

Motorola itability
of its prod any and
all liability cluding
"Typicals f others.
Motorola nded to
support o d Buyer
purchase idiaries,
affiliates, ersonal
injury or d part.
 MOTOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the su
ucts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, in
" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights o
 products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications inte
r sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Shoul
 or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subs
 and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of p
eath associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the

OLA and the Mororola logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA, INC., 1992, 1995, 1997

M68HC16 Family

CPU16
Reference Manual

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

For More Information On This Product,

 Go to: www.freescale.com

Paragraph Title Page

TABLE OF CONTENTS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1OVERVIEW

SECTION 2NOTATION

2.1 Register Notation ...2-1
2.2 Condition Code Register Bits ..2-2
2.3 Condition Code Register Activity ...2-2
2.4 Condition Code Expressions ...2-2
2.5 Memory Addressing ..2-2
2.6 Addressing Modes ...2-3
2.7 Instruction Format ...2-3
2.8 Symbols and Operators ...2-4
2.9 Conventions ..2-4

SECTION 3 SYSTEM RESOURCES

3.1 General ..3-1
3.2 Register Model ..3-1
3.2.1 Accumulators ...3-2
3.2.2 Index Registers ...3-3
3.2.3 Stack Pointer ...3-3
3.2.4 Program Counter ...3-3
3.2.5 Condition Code Register ...3-4
3.2.6 Address Extension Register and Address Extension Fields3-5
3.2.7 Multiply and Accumulate Registers ...3-5
3.3 Memory Management ...3-5
3.3.1 Address Extension ..3-5
3.3.2 Extension Fields ..3-6
3.3.2.1 Using Accumulator B to Modify Extension Fields3-6
3.3.2.2 Using Stack Pointer Transfer to Modify Extension Fields3-6
3.3.2.3 Using Index Register Exchange to Modify Extension Fields3-6
3.3.2.4 Stacking Extension Field Values ...3-6
3.3.2.5 Adding Immediate Data to Registers ..3-7
3.3.3 Program Counter Address Extension ..3-7
3.3.3.1 Effect of Jump Instructions on PK : PC3-7
3.3.3.2 Effect of Branch Instructions on PK : PC3-7
3.3.4 Effective Addresses and Extension Fields ..3-7
3.4 Intermodule Bus ..3-8
3.5 External Bus Interface ...3-8
3.5.1 Bus Control Signals ...3-9
3.5.1.1 Function Codes ...3-9
3.5.1.2 Size Signals ..3-9
CPU16 MOTOROLA

REFERENCE MANUAL iii

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5.1.3 Read/Write Signal ...3-10
3.5.2 Address Bus ..3-10
3.5.3 Data Bus ..3-10
3.5.4 Bus Cycle Termination Signals ...3-10
3.5.5 Data Transfer Mechanism ...3-11
3.5.5.1 Dynamic Bus Sizing ..3-11
3.5.5.2 Operand Alignment ...3-12
3.5.5.3 Misaligned Operands ..3-13

SECTION 4 DATA TYPES AND ADDRESSING MODES

4.1 Data Types ..4-1
4.2 Memory Organization ..4-2
4.3 Addressing Modes ...4-3
4.3.1 Immediate Addressing Modes ...4-4
4.3.2 Extended Addressing Modes ..4-5
4.3.3 Indexed Addressing Modes ...4-5
4.3.4 Inherent Addressing Mode ..4-5
4.3.5 Accumulator Offset Addressing Mode ...4-5
4.3.6 Relative Addressing Modes ...4-5
4.3.7 Post-Modified Index Addressing Mode ..4-5
4.3.8 Use of CPU16 Indexed Mode to Replace M68HC11 Direct Mode4-6

SECTION 5 INSTRUCTION SET

5.1 General ..5-1
5.2 Data Movement Instructions ..5-1
5.2.1 Load Instructions ...5-1
5.2.2 Move Instructions ..5-2
5.2.3 Store Instructions ..5-2
5.2.4 Transfer Instructions ..5-2
5.2.5 Exchange Instructions ...5-3
5.3 Mathematic Instructions ..5-3
5.3.1 Addition and Subtraction Instructions ..5-3
5.3.2 Binary Coded Decimal Instructions ...5-5
5.3.3 Compare and Test Instructions ...5-5
5.3.4 Multiplication and Division Instructions ..5-6
5.3.5 Decrement and Increment Instructions ...5-7
5.3.6 Clear, Complement, and Negate Instructions5-7
5.3.7 Boolean Logic Instructions ..5-8
5.4 Bit Test and Manipulation Instructions ..5-8
5.5 Shift and Rotate Instructions ...5-8
 MOTOROLA CPU16

