
DSP56000

24-BIT
DIGITAL SIGNAL PROCESSOR

FAMILY MANUAL

Motorola, Inc.
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive, West
Austin, Texas 78735-8598

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

TECHNICAL DATA

SEMICONDUCTOR

Addendum to

24-bit Digital Signal Processor
Family Manual

DSP56K Family

Order this document by
DSP56KFAMUM/AD

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This document, containing changes, additional features, further explanations, and clarifications, is
a supplement to the original document:

Change the following:
Page 11-4, Section 11.2.1 - Delete “4. NeXTTM under Mach”.

Page A-83, third line - Replace “1;leN;le24” with “1≤N≤24”

Page A-104, Under the “Operation:” heading - Replace “D -1 ⇒ D” with “D+1 ⇒ D”.

Page A-104, Second sentence after “Description:” heading - Replace “One is added from the LSB
of D.” with “One is added to the LSB of D; i.e. bit 0 of A0 or B0.”

Page A-130, First symbolic description under the “Operation:” heading - Replace “If S[n]=0” with
“If S[n]=1”.

Page A-218, Timing description - Replace “Timing: 2+mvp oscillator clock cycles” with “Timing:
6 + ea + ap oscillator clock cycles”.

Page A-219, Timing description - Replace “Timing: 2+mvp oscillator clock cycles” with “Timing:
6 + ea + ap oscillator clock cycles”.

Page A-225, Timing description - Replace “Timing: 4+mvp oscillator clock cycles” with “Timing:
2+mvp oscillator clock cycles”.

Page A-261, Timing description - Replace “Timing: 4 oscillator clock cycles” with “Timing: 2+mvp
oscillator clock cycles”.

Page A-261, Memory description - Replace “Memory: 1 program words” with “Memory: 1+ mv
program words”.

Page B-11, An inch below the middle of the page - Replace the “cir” instruction with “clr”.

Page B-16, 7th instruction from bottom - Replace “lsl A,n0” with “lsl B A,n0”.

DSP56KFAMUM/AD Family Manual DSP56K Family
24-bit Digital Signal Processors
 MOTOROLA INC., 1995

For More Information On This Product,
 Go to: www.freescale.com

TABLE OF CONTENTS

Paragraph Page
Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1
DSP56K FAMILY INTRODUCTION

1.1 INTRODUCTION .1-3
1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING .1-3
1.3 SUMMARY OF DSP56K FAMILY FEATURES .1-9
1.4 MANUAL ORGANIZATION .1-11

SECTION 2
DSP56K CENTRAL ARCHITECTURE

OVERVIEW

2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW .2-3
2.2 DATA BUSES .2-3
2.3 ADDRESS BUSES .2-4
2.4 DATA ALU .2-5
2.5 ADDRESS GENERATION UNIT .2-5
2.6 PROGRAM CONTROL UNIT .2-5
2.7 MEMORY EXPANSION PORT (PORT A) .2-6
2.8 ON-CHIP EMULATOR (OnCE) .2-6
2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING 2-6

SECTION 3
DATA ARITHMETIC LOGIC UNIT

3.1 DATA ARITHMETIC LOGIC UNIT .3-3
3.2 OVERVIEW AND DATA ALU ARCHITECTURE .3-3
3.3 DATA REPRESENTATION AND ROUNDING .3-10
3.4 DOUBLE PRECISION MULTIPLY MODE .3-16
MOTOROLA TABLE OF CONTENTS iii
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents (Continued)
Paragraph Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5 DATA ALU PROGRAMMING MODEL .3-19
3.6 DATA ALU SUMMARY .3-19

SECTION 4
ADDRESS GENERATION UNIT

4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES4-3
4.2 AGU ARCHITECTURE .4-3
4.3 PROGRAMMING MODEL .4-6
4.4 ADDRESSING .4-8

SECTION 5
PROGRAM CONTROL UNIT

5.1 PROGRAM CONTROL UNIT .5-3
5.2 OVERVIEW .5-3
5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE5-5
5.4 PROGRAMMING MODEL .5-8

SECTION 6
INSTRUCTION SET INTRODUCTION

6.1 INSTRUCTION SET INTRODUCTION .6-3
6.2 SYNTAX .6-3
6.3 INSTRUCTION FORMATS .6-3
6.4 INSTRUCTION GROUPS .6-20

SECTION 7
PROCESSING STATES

7.1 PROCESSING STATES .7-3
7.2 NORMAL PROCESSING STATE .7-3
7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)7-10
iv TABLE OF CONTENTS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents (Continued)
Paragraph Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

7.4 RESET PROCESSING STATE .7-33
7.5 WAIT PROCESSING STATE .7-36
7.6 STOP PROCESSING STATE .7-37

SECTION 8
PORT A

8.1 PORT A OVERVIEW .8-3
8.2 PORT A INTERFACE .8-3

SECTION 9
PLL CLOCK OSCILLATOR

9.1 PLL CLOCK OSCILLATOR INTRODUCTION .9-3
9.2 PLL COMPONENTS .9-3
9.3 PLL PINS .9-9
9.4 PLL OPERATION CONSIDERATIONS .9-11

SECTION 10
ON-CHIP EMULATION (OnCE)

10.1 ON-CHIP EMULATION INTRODUCTION .10-3
10.2 ON-CHIP EMULATION (OnCE) PINS .10-3
10.3 OnCE CONTROLLER AND SERIAL INTERFACE .10-6
10.4 OnCE MEMORY BREAKPOINT LOGIC .10-11
10.5 OnCE TRACE LOGIC .10-13
10.6 METHODS OF ENTERING THE DEBUG MODE .10-14
10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER10-16
10.8 PROGRAM ADDRESS BUS HISTORY BUFFER 10-18
10.9 SERIAL PROTOCOL DESCRIPTION .10-19
10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS 10-19
10.11 USING THE OnCE .10-20
MOTOROLA TABLE OF CONTENTS v
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents (Continued)
Paragraph Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 11
ADDITIONAL SUPPORT

11.1 USER SUPPORT .11-3
11.2 MOTOROLA DSP PRODUCT SUPPORT .11-4
11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM 11-6
11.4 Dr. BuB ELECTRONIC BULLETIN BOARD .11-7
11.5 MOTOROLA DSP NEWS .11-16
11.6 MOTOROLA FIELD APPLICATION ENGINEERS11-16
11.7 DESIGN HOTLINE– 1-800-521-6274 .11-16
11.8 DSP HELP LINE – (512) 891-3230 .11-16
11.9 MARKETING INFORMATION– (512) 891-2030 .11-16
11.10 THIRD-PARTY SUPPORT INFORMATION – (512) 891-309811-16
11.11 UNIVERSITY SUPPORT – (512) 891-3098 .11-16
11.12 TRAINING COURSES – (602) 897-3665 or (800) 521-6274 11-17
11.13 REFERENCE BOOKS AND MANUALS .11-17

APPENDIX A
INSTRUCTION SET DETAILS

A.1 APPENDIX A INTRODUCTION . A-3
A.2 INSTRUCTION GUIDE . A-3
A.3 NOTATION . A-4
A.4 ADDRESSING MODES . A-10
A.5 CONDITION CODE COMPUTATION . A-15
A.6 PARALLEL MOVE DESCRIPTIONS . A-20
A.7 INSTRUCTION DESCRIPTIONS . A-21
A.8 INSTRUCTION TIMING . A-294
A.9 INSTRUCTION SEQUENCE RESTRICTIONS . A-305
A.10 INSTRUCTION ENCODING . A-311

APPENDIX B
BENCHMARK PROGRAMS

B.1 INTRODUCTION . B-3
B.2 BENCHMARK PROGRAMS . B-3
vi TABLE OF CONTENTS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

LIST of FIGURES

Figure Page
Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

1-1 Analog Signal Processing . 1-4
1-2 Digital Signal Processing . 1-5
1-3 DSP Hardware Origins . 1-9

2-1 DSP56K Block Diagram . 2-4

3-1 DSP56K Block Diagram . 3-4
3-2 Data ALU . 3-5
3-3 MAC Unit . 3-7
3-4 DATA ALU Accumulator Registers . 3-8
3-5 Saturation Arithmetic . 3-10
3-6 Integer-to-Fractional Data Conversion . 3-11
3-7 Bit Weighting and Alignment of Operands . 3-12
3-8 Integer/Fractional Number Comparison . 3-13
3-9 Integer/Fractional Multiplication Comparison . 3-14
3-10 Convergent Rounding . 3-15
3-11 Full Double Precision Multiply Algorithm . 3-16
3-12 Single X Double Multiply Algorithm . 3-17
3-13 Single X Double Multiply-Accumulate Algorithm . 3-18
3-14 DSP56K Programming Model . 3-19

4-1 DSP56K Block Diagram . 4-4
4-2 AGU Block Diagram . 4-5
4-3 AGU Programming Model . 4-7
4-4 Address Register Indirect — No Update . 4-10
4-5 Address Register Indirect — Postincrement . 4-11
4-6 Address Register Indirect — Postdecrement . 4-12
4-7 Address Register Indirect — Postincrement by Offset Nn 4-13
4-8 Address Register Indirect — Postdecrement by Offset Nn 4-14
4-9 Address Register Indirect — Indexed by Offset Nn 4-15
4-10 Address Register Indirect — Predecrement . 4-16
4-11 Circular Buffer . 4-19
4-12 Linear Addressing with a Modulo Modifier . 4-20
4-13 Modulo Modifier Example . 4-21
Revision 2.1 DSP56004 DESIGN SPECIFICATION vii
MOTOROLA LIST of FIGURES vii

For More Information On This Product,
 Go to: www.freescale.com

List of Figures (Continued)
Figure Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4-14 Bit-Reverse Address Calculation Example . 4-24
4-15 Address Modifier Summary . 4-26

 5-1 Program Address Generator . 5-3
 5-2 DSP56K Block Diagram . 5-4
 5-3 Three-Stage Pipeline . 5-7
 5-4 Program Control Unit Programming Model . 5-8
 5-5 Status Register Format . 5-9
 5-6 OMR Format . 5-14
 5-7 Stack Pointer Register Format . 5-15
 5-8 SP Register Values . 5-15
 5-9 DSP56K Central Processing Module Programming Model 5-18

 6-1 DSP56K Central Processing Module Programming Model 6-4
 6-2 General Format of an Instruction Operation Word . 6-5
 6-3 Operand Sizes . 6-6
 6-4 Reading and Writing the ALU Extension Registers . 6-7
 6-5 Reading and Writing the Address ALU Registers . 6-7
 6-6 Reading and Writing Control Registers . 6-8
 6-7 Special Addressing – Immediate Data . 6-15
 6-8 Special Addressing – Absolute Addressing . 6-16
 6-9 Special Addressing – Immediate Short Data . 6-17
 6-10 Special Addressing – Short Jump Address . 6-18
 6-11 Special Addressing – Absolute Short Address . 6-19
 6-12 Special Addressing – I/O Short Address . 6-20
 6-13 Hardware DO Loop . 6-25
 6-14 Nested DO Loops . 6-26
 6-15 Classifications of Parallel Data Moves . 6-27
 6-16 Parallel Move Examples . 6-28

 7-1 Fast and Long Interrupt Examples . 7-13
 7-2 Interrupt Priority Register (Addr X:$FFFF) . 7-14
 7-3 Interrupting an SWI . 7-18
 7-4 Illegal Instruction Interrupt Serviced by a Fast Interrupt 7-19
 7-5 Illegal Instruction Interrupt Serviced by a Long Interrupt 7-20
 7-6 Repeated Illegal Instruction . 7-21
 7-7 Trace Exception . 7-23
 7-8 Fast Interrupt Service Routine . 7-27
 7-9 Two Consecutive Fast Interrupts . 7-28
 7-10 Long Interrupt Service Routine . 7-30
 7-11 JSR First Instruction of a Fast Interrupt . 7-31
 7-12 JSR Second Instruction of a Fast Interrupt . 7-32
viii LIST of FIGURES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

List of Figures (Continued)
Figure Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 7-13 Interrupting an REP Instruction . 7-34
 7-14 Interrupting Sequential REP Instructions . 7-35
 7-15 Wait Instruction Timing . 7-36
 7-16 Simultaneous Wait Instruction and Interrupt . 7-37
 7-17 STOP Instruction Sequence . 7-38
 7-18 STOP Instruction Sequence Followed by IRQA . 7-39
 7-19 STOP Instruction Sequence Recovering with RESET 7-42

 8-1 Port A Signals . 8-4

 9-1 PLL Block Diagram . 9-3
 9-2 DSP56K Block Diagram . 9-4
 9-3 PLL Control Register (PCTL) . 9-6

10-1 OnCE Block Diagram . 10-3
10-2 DSP56K Block Diagram . 10-4
10-3 OnCE Controller and Serial Interface . 10-6
10-4 OnCE Command Register . 10-7
10-5 OnCE Status and Control Register (OSCR) . 10-9
10-6 OnCE Memory Breakpoint Logic . 10-12
10-7 OnCE Trace Logic Block Diagram . 10-14
10-8 OnCE Pipeline Information and GDB Registers . 10-16
10-9 OnCE PAB FIFO . 10-17

 B-1 20-Tap FIR Filter Example . B-5
 B-2 Radix 2, In-Place, Decimation-In-Time FFT. B-7
 B-3 8-Pole 4-Multiply Cascaded Canonic IIR Filter . B-9
 B-4 LMS FIR Adaptive Filter . B-11
 B-5 Real Input FFT Based on Glenn Bergland Algorithm. B-12
MOTOROLA LIST of FIGURES ix
For More Information On This Product,

 Go to: www.freescale.com

LIST of TABLES

Table Page
Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

1-1 Benchmark Summary in Instruction Cycles . 1-6

3-1 Limited Data Values. 3-11

4-1 Address Register Indirect Summary . 4-8
4-2 Address Modifier Summary . 4-17
4-3 Bit-Reverse Addressing Sequence Example . 4-23

6-1 Addressing Modes Summary . 6-21

7-1 Instruction Pipelining . 7-3
7-2 Status Register Interrupt Mask Bits . 7-14
7-3 Interrupt Priority Level Bits . 7-15
7-4 External Interrupt . 7-15
7-5 Central Processor Interrupt Priorities Within an IPL 7-15
7-6 Interrupt Sources . 7-16

9-1 Multiplication Factor Bits MF0-MF11 . 9-6
9-2 Division Factor Bits DF0-DF3 . 9-7
9-3 PSTP and PEN Relationship . 9-8
9-4 Clock Output Disable Bits COD0-COD1 . 9-9

10-1 Chip Status Information . 10-5
10-2 OnCE Register Addressing . 10-7
10-3 Memory Breakpoint Control Table . 10-10

A-1 Instruction Description Notation . A-5
A-2 DSP56K Addressing Modes . A-11
A-3 DSP56K Addressing Mode Encoding . A-12
A-4 Addressing Mode Modifier Summary . A-14
A-5 Condition Code Computations for Instructions (No Parallel Move) A-19
A-6 Instruction Timing Summary . A-301
A-7 Parallel Data Move Timing . A-302
A-8 MOVEC Timing Summary . A-302
A-9 MOVEP Timing Summary . A-302
x LIST of TABLES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

List of Tables (Continued)
Table Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A-10 Bit Manipulation Timing Summary . A-303
A-11 Jump Instruction Timing Summary. A-303
A-12 RTI/RTS Timing Summary . A-304
A-13 Addressing Mode Timing Summary . A-304
A-14 Memory Access Timing Summary . A-305
A-15 Single-Bit Register Encodings . A-312
A-16 Single-Bit Special Register Encodings . A-312
A-17 Double-Bit Register Encodings . A-312
A-18 Triple-Bit Register Encodings. A-313
A-19 (a)Four-Bit Register Encodings for 12 Registers in Data ALU A-313
A-19 (b)Four-Bit Register Encodings for 16 Condition Codes A-313
A-20 Five-Bit Register Encodings for 28 Registers in

Data ALU and Address ALU . A-314
A-21 Six-Bit Register Encodings for 43 Registers On-Chip A-314
A-22 Write Control Encoding . A-314
A-23 Memory Space Bit Encoding . A-314
A-24 Program Controller Register Encoding . A-315
A-25 Condition Code and Address Encoding . A-315
A-26 Effective Addressing Mode Encoding . A-316
A-27 Operation Code K0-2 Decode . A-331
A-28 Operation Code QQQ Decode . A-332
A-29 Nonmultiply Instruction Encoding . A-333
A-30 Special Case #1 . A-334
A-31 Special Case #2 . A-334

B-1 27-MHz Benchmark Results for the DSP56001R27 B-4
MOTOROLA LIST of TABLES xi
For More Information On This Product,

 Go to: www.freescale.com

xii

LIST of TABLES MOTOROLA

List of Tables (Continued)
Table Page

Number Title Number

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 DSP56K FAMILY INTRODUCTION 1 - 1

SECTION 1
DSP56K FAMILY INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

1 - 2 DSP56K FAMILY INTRODUCTION

MOTOROLA

SECTION 1.1 INTRODUCTION .. 3

SECTION 1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING 3

SECTION 1.2 SUMMARY OF DSP56K FAMILY FEATURES 9

SECTION 1.3 MANUAL ORGANIZATION .. 11

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

1.1 INTRODUCTION
The DSP56K Family is Motorola’s series of 24-bit general purpose Digital Signal Proces-
sors (DSPs*). The family architecture features a central processing module that is
common to the various family members, such as the DSP56002 and the DSP56004.

Note: The DSP56000 and the DSP56001 are not based on the central processing module
architecture and should not be used with this manual. They will continue to be described
in the DSP56000/DSP56001 User’s Manual (DSP56000UM/AD Rev. 2).

This manual describes the DSP56K Family’s central processor and instruction set. It is
intended to be used with a family member’s User’s Manual, such as the DSP56002 User’s
Manual.

The User’s Manual presents the device’s specifics, including pin descriptions, operating
modes, and peripherals. Packaging and timing information can be found in the device’s
Technical Data Sheet.

This chapter introduces general DSP theory and discusses the features and benefits of
the Motorola DSP56K family of 24-bit processors. It also presents a brief description of
each of the sections of the manual.

1.2 ORIGIN OF DIGITAL SIGNAL PROCESSING
DSP is the arithmetic processing of real-time signals sampled at regular intervals and dig-
itized. Examples of DSP processing include the following:

• Filtering of signals
• Convolution, which is the mixing of two signals
• Correlation, which is a comparison of two signals
• Rectification, amplification, and/or transformation of a signal

All of these functions have traditionally been performed using analog circuits. Only recent-
ly has semiconductor technology provided the processing power necessary to digitally
perform these and other functions using DSPs.

Figure 1-1 shows a description of analog signal processing. The circuit in the illustration
filters a signal from a sensor using an operational amplifier, and controls an actuator with
the result. Since the ideal filter is impossible to design, the engineer must design the filter
for acceptable response, considering variations in temperature, component aging, power
supply variation, and component accuracy. The resulting circuit typically has low noise im-
munity, requires adjustments, and is difficult to modify.

*This manual uses the acronym DSP for Digital Signal Processing or Digital Signal Processor, de-
pending on the context.
MOTOROLA DSP56K FAMILY INTRODUCTION 1 - 3
For More Information On This Product,

 Go to: www.freescale.com

ORIGIN OF DIGITAL SIGNAL PROCESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The equivalent circuit using a DSP is shown in Figure 1-2. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the
DSP. Even with these additional parts, the component count can be lower using a DSP
due to the high integration available with current components.

Processing in this circuit begins by band-limiting the input with an anti-alias filter, eliminat-
ing out-of-band signals that can be aliased back into the pass band due to the sampling
process. The signal is then sampled, digitized with an A/D converter, and sent to the DSP.

The filter implemented by the DSP is strictly a matter of software. The DSP can directly
implement any filter that can also be implemented using analog techniques. Also, adap-
tive filters can be easily implemented using DSP, whereas these filters are extremely
difficult to implement using analog techniques.

The DSP output is processed by a D/A converter and is low-pass filtered to remove the
effects of digitizing. In summary, the advantages of using the DSP include the following:

y t()
x t()

R f

Ri
------ 1

1 jwR f C f+
------------------------------–=

-

+

y(t)

OUTPUT

TO

ACTUATOR

t

x(t)

INPUT

FROM

SENSOR

x(t)

Ri

Rf

Cf

ANALOG FILTER

FREQUENCY CHARACTERISTICS

IDEAL

FILTER

f
fc

FREQUENCY

G
A

IN

y(t)

Figure 1-1 Analog Signal Processing
1- 4 DSP56K FAMILY INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ORIGIN OF DIGITAL SIGNAL PROCESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• Fewer components • Self-test can be built in
• Stable, deterministic performance • No filter adjustments
• Wide range of applications • Filters with much closer tolerances
• High noise immunity and • Adaptive filters easily implemented
 power-supply rejection

A

DSP OPERATION

IDEAL

FILTER

f
fc

FREQUENCY

G
A

IN
FIR FILTER

FINITE IMPULSE

RESPONSE

c k() n k–()×
k 0=

N

∑A/D D/A

x(n) y(n) y(t)x(t)

ANALOG

FILTER

f
fc

FREQUENCY

G
A

IN

DIGITAL

FILTER

f
fc

FREQUENCY

G
A

IN

SAMPLER AND

ANALOG-TO-DIGITAL

CONVERTER

LOW-PASS

ANTIALIASING

FILTER

DIGITAL-TO-ANALOG

CONVERTER

RECONSTRUCTION

LOW-PASS

FILTER

A

A

Figure 1-2 Digital Signal Processing

ANALOG IN ANALOG OUT
MOTOROLA DSP56K FAMILY INTRODUCTION 1 - 5
For More Information On This Product,

 Go to: www.freescale.com

ORIGIN OF DIGITAL SIGNAL PROCESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The DSP56K family is not designed for a particular application but is designed to execute
commonly used DSP benchmarks in a minimum time for a single-multiplier architecture.
For example, a cascaded, 2nd-order, four-coefficient infinite impulse response (IIR) bi-
quad section has four multiplies for each section. For that algorithm, the theoretical
minimum number of operations for a single-multiplier architecture is four per section. Ta-
ble 1-1 shows a list of benchmarks with the number of instruction cycles a DSP56K chip
uses compared to the number of multiplies the algorithm requires.

These benchmarks and others are used independently or in combination to implement
functions whose characteristics are controlled by the coefficients of the benchmarks being
executed. Useful functions using these and other benchmarks include the following:

Benchmark Number of Cycles
Number of
Algorithm
Multiplies

Real Multiply 3 1

N Real Multiplies 2N N

Real Update 4 1

N Real Updates 2N N

N Term Real Convolution (FIR) N N

N Term Real * Complex Convolution 2N N

Complex Multiply 6 4

N Complex Multiplies 4N N

Complex Update 7 4

N Complex Updates 4N 4N

N Term Complex Convolution (FIR) 4N 4N

Nth - Order Power Series 2N 2N

2nd - Order Real Biquad Filter 7 4

N Cascaded 2nd - Order Biquads 4N 4N

N Radix Two FFT Butterflies 6N 4N

Table 1-1 Benchmark Summary in Instruction Cycles
1- 6 DSP56K FAMILY INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ORIGIN OF DIGITAL SIGNAL PROCESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Digital Filtering
Finite Impulse Response (FIR)
Infinite Impulse Response (IIR)
Matched Filters (Correlators)
Hilbert Transforms
Windowing
Adaptive Filters/Equalizers

 Signal Processing
Compression (e.g., Linear Predictive

Coding of Speech Signals)
Expansion
Averaging
Energy Calculations
Homomorphic Processing
Mu-law/A-law to/from Linear Data

Conversion

 Data Processing
Encryption/Scrambling
Encoding (e.g., Trellis Coding)
Decoding (e.g., Viterbi Decoding)

Useful applications are based on combining
MOTOROLA DSP56K FAMILY
For More Informati

 Go to: www
 Numeric Processing
Scaler, Vector, and Matrix Arithmetic
Transcendental Function Computation

(e.g., Sin(X), Exp(X))
Other Nonlinear Functions
Pseudo-Random-Number Generation

 Modulation
Amplitude
Frequency
Phase

 Spectral Analysis
Fast Fourier Transform (FFT)
Discrete Fourier Transform (DFT)
Sine/Cosine Transforms
Moving Average (MA) Modeling
Autoregressive (AR) Modeling
ARMA Modeling

these and other functions. DSP applications
affect almost every area in electronics because any application for analog electronic cir-
cuitry can be duplicated using DSP. The advantages in doing so are becoming more
compelling as DSPs become faster and more cost effective.Some typical applications for
DSPs are presented in the following list:

 Telecommunication Data Communication

Tone Generation
Dual-Tone Multifrequency (DTMF)
Subscriber Line Interface
Full-Duplex Speakerphone
Teleconferencing
Voice Mail
Adaptive Differential Pulse Code
Modulation (ADPCM) Transcoder
Medium-Rate Vocoders
Noise Cancelation
Repeaters
Integrated Services Digital Network

(ISDN) Transceivers
Secure Telephones
High-Speed Modems
Multiple Bit-Rate Modems
High-Speed Facsimile

 Radio Communication
Secure Communications
Point-to-Point Communications
Broadcast Communications
Cellular Mobile Telephone

 Computer
Array Processors
Work Stations
Personal Computers
Graphics Accelerators
INTRODUCTION 1 - 7
on On This Product,
.freescale.com

ORIGIN OF DIGITAL SIGNAL PROCESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 Image Processing
Pattern Recognition
Optical Character Recognition
Image Restoration
Image Compression
Image Enhancement
Robot Vision

 Graphics
3-D Rendering
Computer-Aided Engineering (CAE)
Desktop Publishing
Animation

 Instrumentation
Spectral Analysis
Waveform Generation
Transient Analysis
Data Acquisition

 Speech Processing
Speech Synthesizer
Speech Recognizer
Voice Mail
Vocoder
Speaker Authentication
Speaker Verification

 Audio Signal Processing
Digital AM/FM Radio
Digital Hi-Fi Preamplifier
Noise Cancelation
Music Synthesis
Music Processing
Acoustic Equalizer
1- 8 DSP56K FAMILY
For More Informatio

 Go to: www
 High-Speed Control
Laser-Printer Servo
Hard-Disk Servo
Robotics
Motor Controller
Position and Rate Controller

 Vibration Analysis
Electric Motors
Jet Engines
Turbines

 Medical Electronics
Cat Scanners
Sonographs
X-Ray Analysis
Electrocardiogram
Electroencephalogram
Nuclear Magnetic Resonance Analysis

 Digital Video
Digital Television
High-Resolution Monitors

 Radar and Sonar Processing
Navigation
Oceanography
Automatic Vehicle Location
Search and Tracking

 Seismic Processing
Oil Exploration
Geological Exploration
As shown in Figure 1-3, the keys to DSP are as follows:

• The Multiply/Accumulate (MAC) operation
• Fetching operands for the MAC
• Program control to provide versatile operation
• Input/Output to move data in and out of the DSP

MAC is the basic operation used in DSP. The DSP56K family of processors has a dual
Harvard architecture optimized for MAC operations. Figure 1-3 shows how the DSP56K
INTRODUCTION MOTOROLA
n On This Product,

.freescale.com

SUMMARY OF DSP56K FAMILY FEATURES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

architecture matches the shape of the MAC operation. The two operands, C() and X(), are
directed to a multiply operation, and the result is summed. This process is built into the
chip by using two separate memories (X and Y) to feed a single-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier
and save the accumulator as needed. Since the two memories and the MAC are indepen-
dent, the DSP can perform two moves, a multiply and an accumulate, in a single
operation. As a result, many of the benchmarks shown in Table 1-1 can be executed at or
near the theoretical maximum speed for a single-multiplier architecture.

1.3 SUMMARY OF DSP56K FAMILY FEATURES
The high throughput of the DSP56K family of processors makes them well suited for com-
munication, high-speed control, numeric processing and computer and audio
applications. The main features that contribute to this high throughput include:

• Speed — Speeds high enough to easily address applications traditionally served by
low-end floating point DSPs.

FIR FILTER

c k() n k–()×
k 0=

N

∑A/D D/A

x(n) y(n) y(t)x(t)

X

∑

X

∑

MAC

X
MEMORY

Y
MEMORY

PROGRAM

Figure 1-3 DSP Hardware Origins
MOTOROLA DSP56K FAMILY INTRODUCTION 1 - 9
For More Information On This Product,

 Go to: www.freescale.com

SUMMARY OF DSP56K FAMILY FEATURES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• Precision — The data paths are 24 bits wide, providing 144 dB of dynamic range;
intermediate results held in the 56-bit accumulators can range over 336 dB.

• Parallelism — Each on-chip execution unit (AGU, program control unit, data ALU),
memory, and peripheral operates independently and in parallel with the other units
through a sophisticated bus system. The data ALU, AGU, and program control unit
operate in parallel so that an instruction prefetch, a 24-bit x 24-bit multiplication, a 56-
bit addition, two data moves, and two address-pointer updates using one of three
types of arithmetic (linear, modulo, or reverse-carry) can be executed in a single
instruction cycle. This parallelism allows a four-coefficient IIR filter section to be
executed in only four cycles, the theoretical minimum for single-multiplier architecture.
At the same time, the two serial controllers can send and receive full-duplex data, and
the host port can send/receive simplex data.

• Flexibility — While many other DSPs need external communications circuitry to
interface with peripheral circuits (such as A/D converters, D/A converters, or host
processors), the DSP56K family provides on-chip serial and parallel interfaces which
can support various configurations of memory and peripheral modules

• Sophisticated Debugging— Motorola’s on-chip emulation technology (OnCE) allows
simple, inexpensive, and speed independent access to the internal registers for
debugging. OnCE tells application programmers exactly what the status is within the
registers, memory locations, buses, and even the last five instructions that were
executed.

• Phase-locked Loop (PLL) Based Clocking — PLL allows the chip to use almost any
available external system clock for full-speed operation while also supplying an output
clock synchronized to a synthesized internal core clock. It improves the synchronous
timing of the processors’ external memory port, eliminating the timing skew common
on other processors.

• Invisible Pipeline — The three-stage instruction pipeline is essentially invisible to the
programmer, allowing straightforward program development in either assembly
language or a high-level language such as a full Kernighan and Ritchie C.

• Instruction Set — The instruction mnemonics are MCU-like, making the transition
from programming microprocessors to programming the chip as easy as possible. The
orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsolete.
1- 10 DSP56K FAMILY INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MANUAL ORGANIZATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• DSP56001 Compatibility — All members of the DSP56K family are downward
compatible with the DSP56001, and also have added flexibility, speed, and
functionality.

• Low Power — As a CMOS part, the DSP56000/DSP56001 is inherently very low
power and the STOP and WAIT instructions further reduce power requirements.

1.4 MANUAL ORGANIZATION
This manual describes the central processing module of the DSP56K family in detail and
provides practical information to help the user:

• Understand the operation of the DSP56K family
• Design parallel communication links
• Design serial communication links
• Code DSP algorithms
• Code communication routines
• Code data manipulation algorithms
• Locate additional support

The following list describes the contents of each section and each appendix:

Section 2 – DSP56K Central Architecture Overview
The DSP56K central architecture consists of the data arithmetic logic unit (ALU), ad-
dress generation unit (AGU), program control unit, On-Chip Emulation (OnCE)
circuitry, the phase locked loop (PLL) based clock oscillator, and an external memory
port (Port A). This section describes each subsystem and the buses interconnecting
the major components in the DSP56K central processing module.

Section 3 – Data Arithmetic Logic Unit
This section describes in detail the data ALU and its programming model.

Section 4 – Address Generation Unit
This section specifically describes the AGU, its programming model, address indirect
modes, and address modifiers.

Section 5 – Program Control Unit
This section describes in detail the program control unit and its programming model.

Section 6 – Instruction Set Introduction
This section presents a brief description of the syntax, instruction formats, oper-
and/memory references, data organization, addressing modes, and instruction set. A
detailed description of each instruction is given in APPENDIX A - INSTRUCTION SET
DETAILS.
MOTOROLA DSP56K FAMILY INTRODUCTION 1 - 11
For More Information On This Product,

 Go to: www.freescale.com

MANUAL ORGANIZATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Section 7 – Processing States
This section describes the five processing states (normal, exception, reset, wait, and
stop).

Section 8 – Port A
This section describes the external memory port, its control register, and control
signals.

Section 9 – PLL Clock Oscillator
This section describes the PLL and its functions

Section 10 – On-Chip Emulator (OnCE)
This section describes the OnCE circuitry and its functions.

Section 11 – Additional Support
This section presents a brief description of current support products and services and
information on where to obtain them.

Appendix A – Instruction Set Details
 A detailed description of each DSP56K family instruction, its use, and its affect on the
processor are presented.

Appendix B – Benchmarks
DSP5K family benchmark results are listed in this appendix.
1- 12 DSP56K FAMILY INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 DSP56K CENTRAL ARCHITECTURE OVERVIEW 2 - 1

SECTION 2
DSP56K CENTRAL ARCHITECTURE

OVERVIEW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

2 - 2 DSP56K CENTRAL ARCHITECTURE OVERVIEW

MOTOROLA

SECTION 2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW3

SECTION 2.2 DATA BUSES ...3

SECTION 2.3 ADDRESS BUSES ...4

SECTION 2.4 DATA ALU ..5

SECTION 2.5 ADDRESS GENERATION UNIT ..5

SECTION 2.6 PROGRAM CONTROL UNIT ...5

SECTION 2.7 MEMORY EXPANSION PORT (PORT A)6

SECTION 2.8 ON-CHIP EMULATOR (OnCE) ..6

SECTION 2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING6

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56K CENTRAL ARCHITECTURE OVERVIEW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.1 DSP56K CENTRAL ARCHITECTURE OVERVIEW
The DSP56K family of processors is built on a standard central processing module. In the
expansion area around the central processing module, the chip can support various con-
figurations of memory and peripheral modules which may change from family member to
family member. This section introduces the architecture and the major components of the
central processing module.

The central components are:

• Data Buses
• Address Buses
• Data Arithmetic Logic Unit (data ALU)
• Address Generation Unit (AGU)
• Program Control Unit (PCU)
• Memory Expansion (Port A)
• On-Chip Emulator (OnCE™) circuitry
• Phase-locked Loop (PLL) based clock circuitry

Figure 2-1 shows a block diagram of a typical DSP56K family processor, including the
central processing module and a nonspecific expansion area for memory and peripherals.
The following paragraphs give brief descriptions of each of the central components. Each
of the components is explained in detail in subsequent chapters.

2.2 DATA BUSES
The DSP56K central processing module is organized around the registers of three inde-
pendent execution units: the PCU, the AGU, and the data ALU. Data movement between
the execution units occurs over four bidirectional 24-bit buses: the X data bus (XDB), the
Y data bus (YDB), the program data bus (PDB), and the global data bus (GDB). (Certain
instructions treat the X and Y data buses as one 48-bit data bus by concatenating them.)
Data transfers between the data ALU and the X data memory or Y data memory occur
over XDB and YDB, respectively. XDB and YDB are kept local on the chip to maximize
speed and minimize power dissipation. All other data transfers, such as I/O transfers with
peripherals, occur over the GDB. Instruction word prefetches occur in parallel over the
PDB.

The bus structure supports general register-to-register, register-to-memory, and memory-
to-register data movement. It can transfer up to two 24-bit words and one 56-bit word in
the same instruction cycle. Transfers between buses occur in the internal bus switch.
MOTOROLA DSP56K CENTRAL ARCHITECTURE OVERVIEW 2 - 3
For More Information On This Product,

 Go to: www.freescale.com

ADDRESS BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.3 ADDRESS BUSES
Addresses are specified for internal X data memory and Y data memory on two unidirec-
tional 16-bit buses — X address bus (XAB) and Y address bus (YAB). Program memory
addresses are specified on the bidirectional program address bus (PAB). External mem-

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24-Bit 56K
Module

Figure 2-1 DSP56K Block Diagram

Program Control Unit
2- 4 DSP56K CENTRAL ARCHITECTURE OVERVIEW MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DATA ALU

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ory spaces are addressed over a single 16-bit unidirectional address bus driven by a
three-input multiplexer that can select the XAB, the YAB, or the PAB. Only one external
memory access can be made in an instruction cycle. There is no speed penalty if only one
external memory space is accessed in an instruction cycle. However, if two or three ex-
ternal memory spaces are accessed in a single instruction, there will be a one or two
instruction cycle execution delay, respectively.

A bus arbitrator controls external access.

2.3.1 Internal Bus Switch
Transfers between buses occur in the internal bus switch. The internal bus switch, which
is similar to a switch matrix, can connect any two internal buses without adding any pipe-
line delays. This flexibility simplifies programming.

2.3.2 Bit Manipulation Unit
The bit manipulation unit is physically located in the internal bus switch block because the
internal data bus switch can access each memory space. The bit manipulation unit per-
forms bit manipulation operations on memory locations, address registers, control
registers, and data registers over the XDB, YDB, and GDB.

2.4 DATA ALU
The data ALU performs all of the arithmetic and logical operations on data operands. It
consists of four 24-bit input registers, two 48-bit accumulator registers, two 8-bit accumu-
lator extension registers, an accumulator shifter, two data bus shifter/limiter circuits, and
a parallel, single-cycle, nonpipelined Multiply-Accumulator (MAC) unit.

2.5 ADDRESS GENERATION UNIT
The AGU performs all of the address storage and address calculations necessary to indi-
rectly address data operands in memory. It operates in parallel with other chip resources
to minimize address generation overhead. The AGU has two identical address arithmetic
units that can generate two 16-bit addresses every instruction cycle. Each of the arith-
metic units can perform three types of arithmetic: linear, modulo, and reverse-carry.

2.6 PROGRAM CONTROL UNIT
The program control unit performs instruction prefetch, instruction decoding, hardware
DO loop control, and interrupt (or exception) processing. It consists of three components:
the program address generator, the program decode controller, and the program interrupt
controller. It contains a 15-level by 32-bit system stack memory and the following six di-
MOTOROLA DSP56K CENTRAL ARCHITECTURE OVERVIEW 2 - 5
For More Information On This Product,

 Go to: www.freescale.com

MEMORY EXPANSION PORT (PORT A)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

rectly addressable registers: the program counter (PC), loop address (LA), loop counter
(LC), status register (SR), operating mode register (OMR), and stack pointer (SP). The
16-bit PC can address 65,536 locations in program memory space.

There are four mode and interrupt control pins that provide input to the program interrupt
controller. The Mode Select A/External Interrupt Request A(MODA/IRQA) and Mode Se-
lect B/External Interrupt Request B (MODB/IRQB) pins select the chip operating mode
and receive interrupt requests from external sources.

The Mode Select C/Non-Maskable Interrupt (MODC/NMI) pin provides further operating
mode options and non-maskable interrupt input.

The RESET pin resets the chip. When it is asserted, it initializes the chip and places it in
the reset state. When it is deasserted, the chip assumes the operating mode indicated by
the MODA, MODB, and MODC pins.

2.7 MEMORY EXPANSION PORT (PORT A)
Port A synchronously interfaces with a wide variety of memory and peripheral devices
over a common 24-bit data bus. These devices include high-speed static RAMs, slower
memory devices, and other DSPs and MPUs in master/slave configurations. This variety
is possible because the expansion bus timing is programmable and can be tailored to
match the speed requirements of the different memory spaces. Not all DSP56K family
members feature a memory expansion port. See the individual device’s User’s Manual to
determine if a particular chip includes this feature.

2.8 ON-CHIP EMULATOR (OnCE)
DSP56K on-chip emulation (OnCE) circuitry allows the user to interact with the DSP56K
and its peripherals non-intrusively to examine registers, memory, or on-chip peripherals.
It provides simple, inexpensive, and speed independent access to the internal registers
for sophisticated debugging and economical system development.

Dedicated OnCE pins allow the user to insert the DSP into its target system and retain
debug control without sacrificing other user accessible on-chip resources. The design
eliminates the costly cabling and the access to processor pins required by traditional em-
ulator systems.

2.9 PHASE-LOCKED LOOP (PLL) BASED CLOCKING
The PLL allows the DSP to use almost any available external system clock for full-speed
operation, while also supplying an output clock synchronized to a synthesized internal
clock. The PLL performs frequency multiplication, skew elimination, and low-power
division.
2- 6 DSP56K CENTRAL ARCHITECTURE OVERVIEW MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 DATA ARITHMETIC LOGIC UNIT 3 - 1

SECTION 3
DATA ARITHMETIC LOGIC UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

3 - 2 DATA ARITHMETIC LOGIC UNIT

MOTOROLA

SECTION 3.1 DATA ARITHMETIC LOGIC UNIT ... 3

SECTION 3.2 OVERVIEW AND DATA ALU ARCHITECTURE 3
3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0) .. 5
3.2.2 MAC and Logic Unit .. 6
3.2.3 Data ALU A and B Accumulators .. 7
3.2.4 Accumulator Shifter .. 9
3.2.5 Data Shifter/Limiter ... 9

3.2.5.1 Limiting (Saturation Arithmetic) .. 9
3.2.5.2 Scaling .. 10

SECTION 3.3 DATA REPRESENTATION AND ROUNDING 10

SECTION 3.4 DOUBLE PRECISION MULTIPLY MODE 16

SECTION 3.5 DATA ALU PROGRAMMING MODEL 19

SECTION 3.6 DATA ALU SUMMARY .. 19

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DATA ARITHMETIC LOGIC UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.1 DATA ARITHMETIC LOGIC UNIT
This section describes the operation of the Data ALU registers and hardware. It dis-
cusses data representation, rounding, and saturation arithmetic used within the Data
ALU, and concludes with a discussion of the programming model.

3.2 OVERVIEW AND DATA ALU ARCHITECTURE
As described in Section 2, The DSP56K family central processing module is composed
of three execution units that operate in parallel. They are the Data ALU, address genera-
tion unit (AGU), and the program control unit (PCU) (see Figure 3-1). These three units
are register oriented rather than bus oriented and interface over the system buses with
memory and memory-mapped I/O devices.

The Data ALU (see Figure 3-2) is the first of these execution units to be presented. It bal-
ances speed with the capability to process signals that have a wide dynamic range and
performs all arithmetic and logical operations on data operands.

The Data ALU registers may be read or written over the XDB and the YDB as 24- or 48-
bit operands. The source operands for the Data ALU, which may be 24, 48, or 56 bits,
always originate from Data ALU registers. The results of all Data ALU operations are
stored in an accumulator.

The 24-bit data words provide 144 dB of dynamic range. This range is sufficient for most
real-world applications since the majority of data converters are 16 bits or less – and cer-
tainly not greater than 24 bits. The 56-bit accumulator inside the Data ALU provides 336
dB of internal dynamic range so that no loss of precision will occur due to intermediate
processing. Special circuitry handles data overflows and roundoff errors.

The Data ALU can perform any of the following operations in a single instruction cycle:
multiplication, multiply-accumulate with positive or negative accumulation, convergent
rounding, multiply-accumulate with positive or negative accumulation and convergent
rounding, addition, subtraction, a divide iteration, a normalization iteration, shifting, and
logical operations.

The components of the Data ALU are:

• Four 24-bit input registers
• A parallel, single-cycle, nonpipelined multiply-accumulator/logic unit (MAC)
• Two 48-bit accumulator registers
• Two 8-bit accumulator extension registers
• An accumulator shifter
• Two data bus shifter/limiter circuits
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 3
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The following paragraphs describe each of these components and provide a description
of data representation, rounding, and saturation arithmetic.

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24 Bit 56K
Module

Figure 3-1 DSP56K Block Diagram

Program Control Unit
3 - 4 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)
X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated
as four independent, 24-bit registers or as two 48-bit registers called X and Y, developed
by concatenating X1:X0 and Y1:Y0, respectively. X1 is the most significant word in X and
Y1 is the most significant word in Y. The registers serve as input buffer registers between
the XDB or YDB and the MAC unit. They act as Data ALU source operands and allow
new operands to be loaded for the next instruction while the current instruction uses the

56

24

24

5656

56

56

X DATA BUS

Y DATA BUS

2424

X0

X1

Y0

Y1

24 24

MULTIPLIER

ACCUMULATOR,
ROUNDING,

AND LOGIC UNIT

SHIFTER

A (56)

B (56)

SHIFTER/LIMITER

Figure 3-2 Data ALU
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 5
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

register contents. The registers may also be read back out to the appropriate data bus to
implement memory-delay operations and save/restore operations for interrupt service
routines.

3.2.2 MAC and Logic Unit
The MAC and logic unit shown in Figure 3-3 conduct the main arithmetic processing and
perform all calculations on data operands in the DSP.

For arithmetic instructions, the unit accepts up to three input operands and outputs one
56-bit result in the following form: extension:most significant product:least significant
product (EXT:MSP:LSP). The operation of the MAC unit occurs independently and in par-
allel with XDB and YDB activity, and its registers facilitate buffering for Data ALU inputs
and outputs. Latches on the MAC unit input permit writing an input register which is the
source for a Data ALU operation in the same instruction.

The arithmetic unit contains a multiplier and two accumulators. The input to the multiplier
can only come from the X or Y registers (X1, X0, Y1, Y0). The multiplier executes 24-bit
x 24-bit, parallel, twos-complement fractional multiplies. The 48-bit product is right justi-
fied and added to the 56-bit contents of either the A or B accumulator. The 56-bit sum is
stored back in the same accumulator (see Figure 3-3). An 8-bit adder, which acts as an
extension accumulator for the MAC array, accommodates overflow of up to 256 and al-
lows the two 56-bit accumulators to be added to and subtracted from each other. The
extension adder output is the EXT portion of the MAC unit output. This multiply/accumu-
late operation is not pipelined, but is a single-cycle operation. If the instruction specifies a
multiply without accumulation (MPY), the MAC clears the accumulator and then adds the
contents to the product.

In summary, the results of all arithmetic instructions are valid (sign-extended and zero-
filled) 56-bit operands in the form of EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0). When a 56-
bit result is to be stored as a 24-bit operand, the LSP can be simply truncated, or it can be
rounded (using convergent rounding) into the MSP.

Convergent rounding (round-to-nearest) is performed when the instruction (for example,
the signed multiply-accumulate and round (MACR) instruction) specifies adding the mul-
tiplier’s product to the contents of the accumulator. The scaling mode bits in the status
register specify which bit in the accumulator shall be rounded.

The logic unit performs the logical operations AND, OR, EOR, and NOT on Data ALU reg-
isters. It is 24 bits wide and operates on data in the MSP portion of the accumulator. The
LSP and EXT portions of the accumulator are not affected.
3 - 6 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.3 Data ALU A and B Accumulators
The Data ALU features two general-purpose, 56-bit accumulators, A and B. Each con-
sists of three concatenated registers (A2:A1:A0 and B2:B1:B0, respectively). The 8-bit
sign extension (EXT) is stored in A2 or B2 and is used when more than 48-bit accuracy is
needed; the 24-bit most significant product (MSP) is stored in A1 or B1; the 24-bit least

Figure 3-3 MAC Unit

24 BITS
48 BITS
56 BITS

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

X0,X1,

Y0, OR Y1

24-BITx24-BIT
FRACTIONAL
MULTIPLIER

56 - BIT
ARITHMETIC AND

LOGIC UNIT

R24

S
H
I
F
T
E
R

CONVERGENT - ROUNDING
FORCING FUNCTION

SCALING
MODE BITS

CONDITION
CODE GENERATOR

ACCUMULATOR A ACCUMULATOR B

+–
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 7
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

significant product (LSP) is stored in A0 or B0 as shown in Figure 3-4.

Overflow occurs when a source operand requires more bits for accurate representation
than are available in the destination. The 8-bit extension registers offer protection
against overflow. In the DSP56K chip family, the extreme values that a word operand
can assume are - 1 and + 0.9999998. If the sum of two numbers is less than - 1 or
greater than + 0.9999998, the result (which cannot be represented in a 24 bit word oper-
and) has underflowed or overflowed. The 8-bit extension registers can accurately repre-
sent the result of 255 overflows or 255 underflows. Whenever the accumulator extension
registers are in use, the V bit in the status register is set.

Automatic sign extension occurs when the 56-bit accumulator is written with a smaller
operand of 48 or 24 bits. A 24-bit operand is written to the MSP (A1 or B1) portion of the
accumulator, the LSP (A0 or B0) portion is zero filled, and the EXT (A2 or B2) portion is
sign extended from MSP. A 48-bit operand is written into the MSP:LSP portion (A1:A0 or
B1:B0) of the accumulator, and the EXT portion is sign extended from MSP. No sign
extension occurs if an individual 24-bit register is written (A1, A0, B1, or B0).When either
A or B is read, it may be optionally scaled one bit left or one bit right for block floating-
point arithmetic. Sign extension can also occur when writing A or B from the XDB and/or
YDB or with the results of certain Data ALU operations (such as the transfer conditionally
(Tcc) or transfer Data ALU register (TFR) instructions).

Overflow protection occurs when the contents of A or B are transferred over the XDB and
YDB by substituting a limiting constant for the data. Limiting does not affect the content
of A or B – only the value transferred over the XDB or YDB is limited. This overflow pro-
tection occurs after the contents of the accumulator has been shifted according to the
scaling mode. Shifting and limiting occur only when the entire 56-bit A or B accumulator
is specified as the source for a parallel data move over the XDB or YDB. When individual
registers A0, A1, A2, B0, B1, or B2 are specified as the source for a parallel data move,

55 055 0

* A2 A1 A0
7 0 23 0 23 0

* B2 B1 B0
7 0 23 0 23 0

DATA ALU ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

Accumulator A Accumulator B

EXT MSP LSPEXT MSP LSP

Figure 3-4 DATA ALU Accumulator Registers
3 - 8 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW AND DATA ALU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

shifting and limiting are not performed.

3.2.4 Accumulator Shifter
The accumulator shifter (see Figure 3-3) is an asynchronous parallel shifter with a 56-bit
input and a 56-bit output that is implemented immediately before the MAC accumulator
input. The source accumulator shifting operations are as follows:

• No Shift (Unmodified)
• 1-Bit Left Shift (Arithmetic or Logical) ASL, LSL, ROL
• 1-Bit Right Shift (Arithmetic or Logical) ASR, LSR, ROR
• Force to zero

3.2.5 Data Shifter/Limiter
The data shifter/limiter circuits (see Figure 3-3) provide special post-processing on data
read from the Data ALU A and B accumulators out to the XDB or YDB. There are two in-
dependent shifter/limiter circuits (one for XDB and one for the YDB); each consists of a
shifter followed by a limiting circuit.

3.2.5.1 Limiting (Saturation Arithmetic)
The A and B accumulators serve as buffer registers between the MAC unit and the XDB
and/or YDB. They act both as Data ALU source and destination operands.Test logic exists
in each accumulator register to support the operation of the data shifter/limiter circuits.
This test logic detects overflows out of the data shifter so that the limiter can substitute
one of several constants to minimize errors due to the overflow. This process is called sat-
uration arithmetic

The Data ALU A and B accumulators have eight extension bits. Limiting occurs when the
extension bits are in use and either A or B is the source being read over XDB or YDB. If
the contents of the selected source accumulator can be represented without overflow in
the destination operand size (i.e., accumulator extension register not in use), the data lim-
iter is disabled, and the operand is not modified. If contents of the selected source
accumulator cannot be represented without overflow in the destination operand size, the
data limiter will substitute a limited data value with maximum magnitude (saturated) and
with the same sign as the source accumulator contents: $7FFFFF for 24-bit or $7FFFFF
FFFFFF for 48-bit positive numbers, $800000 for 24-bit or $800000 000000 for 48-bit neg-
ative numbers. This process is called saturation arithmetic. The value in the accumulator
register is not shifted and can be reused within the Data ALU. When limiting does occur,
a flag is set and latched in the status register.Two limiters allow two-word operands to be
limited independently in the same instruction cycle. The two data limiters can also be com-
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 9
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

bined to form one 48-bit data limiter for long-word operands.

For example, if the source operand were 01.100 (+ 1.5 decimal) and the destination reg-
ister were only four bits, the destination register would contain 1.100 (- 1.5 decimal) after
the transfer, assuming signed fractional arithmetic. This is clearly in error as overflow has
occurred. To minimize the error due to overflow, it is preferable to write the maximum
(“limited”) value the destination can assume. In the example, the limited value would be
0.111 (+ 0.875 decimal), which is clearly closer to + 1.5 than - 1.5 and therefore intro-
duces less error.

Figure 3-5 shows the effects of saturation arithmetic on a move from register A1 to regis-
ter X0. The instruction “MOVE A1,X0” causes a move without limiting, and the instruction
“MOVE A,X0” causes a move of the same 24 bits with limiting. The error without limiting
is 2.0; whereas, it is 0.0000001 with limiting. Table 3-1 shows a more complete set of
limiting situations.

3.2.5.2 Scaling
The data shifters can shift data one bit to the left or one bit to the right, or pass the data
unshifted. Each data shifter has a 24-bit output with overflow indication and is controlled
by the scaling mode bits in the status register. These shifters permit dynamic scaling of
fixed-point data without modifying the program code. For example, this permits block
floating-point algorithms such as fast Fourier transforms to be implemented in a regular
fashion.

3.3 DATA REPRESENTATION AND ROUNDING
The DSP56K uses a fractional data representation for all Data ALU operations. Figure 3-

Figure 3-5 Saturation Arithmetic

55 0

7 0 23 0 23 0

0. . . 0 1 0 0 0 0 0 0 0 0

55 0

7 0 23 0 23 0

0 . . . 0 1 0 0 0 0 0 0 0 0

WITHOUT LIMITING* WITH LIMITING*

A = +1.0

1 0 0 0 0 0 1 1 1 1

23 0 23 0

MOVE A1, X0 MOVE A, X0

X0 = -1.0 X0 = +0.9999999

|ERROR| = 2.0

A = +1.0

|ERROR| = .0000001

* Limiting automatically occurs when the 56 - bit operands A or B (not A2, A1, A0, B2, B1, or B0) are read. The contents
of A or B are NOT changed.
3 - 10 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

7 shows the bit weighting of words, long words, and accumulator operands for this repre-
sentation. The decimal points are all aligned and are left justified.

Data must be converted to a fractional number by scaling before being used by the DSP
or the user will have to be very careful in how the DSP manipulates the data. Moving $3F
to a 24-bit Data ALU register does not result in the contents being $00003F as might be
expected. Assuming numbers are fractional, the DSP left justifies rather than right justi-
fies. As a result, storing $3F in a 24-bit register results in the contents being $3F0000.
The simplest example of scaling is to convert all integer numbers to fractional numbers
by shifting the decimal 24 places to the left (see Figure 3-6). Thus, the data has not
changed; only the position of the decimal has moved.

For words and long words, the most negative number that can be represented is -1
whose internal representation is $800000 and $800000000000, respectively. The most
positive word is $7FFFFF or 1 - 2-23 and the most positive long word is $7FFFFFFFFFFF

Destination
Memory Reference

Source
Operand

Accumulator
Sign

Limited Value (Hexadecimal) Type of
Access

XDB YDB

X
X:A
X:B

+
-

7FFFFF
800000

—
—

One 24 bit

Y
Y:A
Y:B

+
-

—
—

7FFFFF
800000

One 24 bit

X and Y

X:A Y:A
X:A Y:B
X:B Y:A
X:B Y:B
L:AB
L:BA

+
-
+
-
+
-

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

7FFFFF
800000
7FFFFF
800000
7FFFFF
800000

Two 24 bit

L (X:Y)
L:A
L:B

+
-

7FFFFF
800000

FFFFFF
000000

One 48 bit

Table 3-1 Limited Data Values

S 3F.

S. 3F

S = SIGN BIT

3F = HEXADECIMAL DATA TO BE CONVERTED

Figure 3-6 Integer-to-Fractional Data Conversion
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 11
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

or 1 - 2-47. These limitations apply to all data stored in memory and to data stored in the
Data ALU input buffer registers. The extension registers associated with the accumula-
tors allow word growth so that the most positive number that can be used is approxi-
mately 256 and the most negative number is approximately -256. When the accumulator
extension registers are in use, the data contained in the accumulators cannot be stored
exactly in memory or other registers. In these cases, the data must be limited to the most
positive or most negative number consistent with the size of the destination and the sign
of the accumulator (the most significant bit (MSB) of the extension register).

To maintain alignment of the binary point when a word operand is written to accumulator
A or B, the operand is written to the most significant accumulator register (A1 or B1), and
its MSB is automatically sign extended through the accumulator extension register. The
least significant accumulator register is automatically cleared. When a long-word oper-
and is written to an accumulator, the least significant word of the operand is written to the
least significant accumulator register A0 or B0 and the most significant word is written to

2–472–2420–28

2–472–24

–20 2–23

–20

*

A2, B2 A1, B1 A0, B0

SIGN EXTENSION OPERAND ZERO

DATA ALU

WORD OPERAND

X1, X0
Y1, Y0
A1, A0
B1, B0

LONG - WORD OPERAND

X1:X0 = X
Y1:Y0 = Y
A1:A0 = A10
B1:B0 = B10

ACCUMULATOR A OR B

Figure 3-7 Bit Weighting and Alignment of Operands
3 - 12 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A1 or B1(see Figure 3-8).

A comparison between integer and fractional number representation is shown in Figure
3-8. The number representation for integers is between ±2(N-1); whereas, the fractional
representation is limited to numbers between ±1. To convert from an integer to a frac-
tional number, the integer must be multiplied by a scaling factor so the result will always
be between ±1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted but is different if the numbers are multiplied or divided.
An example of two numbers multiplied together is given in Figure 3-9. The key difference
is that the extra bit in the integer multiplication is used as a duplicate sign bit and as the
least significant bit (LSB) in the fractional multiplication. The advantages of fractional
data representation are as follows:

• The MSP (left half) has the same format as the input data.

• The LSP (right half) can be rounded into the MSP without shifting or updating the
exponent.

• A significant bit is not lost through sign extension.

• Conversion to floating-point representation is easier because the industry-standard
floating-point formats use fractional mantissas.

• Coefficients for most digital filters are derived as fractions by the high-level language
programs used in digital-filter design packages, which implies that the results can be
used without the extensive data conversions that other formats require.

Should integer arithmetic be required in an application, shifting a one or zero, depending
on the sign, into the MSB converts a fraction to an integer.

The Data ALU MAC performs rounding of the accumulator register to single precision if
requested in the instruction (the A1 or B1 register is rounded according to the contents of
the A0 or B0 register). The rounding method is called round-to-nearest (even) number, or
convergent rounding. The usual rounding method rounds up any value above one-half

S

S

N BITS

N BITS

–2(N–1) TO [+2(N–1) –1]

–1 TO [+1–2–(N–1)]

TWOS COMPLEMENT INTEGER

TWOS COMPLEMENT FRACTIONAL

FRACTIONAL = INTEGER EXCEPT FOR X AND ÷

•

•

Figure 3-8 Integer/Fractional Number Comparison
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 13
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

and rounds down any value below one-half. The question arises as to which way one-
half should be rounded. If it is always rounded one way, the results will eventually be
biased in that direction. Convergent rounding solves the problem by rounding down if the
number is odd (LSB=0) and rounding up if the number is even (LSB=1). Figure 3-10
shows the four cases for rounding a number in the A1 (or B1) register. If scaling is set in
the status register, the resulting number will be rounded as it is put on the data bus. How-
ever, the contents of the register are not scaled.

S S

...

SIGNED MULTIPLIER

S S MSP LSP •

2N — 1 PRODUCT
SIGN EXTENSION

2N BITS

S S

...

SIGNED MULTIPLIER

0S• MSP LSP

2N — 1 PRODUCT
ZERO FILL

2N BITS

INTEGER FRACTIONAL

SIGNED MULTIPLICATION N x N - 2N – 1 BITS

Figure 3-9 Integer/Fractional Multiplication Comparison
3 - 14 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DATA REPRESENTATION AND ROUNDING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A2 A1 A0
XX . . XX XXX . . . XXX0100 011XXX XXX
55 48 47 24 23 0

CASE I: IF A0 < $800000 (1/2), THEN ROUND DOWN (ADD NOTHING)

BEFORE ROUNDING AFTER ROUNDING

AFTER ROUNDING

AFTER ROUNDING

BEFORE ROUNDING

BEFORE ROUNDING

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE II: IF A0 > $800000 (1/2), THEN ROUND UP (ADD 1 TO A1)

A2 A1 A0
XX . . XX XXX . . . XXX0100 1110XX XXX
55 48 47 24 23 0

1

A2 A1 A0*
XX . . XX XXX . . . XXX0101 000 000
55 48 47 24 23 0

CASE III: IF A0 = $800000 (1/2), AND THE LSB OF A1 = 0,THEN ROUND DOWN (ADD NOTHING)

A2 A1 A0
XX . . XX XXX . . . XXX0100 10000 000
55 48 47 24 23 0

0

A2 A1 A0*
XX . . XX XXX . . . XXX0100 000 000
55 48 47 24 23 0

CASE IV: IF A0 = $800000 (1/2), AND THE LSB = 1, THEN ROUND UP (ADD 1 TO A1)

BEFORE ROUNDING

A2 A1 A0
XX . . XX XXX . . . XXX0101 10000 000
55 48 47 24 23 0

1
AFTER ROUNDING

A2 A1 A0*
XX . . XX XXX . . . XXX0110 000 000
55 48 47 24 23 0

Figure 3-10 Convergent Rounding

*A0 is always clear; performed during RND, MPYR, MACR
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 15
For More Information On This Product,

 Go to: www.freescale.com

DOUBLE PRECISION MULTIPLY MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4 DOUBLE PRECISION MULTIPLY MODE
The Data ALU double precision multiply operation multiplies two 48-bit operands with a
96-bit result. The processor enters the dedicated Double Precision Multiply Mode when
the user sets bit 14 (DM) of the Status Register (bit 6 of the MR register). The mode is
disabled by clearing the DM bit. For information on the DM bit, see Section 5.4.2.13 -
Double Precision Multiply Mode (Bit 14).

CAUTION:
While in the Double Precision Multiply Mode, only the double precision multiply algorithms
shown in Figure 3-11, Figure 3-12, and Figure 3-13 may be executed by the Data ALU;
any other Data ALU operation will give indeterminate results.

Figure 3-11 shows the full double precision multiply algorithm. To allow for pipeline
delay, the ANDI instruction should not be immediately followed by a Data ALU instruc-
tion. For example, the ORI instruction sets the DM mode bit, but, due to the instruction
execution pipeline, the Data ALU enters the Double Precision Multiply mode only after

Y:X:

R5
MSP2
LSP2

MSP1
LSP1R1

DP2
DP0

DP3
DP1 R0R0

DP3_DP2_DP1_DP0 = MSP1_LSP1 x MSP2_LSP2

ori #$40,mr ;enter mode

move x:(r1)+,x0 y:(r5)+,y0 ;load operands

mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP➞a

mac x1,y0,a a0,y:(r0) ;shifted(a)+

; MSP*LSP➞a

mac x0,y1,a ;a+LSP*MSP➞a

mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; MSP*MSP➞a

move a,l:(r0)+

andi #$bf,mr ;exit mode

non-Data ALU operation ;pipeline delay

Figure 3-11 Full Double Precision Multiply Algorithm
3 - 16 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DOUBLE PRECISION MULTIPLY MODE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

one instruction cycle. The ANDI instruction clears the DM mode bit, but, due to the
instruction execution pipeline, the Data ALU leaves the mode after one instruction cycle.

The double precision multiply algorithm uses the Y0 register at all stages. If the use of
the Data ALU is required in an interrupt service routine, Y0 should be saved together
with other Data ALU registers to be used, and should be restored before leaving the
interrupt routine.

If just single precision times double precision multiply is desired, two of the multiply oper-
ations may be deleted and replaced by suitable initialization and clearing of the accumu-
lator and Y0. Figure 3-12 shows the single precision times double precision algorithm.

Figure 3-13 shows a single precision times double precision multiply-accumulate algo-
rithm. First, the least significant parts of the double precision values are multiplied by the
single precision values and accumulated in the “Double Precision Multiply” mode. Then
the DM bit is cleared and the least significant part of the result is saved to memory. The
most significant parts of the double precision values are then multiplied by the single pre-

Y:X:

R5SPMSP1
LSP1R1

DP2DP3
DP1

R0
R0

DP3_DP2_DP1 = MSP1_LSP1 x SP

clr a #0,y0 ;clear a and y0

ori #$40,mr ;enter DP mode

move x:(r1)+,x0 y:(r5)+,y1 ;load LSP1 and SP

mac x0,y1,a x:(r1)+,x1 ;LSP1*SP➞a,

;load MSP1

mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; SP*MSP1➞a,

;save DP1

move a,l:(r0)+ ;save DP3_DP2

andi #$bf,mr ;exit DP mode

non-Data ALU operation ;pipeline delay

Figure 3-12 Single × Double Multiply Algorithm
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 17
For More Information On This Product,

 Go to: www.freescale.com

DOUBLE PRECISION MULTIPLY MODE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

cision values and accumulated using regular MAC instructions. Note that the maximum
number of single times double MAC operations in this algorithm are limited to 255 since
overflow may occur (the A2 register is just eight bits long). If a longer sequence is
required, it should be split into sub-sequences each with no more than 255 MAC opera-
tions.

Y:X:

R5SPiMSPi

LSPiR1

DP2DP3
DP1

R0
R0

DP3_DP2_DP1 = ∑ MSPi_LSPi x SPi

move #N-1,m5

clr a #0,y0 ;clear a and y0

ori #$40,mr ;enter DP mode

move x:(r1)+,x0 y:(r5)+,y1 ;load LSPi and SPi

rep #N ;0<N<256

mac x0,y1,a x:(r1)+,x0 y:(r5)+,y1 ;LSPi*SPi➞a

andi #$bf,mr ;exit DP mode

move a0,x:(r0)+ ;save DP1

move a1,y0

move a2,a

move y0,a0 ;a2:a1➞a1:a0

rep #N

mac x0,y1,a x:(r1)+,x0 y:(r5)+,y1 ;load MSPi and SPi

move a,l:(r0)+ ;save DP3_DP2

Figure 3-13 Single × Double Multiply-Accumulate Algorithm
3 - 18 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DATA ALU PROGRAMMING MODEL

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5 DATA ALU PROGRAMMING MODEL
The Data ALU features 24-bit input/output data registers that can be concatenated to ac-
commodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-
bit pieces that can be transferred over the buses. Figure 3-14 illustrates how the registers
in the programming model are grouped.

3.6 DATA ALU SUMMARY
The Data ALU performs arithmetic operations involving multiply and accumulate opera-
tions. It executes all instructions in one machine cycle and is not pipelined. The two 24-bit
numbers being multiplied can come from the X registers (X0 or X1) or Y registers (Y0 or
Y1). After multiplication, they are added (or subtracted) with one of the 56-bit accumula-
tors and can be convergently rounded to 24 bits. The convergent-rounding forcing
function detects the $800000 condition in the LSP and makes the correction as neces-
sary. The final result is then stored in one of the accumulators as a valid 56-bit number.
The condition code bits are set based on the rounded output of the logic unit.

47 0

55 055 0

DATA ALU

X0
23 0 23 0

47 0
Y1 Y0

23 0 23 0

DATA ALU

* A2 A1 A0
23 8 7 0 23 0 23 0

* B2 B1 B0
23 8 7 0 23 0 23 0

X1

INPUT REGISTERS

ACCUMULATOR REGISTERS

*Read as sign extension bits, written as don’t care.

X Y

A B

Figure 3-14 DSP56K Programming Model
MOTOROLA DATA ARITHMETIC LOGIC UNIT 3 - 19
For More Information On This Product,

 Go to: www.freescale.com

DATA ALU SUMMARY

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3 - 20 DATA ARITHMETIC LOGIC UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 ADDRESS GENERATION UNIT 4 - 1

SECTION 4
ADDRESS GENERATION UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

4 - 2 ADDRESS GENERATION UNIT

MOTOROLA

SECTION 4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES3

SECTION 4.2 AGU ARCHITECTURE ..3
4.2.1 Address Register Files (Rn) ..3
4.2.2 Offset Register Files (Nn) ..4
4.2.3 Modifier Register Files (Mn) ..5
4.2.4 Address ALU ...5
4.2.5 Address Output Multiplexers ...6

SECTION 4.3 PROGRAMMING MODEL ...6
4.3.1 Address Register Files (R0 - R3 and R4 - R7)7
4.3.2 Offset Register Files (N0 - N3 and N4 - N7)7
4.3.3 Modifier Register Files (M0 - M3 and M4 - M7)8

SECTION 4.4 ADDRESSING ...8
4.4.1 Address Register Indirect Modes ..9

4.4.1.1 No Update ... 9
4.4.1.2 Postincrement By 1 ... 9
4.4.1.3 Postdecrement By 1 ... 9
4.4.1.4 Postincrement By Offset Nn ... 10
4.4.1.5 Postdecrement By Offset Nn .. 11
4.4.1.6 Indexed By Offset Nn .. 12
4.4.1.7 Predecrement By 1 ... 13

4.4.2 Address Modifier Arithmetic Types ...14
4.4.2.1 Linear Modifier (Mn=$FFFF) ... 16
4.4.2.2 Modulo Modifier .. 18
4.4.2.3 Reverse-Carry Modifier (Mn=$0000) .. 22
4.4.2.4 Address-Modifier-Type Encoding Summary 25

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS GENERATION UNIT AND ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4.1 ADDRESS GENERATION UNIT AND ADDRESSING MODES
This section contains three major subsections. The first subsection describes the hard-
ware architecture of the address generation unit (AGU), the second subsection
describes the programming model, and the third subsection describes the addressing
modes, explaining how the Rn, Nn, and Mn registers work together to form a memory
address.

4.2 AGU ARCHITECTURE
The AGU is shown in the DSP56K block diagram in Figure 4-1. It uses integer arithmetic
to perform the effective address calculations necessary to address data operands in
memory, and contains the registers used to generate the addresses. It implements lin-
ear, modulo, and reverse-carry arithmetic, and operates in parallel with other chip
resources to minimize address-generation overhead.

The AGU is divided into two identical halves, each of which has an address arithmetic
logic unit (ALU) and four sets of three registers (see Figure 4-2). They are the address
registers (R0 - R3 and R4 - R7), offset registers (N0 - N3 and N4 - N7), and the modifier
registers (M0 - M3 and M4 - M7). The eight Rn, Nn, and Mn registers are treated as reg-
ister triplets — e.g., only N2 and M2 can be used to update R2. The eight triplets are
R0:N0:M0, R1:N1:M1, R2:N2:M2, R3:N3:M3, R4:N4:M4, R5:N5:M5, R6:N6:M6, and
R7:N7:M7.

The two arithmetic units can generate two 16-bit addresses every instruction cycle — one
for any two of the XAB, YAB, or PAB. The AGU can directly address 65,536 locations on
the XAB, 65,536 locations on the YAB, and 65,536 locations on the PAB. The two inde-
pendent address ALUs work with the two data memories to feed the data ALU two
operands in a single cycle. Each operand may be addressed by an Rn, Nn, and Mn triplet.

4.2.1 Address Register Files (Rn)
Each of the two address register files (see Figure 4-2) consists of four 16-bit registers. The
two files contain address registers R0 - R3 and R4 - R7, which usually contain addresses
used as pointers to memory. Each register may be read or written by the global data bus
(GDB). When read by the GDB, 16-bit registers are written into the two least significant
bytes of the GBD, and the most significant byte is set to zero. When written from the GBD,
only the two least significant bytes are written, and the most significant byte is truncated.
Each address register can be used as input to its associated address ALU for a register
update calculation. Each register can also be written by the output of its respective ad-
dress ALU. One Rn register from the low address ALU and one Rn register from the high
address ALU can be accessed in a single instruction.
MOTOROLA ADDRESS GENERATION UNIT 4 - 3
For More Information On This Product,

 Go to: www.freescale.com

AGU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2 Offset Register Files (Nn)
Each of two offset register files shown in Figure 4-2 consists of four 16-bit registers. The
two files contain offset registers N0 - N3 and N4 - N7, which contain either data or offset
values used to update address pointers. Each offset register can be read or written by the

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24-Bit 56K
Module

Figure 4-1 DSP56K Block Diagram

Program Control Unit
4 - 4 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

AGU ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

GDB. When read by the GDB, the contents of a register are placed in the two least signif-
icant bytes, and the most significant byte on the GDB is zero extended. When a register
is written, only the least significant 16 bits of the GDB are used; the upper portion is
truncated.

4.2.3 Modifier Register Files (Mn)
Each of the two modifier register files shown in Figure 4-2 consists of four 16-bit registers.
The two files contain modifier registers M0 - M3 and M4 - M7, which specify the type of
arithmetic used during address register update calculations or contain data. Each modifier
register can be read or written by the GDB. When read by the GDB, the contents of a reg-
ister are placed in the two least significant bytes, and the most significant byte on the GDB
is zero extended. When a register is written, only the least significant 16 bits of the GDB
are used; the upper portion is truncated. Each modifier register is preset to $FFFF during
a processor reset.

4.2.4 Address ALU
The two address ALUs are identical (see Figure 4-2) in that each contains a 16-bit full
adder (called an offset adder), which can add 1) plus one, 2) minus one, 3) the contents
of the respective offset register N, or 4) the twos complement of N to the contents of the

GLOBAL DATA BUS

N0

N1

N2

N3 M3

M2

M1

M0

ADDRESS
ALU

ADDRESS
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

TRIPLE MULTIPLEXER

LOW ADDRESS ALU HIGH ADDRESS ALU

XAB YAB PAB

16 bits
24 bits

Figure 4-2 AGU Block Diagram
MOTOROLA ADDRESS GENERATION UNIT 4 - 5
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

selected address register. A second full adder (called a modulo adder) adds the summed
result of the first full adder to a modulo value, M or minus M, where M-1 is stored in the
respective modifier register. A third full adder (called a reverse-carry adder) can add 1)
plus one, 2) minus one, 3) the offset N (stored in the respective offset register), or 4) minus
N to the selected address register with the carry propagating in the reverse direction —
i.e., from the most significant bit (MSB) to the least significant bit (LSB). The offset adder
and the reverse-carry adder are in parallel and share common inputs. The only difference
between them is that the carry propagates in opposite directions. Test logic determines
which of the three summed results of the full adders is output.

Each address ALU can update one address register, Rn, from its respective address reg-
ister file during one instruction cycle and can perform linear, reverse-carry, and modulo
arithmetic. The contents of the selected modifier register specify the type of arithmetic to
be used in an address register update calculation. The modifier value is decoded in the
address ALU.

The output of the offset adder gives the result of linear arithmetic (e.g., Rn ± 1; Rn ± N)
and is selected as the modulo arithmetic unit output for linear arithmetic addressing mod-
ifiers. The reverse-carry adder performs the required operation for reverse-carry
arithmetic and its result is selected as the address ALU output for reverse-carry address-
ing modifiers. Reverse-carry arithmetic is useful for 2k-point fast Fourier transform (FFT)
addressing. For modulo arithmetic, the modulo arithmetic unit will perform the function
(Rn ± N) modulo M, where N can be one, minus one, or the contents of the offset register
Nn. If the modulo operation requires wraparound for modulo arithmetic, the summed out-
put of the modulo adder gives the correct updated address register value; if wraparound
is not necessary, the output of the offset adder gives the correct result.

4.2.5 Address Output Multiplexers
The address output multiplexers (see Figure 4-2) select the source for the XAB, YAB, and
PAB. These multiplexers allow the XAB, YAB, or PAB outputs to originate from R0 - R3
or R4 - R7.

4.3 PROGRAMMING MODEL
The programmer’s view of the AGU is eight sets of three registers (see Figure 4-3). These
registers can act as temporary data registers and indirect memory pointers. Automatic up-
dating is available when using address register indirect addressing. The Mn registers can
be programmed for linear addressing, modulo addressing, and bit-reverse addressing.
4 - 6 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3.1 Address Register Files (R0 - R3 and R4 - R7)
The eight 16-bit address registers, R0 - R7, can contain addresses or general-purpose
data. The 16-bit address in a selected address register is used in the calculation of the
effective address of an operand. When supporting parallel X and Y data memory moves,
the address registers must be thought of as two separate files, R0 - R3 and R4 - R7. The
contents of an Rn may point directly to data or may be offset. In addition, Rn can be pre-
updated or post-updated according to the addressing mode selected. If an Rn is updated,
modifier registers, Mn, are always used to specify the type of update arithmetic. Offset
registers, Nn, are used for the update-by-offset addressing modes. The address register
modification is performed by one of the two modulo arithmetic units. Most addressing
modes modify the selected address register in a read-modify-write fashion; the address
register is read, its contents are modified by the associated modulo arithmetic unit, and
the register is written with the appropriate output of the modulo arithmetic unit. The form
of address register modification performed by the modulo arithmetic unit is controlled by
the contents of the offset and modifier registers discussed in the following paragraphs. Ad-
dress registers are not affected by a processor reset.

4.3.2 Offset Register Files (N0 - N3 and N4 - N7)
The eight 16-bit offset registers, N0 - N7, can contain offset values used to increment/dec-
rement address registers in address register update calculations or can be used for 16-bit
general-purpose storage. For example, the contents of an offset register can be used to
step through a table at some rate (e.g., five locations per step for waveform generation),
or the contents can specify the offset into a table or the base of the table for indexed ad-
dressing. Each address register, Rn, has its own offset register, Nn, associated with it.

* R7

R6

R5

R4

R3

R2

R1

R0

*
*
*
*
*
*
*

23 16 15 0
N7

N6

N5

N4

N3

N2

N1

N0

23 16 15 0

OFFSET REGISTERS

M7

M6

M5

M4

M3

M2

M1

M0

23 16 15 0

MODIFIER REGISTERS

UPPER FILE

LOWER FILE

ADDRESS REGISTERS

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

* Written as don’t care; read as zero

Figure 4-3 AGU Programming Model
MOTOROLA ADDRESS GENERATION UNIT 4 - 7
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Offset registers are not affected by a processor reset.

4.3.3 Modifier Register Files (M0 - M3 and M4 - M7)
The eight 16-bit modifier registers, M0 - M7, define the type of address arithmetic to be
performed for addressing mode calculations, or they can be used for general-purpose
storage. The address ALU supports linear, modulo, and reverse-carry arithmetic types for
all address register indirect addressing modes. For modulo arithmetic, the contents of Mn
also specify the modulus. Each address register, Rn, has its own modifier register, Mn,
associated with it. Each modifier register is set to $FFFF on processor reset, which spec-
ifies linear arithmetic as the default type for address register update calculations.

