standard definition.
Unchanged by the instruction.

23 16 15 8 7
0000101001 MMMRRRI1
Absolute Address Extension

JCLR

23 16 15 8 7
0 00O0O0O101000aawaaaal
Absolute Address Extension

23 16 15 8 7
000010101 0pPppPpPPPDPI?
Absolute Address Extension

23 16 15 8 7
0 00O0O0O0O0O11009999qgg49ggq?11
Absolute Address Extension

23 16 15 8 7
0000101011 DDDDDUDO O
Absolute Address Extension

DSP56300 Family Manual, Rev. 5

13-82

Freescale Semiconductor



JMP Jump JMP

Operation Assembler Syntax
Oxxx — Pc JMP XXX
ea— Pc JMP ea

Instruction Fields

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

Description  Jump to the location in program memory given by the instruction’ s effective
address. All memory-alterable addressing modes can be used for the effective address. A Fast
Short Jump addressing mode can also be used. The 12-bit datais zero-extended to form the
effective address.

Condition Codes

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
JMP ea 0000101011 MMMRRRI1IO0O0O0OO0OO0OO©O0ODO
Optional Effective Address Extension

23 16 15 8 7 0
JMP XXX |000011000000aaaaaaaaaaaa|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-83



Jction Set

JScc Jump to Subroutine Conditionally JScc
Operation Assembler Syntax
If cc, then SP +1 — SP; PC — SSH;SR — SSL;0xxx — PC JScc  xxx

else PC+1—>PC

If cc, then SP+1 — SP; PC - SSH;SR — SSL;ea — PC JScc ea
else PC+1 - PC

Instruction Fields

{cc} ccee Condition code (see Table 12-18 on page 12-24)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

Description  Jump to the subroutine whose location in program memory is given by the
Instruction’s effective address if the specified condition istrue. If the specified conditionistrue,
the address of the instruction immediately following the JScc instruction (PC) and the SR are
pushed onto the system stack. Program execution then continues at the specified effective address
in program memory. If the specified condition isfalse, the PC isincremented, and any extension
word isignored. However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory-alterabl e addressing modes can be
used for the effective address. A fast short jump addressing mode can also be used. The 12-bit
datais zero-extended to form the effective address. The conditions specified by “cc” arelisted on
Table 12-18 on page 12-24.

Condition Codes

%)
-
m
c
| ||z
N
<
@)

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
JScc XXX 0 00O0O1111CCCCaaaaaaaaaaaa
23 16 15 8 7 0
JScec ea 0ooo0o0101111MMMRRRI1IO01O0CTCTCC

Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-84 Freescale Semiconductor



JSCLR Jump to Subroutine if Bit Clear JSCLR

Operation Assembler Syntax

If S{n}=0 then SP+1— SP;PC — SSH;SR — SSL; JSCLR #n,[X or Y]:ea,xxxx
XXxX — PC
else PC+1—PC

If S{n}=0 then SP+1— SP;PC — SSH;SR — SSL; JSCLR #n,[X or Y],aa,xxxx
XXxX — PC
else PC+1—PC

If S{n}=0 then SP+1— SP;PC — SSH;SR — SSL; JSCLR #n,[X or Y]:pp,Xxxx
XxXxx — PC
else PC+1-—PC

If S{n}=0 then SP+1— SP;PC — SSH;SR — SSL; JSCLR #n,[X or Y]:qq,xxxx
XXxX — PC
else PC+1—PC

If S{n}=0 then SP+1— SP;PC — SSH;SR — SSL; JSCLR #N,S XXXX

XxXxx — PC
else PC+1—PC

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{XIv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{xxxx} 24-bit absolute Address extension word

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP |/O Short Address [64 addresses. $FFFFCO-$FFFFFF]

{qq} 99994q I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{s} DDDDDD Source register [al on-chip registers] (see Table 12-13 on page 12-18)

Description Jump to the subroutine at the 24-bit absolute address in program memory specified
in the instruction’s 24-bit extension word if the nt" bit of the source operand Sisclear. The bit to
be tested is selected by an immediate bit number from 0-23. If the nt" bit of source operand Sis
clear, the address of the instruction immediately following the JISCLR instruction (PC) and the
SR are pushed onto the system stack. Program execution then continues at the specified absolute
addressin the instruction’ s 24-bit extension word. If the specified memory bit isnot clear, the PC
Isincremented and the extension word is ignored. However, the address register specified in the
effective addressfield is always updated independently of the state of the nt bit. All address
register indirect addressing modes can reference the source operand S. Absolute short and 1/0
short addressing modes can also be used.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-85



Jction Set

JSCLR

Condition Codes

\/

Instruction Formats and Opcodes

JSCLR

JSCLR

JSCLR

JSCLR

JSCLR

Jump to Subroutine if Bit Clear

7 6 5 4 3 2 1 0

S L E U N y4 C

v v - — - - — =
CCR

#n,[X or Y]:ea,xxxx

#n,[X or Y]:aa,xxxx

#n,[X or Y]:pp,xxxx

#n,[X or Y]:qg,xxxx

#n,S,XXXX

Changed according to the standard definition.
Unchanged by the instruction.

23 16 15 8 7
oooo0101101MMMRRRI1
Absolute Address Extension

JSCLR

23 16 15 8 7
0000101100 wawawawawaal
Absolute Address Extension

23 16 15 8 7
000010111 O0pppPpPpPPLPI1
Absolute Address Extension

23 16 15 8 7
0000000111 q999gq9qgg9ggql1l
Absolute Address Extension

23 16 15 8 7
000010111 1DDDDDTUDO
Absolute Address Extension

DSP56300 Family Manual, Rev. 5

13-86

Freescale Semiconductor



JSET

Operation

If Sin}=1
If Sin}=1
If Sin}=1
If Sin}=1

If  S{n}=1

Instruction Fields

{#n} bbbb
{ea} MMMRRR
{XIY} S

{xxxx}

{aa} aaaaaa
{pp} PPPPPP
{qa} aqqqqq
{S} DDDDDD
Description

then xxxx — PC
else PC + 1 > PC

then xxxx — PC
else PC + 1 > PC

then xxxx — PC
else PC + 1> PC

then xxxx — PC
else PC + 1 > PC

then xxxx — PC
else PC + 1 > PC

Jump if Bit Set

Assembler Syntax

JSET

JSET

JSET

JSET

JSET

Bit number [0-23]

#n,[X or Y]:ea,xxxx

#n,[X or Y],aa,xxxx

#n,[X or Y]:pp,xxxx

#n,[X or Y]:qg,xxxx

#n,S,XXXX

Effective Address (see Table 12-13 on page 12-18)

Memory Space [X,Y] (see Table 12-13 on page 12-18)

24-bhit Absolute Address in extension word

Absolute Address [0-63]
I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]
I/O Short Address [64 addresses. $FFFF80-$FFFFBF]

Jump to the 24-bit absolute addressin program memory specified in the

JSET

Source register [all on-chip registers] (see Table 12-13 on page 12-18)

instruction’ s 24-bit extension word if the n'" bit of the source operand Sisset. The bit to be tested

Is selected by an immediate bit number from 0-23. If the specified memory bit is not set, the

Program Counter (PC) isincremented, and the absolute address in the extension word is ignored.

However, the address register specified in the effective address field is always updated

independently of the state of the nt" bit. All address register indirect addressing modes can be
used to reference the source operand S. Absolute short and /0 short addressing modes can also

be used.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor

13-87



Jction Set

JSET Jump if Bit Set

Condition Codes

7 6 5 4 3 2
S L E U N Z
v v - - - -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15

8 7

JSET #n,[X or Y]:ea,xxxx 0000101 001IMMMRRRI1

Absolute Address Extension

JSET

23 16 15

8 7

JSET #n,[X or Y]:aa,xxxx 0 0O0O0O1010O00awawawaaal

Absolute Address Extension

23 16 15

8 7

JSET #n,[X or Y]:pp,xxxx 000010101 0pppppp1

Absolute Address Extension

23 16 15

8 7

JSET #n,[X or Y]:qg,xxxx 000O00O0OO0O11009999gg9ggq?1l

Absolute Address Extension

23 16 15

8 7

JSET #n,S XXXX 0000101011 DDDDDUDO©O

Absolute Address Extension

DSP56300 Family Manual, Rev. 5

13-88

Freescale Semiconductor



JSR Jump to Subroutine JSR

Operation Assembler Syntax
SP + 1 — SP; PC — SSH; SR — SSL; Oxxx — PC JSR XXX
SP + 1 - SP; PC —- SSH; SR - SSL; ea — PC JSR ea

Instruction Fields

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

Description Jump to the subroutine whose location in program memory is given by the
Instruction’ s effective address. The address of the instruction immediately following the JISR
instruction (PC) and the system Status Register (SR) is pushed onto the system stack. Program
execution then continues at the specified effective address in program memory. All
memory-alterable addressing modes can be used for the effective address. A fast short jump
addressing mode can also be used. The 12-bit datais zero-extended to form the effective address.