iv REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6 Program Control Instructions ...5-11
5.6.1 Short Branch Instructions ..5-12
5.6.2 Long Branch Instructions ...5-13
5.6.3 Bit Condition Branch Instructions ..5-15
5.6.4 Jump Instruction ..5-16
5.6.5 Subroutine Instructions ..5-16
5.6.6 Interrupt Instructions ..5-17
5.7 Indexing and Address Extension Instructions ...5-18
5.7.1 Indexing Instructions ...5-18
5.7.2 Address Extension Instructions ...5-19
5.8 Stacking Instructions ...5-20
5.9 Condition Code Instructions ..5-21
5.10 Digital Signal Processing Instructions ...5-21
5.11 Stop and Wait Instructions ..5-22
5.12 Background Mode and Null Operations ..5-23
5.13 Comparison of CPU16 and M68HC11 Instruction Sets5-23

SECTION 6 INSTRUCTION GLOSSARY

6.1 Assembler Syntax ...6-1
6.2 Instructions ..6-1
6.3 Condition Code Evaluation ..6-265
6.4 Instruction Set Summary ...6-270

SECTION 7 INSTRUCTION PROCESS

7.1 Instruction Format ...7-1
7.2 Execution Model ..7-2
7.2.1 Microsequencer ...7-3
7.2.2 Instruction Pipeline ..7-3
7.2.3 Execution Unit ...7-3
7.3 Execution Process ...7-4
7.3.1 Detailed Process ...7-4
7.3.2 Changes in Program Flow ...7-5
7.3.2.1 Jumps ..7-6
7.3.2.2 Branches ...7-6
7.3.2.3 Subroutines ...7-6
7.3.2.4 Interrupts ...7-7
CPU16 MOTOROLA

REFERENCE MANUAL v

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 8 INSTRUCTION TIMING

8.2 Program and Operand Access Time ...8-2
8.2.1 Program Accesses ..8-2
8.2.2 Operand Accesses ..8-2
8.2.2.1 Regular Instructions ..8-2
8.2.2.2 Read-Modify-Write Instructions ...8-2
8.2.2.3 Change-of-Flow Instructions ...8-3
8.2.2.4 Stack Manipulation Instructions ..8-4
8.2.2.5 Stop and Wait Instructions ..8-4
8.2.2.6 Move Instructions ..8-4
8.2.2.7 Multiply and Accumulate Instructions ..8-5
8.3 Internal Operation Time ...8-5
8.4 Calculating Execution Times for Slower Accesses8-5
8.5 Examples ...8-6
8.5.1 LDD (Load D) Instruction ...8-6
8.5.1.1 LDD IND8, X ...8-6
8.5.1.2 LDD IND8, X ...8-6
8.5.1.3 LDD IND8, X ...8-6
8.5.2 NEG (Negate) Instruction ..8-7
8.5.2.1 NEG EXT ..8-7
8.5.2.2 NEG EXT ..8-7
8.5.2.3 NEG EXT ..8-7
8.5.3 STED (Store Accumulators E and D) Instruction8-8
8.5.3.1 STED EXT ...8-8
8.5.3.2 STED EXT ...8-8

SECTION 9 EXCEPTION PROCESSING

9.1 Definition of Exception ...9-1
9.2 Exception Vectors ...9-1
9.3 Types of Exceptions ..9-2
9.4 Exception Stack Frame ...9-2
9.5 Exception Processing Sequence ...9-3
9.6 Multiple Exceptions ...9-8
9.7 Processing of Specific Exceptions ..9-9
9.7.1 Asynchronous Exceptions ...9-9
9.7.1.1 Processor Reset (RESET) ..9-9
9.7.1.2 Bus Error (BERR) ..9-11
9.7.1.3 Breakpoint Exception (BKPT) ...9-12
9.7.1.4 Interrupts ...9-13
9.7.2 Synchronous Exceptions ...9-14
 MOTOROLA CPU16

vi REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

9.7.2.1 Illegal Instructions ...9-14
9.7.2.2 Division By Zero ..9-15
9.7.2.3 BGND Instruction ..9-15
9.7.2.4 SWI Instruction ..9-15
9.8 Return from Interrupt (RTI) ..9-15