4.4 ADDRESSING
The DSP56K provides three different addressing modes: register direct, address register
indirect, and special. Since the register direct and special addressing modes do not nec-
essarily use the AGU registers, they are described in SECTION 6 - INSTRUCTION SET
INTRODUCTION. The address register indirect addressing modes use the registers in

Address Register Indirect
Uses Mn
Modifier

Operand Reference Assembler
Syntax

S C D A P X Y L XY

No Update No X X X X X (Rn)

Postincrement by 1 Yes X X X X X (Rn)+

Postdecrement by 1 Yes X X X X X (Rn)–

Postincrement by Offset Nn Yes X X X X X (Rn)+Nn

NOTE:
S = System Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = Address ALU Register Reference
P = Program Memory Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference

XY = XY Memory Reference

Table 4-1 Address Register Indirect Summary
4 - 8 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the AGU and are described in the following paragraphs.

4.4.1 Address Register Indirect Modes
When an address register is used to point to a memory location, the addressing mode is
called “address register indirect” (see Table 4-1). The term indirect is used because the
register contents are not the operand itself, but rather the address of the operand. These
addressing modes specify that an operand is in memory and specify the effective
address of that operand.

A portion of the data bus movement field in the instruction specifies the memory space to
be referenced. The contents of specific AGU registers that determine the effective
address are modified by arithmetic operations performed in the AGU. The type of
address arithmetic used is specified by the address modifier register, Mn. The offset reg-
ister, Nn, is only used when the update specifies an offset.

Not all possible combinations are available, such as + (Rn). The 24-bit instruction word
size is not large enough to allow a completely orthogonal instruction set for all instruc-
tions used by the DSP.

An example and description of each mode is given in the following paragraphs. SEC-
TION 6 - INSTRUCTION SET INTRODUCTION and APPENDIX A - INSTRUCTION SET
DETAILS give a complete description of the instruction syntax used in these examples.
In particular, XY: memory references refer to instructions in which an operand in X mem-
ory and an operand in Y memory are referenced in the same instruction.

4.4.1.1 No Update
The address of the operand is in the address register, Rn (see Table 4-1). The contents
of the Rn register are unchanged by executing the instruction. Figure 4-4 shows a MOVE
instruction using address register indirect addressing with no update. This mode can be
used for making XY: memory references. This mode does not use Nn or Mn registers.

4.4.1.2 Postincrement By 1
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-5).
After the operand address is used, it is incremented by 1 and stored in the same address
register. This mode can be used for making XY: memory references and for modifying
the contents of Rn without an associated data move.

4.4.1.3 Postdecrement By 1
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-6).
After the operand address is used, it is decremented by 1 and stored in the same
address register. This mode can be used for making XY: memory references and for
MOTOROLA ADDRESS GENERATION UNIT 4 - 9
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

modifying the contents of Rn without an associated data move.

4.4.1.4 Postincrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-7).
After the operand address is used, it is incremented by the contents of the Nn register and
stored in the same address register. The contents of the Nn register are unchanged. This
mode can be used for making XY: memory references and for modifying the contents of

X MEMORY
23 0

0 1 2 3 4 5 6 7 8 9 A B C D

15 0

15 0

15 0

EXAMPLE: MOVE A1,X: (R0)

BEFORE EXECUTION AFTER EXECUTION

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

X X X X X X$1000 $1000

A2 A1 A0

0 1 2 3 4 5 6 7 8 9 A B C D

55 48 47 24 23 0

7 0 23 0 23 0

$1000

XXXX

$FFFF

R0

N0

M0

15 0

15 0

15 0

$1000

XXXX

$FFFF

R0

N0

M0

Assembler Syntax: (Rn)
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$ 2 3 4 5 6 7

Figure 4-4 Address Register Indirect — No Update
4 - 10 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Rn without an associated data move.

4.4.1.5 Postdecrement By Offset Nn
The address of the operand is in the address register, Rn (see Table 4-1 and Figure 4-8).
After the operand address is used, it is decremented by the contents of the Nn register
and stored in the same address register. The contents of the Nn register are unchanged.
This mode cannot be used for making XY: memory references, but it can be used to mod-

A F 6 5 4 3 2 1 F E D C B A

15 0

15 0

15 0

EXAMPLE: MOVE B0,Y: (R1)+

BEFORE EXECUTION AFTER EXECUTION

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

Y MEMORY
23 0

X X X X X X$2500

Y MEMORY
23 0

$2500

$2500

XXXX

$FFFF

R1

N1

M1

15 0

15 0

15 0

$2501

XXXX

$FFFF

R1

N1

M1

Assembler Syntax: (Rn)+
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$ F E D C B A

A F 6 5 4 3 2 1 F E D C B A

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

X X X X X X$2501 X X X X X X X$2501

Figure 4-5 Address Register Indirect — Postincrement
MOTOROLA ADDRESS GENERATION UNIT 4 - 11
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ify the contents of Rn without an associated data move.

4.4.1.6 Indexed By Offset Nn
The address of the operand is the sum of the contents of the address register, Rn, and
the contents of the address offset register, Nn (see Table 4-1 and Figure 4-9). The con-
tents of the Rn and Nn registers are unchanged. This addressing mode, which requires

1 2 3 1 2 3 4 5 6 4 5 6

15 0

15 0

15 0

EXAMPLE: MOVE Y0,Y: (R3)-

BEFORE EXECUTION AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

Y MEMORY
23 0

X X X X X X$4734

Y MEMORY
23 0

$4734

$4735

XXXX

$FFFF

R3

N3

M3

15 0

15 0

15 0

$4734

XXXX

$FFFF

R3

N3

M3

Assembler Syntax: (Rn)–
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X$4735 $4735

1 2 3 1 2 3 4 5 6 4 5 6

Y1 Y0
47 24 23 0

 23 0 23 0

4 5 6 4 5 6

X X X X X X

Figure 4-6 Address Register Indirect — Postdecrement
4 - 12 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

an extra instruction cycle, cannot be used for making XY: memory references.

4.4.1.7 Predecrement By 1
The address of the operand is the contents of the address register, Rn, decremented by
1 before the operand address is used (see Table 4-1 and Figure 4-10). The contents of
Rn are decremented and stored in the same address register. This addressing mode re-
quires an extra instruction cycle. This mode cannot be used for making XY: memory
references, nor can it be used for modifying the contents of Rn without an associated data

A 5 B 4 C 6 0 0 0 0 0 1

15 0

15 0

15 0

EXAMPLE: MOVE X1,X: (R2)+N2

BEFORE EXECUTION AFTER EXECUTION

X1 X0
47 24 23 0

 23 0 23 0

X MEMORY
23 0

X X X X X X$3200

X MEMORY
23 0

$3200

$3200

$FFFF

R2

N2

M2

15 0

15 0

15 0

$3204

$FFFF

R2

N2

M2

Assembler Syntax: (Rn)+Nn
Memory Spaces: P:, X:, Y:, XY:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X$3204 $3204 X X X X X X

A 5 B 4 C 6 0 0 0 0 0 1

X1 X0
47 24 23 0

 23 0 23 0

$0004 $0004

$ A 5 B 4 C 6

Figure 4-7 Address Register Indirect — Postincrement by Offset Nn
MOTOROLA ADDRESS GENERATION UNIT 4 - 13
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

move.

4.4.2 Address Modifier Arithmetic Types
The address ALU supports linear, modulo, and reverse-carry arithmetic for all address
register indirect modes. These arithmetic types easily allow the creation of data structures
in memory for FIFOs (queues), delay lines, circular buffers, stacks, and bit-reversed FFT
buffers.

0 F 7 4 1 0 5 A 3 F A 6 B 0

15 0

15 0

15 0

EXAMPLE: MOVE X:(R4)–N4,A0

BEFORE EXECUTION AFTER EXECUTION

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

X X X X X X$7703

$7706

$FFFF

R4

N4

M4

Assembler Syntax: (Rn)–Nn
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$7706

0 F 7 4 1 0 5 A 5 0 5 0 5 0

A2 A1 A0

55 48 47 24 23 0

7 0 23 0 23 0

$ 5 0 5 0 5 0

$0003

15 0

15 0

15 0

X MEMORY
23 0

X X X X X X$7703

$7703

$FFFF

R4

N4

M4

$7706 $ 5 0 5 0 5 0

$0003

Figure 4-8 Address Register Indirect — Postdecrement by Offset Nn
4 - 14 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The contents of the address modifier register, Mn, defines the type of arithmetic to be per-
formed for addressing mode calculations. For modulo arithmetic, the contents of Mn also
specifies the modulus, or the size of the memory buffer whose addresses will be refer-
enced. See Table 4-2 for a summary of the address modifiers implemented on the

+

6 2 1 0 0 9 B A 4 C 2 2

15 0

15 0

15 0

EXAMPLE: MOVE Y1,X: (R6+N6)

BEFORE EXECUTION AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

X MEMORY
23 0

X X X X X X$6000

X MEMORY
23 0

$6000

$6000

$FFFF

R6

N6

M6

15 0

15 0

15 0

$6000

$FFFF

R6

N6

M6

Assembler Syntax: (Rn+Nn)
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

X X X X X X$6004 $6004

X X X X X X

6 2 1 0 0 9 B A 4 C 2 2

Y1 Y0
47 24 23 0

 23 0 23 0

$0004 $0004

$ 6 2 1 0 0 9

Figure 4-9 Address Register Indirect — Indexed by Offset Nn
MOTOROLA ADDRESS GENERATION UNIT 4 - 15
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

DSP56K. The MMMM column indicates the hex value which should be stored in the Mn
register.

4.4.2.1 Linear Modifier (Mn=$FFFF)
When the value in the modifier register is $FFFF, address modification is performed using
normal 16-bit linear arithmetic (see Table 4-2). A 16-bit offset, Nn, and + 1 or –1 can be
used in the address calculations. The range of values can be considered as signed (Nn
from –32,768 to + 32,767) or unsigned (Nn from 0 to + 65,535) since there is no arithmetic

15 0

15 0

15 0

EXAMPLE: MOVE X: –(R5),B1

BEFORE EXECUTION AFTER EXECUTION

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

X MEMORY
23 0

$3006

$3007

$FFFF

R5

N5

M5

Assembler Syntax: –Rn
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 0

$3007

3 B 1 2 3 4 5 6 A 5 5 4 C 0

B2 B1 B0

55 48 47 24 23 0

7 0 23 0 23 0

XXXX

15 0

15 0

15 0

X MEMORY
23 0

$3006

$3006

$FFFF

R5

N5

M5

$3007 $ A B C D E F

XXXX

$ 1 2 3 4 5 6

$ A B C D E F

$ 1 2 3 4 5 6

3 B B 6 2 D 0 4 A 5 5 4 C 0

Figure 4-10 Address Register Indirect — Predecrement
4 - 16 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

difference between these two data representations. Addresses are normally considered
unsigned, and data is normally considered signed.

4.4.2.2 Modulo Modifier
When the value in the modifier register falls into one of two ranges (Mn=$0001 to $7FFF
or Mn= $8001 to $BFFF with the reserved gaps noted in the table), address modification
is performed using modulo arithmetic (see Table 4-2).

Modulo arithmetic normally causes the address register value to remain within an address
range of size M, whose lower boundary is determined by Rn. The upper boundary is de-
termined by the modulus, or M. The modulus value, in turn, is determined by Mn, the value
in the modifier register (see Figure 4-11).

There are certain cases where modulo arithmetic addressing conditions may cause the
address register to jump linearly to the same relative address in a different buffer. Other
cases firmly restrict the address register to the same buffer, causing the address register
to wrap around within the buffer. The range in which the value contained in the modifier
register falls determines how the processor will handle modulo addressing.

4.4.2.2.1 Mn=$0001 to $7FFF
In this range, the modulus (M) equals the value in the modifier register (Mn) plus 1. The
memory buffer’s lower boundary (base address) value, determined by Rn, must have ze-
ros in the k LSBs, where 2k ≥ M, and therefore must be a multiple of 2k. The upper
boundary is the lower boundary plus the modulo size minus one (base address plus M–
1). Since M≤2k, once M is chosen, a sequential series of memory blocks (each of length
2k) is created where these circular buffers can be located. If M<2k, there will be a space
between sequential circular buffers of (2k)–M.

For example, to create a circular buffer of 21 stages, M is 21, and the lower address
boundary must have its five LSBs equal to zero (2k ≥ 21, thus k ≥ 5). The Mn register is
loaded with the value 20. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160,
etc. The upper boundary of the buffer is then the lower boundary plus 21. There will be an
unused space of 11 memory locations between the upper address and next usable lower
address. The address pointer is not required to start at the lower address boundary or to
end on the upper address boundary; it can initially point anywhere within the defined mod-
ulo address range. Neither the lower nor the upper boundary of the modulo region is
stored; only the size of the modulo region is stored in Mn. The boundaries are determined
by the contents of Rn. Assuming the (Rn)+ indirect addressing mode, if the address reg-
ister pointer increments past the upper boundary of the buffer (base address plus M–1),
it will wrap around through the base address (lower boundary). Alternatively, assuming
the (Rn)- indirect addressing mode, if the address decrements past the lower boundary
MOTOROLA ADDRESS GENERATION UNIT 4 - 17
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MMMM Addressing Mode Arithmetic

0000 Reverse Carry (Bit Reverse)

0001 Modulo 2

0002 Modulo 3

: :

7FFE Modulo 32767

7FFF Modulo 32768

8000 Reserved

8001 Multiple Wrap-Around Modulo 2

8002 Reserved

8003 Multiple Wrap-Around Modulo 4

: Reserved

8007 Multiple Wrap-Around Modulo 8

: Reserved

800F Multiple Wrap-Around Modulo 24

: Reserved

801F Multiple Wrap-Around Modulo 25

: Reserved

803F Multiple Wrap-Around Modulo 26

: Reserved

807F Multiple Wrap-Around Modulo 27

: Reserved

80FF Multiple Wrap-Around Modulo 28

: Reserved

81FF Multiple Wrap-Around Modulo 29

: Reserved

83FF Multiple Wrap-Around Modulo 210

: Reserved

87FF Multiple Wrap-Around Modulo 211

: Reserved

8FFF Multiple Wrap-Around Modulo 212

: Reserved

9FFF Multiple Wrap-Around Modulo 213

: Reserved

BFFF Multiple Wrap-Around Modulo 214

: Reserved

FFFF Linear (Modulo 215)

Table 4-2 Address Modifier Summary
4 - 18 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(base address), it will wrap around through the base address plus M–1 (upper boundary).

If an offset (Nn) is used in the address calculations, the 16-bit absolute value, |Nn|, must
be less than or equal to M for proper modulo addressing in this range. If Nn>M, the result
is data dependent and unpredictable, except for the special case where Nn=P x 2k, a mul-
tiple of the block size where P is a positive integer. For this special case, when using the
(Rn)+ Nn addressing mode, the pointer, Rn, will jump linearly to the same relative address
in a new buffer, which is P blocks forward in memory (see Figure 4-12).

Similarly, for (Rn)–Nn, the pointer will jump P blocks backward in memory. This technique
is useful in sequentially processing multiple tables or N-dimensional arrays. The range of
values for Nn is –32,768 to + 32,767. The modulo arithmetic unit will automatically wrap
around the address pointer by the required amount. This type of address modification is
useful for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up
to 32,768 words long as well as for decimation, interpolation, and waveform generation.
The special case of (Rn) ± Nn mod M with Nn=P x 2k is useful for performing the same
algorithm on multiple blocks of data in memory — e.g., parallel infinite impulse response
(IIR) filtering.

An example of address register indirect modulo addressing is shown in Figure 4-13. Start-
ing at location 64, a circular buffer of 21 stages is created. The addresses generated are
offset by 15 locations. The lower boundary = L x (2k) where 2k ≥ 21; therefore, k=5 and
the lower address boundary must be a multiple of 32. The lower boundary may be chosen

CIRCULAR
BUFFER

ADDRESS
POINTER M = MODULUS

UPPER BOUNDARY

LOWER BOUNDARY

Figure 4-11 Circular Buffer
MOTOROLA ADDRESS GENERATION UNIT 4 - 19
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

as 0, 32, 64, 96, 128, 160, etc. For this example, L is arbitrarily chosen to be 2, making
the lower boundary 64. The upper boundary of the buffer is then 84 (the lower boundary
plus 20 (M–1)). The Mn register is loaded with the value 20 (M–1). The offset register is
arbitrarily chosen to be 15 (Nn≤M). The address pointer is not required to start at the lower
address boundary and can begin anywhere within the defined modulo address range —
i.e., within the lower boundary + (2k) address region. The address pointer, Rn, is arbitrarily
chosen to be 75 in this example. When R2 is post-incremented by the offset by the MOVE
instruction, instead of pointing to 90 (as it would in the linear mode) it wraps around to 69.
If the address register pointer increments past the upper boundary of the buffer (base ad-
dress plus M–1), it will wrap around to the base address. If the address decrements past
the lower boundary (base address), it will wrap around to the base address plus M–1.

If Rn is outside the valid modulo buffer range and an operation occurs that causes Rn to
be updated, the contents of Rn will be updated according to modulo arithmetic rules. For
example, a MOVE B0,X:(R0)+ N0 instruction (where R0=6, M0=5, and N0=0) would ap-
parently leave R0 unchanged since N0=0. However, since R0 is above the upper
boundary, the AGU calculates R0+ N0–M0–1 for the new contents of R0 and sets R0=0.

(Rn) ± Nn MOD M
WHERE Nn = 2k (i.e., P = 1)

M

M

2k

2k

Figure 4-12 Linear Addressing with a Modulo Modifier
4 - 20 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MOVE instruction in Figure 4-13 takes the contents of the X0 register and moves it
to a location in the X memory pointed to by (R2), and then (R2) is updated modulo 21. The
new value of R2 is not 90 (75+ 15), which would be the case if linear arithmetic had been
used, but rather is 69 since modulo arithmetic was used.

4.4.2.2.2 Mn=$8001 to $BFFF
In this range, the modulo (M) equals (Mn+1)-$8000, where Mn is the value in the modi-
fier register (see Table 4-2). This range firmly restricts the address register to the same
buffer, causing the address register to wrap around within the buffer. This multiple wrap-
around addressing feature reduces argument overhead and is useful for decimation,
interpolation, and waveform generation.

The address modification is performed modulo M, where M may be any power of 2 in the
range from 21 to 214. Modulo M arithmetic causes the address register value to remain
within an address range of size M defined by a lower and upper address boundary. The
value M-1 is stored in the modifier register Mn least significant 14 bits while the two most
significant bits are set to ‘10’. The lower boundary (base address) value must have zeroes
in the k LSBs, where 2k = M, and therefore must be a multiple of 2k. The upper boundary
is the lower boundary plus the modulo size minus one (base address plus M-1).

0..010 00000

XD BUS

(84)

R2

(69)

(75)

(90)

LET:
M2

N2

R2

EXAMPLE: MOVE X0,X:(R2)+N

00.....0010100

00.....0001111

00.....1001011

MODULUS=21

OFFSET=15

POINTER=75

N2+

(64)

21

X0

k=5

Figure 4-13 Modulo Modifier Example
MOTOROLA ADDRESS GENERATION UNIT 4 - 21
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower ad-
dress boundary must have its 5 least significant bits equal to zero (2k = 32, thus k = 5).
The Mn register is loaded with the value $801F. The lower boundary may be chosen as
0, 32, 64, 96, 128, 160, etc. The upper boundary of the buffer is then the lower boundary
plus 31.

The address pointer is not required to start at the lower address boundary and may begin
anywhere within the defined modulo address range (between the lower and upper bound-
aries). If the address register pointer increments past the upper boundary of the buffer
(base address plus M-1) it will wrap around to the base address. If the address decre-
ments past the lower boundary (base address) it will wrap around to the base address
plus M-1. If an offset Nn is used in the address calculations, it is not required to be less
than or equal to M for proper modulo addressing since multiple wrap around is supported
for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around cannot occur
with (Rn)+, (Rn)- and -(Rn) addressing modes).

The multiple wrap-around address modifier is useful for decimation, interpolation and
waveform generation since the multiple wrap-around capability may be used for argument
reduction.

4.4.2.3 Reverse-Carry Modifier (Mn=$0000)
Reverse carry is selected by setting the modifier register to zero (see Table 4-2). The ad-
dress modification is performed in hardware by propagating the carry in the reverse
direction — i.e., from the MSB to the LSB. Reverse carry is equivalent to bit reversing the
contents of Rn (i.e., redefining the MSB as the LSB, the next MSB as bit 1, etc.) and the
offset value, Nn, adding normally, and then bit reversing the result. If the + Nn addressing
mode is used with this address modifier and Nn contains the value 2(k–1) (a power of two),
this addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn
by 1, and bit reversing the k LSBs of Rn again. This address modification is useful for ad-
dressing the twiddle factors in 2k-point FFT addressing and to unscramble 2k-point FFT
data. The range of values for Nn is 0 to + 32K (i.e., Nn=215), which allows bit-reverse ad-
dressing for FFTs up to 65,536 points.

To make bit-reverse addressing work correctly for a 2k point FFT, the following proce-
dures must be used:

1. Set Mn=0; this selects reverse-carry arithmetic.

2. Set Nn=2(k–1).
4 - 22 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. Set Rn between the lower boundary and upper boundary in the buffer mem-
ory. The lower boundary is L x (2k), where L is an arbitrary whole number. This
boundary gives a 16-bit binary number “xx . . . xx00 . . . 00”, where xx . . . xx=L
and 00 . . . 00 equals k zeros. The upper boundary is L x (2k)+ ((2k)–1). This
boundary gives a 16-bit binary number “xx . . . xx11 . . . 11”, where xx . . . xx=L
and 11 . . . 11 equals k ones.

4. Use the (Rn)+ Nn addressing mode.

As an example, consider a 1024-point FFT with real data stored in the X memory and
imaginary data stored in the Y memory. Since 1,024=210, k=10. The modifier register (Mn)
is zero to select bit-reverse addressing. Offset register (Nn) contains the value 512 (2(k–

1)), and the pointer register (Rn) contains 3,072 (L x (2k)=3 x (210)), which is the lower
boundary of the memory buffer that holds the results of the FFT. The upper boundary is
4,095 (lower boundary + (2k)–1=3,072+ 1,023).

Postincrementing by + N generates the address sequence (0, 512, 256, 768, 128, 640,...),
which is added to the lower boundary. This sequence (0, 512, etc.) is the scrambled FFT
data order for sequential frequency points from 0 to 2π. Table 4-3 shows the successive
contents of Rn when using (Rn)+ Nn updates.

The reverse-carry modifier only works when the base address of the FFT data buffer is a
multiple of 2k, such as 1,024, 2,048, 3,072, etc. The use of addressing modes other than
postincrement by + Nn is possible but may not provide a useful result.

Rn Contents
Offset From

Lower Boundary

3072 0

3584 512

3328 256

3840 768

3200 128

3712 640

Table 4-3 Bit-Reverse Addressing
Sequence Example
MOTOROLA ADDRESS GENERATION UNIT 4 - 23
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The term bit reverse with respect to reverse-carry arithmetic is descriptive. The lower
boundary that must be used for the bit-reverse address scheme to work is L x (2k). In the
previous example shown in Table 4-3, L=3 and k=10. The first address used is the lower
boundary (3072); the calculation of the next address is shown in Figure 4-14. The k LSBs
of the current contents of Rn (3,072) are swapped:

• Bits 0 and 9 are swapped.
• Bits 1 and 8 are swapped.
• Bits 2 and 7 are swapped.
• Bits 3 and 6 are swapped.
• Bits 4 and 5 are swapped.

The result is incremented (3,073), and then the k LSBs are swapped again:

• Bits 0 and 9 are swapped.
• Bits 1 and 8 are swapped.
• Bits 2 and 7 are swapped.
• Bits 3 and 6 are swapped.
• Bits 4 and 5 are swapped.

The result is Rn equals 3,584.

L k BITS

EACH UPDATE, (Rn)+Nn, IS EQUIVALENT TO:

1. BIT REVERSING: Rn=000011 0000000000=3072

0000000000

2. INCREMENT Rn BY 1: Rn=000011 0000000000
+1

000011 0000000001

3. BIT REVERSING AGAIN: Rn=000011 0000000001

1000000000
000011 1000000000=3584

Figure 4-14 Bit-Reverse Address Calculation Example
4 - 24 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4.2.4 Address-Modifier-Type Encoding Summary
There are three address modifier types:

• Linear Addressing
• Reverse-Carry Addressing
• Modulo Addressing
Bit-reverse addressing is useful for 2k-point FFT addressing. Modulo addressing is useful
for creating circular buffers for FIFOs (queues), delay lines, and sample buffers up to
32,768 words long. The linear addressing is useful for general-purpose addressing. There
is a reserved set of modifier values (from 32,768 to 65,534) that should not be used.

Figure 4-15 gives examples of the three addressing modifiers using 8-bit registers for sim-
plification (all AGU registers are 16 bit). The addressing mode used in the example,
postincrement by offset Nn, adds the contents of the offset register to the contents of the
address register after the address register is accessed. The results of the three examples
are as follows:

• The linear address modifier addresses every fifth location since the offset register
contains $5.

• Using the bit-reverse address modifier causes the postincrement by offset Nn
addressing mode to use the address register, bit reverse the four LSBs, increment by
1, and bit reverse the four LSBs again.

• The modulo address modifier has a lower boundary at a predetermined location, and
the modulo number plus the lower boundary establishes the upper boundary. This
boundary creates a circular buffer so that, if the address register is pointing within the
boundaries, addressing past a boundary causes a circular wraparound to the other
boundary.
MOTOROLA ADDRESS GENERATION UNIT 4 - 25
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LINEAR ADDRESS MODIFIER

M0 = 255 = 11111111 FOR LINEAR ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 5, R0 = 75 = 0100 1011

POSTINCREMENT BY OFFSET N0: R0 = 80 = 0101 0000

POSTINCREMENT BY OFFSET N0: R0 = 85 = 0101 0101

POSTINCREMENT BY OFFSET N0: R0 = 90 = 0101 1010

MODULO ADDRESS MODIFIER

M0 = 19 = 0001 0011 FOR MODULO 20 ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 5, R0 = 75 = 0100 1011

POSTINCREMENT BY OFFSET N0: R0 = 80 = 0101 0000

POSTINCREMENT BY OFFSET N0: R0 = 65 = 0100 0001

POSTINCREMENT BY OFFSET N0: R0 = 70 = 0100 0110

REVERSE-CARRY ADDRESS MODIFIER

M0 = 0= 0000 0000 FOR REVERSE-CARRY ADDRESSING WITH R0

ORIGINAL REGISTERS: N0 = 8, R0 = 64 = 0100 0000

POSTINCREMENT BY OFFSET N0: R0 = 72 = 0100 1000

POSTINCREMENT BY OFFSET N0: R0 = 68 = 0100 0100

POSTINCREMENT BY OFFSET N0: R0 = 76 = 0100 1100

75

80

85

90

R0

65

70

75

80

R0

64

83

UPPER
BOUNDARY

LOWER
BOUNDARY

64

68

72

76

R0

Figure 4-15 Address Modifier Summary
4 - 26 ADDRESS GENERATION UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 PROGRAM CONTROL UNIT 5 - 1

SECTION 5
PROGRAM CONTROL UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

5 - 2 PROGRAM CONTROL UNIT

MOTOROLA

SECTION 5.1 PROGRAM CONTROL UNIT .. 3

SECTION 5.2 OVERVIEW .. 3

SECTION 5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE 5
5.3.1 Program Decode Controller .. 5
5.3.2 Program Address Generator (PAG) ... 5
5.3.3 Program Interrupt Controller ... 6
5.3.4 Instruction Pipeline Format ... 6

SECTION 5.4 PROGRAMMING MODEL ... 8
5.4.1 Program Counter .. 8
5.4.2 Status Register ... 9

5.4.2.1 Carry (Bit 0) ...10
5.4.2.2 Overflow (Bit 1) ...10
5.4.2.3 Zero (Bit 2) ..10
5.4.2.4 Negative (Bit 3) ...10
5.4.2.5 Unnormalized (Bit 4) ...10
5.4.2.6 Extension (Bit 5) ..11
5.4.2.7 Limit (Bit 6) ..11
5.4.2.8 Scaling Bit (Bit 7) ...11
5.4.2.9 Interrupt Masks (Bits 8 and 9) ...12
5.4.2.10 Scaling Mode (Bits 10 and 11) ..12
5.4.2.11 Reserved Status (Bit 12) ...13
5.4.2.12 Trace Mode (Bit 13) ..13
5.4.2.13 Double Precision Multiply Mode (Bit 14)13
5.4.2.14 Loop Flag (Bit 15) ..13

5.4.3 Operating Mode Register ... 14
5.4.4 System Stack .. 14
5.4.5 Stack Pointer Register .. 15

5.4.5.1 Stack Pointer (Bits 0–3) ..16
5.4.5.2 Stack Error Flag (Bit 4) ..16
5.4.5.3 Underflow Flag (Bit 5) ...16
5.4.5.4 Reserved Stack Pointer Registration (Bits 6–23)17

5.4.6 Loop Address Register ... 17
5.4.7 Loop Counter Register ... 17
5.4.8 Programming Model Summary ... 17

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PROGRAM CONTROL UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5.1 PROGRAM CONTROL UNIT
This section describes the hardware of the program control unit (PCU) and concludes
with a description of the programming model. The instruction pipeline description is also
included since understanding the pipeline is particularly important in understanding the
DSP56K family of processors.

5.2 OVERVIEW
The program control unit is one of the three execution units in the central processing
module (see Figure 5-2). It performs program address generation (instruction prefetch),
instruction decoding, hardware DO loop control, and exception (interrupt) processing.
The programmer sees the program control unit as six registers and a hardware system
stack (SS) as shown in Figure 5-1. In addition to the standard program flow-control
resources, such as a program counter (PC), complete status register (SR), and SS, the
program control unit features registers (loop address (LA) and loop counter (LC)) dedi-
cated to supporting the hardware DO loop instruction.

The SS is a 15-level by 32-bit separate internal memory which stores the PC and SR for
subroutine calls, long interrupts, and program looping. The SS also stores the LC and LA
registers. Each location in the SS is addressable as a 16-bit register, system stack high
(SSH) and system stack low (SSL). The stack pointer (SP) points to the SS locations.

32 x 15
STACK

OMR

PC
LA
LC
SP

SR

CLOCK

INTERRUPTS

CONTROL

PAB PDB

16 24

24 24

GLOBAL DATA BUS

Figure 5-1 Program Address Generator
MOTOROLA PROGRAM CONTROL UNIT 5 - 3
For More Information On This Product,

 Go to: www.freescale.com

OVERVIEW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

All of the PCU registers are read/write to facilitate system debugging. Although none of
the registers are 24 bits, they are read or written over 24-bit buses. When they are read,
the least significant bits (LSBs) are significant, and the most significant bits (MSBs) are
zeroed as appropriate. When they are written, only the appropriate LSBs are significant,
and the MSBs are written as don’t care.

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24-Bit
56K Mod-

Figure 5-2 DSP56K Block Diagram

Program Control Unit
5 - 4 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAM CONTROL UNIT (PCU) ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The program control unit implements a three-stage (prefetch, decode, execute) pipeline
and controls the five processing states of the DSP: normal, exception, reset, wait, and
stop.

5.3 PROGRAM CONTROL UNIT (PCU) ARCHITECTURE
The PCU consists of three hardware blocks: the program decode controller (PDC), the
program address generator (PAG), and the program interrupt controller (PIC).

5.3.1 Program Decode Controller
The PDC contains the program logic array decoders, the register address bus generator,
the loop state machine, the repeat state machine, the condition code generator, the inter-
rupt state machine, the instruction latch, and the backup instruction latch. The PDC
decodes the 24-bit instruction loaded into the instruction latch and generates all signals
necessary for pipeline control. The backup instruction latch stores a duplicate of the
prefetched instruction to optimize execution of the repeat (REP) and jump (JMP)
instructions.

5.3.2 Program Address Generator (PAG)
The PAG contains the PC, the SP, the SS, the operating mode register (OMR), the SR,
the LC register, and the LA register (see Figure 5-1).

The PAG provides hardware dedicated to support loops, which are frequent constructs in
DSP algorithms. A DO instruction loads the LC register with the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in
the loop (fetched during one loop pass), and asserts the loop flag in the SR. The DO in-
struction also supports nested loops by stacking the contents of the LA, LC, and SR prior
to the execution of the instruction. Under control of the PAG, the address of the first in-
struction in the loop is also stacked so the loop can be repeated with no overhead. While
the loop flag in the SR is asserted, the loop state machine (in the PDC) will compare the
PC contents to the contents of the LA to determine if the last instruction word in the loop
was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not
equal to one, then it is decremented, and the SS is read to update the PC with the address
of the first instruction in the loop, effectively executing an automatic branch. If the LC is
equal to one, then the LC, LA, and the loop flag in the SR are restored with the stack con-
tents, while instruction fetches continue at the incremented PC value (LA + 1). More
information about the LA and LC appears in Section 5.3.4 Instruction Pipeline Format.

The repeat (REP) instruction loads the LC with the number of times the next instruction is
to be repeated. The instruction to be repeated is only fetched once, so throughput is in-
creased by reducing external bus contention. However, REP instructions are not
MOTOROLA PROGRAM CONTROL UNIT 5 - 5
For More Information On This Product,

 Go to: www.freescale.com

PROGRAM CONTROL UNIT (PCU) ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

interruptible since they are fetched only once. A single-instruction DO loop can be used
in place of a REP instruction if interrupts must be allowed.

5.3.3 Program Interrupt Controller
The PIC receives all interrupt requests, arbitrates among them, and generates the inter-
rupt vector address.

Interrupts have a flexible priority structure with levels that can range from zero to three.
Levels 0 (lowest level), 1, and 2 are maskable. Level 3 is the highest interrupt priority level
(IPL) and is not maskable. Two interrupt mask bits in the SR reflect the current IPL and
indicate the level needed for an interrupt source to interrupt the processor. Interrupts
cause the DSP to enter the exception processing state which is discussed fully in SEC-
TION 7 – PROCESSING STATES.

The four external interrupt sources include three external interrupt request inputs (IRQA,
IRQB, and NMI) and the RESET pin. IRQA and IRQB can be either level sensitive or neg-
ative edge triggered. The nonmaskable interrupt (NMI) is edge sensitive and is a level 3
interrupt. MODA/IRQA, MODB/IRQB, and MODC/NMI pins are sampled when RESET is
deasserted. The sampled values are stored in the operating mode register (OMR) bits
MA, MB, and MC, respectively (see Section 5.4.3 for information on the OMR). Only the
fourth external interrupt, RESET, and Illegal Instruction have higher priority than NMI.

The PIC also arbitrates between the different I/O peripherals. The currently selected pe-
ripheral supplies the correct vector address to the PIC.

5.3.4 Instruction Pipeline Format
The program control unit uses a three-level pipelined architecture in which concurrent in-
struction fetch, decode, and execution occur. This pipelined operation remains essentially
hidden from the user and makes programming straightforward. The pipeline is illustrated
in Figure 5-3, which shows the operations of each of the execution units and all initial con-
ditions necessary to follow the execution of the instruction sequence shown in the figure.
The pipeline is described in more detail in Section 7.2.1 Instruction Pipeline.

The first instruction, I1, should be interpreted as follows: multiply the contents of X0 by the
contents of Y0, add the product to the contents already in accumulator A, round the result
to the “nearest even,” store the result back in accumulator A, move the contents in X data
memory (pointed to by R0) into X0 and postincrement R0, and move the contents in Y
data memory (pointed to by R4) into Y1 and postincrement R4. The second instruction,
I2, should be interpreted as follows: clear accumulator A, move the contents in X0 into the
location in X data memory pointed to by R0 and postincrement R0. Before the clear oper-
5 - 6 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAM CONTROL UNIT (PCU) ARCHITECTURE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.
 INSTRUCTION
FETCH
LOGIC

INSTRUCTION
FETCH
LOGIC

INSTRUCTION
FETCH
LOGIC

INSTRUCTION FETCH
INSTRUCTION DECODE

INSTRUCTION EXECUTION

I1 I2
I1

I3
I2
I1

I4
I3
I2

I5
I4
I3

PARALLEL
OPERATIONS

INITIAL
CONDITIONS

ADDRESS
UPDATE
(AGU)

R0=$0005
R4=$0008

R0=5+1
R4=8+1

R0=6+1
R4=9–1

R0=7+1
R4=8+1

INSTRUCTION
EXECUTION

(DATA ALU)

A:
A2=$00
A1=$000066
A0=$000000

X0=$400000
Y1=$000077

A:
A2=$00
A1=$0000A2
A0=$000000

X0=$000005
Y1=$000008

A:
A2=$00
A1=$000000
A0=$000000

X0=$000005
Y1=$000008

A:
A2=$00
A1=$000000
A0=$000050

X0=$000007
Y1=$000008

X MEMORY
AT ADDRESS

$0005
$0006
$0007

DATA

$000005
$000006
$000007

$000005
$000006
$000007

$000005
$000005
$000007

$000005
$000005
$000007

Y MEMORY
AT ADDRESS

$0008
$0009

DATA

$000008
$000009

$000008
$000009

$000008
$0000A2

$000008
$0000A2

Figure 5-3 Three-Stage Pipeline

INSTRUCTION
DECODE

LOGIC

INSTRUCTION
DECODE

LOGIC

INSTRUCTION
DECODE

LOGIC

INSTRUCTION
EXECUTION

LOGIC

INSTRUCTION
EXECUTION

LOGIC

INSTRUCTION
EXECUTION

LOGIC

Instruction/Data Fetch

Instruction Decode

Instruction Execution

PA
R

A
LL

E
L

P
R

O
C

E
S

S
IN

G
 O

F
 IN

S
T

R
U

C
T

IO
N

S

SERIAL EXECUTION OF INSTRUCTIONS

Instruction Cycle 1 Instruction Cycle 2 Instruction Cycle 3 Instruction Cycle 5Instruction Cycle

Instruction Cycle 1 Instruction Cycle 2 Instruction Cycle 3 Instruction Cycle 4 Instruction Cycle 5

EXAMPLE PROGRAM SEGMENT

Instruction 1 MACR X0,Y1,A X:(R0)+,X0 Y:(R4)+,Y1
Instruction 2 CLR A X0,X:(R0)+ A,Y:(R4)-
Instruction 3 MAC X0,Y1,A X:(R0)+,X0 Y:(R4)+,Y1

SEQUENCE OF OPERATIONS

INSTRUCTION
FETCH
LOGIC

INSTRUCTION
FETCH
LOGIC

INSTRUCTION
DECODE

LOGIC

5

4

4

3

3

3

2

2

2

1

1

1

EXECUTION OF EXAMPLE PROGRAM
MOTOROLA PROGRAM CONTROL UNIT 5 - 7
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ation, move the contents in accumulator A into the location in Y data memory pointed to
by R4 and postdecrement R4. The third instruction, I3, is the same as I1, except the
rounding operation is not performed.

5.4 PROGRAMMING MODEL
The program control unit features LA and LC registers which support the DO loop instruc-
tion and the standard program flow-control resources, such as a PC, complete SR, and
SS. With the exception of the PC, all registers are read/write to facilitate system debug-
ging. Figure 5-4 shows the program control unit programming model with the six registers
and SS. The following paragraphs give a detailed description of each register.

5.4.1 Program Counter
This 16-bit register contains the address of the next location to be fetched from program
memory space. The PC can point to instructions, data operands, or addresses of oper-
ands. References to this register are always inherent and are implied by most instructions.

Figure 5-4 Program Control Unit Programming Model

23 6 5 0

23 1615 0

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*
23 8 7 6 5 4 3 2 1 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

OPERATING MODE REGISTER (OMR)

MR CCR MADE MBSD *

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

STACK POINTER (SP)

*

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

YDMC*
5 - 8 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

This special-purpose address register is stacked when program looping is initialized,
when a JSR is performed, or when interrupts occur (except for no-overhead fast
interrupts).

5.4.2 Status Register
The 16-bit SR consists of a mode register (MR) in the high-order eight bits and a condition
code register (CCR) in the low-order eight bits, as shown in Figure 5-5. The SR is stacked
when program looping is initialized, when a JSR is performed, or when interrupts occur,
(except for no-overhead fast interrupts).

The MR is a special purpose control register which defines the current system state of the
processor. The MR bits are affected by processor reset, exception processing, the DO,
end current DO loop (ENDDO), return from interrupt (RTI), and SWI instructions and by
instructions that directly reference the MR register, such as OR immediate to control reg-
ister (ORI) and AND immediate to control register (ANDI). During processor reset, the
interrupt mask bits of the MR will be set. The scaling mode bits, loop flag, and trace bit will
be cleared.

All bits are cleared after hardware reset except bits 8 and 9 which are set to ones.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR CCR

*LF DM T S1 S0 I1 I0 S L E U N Z V C

Figure 5-5 Status Register Format

CARRY
OVERFLOW

ZERO
NEGATIVE

UNNORMALIZED

EXTENSION
LIMIT
SCALING
INTERRUPT MASK

SCALING MODE

RESERVED

TRACE MODE
DOUBLE PRECISION

MULTIPLY MODE

LOOP FLAG

Bits 12 and 16 to 23 are reserved, read as zero and should be written with zero for future compatibility
MOTOROLA PROGRAM CONTROL UNIT 5 - 9
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The CCR is a special purpose control register that defines the current user state of the
processor. The CCR bits are affected by data arithmetic logic unit (ALU) operations, par-
allel move operations, and by instructions that directly reference the CCR (ORI and
ANDI). The CCR bits are not affected by parallel move operations unless data limiting oc-
curs when reading the A or B accumulators. During processor reset, all CCR bits are
cleared.

5.4.2.1 Carry (Bit 0)
The carry (C) bit is set if a carry is generated out of the MSB of the result in an addition.
This bit is also set if a borrow is generated in a subtraction. The carry or borrow is gener-
ated from bit 55 of the result. The carry bit is also affected by bit manipulation, rotate, and
shift instructions. Otherwise, this bit is cleared.

5.4.2.2 Overflow (Bit 1)
The overflow (V) bit is set if an arithmetic overflow occurs in the 56-bit result. This bit indi-
cates that the result cannot be represented in the accumulator register; thus, the register
has overflowed. Otherwise, this bit is cleared.

5.4.2.3 Zero (Bit 2)
The zero (Z) bit is set if the result equals zero; otherwise, this bit is cleared.

5.4.2.4 Negative (Bit 3)
The negative (N) bit is set if the MSB (bit 55) of the result is set; otherwise, this bit is
cleared.

5.4.2.5 Unnormalized (Bit 4)
The unnormalized (U) bit is set if the two MSBs of the most significant product (MSP)
portion of the result are identical. Otherwise, this bit is cleared. The MSP portion of the A
or B accumulators, which is defined by the scaling mode and the U bit, is computed as
follows:

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 ⊕ Bit 46)

0 1 Scale Down U = (Bit 48 ⊕ Bit 47)

1 0 Scale Up U = (Bit 46 ⊕ Bit 45)
5 - 10 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.2.6 Extension (Bit 5)
The extension (E) bit is cleared if all the bits of the integer portion of the 56-bit result are
all ones or all zeros; otherwise, this bit is set. The integer portion, defined by the scaling
mode and the E bit, is computed as follows:

If the E bit is cleared, then the low-order fraction portion contains all the significant bits;
the high-order integer portion is just sign extension. In this case, the accumulator exten-
sion register can be ignored. If the E bit is set, it indicates that the accumulator extension
register is in use.

5.4.2.7 Limit (Bit 6)
The limit (L) bit is set if the overflow bit is set. The L bit is also set if the data shifter/limiter
circuits perform a limiting operation; otherwise, it is not affected. The L bit is cleared only
by a processor reset or by an instruction that specifically clears it, which allows the L bit
to be used as a latching overflow bit (i.e., a “sticky” bit). L is affected by data movement
operations that read the A or B accumulator registers.

5.4.2.8 Scaling Bit (Bit 7)
The scaling bit (S) is used to detect data growth, which is required in Block Floating Point
FFT operation. Typically, the bit is tested after each pass of a radix 2 FFT and, if it is set,
the scaling mode should be activated in the next pass. The Block Floating Point FFT al-
gorithm is described in the Motorola application note APR4/D, “Implementation of Fast
Fourier Transforms on Motorola’s DSP56000/DSP56001 and DSP96002 Digital Signal
Processors.” This bit is computed according to the following logical equations when the
result of accumulator A or B is moved to XDB or YDB. It is a “sticky” bit, cleared only by
an instruction that specifically clears it.

S1 S0 Scaling Mode Integer Portion

0 0 No Scaling Bits 55,54........48,47

0 1 Scale Down Bits 55,54........49,48

1 0 Scale Up Bits 55,54........47,46
MOTOROLA PROGRAM CONTROL UNIT 5 - 11
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4.2.9 Interrupt Masks (Bits 8 and 9)
The interrupt mask bits, I1 and I0, reflect the current IPL of the processor and indicate
the IPL needed for an interrupt source to interrupt the processor. The current IPL of the
processor can be changed under software control. The interrupt mask bits are set during
hardware reset but not during software reset.

5.4.2.10 Scaling Mode (Bits 10 and 11)
The scaling mode bits, S1 and S0, specify the scaling to be performed in the data ALU
shifter/limiter, and also specify the rounding position in the data ALU multiply-accumula-

If S1=0 and S0=0 (no scaling)
then S = (A46 XOR A45) OR (B46 XOR B45)

If S1=0 and S0=1 (scale down)
then S = (A47 XOR A46) OR (B47 XOR B46)

If S1=1 and S0=0 (scale up)
then S = (A45 XOR A44) OR (B45 XOR B44)

If S1=1 and S0=1 (reserved)
then the S flag is undefined.

where Ai and Bi means bit i in accumulator A or B.

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0,1,2,3 None

0 1 IPL 1,2,3 IPL 0

1 0 IPL 2,3 IPL 0,1

1 1 IPL 3 IPL 0,1,2
5 - 12 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

tor (MAC). The scaling modes are shown in the following table:

The scaling mode affects data read from the A or B accumulator registers out to the XDB
and YDB. Different scaling modes can occur with the same program code to allow dynam-
ic scaling. Dynamic scaling facilitates block floating-point arithmetic. The scaling mode
also affects the MAC rounding position to maintain proper rounding when different por-
tions of the accumulator registers are read out to the XDB and YDB. The scaling mode
bits, which are cleared at the start of a long interrupt service routine, are also cleared dur-
ing a processor reset.

5.4.2.11 Reserved Status (Bit 12)
This bits is reserved for future expansion and will read as zero during DSP read opera-
tions.

5.4.2.12 Trace Mode (Bit 13)
The trace mode (T) bit specifies the tracing function of the DSP56000/56001 only. (With
other members of the DSP56K family, use the OnCE trace mode described in Section
10.5.) For the DSP56000/56001, if the T bit is set at the beginning of any instruction exe-
cution, a trace exception will be generated after the instruction execution is completed. If
the T bit is cleared, tracing is disabled and instruction execution proceeds normally. If a
long interrupt is executed during a trace exception, the SR with the trace bit set will be
stacked, and the trace bit in the SR is cleared (see SECTION 7 – PROCESSING
STATES for a complete description of a long interrupt operation). The T bit is also
cleared during processor reset.

5.4.2.13 Double Precision Multiply Mode (Bit 14)
The processor is in double precision multiply mode when this bit is set. (See Section 3.4
for detailed information on the double precision multiply mode.) When the DM bit is set,
the operations performed by the MPY and MAC instructions change so that a double
precision 48-bit by 48-bit double precision multiplication can be performed in six instruc-

S1 S0
Rounding

Bit
Scaling Mode

0 0 23 No Scaling

0 1 24 Scale Down (1-Bit Arithmetic Right Shift)

1 0 22 Scale Up (1-Bit Arithmetic Left Shift)

1 1 — Reserved for Future Expansion
MOTOROLA PROGRAM CONTROL UNIT 5 - 13
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

tions. The DSP56K software simulator accurately shows how the MPY, MAC, and other
Data ALU instructions operate while the processor is in the double precision multiply
mode.

5.4.2.14 Loop Flag (Bit 15)
The loop flag (LF) bit is set when a program loop is in progress. It detects the end of a
program loop. The LF is the only SR bit that is restored when a program loop is termi-
nated. Stacking and restoring the LF when initiating and exiting a program loop, respec-
tively, allow the nesting of program loops. At the start of a long interrupt service routine,
the SR (including the LF) is pushed on the SS and the SR LF is cleared. When returning
from the long interrupt with an RTI instruction, the SS is pulled and the LF is restored.
During a processor reset, the LF is cleared.

5.4.3 Operating Mode Register
The OMR is a 24-bit register (only six bits are defined) that sets the current operating
mode of the processor. Each chip in the DSP56K family of processors has its own set of
operating modes which determine the memory maps for program and data memories, and
the startup procedure that occurs when the chip leaves the reset state. The OMR bits are
only affected by processor reset and by the ANDI, ORI, and MOVEC instructions, which
directly reference the OMR.

The OMR format with all of its defined bits is shown in Figure 5-6. For product-specific
OMR bit definitions, see the individual chip’s user manual for details on its respective op-
erating modes.

5.4.4 System Stack
The SS is a separate 15X32-bit internal memory divided into two banks, the SSH and the

* SD MC YD DE MB MA

23 8 7 6 5 4 3 2 1 0

*

OPERATING MODE A, B

DATA ROM ENABLE

INTERNAL Y MEMORY DISABLE

OPERATING MODE C

RESERVED

STOP DELAY

RESERVED

RESERVED

*

Figure 5-6 OMR Format
5 - 14 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SSL, each 16 bits wide. The SSH stores the PC contents, and the SSL stores the SR con-
tents for subroutine calls, long interrupts, and program looping. The SS will also store the
LA and LC registers. The SS is in stack memory space; its address is always inherent and
implied by the current instruction.

The contents of the PC and SR are pushed on the top location of the SS when a subrou-
tine call or long interrupt occurs. When a return from subroutine (RTS) occurs, the
contents of the top location in the SS are pulled and put in the PC; the SR is not affected.
When an RTI occurs, the contents of the top location in the SS are pulled to both the PC
and SR.

The SS is also used to implement no-overhead nested hardware DO loops. When the DO
instruction is executed, the LA:LC are pushed on the SS, then the PC:SR are pushed on
the SS. Since each SS location can be addressed as separate 16-bit registers (SSH and
SSL), software stacks can be created for unlimited nesting.

The SS can accommodate up to 15 long interrupts, seven DO loops, 15 JSRs, or combi-
nations thereof. When the SS limit is exceeded, a nonmaskable stack error interrupt
occurs, and the PC is pushed to SS location zero, which is not implemented in hardware.
The PC will be lost, and there will be no SP from the stack interrupt routine to the program
that was executing when the error occurred.

5.4.5 Stack Pointer Register
The 6-bit SP register indicates the location of the top of the SS and the status of the SS
(underflow, empty, full, and overflow). The SP register is referenced implicitly by some in-
structions (DO, REP, JSR, RTI, etc.) or directly by the MOVEC instruction. The SP
register format is shown in Figure 5-7. The SP register works as a 6-bit counter that ad-
dresses (selects) a 15-location stack with its four LSBs. The possible SP values are
shown in Figure 5-8 and described in the following paragraphs.

5.4.5.1 Stack Pointer (Bits 0–3)
The SP points to the last location used on the SS. Immediately after hardware reset,

Figure 5-7 Stack Pointer Register Format

5 4 3 2 1 0

STACK POINTER

STACK ERROR FLAG

UNDERFLOW FLAG

UF SE P3 P2 P1 P0
MOTOROLA PROGRAM CONTROL UNIT 5 - 15
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

these bits are cleared (SP=0), indicating that the SS is empty.

Data is pushed onto the SS by incrementing the SP, then writing data to the location to
which the SP points. An item is pulled off the stack by copying it from that location and
then by decrementing the SP.

5.4.5.2 Stack Error Flag (Bit 4)
The stack error flag indicates that a stack error has occurred, and the transition of the
stack error flag from zero to one causes a priority level-3 stack error exception.

When the stack is completely full, the SP reads 001111, and any operation that pushes
data onto the stack will cause a stack error exception to occur. The SR will read 010000
(or 010001 if an implied double push occurs).

Any implied pull operation with SP equal to zero will cause a stack error exception, and
the SP will read 111111 (or 111110 if an implied double pull occurs).

The stack error flag is a “sticky bit” which, once set, remains set until cleared by the user.
There is a sequence of instructions that can cause a stack overflow and, without the sticky
bit, would not be detected because the stack pointer is decremented before the stack error
interrupt is taken. The sticky bit keeps the stack error bit set until the user clears it by writ-
ing a zero to SP bit 4. It also latches the overflow/underflow bit so that it cannot be
changed by stack pointer increments or decrements as long as the stack error is set. The
overflow/underflow bit remains latched until the first move to SP is executed.

Note: When SP is zero (stack empty), instructions that read the stack without SP post-
decrement and instructions that write to the stack without SP preincrement do not cause
a stack error exception (i.e., 1) DO SSL,xxxx 2) REP SSL 3) MOVEC or move peripheral

Figure 5-8 SP Register Values

UF SE P3 P2 P1 P0
1 1 1 1 1 0 STACK UNDERFLOW CONDITION AFTER DOUBLE PULL

1 1 1 1 1 1 STACK UNDERFLOW CONDITION

0 0 0 0 0 0 STACK EMPTY (RESET); PULL CAUSES UNDERFLOW

0 0 0 0 0 1 STACK LOCATION 1

0 0 1 1 1 0 STACK LOCATION 14

0 0 1 1 1 1 STACK LOCATION 15; PUSH CAUSES OVERFLOW

0 1 0 0 0 0 STACK OVERFLOW CONDITION

0 1 0 0 0 1 STACK OVERFLOW CONDITION AFTER DOUBLE PUSH
5 - 16 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

data (MOVEP) when SSL is specified as a source or destination).

5.4.5.3 Underflow Flag (Bit 5)
The underflow flag is set when a stack underflow occurs. The underflow flag is a “sticky
bit” when the stack error flag is set. That is, when the stack error flag is set, the underflow
flag will not change state. The combination of “underflow=1” and “stack error=0” is an
illegal combination and will not occur unless it is forced by the user. If this condition is
forced by the user, the hardware will correct itself based on the result of the next stack
operation.

5.4.5.4 Reserved Stack Pointer Registration (Bits 6–23)
SP register bits 6 through 23 are reserved for future expansion and will read as zero dur-
ing read operations.

5.4.6 Loop Address Register
The LA is a read/write register which is stacked into the SSH by a DO instruction and is
unstacked by end-of-loop processing or by an ENDDO instruction. The contents of the LA
register indicate the location of the last instruction word in a program loop. When that last
instruction is fetched, the processor checks the contents of the LC register (see the fol-
lowing section). If the contents are not one, the processor decrements the LC and takes
the next instruction from the top of the SS. If the LC is one, the PC is incremented, the
loop flag is restored (pulled from the SS), the SS is purged, the LA and LC registers are
pulled from the SS and restored, and instruction execution continues normally.

5.4.7 Loop Counter Register
The LC register is a special 16-bit counter which specifies the number of times a hardware
program loop shall be repeated. This register is stacked into the SSL by a DO instruction
and unstacked by end-of-loop processing or by execution of an ENDDO instruction. When
the end of a hardware program loop is reached, the contents of the LC register are tested
for one. If the LC is one, the program loop is terminated, and the LC register is loaded with
the previous LC contents stored on the SS. If LC is not one, it is decremented and the
program loop is repeated. The LC can be read under program control, which allows the
number of times a loop will be executed to be monitored/changed dynamically. The LC is
also used in the REP instruction

5.4.8 Programming Model Summary
The complete programming model for the DSP56K central processing module is shown
in Figure 5-9. Programming models for the peripherals are shown in the appropriate user
manuals.
MOTOROLA PROGRAM CONTROL UNIT 5 - 17
For More Information On This Product,

 Go to: www.freescale.com

PROGRAMMING MODEL

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

23 1615 0

55 B 0

55 A 0

47 Y 0

23 1615 0

*

*
*

*
*
*

*

R7

R6

R5

R4

R3

R1

R2

R0

23 1615 0

*

*
*
*

*
*
*

*

N7

N6

N5

N4

N3

N1

N2

N0

23 1615 0

*

*
*
*

*
*
*

*

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

MR CCR

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

47 X 0

X1 X0

23 0 23 0

Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

23 0

B1 B0

23 8 7 0

#

23 0

B2

23 0

A1 A0

23 8 7 0

#

23 0

A2

DATA ARITHMETIC LOGIC UNIT

*

23 0 23 0

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON’T CARE

Figure 5-9 DSP56K Central Processing Module Programming Model

23 6 5 0

*
23 8 7 6 5 4 3 2 1 0

OPERATING MODE REGISTER (OMR)

MADE MBSD *

STACK POINTER (SP)
*

YDMC*
5 - 18 PROGRAM CONTROL UNIT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 INSTRUCTION SET INTRODUCTION 6 - 1

SECTION 6
INSTRUCTION SET INTRODUCTION

Fetch F1 F2 F3 F3e F4 F5 F6 . . .
Decode D1 D2 D3 D3e D4 D5 . . .
Execute E1 E2 E3 E3e E4 . . .
Instruction
Cycle: 1 2 3 4 5 6 7 . . .

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

6 - 2 INSTRUCTION SET INTRODUCTION

MOTOROLA

SECTION 6.1 INSTRUCTION SET INTRODUCTION 3

SECTION 6.2 SYNTAX ... 3

SECTION 6.3 INSTRUCTION FORMATS .. 3
6.3.1 Operand Sizes .. 5
6.3.2 Data Organization in Registers ... 6

6.3.2.1 Data ALU Registers .. 6
6.3.2.2 AGU Registers .. 7
6.3.2.3 Program Control Registers ... 8

6.3.3 Data Organization in Memory ... 9
6.3.4 Operand References .. 11

6.3.4.1 Program References ... 11
6.3.4.2 Stack References ... 11
6.3.4.3 Register References ... 11
6.3.4.4 Memory References ... 11

6.3.4.4.1 X Memory References .. 11
6.3.4.4.2 Y Memory References .. 12
6.3.4.4.3 L Memory References ... 12
6.3.4.4.4 YX Memory References .. 12

6.3.5 Addressing Modes .. 12
6.3.5.1 Register Direct Modes .. 13

6.3.5.1.1 Data or Control Register Direct ... 13
6.3.5.1.2 Address Register Direct .. 13

6.3.5.2 Address Register Indirect Modes .. 13
6.3.5.3 Special Addressing Modes ... 14

6.3.5.3.1 Immediate Data ... 14
6.3.5.3.2 Absolute Address .. 14
6.3.5.3.3 Immediate Short .. 14
6.3.5.3.4 Short Jump Address ... 14
6.3.5.3.5 Absolute Short .. 14
6.3.5.3.6 I/O Short .. 16
6.3.5.3.7 Implicit Reference ... 16

6.3.5.4 Addressing Modes Summary .. 20

SECTION 6.4 INSTRUCTION GROUPS .. 20
6.4.1 Arithmetic Instructions .. 22
6.4.2 Logical Instructions ... 23
6.4.3 Bit Manipulation Instructions ... 24
6.4.4 Loop Instructions .. 24
6.4.5 Move Instructions .. 26
6.4.6 Program Control Instructions .. 27

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION SET INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.1 INSTRUCTION SET INTRODUCTION
The programming model shown in Figure 6-1 suggests that the DSP56K central pro-
cessing module architecture can be viewed as three functional units which operate in
parallel: data arithmetic logic unit (data ALU), address generation unit (AGU), and pro-
gram control unit (PCU). The instruction set keeps each of these units busy throughout
each instruction cycle, achieving maximal speed and maintaining minimal program size.

This section introduces the DSP56K instruction set and instruction format. The complete
range of instruction capabilities combined with the flexible addressing modes used in this
processor provide a very powerful assembly language for implementing digital signal pro-
cessing (DSP) algorithms. The instruction set has been designed to allow efficient coding
for DSP high-level language compilers such as the C compiler. Execution time is mini-
mized by the hardware looping capabilities, use of an instruction pipeline, and parallel
moves.

6.2 SYNTAX
The instruction syntax is organized into four columns: opcode, operands, and two parallel-
move fields. The assembly-language source code for a typical one-word instruction is
shown in the following illustration. Because of the multiple bus structure and the parallel-
ism of the DSP, up to three data transfers can be specified in the instruction word – one
on the X data bus (XDB), one on the Y data bus (YDB), and one within the data ALU.
These transfers are explicitly specified. A fourth data transfer is implied and occurs in the
program control unit (instruction word prefetch, program looping control, etc.). Each data
transfer involves a source and a destination.

Opcode Operands XDB YDB

MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

The opcode column indicates the data ALU, AGU, or program control unit operation to be
performed and must always be included in the source code. The operands column spec-
ifies the operands to be used by the opcode. The XDB and YDB columns specify optional
data transfers over the XDB and/or YDB and the associated addressing modes. The
address space qualifiers (X:, Y:, and L:) indicate which address space is being referenced.
Parallel moves are allowed in 30 of the 62 instructions. Additional information is presented
in APPENDIX A - INSTRUCTION SET DETAILS.

6.3 INSTRUCTION FORMATS
The DSP56K instructions consist of one or two 24-bit words – an operation word and an
optional effective address extension word. The general format of the operation word is
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 3
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

23 1615 0

55 B 0

55 A 0

47 Y 0

23 1615 0

*

*
*

*
*
*

*

R7

R6

R5

R4

R3

R1

R2

R0

23 1615 0

*

*
*
*

*
*
*

*

N7

N6

N5

N4

N3

N1

N2

N0

23 1615 0

*

*
*
*

*
*
*

*

M7

M6

M5

M4

M3

M1

M2

M0

UPPER FILE

LOWER FILE

MODIFIER
REGISTERS

OFFSET
REGISTERS

POINTER
REGISTERS

ADDRESS GENERATION UNIT

PROGRAM CONTROL UNIT

23 1615 0

23 1615 0

*
23 1615 8 7 0

*

PROGRAM
COUNTER (PC)

31 SSH 16 15 SSL 0

1

15

SYSTEM STACK

STATUS
REGISTER (SR)

MR CCR

LOOP ADDRESS
REGISTER (LA)

LOOP COUNTER (LC)

47 X 0

X1 X0

23 0 23 0

Y1 Y0

INPUT REGISTERS

ACCUMULATOR REGISTERS

23 0

B1 B0

23 8 7 0

#

23 0

B2

23 0

A1 A0

23 8 7 0

#

23 0

A2

DATA ARITHMETIC LOGIC UNIT

*

23 0 23 0

*

*

* READ AS ZERO, SHOULD BE WRITTEN
WITH ZERO FOR FUTURE COMPATIBILITY

READ AS SIGN EXTENSION BITS,
WRITTEN AS DON’T CARE

Figure 6-1 DSP56K Central Processing Module Programming Model

23 6 5 0

*
23 8 7 6 5 4 3 2 1 0

OPERATING MODE REGISTER (OMR)

MADE MBSD *

STACK POINTER (SP)
*

YDMC*
6 - 4 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

shown in Figure 6-2. Most instructions specify data movement on the XDB, YDB, and data
ALU operations in the same operation word. The DSP56K performs each of these oper-
ations in parallel.

The data bus movement field provides the operand reference type. It selects the type of
memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An effective
address extension word following the operation word provides an immediate data address
or an absolute address if required (see Section 6.3.5.3 for the description of special
addressing modes). Examples of operations that may include the extension word include
the move operations X:, X:R, Y:, R:Y, and L:. Additional information is presented in
APPENDIX A - INSTRUCTION SET DETAILS.

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed, and any additional operands required by the
instruction. Only those data ALU and program control unit operations that can accompany
data bus movement will be specified in the opcode field of the instruction. Other data ALU,
program control unit, and all address ALU operations will be specified in an instruction
word with a different format. These formats include operation words which contain short
immediate data or short absolute addresses (see Section 6.3.5.3 for the description of
special addressing modes).

6.3.1 Operand Sizes
Operand sizes are defined as follows: a byte is 8 bits long, a short word is16 bits long, a
word is 24 bits long, a long word is 48 bits long, and an accumulator is 56 bits long (see
Figure 6-3). The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation. Implicit instructions support
some subset of the five sizes shown in Figure 6-3.

Figure 6-2 General Format of an Instruction Operation Word

 23 8 7 0

X X X X X X X X
DATA BUS MOVEMENT

OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 5
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.2 Data Organization in Registers
The ten data ALU registers support 8- or 24-bit data operands. Instructions also support
48- or 56-bit data operands by concatenating groups of specific data ALU registers. The
eight address registers in the AGU support 16-bit address or data operands. The eight
AGU offset registers support 16-bit offsets or may support 16-bit address or data oper-
ands. The eight AGU modifier registers support 16-bit modifiers or may support 16-bit
address or data operands. The program counter (PC) supports 16-bit address operands.
The status register (SR) and operating mode register (OMR) support 8- or 16-bit data
operands. Both the loop counter (LC) and loop address (LA) registers support 16-bit
address operands.

6.3.2.1 Data ALU Registers
The eight main data ALU registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The least significant bit (LSB) is
the right-most bit (bit 0) and the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). The two accumulator extension regis-
ters are eight bits wide.

When an accumulator extension register acts as a source operand, it occupies the low-
order portion (bits 0–7) of the word and the high-order portion (bits 8–23) is sign extended
(see Figure 6-4). When used as a destination operand, this register receives the low-order
portion of the word, and the high-order portion is not used. Accumulator operands occupy
an entire group of three registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most
bit (bit 0), and the MSB is the left-most bit (bit 55).

Figure 6-3 Operand Sizes

55 0

47 0

23 0

7 0

15 0

ACCUMULATOR

LONG WORD

WORD

SHORT WORD

BYTE
6 - 6 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.2.2 AGU Registers
The 24 AGU registers are 16 bits wide. They may be accessed as word operands for
address, address modifier, and data storage. When used as a source operand, these reg-
isters occupy the low-order portion of the 24-bit word; the high-order portion is read as
zeros (see Figure 6-5). When used as a destination operand, these registers receive the
low-order portion of the word; the high-order portion is not used. The notation “Rn” desig-
nates one of the eight address registers, R0–R7; the notation “Nn” designates one of the
eight address offset registers, N0–N7; and the notation “Mn” designates one of the eight

Figure 6-4 Reading and Writing the ALU Extension Registers

23 8 7 0

 23 8 7 0

23 8 7 0

BUS

NOT USED

LSB OF
WORD

A2

BUS

REGISTER A2, B2 USED
AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

SIGN EXTENSION
OF A2

CONTENTS
OF A2

NOT USED REGISTER A2, B2

Figure 6-5 Reading and Writing the Address ALU Registers

23 0

BUS

NOT USED

 23 16 15 0
BUS

ADDRESS ALU

ADDRESS ALU REGISTERS
AS A DESTINATION

 AS A SOURCE
ADDRESS ALU REGISTERS

 15 0

ZERO FILL

REGISTERS

LSB OF
WORD
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 7
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

address modifier registers, M0–M7.

6.3.2.3 Program Control Registers
The 8-bit operating mode register (OMR) may be accessed as a word operand. However,
not all eight bits are defined, and those that are defined will vary depending on the
DSP56K family member. In general, undefined bits are written as “don’t care” and read as
zero.

The 16-bit SR has the system mode register (MR) occupying the high-order eight bits and

(b) 8 Bit

(a) 16 Bit

Figure 6-6 Reading and Writing Control Registers

23 8 7 0

23 8 7 0
BUS

NOT USED LSB

A2

BUS

MR, CCR, OMR, AND SP
AS A DESTINATION

 AS A SOURCE
MR, CCR, OMR, AND SP MR, CCR, OMR, AND SP

ZERO FILL

23 16 15 0

23 0
BUS

NOT USED
LSB OF
WORD

BUS

LC, LA, SR, SSH, AND SSL
AS A DESTINATION

 AS A SOURCE
LC, LA, SR, SSH, AND SSL

15 0

ZERO FILL

LC, LA, SR, SSH, AND SSL
6 - 8 INSTRUCT
For More I

 Go
ION SET INTRODUCTION MOTOROLA
nformation On This Product,
 to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the user condition code register (CCR) occupying the low-order eight bits. The SR may
be accessed as a word operand.

The MR and CCR may be accessed individually as word operands (see Figure 6-6(b)).
The LC, LA, system stack high (SSH), and system stack low (SSL) registers are 16 bits
wide and may be accessed as word operands (see Figure 6-6(a)). When used as a source
operand, these registers occupy the low-order portion of the 24-bit word; the high-order
portion is zero. When used as a destination operand, they receive the low-order portion
of the 24-bit word; the high-order portion is not used. The system stack pointer (SP) is a
6-bit register that may be accessed as a word operand.

The PC, a special 16-bit-wide program control register, is always referenced implicitly as
a short-word operand.

6.3.3 Data Organization in Memory
The 24-bit program memory can store both 24-bit instruction words and instruction exten-
sion words. The 32-bit system stack (SS) can store the concatenated PC and SR registers
(PC:SR) for subroutine calls, interrupts, and program looping. The SS also supports the
concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-wide X and Y
memories can store word, short-word, and byte operands. Short-word and byte operands,
which usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign extended on the XDB or YDB.

The symbols used to abbreviate the various operands and operations in each instruction
and their respective meanings are shown in the following list:

Data ALU
Xn Input Registers X1, X0 (24 Bits)
Yn Input Registers Y1, Y0 (24 Bits)
An Accumulator Registers A2 (8 Bits), A1, A0 (24 Bits)
Bn Accumulator Registers B2 (8 Bits), B1, B0 (24 Bits)
X Input Register X (X1:X0, 48 Bits)
Y Input Register Y (Y1:Y0, 48 Bits)
A Accumulator A (A2:A1:A0, 56 Bits)*

B Accumulator B (B2:B1:B0, 56 Bits)*

AB Accumulators A and B (A1:B1, 48 Bits)*

*Data Move Operations: when specified as a source operand, shifting and limiting
are performed. When specified as a destination operand, sign extension and zero
filling are performed.
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 9
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

BA Accumulators B and A (B1:A1, 48 Bits)*

A10 Accumulator A (A1:A0, 48 Bits)
B10 Accumulator B (B1:B0, 48 Bits)

Address ALU
Rn Address Registers R0–R7 (16 Bits)
Nn Address Offset Registers N0–N7 (16 Bits)
Mn Address Modifier Registers M0–M7 (16 Bits)

Program Control Unit
PC Program Counter (16 Bits)
MR Mode Register (8 Bits)
CCR Condition Code Register (8 Bits)
SR Status Register (MR:CCR, 16 Bits)
OMR Operating Mode Register (8 Bits)
LA Hardware Loop Address Register (16 Bits)
LC Hardware Loop Counter (16 Bits)
SP System Stack Pointer (6 Bits)
SS System Stack RAM (15X32 Bits)
SSH Upper 16 Bits of the Contents of the Current Top of Stack
SSL Lower 16 Bits of the Contents of the Current Top of Stack

Addresses
ea Effective Address
 xxxx Absolute Address (16 Bits)
xxx Short Jump Address (12 Bits)
aa Absolute Short Address (6 Bits Zero Extended)
pp I/O Short Address (6 Bits Ones Extended)
< . . . > Contents of the Specified Address
X: X Memory Reference
Y: Y Memory Reference
L: Long Memory Reference – X Concatenated with Y
P: Program Memory Reference

 Miscellaneous
#xx Immediate Short Data (8 Bits)
#xxx Immediate Short Data (12 Bits)
#xxxxxx Immediate Data (24 Bits)
#n Immediate Short Data (5 Bits)
S,Sn Source Operand Register
D,Dn Destination Operand Register
6 - 10 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

D[n] Bit n of D Affected
r Rounding Constant
I1,I0 Interrupt Priority Level in SR
LF Loop Flag in SR

6.3.4 Operand References
The DSP separates operand references into four classes: program, stack, register, and
memory references. The type of operand reference(s) required for an instruction is spec-
ified by both the opcode field and the data bus movement field of the instruction. However,
not all operand reference types can be used with all instructions. The operand size for
each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Implicit instructions support some subset of the five operand sizes.

6.3.4.1 Program References
Program (P) references, which are references to 24-bit-wide program memory space, are
usually instruction reads. Instructions or data operands may be read from or written to pro-
gram memory space using the move program memory (MOVEM) and move peripheral
data (MOVEP) instructions. Depending on the address and the chip operating mode, pro-
gram references may be internal or external memory references.

6.3.4.2 Stack References
Stack (S) references, which are references to the System Stack (SS), a separate 32-bit-
wide internal memory space, are used implicitly to store the PC and SR for subroutine
calls, interrupts, and returns. In addition to the PC and SR, the LA and LC registers are
stored on the stack when a program loop is initiated. S references are always implied by
the instruction. Data is written to the stack memory to save the processor state and is read
from the stack memory to restore the processor state. In contrast to S references, refer-
ences to SSL and SSH are always explicit.

6.3.4.3 Register References
Register (R) references are references to the data ALU, AGU, and program control unit
registers. Data can be read from one register and written into another register.

6.3.4.4 Memory References
Memory references, which are references to the 24-bit-wide X or Y memory spaces, can
be internal or external memory references, depending on the effective address of the
operand in the data bus movement field of the instruction. Data can be read or written from
any address in either memory space.
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 11
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.4.4.1 X Memory References
The operand, which is in X memory space, is a word reference. Data can be transferred
from memory to a register or from a register to memory.
6 - 12 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.4.4.2 Y Memory References
The operand, a word reference, is in Y memory space. Data can be transferred from mem-
ory to a register or from a register to memory.

6.3.4.4.3 L Memory References
Long (L) memory space references both X and Y memory spaces with one operand
address. The data operand is a long-word reference developed by concatenating the X
and Y memory spaces (X:Y). The high-order word of the operand is in the X memory; the
low-order word of the operand is in the Y memory. Data can be read from memory to con-
catenated registers X1:X0, A1:A0, etc. or from concatenated registers to memory.

6.3.4.4.4 YX Memory References
XY memory space references both X and Y memory spaces with two operand addresses.
Two independent addresses are used to access two word operands – one word operand
is in X memory space, and one word operand is in Y memory space. Two effective
addresses in the instruction are used to derive two independent operand addresses – one
operand address may reference either X or Y memory space and the other operand
address must reference the other memory space. One of these two effective addresses
specified in the instruction must reference one of the address registers, R0–R3, and the
other effective address must reference one of the address registers, R4–R7. Addressing
modes are restricted to no-update and post-update by +1, –1, and +N addressing modes.
Each effective address provides independent read/write control for its memory space.
Data may be read from memory to a register or from a register to memory.

6.3.5 Addressing Modes
The DSP instruction set contains a full set of operand addressing modes. To minimize
execution time and loop overhead, all address calculations are performed concurrently in
the address ALU.

Addressing modes specify whether the operand(s) is in a register or in memory, and pro-
vide the specific address of the operand(s). An effective address in an instruction will
specify an addressing mode, and, for some addressing modes, the effective address will
further specify an address register. In addition, address register indirect modes require
additional address modifier information that is not encoded in the instruction. The address
modifier information is specified in the selected address modifier register(s). All indirect
memory references require one address modifier, and the XY memory reference requires
two address modifiers. The definition of certain instructions implies the use of specific reg-
isters and addressing modes.
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 13
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Some address register indirect modes require an offset and a modifier register for use in
address calculations. These registers are implied by the address register specified in an
effective address in the instruction word. Each offset register (Nn) and each modifier reg-
ister (Mn) is assigned to an address register (Rn) having the same register number (n).
Thus, the assigned register triplets are R0;N0;M0, R1;N1;M1, R2;N2;M2, R3;N3;M3,
R4;N4;M4, R5;N5;M5, R6;N6;M6, and R7;N7;M7. Rn is used as the address register; Nn
is used to specify an optional offset; and Mn is used to specify the type of arithmetic used
to update the Rn.

The addressing modes are grouped into three categories: register direct, address register
indirect, and special. These addressing modes are described in the following paragraphs.
Refer to Table 6-1 for a summary of the addressing modes and allowed operand
references.

6.3.5.1 Register Direct Modes
These effective addressing modes specify that the operand source or destination is one
of the data, control, or address registers in the programming model.

6.3.5.1.1 Data or Control Register Direct
The operand is in one, two, or three data ALU register(s) as specified in a portion of the
data bus movement field in the instruction. Classified as a register reference, this address-
ing mode is also used to specify a control register operand for special instructions such
as OR immediate to control registers (ORI) and AND immediate to control registers
(ANDI).

6.3.5.1.2 Address Register Direct
Classified as a register reference, the operand is in one of the 24 address registers (Rn,
Nn, or Mn) specified by an effective address in the instruction.

Note: Due to instruction pipelining, if an address register (Mn, Nn, or Rn) is changed with
a MOVE instruction, the new contents will not be available for use as a pointer until the
second following instruction.

6.3.5.2 Address Register Indirect Modes
The address register indirect mode description is presented in SECTION 4 - ADDRESS
GENERATION UNIT.
6 - 14 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.5.3 Special Addressing Modes
The special addressing modes do not use specific registers to specify an effective
address. These modes specify the operand or the operand address in a field of the
instruction, or they implicitly reference an operand. Figure examples are given for each of
the special addressing modes discussed in the following paragraphs.

6.3.5.3.1 Immediate Data
Classified as a program reference, this addressing mode requires one word of instruction
extension containing the immediate data. Figure 6-7 shows three examples. Example A
moves immediate data to register A0 without affecting A1 or A2. Examples B and C zero
fill register A0 and sign extend register A2.

6.3.5.3.2 Absolute Address
This addressing mode requires one word of instruction extension containing the absolute
address. Figure 6-8 shows that MOVE Y:$5432,B0 copies the contents of address $5432
into B0 without changing memory location $5432, register B1, or register B2. This
addressing mode is classified as both a memory reference and program reference. The
16-bit absolute address is stored in the 16 LSBs of the extension word; the eight MSBs
are zero filled.

6.3.5.3.3 Immediate Short
The 8- or 12-bit operand, which is in the instruction operation word, is classified as a pro-
gram reference. The immediate data is interpreted as an unsigned integer (low-order
portion) or signed fraction (high-order portion), depending on the destination register. Fig-
ure 6-9 shows the use of immediate short addressing in four examples.

6.3.5.3.4 Short Jump Address
The operand occupies 12 bits in the instruction operation word, which allows addresses
$0000–$0FFF to be accessed (see Figure 6-10). The address is zero extended to 16 bits
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 15
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

when used to address program memory. This addressing mode is classified as a program
reference.