Condition Codes

— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0

JSR ea 0000101111 MMMRRRI1IO0O0O0O0OO0T© 0O
Optional Effective Address Extension

23 16 15 8 7 0
JSR XXX |OOOO11010000aaaaaaaaaaaa|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-89



JSSET Jump to Subroutine if Bit Set JSSET

Operation Assembler Syntax

IfS{n}=1 then SP + 1 - SP;PC — SSH;SR — SSL; JSSET #n,[X or Y]:ea,xxxx
XxXxx — PC
elsePC+1— PC

IfS{n}=1 then SP + 1 — SP;PC — SSH;SR — SSL; JSSET #n,[X or Y],aa,xxxx
XxXxx — PC
elsePC+1 - PC

IfS{n}=1 then SP + 1 —» SP;PC — SSH;SR — SSL; JSSET #n,[X or Y]:pp,Xxxx
XxXxx — PC
else PC+1— PC

IfS{n}=1 then SP + 1 —» SP;PC — SSH;SR — SSL; JSSET #n,[X or Y]:qq,xxxx
XXxx — PC
else PC + 1 - PC

IfS{n}=1 then SP + 1 — SP;PC — SSH;SR — SSL; JSSET #N,S XXXX

XxXxx — PC
else PC + 1 » PC

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

{XIv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{xxxx} 24-bit PC absolute Address extension word

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]

{qq} gq99qq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{s} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)

Description Jump to the subroutine at the 24-bit absolute address in program memory specified
in theinstruction’ s 24-bit extension word if the n" bit of the source operand Sisset. The bit to be
tested is selected by an immediate bit number from 0-23. If the nt" bit of the source operand Sis
set, the address of the instruction immediately following the JSSET instruction (PC) and the
system Status Register (SR) are pushed onto the system stack. Program execution then continues
at the specified absolute address in the instruction’ s 24-bit extension word. If the specified
memory bit is not set, the Program Counter (PC) isincremented, and the extension word is
ignored. However, the address register specified in the effective addressfield is always updated
independently of the

DSP56300 Family Manual, Rev. 5

13-90 Freescale Semiconductor



JSSET Jump to Subroutine if Bit Set JSSET

state of the n'" bit. All address register indirect addressing modes can be used to reference the
source operand S. Absolute short and 1/0 short addressing modes can also be used.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
i ¥ - - — - —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0

JSSET  #n,[X or Y]:ea,xxxx 0000101101 MMMRRRI1IS1O0DbDbbob
Absolute Address Extension

23 16 15 8 7 0
JSSET  #n,[X or Y]:aa,xxxx 0000101100 aaaaaalsSsi10Dbbwbob
Absolute Address Extension

23 16 15 8 7 0
JSSET  #n,[X or Y]:pp,xxxx 000010121210 pppppPppP1l1S10Dbbbb
Absolute Address Extension

23 16 15 8 7 0
JSSET  #n,[X or Y]:qqg,xxxx 0000000111999 99g9g1sS10Dbbbdob
Absolute Address Extension

23 16 15 8 7 0
JSSET  #n,S,XXXX 000010111 1DDDDDDUOO011O0DbDbbob
Absolute Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-91



P N

Jction Set
L RA Load PC-Relative Address L RA
Operation Assembler Syntax
PC+Rn—D LRA Rn,D
PC + xxxx — D LRA XXXX,D

Instruction Fields

{Rn} RRR Address register [R[0-7]]

{D} ddddd Destination address register
[X0,X1,Y0,Y1A0,B0,A2B2,A1B1A,B,R[0-7],N[0-7]] (see Table
12-16 on page 12-20)

{xxxx} 24-bit PC Long Displacement

Description The PC isadded to the specified displacement and the result is stored in destination
D. The displacement is atwo’ s-complement 24-bit integer that represents the relative distance
from the current PC to the destination PC. Long Displacement and Address Register PC-Relative
addressing modes can be used. Note that if D is SSH, the SP is pre-incremented by one.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
LRA  RnD |0 00 0010011000RRRO0O0O0GdGdGddd]

23 16 15 8 7 0
LRA  xxxx,D 0000010001000000010ddddd

Long Displacement

DSP56300 Family Manual, Rev. 5

13-92 Freescale Semiconductor



LSL Logical Shift Left LSL

Operation

47 24
< C <« < -0
Assembler Syntax
LSL D (parallel move)
LSL #ii,D
LSL S,D
Instruction Fields
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{s} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#ii} i 5-bit unsigned integer [0—16] denoting the shift amount

Description

B Single-bit shift: Logically shift bits 47—24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit 47 of
D is shifted into the Carry bit (C), and a 0 is shifted into bit 24 of the destination
accumulator D.

B Multi-bit shift: The contents of bits 47—24 of the destination accumulator D are shifted left
#ii bits. Bits shifted out of position 47 are lost, except for the last bit that is latched in the
Carry bit. Zeros are supplied to the vacated positions on the right. The result is placed into
bits 4724 of the destination accumulator D. The number of bitsto shift is determined by
the 5-bit immediate field in the instruction, or by the unsigned integer located in the
control register S. If azero shift count is specified, the carry bit is cleared.

Thisisa24-bit operation. The remaining bits of the destination accumulator are not affected. The
number of shifts should not exceed the value of 24.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-93



P N

Jction Set

LSL

Condition Codes

*
0O < N Z2

Logical Shift Left LSL
7 6 5 4 3 2 1 0
S L E U y4
\/ \/ _ _ * * * *
CCR

Set if bit 47 of theresult is set.

Set if bits 47-24 of the result are O.

Always cleared.

Set if the last bit shifted out of the operand is set, cleared for a shift count of O, and

cleared otherwise.
v Changed according to the standard definition.
— Unchanged by the instruction.

Example

LSL #7, A

4 2
4

7
. [ ool

Shift left 7

4 2
4

7
(0] A1 [o]2]s]olo]]ols]o[2]o]o[1[o]o]o]1]o]o]o]o]o]e]d
C

Instruction Formats and Opcodes

23 8 7 0
LSL D Data Bus Move Field 001 1DO0OT11
Optional Effective Address Extension
23 16 15 8 7 0
LSL #ii,D loooo11000001111010 i i i i iD
23 16 15 8 7 0
LSL S.D lo 0001100000111 100001sssD|
DSP56300 Family Manual, Rev. 5
13-94 Freescale Semiconductor



LSR Logical Shift Right LSR

Operation

47 24
0 C

Assembler Syntax

LSR D (parallel move)

LSR #ii,D

LSR S,D
Instruction Fields
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{s} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#ii} i 5-bit unsigned integer [0-23] denoting the shift amount

Description

B Single-bit shift: Logically shift bits 47—24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit 24 of
D is shifted into the Carry bit (C), and a 0 is shifted into bit 47 of the destination
accumulator D.

B Multi-bit shift: The contents of bits 47—24 of the destination accumulator D are shifted
right #i bits. Bits shifted out of position 16 are lost except for the last bit that islatched in
the C bit. Zeros are supplied to the vacated positions on the left. The result is placed into
bits 47-24 of the destination accumulator D. The number of bitsto shift is determined by
the 5-bit immediate field in the instruction, or by the unsigned integer located in the
control register S. If a zero shift count is specified, the C bit is cleared.

Thisisa24-bit operation. The remaining bits of the destination register are not affected. The
number of shifts should not exceed the value of 24.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-95



LSR

Condition Codes

*
0O < N Z

Logical Shift Right LSR
7 6 5 4 3 2 1 0
S L E U N y4 C
\/ \/ _ _ * * * *
CCR

Set if bit 47 of the result is set.

Set if bits 47-24 of the result are 0.

Always cleared.

Set if thelast bit shifted out of the operand is set, cleared for a shift count of zero, and

cleared otherwise.
v Changed according to the standard definition.
— Unchanged by the instruction.

Example

LSR X0,B
2

3 0

e e e e e M M M M M R

SH field

4 2

7 4

pr (H1]2]z]olofololo]2]a]s][slclo]o]olo[s]4]s]s

Shift right 3

4 2

7
pr (9Jo]o[s[s[1]x]olo[o]olo][4]1]1]4[olo[o]o]o]s]1]

c

Instruction Formats and Opcodes

LSR

LSR

LSR

23 8 7 0
D Data Bus Move Field 001 0DOT11
Optional Effective Address Extension

23 16 15 8 7 0
#ii,D loooo11000001111011 i i i i i D

23 16 15 8 7 0
S.D |0 0001100000111 100011s s s D

DSP56300 Family Manual, Rev. 5

13-96

Freescale Semiconductor



L UA Load Updated Address L UA

Operation Assembler Syntax
ea — D (No update performed) LUA ea,D
Rn +aa—D LUA (Rn + aa),D
ea — D (No update performed) LEA ea,D
Rn +aa—D LEA (Rn + aa),D

Instruction Fields

{ea} MMRRR Effective address (see Table 12-13 on page 12-18)

{D} ddddd Destination address register
[X0,X1,Y0,Y1,A0B0,A2B2,A1B1,A, B,R0-7],N[0-7]] (see Table
12-16 on page 12-20)

{D} dddd Destination address register [R[0—7],N[0-7]] (see Table 12-16
on page 12-20)

{aa} aaaaaaa 7-bit sign extended short displacement address

{Rn} RRR Source address register [R[0-7]]

Note: RRR refersto a source address register (R[0-7]), while dddd/ddddd refersto a
destination address register (R[0—7] or N[0-7]).

Description  Load the updated address into the destination address register D. The source address
register and the update mode used to compute the updated address are specified by the effective

address (ea). Only the following addressing modes can be used: Post + N, Post —N, Post + 1, Post
— 1. Note that the source address register specified in the effective address is not updated. Thisis
the only case where an address register is not updated, although stated otherwise in the effective
address mode bits.

Condition Codes

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-97



]
Jction Set

L UA Load Updated Address L UA

Instruction Formats and Opcodes

23 16 15 8 7 0
LUA/LEA ea,D |0 0 000100010MMRRROO0OGdGddddd|

23 16 15 8 7 0
LUA/LEA (Rn + aa),D loooo0010000aaaRRRaaaadddd|

Note: LEA isasynonym for LUA. The simulator on-line disassembly translates the opcodes
into LUA.