SECTION 10 DEVELOPMENT SUPPORT

10.1 Deterministic Opcode Tracking ...10-1
10.1.1 Instruction Pipeline ..10-1
10.1.2 IPIPE0/IPIPE1 Multiplexing ...10-2
10.1.3 Pipeline State Signals ...10-3
10.1.3.1 NULL — No Instruction Pipeline Activity10-3
10.1.3.2 START — Instruction Start ..10-3
10.1.3.3 ADVANCE — Instruction Pipeline Advance10-4
10.1.3.4 FETCH — Instruction Fetch ..10-4
10.1.3.5 EXCEPTION — Exception Processing in Progress10-4
10.1.3.6 INVALID — PHASE1/PHASE2 Signal Invalid10-4
10.1.4 Combining Opcode Tracking with Other Capabilities10-5
10.1.5 CPU16 Instruction Pipeline State Signal Flow10-5
10.2 Breakpoints ...10-5
10.3 Opcode Tracking and Breakpoints ..10-8
10.4 Background Debugging Mode (BDM) ...10-8
10.4.1 Enabling BDM ...10-10
10.4.2 BDM Sources ..10-11
10.4.2.1 BKPT Signal ..10-11
10.4.2.2 BGND Instruction ..10-11
10.4.2.3 Microcontroller Module Breakpoints10-11
10.4.2.4 Double Bus Fault ...10-11
10.4.3 BDM Signals ..10-11
10.4.4 Entering BDM ..10-12
10.4.5 Command Execution ...10-12
10.4.6 Returning from BDM ..10-13
10.4.7 BDM Serial Interface ...10-13
10.4.7.1 CPU Serial Logic ...10-15
10.4.7.2 Development System Serial Logic ..10-16
10.4.8 BDM Command Format ..10-18
10.4.9 Command Sequence Diagram ..10-18
10.4.10 BDM Command Set ..10-20
10.4.10.1 BDM Memory Commands and Bus Errors10-20
10.4.11 Future Commands ...10-37
10.4.12 Recommended BDM Connection ..10-37
CPU16 MOTOROLA

REFERENCE MANUAL vii

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 11 DIGITAL SIGNAL PROCESSING

11.1 General ..11-1
11.2 Digital Signal Processing Hardware ..11-1
11.3 Modulo Addressing ..11-2
11.4 MAC Data Types ...11-2
11.5 MAC Accumulator Overflow ..11-3
11.5.1 Extension Bit Overflow ..11-4
11.5.2 Sign Bit Overflow ...11-4
11.6 Data Saturation ...11-5
11.7 DSP Instructions ..11-5
11.7.1 Initialization Instructions ..11-5
11.7.1.1 LDHI — Load Registers H and I ..11-5
11.7.1.2 TDMSK — Transfer D to XMSK:YMSK11-5
11.7.1.3 TEDM — Transfer E and D to AM ...11-5
11.7.1.4 TEM — Transfer E to AM ..11-6
11.7.2 Transfer Instructions ..11-6
11.7.2.1 TMER — Transfer AM to E Rounded11-6
11.7.2.2 TMET — Transfer AM to E Truncated11-6
11.7.2.3 TMXED — Transfer AM to IX : E : D11-6
11.7.2.4 LDED/STED — Long Word Load and Store Instructions11-7
11.7.3 Multiplication and Accumulation Instructions11-7
11.7.3.1 MAC — Multiply and Accumulate ..11-7
11.7.3.2 RMAC — Repeating Multiply and Accumulate11-7
11.7.3.3 FMULS — Signed Fractional Multiply11-8
11.7.3.4 ACED — Add E: D to AM ..11-8
11.7.3.5 ACE — Add E to AM ...11-9
11.7.4 Bit Manipulation Instructions ...11-9
11.7.4.1 ASLM — Arithmetic Shift Left AM ...11-9
11.7.4.2 ASRM — Arithmetic Shift Right AM ..11-9
11.7.4.3 CLRM — Clear AM ...11-9
11.7.5 Stacking Instructions ...11-10
11.7.5.1 PSHMAC — Push MAC Registers ..11-10
11.7.5.2 PULMAC — Pull MAC Registers ..11-10
11.7.6 Branch Instructions ..11-10
11.7.6.1 LBEV — Long Branch if EV Set ..11-10
11.7.6.2 LBMV — Long Branch if MV Set ...11-11

APPENDIX A COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE

A.1 Introduction ... A-1
A.2 Register Models ... A-2
 MOTOROLA CPU16

viii REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3 CPU16 Instruction Formats and Pipelining Mechanism A-4
A.3.1 Instruction Format .. A-4
A.3.2 Execution Model ... A-4
A.3.2.1 Microsequencer .. A-4
A.3.2.2 Instruction Pipeline ... A-4
A.3.2.3 Execution Unit .. A-5
A.3.3 Execution Process .. A-5
A.3.4 Changes in Program Flow .. A-5
A.3.4.1 Jumps ... A-5
A.3.4.2 Branches .. A-5
A.3.4.3 Subroutines .. A-6
A.3.4.4 Interrupts .. A-6
A.3.4.5 Interrupt Priority .. A-7
A.3.5 Stack Frame ... A-7
A.4 Functionally Equivalent Instructions ... A-7
A.4.1 BHS .. A-7
A.4.2 BLO .. A-7
A.4.3 CLC .. A-7
A.4.4 CLI .. A-8
A.4.6 DES .. A-8
A.4.7 DEX .. A-8
A.4.8 DEY .. A-9
A.4.9 INS ... A-9
A.4.10 INX ... A-9
A.4.11 INY ... A-9
A.4.12 PSHX .. A-9
A.4.13 PSHY .. A-10
A.4.14 PULX .. A-10
A.4.15 PULY .. A-10
A.4.16 SEC .. A-10
A.4.17 SEI .. A-11
A.4.18 SEV .. A-11
A.4.19 STOP (LPSTOP) .. A-11
A.5 Instructions that Operate Differently ... A-11
A.5.1 BSR .. A-11
A.5.2 JSR ... A-11
A.5.3 PSHA, PSHB .. A-12
A.5.4 PULA, PULB ... A-12
A.5.5 RTI .. A-12
A.5.6 SWI .. A-12
A.5.7 TAP ... A-12
CPU16 MOTOROLA