Figure 6-7 Special Addressing – Immediate Data

F F 8 0 1 2 3 4 0 0 0 0 0 0

0 0 1 2 3 4 5 6 0 0 0 0 0 0

X X X X X X X X 1 2 3 4 5 6

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE INTO 24-BIT REGISTER
(MOVE #$123456,A0)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$123456,A)

AFTER EXECUTION

EXAMPLE C: NEGATIVE IMMEDIATE INTO 56-BIT REGISTER
(MOVE #$801234,A)

AFTER EXECUTION

Assembler Syntax: #XXXXXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0
6 - 16 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.5.3.5 Absolute Short
The address of the operand occupies six bits in the instruction operation word, allowing
addresses $0000–$003F to be accessed (see Figure 6-11). Classified as both a memory
reference and program reference, the address is zero extended to 16 bits when used to
address an operand or program memory.

6.3.5.3.6 I/O Short
Classified as a memory reference, the I/O short addressing mode is similar to absolute
short addressing. The address of the operand occupies six bits in the instruction operation
word. I/O short is used with the bit manipulation and MOVEP instructions. The I/O short
address is ones extended to 16 bits to address the I/O portion of X and Y memory
(addresses $FFC0–$FFFF – see Figure 6-12).

6.3.5.3.7 Implicit Reference
Some instructions make implicit reference to PC, SS, LA, LC, or SR. For example, the
jump instruction (JMP) implicitly references the PC; whereas, the repeat next instruction
(REP) implicitly references LC. The registers implied and their uses are defined by the
individual instruction descriptions (see APPENDIX A - INSTRUCTION SET DETAILS).

6.3.5.4 Addressing Modes Summary

Figure 6-8 Special Addressing – Absolute Addressing

B2 B1 B0

BEFORE EXECUTION

B2 B1 B0

AFTER EXECUTION

EXAMPLE: MOVE Y:$5432,B0

23 Y MEMORY 0

$5432 A B C D E F

Assembler Syntax: XXXX or aa
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 2
Additional Effective Address Words: 1

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0
X X X X X X X X A B C D E F

55 48 47 24 23 0

7 0 23 0 23 0

23 Y MEMORY 0

$5432 A B C D E F
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 17
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION FORMATS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

X X 0 0 0 0 F F X X X X X X

0 0 1 F 0 0 0 0 0 0 0 0 0 0

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

EXAMPLE A: IMMEDIATE SHORT INTO A0, A1, A2, B0, B1, B2, Rn, Nn
(MOVE #$FF,A1)

BEFORE EXECUTION AFTER EXECUTION

EXAMPLE B:POSITIVE IMMEDIATE SHORT INTO X0, X1, Y0, Y1, A, B
(MOVE #$1F, Y1)

AFTER EXECUTION

AFTER EXECUTION

Y1 Y0
47 24 23 0

 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X X X X X X X X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

A2 A1 A0
55 48 47 24 23 0

7 0 23 0 23 0

 X X X X X X X X X X X X

Y1 Y0
47 24 23 0

 23 0 23 0
 1 F 0 0 0 0 X X X X X X

EXAMPLE C: POSITIVE IMMEDIATE SHORT INTO X, Y, A, B
(MOVE #$1F, A)
6 - 18 INSTRUCTION SET INTRODUCTION MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

• Arithmetic • Logical
• Bit Manipulation • Loop
• Move • Program Control

Each instruction group is described in the following paragraphs; detailed information on
each instruction is given in APPENDIX A - INSTRUCTION SET DETAILS.

6.4.1 Arithmetic Instructions
The arithmetic instructions, which perform all of the arithmetic operations within the data

Figure 6-10 Special Addressing – Short Jump Address

AFTER EXECUTION

$0FFF

JMP $0123

$0123

$0000

P MEMORY

PC
NEXT INSTRUCTION

BEFORE EXECUTION

EXAMPLE: JMP $123

$0FFF

Assembler Syntax: XXX
Memory Spaces: P:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

P MEMORY

PC JMP $0123

$0123

$0000

SHORT
JUMP

RANGE
4,096

WORDS
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 19
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-11 Special Addressing – Absolute Short Address

P MEMORY
23 0

AFTER EXECUTIONBEFORE EXECUTION

EXAMPLE A: MOVE P: $3200,X0

Assembler Syntax: aa
Memory Spaces: P:, X:, Y:, L:
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

X X X X X X

$0000

ABSOLUTE
SHORT

ADDRESSIN-
GRANGE

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

X1 X0
47 24 23 0

 23 0 23 0
 0 0 0 0 0 1 X X X X X X

$3204

$3200 $ A 5 B 4 C 6

X1 X0
47 24 23 0

 23 0 23 0
 0 0 0 0 0 1 A 5 B 4 C 6

P MEMORY
23 0

X X X X X X$3204

$3200 $ A 5 B 4 C 6

EXAMPLE B: MOVE A1, X: $3

BEFORE EXECUTION

A2 A1 A0

X X 3 4 F 5 E 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

X X X X X X$0003

$003F
$0040

$0000

X MEMORY
23 0

3 4 F 5 E 6$0003

$003F
$0040
6 - 20 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ALU, execute in one instruction cycle. These instructions may affect all of the CCR bits.
Arithmetic instructions are register based (register direct addressing modes used for oper-
ands) so that the data ALU operation indicated by the instruction does not use the XDB,
the YDB, or the global data bus (GDB). Optional data transfers may be specified with most
arithmetic instructions, which allows for parallel data movement over the XDB and YDB
or over the GDB during a data ALU operation. This parallel movement allows new data to
be prefetched for use in subsequent instructions and allows results calculated in previous
instructions to be stored. The following list contains the arithmetic instructions:

Figure 6-12 Special Addressing – I/O Short Address

EXAMPLE: MOVEP A1, X:<<$FFFE

Assembler Syntax: pp
Operands Referenced: X:, Y Memories
Additional Instruction Execution Time (Clocks): 0
Additional Effective Address Words: 0

$FFC0

I/O SHORT
ABSOLUTE
ADDRESS

SPACE

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

BEFORE EXECUTION

A2 A1 A0

X X 1 2 3 4 5 6 X X X X X X
55 48 47 24 23 0

7 0 23 0 23 0

AFTER EXECUTION

X MEMORY
23 0

0 0 F F F F*$FFFE
$FFFF

$FFC0

X MEMORY
23 0

0 0 3 4 5 6$FFFE
$FFFF

*Contents of Bus Control Register (X:$FFFE) After Reset
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 21
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Addressing Mode
Modifier
MMMM

Operand Reference

P S C D A X Y L XY

Register Direct
Data or Control Register
Address Register
Address Modifier Register
Address Offset Register

No
No
No
No

X X
X
X
X

Address Register Indirect
No Update
Postincrement by 1
Postdecrement by 1
Postincrement by Offset Nn
Postdecrement by Offset Nn
Indexed by Offset Nn
Predecrement by 1

No
Yes
Yes
Yes
Yes
Yes
Yes

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X

Table 6-1 Addressing Modes Summary

Where: MMMM = Address Modifier
P = Program Reference
S = Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = AGU Register Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference
6 - 22 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABS Absolute Value
ADC Add Long with Carry
ADD Addition
ADDL Shift Left and Add
ADDR Shift Right and Add
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
CLR Clear an Operand
CMP Compare
CMPM Compare Magnitude
DEC* Decrement by One
DIV* Divide Iteration
INC* Increment by One
MAC Signed Multiply-Accumulate**

MACR Signed Multiply-Accumulate and Round**
MPY Signed Multiply**
MPYR Signed Multiply and Round**
NEG Negate Accumulator
NORM* Normalize
RND Round
SBC Subtract Long with Carry
SUB Subtract
SUBL Shift Left and Subtract
SUBR Shift Right and Subtract
Tcc* Transfer Conditionally
TFR Transfer Data ALU Register
TST Test an Operand

6.4.2 Logical Instructions
The logical instructions execute in one instruction cycle and perform all of the logical oper-
ations within the data ALU (except ANDI and ORI). They may affect all of the CCR bits
and, like the arithmetic instructions, are register based.

Logical instructions are the only instructions that allow apparent duplicate destinations,
such as:

AND X0,A X:(R0):A0

A logical instruction uses only the MSP portion of the A and B registers (A1 and B1).

*These instructions do not allow parallel data moves.
**Certain applications of these instructions do not allow parallel data moves.
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 23
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Therefore, the instruction actually ignores what appears to be a duplicate destination and
logically ANDs the value in the X0 register with the bits in the A1 portion (bits 47-24) of
the A accumulator. The parallel move shown above can simultaneously write to either of
the other two portions of the A or the B accumulator without conflict. Avoid confusion by
explicitly stating A1 or B1 in the original instruction.

Optional data transfers may be specified with most logical instructions, allowing parallel
data movement over the XDB and YDB or over the GDB during a data ALU operation.
This parallel movement allows new data to be prefetched for use in subsequent instruc-
tions and allows results calculated in previous instructions to be stored. The following list
includes the logical instructions:

AND Logical AND
ANDI* AND Immediate to Control Register
EOR Logical Exclusive OR
LSL Logical Shift Left
LSR Logical Shift Right
NOT Logical Complement
OR Logical Inclusive OR
ORI* OR Immediate to Control Register
ROL Rotate Left
ROR Rotate Right

*These instructions do not allow parallel data moves.
6 - 24 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.3 Bit Manipulation Instructions
The bit manipulation instructions test the state of any single bit in a memory location or a
register and then optionally set, clear, or invert the bit. The carry bit of the CCR will contain
the result of the bit test. The following list defines the bit manipulation instructions:

BCLR Bit Test and Clear
BSET Bit Test and Set
BCHG Bit Test and Change
BTST Bit Test on Memory and Registers

6.4.4 Loop Instructions
The hardware DO loop executes with no overhead cycles after the DO instruction itself
has been executed– i.e., it runs as fast as straight-line code. Replacing straight-line code
with DO loops can significantly reduce program memory. The loop instructions control
hardware looping by 1) initiating a program loop and establishing looping parameters or
by 2) restoring the registers by pulling the SS when terminating a loop. Initialization
includes saving registers used by a program loop (LA and LC) on the SS so that program
loops can be nested. The address of the first instruction in a program loop is also saved
to allow no-overhead looping. The loop instructions are as follows:

DO Start Hardware Loop
ENDDO Exit from Hardware Loop

Both static and dynamic loop counts are supported in the following forms:

DO #xxx,Expr ; (Static)
DO S,Expr ; (Dynamic)

Expr is an assembler expression or absolute address, and S is a directly addressable reg-
ister such as X0.

The operation of a DO loop is shown in Figure 6-13. When a program loop is initiated with
the execution of a DO instruction, the following events occur:

1. The stack is pushed.
A. The SP is incremented.
B. The current 16-bit LA and 16-bit LC registers are pushed onto the SS to

allow nested loops.
C. The LC register is initiated with the loop count value specified in the DO

instruction.
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 25
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2. The stack is pushed again.
A. The SP is incremented.
B. The address of the first instruction in the program loop (PC) and the current

SR contents are pushed onto the SS.
C. The LA register is initialized with the value specified in the DO instruction

decremented by one.

3. The LF bit in the SR is set. The LF bit is set when a program loop is in
progress and enables the end-of-loop detection.

The program loop continues execution until the program address fetched equals the LA
register contents (last address of program loop). The contents of the LC are then tested
for one. If the LC is not one, it is decremented, and the top location in the stack RAM is
read (but not pulled) into the PC to return to the start of the loop. If the LC is one, the pro-
gram loop is terminated by the following sequence:

1. Reading the previous LF bit from the top location in the SS into the SR

2. Purging the SS (pulling the top location and discarding the contents), pulling
the LA and LC registers off the SS, and restoring the respective registers

3. Incrementing the PC

The LF bit (pulled from the SS when a loop is terminated) indicates if the terminated loop
was a nested loop. Figure 6-14 shows two DO loops, one nested inside the other. If the
stack is managed to prevent a stack overflow, DO loops can be stacked indefinitely.

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

Figure 6-13 Hardware DO Loop

1)SP+1 - SP; LA - SSH; LC - SSL; #xxx - LC
2)SP+1 - SP; PC - SSH; SR - SSL; Expr–1 - LA
3)1 - LF

START OF LOOP

END OF LOOP

1)SSL(LF) - SR
2)SP–1 - SP; SSH - LA; SSL - LC; SP–1 - SP
3)PC + 1 - PC

NOTE:
#xxx=Loop Count Number
Expr=Expression
6 - 26 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.5 Move Instructions
The move instructions perform data movement over the XDB and YDB or over the GDB.
Move instructions only affect the CCR bits S and L The S bit is affected if data growth is
detected when the A or B registers are moved onto the bus. The L bit is affected if limiting
is performed when reading a data ALU accumulator register. An address ALU instruction
(LUA) is also included in the following move instructions. The MOVE instruction is the par-
allel move with a data ALU no-operation (NOP).

LUA Load Updated Address
MOVE Move Data Register
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the sec-
ond following instruction. See the restrictions discussed in SECTION 7 - PROCESSING
STATES on page 7-10.

There are nine classifications of parallel data moves between registers and memory. Fig-
ure 6-15 shows seven parallel moves. The source of the data to be moved and the
destination are separated by a comma.

Examples of the other two classifications, XY and long (L) moves, are shown in Figure 6-
16. Example A illustrates the following steps: 1) register X0 is added to register A and the
result is placed in register A; 2) register X0 is moved to the X memory register location
pointed to by R3, and R3 is incremented; and 3) the contents of the Y memory location
pointed to by R7 is moved to the B register, and R7 is decremented.

Example B depicts the following sequence: 1) register X0 is added to register A and the
result is placed in register A; and 2) registers A and B are moved, respectively, to the loca-

Figure 6-14 Nested DO Loops

DO #n1,END1
:

DO #n2,END2
:
:

MOVE A,X:(R0)+

END2 ADD A,B X:(R1)+,X0
END1
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 27
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

contents of the 56-bit registers A and B were rounded to 24 bits before moving to the 24-
bit memory registers.

The DSP offers parallel processing of the data ALU, AGU, and program control unit. For
the instruction word above, the DSP will perform the designated operation (data ALU), the
data transfers specified with address register updates (AGU), and will decode the next
instruction and fetch an instruction from program memory (program control unit) all in one
instruction cycle. When an instruction is more than one word in length, an additional
instruction execution cycle is required. Most instructions involving the data ALU are reg-
ister based (all operands are in data ALU registers), thereby allowing the programmer to
keep each parallel processing unit busy. An instruction that is memory oriented (such as
a bit manipulation instruction) or that causes a control-flow change (such as a JMP) pre-
vents the use of parallel processing resources during its execution.

6.4.6 Program Control Instructions
The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as speci-
fied in the instruction. Optional data transfers over the XDB and YDB may be specified in
some of the program control instructions. The following list contains the program control
instructions:

DEBUG Enter Debug Mode
DEBUGcc Enter Debug Mode Conditionally
IIl Illegal Instruction
Jcc Jump Conditionally
JMP Jump

Figure 6-15 Classifications of Parallel Data Moves

IMMEDIATE SHORT DATA ADD X0,A #$05,Y1
ADDRESS REGISTER UPDATE ADD X0,A (R0)+N0
REGISTER TO REGISTER ADD X0,A A1,Y0
X MEMORY ADD X0,A X0,X:(R3)+
X MEMORY PLUS REGISTER ADD X0,A X:(R4)–,X1 A,Y0
Y MEMORY ADD X0,A Y:(R6)+N6,X0
Y MEMORY PLUS REGISTER ADD X0,A A,X0 B,Y:(R0)

NOTE: Parallel Move Syntax—Source(Src), Destination(Dst)

OPCODE/OPERANDS PARALLEL MOVE EXAMPLES
6 - 28 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JCLR Jump if Bit Clear
JSET Jump if Bit Set
JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine
JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set
NOP No Operation
REP Repeat Next Instruction
RESET Reset On-Chip Peripheral Devices
RTI Return from Interrupt
RTS Return from Subroutine
STOP Stop Processing (Low-Power Standby)
SWI Software Interrupt
WAIT Wait for Interrupt (Low-Power Standby)

XY MEMORY MOVE

+1

R3

X MEMORY

X0

ADD X0,A X0,X:(R3)+ Y:(R7)-,B

R7

Y MEMORY

-1

B1 B0

B2 SIGN EXTENDED
B0 CLEARED

Example A

A2 A1 A0 B2

ADD X0,A AB,L:(R2)+N2

Y MEMORY

B1 B0

LONG MEMORY MOVE

X MEMORY

R2

+ N2

A,B ARE SHIFTED AND LIMITED

Example B

Figure 6-16 Parallel Move Examples
MOTOROLA INSTRUCTION SET INTRODUCTION 6 - 29
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION GROUPS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6 - 30 INSTRUCTION SET INTRODUCTION MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 PROCESSING STATES 7 - 1

SECTION 7
PROCESSING STATES

STOP

WAIT

EXCEPTION

NORMAL

RESET

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

7 - 2 PROCESSING STATES

MOTOROLA

SECTION 7.1 PROCESSING STATES .. 3

SECTION 7.2 NORMAL PROCESSING STATE .. 3
7.2.1 Instruction Pipeline ... 3
7.2.2 Summary of Pipeline-Related Restrictions ... 8

SECTION 7.3 EXCEPTION PROCESSING STATE ... 10
7.3.1 Interrupt Types .. 12
7.3.2 Interrupt Priority Structure ... 12

7.3.2.1 Interrupt Priority Levels ... 14
7.3.2.2 Exception Priorities Within an IPL ... 15

7.3.3 Interrupt Sources .. 16
7.3.3.1 Hardware Interrupt Sources .. 16
7.3.3.2 Software Interrupt Sources ... 17
7.3.3.3 Other Interrupt Sources .. 22

7.3.4 Interrupt Arbitration ... 24
7.3.5 Interrupt Instruction Fetch ... 24
7.3.6 Instructions Preceding the Interrupt Instruction Fetch 25
7.3.7 Interrupt Instruction Execution .. 26

SECTION 7.4 RESET PROCESSING STATE .. 33

SECTION 7.5 WAIT PROCESSING STATE ... 36

SECTION 7.6 STOP PROCESSING STATE .. 37

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PROCESSING STATES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

7.1 PROCESSING STATES
The DSP56K processor is always in one of five processing states: normal, exception,
reset, wait, or stop. This section describes each of the processing states.

7.2 NORMAL PROCESSING STATE
The normal processing state is associated with instruction execution. Details about nor-
mal processing of the individual instructions can be found in APPENDIX A - INSTRUC-
TION SET DETAILS. Instructions are executed using a three-stage pipeline, which is
described in the following paragraphs.

7.2.1 Instruction Pipeline
DSP56K instruction execution occurs in a three-stage pipeline, which allows most
instructions to execute at a rate of one instruction per instruction cycle. However, certain
instructions require additional time to execute: instructions longer than one word, instruc-
tions using an addressing mode that requires more than one cycle, and instructions that
cause a control-flow change. In the latter case, a cycle is needed to clear the pipeline.

Pipelining allows instruction executions to overlap so that the fetch-decode-execute
operations of a given instruction occur concurrently with the fetch-decode-execute oper-
ations of other instructions. Specifically, while the processor is executing one instruction,
it is decoding the next instruction, and fetching the next instruction from program mem-
ory. The processor fetches only one word per cycle, so if an instruction is two words in
length, it fetches the additional word before it fetches the next instruction.

Table 7-1 demonstrates pipelining. F1, D1, and E1 refer to the fetch, decode, and exe-
cute operations, respectively, of the first instruction. The third instruction, which contains
an instruction extension word, takes two instruction cycles to execute. The extension
word will be either an absolute address or immediate data. Although it takes three
instruction cycles for the pipeline to fill and the first instruction to execute, an instruction
usually executes on each instruction cycle thereafter.

Operation
Instruction Cycle

1 2 3 4 5 6 7 • • •

Fetch F1 F2 F3 F3e F4 F5 F6 • • •

Decode D1 D2 D3 D3e D4 D5 • • •

Execute E1 E2 E3 E3e E4 • • •

Table 7-1 Instruction Pipelining
MOTOROLA PROCESSING STATES 7 - 3
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Each instruction requires a minimum of three instruction cycles (12 clock phases) to be
fetched, decoded, and executed. This means that there is a delay of three instruction
cycles on powerup to fill the pipe. A new instruction may begin immediately following the
previous instruction. Two-word instructions require a minimum of four instruction cycles
to execute (three cycles for the first instruction word to move through the pipe and exe-
cute and one more cycle for the second word to execute). A new instruction may start
after two instruction cycles.

The pipeline is normally transparent to the user. However, there are certain instruction-
sequence dependent situations where the pipeline will affect the program execution.
Such situations are best described by case studies. Most of these restricted sequences
occur because 1) all addresses are formed during instruction decode, or 2) they are the
result of contention for an internal resource such as the status register (SR). If the execu-
tion of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect. To test for a suspected pipeline effect, compare
between the execution of the suspect instruction 1) when it directly follows the previous
instruction and 2) when four NOPs are inserted between the two. If there is a difference,
it is caused by a pipeline effect. The DSP56K assembler flags instruction sequences with
potential pipeline effects so that the user can determine if the operation will execute as
expected.

Case 1: The following two examples show similar code sequences.

1. No pipeline effect:
ORI #xx,CCR ;Changes CCR at the end of execution time slot
Jcc xxxx ;Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg-
ment above.

2. Instruction that started execution during decode:
ORI #04,OMR ;Sets DE bit at execution time slot
MOVE x:$100,a ;Reads external RAM instead of internal ROM

A pipeline effect occurs in example 2 because the address of the MOVE is formed at its
decode time before the ORI changes the DE bit (which changes the memory map) in the
ORI’s execution time slot. The following code produces the expected results of reading
the internal ROM:

ORI #04,OMR ;Sets DE bit at execution time slot
NOP ;Delays the MOVE so it will read the updated memory map
MOVE x:$100,a ;Reads internal ROM
7 - 4 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Case 2: One of the more common sequences where pipeline effects are apparent is as
follows:

• ;Move a number into register Rn (n=0–7).
•
MOVE #xx,Rn
MOVE X:(Rn),A ;Use the new contents of Rn to address memory.
•
•

In this case, before the first MOVE instruction has written Rn during its execution cycle,
the second MOVE has accessed the old Rn, using the old contents of Rn. This is
because the address for indirect moves is formed during the decode cycle. This overlap-
ping instruction execution in the pipeline causes the pipeline effect. One instruction cycle
should be allowed after an address register has been written by a MOVE instruction
before the new contents are available for use as an address register by another MOVE
instruction. The proper instruction sequence is as follows:

• ;Move a number into register Rn.
•
MOVE X0,Rn
NOP ;Execute any instruction or instruction
• ;sequence not using Rn.
•
MOVE X:(Rn),A Use the new contents of Rn.

Case 3: A situation related to Case 2 can be seen in the boot ROM code shown in AP-
PENDIX A of the DSP56001 Technical Data Sheet. At the end of the bootstrap operation,
the operation mode register (OMR) is changed to mode #2, and then the program that was
loaded is executed. This process is accomplished in the last three instructions:

_BOOTEND MOVEC #2,OMR ;Set the operating mode to 2
;(and trigger an exit from
;bootstrap mode).

ANDI #$0,CCR ;Clear SR as if RESET and
;introduce delay needed for
;Op. Mode change.

JMP <$0 ;Start fetching from PRAM, P:$0000

The JMP instruction generates its jump address during its decode cycle. If the JMP
instruction followed the MOVEC, the MOVEC instruction would not have changed the
OMR before the JMP instruction formed the fetch address. As a result, the jump would
fetch the instruction at P:$0000 of the bootstrap ROM (MOVE #$FFE9,R2). The OMR
would then change due to the MOVEC instruction, and the next instruction would be the
MOTOROLA PROCESSING STATES 7 - 5
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

second instruction of the downloaded code at P:$0001 of the internal RAM. However, the
ANDI instruction allows the OMR to be changed before the JMP instruction uses it, and
the JMP fetches P:$0000 of the internal RAM.

Case 4: An interrupt has two additional control cycles that are executed in the interrupt
controller concurrently with the fetch, decode, and execute cycles (see Section 7.3 and
Figure 7-4). During these two control cycles, the interrupt is arbitrated by comparing the
interrupt mask level with the interrupt priority level (IPL) of the interrupt and allowing or
disallowing the interrupt. Therefore, if the interrupt mask is changed after an interrupt is
arbitrated and accepted as pending but before the interrupt is executed, the interrupt will
be executed, regardless of what the mask was changed to. The following examples show
that the old interrupt mask is in effect for up to four additional instruction cycles after the
interrupt mask is changed. All instructions shown in the examples here are one-word in-
structions; however, one two-word instruction can replace two one-word instructions
except where noted.

1. Program flow with no interrupts after interrupts are disabled:
•
•

ORI #03,MR ;Disable interrupts
INST 1
INST 2
INST 3
INST 4

•
•

2. The four possible variations in program flow that may occur after interrupts are
disabled:
• • • •
• • • •

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR
II (See Note 2) INST 1 INST 1 INST 1
II+1 II INST 2 INST 2
INST 1 II+1 ll INST 3 (See Note 1)
INST 2 INST 2 II+1 ll
INST 3 INST 3 INST 3 II+1
INST 4 INST 4 INST 4 INST 4

• • • •
• • • •
7 - 6 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2)
was a single-word instruction.

Note 2: II=Interrupt instruction from maskable interrupt.

The following program flow will not occur because the new interrupt mask level becomes
effective after a pipeline latency of four instruction cycles:

•
•
ORI #03,MR ;Disable interrupts.
INST 1
INST 2
INST 3
INST 4
II ;Interrupts disabled.
II+1 ;Interrupts disabled.
•
•

1. Program flow without interrupts after interrupts are re-enabled:
•
•
ANDI #00,MR ;Enable interrupts
INST 1
INST 2
INST 3
INST 4
•
•

2. Program flow with interrupts after interrupts are re-enabled:
•
•
ANDI #00,MR ;Enable interrupts
INST 1 ;Uninterruptable
INST 2 ;Uninterruptable
INST 3 ;II fetched
INST 4 ;II+1 fetched
II
II+1
•
•

MOTOROLA PROCESSING STATES 7 - 7
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The DO instruction is another instruction that begins execution during the decode cycle
of the pipeline. As a result, there are a number of restrictions concerning access conten-
tion with the program controller registers accessed by the DO instruction. The ENDDO
instruction has similar restrictions. APPENDIX A - INSTRUCTION SET DETAILS con-
tains additional information on the DO and ENDDO instruction restrictions.

Case 5: A resource contention problem can occur when one instruction is using a register
during its decode while the instruction executing is accessing the same resource. One ex-
ample of this is as follows:

MOVEC X:$100,SSH
DO #$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into
the system stack high (SSH) during its execution cycle. The DO instruction that follows
pushes the stack (LA → SSH, LC → SSL) during its decode cycle. Therefore, the two
instructions try writing to the SSH simultaneously and conflict.

7.2.2 Summary of Pipeline-Related Restrictions
The following paragraphs give a summary of the instruction sequences that cause pipe-
line effects. Additional information about the individual instructions can be found in
APPENDIX A - INSTRUCTION SET DETAILS.

DO instruction restrictions:

The DO instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET LA, LC, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SSH, SSL, or SP
MOVEC/MOVEM from SSH

The DO instruction cannot specify SSH as a source register, as in the following example:

DO SSH,xxxx

Restrictions near the end of DO loops:

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1,
or LA specifies the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC
as a destination register, or specifies SSH as a source or a destination register.
7 - 8 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NORMAL PROCESSING STATE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The restricted instructions at LA-2, LA-1, and LA are as follows:

DO
BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLR/JSET/JSCLR/JSSET SSH
MOVEC/MOVEM/MOVEP from SSH
MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI/ORI MR

The restricted instructions at LA include the following:

Any two-word instruction
Jcc, JMP, JScc, JSR,
REP, RESET, RTI, RTS, STOP, WAIT

Another restriction is shown below:

JSR/JScc/JSCLR/JSSET to LA, if loop flag is set

ENDDO instruction restrictions:

The ENDDO instruction must not be immediately preceded by any of the following
instructions:

BCHG/BCLR/BSET LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI/ORI MR

RTI and RTS instruction restrictions:

The RTI instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SR, SSH, SSL, or SP
MOVEC/MOVEM to SR, SSH, SSL, or SP
MOVEC/MOVEM from SSH
ANDI MR, ANDI CCR
ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instruc-
tions:

BCHG/BCLR/BSET SSH, SSL, or SP
MOVEC/MOVEM to SSH, SSL, or SP
MOVEC/MOVEM from SSH
MOTOROLA PROCESSING STATES 7 - 9
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SP and SSH/SSL register manipulation restrictions:

In addition to all the above restrictions concerning SP, SSH, and SSL, the following
instruction sequences are illegal:

1. BCHG/BCLR/BSET SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. MOVEC/MOVEM/MOVEP from SSH or SSL

and
1. MOVEC/MOVEM to SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL

and
1. BCHG/BCLR/BSET SP
2. JCLR/JSET/JSCLR/JSSET SSH or SSL

Also, the instruction MOVEC SSH,SSH is illegal.

Rn, Nn, and Mn register restrictions:

Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc), the new contents will not be
available for use as an address pointer until the second following instruction cycle.

Likewise, if an offset register Nn or a modifier register Mn is the destination of a MOVE-
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle.

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc-
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc-
tion that uses Rn as an address pointer.

Fast interrupt routines:

SWI, STOP, and WAIT may not be used in a fast interrupt routine. (Fast interrupts are
described in Section 7.3.1.)

7.3 EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)
The exception processing state is associated with interrupts that can be generated by
conditions inside the DSP or from external sources. In digital signal processing, one of
7 - 10 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the main uses of interrupts is to transfer data between DSP memory or registers and a
peripheral device. When such an interrupt occurs, a limited context switch with minimal
overhead is ideal. A fast interrupt accomplishes a limited context switch. The processor
relies on a long interrupt when it must accomplish a more complex task to service the
interrupt. Fast interrupts and long interrupts are described in more detail in Section 7.3.1.

There are many sources for interrupts on the DSP56K family of chips, and some of these
sources can generate more than one interrupt. The DSP56K family of processors fea-
tures a prioritized interrupt vector scheme with 32 vectors to provide fast interrupt ser-
vice. The interrupt priority structure is discussed in Section 7.3.2. The following list
outlines how the DSP56K processes interrupts:

1. A hardware interrupt is synchronized with the DSP clock, and the interrupt
pending flag for that particular hardware interrupt is set. An interrupt source
can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select which
interrupt will be processed. The arbiter automatically ignores any interrupts
with an IPL lower than the interrupt mask level in the SR and selects the
remaining interrupt with the highest IPL.

3. The interrupt controller then freezes the program counter (PC) and fetches two
instructions at the two interrupt vector addresses associated with the selected
interrupt.

4. The interrupt controller jams the two instructions into the instruction stream
and releases the PC, which is used for the next instruction fetch. The next
interrupt arbitration then begins.

If neither instruction is a change of program-flow instruction (i.e., a JSR), the state of the
machine is not saved on the stack, and a fast interrupt is executed. A long interrupt
occurs if one of the interrupt instructions fetched is a JSR instruction. The PC is immedi-
ately released, the SR and the PC are saved in the stack, and the jump instruction con-
trols where the next instruction shall be fetched. While either an unconditional jump or a
conditional jump can be used to form a long interrupt, they do not store the PC on the
stack. Therefore, there is no return path.

Activities 2 and 3 listed above require two additional control cycles, which effectively
make the interrupt pipeline five levels deep.

7.3.1 Interrupt Types
The DSP56K relies on two types of interrupt routines: fast and long. The fast interrupt
MOTOROLA PROCESSING STATES 7 - 11
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

fetches only two words and then automatically resumes execution of the main program;
whereas, the long interrupt must be told to return to the main program by executing an
RTI instruction. The fast routine consists of two automatically inserted interrupt instruc-
tion words. These words can contain any unrestricted, single two-word instruction or any
two one-word instructions (see Section A.9 in APPENDIX A - INSTRUCTION SET
DETAILS for a list of restrictions). Fast interrupt routines are never interruptible.

CAUTION
Status is not preserved during a fast interrupt routine; therefore, instructions
that modify status should not be used at the interrupt starting address and
interrupt starting address +1.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is
formed. The following actions occur during execution of the JSR instruction when it
occurs in the interrupt starting address or in the interrupt starting address +1:

1. The PC (containing the return address) and the SR are stacked.

2. The loop flag is reset.

3. The scaling mode bits are reset.

4. The IPL is raised to disallow further interrupts at the same or lower levels
(except that hardware RESET, NMI, stack error, trace, and SWI can always
interrupt).

5. The trace bit in the SR is cleared (in the DSP56000/56001 only).

The long interrupt routine should be terminated by an RTI. Long interrupt routines are
interruptible by higher priority interrupts. Figure 7-1 shows examples of fast and long
interrupts.

7.3.2 Interrupt Priority Structure
Interrupts are organized in a flexible priority structure. Each interrupt has an associated
interrupt priority level (IPL) that can range from zero to three. Levels 0 (lowest level), 1,
and 2 are maskable. Level 3 is the highest IPL and is not maskable. The only IPL 3 inter-
rupts are RESET, illegal instruction interrupt (III), nonmaskable interrupt (NMI), stack
error, trace, and software interrupt (SWI). The interrupt mask bits (I1, I0) in the SR reflect
the current priority level and indicate the IPL needed for an interrupt source to interrupt
the processor (see Table 7-2). Interrupts are inhibited for all priority levels below the cur-
rent processor priority level. However, level 3 interrupts are not maskable and therefore
can always interrupt the processor. DSP56K Family central processor interrupt sources
7 - 12 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

and their IPLs are listed in Table 7-6. For information on on-chip peripheral interrupt pri-

(a) DSP56K Fast Interrupt

(b) DSP56K Long Interrupt

EXPLICIT RETURN
FROM INTERRUPT
RECOGNIZED

MAIN
PROGRAM

MAIN
PROGRAM

$0100 —

$0101

$0104

$0105

$0106

MACR

REP

MAC

—

$0102

$0103

MOVE

MAC

INTERRUPT
RECOGNIZED

IMPLICIT RETURN
FROM INTERRUPT

SSI RECEIVE DATA

FAST INTERRUPT SERVICE ROUTINE

$000C

$000D

MOVEP

XXXXXX

INTERRUPT
RECOGNIZED

JSR INSTRUCTION
FORMS LONG
INTERRUPT SERVICE

$0100 —

$0101

$000E

$000F

$0104

$0105

$0106

MACR

JSR

$0300

REP

MAC

—

$0102

$0103

MOVE

MAC

SSI RECEIVE DATA
WITH EXCEPTION STATUS

LONG INTERRUPT SERVICE ROUTINE

$0300

$0301

—

DO

$0303

$0304

MOVE

RTI

Figure 7-1 Fast and Long Interrupt Examples
MOTOROLA
PROCESSING STATES 7 - 13
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ority levels, see the individual DSP56K family member’s User’s Manual.

7.3.2.1 Interrupt Priority Levels
The IPL for each on-chip peripheral device (HI, SSI, SCI) and for each external interrupt
source (IRQA, IRQB) can be programmed to one of the three maskable priority levels
(IPL 0, 1, or 2) under software control. IPLs are set by writing to the interrupt priority reg-
ister shown in Figure 7-2. This read/write register is located in program memory at
address $FFFF. It specifies the IPL for each of the interrupting devices including IRQA,
IRQB and each peripheral device. (For specific peripheral information, see the specific
DSP56K family member’s User’s Manual.) In addition, it specifies the trigger mode of the
external interrupt sources and is used to enable or disable the individual external inter-
rupts. The interrupt priority register is cleared on RESET or by the reset instruction.
Table 7-3 defines the IPL bits. Table 7-4 defines the external interrupt trigger mode bits.

7.3.2.2 Exception Priorities Within an IPL
If more than one interrupt is pending when an instruction is executed, the processor will
service the interrupt with the highest priority level first. When multiple interrupt requests

I1 I0 Exceptions Permitted Exceptions Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

Table 7-2 Status Register Interrupt Mask Bits

IAL1 IAL0IAL2IBL0IBL1IBL2********

023 10 9 8 7 6 5 4 3 2 1

IRQA MODE

IRQB MODE

RESERVED FOR EXPANSION

RESERVED FOR PERIPHERAL IPL LEVELS

Bits 6 to 9 are reserved, read as zero and should be written with zero for future compatibility.

Figure 7-2 Interrupt Priority Register (Addr X:$FFFF)
7 - 14 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

with the same IPL are pending, a second fixed-priority structure within that IPL deter-
mines which interrupt the processor will service. The fixed priority of interrupts within an
IPL and the interrupt enable bits for all interrupts are shown in Table 7-5.

7.3.3 Interrupt Sources
Interrupts can originate from any of the vector addresses listed in Table 7-6, which
shows the corresponding interrupt starting address for each interrupt source. These
addresses are located in the first 64 locations of program memory.

xxL1 xxL0 Enabled IPL

0 0 No —

Table 7-3 Interrupt Priority Level Bits Table 7-4 External Interrupt

Priority Exception Enabled By Bit No.
X Data

Memory
Address

Level 3 (Nonmaskable)

Highest Hardware RESET — — —

III — — —

NMI — — —

Stack Error — — —

Trace — — —

Lowest SWI — — —

Levels 0, 1, 2 (Maskable)

Higher IRQA (External Interrupt) IRQA Mode Bits 0 and 1 $FFFF

Lower IRQB (External Interrupt) IRQB Mode Bits 3 and 4 $FFFF

Table 7-5 Central Processor Interrupt Priorities Within an IPL
MOTOROLA PROCESSING STATES 7 - 15
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

When an interrupt occurs, the instruction at the interrupt starting address is fetched first.
Because the program flow is directed to a different starting address for each interrupt,
the interrupt structure of the DSP56K can be described as “vectored”. A vectored inter-
rupt structure has low execution overhead. If it is known beforehand that certain inter-
rupts will not be used, those interrupt vector locations can be used for program or data
storage.

7.3.3.1 Hardware Interrupt Sources
There are two types of hardware interrupts in the DSP56K: internal and external. The
internal interrupt sources include all of the on-chip peripheral devices. For further infor-
mation on a device’s internal interrupt sources, see the device’s individual User’s Man-
ual.

The external hardware interrupt sources are the RESET, NMI, IRQA, and IRQB pins on
the program interrupt controller in the Program Control Unit.

The level sensitive RESET interrupt is the highest priority interrupt with an IPL of 3. IRQA
and IRQB can be programmed to one of three priority levels: 0, 1, or 2 - all of which are
maskable. IRQA and IRQB have independent enable control and can be programmed to
be level sensitive or edge sensitive. Since level-sensitive interrupts will not be cleared
automatically when they are serviced, they must be cleared by other means to prevent
multiple interrupts. Edge-sensitive interrupts are latched as pending on the high-to-low
transition of the interrupt input and are automatically cleared when the interrupt is ser-
viced.

Interrupt
Starting Address IPL Interrupt Source

$0000 3 Hardware RESET

$0002 3 Stack Error

$0004 3 Trace

$0006 3 SWI

$0008 0 - 2 IRQA

$000A 0 - 2 IRQB

: : Vectors available for peripherals

$001E 3 NMI

: : Vectors available for peripherals

$003E 3 Illegal Instruction

Table 7-6 Interrupt Sources
7 - 16 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

When either the IRQA or IRQB pin is disabled in the interrupt priority register, the inter-
rupt request coming in on the pin will be ignored, regardless of whether the input was
defined as level sensitive or edge sensitive. If the interrupt input is defined as edge sen-
sitive, its edge-detection latch will remain in the reset state for as long as the interrupt pin
is disabled. If the interrupt is defined as level-sensitive, its edge-detection latch will stay
in the reset state. If the level-sensitive interrupt is disabled while it is pending it will be
cancelled. However, if the interrupt has been fetched, it normally will not be cancelled.

The processor begins interrupt service by fetching the instruction word in the first vector
location. The interrupt is considered finished when the processor fetches the instruction
word in the second vector location.

In an edge-triggered interrupt, the internal latch is automatically cleared when the sec-
ond vector location is fetched. The fetch of the first vector location does not guarantee
that the second location will be fetched. Figure 7-3 illustrates the one case where the
second vector location is not fetched. The SWI instruction in the figure discards the fetch
of the first interrupt vector to ensure that the SWI vectors will be fetched. Instruction n4 is
decoded as an SWI while ii1 is being fetched. Execution of the SWI requires that ii1 be
discarded and the two SWI vectors (ii3 and ii4) be fetched instead.

INTERRUPT CONTROL CYCLE 1 i i*

INTERRUPT CONTROL CYCLE 2 i i*

FETCH n3 n4 n5 ii1 ii3 ii4 sw1 sw2 sw3 sw4

DECODE n2 n3 SWI — — — JSR — sw1 sw2 sw3

EXECUTE n1 n2 n3 SWI NOP NOP NOP JSR — sw1 sw2

INSTRUCTION BEING DECODED 1

i = INTERRUPT REQUEST
i* = INTERRUPT REQUEST GENERATED BY SWI
ii1 = FIRST VECTOR OF INTERRUPT i
ii3 = FIRST SWI VECTOR (ONE-WORD JSR)
ii4 = SECOND SWI VECTOR
n = NORMAL INSTRUCTION WORD
n4 = SWI
sw = INSTRUCTIONS PERTAINING TO THE SWI LONG INTERRUPT ROUTINE

Figure 7-3 Interrupting an SWI
MOTOROLA PROCESSING STATES 7 - 17
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

CAUTION
On all level-sensitive interrupts, the interrupt must be externally released be-
fore interrupts are internally re-enabled. Otherwise, the processor will be in-
terrupted repeatedly until the release of the level-sensitive interrupt occurs.

The edge sensitive NMI is a priority 3 interrupt and cannot be masked. Only RESET and
illegal instruction have higher priority than NMI.

7.3.3.2 Software Interrupt Sources
There are two software interrupt sources — software interrupt (SWI) and illegal instruc-
tion interrupt (III).

SWI is a nonmaskable interrupt (IPL 3), which is serviced immediately following the SWI
instruction execution, usually using a long interrupt service routine. The difference
between an SWI and a JSR instruction is that the SWI sets the interrupt mask to prevent
interrupts below IPL 3 from being serviced. The SWI’s ability to mask out lower level
interrupts makes it very useful for setting breakpoints in monitor programs. The JSR
instruction does not affect the interrupt mask.

The III is also a nonmaskable interrupt (IPL 3). It is serviced immediately following the
execution or the attempted execution of an illegal instruction (any undefined operation
code). IIIs are fatal errors. Only a long interrupt routine should be used for the III routine.
RTI or RTS should not be used at the end of the interrupt routine because, during the III
service, the JSR located in the III vector will normally stack the address of the illegal
instruction (see Figure 7-4). Returning from the interrupt routine would cause the proces-
sor to attempt to execute the illegal interrupt again and cause an infinite loop which can
only be broken by cycling power. This long interrupt (see Figure 7-4) can be used as a
diagnostic tool to allow the programmer to examine the stack (MOVE SSH, dest) and
locate the illegal instruction, or the application program can be restarted with the hope
that the failure was a soft error. The illegal instruction is useful for triggering the illegal
interrupt service routine to see if the III routine can recover from illegal instructions.
7 - 18 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

I1

I2

MAIN

PROGRAM

FETCHES

II (NOP)

n6

NO FETCH

NO FETCH

INFINITE

LOOP

FAST INTERRUPT
SERVICE ROUTINE

FETCHES

Figure 7-4 Illegal Instruction Interrupt Serviced by a Fast Interrupt

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 — — ii1 ii2 n5

DECODE n1 n2 n3 n4 II — — — ii1 ii2 II

EXECUTE n1 n2 n3 n4 NOP — — — ii1 ii2 NOP

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline
MOTOROLA PROCESSING STATES 7 - 19
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

I1

I2

MAIN

PROGRAM

FETCHES

II (NOP)

n6

NO FETCH

NO FETCH

LONG INTERRUPT
SERVICE ROUTINE

FETCHES

Figure 7-5 Illegal Instruction Interrupt Serviced by a Long Interrupt

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 — — ii1 ii2 ii3 ii4 ii5

DECODE n1 n2 n3 n4 II — — — ii1 ii2 ii3 ii4

EXECUTE n1 n2 n3 n4 NOP — — — ii1 ii2 ii3

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline

I3

I4

I5
7 - 20 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector loca-
tion and is fetched during a regular interrupt service, the processor will stack
the address of the next sequential instruction in the normal instruction flow (the
regular return address of the interrupt routine that had the illegal opcode in its
vector).

2. If the illegal instruction follows an REP instruction (see Figure 7-6), the proces-
sor will effectively execute the illegal instruction as a repeated NOP and the
interrupt vector will then be inserted in the pipeline. The next instruction will be
fetched but will not be decoded or executed. The processor will stack the
address of the next sequential instruction, which is two instructions after the
illegal instruction.

In DO loops, if the illegal instruction is in the loop address (LA) location and the instruc-
tion preceding it (i.e., at LA-1) is being interrupted, the loop counter (LC) will be decre-
mented as if the loop had reached the LA instruction. When the interrupt service ends
and the instruction flow returns to the loop, the illegal instruction will be refetched (since
it is the next sequential instruction in the flow). The loop state machine will again decre-
ment LC because the LA instruction is being executed. At this point, the illegal instruction
will trigger the III. The result is that the loop state machine decrements LC twice in one
loop due to the presence of the illegal opcode at the LA location.

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 n3 n4 n5 n6 n7 — — — ii1 ii2 n8

DECODE n1 n2 n3 n4 REP II — — — — ii1 ii2 n8

EXECUTE n1 n2 n3 n4 REP REP NOP — — — ii1 ii2 n8

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

ILLEGAL INSTRUCTION INTERRUPT
RECOGNIZED AS PENDING

Figure 7-6 Repeated Illegal Instruction
MOTOROLA PROCESSING STATES 7 - 21
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.3.3 Other Interrupt Sources
Other interrupt sources include the stack error interrupt and trace interrupt (DSP56000/
56001) which are IPL3 interrupts.

An overflow or underflow of the system stack (SS) causes a stack error interrupt which is
vectored to P:$0002 (see SECTION 5 - PROGRAM CONTROL UNIT for additional infor-
mation on the stack error flag). Since the stack error is nonrecoverable, a long interrupt
should be used to service it. The service routine should not end in an RTI because exe-
cuting an RTI instruction “pops” the stack, which has been corrupted.

The DSP56000/56001 includes a facility for instruction-by-instruction tracing as a pro-
gram development aid. This trace mode generates a trace exception after each instruc-
tion executed (see Figure 7-7), which can be used by a debugger program to monitor the
execution of a program. (With members of the DSP56K family other than DSP56000/
56001, use the OnCE trace mode described in 10.5.)

The trace bit in the SR defines the trace mode. In the trace mode, the processor will gen-
erate a trace exception after it executes each instruction. When the processor is servic-
ing the trace exception, it expects to encounter a JSR in the trace vector locations,
thereby forming a long interrupt routine. The JSR stacks the SR and clears the trace bit
to prevent tracing while executing the trace exception service routine. This service rou-
tine should end with an RTI instruction, which restores the SR (with the trace bit set) from
the SS, and causes the next instruction to be traced. The pipeline must be flushed to
allow each sequential instruction to be traced. The tracing facility appends three instruc-
tion cycles to the end of each instruction traced (see the three NOP instructions shown in
Figure 7-7) to flush the pipeline and allow the next trace interrupt to follow the next
sequential interrupt.

During tracing, the processor considers the REP instruction and the instruction being
repeated as a single two-word instruction. That is, only after executing the REP instruc-
tion and all of the repeats of the next instruction will the trace exception be generated.

Fast interrupts can not be traced because they are uninterruptable. Long interrupts will
not be traced unless the processor enters the trace mode in the subroutine because the
SR is pushed on the stack and the trace bit is cleared. Tracing is resumed upon returning
from a long interrupt because the trace bit is restored when the SR is restored. Interrupts
are not likely to occur during tracing because only an interrupt with a higher IPL can
interrupt during a trace operation. While executing the program being traced, the trace
interrupt will always be pending and will win the interrupt arbitration. During the trace
interrupt, the interrupt mask is set to reject interrupts below IPL3.
7 - 22 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP

MAIN

PROGRAM

FETCHES

n1TRACE BIT
SET IN SR

TRACE INSTRUCTION n1

n2

NOP

NOP

JSR

NOT USED

RTI

DEBUGGER
PROGRAM

NEXT TRACE
OPERATION

THREE NOP
INSTRUCTIONS INSERTED
BY TRACE MODE

FAST INTERRUPT
CAUSED BY TRACE
INTERRUPT

SET TRACE BIT IN SSL

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i i

FETCH n1 NOP NOP NOP JSR — TRACE PROGRAM RTI — n2 NOP NOP NOP

DECODE n1 NOP NOP NOP JSR NOP TRACE PROGRAM RTI NOP n2 NOP NOP NOP

EXECUTE n1 NOP NOP NOP JSR NOP TRACE PROGRAM RTI NOP n2 NOP NOP NOP

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
II = ILLEGAL INSTRUCTION
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

Figure 7-7 Trace Exception

(b) Program Controller Pipeline
MOTOROLA PROCESSING STATES 7 - 23
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4 Interrupt Arbitration
Interrupt arbitration and control, which occurs concurrently with the fetch-decode-exe-
cute cycle, takes two instruction cycles. External interrupts are internally synchronized
with the processor clock before their interrupt-pending flags are set. Each external and
internal interrupt has its own flag. After each instruction is executed, the DSP arbitrates
all interrupts. During arbitration, each interrupt’s IPL is compared with the interrupt mask
in the SR, and the interrupt is either allowed or disallowed. The remaining interrupts are
prioritized according to the IPLs shown in Table 7-5, and the highest priority interrupt is
chosen. The interrupt vector is then calculated so that the program interrupt controller
can fetch the first interrupt instruction.

Interrupts from a given source are not buffered. The processor won’t arbitrate a new
interrupt from the same source until after it fetches the second interrupt vector of the cur-
rent interrupt.

The internal interrupt acknowledge signal clears the edge-triggered interrupt flags and
the internal latches of the NMI, SWI, and trace interrupts. The stack error bit in the stack
pointer register is “sticky” and requires a “MOVE” or a bit clear operation directly on the
stack pointer register. Some peripheral interrupts may also be cleared by the internal
interrupt acknowledge signal, as defined in their specifications. Peripheral interrupt
requests that need a read/write action to some register do not receive the internal inter-
rupt acknowledge signal, and they will remain pending until their registers are read/writ-
ten. Further, level-triggered interrupts will not be cleared. The acknowledge signal will be
generated after the interrupt vectors have been generated, not before.

7.3.5 Interrupt Instruction Fetch
The interrupt controller generates an interrupt instruction fetch address, which points to
the first instruction word of a two-word interrupt routine. This address is used for the next
instruction fetch, instead of the contents of the PC, and the interrupt instruction fetch
address +1 is used for the subsequent instruction fetch. While the interrupt instructions
are being fetched, the PC cannot be updated. After the two interrupt words have been
fetched, the PC is used for any subsequent instruction fetches.

After both interrupt vectors have been fetched, they are guaranteed to be executed. This
is true even if the instruction that is currently being executed is a change-of-flow instruc-
tion (i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe. After the
interrupt instruction fetch, the PC will point to the instruction that would have been
fetched if the interrupt instructions had not been inserted.
7 - 24 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.6 Instructions Preceding the Interrupt Instruction Fetch
The following one-word instructions are aborted when they are fetched in the cycle pre-
ceding the fetch of the first interrupt instruction word — REP, STOP, WAIT, RESET, RTI,
RTS, Jcc, JMP, JScc, and JSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will
replace the fetch of the second word of the two-word instruction. Aborted instructions are
refetched when program control returns from the interrupt routine. The PC is adjusted
appropriately before the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word
instruction not previously listed or the second word of a two-word instruction, that instruc-
tion will complete normally before the start of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter
an extra delay:

1. If a long interrupt routine is used to service an SWI, then the processor priority
level is set to 3. Thus, all interrupts except other level-3 interrupts are disabled
until the SWI service routine terminates with an RTI (unless the SWI service
routine software lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed accord-
ing to the following rule: after the first interrupt instruction word reaches the
instruction decoder, at least three more instructions will be decoded before
decoding the next first interrupt instruction word. If any one pair of instructions
being counted is the REP instruction followed by an instruction to be repeated,
then the combination is counted as two instructions independent of the num-
ber of repeats done. Sequential REP combinations will cause pending inter-
rupts to be rejected and can not be interrupted until the sequence of REP
combinations ends.

3. The following instructions are not interruptible: SWI, STOP, WAIT, and
RESET.

4. The REP instruction and the instruction being repeated are not interruptible.

5. If the trace bit in the SR (DSP56000/56001 only) is set, the only interrupts that
will be processed are the hardware RESET, III,NMI, stack error, and trace.
Peripheral and external interrupt requests will be ignored. The interrupt gener-
ated by the SWI instruction will be ignored.
MOTOROLA PROCESSING STATES 7 - 25
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.7 Interrupt Instruction Execution
Interrupt instruction execution is considered “fast” if neither of the instructions of the
interrupt service routine causes a change of flow. A JSR within a fast interrupt routine
forms a long interrupt, which is terminated with an RTI instruction to restore the PC and
SR from the stack and return to normal program execution. Reset is a special exception,
which will normally contain only a JMP instruction at the exception start address. At the
programmer’s option, almost any instruction can be used in the fast interrupt routine. The
restricted instructions include SWI, STOP, and WAIT. Figure 7-8 and Figure 7-10 show
the fast and the long interrupt service routines. The fast interrupt executes only two
instructions and then automatically resumes execution of the main program; whereas,
the long interrupt must be told to return to the main program by executing an RTI instruc-
tion.

Figure 7-8 illustrates the effect of a fast interrupt routine in the stream of instruction
fetches.

Figure 7-9 shows the sequence of instruction decodes between two fast interrupts. Four
decodes occur between the two interrupt decodes (two after the first interrupt and two
preceding the second interrupt). The requirement for these four decodes establishes the
maximum rate at which the DSP56K will respond to interrupts — namely, one interrupt
every six instructions (six instruction cycles if all six instructions are one instruction cycle
each). Since some instructions take more than one instruction cycle, the minimum num-
ber of instructions between two interrupts may be more than six instruction cycles.

The execution of a fast interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is not located at
one of the two interrupt vector addresses.

2. The processor status is not saved.

3. The fast interrupt routine may (but should not) modify the status of the normal
instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any
two one-word instructions except SWI, STOP, and WAIT.

5. The PC, which contains the address of the next instruction to be executed in
normal processing remains unchanged during a fast interrupt routine.
7 - 26 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ii1

ii2

MAIN

PROGRAM

MEMORY

n1

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

n2

n3

n4

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 ii1 ii2 n3 n4

DECODE n1 n2 ii1 ii2 n3 n4

EXECUTE n1 n2 ii1 ii2 n3 n4

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline

Figure 7-8 Fast Interrupt Service Routine
MOTOROLA PROCESSING STATES 7 - 27
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ii1

ii2

MAIN

PROGRAM

MEMORY

n1

INTERRUPT SYNCHRONIZED
AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

ii = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

n2

n3

n4

n5

n6

n7

n8

n9

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

INTERRUPTS
RE-ENABLED

FOUR INSTRUCTION
DECODES

ii1

ii2

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i i

FETCH n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

DECODE n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

EXECUTE n1 n2 ii1 ii2 n3 n4 n5 n6 ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

6 Icyc

(b) Program Controller Pipeline

Figure 7-9 Two Consecutive Fast Interrupts
7 - 28 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6. The fast interrupt returns without an RTI.

7. Normal instruction fetching resumes using the PC following the completion of
the fast interrupt routine.

8. A fast interrupt is not interruptible.

9. A JSR instruction within the fast interrupt routine forms a long interrupt routine.

10.The primary application is to move data between memory and I/O devices.

The execution of a long interrupt routine always conforms to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one
of the two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The inter-
rupt mask bits of the SR are updated to mask interrupts of the same or lower
priority. The loop flag, trace bit, double precision multiply mode bit, and scaling
mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach
the decoder only after the decoding of at least four instructions following the
decoding of the first instruction of the previous interrupt.

4. The interrupt service routine can be interrupted — i.e., nested interrupts are
supported.

5. The long interrupt routine, which can be any length, should be terminated by
an RTI, which restores the PC and SR from the stack.

Figure 7-10 illustrates the effect of a long interrupt routine on the instruction pipeline. A
short JSR (a JSR with 12-bit absolute address) is used to form the long interrupt routine.
For this example, word 6 of the long interrupt routine is an RTI. The point at which inter-
rupts are re-enabled and subsequent interrupts are allowed is shown to illustrate the
non-interruptible nature of the early instructions in the long interrupt service routine.

Either one of the two instructions of the fast interrupt can be the JSR instruction that
forms the long interrupt. Figure 7-11 and Figure 7-12 show the two possible cases. If the
first fast interrupt vector instruction is the JSR, the second instruction is never used.

A REP instruction and the instruction that follows it are treated as a single two-word
instruction, regardless of how many times it repeats the second instruction of the pair.
Instruction fetches are suspended and will be reactivated only after the LC is decre-
MOTOROLA PROCESSING STATES 7 - 29
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-10 Long Interrupt Service Routine

EXPLICIT
RETURN FROM

INTERRUPT
(SHOULD BE RTI)

ii1

ii2

MAIN

PROGRAM

FETCHES

n1

INTERRUPT
 SYNCHRONIZED

AND RECOGNIZED
AS PENDING

JSR CAN BE IN EITHER LOCATION
TO FORM A LONG INTERRUPT

n2

n3

n4
ii3

ii4

INTERRUPT
ROUTINE

ii7

RTI

LONG INTERRUPT
SERVICE ROUTINE FETCHES

(STARTS WITH A FAST INTERRUPT)

PROGRAM COUNTER
RESUMES OPERATION

INTERRUPTS
RE-ENABLED

(a) Instruction Fetches from Memory

(b) Program Controller Pipeline

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI — n3 n4

DECODE n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI NOP n3 n4

EXECUTE n1 n2 ii1 ii2 ii3 ii4 ii5 ii6 ii7 RTI NOP n3 n4

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED
7 - 30 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSR

NOT USED

MAIN

PROGRAM

n1

n2

ii2

ii3

ii4

iin

RTI

FAST INTERRUPT
VECTOR

LONG INTERRUPT
SUBROUTINE

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 JSR — ii2 ii3 ii4 iin RTI — n2

DECODE n1 JSR NOP ii2 ii3 ii4 iin RTI NOP n2

EXECUTE n1 JSR NOP ii2 ii3 ii4 iin RTI NOP n2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 7-11 JSR First Instruction of a Fast Interrupt

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
MOTOROLA PROCESSING STATES 7 - 31
For More Information On This Product,

 Go to: www.freescale.com

EXCEPTION PROCESSING STATE (INTERRUPT PROCESSING)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 ii1

MAIN

PROGRAM

n1

n2

iin

RTI

FAST INTERRUPT
VECTOR

LONG INTERRUPT
SUBROUTINE

JSR

ii3

ii4

ii5

ii6

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n1 ii1 JSR — ii3 ii4 ii5 iin RTI — n2

DECODE n1 ii1 JSR NOP ii3 ii4 ii5 ii6 iin RTI NOP n2

EXECUTE n1 ii1 JSR NOP ii3 ii4 ii5 ii6 iin RTI NOP n2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 7-12 JSR Second Instruction of a Fast Interrupt
7 - 32 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

RESET PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mented to one (see Figure 7-13). During the execution of n2 in Figure 7-13, no interrupts
will be serviced. When LC finally decrements to one, the fetches are reinitiated, and
pending interrupts can be serviced.

Sequential REP packages will cause pending interrupts to be rejected until the sequence
of REP packages ends. REP packages are not interruptible because the instruction
being repeated is not refetched. While that instruction is repeating, no instructions are
fetched or decoded, and an interrupt can not be inserted. For example, in Figure 7-14, if
n1, n3, and n5 are all REP instructions, no interrupts will be serviced until the last REP
instruction (n5 and its repeated instruction, n6) completes execution.

7.4 RESET PROCESSING STATE
The processor enters the reset processing state when a hardware reset occurs and the
external RESET pin is asserted. The reset state:

1. resets internal peripheral devices;

2. sets the modifier registers to $FFFF;

3. clears the interrupt priority register;

4. sets the BCR to $FFFF, thereby inserting 15 wait states in all external memory
accesses;

5. clears the stack pointer;

6. clears the scaling mode, trace mode, loop flag, double precision multiply
mode, and condition code bits of the SR, and sets the interrupt mask bits of
the SR;

7. clears the data ROM enable bit, the stop delay bit, and the internal Y memory
disable bit, and

8. the DSP remains in the reset state until the RESET pin is deasserted.

When the processor deasserts the reset state:

9. it loads the chip operating mode bits of the OMR from the external mode select
pins (MODA, MODB, MODC), and

10.begins program execution at program memory address defined by the state of
bits MODA, MODB, and MODC in the OMR. The first instruction must be
fetched and then decoded before executing. Therefore, the first instruction
execution is two instruction cycles after the first instruction fetch.
MOTOROLA PROCESSING STATES 7 - 33
For More Information On This Product,

 Go to: www.freescale.com

RESET PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

n2

i1

MAIN

PROGRAM

FETCHES

n1 REP m

n2

INTERRUPT SYNCHRO-
NIZED AND RECOGNIZED

AS PENDING

ADDITIONAL INTERRUPTS
DISABLED DURING

FAST INTERRUPT

FAST INTERRUPT
SERVICE ROUTINE FETCHES
(FROM BETWEEN P:$0000
AND P:$003F)

i2

n2

n3

n4

n5

n6

INTERRUPTS
RE-ENABLED

n2
n2

INSTRUCTION n2
REPLACED PER
THE REP INSTRUCTION

i = INTERRUPT INSTRUCTION
n = NORMAL INSTRUCTION

Figure 7-13 Interrupting an REP Instruction

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i% i

FETCH REP n2 n3 n4 ii1 ii2 n5 n6

DECODE REP NOP n2 n2 n2 n2 n3 n4 ii1 ii2 n5

EXECUTE REP NOP n2 n2 n2 n2 n3 n4 ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

REPEAT
m TIMES
7 - 34 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

RESET PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

REPEAT m
TIMES

n6

n4
n4

n4
•••

n2

n1 REP m

ii1

MAIN

PROGRAM

FETCHES

n2

ii2

n3

n4

n5

n6

INTERRUPT
REJECTED

•

n7

n8

n9

INTERRUPT
PENDING

INTERRUPT
REJECTED

INTERRUPT
REJECTED

 REP m

 REP m

INTERRUPT
PENDING

INTERRUPT
PENDING

INTERRUPT
PENDING

n6

••
n2

n2

n6
•••

REPEAT m TIMES

(a) Instruction Fetches from Memory

INTERRUPT CONTROL CYCLE 1 i i

INTERRUPT CONTROL CYCLE 2 i% i

FETCH REP n2 REP n4 REP n6 n7 n8 ii1 ii2 n9

DECODE REP NOP n2 n2 n2 REP NOP n4 n4 n4 REP NOP n6 n6 n6 n7 n8 ii1 ii2 n9

EXECUTE REP NOP n2 n2 n2 REP NOP n4 n4 n4 REP NOP n6 n6 n6 n7 n8 ii1 ii2 n9

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD
i% = INTERRUPT REJECTED

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

INTERRUPTS RE-ENABLED

(b) Program Controller Pipeline

Figure 7-14 Interrupting Sequential REP Instructions

REPEAT m
TIMES
MOTOROLA PROCESSING STATES 7 - 35
For More Information On This Product,

 Go to: www.freescale.com

WAIT PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5 WAIT PROCESSING STATE
The WAIT instruction brings the processor into the wait processing state which is one of
two low power-consumption states. Asserting the OnCE’s debug request pin releases
the DSP from the wait state. In the wait state, the internal clock is disabled from all inter-
nal circuitry except the internal peripherals. All internal processing is halted until an
unmasked interrupt occurs, the Debug Request pin of the OnCE is asserted, or the DSP
is reset.

Figure 7-15 shows a WAIT instruction being fetched, decoded, and executed. It is
fetched as n3 in this example and, during decode, is recognized as a WAIT instruction.
The following instruction (n4) is aborted, and the internal clock is disabled from all inter-
nal circuitry except the internal peripherals. The processor stays in this state until an
interrupt or reset is recognized. The response time is variable due to the timing of the
interrupt with respect to the internal clock. Figure 7-15 shows the result of a fast interrupt
bringing the processor out of the wait state. The two appropriate interrupt vectors are
fetched and put in the instruction pipe. The next instruction fetched is n4, which had been
aborted earlier. Instruction execution proceeds normally from this point.

Figure 7-16 shows an example of the WAIT instruction being executed at the same time
that an interrupt is pending. Instruction n4 is aborted as before. The WAIT instruction
causes a five-instruction-cycle delay from the time it is decoded, after which the interrupt
is processed normally. The internal clocks are not turned off, and the net effect is that of
executing eight NOP instructions between the execution of n2 and ii1.

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n3 n4 — ii1 ii2 n4 n5

DECODE n2 WAIT — ii1 ii2 n4

EXECUTE n1 n2 WAIT ii1 ii2

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

ONLY INTERNAL PERIPHERALS
RECEIVE CLOCK

Figure 7-15 Wait Instruction Timing
7 - 36 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.6 STOP PROCESSING STATE
The STOP instruction brings the processor into the stop processing state, which is the
lowest power consumption state. In the stop state, the clock oscillator is gated off;
whereas, in the wait state, the clock oscillator remains active. The chip clears all periph-
eral interrupts and external interrupts (IRQA, IRQB, and NMI) when it enters the stop
state. Trace or stack errors that were pending, remain pending. The priority levels of the
peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective individual reset states while in the stop state.

INTERRUPT CONTROL CYCLE 1 i

INTERRUPT CONTROL CYCLE 2 i

FETCH n3 n4 — — — — — — ii1 ii2 n4

DECODE n2 WAIT — — — — — — — ii1 ii2

EXECUTE n1 n2 WAIT — — — — — — — ii1

INSTRUCTION CYCLE COUNT 1 2 3 4 5 6 7 8 9 10 11

i = INTERRUPT
ii = INTERRUPT INSTRUCTION WORD
n = NORMAL INSTRUCTION WORD

INTERRUPT SYNCHRONIZED AND
RECOGNIZED AS PENDING

EQUIVALENT TO EIGHT NOPs

Figure 7-16 Simultaneous Wait Instruction and Interrupt
MOTOROLA PROCESSING STATES 7 - 37
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The stop processing state halts all activity in the processor until one of the following
actions occurs:

1. A low level is applied to the IRQA pin.

2. A low level is applied to the RESET pin.

3. A low level is applied to the DR pin

Either of these actions will activate the oscillator, and, after a clock stabilization delay,
clocks to the processor and peripherals will be re-enabled. The clock stabilization delay
period is determined by the stop delay (SD) bit in the OMR.

The stop sequence is composed of eight instruction cycles called stop cycles. They are
differentiated from normal instruction cycles because the fourth cycle is stretched for an
indeterminate period of time while the four-phase clock is turned off.

The STOP instruction is fetched in stop cycle 1 of Figure 7-17, decoded in stop cycle 2
(which is where it is first recognized as a stop command), and executed in stop cycle 3.
The next instruction (n4) is fetched during stop cycle 2 but is not decoded in stop cycle 3
because, by that time, the STOP instruction prevents the decode. The processor stops
the clock and enters the stop mode. The processor will stay in the stop mode until it is
restarted.

FETCH n3 n4 — — n4

DECODE n2 STOP — —

EXECUTE n1 n2 STOP —

STOP CYCLE COUNT 1 2 3 4 5 6 7 8 (9)

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

131,072 T OR 16 T CYCLE COUNT STARTED

IRQA

CLOCK STOPPED

Figure 7-17 STOP Instruction Sequence
7 - 38 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-18 shows the system being restarted by asserting the IRQA signal. If the exit
from stop state was caused by a low level on the IRQA pin, then the processor will ser-
vice the highest priority pending interrupt. If no interrupt is pending, then the processor
resumes at the instruction following the STOP instruction that brought the processor into
the stop state.

An IRQA deasserted before the end of the stop cycle count will not be recognized as
pending. If IRQA is asserted when the stop cycle count completes, then an IRQA inter-
rupt will be recognized as pending and will be arbitrated with any other interrupts.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a
delay determined by the SD bit of the OMR. When the chip uses the internal clock oscil-
lator, the SD bit should be set to zero, to allow a longer delay time of 128K T cycles
(131,072 T cycles) so that the clock oscillator may stabilize. When the chip uses a stable
external clock, the SD bit may be set to one to allow a shorter (16 T cycle) delay time and
a faster start up of the chip.

For example, assume that SD=0 so that the 128K T counter is used. During the 128K T
count, the processor ignores interrupts until the last few counts and, at that time, begins
to synchronize them. At the end of the 128K T cycle delay period, the chip restarts
instruction processing, completes stop cycle 4 (interrupt arbitration occurs at this time),
and executes stop cycles 5, 6, 7, and 8 (it takes 17T from the end of the 128K T delay to

FETCH n3 n4 — — ii1

DECODE n2 STOP — —

EXECUTE n1 n2 STOP —

STOP CYCLE COUNT 1 2 3 4 5 6 7 8 (9)

IRQA = INTERRUPT REQUEST A SIGNAL
n = NORMAL INSTRUCTION WORD

STOP = INTERRUPT INSTRUCTION WORD

RESUME STOP CYCLE COUNT 4,
INTERRUPTS ENABLED

IRQA

CLOCK STOPPED

131,072 T OR 16 T CYCLE COUNT STARTED

Figure 7-18 STOP Instruction Sequence Followed by IRQA
MOTOROLA PROCESSING STATES 7 - 39
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the first instruction fetch). If the IRQA signal is released (pulled high) after a minimum of
4T but less than 128K T cycles, no IRQA interrupt will occur, and the instruction fetched
after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-18). An IRQA
interrupt will be serviced as shown in Figure 7-18 if 1) the IRQA signal had previously
been initialized as level sensitive, 2) IRQA is held low from the end of the 128K T cycle
delay counter to the end of stop cycle count 8, and 3) no interrupt with a higher interrupt
level is pending. If IRQA is not asserted during the last part of the STOP instruction
sequence (6, 7, and 8) and if no interrupts are pending, the processor will refetch the
next sequential instruction (n4). Since the IRQA signal is asserted (see Figure 7-18), the
processor will recognize the interrupt and fetch and execute the instructions at P:$0008
and P:$0009 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps
must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive – an edge-triggered interrupt will not be ser-
viced.

2. Define IRQA priority as higher than the other sources and higher than the pro-
gram priority.

3. Ensure that no stack error or trace interrupts are pending.

4. Execute the STOP instruction and enter the stop state.

5. Recover from the stop state by asserting the IRQA pin and holding it asserted
for the whole clock recovery time. If it is low, the IRQA vector will be fetched.
Also, the user must ensure that NMI will not be asserted during these last
three cycles; otherwise, NMI will be serviced before IRQA because NMI prior-
ity is higher.

6. The exact elapsed time for clock recovery is unpredictable. The external
device that asserts IRQA must wait for some positive feedback, such as spe-
cific memory access or a change in some predetermined I/O pin, before deas-
serting IRQA.

The STOP sequence totals 131,104 T cycles (if SD=0) or 48 T cycles (if SD=1) in addi-
tion to the period with no clocks from the stop fetch to the IRQA vector fetch (or next
instruction). However, there is an additional delay if the internal oscillator is used. An
indeterminate period of time is needed for the oscillator to begin oscillating and then sta-
bilize its amplitude. The processor will still count 131,072 T cycles (or 16 T cycles), but
7 - 40 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the period of the first oscillator cycles will be irregular; thus, an additional period of
19,000 T cycles should be allowed for oscillator irregularity (the specification recom-
mends a total minimum period of 150,000 T cycles for oscillator stabilization). If an exter-
nal oscillator is used that is already stabilized, no additional time is needed.

The PLL may be disabled or not when the chip enters the STOP state. If it is disabled
and will not be re-enabled when the chip leaves the STOP state, the number of T cycles
will be much greater because the PLL must regain lock.

If the STOP instruction is executed when the IRQA signal is asserted, the clock genera-
tor will not be stopped, but the four-phase clock will be disabled for the duration of the
128K T cycle (or 16 T cycle) delay count. In this case, the STOP looks like a 131,072 T +
35 T cycle (or 51 T cycle) NOP, since the STOP instruction itself is eight instruction
cycles long (32 T) and synchronization of IRQA is 3T, which equals 35T.

A trace or stack error interrupt pending before entering the stop state is not cleared and
will remain pending. During the clock stabilization delay, all peripheral and external inter-
rupts are cleared and ignored (includes all SCI, SSI, HI, IRQA, IRQB, and NMI interrupts,
but not trace or stack error). If the SCI, SSI, or HI have interrupts enabled in 1) their
respective control registers and 2) in the interrupt priority register, then interrupts like SCI
transmitter empty will be immediately pending after the clock recovery delay and will be
serviced before continuing with the next instruction. If peripheral interrupts must be dis-
abled, the user should disable them with either the control registers or the interrupt prior-
ity register before the STOP instruction is executed.

If RESET is used to restart the processor (see Figure 7-19), the 128K T cycle delay
counter would not be used, all pending interrupts would be discarded, and the processor
would immediately enter the reset processing state as described in Section 7.4. For
example, the stabilization time recommended in theDSP56001 Technical Data Sheet for
the clock (RESET should be asserted for this time) is only 50 T for a stabilized external
clock but is the same 150,000 T for the internal oscillator. These stabilization times are
recommended and are not imposed by internal timers or time delays. The DSP fetches
instructions immediately after exiting reset. If the user wishes to use the 128K T (or 16 T)
delay counter, it can be started by asserting IRQA for a short time (about two clock
cycles).
MOTOROLA PROCESSING STATES 7 - 41
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INTERRUPT CONTROL CYCLE 1

INTERRUPT CONTROL CYCLE 2

FETCH n3 n4 — — nop nA nB nC nD nE

DECODE n2 STOP — — nop nop nA nB nC nD

EXECUTE n1 n2 STOP — nop nop nop nA nB nC

STOP CYCLE COUNT 1 2 3 4

IRESET = INTERRUPT
n = NORMAL INSTRUCTION WORD

nA, nB, nC = INSTRUCTIONS IN RESET ROUTINE
STOP = INTERRUPT INSTRUCTION WORD

RESET

CLOCK STOPPED

PROCESSOR LEAVES RESET STATEPROCESSOR ENTERS
RESET STATE

Figure 7-19 STOP Instruction Sequence Recovering with RESET
7 - 42 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA PROCESSING STATES 7 - 43
For More Information On This Product,

 Go to: www.freescale.com

STOP PROCESSING STATE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7 - 44 PROCESSING STATES MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 PORT A 8 - 1

SECTION 8
PORT A

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

8 - 2 PORT A

MOTOROLA

SECTION 8.1 PORT A OVERVIEW ..3

SECTION 8.2 PORT A INTERFACE ...3
8.2.1 Read/Write Control Signals ...5

8.2.1.1 Program Memory Select (PS) ... 5
8.2.1.2 Data Memory Select (DS) ... 5
8.2.1.3 X/Y Select (X/Y) .. 5

8.2.2 Port A Address and Data Bus Signals ..5
8.2.2.1 Address (A0–A15) .. 6
8.2.2.2 Data (D0–D23) .. 6

8.2.3 Port A Bus Control Signals ..6
8.2.3.1 Read Enable (RD) .. 6
8.2.3.2 Write Enable (WR) .. 6
8.2.3.3 Port A Access Control Signals .. 6

8.2.4 Interrupt and Mode Control ...6
8.2.5 Port A Wait States ...6

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PORT A OVERVIEW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

8.1 PORT A OVERVIEW
Port A provides a versatile interface to external memory, allowing economical connection
with fast memories, slow memories/devices, and multiple bus master systems. This sec-
tion introduces the signals associated with this memory expansion port that are common
among the members of the DSP56K family of processors which feature Port A. Certain
characteristics, such as signaling, timing, and bus arbitration, vary between members of
the processor family and are detailed in each device’s own User’s Manual.

Port A has two power-reduction features. It can access internal memory spaces, toggling
only the external memory signals that need to change, and eliminate unneeded switch-
ing current. Also, if conditions allow the processor to operate at a lower memory speed,
wait states can be added to the external memory access to significantly reduce power
while the processor accesses those memories.

8.2 PORT A INTERFACE
The DSP56K processor can access one or more of its memory sources (X data memory,
Y data memory, and program memory) while it executes an instruction. The memory
sources may be either internal or external to the DSP. Three address buses (XAB, YAB,
and PAB) and four data buses (XDB, YDB, PDB, and GDB) are available for internal
memory accesses during one instruction cycle. Port A’s one address bus and one data
bus are available for external memory accesses. If all memory sources are internal to the
DSP, one or more of the three memory sources may be accessed in one instruction cycle
(i.e., program memory access or program memory access plus an X, Y, XY, or L memory
reference). However, when one or more of the memories are external to the chip, memory
references may require additional instruction cycles because only one external memory
access can occur per instruction cycle.

If an instruction cycle requires more than one external access, the processor will make
the accesses in the following priority: X memory, Y memory, and program memory. It
takes one instruction cycle for each external memory access – i.e., one access can be
executed in one instruction cycle, two accesses take two instruction cycles, etc. Since the
external bus is only 24 bits wide, one XY or long external access will take two instruction
cycles.

The port A external data bus shown in Figure 8-1 is 24 bits wide. The 16-bit address bus
can sustain a rate of one memory access per instruction cycle (using no-wait-state mem-
ory which is discussed in Section 8.2.5.)

Figure 8-1 shows the port A signals divided into their three functional groups: address bus
MOTOROLA PORT A 8 - 3
For More Information On This Product,

 Go to: www.freescale.com

PORT A INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

signals (A0-A15), data bus signals (D0-D15), and bus control. The bus control signals can

EXTERNAL
ADDRESS BUS

SWITCH

EXTERNAL
ADDRESS BUS

A0 - A15

X ADDRESS (XA)

Y ADDRESS (YA)

PROGRAM ADDRESS (PA)

16 - BIT INTERNAL
ADDRESS BUSES

16

EXTERNAL
DATA BUS
SWITCH

EXTERNAL
DATA BUS
D0 - D23

X DATA (XD)

Y DATA (YD)

PROGRAM DATA (PD)

24 - BIT INTERNAL
DATA BUSES

24

GLOBAL DATA (GD)

EXTERNAL
BUS CONTROL

LOGIC

BUS CONTROL SIGNALS

RD - READ ENABLE
WR - WRITE ENABLE
PS - PROGRAM MEMORY SELECT
DS - DATA MEMORY SELECT
X/Y - X MEMORY/Y MEMORY SELECT

BUS ACCESS CONTROL PINS

Figure 8-1 Port A Signals
8 - 4 PORT A MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PORT A INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

be subdivided into three additional groups: read/write control (RD and WR), address
space selection (including program memory select (PS), data memory select (DS), and X/
Y select) and bus access control.