DSP56300 Family Manual, Rev. 5

13-98 Freescale Semiconductor



MAC Signed Multiply Accumulate MAC

Operation Assembler Syntax

DX S1%S25D (parallel move) MAC (i)Sl,SZ,D (parallel move)
DX S1%S25D (parallel move) MAC (i)SZ,Sl,D (parallel move)
Dxt (81 * 2™ — D (no parallel move) MAC (i)S,#n,D (no parallel move)

Instruction Formats and Opcodes 1

23 16 15 8 7 0
MAC ()S1,52,D Data Bus Move Field 1Q0QQQdk 10
MAC (1)sS2,51,D Optional Effective Address Extension

Instruction Fields

{S1,52} QQQ  Source registers S1,S2
[X0*X0,YO*YO,X1*X0,Y1*Y0,X0*Y1,Y0* X0,X1*YO0,Y1* X1] (see Table
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{#} k Sign [+,-] (see Table 12-16 on page 12-20)

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MAC  (hs#nD ‘OOOOOOOlOOOOssssllQQdklO‘
Instruction Fields
{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{# k Sign [+,-] (see Table 12-16 on page 12-20)
{#n} sssS Immediate operand (see Table 12-16 on page 12-20)

Description  Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit
source operand S by the positive 24-bit immediate operand 2") and add/subtract the product
to/from the specified 56-bit destination accumulator D. The “—" sign option is used to negate the
specified product prior to accumulation. The default sign optionis“+”.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-99



Jction Set

MAC Signed Multiply Accumulate MAC

Note that when the processor isin the Double Precision Multiply mode, the following
Instructions do not execute in the normal way and should only be used as part of the double

precision multiply algorithm:
MAC X1,YO,AMAC X1,Y0,B
MAC X0,Y1,AMAC X0,Y1,B
MACY1X1,AMACY1X1B

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
v v v v Vv v v -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-100 Freescale Semiconductor



MACI MACI

Signed Multiply Accumulate With Immediate Operand

Operation Assembler Syntax

D T#xxxx*S - D MACI (H)#xxxx,S,D

Instruction Fields

{s} aq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
) k Sign [+,-] (see Table 12-16 on page 12-20)

HXXXXXX 24-bit Immediate L ong Data extension word

Description  Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the
product to/from the specified 56-bit destination accumulator D. The “—" sign option is used to
negate the specified product prior to accumulation. The default sign optionis*+".

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— Vv v Y v v v -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0

MACI  (Fyuxxxx,S,D 000000010100000111qgqd%k?10

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-101



Jction Set

MAC(su,uu) MAC(su,uu)

Mixed Multiply Accumulate

Operation Assembler Syntax
D% S1* S2 — D (S1 unsigned, S2 unsigned) MACuu  (4)s1,52,D (no parallel move)
D% S1* S2 - D (S1 signed, S2 unsigned) MACsu (1)S2,S1,D (no parallel move)

Instruction Fields

{S1,52} QQQQ  Source registers S1,S2 [al combinations of X0,X1,Y0 and Y1]
(see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{£} k Sign [+,-] (see Table 12-16 on page 12-20)
{s} [ss,us] (see Table 12-16 on page 12-20)

Description  Multiply the two 24-bit source operands S1 and S2 and add/subtract the product
to/from the specified 56-bit destination accumulator D. One or two of the source operands can be

unsigned. The “—’" sign option is used to negate the specified product prior to accumulation. The
default sign optionis*“+”".

Condition Codes

7 6 5 4 3 2 1 0
s L E u N z C
— N N N N N N —
CCR
v Changed according to the standard definition.
— Unchanged by the instruction.
Instruction Formats and Opcodes
MACsu (£)S1,52,D 23 16 15 8 7 0
MACuu ()S1,52,D 0000000100100110(/1sdkQQQQ

DSP56300 Family Manual, Rev. 5

13-102 Freescale Semiconductor



MACR Signed Multiply Accumulate and Round MACR

Operation Assembler Syntax

Dt s1%sS2+r-D (parallel move) MACR (i)Sl,SZ,D (parallel move)
Dt s1%sS2+r-D (parallel move) MACR (i)SZ,Sl,D (parallel move)
Dxt (S1 % 2™ +r — D (no parallel move) MACR (i)S,#n,D (no parallel move)

Instruction Formats and Opcodes 1

23 16 15 8 7 0
MACR (1)51,52,D Data Bus Move Field 1QQQdk 11
MACR (1)s2,51,D Optional Effective Address Extension

Instruction Fields

{S1,52} QQQ  Source registers S1,S2
[X0*XO0,YO*YO,X1*X0,Y1*Y0,X0*Y 1,YO* X0,X1*YO0,Y 1* X1] (see Table
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{* k Sign [+,-] (see Table 12-16 on page 12-20)

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MACR (s #nD ‘OOOOOOOlOOOO3sssllQQdkll‘
Instruction Fields
{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
= k Sign [+,—] (see Table 12-16 on page 12-20)
{#n} sssS Immediate operand (see Table 12-16 on page 12-20)

Description  Multiply the two signed 24-hit source operands S1 and S2 (or the signed 24-bit
source operand S by the positive 24-bit immediate operand 2™"), add/subtract the product to/from
the specified 56-bit destination accumulator D, and round the result using either convergent or
two’ s-complement rounding. The rounded result is stored in destination accumulator D. The “—’
sign option negates the specified product prior to accumulation. The default sign optionis“+.”
The LSB of theresult is rounded into the upper portion of the destination accumulator. Once

rounding is complete, the LSBs of

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-103



Jction Set

MACR Signed Multiply Accumulate and Round MACR

destination accumulator D are loaded with zeros to maintain an unbiased accumulator value that
the next instruction can reuse. The upper portion of the accumulator contains the rounded result
that can be read out to the data buses. Refer to the RND instruction for details on the rounding
process.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-104 Freescale Semiconductor



MACRI MACRI

Signed MAC and Round With Immediate Operand

Operation Assembler Syntax

Dt #xoxxxxx ¥ S =D MACRI (H)#xxxxxx,S,D

Instruction Fields

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
s k Sign [+,-] (see Table 12-16 on page 12-20)

H#XXXX 24-bit Immediate L ong Data extension word

Description  Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the
product to/from the specified 56-bit destination accumulator D, and then round the result using
either convergent or two’ s-complement rounding. The rounded result is stored in the destination
accumulator D. The “—" sign option negates the specified product prior to accumulation. The
default sign option is“+”. The contribution of the LSBs of the result is rounded into the upper
portion of the destination accumulator. Once rounding is complete, the L SBs of the destination
accumulator D are loaded with Os to maintain an unbiased accumulator value that the next
Instruction can reuse. The upper portion of the accumulator contains the rounded result that can
be read out to the data buses. Refer to the RND instruction for details on the rounding process.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— v v Y v v v -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
MACRI  (hysiuxxx,S.D 000000010100000O0111qagqdk?1]1

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-105



Jction Set
MAX Transfer by Signed Value MAX

Operation Assembler Syntax

fB-A<O0thenA > B MAX A,B (parallel move)

Description ~ Subtract the signed value of the source accumulator from the signed value of the
destination accumulator. If the difference is negative or O, (A > B) then transfer the source
accumul ator to destination accumulator. Otherwise, do not change the destination accumul ator.
Thisis a56-bit operation. Notice that the Carry (C) bit signifies atransfer has been performed.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

T v = = = = -
CCR

* c Cleared if the conditional transfer is performed, and set otherwise.
v Changed according to the standard definition.
- Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

MAX A, B Data Bus Move Field 0 00O 1|11 1 0 1
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-106 Freescale Semiconductor



MAXM Transfer by Magnitude MAXM

Operation Assembler Syntax

If |B| - |A| < 0then A — B MAXM A,B (parallel move)

Description Subtract the absol ute value (magnitude) of the source accumulator from the absolute
value of the destination accumulator. If the differenceis negative or O

(JA] = |B]), then transfer the source accumulator to the destination accumulator. Otherwise, do not
change the destination accumulator. Thisis a 56-bit operation. Notice that the Carry bit (C)
signifies atransfer has been performed.

Condition Codes

7 6 5 4 3 2 1 0

S L E 9] N Z Vv

v v - - :
CCR

* c Cleared if the conditional transfer is performed, and set otherwise.
v Changed according to the standard definition.
- Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
MAXM A, B Data Bus Move Field 0 00 1({0 1 0 1
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-107



MERGE Merge Two Half Words MERGE

Operation Assembler Syntax

{S[7-0],D[35-24]} — D[47-24] MERGE S,D

Instruction Fields

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on page 12-20)

Description  The contents of bits 11-0 of the source register are concatenated to the contents of
bits 35-24 of the destination accumulator. The result is stored in the destination accumulator.
Thisinstruction isa24-bit operation. The remaining bits of the destination accumulator D are not
affected.

Note:

1. MERGE can be used in conjunction with EXTRACT or INSERT instructionsto
concatenate width and offset fields into a control word.

2. In Sixteen-bit Arithmetic mode, the contents of bits 158 of the source register are
concatenated with the contents of bits 39—-32 of the destination accumulator. The result
Is placed in bits 47-32 of the destination accumulator.

Condition Codes

* N Set if bit 47 of the result is set.

* z Set if bits 47-24 of the result are 0.
* vV Always cleared.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-108 Freescale Semiconductor



MERGE Merge Two Half Words MERGE

Example

MERGE X0,B

2
3 0
xo <delxlxlx{xix]<]x[x[x]x|1]o[]o[o]]olo]o]2]o

4 7 4

4
7
g1 X x]{x]x[x]1]o[o]o[x]o]ofo[o]o[s]a] 5% [1]o[s[o]1]o]1]o]olo[1]o[1]o]oo[[o]o[o]o]]11]

Instruction Formats and Opcodes

23 16 15 8 7 0
MERGE S,D |OOOOl100000110111000388D

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-109



Jction Set

MOVE

Move Data

MOVE

The DSP56300 (family) core provides aset of MOVE instructions. Table 2 lists these
instructions, which are fully described in the following pages.