REFERENCE MANUAL ix

For More Information On This Product,
 Go to: www.freescale.com

(Continued)

TABLE OF CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

A.5.7.1 M68HC11 CPU Implementation: ... A-12
A.5.7.2 CPU16 Implementation: .. A-12
A.5.8 TPA ... A-13
A.5.8.1 M68HC11 CPU Implementation: ... A-13
A.5.8.2 CPU16 Implementation: .. A-13
A.5.9 WAI ... A-13
A.6 Instructions With Transparent Changes ... A-13
A.6.1 RTS .. A-13
A.6.2 TSX .. A-13
A.6.3 TSY .. A-13
A.6.4 TXS .. A-14
A.6.5 TYS .. A-14
A.7 Unimplemented Instructions ... A-14
A.7.1 TEST .. A-14
A.8 Addressing Mode Differences .. A-14
A.8.1 Extended Addressing Mode ... A-14
A.8.2 Indexed Addressing Mode .. A-14
A.8.3 Post-Modified Index Addressing Mode ... A-14
A.8.4 CPU16 Indexed Mode to Replace M68HC11 CPU Direct Mode A-14

APPENDIX B MOTOROLA ASSEMBLER SYNTAX
 MOTOROLA CPU16

x REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

Figure Title Page

LIST OF ILLUSTRATIONS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3-1 CPU16 Register Model ... 3-2
3-2 Condition Code Register .. 3-4
3-3 Operand Byte Order ... 3-12
4-1 Data Types and Memory Organization ... 4-3
6-1 Typical Instruction Glossary Entry .. 6-2
7-1 Instruction Execution Model ... 7-3
9-1 Exception Stack Frame Format .. 9-2
9-2 (Sheet 1 of 5) Exception Processing Flow Diagram 9-4
9-2 (Sheet 2 of 5) Exception Processing Flow Diagram 9-5
9-2 (Sheet 3 of 5) Exception Processing Flow Diagram 9-6
9-2 (Sheet 4 of 5) Exception Processing Flow Diagram 9-7
9-2 (Sheet 5 of 5) Exception Processing Flow Diagram 9-8
9-3 RESET Vector .. 9-9
10-1 Instruction Execution Model ... 10-2
10-2 IPIPE DEMUX Logic ... 10-3
10-3 (Sheet 1 of 3) Instruction Pipeline Flow .. 10-6
10-3 (Sheet 2 of 3) Instruction Pipeline Flow .. 10-7
10-3 (Sheet 3 of 3) Instruction Pipeline Flow .. 10-8
10-4 In-Circuit Emulator Configuration ... 10-9
10-5 Bus State Analyzer Configuration .. 10-9
10-6 Sample BDM Enable Circuit ... 10-10
10-7 BDM Enable Waveforms .. 10-10
10-8 BDM Command Flow Diagram ... 10-13
10-9 BDM Serial I/O Block Diagram ... 10-14
10-10 Serial Data Word Format .. 10-14
10-11 Serial Interface Timing Diagram ... 10-16
10-12 BKPT Timing for Single Bus Cycle ... 10-17
10-13 BKPT Timing for Forcing BDM ... 10-17
10-14 BKPT/DSCLK Logic Diagram ... 10-18
10-15 Command Sequence Diagram Example .. 10-19
10-16 BDM Connector Pinout ... 10-37
11-1 MAC Unit Register Model ... 11-2
11-2 MAC Data Types .. 11-3
A-1 M68HC11 CPU Registers ..A-2
A-2 M68HC11 CPU Condition Code Register ..A-2
A-3 CPU16 Registers ..A-3
A-4 CPU16 Condition Code Register ..A-3
A-5 CPU16 Stack Frame Format ..A-7
CPU16 MOTOROLA

REFERENCE MANUAL xi

For More Information On This Product,
 Go to: www.freescale.com

LIST OF ILLUSTRATIONS
(Continued)