The read/write controls are self-descriptive. They can be used as decoded read and write
controls, or, the write signal can be used as the read/write control and the read signal can
be used as an output enable (or data enable) control for the memory. Decoding in this
fashion simplifies the connection to high-speed random-access memories (RAMs). The
address space selection signals can be considered as additional address signals, which
extend the addressable memory from 64K words to 192K words

Note: Depending on system design, unused inputs should have pullup resistors for two
reasons: 1) floating inputs draw excessive power, and 2) a floating input can cause erro-
neous operation. For example, during RESET, all signals are three-stated. Output pins PS
and DS may require pullup resistors because, without them, the signals may become ac-
tive and may cause two or more memory chips to try to simultaneously drive the external
data bus, which can damage the memory chips. A pullup resistor in the 50K-ohm range
should be sufficient.

8.2.1 Read/Write Control Signals
The following paragraphs describe the Port A read/write control signals. These pins are
three-stated during reset and may require pullup resistors to prevent erroneous operation
of a memory device or other external components.

8.2.1.1 Program Memory Select (PS)
This three-state output is asserted only when external program memory is referenced.

8.2.1.2 Data Memory Select (DS)
This three-state output is asserted only when external data memory is referenced.

8.2.1.3 X/Y Select (X/Y)
This three-state output selects which external data memory space (X or Y) is referenced
by DS.

8.2.2 Port A Address and Data Bus Signals
The following paragraphs describe the Port A address and data bus signals. These pins
are three-stated during reset and may require pullup resistors to prevent erroneous
operation.
MOTOROLA PORT A 8 - 5
For More Information On This Product,

 Go to: www.freescale.com

PORT A INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2.2.1 Address (A0–A15)
These three-state output pins specify the address for external program and data memory
accesses. To minimize power dissipation, A0–A15 do not change state when external
memory spaces are not being accessed.

8.2.2.2 Data (D0–D23)
These pins provide the bidirectional data bus for external program and data memory ac-
cesses. D0–D23 are in the high-impedance state when the bus grant signal is asserted.

8.2.3 Port A Bus Control Signals
The following paragraphs describe the Port A bus control signals. The bus control signals
provide the means to connect additional bus masters (which may be additional DSPs, mi-
croprocessors, direct memory access (DMA) controllers, etc.) to the port A bus. They are
three-stated during reset and may require pullup resistors to prevent erroneous operation.

8.2.3.1 Read Enable (RD)
This three-state output is asserted to read external memory on the data bus (D0–D23).

8.2.3.2 Write Enable (WR)
This three-state output is asserted to write external memory on the data bus (D0–D23).

8.2.3.3 Port A Access Control Signals
Port A features a group of configurable pins that perform bus arbitration and bus access
control. The pins, such as Bus Needed (BN), Bus Request. (BR), Bus Grant (BG), Bus
Wait (WT), and Bus Strobe (BS), and their designations differ between members of the
DSP56K family and are explained in the respective devices’ user manuals.

8.2.4 Interrupt and Mode Control
Port A features a pin set that selects the chip’s operating mode and receives interrupt re-
quests from external sources. The pins and their designations vary between members of
the DSP56K family and are explained in the respective devices’ user manuals.

8.2.5 Port A Wait States
The DSP56K processor features two methods to allow the user to accommodate slow
memory by changing the port A bus timing. The first method uses the16-bit bus control
register (BCR), which resides in X Data memory space. The BCR allows a fixed number
of wait states to be inserted in a given memory access to all locations in any one of the
four memory spaces: X, Y, P, and I/O. The second method uses the bus strobe/wait (BS/
8 - 6 PORT A MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PORT A INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

WT) facility, which allows an external device to insert an arbitrary number of wait states
when accessing either a single location or multiple locations of external memory or I/O
space. Wait states are executed until the external device releases the DSP to finish the
external memory cycle. An internal wait-state generator can be programmed using the
BCR to insert up to15 wait states if it is known ahead of time that access to slower mem-
ory or I/O devices is required. A bus wait signal allows an external device to control the
number of wait states (not limited to 15) inserted in a bus access operation.
MOTOROLA PORT A 8 - 7
For More Information On This Product,

 Go to: www.freescale.com

PORT A INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

8 - 8 PORT A MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 PLL CLOCK OSCILLATOR 9 - 1

SECTION 9
PLL CLOCK OSCILLATOR

x xd∫Φ

VCO

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

9 - 2 PLL CLOCK OSCILLATOR

MOTOROLA

SECTION 9.1 PLL CLOCK OSCILLATOR INTRODUCTION 3

SECTION 9.2 PLL COMPONENTS .. 3
9.2.1 Phase Detector and Charge Pump Loop Filter 4
9.2.2 Voltage Controlled Oscillator (VCO) ... 5
9.2.3 Frequency Multiplier ... 5
9.2.4 Low Power Divider (LPD) ... 5
9.2.5 PLL Control Register (PCTL) .. 5

9.2.5.1 PCTL Multiplication Factor Bits (MF0-MF11) - Bits 0-11 5
9.2.5.2 PCTL Division Factor Bits (DF0-DF3) - Bits 12-15 6
9.2.5.3 PCTL XTAL Disable Bit (XTLD) - Bit 16 7
9.2.5.4 PCTL STOP Processing State Bit (PSTP) - Bit 17 7
9.2.5.5 PCTL PLL Enable Bit (PEN) - Bit 18 .. 8
9.2.5.6 PCTL Clock Output Disable Bits (COD0-COD1) - Bits 19-20 8
9.2.5.7 PCTL Chip Clock Source Bit (CSRC) - Bit 21 9
9.2.5.8 PCTL CKOUT Clock Source Bit (CKOS) - Bit 22 9
9.2.5.9 PCTL Reserved Bit - Bit 23 .. 9

SECTION 9.3 PLL PINS ... 9

SECTION 9.4 PLL OPERATION CONSIDERATIONS 11
9.4.1 Operating Frequency .. 11
9.4.2 Hardware Reset .. 11
9.4.3 Operation with PLL Disabled .. 12
9.4.4 Changing the MF0-MF11 Bits ... 12
9.4.5 Change of DF0-DF3 Bits .. 13
9.4.6 Loss of Lock .. 13
9.4.7 STOP Processing State .. 13
9.4.8 CKOUT Considerations .. 14
9.4.9 Synchronization Among EXTAL, CKOUT, and the Internal Clock 14

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PLL CLOCK OSCILLATOR INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

9.1 PLL CLOCK OSCILLATOR INTRODUCTION
The DSP56K family of processors (with the exception of the DSP56000 and DSP56001)
features a PLL (phase-locked loop) clock oscillator in its central processing module,
shown in Figure 9-2. The PLL allows the processor to operate at a high internal clock fre-
quency using a low frequency clock input, a feature which offers two immediate benefits.
Lower frequency clock inputs reduce the overall electromagnetic interference generated
by a system, and the ability to oscillate at different frequencies reduces costs by eliminat-
ing the need to add additional oscillators to a system.

The PLL performs frequency multiplication to allow the processor to use almost any
available external system clock for full speed operation, while also supplying an output
clock synchronized to a synthesized internal core clock. It also improves the synchro-
nous timing of the processor’s external memory port, significantly reducing the timing
skew between EXTAL and the internal chip phases. The PLL is unusual in that it pro-
vides a low power divider on its output, which can reduce or restore the chip operating
frequency without losing the PLL lock

A DSP56K processor uses a four-phase clock for instruction execution which runs at the
instruction execution rate. It can accept an external clock through the EXTAL input, or it
can run on an internal oscillator, bypassing the PLL function, when the user connects an
external crystal between XTAL and EXTAL. (The PLL need not be disabled when the
processor accepts an external clock.)

9.2 PLL COMPONENTS
The PLL block diagram is shown below in Figure 9-1. The components of the PLL are de-
scribed in the following sections.

DIVIDER OUT

EXTAL

VCO OUT

MF0-MF11

DF0-DF3

Phase
Detector

(PD)

Charge
Pump
Loop
Filter

Voltage
Controlled
Oscillator

(VCO)

Low
Power
Divider

20 to 215

Multiplication
Factor

1 to 4096

Figure 9-1 PLL Block Diagram

Frequency
Multiplier
MOTOROLA PLL CLOCK OSCILLATOR 9 - 3
For More Information On This Product,

 Go to: www.freescale.com

PLL COMPONENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

9.2.1 Phase Detector and Charge Pump Loop Filter
The Phase Detector (PD) detects any phase difference between the external clock
(EXTAL) and an internal clock phase from the frequency multiplier. At the point where
there is negligible phase difference and the frequency of the two inputs is identical, the
PLL is in the “locked” state.

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE™

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24-Bit
56K Mod-

Figure 9-2 DSP56K Block Diagram

Program Control Unit
9 - 4 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL COMPONENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The charge pump loop filter receives signals from the PD, and either increases or
decreases the phase based on the PD signals. An external capacitor is connected to the
PCAP pin (described in Section 9.3) and determines the PLL operation. (See the appro-
priate Technical Data Sheet for more detailed information about a particular device’s
phase and frequency.)

After the PLL locks on to the proper phase/frequency, it reverts to the narrow bandwidth
mode, which is useful for tracking small changes due to frequency drift of the EXTAL
clock.

9.2.2 Voltage Controlled Oscillator (VCO)
The VCO can oscillate at frequencies from the minimum speed specified in a device’s
Technical Data Sheet (typically10 MHz) up to the device’s maximum allowed clock input
frequency.

9.2.3 Frequency Multiplier
Inside the PLL, the frequency multiplier divides the VCO output frequency by its division
factor (n). If the frequency multiplier’s output frequency is different from the EXTAL fre-
quency, the charge pump loop filter generates an error signal. The error signal causes
the VCO to adjust its frequency until the two input signals to the phase detector have the
same phase and frequency. At this point (phase lock) the VCO will be running at n times
the EXTAL frequency, where n is the multiplication factor for the frequency multiplier.
The programmable multiplication factor ranges from 1 to 4096

9.2.4 Low Power Divider (LPD)
The Low Power Divider (LPD) divides the output frequency of the VCO by any power of 2
from 20 to 215. Since the LPD is not in the closed loop of the PLL, changes in the divide
factor will not cause a loss of lock condition. This fact is particularly useful for utilizing the
LPD in low power consumption modes when the chip is not involved in intensive calcula-
tions. This can result in significant power saving. When the chip is required to exit the low
power mode, it can immediately do so with no time needed for clock recovery or PLL
lock.

9.2.5 PLL Control Register (PCTL)
The PLL control register (PCTL) is a 24-bit read/write register which directs the operation
of the on-chip PLL. It is mapped into the processor’s internal X memory at X:$FFFD. The
PCTL control bits are described in the following sections.

9.2.5.1 PCTL Multiplication Factor Bits (MF0-MF11) - Bits 0-11
The Multiplication Factor Bits MF0-MF11 define the multiplication factor (MF) that will be
applied to the PLL input frequency. The MF can be any integer from 1 to 4096. Table 9-1
MOTOROLA PLL CLOCK OSCILLATOR 9 - 5
For More Information On This Product,

 Go to: www.freescale.com

PLL COMPONENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

shows how to program the MF0-MF11 bits. The VCO will oscillate at a frequency of
MF x Fext, where Fext is the EXTAL clock frequency. The multiplication factor must be
chosen to ensure that the resulting VCO output frequency will lay in the range specified
in the device’s Technical Data Sheet. Any time a new value is written into the MF0-MF11
bits, the PLL will lose the lock condition. After a time delay, the PLL will relock. The
MF0-MF11 bits are set to a pre-determined value during hardware reset; the value is
implementation dependent and may be found in each DSP56K family member’s user
manual.

Table 9-1 Multiplication Factor Bits MF0-MF11

9.2.5.2 PCTL Division Factor Bits (DF0-DF3) - Bits 12-15
The Division Factor Bits DF0-DF3 define the divide factor (DF) of the low power divider.
These bits specify any power of two divide factor in the range from 20 to 215. Table 9-2

MF11-MF0
Multiplication

Factor MF

$000 1

$001 2

$002 3

• •

• •

$FFE 4095

$FFF 4096

01267891011 345

121314181920212223 151617

MF0MF1MF2MF3MF4MF5MF6MF7MF8MF9MF10MF11

DF0DF1DF2DF3XTLDPSTPPENCSRCCKOS** COD0

** Reserved bits, read as zero, should be written with zero for future compatibility.

 COD1

Figure 9-3 PLL Control Register (PCTL)
9 - 6 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL COMPONENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

shows the programming of the DF0-DF3 bits. Changing the value of the DF0-DF3 bits
will not cause a loss of lock condition. Whenever possible, changes of the operating fre-
quency of the chip (for example, to enter a low power mode) should be made by chang-
ing the value of the DF0-DF3 bits rather than changing the MF0-MF11 bits. For MF≤4,
changing DF0-DF3 may lengthen the instruction cycle following the PLL control register
update; this is done in order to keep synchronization between EXTAL and the internal
chip clock. For MF>4 such synchronization is not guaranteed and the instruction cycle is
not lengthened. Note that CKOUT is synchronized with the internal clock in all cases.
The DF bits are cleared (division by one) by hardware reset.

Table 9-2 Division Factor Bits DF0-DF3

9.2.5.3 PCTL XTAL Disable Bit (XTLD) - Bit 16
The XTAL Disable (XTLD) bit controls the on-chip crystal oscillator XTAL output. When
XTLD is cleared, the XTAL output pin is active permitting normal operation of the crystal
oscillator. When XTLD is set, the XTAL output pin is held in the high (“1”) state, disabling
the on-chip crystal oscillator. If the on-chip crystal oscillator is not used (EXTAL is driven
from an external clock source), it is recommended that XTLD be set (disabling XTAL) to
minimize RFI noise and power dissipation. The XTLD bit is cleared by hardware reset.

9.2.5.4 PCTL STOP Processing State Bit (PSTP) - Bit 17
The PSTP bit controls the behavior of the PLL and of the on-chip crystal oscillator during
the STOP processing state. When PSTP is set, the PLL and the on-chip crystal oscillator
will remain operating while the chip is in the STOP processing state, enabling rapid
recovery from the STOP state. When PSTP is cleared, the PLL and the on-chip crystal
oscillator will be disabled when the chip enters the STOP processing. For minimal power
consumption during the STOP state, at the cost of longer recovery time, PSTP should be

DF3-DF0
Division

Factor DF

$0 20

$1 21

$2 22

• •

• •

$E 214

$F 215
MOTOROLA PLL CLOCK OSCILLATOR 9 - 7
For More Information On This Product,

 Go to: www.freescale.com

PLL COMPONENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

cleared. To enable rapid recovery when exiting the STOP state, at the cost of higher
power consumption in the STOP state, PSTP should be set. PSTP is cleared by hard-
ware reset.

9.2.5.5 PCTL PLL Enable Bit (PEN) - Bit 18
The PEN bit enables the PLL operation. When this bit is set, the PLL is enabled and the
internal clocks will be derived from the PLL VCO output. When this bit is cleared, the PLL
is disabled and the internal clocks are derived directly from the clock connected to the
EXTAL pin. When the PLL is disabled, the VCO does not operate in order to minimize
power consumption. The PLOCK pin is asserted when PEN is cleared. The PEN bit may
be set by software but it cannot be reset by software. During hardware reset this bit
receives the value of the PINIT pin. The only way to clear PEN is to hold the PINIT pin
low during hardware reset.

A relationship exists between PSTP and PEN where PEN adjusts PSTP’s control of the
PLL operation. When PSTP is set and PEN (see Table 9-3) is cleared, the on-chip crys-
tal oscillator remains operating in the STOP state, but the PLL is disabled. This power
saving feature enables rapid recovery from the STOP state when the user operates the
chip with an on-chip oscillator and with the PLL disabled.

Table 9-3 PSTP and PEN Relationship

9.2.5.6 PCTL Clock Output Disable Bits (COD0-COD1) - Bits 19-20
The COD0-COD1 bits control the output buffer of the clock at the CKOUT pin. Table 9-4
specifies the effect of COD0-COD1 on the CKOUT pin. When both COD0 and COD1 are
set, the CKOUT pin is held in the high (“1”) state. If the CKOUT pin is not connected to
external circuits, it is recommended that both COD1 and COD0 be set (disabling clock
output) to minimize RFI noise and power dissipation. If the CKOUT output is low at the
moment the COD0-COD1 bits are set, it will complete the low cycle and then be disabled
high. If the programmer re-enables the CKOUT output before it reaches the high logic
level during the disabling process, the CKOUT operation will be unaffected. The
COD0-COD1 bits are cleared by hardware reset.

Operation during STOP

PSTP PEN PLL Oscillator Recovery Power Consumption

0 x Disabled Disabled long minimal

1 0 Disabled Enabled rapid lower

1 1 Enabled Enabled rapid higher
9 - 8 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL PINS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 9-4 Clock Output Disable Bits COD0-COD1

9.2.5.7 PCTL Chip Clock Source Bit (CSRC) - Bit 21
The CSRC bit specifies whether the clock for the chip is taken from the output of the VCO
or is taken from the output of the Low Power Divider (LPD). When CSRC is set, the clock
for the chip is taken from the VCO. When CSRC is cleared, the clock for the chip is taken
from the output of the LPD. See Section 9.4.8 for restrictions. CSRC is cleared by hard-
ware reset.

9.2.5.8 PCTL CKOUT Clock Source Bit (CKOS) - Bit 22
The CKOS bit specifies whether the CKOUT clock output is taken from the output of the
VCO or is taken from the output of the Low Power Divider (LPD). When CKOS is set, the
CKOUT clock output is taken from the VCO. When CKOS is cleared, the CKOUT clock
output is taken from the output of the LPD. If the PLL is disabled (PEN=0), CKOUT is tak-
en from EXTAL. See Section 9.4.8 for restrictions. CKOS is cleared by hardware reset.

9.2.5.9 PCTL Reserved Bit - Bit 23
This bit is reserved for future expansion. It reads as zero and should be written with zero
for future compatibility.

9.3 PLL PINS
Some of the PLL pins need not be implemented. The specific PLL pin configuration for
each DSP56K chip implementation is available in the respective device’s user’s manual.
The following pins are dedicated to the PLL operation:

PVCC VCC dedicated to the analog PLL circuits. The voltage should be well regulated
and the pin should be provided with an extremely low impedance path to the
VCC power rail. PVCC should be bypassed to PGND by a 0.1µF capacitor
located as close as possible to the chip package.

PGND GND dedicated to the analog PLL circuits. The pin should be provided with an
extremely low impedance path to ground. PVCC should be bypassed to PGND
by a 0.1µF capacitor located as close as possible to the chip package.

COD1 COD0 CKOUT Pin

0 0 Clock Out Enabled, Full Strength Output Buffer

0 1 Clock Out Enabled, 2/3 Strength Output Buffer

1 0 Clock Out Enabled, 1/3 Strength Output Buffer

1 1 Clock Out Disabled
MOTOROLA PLL CLOCK OSCILLATOR 9 - 9
For More Information On This Product,

 Go to: www.freescale.com

PLL PINS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

CLVCC VCC for the CKOUT output. The voltage should be well regulated and the pin
should be provided with an extremely low impedance path to the VCC power
rail. CLVCC should be bypassed to CLGND by a 0.1µF capacitor located as
close as possible to the chip package.

CLGND GND for the CKOUT output. The pin should be provided with an extremely low
impedance path to ground. CLVCC should be bypassed to CLGND by a 0.1µF
capacitor located as close as possible to the chip package.

PCAP Off-chip capacitor for the PLL filter. One terminal of the capacitor is connected
to PCAP while the other terminal is connected to PVCC. The capacitor value is
specified in the particular device’s Technical Data Sheet.

CKOUT This output pin provides a 50% duty cycle output clock synchronized to the
internal processor clock when the PLL is enabled and locked. When the PLL is
disabled, the output clock at CKOUT is derived from, and has the same
frequency and duty cycle as, EXTAL.

Note: If the PLL is enabled and the multiplication factor is less than or equal to
4, then CKOUT is synchronized to EXTAL.

CKP This input pin defines the polarity of the CKOUT signal. Strapping CKP through
a resistor to GND will make the CKOUT polarity the same as the EXTAL
polarity. Strapping CKP through a resistor to VCC will make the CKOUT polarity
the inverse of the EXTAL polarity. The CKOUT clock polarity is internally
latched at the end of the hardware reset, so that any changes of the CKP pin
logic state after deassertion of RESET will not affect the CKOUT clock polarity.

PINIT During the assertion of hardware reset, the value at the PINIT input pin is
written into the PEN bit of the PLL control register. After hardware reset is
deasserted, the PINIT pin is ignored.

PLOCK The PLOCK output originates from the Phase Detector. The chip asserts
PLOCK when the PLL is enabled and has locked on the proper phase and
frequency of EXTAL. The PLOCK output is deasserted by the chip if the PLL is
enabled and has not locked on the proper phase and frequency. PLOCK is
asserted if the PLL is disabled. PLOCK is a reliable indicator of the PLL lock
state only after exiting the hardware reset state.
9 - 10 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL OPERATION CONSIDERATIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

9.4 PLL OPERATION CONSIDERATIONS
The following paragraphs discuss PLL operation considerations.

9.4.1 Operating Frequency
The operating frequency of the chip is governed by the frequency control bits in the PLL
control register as follows:

where: DF is the division factor defined by the DF0-DF3 bits

FCHIP is the chip operating frequency

FEXT is the external input frequency to the chip at the EXTAL pin

FVCO is the output frequency of the VCO

MF is the multiplication factor defined by the MF0-MF11 bits

The chip frequency is derived from the output of the low power divider. If the
low power divider is bypassed, the equation is the same but the division factor
should be assumed to be equal to one.

9.4.2 Hardware Reset
Hardware reset causes the initialization of the PLL. The following considerations apply:

1. The MF0-MF11 bits in the PCTL register are set to their pre-determined hard-
ware reset value. The DF0-DF3 bits and the Chip Clock Source bit in the
PCTL register are cleared. This causes the chip clock frequency to be equal to
the external input frequency (EXTAL) multiplied by the multiplication factor
defined by MF0-MF11.

2. During hardware reset assertion, the PINIT pin value is written into the PEN
bit in the PCTL register. If the PINIT pin is asserted (setting PEN), the PLL
acquires the proper phase/frequency. While hardware reset is asserted, the
internal chip clock will be driven by the EXTAL pin until the PLL achieves lock
(if enabled). If the PINIT pin is deasserted during hardware reset assertion, the
PEN bit is cleared, the PLL is deactivated and the internal chip clock is driven
by the EXTAL pin.

3. PLOCK is a reliable indicator of the PLL lock state only after exiting the hard-
ware reset state.

FCHIP

FEXT MF×
DF

--------------------------- Fvco
DF

--------------= =
MOTOROLA PLL CLOCK OSCILLATOR 9 - 11
For More Information On This Product,

 Go to: www.freescale.com

PLL OPERATION CONSIDERATIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4. For all input frequencies which would result in a VCO output frequency lower
than the minimum specified in the device’s Technical Data Sheet (typically 10
MHz), PINIT must be cleared during hardware reset, disabling PLL operation.
Otherwise, proper operation of the PLL cannot be guaranteed. If the resulting
VCO clock frequency would be less than the minimum and the user wishes to
operate with the PLL enabled, the user must issue an instruction which loads
the PCTL control register with a multiplication factor that would bring the VCO
frequency above 10 MHz and would enable the PLL operation. Until this
instruction is executed, the PLL is disabled, which may cause a large skew
(<15nsec) between the external input clock and the internal processor clock. If
internal low frequency of operation is desired with the PLL enabled, the VCO
output frequency may be divided down by using the internal low power divider.

5. The CKP pin only affects the CKOUT clock polarity during the hardware reset
state. At the end of the hardware reset state, the CKP state is internally
latched.

9.4.3 Operation with PLL Disabled

1. If the PLL is disabled, the PLOCK pin is asserted.

2. If the PLL is disabled, the internal chip clock and CKOUT are driven from the
EXTAL input.

9.4.4 Changing the MF0-MF11 Bits
Changes to the MF0-MF11 bits cause the following to occur:

1. The PLL will lose the lock condition, the PLOCK pin will be deasserted.

2. The PLL acquires the proper phase/frequency. Until this occurs the internal
chip clock phases will be frozen. This ensures that the clock used by the chip
is a clock that has reached a stable frequency.

3. When lock occurs, PLOCK is asserted and the PLL drives the internal chip
clock and CKOUT.

4. While PLL has not locked, CKOUT is held low if CKP is cleared. CKOUT is
held high if CKP is set.

9.4.5 Change of DF0-DF3 Bits
Changes to the DF0-DF3 bits do not cause a loss of lock condition. The internal clocks
will immediately revert to the frequency prescribed by the new divide factor. For MF≤4,
changing DF0-DF3 may lengthen the instruction cycle or CKOUT pulse following the PLL
control register update in order to keep synchronization between EXTAL and the internal
9 - 12 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PLL OPERATION CONSIDERATIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

chip clock. (Here, T3 is equal to the phase described by the new divide factor plus the
time required to wait for a synchronizing pulse, which is less than 1.5ETc.) For MF>4,
such synchronization is not guaranteed and the instruction cycle is not lengthened.

If the DF0-DF3 bits are changed by the same instruction that changes the MF0-MF11
bits, the LPD divider factor changes before the detection of the change in the multiplica-
tion factor. This means that the detection of loss of lock will occur after the LPD has
started dividing by the new division factor.

9.4.6 Loss of Lock
The PLL distinguishes between cases where MF>4 and cases where MF≤4. If MF≤4,
the PLL will detect loss of lock if a skew of 2.5 to 4.5 ns develops between the two clock
inputs to the phase detector.

If MF>4, the PLL will detect loss of lock when there is a discrepancy of one clock cycle
between the two clock inputs to the phase detector. When either of these two conditions
occurs, the following also occur:

1. PLOCK will be deasserted, indicating that loss of lock condition has occurred.

2. The PLL will re-acquire the proper phase/frequency. When lock occurs,
PLOCK will be asserted.

9.4.7 STOP Processing State
If the PSTP bit is cleared, executing the STOP instruction will disable the on-chip crystal
oscillator and the PLL. In this state the chip consumes the least possible power. When
recovering from the STOP state, the recovery time will be 16 or 64k external clock cycles
(according to bit 6 in the Operating Mode Register) plus the time needed for the PLL to
achieve lock.

If the PSTP bit is set, executing the STOP instruction will leave the on-chip crystal oscil-
lator (if XTLD=0) and the PLL loop (if PEN=1) operating, but will disable the clock to the
LPD and the rest of the DSP. When recovering from the STOP state, the recovery time
will be only three clock cycles.

9.4.8 CKOUT Considerations
The CKOUT clock output is held high while disabled, which is also while the COD0-COD1
bits are set. If the CKOUT clock output is low at the moment the COD0-COD1 bits are set,
then the CKOUT clock output will complete the low cycle and then be disabled high. If the
programmer re-enables the CKOUT clock output before it reaches the high logic level dur-
ing the disabling process, the CKOUT operation will be unaffected.
MOTOROLA PLL CLOCK OSCILLATOR 9 - 13
For More Information On This Product,

 Go to: www.freescale.com

PLL OPERATION CONSIDERATIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

While the PLL is regaining lock, the CKOUT clock output remains at the same logic level
it held when the PLL lost lock, which is when the clocks were frozen in the DSP.

When the chip enters the WAIT processing state, the core phases are disabled but CK-
OUT continues to operate. When PLL is disabled, CKOUT will be fed from EXTAL.

If DF>1 and CKOS≠CSRC, then the programmer must change either CKOS or CSRC be-
fore taking any action that causes the PLL to lose and subsequently regain lock, such as
changing the multiplication factor, enabling PLL operation, or recovering from the STOP
state with PSTP=0.

Any change of the CKOS or CSRC bits must be done while DF=1.

9.4.9 Synchronization Among EXTAL, CKOUT, and the Internal Clock
Low clock skew between EXTAL and CKOUT is guaranteed only if MF≤4. The synchro-
nization between CKOUT and the internal chip activity and Port A timing is guaranteed in
all cases where CKOS=CSRC and the bits have never differed from one another.
9 - 14 PLL CLOCK OSCILLATOR MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.
 SECTION 10
ON-CHIP EMULATION (OnCE)
10- 2 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

SECTION CONTENTS

10 - 3 ON-CHIP EMULATION (OnCE)

MOTOROLA

SECTION 10.1 INTRODUCTION ..3

SECTION 10.2 ON-CHIP EMULATION (OnCE) PINS3

SECTION 10.3 OnCE CONTROLLER AND SERIAL INTERFACE6

SECTION 10.4 OnCE MEMORY BREAKPOINT LOGIC11

SECTION 10.5 OnCE TRACE LOGIC ..13

SECTION 10.6 METHODS OF ENTERING THE DEBUG MODE14

SECTION 10.7 PIPELINE INFORMATION AND GLOBAL DATA
BUS REGISTER ...16

SECTION 10.8 PROGRAM ADDRESS BUS HISTORY BUFFER18

SECTION 10.9 SERIAL PROTOCOL DESCRIPTION19

SECTION 10.10 DSP56K TARGET SITE DEBUG SYSTEM
REQUIREMENTS ..19

SECTION 10.11 USING THE OnCE ...20

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP EMULATION INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.1 ON-CHIP EMULATION INTRODUCTION
The DSP56K on-chip emulation (OnCE) circuitry provides a sophisticated debugging tool
that allows simple, inexpensive, and speed independent access to the processor’s inter-
nal registers and peripherals. OnCE tells application programmers exactly what the status
is within the registers, memory locations, buses, and even the last five instructions that
were executed. OnCE capabilities are accessible through a standard set of pins which are
the same on all of the members of the DSP56K processor family. Figure 10-1 shows the
components of the OnCE circuitry. OnCE is shown as part of the DSP56K central pro-
cessing module in Figure 10-2.

10.2 ON-CHIP EMULATION (OnCE) PINS
The following paragraphs describe the OnCE pins associated with the OnCE controller
and serial interface component shown in Figure 10-1.

10.2.1 Debug Serial Input/Chip Status 0 (DSI/OS0)
Serial data or commands are provided to the OnCE controller through the DSI/OS0 pin
when it is an input. The data received on the DSI pin will be recognized only when the
DSP56K has entered the debug mode of operation. Data is latched on the falling edge of
the DSCK serial clock (described in Section 10.2.2). Data is always shifted into the OnCE
serial port most significant bit (MSB) first. When the DSI/OS0 pin is an output, it works in
conjunction with the OS1 pin to provide chip status information (see Table 10-1). The

PAB
FIFO

Breakpoint
Registers
and
Comparators

Pipeline
Information

Breakpoint and
Trace Logic

OnCE
Controller
and
Serial
InterfacePAB

YAB
XAB

.
.

PDB PIL GDB

DSO

DR

DSI/OS0

DSCK/OS1

.

Figure 10-1 OnCE Block Diagram
10- 4 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ON-CHIP EMULATION (OnCE) PINS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

DSI/OS0 pin is an output when the processor is not in debug mode. When switching from
output to input, the pin is three-stated. During hardware reset, this pin is defined as an out-
put and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

CLOCK
GENERATOR

P
E

R
IP

H
E

R
A

L
P

IN
S

INTERNAL
DATA
BUS

SWITCH

PROGRAM
RAM/ROM

EXPANSION

PROGRAM
INTERRUPT

CONTROLLER

PROGRAM
DECODE

CONTROLLER

PROGRAM
ADDRESS

GENERATOR

YAB
XAB
PAB

YDB

XDB

PDB

GDB

MODC/NMI

MODB/IRQB

RESET

DATA ALU
24X24+56→56-BIT MAC

TWO 56-BIT ACCUMULATORS

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

A
D

D
R

E
S

S
D

AT
A

16 BITS
24 BITS

P
O

R
T

 A

MODA/IRQA

PLL

X MEMORY
RAM/ROM

EXPANSION

Y MEMORY
RAM/ROM

EXPANSION

ADDRESS
GENERATION

UNIT

OnCE

PERIPHERAL
MODULES

EXPANSION
AREA

C
O

N
T

R
O

L

24-Bit
56K Mod-

Figure 10-2 DSP56K Block Diagram

Program Control Unit
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 5
For More Information On This Product,

 Go to: www.freescale.com

ON-CHIP EMULATION (OnCE) PINS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)
The DSCK/OS1 pin supplies the serial clock to the OnCE when it is an input. The serial
clock provides pulses required to shift data into and out of the OnCE serial port. (Data is
clocked into the OnCE on the falling edge and is clocked out of the OnCE serial port on
the rising edge.) The debug serial clock frequency must be no greater than 1/8 of the pro-
cessor clock frequency. When an output, this pin, in conjunction with the OS0 pin,
provides information about the chip status (see Table 10-1). The DSCK/OS1 pin is an out-
put when the chip is not in debug mode. When switching from output to input, the pin is
three-stated. During hardware reset, this pin is defined as an output and it is driven low.

Note: To avoid possible glitches, an external pull-down resistor should be attached to this
pin.

10.2.3 Debug Serial Output (DSO)
Serial data is read from the OnCE through the DSO pin, as specified by the last command
received from the external command controller. Data is always shifted out the OnCE serial
port most significant bit (MSB) first. Data is clocked out of the OnCE serial port on the ris-
ing edge of DSCK.

The DSO pin also provides acknowledge pulses to the external command controller.
When the chip enters the debug mode, the DSO pin will be pulsed low to indicate (ac-
knowledge) that the OnCE is waiting for commands. After receiving a read command, the
DSO pin will be pulsed low to indicate that the requested data is available and the OnCE
serial port is ready to receive clocks in order to deliver the data. After receiving a write
command, the DSO pin will be pulsed low to indicate that the OnCE serial port is ready to
receive the data to be written; after the data is written, another acknowledge pulse will be
provided.

During hardware reset and when the processor is idle, the DSO pin is held high.

Table 10-1 Chip Status Information

OS1 OS0 Status

0 0 Normal State

0 1 Stop or Wait State

1 0 Chip waits for bus mastership

1 1 Chip waits for end of memory wait states
(due to WT assertion or BCR)
10- 6 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OnCE CONTROLLER AND SERIAL INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.2.4 Debug Request Input (DR)
The debug request input (DR) allows the user to enter the debug mode of operation from
the external command controller. When DR is asserted, it causes the DSP56K to finish
the current instruction being executed, save the instruction pipeline information, enter the
debug mode, and wait for commands to be entered from the DSI line. While in debug
mode, the DR pin lets the user reset the OnCE controller by asserting it and deasserting
it after receiving acknowledge. It may be necessary to reset the OnCE controller in cases
where synchronization between the OnCE controller and external circuitry is lost. DR
must be deasserted after the OnCE responds with an acknowledge on the DSO pin and
before sending the first OnCE command. Asserting DR will cause the chip to exit the
STOP or WAIT state.

10.3 OnCE CONTROLLER AND SERIAL INTERFACE
The OnCE Controller and Serial Interface contains the following blocks: OnCE command
register, bit counter, OnCE decoder, and the status/control register. Figure 10-3 illustrates
a block diagram of the OnCE controller and serial interface

10.3.1 OnCE Command Register (OCR)
The OCR is an 8-bit shift register that receives its serial data from the DSI pin. It holds the
8-bit commands to be used as input for the OnCE Decoder. The Command Register is
shown in Figure 10-4.

OnCE COMMAND REGISTER
DSI
DSCK

BIT COUNTER

STATUS AND CONTROL
REGISTER

DSO

MODE SELECT

OnCE DECODER

BIT 7

BIT 23

ISDEBUG

ISBKPT

ISSWDBG

ISDR

ISTRACE

REG WRITEREG READ

..

.

.
.

Figure 10-3 OnCE Controller and Serial Interface
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 7
For More Information On This Product,

 Go to: www.freescale.com

OnCE CONTROLLER AND SERIAL INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1.1 Register Select (RS4-RS0) Bits 0-4
The Register Select bits define which register is source (destination) for the read (write)
operation. Table 10-2 indicates the OnCE register addresses.

Table 10-2 OnCE Register Addressing

RS4-RS0 Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 Memory Breakpoint Counter (OMBC)

00010 Reserved

00011 Trace Counter (OTC)

00100 Reserved

00101 Reserved

00110 Memory Upper Limit Register (OMULR)

00111 Memory Lower Limit Register (OMLLR)

01000 GDB Register (OGDBR)

01001 PDB Register (OPDBR)

01010 PAB Register for Fetch (OPABFR)

01011 PIL Register (OPILR)

01100 Clear Memory Breakpoint Counter (OMBC)

01101 Reserved

01110 Clear Trace Counter (OTC)

01111 Reserved

10000 Reserved

10001 Program Address Bus FIFO and Increment Counter

10010 Reserved

10011 PAB Register for Decode (OPABDR)

101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

RS0
0

RS1
1

RS2
2

RS3
3

RS4
4

EX
5

GO
6

R/W
7

Figure 10-4 OnCE Command Register
10- 8 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OnCE CONTROLLER AND SERIAL INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.1.2 Exit Command (EX) Bit 5
If the EX bit is set, the processor will leave the debug mode and resume normal operation.
The Exit command is executed only if the Go command is issued, and the operation is
write to OPDBR or read/write to “No Register Selected”. Otherwise the EX bit is ignored.

10.3.1.3 Go Command (GO) Bit 6
If the GO bit is set, the chip will execute the instruction which resides in the PIL register.
To execute the instruction, the processor leaves the debug mode, and the status is reflect-
ed in the OS0-OS1 pins. The processor will return to the debug mode immediately after
executing the instruction if the EX bit is cleared. The processor goes on to normal opera-
tion if the EX bit is set. The GO command is executed only if the operation is write to
OPDBR or read/write to “No Register Selected”. Otherwise the GO bit is ignored.

10.3.1.4 Read/Write Command (R/W) Bit 7
The R/W bit specifies the direction of data transfer. The table below describes the options
defined by the R/W bit.

10.3.2 OnCE Bit Counter (OBC)
The OBC is a 5-bit counter associated with shifting in and out the data bits. The OBC is
incremented by the falling edges of the DSCK. The OBC is cleared during hardware reset
and whenever the DSP56K acknowledges that the debug mode has been entered. The
OBC supplies two signals to the OnCE Decoder: one indicating that the first 8 bits were

EX Action

 0 Remain in debug mode

 1 Leave debug mode

 GO Action

 0 Inactive (no action taken)

 1 Execute instruction in PIL

R/W Action

0 Write the data associated with the command into the register
specified by RS4-RS0

1 Read the data contained in the register specified by RS4-RS0
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 9
For More Information On This Product,

 Go to: www.freescale.com

OnCE CONTROLLER AND SERIAL INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

shifted in (so a new command is available) and the second indicating that 24 bits were
shifted in (the data associated with that command is available) or that 24 bits were shifted
out (the data required by a read command was shifted out).

10.3.3 OnCE Decoder (ODEC)
The ODEC supervises the entire OnCE activity. It receives as input the 8-bit command
from the OCR, two signals from OBC (one indicating that 8 bits have been received and
the other that 24 bits have been received), and two signals indicating that the processor
was halted. The ODEC generates all the strobes required for reading and writing the se-
lected OnCE registers.

10.3.4 OnCE Status and Control Register (OSCR)
The Status and Control Register is a 16-bit register used to select the events that will put
the chip in debug mode and to indicate the reason for entering debug mode. The control
bits are read/write while the status bits are read only. See Figure 10-5.

10.3.4.1 Memory Breakpoint Control (BC0-BC3) Bits 0-3
These control bits enable memory breakpoints. They allow memory breakpoints to occur
when a memory address is within the low and high memory address registers and will se-
lect whether the breakpoint will be recognized for read, write, or fetch (program space)
accesses. These bits are cleared on hardware reset. See Table 10-3 for the definition of
the BC0-BC3 bits.

When BC3-BC0=0001, program memory breakpoints are enabled for any fetch access
to the program space (true and false fetches, fetches of 2nd word, etc.). Explicit program
memory accesses resulting from MOVEP and MOVEM instructions to/from program
memory space are ignored.

When BC3-BC0=0010, program memory breakpoints are enabled for any read access to
the Program space (MOVEP and MOVEM instructions from P: memory space, true and
false fetches, fetches of 2nd word, etc.). Explicit program memory write accesses resulting
from MOVEP and MOVEM instructions to P: memory space are ignored.

* Reserved, read as zero, should be written with zero for future compatibility.

BC0
0

BC1
1

BC2
2

BC3
3

TME
4

*
5

SWO
8

MBO
9

TO
1011

*
....

*
7

*
615

Figure 10-5 OnCE Status and Control Register (OSCR)
10- 10 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OnCE CONTROLLER AND SERIAL INTERFACE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

When BC3-BC0=0011, program memory breakpoints are enabled for any read or write
access to the Program space (any kind of MOVE, true and false fetches, fetches of sec-
ond word, etc.).

When BC3-BC0=0100, program memory breakpoints are enabled only for fetches of the
first instruction word of instructions that are actually executed. Aborted instructions and
prefetched instructions that are discarded (such as jump targets that are not taken) are
ignored by the breakpoint logic.

When BC3-BC0=0101, 0110 or 0111, program memory breakpoints are enabled only for
explicit program memory access resulting from MOVEP or MOVEM instructions to/from
P: memory space.

10.3.4.2 Trace Mode Enable (TME) Bit 4
The TME control bit, when set, enables the Trace Mode of operation (see Section 10.5).
This bit is cleared on hardware reset.

10.3.4.3 Reserved (Bits 5-7, 11-15)
These bits are reserved for future use. They read as zero and should be written with zero
for future compatibility.

Table 10-3 Memory Breakpoint Control Table

BC3 BC2 BC1 BC0 DESCRIPTION

0 0 0 0 Breakpoint disabled

0 0 0 1 Breakpoint on any fetch (including aborted instructions)

0 0 1 0 Breakpoint on any P read (any fetch or move)

0 0 1 1 Breakpoint on any P access (any fetch, P move R/W)

0 1 0 0 Breakpoint on executed fetches only

0 1 0 1 Breakpoint on P space write

0 1 1 0 Breakpoint on P space read (no fetches)

0 1 1 1 Breakpoint on P space write or read (no fetches)

1 0 0 0 Reserved

1 0 0 1 Breakpoint on X space write

1 0 1 0 Breakpoint on X space read

1 0 1 1 Breakpoint on X space write or read

1 1 0 0 Reserved

1 1 0 1 Breakpoint on Y space write

1 1 1 0 Breakpoint on Y space read

1 1 1 1 Breakpoint on Y space write or read
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 11
For More Information On This Product,

 Go to: www.freescale.com

OnCE MEMORY BREAKPOINT LOGIC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.3.4.4 Software Debug Occurrence (SWO) Bit 8
This read-only status bit is set when the processor enters debug mode of operation as a
result of the execution of the DEBUG or DEBUGcc instruction with condition true. This bit
is cleared on hardware reset or when leaving the debug mode with the GO and EX bits
set.

10.3.4.5 Memory Breakpoint Occurrence (MBO) Bit 9
This read-only status bit is set when a memory breakpoint occurs. This bit is cleared on
hardware reset or when leaving the debug mode with the GO and EX bits set.

10.3.4.6 Trace Occurrence (TO) Bit 10
This read-only status bit is set when the processor enters debug mode of operation, when
the trace counter is zero and the trace mode has been armed. This bit is cleared on hard-
ware reset or when leaving the debug mode with the GO and EX bits set.

10.4 OnCE MEMORY BREAKPOINT LOGIC
Memory breakpoints may be set on program memory or data memory locations. Also, the
breakpoint does not have to be in a specific memory address but within an address range
of where the program may be executing. This significantly increases the programmer’s
ability to monitor what the program is doing in real-time.

The breakpoint logic contains a latch for the addresses, registers that store the upper and
lower address limit, comparators, and a breakpoint counter. Figure 10-6 illustrates the
block diagram of the OnCE Memory Breakpoint Logic.

Address comparators help to determine where a program may be getting lost or when
data is being written to areas that should not be written to. They are also useful in halting
a program at a specific point to examine/change registers or memory. Using address com-
parators to set breakpoints enables the user to set breakpoints in RAM or ROM in any op-
erating mode. Memory accesses are monitored according to the contents of the OSCR.

The low address comparator will generate a logic true signal when the address on the bus
is greater than or equal to the contents of the lower limit register. The high address com-
parator will generate a logic true signal when the address on the bus is less than or equal
to the contents of the upper limit register. If the low address comparator and high address
comparator both issue a logic true signal, the address is within the address range and the
breakpoint counter is decremented if the contents are greater than zero. If zero, the
counter is not decremented and the breakpoint exception occurs (ISBKPT asserted).

10.4.1 Memory Address Latch (OMAL)
The Memory Address Latch is a 16-bit register that latches the PAB, XAB or YAB on every
instruction cycle according to the BC3-BC0 bits in OSCR.
10- 12 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OnCE MEMORY BREAKPOINT LOGIC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.2 Memory Upper Limit Register (OMULR)
The 16-bit Memory Upper Limit Register stores the memory breakpoint upper limit. The
OMULR can be read or written through the OnCE serial interface. Before enabling break-
points, OMULR must be loaded by the external command controller.

10.4.3 Memory Lower Limit Register (OMLLR)
The 16-bit Memory Lower Limit Register stores the memory breakpoint lower limit. The
OMLLR can be read or written through the OnCE serial interface. Before enabling break-

.

MEMORY ADDRESS LATCH

PAB XAB YAB

MEMORY BUS SELECT

LOWER LIMIT REGISTER

LOW ADDRESS COMPARATOR

UPPER LIMIT REGISTER

HIGH ADDRESS COMPARATOR

HIGHER

DSI
DSO

DSCK

BREAKPOINT COUNTER

OR
EQUAL

LOWER
OR

EQUAL

MEMORY
BREAKPOINT
SELECTION

BC3-BC0

DEC

BREAKPOINT

COUNT=0

ISBKPT

OCCURRED

...

. .

..

Figure 10-6 OnCE Memory Breakpoint Logic
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 13
For More Information On This Product,

 Go to: www.freescale.com

OnCE TRACE LOGIC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

points, OMLLR must be loaded by the external command controller.

10.4.4 Memory High Address Comparator (OMHC)
The OMHC compares the current memory address (stored in OMAL) with the OMULR
contents. If OMULR is higher than or equal to OMAL then the comparator delivers a signal
indicating that the address is lower than or equal to the upper limit.

10.4.5 Memory Low Address Comparator (OMLC)
The OMLC compares the current memory address (stored in OMAL) with the OMLLR con-
tents. If OMLLR is lower than or equal to OMAL then the comparator delivers a signal in-
dicating that the address is higher than or equal to the lower limit.

10.4.6 Memory Breakpoint Counter (OMBC)
The 24-bit OMBC is loaded with a value equal to the number of times, minus one, that a
memory access event should occur before a memory breakpoint is declared. The memory
access event is specified by the BC3-BC0 bits in the OSCR register and by the memory
upper and lower limit registers. On each occurrence of the memory access event, the
breakpoint counter is decremented. When the counter has reached the value of zero and
a new occurrence takes place, the chip will enter the debug mode. The OMBC can be
read, written, or cleared through the OnCE serial interface.

Anytime the upper or lower limit registers are changed, or a different breakpoint event is
selected in the OSCR, the breakpoint counter must be written afterward. This assures that
the OnCE breakpoint logic is reset and that no previous events will affect the new break-
point event selected.

The breakpoint counter is cleared by hardware reset.

10.5 OnCE TRACE LOGIC
The OnCE trace logic allows the user to execute instructions in single or multiple steps
before the chip returns to the debug mode and awaits OnCE commands from the debug
serial port. (The OnCE trace logic is independent of the trace facility of the
DSP56000/56001, which is operated through the trace interrupt discussed in Section
7.3.3.3, and started by setting the trace bit in the processor’s status register discussed in
Section 5.4.2.12). The OnCE trace logic block diagram is shown in Figure 10-7.
10- 14 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

OnCE TRACE LOGIC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The trace counter allows more than one instruction to be executed in real time before the
chip returns to the debug mode of operation. This feature helps the software developer
debug sections of code which do not have a normal flow or are getting hung up in infinite
loops. The trace counter also enables the user to count the number of instructions exe-
cuted in a code segment.

To initiate the trace mode of operation, the counter is loaded with a value, the program
counter is set to the start location of the instruction(s) to be executed real-time, the TME
bit is set in the OSCR, and the processor exits the debug mode by executing the appro-
priate command issued by the external command controller.

Upon exiting the debug mode, the counter is decremented after each execution of an in-
struction. Interrupts are serviceable, and all instructions executed (including fast interrupt
services and the execution of each repeated instruction) will decrement the trace counter.

Upon decrementing the trace counter to zero, the processor will re-enter the debug mode,
the trace occurrence bit TO in the OSCR will be set, and the DSO pin will be toggled to
indicate that the processor has entered debug mode and is requesting service (ISTRACE
asserted).

10.5.1 Trace Counter (OTC)
The OTC is a 24-bit counter that can be read, written, or cleared through the OnCE serial
interface. If N instructions are to be executed before entering the debug mode, the Trace
Counter should be loaded with N-1. The Trace Counter is cleared by hardware reset.

DSI

DSO

DSCK

TRACE COUNTER
DEC

END OF INSTRUCTION

COUNT=0

ISTRACE

.

.

Figure 10-7 OnCE Trace Logic Block Diagram
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 15
For More Information On This Product,

 Go to: www.freescale.com

METHODS OF ENTERING THE DEBUG MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

10.6 METHODS OF ENTERING THE DEBUG MODE
The chip acknowledges having entered the debug mode by pulsing low the DSO line, in-
forming the external command controller that the chip has entered the debug mode and
is waiting for commands.The following paragraphs discuss conditions that bring the pro-
cessor into the debug mode.

10.6.1 External Debug Request During RESET
Holding the DR line asserted during the assertion of RESET causes the chip to enter the
debug mode. After receiving the acknowledge, the external command controller must
deassert the DR line before sending the first command. Note that in this case the chip
does not execute any instruction before entering the debug mode.

10.6.2 External Debug Request During Normal Activity
Holding the DR line asserted during normal chip activity causes the chip to finish the ex-
ecution of the current instruction and then enter the debug mode. After receiving the ac-
knowledge, the external command controller must deassert the DR line before sending
the first command. Note that in this case the chip completes the execution of the current
instruction and stops after the newly fetched instruction enters the instruction latch. This
process is the same for any newly fetched instruction including instructions fetched by the
interrupt processing, or those that will be aborted by the interrupt processing.

10.6.3 External Debug Request During STOP
Asserting DR when the chip is in the stop state (i. e., has executed a STOP instruction)
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip
to exit the stop state and enter the debug mode. After receiving the acknowledge, the ex-
ternal command controller must deassert DR before sending the first command. Note that
in this case, the chip completes the execution of the STOP instruction and halts after the
next instruction enters the instruction latch.

10.6.4 External Debug Request During WAIT
Asserting DR when the chip is in the wait state (i. e., has executed a WAIT instruction)
and keeping it asserted until an acknowledge pulse in DSO is produced causes the chip
to exit the wait state and enter the debug mode. After receiving the acknowledge, the ex-
ternal command controller must deassert DR before sending the first command. Note that
in this case, the chip completes the execution of the WAIT instruction and halts after the
next instruction enters the instruction latch.
10- 16 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.6.5 Software Request During Normal Activity
Upon executing the DEBUG or DEBUGcc instruction when the specified condition is true,
the chip enters the debug mode after the instruction following the DEBUG instruction has
entered the instruction latch.

10.6.6 Enabling Trace Mode
When the trace mode mechanism is enabled and the trace counter is greater than zero,
the trace counter is decremented after each instruction execution. The completed execu-
tion of an instruction when the trace counter is zero will cause the chip to enter the debug
mode.

Note: Only instructions actually executed cause the trace counter to decrement, i.e. an
aborted instruction will not decrement the trace counter and will not cause the chip to enter
the debug mode.

10.6.7 Enabling Memory Breakpoints
When the memory breakpoint mechanism is enabled with a breakpoint counter value of
zero, the chip enters the debug mode after completing the execution of the instruction that
caused the memory breakpoint to occur. In case of breakpoints on executed program
memory fetches, the breakpoint will be acknowledged immediately after the execution of
the fetched instruction. In case of breakpoints on data memory addresses (accesses to
X, Y or P memory spaces by MOVE instructions), the breakpoint will be acknowledged
after the completion of the instruction following the instruction that accessed the specified
address.

10.7 PIPELINE INFORMATION AND GLOBAL DATA BUS REGISTER
A number of on-chip registers store the chip pipeline status to restore the pipeline and re-
sume normal chip activity upon return from the debug mode. Figure 10-8 shows the block
diagram of the pipeline information registers with the exception of the program address
bus (PAB) registers, which are shown in Figure 10-9.

10.7.1 Program Data Bus Register (OPDBR)
The OPDBR is a 24-bit latch that stores the value of the program data bus which was gen-
erated by the last program memory access before the chip entered the debug mode.
OPDBR can be read or written through the OnCE serial interface. It is affected by the op-
erations performed during the debug mode and must be restored by the external com-
mand controller when the chip returns to normal mode.
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 17
For More Information On This Product,

 Go to: www.freescale.com

PROGRAM ADDRESS BUS HISTORY BUFFER

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.7.2 Pipeline Instruction Latch Register (OPILR)
The OPILR is a 24-bit latch that stores the value of the instruction latch before the debug
mode is entered. OPILR can only be read through the OnCE serial interface. This register
is affected by the operations performed during the debug mode and must be restored by
the external command controller when returning to normal mode. Since there is no direct
write access to this register, this task is accomplished in the first write to OPDBR after en-
tering the debug mode or after executing the GO command; the data from OPDBR is
transferred to OPILR only in these cases.

10.7.3 Global Data Bus Register (OGDBR)
The OGDBR is a 24-bit latch that can only be read through the OnCE serial interface.
OGDBR is not actually required from a pipeline status restore point of view but is required
as a means of passing information between the chip and the external command controller.
OGDBR is mapped on the X internal I/O space at address $FFFC. Whenever the external
command controller needs the contents of a register or memory location, it will force the
chip to execute an instruction that brings that information to OGDBR. Then, the contents
of OGDBR will be delivered serially to the external command controller by the command
“READ GDB REGISTER”.

10.8 PROGRAM ADDRESS BUS HISTORY BUFFER
There are two read-only PAB registers which give pipeline information when the debug
mode is entered. The OPABFR register tells which opcode address is in the fetch stage
of the pipeline and OPABDR tells which opcode is in the decode stage. To ease debug-
ging activity and keep track of program flow, a First-In-First-Out (FIFO) buffer stores the

PDB REGISTER (OPDBR)

GDB REGISTER (OGDBR)

DSI
DSO

DSCK

PIL REGISTER (OPILR)

PIL

PDB

GDB

Figure 10-8 OnCE Pipeline Information and GDB Registers
10- 18 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

PROGRAM ADDRESS BUS HISTORY BUFFER

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

addresses of the last five instructions that were executed.

10.8.1 PAB Register for Fetch (OPABFR)
The OPABFR is a 16-bit register that stores the address of the last instruction that was
fetched before the debug mode was entered. The OPABFR can only be read through the
OnCE serial interface. This register is not affected by the operations performed during the
debug mode.

10.8.2 PAB Register for Decode (OPABDR)
The OPABDR is a 16-bit register that stores the address of the instruction currently in the
instruction latch. This is the instruction that would have been decoded if the chip would
not have entered the debug mode. OPABDR can only be read through the serial interface.

FETCH ADDRESS (OPABFR)

PAB

PAB FIFO REGISTER 0

DECODE ADDRESS (OPABDR)

CIRCULAR
BUFFER
POINTER

PAB FIFO SHIFT REGISTER
DSO
DSCK

PAB FIFO REGISTER 1

PAB FIFO REGISTER 2

PAB FIFO REGISTER 3

PAB FIFO REGISTER 4

Figure 10-9 OnCE PAB FIFO
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 19
For More Information On This Product,

 Go to: www.freescale.com

SERIAL PROTOCOL DESCRIPTION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This register is not affected by the operations performed during the debug mode.

10.8.3 PAB FIFO
The PAB FIFO stores the addresses of the last five instructions that were executed. The
FIFO is implemented as a circular buffer containing five 16-bit registers and one 3-bit
counter. All the registers have the same address but any read access to the FIFO address
will cause the counter to increment, making it point to the next FIFO register. The registers
are serially available to the external command controller through their common FIFO ad-
dress. Figure 10-9 shows the block diagram of the PAB FIFO. The FIFO is not affected
by the operations performed during the debug mode except for the FIFO pointer incre-
ment when reading the FIFO. When entering the debug mode, the FIFO counter will be
pointing to the FIFO register containing the address of the oldest of the five executed in-
structions. The first FIFO read will obtain the oldest address and the following FIFO reads
will get the other addresses from the oldest to the newest (the order of execution).

To ensure FIFO coherence, a complete set of five reads of the FIFO must be performed
because each read increments the FIFO pointer, thus making it point to the next location.
After five reads the pointer will point to the same location it pointed to before starting the
read procedure.

10.9 SERIAL PROTOCOL DESCRIPTION
The following protocol permits an efficient means of communication between the OnCE’s
external command controller and the DSP56K chip. Before starting any debugging activ-
ity, the external command controller must wait for an acknowledge on the DSO line, indi-
cating that the chip has entered the debug mode. The external command controller com-
municates with the chip by sending 8-bit commands that may be accompanied by 24 bits
of data. Both commands and data are sent or received most significant bit first. After send-
ing a command, the external command controller must wait for the processor to acknowl-
edge execution of the command before it may send a new command.

When accessing OnCE 16-bit registers, the register contents appear in the 16 most sig-
nificant bits in the 24-bit data field, and the 8 least significant bits are zeroed.

10.9.1 OnCE Commands
The OnCE commands may be classified as follows:

• read commands (when the chip will deliver the required data).
• write commands (when the chip will receive data and write the data in one of the OnCE

registers).
• commands that do not have data transfers associated with them.

The commands are 8 bits long and have the format shown in Figure 10-4.
10- 20 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.10 DSP56K TARGET SITE DEBUG SYSTEM REQUIREMENTS
A typical DSP56K debug environment consists of a target system where the DSP56K re-
sides in the user defined hardware. The debug serial port interfaces to the external com-
mand controller over a 6-wire link which includes the 4 OnCE wires, a ground, and a reset
wire. The reset wire is optional and is only used to reset the DSP56K and its associated
circuitry.

The external command controller acts as the medium between the DSP56K target system
and a host computer. The external command controller circuit acts as a DSP56K serial
debug port driver and host computer command interpreter. The controller issues com-
mands based on the host computer inputs from a user interface program which commu-
nicates with the user.

10.11 USING THE OnCE
The following notations are used:

ACK = Wait for acknowledge on the DSO pin

CLK = Issue 24 clocks to read out data from the selected register

10.11.1 Begin Debug Activity
Most of the debug activities have the following beginning:

1. ACK

2. Save pipeline information:

a. Send command READ PDB REGISTER (10001001)

b. ACK

c. CLK

d. Send command READ PIL REGISTER (10001011)

e. ACK

f. CLK

3. Read PAB FIFO and fetch/decode info (this step is optional):

a. Send command READ PAB address for fetch (10001010)

b. ACK

c. CLK

d. Send command READ PAB address for decode (10010011)

e. ACK
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 21
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

f. CLK

g. Send command READ FIFO REGISTER and increment counter (10010001)

h. ACK

i. CLK

j. Send command READ FIFO REGISTER and increment counter (10010001)

k. ACK

l. CLK

m. Send command READ FIFO REGISTER and increment counter (10010001)

n. ACK

o. CLK

p. Send command READ FIFO REGISTER and increment counter (10010001)

q. ACK

r. CLK

s. Send command READ FIFO REGISTER and increment counter (10010001)

t. ACK

u. CLK

10.11.2 Displaying A Specified Register
1. Send command WRITE PDB REGISTER, GO, no EX (01001001). The OnCE con-

troller selects PDB as destination for serial data.

2. ACK

3. Send the 24-bit DSP56K opcode: “MOVE reg,x:OGDB”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode, the chip executes the MOVE
instruction, and the contents of the register specified in the instruction are loaded in
the GDB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

4. ACK

5. Send command READ GDB REGISTER (10001000)
10- 22 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The OnCE controller selects GDB as source for serial data.

6. ACK

7. CLK

10.11.3 Displaying X Memory Area Starting From Address XXXX
This command uses R0 to minimize serial traffic.

1. Send command WRITE PDB REGISTER, GO, no EX (01001001).
The OnCE controller selects PDB as destination for serial data.

2. ACK

3. Send the 24-bit DSP56K opcode: “MOVE R0,x:OGDB”
After 24 bits have been received the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the contents of R0 are loaded
in the GDB REGISTER. The signal that marks the end of the instruction returns the
chip to the debug mode.

4. ACK

5. Send command READ GDB REGISTER (10001001)
The OnCE controller selects GDB as source for serial data.

6. ACK

7. CLK
The external command controller generates 24 clocks that shift out the contents of
the GDB register. The value of R0 is thus saved and should be restored before ex-
iting the debug mode.

8. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
OnCE controller selects PDB as destination for serial data.

9. ACK

10. Send the 24-bit DSP56K opcode: “MOVE #$xxxx,R0”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller causes the processor to load the opcode.

11. ACK

12. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

13. ACK

14. Send the 24-bit 2nd word of: “MOVE #$xxxx,R0” (the xxxx field).
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 23
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

15. ACK

16. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

17. ACK

18. Send the 24-bit DSP56K opcode: “MOVE X:(R0)+,x:OGDB”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the contents of X:(R0) are
loaded in the GDB REGISTER. The signal that marks the end of the instruction re-
turns the chip to the debug mode.

19. ACK

20. Send command READ GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

21. ACK

22. CLK

23. Send command NO REGISTER SELECTED, GO, no EX (01011111)
The OnCE controller releases the chip from the debug mode and the instruction is
executed again in a “REPEAT-like” fashion. The signal that marks the end of the
instruction returns the chip to the debug mode.

24. ACK

25. Send command READ GDB REGISTER (10001000)
The OnCE controller selects GDB as source for serial data.

26. ACK

27. CLK

28. Repeat from step 23 until the entire memory area is examined.

29. After finishing reading the memory, R0 should to be restored as follows.

30. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
OnCE controller selects PDB as destination for serial data.

31. ACK

32. Send the 24-bit DSP56K opcode: “MOVE #saved_r0,R0”
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
10- 24 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

troller causes the processor to load the opcode.

33. ACK

34. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

35. ACK

36. Send the 24-bit second word of: “MOVE #saved_r0,R0” (the saved_r0 field).
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

37. ACK
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 25
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.11.4 Executing a Single-Word DSP56K Instruction While in Debug Mode
1. Send command WRITE PDB REGISTER, GO, no EX (01001001).

The OnCE controller selects PDB as destination for serial data.

2. ACK

3. Send the single-word 24-bit DSP56K opcode to be executed.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the chip executes the instruction.
The signal that marks the end of the instruction returns the chip to the debug mode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE-
GAL or any opcode that is considered illegal, and DEBUG.

4. ACK

10.11.5 Executing a Two-Word DSP56K Instruction While in Debug Mode
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001).

 The OnCE controller selects PDB as destination for serial data.

2. ACK

3. Send the first instruction word (24-bit DSP56K opcode)
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller causes the processor to load the opcode.
Some DSP56K instructions should not be executed in this state: DO, REP, ILLE-
GAL or any opcode that is considered illegal, and DEBUG.

4. ACK

5. Send command WRITE PDB REGISTER, GO, no EX (01001001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send the second 24-bit instruction word.
After 24 bits have been received, the PDB register drives the PDB. The OnCE con-
troller releases the chip from the debug mode and the instruction starts execution.
The signal that marks the end of the instruction returns the chip to the debug mode.

8. ACK

10.11.6 Returning from Debug Mode to Normal Mode
There are two cases for returning from the debug mode in a single processor:

• Control is returned to the program that was running before debug was initiated.
• Jump to a different program location is executed.
10- 26 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.11.6.1 Case 1: Return To The Previous Program (Return To Normal Mode)
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)

The OnCE controller selects the PDB as the destination for serial data. Also, the
OnCE controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send the 24 bits of the saved PIL (instruction latch) value.
After the 24 bits have been received, the PDB register drives the PDB. The OnCE
controller causes the PIL to latch the PDB value. In this way, the PIL is restored to
the same state as before entering the debug mode.

4. ACK

5. Send command WRITE PDB REGISTER, GO, EX (01101001)
The OnCE controller selects PDB as destination for the serial data to follow.

6. ACK

7. Send the 24 bits of the saved PDB value.
After the 24 bits have been received, the PDB register drives the PDB. In this way,
the PDB is restored to the same state as before entering the debug mode. The EX
bit causes the OnCE controller to release the chip from the debug mode and the
status bits in OSCR are cleared. The GO bit causes the chip to start executing
instructions.

10.11.6.2 Case 2: Jump To A New Program (Go From Address $xxxx)
1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)

The OnCE controller selects PDB as destination for serial data. Also, the OnCE
controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send 24 bits of the opcode of a two-word jump instruction instead of the saved PIL
value. After the 24 bits have been received, the PDB register drives the PDB. The
OnCE controller causes the PIL to latch the PDB value. In this way, the instruction
latch will contain the opcode of the jump instruction which will cause the change in
the program flow.

4. ACK

5. Send command WRITE PDB REGISTER, GO, EX (01101001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send 24 bits of the jump target absolute address ($xxxxxx).
After 24 bits have been received, the PDB register drives the PDB. In this way, the
PDB contains the second word of the jump as required for the jump instruction ex-
MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 27
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ecution. The EX bit causes the OnCE controller to release the chip from the debug
mode and the status bits in OSCR are cleared. The GO bit causes the chip to start
executing the jump instruction which will then cause the chip to continue instruction
execution from the target address. Note that the trace counter will count the jump
instruction so the current trace counter may need to be corrected if the trace mode
is enabled.

10.11.7 Debugging Multiprocessor Systems With a Single External Command
Controller

In multiprocessor systems, each processor may be individually debugged as described
above. When simultaneous exit of the debug state is desired for more than one processor,
each processor must first be loaded with the required PIL and PDB values where process-
ing should proceed. This is accomplished by the following sequence as applied to each
processor:

1. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDB as destination for serial data. Also, the OnCE
controller selects the on-chip PAB register as the source for the PAB bus.

2. ACK

3. Send 24 bits of either the opcode of a 2-word jump instruction or the saved PIL val-
ue. After the 24 bits have been received, the PDB register drives the PDB. The
OnCE controller causes the PIL to latch the PDB value.

4. ACK

5. Send command WRITE PDB REGISTER, no GO, no EX (00001001)
The OnCE controller selects PDB as destination for serial data.

6. ACK

7. Send 24 bits of either the jump target absolute address ($xxxxxx) or the saved PDB
value. After 24 bits have been received, the PDB register drives the PDB.

8. ACK

At this point, all processors should have the required PIL and PDB values while still in de-
bug mode. To return all processors to the normal execution state simultaneously, the fol-
lowing command should be issued to all processors in parallel:

9. Send command NO REGISTER SELECTED, GO, EX (01111111)
The OnCE controller releases the chips from the debug mode and instruction exe-
cution is resumed.
10- 28 ON-CHIP EMULATION (OnCE) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

USING THE OnCE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 29
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

SECTION 11
ADDITIONAL SUPPORT

Motorola DSP Product Su
DSP56000CLASx Assemb
C Language Compiler
DSP56000ADSx Applicatio

Motorola
DSP
ola

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

Fo

n
c

..
.

Dr. BuB Electronic Bulletin Board
Audio:
ew
s

A
p

p
lic

at
io

n
 E

n
g

in
ee

rs

 –
 1

-8
00

-5
21

-6
27

4

n
s

A
ss

is
ta

n
ce

 –
 (

51
2)

 8
91

-3
23

0

 In
fo

rm
at

io
n

 –
 (

51
2)

 8
91

-2
03

0

y
S

u
p

p
o

rt
 In

fo
rm

at
io

n
 –

 (
51

2)
 8

91
-3

09
8

 S
u

p
p

o
rt

 –
 (

51
2)

 8
91

-3
09

8

o
u

rs
es

 –
 (

60
2)

 9
94

-6
90

0

Codec Routines:
DTMF Routines:

Fast Fourier
Transforms:

Filters:
Floating-Point

Routines:
Functions:

Lattice Filters:
Matrix Operations:

Reed-Solomon
Encoder:

Sorting Routines:
Speech:

Standard I/O Equates:
Tools and Utilities:

pport
ADDITIONAL SUPPORT 11 - 1

M
o

to
ro

la
 D

S
P

 N

M
o

to
ro

la
 F

ie
ld

D
es

ig
n

 H
o

tl
in

e

D
S

P
 A

p
p

lic
at

io

D
S

P
 M

ar
ke

ti
n

g

D
S

P
 T

h
ir

d
-P

ar
t

D
S

P
 U

n
iv

er
si

ty

D
S

P
 T

ra
in

in
g

 C

ler/Simulator

n Development System

r More Information On This Product,
 Go to: www.freescale.com

SECTION CONTENTS

11- 2 ADDITIONAL SUPPORT

MOTOROLA

SECTION 11.1 USER SUPPORT ...3

SECTION 11.2 MOTOROLA DSP PRODUCT SUPPORT4
11.2.1 DSP56000CLASx Assembler/Simulator ...4
11.2.2 Macro Cross Assembler Features: ..4
11.2.3 Simulator Features: ...5
11.2.4 DSP56KCCx Language Compiler Features:5

SECTION 11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM6
11.3.1 DSP56KADS Application Development

System Hardware Features:6
11.3.2 DSP56KADSx Application Development

System Software Features:6
11.3.3 Support Integrated Circuits: 7

SECTION 11.4 Dr. BuB ELECTRONIC BULLETIN BOARD7

SECTION 11.5 MOTOROLA DSP NEWS ...16

SECTION 11.6 MOTOROLA FIELD APPLICATION ENGINEERS16

SECTION 11.7 DESIGN HOTLINE– 1-800-521-627416

SECTION 11.8 DSP HELP LINE – (512) 891-3230 ..16

SECTION 11.9 MARKETING INFORMATION– (512) 891-203016

SECTION 11.10 THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098 16

SECTION 11.11 UNIVERSITY SUPPORT – (512) 891-309816

SECTION 11.12 TRAINING COURSES – (602) 897-3665 or (800) 521-6274 .17

SECTION 11.13 REFERENCE BOOKS AND MANUALS17

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USER SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

11.1 USER SUPPORT
User support from the conception of a design through completion is available from
Motorola and third-party companies as shown in the following list:

Motorola Third Party

Design Data Sheets Data Acquisition Packages
Application Notes Filter Design Packages
Application Bulletins Operating System Software
Software Examples Simulator

Prototyping Assembler Logic Analyzer with
Linker DSP56000/DSP56001 ROM Packages
C Compiler In-Circuit Emulators
Simulator Data Acquisition Cards
Application Development DSP Development System Cards

System (ADS) Operating System Software
In-Circuit Emulator Debug Software

Cable for ADS

Design Application Development Data Acquisition Packages
Verification System (ADS) Logic Analyzer with

In-Circuit Emulator DSP56000/DSP56001 ROM Packages
Simulator Data Acquisition Cards

DSP Development System Cards
Application-Specific Development Tools
Debug Software
MOTOROLA ADDITIONAL SUPPORT 11 - 3
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP PRODUCT SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a partial list of the support available for the DSP56000/DSP56001. Addi-
tional information can be obtained through Dr. BuB or the appropriate support telephone
service.

11.2 MOTOROLA DSP PRODUCT SUPPORT
• DSP56000CLASx Design-In Software Package which includes:

Relocatable Macro Assembler

Linker

Simulator (simulates single or multiple DSP56K processors))

Librarian

• DSP56KCCx GNU C Compiler

• DSP56000/DSP56001 Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Field Application Engineers (FAEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

11.2.1 DSP56000CLASx Assembler/Simulator
The Macro Cross Assembler and Simulator run on:

1. IBM PCs (-386 or higher) under DOS 2.x and 3.x

2. Macintosh II under MAC OS 4.1 or later

3. SUN-4 under UNIX BSD 4.2

4. NeXT under Mach

11.2.2 Macro Cross Assembler Features:
• Production of relocatable object modules compatible with linker program when in

relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of
11 - 4 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP PRODUCT SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

the DSP56K family of processors

• Modular programming features: local labels, sections, and external definition/ref-
erence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcen-
dental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

11.2.3 Simulator Features:
• Simulation of all DSP56K family members

• Simulation of multiple DSP56Ks

• Linkable object code modules:

–Nondisplay simulator library

–Display simulator library

• C language source code for:

–Screen management functions

–Terminal I/O functions

–Simulation examples

• Single stepping through object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-file and help-line display of simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

11.2.4 DSP56KCCx Language Compiler Features:
• GNU - ANSI Standard

• Structures/Unions

• Floating Point
MOTOROLA ADDITIONAL SUPPORT 11 - 5
For More Information On This Product,

 Go to: www.freescale.com

DSP56KADSx APPLICATION DEVELOPMENT SYSTEM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• In-line assembler language code compatibility

• Full Function preprocessor for:

–Macro definition/expansion

–File Inclusion

–Conditional compilation

• Full error detection and reporting

11.3 DSP56KADSx APPLICATION DEVELOPMENT SYSTEM

11.3.1 DSP56KADS Application Development System Hardware Features:
• Processor speed independent

• Multiple (up to 8) application development module (ADM) support with program-
mable ADM addresses

• 8K/32Kx24 user-configurable RAM for DSP56K code development

• 1Kx24 monitor ROM expandable to 4Kx24

• 96-pin Euro-card connector making all DSP56K pins accessible

• In-circuit emulation capabilities when used with the DSP56KEMULTRCABL cable

• Separate berg pin connectors for alternate accessing of serial or host/DMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform

11.3.2 DSP56KADSx Application Development System Software Features:
• Single/multiple stepping through DSP56K object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple OS I/O file access from DSP56K object programs

• Fully compatible with the DSP56KCLASx design-in software package

• On-line help screens for each command and DSP56K register
11 - 6 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

11.3.3 Support Integrated Circuits:
• 8Kx24 Static RAM – MC56824

• DSP56ADC16 16-bit, sigma-delta 100-kHz analog-to-digital converter

• DSP56401 AES/EBU processor

• DSP56200 FIR filter

11.4 Dr. BuB ELECTRONIC BULLETIN BOARD
Dr. BuB is an electronic bulletin board which provides free source code for a large variety
of topics that can be used to develop applications with Motorola DSP products. The soft-
ware library contains files including FFTs, FIR filters, IIR filters, lattice filters, matrix alge-
bra routines, companding routines, floating-point routines, and others. In addition, the
latest product information and documentation (including information on new products
and improvements to existing products) is posted. Questions about Motorola DSP prod-
ucts posted on Dr. BuB are answered promptly. Access to Dr. BuB is through calling
(512) 891-3771 using a modem set to 8 data bits, no parity, and 1 stop bit. Dr. BuB will
automatically set the data transfer rate to match your modem (9600, 4800, 2400, 1200 or
300 BPS).