Table 13-2. Move Instructions

Instruction Description Page
MOVE Move Data page 13-111
No Parallel Data Move page 13-112
I Immediate Short Data Move page 13-113
R Register-to-Register Data Move page 13-115
U Address Register Update page 13-117
X: X Memory Data Move page 13-118
X:R X Memory and Register Data Move page 13-120
Y Y Memory Data Move page 13-122
R:Y Register and Y Memory Data Move page 13-124
L: Long Memory Data Move page 13-126
X:Y: XY Memory Data Move page 13-128

DSP56300 Family Manual, Rev. 5

13-110

Freescale Semiconductor



MOVE Move Data MOVE

Operation Assembler Syntax

S—>D MOVE S,D

Description Move the contents of the specified data source Sto the specified destination D. This
instruction is equivalent to a Data ALU NOP with a parallel data move.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
v v - -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0

MOVE S,D Data Bus Move Field 0O 00O O[O O OO
Optional Effective Address Extension

Instruction Fields None

Parallel Move Description Thirty of the sixty-two instructions allow an optional parallel data bus
movement over the X and/or Y data bus. This allows a Data ALU operation to be executed in
parallel with up to two data bus moves during the instruction cycle. Ten types of parallel moves
are permitted, including register-to-register moves, register-to-memory moves, and
memory-to-register moves. However, not all addressing modes are allowed for each type of
memory reference. The following section contains detailed descriptions about each type of
paralel move operation.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-111



P N

Jction Set

No Parallel Data Move

Operation Assembler Syntax

(- ()

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Description Many instructions in the instruction set allow parallel moves. The parallel moves

have been divided into ten opcode categories. This category isa parallel move NOP and does not
involve data bus move activity.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
(. |O 01 00O0O0OO0OO0OO0ODOOOOODQO Instruction opcode

Instruction Format  (defined by instruction)

DSP56300 Family Manual, Rev. 5

13-112 Freescale Semiconductor



| Immediate Short Data Move |

Operation Assembler Syntax

(...),#Hxxx>D (...)#xD

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Instruction Fields

{#xx} i 8-bit Immediate Short Data

{D} ddddd Destination register
[X0,X1,Y0,Y1A0,B0A2B2A1B1A,B,R[0-7],N[0-7]] (see Table 12-13
on page 12-18)

Description Move the 8-bit immediate data value (#xx) into the destination operand D. If the
destination register D isAO, Al, A2, BO, B1, B2, R[0-7], or N]0-7], the 8-bit immediate short
operand isinterpreted as an unsigned integer and is stored in the specified destination register.
That is, the 8-bit datais stored in the eight L SBs of the destination operand and the remaining bits
of the destination operand D are zeroed. If the destination register D is X0, X1, YO, Y1, A, or B,
the 8-bit immediate short operand is interpreted as a signed fraction and is stored in the specified
destination register. That is, the 8-bit datais stored in the eight M SBs of the destination operand
and the remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies agiven destination
accumul ator, that same accumulator or portion of that accumulator cannot be specified asa
destination D in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator asits destination, the parallel data bus move
portion of the instruction cannot specify A0, A1, A2, or A asitsdestination D. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination,
the parallel data bus move portion of the instruction cannot specify BO, B1, B2, or B asits
destination D. That is, duplicate destinations are not allowed within the same instruction.

Condition Codes

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-113



Jction Set

| Immediate Short Data Move |

Instruction Formats and Opcodes

23 16 15 8 7 0
(...)#xx,D |O 01 ddddd i i i i i i i i Instruction opcode

DSP56300 Family Manual, Rev. 5

13-114 Freescale Semiconductor



R Register-to-Register Data Move R

Operation Assembler Syntax

(...):8$->D (...)SD

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves.

Instruction Fields

{S} eeeee  Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0-7],
N[O — 7] (see Table 12-16 on page 12-20)
{D} ddddd  Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,

R[O —7],N[0-7]] (see Table 12-13 on page 12-18)

Description Move the source register S to the destination register D. If the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator cannot be specified as a destination D in the parallel
data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the
56-bit A accumulator as its destination, the parallel data bus move portion of the instruction
cannot specify A0, Al, A2, or A asitsdestination D. Similarly, if the opcode-operand portion of
the instruction specifies the 56-bit B accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify BO, B1, B2, or B asitsdestination D. That is, duplicate
destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register,
that same register or portion of that register can be used as a source Sin the parallel data bus
move operation. This allows datato be moved in the same instruction in which aData ALU
operation isusing it as a source operand. That is, duplicate sources are allowed within the same
instruction. Note that the MOVE A,B operation results in a 24-bit positive or negative saturation
constant being stored in the B1 portion of the B accumulator if the signed integer portion of the A
accumulator isin use.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-115



Jction Set

R Register-to-Register Data Move R

Condition Codes

S L E U N Z C
R
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
|O 01 000eeeeeddddd Instruction opcode

(...)SD

DSP56300 Family Manual, Rev. 5

13-116 Freescale Semiconductor



U Address Register Update U
Operation Assembler Syntax
(...);ea— Rn (...)ea

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves
Instruction Fields

{ea} MMRRR Effective Address (see Table 12-13 on page 12-18)

Description Update the specified address register according to the specified effective addressing
mode. All update addressing modes can be used.

Condition Codes

7 6 5 4 3 2 1 0
S L E ) N Z Vv C
CCR

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
(...)ea |O 01 00000O01O0MMRRR R Instruction opcode

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-117



Jction Set

X: X Memory Data Move X:

Operation Assembler Syntax

(...); Xiea—>D (...) X:ea,D

(...);X:aa—>D (...) X:aa,D

(...);S—> Xea (...) S, X:ea

(...);S—> Xaa (...) S,X:aa

X:(Rn + xxx) > D MOVE X:(Rn + xxx),D

X:(Rn + xxxx) - D MOVE X:(Rn + xxxx),D

D — X:(Rn + xxx) MOVE D,X:(Rn + xxx)

D — X:(Rn + xxxx) MOVE D,X:(Rn + XxxXx)

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves.

Instruction Formats and Opcodes 1

(..
(..
(..

(..
(..

.) X:ea,D 23 16 15 8 7 0
.) S X:ea 01 ddodddwW1IMMMRRR R Instruction opcode

. ) #HX0xxxx, D Optional Effective Address Extension

.) X:aa,D 23 16 15 8 7 0
.) S, X:aa |O 1 ddO0OdddWO0Oaaaaaa Instruction opcode |

Instruction Fields

{ea}

{S.D}

{aa}

MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S/ Write D bit (see Table 12-16 on page 12-20)
ddddd Source/Destination registers

[X0,X1,Y0,Y1A0,B0,A2B2,A1B1A,B,R[0-7],N[0—7]] (see Table
12-13 on page 12-18)
aaaaaa 6-bit Absolute Short Address

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MOVE  X:(Rn + xxxx),D 000010100111 0RRR1IWDDUDDTDD
MOVE S, X:(Rn + xxxx) Rn Relative Displacement
MOVE  X:(Rn + xxx),D 23 16 15 8 7 0
MOVE  S,X:(Rn + xxx) 0000001 aaaaaaRRRI1aO0OWDDDD

DSP56300 Family Manual, Rev. 5

13-118

Freescale Semiconductor



X: X Memory Data Move X:

Instruction Fields

W Read S/ Write D bit (see Table 12-16 on page 12-20)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Addressregister (R[0-7])
{D} DDDD Source/Destination registers [X0,X1,Y0,Y 1,A0,B0,A2,B2,A1,B1,A,B]

(see Table 12-16 on page 12-20)
{S.D} DDDDDD Source/Destination registers [all on-chip registers] (see Table 12-13
on page 12-18)

Description Movethe specified word operand from/to X memory. All memory addressing modes
can be used, including absolute addressing and 24-bit immediate data. Absolute short addressing
can also be used. If the arithmetic or logical opcode-operand portion of the instruction specifiesa
given destination accumulator, that same accumulator or portion of that accumulator cannot be
specified as adestination D in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 56-bit A accumulator as its destination, the parallel data
bus move portion of the instruction cannot specify AO, A1, A2, or A asits destination D.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as
its destination, the parallel data bus move portion of the instruction cannot specify BO, B1, B2, or
B asitsdestination D. That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register,
that same register or portion of that register can be used as a source Sin the parallel data bus
move operation. This alows datato be moved in the sameinstruction in which it is being used as
asource operand by a Data ALU operation. That is, duplicate sources are allowed within the
same instruction. As aresult of the MOVE A, X:eaoperation, a 24-bit positive or negative
saturation constant is stored in the specified 24-bit X memory location if the signed integer
portion of the A accumulator isin use.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
N N - - — —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-119



Jction Set

X: R X Memory and Register Data Move X: R
Operation Assembler Syntax
Class |
(...); X:ea—D1;S2 > D2 (...) X:ea,D1 S2,D2
(...);S1—> X:ea; S2 - D2 (...) S1,X:ea S2,D2
(...); #Hx0xxxx — D1; S2 —» D2 (...) #xxxxxx,D1 S2,D2
Class Il
(...);A—> Xea; X0>A (...) A, X:ea X0,A
(...);B—>Xea; X0—>B (...) B,X:ea X0,B

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Class | Instruction Formats and Opcodes

(...)X:eaDbD1S2D2 23 16 15 8 7 0
(...)S1,XeaS2, D2 ooo1ffdFWOMMMRRR R Instruction opcode
(...)#xxx,D1 S2,D2 Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

W Read S1/Write D1 bit (see Table 12-16 on page 12-20)
{S1,01} ft S1/D1 register [X0,X1,A,B] (see Table 12-16 on page 12-20)
{S2} d S2 accumulator [A,B] (see Table 12-13 on page 12-18)
{D2} F D2 input register [Y0,Y 1] (see Table 12-16 on page 12-20)

Class Il Instruction Formats and Opcodes

23 16 15 8 7 0
(...)A>XeaX0—->A 0000100dOOMMMRRR R Instruction opcode
(...)B>XeaX0—B Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
d Move opcode (see Table 12-16 on page 12-20)

DSP56300 Family Manual, Rev. 5

13-120 Freescale Semiconductor



X:R X Memory and Register Data Move X:R

Description

B Class|: Move aone-word operand from/to X memory and move another word operand
from an accumulator (S2) to an input register (D2). All memory addressing modes,
including absolute addressing and 24-bit immediate data, can be used. The
register-to-register move (S2,D02) allows aData ALU accumulator to be moved to a Data
ALU input register for use as aData ALU operand in the following instruction.