Figure Title Page

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA CPU16

xii REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

Table Title Page

LIST OF TABLES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3-1 Operations that Cross Bank Boundaries ... 3-8
3-2 Address Space Encoding .. 3-9
3-3 Size Signal Encoding .. 3-9
3-4 Effect of DSACK Signals ... 3-11
3-5 Operand Alignment ... 3-12
4-1 Addressing Modes... 4-4
5-1 Load Summary .. 5-2
5-2 Move Summary ... 5-2
5-3 Store Summary ... 5-2
5-4 Transfer Summary... 5-3
5-5 Exchange Summary .. 5-3
5-6 Addition Summary ... 5-3
5-7 Subtraction Summary.. 5-4
5-8 Arithmetic Operations.. 5-4
5-9 BCD Summary .. 5-5
5-10 DAA Function Summary.. 5-5
5-11 Compare and Test Summary .. 5-6
5-12 Multiplication and Division Summary... 5-6
5-13 Decrement and Increment Summary .. 5-7
5-14 Clear, Complement, and Negate Summary .. 5-7
5-15 Boolean Logic Summary ... 5-8
5-16 Bit Test and Manipulation Summary ... 5-8
5-17 Logic Shift Summary ... 5-9
5-18 Arithmetic Shift Summary.. 5-10
5-19 Rotate Summary ... 5-11
5-20 Short Branch Summary ... 5-12
5-21 Long Branch Instructions... 5-14
5-22 Bit Condition Branch Summary ... 5-15
5-23 Jump Summary ... 5-16
5-24 Subroutine Summary... 5-16
5-25 Interrupt Summary... 5-17
5-26 Indexing Summary .. 5-18
5-27 Address Extension Summary .. 5-19
5-28 Stacking Summary .. 5-20
5-29 Condition Code Summary ... 5-21
5-30 DSP Summary... 5-21
5-31 Stop and Wait Summary ... 5-23
5-32 Background Mode and Null Operations .. 5-23
5-33 CPU16 Implementation of M68HC11 Instructions... 5-24
6-1 Standard Assembler Formats.. 6-1
6-2 Branch Instruction Summary (8-Bit Offset).. 6-47
CPU16 MOTOROLA

REFERENCE MANUAL xiii

For More Information On This Product,
 Go to: www.freescale.com

LIST OF TABLES
(Continued)

Table Title Page

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

6-3 Branch Instruction Summary (8-Bit Offset).. 6-50
6-4 Branch Instruction Summary (8-Bit Offset).. 6-51
6-5 Branch Instruction Summary (8-Bit Offset).. 6-52
6-6 Branch Instruction Summary (8-Bit Offset).. 6-54
6-7 Branch Instruction Summary (8-Bit Offset).. 6-55
6-8 Branch Instruction Summary (8-Bit Offset).. 6-58
6-9 Branch Instruction Summary (8-Bit Offset).. 6-59
6-10 Branch Instruction Summary (8-Bit Offset).. 6-60
6-11 Branch Instruction Summary (8-Bit Offset).. 6-61
6-12 Branch Instruction Summary (8-Bit Offset).. 6-62
6-13 Branch Instruction Summary (8-Bit Offset).. 6-63
6-14 Branch Instruction Summary (8-Bit Offset).. 6-64
6-15 Branch Instruction Summary (8-Bit Offset).. 6-66
6-16 Branch Instruction Summary (8-Bit Offset).. 6-71
6-17 Branch Instruction Summary (8-Bit Offset).. 6-72
6-18 DAA Function Summary.. 6-96
6-19 Branch Instruction Summary (16-Bit Offset).. 6-118
6-20 Branch Instruction Summary (16-Bit Offset).. 6-119
6-21 Branch Instruction Summary (16-Bit Offset).. 6-120
6-22 Branch Instruction Summary (16-Bit Offset).. 6-122
6-23 Branch Instruction Summary (16-Bit Offset).. 6-123
6-24 Branch Instruction Summary (16-Bit Offset).. 6-124
6-25 Branch Instruction Summary (16-Bit Offset).. 6-125
6-26 Branch Instruction Summary (16-Bit Offset).. 6-126
6-27 Branch Instruction Summary (16-Bit Offset).. 6-127
6-28 Branch Instruction Summary (16-Bit Offset).. 6-128
6-29 Branch Instruction Summary (16-Bit Offset).. 6-130
6-30 Branch Instruction Summary (16-Bit Offset).. 6-131
6-31 Branch Instruction Summary (16-Bit Offset).. 6-132
6-32 Branch Instruction Summary (16-Bit Offset).. 6-133
6-33 Branch Instruction Summary (16-Bit Offset).. 6-135
6-34 Branch Instruction Summary (16-Bit Offset).. 6-136
6-35 Condition Code Evaluation.. 6-265
6-36 Instruction Set Summary ... 6-270
7-1 Basic Instruction Formats.. 7-2
7-2 Page 0 Opcodes.. 7-8
7-3 Page 1 Opcodes.. 7-11
7-4 Page 2 Opcodes.. 7-14
7-5 Page 3 Opcodes.. 7-17
8-1 Access Bus Cycles.. 8-2
8-2 Change-of-Flow Instruction Timing ... 8-3
 MOTOROLA CPU16

xiv REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

LIST OF TABLES
(Continued)