A partial list of the software available on Dr. BuB follows.
MOTOROLA ADDITIONAL SUPPORT 11 - 7
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Audio:

rvb1.asm 1.0 Easy-to-read reverberation routine 17056

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442

stereo.hlp 1.0 Help file for STEREO.ASM 620

dge.asm 1.0 Digital Graphic Equalizer code from 14880

Codec Routines:

loglin.asm 1.0 Companded CODEC to linear PCM data 4572
conversion

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184

loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

DTMF Routines:

clear.cmd 1.0 Explained in read.me file 119

data.lod 1.0 421

det.asm 1.0 Subroutine used in IIR DTMF 5923

dtmf.asm 1.0 Main routine used in IIR DTMF 10685

dtmf.mem 1.0 Memory for DTMF routine 48

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409

dtmfmstr.mem 1.0 Memory for multichannel DTMF routine 41

dtmftwo.asm 1.0 10256

ex56.bat 1.0 94

genxd.lod 1.0 Data file 183

genyd.lod 1.0 Data file 180

goertzel.asm 1.0 Goertzel routine 4393

goertzel.lnk 1.0 Link file for Goertzel routine 6954

goertzel.lst 1.0 List file for Goertzel routine 11600

load.cmd 1.0 46

tstgoert.mem 1.0 Memory for Goertzel routine 384

Document ID Version Synopsis Size
11 - 8 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491

read.me 1.0 Instructions 738

Fast Fourier Transforms:

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185

sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator 1029
Generator Macro

sinewave.hlp for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386

fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999

fftr2at.hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290

fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991

fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287

fftr2dt.hlp Help for fftr2dt.asm 614

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976

fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984

fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493

dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584
macro with normally ordered input/output

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 11 - 9
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered input/output

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform 1851
in the frequency domain

dhit1.hlp 1.0 Help file for dhit1.asm 1007

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526
block floating point

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578

fftr2aa.asm 1.0 FFT program for automatic scaling 3172

Filters:

fir.asm 1.0 Direct Form FIR Filter 545

fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All Pole 801
IIR Filter with Scaling

iir2.hlp Help for iir2.asm 2286

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All 776
Pole IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713
 (Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842
with Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

Document ID Version Synopsis Size
11 - 10 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR 923
Filter

iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900

iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

lms.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

Floating-Point Routines:

fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating point add 3860

fpsub.asm 2.1 Floating point subtract 3072

fpcmp.asm 2.1 Floating point compare 2605

fpmpy.asm 2.0 Floating point multiply 2250

fpmac.asm 2.1 Floating point multiply-accumulate 2712

fpdiv.asm 2.0 Floating point divide 3835

fpsqrt.asm 2.0 Floating point square root 2873

fpneg.asm 2.0 Floating point negate 2026

fpabs.asm 2.0 Floating point absolute value 1953

fpscale.asm 2.0 Floating point scaling 2127

fpfix.asm 2.0 Floating to fixed point conversion 3953

fpfloat.asm 2.0 Fixed to floating point conversion 2053

fpceil.asm 2.0 Floating point CEIL subroutine 1771

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 11 - 11
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862

Functions:

log2.asm 1.0 Log base 2 by polynomial 1118
approximation

log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262

log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approximation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation, 7 bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

sqrt2.asm 1.0 Square Root by polynomial 899
approximation, 10 bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388

sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tli.asm 1.1 Linear table lookup/interpolation 3253
routine for function generation

tli.hlp 1.1 Help for tli.asm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bingrayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446

Document ID Version Synopsis Size
11 - 12 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

rand1.hlp Help for rand1.asm 704

Lattice Filters:

latfir1.asm 1.0 Lattice FIR Filter Macro 1156

latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro 1174
 (modified modulo count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257

latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

latgen.asm 1.0 Generalized Lattice FIR/IIR 1334
Filter Macro

latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407

latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Matrix Operations:

matmul1.asm 1.0 [1x3][3x3]=[1x3] Matrix Multiplication 1817

matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650

matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

Reed-Solomon Encoder:

readme.rs 1.0 Instructions for Reed-Solomon coding 5200

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 11 - 13
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

table1.asm 1.0 Include file for R-S coder 7971

table2.asm 1.0 Include file for R-S coder 4011

Sorting Routines:

sort1.asm 1.0 Array Sort by Straight Selection 1312

sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183

sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

Speech:

lgsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861
(LPC) coefficients

lgsol1.hlp Help for lgsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR 6360
(LPC) coefficients

durbin1.hlp Help for durbin1.asm 3616

adpcm.asm 1.0 32 kbps CCITT ADPCM Speech Coder 120512

adpcm.hlp 1.0 Help file for adpcm.asm 14817

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952

Standard I/O Equates:

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

Tools and Utilities:

srec.c 4.10 Utility to convert DSP56000 OMF format 38975
to SREC.

srec.doc 4.10 Manual page for srec.c. 7951

srec.h 4.10 Include file for srec.c 3472

Document ID Version Synopsis Size
11 - 14 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

srec.exe 4.10 Srec executable for IBM PC 22065

sloader.asm 1.1 Serial loader from the SCI port for the 3986
DSP56001

sloader.hlp 1.1 Help for sloader.asm 2598

sloader.p 1.1 Serial loader s-record file for download 736
to EPROM

parity.asm 1.0 Parity calculation of a 24-bit number in 1641
accumulator A

parity.hlp 1.0 Help for parity.asm 936

parityt.asm 1.0 Test program for parity.asm 685

parityt.hlp 1.0 Help for parityt.asm 259

dspbug Ordering information for free debug 882
monitor for DSP56000/DSP56001

The following is a list of current DSP56200 related software:

p1 1.0 Information on 56200 Filter Software 6343

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916

p3 1.0 “C” code implementation of p2 25795

p4 1.0 Polled I/O Adaptive Filter Flowchart 10361

p5 1.0 “C” code implementation of p4 24806

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535

p7 1.0 “C” code implementation of p6 28489

p8 1.0 Polled I/O Dual FIR Filter Flowchart 9656

p9 1.0 “C” code implementation of p8 28525

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 11 - 15
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP NEWS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

11.5 MOTOROLA DSP NEWS
The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

11.6 MOTOROLA FIELD APPLICATION ENGINEERS
Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call (512)891-
2030.

11.7 DESIGN HOTLINE– 1-800-521-6274
This is the Motorola number for information about any Motorola product.

11.8 DSP HELP LINE – (512) 891-3230
Design assistance for specific DSP applications is available by calling this number.

11.9 MARKETING INFORMATION– (512) 891-2030
Marketing information, including brochures, application notes, manuals, price quotes,
etc., for Motorola DSP-related products is available by calling this number.

11.10 THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098
Information about third-party manufacturers who use and support Motorola DSP products
is available by calling this number. Third-party support includes:

 Filter design software

 Logic analyzer support

 Boards for VME, IBM-PC/XT/AT, MACII boards

 Development systems

 Data conversion cards

 Operating system software

 Debug software

Additional information is available on Dr. BuB and in DSP News.

11.11 UNIVERSITY SUPPORT – (512) 891-3098
Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.
11 - 16 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

TRAINING COURSES – (602) 897-3665 or (800) 521-6274

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

11.12 TRAINING COURSES – (602) 897-3665 or (800) 521-6274
There are two DSP56000 Family training courses available:

1. Introduction to the DSP5600X (MTTA5) is a 4.5-hour audio-tape course on the
DSP56K Family architecture and programming.

2. Introduction to the DSP5600X (MTT31) is a four-day instructor-led course and
laboratory which covers the details of the DSP5600X architecture and
programming.

Additional information is available by writing to:

Motorola SPS Training and Technical Operations

Mail Drop EL524

P. O. Box 21007

Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

11.13 REFERENCE BOOKS AND MANUALS
A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many of the books
could be included in several categories but are not repeated.

General DSP:

ADVANCED TOPICS IN SIGNAL PROCESSING
 Jae S. Lim and Alan V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
 A. V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DISCRETE-TIME SIGNAL PROCESSING
 A. V. Oppenheim and R. W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
 Maurice Bellanger
 New York, NY: John Wiley and Sons, 1984
MOTOROLA ADDITIONAL SUPPORT 11 - 17
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

DIGITAL SIGNAL PROCESSING
 Alan V. Oppenheim and Ronald W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
 David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
 New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
 J. A. Cadzow
 New York, NY: MacMillan Publishing Company, 1987

HANDBOOK OF DIGITAL SIGNAL PROCESSING
 D. F. Elliott
 San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 John G. Proakis and Dimitris G. Manolakis
 New York, NY: Macmillan Publishing Company, 1988

MULTIRATE DIGITAL SIGNAL PROCESSING
 R. E. Crochiere and L. R. Rabiner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
 S. Stearns and R. Davis
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
 C.H. Chen
 New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING – THE MODERN APPROACH
 James V. Candy
 New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
 Rabiner, Lawrence R., Gold and Bernard
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

Digital Audio and Filters:

ADAPTIVE FILTER AND EQUALIZERS
 B. Mulgrew and C. Cowan
 Higham, MA: Kluwer Academic Publishers, 1988
11 - 18 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ADAPTIVE SIGNAL PROCESSING
 B. Widrow and S. D. Stearns
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
 John Watkinson
 Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
 Charles S. Williams
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
 John Strawn
 William Kaufmann, Inc., 1985

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and Peter Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
 Andreas Antoniou
 New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
 Leland B. Jackson
 Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
 Richard A. Roberts and Clifford T. Mullis
 New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 Roman Kuc
 New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
 Simon Haykin
 New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
 H. Chamberlin
 Hasbrouck Heights, NJ: Hayden Book Co., 1985
MOTOROLA ADDITIONAL SUPPORT 11 - 19
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

C Programming Language:

C: A REFERENCE MANUAL
Samuel P. Harbison and Guy L. Steele
Prentice-Hall Software Series, 1987.

PROGRAMMING LANGUAGE - C
American National Standards Institute,
ANSI Document X3.159-1989
American National Standards Institute, inc., 1990

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan, and Dennis M. Ritchie
Prentice-Hall, Inc., 1978.

Controls:

ADAPTIVE CONTROL
 K. Astrom and B. Wittenmark
 New York, NY: Addison-Welsey Publishing Company, Inc., 1989

ADAPTIVE FILTERING PREDICTION & CONTROL
 G. Goodwin and K. Sin
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
 B. C. Kuo
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
 K. Astrom and B. Wittenmark
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
 B. C. Kuo
 New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
 C. Phillips and H. Nagle
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK
COMPENSATORS
 P. Moroney
 Cambridge, MA: The MIT Press, 1983
11 - 20 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Graphics:

CGM AND CGI
 D. B. Arnold and P. R. Bono
 New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
 D. Hearn and M. Pauline Baker
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
 J. D. Foley and A. Van Dam
 Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
 Michael E. Morteson
 New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
 P. R. Bono and I. Herman (Eds.)
 New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
 Roy Hall
 New York, NY: Springer-Verlag

POSTSCRIPT LANGUAGE PROGRAM DESIGN
 Glenn C. Reid - Adobe Systems, Inc.
 Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
 Bruce A. Artwick
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
 William M. Newman and Roger F. Sproull
 New York, NY: McGraw-Hill Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
 David F. Rogers
 New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
 Pixar
 San Rafael, CA. 94901
MOTOROLA ADDITIONAL SUPPORT 11 - 21
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Image Processing:

DIGITAL IMAGE PROCESSING
 William K. Pratt
 New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
 Rafael C. Gonzales and Paul Wintz
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
 M. P. Ekstrom
 New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
 Azriel Rosenfeld and Avinash C. Kak
 New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
 M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
 D. Saupe, and R. F. Voss
 New York, NY: Springer-Verlag

Motorola DSP Manuals:

MOTOROLA DSP56000 LINKER/LIBRARIAN REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 MACRO ASSEMBLER REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000 SIMULATOR REFERENCE MANUAL
Motorola, Inc., 1991.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL
Motorola, Inc.,1990.

Numerical Methods:

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF
PROGRAMS)
 P. Berliout and P. Bizard
 New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
 G. H. Golub and C. F. Van Loan
 John Hopkins Press, 1983
11 - 22 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
 William H. Press, Brian P. Flannery,
 Saul A. Teukolsky, and William T. Vetterling
 Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
 Manfred R. Schroeder
 New York, NY: Springer-Verlag, 1986

Pattern Recognition:

PATTERN CLASSIFICATION AND SCENE ANALYSIS
 R. O. Duda and P. E. Hart
 New York, NY: John Wiley and Sons, 1973

CLASSIFICATION ALGORITHMS
 Mike James
 New York, NY: Wiley-Interscience, 1985
Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NONPROBABILISTIC THEORY
 William A. Gardner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 E. Oran Brigham
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 R. N. Bracewell
 New York, NY: McGraw-Hill Company, Inc., 1986

Speech:

ADAPTIVE FILTERS – STRUCTURES, ALGORITHMS, AND APPLICATIONS
 Michael L. Honig and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and P. Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
 Lawrence R. Rabiner and R. W. Schafer
 Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978
MOTOROLA ADDITIONAL SUPPORT 11 - 23
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LINEAR PREDICTION OF SPEECH
 J. D. Markel and A. H. Gray, Jr.
 New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
 J. L. Flanagan
 New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION – HUMAN AND MACHINE
 D. O’Shaughnessy
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

Telecommunications:

DIGITAL COMMUNICATION
 Edward A. Lee and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1988

DIGITAL COMMUNICATIONS
 John G. Proakis
 New York, NY: McGraw-Hill Publishing Co., 1983
11 - 24 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Mo
DS
C L
DS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 12

ADDITIONAL SUPPORT

Dr. BuB Electronic Bulletin Board
Audio

Codec Routines
DTMF Routines

Fast Fourier
Transforms

Filters
Floating-Point

Routines
Functions

Lattice Filters
Matrix Operations

Reed-Solomon
Encoder

Sorting Routines
Speech

Standard I/O Equates
Tools and Utilities

M
o

to
ro

la
 D

S
P

 N
ew

s

M
o

to
ro

la
 F

ie
ld

 A
p

p
lic

at
io

n
 E

n
g

in
ee

rs

D
es

ig
n

 H
o

tl
in

e
–

1-
80

0-
52

1-
62

74

D
S

P
 A

p
p

lic
at

io
n

s
A

ss
is

ta
n

ce
 –

 (
51

2)
 8

91
-3

23
0

D
S

P
 M

ar
ke

ti
n

g
 In

fo
rm

at
io

n
 –

 (
51

2)
 8

91
-2

03
0

D
S

P
 T

h
ir

d
-P

ar
ty

 S
u

p
p

o
rt

 In
fo

rm
at

io
n

 –
 (

51
2)

 8
91

-3
09

8

D
S

P
 U

n
iv

er
si

ty
 S

u
p

p
o

rt
 –

 (
51

2)
 8

91
-3

09
8

D
S

P
 T

ra
in

in
g

 C
o

u
rs

es
 –

 (
60

2)
 9

94
-6

90
0

torola DSP Product Support
P56100CLASx Assembler/Simulator
anguage Compiler
P56156ADSx Application Development System

Motorola
DSP
ola
MOTOROLA
For
ADDITIONAL SUPPORT 12 - 1
More Information On This Product,

 Go to: www.freescale.com

SECTION CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.1 INTRODUCTION . 12-3
12.2 THIRD PARTY SUPPORT . 12-3
12.3 MOTOROLA DSP PRODUCT SUPPORT . 12-4
12.4 SUPPORT INTEGRATED CIRCUITS . 12-6
12.5 MOTOROLA DSP NEWS . 12-7
12.6 MOTOROLA FIELD APPLICATION ENGINEERS 12-7
12.7 DSP APPLICATIONS HELP LINE – (512) 891-3230 12-7
12.8 DESIGN HOTLINE – 1-800-521-6274 . 12-7
12.9 DSP MARKETING INFORMATION – (512) 891-2030 12-7
12.10 DSP THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098 . 12-7
12.11 DSP UNIVERSITY SUPPORT – (512) 891-3098 12-7
12.12 DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274 . . . 12-8
12.13 Dr. BuB ELECTRONIC BULLETIN BOARD . 12-8
12.14 REFERENCE BOOKS AND MANUALS . 12-18
12 - 2 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.1 INTRODUCTION
This section is intended as a guide to the DSP support services and products offered by
Motorola. This includes training, development hardware and software tools, telephone
support, etc.

12.2 THIRD PARTY SUPPORT
User support from the conception of a design through completion is available from Motor-
ola and third-party companies as shown in the following list:

Motorola Third Party

Design Data Sheets Data Acquisition Packages
Application Notes Filter Design Packages
Application Bulletins Operating System Software
Software Examples Simulator

Prototyping Assembler Logic Analyzer with
Linker DSP561xx ROM Packages
C Compiler Data Acquisition Cards
Simulator DSP Development System
Application Development Cards

System (ADS) Operating System Software
In-Circuit Emulator Debug Software

Cable for ADS

Design Application Development Data Acquisition Packages
Verification System (ADS) Logic Analyzer with

In-Circuit Emulator DSP561xx ROM Packages
Simulator Data Acquisition Cards

DSP Development System
Cards

Application-Specific
Development Tools

Debug Software

Specific information on the companies that offer these products is available by calling the
DSP third party information number given in Section 12.10.
MOTOROLA ADDITIONAL SUPPORT 12 - 3
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP PRODUCT SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The following is a partial list of the support available for the DSP561xx. Additional
information on DSP56100 family members can be obtained through Dr. BuB or the
appropriate support telephone service.

12.3 MOTOROLA DSP PRODUCT SUPPORT
• DSP56100CLASx Design-In Software Package which includes:

Relocatable Macro Assembler

Linker

Simulator (simulates single or multiple DSP561xxs)

Librarian

• DSP561xx Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Technical Service Engineers (TSEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

12.3.1 DSP56100CLASx Assembler/Simulator

12.3.1.1 Macro Cross Assembler and Simulator Platforms
1. IBM PCs and clones using an 80386 or upward compatible processor

2. Macintosh computers with a NU-BUS expansion port

3. SUN computer

12.3.1.2 Macro Cross Assembler Features
• Production of relocatable object modules compatible with linker program when in

relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of
the DSP561xx
12 - 4 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP PRODUCT SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

• Modular programming features: local labels, sections, and external definition/ref-
erence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcen-
dental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

12.3.1.3 Simulator Features
• Simulation of all DSP56100 family DSPs

• Simulation of multiple DSP56100 family DSPs

• Linkable object code modules:

–Nondisplay simulator library

–Display simulator library

• C language source code for:

–Screen management functions

–Terminal I/O functions

–Simulation examples

• Single stepping through object programs

• Conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-line display and expanded on-line help for simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

12.3.2 Application Development Systems
• Application Development Systems (ADS) are available for all family members. Up-

grading an ADS to run a different Motorola DSP is done by purchasing and plug-
ging in a new Application Development Module.
MOTOROLA ADDITIONAL SUPPORT 12 - 5
For More Information On This Product,

 Go to: www.freescale.com

SUPPORT INTEGRATED CIRCUITS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.3.2.1 DSP561xxADSx Application Development System Hardware Features
• Full-speed operation

• Multiple application development module (ADM) support with programmable ADM
addresses

• User-configurable RAM for DSP561xx code development

• Expandable monitor ROM

• 96-pin Euro-card connector making all pins accessible

• In-circuit emulation capabilities using OnCE

• Separate berg pin connectors for alternate accessing of serial or host/DMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform

• 3V emulation support in target environments

12.3.2.2 DSP561xxADSx Application Development System Software Features
• Full-speed operation

• Single/multiple stepping through DSP561xx object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple OS I/O file access from DSP561xx object programs

• Fully compatible with the DSP56100CLASx design-in software package

• On-line help screens for each command and DSP561xx register

12.4 SUPPORT INTEGRATED CIRCUITS
• DSP56ADC16 16-bit, 100-kHz analog-to-digital converter

• DSP56401 AES/EBU processor

• DSP56200 FIR filter
12 - 6 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA DSP NEWS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.5 MOTOROLA DSP NEWS
The Motorola DSP News is a quarterly newsletter providing information on new products,
application briefs, questions and answers, DSP product information, third-party product
news, etc. This newsletter is free and is available upon request by calling the marketing
information phone number listed below.

12.6 MOTOROLA FIELD APPLICATION ENGINEERS
Information and assistance for DSP applications is available through the local Motorola
field office. See your local telephone directory for telephone numbers or call (512)891-
2030.

12.7 DSP APPLICATIONS HELP LINE – (512) 891-3230
Design assistance for specific DSP applications is available by calling this number.

12.8 DESIGN HOTLINE – 1-800-521-6274
This is the Motorola number for information pertaining to any Motorola product.

12.9 DSP MARKETING INFORMATION – (512) 891-2030
Marketing information including brochures, application notes, manuals, price quotes, etc.
for Motorola DSP-related products are available by calling this number.

12.10 DSP THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098
Information concerning third-party manufacturers using and supporting Motorola DSP
products is available by calling this number. Third-party support includes:

 Filter design software

 Logic analyzer support

 Boards for VME, IBM-PC/XT/AT, MACII, SPARC, HP300

 Development systems

 Data conversion cards

 Operating system software

 Debug software

Additional information is available on Dr. BuB and in DSP News.

12.11 DSP UNIVERSITY SUPPORT – (512) 891-3098
Information concerning university support programs and university discounts for all
Motorola DSP products is available by calling this number.
MOTOROLA ADDITIONAL SUPPORT 12 - 7
For More Information On This Product,

 Go to: www.freescale.com

DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.12 DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274
Training information on the DSP56100 family members is available by writing:

Motorola SPS Training and Technical Operations

Mail Drop EL524

P. O. Box 21007

Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes
these courses and gives the current training schedule and prices.

12.13 Dr. BuB ELECTRONIC BULLETIN BOARD
Dr. BuB is an electronic bulletin board providing free source code for a large variety of
topics that can be used to develop applications with Motorola DSP products. The software
library includes files including FFTs, FIR filters, IIR filters, lattice filters, matrix algebra
routines, companding routines, floating-point routines, and others. In addition, the latest
product information and documentation (including information on new products and
improvements on existing products) is posted. Questions concerning Motorola DSP
products posted on Dr. BuB are answered promptly.

Dr. BuB is open 24-hour a day, 7 days per week and offers the DSP community informa-
tion on Motorola’s DSP products, including:

• Public domain source code for Motorola’s DSP products including the DSP56000
family, the DSP56100 family and the DSP96002

• Announcements about new products and policies
• Technical discussion groups monitored by DSP application engineers
• Confidential mail service
• Calendar of events for Motorola DSP
• Complete list of Motorola DSP literature and ordering information
• Information about the Third-Party and University Support Programs.

To logon to the bulletin board, follow these instructions:

1. Set the character format on your modem to 8 data bits, no parity, 1 stop bit,
then dial (512) 891-3771. Dr. BuB will automatically set the data transfer rate
to match your modem (9600, 4800, 2400, 1200 or 300 BPS).

2. Once the connection has been established, you will see the Dr. BuB login
prompt (you may have to press the carriage return a couple times). If you just
want to browse the system, login as guest. If you would like all the privileges
that are normally allowed on the system, enter new at the login prompt.
12 - 8 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3. If you open a new account, you will be asked to answer some questions such
as name, address, phone number, etc. After answering these questions, you
will have immediate access to all features of the system including download
privilege, electronic mail and participation in discussion groups.

4. You will have an hour of access time for each call (upload and download time
doesn’t count against you) and you can call as often as you like. If you need
more time on line, just send an electronic mail request to the system operator
(sysop).

The following is a partial list of the software available on Dr. BuB.

12.13.1 Audio
rvb1.asm 1.0 Easy-to-read reverberation routine 17056

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442

stereo.asm 1.0 Code for C-QUAM AM stereo decoder 4830

stereo.hlp 1.0 Help file for STEREO.ASM 620

dge.asm 1.0 Digital Graphic Equalizer code from 14880

12.13.2 Benchmarks
Appendix B.1 through B.2.26 DSP56116 (DSP56100 Family) Benchmarks 44436

Appendix B.3 through B.3.9 DSP56116 (DSP56100 Family) Benchmarks 6329

12.13.3 Codec Routines
loglin.asm 1.0 Companded CODEC to linear PCM data 4572

conversion

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184

loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

12.13.4 DTMF Routines
clear.cmd 1.0 Explained in read.me file 119

data.lod 1.0 421

det.asm 1.0 Subroutine used in IIR DTMF 5923

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 12 - 9
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

dtmf.asm 1.0 Main routine used in IIR DTMF 10685

dtmf.mem 1.0 Memory for DTMF routine 48

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409

dtmfmstr.mem 1.0 Memory for multichannel DTMF routine 41

dtmftwo.asm 1.0 10256

ex56.bat 1.0 94

genxd.lod 1.0 Data file 183

genyd.lod 1.0 Data file 180

goertzel.asm 1.0 Goertzel routine 4393

goertzel.lnk 1.0 Link file for Goertzel routine 6954

goertzel.lst 1.0 List file for Goertzel routine 11600

load.cmd 1.0 46

tstgoert.mem 1.0 Memory for Goertzel routine 384

sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491

read.me 1.0 Instructions 738

12.13.5 Fast Fourier Transforms
sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185

sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator 1029
Generator Macro

sinewave.hlp for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386

fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999

fftr2at.hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290

fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991

fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

Document ID Version Synopsis Size
12 - 10 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287

fftr2dt.hlp Help for fftr2dt.asm 614

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976

fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984

fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493

dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584
macro with normally ordered input/output

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered input/output

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform 1851
in the frequency domain

dhit1.hlp 1.0 Help file for dhit1.asm 1007

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526
block floating point

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578

fftr2aa.asm 1.0 FFT program for automatic scaling 3172

12.13.6 Filters
fir.asm 1.0 Direct Form FIR Filter 545

fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All Pole 801
IIR Filter with Scaling

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 12 - 11
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

iir2.hlp Help for iir2.asm 2286

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All 776
Pole IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713
 (Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842
with Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR 923
Filter

iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900

iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

lms.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

12.13.7 Floating-Point Routines
fpdef.hlp 2.0 Storage format and arithmetic 10600

representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating point add 3860

Document ID Version Synopsis Size
12 - 12 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

fpsub.asm 2.1 Floating point subtract 3072

fpcmp.asm 2.1 Floating point compare 2605

fpmpy.asm 2.0 Floating point multiply 2250

fpmac.asm 2.1 Floating point multiply-accumulate 2712

fpdiv.asm 2.0 Floating point divide 3835

fpsqrt.asm 2.0 Floating point square root 2873

fpneg.asm 2.0 Floating point negate 2026

fpabs.asm 2.0 Floating point absolute value 1953

fpscale.asm 2.0 Floating point scaling 2127

fpfix.asm 2.0 Floating to fixed point conversion 3953

fpfloat.asm 2.0 Fixed to floating point conversion 2053

fpceil.asm 2.0 Floating point CEIL subroutine 1771

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862

12.13.8 Functions
log2.asm 1.0 Log base 2 by polynomial 1118

approximation

log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262

log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approximation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation, 7 bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 12 - 13
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

sqrt2.asm 1.0 Square Root by polynomial 899
approximation, 10 bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388

sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tli.asm 1.1 Linear table lookup/interpolation 3253
routine for function generation

tli.hlp 1.1 Help for tli.asm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bingrayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446

rand1.hlp Help for rand1.asm 704

12.13.9 Lattice Filters
latfir1.asm 1.0 Lattice FIR Filter Macro 1156

latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro 1174
 (modified modulo count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257

latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

latgen.asm 1.0 Generalized Lattice FIR/IIR 1334
Filter Macro

latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407

latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Document ID Version Synopsis Size
12 - 14 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

12.13.10 Matrix Operations
matmul1.asm 1.0 [1x3][3x3]=[1x3] Matrix Multiplication 1817

matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650

matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

12.13.11 Reed-Solomon Encoder
readme.rs 1.0 Instructions for Reed-Solomon coding 5200

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075

table1.asm 1.0 Include file for R-S coder 7971

table2.asm 1.0 Include file for R-S coder 4011

12.13.12 Sorting Routines
sort1.asm 1.0 Array Sort by Straight Selection 1312

sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183

sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

12.13.13 Speech
lgsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861

(LPC) coefficients

lgsol1.hlp Help for lgsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR 6360
(LPC) coefficients

durbin1.hlp Help for durbin1.asm 3616

adpcm.asm 1.0 32 kbits/s CCITT ADPCM Speech Coder 120512

adpcm.hlp 1.0 Help file for adpcm.asm 14817

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 12 - 15
For More Information On This Product,

 Go to: www.freescale.com

Dr. BuB ELECTRONIC BULLETIN BOARD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

g722.zip 1.11 G.722 Speech Processing Code 235864
(pkzip file for PC)

g722.tar.Z 1.11 G.722 Speech Processing Code 339297
(Compressed tar file for Unix)

12.13.14 Standard I/O Equates
ioequ16.asm 1.1 DSP56100 Standard I/O Equate File 10329

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

12.13.15 Tools and Utilities
srec.c 4.10 Utility to convert DSP56000 OMF format 38975

to SREC.

srec.doc 4.10 Manual page for srec.c. 7951

srec.h 4.10 Include file for srec.c 3472

srec.exe 4.10 Srec executable for IBM PC 22065

sloader.asm 1.1 Serial loader from the SCI port for the 3986
DSP56001

sloader.hlp 1.1 Help for sloader.asm 2598

sloader.p 1.1 Serial loader s-record file for download 736
to EPROM

parity.asm 1.0 Parity calculation of a 24-bit number in 1641
accumulator A

parity.hlp 1.0 Help for parity.asm 936

parityt.asm 1.0 Test program for parity.asm 685

parityt.hlp 1.0 Help for parityt.asm 259

dspbug Ordering information for free debug 882
monitor for DSP56000/DSP56001

12.13.16 Current DSP56200 Related Software
p1 1.0 Information on 56200 Filter Software 6343

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916

p3 1.0 “C” code implementation of p2 25795

p4 1.0 Polled I/O Adaptive Filter Flowchart 10361

Document ID Version Synopsis Size
12 - 16 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

p5 1.0 “C” code implementation of p4 24806

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535

p7 1.0 “C” code implementation of p6 28489

p8 1.0 Polled I/O Dual FIR Filter Flowchart 9656

p9 1.0 “C” code implementation of p8 28525

12.14 REFERENCE BOOKS AND MANUALS
A list of DSP-related books is included here as an aid for the engineer who is new to the
field of DSP. This is a partial list of DSP references intended to help the new user find
useful information in some of the many areas of DSP applications. Many books could be
included in several categories but are not repeated.

12.14.1 General DSP
ADVANCED TOPICS IN SIGNAL PROCESSING

 Jae S. Lim and Alan V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
 A. V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DISCRETE-TIME SIGNAL PROCESSING
 A. V. Oppenheim and R. W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
 Maurice Bellanger
 New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
 Alan V. Oppenheim and Ronald W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
 David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
 New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
 J. A. Cadzow
 New York, NY: MacMillan Publishing Company, 1987

Document ID Version Synopsis Size
MOTOROLA ADDITIONAL SUPPORT 12 - 17
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

HANDBOOK OF DIGITAL SIGNAL PROCESSING
 D. F. Elliott
 San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 John G. Proakis and Dimitris G. Manolakis
 New York, NY: Macmillan Publishing Company, 1988

MULTIRATE DIGITAL SIGNAL PROCESSING
 R. E. Crochiere and L. R. Rabiner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
 S. Stearns and R. Davis
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
 C.H. Chen
 New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING – THE MODERN APPROACH
 James V. Candy
 New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
 Rabiner, Lawrence R., Gold and Bernard
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

12.14.2 Digital Audio and Filters
ADAPTIVE FILTER AND EQUALIZERS

 B. Mulgrew and C. Cowan
 Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
 B. Widrow and S. D. Stearns
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
 John Watkinson
 Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
 Charles S. Williams
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
 John Strawn
 William Kaufmann, Inc., 1985
12 - 18 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and Peter Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
 Andreas Antoniou
 New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
 Leland B. Jackson
 Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
 Richard A. Roberts and Clifford T. Mullis
 New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 Roman Kuc
 New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
 Simon Haykin
 New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
 H. Chamberlin
 Hasbrouck Heights, NJ: Hayden Book Co., 1985

12.14.3 C Programming Language
C: A REFERENCE MANUAL

Samuel P. Harbison and Guy L. Steele
Prentice-Hall Software Series, 1987.

PROGRAMMING LANGUAGE - C
American National Standards Institute,
ANSI Document X3.159-1989
American National Standards Institute, inc., 1990

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan, and Dennis M. Ritchie
Prentice-Hall, Inc., 1978.

12.14.4 Controls
ADAPTIVE CONTROL

 K. Astrom and B. Wittenmark
 New York, NY: Addison-Welsey Publishing Company, Inc., 1989
MOTOROLA ADDITIONAL SUPPORT 12 - 19
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ADAPTIVE FILTERING PREDICTION & CONTROL
 G. Goodwin and K. Sin
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
 B. C. Kuo
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
 K. Astrom and B. Wittenmark
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
 B. C. Kuo
 New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
 C. Phillips and H. Nagle
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS
 P. Moroney
 Cambridge, MA: The MIT Press, 1983

12.14.5 Graphics
CGM AND CGI

 D. B. Arnold and P. R. Bono
 New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
 D. Hearn and M. Pauline Baker
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
 J. D. Foley and A. Van Dam
 Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
 Michael E. Morteson
 New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
 P. R. Bono and I. Herman (Eds.)
 New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
 Roy Hall
 New York, NY: Springer-Verlag
12 - 20 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

POSTSCRIPT LANGUAGE PROGRAM DESIGN
 Glenn C. Reid - Adobe Systems, Inc.
 Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
 Bruce A. Artwick
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
 William M. Newman and Roger F. Sproull
 New York, NY: McGraw-Hill Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
 David F. Rogers
 New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
 Pixar
 San Rafael, CA. 94901

12.14.6 Image Processing
DIGITAL IMAGE PROCESSING

 William K. Pratt
 New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
 Rafael C. Gonzales and Paul Wintz
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
 M. P. Ekstrom
 New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
 Azriel Rosenfeld and Avinash C. Kak
 New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
 M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
 D. Saupe, and R. F. Voss
 New York, NY: Springer-Verlag

12.14.7 Motorola DSP Manuals
MOTOROLA DSP LINKER/LIBRARIAN REFERENCE MANUAL

Motorola, Inc., 1992.
MOTOROLA ADDITIONAL SUPPORT 12 - 21
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL
Motorola, Inc., 1992.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL
Motorola, Inc., 1992.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL
Motorola, Inc.,1990.

MOTOROLA DSP56100 FAMILY MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP56156 USER’S MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP56166 USER’S MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP96002 USER’S MANUAL
Motorola, Inc.,1989.

12.14.8 Numerical Methods
ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF

PROGRAMS)
 P. Berliout and P. Bizard
 New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
 G. H. Golub and C. F. Van Loan
 John Hopkins Press, 1983

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
 William H. Press, Brian P. Flannery,
 Saul A. Teukolsky, and William T. Vetterling
 Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
 Manfred R. Schroeder
 New York, NY: Springer-Verlag, 1986

12.14.9 Pattern Recognition
PATTERN CLASSIFICATION AND SCENE ANALYSIS

 R. O. Duda and P. E. Hart
 New York, NY: John Wiley and Sons, 1973
12 - 22 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLASSIFICATION ALGORITHMS
 Mike James
 New York, NY: Wiley-Interscience, 1985
Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NONPROBABILISTIC THEORY
 William A. Gardner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 E. Oran Brigham
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 R. N. Bracewell
 New York, NY: McGraw-Hill Company, Inc., 1986

12.14.10 Speech
ADAPTIVE FILTERS – STRUCTURES, ALGORITHMS, AND APPLICATIONS

 Michael L. Honig and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and P. Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
 Lawrence R. Rabiner and R. W. Schafer
 Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
 J. D. Markel and A. H. Gray, Jr.
 New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
 J. L. Flanagan
 New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION – HUMAN AND MACHINE
 D. O’Shaughnessy
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

12.14.11 Telecommunications
DIGITAL COMMUNICATION

 Edward A. Lee and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1988
MOTOROLA ADDITIONAL SUPPORT 12 - 23
For More Information On This Product,

 Go to: www.freescale.com

REFERENCE BOOKS AND MANUALS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DIGITAL COMMUNICATIONS
 John G. Proakis
 New York, NY: McGraw-Hill Publishing Co., 1983
12 - 24 ADDITIONAL SUPPORT MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Arithmetic
ABS

ADC

ADD

ASL

ASL4

ASR

ASR4

ASR16

CLR

CLR24

CMP

CMPM

DEC

DEC24

DIV

DMAC

EXT

IMAC

IMPY

INC

INC24

MAC

MACR

MPY

MPYR

MPY(su,uu)

MAC(su,uu)

NEG

NEGC

NORM

RND

SBC

SUB

SUBL

SWAP

Tcc

TFR

TFR2

TST

TST2

ZERO

• Logical
AND

ANDI

EOR

LSL

LSR

NOT

OR

ORI

ROL

ROR
 INSTRUCTION
For More Informati

 Go to: www
• Bit Field
Manipulation

BFTSTL

BFTSTH

BFCLR

BFSET

BFCHG

• Loop
DOLoop

DO FOREVER

ENDDO

BRKcc

• Move
LEA

MOVE

MOVE(C)

MOVE(I)

MOVE(M)

MOVE(P)

MOVE(S)

•

SET DETAILS
on On This Prod
.freescale.com
Program
Control

Bcc

BSR

BRA

BScc

DEBUG

DEBUGcc

Jcc

JMP

JSR

JScc

 NOP

REP

REPcc

RESET

RTI

RTS

STOP

SWI

WAIT
A - 1
uct,

SECTION CONTENTS

A - 2 INSTRUCTION SET DETAILS

MOTOROLA

SECTION A.1 APPENDIX A INTRODUCTION ...3

SECTION A.2 INSTRUCTION GUIDE ..3

SECTION A.3 NOTATION ...4

SECTION A.4 ADDRESSING MODES ...10
A.4.1 Addressing Mode Modifiers ..13

SECTION A.5 CONDITION CODE COMPUTATION ..14

SECTION A.6 PARALLEL MOVE DESCRIPTIONS ...15

SECTION A.7 INSTRUCTION DESCRIPTIONS ...17

SECTION A.8 INSTRUCTION TIMING ...224

SECTION A.9 INSTRUCTION SEQUENCE RESTRICTIONS235
A.9.1 Restrictions Near the End of DO Loops ..236
A.9.2 Other DO Restrictions ...237
A.9.3 ENDDO Restrictions ...237
A.9.4 RTI and RTS Restrictions ...238
A.9.5 SP and SSH/SSL Manipulation Restrictions238
A.9.6 R, N, and M Register Restrictions ..240
A.9.7 Fast Interrupt Routines ...240
A.9.8 REP Restrictions ...241

SECTION A.10 INSTRUCTION ENCODING ..241
A.10.1 Partial Encodings for Use in Instruction Encoding242
A.10.2 Instruction Encoding for the Parallel Move

Portion of an Instruction ..246
A.10.3 Instruction Encoding for Instructions Which Do Not

Allow Parallel Moves ...248
A.10.4 Parallel Instruction Encoding of the Operation Code259

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

APPENDIX A INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.1 APPENDIX A INTRODUCTION
This appendix contains detailed information about each instruction in the DSP56K
instruction set. It presents an instruction guide to help the user understand the individual
instruction descriptions and follows with sections on notation and addressing modes.
The instructions are then discussed in alphabetical order.

A.2 INSTRUCTION GUIDE
The following information is included in each instruction description with the goal of mak-
ing each description self-contained:

1. Name and Mnemonic: The mnemonic is highlighted in bold type for easy refer-
ence.

2. Assembler Syntax and Operation: For each instruction syntax, the corresponding
operation is symbolically described. If there are several operations indicated on a
single line in the operation field, those operations do not necessarily occur in the
order shown but are generally assumed to occur in parallel. If a parallel data move
is allowed, it will be indicated in parenthesis in both the assembler syntax and oper-
ation fields. If a letter in the mnemonic is optional, it will be shown in parenthesis in
the assembler syntax field.

3. Description: A complete text description of the instruction is given together with
any special cases and/or condition code anomalies of which the user should be
aware when using that instruction.

4. Example: An example of the use of the instruction is given. The example is shown
in DSP56K assembler source code format. Most arithmetic and logical instruction
examples include one or two parallel data moves to illustrate the many types of par-
allel moves that are possible. The example includes a complete explanation, which
discusses the contents of the registers referenced by the instruction (but not those
referenced by the parallel moves) both before and after the execution of the instruc-
tion. Most examples are designed to be easily understood without the use of a cal-
culator.

5. Condition Codes: The status register is depicted with the condition code bits which
can be affected by the instruction highlighted in bold type. Not all bits in the status
register are used. Those which are reserved are indicated with a double asterisk
and are read as zeros.

6. Instruction Format: The instruction fields, the instruction opcode, and the instruc-
tion extension word are specified for each instruction syntax. When the extension
MOTOROLA INSTRUCTION SET DETAILS A - 3
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

word is optional, it is so indicated. The values which can be assumed by each of the
variables in the various instruction fields are shown under the instruction field’s
heading. Note that the symbols used in decoding the various opcode fields of an
instruction are completely arbitrary. Furthermore, the opcode symbols used in
one instruction are completely independent of the opcode symbols used in a dif-
ferent instruction.

7. Timing: The number of oscillator clock cycles required for each instruction syntax is
given. This information provides the user a basis for comparison of the execution
times of the various instructions in oscillator clock cycles. Refer to Table A-1 and
Section A.8 for a complete explanation of instruction timing, including the meaning
of the symbols “aio”, “ap”, “ax”, “ay”, “axy”, “ea”, “jx”, “mv”, “mvb”, “mvc”, “mvm”,
“mvp”, “rx”, “wio”, “wp”, “wx”, and “wy”.

8. Memory: The number of program memory words required for each instruction syn-
tax is given. This information provides the user a basis for comparison of the num-
ber of program memory locations required for each of the various instructions in 24-
bit program memory words. Refer to Table A-1 and Section A.8 for a complete
explanation of instruction memory requirements, including the meaning of the sym-
bols “ea” and “mv”.

A.3 NOTATION
Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-1 lists the symbols used and their respective meanings. Depending
on the context, registers refer to either the register itself or the contents of the register.
A - 4 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Xn Input Register X1 or X0 (24 Bits)

Yn Input Register Y1 or Y0 (24 Bits)

An Accumulator Registers A2, A1, A0 (A2 — 8 Bits, A1 and A0 — 24 Bits)

Bn Accumulator Registers B2, B1, B0 (B2 — 8 Bits, B1 and B0 — 24 Bits)

X Input Register X = X1: X0 (48 Bits)

Y Input Register Y = Y1: Y0 (48 Bits)

A Accumulator A = A2: A1: A0 (56 Bits)*

B Accumulator B = B2: B1: B0 (56 BIts)*

AB Accumulators A and B = A1: B1 (48 Bits)*

BA Accumulators B and A = B1: A1 (48 Bits)*

A10 Accumulator A = A1: A0 (48 Bits)

B10 Accumulator B= B1:B0 (48 bits)

* NOTE: In data move operations, shifting and limiting are performed when this register is specified
as a source operand. When specified as a destination operand, sign extension and possibly
zeroing are performed.

Data ALU Registers Operands

Table A-1 Instruction Description Notation

Rn Address Registers R0 - R7 (16 Bits)

Nn Address Offset Registers N0 - N7 (16 Bits)

Mn Address Modifier Registers M0 - M7 (16 Bits)

Address ALU Registers Operands
MOTOROLA INSTRUCTION SET DETAILS A - 5
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute Address (16 Bits)

xxx Short Jump Address (12 Bits)

aa Absolute Short Address (6 Bits, Zero Extended)

pp I/O Short Address (6 Bits, Ones Extended)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X:Y

P: Program Memory Reference

Address Operands

PC Program Counter Register (16 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register = MR:CCR (16 Bits)

OMR Operating Mode Register (8 Bits)

LA Hardware Loop Address Register (16 Bits)

LC Hardware Loop Counter Register (16 Bits)

SP System Stack Pointer Register (6 Bits)

SSH Upper Portion of the Current Top of the Stack (16 Bits)

SSL Lower Portion of the Current Top of the Stack (16 Bits)

SS System Stack RAM = SSH: SSL (15 Locations by 32 Bits)

Program Control Unit Registers Operands

Table A-1 Instruction Description Notation (Continued)
A - 6 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 Bits)

#xx Immediate Short Data (8 Bits)

#xxx Immediate Short Data (12 Bits)

#xxxxxx Immediate Data (24 Bits)

Miscellaneous Operands

- Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

| | Absolute Value Operator

Unary Operators

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

➞ “Is Transferred To” Operator

: Concatenation Operator

Binary Operators

Table A-1 Instruction Description Notation (Continued)
MOTOROLA INSTRUCTION SET DETAILS A - 7
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Addressing Mode Operators

DM Double Precision Multiply Bit Indicating if the Chip is in Double Precision Multiply Mode

LF Loop Flag Bit Indicating When a DO Loop is in Progress

T Trace Mode Bit Indicating if the Tracing Function has been Enabled

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Mode Register (MR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of A or B is in Use

U Unnormalized Bit Indicating if the A or B Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the A or B Result is Set

Z Zero Bit Indicating if the A or B Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in A or B

C Carry Bit Indicating if a Carry or Borrow Occurred in A or B Result

Condition Code Register (CCR) Symbols
Standard Definitions (Table A-5 in Section A.5 Describes Exceptions)

Table A-1 Instruction Description Notation (Continued)
A - 8 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

NOTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

aio Time Required to Access an I/O Operand

ap Time Required to Access a P Memory Operand

ax Time Required to Access an X Memory Operand

ay Time Required to Access a Y Memory Operand

axy Time Required to Access XY Memory Operands

ea Time or Number of Words Required for an Effective Address

jx Time Required to Execute Part of a Jump-Type Instruction

mv Time or Number of Words Required for a Move-Type Operation

mvb Time Required to Execute Part of a Bit Manipulation Instruction

mvc Time Required to Execute Part of a MOVEC Instruction

mvm Time Required to Execute Part of a MOVEM Instruction

mvp Time Required to Execute Part of a MOVEP Instruction

rx Time Required to Execute Part of an RTI or RTS Instruction

wio Number of Wait States Used in Accessing External I/O

wp Number of Wait States Used in Accessing External P Memory

wx Number of Wait States Used in Accessing External X Memory

wy Number of Wait States Used in Accessing External Y Memory

Instruction Timing Symbols

() Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

r Rounding constant

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Other Symbols

Table A-1 Instruction Description Notation (Continued)
MOTOROLA INSTRUCTION SET DETAILS A - 9
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4 ADDRESSING MODES
The addressing modes are grouped into three categories: register direct, address regis-
ter indirect, and special. These addressing modes are summarized in Table A-2. All
address calculations are performed in the address ALU to minimize execution time and
loop overhead. Addressing modes, which specify whether the operands are in registers,
in memory, or in the instruction itself (such as immediate data), provide the specific
address of the operands.

The register direct addressing mode can be subclassified according to the specific regis-
ter addressed. The data registers include X1, X0, Y1, Y0, X, Y, A2, A1, A0, B2, B1, B0,
A, and B. The control registers include SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR.

Address register indirect modes use an address register Rn (R0–R7) to point to locations
in X, Y, and P memory. The contents of the Rn address register (Rn) is the effective
address (ea) of the specified operand, except in the “indexed by offset” mode where the
effective address (ea) is (Rn+Nn). Address register indirect modes use an address mod-
ifier register Mn to specify the type of arithmetic to be used to update the address regis-
ter Rn. If an addressing mode specifies an address offset register Nn, the given address
offset register is used to update the corresponding address register Rn. The Rn address
register may only use the corresponding address offset register Nn and the correspond-
ing address modifier register Mn. For example, the address register R0 may only use the
N0 address offset register and the M0 address modifier register during actual address
computation and address register update operations. This unique implementation allows
the user to easily address a wide variety of DSP-oriented data structures. All address
register indirect modes use at least one set of address registers (Rn, Nn, and Mn), and
the XY memory reference uses two sets of address registers, one for the X memory
space and one for the Y memory space.

The special addressing modes include immediate and absolute addressing modes as
well as implied references to the program counter (PC), the system stack (SSH or SSL),
and program (P) memory.

Addressing modes may also be categorized by the ways in which they can be used.
Table A-2 and Table A-3 show the various categories to which each addressing mode
belongs. These addressing mode categories may be combined so that additional, more
restrictive classifications may be defined. For example, the instruction descriptions may
use a memory alterable classification, which refers to addressing modes that are both
memory addressing modes and alterable addressing modes. Thus, memory alterable
addressing modes use address register indirect and absolute addressing modes.
A - 10 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Addressing Mode
Uses Mn
Modifier

Operand Reference

S C D A P X Y L XY

Register Direct

Data or Control Register No X X X

Address Register Rn No X

Address Modifier Register
Mn

No X

Address Offset Register Nn No X

Address Register Indirect

No Update No X X X X X

Postincrement by 1 Yes X X X X X

Postdecrement by 1 Yes X X X X X

Postincrement by Offset Nn Yes X X X X X

Postdecrement by Offset Nn Yes X X X X

Indexed by Offset Nn Yes X X X X

Predecrement by 1 Yes X X X X

Special

Immediate Data No X

Absolute Address No X X X X

Immediate Short Data No X

Short Jump Address No X

Absolute Short Address No X X X X

Table A-2 DSP56K Addressing Modes
MOTOROLA INSTRUCTION SET DETAILS A - 11
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Addressing Mode
Mode
MMM

Reg
RRR

Addressing Categories Assembler
SyntaxU P M A

Register Direct

Data or Control Register — — X (See Table A-1)

Address Register — — X Rn

Address Offset Register — — X Nn

Address Modifier Register — — X Mn

Address Register Indirect

No Update 100 Rn X X X (Rn)

Postincrement by 1 011 Rn X X X X (Rn) +

Postdecrement by 1 010 Rn X X X X (Rn) -

Postincrement by Offset Nn 001 Rn X X X X (Rn) + Nn

Postdecrement by Offset Nn 000 Rn X X X (RN) - Nn

Indexed by Offset Nn 101 Rn X X (Rn + Nn)

Predecrement by 1 111 Rn X X - (Rn)

Special

Immediate Data 110 100 X #xxxxxx

Absolute Address 110 000 X X xxxx

Immediate Short Data — — #xx

Short Jump Address — — X xxx

Absolute Short Address — — X aa

I/O Short Address — — X pp

Implicit — — X

Update Mode (U) – Modifies address registers without any associated data move.
Parallel Mode (P) – Used in instructions where two effective addresses are required.
Memory Mode (M) – Refers to operands in memory using an effective addressing field.
Alterable Mode (A) – Refers to alterable or writable registers or memory.

Table A-3 DSP56K Addressing Mode Encoding
A - 12 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The address register indirect addressing modes require that the offset register number
be the same as the address register number. The assembler syntax “N” may be used
instead of “Nn” in the address register indirect memory addressing modes. If “N” is spec-
ified, the offset register number is the same as the address register number.

A.4.1 Addressing Mode Modifiers
The addressing mode selected in the instruction word is further specified by the contents
of the address modifier register Mn. The addressing mode update modifiers (M0–M7)
are shown in Table A-4. There are no restrictions on the use of modifier types with any
address register indirect addressing mode.
MOTOROLA INSTRUCTION SET DETAILS A - 13

For More Information On This Product,
 Go to: www.freescale.com

ADDRESSING MODES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Binary M0-M7 Hex M0-M7 Addressing Mode Arithmetic

0000 0000 0000 0000 0000 Reverse Carry (Bit Reverse)

0000 0000 0000 0001 0001 Modulo 2

00000000 0000 0010 0002 Modulo 3

: : :

0111 1111 1111 1110 7FFE Modulo 32767

0111 1111 1111 1111 7FFF Modulo 32768

1000 0000 0000 0000 8000 Reserved

1000 0000 0000 0001 8001 Multiple Wrap-Around Modulo 2

1000 0000 0000 0010 8002 Reserved

1000 0000 0000 0011 8003 Multiple Wrap-Around Modulo 4

: : Reserved

1000 0000 0000 0111 8007 Multiple Wrap-Around Modulo 8

: : Reserved

1000 0000 0000 1111 800F Multiple Wrap-Around Modulo 24

: : Reserved

1000 0000 0001 1111 801F Multiple Wrap-Around Modulo 25

: : Reserved

1000 0000 0011 1111 803F Multiple Wrap-Around Modulo 26

: : Reserved

1000 0000 0111 1111 807F Multiple Wrap-Around Modulo 27

: : Reserved

1000 0000 1111 1111 80FF Multiple Wrap-Around Modulo 28

: : Reserved

1000 0001 1111 1111 81FF Multiple Wrap-Around Modulo 29

: : Reserved

1000 0011 1111 1111 83FF Multiple Wrap-Around Modulo 210

: : Reserved

1000 0111 1111 1111 87FF Multiple Wrap-Around Modulo 211

: : Reserved

1000 1111 1111 1111 8FFF Multiple Wrap-Around Modulo 212

: : Reserved

1001 1111 1111 1111 9FFF Multiple Wrap-Around Modulo 213

: : Reserved

1011 1111 1111 1111 BFFF Multiple Wrap-Around Modulo 214

: : Reserved

1111 1111 1111 1111 FFFF Linear (Modulo 215)

Table A-4 Addressing Mode Modifier Summary
A - 14 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

CONDITION CODE COMPUTATION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.5 CONDITION CODE COMPUTATION

The condition code register (CCR) portion of the status register (SR) consists of eight
defined bits:

S — Scaling Bit N — Negative Bit

L — Limit Bit Z — Zero Bit

E — Extension Bit V — Overflow Bit

U — Unnormalized Bit C — Carry Bit

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the
result of a data ALU operation. These condition code bits are not latched and are not
affected by address ALU calculations or by data transfers over the X, Y, or global
data buses. The L bit is a latching overflow bit which indicates that an overflow has
occurred in the data ALU or that data limiting has occurred when moving the contents of
the A and/or B accumulators. The S bit is a latching bit used in block floating point oper-
ations to indicate the need to scale the number in A or B. See SECTION 5 – PROGRAM
CONTROL UNIT for information on the MR portion of the status register.

The standard definition of the condition code bits follows. Exceptions to these stan-
dard definitions are given in the notes which follow Table A-5.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 15

For More Information On This Product,
 Go to: www.freescale.com

CONDITION CODE COMPUTATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S (Scaling Bit) The scaling bit (S) is used to detect data growth, which is
required in Block Floating Point FFT operation. Typically, the bit
is tested after each pass of a radix 2 decimation-in-time FFT
and, if it is set, the appropriate scaling mode should be activated
in the next pass. The Block Floating Point FFT algorithm is
described in the Motorola application note APR4/D, “Implemen-
tation of Fast Fourier Transforms on Motorola’s DSP56000/
DSP56001 and DSP96002 Digital Signal Processors.” This bit is
computed according to the logical equations below when an
instruction or a parallel move moves the result of accumulator A
or B to XDB or YDB. It is a “sticky” bit, cleared only by an instruc-
tion that specifically clears it.

The following logical equations are used to compute the scaling
bit based upon the scaling mode bits:

 L (Limit Bit) Set if the overflow bit V is set or if an instruction or a parallel
move causes the data shifter/limiters to perform a limiting opera-
tion. Not affected otherwise. This bit is latched and must be
reset by the user.

 E (Extension Bit) Cleared if all the bits of the signed integer portion of the A or B
result are the same – i.e., the bit patterns are either 00 . . . 00 or
11 . . . 11. Set otherwise. The signed integer portion is defined
by the scaling mode as shown in the following table:

If S1=0 and S0=0 (no scaling)
then S = (A46 XOR A45) OR (B46 XOR B45)

If S1=0 and S0=1 (scale down)
then S = (A47 XOR A46) OR (B47 XOR B46)

If S1=1 and S0=0 (scale up)
then S = (A45 XOR A44) OR (B45 XOR B44)

If S1=1 and S0=1 (reserved)
then the S flag is undefined.

where Ai and Bi means bit i in accumulator A or B.
A - 16 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

CONDITION CODE COMPUTATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S1 S0 Scaling Mode Signed Integer Portion

0 0 No Scaling Bits 55, 54, 48, 47
0 1 Scale Down Bits 55, 54, 49, 48
1 0 Scale Up Bits 55, 54, 47, 46

Note that the signed integer portion of an accumulator IS NOT necessarily the same as
the extension register portion of that accumulator. The signed integer portion of an accu-
mulator consists of the MS 8, 9, or 10 bits of that accumulator, depending on the scaling
mode being used. The extension register portion of an accumulator (A2 or B2) is always the
MS 8 bits of that accumulator. The E bit refers to the signed integer portion of an accu-
mulator and NOT the extension register portion of that accumulator. For example, if
the current scaling mode is set for no scaling (i.e., S1=S0=0), the signed integer portion of
the A or B accumulator consists of bits 47 through 55. If the A accumulator contained the
signed 56-bit value $00:800000:000000 as a result of a data ALU operation, the E bit
would be set (E=1) since the 9 MS bits of that accumulator were not all the same (i.e., nei-
ther 00 . . 00 nor 11 . . 11). This means that data limiting will occur if that 56-bit value is
specified as a source operand in a move-type operation. This limiting operation will result in
either a positive or negative, 24-bit or 48-bit saturation constant being stored in the specified
destination. The only situation in which the signed integer portion of an accumulator and
the extension register portion of an accumulator are the same is in the “Scale Down” scaling
mode (i.e., S1=0 and S0=1).

U (Unnormalized Bit) Set if the two MS bits of the MSP portion of the A or B result are the
same. Cleared otherwise. The MSP portion is defined by the scal-
ing mode. The U bit is computed as follows:

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U=(Bit 47 ⊕ Bit 46)
0 1 Scale Down U=(Bit 48 ⊕ Bit 47)
1 0 Scale Up U=(Bit 46 ⊕ Bit 45)

N (Negative Bit) Set if the MS bit 55 of the A or B result is set. Cleared otherwise.

Z (Zero Bit) Set if the A or B result equals zero. Cleared otherwise.

V (Overflow Bit) Set if an arithmetic overflow occurs in the 56-bit A or B result. This
indicates that the result cannot be represented in the 56-bit accu-
mulator; thus, the accumulator has overflowed. Cleared otherwise.
MOTOROLA INSTRUCTION SET DETAILS A - 17
For More Information On This Product,

 Go to: www.freescale.com

CONDITION CODE COMPUTATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

C (Carry Bit) Set if a carry is generated out of the MS bit of the A or B result of
an addition or if a borrow is generated out of the MS bit of the A
or B result of a subtraction. The carry or borrow is generated out
of bit 55 of the A or B result. Cleared otherwise.

Table A-5 shows how each condition code bit is affected by each instruction. Exceptions
to the standard definitions given above are indicated by a number or a “?”. Consult the
corresponding note for the special definition that applies in each particular case.
Although many of the instructions allow optional parallel moves, Table A-5 applies when
there are no parallel moves associated with an instruction. With this restriction, the
states of the condition code bits are determined only by the execution of the instruction
itself. However, the S and L bits may be determined differently than shown in the table
when a parallel move is associated with the instruction. When using an optional parallel
move, refer to the individual instruction’s detailed description in Section A.7 to see how
the S and L bits are determined.
A - 18 INSTRUCTION SET DETAILS MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

CONDITION CODE COMPUTATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following notes apply to Table A-5:

Table A-5 Condition Code Computations for Instructions (No Parallel Move)

Mnemonic S L E U N Z V C Notes Mnemonic S L E U N Z V C Notes

ABS — ✓ ✓ ✓ ✓ ✓ ✓ — LSR — — — — 1 9 1 11

ADC — ✓ ✓ ✓ ✓ ✓ ✓ ✓ LUA — — — — — — — —

ADD — ✓ ✓ ✓ ✓ ✓ ✓ ✓ MAC — ✓ ✓ ✓ ✓ ✓ ✓ —

ADDL — ✓ ✓ ✓ ✓ ✓ 2 ✓ MACR — ✓ ✓ ✓ ✓ ✓ ✓ —

ADDR — ✓ ✓ ✓ ✓ ✓ ✓ ✓ MOVE ✓ ✓ — — — — — —

AND — — — — 8 9 1 — MOVEC ? ? ? ? ? ? ? ? 13

ANDI ? ? ? ? ? ? ? ? 3 MOVEM ? ? ? ? ? ? ? ? 13

ASL — ✓ ✓ ✓ ✓ ✓ 2 4 MOVEP ? ? ? ? ? ? ? ? 13

ASR — — ✓ ✓ ✓ ✓ 1 5 MPY — — ✓ ✓ ✓ ✓ 1 —

BCHG ? ? ? ? ? ? ? ? 14 MPYR — — ✓ ✓ ✓ ✓ 1 —

BCLR ? ? ? ? ? ? ? ? 14 NEG — ✓ ✓ ✓ ✓ ✓ ✓ —

BSET ? ? ? ? ? ? ? ? 14 NOP — — — — — — — —

BTST ? ? — — — — — ? 14 NORM — ✓ ✓ ✓ ✓ ✓ 2 —

CLR — — ✓ ✓ ✓ ✓ 1 — NOT — — — — 8 9 1 —

CMP — ✓ ✓ ✓ ✓ ✓ ✓ ✓ OR — — — — 8 9 1 —

CMPM — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ORI ? ? ? ? ? ? ? ? 6

DEBUG — — — — — — — — REP ✓ ✓ — — — — — —

DEBUGcc — — — — — — — — RESET — — — — — — — —

DEC — ✓ ✓ ✓ ✓ ✓ ✓ ✓ RND — ✓ ✓ ✓ ✓ ✓ ✓ —

DIV — ✓ — — — — 2 7 ROL — — — — 8 9 1 10

DO ✓ ✓ — — — — — — ROR — — — — 8 9 1 11

ENDDO — — — — — — — — RTI ? ? ? ? ? ? ? ? 12

EOR — — — — 8 9 1 — RTS — — — — — — — —

ILLEGAL — — — — — — — — SBC — ✓ ✓ ✓ ✓ ✓ ✓ ✓

INC — ✓ ✓ ✓ ✓ ✓ ✓ ✓ STOP — — — — — — — —

Jcc — — — — — — — — SUB — ✓ ✓ ✓ ✓ ✓ ✓ ✓

JCLR ? ? — — — — — — 14 SUBL — ✓ ✓ ✓ ✓ ✓ 2 ✓

JMP — — — — — — — — SUBR — ✓ ✓ ✓ ✓ ✓ ✓ ✓

JScc — — — — — — — — SWI — — — — — — — —

JSCLR ? ? — — — — — — 14 Tcc — — — — — — — —

JSET ? ? — — — — — — 14 TFR — — — — — — — —

JSR — — — — — — — — TST — — ✓ ✓ ✓ ✓ 1 —

JSSET ? ? — — — — — — 14 WAIT — — — — — — — —

LSL — — — — 8 9 1 10

where: ✓ Set according to the standard definition of the operation
— Not affected by the operation
? or # Set according to a special definition (refer to the following notes) and can be a 0 or 1
MOTOROLA INSTRUCTION SET DETAILS A - 19
For More Information On This Product,

 Go to: www.freescale.com

PARALLEL MOVE DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1. The bit is cleared.

2. V — Set if an arithmetic overflow occurs in the 56-bit A or B result or if the MS bit
of the destination operand is changed as a result of the left shift. Cleared otherwise.

3. For destination operand CCR, the bits are cleared if the corresponding bits in the
immediate data are cleared. Otherwise they are not affected. For other destination
operands, the bits are not affected.

4. C — Set if bit 55 of the source operand was set prior to instruction execution.
Cleared otherwise.

5. C — Set if bit 0 of the source operand was set prior to instruction execution. Cleared
otherwise.

6. For destination operand CCR, the bits are set if the corresponding bits in the imme-
diate data are set. Otherwise, they are not affected. For other destination operands,
the bits are not affected.

7. C — Set if bit 55 of the result is cleared. Cleared otherwise.

8. N — Set if bit 47 of the A or B result is set. Cleared otherwise.

9. Z — Set if bits 47 - 24 of the A or B result are zero. Cleared otherwise.

10. C — Set if bit 47 of the source operand was set prior to instruction execution.
Cleared otherwise.

11. C — Set if bit 24 of the source operand was set prior to instruction execution.
Cleared otherwise.

12. Set according to the value pulled from the stack.

13. For destination operand SR, the bits are set according to the corresponding bit of
the source operand. If SR is not specified as a destination operand, the L bit is set
if data limiting occurred and the S bit is computed according to the definition. (See
Section A.5.) Otherwise, the bits are unaffected.

14. Due to complexity, refer to the detailed description of the instruction.

A.6 PARALLEL MOVE DESCRIPTIONS
Many of the instructions in the DSP56K instruction set allow optional parallel data bus
movement. Section A.7 indicates the parallel move option in the instruction syntax with
the statement ‘“parallel move)”. The MOVE instruction is equivalent to a NOP with paral-
lel moves. Therefore, a detailed description of each parallel move is given with the
MOVE instruction details in Section A.7, beginning on page A-160.
A - 20 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.7 INSTRUCTION DESCRIPTIONS
The following section describes each instruction in the DSP56K instruction set in com-
plete detail. The format of each instruction description is given in Section A.2. Instruc-
tions which allow parallel moves include the notation “(parallel move)” in both the
Assembler Syntax and the Operation fields. The example given with each instruction
discusses the contents of all the registers and memory locations referenced by the
opcode-operand portion of that instruction but not those referenced by the parallel move
portion of that instruction. Refer to page A-160 for a complete discussion of parallel
moves, including examples which discuss the contents of all the registers and memory
locations referenced by the parallel move portion of an instruction.

Note: Whenever an instruction uses an accumulator as both a destination operand for a
data ALU operation and as a source for a parallel move operation, the parallel move
operation occurs first and will use the data that exists in the accumulator before the exe-
cution of the data ALU operation has occurred.

Whenever a bit in the condition code register is defined according to the standard defini-
tion given in Section A.5, a brief definition will be given in normal text in the Condition
Code section of that instruction description. Whenever a bit in the condition code register
is defined according to a special definition for some particular instruction, the special
definition of that bit will be given in the Condition Code section of that instruction in bold
text to alert the user to any special conditions concerning its use.

The definition and thus the computation of both the E (extension) and U (unnormalized)
bits of the condition code register (CCR) varies according to the scaling mode being
used. Refer to Section A.5 for complete details.

Note: The signed integer portion of an accumulator is NOT necessarily the same as ei-
ther the A2 or B2 extension register portion of that accumulator. The signed integer
portion of an accumulator is defined according to the scaling mode being used and can
consist of the MS 8, 9, or 10 bits of an accumulator. Refer to Section A.5 for complete
details.
MOTOROLA INSTRUCTION SET DETAILS A - 21
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
| D | ➞ D (parallel move) ABS D (parallel move)

Description: Take the absolute value of the destination operand D and store the result
in the destination accumulator.

Example:

:
ABS A1 #$123456,X0 A,Y0 ;take abs. value, set up X0, save value

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFF2. Since this is a negative number, the execution of the ABS
instruction takes the twos complement of that value and returns $00:000000:00000E.

Note: For the case in which the D operand equals $80:000000:000000 (-256.0), the
ABS instruction will cause an overflow to occur since the result cannot be correctly ex-
pressed using the standard 56-bit, fixed-point, twos-complement data representation.
Data limiting does not occur (i.e., A is not set to the limiting value of
$7F:FFFFFF:FFFFFF).

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

ABS Absolute Value ABS

Before Execution After Execution

A A$FF:FFFFFF:FFFFF2 $00:000000:00000E

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 22 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
ABS D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ABS Absolute Value ABS
MOTOROLA INSTRUCTION SET DETAILS A - 23
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S+C+D ➞ D (parallel move) ADC S,D (parallel move)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long-word op-
erands if the extension register of the destination accumulator (A2 or B2) is the sign
extension of bit 47 of the destination accumulator (A or B).

Example:
:

MOVE L:<$0,X ;get a 48-bit LS long-word operand in X
MOVE L:<$1,A ;get other LS long word in A (sign ext.)
MOVE L:<$2,Y ;get a 48-bit MS long-word operand in Y
ADD X,A L:<$3,B ;add LS words; get other MS word in B
ADC Y,B A10,L:<$4 ;add MS words with carry, save LS sum
MOVE B10,L:<$5 ;save MS sum

:

Explanation of Example: This example illustrates long-word double-precision (96-bit)
addition using the ADC instruction. Prior to execution of the ADD and ADC instructions,
the double-precision 96-bit value $000000:000001:800000:000000 is loaded into the Y
and X registers (Y:X), respectively. The other double-precision 96-bit value
$000000:000001:800000:000000 is loaded into the B and A accumulators (B:A), respec-
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the ADD X,A instruction. The ADC Y,B instruction then produces the correct MS 56-bit

ADC Add Long with Carry ADC

Before Execution After Execution

A A$FF:800000:000000 $FF:000000:000000

X X$800000:000000 $800000:000000

B B$00:000000:000001 $00:000000:000003

Y Y$000000:000001 $000000:000001
A - 24 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADC S,D

Opcode:

Instruction Fields:
S,D J d

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

ADC Add Long with Carry ADC

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 25
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S+D➞D (parallel move ADD S,D (parallel move)

Description: Add the source operand S to the destination operand D and store the
result in the destination accumulator. Words (24 bits), long words (48 bits), and accumu-
lators (56 bits) may be added to the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the ex-
tension register of the destination accumulator (A2 or B2) is the sign extension of bit 47
of the destination accumulator (A or B). Thus, the carry bit is always set correctly using
accumulator source operands, but can be set incorrectly if A1, B1, A10, or B10 are used
as source operands and A2 and B2 are not replicas of bit 47.

Example:
:

ADD X0,A A,X1 A,Y:(R1)+l ;24-bit add, set up X1, save prev. result
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$FFFFFF and the 56-bit A accumulator contains the value $00:000100:000000. The
ADD instruction automatically appends the 24-bit value in the X0 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and adds the result to the
56-bit A accumulator. Thus, 24-bit operands are added to the MSP portion of A or B (A1
or B1) because all arithmetic instructions assume a fractional, twos complement data
representation. Note that 24-bit operands can be added to the LSP portion of A or B (A0
or B0) by loading the 24-bit operand into X0 or Y0, forming a 48-bit word by loading X1 or
Y1 with the sign extension of X0 or Y0 and executing an ADD X,A or ADD Y,A instruc-
tion.

ADD Add ADD

Before Execution After Execution

X0 X0$FFFFFF

A A$00:000100:000000 $00:0000FF:000000

$FFFFFF
A - 26 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADD S,D

Opcode:

Instruction Fields:
S,D J J J d S,D J J J d S,D J J J d

B,A 0 0 1 0 X0,A 1 0 0 0 Y1,A 1 1 1 0
A,B 0 0 1 1 X0,B 1 0 0 1 Y1,B 1 1 1 1
X,A 0 1 0 0 Y0,A 1 0 1 0
X,B 0 1 0 1 Y0,B 1 0 1 1
Y,A 0 1 1 0 X1,A 1 1 0 0
Y,B 0 1 1 1 X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADD Add ADD
MOTOROLA INSTRUCTION SET DETAILS A - 27
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S+2∗ D➞D (parallel move) ADDL S,D (parallel move)

Description: Add the source operand S to two times the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmeti-
cally shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addi-
tion operation. The carry bit is set correctly if the source operand does not overflow as a
result of the left shift operation. The overflow bit may be set as a result of either the shift-
ing or addition operation (or both). This instruction is useful for efficient divide and deci-
mation in time (DIT) FFT algorithms.

Example:
:

ADDL A,B #$0,R0 ;A+2∗ B➞B, set up addr. reg. R0
:

Explanation of Example: Prior to execution, the 56-bit accumulator contains the value
$00:000000:000123, and the 56-bit B accumulator contains the value
$00:005000:000000. The ADDL A,B instruction adds two times the value in the B accu-
mulator to the value in the A accumulator and stores the 56-bit result in the B accumula-
tor.

ADDL Shift Left and Add Accumulators ADDL

Before Execution After Execution

A A$00:000000:000123

B B$00:005000:000000 $00:00A000:000123

$00:000000:000123
A - 28 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction’s left shift
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADDL S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDL Shift Left and Add Accumulators ADDL
MOTOROLA INSTRUCTION SET DETAILS A - 29
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S+D / 2➞D (parallel move) ADDR S,D (parallel move)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition oper-
ation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the addition operation and not by an overflow due to the
initial shifting operation. This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Example:
:

ADDR B,A X0,X:(R1)+N1 Y0,Y:(R4)– ;B+A / 2➞A, save X0 and Y0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:013570:000000. The ADDR B,A instruction adds one-half the value in the A accu-
mulator to the value in the B accumulator and stores the 56-bit result in the A accumula-
tor.

ADDR Shift Right and Add Accumulators ADDR

Before Execution After Execution

A A$80:000000:2468AC

B B$00:013570:000000 $00:013570:000000

$C0:013570:123456
A - 30 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ADDR S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ADDR Shift Right and Add Accumulators ADDR
MOTOROLA INSTRUCTION SET DETAILS A - 31
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S • D[47:24]➞D[47:24] (parallel move) AND S,D (parallel move)
where •denotes the logical AND operator

Description: Logically AND the source operand S with bits 47–24 of the destination
operand D and store the result in bits 47–24 of the destination accumulator. This instruc-
tion is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

AND X0,A1 (R5)–N5 ;AND X0 with A1, update R5 using N5
:

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$FF0000, and the 56-bit A accumulator contains the value $00:123456:789ABC. The
AND X0,A instruction logically ANDs the 24-bit value in the X0 register with bits 47–24 of
the A accumulator (A1) and stores the result in the A accumulator with bits 55–48 and
23–0 unchanged.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting occurs during parallel move
N — Set if bit 47 of A or B result is set
Z— Set if bits 47–24 of A or B result are zero
V — Always cleared

AND Logical AND AND

Before Execution After Execution

X0 X0$FF0000

A A$00:123456:789ABC $00:120000:789ABC

$FF0000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 32 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
AND S,D

Opcode:

Instruction Fields:
S J J D d

X0 0 0 A 0 (only A1 is changed)
X1 1 0 B 1 (only B1 is changed)
Y0 0 1
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

AND Logical AND AND
MOTOROLA INSTRUCTION SET DETAILS A - 33
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
#xx • D➞D AND(I) #xx,D
where • denotes the logical AND operator

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register (CCR) is specified as
the destination operand.

Restrictions: The ANDI #xx,MR instruction cannot be used immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA-2, LA-1, or LA).

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:
:

AND #$FE,CCR ;clear carry bit C in cond. code register
:

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR)
contains the value $31. The AND #$FE,CCR instruction logically ANDs the immediate 8-
bit value $FE with the contents of the condition code register and stores the result in the
condition code register.

ANDI AND Immediate with Control Register ANDI

Before Execution After Execution

CCR CCR$31 $30
A - 34 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

For CCR Operand:
S — Cleared if bit 7 of the immediate operand is cleared
L — Cleared if bit 6 of the immediate operand is cleared
E — Cleared if bit 5 of the immediate operand is cleared
U — Cleared if bit 4 of the immediate operand is cleared
N — Cleared if bit 3 of the immediate operand is cleared
Z — Cleared if bit 2 of the immediate operand is cleared
V — Cleared if bit 1 of the immediate operand is cleared
C — Cleared if bit 0 of the immediate operand is cleared

For MR and OMR Operands: The condition codes are not affected using these oper-
ands.

Instruction Format:
AND(I) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data — i i i i i i i i

D E E

MR 0 0
CCR 0 1
OMR 1 0

Timing: 2 oscillator clock cycles

Memory: 1 program word

ANDI AND Immediate with Control Register ANDI

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E
MOTOROLA INSTRUCTION SET DETAILS A - 35
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Syntax: ASL D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the left and store
the result in the destination accumulator. The MS bit of D prior to instruction execution is
shifted into the carry bit C and a zero is shifted into the LS bit of the destination accumu-
lator D. If a zero shift count is specified, the carry bit is cleared. The difference between
ASL and LSL is that ASL operates on the entire 56 bits of the accumulator and therefore
sets the V bit if the number overflowed.

Example:
:

ASL A (R3)– ;multiply A by 2, update R3
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $A5:012345:012345. The execution of the ASL A instruction shifts the 56-bit value
in the A accumulator one bit to the left and stores the result back in the A accumulator.

ASL Arithmetic Shift Accumulator Left ASL

55 47 23 0

C 0 (parallel move)Operation:

Before Execution After Execution

A A$A5:012345:012345

SR SR$0300 $0373

$4A:02468A:02468A
A - 36 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if bit 55 of A or B result is changed due to left shift
C — Set if bit 55 of A or B was set prior to instruction execution

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ASL D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ASL Arithmetic Shift Accumulator Left ASL
MOTOROLA INSTRUCTION SET DETAILS A - 37
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Syntax: ASR D (parallel move)

Description: Arithmetically shift the destination operand D one bit to the right and store
the result in the destination accumulator. The LS bit of D prior to instruction execution is
shifted into the carry bit C, and the MS bit of D is held constant.

Example:
:

ASR B X:–(R3),R3 ;divide B by 2, update R3, load R3
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $A8:A86420:A86421. The execution of the ASR B instruction shifts the 56-bit
value in the B accumulator one bit to the right and stores the result back in the B accu-
mulator.

ASR Arithmetic Shift Accumulator Right ASR

55 47 23 0

C (parallel move)Operation:

Before Execution After Execution

B B$A8:A86420:A86421

SR SR$0300 $0329

$D4:543210:543210
A - 38 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting occurs during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Always cleared
C — Set if bit 0 of A or B was set prior to instruction execution

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
ASR D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

ASR Arithmetic Shift Accumulator Right ASR
MOTOROLA INSTRUCTION SET DETAILS A - 39
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D[n] ➞ C; BCHG #n,X:ea
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,X:aa
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,X:pp
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:ea
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:aa
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,Y:pp
D[n] ➞ D[n]

D[n] ➞ C; BCHG #n,D
D[n] ➞ D[n]

Description: Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. The bit to be tested is selected by an immediate bit number from
0–23. This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a test-
and-change capability which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

Example:
:

BCHG #$7,X:<<$FFE2 ;test and change bit 7 in I/O Port B DDR
:

BCHG Bit Test and Change BCHG

Before Execution After Execution

X:$FFE2 X;$FFE2$000000

SR SR$0300 $0300

$000080
A - 40 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE2 (I/O port B
data direction register) contains the value $000000. The execution of the BCHG
#$7,X:<<$FFE2 instruction tests the state of the 7th bit in X:$FFE2, sets the carry bit C
accordingly, and then complements the 7th bit in X:$FFE2.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Changed if bit 0 is specified. Not affected otherwise.
V — Changed if bit 1 is specified. Not affected otherwise.
Z — Changed if bit 2 is specified. Not affected otherwise.
N — Changed if bit 3 is specified. Not affected otherwise.
U — Changed if bit 4 is specified. Not affected otherwise.
E — Changed if bit 5 is specified. Not affected otherwise.
L — Changed if bit 6 is specified. Not affected otherwise.
S — Changed if bit 7 is specified. Not affected otherwise.

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-47.
L — Set if data limiting has occurred. See Notes on page A-47.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Set if bit tested is set. Cleared otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

BCHG Bit Test and Change BCHG
MOTOROLA INSTRUCTION SET DETAILS A - 41
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For other destination operands:
S — Not affected
L — Not affected
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Set if bit tested is set. Cleared otherwise.

MR Status Bits:
For destination operand SR:

I0 — Changed if bit 8 is specified. Not affected otherwise.
I1 — Changed if bit 9 is specified. Not affected otherwise.
S0 — Changed if bit 10 is specified. Not affected otherwise.
S1 — Changed if bit 11 is specified. Not affected otherwise.
T — Changed if bit 13 is specified. Not affected otherwise.
DM — Changed if bit 14 is specified. Not affected otherwise
LF — Changed if bit 15 is specified. Not affected otherwise.

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
DM — Not affected
LF — Not affected

BCHG Bit Test and Change BCHG
A - 42 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCHG #n,X:ea
BCHG #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 0 b b b b b

BCHG Bit Test and Change BCHG
MOTOROLA INSTRUCTION SET DETAILS A - 43
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCHG #n,X:aa
BCHG #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCHG Bit Test and Change BCHG

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b
A - 44 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCHG #n,X:pp
BCHG #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCHG Bit Test and Change BCHG

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 45
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCHG #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

BCHG Bit Test and Change BCHG

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b
A - 46 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or B1. A0 or B0 is
cleared and the sign of A1 or B1 is extended into A2 or B2.

5. The bit test and change is performed on A1 or B1, and the C bit is set if
the bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCHG Bit Test and Change BCHG
MOTOROLA INSTRUCTION SET DETAILS A - 47
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D[n] ➞ C; BCLR #n,X:ea

0 ➞ D[n]

D[n] ➞ C; BCLR #n,X:aa
0 ➞ D[n]

D[n] ➞ C; BCLR #n,X:pp
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:ea
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:aa
0 ➞ D[n]

D[n] ➞ C; BCLR #n,Y:pp
0 ➞ D[n]

D[n] ➞ C; BCLR #n,D
0 ➞ D[n]

Description: Test the nth bit of the destination operand D, clear it and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0–23.
This instruction performs a read-modify-write operation on the destination location using
two destination accesses before releasing the bus. This instruction provides a test-and-
clear capability which is useful for synchronizing multiple processors using a shared
memory. This instruction can use all memory alterable addressing modes.