B Classll: Move one-word operand from a Data ALU accumulator to X memory and
one-word operand from Data ALU register X0 to a Data ALU accumulator. One effective
address is specified. All memory addressing modes except long absolute addressing and
long immediate data can be used.

For both Class | and Class |1 X:R parallel datamoves, if the arithmetic or logical opcode-operand
portion of the instruction specifies a given destination accumulator, that same accumulator or
portion of that accumulator cannot be specified as adestination D1 in the parallel data bus move
operation. Thus, if the opcode-operand portion of the instruction specifies the 40-bit A

accumul ator asits destination, the parallel data bus move portion of theinstruction cannot specify
A0, Al, A2, or A asitsdestination D1. Similarly, if the opcode-operand portion of theinstruction
specifies the 56-bit B accumulator asits destination, the parallel data bus move portion of the
Instruction cannot specify BO, B1, B2, or B asitsdestination D1. That is, duplicate destinations
are not allowed within the same instruction. If the opcode-operand portion of the instruction
specifies agiven source or destination register, that sameregister or portion of that register can be
used as a source S1 and/or S2 in the parallel data bus move operation. This allows datato be
moved in the same instruction in which aData ALU operation isusing it as a source operand.
That is, duplicate sources are allowed within the same instruction—S1 and S2 can specify the
same register.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
v N - —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-121



Jction Set

Y Y Memory Data Move Y

Operation Assembler Syntax

(...);Y:ea—>D (...) Y:ea,D

(...);Y:aa—>D (...) Y:aa,D

(...);S—>Yea (...) S,Y:ea

(...);S—>VY:aa (...) S,Y:aa

Y:(Rn + xxx) - D MOVE Y:(Rn + xxx),D

Y:(Rn + xxxx) - D MOVE Y:(Rn + xxxx),D

D — Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)

D — Y:(Rn + xxxx) MOVE D,Y:(Rn + Xxxx)

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

(..
(..
(..

(..
(..

Instruction Fields

{ea}

{S.D}

{aa}

.)Y:ea,D 23 16 15 8 7 0
.)S,Y:ea 01 ddldddwW1l1MMMRRR R Instruction opcode

L) #xxxx,D Optional Effective Address Extension

.)Y:aa,D 23 16 15 8 7 0
.)S,Y:aa |O 1 dd1l1dddWO0aaaaaa Instruction opcode |

MMMRRR Effective Address (see Table 12-13 on page 12-18)

w Read S/Write D bit (see Table 12-16 on page 12-20)

ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0-7],N[0—7]] (see Table
12-13 on page 12-18)

aaaaaa Absolute Short Address

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MOVE  Y:(Rn + xxxx),D 000010110111 0RRR1IWDDUDDTDD
MOVE  D,Y:(Rn + xxxx) Rn Relative Displacement
MOVE  Y:(Rn + xxx),D 23 16 15 8 7 0
MOVE  D,Y:(Rn + xxx) 0000001 aaaaaaRRRI1alWDDDD

DSP56300 Family Manual, Rev. 5

13-122

Freescale Semiconductor



Y Y Memory Data Move Y

Instruction Fields

W Read S/Write D bit (see Table 12-16 on page 12-20)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R[0-7])
{D} DDDD Source/Destination registers[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]

(see Table 12-16 on page 12-20)
{S.D} DDDDDD Source/Destination registers[all on-chip registers] (see Table 12-13
on page 12-18)

Description Move the specified word operand from/to Y memory. All memory addressing
modes can be used, including absol ute addressing, absol ute short addressing, and 24-bit
immediate data. If the arithmetic or logical opcode-operand portion of the instruction specifies a
given destination accumulator, that same accumulator or portion of that accumulator cannot be
specified as adestination D in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 56-bit A accumulator as its destination, the parallel data
bus move portion of the instruction cannot specify AO, A1, A2, or A asits destination D.
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as
Its destination, the parallel data bus move portion of the instruction cannot specify BO, B1, B2, or
B asitsdestination D. That is, duplicate destinations are not alowed within the same instruction.
If the opcode-operand portion of the instruction specifies a given source or destination register,
that same register or portion of that register can be used as a source Sin the parallel data bus
move operation. This allows datato be moved in the same instruction in which aData ALU
operation isusing it as a source operand. That is, duplicate sources are alowed within the same
instruction. As aresult of the MOVE A,Y :ea operation, a 24-bit positive or negative saturation
constant is stored in the specified 24-bit Y memory location if the signed integer portion of the A
accumulator isin use.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
N N — —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-123



Jction Set

R:Y Register and Y Memory Data Move R:Y
Operation Assembler Syntax
Class |
(...);S1—>D1;Y:ea— D2 (...) S1,D1 Y:ea,D2
(...);S1—>5D1;S2 > Yea (...) S1,D1 S2,Y:ea
(...); S1 — D1; #xxxxxx — D2 (...) S1,D1 #xxxxxx,D2
Class Il
(...);YO> A A> Yea (...) YO0,A A Y:ea
(...);YO—>B;B— Y:ea (...) Y0,B B,Y:ea

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Class | Instruction Formats and Opcodes

(...)S1,D1Y:ea,D2 23 16 15 8 7 0
(...)S1,D1S2)Y:ea 0001def fW1IMMMRRR R Instruction opcode
(...)S1,D1 #xxxx,D2 Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S2/Write D2 bit (see Table 12-16 on page 12-20)
{s1} d S1 accumulator [A,B] (see Table 12-16 on page 12-20)
{D1} e D1 input register [X0,X1] (see Table 12-16 on page 12-20)
{s2,D2} ft S2/D2 register [YO,Y 1,A,B] (see Table 12-16 on page 12-20)

Class Il Instruction Formats and Opcodes

23 16 15 8 7 0
(...)YO>AA > Yea 0000100d1O0OMMMRRR R Instruction opcode
(...)YO—>BB—>Y:ea Optional Effective Address Extension

Instruction Fields

MMMRRR ea = 6-bit Effective Address (see Table 12-13 on page 12-18)
d Move opcode (see Table 12-16 on page 12-20)

DSP56300 Family Manual, Rev. 5

13-124 Freescale Semiconductor



R:Y Register and Y Memory Data Move R:Y

Description

B Class|: Move aone-word operand from an accumulator (S1) to an input register (D1) and
move another word operand from/to Y memory. All memory addressing modes, including
absolute addressing and 16-bit immediate data, can be used. The register to register move
(S1,D1) allows aData ALU accumulator to be moved to aData ALU input register for use
asaData ALU operand in the following instruction.

B Classll: Move aone-word operand from a Data ALU accumulator to' Y memory and a
one-word operand from Data ALU register YO to a Data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, can be used.

For both Class | and Class |1 R:Y parallel datamoves, if the arithmetic or logical opcode-operand
portion of the instruction specifies a given destination accumulator, that same accumulator or
portion of that accumulator cannot be specified as a destination D2 in the parallel data bus move
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit A

accumul ator asits destination, the parallel databus move portion of theinstruction cannot specify
AO, Al, A2, or A asitsdestination D2. Similarly, if the opcode-operand portion of theinstruction
specifies the 56-bit B accumulator asits destination, the parallel data bus move portion of the
Instruction cannot specify BO, B1, B2, or B asitsdestination D2. That is, duplicate destinations
are not allowed within the same instruction. If the opcode-operand portion of the instruction
specifies agiven source or destination register, that sameregister or portion of that register can be
used as a source S1 and/or S2 in the parallel data bus move operation. This allows datato be
moved in the same instruction in which it is being used as a source operand by a Data ALU
operation. That is, duplicate sources are allowed within the same instruction. Note that S1 and S2
can specify the same register.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
v N - —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-125



Jction Set

L: Long Memory Data Move L:
Operation Assembler Syntax
(...); X:ea— D1; Y:ea— D2 (...) L:ea,D
(...); X:aa— D1; Y:aa — D2 (...) L:aa,D
(...);S1 > Xea; S2 > Y:ea (...) S,L:ea
(...);S1 > X:aaa; S2 > Y:aa (...) S,L:aa

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

W Read S/Write D bit (see Table 12-16 on page 12-20)
{L} LLL Two Data ALU registers (see Table 12-16 on page 12-20)
{aa} aaaaaa Absolute Short Address (see Table 12-16 on page 12-20)

Description Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU
registers are concatenated to form the 48-bit long-word operand. This allows efficient moving of
both double-precision (high:low) and complex (real:imaginary) data from/to one effective
addressin L (X:Y) memory. The same effective address is used for both the X and Y memory
spaces; thus, only one effective address isrequired. Note that the A, B, A10, and B10 operands
reference a single 48-bit signed (double-precision) quantity whilethe X, Y, AB, and BA
operands reference two separate (that is, real and imaginary) 24-bit signed quantities. All
memory alterable addressing modes can be used. Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies agiven destination
accumulator, that same accumulator or portion of that accumulator cannot be specified asa
destination D in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator asits destination, the parallel data bus move
portion of the instruction cannot specify A, A10, AB, or BA as destination D. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination,
the parallel data bus move portion of the instruction cannot specify B, B10, AB, or BA asits
destination D. That is, duplicate destinations are not allowed within the same instruction. If the
opcode-operand portion of the instruction specifies a given source or destination register, that
same register or portion of that register can be used as a source Sin the parallel data bus move
operation. This allows datato be moved in the same instruction in which it is being used as a
source operand by a Data AL U operation. That is, duplicate sources are allowed within the same

DSP56300 Family Manual, Rev. 5

13-126 Freescale Semiconductor



L: Long Memory Data Move L:

instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-hit
long memory move as previously described. These operands cannot be used in any other type of
instruction or parallel move.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
T —
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Asaresult of the MOVE A,L:ea operation, a48-bit positive or negative saturation constant is
stored in the specified 24-bit X and Y memory locations if the signed integer portion of the A
accumulator isin use. As aresult of the MOV E AB,L:ea operation, either one or two 24-bit
positive and/or negative saturation constant(s) are stored in the specified 24-bit X and/or Y
memory location(s) if the signed integer portion of the A and/or B accumulator(s) isin use.