Table Title Page

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

8-3 Stack Manipulation Timing .. 8-4
8-4 Stop and Wait Timing .. 8-4
8-5 Move Timing.. 8-4
8-6 MAC Timing... 8-5
9-1 Exception Vector Table ... 9-2
10-1 IPIPE0/IPIPE1 Encoding ... 10-2
10-2 BDM Source Summary.. 10-11
10-3 BDM Signals.. 10-12
10-4 CPU Generated Message Encoding ... 10-15
10-5 Command Summary ... 10-20
11-1 AM Values and Effect on EV ... 11-4
11-2 Saturation Values .. 11-5
A-1 M68HC16 Implementation of M68HC11 InstructionsA-15
CPU16 MOTOROLA

REFERENCE MANUAL xv

For More Information On This Product,
 Go to: www.freescale.com

LIST OF TABLES
(Continued)

Table Title Page

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA CPU16

xvi REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 1OVERVIEW
The CPU16 is a high-speed 16-bit central processing unit used in the M68HC16 family
of modular microcontrollers. The CPU16 uses a prefetch mechanism and a three-in-
struction pipeline to reduce instruction execution time. The CPU16 instruction set has
been optimized for high performance and high-level language support. Program diag-
nosis is enhanced by a background debugging mode.

The CPU16 has two 16-bit general-purpose accumulators and three 16-bit index reg-
isters. It supports 8-bit (byte), 16-bit (word), and 32-bit (long-word) load and store op-
erations, as well as 16-bit and 32-bit signed fractional operations.

CPU16 memory space includes a 1 Mbyte data space and a 1 Mbyte program space.
Twenty-bit addressing and transparent bank switching are used to implement extend-
ed memory. In addition, most instructions automatically handle bank boundaries.

The CPU16 provides M68HC11 users a migration path to higher performance. CPU16
architecture is a superset of M68HC11 CPU architecture — all M68HC11 CPU re-
sources are available in the CPU16. The CPU16 and M68HC11 CPU instruction sets
are source code compatible. M68HC11 CPU instructions are either directly imple-
mented in the CPU16 instruction set, or have been replaced by equivalent instructions.

The CPU16 includes instructions and hardware to implement control-oriented digital
signal processing functions with a minimum of interfacing. A multiply and accumulate
unit provides the capability to multiply signed 16-bit fractional numbers and store the
resulting 32-bit fixed point product in a 36-bit accumulator. Modulo addressing sup-
ports finite impulse response filters.

Documentation for the M68HC16 family follows the modular design concept. There is
a comprehensive user's manual for each device in the product line, and a detailed ref-
erence manual for each of the individual on-chip modules.
CPU16 OVERVIEW MOTOROLA

REFERENCE MANUAL 1-1

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA OVERVIEW CPU16

1-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 2NOTATION
The following notation, symbols, and conventions are used throughout the manual.

2.1 Register Notation

A — Accumulator A
AM — Accumulator M

B — Accumulator B
CCR — Condition code register

D — Accumulator D
E — Accumulator E

EK — Extended addressing extension field
IR — Multiply and accumulate multiplicand register

HR — Multiply and accumulate multiplier register
IX — Index register X
IY — Index register Y
IZ — Index register Z
K — Address extension register

PC — Program counter
PK — Program counter extension field
SK — Stack pointer extension field
SL — Multiply and accumulate sign latch
SP — Stack pointer
XK — Index register X extension field
YK — Index register Y extension field
ZK — Index register Z extension field

XMSK — Modulo addressing index register X mask
YMSK — Modulo addressing index register Y mask
CPU16 NOTATION MOTOROLA

REFERENCE MANUAL 2-1

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2 Condition Code Register Bits

2.3 Condition Code Register Activity

2.4 Condition Code Expressions

2.5 Memory Addressing

S — Stop disable control bit
MV — AM overflow indicator

H — Half carry indicator
EV — AM extended overflow indicator

N — Negative indicator
Z — Zero indicator
V — Two’s complement overflow indicator
C — Carry/borrow indicator
IP — Interrupt priority field

SM — Saturation mode control bit
PK — Program counter extension field

 — — Bit not affected
 ∆ — Bit changes according to specified conditions
 0 — Bit cleared
 1 — Bit set

 M — Memory location used in operation
 R — Result of operation
 S — Source data
 X — Register used in operation