Example:
:

BCLR #$E,X:<<$FFE4 ;test and clear bit 14 in I/O Port B Data Reg.
:

BCLR Bit Test and Clear BCLR

Before Execution After Execution

X:$FFE4 X:$FFE4$FFFFFF

SR SR$0300 $0301

$FFBFFF
A - 48 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE4 (I/O port B
data register) contains the value $FFFFFF. The execution of the BCLR #$E,X:<<$FFE4
instruction tests the state of the 14th bit in X:$FFE4, sets the carry bit C accordingly, and
then clears the 14th bit in X:$FFE4.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Cleared if bit 0 is specified. Not affected otherwise.
V — Cleared if bit 1 is specified. Not affected otherwise.
Z — Cleared if bit 2 is specified. Not affected otherwise.
N — Cleared if bit 3 is specified. Not affected otherwise.
U — Cleared if bit 4 is specified. Not affected otherwise.
E — Cleared if bit 5 is specified. Not affected otherwise.
L — Cleared if bit 6 is specified. Not affected otherwise.
S — Cleared if bit 7 is specified. Not affected otherwise.

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-55.
L — Set if data limiting has occurred. See Notes on page A-55.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Set if bit tested is set. Cleared otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

BCLR Bit Test and Clear BCLR
MOTOROLA INSTRUCTION SET DETAILS A - 49
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E — Not affected
L — Not affected
S — Not affected

MR Status Bits:
For destination operand SR:

I0 — Cleared if bit 8 is specified. Not affected otherwise.
I1 — Cleared if bit 9 is specified. Not affected otherwise.
S0 — Cleared if bit 10 is specified. Not affected otherwise.
S1 — Cleared if bit 11 is specified. Not affected otherwise.
T — Cleared if bit 13 is specified. Not affected otherwise.
DM — Cleared if bit 14 is specified. Not affected otherwise
LF — Cleared if bit 15 is specified. Not affected otherwise.

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
DM — Not affected
LF — Not affected

BCLR Bit Test and Clear BCLR
A - 50 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCLR #n,X:ea
BCLR #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

BCLR Bit Test and Clear BCLR
MOTOROLA INSTRUCTION SET DETAILS A - 51
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCLR #n,X:aa
BCLR #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCLR Bit Test and Clear BCLR

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b
A - 52 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCLR #n,X:pp
BCLR #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCLR Bit Test and Clear BCLR

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 53
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BCLR #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

BCLR Bit Test and Clear BCLR

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 b b b b b
A - 54 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or B1. A0 or B0 is
cleared and the sign of A1 or B1 is extended into A2 or B2.

5. The bit test and clear is performed on A1 or B1, and the C bit is set if the
bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BCLR Bit Test and Clear BCLR
MOTOROLA INSTRUCTION SET DETAILS A - 55
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D[n] ➞ C; BSET #n,X:ea

1 ➞ D[n]

D[n] ➞ C; BSET #n,X:aa
1 ➞ D[n]

D[n] ➞ C; BSET #n,X:pp
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:ea
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:aa
1 ➞ D[n]

D[n] ➞ C; BSET #n,Y:pp
1 ➞ D[n]

D[n] ➞ C; BSET #n,D
1 ➞ D[n]

Description: Test the nth bit of the destination operand D, set it, and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0–23.
This instruction performs a read-modify-write operation on the destination location using
two destination accesses before releasing the bus. This instruction provides a test-and-
set capability which is useful for synchronizing multiple processors using a shared mem-
ory. This instruction can use all memory alterable addressing modes.

Example:
:

BSET #$0,X:<<$FFE5 ;test and clear bit 14 in I/O Port B Data Reg.
:

BSET Bit Test and Set

Before Execution After Execution

X:$FFE5 X:$FFE5$000000

SR SR$0300 $0300

$000001
A - 56 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: Prior to execution, the 24-bit X location X:$FFE5 (I/O port C
data register) contains the value $000000. The execution of the BSET #$0,X:<<$FFE5

instruction tests the state of the 0th bit in X:$FFE5, sets the carry bit C accordingly, and
then sets the 0th bit in X:$FFE5.

Condition Codes:

CCR Condition Codes:
For destination operand SR:

C — Set if bit 0 is specified. Not affected otherwise.
V — Set if bit 1 is specified. Not affected otherwise.
Z — Set if bit 2 is specified. Not affected otherwise.
N — Set if bit 3 is specified. Not affected otherwise.
U — Set if bit 4 is specified. Not affected otherwise.
E — Set if bit 5 is specified. Not affected otherwise.
L — Set if bit 6 is specified. Not affected otherwise.
S — Set if bit 7 is specified. Not affected otherwise.

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-63.
L — Set if data limiting has occurred. See Notes on page A-63.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Set if bit tested is set. Cleared otherwise.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

BSET Bit Test and Set
MOTOROLA INSTRUCTION SET DETAILS A - 57
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E — Not affected
L — Not affected
S — Not affected

MR Status Bits:
For destination operand SR:

I0 — Set if bit 8 is specified. Not affected otherwise.
I1 — Set if bit 9 is specified. Not affected otherwise.
S0 — Set if bit 10 is specified. Not affected otherwise.
S1 — Set if bit 11 is specified. Not affected otherwise.
T — Set if bit 13 is specified. Not affected otherwise.
DM — Set if bit 14 is specified. Not affected otherwise
LF — Set if bit 15 is specified. Not affected otherwise.

For other destination operands:
I0 — Not affected
I1 — Not affected
S0 — Not affected
S1 — Not affected
T — Not affected
DM — Not affected
LF — Not affected

BSET Bit Test and Set
A - 58 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BSET #n,X:ea
BSET #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BSET Bit Test and Set

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 59
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BSET #n,X:aa
BSET #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BSET Bit Test and Set

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 b b b b b
A - 60 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BSET #n,X:pp
BSET #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BSET Bit Test and Set

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 61
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BSET #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

BSET Bit Test and Set

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 b b b b b
A - 62 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The resulting 24 bit value is placed back into A1 or B1. A0 or B0 is
cleared and the sign of A1 or B1 is extended into A2 or B2.

5. The bit test and set is performed on A1 or B1, and the C bit is set if the
bit tested is set.

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BSET Bit Test and Set
MOTOROLA INSTRUCTION SET DETAILS A - 63
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D[n] ➞ C; BTST #n,X:ea

D[n] ➞ C; BTST #n,X:aa

D[n] ➞ C; BTST #n,X:pp

D[n] ➞ C; BTST #n,Y:ea

D[n] ➞ C; BTST #n,Y:aa

D[n] ➞ C; BTST #n,Y:pp

D[n] ➞ C; BTST #n,D

Description: Test the nth bit of the destination operand D. The state of the nth bit is
stored in the carry bit C of the condition code register. The bit to be tested is selected by
an immediate bit number from 0–23. This instruction is useful for performing serial to par-
allel conversion when used with the appropriate rotate instructions. This instruction can
use all memory alterable addressing modes.

Example:
:

BTST #$0,X:<<$FFEE ;read SSI serial input flag IF1 into C bit
ROL A ;rotate carry bit C into LSB of A1

:

Explanation of Example: Prior to execution, the 24-bit X location X:$FFEE (I/O SSI sta-
tus register) contains the value $000002. The execution of the BTST #$1,X:<<$FFEE
instruction tests the state of the 1st bit (serial input flag IF1) in X:$FFEE and sets the
carry bit C accordingly. This instruction sequence illustrates serial to parallel conversion
using the carry bit C and the 24-bit A1 register.

BTST Bit Test BTST

Before Execution After Execution

X:$FFEE X:$FFEE$000002

SR SR$0300 $0301

$000002
A - 64 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

CCR Condition Codes:
For destination operand A or B:

C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E — Not affected
L — Set if data limiting has occurred. See Notes on page A-69.
S — Computed according to the definition. See Notes on page A-69.

For other destination operands:
C — Set if bit tested is set. Cleared otherwise.
V — Not affected
Z — Not affected
N — Not affected
U — Not affected
E — Not affected
L — Not affected
S — Not affected

MR Status bits are not affected.

SP — Stack Pointer:
For destination operand SSH: SP — Decrement by 1.
For other destination operands: Not affected

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

BTST Bit Test BTST
MOTOROLA INSTRUCTION SET DETAILS A - 65
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BTST #n,X:ea
BTST #n,Y:ea

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 1 b b b b b

BTST Bit Test BTST
A - 66 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BTST #n,X:aa
BTST #n,Y:aa

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

BTST Bit Test BTST

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 67
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BTST #n,X:pp
BTST #n,Y:pp

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit I/O Short Address=pppppp

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 4+mvb oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

BTST Bit Test BTST
A - 68 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
BTST #n,D

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
D=destination register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Destination Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The bit test is performed on the resulting 24-bit value and the C bit is set
if the bit tested is set. The original contents of A or B are not changed.

Timing: 4+mvb oscillator clock cycles
Memory: 1+ea program words

BTST Bit Test BTST

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 69
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
 0 ➞D (parallel move) CLR D (parallel move)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Example:
:

CLR A #$7F,N ;clear A, set up N0 addr. reg.
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $12:345678:9ABCDE. The execution of the CLR A instruction clears the 56-bit A
accumulator to zero.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
E — Always cleared
U — Always set
N — Always cleared
Z— Always set
V — Always cleared

CLR Clear Accumulator CLR

Before Execution After Execution

A A$12:345678:9ABCDE $00:000000:000000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 70 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
CLR D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CLR Clear Accumulator CLR
MOTOROLA INSTRUCTION SET DETAILS A - 71
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S2 – S1(parallel move) CMP S1, S2 (parallel move)

Description: Subtract the source one operand, S1, from the source two accumulator,
S2, and update the condition code register. The result of the subtraction operation is not
stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor-
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit operands such as X0
with A1.

Example:
:

CMP Y0,B X0,X:(R6)+N6 Y1,Y:(R0)– ;comp. Y0 and B, save X0, Y1
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000020:000000 and the 24-bit Y0 register contains the value $000024. The
execution of the CMP Y0,B instruction automatically appends the 24-bit value in the Y0
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, subtracts
the result from the 56-bit B accumulator and updates the condition code register.

CMP Compare CMP

Before Execution After Execution

B B$00:000020:000000

Y0 Y0$000024 $000024

$00:000020:000000

SR SR$0300 $0319
A - 72 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
CMP S1, S2

Opcode:

Instruction Fields:
S1,S2 J J J d S1,S2 J J J d

B,A 0 0 0 0 Y0,B 1 0 1 1
A,B 0 0 0 1 X1,A 1 1 0 0
X0,A 1 0 0 0 X1,B 1 1 0 1
X0,B 1 0 0 1 Y1,A 1 1 1 0
Y0,A 1 0 1 0 Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

CMP Compare CMP
MOTOROLA INSTRUCTION SET DETAILS A - 73
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
|S2| – |S1|(parallel move) CMPM S1, S2 (parallel move)

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the condition
code register. The result of the subtraction operation is not stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as S1, it is
sign extended and zero filled to form a valid 56-bit operand. For the carry to be set cor-
rectly as a result of the subtraction, S2 must be properly sign extended. S2 can be
improperly sign extended by writing A1 or B1 explicitly prior to executing the compare so
that A2 or B2, respectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit operands such as X0
with A1.

Example:

:
CMPM X1,A BA,L:–(R4) ;comp. Y0 and B, save X0, Y1

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000006:000000, and the 24-bit X1 register contains the value $FFFFF7. The
execution of the CMPM X1,A instruction automatically appends the 24-bit value in the X1
register with 24 LS zeros, sign extends the resulting 48-bit long word to 56 bits, takes the
absolute value of the resulting 56-bit number, subtracts the result from the absolute
value of the contents of the 56-bit A accumulator, and updates the condition code regis-
ter.

CMPM Compare Magnitude CMPM

Before Execution After Execution

A A$00:000006:000000

X1 X1$FFFFF7 $FFFFF7

$00:000006:000000

SR SR$0300 $0319
A - 74 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during a parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result.

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format:
CMPM S1, S2

Opcode:

Instruction Fields:
S1,S2 J J J d S1,S2 J J J d S1,S2 J J J d

B,A 0 0 0 0 X0,B 1 0 0 1 X1,A 1 1 0 0
A,B 0 0 0 1 Y0,A 1 0 1 0 X1,B 1 1 0 1
X0,A 1 0 0 0 Y0,B 1 0 1 1 Y1,A 1 1 1 0

Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

CMPM Compare Magnitude CMPM

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 75
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:

Enter the debug mode DEBUG

Description: Enter the debug mode and wait for OnCE commands.

Example:

:
DEBUG ;enter the debug mode

:
Explanation of Example: Upon executing the DEBUG instruction, the chip enters the
debug mode after the instruction following the DEBUG instruction has entered the
instruction latch. Entering the debug mode is acknowledged by the chip by pulsing low
the DSO line. This informs the external command controller that the chip has entered the
debug mode and is waiting for commands.

Condition Codes:

The condition codes are not affected by this instruction

Instruction Format:
DEBUG

DEBUG Enter Debug Mode DEBUG

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 76 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Opcode:

Timing: 4 oscillator clock cycles

Memory: 1 program word

DEBUG Enter Debug Mode DEBUG

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 77
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:

If cc, then enter the debug mode DEBUGcc

Description: If the specified condition is true, enter the debug mode and wait for OnCE
commands. If the specified condition is false, continue with the next instruction.

The term “cc” may specify the following conditions:

“cc” Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

Condition Codes:

The condition codes are not affected by this instruction.

DEBUGcc Enter Debug Mode Conditionally DEBUGcc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 78 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:

:
CMP Y0, B ; Compare register Y0 with the B accumulator.
DEBUGge ; Enter the debug mode if

; the previous test result is “greater than”.
:

Explanation of Example: The results of the comparison between Y0 and B will be
recorded in the status register bits. The conditional debug instruction looks at the condi-
tions (for greater than or equal in this case) and if they are met (N ⊕ V=0) then the
DEBUG instruction will be executed. The chip enters the debug mode after the instruc-
tion following the DEBUG instruction has entered the instruction latch. The chip pulses
low the DSO line to inform the external command controller that it has entered the debug
mode and that the chip is waiting for commands.

Instruction Format:
DEBUGcc

Opcode:

Instruction Fields:

Mnemonic c c c c Mnemonic c c c c

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4 oscillator clock cycles

Memory: 1 program word

DEBUGcc Enter Debug Mode Conditionally DEBUGcc

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 c c c c
MOTOROLA INSTRUCTION SET DETAILS A - 79
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D–1 ➞ D DEC D

Description: Decrement by one the specified operand and store the result in the destina-
tion accumulator. One is subtracted from the LSB of D.

Example:

:
DEC A ;Decrement the content of A accumulator by one

:

Explanation of Example: One is subtracted from the content of the A accumulator.

Condition Codes:

L — Set if overflow has occurred in result. Not affected otherwise
E — Set if the signed integer portion of result is in use
U— Set if result is unnormalized
N — Set if bit 55 of result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a borrow occurs from bit 55 of result

DEC Decrement by One DEC

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 80 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DEC D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

DEC Decrement by One DEC

23 16 15 8 7 0

0 1 0 1 d
MOTOROLA INSTRUCTION SET DETAILS A - 81
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: If D[55]⊕ S[23]=1,

Assembler Syntax: DIV S,D

Description:
Divide the destination operand D by the source operand S and store the result in the
destination accumulator D. The 48-bit dividend must be a positive fraction which has
been sign extended to 56-bits and is stored in the full 56-bit destination accumula-
tor D. The 24-bit divisor is a signed fraction and is stored in the source operand S.
Each DIV iteration calculates one quotient bit using a nonrestoring fractional division
algorithm (see description on the next page). After the execution of the first DIV instruc-
tion, the destination operand holds both the partial remainder and the formed quotient.
The partial remainder occupies the high-order portion of the destination accumulator D
and is a signed fraction. The formed quotient occupies the low-order portion of the desti-
nation accumulator D (A0 or B0) and is a positive fraction. One bit of the formed quotient
is shifted into the LS bit of the destination accumulator at the start of each DIV iteration.
The formed quotient is the true quotient if the true quotient is positive. If the true quotient
is negative, the formed quotient must be negated. Valid results are obtained only
when |D| < |S| and the operands are interpreted as fractions. Note that this condition
ensures that the magnitude of the quotient is less than one (i.e., is fractional) and pre-
cludes division by zero.

DIV Divide Interation DIV

55 47 23 0

C+Sthen

55 47 23 0

C–Selse

Destination Accumulator D

Destination Accumulator D

where ⊕ denotes the logical exclusive OR operator

D

D

A - 82 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

The DIV instruction calculates one quotient bit based on the divisor and the previous par-
tial remainder. To produce an N-bit quotient, the DIV instruction is executed N times
where N is the number of bits of precision desired in the quotient, 1≤N≤24. Thus, for a
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the
DIV instruction N times produces an N-bit quotient and a 48-bit remainder which has
(48–N) bits of precision and whose N MS bits are zeros. The partial remainder is not a
true remainder and must be corrected due to the nonrestoring nature of the division algo-
rithm before it may be used. Therefore, once the divide is complete, it is necessary to
reverse the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of
the following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on bit 55 of the destination operand D and bit 23 of the
source operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination accumu-
lator D is shifted one bit to the left. The carry bit C is moved into the LS bit (bit
0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-bit
source operand S (signed divisor) is either added to or subtracted from the
MSP portion of the destination accumulator (A1 or B1), and the result is stored
back into the MSP portion of that destination accumulator. If the result of the
exclusive OR operation previously described was a “1” (i.e., the sign bits were
different), the source operand S is added to the accumulator. If the result of
the exclusive OR operation was a “0” (i.e., the sign bits were the same), the
source operand S is subtracted from the accumulator. Due to the automatic
sign extension of the 24-bit signed divisor, the addition or subtraction opera-
tion correctly sets the carry bit C of the condition code register with the next
quotient bit.

DIV Divide Interation DIV
MOTOROLA INSTRUCTION SET DETAILS A - 83
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Example: (4-Quadrant division, 24-bit signed quotient, 48-bit signed remainder)
ABS A A,B ;make dividend positive, copy A1 to B1
EOR X0,B B,X:$0 ;save rem. sign in X:$0, quo. sign in N
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient
DIV X0,A ;form quotient in A0, remainder in A1
TFR A,B ;save quotient and remainder in B1,B0
JPL SAVEQUO ;go to SAVEQUO if quotient is positive
NEG B ;complement quotient if N bit set

SAVEQUO TFR X0,B B0,X1 ;save quo. in X1, get signed divisor
ABS B ;get absolute value of signed divisor
ADD A,B ;restore remainder in B1
JCLR #23,X:$0,DONE ;go to DONE if remainder is positive
MOVE #$0,B0 ;clear LS 24 bits of B
NEG B ;complement remainder if negative

DONE

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the 56-
bit, sign-extended fractional dividend D (D=$00.0E66D7:F2832C=0.112513535894635
approx.) and the 24-bit X0 register contains the 24-bit, signed fractional divisor S
(S=$123456=0.142222166061401). Since |D|<|S|, the execution of the previous divide
routine stores the correct 24-bit signed quotient in the 24-bit X1 register (A/
X0=0.79111111164093=$654321=X1). The partial remainder is restored by reversing
the last DIV operation and adding back the absolute value of the signed divisor in X0 to
the partial remainder in A1. This produces the correct LS 24 bits of the 48-bit signed
remained in the 24-bit B1 register. Note that the remainder is really a 48-bit value which
has 24 bits of precision. Thus, the correct 48-bit remainder is $000000:000100 which
equals 0.0000000000018190 approximately.

DIV Divide Interation DIV

Before Execution After Execution

A A$00:0E66D7:F2832C

X0 X0$123456 $123456

$FF:EDCCAA:654321

X1 X1$000000 $654321

B B$00:000000:000000 $00:000100:654321
A - 84 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that the divide routine used in the previous example assumes that the sign-
extended 56-bit signed fractional dividend is stored in the A accumulator and that the 24-
bit signed fractional divisor is stored in the X0 register. This routine produces a full 24-bit
signed quotient and a 48-bit signed remainder.

This routine may be greatly simplified for the case in which only positive, fractional oper-
ands are used to produce a 24-bit positive quotient and a 48-bit positive remainder, as
shown in the following example:

1-Quadrant division, 24-bit unsigned quotient, 48-bit unsigned remainder
AND #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$18 ;form a 24-bit quotient and remainder
DIV X0,A ;form quotient in A0, remainder in A1
ADD X0,A ;restore remainder in A1

Note that this routine assumes that the 56-bit positive, fractional, sign-extended dividend
is stored in the A accumulator and that the 24-bit positive, fractional divisor is stored in
the X0 register. After execution, the 24-bit positive fractional quotient is stored in the A0
register; the LS 24 bits of the 48-bit positive fractional remainder are stored in the A1 reg-
ister.

There are many variations possible when choosing a suitable division routine for a given
application. The selection of a suitable division routine normally involves specification of
the following items:

1. the number of bits of precision in the dividend;

2. the number of bits of precision N in the quotient;

3. whether the value of N is fixed or is variable;

4. whether the operands are unsigned or signed;

5. whether or not the remainder is to be calculated.

DIV Divide Interation DIV
MOTOROLA INSTRUCTION SET DETAILS A - 85
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A complete discussion of the various division routines is beyond the scope of this man-
ual. For a more complete discussion of these routines, refer to the application note enti-
tled Fractional and Integer Arithmetic Using the DSP56001.

For extended precision division (i.e., for N-bit quotients where N>24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For further
information on division algorithms, refer to pages 524–530 of Theory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 of
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages
213–223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang
(John Wiley and Sons, 1979), or other references as required.

Condition Codes:

L — Set if overflow bit V is set
V — Set if the MS bit of the destination operand is changed as a result of the

instruction’s left shift operation
C — Set if bit 55 of the result is cleared.

DIV Divide Interation DIV

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 86 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DIV S,D

Opcode:

Instruction Fields:
S,D J J d S,D J J d

X0,A 0 0 0 X1,A 1 0 0
X0,B 0 0 1 X1,B 1 0 1
Y0,A 0 1 0 Y1,A 1 1 0
Y0,B 0 1 1 Y1,B 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

DIV Divide Interation DIV
MOTOROLA INSTRUCTION SET DETAILS A - 87
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;X:ea ➞ LC DO X:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;X:aa ➞ LC DO X:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;Y:ea ➞ LC DO Y:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;Y:aa ➞ LC DO Y:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DO #xxx,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DO S,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

End of Loop:
SSL(LF) ➞ SR;SP–1 ➞ SP
SSH ➞ LA;SSL ➞ LC;SP – 1 ➞ SP

Description: Begin a hardware DO loop that is to be repeated the number of times spec-
ified in the instruction’s source operand and whose range of execution is terminated by
the destination operand (previously shown as “expr”). No overhead other than the execu-
tion of this DO instruction is required to set up this loop. DO loops can be nested and the
loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the
loop counter (LC) registers are pushed onto the system stack. The DO instruction’s
source operand is then loaded into the loop counter (LC) register. The LC register con-
tains the remaining number of times the DO loop will be executed and can be accessed
from inside the DO loop subject to certain restrictions. If LC equals zero, the DO loop is

DO Start Hardware Loop DO
A - 88 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

executed 65,536 times. All address register indirect addressing modes may be used to
generate the effective address of the source operand. If immediate short data is speci-
fied, the 12 LS bits of LC are loaded with the 12-bit immediate value, and the four MS
bits of LC are cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO
loops. The DO instruction’s destination operand (shown as “expr”) is then loaded into the
loop address (LA) register. This 16-bit operand is located in the instruction’s 24-bit abso-
lute address extension word as shown in the opcode section. The value in the program
counter (PC) register pushed onto the system stack is the address of the first instruction
following the DO instruction (i.e., the first actual instruction in the DO loop). This value is
read (i.e., copied but not pulled) from the top of the system stack to return to the top of
the loop for another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the
“end-of-loop” processing begins.

When executing a DO loop, the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-loop addresses must also be nested and are not allowed to
be equal. The assembler generates an error message when DO loops are improperly
nested. Nested DO loops are illustrated in the example.

Note: The assembler calculates the end-of-loop address to be loaded into LA (the abso-
lute address extension word) by evaluating the end-of-loop expression “expr” and sub-
tracting one. This is done to accommodate the case where the last word in the DO loop
is a two-word instruction. Thus, the end-of-loop expression “expr” in the source code
must represent the address of the instruction AFTER the last instruction in the loop as
shown in the example.

During the “end-of-loop” processing, the loop flag (LF) from the lower portion (SSL) of SP
is written into the status register (SR), the contents of the loop address (LA) register are
restored from the upper portion (SSH) of (SP–1), the contents of the loop counter (LC)
are restored from the lower portion (SSL) of (SP–1) and the stack pointer (SP) is decre-
mented by two. Instruction fetches now continue at the address of the instruction follow-

DO Start Hardware Loop DO
MOTOROLA INSTRUCTION SET DETAILS A - 89
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ing the last instruction in the DO loop. Note that LF is the only bit in the status register
(SR) that is restored after a hardware DO loop has been exited.

Note: The loop flag (LF) is cleared by a hardware reset.

Restrictions: The “end-of-loop” comparison previously described actually occurs at
instruction fetch time. That is, LA is being compared with PC when the instruction at LA–
2 is being executed. Therefore, instructions which access the program controller regis-
ters and/or change program flow cannot be used in locations LA–2, LA–1, or LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA–2,
LA–1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH program controller register
may not be specified as a source or destination register in an instruction starting at
address LA–2, LA–1, or LA. Additionally, the SSH register cannot be specified as a
source register in the DO instruction itself and LA cannot be used as a target for jumps
to subroutine (i.e., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be
repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO
loop:

At LA–2, LA–1, and LA DO
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR
Two-word instructions which read LC, SP, or SSL

At LA–1 Single-word instructions (except REP) which read LC,
SP, or SSL, JCLR, JSET, two-word JMP, two-word Jcc

DO Start Hardware Loop DO
A - 90 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

At LA any two-word instruction*
Jcc REP
JCLR RESET
JSET RTI
JMP RTS
JScc STOP
JSR WAIT

*This restriction applies to the situation in which the
DSP56K simulator’s single-line assembler is used to
change the last instruction in a DO loop from a one-
word instruction to a two-word instruction.

Other Restrictions: DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

A DO instruction cannot be repeated using the REP instruction.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with a MOVE-type instruction, the new contents may not be available for use until the
second following instruction. See the restrictions discussed in A.9.6 - R, N, and M Regis-
ter Restrictions on page A-310.This restriction also applies to the situation in which the
last instruction in a DO loop changes an address register and the first instruction at the
top of the DO loop uses that same address register. The top instruction becomes the fol-
lowing instruction because of the loop construct.

Similarly, since the DO instruction accesses the program controller registers, the DO
instruction must not be immediately preceded by any of the following instructions:

Immediately before DO MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

DO Start Hardware Loop DO
MOTOROLA INSTRUCTION SET DETAILS A - 91
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

DO #cnt1, END1 ;begin outer DO loop
:

DO #cnt2, END2 ;begin inner DO loop
:
:

MOVE A,X:(R0)+
:

END2 ;last instruction in inner loop
ADD A,B X:(R1)+,X0 ;(in outer loop)

END1 : ;last instruction in outer loop
: ;first instruction after outer loop

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop
will be executed “cnt1” times while the inner DO loop will be executed (“cnt1” * “cnt2”)
times. Note that the labels END1 and END2 are located at the first instruction past the end
of the DO loop, as mentioned above, and are nested properly.

Condition Codes:

For source operand A or B:
LF — Set when a DO loop is in progress
S — Computed according to the definition. See Notes on page A-97.
L — Set if data limiting occurred. See Notes on page A-97.

For other source operands:

LF — Set when a DO loop is in progress

DO Start Hardware Loop DO

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 92 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DO X:ea, expr
DO Y:ea, expr

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
expr=16-bit Absolute Address in 24-bit extension word

Effective
Addressing Mode M M M R R R Memory SpaceS

(Rn)-Nn 0 0 0 r r r X Memory 0
(Rn)+Nn 0 0 1 r r r Y Memory 1
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

DO Start Hardware Loop DO

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 93
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DO X:aa, expr
DO Y:aa, expr

Opcode:

Instruction Fields:
ea=6-bit Effective Short Address=aaaaaa,
expr=16-bit Absolute Address in 24-bit extension word

Absolute Short Address aaaaaa Memory SpaceS

000000 X Memory 0
• Y Memory 1
•

111111

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

DO Start Hardware Loop DO

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
A - 94 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DO #xxx, expr

Opcode:

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhhiiiiiiii,
expr=16-bit Absolute Address in 24-bit extension word

Immediate Short Data hhhh i i i i i i i i

000000000000
•
•

111111111111

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

DO Start Hardware Loop DO
MOTOROLA INSTRUCTION SET DETAILS A - 95
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
DO S, expr

Opcode:

Instruction Fields:
S=6-bit Source operand = DDDDDD,
expr=16-bit Absolute Address in 24-bit extension word

S
Source D D D D D D S/L Source D D D D D D

X0 0 0 0 1 0 0 no SR 1 1 1 0 0 1
X1 0 0 0 1 0 1 no OMR 1 1 1 0 1 0
Y0 0 0 0 1 1 0 no SP* 1 1 1 0 1 1
Y1 0 0 0 1 1 1 no SSL** 1 1 1 1 0 1
A0 0 0 1 0 0 0 no LA 1 1 1 1 1 0
B0 0 0 1 0 0 1 no LC 1 1 1 1 1 1
A2 0 0 1 0 1 0 no R0-R7 0 1 0 r r r
B2 0 0 1 1 0 0 no N0-N7 0 1 1 n n n
A1 0 0 1 1 0 1 no M0-M7 1 0 0 m m m
A 0 0 1 1 1 0 yes [see Notes on page A-97]
B 0 0 1 1 1 1 yes [see Notes on page A-97]
where rrr=Rn register
where nnn=Nn register
where mmm=Mn register

*For DO SP, expr The actual value that will be loaded into the loop counter (LC) is
the value of the stack pointer (SP) before the execution of the
DO instruction, incremented by 1.

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

**For DO SSL, expr The loop counter (LC) will be loaded with its previous value
which was saved on the stack by the DO instruction itself.

23 20 19 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 D D D D D D D 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

DO Start Hardware Loop DO
A - 96 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop
counter (LC). The original contents of A or B are not changed.

Timing: 6+mv oscillator clock cycles

Memory: 2 program words

DO Start Hardware Loop DO
MOTOROLA INSTRUCTION SET DETAILS A - 97
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
SSL(LF) ➞ SR;SP – 1➞ SP ENDDO
SSH ➞ LA; SSL ➞ LC;SP –1 ➞ SP

Description: Terminate the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is
restored from the system stack and the remaining portion of the status register (SR) and
the program counter (PC) are purged from the system stack. The loop address (LA) and
the loop counter (LC) registers are then restored from the system stack.

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the
program controller registers, the ENDDO instruction must not be immediately preceded
by any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ORI MR
ANDI MR
REP

Also, the ENDDO instruction cannot be the last (LA) instruction in a DO loop.

Example:
:

DO Y0,NEXT ;exec. loop ending at NEXT (Y0) times
:

MOVEC LC,A ;get current value of loop counter (LC)
CMP Y1,A ;compare loop counter with value in Y1
JNE ONWARD ;go to ONWARD if LC not equal to Y1
ENDDO ;LC equal to Y1, restore all DO registers
JMP NEXT ;go to NEXT

ONWARD : ;LC not equal to Y1, continue DO loop
: ;(last instruction in DO loop)

NEXT MOVE #$123456,X1 ;(first instruction AFTER DO loop)

ENDDO End Current DO Loop ENDDO
A - 98 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: This example illustrates the use of the ENDDO instruction to
terminate the current DO loop. The value of the loop counter (LC) is compared with the
value in the Y1 register to determine if execution of the DO loop should continue. Note
that the ENDDO instruction updates certain program controller registers but does not
automatically jump past the end of the DO loop. Thus, if this action is desired, a JMP
instruction (i.e., JMP NEXT as previously shown) must be included after the ENDDO
instruction to transfer program control to the first instruction past the end of the DO loop.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
ENDDO

Opcode:

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

ENDDO End Current DO Loop ENDDO
MOTOROLA INSTRUCTION SET DETAILS A - 99
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S ⊕ D[47:24] ➞D[47:24] (parallel move) EOR S,D (parallel move)

where ⊕ denotes the logical Exclusive OR operator

Description: Logically exclusive OR the source operand S with bits 47–24 of the desti-
nation operand D and store the result in bits 47–24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

EOR Y1,B1 (R2)+ ;Exclusive OR Y1 with B1, update R2
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$000003, and the 56-bit B accumulator contains the value $00:000005:000000. The
EOR Y1,B instruction logically exclusive ORs the 24-bit value in the Y1 register with bits
47–24 of the B accumulator (B1) and stores the result in the B accumulator with bits 55–
48 and 23–0 unchanged.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z— Set if bits 47 - 24 of A or B result are zero
V — Always cleared

EOR Logical Exclusive OR EOR

Before Execution After Execution

Y1 Y1$000003

B B$00:000005:000000 $00:000006:000000

$000003

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 100 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
EOR S,D

Opcode:

Instruction Fields:
S J J D d

X0 0 0 A 0
X1 1 0 B 1
Y0 0 1
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

EOR Logical Exclusive OR EOR
MOTOROLA INSTRUCTION SET DETAILS A - 101
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Begin Illegal Instruction ILLEGAL

exception processing

Description: The ILLEGAL instruction is executed as if it were a NOP instruction. Nor-
mal instruction execution is suspended and illegal instruction exception processing is ini-
tiated. The interrupt vector address is located at address P:$3E. The interrupt priority
level (I1, I0) is set to 3 in the status register if a long interrupt service routine is used. The
purpose of the ILLEGAL instruction is to force the DSP into an illegal instruction excep-
tion for test purposes. If a fast interrupt is used with the ILLEGAL instruction, an infinite
loop will be formed (an illegal instruction interrupt normally returns to the illegal instruc-
tion) which can only be broken by a hardware reset. Therefore, only long interrupts
should be used. Exiting an illegal instruction is a fatal error. The long exception routine
should indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA–1 is being inter-
rupted, then LC will be decremented twice due to the same mechanism that causes LC
to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, etc.
at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt
not being initiated until after completion of the REP. After servicing the interrupt, program
control will return to the address of the second word following the ILLEGAL instruction.
Of course, the ILLEGAL interrupt service routine should abort further processing, and the
processor should be reinitialized.

Example:
:

ILLEGAL ;begin ILLEGAL exception processing
:

Explanation of Example: The ILLEGAL instruction suspends normal instruction execu-
tion and initiates ILLEGAL exception processing.

ILLEGAL Illegal Instruction Interrupt ILLEGAL
A - 102 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
ILLEGAL

Opcode:

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 1 0 1

ILLEGAL Illegal Instruction Interrupt ILLEGAL
MOTOROLA INSTRUCTION SET DETAILS A - 103
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D+1 ➞ D INC D

Description: Increment by one the specified operand and store the result in the destina-
tion accumulator. One is added from the LSB of D.

Example:

:
INC B ;Increment the content of the B accumulator by one

:

Explanation of Example: One is added to the content of the B accumulator.

Condition Codes:

L — Set if overflow has occurred in A or B result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry is generated from bit 55 of A or B result

INC Increment by One INC

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 104 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
INC D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

INC Increment by One INC

23 16 15 8 7 0

0 1 0 0 d
MOTOROLA INSTRUCTION SET DETAILS A - 105
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If cc, then 0xxx ➞PC Jcc xxx

else PC+1 ➞PC

If cc, then ea ➞PC Jcc xxx
 else PC+1 ➞PC

Description: Jump to the location in program memory given by the instruction’s effective
address if the specified condition is true. If the specified condition is false, the program
counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory alterable addressing modes may be used for the effec-
tive address. A Fast Short Jump addressing mode may also be used. The 12-bit data is
zero extended to form the effective address. See Section A.9 for restrictions. The term
“cc” may specify the following conditions:

“cc” Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

Jcc Jump Conditionally Jcc
A - 106 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Restrictions: A Jcc instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A Jcc instruction cannot be repeated using the REP instruction.

Example:
:

JNN – (R4) ;jump to P:(R4) –1 if not normalized
:

Explanation of Example: In this example, program execution is transferred to the
address P:(R4)–1 if the result is not normalized. Note that the contents of address regis-
ter R4 are predecremented by 1, and the resulting address is then loaded into the pro-
gram counter (PC) if the specified condition is true. If the specified condition is not true,
no jump is taken, and the program counter is incremented by one.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
Jcc xxx

Opcode:

Jcc Jump Conditionally Jcc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a
MOTOROLA INSTRUCTION SET DETAILS A - 107
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
Jcc ea

Opcode:

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

Jcc Jump Conditionally Jcc

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C
A - 108 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute Address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Jcc Jump Conditionally Jcc
MOTOROLA INSTRUCTION SET DETAILS A - 109
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If S[n]=0, then xxxx➞PC JCLR #n,X:ea,xxxx

else PC+1➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,X:aa,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,X:pp,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:ea,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:aa,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,Y:pp,xxxx
else PC+1 ➞PC

If S[n]=0, then xxxx ➞PC JCLR #n,S,xxxx
else PC+1 ➞PC

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not clear, the program counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg-
ister indirect addressing modes may be used to reference the source operand S. Abso-
lute Short and I/O Short addressing modes may also be used.

JCLR Jump if Bit Clear JCLR
A - 110 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Restrictions: A JCLR instruction cannot be repeated using the REP instruction.

A JCLR located at LA, LA–1, or LA–2 of the DO loop cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JCLR SSH or JCLR SSL cannot follow an instruction that changes the SP.

Example:
:

JCLR #$5,X:<<$FFF1,$1234 ;go to P:$1234 if bit 5 in SCI SSR is clear
:

Explanation of Example: In this example, program execution is transferred to the
address P:$1234 if bit 5 (PE) of the 8-bit read-only X memory location X:$FFF1 (I/O SCI
interface status register) is a zero. If the specified bit is not clear, no jump is taken, and
the program counter (PC) is incremented by one.

Condition Codes:

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-115.
L — Set if data limiting has occurred. See Notes on page A-115.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Not affected

For other source operands:
The condition codes are not affected.

JCLR Jump if Bit Clear JCLR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 111
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b
A - 112 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 113
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b
A - 114 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JCLR #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD
xxxx=16-bit Absolute Address in extension word

Source Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump is taken
if the bit tested is clear. The original contents of A or B are not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JCLR Jump if Bit Clear JCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 115
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
0xxx ➞ PC JMP xxx

ea ➞ PC JMP ea

Description: Jump to the location in program memory given by the instruction’s effective
address. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JMP instruction used within a DO loop cannot begin at the address LA
within that DO loop.

A JMP instruction cannot be repeated using the REP instruction.

Example:
:

JMP (R1+N1) ;jump to program address P:(R1+N1)
:

Explanation of Example: In this example, program execution is transferred to the pro-
gram address P:(R1+N1).

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
JMP xxx

Opcode:

JMP Jump JMP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a
A - 116 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
JMP ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0-R7

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

JMP Jump JMP

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 117
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If cc, then SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JScc xxx

else PC+1➞PC

If cc, then SP+1➞SP; PC➞SSH; SR➞SSL; ea➞PC JScc ea
else PC+1➞PC

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address if the specified condition is true. If the specified condition is
true, the address of the instruction immediately following the JScc instruction (PC) and
the system status register (SR) are pushed onto the system stack. Program execution
then continues at the specified effective address in program memory. If the specified
condition is false, the program counter (PC) is incremented, and any extension word is
ignored. However, the address register specified in the effective address field is always
updated independently of the specified condition. All memory alterable addressing
modes may be used for the effective address. A fast short jump addressing mode may
also be used. The 12-bit data is zero extended to form the effective address. The term
“cc” may specify the following conditions:

“cc” Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

JScc Jump to Subroutine Conditionally JScc
A - 118 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

Restrictions: A JScc instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JScc instruction used within in a DO loop cannot begin at the address LA within that
DO loop.

A JScc instruction cannot be repeated using the REP instruction.

Example:
:

JSLS (R3+N3) ;jump to subroutine at P:(R3+N3) if limit set (L=1)
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R3+N3) in program memory if the limit bit is set (L=1). Both the
return address (PC) and the status register (SR) are pushed onto the system stack prior
to transferring program control to the subroutine if the specified condition is true. If the
specified condition is not true, no jump is taken and the program counter is incremented
by 1.

Condition Codes:

The condition codes are not affected by this instruction.

JScc Jump to Subroutine Conditionally JScc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 119
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JScc xxx

Opcode:

Instruction Fields:
cc=4-bit condition code=CCCC,
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Mnemonic C C C C Mnemonic C C C C

CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
GE 0 0 0 1 LT 1 0 0 1
NE 0 0 1 0 EQ 1 0 1 0
PL 0 0 1 1 MI 1 0 1 1
NN 0 1 0 0 NR 1 1 0 0
EC 0 1 0 1 ES 1 1 0 1
LC 0 1 1 0 LS 1 1 1 0
GT 0 1 1 1 LE 1 1 1 1

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

JScc Jump to Subroutine Conditionally JScc

23 16 15 8 7 0

0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a
A - 120 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JScc ea

Opcode:

Instruction Fields:
cc=4-bit condition code=CCCC,
ea=6-bit Effective Address=MMMRRR

 Effective
Addressing Mode M M M R R R Mnemonic C C C C Mnemonic C C C C

(Rn)–Nn 0 0 0 r r r CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
(Rn)+Nn0 0 0 1 r r r GE 0 0 0 1 LT 1 0 0 1
(Rn)– 0 1 0 r r r NE 0 0 1 0 EQ 1 0 1 0
(Rn)+ 0 1 1 r r r PL 0 0 1 1 MI 1 0 1 1
(Rn) 1 0 0 r r r NN 0 1 0 0 NR 1 1 0 0
(Rn+Nn) 1 0 1 r r r EC 0 1 0 1 ES 1 1 0 1
–(Rn) 1 1 1 r r r LC 0 1 1 0 LS 1 1 1 0
Absolute address 1 1 0 0 0 0 GT 0 1 1 1 LE 1 1 1 1

where “rrr” refers to an address register R0–R7

Timing: 4+jx oscillator clock cycles

Memory: 1+ea program words

JScc Jump to Subroutine Conditionally JScc

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C
MOTOROLA INSTRUCTION SET DETAILS A - 121
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax
If S[n]=0, JSCLR #n,X:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx ➞PC
else PC+1 ➞PC

f S[n]=0, JSCLR #n,X:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,X:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,Y:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=0, JSCLR #n,S,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the instruc-
tion’s 24-bit extension word. If the specified memory bit is not clear, the program counter
(PC) is incremented and the extension word is ignored. However, the address register

JSCLR Jump to Subroutine if Bit Clear JSCLR
A - 122 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

specified in the effective address field is always updated independently of the state of the
nth bit. All address register indirect addressing modes may be used to reference the
source operand S. Absolute short and I/O short addressing modes may also be used.

Restrictions: A JSCLR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSCLR located at LA, LA–1, or LA–2 of a DO loop, cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSCLR SSH or JSCLR SSL cannot follow an instruction that changes the SP.

A JSCLR instruction cannot be repeated using the REP instruction.

Example:
:

JSCLR #$1,Y:<<$FFE3,$1357 ;go sub. at P:$1357 if bit 1 in Y:$FFE3 is clear
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$1357 in program memory if bit 1 of the external I/O loca-
tion Y:<<$FFE3 is a zero. If the specified bit is not clear, no jump is taken and the
program counter (PC) is incremented by 1.

JSCLR Jump to Subroutine if Bit Clear JSCLR
MOTOROLA INSTRUCTION SET DETAILS A - 123
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-129.
L — Set if data limiting has occurred. See Notes on page A-129.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Not affected

For other source operands:
The condition codes are not affected.

JSCLR Jump to Subroutine if Bit Clear JSCLR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 124 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

JSCLR Jump to Subroutine if Bit Clear JSCLR
MOTOROLA INSTRUCTION SET DETAILS A - 125
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSCLR #n,X:aa,xxxx
JSCLR #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b

JSCLR Jump to Subroutine if Bit Clear JSCLR
A - 126 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b

JSCLR Jump to Subroutine if Bit Clear JSCLR
MOTOROLA INSTRUCTION SET DETAILS A - 127
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSCLR #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

JSCLR Jump to Subroutine if Bit Clear JSCLR

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 b b b b b
A - 128 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump to sub-
routine is taken if the bit tested is clear. The original contents of A or B are
not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSCLR Jump to Subroutine if Bit Clear JSCLR
MOTOROLA INSTRUCTION SET DETAILS A - 129
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If S[n]=0, then xxxx➞PC JSET #n,X:ea,xxxx

else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,X:ea,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,X:aa,xxxx
else PC+1➞PC

If S[n]=1, then xxxx ➞PC JSET #n,X:pp,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,Y:ea,xxxx
else PC+1➞PC

If S[n]=1, then xxxx ➞PC JSET #n,Y:aa,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,Y:pp,xxxx
else PC+1➞PC

If S[n]=1, then xxxx➞PC JSET #n,S,xxxx
else PC+1➞PC

Description: Jump to the 16-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not set, the program counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the state of the nth bit. All address reg-
ister indirect addressing modes may be used to reference the source operand S. Abso-
lute short and I/O short addressing modes may also be used.

JSET Jump if Bit Set
A - 130 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Restrictions: A JSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSET located at LA, LA–1, or LA–2 of a DO loop cannot specify the program controller
registers SR, SP, SSH, SSL, LA, or LC as its target.

JSET SSH or JSET SSL cannot follow an instruction that changes the SP.

A JSET instruction cannot be repeated using the REP instruction.

Example:
:

JSET #12,X:<<$FFF2,$4321 ;$4321➞(PC) if bit 12 (SCI COD) is set
:

Explanation of Example: In this example, program execution is transferred to the
address P:$4321 if bit 12 (SCI COD) of the 16-bit read/write I/O register X:$FFF2 is a
one. If the specified bit is not set, no jump is taken and the program counter (PC) is incre-
mented by 1.

Condition Codes:

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-135.
L — Set if data limiting has occurred. See Notes on page A-135.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Not affected

For other source operands:
The condition codes are not affected.

JSET Jump if Bit Set

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 131
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

JSET Jump if Bit Set
A - 132 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

JSET Jump if Bit Set
MOTOROLA INSTRUCTION SET DETAILS A - 133
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSET Jump if Bit Set

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b
A - 134 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSET #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump is taken
if the bit tested is set. The original contents of A or B are not changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 b b b b b

JSET Jump if Bit Set
MOTOROLA INSTRUCTION SET DETAILS A - 135
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JSR xxx

SP+➞SP; PC➞SSH; SR➞SSL; ea➞PC JSR ea

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system status register (SR) is pushed onto the system
stack. Program execution then continues at the specified effective address in program
memory. All memory alterable addressing modes may be used for the effective address.
A fast short jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Restrictions: A JSR instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSR instruction used within a DO loop cannot begin at the address LA within that DO
loop.

A JSR instruction cannot be repeated using the REP instruction.

Example:
:

JSR (R5)+ ;jump to subroutine at (R5), update R5
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at address P:(R5) in program memory, and the contents of the R5 address regis-
ter are then updated.

Condition Codes:

The condition codes are not affected by this instruction.

JSR Jump to Subroutine JSR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 136 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSR xxx

Opcode:

Instruction Fields:
xxx=12-bit Short Jump Address=aaaaaaaaaaaa

Timing: 4+jx oscillator clock cycles
Memory: 1+ea program words

Instruction Format:
JSR ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
where “rrr” refers to an address register R0-R7

Timing: 4+jx oscillator clock cycles
Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

JSR Jump to Subroutine JSR

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 137
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax
If S[n]=1, JSSET #n,X:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,X:aa,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,X:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:ea,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:aa,xxxx
then SP+1➞SP; PC➞SSH; SR ➞SSL; xxxx➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,Y:pp,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx ➞PC
else PC+1➞PC

If S[n]=1, JSSET #n,S,xxxx
then SP+1➞SP; PC➞SSH; SR➞SSL; xxxx➞PC
else PC+1➞PC

Description: Jump to the subroutine at the 16-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the instruc-
tion’s 24-bit extension word. If the specified memory bit is not set, the program counter
(PC) is incremented, and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the state of the

JSSET Jump to Subroutine if Bit Set JSSET
A - 138 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

nth bit. All address register indirect addressing modes may be used to reference the
source operand S. Absolute short and I/O short addressing modes may also be used.

Restrictions: A JSSET instruction used within a DO loop cannot specify the loop
address (LA) as its target.

A JSSET located at LA, LA–1, or LA–2 of a DO loop, cannot specify the program control-
ler registers SR, SP, SSH, SSL, LA, or LC as its target.

JSSET SSH or JSSET SSL cannot follow an instruction that changes the SP.

A JSSET instruction cannot be repeated using the REP instruction.

Example:
:

JSSET #$17,Y:<$3F,$100 ;go to sub. at P:$0100 if bit 23 in Y:$3F is set
:

Explanation of Example: In this example, program execution is transferred to the sub-
routine at absolute address P:$0100 in program memory if bit 23 of Y memory location
Y:$003F is a one. If the specified bit is not set, no jump is taken and the program counter
(PC) is incremented by 1.

Condition Codes:

For destination operand A or B:
S —Computed according to the definition. See Notes on page A-143.
L — Set if data limiting has occurred. See Notes on page A-143.
E — Not affected
U — Not affected
N — Not affected
Z — Not affected
V — Not affected
C — Not affected

For other source operands:
The condition codes are not affected.

JSSET Jump to Subroutine if Bit Set JSSET

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 139
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
ea=6-bit Effective Address=MMMRRR,
xxxx=16-bit Absolute Address in extension word

Effective
Addressing Mode M M M R R R Memory SpaceS Bit Number bbbbb

(Rn)-Nn 0 0 0 r r r X Memory 0 00000
(Rn)+Nn 0 0 1 r r r Y Memory 1 •
(Rn)- 0 1 0 r r r •
(Rn)+ 0 1 1 r r r •
(Rn) 1 0 0 r r r 10111
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSSET Jump to Subroutine if Bit Set JSSET

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTEN-

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b
A - 140 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
aa=6-bit Absolute Short Address=aaaaaa,
xxxx=16-bit Absolute Address in extension word

Absolute Short Address aaaaaa Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b

JSSET Jump to Subroutine if Bit Set JSSET
MOTOROLA INSTRUCTION SET DETAILS A - 141
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
pp=6-bit I/O Short Address=pppppp,
xxxx=16-bit Absolute Address in extension word

I/O Short Address pppppp Memory SpaceS Bit Number bbbbb

000000 X Memory 0 00000
• Y Memory 1 •
• 10111

111111

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

JSSET Jump to Subroutine if Bit Set JSSET
A - 142 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
JSSET #n,S,xxxx

Opcode:

Instruction Fields:
#n=bit number=bbbbb,
S=source register=DDDDDD,
xxxx=16-bit Absolute Address in extension word

Source Register D D D D D D Bit Number bbbbb

4 registers in Data ALU 0 0 0 1 D D 00000
8 accumulators in Data ALU 0 0 1 D D D •
8 address registers in AGU 0 1 0 T T T 10111
8 address offset registers in AGU 0 1 1 N N N
8 address modifier registers in AGU 1 0 0 F F F
8 program controller registers 1 1 1 G G G

See Section A.10 and Table A-18 for specific register encodings.

Notes: If A or B is specified as the destination operand, the following sequence of
events takes place:

1. The S bit is computed according to its definition (See Section A.5)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited to
the maximum positive or negative saturation constant, and the L bit is set.

4. The bit test is performed on the resulting 24-bit value, and the jump to sub-
routine is taken if the bit tested is set. The original contents of A or B are not
changed.

Timing: 6+jx oscillator clock cycles

Memory: 2 program words

JSSET Jump to Subroutine if Bit Set JSSET

23 16 15 8 7 0

ABSOLUTE ADDRESS EXTENSION

0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 143
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Syntax: LSL D (parallel move)

Description: Logically shift bits 47–24 of the destination operand D one bit to the left
and store the result in the destination accumulator. Prior to instruction execution, bit 47
of D is shifted into the carry bit C, and a zero is shifted into bit 24 of the destination accu-
mulator D. This instruction is a 24-bit operation. The remaining bits of the destination
operand D are not affected. If a zero shift count is specified, the carry bit is cleared. The
difference between LSL and ASL is that LSL operates on only A1 or B1 and always
clears the V bit.

Example:
:

LSL B1 #$7F,R0 ;shift B1 one bit to the left, set up R0
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:F01234:13579B. The execution of the LSL B instruction shifts the 24-bit value
in the B1 register one bit to the left and stores the result back in the B1 register.

LSL Logical Shift Left LSL

47 24

C 0 (parallel move)Operation:

Before Execution After Execution

B B$00:F01234:13579B

SR SR$0300 $0309

$00:E02468:13579B
A - 144 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 47 of A or B was set prior to instruction execution

Instruction Format:
LSL D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

LSL Logical Shift Left LSL
MOTOROLA INSTRUCTION SET DETAILS A - 145
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Assembler Syntax: LSR D (parallel move)

Description: Logically shift bits 47–24 of the destination operand D one bit to the right
and store the result in the destination accumulator. Prior to instruction execution, bit 24
of D is shifted into the carry bit C, and a zero is shifted into bit 47 of the destination accu-
mulator D. This instruction is a 24-bit operation. The remaining bits of the destination
operand D are not affected.

Example:
:

LSR A1 A1,N4 ;shift A1 one bit to the right, set up N4
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $37:444445:828180. The execution of the LSR A instruction shifts the 24-bit value
in the A1 register one bit to the right and stores the result back in the A1 register.

LSR Logical Shift Right LSR

47 24

0 C (parallel move)Operation:

Before Execution After Execution

A A$37:444445:828180

SR SR$0300 $0301

$37:222222:828180
A - 146 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Always cleared
Z— Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 24 of A or B was set prior to instruction execution

Instruction Format:
LSR D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

LSR Logical Shift Right LSR
MOTOROLA INSTRUCTION SET DETAILS A - 147
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
ea➞d LUA ea,D

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address are
specified by the effective address (ea). Note that the source address register speci-
fied in the effective address is not updated. All update addressing modes may be
used.

Note: This instruction is considered to be a move-type instruction. Due to instruction
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the
new contents may not be available for use until the second following instruction. See the
restrictions discussed in A.9.6 - R, N, and M Register Restrictions on page A-310.

Example:
:

LUA (R0)+N0,R1 ;update R1 using (R0)+N0
:

Explanation of Example: Prior to execution, the 16-bit address register R0 contains the
value $0003, the 16-bit address register N0 contains the value $0005, and the 16-bit
address register R1 contains the value $0004. The execution of the LUA (R0)+N0,R1
instruction adds the contents of the R0 register to the contents of the N0 register and
stores the resulting updated address in the R1 address register. Normally N0 would be
added to R0 and deposited in R0. However, for an LUA instruction, the contents of both
the R0 and N0 address registers are not affected.

LUA Load Updated Address LUA

Before Execution After Execution

R0 R0

N0 N0

R1 R1$0004 $0008

$0005

$0003

$0005

$0003

M0 M0$FFFF $FFFF
A - 148 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
LUA ea,D

Opcode:

Instruction Fields:
ea=5-bit Effective Address=MMRRR,
D=4-bit destination address register=dddd

Effective
Addressing Mode M M M R R R Dest. Addr. Reg. D d d d d

(Rn)-Nn 0 0 0 r r r R0–R7 0 n n n
(Rn)+Nn 0 0 1 r r r N0–N7 1 n n n
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r

where “rrr” refers to a source address register R0–R7
where “nnn” refers to a destination address register R0–R7 or N0–N7

Timing: 4 oscillator clock cycles

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 1 d d d d

LUA Load Updated Address LUA
MOTOROLA INSTRUCTION SET DETAILS A - 149
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D±S1∗ S2➞D (parallel move) MAC (±)S1,S2,D (parallel move)

D±S1∗ S2➞D (parallel move) MAC (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)➞D (no parallel move) MAC (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract
the product to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MULTI-
PLY MODE:

MPY Y0, X0, A MPY Y0, X0, B
MAC X1, Y0, A MAC X1, Y0, B
MAC X0, Y1, A MAC X0, Y1, B
MAC Y1, X1, A MAC Y1, X1, B

All other Data ALU instructions are executed as NOP’s when the processor is in the Dou-
ble Precision Multiply Mode.

Example 1:
:

MAC X0,X0,A X:(R2)+N2,Y1 ;square X0 and store in A, update Y1 and R2
:

Explanation of Example 1: Prior to execution, the 24-bit X0 register contains the value
of $123456 (0.142222166), and the 56-bit A accumulator contains the value
$00:100000:000000 (0.125). The execution of the MAC X0,X0,A instruction squares the
24-bit signed value in the X0 register and adds the resulting 48-bit product to the 56-bit A
accumulator (X0∗ X0+lA=0.145227144519197 approximately= $00:1296CD:9619C8=A).

MAC Signed Multiply-Accumulate MAC

Before Execution After Execution

X0 X0$123456

A A$00:100000:00000 $00:1296CD:9619C8

$123456
A - 150 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format 1:
MAC (±)S1,S2,D
MAC (±)S2,S1,D

Opcode: 1

Instruction Fields:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

MAC Signed Multiply-Accumulate MAC

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 151
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

Example 2:
:

MAC X0, #3, A ;
:

Explanation of Example 2: The content of X0 ($654321) is multiplied by 2-3 and then
added to the content of the A accumulator ($00:100000:000000). The result is then
placed in the A accumulator. The net effect of this operation is to divide the content of
X0 by 23 and add the result to the accumulator. An alternate interpretation is that X0 is
right shifted 3 places and filled with the sign bit (0 for a positive number and 1 for a neg-
ative number) and then the result is added to the accumulator.

Instruction Format 2:

MAC (±)S,#n,D

Opcode 2:

Instruction Fields:
S Q Q Sign k D d

Y1 0 0 + 0 A 0
X0 0 1 – 1 B 1
Y0 1 0
X1 1 1

MAC Signed Multiply-Accumulate MAC

Before Execution After Execution

X0 $654321

A A$00:100000:000000 $00:1CA864:200000

$654321X0

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 0
A - 152 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

MAC Signed Multiply-Accumulate MAC
MOTOROLA INSTRUCTION SET DETAILS A - 153
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D±S1∗ S2+r➞D (parallel move) MACR (±)S1,S2,D (parallel move)

D±S1∗ S2+r➞ D (parallel move) MACR (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)+r➞D (no parallel move) MACR (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and then round the result
using convergent rounding. The rounded result is stored in the destination accumulator
D.

The “–” sign option negates the specified product prior to accumulation. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the desti-
nation accumulator (A1 or B1) by adding a constant to the LS bits of the lower portion of
the accumulator (A0 or B0). The value of the constant added is determined by the scal-
ing mode bits S0 and S1 in the status register. Once rounding has been completed, the
LS bits of the destination accumulator D (A0 or B0) are loaded with zeros to maintain an
unbiased accumulator value which may be reused by the next instruction. The upper por-
tion of the accumulator (A1 or B1) contains the rounded result which may be read out to
the data buses. Refer to the RND instruction for more complete information on the con-
vergent rounding process.

Example 1:
:

MACR X0,Y0,B B,X0 Y:(R4)+N4,Y0 ;X0∗ Y0+B➞B, and B, update X0,Y0,R4
:

MACR Signed Multiply-Accumulate and Round MACR

Before Execution After Execution

X0 X0

Y0 Y0

B B$00:100000:000000 $00:1296CE:000000

$987654

$100000

$123456

$123456
A - 154 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example 1: Prior to execution, the 24-bit X0 register contains the value
$123456 (0.142222166), the 24-bit Y0 register contains the value $123456
(0.142222166), and the 56-bit B accumulator contains the value $00:100000:000000
(0.125). The execution of the MACR X0,Y0,B instruction multiples the 24-bit signed
value in the X0 register by the 24-bit signed value in the Y0 register, adds the resulting
product to the 56-bit B accumulator, rounds the result into the B1 portion of the accumu-
lator, and then zeros the B0 portion of the accumulator (X0∗ Y0+B=0.145227144519197
approximately =$00:1296CD:9619C8, which is rounded to the value
$00:1296CE:000000=0.145227193832397=B).

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 for complete details.

Instruction Format 1:
MACR (±)S1,S2,D
MACR (±)S2,S1,D

Opcode 1:

MACR Signed Multiply-Accumulate and Round MACR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 155
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields 1:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

Example 2:
:

MACR -Y0, #10, B ;
:

Explanation of Example 2: The content of Y0 ($654321) is negated, multiplied by 2-10,
added to the content of the B accumulator ($00:100000:000000), placed in the B accu-
mulator and then rounded to a single precision number (24 bits in B1). The net effect of
this operation is to negate the content of Y0, divide the result by 210 and add the result
to the accumulator. An alternate interpretation is that Y0 is negated, right shifted 10
places, filled with the sign bit (0 for a positive number and 1 for a negative number), the
result is added to the accumulator and then rounded to a single precision number.

MACR Signed Multiply-Accumulate and Round MACR

Before Execution After Execution

Y0 $654321

B B$00:100000:000000 $00:0FE6AF:000000

$654321Y0
A - 156 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format 2:
MACR (±)S,#n,D

Opcode 2:

Instruction Fields 2:
S Q Q Sign k D d

Y1 0 0 + 0 A 0
X0 0 1 – 1 B 1
Y0 1 0
X1 1 1

 n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 1

MACR Signed Multiply-Accumulate and Round MACR
MOTOROLA INSTRUCTION SET DETAILS A - 157
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S➞D MOVE S,D

Description: Move the contents of the specified data source S to the specified destina-
tion D. This instruction is equivalent to a data ALU NOP with a parallel data move.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con-
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu-
lator register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu-
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A10 or B10
as the destination operand.

Example:
:

MOVE X0,A1 ;move X0 to A1 without sign ext. or zeroing
:

MOVE Move Data MOVE

A A$FF:FFFFFF:FFFFFF $FF:234567:FFFFFF

Before Execution After Execution

X0 X0$234567 $234567
A - 158 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF, and the 24-bit X0 register contains the value $234567. The
execution of the MOVE X0,A1 instruction moves the 24-bit value in the X0 register into
the 24-bit A1 register without automatic sign extension and without automatic zeroing.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

Instruction Format:
MOVE S,D

Opcode:

Instruction Fields:
See Parallel Move Descriptions for data bus move field encoding.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE Move Data MOVE
MOTOROLA INSTRUCTION SET DETAILS A - 159
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Parallel Move Descriptions: Thirty of the sixty-two instructions allow an optional paral-
lel data bus movement over the X and/or Y data bus. This allows a data ALU operation to
be executed in parallel with up to two data bus moves during the instruction cycle. Ten
types of parallel moves are permitted, including register to register moves, register to
memory moves, and memory to register moves. However, not all addressing modes are
allowed for each type of memory reference. Addressing mode restrictions which apply to
specific types of moves are noted in the individual move operation descriptions. The fol-
lowing section contains detailed descriptions about each type of parallel move operation.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24- or 48-bit destination, the value
stored in the destination D is limited to a maximum positive or negative saturation con-
stant to minimize truncation error. Limiting does not occur if an individual 24-bit accumu-
lator register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

Note: Whenever an instruction uses an accumulator as both a destination operand for a
data ALU operation and as a source for a parallel move operation, the parallel move
operation occurs first and will use the data that exists in the accumulator before the
execution of the data ALU operation has occurred.

MOVE Move Data MOVE
A - 160 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Similarly, any 48-bit source data to be loaded into a 56-bit accu-
mulator is automatically sign extended to 56 bits. Note that for 24-bit source operands
both the automatic sign-extension and zeroing features may be disabled by specifying
the destination register to be one of the individual 24-bit accumulator registers (A1 or
B1). Similarly, for 48-bit source operands, the automatic sign-extension feature may be
disabled by using the long memory move addressing mode and specifying A10 or B10
as the destination operand.

Note that the symbols used in decoding the various opcode fields of an instruction or par-
allel move are completely arbitrary. Furthermore, the opcode symbols used in one
instruction or parallel move are completely independent of the opcode symbols used in
a different instruction or parallel move.

MOVE Move Data MOVE
MOTOROLA INSTRUCTION SET DETAILS A - 161
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.) (.)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Many (30 of the total 66) instructions in the DSP56K instruction set allow
parallel moves. The parallel moves have been divided into 10 opcode categories. This
category is a parallel move NOP and does not involve data bus move activity.

Example:
:

ADD X0,A ;add X0 to A (no parallel move)
:

Explanation of Example: This is an example of an instruction which allows parallel
moves but does not have one.

Condition Codes:

The condition codes are affected by the instruction, not the move.

No Parallel Data Move

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 162 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.)

Opcode:

Instruction Format:
(defined by instruction)

Timing: mv oscillator clock cycles

Memory: mv program words

No Parallel Data Move

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET DETAILS A - 163
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.), #xx➞D (.) #xx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit imme-
diate short operand is interpreted as an unsigned integer and is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LS bits of the destination
operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand
is interpreted as a signed fraction and is stored in the specified destination register.
That is, the 8-bit data is stored in the eight MS bits of the destination operand, and the
remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol-
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric-
tions on page A-310.

I Immediate Short Data Move I
A - 164 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

ABS B #$18,R1 ;take absolute value of B, #$18➞R1
:

Explanation of Example: Prior to execution, the 16-bit address register R1 contains the
value $0000. The execution of the parallel move portion of the instruction, #$18,R1,
moves the 8-bit immediate short operand into the eight LS bits of the R1 register and
zeros the remaining eight MS bits of that register. The 8-bit value is interpreted as an
unsigned integer since its destination is the R1 address register.

Before Execution After Execution

R1 R1$0000 $0018

I Immediate Short Data Move I
MOTOROLA INSTRUCTION SET DETAILS A - 165
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

The condition codes are not affected by this type of parallel move.

Instruction Format:
(.) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data=iiiiiiii

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE

I Immediate Short Data Move I
A - 166 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

D D
D d d d d d Sign Ext Zero

X0 0 0 1 0 0 no no
X1 0 0 1 0 1 no no
Y0 0 0 1 1 0 no no
Y1 0 0 1 1 1 no no
A0 0 1 0 0 0 no no
B0 0 1 0 0 1 no no
A2 0 1 0 1 0 no no
B2 0 1 0 1 1 no no
A1 0 1 1 0 0 no no
B1 0 1 1 0 1 no no
A 0 1 1 1 0 A2 A0
B 0 1 1 1 1 B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

I Immediate Short Data Move I
MOTOROLA INSTRUCTION SET DETAILS A - 167
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); S➞D (.) S,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Note: The MOVE A,B operation will result in a 24-bit positive or negative saturation con-
stant being stored in the B1 portion of the B accumulator if the signed integer portion of
the A accumulator is in use.

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol-
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric-
tions on page A-310.

R Register to Register Data Move R
A - 168 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

MACR–X0,Y0,A Y1,N5 ;–X0∗ Y0+A➞A, move Y1➞N5
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$001234 and the 16-bit address offset register N5 contains the value $0000. The execu-
tion of the parallel move portion of the instruction, Y1,N5, moves the 16 LS bits of the 24-
bit value in the Y1 register into the 16-bit N5 register.

N5 N5$0000 $1234

Before Execution After Execution

Y1 Y1$001234 $001234

R Register to Register Data Move R
MOTOROLA INSTRUCTION SET DETAILS A - 169
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move

Instruction Format:
(.) S,D

Opcode:

R Register to Register Data Move R

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE
A - 170 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields:
e e e e e S D D

S or D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

R Register to Register Data Move R
MOTOROLA INSTRUCTION SET DETAILS A - 171
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); ea➞Rn (.) ea

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Example:
:

RND B (R3)+N3 ;round value in B into B1, R3+N3➞R3
:

Explanation of Example: Prior to execution, the 16-bit address register R3 contains the
value $0007, and the 16-bit address offset register N3 contains the value $0004. The
execution of the parallel move portion of the instruction, (R3)+N3, updates the R3
address register according to the specified effective addressing mode by adding the
value in the R3 register to the value in the N3 register and storing the 16-bit result back in
the R3 address register.

Condition Codes:

The condition codes are not affected by this type of parallel move.

U Address Register Update U

N3 N3$0004 $0004

Before Execution After Execution

R3 R3$0007 $000B

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 172 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) ea

Opcode:

Instruction Fields:
ea=5-bit Effective Address=MMRRR

Effective
Addressing Mode M M R R R

(Rn)-Nn 0 0 r r r
(Rn)+Nn 0 1 r r r
(Rn)- 1 0 r r r
(Rn)+ 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

U Address Register Update U
MOTOROLA INSTRUCTION SET DETAILS A - 173
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); X:ea➞D (.) X:ea,D

(.); X:aa➞D (.) X:aa,D

(.); S➞X:ea (.) S,X:ea

(.); S➞X:aa (.) S,X:aa

(.); #xxxxxx➞D (.) #xxxxxx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. All memory address-
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 24-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

X: X Memory Data Move X:
A - 174 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Note:Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol-
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric-
tions on page A-page 310.

Example:
:

ASL A R2,X:–(R2) ;A∗ 2➞A, save updated R2 in X:(R2)
:

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the
value $1001, and the 24-bit X memory location X:$1000 contains the value $000000.
The execution of the parallel move portion of the instruction, R2,X:–(R2), predecrements
the R2 address register and then uses the R2 address register to move the updated con-
tents of the R2 address register into the 24-bit X memory location X:$1000.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION.
L — Set if data limiting has occurred during parallel move.

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit X memory location if the signed integer por-
tion of the A accumulator is in use.

X:$1000 X:$1000$000000 $001000

Before Execution After Execution

R2 R2$1001 $1000

X: X Memory Data Move X:

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 175
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) X:ea,D
(.) S,X:ea
(.) #xxxxxx,D

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

X: X Memory Data Move X:
A - 176 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

X: X Memory Data Move X:
MOTOROLA INSTRUCTION SET DETAILS A - 177
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) X:aa,D
(.) S,X:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address a a a a a a

Read S 0 0 0 0 0 0 0
Write D 1 •

1 1 1 1 1 1

23 16 15 8 7 0

0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

X: X Memory Data Move X:
A - 178 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

X: X Memory Data Move X:
MOTOROLA INSTRUCTION SET DETAILS A - 179
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Class I Class I

(.); X:ea➞D1; S2➞D2 (.) X:ea,D1 S2,D2

(.); S1➞X:ea; S2➞D2 (.) S1,X:ea S2,D2

(.); #xxxxxx➞D1; S2➞D2 (.) #xxxxxx,D1 S2,D2

Class II Class II
(.); A➞X:ea; X0➞A (.) A,X:ea X0,A

(.); B➞X:ea; X0➞B (.) B,X:ea X0,B

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg-
ister to register move (S2,D2) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and one-
word operand from data ALU register X0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc-
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por-
tion of the instruction may not specify A0, A1, A2, or A as its destination D1. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D1. That is, duplicate destinations are NOT allowed within
the same instruction.

X:R X Memory and Register Data Move X:R
A - 180 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

Class I Example:
:

CMPM Y0,A A,X:$1234 A,Y0 ;compare A,Y0 mag., save A, update Y0
:

Explanation of the Class I Example: Prior to execution, the 56-bit A accumulator con-
tains the value $00:800000:000000, the 24-bit X memory location X:$1234 contains the
value $000000, and the 24-bit Y0 register contains the value $000000. The execution of
the parallel move portion of the instruction, A,X:$1234 A,Y0, moves the 24-bit limited
positive saturation constant $7FFFFF into both the X:$1234 memory location and the Y0
register since the signed portion of the A accumulator was in use.

Before Execution After Execution

Y0 Y0

$000000 $7FFFFF

A A$00:800000:000000 $00:800000:000000

X:$1234 X:$1234

$000000 $7FFFFF

X:R X Memory and Register Data Move X:R
MOTOROLA INSTRUCTION SET DETAILS A - 181
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Class II Example:
:

MAC X0,Y0,A B,X:(R1)+ X0,B ;multiply X0 and Y0 and accumulate in A
: ;move B to X memory location pointed to

;by R1 and postincrement R1
;move X0 to B

Explanation of the Class II Example: Prior to execution, the 24-bit registers X0 and Y0
contain $400000 and $600000, respectively. The 56-bit accumulators A and B contain
the values $00:000000:000000 and $FF:7FFFFF:000000, respectively. The 24-bit X
memory location X:$1234 contains the value $000000, and the 16-bit R1 register con-
tains the value $1234. Execution of the parallel move portion of the instruction
(B,X:(R1)+X0,B) moves the 24-bit limited value of B ($800000) into the X:$1234 memory
location and the X0 register ($400000) into accumulator B1 ($400000), sign extends B1
into B2 ($00), and zero fills B0 ($000000). It also increments R1 to $1235.

Before Execution After Execution

X0 X0$400000 $400000

Y0 Y0$600000 $600000

A A$00:000000:000000 $00:300000:000000

B B$FF:7FFFFF:000000 $00:400000:000000

X:$1234 X:$1234$000000 $800000

R1 R1$1234 $1235

X:R X Memory and Register Data Move X:R
A - 182 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

Class I Instruction Format:
(.) X:ea,D1 S2,D2
(.) S1,X:ea S2, D2
(.) #xxxxxx, S2,D2

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where “rrr” refers to an address register R0–R7

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

X:R X Memory and Register Data Move X:R
MOTOROLA INSTRUCTION SET DETAILS A - 183
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S1 D1 D1 S2 D2 D2
S1,D1 f f S/L Sign Ext Zero S2 d S/L D2 f Sign Ext Zero

X0 0 0 no no no A 0 yes Y0 0 no no
X1 0 1 no no no B 1 yes Y1 1 no no
A 1 0 yes A2 A0
B 1 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

X:R X Memory and Register Data Move X:R
A - 184 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Class II Instruction Format:
(.) A➞X:ea X0➞A
(.) B➞X:ea X0➞B

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0–R7

S D D
S D S/L Sign Ext Zero d MOVE Opcode

X0 no N/A N/A 0 A➞X:ea X0➞A
Y0 no N/A N/A 1 B➞X:ea X0➞B
A yes A2 A0
B yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

X:R X Memory and Register Data Move X:R
MOTOROLA INSTRUCTION SET DETAILS A - 185
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); Y:ea➞D (.) Y:ea,D

(.); Y:aa➞D (.) Y:aa,D

(.); S➞Y:ea (.) S,Y:ea

(.); S➞Y:aa (.) S,Y:aa

(.); #xxxxxx➞D (.) #xxxxxx,D

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to Y memory. All memory address-
ing modes, including absolute addressing and 24-bit immediate data, may be used.
Absolute short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A0, A1, A2,
or A as its destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B0, B1, B2, or B as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

When a 24-bit source operand is moved into a 16-bit destination register, the 16 LS bits
of the 12-bit source operand are stored in the 16-bit destination register. When a 16-bit
source operand is moved into a 24-bit destination register, the 16 LS bits of the destina-
tion register are loaded with the contents of the 16-bit source operand, and the eight MS
bits of the 24-bit destination register are zeroed.

Y: Y Memory Data Move Y:
A - 186 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: This parallel data move is considered to be a move-type instruction. Due to
instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this
instruction, the new contents may not be available for use until the second following
instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restrictions on
page A-page 310.

Example:
:

EOR X0,B #$123456,A ;exclusive OR X0 and B, update A accumulator
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $FF:FFFFFF:FFFFFF. The execution of the parallel move portion of the instruc-
tion, #$123456,A, moves the 24-bit immediate value $123456 into the 24-bit A1 register,
then sign extends that value into the A2 portion of the accumulator, and zeros the lower
24-bit A0 portion of the accumulator.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

Y: Y Memory Data Move Y:

Before Execution After Execution

A $FF:FFFFFF:FFFFFF A $00:123456:000000

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 187
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative saturation
constant being stored in the specified 24-bit Y memory location if the signed integer por-
tion of the A accumulator is in use.

Instruction Format:
(.) Y:ea,D
(.) S,Y:ea
(.) #xxxxxx,D

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where “rrr” refers to an address register R0–R7

Y: Y Memory Data Move Y:

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE
A - 188 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

Y: Y Memory Data Move Y:
MOTOROLA INSTRUCTION SET DETAILS A - 189
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) Y:aa,D
(.) S,Y:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0 000000
Write D 1 •

111111

Y: Y Memory Data Move Y:

23 16 15 8 7 0

0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE
A - 190 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S D D
S,D d d d d d S/L Sign Ext Zero

X0 0 0 1 0 0 no no no
X1 0 0 1 0 1 no no no
Y0 0 0 1 1 0 no no no
Y1 0 0 1 1 1 no no no
A0 0 1 0 0 0 no no no
B0 0 1 0 0 1 no no no
A2 0 1 0 1 0 no no no
B2 0 1 0 1 1 no no no
A1 0 1 1 0 0 no no no
B1 0 1 1 0 1 no no no
A 0 1 1 1 0 yes A2 A0
B 0 1 1 1 1 yes B2 B0
R0-R7 1 0 r r r
N0-N7 1 1 n n n

where “rrr”=Rn number
where “nnn”=Nn number

Timing: mv oscillator clock cycles

Memory: mv program words

Y: Y Memory Data Move Y:
MOTOROLA INSTRUCTION SET DETAILS A - 191
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Class I Class I

(.); S1➞D1; Y:ea➞D2 (.) S1,D1 Y:ea,D2

(.); S1➞D1; S2➞Y:ea (.) S1,D1 S2,Y:ea

(.); S1➞D1; #xxxxxx➞D2 (.) S1,D1 #xxxxxx,D2

Class II Class II
(.); Y0 ➞A; A➞Y:ea (.) Y0,A A,Y:ea

(.); Y0➞B; B➞Y:ea (.) Y0,B B,Y:ea

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The reg-
ister to register move (S1,D1) allows a data ALU accumulator to be moved to a data ALU
input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and one-
word operand from data ALU register Y0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used. Class II move operations have been added to
the R:Y parallel move (and a similar feature has been added to the X:R parallel move) as
an added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D2 in
the parallel data bus move operation. Thus, if the opcode-operand portion of the instruc-
tion specifies the 56-bit A accumulator as its destination, the parallel data bus move por-
tion of the instruction may not specify A0, A1, A2, or A as its destination D2. Similarly, if
the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D2. That is, duplicate destinations are NOT allowed within the
same instruction.