Instruction Formats and Opcodes

23 16 15 8 7 0
(...)LweaD 01 00LOLLWIMMMRRR R Instruction opcode
(...)S,Lea Optional Effective Address Extension
(...)L:aa,D 23 16 15 8 7 0
(...)S,Laa | 01 00LOLLWO aaaaaa Instruction opcode |

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-127



Jction Set

X Y: XY Memory Data Move XY:
Operation Assembler Syntax
(...); Xi<eax> — D1; Y:<eay> — D2 (...) Xi<eax>,D1 Y:<eay>D2
(...); Xi<eax> — D1; S2 — Y:<eay> (...) Xi<eax>,D1 S2,Y:<eay>
(...); S1 > X:<eax>; Y:<eay> — D2 (...)S1X<eax> Y:<eay>D2
(...); S1 - Xi<eax>; S2 — Y:<eay> (...)S1X<eax> S2,Y:<eay>

where (. ..) refersto any arithmetic or logical instruction that allows parallel moves

Instruction Fields

{<eax>} MMRRR 5-bit X Effective Address (R[0-3] or R[4-7])

{<eay>} mmrr 4-bit Y Effective Address (R[4—7] or R[0-3])

{S1,01} ee S1/D1 register [ X0,X1,A,B]

{s2,02} ff S2/D2 register [YO,Y 1,A,B]

MMRRR,mmrr,ee,ff (see Table 12-16 on page 12-20)
W X move Operation Control (see Table 12-16 on page 12-20)
w Y move Operation Control (see Table 12-16 on page 12-20)

Description Move aone-word operand from/to X memory and move another word operand
from/to Y memory. Note that two independent effective addresses are specified (<eax> and
<eay>) where one of the effective addresses uses the lower bank of address registers (R[0-3])
while the other effective address uses the upper bank of address registers (R[4—7]). All paral€l
addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies agiven destination
accumul ator, that same accumulator or portion of that accumulator cannot be specified asa
destination D1 or D2 in the parallel data bus move operation. Thus, if the opcode-operand portion
of the instruction specifies the 56-bit A accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify A asitsdestination D1 or D2. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination,
the parallel data bus move portion of the instruction cannot specify B asitsdestination D1 or D2.
That is, duplicate destinations are not allowed within the same instruction. D1 and D2 cannot
specify the same register.

DSP56300 Family Manual, Rev. 5

13-128 Freescale Semiconductor



X Y: XY Memory Data Move XY:

If theinstruction specifiesan accessto aninternal X I/O and internal Y 1/0O modules (reflected by
the address of the X memory and the Y memory), only the access to the internal X 1/0 moduleis
executed. The accessto the Y 1/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or destination register,
that same register or portion of that register can be used as a source S1 and/or S2 in the parallel
data bus move operation. This allows datato be moved in the same instruction in which it is
being used as a source operand by a Data ALU operation. That is, duplicate sources are allowed
within the same instruction. Note that S1 and S2 can specify the same register.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
v v — —
CCR
v Changed according to the standard definition.
— Unchanged by the instruction.
Instruction Formats and Opcodes
(...)X:<eax>D1 Y:<eay>D2
(...)X<eax>D1 S2,Y:<eay>
(...)S1X<eax> Y:<eay>D2 23 16 15 8 7 0
(...)S1,X<eax> S2,Y:<eay> lwmmee f fWr r MMR R R| Instruction opcode

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-129



Jction Set

MOVEC Move Control Register MOVEC

Operation Assembler Syntax
[XorY]:ea— D1 MOVE(C) [X or Y]:ea,D1
[X orY]:aa— D1 MOVE(C) [X or Y]:aa,D1
S1—[XorY]ea MOVE(C) S1,[X or Y]:ea
S1—|[XorY]aa MOVE(C) S1,[X or Y]:aa
S1-D2 MOVE(C) S1,D2
S2-D1 MOVE(C) S2,D1

#xxxx — D1 MOVE(C) #xxxx,D1

#xx — D1 MOVE(C) #xx,D1

Instruction Fields

{ea} MMMRR Effective Address (see Table 12-13 on page 12-18)
W Read S/Write D bit (see Table 12-16 on page 12-20)

{Xrv} S Memory Space [X,Y] (see Table 12-13 on page 12-18)

{s1,D1} ddddd Program Controller register [M[0-7], VBA, SR, OMR, SP,
SSH,SSL,LA,LC] (see Table 12-16 on page 12-20)

{aa} aaaaaa aa = 6-bit Absolute Short Address

{S2,02} eeeeee S2/D2 register [al on-chip registers] (see Table 12-16 on page 12-20)

{#xx} iiiiii #xx = 8-bit Immediate Short Data

Description Move the contents of the specified source control register S1 or S2 to the specified
destination, or move the specified source to the specified destination control register D1 or D2.
The control registers S1 and D1 are a subset of the S2 and D2 register set and consist of the
Address ALU modifier registers and the program controller registers. These registers can be
moved to or from any other register or memory space. All memory addressing modes, as well as
an Immediate Short Addressing mode, can be used.

If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is
post-decremented by 1 after SSH has been read. If SSH is specified as a destination operand, the
SPis preincremented by 1 before SSH iswritten. This allows the system stack to be efficiently
extended using software stack pointer operations.

DSP56300 Family Manual, Rev. 5

13-130 Freescale Semiconductor



MOVEC Move Control Register

Condition Codes

7 6 5 4 3 2 1 0

S U Zz

* * * * * * * *
CCR

For D1 or D2 = SR operand:

*

*

*

*

*

*

*

*

S

< N Z Cc m r

C

Set according to bit 7 of the source operand.
Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
Set according to bit O of the source operand.

For D1 and D2 # SR operand:

*

*

S
L

Set if data growth is detected.
Set if datalimiting occurred during the move.

Instruction Formats and Opcodes

MOVEC

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0

MOVE(C)  S1,[Xor Y]ea 0 0000101WI1IMMMRRR|IOS 1ddddd

MOVE(C) #xxxx,D1 Optional Effective Address Extension

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0

MOVE(C)  SL1,Xor Y]:aa lo0o000101WO0aaaaaalosi1ddddd]|

MOVE(C) S1,D2 23 16 15 8 7 0

MOVE(C)  S2,D1 looooo0o100wWileeeeee|ll01ddddd|
23 16 15 8 7 0

MOVE(C)  #xx,D1 looo0oo0o0101 i i i iiiiilt101ddddd]

DSP56300 Family Manual, Rev. 5
Freescale Semiconductor 13-131



MOVEM

Operation
S > Peea
S —»> P:aa
P:ea—D

P:aa - D

Instruction Fields

{ea} MMMRRR
w

{S,b} dddddd

{aa} aaaaaa

Move Program Memory

Assembler Syntax

MOVE(M)
MOVE(M)
MOVE(M)

MOVE(M)

Effective Address (see Table 12-13 on page 12-18)
Read S/Write D bit (see Table 12-16 on page 12-20)

S,P:ea
S,P:aa
P:ea,D

P:aa,D

MOVEM

Source/Destination register [all on-chip registers] (see

Table 12-13 on page 12-18)
Absolute Short Address

Description Move the specified operand from/to the specified Program (P) memory location.
Thisisapowerful move instruction in that the source and destination registers S and D can be
any register. All memory-alterable addressing modes can be used, as well as the Absolute Short
Addressing mode. If the system stack register SSH is specified as a source operand, the system
Stack Pointer (SP) is post-decremented by 1 after SSH has been read. If the system stack register
SSH is specified as a destination operand, the SP is pre-incremented by 1 before SSH is written.
This allows the system stack to be efficiently extended using software stack pointer operations.

Condition Codes

DSP56300 Family Manual, Rev. 5

13-132

Freescale Semiconductor



MOVEM Move Program Memory MOVEM

For D1 or D2 = SR operand:

* S Set according to bit 7 of the source operand.
* Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
* c Set according to bit O of the source operand.
For D1 and D2 # SR operand:

* S Set if data growth is detected.

* L Set if datalimiting occurred during the move.