M — Address of one memory byte
M + 1 — Address of byte at M + $0001

M : M + 1 — Address of one memory word
(...)X — Contents of address pointed to by IX
(...)Y — Contents of address pointed to by IY
(...)Z — Contents of address pointed to by IZ
 MOTOROLA NOTATION CPU16

2-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.6 Addressing Modes

2.7 Instruction Format

E, X — IX with E offset
E, Y — IY with E offset
E, Z — IZ with E offset
EXT — Extended

EXT20 — 20-bit extended
IMM8 — 8-bit immediate

IMM16 — 16-bit immediate
IND8, X — IX with unsigned 8-bit offset
IND8, Y — IY with unsigned 8-bit offset
IND8, Z — IZ with unsigned 8-bit offset

IND16, X — IX with signed 16-bit offset
IND16, Y — IY with signed 16-bit offset
IND16, Z — IZ with signed 16-bit offset
IND20, X — IX with signed 20-bit offset
IND20, Y — IY with signed 20-bit offset
IND20, Z — IZ with signed 20-bit offset

INH — Inherent
IXP — Post-modified indexed

REL8 — 8-bit relative
REL16 — 16-bit relative

b — 4-bit address extension
ii — 8-bit immediate data sign-extended to 16 bits
jj — High-order byte of 16-bit immediate data

kk — Low-order byte of 16-bit immediate data
hh — High-order byte of 16-bit extended address

ll — Low-order byte of 16-bit extended address
gggg — 16-bit signed offset

ff — 8-bit unsigned offset
mm — 8-bit mask

mmmm — 16-bit mask
rr — 8-bit unsigned relative offset

rrrr — 16-bit signed relative offset
xo — MAC index register X offset
yo — MAC index register Y offset
z — 4-bit zero extension
CPU16 NOTATION MOTOROLA

REFERENCE MANUAL 2-3

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

2.8 Symbols and Operators

2.9 Conventions

Logic level one is the voltage that corresponds to Boolean true (1) state.

Logic level zero is the voltage that corresponds to Boolean false (0) state.

Set refers specifically to establishing logic level one on a bit or bits.

Cleared refers specifically to establishing logic level zero on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal changes
from logic level one to logic level zero when asserted, and an active high signal chang-
es from logic level zero to logic level one.

Negated means that an asserted signal changes logic state. An active low signal
changes from logic level zero to logic level one when negated, and an active high sig-
nal changes from logic level one to logic level zero.

ADDR is the mnemonic for address bus. DATA is the mnemonic for data bus.

LSB means least significant bit or bits. MSB means most significant bit or bits. Refer-
ences to low and high bytes are spelled out.

 + — Addition
 - — Subtraction or negation (twos complement)
 * — Multiplication
 / — Division

 > — Greater
 < — Less
 = — Equal
 ≥ — Equal or greater
 ≤ — Equal or less
≠ — Not equal
 • — AND
; — Inclusive OR (OR)

 ⊕ — Exclusive OR (EOR)
NOT — Complementation

: — Concatenation
 ⇒ — Transferred
⇔ — Exchanged
± — Sign bit; also used to show tolerance
« — Sign extension

% — Binary value
$ — Hexadecimal value
 MOTOROLA NOTATION CPU16

2-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

LSW means least significant word or words. MSW means most significant word or
words.

A specific mnemonic within a range is referred to by mnemonic and number. A35 is
bit 35 of accumulator A; ADDR[7:0] form the low byte of the address bus. A range of
mnemonics is referred to by mnemonic and the numbers that define the range.
AM[35:30] are bits 35 to 30 of accumulator M; DATA[15:8] form the high byte of the
data bus.

Parentheses are used to indicate the content of a register or memory location, rather
than the register or memory location itself. (A) is the content of accumulator A. (M : M
+ 1) is the content of the word at address M.
CPU16 NOTATION MOTOROLA

REFERENCE MANUAL 2-5

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA NOTATION CPU16

2-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 3 SYSTEM RESOURCES
This section provides information concerning CPU16 register organization, memory
management, and bus interfacing. The CPU16 is a subcomponent of a modular micro-
controller. Due to the diversity of modular microcontrollers, detailed information con-
cerning interaction with other modules and external devices is contained in the
microcontroller user's manual.

3.1 General

The CPU16 was designed to provide compatibility with the M68HC11 and to provide
additional capabilities associated with 16- and 32-bit data sizes, 20-bit addressing,
and digital signal processing. CPU16 registers are an integral part of the CPU and are
not addressed as memory locations. The CPU16 register model contains all the re-
sources of the M68HC11, plus additional resources.

The CPU16 treats all peripheral, I/O, and memory locations as parts of a pseudolinear
1 Megabyte address space. There are no special instructions for I/O that are separate
from instructions for addressing memory. Address space is made up of 16 64-Kbyte
banks. Specialized bank addressing techniques and support registers provide trans-
parent access across bank boundaries.