R:Y Register and Y Memory Data Move R:Y
A - 192 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

Class I Example:
:

ADDL B,A B,X1 Y:(R6)–N6,B ;2∗ A+B ➞ A, update X1,B and R6
:

Explanation of the Class I Example: Prior to execution, the 56-bit B accumulator con-
tains the value $80:123456:789ABC, the 24-bit X1 register contains the value $000000,
the 16-bit R6 address register contains the value $2020, the 16-bit N6 address offset
register contains the value $0020 and the 24-bit Y memory location Y:$2020 contains the
value $654321. The execution of the parallel move portion of the instruction, B,X1
Y:(R6)–N6,B, moves the 24-bit limited negative saturation constant $800000 into the X1
register since the signed integer portion of the B accumulator was in use, uses the value
in the 16-bit R6 address register to move the 24-bit value in the Y memory location
Y:$2020 into the 56-bit B accumulator with automatic sign extension of the upper portion
of the accumulator (B2) and automatic zeroing of the lower portion of the accumulator
(B0), and finally uses the contents of the 16-bit N6 address offset register to update the
value in the 16-bit R6 address register. The contents of the N6 address offset register
are not affected.

R:Y Register and Y Memory Data Move R:Y

Before Execution After Execution

B B$80:123456:789ABC $00:654321:000000

X1 X1$000000 $800000

R6 R6$2020 $2000

N6 N6$0020 $0020

Y:$2020 Y:$2020$654321 $654321
MOTOROLA INSTRUCTION SET DETAILS A - 193
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Class II Example:
:

MAC X0,Y0,A Y0,B B,Y:(R1)+ ;multiply X0 and Y0 and accumulate in A
: ;move B to Y memory location pointed to

;by R1 and postincrement R1
;move Y0 to B

Explanation of the Class II Example: Prior to execution, the 24-bit registers, X0 and
Y0, contain $400000 and $600000, respectively. The 56-bit accumulators A and B con-
tain the values $00:000000:000000 and $00:800000:000000 (+1.0000), respectively.
The 24-bit Y memory location Y:$1234 contains the value $000000, and the 16-bit R1
register contains the value $1234. Execution of the parallel move portion of the instruc-
tion (Y0,B B,Y:(R1)+) moves the Y0 register ($600000) into accumulator B1 ($600000),
sign extends B1 into B2 ($00), and zero fills B0 ($000000). It also moves the 24-bit lim-
ited value of B ($7FFFFF) into the Y:$1234 memory location and increments R1 to
$1235.

R:Y Register and Y Memory Data Move R:Y

Before Execution After Execution

X0 X0$400000 $400000

Y0 Y0$600000 $600000

A A$00:000000:000000 $00:300000:000000

B B$00:800000:000000 $00:600000:000000

Y:$1234 Y:$1234$000000 $7FFFFF

R1 R1$1234 $1235
A - 194 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

Class I Instruction Format:
(.) S1,D1 Y:ea,D2
(.) S1,D1 S2,Y:ea
(.) S1,D1 #xxxxxx,D2

Opcode:

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

R:Y Register and Y Memory Data Move R:Y

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET DETAILS A - 195
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S2 0 (Rn)-Nn 0 0 0 r r r
Write D2 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

where “rrr” refers to an address register R0–R7

S1 D1 D1 S2 D2 D2
S1 d S/L D1 e Sign Ext Zero S2,D2 f f S/L Sign Ext Zero

A 0 yes X0 0 no no Y0 0 0 no no no
B 1 yes X1 1 no no Y1 0 1 no no no

A 1 0 yes A2 A0
B 1 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

R:Y Register and Y Memory Data Move R:Y
A - 196 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Class II Instruction Format:
(.) Y0 ➞ A A ➞ Y:ea
(.) Y0 ➞ B B ➞ Y:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Addressing Mode M M M R R R

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0–R7

SRC DEST DEST
S, D S/L Sign Ext Zero d MOVE Opcode
X0 no N/A N/A 0 Y0 ➞ A A ➞ Y:ea
Y0 no N/A N/A 1 Y0 ➞ B B ➞ Y:ea
A yes A2 A0
B yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

R:Y Register and Y Memory Data Move R:Y

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET DETAILS A - 197
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); X:ea ➞ D1; Y:ea ➞ D2 (.) L:ea,D

(.); X:aa ➞ D1; Y:aa ➞ D2 (.) L:aa,D

(.); S1 ➞ X:ea; S2 ➞ Y:ea (.) S,L:ea

(.); S1 ➞ X:aa; S2 ➞ Y:aa (.) S,L:aa

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data
ALU registers are concatenated to form the 48-bit long-word operand. This allows effi-
cient moving of both double-precision (high:low) and complex (real:imaginary) data from/
to one effective address in L (X:Y) memory. The same effective address is used for both
the X and Y memory spaces; thus, only one effective address is required. Note that the
A, B, A10, and B10 operands reference a single 48-bit signed (double-precision) quantity
while the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary)
24-bit signed quantities. All memory alterable addressing modes may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its desti-
nation, the parallel data bus move portion of the instruction may not specify A, A10, AB,
or BA as destination D. Similarly, if the opcode-operand portion of the instruction speci-
fies the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B, B10, AB, or BA as its destination D. That is, duplicate des-
tinations are NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit long
memory move as previously described. These operands may not be used in any other
type of instruction or parallel move.

L: Long Memory Data Move L:
A - 198 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

CMP Y0,B A,L:$1234 ;compare Y0 and B, save 48-bit A1:A0 value
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:234567:89ABCD, the 24-bit X memory location X:$1234 contains the value
$000000, and the 24-bit Y memory location Y:$1234 contains the value $000000. The
execution of the parallel move portion of the instruction, A,L:$1234, moves the 48-bit lim-
ited positive saturation constant $7FFFFF:FFFFFF into the specified long memory loca-
tion by moving the MS 24 bits of the 48-bit limited positive saturation constant ($7FFFFF)
into the 24-bit X memory location X:$1234 and by moving the LS 24 bits of the 48-bit lim-
ited positive saturation constant ($FFFFFF) into the 24-bit Y memory location Y:$1234
since the signed integer portion of the A accumulator was in use.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative saturation
constant being stored in the specified 24-bit X and Y memory locations if the signed inte-
ger portion of the A accumulator is in use. The MOVE AB,L:ea operation will result in
either one or two 24-bit positive and/or negative saturation constant(s) being stored in the
specified 24-bit X and/or Y memory location(s) if the signed integer portion of the A and/
or B accumulator(s) is in use.

L: Long Memory Data Move L:

Before Execution After Execution

A $01:234567:89ABCD

X:$1234 X:$1234$000000 $7FFFFF

$01:234567:89ABCDA

Y:$1234 $:000000 $FFFFFFY:$1234

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 199
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) L:ea,D
(.) S,L:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 0 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0–R7

S D D
S S1 S2 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words

L: Long Memory Data Move L:

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE
A - 200 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
(.) L:aa,D
(.) S,L:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa

Read S 0 000000
Write D 1 •

•
111111

S D D
S S1 S2 S/L D D1 D2 Sign Ext Zero L L L

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

Timing: mv oscillator clock cycles

Memory: mv program words

L: Long Memory Data Move L:

23 16 15 8 7 0

0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET DETAILS A - 201
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
(.); X:<eax> ➞ D1; Y:<eay> ➞ D2 (.) X:<eax>,D1 Y:<eay>,D2

(.); X:<eax> ➞ D1; S2 ➞ Y:<eay> (.) X:<eax>,D1 S2,Y:<eay>

(.); S1 ➞ X:<eax>; Y:<eay> ➞ D2 (.) S1,X:<eax> Y:<eay>,D2

(.); S1 ➞ X:<eax>; S2 ➞ Y:<eay> (.) S1,X:<eax> S2,Y:<eay>

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
(<eax> and <eay>) where one of the effective addresses uses the lower bank of address
registers (R0–R3) while the other effective address uses the upper bank of address reg-
isters (R4–R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not
be specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if
the opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction may not specify A as its
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B as its destination D1 or D2. That is, duplicate destina-
tions are NOT allowed within the same instruction. D1 and D2 may not specify the
same register.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That
is, duplicate sources are allowed within the same instruction. Note that S1 and S2
may specify the same register.

X: Y: XY Memory Data Move X: Y:
A - 202 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

MPYR X1,Y0,A X1,X:(R0)+ Y0,Y:(R4)+N4 ;X1∗ Y0 ➞ A,save X1 and Y0
:

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$123123, the 24-bit Y0 register contains the value $456456, the 16-bit R0 address regis-
ter contains the value $1000, the 16-bit R4 address register contains the value $0100,
the 16-bit N4 address offset register contains the value $0023, the 24-bit X memory loca-
tion X:$1000 contains the value $000000, and the 24-bit Y memory location Y:$0100
contains the value $000000. The execution of the parallel move portion of the instruction,
X1,X:(R0)+ Y0,Y:(R4)+N4, moves the 24-bit value in the X1 register into the 24-bit X
memory location X:$1000 using the 16-bit R0 address register, moves the 24-bit value in
the Y0 register into the 24-bit Y memory location Y:$0100 using the 16-bit R4 address
register, updates the 16-bit value in the R0 address register, and updates the 16-bit R4
address register using the 16-bit N4 address offset register. The contents of the N4
address offset register are not affected.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move.

X: Y: XY Memory Data Move X: Y:

Before Execution After Execution

X1 X1$123123 $123123

Y0 Y0$456456 $456456

R0 R0$1000 $1001

R4 R4$0100 $0123

X:$1000 X:$1000$000000 $123123

N4 N4$0023 $0023

Y:$0100 Y:$0100$000000 $456456

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 203
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note: The MOVE A,X:<eax> B,Y:<eay> operation will result in one or two 24-bit positive
and/or negative saturation constant(s) being stored in the specified 24-bit X and/or Y
memory location(s) if the signed integer portion of the A and/or B accumulator(s) is in use.

Instruction Format:
(.) X:<eax>,D1 Y:<eay>,D2
(.) X:<eax>,D1 S2,Y:<eay>
(.) S1,X:<eax> Y:<eay>,D2
(.) S1,X:<eax> S2,Y:<eay>

Opcode:

Instruction Fields:
X:<eax>=6-bit X Effective Address=WMMRRR (R0–R3 or R4–R7)
Y:<eay>=5-bit Y Effective Address=wmmrr (R4–R7 or R0–R3)

 X Effective
Addressing Mode M M R R R

(Rn)+Nn 0 1 s s s
(Rn)- 1 0 s s s
(Rn)+ 1 1 s s s
(Rn) 0 0 s s s

where “sss” refers to an address register R0–R7

X: Y: XY Memory Data Move X: Y:

23 16 15 8 7 0

1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE
A - 204 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S1 D1 D1 Y Effective
Register w S1, D1 e e S/L Sign Ext Zero Addressing Mode m m r r

Read S1 0 X0 0 0 no no no (Rn) +Nn 0 1 t t
Write D1 1 X1 0 1 no no no (Rn) - 1 0 t t

A 1 0 yes A2 A0 (Rn) + 1 1 t t
B 1 1 yes B2 B0 (Rn) 0 0 t t

where “tt” refers to an address register R4 - R7 or R0 - R3 which is in the opposite
address register bank from the one used in the X effective address, previously described

S2 D2 D2
Register W S2, D2 f f S/L Sign Ext Zero

Read S2 0 Y0 0 0 no no no
Write D2 1 Y1 0 1 no no no

A 1 0 yes A2 A0
B 1 1 yes B2 B0

Timing: mv oscillator clock cycles

Memory: mv program words

X: Y: XY Memory Data Move X: Y:
MOTOROLA INSTRUCTION SET DETAILS A - 205
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
X:ea➞D1 MOVE(C) X:ea,D1

X:aa➞D1 MOVE(C) X:aa,D1

S1➞X:ea MOVE(C) S1,X:ea

S1➞X:aa MOVE(C) S1,X:aa

Y:ea➞D1 MOVE(C) Y:ea,D1

Y:aa➞D1 MOVE(C) Y:aa,D1

S1➞Y:ea MOVE(C) S1,Y:ea

S1➞Y:aa MOVE(C) S1,Y:aa

S1➞D2 MOVE(C) S1,D2

S2➞D1 MOVE(C) S2,D1

#xxxx➞D1 MOVE(C) #xxxx,D1

#xx➞D1 MOVE(C) #xx,D1

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination or move the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 regis-
ter set and consist of the address ALU modifier registers and the program controller reg-
isters. These registers may be moved to or from any other register or memory space. Al
memory addressing modes, as well as an immediate short addressing mode, may be
used.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension

MOVEC Move Control Register MOVEC
A - 206 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

register is in use, and the data is to be moved into a 24-bit destination, the value stored
in the destination is limited to a maximum positive or negative saturation constant to min-
imize truncation error. If the data is to be moved into a 16-bit destination and the accu-
mulator extension register is in use, the value is limited to a maximum positive or
negative saturation constant whose LS 16 bits are then stored in the 16-bit destination
register. Limiting does not occur if an individual 24-bit accumulator register (A1, A0, B1,
or B0) is specified as a source operand instead of the full 56-bit accumulator (A or B).
This limiting feature allows block floating-point operations to be performed with error
detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a destination operand, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand is to be moved into a 24-bit
destination, the 16-bit value is stored in the LS 16 bits of the 24-bit destination, and the
MS 8 bits of that destination are zeroed. Similarly, whenever a 16-bit source operand is
to be moved into a 56-bit accumulator, the 16-bit value is moved into the LS 16 bits of the
MSP portion of the accumulator (A1 or B1), the MS 8 bits of the MSP portion of that
accumulator are zeroed, and the resulting 24-bit value is extended to 56 bits by sign
extending the MS bit and appending the result with 24 LS zeros. Note that for 24-bit
source operands both the automatic sign-extension and zeroing features may be dis-
abled by specifying the destination register to be one of the individual 24-bit accumulator
registers (A1 or B1).

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol-
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric-
tions on page A-page 310.

Restrictions: The following restrictions represent very unusual operations which proba-
bly would never be used but are listed only for completeness.

A MOVEC instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA – 2, LA – 1, or LA within that DO loop.

MOVEC Move Control Register MOVEC
MOTOROLA INSTRUCTION SET DETAILS A - 207
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc-
tion.

A MOVEC instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

A MOVEC instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEC instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEC instruction which specified SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

A MOVEC SSH, SSH instruction is illegal and cannot be used.

Example:
:

MOVEC LC,X0 ;move LC into X0
:

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0100, and the 24-bit X0 register contains the value $123456. The execu-
tion of the MOVEC LC,X0 instruction moves the contents of the 16-bit LC register into
the 16 LS bits of the 24-bit X0 register and zeros the 8 MS bits of the X0 register.

MOVEC Move Control Register MOVEC

Before Execution After Execution

LC $0100

X0 X0$123456 $000100

LC $0100
A - 208 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

For D1 or D2=SR operand:
S — Set according to bit 7 of the source operand
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D1 and D2≠SR operand:
S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during the move
Instruction Format:

MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 0 1 0 1 W 1 M M M R R R 0 s 1 d d d d d
MOTOROLA INSTRUCTION SET DETAILS A - 209
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0
Immediate Data 1 1 0 1 0 0

where “rrr” refers to an address register R0–R7

Memory Space s S1, D1 d d d d d
X Memory 0 M0–M7 0 0 n n n
Y Memory 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

MOVEC Move Control Register MOVEC
A - 210 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 •

•
111111

Memory Space s S1, D1 d d d d d
X Memory 0 M0–M7 0 0 n n n
Y Memory 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 0 a a a a a a 0 s 1 d d d d d

MOVEC Move Control Register MOVEC
MOTOROLA INSTRUCTION SET DETAILS A - 211
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
MOVE(C) S1,D2
MOVE(C) S2,D1

Opcode:

Instruction Fields:

Register W S1, D1 d d d d d
Read S1 0 M0–M7 0 0 n n n
Write D1 1 SR 1 1 0 0 1

OMR 1 1 0 1 0
SP 1 1 0 1 1

Memory Space s SSH 1 1 1 0 0
X Memory 0 SSL 1 1 1 0 1
Y Memory 1 LA 1 1 1 1 0

LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

S2 D2 D2
S2, D2 e e e e e e S/L Sign Ext Zero S2, D2 e e e e e e
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d
A - 212 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

Instruction Format:
MOVE(C) #xx,D1

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data=i i i i i i i i

D1 d d d d d
M0–M7 0 0 n n n
SR 1 1 0 0 1
OMR 1 1 0 1 0
SP 1 1 0 1 1
SSH 1 1 1 0 0
SSL 1 1 1 0 1
LA 1 1 1 1 0
LC 1 1 1 1 1

where “nnn” = Mn number (M0–M7)

Timing: 2+mvc oscillator clock cycles

Memory: 1+ea program words

MOVEC Move Control Register MOVEC

23 16 15 8 7 0

0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
MOTOROLA INSTRUCTION SET DETAILS A - 213
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S➞P:ea MOVE(M) S,P:ea

S➞P:aa MOVE(M) S,P:aa

P:ea➞D MOVE(M) P:ea,D

P:aa➞D MOVE(M) P:aa,D

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
S and D may be any register. All memory alterable addressing modes may be used as
well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-
ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini-
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A1, A0, B1, or B0) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point opera-
tions to be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 24) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source

MOVEM Move Program Memory MOVEM
A - 214 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

operands, both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(A1 or B1).

Note: Due to instruction pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed
with this instruction, the new contents may not be available for use until the second fol-
lowing instruction. See the restrictions discussed in A.9.6 - R, N, and M Register Restric-
tions on page A-page 310.

Restrictions: The following restrictions represent very unusual operations, which proba-
bly would never be used but are listed only for completeness.

A MOVEM instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA–2, LA–1, or LA within that DO loop.

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SSH,
SSL, or SP as the destination operand cannot be used immediately before a DO
instruction.

A MOVEM instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SL, or SP as the destination operand cannot be used immediately before an ENDDO
instruction.

A MOVEM instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEM instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEM instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

MOVEM Move Program Memory MOVEM
MOTOROLA INSTRUCTION SET DETAILS A - 215
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example:
:

MOVEM P:(R5+N5), LC :move P:(R5+N5) into the loop counter (LC)
:

Explanation of Example: Prior to execution, the 16-bit loop counter (LC) register con-
tains the value $0000, and the 24-bit program (P) memory location P:(R5+N5) contains
the value $000116. The execution of the MOVEM P:(R5+N5), LC instruction moves the
16 LS bits of the 24-bit program (P) memory location P:(R5+N5) into the 16-bit LC regis-
ter.

Condition Codes:

For D=SR operand:
S — Set according to bit 7 of the source operand
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D≠SR operand:
S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during the move

Before Execution After Execution

P:(R5 + N5) $000116

LC LC$0000 $0116

$000116P:(R5 + N5)

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

MOVEM Move Program Memory MOVEM
A - 216 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
MOVE(M) S,P:ea
MOVE(M) P:ea,D

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR

Effective
Register W Addressing Mode M M M R R R

Read S 0 (Rn)-Nn 0 0 0 r r r
Write D 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0–R7

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

MOVEM Move Program Memory MOVEM
MOTOROLA INSTRUCTION SET DETAILS A - 217
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

MOVEM Move Program Memory MOVEM
A - 218 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
MOVE(M) S,P:aa
MOVE(M) P:aa,D

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaa

Register W Absolute Short Address aaaaaa
Read S 0 000000
Write D 1 •

•
111111

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 6+ea+ap oscillator clock cycles

Memory: 1+ea program words

MOVEM Move Program Memory MOVEM

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d
MOTOROLA INSTRUCTION SET DETAILS A - 219
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
X:pp ➞ D MOVEP X:pp,D

X:pp ➞ X:ea MOVEP X:pp,X:ea

X:pp ➞ Y:ea MOVEP X:pp,Y:ea

X:pp ➞ P:ea MOVEP X:pp,P:ea

S ➞ X:pp MOVEP S,X:pp

#xxxxxx ➞ X:pp MOVEP #xxxxxx,X:pp

X:ea ➞ X:pp MOVEP X:ea,X:pp

Y:ea ➞ X:pp MOVEP Y:ea,X:pp

P:ea ➞ X:pp MOVEP P:ea,X:pp

Y:pp ➞ D MOVEP Y:pp,D

Y:pp ➞ X:ea MOVEP Y:pp,X:ea

Y:pp ➞ Y:ea MOVEP Y:pp,Y:ea

Y:pp ➞ P:ea MOVEP Y:pp,P:ea

S ➞ Y:pp MOVEP S,Y:pp

#xxxxxx ➞ Y:pp MOVEP #xxxxxx,Y:pp

X:ea ➞ Y:pp MOVEP X:ea,Y:pp

Y:ea ➞ Y:pp MOVEP Y:ea,Y:pp

P:ea ➞ Y:pp MOVEP P:ea,Y:pp

Description: Move the specified operand from/to the specified X or Y I/O peripheral.
The I/O short addressing mode is used for the I/O peripheral address. All memory
addressing modes may be used for the X or Y memory effective address; all memory
alterable addressing modes may be used for the P memory effective address.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack reg-

MOVEP Move Peripheral Data MOVEP
A - 220 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ister SSH is specified as a destination operand, the system stack pointer (SP) is prein-
cremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to mini-
mize truncation error. If a 24-bit source operand is to be moved into a 16-bit destination
register D, the 8 MS bits of the 24-bit source operand are discarded, and the 16 LS bits
are stored in the 16-bit destination register. Limiting does not occur if an individual 24-bit
accumulator register (A1, A0, B1, or B0) is specified as a source operand instead of the
full 56-bit accumulator (A or B). This limiting feature allows block floating-point opera-
tions to be performed with error detection since the L bit in the condition code register is
latched.

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by
sign extending the MS bit of the source operand (bit 23) and appending the source oper-
and with 24 LS zeros. Whenever a 16-bit source operand S is to be moved into a 24-bit
destination, the 16-bit source is loaded into the LS 16 bits of the destination operand,
and the remaining 8 MS bits of the destination are zeroed. Note that for 24-bit source
operands both the automatic sign-extension and zeroing features may be disabled by
specifying the destination register to be one of the individual 24-bit accumulator registers
(A1 or B1).

Note: Unlike other MOVE-type instructions, if an AGU register (Mn, Nn, or Rn) is directly
changed with MOVEP, the new contents will be available for use during the immediately
following instruction. There is no instruction cycle pipeline delay associated with
MOVEP.

Restrictions: The following restrictions represent very unusual operations, which proba-
bly would never be used but are listed only for completeness.

A MOVEP instruction used within a DO loop which specifies SSH as the source oper-
and or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at the
address LA–2, LA–1, or LA within that DO loop.

MOVEP Move Peripheral Data MOVEP
MOTOROLA INSTRUCTION SET DETAILS A - 221
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SSH, SSL,
or SP as the destination operand cannot be used immediately before a DO instruc-
tion.

A MOVEP instruction which specifies SSH as the source operand or LA, LC, SR, SSH,
SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

A MOVEP instruction which specifies SSH as the source operand or SR, SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTI instruction.

A MOVEP instruction which specifies SSH as the source operand or SSH, SSL, or SP
as the destination operand cannot be used immediately before an RTS instruction.

A MOVEP instruction which specifies SP as the destination operand cannot be used
immediately before a MOVEC, MOVEM, or MOVEP instruction which specifies SSH or
SSL as the source operand.

Example:
:

MOVEP #1113,X:<<$FFFE :initialize Bus Control Register wait states
:

Explanation of Example: Prior to execution, the 16-bit, X memory-mapped, I/O bus
control register (BCR) contains the value $FFFF. The execution of the MOVEP
#$1113,X:<<$FFFE instruction moves the value $1113 into the 16-bit bus control regis-
ter X:$FFFE, resulting in one wait state for all external X, external Y, and external pro-
gram memory accesses and three wait states for all external I/O accesses.

MOVEP Move Peripheral Data MOVEP

Before Execution After Execution
X:$FFFE

(BCR)
$FFFF $1113

X:$FFFE
(BCR)
A - 222 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

For D=SR operand:
S — Set according to bit 7 of the source operand
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D≠SR operand:
S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during the move

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

MOVEP Move Peripheral Data MOVEP
MOTOROLA INSTRUCTION SET DETAILS A - 223
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format (X: or Y: Reference):
MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,Y:ea
MOVEP Y:pp,Y:ea

Opcode:

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p
A - 224 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,
pp=6-bit I/O Short Address=pppppp

Effective
Memory Space S Addressing Mode M M M R R R

X Memory 0 (Rn)-Nn 0 0 0 r r r
Y Memory 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
Peripheral Space s (Rn)+ 0 1 1 r r r
X Memory 0 (Rn) 1 0 0 r r r
Y Memory 1 (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r
Peripheral W Absolute address 1 1 0 0 0 0
Read 0 Immediate data 1 1 0 1 0 0
Write 1

where “rrr” refers to an address register R0–R7

Timing: 2+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP
MOTOROLA INSTRUCTION SET DETAILS A - 225
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format (P: Reference):
MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR
pp=6-bit I/O Short Address=pppppp

Effective
Peripheral Space S Addressing Mode M M M R R R

X Memory 0 (Rn)-Nn 0 0 0 r r r
Y Memory 1 (Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
Peripheral W (Rn)+ 0 1 1 r r r
Read 0 (Rn) 1 0 0 r r r
Write 1 (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r
Absolute address 1 1 0 0 0 0

where “rrr” refers to an address register R0–R7

Timing: 4+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 S W 1 M M M R R R 0 1 p p p p p p
A - 226 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format (Register Reference):
MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp
MOVEP Y:pp,D

Opcode:

Instruction Fields:
pp=6-bit I/O Short Address=pppppp

Peripheral Space S Peripheral W
X Memory 0 Read 0
Y Memory 1 Write 1

S D D
S,D d d d d d d S/L Sign Ext Zero S,D d d d d d d
X0 0 0 0 1 0 0 no no no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no no no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no no no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no no no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no no no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no no no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no no no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no no no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no no no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no no no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes A2 A0
B 0 0 1 1 1 1 yes B2 B0

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

Timing: 4+mvp oscillator clock cycles

Memory: 1+ea program words

MOVEP Move Peripheral Data MOVEP

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 d d d d d d 0 0 p p p p p p
MOTOROLA INSTRUCTION SET DETAILS A - 227
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
±S1∗ S2 ➞ D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1∗ S2 ➞ D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1∗ 2-n)➞D (no parallel move) MPY (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the
signed 24-bit source operand S by the positive 24-bit immediate operand 2-n and add/
subtract to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm shown in Section 3.4 DOUBLE PRECISION MULTI-
PLY MODE:

MPY Y0, X0, A MPY Y0, X0, B
MAC X1, Y0, A MAC X1, Y0, B
MAC X0, Y1, A MAC X0, Y1, B
MAC Y1, X1, A MAC Y1, X1, B

All other Data ALU instructions are executed as NOP’s when the processor is in the Dou-
ble Precision Multiply Mode.

Example 1:
:

MPY –X1,Y1,A #$543210,Y0 ;–(X1∗ Y1) ➞ A, update Y0
:

MPY Signed Multiply

MPY

Before Execution After Execution

X1 $800000

Y1 Y1$C00000 $C00000

$800000X1

A $00:000000:000000 $FF:C00000:000000A
A - 228 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example 1: Prior to execution, the 24-bit X1 register contains the value
$800000 (–1.0), the 24-bit Y1 register contains the value $C00000, (–0.5), and the 56-bit
A accumulator contains the value $00:000000:000000 (0.0). The execution of the MPY –
X1,Y1,A instruction multiples the 24-bit signed value in the X1 register by the 24-bit
signed value in the Y1 register, negates the 48-bit product, and stores the result in the
56-bit A accumulator (–X1∗ Y1=–0.5=$FF:C00000:000000=A).

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format 1:
MPY (±)S1,S2,D
MPY (±)S2,S1,D

Opcode 1:

MPY Signed Multiply

MPY

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 229
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields 1:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

Example 2:
:

MPY X1, #9, A ;
:

Explanation of Example 2: The content of X1 is multiplied by 2-9 and the result is
placed in the A accumulator. The net effect of this operation is to divide the content of
X1 by 29 and place the result in the accumulator. An alternate interpretation is that X1 is
right shifted 9 places and filled with the sign bit (0 for a positive number and 1 for a neg-
ative number) and then the result is placed in the accumulator.

MPY Signed Multiply

MPY

Before Execution After Execution

X1 $654321

A A$00:000000:000000 $00:0032A1:908000

$654321X1
A - 230 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format 2:
MPY (±)S,#n,D

Opcode 2:

Instruction Fields:
S Q Q Sign k D d

Y1 0 0 + 0 A 0
X0 0 1 – 1 B 1
Y0 1 0
X1 1 1

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

MPY Signed Multiply

MPY

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 231
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
±S1∗ S2+r ➞ D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1∗ S2+r ➞ D (parallel move) MPYR (±)S2,S1,D (parallel move)

±(S1∗ 2-n)+r ➞ D (no parallel move) MPYR (±)S,#n,D (no parallel move)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using convergent rounding, and store it in the specified 56-bit destination accumulator D.
The “–” sign option is used to negate the product prior to rounding. The default sign
option is “+”. The contribution of the LS bits of the result is rounded into the upper portion
of the destination accumulator (A1 or B1) by adding a constant to the LS bits of the lower
portion of the accumulator (A0 or B0). The value of the constant added is determined by
the scaling mode bits S0 and S1 in the status register. Once the rounding has been com-
pleted, the LS bits of the destination accumulator D (A0 or B0) are loaded with zeros to
maintain an unbiased accumulator value which may be reused by the next instruction.
The upper portion of the accumulator (A1 or B1) contains the rounded result which may
be read out to the data buses. Refer to the RND instruction for more complete informa-
tion on the convergent rounding process.

Example 1:
:

MPYR –Y0,Y0,B (R3)–N3 ;square and negate Y0, update R3
:

Explanation of Example 1: Prior to execution, the 24-bit Y0 register contains the value
$654321 (0.791111112), and the 56-bit B accumulator contains the value
$00:000000:000000 (0.0). The execution of the MPYR –Y0,Y0,B instruction squares the
24-bit signed value in the Y0 register, negates the resulting 48-bit product, rounds the
result into B1, and zeros B0 (–Y0∗ Y0=–0.625856790961748 approximately=
$FF:AFE3EC:B76B7E, which is rounded to the value $FF:AFE3ED:000000=
–0.625856757164002=B).

MPYR Signed Multiply and Round MPYR

Before Execution After Execution

Y0 $654321

B B$00:000000:000000 $FF:AFE3ED:000000

$654321Y0
A - 232 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z— Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format 1:
MPYR (±)S1,S2,D
MPYR (±)S2,S1,D

Opcode 1:

MPYR Signed Multiply and Round MPYR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 233
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Fields 1:
S1∗ S2 Q Q Q Sign k D d

X0 X0 0 0 0 + 0 A 0
Y0 Y0 0 0 1 – 1 B 1
X1 X0 0 1 0
Y1 Y0 0 1 1
X0 Y1 1 0 0
Y0 X0 1 0 1
X1 Y0 1 1 0
Y1 X1 1 1 1

Note: Only the indicated S1∗ S2 combinations are valid. X1∗ X1 and Y1∗ Y1 are not valid.

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

Example 2:
:

MPYR -Y1, #14, B ;
:

Explanation of Example 2: The content of Y1 is negated, multiplied by 2-14, rounded to
a single precision number (24 bits in B1) and placed in the B accumulator. The net effect
of this operation is negate the content of Y1 and divide the result by 214, place the result
in the accumulator and then round to a single precision number. An alternate interpreta-
tion is that X1 is negated and placed in the accumulator, right shifted 14 places, filled
with the sign bit (0 for a positive number and 1 for a negative number) and then rounded
to a single precision number.

Before Execution After Execution

Y1 $654321

B B$00:000000:000000 $FF:FFFE6B:000000

$654321Y1

MPYR Signed Multiply and Round MPYR
A - 234 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format 2:
MPYR (±)S,#n,D

Opcode 2:

Instruction Fields 2:
S Q Q Sign k D d

Y1 0 0 + 0 A 0
X0 0 1 – 1 B 1
Y0 1 0
X1 1 1

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1

MPYR Signed Multiply and Round MPYR
MOTOROLA INSTRUCTION SET DETAILS A - 235
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
0–D ➞ D (parallel move) NEG D (parallel move)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Example:
:

NEG B X1,X:(R3)+ Y:(R6)–,A ;0–B ➞ B, update A,X1,R3,R6
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:123456:789ABC. The NEG B instruction takes the twos complement of the
value in the B accumulator and stores the 56-bit result back in the B accumulator.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

NEG Negate Accumulator NEG

Before Execution After Execution

B $00:123456:789ABC $FF:EDCBA9:876544B

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 236 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
NEG D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

NEG Negate Accumulator NEG

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 237
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
PC+1➞PC NOP

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Example:
:

NOP ;increment the program counter
:

Explanation of Example: The NOP instruction increments the program counter and
completes any pending pipeline actions.

Condition Codes:

The condition codes are not affected by this instruction.

NOP No Operation NOP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 238 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
NOP

Opcode:

Instruction Fields:
None

Timing: 2 oscillator clock cycles

Memory: 1 program word

NOP No Operation NOP

23 16 15 8 7 0

0 0
MOTOROLA INSTRUCTION SET DETAILS A - 239
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If E • U • Z=1, then ASL D and Rn–1➞Rn NORM Rn,D
else if E=1, then ASR D and Rn+1➞Rn
else NOP

where E denotes the logical complement of E, and
where • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand
D, update the specified address register Rn based upon the results of that iteration, and
store the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is unnormalized, and the accumu-
lator is not zero, the destination operand is arithmetically shifted one bit to the left, and
the specified address register is decremented by 1. If the accumulator extension register
is in use, the destination operand is arithmetically shifted one bit to the right, and the
specified address register is incremented by 1. If the accumulator is normalized or zero,
a NOP is executed and the specified address register is not affected. Since the operation
of the NORM instruction depends on the E, U, and Z condition code register bits, these
bits must correctly reflect the current state of the destination accumulator prior to execut-
ing the NORM instruction. Note that the L and V bits in the condition code register will be
cleared unless they have been improperly set up prior to executing the NORM instruc-
tion.

Example:
:

REP #$2F ;maximum number of iterations needed
NORM R3,A ;perform 1 normalization iteration

:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000001, and the 16-bit R3 address register contains the value $0000.
The repetition of the NORM R3,A instruction normalizes the value in the 56-bit accumu-
lator and stores the resulting number of shifts performed during that normalization pro-

NORM Normalize Accumulator Iteration NORM

Before Execution After Execution

A $00:000000:000001

R3 R3$0000 $FFD2

$00:400000:000000A
A - 240 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

cess in the R3 address register. A negative value reflects the number of left shifts
performed; a positive value reflects the number of right shifts performed during the nor-
malization process.

Condition Codes:

L — Set if overflow has occurred in A or B result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if bit 55 is changed as a result of a left shift

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
NORM Rn,D

Opcode:

Instruction Fields:
D d Rn R R R

A 0 Rn n n n
B 1

where “nnn” = Rn number

Timing: 2 oscillator clock cycles

Memory: 1 program word

NORM Normalize Accumulator Iteration NORM

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1
MOTOROLA INSTRUCTION SET DETAILS A - 241
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D[47:24] ➞ D[47:24] (parallel move) NOT D (parallel move)
where “—” denotes the logical NOT operator

Description: Take the ones complement of bits 47–24 of the destination operand D and
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit opera-
tion. The remaining bits of D are not affected.

Example:
NOT A1 AB,L:(R2)+ ;save A1,B1, take the ones complement of A1

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC. The NOT A instruction takes the ones complement of bits
47–24 of the A accumulator (A1) and stores the result back in the A1 register. The
remaining bits of the A accumulator are not affected.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47-24 of A or B result are zero
V — Always cleared

NOT Logical Complement NOT

Before Execution After Execution

A $00:123456:789ABC $00:EDCBA9:789ABA

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 242 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
NOT D

Opcode:

Instruction Fields:
D d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

NOT Logical Complement NOT

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 243
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S+D[47:24] ➞ D[47:24] (parallel move) OR S,D (parallel move)
where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47–24 of the destina-
tion operand D and store the result in bits 47–24 of the destination accumulator. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Example:
:

OR Y1,B1 BA,L:$1234 ;save A1,B1, OR Y1 with B
:

Explanation of Example: Prior to execution, the 24-bit Y1 register contains the value
$FF0000, and the 56-bit B accumulator contains the value $00:123456:789ABC. The OR
Y1,B instruction logically ORs the 24-bit value in the Y1 register with bits 47–24 of the B
accumulator (B1) and stores the result in the B accumulator with bits 55–48 and 23–0
unchanged.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47-24 of A or B result are zero
V — Always cleared

OR Logical Inclusive OR OR

Before Execution After Execution

Y1 $FF0000

B B$00:123456:789ABC $00:FF3456:789ABC

$FF0000Y1

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 244 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
OR S,D

Opcode:

Instruction Fields:
S J J D d

X0 0 0 A 0
X1 1 0 B 1
Y0 0 1
Y1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

OR Logical Inclusive OR OR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 245
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
#xx+D ➞ D OR(I) #xx,D
where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register is specified as the
destination operand.

Restrictions: The ORI #xx,MR instruction cannot be used immediately before an
ENDDO or RTI instruction and cannot be one of the last three instructions in a DO loop
(at LA–2, LA–1, or LA).

Example:
:

OR #$8,MR ;set scaling mode bit S1 to scale up
:

Explanation of Example: Prior to execution, the 8-bit mode register (MR) contains the
value $03. The OR #$8,MR instruction logically ORs the immediate 8-bit value $8 with
the contents of the mode register and stores the result in the mode register.

Condition Codes:

For CCR operand:
S — Set if bit 7 of the immediate operand is set
L — Set if bit 6 of the immediate operand is set
E — Set if bit 5 of the immediate operand is set
U — Set if bit 4 of the immediate operand is set
N — Set if bit 3 of the immediate operand is set
Z — Set if bit 2 of the immediate operand is set
V — Set if bit 1 of the immediate operand is set
C — Set if bit 0 of the immediate operand is set

ORI OR Immediate with Control Register ORI

Before Execution After Execution

MR $03 $0BMR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 246 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For MR and OMR operands:
The condition codes are not affected using these operands.

Instruction Format:
OR(I) #xx,D

Opcode:

Instruction Fields:
#xx=8-bit Immediate Short Data = i i i i i i i i

D E E

MR 0 0
CCR 0 1
OMR 1 0

Timing: 2 oscillator clock cycles

Memory: 1 program word

ORI OR Immediate with Control Register ORI

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E
MOTOROLA INSTRUCTION SET DETAILS A - 247
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
LC ➞ TEMP; X:ea ➞ LC REP X:ea
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; X:aa ➞ LC REP X:aa
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; Y:ea ➞ LC REP Y:ea
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; Y:aa ➞ LC REP Y:aa
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; S ➞ LC REP S
Repeat next instruction until LC=1
TEMP ➞ LC

LC ➞ TEMP; #xxx ➞ LC REP #xxx
Repeat next instruction until LC=1
TEMP ➞ LC

Description: Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 16-bit loop counter (LC) register.
The single-word instruction is then executed the specified number of times, decrement-
ing the loop counter (LC) after each execution until LC=1. When the REP instruction is in
effect, the repeated instruction is fetched only one time, and it remains in the instruction
register for the duration of the loop count. Thus, the REP instruction is not interrupt-
ible (sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes may be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 16-bit value that is to be loaded into the loop counter (LC).

REP Repeat Next Instruction REP
A - 248 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Restrictions: The REP instruction can repeat any single-word instruction except the
REP instruction itself and any instruction that changes program flow. The following
instructions are not allowed to follow an REP instruction:

Immediately after REP
DO JSSET
Jcc REP
JCLR RTI
JMP RTS
JSET STOP
JScc SWI
JSCLR WAIT
JSR ENDDO

Also, a REP instruction cannot be the last instruction in a DO loop (at LA). The assem-
bler will generate an error if any of the previous instructions are found immediately fol-
lowing an REP instruction.

Example:
:

REP X0 ;repeat (X0) times
MAC X1,Y1,A X:(R1)+,X1 Y:(R4)+,Y1 ;X1∗ Y1+A ➞ A, update X1,Y1

:

REP Repeat Next Instruction REP

Before Execution After Execution

X0 $000100

LC LC$0000 $0000

$000100X0
MOTOROLA INSTRUCTION SET DETAILS A - 249
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: Prior to execution, the 24-bit X0 register contains the value
$000100, and the 16-bit loop counter (LC) register contains the value $0000. The execu-
tion of the REP X0 instruction takes the 24-bit value in the X0 register, truncates the MS
8 bits, and stores the 16 LS bits in the 16-bit loop counter (LC) register. Thus, the single-
word MAC instruction immediately following the REP instruction is repeated $100 times.

Condition Codes:

For source operand A or B:
S — Computed according to the definition. See Notes on page A-255.
L — Set if data limiting occurred. See Notes on page A-255.

For other source operands:
The condition code bits are not affected.

REP Repeat Next Instruction REP

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 250 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
REP X:ea
REP Y:ea

Opcode:

Instruction Fields:
ea=6-bit Effective Address=MMMRRR,

Effective
Addressing Mode M M M R R R Memory Space s

(Rn)-Nn 0 0 0 r r r X Memory 0
(Rn)+Nn 0 0 1 r r r Y Memory 1
(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r
(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

where “rrr” refers to an address register R0-R7

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 s 1 0 0 0 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 251
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
REP X:aa
REP Y:aa

Opcode:

Instruction Fields:
aa=6-bit Absolute Short Address=aaaaaa

Absolute Short Address aaaaaa Memory Space s

000000 X Memory 0
• Y Memory 1
•

111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 s 1 0 0 0 0 0
A - 252 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
REP #xxx

Opcode:

Instruction Fields:
#xxx=12-bit Immediate Short Data = hhhh i i i i i i i i

Immediate Short Data hhhh i i i i i i i i i

000000000000
•
•

111111111111

Timing: 4+mv oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h
MOTOROLA INSTRUCTION SET DETAILS A - 253
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
REP S

Opcode:

Instruction Fields:
S

S d d d d d d S/L S d d d d d d
X0 0 0 0 1 0 0 no R0 - R7 0 1 0 n n n
X1 0 0 0 1 0 1 no N0 - N7 0 1 1 n n n
Y0 0 0 0 1 1 0 no M0 - M7 1 0 0 n n n
Y1 0 0 0 1 1 1 no SR 1 1 1 0 0 1
A0 0 0 1 0 0 0 no OMR 1 1 1 0 1 0
B0 0 0 1 0 0 1 no SP 1 1 1 0 1 1
A2 0 0 1 0 1 0 no SSH 1 1 1 1 0 0
B2 0 0 1 0 1 1 no SSL 1 1 1 1 0 1
A1 0 0 1 1 0 0 no LA 1 1 1 1 1 0
B1 0 0 1 1 0 1 no LC 1 1 1 1 1 1
A 0 0 1 1 1 0 yes (See Notes on page A-255)
B 0 0 1 1 1 1 yes (See Notes on page A-255)

where “nnn” = Rn number (R0 - R7)
Nn number (N0 - N7)
Mn number (M0 - M7)

REP Repeat Next Instruction REP

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0
A - 254 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Notes: If A or B is specified as the destination operand, the following sequence of events
takes place:

1. The S bit is computed according to its definition (See Section A.5 CON-
DITION CODE COMPUTATION)

2. The accumulator value is scaled according to the scaling mode bits S0
and S1 in the status register (SR).

3. If the accumulator extension is in use, the output of the shifter is limited
to the maximum positive or negative saturation constant, and the L bit is
set.

4. The LS 16 bits of the resulting 24 bit value is loaded into the loop
counter (LC). The original contents of A or B are not changed.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

Timing: 4 oscillator clock cycles

Memory: 1 program word

REP Repeat Next Instruction REP
MOTOROLA INSTRUCTION SET DETAILS A - 255
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Reset the interrupt priority register RESET

and all on-chip peripherals

Description: Reset the interrupt priority register and all on-chip peripherals. This is a
software reset which is NOT equivalent to a hardware reset since only on-chip peripher-
als and the interrupt structure are affected. The processor state is not affected, and exe-
cution continues with the next instruction. All interrupt sources are disabled except for
the trace, stack error, NMI, illegal instruction, and hardware reset interrupts.

Restrictions: A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:
:

RESET ;reset all on-chip peripherals and IPR
:

Explanation of Example: The execution of the RESET instruction resets all on-chip
peripherals and the interrupt priority register (IPR).

Condition Codes:

The condition codes are not affected by this instruction

RESET Reset On-Chip Peripheral Devices RESET

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 256 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
RESET

Opcode:

Instruction Fields:
None

Timing: 4 oscillator clock cycles

Memory: 1 program word

RESET Reset On-Chip Peripheral Devices RESET

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 257
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D+r ➞ D (parallel move) RND D (parallel move)

Description: Round the 56-bit value in the specified destination operand D and store the
result in the MSP portion of the destination accumulator (A1 or B1). This instruction uses
a convergent rounding technique. The contribution of the LS bits of the result (A0 and
B0) is rounded into the upper portion of the result (A1 or B1) by adding a rounding con-
stant to the LS bits of the result. The MSP portion of the destination accumulator con-
tains the rounded result which may be read out to the data buses.

The value of the rounding constant added is determined by the scaling mode bits S0 and
S1 in the system status register (SR). A “1” is added in the rounding position as shown
below:

Normal or “standard’’ rounding consists of adding a rounding constant to a given
number of LS bits of a value to produce a rounded result. The rounding constant
depends on the scaling mode being used as previously shown. Unfortunately, when
using a twos-complement data representation, this process introduces a positive bias in
the statistical distribution of the roundoff error.

RND Round Accumulator RND

Rounding Rounding Constant
S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
A - 258 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Convergent rounding differs from ‘‘standard’’ rounding in that convergent rounding
attempts to remove the aforementioned positive bias by equally distributing the round-off
error. The convergent rounding technique initially performs “standard” rounding as previ-
ously described. Again, the rounding constant depends on the scaling mode being used.
Once “standard” rounding has been done, the convergent rounding method tests the
result to determine if all bits including and to the right of the rounding position are
zero. If, and only if, this special condition is true, the convergent rounding method will
clear the bit immediately to the left of the rounding position. When this special condition
is true, numbers which have a “1” in the bit immediately to the left of the rounding posi-
tion are rounded up; numbers with a “0” in the bit immediately to the left of the rounding
position are rounded down. Thus, these numbers are rounded up half the time and
rounded down the rest of the time. Therefore, the roundoff error averages out to zero.
The LS bits of the convergently rounded result are then cleared so that the rounded
result may be immediately used by the next instruction.

Example:
:

RND A #$123456,X1 B,Y1 ;round A accumulator into A1, zero A0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:123456:789ABC for Case I, the value $00:123456:800000 for Case II, and the
value $00:123455:800000 for Case III. The execution of the RND A instruction rounds
the value in the A accumulator into the MSP portion of the A accumulator (A1), using
convergent rounding, and then zeros the LSP portion of the A accumulator (A0). Note
that Case II is the special case that distinguishes convergent rounding from standard or
biased rounding.

RND Round Accumulator RND

Before Execution After Execution

Case I: A $00:123456:789AB

Case II: A A$00:123456:800000 $00:123456:000000

$00:123456:000000A

Case III: A $00:123456:800000 $00:123456:000000A
MOTOROLA INSTRUCTION SET DETAILS A - 259
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

RND Round Accumulator RND
A - 260 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SET DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
RND D

Opcode:

Instruction Fields:
D D

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

RND Round Accumulator RND

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 261
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.
 Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the left and store
the result in the destination accumulator. Prior to instruction execution, bit 47 of D is
shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit C
is shifted into bit 24 of the destination accumulator D. This instruction is a 24-bit opera-
tion. The remaining bits of the destination operand D are not affected.

Example:
:

ROL A1 #314,N2 ;rotate A1 one left bit, update N2
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:000000:000000. The execution of the ROL A instruction shifts the 24-bit value
in the A1 register one bit to the left, shifting bit 47 into the carry bit C, rotating the carry bit
C into bit 24, and storing the result back in the A1 register.

ROL Rotate Left ROL

47 24

C (parallel move)Operation:

Before Execution After Execution

A A$00:000000:000000

SR SR$0301 $0300

$00:000001:000000
A - 262 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 47 of A or B was set prior to instruction execution

Instruction Format:
ROL D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

ROL Rotate Left ROL

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 263
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.
 Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the right and
store the result in the destination accumulator. Prior to instruction execution, bit 24 of D
is shifted into the carry bit C, and, prior to instruction execution, the value in the carry bit
C is shifted into bit 47 of the destination accumulator D. This instruction is a 24-bit opera-
tion. The remaining bits of the destination operand D are not affected.

Example:
:

ROR B1#$1234,R2 ;rotate B1 right one bit, update R2
:

Explanation of Example: Prior to execution, the 56-bit B accumulator contains the
value $00:000001:222222. The execution of the ROR B instruction shifts the 24-bit value
in the B1 register one bit to the right, shifting bit 24 into the carry bit C, rotating the carry
bit C into bit 47, and storing the result back in the B1 register.

ROR Rotate Right ROR

47 24

C (parallel move)Operation:

Before Execution After Execution

B B$00:000001:222222

SR SR$0300 $0305

$00:000000:222222
A - 264 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
N — Set if bit 47 of A or B result is set
Z — Set if bits 47–24 of A or B result are zero
V — Always cleared
C — Set if bit 24 of A or B was set prior to instruction execution.

Instruction Format:
ROR D

Opcode:

Instruction Fields:
D d
A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

ROR Rotate Right ROR

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 265
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
SSH ➞ PC; SSL ➞ SR; SP–1 ➞ SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Restrictions: Due to pipelining in the program controller and the fact that the RTI
instruction accesses certain program controller registers, the RTI instruction must not be
immediately preceded by any of the following instructions:

Immediately before RTI MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).

An RTI instruction cannot be repeated using the REP instruction.

Example:
:

RTI ;pull PC and SR from system stack
:

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and
the 16-bit status register (SR) from the system stack and updates the system stack
pointer (SP).

RTI Return from Interrupt RTI
A - 266 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Set according to the value pulled from the stack
L — Set according to the value pulled from the stack
E — Set according to the value pulled from the stack
U — Set according to the value pulled from the stack
N — Set according to the value pulled from the stack
Z — Set according to the value pulled from the stack
V — Set according to the value pulled from the stack
C — Set according to the value pulled from the stack

Instruction Format:
RTI

Opcode:

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTI Return from Interrupt RTI

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 16 15 8 7 0

0 1 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 267
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
SSH ➞ PC; SP–1 ➞ SP RTS

Description: Pull the program counter (PC) from the system stack. The previous pro-
gram counter is lost. The status register (SR) is not affected.

Restrictions: Due to pipelining in the program controller and the fact that the RTS
instruction accesses certain controller registers, the RTS instruction must not be immedi-
ately preceded by any of the following instructions:

Immediately before RTS MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).

An RTS instruction cannot be repeated using the REP instruction.

Example:
:

RTS ;pull PC from system stack
:

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC)
from the system stack and updates the system stack pointer (SP).

Condition Codes:

The condition codes are not affected by this instruction.

RTS Return from Subroutine RTS

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 268 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
RTI

Opcode:

Instruction Fields:
None

Timing: 4+rx oscillator clock cycles

Memory: 1 program word

RTS Return from Subroutine RTS

23 16 15 8 7 0

0 1 1 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 269
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D–S–C ➞ D (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination accumula-
tor. Long words (48 bits) may be subtracted from the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-word oper-
ands if the extension register of the destination accumulator (A2 or B2) is the sign exten-
sion of bit 47 of the destination accumulator (A or B).

Example:
:

MOVE L:<$0,X ;get a 48-bit LS long-word operand in X
MOVE L:<$1,A ;get other LS long word in A (sign ext.)
MOVE L:<$2,Y ;get a 48-bit MS long-word operand in Y
SUB X,A L:<$3,B ;sub. LS words; get other MS word in B
SBC YB A10,L:<$4 ;sub. MS words with carry; save LS dif.
MOVE B10,L:<$5 ;save MS difference

:

SBC Subtract Long with Carry SBC

Before Execution After Execution

A $00:000000:000000

X X$800000:000000 $800000:000000

$00:800000:000000A

B B$00:000000:000003 $00:000000:000001

Y Y$000000:000001 $000000:000001
A - 270 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Explanation of Example: This example illustrates long-word double-precision (96-bit)
subtraction using the SBC instruction. Prior to execution of the SUB and SBC instruc-
tions, the 96-bit value $000000:000001:800000:000000 is loaded into the Y and X regis-
ters (X:Y), respectively. The other double-precision 96-bit value
$000000:000003:000000:000000 is loaded into the B and A accumulators (B:A), respec-
tively. Since the 48-bit value loaded into the A accumulator is automatically sign
extended to 56 bits and the other 48-bit long-word operand is internally sign extended to
56 bits during instruction execution, the carry bit will be set correctly after the execution
of the SUB X,A instruction. The SBC Y,B instruction then produces the correct MS 56-bit
result. The actual 96-bit result is stored in memory using the A10 and B10 operands
(instead of A and B) because shifting and limiting is not desired.

SBC Subtract Long with Carry SBC
MOTOROLA INSTRUCTION SET DETAILS A - 271
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

SBC Subtract Long with Carry SBC

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 272 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
SBC S,D

Opcode:

Instruction Fields:
S,D J d

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

SBC Subtract Long with Carry SBC
MOTOROLA INSTRUCTION SET DETAILS A - 273
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Enter the stop processing state and STOP

stop the clock oscillator

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET or IRQA pin is asserted. The clock oscillator is gated off internally. The
STOP processing state is a low-power standby state.

During the STOP state, port A is in an idle state with the control signals held inactive (i.e.,
RD=WR=VCC etc.), the data pins (D0–D23) are high impedance, and the address pins
(A1–A15) are unchanged from the previous instruction. If the bus grant was asserted
when the STOP instruction was executed, port A will remain three-stated until the DSP
exits the STOP state.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state. The time to recover from the STOP state
using RESET will depend on the oscillator used. Consult the DSP56001 Advance Infor-
mation Data Sheet (ADI1290) for details.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the pro-
cessor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. The interrupt will be serviced after an internal delay
counter counts 65,536 clock cycles (or a three clock cycle delay if the stop delay bit in
the OMR is set to one) plus 17T (see the DSP56001 Technical Data Sheet (ADI1290) for
details). During this clock stabilization count delay, all peripherals and external interrupts
are cleared and re-enabled/arbitrated at the start of the 17T period following the count
interval. The processor will resume program execution at the instruction following the
STOP instruction that caused the entry into the STOP state after the interrupt has been
serviced or, if no interrupt was pending, immediately after the delay count plus 17T. If the
IRQA pin is asserted when the STOP instruction is executed, the clock will not be gated
off, and the internal delay counter will be started.

STOP Stop Instruction Processing STOP
A - 274 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Restrictions:
A STOP instruction cannot be used in a fast interrupt routine.

A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA).

A STOP instruction cannot be repeated using the REP instruction.

Example:
:

STOP ;enter low-power standby mode
:

Explanation of Example: The STOP instruction suspends all processor activity until the
processor is reset or interrupted as previously described. The STOP instruction puts the
processor in a low-power standby state.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
STOP

Opcode:

Instruction Fields:
None

Timing: The STOP instruction disables the internal clock oscillator and internal distribu-
tion of the external clock.

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

STOP Stop Instruction Processing STOP

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
MOTOROLA INSTRUCTION SET DETAILS A - 275
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D–S ➞ D (parallel move) SUB S,D (parallel move)

Description: Subtract the source operand S from the destination operand D and store
the result in the destination operand D. Words (24 bits), long words (48 bits), and accu-
mulators (56 bits) may be subtracted from the destination accumulator.

Note: The carry bit is set correctly using word or long-word source operands if the exten-
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 47 of
the destination accumulator (A or B). The carry bit is always set correctly using accumu-
lator source operands.

Example:
:

SUB X1,A X:(R2)+N2,R0 ;24-bit subtract, load R0, update R2
:

Explanation of Example: Prior to execution, the 24-bit X1 register contains the value
$000003, and the 56-bit A accumulator contains the value $00:000058:242424. The
SUB instruction automatically appends the 24-bit value in the X1 register with 24 LS
zeros, sign extends the resulting 48-bit long word to 56 bits, and subtracts the result from
the 56-bit A accumulator. Thus, 24-bit operands are subtracted from the MSP portion of
A or B (A1 or B1) because all arithmetic instructions assume a fractional, twos comple-
ment data representation. Note that 24-bit operands can be subtracted from the LSP por-
tion of A or B (A0 or B0) by loading the 24-bit operand into X0 or Y0, forming a 48-bit
word by loading X1 or Y1 with the sign extension of X0 or Y0, and executing a SUB X,A
or SUB Y,A instruction.

SUB Subtract SUB

Before Execution After Execution

X1 $000003

A A$00:000058:242424 $00:000055:242424

$000003X1
A - 276 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUB S,D

Opcode:

Instruction Fields:
S,D J J J d S,D J J J d S,D J J J d

B,A 0 0 1 0 X0,A 1 0 0 0 Y1,A 1 1 1 0
A,B 0 0 1 1 X0,B 1 0 0 1 Y1,B 1 1 1 1
X,A 0 1 0 0 Y0,A 1 0 1 0
X,B 0 1 0 1 Y0,B 1 0 1 1
Y,A 0 1 1 0 X1,A 1 1 0 0
Y,B 0 1 1 1 X1,B 1 1 0 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

SUB Subtract SUB

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 277
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
2∗ D–S ➞ D (parallel move) SUBL S,D (parallel move)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is arith-
metically shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the
subtraction operation. The carry bit is set correctly if the source operand does not over-
flow as a result of the left shift operation. The overflow bit may be set as a result of either
the shifting or subtraction operation (or both). This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:
:

SUBL A,B Y:(R5+N5),R7 ;2∗ B–A ➞ B, load R7, no R5 update
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $00:004000:000000, and the 56-bit B accumulator contains the value
$00:005000:000000. The SUBL A,B instruction subtracts the value in the A accumulator
from two times the value in the B accumulator and stores the 56-bit result in the B accu-
mulator.

SUBL Shift Left and Subtract Accumulators SUBL

Before Execution After Execution

A $00:004000:000000

B B$00:005000:000000 $00:006000:000000

$00:004000:000000A
A - 278 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result or if the MS bit of the destination

operand is changed as a result of the instruction’s left shift
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBL S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

SUBL Shift Left and Subtract Accumulators SUBL

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 279
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
D/2–S ➞ D (parallel move) SUBR S,D (parallel move)

Description: Subtract the source operand S from one-half the destination operand D
and store the result in the destination accumulator. The destination operand D is arith-
metically shifted one bit to the right while the MS bit of D is held constant prior to the sub-
traction operation. In contrast to the SUBL instruction, the carry bit is always set
correctly, and the overflow bit can only be set by the subtraction operation, and not by an
overflow due to the initial shifting operation. This instruction is useful for efficient divide
and decimation in time (DIT) FFT algorithms.

Example:
:

SUBR B,A N5,Y:–(R5) ;A/2–B ➞ A, update R5, save N5
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $80:000000:2468AC, and the 56-bit B accumulator contains the value
$00:000000:123456. The SUBR B,A instruction subtracts the value in the B accumulator
from one-half the value in the A accumulator and stores the 56-bit result in the A accu-
mulator.

SUBR Shift Right and Subtract Accumulators SUBR

Before Execution After Execution

A $80:000000:2468AC

B B$00:000000:123456 $00:000000:123456

$C0:000000:000000A
A - 280 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 55 of A or B result

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

Instruction Format:
SUBR S,D

Opcode:

Instruction Fields:
S,D d

B,A 0
A,B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

SUBR Shift Right and Subtract Accumulators SUBR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 281
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception process-
ing. The interrupt priority level (I1,I0) is set to 3 in the status register (SR) if a long inter-
rupt service routine is used.

Restrictions:
An SWI instruction cannot be used in a fast interrupt routine.

An SWI instruction cannot be repeated using the REP instruction.

Example:
:

SWI ;begin SWI exception processing
:

Explanation of Example: The SWI instruction suspends normal instruction execution
and initiates SWI exception processing.

SWI Software Interrupt SWI
A - 282 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
SWI

Opcode:

Instruction Fields:
None

Timing: 8 oscillator clock cycles

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

SWI Software Interrupt SWI

23 16 15 8 7 0

0 1 1 0
MOTOROLA INSTRUCTION SET DETAILS A - 283
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
If cc, then S1 ➞ D1 Tcc S1,D1

 If cc, then S1 ➞ D1 and S2 ➞ D2 Tcc S1,D1 S2,D2

Description: Transfer data from the specified source register S1 to the specified desti-
nation accumulator D1 if the specified condition is true. If a second source register S2
and a second destination register D2 are also specified, transfer data from address reg-
ister S2 to address register D2 if the specified condition is true. If the specified condition
is false, a NOP is executed. The term “cc’’ may specify the following conditions:

“cc’’ Mnemonic Condition
CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set (lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

where
U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator, and
⊕ denotes the logical Exclusive OR operator

When used after the CMP or CMPM instructions, the Tcc instruction can perform many
useful functions such as a “maximum value,” “minimum value,” “maximum absolute
value,” or “minimum absolute value” function. The desired value is stored in the destina-

Tcc Transfer Conditionally Tcc
A - 284 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

tion accumulator D1. If address register S2 is used as an address pointer into an array of
data, the address of the desired value is stored in the address register D2. The Tcc
instruction may be used after any instruction and allows efficient searching and sorting
algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths.
The Tcc instruction does not affect the condition code bits.

Note: This instruction is considered to be a move-type instruction. Due to instruction
pipelining, if an AGU register (Mn, Nn, or Rn) is directly changed with this instruction, the
new contents may not be available for use until the second following instruction. See the
restrictions discussed in A.9.6 - R, N, and M Register Restrictions on page A-page 310.

Example:
:

CMP X0,A ;compare X0 and A (sort for minimum)
TGT X0,A R0,R1 ;transfer X0 ➞ A and R0 ➞ R1 if X0<A

:

Explanation of Example: In this example, the contents of the 24-bit X0 register are
transferred to the 56-bit A accumulator, and the contents of the 16-bit R0 address regis-
ter are transferred to the 16-bit R1 address register if the specified condition is true. If the
specified condition is not true, a NOP is executed.

Condition Codes:

The condition codes are not affected by this instruction.

Tcc Transfer Conditionally Tcc

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
MOTOROLA INSTRUCTION SET DETAILS A - 285
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
Tcc S1,D1

Opcode:

Instruction Fields:
cc=4=bit condition code=CCCC

S1,D1 J J J D Mnemonic C C C C Mnemonic C C C C
B,A 0 0 0 0 CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
A,B 0 0 0 1 GE 0 0 0 1 LT 1 0 0 1
X0,A 1 0 0 0 NE 0 0 1 0 EQ 1 0 1 0
X0,B 1 0 0 1 PL 0 0 1 1 MI 1 0 1 1
X1,A 1 1 0 0 NN 0 1 0 0 NR 1 1 0 0
X1,B 1 1 0 1 EC 0 1 0 1 ES 1 1 0 1
Y0,A 1 0 1 0 LC 0 1 1 0 LS 1 1 1 0
Y0,B 1 0 1 1 GT 0 1 1 1 LE 1 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J D 0 0 0

Tcc Transfer Conditionally Tcc
A - 286 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
Tcc S1,D1 S2,D2

Opcode:

Instruction Fields:
cc=4=bit condition code=CCCC

S1,D1 J J J D S2 t t t Mnemonic C C C C Mnemonic C C C C
B,A 0 0 0 0 Rn n n n CC (HS) 0 0 0 0 CS (LO) 1 0 0 0
A,B 0 0 0 1 GE 0 0 0 1 LT 1 0 0 1
X0,A 1 0 0 0 NE 0 0 1 0 EQ 1 0 1 0
X0,B 1 0 0 1 PL 0 0 1 1 MI 1 0 1 1
X1,A 1 1 0 0 D2 T T T NN 0 1 0 0 NR 1 1 0 0
X1,B 1 1 0 1 Rn n n n EC 0 1 0 1 ES 1 1 0 1
Y0,A 1 0 1 0 LC 0 1 1 0 LS 1 1 1 0
Y0,B 1 0 1 1 GT 0 1 1 1 LE 1 1 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

where “nnn’’=Rn number (R0–R7)

Timing: 2 oscillator clock cycles

Memory: 1 program word

23 16 15 8 7 0

0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J D T T T

Tcc Transfer Conditionally Tcc
MOTOROLA INSTRUCTION SET DETAILS A - 287
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S➞D (parallel move) TFR S,D (parallel move)

Description: Transfer data from the specified source data ALU register S to the speci-
fied destination data ALU accumulator D. TFR uses the internal data ALU data paths;
thus, data does not pass through the data shifter/limiters. This allows the full 56-bit con-
tents of one of the accumulators to be transferred into the other accumulator without
data shifting and/or limiting. Moreover, since TFR uses the internal data ALU data paths,
parallel moves are possible. The TFR instruction only affects the L condition code bit
which can be set by data limiting associated with the instruction’s parallel move opera-
tions.

Example:
:

TFR A,B A,X1 Y:(R4+N4),Y0 ;move A to B and X1, update Y0
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:234567:89ABCD, and the 56-bit B accumulator contains the value
$ff:FFFFFF:FFFFFF. The execution of the TFR A,B instruction moves the 56-bit value in
the A accumulator into the 56-bit B accumulator using the internal data ALU data paths
without any data shifting and/or limiting. The value in the B accumulator would have
been limited if a MOVE A,B instruction had been used. Note, however, that the parallel
move portion of the TFR instruction does use the data shifter/limiters. Thus, the value
stored in the 24-bit X1 register (not shown) would have been limited in this example.
This example illustrates a triple move instruction.

TFR Transfer Data ALU Register TFR

Before Execution After Execution

A $01:234567:89ABCD

B B$FF:FFFFFF:FFFFFF $01:234567:89ABCD

$01:234567:89ABCDA
A - 288 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move

Instruction Format:
TFR S,D

Opcode:

Instruction Fields:

S,D J J J D
B,A 0 0 0 0
A,B 0 0 0 1
X0,A 1 0 0 0
X0,B 1 0 0 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y0,A 1 0 1 0
Y0,B 1 0 1 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

TFR Transfer Data ALU Register TFR

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 289
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
S–0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the condi-
tion codes accordingly. No result is stored although the condition codes are updated.

Example:
:

TST A #$345678,B ;set CCR bits for value in A, update B
:

Explanation of Example: Prior to execution, the 56-bit A accumulator contains the
value $01:020304:000000, and the 16-bit condition code register contains the value
$0300. The execution of the TST A instruction compares the value in the A register with
zero and updates the condition code register accordingly. The contents of the A accumu-
lator are not affected.

Condition Codes:

S — Computed according to the definition in A.5 CONDITION CODE COMPUTATION
L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set if A or B result is unnormalized
N — Set if bit 55 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared

Note: The definitions of the E and U bits vary according to the scaling mode being used.
Refer to Section A.5 CONDITION CODE COMPUTATION for complete details.

TST Test Accumulator TST

Before Execution After Execution

A $01:020304:000000

CCR CCR$0300 $0330

$01:020304:000000A

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C
A - 290 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Instruction Format:
TST S

Opcode:

Instruction Fields:
S d

A 0
B 1

Timing: 2+mv oscillator clock cycles

Memory: 1+mv program words

TST Test Accumulator TST

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 291
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Operation: Assembler Syntax:
Disable clocks to the processor core and WAIT

enter the WAIT processing state.

Description: Enter the WAIT processing state. The internal clocks to the processor core
and memories are gated off, and all activity in the processor is suspended until an
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks
remain active. If WAIT is executed when an interrupt is pending, the interrupt will be pro-
cessed; the effect will be the same as if the processor never entered the WAIT state and
three NOPs followed the WAIT instruction. When an unmasked interrupt or external
(hardware) processor RESET occurs, the processor leaves the WAIT state and begins
exception processing of the unmasked interrupt or RESET condition. The BR/BG circuits
remain active during the WAIT state. The WAIT state is a low-power standby state. The
processor always leaves the WAIT state in the T2 clock phase (see the DSP56001
Advance Information Data Sheet (ADI1290)). Therefore, multiple processors may be
synchronized by having them all enter the WAIT state and then interrupting them with a
common interrupt.

Restrictions: A WAIT instruction cannot be used in a fast interrupt routine.

A WAIT instruction cannot be the last instruction in a DO loop (at LA).

A WAIT instruction cannot be repeated using the REP instruction.

Example:
:

WAIT ;enter low power mode, wait for interrupt
:

Explanation of Example: The WAIT instruction suspends normal instruction execution
and waits for an unmasked interrupt or external RESET to occur.

WAIT Wait for Interrupt WAIT
A - 292 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION DESCRIPTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:
WAIT

Opcode:

Instruction Fields:
None

Timing: The WAIT instruction takes a minimum of 16 cycles to execute when an internal
interrupt is pending during the execution of the WAIT instruction

Memory: 1 program word

MR CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF DM T ** S1 S0 I1 I0 S L E U N Z V C

WAIT Wait for Interrupt WAIT

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
MOTOROLA INSTRUCTION SET DETAILS A - 293
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.8 INSTRUCTION TIMING
This section describes how to calculate DSP56K instruction timing manually using the
tables provided. Three complete examples illustrate the “layered’’ nature of the tables.

Alternatively, the user can determine the number of instruction program words and the
number of oscillator clock cycles required for a given instruction by using the DSP56K
simulator. This method of determining instruction timing information is much faster and
much simpler than using the tables. This powerful software package is available for the
IBM* PC and SUN workstation.

• Table A-6 gives the number of instruction program words and the number of oscillator
clock cycles for each instruction mnemonic.

• Table A-7 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each type of parallel move operation.

• Table A-8 gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

• Table A-9 gives the number of additional (if any) clock cycles for each type of
MOVEP operation.

• Table A-10 gives the number of additional (if any) clock cycles for each type of bit
manipulation (BCHG, BCLR, BSET, and BTST) operation.

• Table A-11 gives the number of additional (if any) clock cycles for each type of jump
(Jcc, JCLR, JMP, JScc, JSCLR, JSET, JSR, and JSSET) operation.

• Table A-12 gives the number of additional (if any) clock cycles for the RTI and RTS
instructions.

• Table A-13 gives the number of additional (if any) instruction words and additional (if
any) clock cycles for each effective addressing mode.

• Table A-14 gives the number of additional (if any) clock cycles for external data,
external program, and external I/O memory accesses.

The number of words per instruction is dependent on the addressing mode and the type
of parallel data bus move operation specified. The symbols used reference subsequent
tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors,

*IBM is a trademark of International Business Machines.
SUN is a trademark of Sun Microsystems, Inc.
A - 294 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

including the number of words per instruction, the addressing mode, whether the instruc-
tion fetch pipe is full or not, the number of external bus accesses, and the number of wait
states inserted in each external access. The symbols used reference subsequent tables
to complete the execution clock cycle count.

All tables are based on the following assumptions:

1. All instruction cycles are counted in oscillator clock cycles .

2. The instruction fetch pipeline is full .

3. There is no contention for instruction fetches. Thus, external program instruc-
tion fetches are assumed not to have to contend with external data memory
accesses.

4. There are no wait states for instruction fetches done sequentially (as for non-
change-of-flow instructions), but they are taken into account for change-of-flow
instructions which flush the pipeline such as JMP, Jcc, RTI, etc.

To help the user better understand and use the timing tables, the following three exam-
ples illustrate the tables’ “layered’’ nature. (Remember that it is faster and simpler to use
the DSP56K simulator to calculate instruction timing.)

Example 16: Arithmetic Instruction with Two Parallel Moves

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

MACR –X0,X0,A X1,X:(R6)– Y0,Y:(R0)+

where Operating Mode Register (OMR) = $02 (normal expanded memory map),
Bus Control Register (BCR) = $1135,
R6 Address Register = $0052 (internal X memory), and
R0 Address Register = $0523 (external Y memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the MACR instruction will require (1+mv) instruction program
words and will execute in (2+mv) oscillator clock cycles. The term “mv’’ represents the
additional (if any) instruction program words and the additional (if any) oscillator clock
MOTOROLA INSTRUCTION SET DETAILS A - 295
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

cycles that may be required over and above those needed for the basic MACR instruc-
tion due to the parallel move portion of the instruction.

2. Evaluate the “mv’’ term using Table A-7.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-7, the parallel move portion of the instruction will require mv=0
additional instruction program words and mv=(ea+axy) additional oscillator clock cycles.
The term “ea” represents the number of additional (if any) oscillator clock cycles that are
required for the effective addressing move specified in the parallel move portion of the
instruction. The term “axy” represents the number of additional (if any) oscillator clock
cycles that are required to access an XY memory operand.

3. Evaluate the “ea’’ term using Table A-13.

The parallel move portion of the MACR instruction consists of an XY memory move
which uses both address register banks (R0–R3 and R4–R7) in generating the effective
addresses of the XY memory operands. Thus, the two effective address operations
occur in parallel, and the larger of the two “ea’’ terms should be used. The X memory
move operation uses the “postdecrement by 1” effective addressing mode. According to
Table A-13, this operation will require ea=0 additional oscillator clock cycles. The Y
memory move operation uses the “postincrement by 1” effective addressing mode.
According to Table A-13, this operation will also require ea=0 additional oscillator clock
cycles. Thus, using the maximum value of “ea’’, the effective addressing modes used in
the parallel move portion of the MACR instruction will require ea=0 additional oscillator
clock cycles.

4. Evaluate the “axy’’ term using Table A-14.

The parallel move portion of the MACR instruction consists of an XY memory move.
According to Table A-14, the term “axy’’ depends upon where the referenced X and Y
memory locations are located in the DSP56K memory space. External memory
accesses require additional oscillator clock cycles according to the number of wait states
programmed into the DSP56K bus control register (BCR). Thus, assuming that the 16-bit
bus control register contains the value $1135, external X memory accesses require wx=1
wait state of additional oscillator clock cycle while external Y memory accesses require
wy=1 wait state or additional oscillator clock cycle. For this example, the X memory refer-
ence is assumed to be an internal reference; the Y memory reference is assumed to be
an external reference. Thus, according to Table A-14, the XY memory reference in the
parallel move portion of the MACR instruction will require axy=wy=1 additional oscillator
clock cycle.
A - 296 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 1, the instruction

MACR –X0,X0,A X1,X:(R6)– Y0,Y:(R0)+

will require
(1+mv)
= (1+0)
= 1 instruction program word

and will execute in
= (2+mv)
= (2+ea+axy)
= (2+ea+wy)
= (2+0+1) oscillator clock cycles.
= 3

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or
one of the bit manipulation (BCHG, BCLR, BSET, or BTST) instructions, the use of Table
A-7 would no longer be appropriate. For one of these cases, the user would refer to
Table A-8, Table A-9, or Table A-10, respectively.

Example 17: Jump Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

JLC (R2+N2)

where Operating Mode Register (OMR) = $02 (normal expanded memory map),
Bus Control Register (BCR) = $2246,
R2 Address Register = $1000 (external P memory), and
N2 Address Register = $0037.

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the Jcc instruction will require (1+ea) instruction program words
and will execute in (4+jx) oscillator clock cycles. The term “ea’’ represents the number of
MOTOROLA INSTRUCTION SET DETAILS A - 297
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

additional (if any) instruction program words that are required for the effective address of
the Jcc instruction. The term “jx’’ represents the number of additional (if any) oscillator
clock cycles required for a jump-type instruction.

2. Evaluate the “jx’’ term using Table A-11.

According to Table A-11, the Jcc instruction will require jx=ea+(2 ∗ ap) additional oscilla-
tor clock cycles. The term “ea’’ represents the number of additional (if any) oscillator
clock cycles that are required for the effective addressing mode specified in the Jcc
instruction. The term “ap’’ represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the “+(2 ∗ ap)” term
represents the two program memory instruction fetches executed at the end of a one-
word jump instruction to refill the instruction pipeline.

3. Evaluate the “ea’’ term using Table A-13.

The JLC (R2+N2) instruction uses the “indexed by offset Nn” effective addressing mode.
According to Table A-13, this operation will require ea=0 additional instruction program
words and ea=2 additional oscillator clock cycles.

4. Evaluate the “ap’’ term using Table A-14.

According to Table A-14, the term “ap’’ depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (BCR). Thus, assuming that the 16-bit bus control regis-
ter contains the value $2246, external P memory accesses require wp=4 wait states or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an external reference. Thus, according to Table A-14, the Jcc instruction will use
the value ap=wp=4 oscillator clock cycles.

5. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 2, the instruction
A - 298 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

JLC (R2+N2)

will require
= (1+ea)
= (1+0)
= 1 instruction program word

and will execute in
= (4+jx)
= (4+ea+(2 ∗ ap))
= (4+ea+(2 ∗ wp))
= (4+2+(2 ∗ 4)) oscillator clock cycles.
= 14

Example 18: RTI Instruction

Problem: Calculate the number of 24-bit instruction program words and the number of
oscillator clock cycles required for the instruction

RTI

where Operating Mode Register (OMR) = 02 (normal expanded memory map),
Bus Control Register (BCR) = $0012, and,
Return Address (on the stack) = $0100 (internal P memory).

Solution: To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should perform the fol-
lowing operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.

According to Table A-6, the RTI instruction will require one instruction program word and
will execute in (4+rx) oscillator clock cycles. The term “rx’’ represents the number of addi-
tional (if any) oscillator clock cycles required for an RTI or RTS instruction.

2. Evaluate the “rx’’ term using Table A-12.

According to Table A-12, the RTI instruction will require rx=(2 ∗ ap) additional oscillator
clock cycles. The term “ap’’ represents the number of additional (if any) oscillator clock
cycles that are required to access a P memory operand. Note that the term “(2 ∗ ap)” rep-
resents the two program memory instruction fetches executed at the end of an RTI or
RTS instruction to refill the instruction pipeline.
MOTOROLA INSTRUCTION SET DETAILS A - 299
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3. Evaluate the “ap’’ term using Table A-14.