*

*

*

*

*

< N Z Cc m r

Operation Assembler Syntax

S > Pea MOVE(M) S,Pea
S > P:aa MOVE(M) S,P:aa
P:ea—>D MOVE(M) P:ea,D
P:aa »D MOVE(M) P:aa,D

Instruction Formats and Opcodes

23 16 15 8 7 0
MOVE(M)  S,P:ea OOOOOlllWlMMMRRR|lOdddddd
MOVE(M) P:ea,D Optional Effective Address Extension
MOVEM)  S,P:aa 23 16 15 8 7 0
MOVE(M)  P:aaD lo 000011 1WO0aaaaaal0odddddd]|

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-133



Jction Set

MOVEP Move Peripheral Data MOVEP

Operation Assembler Syntax

[XorY]pp —»D MOVEP [X or Y]:pp,.D
[XorY]qq »D MOVEP [X or Y]:qq,D
[XorY]:pp — [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea
[XorY]:qq — [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea
[XorY]:pp — P:ea MOVEP [X or Y]:pp,P:ea
[XorY]qq — P:ea MOVEP [X or Y]:qq,P:ea

S — [Xor Y]:pp MOVEP S,[X or Y]:pp

S — [Xor Y]:qq MOVEP S,[X or Y]:qq
[XorY]:ea — [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp
[XorY]:ea — [Xor Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq
P:ea — [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea — [X or Y]:qq MOVEP P:ea,[X or Y]:qq

Instruction Fields

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{pP}  PPPPPP I/O Short Address [64 addresses. $FFFFCO-$FFFFFF]
{9a}  9aqaaq I/O Short Address [64 addresses. $FFFF80-$FFFFBF]
{xrvy s Memory space [X,Y] (see Table 12-13 on page 12-18)
{xivy s Peripheral space[X,Y] (see Table 12-13 on page 12-18)
w Read/write-peripheral (see Table 12-13 on page 12-18)
{S.D}  dddddd Source/Destination register [all on-chip registers] (see Table 12-13

on page 12-18)

Description Move the specified operand to or from the specified X or Y /O periphera. The I/O
Short Addressing modeis used for the I/O peripheral address. All memory addressing modes can
be used for the X or Y memory effective address; all memory-alterable addressing modes can be
used for the P memory effective address. All the 1/O space ($FFFF80-$FFFFFF) can be
accessed, except for the P: reference opcode.If the System Stack register SSH is specified as a
source operand, the system Stack Pointer (SP) is post-decremented by 1 after SSH has been read.
If SSH is specified as a destination operand, the SPis pre-incremented by 1 before SSH is
written. This alows the system stack to be efficiently extended using software stack pointer
operations.

DSP56300 Family Manual, Rev. 5

13-134 Freescale Semiconductor



MOVEP Move Peripheral Data MOVEP

Condition Codes

For D1 or D2 = SR operand:

*

*

*

*

*

S Set according to bit 7 of the source operand.
Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
c Set according to bit O of the source operand.

< N Z Cc m r

For D1 and D2 # SR operand:

*

*

S Set if data growth has been detected.
L Set if datalimiting has occurred during the move.

Instruction Formats and Opcodes

X: or Y: Reference (high I/O address)

23 16 15 8 7 0
MOVEP  [X or Y]:pp,[X or Y]:ea ‘o 000100sWIMMMRRR|ILSppppOP p‘
MOVEP  [X or Y]:ea,[X or Y]:pp Optional Effective Address Extension

X: or Y: Reference (low I/O address)

23 16 15 8 7 0
MOVEP  X:qq,[X or Y]:ea ‘o 0000111WIMMMRRR|0Sqqaqaqq q‘
MOVEP [X or Y]:ea,X:qq Optional Effective Address Extension

X: or Y: Reference (low I/O address)

23 16 15 8 7 0
MOVEP  Y:qq,[X or Y]:ea ‘o 0000111WOMMMRRRI|1Sqaqaqaqq q‘
MOVEP [Xor Y]:ea,Y:qq Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-135



Jction Set

MOVEP Move Peripheral Data MOVEP

P: Reference (high 1/0 address)

MOVEP  P:ea,[X or Y]:pp 1615 8 7
MOVEP  [X or Y]:pp,P:ea 0000100sWI1IMMMRRRIOLIppppopPYP

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq 1615 8 7
MOVEP [X or Y]:qq,P:ea 000O0O00D0DO0D1IWMMMRRR|IOSqgqQgqgqqaQq

Register Reference (high 1/0 address)

MOVEP  S,[X or Y]:pp 23 1615 8 7
MOVEP  [X or Y]:pp,.D |OOOO100sW1ddddddOOpppppp

Register Reference: (low I/O address)

MOVEP  S,.X:qq 23 1615 8 7
MOVEP  X:qq,D looooo0100wWi1dddddd|1g0qgaqaqqq

Register Reference: (low I/O address)

MOVEP  S,Y:qq 23 1615 8 7
MOVEP  Y:qq,D looooo0o100wi1dddddd|o0g1qgqgqqq

DSP56300 Family Manual, Rev. 5

13-136 Freescale Semiconductor



MPY Signed Multiply MPY

Operation Assembler Syntax

+S1 % S2 5D (parallel move) MPY (1)s1,52,D (parallel move)
+S1 % S2 5D (parallel move) MPY (1)S2,S1,D (parallel move)
HS1* 2M 5D (no parallel move) MPY (1)S,#n,D (no parallel move)

Instruction Fields 1

{S1,52} QQQ  Sourceregisters S1,S2 [X0* X0, YO*Y0, X1* X0, Y1*YO0, X0*Y1, YO*XO0,
X1*YO0, Y1*X1] (see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{#} k Sign [+,-] (see Table 12-16 on page 12-20)

Instruction Fields 2

st QQ Source register [Y1,X0,Y0,X 1] (see Table 12-16 on page 12-20)
{oy  d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
# ok Sign [+,-] (see Table 12-16 on page 12-20)

{#n}  sssss Immediate operand (see Table 12-16 on page 12-20)

Description  Multiply the two signed 24-bit source operands S1 and S2 and store the resulting
product in the specified 56-bit destination accumulator D. Or, multiply the signed 24-bit source
operand S by the positive 24-bit immediate operand 2™ and store the resulting product in the
specified 56-bit destination accumulator D. The “—" sign option is used to negate the specified
product prior to accumulation. The default sign optionis*+”. When the processor isin the
Double-Precision Multiply mode, the following instructions do not execute in the normal way
and should be used only as part of the double-precision multiply algorithm:

MPY YO0,XO0,A MPY YO0, XO0,B

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-137



Jction Set
MPY Signed Multiply

Condition Codes

MPY

7 6 5 4 3 2
S L E U N Z
v v Vv v v A
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes 1

23 16 15 8 7 0
MPY (H)S1.52,0 Data Bus Move Field ‘ 1Q0Q Q‘ d k 00
MPY (1)S2,51,D Optional Effective Address Extension

Instruction Formats and Opcodes 2

23 16 15

8 7 0

MPY (#)S.4n.D ‘OOOOOOOlOOOOssssllQQdkOO‘

DSP56300 Family Manual, Rev. 5

13-138

Freescale Semiconductor



MPY(SU,UU) Mixed Multiply MPY(SU,UU)
Operation Assembler Syntax
+S1 * S2 — D (S1 unsigned, S2 unsigned) MPYuu (1)S1,S2,D (no parallel move)
+S1 * S2 — D (S1 signed, S2 unsigned) MPYsu ()S2,S1,D (no parallel move)

Instruction Fields

{1,521  QQQQ Source registers S1,S2 [al combinations of X0,X1,Y0, and Y1] (see Table
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{£} k Sign [+,-] (see Table 12-16 on page 12-20)
{s} [ss,us] (see Table 12-16 on page 12-20)

Description  Multiply the two 24-bit source operands S1 and S2 and store the resulting product in
the specified 56-bit destination accumulator D. One or two of the source operands can be

unsigned. The “—’ sign option is used to negate the specified product prior to accumulation. The
default sign optionis*“+".

Condition Codes

~
o
al
I
w
N
=
o

s L E u N z C
— N N N N N N —
CCR

v Changed according to the standard definition.
— Unchanged by the instruction.
Instruction Formats and Opcodes

MPY su (£)S1,52,D 23 16 15 8 7 0

MPY uu (1)S1,52,0 0000000100100111|/1sdkQQQQ

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-139



Jction Set

MPY| Signed Multiply With Immediate Operand MPY|
Operation Assembler Syntax
Hxxoxoxxx¥S — D MPYI (H)txxxxxx,S,D

Instruction Fields

{s} qq Source register [X0,Y0,X1,Y 1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
I k Sign [+,-] (see Table 12-16 on page 12-20)

H#XXXX 16-bit Immediate L ong Data extension word

Description  Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source
operand S and store the resulting product in the specified 56-bit destination accumulator D. The
“~" sign option is used to negate the specified product prior to accumulation. The default sign
optionis“+”".

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
— Vv v Y v v v -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
MPYL  (Hyixxxx,S.D 000000010100000111gqgqdFkOoDO

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

13-140 Freescale Semiconductor



MPYR Signed Multiply and Round MPYR

Operation Assembler Syntax

4+S1 % S2+r1—D (parallel move) MPYR (1)S1,52,D (parallel move)
+S1 % S2+r1 5D (parallel move) MPYR (1)S2,51,D (parallel move)
+HS1* 2M+r—>D (no parallel move) MPYR (1)S,#n,D (no parallel move)

Instruction Fields 1

{8152}  QQQ  Sourceregisters S1,S2 [X0* X0, YO*YO0, X1*XO0, Y1*YO0, X0*Y1, YO*XO,
X1*YO0, Y1*X1] (see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

{* k Sign [+,-] (see Table 12-16 on page 12-20)

Instruction Fields 2

{s} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{p} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{} k Sign [+,-] (see Table 12-16 on page 12-20)

{#n}  sssss Immediate operand (see Table 12-16 on page 12-20)

Description  Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit
source operand S by the positive 24-bit immediate operand 2™), round the result using either
convergent or two’ s-complement rounding, and store it in the specified 56-bit destination
accumulator D. The “—" sign option negates the product prior to rounding. The default sign
optionis*“+". The contribution of the LS bits of the result isrounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the L SBs of the destination
accumulator D are loaded with Os to maintain an unbiased accumulator value that can be reused
by the next instruction. The upper portion of the accumulator contains the rounded result that can
be read out to the data buses. Refer to the RND instruction for more complete information on the
rounding process.

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-141



P N

Jction Set
MPYR Signed Multiply and Round

Condition Codes

MPYR

7 6 5 4 3 2 1
S L E U N Z
v v Vv v Vv v A
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes 1

23 16 15 8 7 0
MPYR ()S1,52, Data Bus Move Field ‘ 1QQQ ‘ d k 01
MPYR (1)s2,51,D Optional Effective Address Extension

Instruction Formats and Opcodes 2

23 16 15

8 7 0

MPYR  (4)s #n.D ‘OOOOOOOlOOOsssssllQQdkOl‘

DSP56300 Family Manual, Rev. 5

13-142

Freescale Semiconductor



MPYRI MPYRI

Signed Multiply and Round With Immediate Operand

Operation Assembler Syntax

Hixxxx ¥ S+r—D MPYRI (H)#txxxx,S,D

Instruction Fields

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
s k Sign [+,—] (see Table 12-16 on page 12-20)

H#XXXX 24-bit Immediate L ong Data extension word

Description  Multiply the two signed 24-bit source operands #xxxx and S, round the result using
either convergent or two' s-complement rounding, and store it in the specified 56-bit destination
accumulator D. The “~" sign option is used to negate the product before rounding. The default
sign option is“+”. The contribution of the LS bits of the result is rounded into the upper portion
of the destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with Os to maintain an unbiased accumulator value that can
be reused by the next instruction. The upper portion of the accumulator contains the rounded
result that can be read out to the data buses. Refer to the RND instruction for more complete
information on the rounding process.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z V C
— VvV v vV Vv v v -
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
MPYRI  (+yxux.S.D 000000010100000111qgqd%kO0H71

Immediate Data Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-143



Jction Set

NEG Negate Accumulator NEG

Operation Assembler Syntax

0-D—->D (parallel move) NEG D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Negate the destination operand D and store the result in the destination accumulator.
Thisisa56-hit, two’'s-complement operation.

Condition Codes

~
o
al
I
w
N
=
o

S L E U N z C
v v v V1 V1 I 1 -
CCR
v Changed according to the standard definition.
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
NEG D Data Bus Move Field 001 1fd110

Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

13-144 Freescale Semiconductor



NOP No Operation NOP

Assembler Syntax

Operation

PC+1—->PC NOP

Instruction Fields None

Description Increment the Program Counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Condition Codes

Unchanged by the instruction.

Instruction Formats and Opcodes

23

16 15 8 7 0
NOP

|OOOOOOOOOOOOOOOOOOOOOOOO

DSP56300 Family Manual, Rev. 5
Freescale Semiconductor

13-145



Jction Set
NORM Norm Accumulator Iteration NORM
Operation Assembler Syntax
If EeUeZ=1,then ASL D and Rn-1 — Rn NORM Rn,D
else if E=1, then ASR D and Rn+1 - R
else NOP

where E denotes the logical complement of E and e denotes the logical AND operator

Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{Rn} RRR Addressregister [R[0-7]]

Description  Perform one normalization iteration on the specified destination operand D, update
the specified address register Rn based upon the results of that iteration, and store the result back
In the destination accumulator. Thisis a56-bit operation. If the accumulator extension isnot in
use, the accumulator is unnormalized, and the accumulator is not zero, the destination operand is
arithmetically shifted one bit to the left, and the specified address register is decremented by 1. If
the accumulator extension register isin use, the destination operand is arithmetically shifted one
bit to the right, and the specified address register isincremented by 1. If the accumulator is
normalized or zero, aNOP is executed and the specified address register is not affected. Since the
operation of the NORM instruction depends on the E, U, and Z condition code register bits, these
bits must correctly reflect the current state of the destination accumulator prior to executing the
NORM instruction.

Condition Codes

7 6 5 4 3 2 1 0

S L E ) N Z C

— v Vv v v v -
CCR

* v Set if bit 55 is changed as aresult of aleft shift.
v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
NORM Rn,D 0000000111011 RRRO0O01d1O01

DSP56300 Family Manual, Rev. 5

13-146 Freescale Semiconductor



NORMF Fast Accumulator Normalization NORMF

Operation Assembler Syntax
If S[23] = 0 then ASR S,D NORMF S,D
else ASL -S,D

Instruction Fields

{s} sss Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description Arithmetically shift the destination accumulator either left or right as specified by
the source operand sign and value. If the source operand is negative then the accumulator is left
shifted, and if the source operand is positive then it isright shifted. The source accumulator value
should be between +56 to -55 (or +40 to -39 in sixteen bit mode). This instruction can be used to
normalize the specified accumulator D, by arithmetically shifting it either left or right so asto
bring the leading one or zero to bit location 46. The number of needed shifts is specified by the
source operand. This number could be calculated by a previous CLB instruction. For
normalization the source accumulator value should be between +8 to -47 (or +8to -31in
Sixteen-bit Arithmetic mode). NORMF is a 56 bit operation.

Condition Codes

7 6 5 4 3 2 1 0

S L E ) N Z C

— v Vv v v v - -
CCR

* vV Setif bit 39 is changed any time during the shift operation, and cleared otherwise.
v Changed according to the standard definition.
— Unchanged by the instruction.

Example

CLB A,B ;Count leading bits
NORMF B1l,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1l,N1 ;Update N1 with shift amount
MOVE (R1) +N1 ;Increment or decrement exponent

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-147



Jction Set

NORMF Fast Accumulator Normalization NORMF

Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB
Instruction updates the B accumulator to the number of needed shifts, seven in this example. The
NORMPF instruction performs seven shifts to the right on A accumulator, and normalization of A
Isachieved. The exponent register is updated according to the number of shifts.

Before execution After execution
CLB A,BA: $20:0000:0000 B: $00:0007:0000
NORMF B1,A A: $20:0000:0000 A: $00:4000:0000

Instruction Formats and Opcodes

23 16 15 8 7 0
NORMF S,D |OOOOllOOOOOllllOOOlOssSD

DSP56300 Family Manual, Rev. 5

13-148 Freescale Semiconductor



NOT Logical Complement NOT

Operation Assembler Syntax
D[31-16] — D[31-16] (parallel move) NOT D (parallel move)
where “—" denotes the logical NOT operator.

Instruction Fields

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Description  Takethe one’'s complement of bits 47—24 of the destination operand D and store the
result back in bits 4724 of the destination accumulator. Thisisa24-bit operation. The remaining
bits of D are not affected.

Condition Codes

7 6 5 4 3 2 1 0
S L E U Z C
\/ \/ _ _ * * *

CCR

* N Set if bit 47 of the result is set.

* z Set if bits 47-24 of the result are 0.

* v Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

NOT D Data Bus Move Field 0 00 1(d 111
Optional Effective Address Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-149



Jction Set

OR Logical Inclusive OR OR

Operation Assembler Syntax

S ® D[47-24] — D[47-24] (parallel move) ORSD (parallel move)
#xx @ D[47-24] — D[47-24] OR #xx,D

#xxxx @ D[47-24] — D[47-24] OR #xxxx,D

where @ denotes the logical inclusive OR operator.

Instruction Fields

{s} 33 Source input register [X0,X1,Y0,Y 1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)

{#xx} iiiii 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate L ong Data extension word

Description  Logically inclusive OR the source operand S with bits 47-24 of the destination
operand D and store the result in bits 47—24 of the destination accumulator. The source can be a
24-bit register, 6-bit short immediate, or 24-bit long immediate. Thisinstruction is a 24-bit
operation. The remaining bits of the destination operand D are not affected. When using 6-bit
immediate data, the data is interpreted as an unsigned integer. That is, the six bits are right
aligned, and the remaining bits are zeroed to form a 16-bit source operand.

Condition Codes

7 6 5 4 3 2 1 0
S L E U N Z C
J J — * * *

CCR

* N Set if bit 47 of the result is set.

* z Set if bits 47-24 of the result are 0.

* v Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

DSP56300 Family Manual, Rev. 5

13-150 Freescale Semiconductor



R
OR Logical Inclusive OR OR

Instruction Formats and Opcodes

23 16 15 8 7 0
ORS,D Data Bus Move Field 01JJjdo1o
Optional Effective Address Extension

23 16 15 8 7 0
OR #xx,D looooo0oo0o0101iiiiii1ooo0do1o0]
23 16 15 8 7 0

OR #xxxx,D 0000000101 000O0O001100dHOT1T0O0
Immediate Data Extension

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-151



Jction Set

OR| OR Immediate With Control Register OR|
Operation Assembler Syntax
#xx+D —> D OR(l) #xx,D

where + denotes the logical inclusive OR operator.

Instruction Fields

{D} EE Program Controller register [ MR,CCR,COM,EOM] (see Table 12-13
on page 12-18)
{#xx} i Immediate Short Data

Description  Logically OR the 8-bit immediate operand (#xx) with the contents of the destination
control register D and store the result in the destination control register. The condition codes are
affected only when the Condition Code Register (CCR) is specified as the destination operand.

Condition Codes

For CCR Operand:

* S Set if bit 7 of theimmediate operand is set.
Set if bit 6 of theimmediate operand is set.
Set if bit 5 of theimmediate operand is set.
Set if bit 4 of theimmediate operand is set.
Set if bit 3 of theimmediate operand is set.
Set if bit 2 of theimmediate operand is set.
Set if bit 1 of theimmediate operand is set.
Set if bit O of theimmediate operand is set.
For MR and OMR Operands:

The condition codes are not affected using these operands.

*
O < N Z2 Cc m

Instruction Formats and Opcodes

23 16 15 8 7 0
OR(l) #xx,D looooo0o0o00 i i i iiiii111110EE

DSP56300 Family Manual, Rev. 5

13-152 Freescale Semiconductor



PFLUSH Program Cache Flush PFLUSH

Operation Assembler Syntax

Flush instruction cache PFLUSH

Instruction Fields None

Description  Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and
tag registersto their default values. The PFLUSH instruction is enabled only in Cache mode.
When the cache is disabled, execution of thisinstruction causes an illegal instruction trap.

Condition Codes

— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0

PFLUSH 000O0O0OOOO0OOOOOOOOOOO0OO0OOOO0T11

DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-153



Jction Set

PFLUSHUN PFLUSHUN

Program Cache Flush Unlocked Sectors

Operation Assembl