According to Table A-14, the term “ap’’ depends upon where the referenced P memory
location is located in the DSP56K memory space. External memory accesses require
additional oscillator clock cycles according to the number of wait states programmed into
the DSP56K bus control register (BCR). Thus, assuming that the 16-bit bus control regis-
ter contains the value $0012, external P memory accesses require wp=1 wait state or
additional oscillator clock cycles. For this example, the P memory reference is assumed
to be an internal reference. This means that the return address ($0100) pulled from the
system stack by the RTI instruction is in internal P memory. Thus, according to Table A-
14, the RTI instruction will use the value ap=0 additional oscillator clock cycles.

4. Compute final results.

Thus, based upon the assumptions given for Table A-6 and those listed in the problem
statement for Example 3, the instruction

RTI

will require
1 instruction program word

and will execute in
(4+rx)

= (4+(2 ∗ ap))
= (4+(2 ∗ 0))
= 4 oscillator clock cycles
A - 300 INSTRUCTION SET DETAILS MOTOROLA

For More Information On This Product,
 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Note 1: The STOP instruction disables the internal clock oscillator. After clock turn on, an internal counter counts
65,536 clock cycles (if bit 6 in the OMR is clear) before enabling the clock to the internal DSP circuits. If
bit 6 in the OMR is set, only six clock cycles are counted before enabling the clock to the external
DSP circuits.

Note 2: The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending
during the execution of the WAIT instruction.

Note 3: If assumption 4 is not applicable, then to each one-word instruction timing, a “+ap” term should be
added, and, to each two-word instruction, a “+(2*ap)” term should be added to account for the program
memory wait states spent to fetch an instruction word to fill the pipeline.

Mnemonic
Instruction
Program
Words

Osc.
Clock
Cycles

Notes Mnemonic
Instruction
Program
Words

Osc.
Clock
Cycles

Notes

ABS 1 + mv 2 + mv LSR 1 + mv 2 + mv
ADC 1 + mv 2 + mv LUA 1 4

ADD 1 + mv 2 + mv MAC 1 + mv 2 + mv

ADDL 1 + mv 2 + mv MACR 1 + mv 2 + mv

ADDR 1 + mv 2 + mv MOVE 1 + mv 2 + mv

AND 1 + mv 2 + mv MOVEC 1 + ea 2 + mvc

ANDI 1 2 MOVEM 1 + ea 6 + ea + ap

ASL 1 + mv 2 + mv MOVEP 1 + ea 2 + mvp

ASR 1 + mv 2 + mv MPY 1 + mv 2 + mv

BCHG 1 + ea 4 + mvb MPYR 1 + mv 2 + mv

BCLR 1 + ea 4 + mvb NEG 1 + mv 2 + mv

BSET 1 + ea 4 + mvb NOP 1 2

BTST 1 + ea 4 + mvb NORM 1 2

CLR 1 + mv 2 + mv NOT 1 + mv 2 + mv

CMP 1 + mv 2 + mv OR 1 + mv 2 + mv

CMPM 1 + mv 2 + mv ORI 1 2

DEBUG 1 4 REP 1 4 + mv

DEBUGcc 1 4 RESET 1 4

DEC 1 2 RND 1 + mv 2 + mv

DIV 1 2 ROL 1 + mv 2 + mv

DO 2 6 + mv ROR 1 + mv 2 + mv

ENDDO 1 2 RTI 1 4 + rx

EOR 1 + mv 2 + mv RTS 1 4 + rx

INC 1 2 SBC 1 + mv 2 + mv

Jcc 1 + ea 4 + jx STOP 1 n/a 1

JCLR 2 6 + jx SUB 1 + mv 2 + mv

JMP 1 + ea 4 + jx SUBL 1 + mv 2 + mv

JScc 1 + ea 4 + jx SUBR 1 + mv 2 + mv

JSCLR 2 6 + jx SWI 1 8

JSET 2 6 + jx Tcc 1 2

JSR 1 + ea 4 + jx TFR 1 + mv 2 + mv

JSSET 2 6 + jx TST 1 + mv 2 + mv

LSL 1 + mv 2 + mv WAIT 1 n/a 2

Table A-6 Instruction Timing Summary (see Note 3)
MOTOROLA INSTRUCTION SET DETAILS A - 301
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Parallel Move Operation
+ mv

Words
+ mv

Cycles
Comments

No Parallel Data Move 0 0

I Immediate Short Data 0 0

R Register to Register 0 0

U Address Register Update 0 0

X: X Memory Move ea ea + ax See Note 1

X:R X Memory and Register ea ea + ax See Note 1

Y: Y Memory Move ea ea + ay See Note 1

R:Y Y Memory and Register ea ea + ay See Note 1

L: Long Memory Move ea ea + axy

X:Y: XY Memory Move 0 ea + axy

LMS(X) LMS X Memory Moves 0 ea + ax See Notes 1,2

LMS(Y) LMS Y Memory Moves 0 ea + ay See Notes 1,2

Table A-7 Parallel Data Move Timing

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: The ea term does not apply to ABSOLUTE ADDRESS and IMMEDIATE DATA.

MOVEC Operation
+ mvc
Cycles

Comments

Immediate Short → Register 0
Register ➞ Register 0

X Memory ➞ Register ea + ax See Note 1

Y Memory ➞ Register ea + ay See Note 1

P Memory ➞ Register 4 + ea + ap

Table A-8 MOVEC Timing Summary (see Note 2)

↕
↕

↕
↕

Note 1: The ax or ay term does not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing, a “+ ap” term should

be added, and to each two-word instruction, a “+ (2 * ap)” term should be added to account for
the program memory wait states spent to fetch an instruction word to fill the pipeline.

MOVEP Operation
+ mvp
Cycles

Comments

Register ➞ Peripheral aio See Note 3

Register ➞ Peripheral 2+aio See Note 4

X Memory ➞ Peripheral 2 + ea + ax + aio See Note 1

Y Memory ➞ Peripheral 2 + ea + ay + aio See Note 1

P Memory ➞ Peripheral 4 + ea + ap + aio

↕
↕

↕

Note 1: The” 2+ax” or “2+ay” terms do not apply to MOVE IMMEDIATE DATA.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing,a “+ ap” term should be

added, and to each two-word instruction, a “+ (2 * ap)” term should be added to account for the
 program memory wait states spent to fetch an instruction word to fill the pipeline.
Note 3: “Register” refers to DATA_ALU register
Note 4: “Register” refers to non DATA_ALU register

Table A-9 MOVEP Timing Summary (see Note 2)

↕
↕

A - 302 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that the “ap” term in Table A-8 and Table A-9 for the P memory move represents
the wait states spent when accessing the program memory during DATA read or write
operations and does not refer to instruction fetches.

All one-word jump instructions execute TWO program memory fetches to refill the pipe-
line, which is represented by the “+(2 ∗ ap)” term.

All two-word jumps execute THREE program memory fetches to refill the pipeline, but
one of those fetches is sequential (the instruction word located at the jump instruction
2nd word address+1), so it is not counted as per assumption 4. If the jump instruction
was fetched from a program memory segment with wait states, another “ap’’ should be
added to account for that third fetch.

Note 1: Bxxx = BCHG, BCLR, or BSET.
Note 2: If assumption 4 is not applicable, then to each one-word instruction timing,

a “+ ap” term should be added, and to each two-word instruction, a “+ (2 * ap)”
term should be added to account for the program memory wait states spent to
fetch an instruction word to fill the pipeline.

Bit Manipulation Operation
+ mvb
Cycles

Comments

Bxxx Peripheral 2 ∗ aio See Note 1

Bxxx X Memory ea + (2 ∗ ax) See Note 1

Bxxx Y Memory ea + (2 ∗ ay) See Note 1

Bxxx Register Direct 0 See Note 1

BTST Peripheral aio

BTST X Memory ea + ax

BTST Y Memory ea + ay

Table A-10 Bit Manipulation Timing Summary (see Note 2)

Note 1: Jbit = JCLR, JSCLR, JSET, and JSSET
Note 2: Jxxx = Jcc, JMP, JScc, and JSR

Jump Instruction Operation
+ jx

Cycles
Comments

Jbit Register Direct 2 ∗ ap See Note 1
Jbit Peripheral aio + (2 ∗ ap) See Note 1

Jbit X Memory ea + ax + (2 ∗ ap) See Note 1

Jbit Y Memory ea + ay + (2 ∗ ap) See Note 1

Jxxx ea + (2 ∗ ap) See Note 2

Table A-11 Jump Instruction Timing Summary
MOTOROLA INSTRUCTION SET DETAILS A - 303
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION TIMING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The term “2 ∗ ap” comes from the two instruction fetches done by the RTI/RTS instruc-

tion to refill the pipeline.

Operation
+ rx

Cycles

RTI 2 ∗ ap

RTS 2 ∗ ap

Table A-12 RTI/RTS Timing Summary

Effective Addressing
Mode

+ ea
Words

+ ea
Cycles

Address Register Indirect
No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Sort Address 0 0

I/O Short Address 0 0

Implicit 0 0

Table A-13 Addressing Mode Timing Summary
A - 304 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.9 INSTRUCTION SEQUENCE RESTRICTIONS
Due to the pipelined nature of the DSP56K central processor, there are certain instruc-
tion sequences that are forbidden and will cause undefined operation. Most of these
restricted sequences would cause contention for an internal resource, such as the stack
register. The DSP assembler will flag these as assembly errors.

Most of the following restrictions represent very unusual operations which probably
would never be used but are listed only for completeness.

Note: The DSP56K macro assembler is designed to recognize all restrictions and flag
them as errors at the source code level. Since many of these are instruction sequence
restrictions, they cannot be flagged as errors at the object code level such as when using
the DSP56K simulator’s single-line assembler. Therefore, if any changes are made at
the object code level using the simulator, the user should always re-assemble his pro-
gram at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated.

Note 1: wx = external X memory access wait states
wy = external Y memory access wait states
wp = external P memory access wait states
wio = external I/O memory access wait states

Note 2: wx, wy, wp, and wio are programmable from 0 - 15 wait states in the port A bus control register (BCR).

Access
Type

X Mem
Access

Y Mem
Access

P Mem
Access

I/O
Access

+ ax
Cycle

+ ay
Cycle

+ ap
Cycle

+ aio
Cycle

+ axy
Cycle

X: Int — — — 0 — — — —

X: Ext — — — wx — — — —

Y: — Int — — — 0 — — —

Y: — Ext — — — wy — — —

P: — — Int — — — 0 — —

P: — — Ext — — — wp — —

I/O: — — — Int — — — 0 —

I/O: — — — Ext — — — wio —

L: XY: Int Int — — — — — — 0

L: XY: Int Ext — — — — — — wy

L: XY: Ext Int — — — — — — wx

L: XY: Ext Ext — — — — — — 2 + wx + wy

Table A-14 Memory Access Timing Summary
MOTOROLA INSTRUCTION SET DETAILS A - 305
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.9.1 Restrictions Near the End of DO Loops
Proper DO loop operation is not guaranteed if an instruction starting at address LA–2,
LA–1, or LA specifies one of the program controller registers SR, SP, SSL, LA, LC, or
(implicitly) PC as a destination register. Similarly, the SSH register may not be specified
as a source or destination register in an instruction starting at address LA–2, LA–1, or
LA. Additionally, the SSH register cannot be specified as a source register in the DO
instruction itself, and LA cannot be used as a target for jumps to subroutine (i.e., JSR,
JScc, JSSET, or JSCLR to LA). The following instructions cannot begin at the indicated
position(s) near the end of a DO loop:

At LA–2, LA–1, and LA DO
BCHG LA, LC, SR, SP, SSH, or SSL
BCLR LA, LC, SR, SP, SSH, or SSL
BSET LA, LC, SR, SP, SSH, or SSL
BTST SSH
JCLR/JSET/JSCLR/JSSET SSH
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
MOVEC to LA, LC, SR, SP, SSH, or SSL
MOVEM to LA, LC, SR, SP, SSH, or SSL
MOVEP to LA, LC, SR, SP, SSH, or SSL
ANDI MR
ORI MR

At LA any two-word instruction*

Jcc
JMP
JScc
JSR
REP
RESET
RTI
RTS
STOP
WAIT

*This restriction applies to the situation in which the DSP56K simulator’s single-line
assembler is used to change the last instruction in a DO loop from a one-word instruc-
tion to a two-word instruction. All changes made using the simulator should be reassem-
bled at the source code level using the DSP56K macro assembler to verify that no
restricted instruction sequences have been generated.
A - 306 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Other Restrictions DO SSH,xxxx
JSR to (LA) whenever the loop flag (LF) is set
JScc to (LA) whenever the loop flag (LF) is set
JSCLR to (LA) whenever the loop flag (LF) is set
JSSET to (LA) whenever the loop flag (LF) is set

Note: Due to pipelining, if an address register (R0–R7, N0–N7, or M0–M7) is changed
using a move-type instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel
move), the new contents of the destination address register will not be available for use
during the following instruction (i.e., there is a single instruction cycle pipeline delay).
This restriction also applies to the situation in which the last instruction in a DO loop
changes an address register and the first instruction at the top of the DO loop uses that
same address register. The top instruction becomes the following instruction because
of the loop construct. The assembler will generate a warning if this condition is detected.

A.9.2 Other DO Restrictions
Due to pipelining, the DO instruction must not be immediately preceded by any of the
following instructions:

Immediately before DO BCHG LA, LC, SSH, SSL, or SP
BCLR LA, LC, SSH, SSL, or SP
BSET LA, LC, SSH, SSL, or SP
MOVEC to LA, LC, SSH, SSL, or SP
MOVEM to LA, LC, SSH, SSL, or SP
MOVEP to LA, LC, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.9.3 ENDDO Restrictions
Due to pipelining, the ENDDO instruction must not be immediately preceded by any of
the following instructions:
MOTOROLA INSTRUCTION SET DETAILS A - 307
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Immediately before ENDDO BCHG LA, LC, SR, SSH, SSL, or SP
BCLR LA, LC, SR, SSH, SSL, or SP
BSET LA, LC, SR, SSH, SSL, or SP
MOVEC to LA, LC, SR, SSH, SSL, or SP
MOVEM to LA, LC, SR, SSH, SSL, or SP
MOVEP to LA, LC, SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR
ORI MR
REP

A.9.4 RTI and RTS Restrictions
Due to pipelining, the RTI and RTS instructions must not be immediately preceded by
any of the following instructions:

Immediately before RTI BCHG SR, SSH, SSL, or SP
BCLR SR, SSH, SSL, or SP
BSET SR, SSH, SSL, or SP
MOVEC to SR, SSH, SSL, or SP
MOVEM to SR, SSH, SSL, or SP
MOVEP to SR, SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

Immediately before RTS BCHG SSH, SSL, or SP
BCLR SSH, SSL, or SP
BSET SSH, SSL, or SP
MOVEC to SSH, SSL, or SP
MOVEM to SSH, SSL, or SP
MOVEP to SSH, SSL, or SP
MOVEC from SSH
MOVEM from SSH
MOVEP from SSH

A.9.5 SP and SSH/SSL Manipulation Restrictions
In addition to all the above restrictions concerning MOVEC, MOVEM, MOVEP, SP, SSH,
and SSL, the following MOVEC, MOVEM, and MOVEP restrictions apply:
A - 308 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Immediately before MOVEC from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEM from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEP from SSH or SSL BCHG to SP
BCLR to SP
BSET to SP

Immediately before MOVEC from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEM from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before MOVEP from SSH or SSL MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSCLR #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JSSET #n,SSH or SSL,xxxx MOVEC to SP
MOVEM to SP
MOVEP to SP

Immediately before JCLR #n,SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSET #n,SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP
MOTOROLA INSTRUCTION SET DETAILS A - 309
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION SEQUENCE RESTRICTIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Immediately before JSCLR from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Immediately before JSSET from SSH or SSL,xxxx BCHG to SP
BCLR to SP
BSET to SP

Also, the instruction MOVEC SSH,SSH is illegal.

A.9.6 R, N, and M Register Restrictions
Due to pipelining, if an address register Rn is the destination of a MOVE-type instruction
except MOVEP (MOVE, MOVEC, MOVEM, LUA, Tcc), the new contents will not be
available for use as an address pointer until the second following instruction cycle .

Likewise, if an offset register Nn or a modifier register Mn is the destination of a MOVE-
type instruction except MOVEP, the new contents will not be available for use in address
calculations until the second following instruction cycle .

However, if the processor is in the No Update addressing mode (where Mn and Nn are
ignored) and register Mn or Nn is the destination of a MOVE instruction, the next instruc-
tion may use the corresponding Rn register as an address pointer. Also, if the processor
is in the Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing
mode (where Nn is ignored), a MOVE to Nn may be immediately followed by an instruc-
tion that uses Rn as an address pointer.

Note: This restriction also applies to the situation in which the last instruction in a DO
loop changes an address register using a move-type instruction and the first instruction
at the top of the DO loop uses that same address register. The top instruction becomes
the following instruction because of the loop construct. The DSP assembler will gener-
ate a warning if this condition is detected.

A.9.7 Fast Interrupt Routines
The following instructions may not be used in a fast interrupt routine:

In a fast interrupt routine DO MOVEM from SSH STOP
ENDDO MOVEP from SSH SWI
RTI ORI MR or ORI CCR WAIT
RTS ANDI MR or ANDI CCR
MOVEC to LA, LC, SSH, SSL, SP, or SR
MOVEM to LA, LC, SSH, SSL, SP, or SR
MOVEP to LA, LC, SSH, SSL, SP, or SR
MOVEC from SSH
A - 310 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.9.8 REP Restrictions
The REP instruction can repeat any single-word instruction except the REP instruction
itself and any instruction that changes program flow. The following instructions are not
allowed to follow an REP instruction:

Immediately after REP DO
Jcc
JCLR
JMP
JSET
JScc
JSCLR
JSR
JSSET
REP
RTI
RTS
STOP
SWI
WAIT
ENDDO

Also, an REP instruction cannot be the last instruction in a DO loop (at LA).

A.10 INSTRUCTION ENCODING
This section summarizes instruction encoding for the DSP56K instruction set. The
instruction codes are listed in nominally descending order. The symbols used in decod-
ing the various fields of an instruction are identical to those used in the Opcode section
of the individual instruction descriptions. The user should always refer to the actual
instruction description for complete information on the encoding of the various fields of
that instruction.

Section A.10.1 gives the encodings for (1) various groupings of registers used in the
instruction encodings, (2) condition code combinations, (3) addressing, and (4) address-
ing modes.

Section A.10.2 gives the encoding for the parallel move portion of an instruction. These
16-bit partial instruction codes may be combined with the 8-bit data ALU opcodes listed
in Section A.10.3 to form a complete 24-bit instruction word.

Section A.10.3 gives the complete 24-bit instruction encoding for those instructions
which do not allow parallel moves.
MOTOROLA INSTRUCTION SET DETAILS A - 311
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Section A.10.4 gives the encoding for the data ALU portion of those instructions which
allow parallel data moves. These 8-bit partial instruction codes may be combined with
the 16-bit parallel move opcodes listed in Section A.10.1 to form a complete 24-bit
instruction word.

A.10.1 Partial Encodings for Use in Instruction Encoding

* For class II encodings for R:Y and X:R, see Table A-16

Code d* e f Where:

0 A X0 Y0 d = 2 Accumulators in Data ALU

1 B X1 Y1 e = 2 Registers in Data ALU

f = 2 Registers in Data ALU

Table A-15 Single-Bit Register Encodings

d X:R Class II Opcode R:Y Class II Opcode

0 A ➞ X:<ea> X0 ➞ A Y0 ➞ A A ➞ Y:<ea>
1 B ➞ X:<ea> X0 ➞ B Y0 ➞ B B ➞ Y:<ea>

Table A-16 Single-Bit Special Register Encodings

Code DD ee ff

00 X0 X0 Y0
01 X1 X1 Y1

10 Y0 A A

11 Y1 B B

Where: DD = 4 registers in data ALU
ee = 4 XDB registers in data ALU
ff = 4 YDB registers in data ALU

Table A-17 Double-Bit Register Encodings
A - 312 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Code DDD LLL FFF NNN TTT GGG

000 A0 A10 M0 N0 R0 *
001 B0 B10 M1 N1 R1 SR

010 A2 X M2 N2 R2 OMR

011 B2 Y M3 N3 R3 SP

100 A1 A M4 N4 R4 SSH

101 B1 B M5 N5 R5 SSL

110 A AB M6 N6 R6 LA

111 B BA M7 N7 R7 LC

* Reserved
Where: DDD: 8 accumulators in data ALU

LLL: 8 extended-precision registers in data ALU; LLL field is encoded as L0LL
FFF: 8 address modifier registers in address ALU
NNN: 8 address offset registers in address ALU
TTT: 8 address registers in address
FFF: 8 program controller registers

Table A-18 Triple-Bit Register Encodings

D D D D Description

0 0 X X Reserved

0 1 D D Data ALU Register

1 D D D Data ALU Register

Table A-19(a) Four-Bit Register Encodings for 12 Registers in Data ALU

Mnemonic C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

Table A-19(b) Four-Bit Register Encodings for 16 Condition Codes
MOTOROLA INSTRUCTION SET DETAILS A - 313
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

e e e e e
or

d d d d d Description

0 0 0 0 X Reserved

0 0 0 1 X Reserved

0 0 1 D D Data ALU Register

0 1 D D D Data ALU Register

1 0 T T T Address ALU Register

1 1 N N N Address Offset Register

Where: eeeee = source
ddddd = destination

Table A-20 Five-Bit Register Encodings for
28 Registers in Data ALU and Address ALU

d d d d d d Description

0 0 0 0 X X Reserved

0 0 0 1 D D Data ALU Register

0 0 1 D D D Data ALU Register

0 1 0 T T T Address ALU Register

0 1 1 N N N Address Offset Register

1 0 0 F F F Address Modifier Register

1 0 1 X X X Reserved

1 1 0 X X X Reserved

1 1 1 G G G Program Controller Register

Table A-21 Six-Bit Register Encodings
for 43 Registers On-Chip

W Operation

0 Read Register or Peripheral

1 Write Register or Peripheral

Table A-22 Write Control Encoding

S Operation

0 X Memory

1 Y Memory

Table A-23 Memory Space Bit Encoding
A - 314 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

E E Register

0 0 MR Mode Register

0 1 CCR Condition Code Register

1 0 OMR Operating Mode Register

1 1 — Reserved

Table A-24 Program Control Unit Register Encoding

Code Code Definition

c c c c 16 Condition Code Combinations
b b b b b 5-Bit Immediate Data

i i i i i i i i 8-Bit Immediate Data (int, frac, mask)

i i i i i i i i x x x x h h h h 12-Bit Immediate Data (iiii iiii hhhh)

a a a a a a 6-Bit Absolute Short (Low) Address

p p p p p p 6-Bit Absolute I/O (High) Address

a a a a a a a a a a a a 12-Bit Fast Absolute Short (Low) Address

Table A-25 Condition Code and Address Encoding

M2 M1M0 R2 R1 R0 Code Definition

0 0 0 r r r Post - N

0 0 1 r r r Post + N

0 1 0 r r r Post - 1

0 1 1 r r r Post + 1

1 0 0 r r r No Update

1 0 1 r r r Indexed + N

1 1 1 r r r Pre - 1

1 1 0 0 0 0 Absolute Address

1 1 0 1 0 0 Immediate Data

MMM = three bits M2, M1, M0 determine mode

RRR = three bits R2, R1, R0 determine which address register number where rrr refers to the
binary representation of the number

Notes:
(1) R2 is 0 for low register bank and 1 for the high register bank.
(2) M2 is 0 for all post update modes and 1 otherwise.
(3) M1 is 0 for update by register offset and no update and 1 otherwise.
(4) M0 is 0 for minus and 1 for plus, except for predecrement which is also 1.
(5) For X:Y: parallel data moves, bits 14 and 13 of the opcode are a subset of the above RRR

and are labelled rr. See the XY parallel data move description for a detailed explanation.
(6) For X:Y: parallel data moves, bits 21 and 20 of the opcode are a subset of the above MMM

and are labelled mm. See the XY parallel data move description for a detailed explanation

Table A-25 Effective Addressing Mode Encoding
MOTOROLA INSTRUCTION SET DETAILS A - 315
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.10.2 Instruction Encoding for the Parallel Move Portion of an Instruction

X: Y: Parallel Data Move

X: Parallel Data Move

Y: Parallel Data Move

L: Parallel Data Move

I: Immediate Short Parallel Data Move

23 16 15 8 7 0

1 W m m e e f f W r r M M R R R INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE
A - 316 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

R: Register to Register Parallel Data Move

U: Address Register Update Parallel Data Move

Parallel Data Move NOP

R:Y Parallel Data Move

(Class I)

(Class II)

X:R Parallel Data Move

(Class I)

(Class II)

23 16 15 8 7 0

0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE

23 16 15 8 7 0

0 0 0 1 f f d f W 0 M M M R R R INSTRUCTION OPCODE

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE
MOTOROLA INSTRUCTION SET DETAILS A - 317
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.10.3 Instruction Encoding for Instructions Which Do Not Allow Parallel Moves

Note: For following bit class instructions bbbbb = 11bbb is reserved:
JSSET, JSCLR, JSET, JCLR, BTST, BCHG, BSET, and BCLR.

JScc xxx

Jcc xxx

JSR xxx

JMP xxx

JScc ea

JSR ea

Jcc ea

JMP ea

23 16 15 8 7 0

0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 318 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET #n,X:pp,xxxx
JSSET #n,Y:pp,xxxx

JSCLR #n,X:pp,xxxx
JSCLR #n,Y:pp,xxxx

JSET #n,X:pp,xxxx
JSET #n,Y:pp,xxxx

JCLR #n,X:pp,xxxx
JCLR #n,Y:pp,xxxx

JSSET #n,X:ea,xxxx
JSSET #n,Y:ea,xxxx

JSCLR #n,X:ea,xxxx
JSCLR #n,Y:ea,xxxx

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 319
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSET #n,X:ea,xxxx
JSET #n,Y:ea,xxxx

JCLR #n,X:ea,xxxx
JCLR #n,Y:ea,xxxx

JSSET #n,X:aa,xxxx
JSSET #n,Y:aa,xxxx

JSCLR #n,X:aa,xxxx
JSCLR #n,Y:aa,xxxx

JSET #n,X:aa,xxxx
JSET #n,Y:aa,xxxx

JCLR #n,X:aa,xxxx
JCLR #n,Y:aa,xxxx

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION
A - 320 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSSET #n,S,xxxx

JSCLR #n,S,xxxx

JSET #n,S,xxxx

JCLR #n,S,xxxx

BTST #n,X:pp
BTST #n,Y:pp

BCHG #n,X:pp
BCHG #n,Y:pp

BSET #n,X:pp
BSET #n,Y:pp

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 321
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR #n,X:pp
BCLR #n,Y:pp

BTST #n,X:ea
BTST #n,Y:ea

BCHG #n,X:ea
BCHG #n,Y:ea

BSET #n,X:ea
BSET #n,Y:ea

BCLR #n,X:ea
BCLR #n,Y:ea

BTST #n,X:aa
BTST #n,Y:aa

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b
A - 322 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCHG #n,X:aa
BCHG #n,Y:aa

BSET #n,X:aa
BSET #n,Y:aa

BCLR #n,X:aa
BCLR #n,Y:aa

BTST #n,D

BCHG #n,D

BSET #n,D

23 16 15 8 7 0

0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 1 1 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 1 1 1 d d d d d d 0 1 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 1 1 b b b b b
MOTOROLA INSTRUCTION SET DETAILS A - 323
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR #n,D

MOVEP X:ea,X:pp
MOVEP Y:ea,X:pp
MOVEP #xxxxxx,X:pp
MOVEP X:pp,X:ea
MOVEP X:pp,Y:ea
MOVEP X:ea,Y:pp
MOVEP Y:ea,Y:pp
MOVEP #xxxxxx,Y:pp
MOVEP Y:pp,X:ea
MOVEP Y:pp,Y:ea

MOVEP P:ea,X:pp
MOVEP X:pp,P:ea
MOVEP P:ea,Y:pp
MOVEP Y:pp,P:ea

MOVEP S,X:pp
MOVEP X:pp,D
MOVEP S,Y:pp
MOVEP Y:pp,D

MOVE(M) S,P:ea
MOVE(M) P:ea,D

23 16 15 8 7 0

0 0 0 0 1 0 1 0 1 1 d d d d d d 0 1 0 b b b b b

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 M M M R R R 1 s p p p p p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 M M M R R R 0 1 p p p p p p

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 1 0 0 S W 1 d d d d d d 0 0 p p p p p p

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 324 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVE(M) S,P:aa
MOVE(M) P:aa,D

REP #xxx

REP S

REP X:ea
REP Y:ea

REP X:aa
REP Y:aa

DO #xxx,expr

DO S,expr

23 16 15 8 7 0

0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 s 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 s 1 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 325
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DO X:ea,expr
DO Y:ea,expr

DO X:aa,expr
DO Y:aa,expr

MOVE(C) #xx,D1

MOVE(C) X:ea,D1
MOVE(C) S1,X:ea
MOVE(C) Y:ea,D1
MOVE(C) S1,Y:ea
MOVE(C) #xxxx,D1

MOVE(C) X:aa,D1
MOVE(C) S1,X:aa
MOVE(C) Y:aa,D1
MOVE(C) S1,Y:aa

MOVE(C) S1,D2
MOVE(C) S2,D1

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 1 M M M R R R 0 s 1 d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 1 W 0 a a a a a a 0 s 1 d d d d d

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d
A - 326 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LUA ea,D

Tcc S1,D1 S2,D2

Tcc S1,D1

NORM Rn,D

DIV S,D

MAC (±)S,#n,D

MACR (±)S,#n,D

MPY (±)S,#n,D

23 16 15 8 7 0

0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 1 d d d d

23 16 15 8 7 0

0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J D T T T

23 16 15 8 7 0

0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J D 0 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1

23 16 15 8 7 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 0

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 1

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 0
MOTOROLA INSTRUCTION SET DETAILS A - 327
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MPYR (±)S,#n,D

DEBUGcc

DEBUG

OR(I) #xx,D

AND(I) #xx,D

23 16 15 8 7 0

0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 c c c c

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E

23 16 15 8 7 0

0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E
A - 328 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ENDDO

STOP

WAIT

RESET

RTS

DEC

INC

SWI

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

23 16 15 8 7 0

0 1 1 0 0

23 16 15 8 7 0

0 1 0 1 d

23 16 15 8 7 0

0 1 0 0 d

23 16 15 8 7 0

0 1 1 0
MOTOROLA INSTRUCTION SET DETAILS A - 329
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ILLEGAL

RTI

NOP

A.10.4 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided
into the multiply and nonmultiply instruction encodings shown in the following subsection.

Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction’s operation code.

The 8-bit operation code=1QQQ dkkk where QQQ=selects the inputs to the multiplier
kkk = three unencoded bits k2, k1, k0
d = destination accumulator
d = 0 ➞ A
d = 1 ➞ B

23 16 15 8 7 0

0 1 0 1

23 16 15 8 7 0

0 1 0 0

23 16 15 8 7 0

0 0

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table A-26 Operation Code K0-2 Decode
A - 330 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MACR (±) S1,S2,D
MACR (±) S2,S1,D

MAC (±) S1,S2,D
MAC (±) S2,S1,D

MPYR (±) S1,S2,D
MPYR (±) S2,S1,D

MPY (±) S1,S2,D
MPY (±) S2,S1,D

Q Q Q S1 S2

0 0 0 X0 X0

0 0 1 Y0 Y0

0 1 0 X1 X0

0 1 1 Y1 Y0

1 0 0 X0 Y1

1 0 1 Y0 X0

1 1 0 X1 Y0

1 1 1 Y1 X1

NOTE: S1 and S2 are the inputs to the multiplier.

Table A-27 Operation Code QQQ Decode

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 331
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Nonmultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina-
tion accumulator register.

The 8-bit operation code = 0JJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
D=0 ➞ A
D=1 ➞ B

JJJ
D = 0
Src

Oper

D = 1
Src

Oper

kkk

000 001 010 011 100 101 110 111

000 B A MOVE1 TFR ADDR TST * CMP SUBR CMPM

001 B A ADD RND ADDL CLR SUB * SUBL NOT

0102 B A — — ASR LSR — — ABS ROR

0112 B A — — ASL LSL — — NEG ROL

0102 X1X0 X1X0 ADD ADC — — SUB SBC

0112 Y1Y0 Y1Y0 ADD ADC — — SUB SBC

100 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

101 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

110 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

111 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

NOTES:
* = Reserved
1 = Special Case #1 (See Table A-29)
2 = Special Case #2 (See Table A-30)

Table A-28 Nonmultiply Instruction Encoding
A - 332 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For JJJ=010 and 011, k1 qualifies source register selection:

CMPM S1,S2

AND S,D

CMP S1,S2

SUB S,D

O P E R C O D E Operation

0 0 0 0 0 0 0 0 MOVE

0 0 0 0 1 0 0 0 Reserved

Table A-29 Special Case #1

0 J J J d k k k Operation

0 0 1 0 x x 0 x Selects X1X0

0 0 1 1 x x 0 x Selects Y1Y0

0 0 1 x x x 1 x Selects A/B

Table A-30 Special Case #2

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 333
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR S,D

OR S,D

TFR S,D

ADD S,D

SBC S,D

ADC S,D

ROL D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 334 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEG D

LSL D

ASL D

ROR D

ABS D

LSR D

ASR D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 335
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOT D

SUBL S,D

CLR D

ADDL S,D

RND D

SUBR S,D

TST D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION
A - 336 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDR S,D

MOVE S,D

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 8 7 4 3 0

DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION
MOTOROLA INSTRUCTION SET DETAILS A - 337
For More Information On This Product,

 Go to: www.freescale.com

INSTRUCTION ENCODING

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A - 338 INSTRUCTION SET DETAILS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

MOTOROLA

 BENCHMARK PROGRAMS B - 1

APPENDIX B
BENCHMARK PROGRAMS

T T T

T T

P1 P3P2 P4

T T T

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

B - 2 BENCHMARK PROGRAMS

MOTOROLA

SECTION B.1 INTRODUCTION ..3

SECTION B.2 BENCHMARK PROGRAMS ..3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

B.1 INTRODUCTION
Table B-1 provides benchmark numbers for 18 common DSP programs implemented on
the 27-MHz DSP56001.

The four code examples shown in Figures B-1 to B-4 represent the benchmark programs
shown in Table B-1.

B.2 BENCHMARK PROGRAMS
Figure B-1 is the code for the 20-tap FIR filter shown in Table B-1. Figure B-2 is the code
for an FFT using a triple nested DO LOOP. Although this code is easier to understand
and very compact, it is not as fast as the code used for the benchmarks shown in Table
B-1, which are highly optimized using the symmetry of the FFT and the parallelism of the
DSP. Figure B-3 is the code for the 8-pole cascaded canonic biquad IIR filter, which uses
four coefficients (see Table B-1). Figure B-4 is the code for a 2N delayed least mean
square (LMS) FIR adaptive filter, which is useful for echo cancelation and other adaptive
filtering applications.The code example shown in Figure B-5 represents the Real FFT
code for the DSP56002, based on the Glenn Bergland algorithm.

The code for these and other programs is free and available through the Dr. BuB elec-
tronic bulletin board.
MOTOROLA BENCHMARK PROGRAMS B - 3
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Benchmark Program
Sample Rate

(Hz) or
Execution Time

Memory
Size

(Words)

Number of
Clock
Cycles

20 - Tap FIR Filter 500.0 kHz 50 54

64 - Tap FIR Filter 190.1 kHz 138 142

67 - Tap FIR Filter 182.4 kHz 144 148

8 - Pole Cascaded Canonic
Biquad IIR Filter (4x)

540.0 kHz 40 50

8 - Pole Cascaded Canonic
Biquad IIR Filter (5x)

465.5 kHz 45 58

8 - Pole Cascaded Transpose
Biquad IIR Filter

385.7 kHz 48 70

Dot Product 444.4 ns 10 12

Matrix Multiply 2x2
times 2x2

1.556 µs 33 42

Matrix Multiply 3x3
times 3x1

1.259 µs 29 34

M-to-M FFT
64 Point

98.33 µs 489 2655

M-to-M FFT
256 Point

489.8 µs 1641 13255

M-to-M FFT
1024 Point

2.453 ms 6793 66240

P-to-M FFT
64 Point

92.56 µs 704 2499

P-to-M FFT
256 Point

347.9 µs 2048 9394

P-to-M FFT
1024 Point

1.489 ms 7424 40144

Table B-1 27-MHz Benchmark Results for the DSP56001R27
B - 4 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 5
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

page 132,66,0,6
opt rc

;**
;Motorola Austin DSP Operation June 30, 1988
;**
;DSP56000/1
;20 - tap FIR filter
;File name: 1-56.asm
;***
; Maximum sample rate: 379.6 kHz at 20.5 MHz/500.0 kHz at 27.0 MHz
; Memory Size: Prog: 4+6 words; Data: 2x20 words
; Number of clock cycles: 54 (27 instruction cycles)
; Clock Frequency: 20.5 MHz/27.0 MHz
; Instruction cycle time: 97.6 ns/74.1 ns
;***
; This FIR filter reads the input sample
; from the memory location Y:input
; and writes the filtered output sample
; to the memory location Y:output
;
; The samples are stored in the X memory
; The coefficients are stored in the Y memory
;**
; X MEMORY Y MEMORY
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

R0
X(n)

X(n-1)
t

t+T
X(n-k+1) X(n+1)

t,t+T
c(0)

c(1)

c(k-1)

C(0)

X
x(n)

X

C(1)

X

C(2)

X

C(K-1)

FIR

T

T

T

y n() c p() n p–()×
p 0=

k 1–

∑=

+
y(n)

Figure B-1 20-Tap FIR Filter Example (Sheet 1 of 2)
B - 6 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 7
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

;
;
;
;***
;
; initialization
;**
n equ 20
start equ $40
wddr equ $0
cddr equ $0
input equ $ffe0
output equ $ffe1
;

org p:start
move #wddr,r0 ;r0 ➡ samples
move #cddr,r4 ;r1 ➡ coefficients
move #n-1,m0 ;set modulo arithmetic
move m0,m4 ;for the 2 circular buffers

;
opt cc

; filter loop :8+(n-1) cycles
;**

movep y:input,x: (r0) ;input sample in memory
clr a x:(r0)+,x0 y: (r4)+,y0

rep #n-1
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
macr x0,x0,a (r0)-

movep a,y:output ;output filtered sample
;***

end

Figure B-1 20-Tap FIR Filter Example (Sheet 2 of 2)
B - 8 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 9
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

;This program originally available on the Motorola DSP bulletin board.
;It is provided under a DISCLAIMER OF WARRANTY available from
;Motorola DSP Operation, 6501 William Cannon Drive, Austin, TX, 78735
;
;Radix-2, In-Place, Decimation-In-Time FFT (smallest code size).
;
;Last Update 30 Sep 86 Version 1.1
;
fftr2a macro points,data,coef
fftr2a ident 1,1
;
;Radix-2 Decimation-In-Time In-Place FFT Routine
;
; Complex input and output data
; Real data in X memory
; Imaginary data in Y memory
; Normally ordered input data
; Bit reversed output data
; Coefficient lookup table
; -Cosine values in X memory
; -Sine values in Y memory
;
;Macro Call — ffr2a points,data,coef
;
; points number of points (2-32768, power of 2)
; data start of data buffer
; coef start of sine/cosine table
;
;Alters Data ALU Registers
; x1 x0 y1 y0
; a2 a1 a0 a
; b2 b1 b0 b
;
;Alters Address Registers
; r0 n0 m0
; r1 n1 m1
; n2
;
; r4 n4 m4
; r5 n5 m5
; r6 n6 m6
‘
‘Alters Program Control Registers
; pc sr
;
;Uses 6 locations on System Stack
;

Figure B-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 1 of 2)
B - 10 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 11
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

;Latest Revision — September 30, 1986
;

move #points/2,n0 ;initialize butterflies per group
move #1,n2 ;initialize groups per pass
move #points/4,n6 ;initialize C pointer offset
move #-1,m0 ;initialize A and B address modifiers
move m0,m1 ;for linear addressing
move m0,m4
move m0,m5
move #0,m6 ;initialize C address modifier for

;reverse carry (bit-reversed) addressing
;
;Perform all FFT passes with triple nested DO loop
;

do #@cvi (@log(points)/@log(2)+0.5),_end_pass
move #data,r0 ;initialize A input pointer
move r0,r4 ;initialize A output pointer
lua (r0)+n0,r1 ;initialize B input pointer
move #coef,r6 ;initialize C input pointer
lua (r1)-,r5 ;initialize B output pointer
move n0,n1 ;initialize pointer offsets
move n0,n4
move n0,n5

do n2,_end_grp
move x:(r1),X1 y:(r6),y0 ;lookup -sine and

; -cosine values
move x:(r5),a y:(r0),b ;preload data
move x:(r6)+n6,x0 ;update C pointer

do n0,_end_bfy
mac x1,y0,b y:(r1)+,y1 ;Radx 2 DIT

;butterfly kernel
macr -x0,y1,b a,x:(r5)+ y:(r0),a
subl b,a x:(r0),b b,y:(r4)
mac -x1,x0,b x:(r0)+,a a,y:(r5)
macr -y1,y0,b x:(r1),x1
subl b,a b,x:(r4)+ y:(r0),b

_end_bfy
move a,x:(r5)+n5 y:(r1)+n1,y1 ;update A and B pointers
move x:(r0)+n0,x1 y:(r4)+n4,y1

_end_grp
move n0,b1 ;divide butterflies per group by two
Isr b n2,a1 ;multiply groups per pass by two
IsI a b1,n0
move a1,n2

_end_pass
endm

Figure B-2 Radix 2, In-Place, Decimation-In-Time FFT (Sheet 2 of 2)
B - 12 BENCHMARK PROGRAMS MOTOROLA

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 1 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 13

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 2 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

page 132,66,0,6
opt rc

;**
;Motorola Austin DSP Operation June 30, 1988

;DSP56000/1
;8-pole 4-multiply cascaded canonic IIR filter
;File name: 4-56.asm
;**
; Maximum sample rate: 410.0 kHz at 20.5 MHz/540.0 kHz at 27.0 MHz
; Memory Size: Prog: 6+10 words; Data: 4(2+4) words
; Number of clock cycles: 50 (25 instruction cycles)
; Clock Frequency: 20.5 MHz/27.0 MHz
; Instruction cycle time: 97.5 ns/74.1 ns
;**
; This IIR filter reads the input sample
; from the memory location Y:input
; and writes the filtered output sample
; to the memory location Y:output
;
; The samples are stored in the X memory
; The coefficients are stored in the Y memory
;
;
; The equations of the filter are:
; w(n)= x(n)-ai1*w(n-1)-ai2*w(n-2)
; y(n)= w(n)+bi1*w(n-1)+bi2*w(n-2)
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

(-) (+)x(n) y(n)
w(n)

ai1

ai2

bi1

bi2

w(n-1)

w(n-2)

z-1

z-1

Figure B 3 8 Pole 4 Multiply Cascaded Canonic IIR Filter (Sheet 1 of 2)
B - 14 BENCHMARK PROGRAMS MOTOROLA

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 3 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 15

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 4 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

; All coefficients are divided by 2:
; w(n)/2=x(n)/2-ai1/2*w(n-1)-ai2/2*w(n-2)
; y(n)/2=w(n)/2+bi1/2*w(n-1)+bi2/2*w(n-2)
;
; X Memory Organization Y Memory Organization
; b1N/2 Coef. + 4*nsec - 1
; b2N/2
; a1N/2
; a2N/2
; wN(n-1) Data + 2*nsec - 1 •
; wN(n-2) •
; • b11/2
; • b21/2
; w1(n-1) a11/2
; R0 ➡ w1(n-2) Data R4 ➡ a21/2 Coef.
;
;***
; initialization
;*************************************
nsec equ 4
start equ $40
data equ 0
coef equ 0
input equ $ffe0
output equ $ffe1
igain equ 0.5

ori #$08,mr ;set scaling mode
move #data,r0 ;point to filter states
move #coef,r4 ;point to filter coefficients
move #2*nsec - 1,m0
move #4*nsec - 1,m4
move #igain,y1 ;y1=initial gain

opt cc
; filter loop: 4*nsec + 9
;***

movep y:input,y0 ;get sample
mpy y0,y1,a x:(r0) +,x0 y:(r4)+,y0 ;x0=1st section w(n-2),y0=ai2/2

;
do #nsec,end_cell ;do each section
mac -x0,y0,a x:(r0) -,x1 y:(r4) +,y0 ;x1=w(n-1),y0=ai1/2
macr -x1,y0,a x1,x:(r0) + y:(r4) +,y0 ;push w(n-1) to w(n-2),y0=bi2/2
mac x0,y0,a a,x:(r0)+ y:(r4) +,y0 ;push w(n) to w(n-1),y0=bi1/2
mac x1,y0,a x:(r0) +,x0 y:(r4) +,y0 ;next iter:x0=w(n-2),y0=ai2/2

end_cell
rnd a ;round result
movep a,y:output ;output sample

;**
end
B - 16 BENCHMARK PROGRAMS MOTOROLA

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 5 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

MOTOROLA BENCHMARK PROGRAMS B - 17

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 6 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

page 132,60,1,1
;newlms2n.asm
; New Implementation of the delayed LMS on the DSP56000 Revision C
;Memory map:
; Initial X H
; x(n) x(n-1) x(n-2) x(n-3) x(n-4) hx h0 h1 h2 h3
;]]]
; r0 r5 r4
;hx is an unused value to make the calculations faster.
;

opt cc
ntaps equ 4
input equ $FFC0
output equ $FFC1

org x:$0
state ds 5

org y:$0
coef ds 5
;

org p:$40
move #state,r0 ;start of X
move #2,n0
move #ntaps,m0 ;mod 5
move #coef +1,r4 ;coefficients
move #ntaps,m4 ;mod 5
move #coef,r5 ;coefficients
move m4,m5 ;mod 5

_smploop ; Prog Icyc
movep y:input,a ;get input sample word
move a,x:(r0) ;save input sample 1 1

;error signal is in y1
;FIR sum in a=a+h(k) old*x(n-k)
;h(k)new in b=h(k)old + error*x(n-k-1)

cir a x:(r0)+,x0 ;x0=x(n) 1 1
move x:(r0)+,x1 y:(r4)+,y0 ;x1=x(n-1),y0=h(0) 1 1
do #taps/2,_lms ; 2 3
mac x0,y0,a y0,b b,y:(r5)+ ;a=h(0)*x(n),b=h(0) 1 1
macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ;b=h(0)+e*x(n-1)=h(0)new 1 1

;x0=x(n-2) y0=h(1)
mac x1,y0,a y0,b b,y:(r5)+ ;a=a+h(1)*x(n-1) b=h(1) 1 1
macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ;b=h(1)+e*x(n-2) 1 1

; ;x1=x(n-3) y0=H(2)
_lms

move b,y:(r5)+ ;save last new c() 1 1
move (r0) -n0 ;pointer update 1 1

;(Get d(n), subtract fir output (reg a), multiply by “u”, put
;the result in y1. This section is application dependent.)

movep a y:output ;output fir if desired
B - 18 BENCHMARK PROGRAMS MOTOROLA

Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 7 of 8)

For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 Real input FFT based on Glenn Bergland algorithm
;
; Normal order input and normal order output.
;
; Since 56001 does not support bergland addressing, extra instruction cycles are needed
; for converting bergland order to normal order. It has been done in the last pass by
; looking at the bergtable.
; The micro ‘bergsincos’ generates SIN and COS table with size of points/4, COS in Y, SIN in X
; The micro ‘bergorder’ generates table for address conversion, the size of twiddle factors is half
; of FFT output’s.
; The micro ‘norm2berg’ converts normal order data to bergland order.
; The micro ‘rfft-56b’ does FFT.
;
; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The bergland table for converting berglang order to normal order is stored in output buffer.
; In the last pass the FFT output overwrites this table.
; The first real output plus the first imaginary output is DC value of the spectrum.
; Note that only DC to Nyquist frequency range is calculated by this algorithm.
; After twiddle factors and bergtable are generated, you may overwrite ‘bergorder’,
; ‘norm2berg’ by ‘rfft-56b’ for saving P memory.
;
; Performance
;---
; Real input data points Clock cycle
; 64 1686
; 128 3846
; 256 8656
; 512 19296
; 1024 49776
;--
;
; Memory (word)
;--
; P memory X memory Y memory
; 87 points/2 (real input) + points/2 (imaginary input)
; points/4 (SIN table) + points/4 (COS table)
; points/2 (real output) + points/2 (imaginary output)
; points/2 (bergtable)
;---
;
;
rfft56bt ident 1,3

page 132,60
opt nomd,nomex,loc,nocex,mu
include ‘bergsincos’
include ‘bergorder’
include ‘norm2berg’
include ‘rfft-56b’

;
Figure B-5 Real Input FFT Based on Glenn Bergland Algorithm (Sheet 8 of 8)
MOTOROLA BENCHMARK PROGRAMS B - 19
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

; Main program to call the rfft-56b macro
; Argument list
;
; Latest modifying date - 4-March-92

reset equ 0
start equ $40
points equ 512
binlogsz equ 9
idata equ $000
odata equ $400
bergtable equ $600
twiddle equ $800

bergsincos points,odata ;generate normal order twiddle factors with size of points/4

opt mex
org p:reset
jmp start

org p:start
movep #0,x:$fffe ;0 wait states

bergorder points/4,bergtable,odata ;generates bergland table for twiddle factor
norm2berg points/4,bergtable,twiddle ;converting twiddle factor from normal order to bergland
order
bergorder points/2,bergtable,odata ;table for final output
rifft points,binlogsz,idata,odata,twiddle,bergtable

end

;
bergsincos macro points,coef
bergsincos ident 1,2
;
; sincos - macro to generate sine and cosine coefficient
; lookup tables for Decimation in Time FFT
; twiddle factors.
;
; points - number of points (2 - 32768, power of 2)
; coef - base address of sine/cosine table
; negative cosine value in X memory
; negative sine value in Y memory
;
;

pi equ 3.141592654
freq equ 2.0*pi/@cvf(points)

org y:coef
B - 20 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

count set 0
dup points/4
dc @cos(@cvf(count)*freq)

ount set count+1
endm

org x:coef
count set 0

dup points/4
dc @sin(@cvf(count)*freq)

count set count+1
endm

endm ;end of bergsincos macro

bergorder macro points,bergtable,offset
bergorder ident 1,3
;bergorder generates bergland order table

move #>4,a
move #points,r4 ;points=number of points of bergtable to be

generated
move #>points/4,b ;nitial pointer
move #bergtable,r0 ;table resides in
move b,n0 ;init offset
move #>0,x0
move x0,x:(r0)+n0 ;seeds
move #>2,x0
move x0,x:(r0)+n0
move #>1,x0
move x0,x:(r0)+n0
move #>3,x0
move x0,x:(r0)
move #bergtable,n0 ;location of bergtable
do #@cvi(@log(points/4)/@log(2)),_endl
move b,x0 ;x0=i+i
lsr b ;b=i
move b,r0 ;r0=i
nop
move a,x:(r0+n0) ;k-> bergtable
lsl a ;k=k*2
move a,y1 ;save A content

_star move r4,a ;r4=# of points
cmp x0,a ;x0=j, if j< points, cont
jle _loop
move x0,r0 ;r0=i+i=j,b=i
move y1,a ;recover A=k
move x:(r0+n0),y0 ;y0=bergtabl[j]
MOTOROLA BENCHMARK PROGRAMS B - 21
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

sub y0,a ;k-bergtabl[j]
move b,x1 ;save b, x1=i
move r0,y0 ;y0=j=i+i
add y0,b ;b=j+i
move b,r0 ;r0=j+i
nop
move a,x:(r0+n0) ;store bergtabl[j+i]
add x1,b ;b=j+i+i
move b,x0 ;save b
move x1,b ;recover b=i
jmp _star

_loop move y1,a ;recover a
_endl

move #>offset,a ;offset is the location of output data or twiddle
move #bergtable,r0
do #points,_add_offset
move x:(r0),B
add A,B
move B,x:(r0)+

_add_offset
endm ;end of sincos macro

;convert normal order to berglang order
norm2berg macro points,bergtable,twiddle
;points is actual size of table to be converting

move #bergtable,r0 ;r0=pointer of bergland table
move #twiddle,r2 ;r2=twiddle pointer for X
move r2,r6 ;r6=twiddle pointer for Y
do #points,data_temp
move x:(r0)+,r3 ;get index
move r3,r7
move x:(r3),a
move y:(r7),b ;get value
move a,x:(r2)+ b,y:(r6)+ ;write back

data_temp
endm

; Real-Valued FFT for MOTOROLA DSP56000/1/2
;
; based on Glenn Bergland’s algorithm
;
; ______________________________
rifft macro points,binlogsz,idata,odata,twiddle,bergtable

move #idata,r0 ;r0 = ptr to a
move #points/4,n0 ;bflys in ea group, half at ea pass
B - 22 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

move #twiddle+1,r7 ;r7 always points to start location of twiddle
lua (r0)+n0,r1 ;r1 = ptr to b
move r0,r4 ;r4 points to c
move r1,r5 ;r5 points to d,with predecrement
move #1,r3 ;group per pass, double at ea pass
move x:(r0),A y:(r4),y0 ;A=a, y0=c

do n0,pass1 ;first pass is trivial, no multiplications
; --
; First Pass -- W(n) = 1
;
; A---\ /---A’= Re[A + jB + (C + jD)] = A + C
; B----_|_/----B’= Im[A + jB + (C + jD)] =j(D + B)
; C----/ | \----C’= Re[A + jB - (C + jD)] = A - C
; D---/ \---D’= Im[-A - jB + (C + jD)] =j(D - B)
;---
;

sub y0,A x:(r1),x0 y:(r5),B ;A=a-c=c’,B=d,x0=b,
add x0,B A,x:(r1)+ y:(r5),A ;B=d+b=b’, A=d,PUT c’ to x:b
sub x0,A x:(r0)+,B B,y:(r4)+ ;A=d-b=d’,B=a,PUT b’ to y:c
add y0,B x:(r0)-, A A,y:(r5)+ ;B=a+c=a’, A=next a,PUT d’
move B,x:(r0)+ y:(r4),y0 ;y0=next c, PUT a’

pass1

move #idata,r0 ;r0 = ptr to a

do #binlogsz-3,end_pass ;do all passes except first and last
move r7,r2 ;r2 points to real twiddle
move r2,r6 ;r6 points to imag twiddle
move n0,A ;half bflys per group
lsr A r3,B ;double group per pass
lsl A,n0
move B,r3 ;r3 is temp reg.
lua (r0)+n0,r1 ;r1 = ptr to b
move r0,r4 ;r4 points to c
move r1,r5 ;r5 points to d
lua (r3)-,n2 ;n2=group per pass -1
move x:(r0),A y:(r4),y0 ;A=a, y0=c

do n0,FirstGroupInPass ;first group in a pass
sub y0,A x:(r1),x0 y:(r5),B ;A=a-c=c’,B=d,x0=b,
add x0,B A,x:(r1)+ y:(r5),A ;B=d+b=b’, A=d,PUT c’ to x:b
sub x0,A x:(r0)+,B B,y:(r4)+ ;A=d-b=d’,B=a,PUT b’ to y:c
add y0,B x:(r0)-,A A,y:(r5)+ ;B=a+c=a’, A=next a,PUT d’
move B,x:(r0)+ y:(r4),y0 ;y0=next c, PUT a’

FirstGroupInPass

do n2,end_group ;rest groups in this pass
move r5,r0 ;r0 ptr to next group a
move r0,r4 ;r4 ptr to next group c
MOTOROLA BENCHMARK PROGRAMS B - 23
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

lua (r0)+n0,r1 ;r1 ptr to next group b
move r1,r5 ;r5 ptr to next group d

; Intermediate Passes -- W(n) < 1
;
; A---\ /---A’= Re[A + jC + (B - jD)W(k)] = A+BWr+DWi=A+T1
; B----_|_/----B’= Im[A + jC - (B - jD)W(k)] = C+DWr-BWi=T2+C
; C----/ | \----C’= Re[A + jC - (B - jD)W(k)] = A-(BWr+DWi)=A-T1
; D---/ \---D’= Im[-A - jC - (B - jD)W(k)] = -C+DWr-BWi=T2-C
; ______________________________

move x:(r2)+,x0 y:(r6)+,y0 ;x0=Wi, y0=Wr
move x:(r1)-,x1 y:(r5),y1 ;x1=b,y1=d
move x:(r1),B ;for pointer reason

do n0,end_bfly ;n0 bfly in this group
mpy -x1,x0,B B,x:(r1) ;B=-bWi, PUT c’ to x:b
mac y0,y1,B y:(r4),A ;B=dWr-bWi=T2, A=c
sub A,B ;B=T2-c=d’
addl B,A x:(r1)+,B B,x:(r5)+ ;A=T2+c=b’, PUT d’
mpy -x1,y0,B x:(r0),A A,y:(r4)+ ;B=-bWr, A=a, PUT b’ to y:c
mac -x0,y1,B x:(r1)-,x1 ;B=-bWr-dWi=-T1, x1=next b
sub B,A ;A=a+T1=a’
addl A,B A,x:(r0)+ y:(r5),y1 ;B=a-T1=c’, y1=next d, PUT a’

end_bfly
move B,x:(r1)+ ;PUT last b’

end_group
 move #idata,r0 ;r0 = ptr to a
end_pass

;the last pass converts bergland order to normal order by calling bergtable
move r7,r2 ;r2 points to real twiddle
move r2,r6 ;r6 points to imag twiddle
move r0,r4 r4 points to c
move #bergtable,r3 ;r3=pointer of bergland table
move #(points/4)-1,n2 ;n2=group per pass -1
move x:(r3)+,r7 ;get first index
move x:(r3)+,r1 ;get second index
move #2,n4

 ; first group in the last pass
move x:(r0)+,A y:(r4)+,B ;A=a, B=c
sub B,A x:(r0)+,x0 y:(r6)+,y0 ;A=a-c=c’,x0=b, y0=Wr for next bfly
addl A,B A,x:(r1) y:(r4),A ;B=a+c=a’, A=d,PUT c’ to x:b
sub x0,A B,x:(r7) ;A=d-b=d’,PUT a’ to x
move y:(r4)+,B ;B=d
add x0,B A,y:(r1) ;B=d+b=b’, A=next a,PUT d’
move x:(r0)+,A B,y:(r7) ;A=next a, PUT b’

move x:(r2)+,x0 y:(r4)+,B ;x0=Wi,B=next c

do n2,end_lastg ;rest groups in the last pass
B - 24 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

; Intermediate Passes -- W(n) < 1
;
; A---\ /---A’= Re[A + jC + (B - jD)W(k)] = A+BWr+DWi=A+T1
; B----_|_/----B’= Im[A + jC - (B - jD)W(k)] = C+DWr-BWi=T2+C
; C----/ | \----C’= Re[A + jC - (B - jD)W(k)] = A-(BWr+DWi)=A-T1
; D---/ \---D’= Im[-A - jC - (B - jD)W(k)] = -C+DWr-BWi=T2-C
; ______________________________

move x:(r0)+,x1 y:(r4)-,y1 ;x1=b, y1=d, r4 ptr back to c
mpy x1,y0,B x:(r3)+,r7 ;A=bWr,
mac x0,y1,B x:(r3)+,r1 ;B=bWr+dWi=T1, get first index
sub B,A ;A=a-T1=c’, get second index
addl A,B A,x:(r1) ;B=a+T1=a’, PUT c’ to x:b
mpy y1,y0,A B,x:(r7) ;B=dWr, B=c PUT a’
mac -x1,x0,A y:(r4)+n4,B ;A=dWi-bWr=T2, B=c, r4 ptr to next c
sub B,A x:(r2)+,x0 y:(r6)+,y0 ;A=T2-c=d’,x0=next Wi, y0=next Wr
addl A,B A,y:(r1) ;B=T2+c=b’, update r4, A=next a, PUT d’
move x:(r0)+,A B,y:(r7) ;PUT b’, A=next a
move y:(r4)+,B ;B=next c

end_lastg
endm

; Real input FFT based on Glenn Bergland algorithm
;
; Normal order input and normal order output.
; Since 56001 does not support Bergland addressing, extra instruction cycles are needed
; for converting Bergland order to normal order.It has been done in the last pass by
; looking at the bergtable.
; 'bergsincos' generates sin and cos table with size of points/4,COS in Y, SIN in X
; 'bergorder' generates table for address conversion, the size of twiddle factors is half
; of FFT output's
; 'rfft-56b' does FFT
;
; Normal order input and normal order output.
;
; Real input data are split into two parts, the first part is put in X, the second in Y.
; Real output data are in X, imaginary output data are in Y.
; The first real output is DC
; The first imaginary output is the Nyquist frequency.
; Note that only DC to Nyquist frequency range is calculated by this algorithm
; After twiddle factors and bergtable are generated, you may overwrite 'bergorder',
; 'norm2berg' by 'rfft-56b' for saving P memory.
;
;
Performance
;--
; Real input data points Clock cycle
; 64 1686
; 128 3846
; 256 8656
; 512 19296
MOTOROLA BENCHMARK PROGRAMS B - 25
For More Information On This Product,

 Go to: www.freescale.com

BENCHMARK PROGRAMS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

; 1024 49776
;--
;
;
Memory (word)
;--
; P memory X memory Y memory
; 87 points/2+ (real input) points/2+ (imaginary input)
; points/4+ (SIN table) points/4+ (COS table)
; points/2+ (real output) points/2 (imaginary output)
; points/2 (bergtable)
;--
B - 26 BENCHMARK PROGRAMS MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

INDEX

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

—A—

A Accumulator . 3-7
Aborted Instructions . 7-25
ABS .A-22
Absolute Address . 6-14
Absolute Short . 6-14
Accumulator . 6-5
Accumulator Shifter . 3-9
Accumulators, A and B 3-7
ADC .A-24
ADD .A-26
ADDL .A-28
ADDR .A-30
Address ALU . 4-5
Address Bus Signals (A0-A15) 8-3, 8-5
Address Buses . 2-3, 2-4
Address Generation Unit (see AGU) 4-3
Address Modifier Arithmetic Types 4-14

linear modifier . 4-16
modulo modifier . 4-18
reverse-carry modifier 4-22
summary . 4-25

Address Operands . 6-10
table . A-6

Address Register Files 4-7
R, N, and M register restrictions A-310

Addressing Modes 4-3, 4-8, 6-12, A-10
address register direct 6-13
address register indirect 4-9
operators table . A-8
register direct . 6-13
special . 6-14
timing summary A-304

AGU
address ALU . 4-5
address output multiplexers 4-6
address register 4-3, 4-7
address register restrictions 7-10
architecture . 4-3
modifier register 4-5, 4-8
modifier register restrictions 7-10
offset register 4-4, 4-7
offset register restrictions 7-10
register restrictions 7-10
registers . 6-7
registers operands table A-5

AND .A-32
ANDI .A-34
Application Development System 11-6
Applications . 1-7

Arithmetic Instructions6-22
ASL . A-36
ASR . A-38
Assembler/Simulator .11-4
Assistance .11-16

—B—

B Accumulator .3-7
BCHG . A-40
BCLR . A-48
Benchmark Programs B-3
Binary Operators . A-7
Bit Manipulation Instructions6-24
Bit Reverse .4-22
Bit Weighing .3-12
BSET . A-56
BTST . A-64
Bus Control Signals 8-3, 8-5
Buses

address . 2-4
data . 2-3
transfers between 2-5

Byte, length of .6-5

—C—

Carry Bit . 5-10, A-18
C-Compiler Features .11-5
CCR .5-9
CKOUT .9-10

considerations . 9-13
synch with EXTAL 9-14

CKP .9-10
CLGND .9-10
Clock Stabilization Delay7-38
CLR . A-70
CLVCC .9-10
CMP . A-72
CMPM . A-74
Condition Code Computations (table) A-19
Condition Code Register (CCR) 5-9, A-15

carry (bit 0) 5-10, A-18
extension (bit 5) 5-11, A-16
limit (bit 6) 5-11, A-16
negative (bit 3) 5-10, A-17
overflow (bit 1) 5-10, A-17
scaling (bit 7) 5-11, A-16
symbols table . A-8
unnormalized (bit 4) 5-10, A-17
MOTOROLA INDEX - 1
For More Information On This Product,

 Go to: www.freescale.com

Index (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

zero (bit 2) .5-10, A-17
Condition Codes .A-3
Convergent Rounding . 3-6

—D—

Data ALU
double precision multiply mode 3-16
MAC . 3-13
MAC and logic unit 3-6
programming model 3-19
summary . 3-19

Data ALU Accumulator Registers 3-7
Data ALU components 3-3
Data ALU Registers 3-3, 6-6

input registers . 3-5
operands table . A-5

Data Arithmetic Logic Unit (see Data ALU) . . . 3-3
Data Bus Move Field . 6-5
Data Bus Signals (D0-D15) 8-3, 8-5
Data Buses . 2-3
Data Conversion . 3-11
Data Organization 6-6, 6-9
Data Shifter/Limiter . 3-9
DEBUG .A-76
Debug Mode

entering . 10-14
Debug Request Input (DR) 10-6
Debug Serial Output (DSO) 10-5
DEBUGcc .A-78
DEC .A-80
Design Verification Support 11-3
DFO-DF3 . 9-12
DIV .A-82
DO .A-88
DO Instruction Restrictions 7-8
DO loop control . 2-5
Double Precision Multiply Mode 3-16

algorithm examples 3-16
Double Precision Multiply Mode Bit 5-13
Dr. BuB . 11-7
DSP Applications . 1-7
DSP Functions . 1-7
DSP News . 11-16
DSP56K Central Architecture

central components 2-3
address buses 2-4
address generation unit 2-5
data ALU . 2-5
data buses . 2-3

memory expansion port (port A) 2-6
on-chip emulator (OnCE) 2-6
phase-locked loop (PLL)

based clocking 2-6
program control unit 2-5

—E—

Edge Sensitive .7-16
Edge Triggered .5-6
Electronic Bulletin Board11-7
Encodings . A-311

condition code and address A-315
double-bit register A-312
effective addressing mode A-315
five-bit register . A-314
four-bit register A-313
memory space bit A-314
no parallel move A-318
nonmultiply instruction A-332
parallel instruction opcode A-330
parallel move . A-316
program control unit registers A-315
single-bit register A-312
six-bit register . A-314
triple bit register A-313
write control . A-314

ENDDO . A-98
ENDDO Instruction Restrictions 7-9
EOR . A-100
Exception (Interrupt) Priorities7-12
Exception Processing State 7-10
EXTAL

synch w/CKOUT 9-14
Extension Bit . 5-11, A-16
External Interrupt Request Pins 5-6

—F—

Fast Interrupt . 7-10, 7-12
Fast Interrupt Execution 7-26
FFT Code . B-3
FIR Filter . B-3
Frequency Multiplication9-3
Frequency Multiplier .9-5

—G—

Global Data Bus (GDB)2-3
INDEX - 2 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Index (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

—H—

Hardware DO Loop 6-24, A-88
Hardware Interrupt . 7-11
Hardware Interrupt Sources 7-16

IRQA . 7-16
IRQB . 7-16
NMI . 7-16
RESET . 7-16

Hardware Reset
OnCE pins and . 10-5

Help Line . 11-16

—I—

IIR Filter .B-3
ILLEGAL .A-102
Illegal Instruction Interrupt (III) 7-17
Immediate Data . 6-14
Immediate Short . 6-14
INC .A-104
Instruction Descriptions A-21
Instruction EncodingA-311
Instruction Format 6-3, A-3
Instruction Groups . 6-20
Instruction Guide .A-3
Instruction Pipeline 5-6, 7-3

restrictions . 7-8
Instruction Sequence Restrictions A-305
Instruction Syntax . 6-3
Instruction Timing .A-294
Instruction Timing SummaryA-301
Instruction Timing Symbols A-9
Instructions

arithmetic . 6-22
bit manipulation . 6-24
logical . 6-23
loop . 6-24
move . 6-26
program control . 6-27

Interrupt
fast . 7-12
hardware . 7-11
long . 7-12
restrictions . 7-10
sources . 7-11

Interrupt Arbitration . 7-24
Interrupt Control Pins . 2-6
Interrupt Controller . 7-24
Interrupt Delay Possibilities 7-25
Interrupt Execution . 7-26

fast . 7-26
long . 7-29

Interrupt Instruction Fetch7-24
instructions preceding 7-25

Interrupt Masks .5-12
Interrupt Priority Levels (IPL) 5-6, 7-14
Interrupt Priority Register 7-14
Interrupt Priority Structure7-12
Interrupt Processing State7-10
Interrupt Sources .7-16

hardware . 7-16
other . 7-22
software . 7-17
trace . 7-22

Interrupt Types .7-12
IPL .7-14
IRQA .5-6
IRQB .5-6

—J—

Jcc . A-106
JCLR . A-110
JMP . A-116
JScc . A-118
JSCLR . A-122
JSET . A-130
JSR . A-136
JSSET . A-138

—L—

LA . 5-5, 5-17
LC . 5-5, 5-17
Level Sensitive . 5-6, 7-16
Limit Bit . 5-11, A-16
Limiting (Saturation Arithmetic)3-9
Linear Arithmetic .4-14
Linear Modifier .4-16
Lock, PLL, loss of .9-13
Logic Unit .3-6
Logical Instructions .6-23
Long Interrupt .7-12
Long Interrupt Execution7-29
Long Word .6-5
Loop Address (LA) Register 5-5, 5-17
Loop Counter (LC) Register 5-5, 5-17
Loop Flag Bit .5-13
Loop Instructions .6-24
Low Power Divider .9-3
MOTOROLA INDEX - 3
For More Information On This Product,

 Go to: www.freescale.com

Index (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Low Power Divider (LPD) 9-5
LSL .A-144
LSR .A-146
LUA .A-148

—M—

MAC . 3-6, 3-13
MAC Instruction .A-150
MACR .A-154
Memory Breakpoint Control Bits 10-9
Memory Breakpoint Occurrence Bit 10-11
Memory Upper Limit Register 10-12
MFO-MF11 . 9-12
MODA/IRQA . 5-6
MODB/IRQB . 5-6
MODC/NMI . 5-6
Mode Control Pins . 2-6
Mode Register (MR) . 5-9

double precision multiply mode (bit 14) . . 5-13
interrupt masks (bits 8 and 9) 5-12
loop flag (bit 15) 5-13
scaling mode (bits 10 and 11) 5-12
symbols table . A-8
trace mode (bit 13) 5-13, 7-22

Modulo Arithmetic . 4-14
Modulo Modifier . 4-18

linear addressing 4-18
multiple wrap-around addressing 4-21

MOVE .A-158
Move Instructions . 6-26
MOVE(C) .A-206
MOVE(M) .A-214
MOVEP .A-220
MPY .A-228
MPYR .A-232

—N—

NEG .A-236
Negative Bit . 5-10, A-17
NMI . 5-6, 7-17
Nonmaskable Interrupt (NMI) 7-17
NOP .A-238
NORM .A-240
Normal Processing State 7-3
NOT .A-242

—O—

Offset Registers .4-4
OnCE . 2-6, 10-3

using the OnCE 10-20
OnCE Bit Counter .10-8
OnCE Commands .10-19
OnCE Controller .10-6
OnCE Decoder .10-9
OnCE Memory Breakpoint 10-11
OnCE Pins .10-3
OnCE Serial Interface10-6
OnCE Status and Control Register10-9
On-Chip Emulator (OnCE) 2-6
Opcode .6-3
Opcode Field .6-5
Operands .6-3

accumulator . 6-5
byte . 6-5
long word . 6-5
miscellaneous . A-7
short word . 6-5
symbols for . 6-9
word . 6-5

Operating Mode Register (OMR) 5-5, 5-14
stop delay (SD) bit 7-38

Operation Word .6-3
Operators

table, binary . A-7
table, unary . A-7

Optional Effective Address Extension Word . . .6-3
OR . A-244
OR(I) . A-246
Overflow Bit . 5-10, A-17
Overflow Protection .3-8

—P—

Parallel Move Descriptions A-20, A-160
address register update A-172
immediate short data move A-164
long memory data move A-198
no parallel data move A-162
register and Y memory data move A-192
register to register data move A-168
X memory and register data move A-180
X memory data move A-174
XY memory data move A-202
Y memory data move A-186

PC .5-5
PCAP .9-10
INDEX - 4 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Index (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

PGND . 9-9
Phase Detector . 9-4
Phase-Locked Loop (PLL) 2-6, 9-3
PINIT . 9-10
PLL . 2-6, 9-3

frequency multiplier 9-5
hardware reset and 9-11
introduction . 9-3
loss of lock . 9-13
low power divider 9-5
operating frequency 9-11
operation while disabled 9-12
phase detector . 9-4
PLL control register 9-5
stop processing state and 9-13
voltage controlled oscillator (VCO) 9-5

PLL Control Register . 9-5
division factor bits 9-12
multiplication factor bits 9-12

PLL Pins . 9-9
ckout . 9-10
ckp . 9-10
clgnd . 9-10
clvcc . 9-10
pcap . 9-10
pgnd . 9-9
pinit . 9-10
plock . 9-10
pvcc . 9-9

PLOCK . 9-10
Port A . 2-6, 8-3
Port A Interface . 8-3
Port A Signals . 8-3

bus control . 8-5
data bus . 8-5
Port A address . 8-5

Port A Wait States . 8-6
Power Consumption . 7-37
Processing States . 7-3

interrupt (exception) 7-10
normal . 7-3
stop . 7-37
wait . 7-36

Program Address Bus (PAB) 2-4
Program Address Generator (PAG) 5-5
Program Control Instructions 6-27
Program Control Registers

OMR and SR . 6-8
Program Control Unit . 5-3

loop address (LA) 2-6
loop counter (LC) 2-6

operating mode register (OMR) 2-6
program address generator 2-5, 5-5
program counter (PC) 2-6
program decode controller 2-5, 5-5
program interrupt controller 2-5, 5-6
registers operands table A-6
stack pointer (SP) 2-6
status register (SR) 2-6
system stack 2-5, 5-3

Program Counter (PC) 5-5, 5-8
Program Data Bus (PDB) 2-3
Program Decode Controller 5-5
Program Interrupt Controller5-6
Programming Model

AGU . 4-6
data ALU . 3-19
program control unit 5-8
summary . 5-17

PVCC .9-9

—R—

Read/Write Controls .8-5
References

memory . 6-11
operand . 6-11
program . 6-11
register . 6-11
stack . 6-11

Register Direct .6-13
Register Indirect .4-8
Register References .6-11
REP Instruction 5-5, A-248
RESET Instruction . A-256
RESET Pin .5-6
Reset Processing State

entering . 7-33
leaving . 7-33
PLL and . 9-11

Reverse-Carry Arithmetic 4-14
Reverse-Carry Modifier4-22
RND . A-258
ROL . A-262
ROR . A-264
Rounding .3-10
RTI . A-266
RTI and RTS Instruction Restrictions 7-9
RTS . A-268
MOTOROLA INDEX - 5
For More Information On This Product,

 Go to: www.freescale.com

Index (Continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

—S—

Saturation Arithmetic . 3-9
SBC .A-270
Scaling . 3-10
Scaling Bit . 5-11, A-16
Scaling Mode Bits . 5-12
SD Bit . 7-38
Short Jump . 6-14
Short Word . 6-5
Sign Extension . 3-8
Simulator Features . 11-5
Software Debug Occurrence Bit 10-11
Software Interrupt Sources 7-17

illegal instruction (III) 7-18
SWI . 7-17

SP . 5-5, 5-15
SS . 5-5
Stack Pointer (SP) Register 5-15

restrictions . 7-10
Stack Pointer Register (SP) 5-5
Status Register (SR) 5-5, 5-9

condition code register 5-9
mode register . 5-9

Stop Cycles . 7-38
Stop Delay Bit . 7-38
STOP Instruction 7-37, A-274
Stop Processing State 7-37

debug request during 10-15
PLL and . 7-41, 9-13

SUB .A-276
SUBL .A-278
SUBR .A-280
Support . 11-3
SWI Instruction .A-282
Syntax . 6-3
System Stack (SS)5-3, 5-5, 5-14

system stack high (SSH) 5-14
system stack high (SSH) restrictions . . . 7-10
system stack low (SSL) 5-14
system stack low (SSL) restrictions 7-10

—T—

Tcc .A-284
Technical Assistance 11-16
TFR .A-288
Timing Calculations A-294
Timing Skew . 9-3
Trace Mode Bit 5-13, 10-10
Trace Occurrence Bit 10-11

Tracing
OnCE trace logic 10-13

Tracing (DSP56000/56001 only)7-22
Training .11-17
TST . A-290

—U—

Unary Operators . A-7
Unnormalized Bit 5-10, A-17
User Support .11-3

—V—

V-bit . A-17
Voltage Controlled Oscillator (VCO)9-5

—W—

WAIT Instruction 7-36, A-292
Wait Processing State7-36

debug request during 10-15
PLL and . 9-14

Word
length of . 6-5
operation . 6-3
optional effective address extension 6-3

—X—

X Address Bus (XAB) .2-4
X Data Bus (XDB) .2-3

—Y—

Y Address Bus (YAB) .2-4
Y Data Bus (YDB) .2-3

—Z—

Zero Bit . 5-10, A-17
INDEX - 6 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Order this document by DSP56KFAMUM/AD

Motorola reserves the right to make changes without further notice to any products herein to im-
prove reliability, function or design. Motorola does not assume any liability arising out of the appli-
cation or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola products are not authorized for use as components
in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola
shall determine availability and suitability of its product or products for the use intended. Motorola
and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-
tunity /Affirmative Action Employer.

OnCE is a trade mark of Motorola, Inc.

 Motorola Inc., 1994

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	24-bit Digital Signal Processor
	TABLE OF CONTENTS
	INTRODUCTION
	DSP56K CENTRAL ARCHITECTURE OVERVIEW
	DATA ARITHMETIC LOGIC UNIT
	ADDRESS GENERATION UNIT
	PROGRAM CONTROL UNIT
	 INSTRUCTION SET INTRODUCTION
	PROCESSING STATES
	 PORT A OVERVIEW
	PLL CLOCK OSCILLATOR INTRODUCTION
	ON-CHIP EMULATION INTRODUCTION
	 USER SUPPORT
	ADDITIONAL SUPPORT
	INSTRUCTION SET DETAILS
	BENCHMARK PROGRAMS
	INDEX