The CPU16 interacts with external devices and with other modules within the micro-
controller via a standardized bus and bus interface. There are bus protocols for mem-
ory and peripheral accesses, as well as for managing an hierarchy of interrupt
priorities.

3.2 Register Model

Figure 3-1 shows the CPU16 register model. Registers are discussed in detail in the
following paragraphs.
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-1

For More Information On This Product,
 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-1 CPU16 Register Model

3.2.1 Accumulators

The CPU16 has two 8-bit accumulators (A and B) and one 16-bit accumulator (E). In
addition, accumulators A and B can be concatenated into a second 16-bit “double” ac-
cumulator (D).

Accumulators A, B, and D are general-purpose registers used to hold operands and
results during mathematic and data manipulation operations.

Accumulator E can be used in the same way as accumulator D, and also extends
CPU16 capabilities. It allows more data to be held within the CPU16 during operations,
simplifies 32-bit arithmetic and digital signal processing, and provides a practical 16-
bit accumulator offset indexed addressing mode.

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

E ACCUMULATOR E

XK IX INDEX REGISTER X

YK IY INDEX REGISTER Y

ZK IZ INDEX REGISTER Z

SK SP STACK POINTER

PK PC PROGRAM COUNTER

CCR PK CONDITION CODE REGISTER/
PC EXTENSION REGISTER

EK XK YK ZK ADDRESS EXTENSION REGISTER

SK STACK EXTENSION REGISTER

HR MAC MULTIPLIER REGISTER

IR MAC MULTIPLICAND REGISTER

AM MAC ACCUMULATOR MSB [35:16]
AM MAC ACCUMULATOR LSB [15:0]

XMSK YMSK MAC XY MASK REGISTER
 MOTOROLA SYSTEM RESOURCES CPU16

3-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The CPU16 accumulators can perform the same operations as M68HC11 accumula-
tors of the same names, but the CPU16 instruction set provides additional 8-bit, 16-
bit, and 32-bit accumulator operations. See SECTION 5 INSTRUCTION SET for more
information.

3.2.2 Index Registers

The CPU16 has three 16-bit index registers (IX, IY, and IZ). Each index register has
an associated 4-bit extension field (XK, YK, and ZK).

Concatenated registers and extension fields provide 20-bit indexed addressing and
support data structure functions anywhere in the CPU16 address space.

IX and IY can perform the same operations as M68HC11 registers of the same names,
but the CPU16 instruction set provides additional indexed operations.

IZ can perform the same operations as IX and IY, and also provides an additional in-
dexed addressing capability that replaces M68HC11 direct addressing mode. Initial IZ
and ZK extension field values are included in the RESET exception vector, so that ZK
: IZ can be used as a direct page pointer out of reset. See SECTION 4 DATA TYPES
AND ADDRESSING MODES and SECTION 9 EXCEPTION PROCESSING for more
information.

3.2.3 Stack Pointer

The CPU16 stack pointer (SP) is 16 bits wide. An associated 4-bit extension field (SK)
provides 20-bit stack addressing.

Stack implementation in the CPU16 is from high to low memory. The stack grows
downward as it is filled. SK : SP are decremented each time data is pushed on the
stack, and incremented each time data is pulled from the stack.

SK : SP point to the next available stack address, rather than to the address of the lat-
est stack entry. Although the stack pointer is normally incremented or decremented by
word address, it is possible to push and pull byte-sized data; however, setting the
stack pointer to an odd value causes misalignment, which affects performance. See
SECTION 4 DATA TYPES AND ADDRESSING MODES and SECTION 5 INSTRUC-
TION SET for more information.

3.2.4 Program Counter

The CPU16 program counter (PC) is 16 bits wide. An associated 4-bit extension field
(PK) provides 20-bit program addressing.

CPU16 instructions are fetched from even word boundaries. Bit 0 of the PC always has
a value of zero, to assure that instruction fetches are made from word-aligned ad-
dresses. See SECTION 7 INSTRUCTION PROCESS for more information.
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.2.5 Condition Code Register

The 16-bit condition code register can be divided into two functional blocks. The eight
MSB, which correspond to the CCR in the M68HC11, contain the low-power stop con-
trol bit and processor status flags. The eight LSB contain the interrupt priority field, the
DSP saturation mode control bit, and the program counter address extension field.

Management of interrupt priority in the CPU16 differs considerably from that of the
M68HC11. See SECTION 9 EXCEPTION PROCESSING for complete information.

Figure 3-2 shows the condition code register. Detailed descriptions of each status in-
dicator and field in the register follow the figure.

Figure 3-2 Condition Code Register

S — STOP Enable
0 = Stop clock when LPSTOP instruction is executed
1 = Perform NOP when LPSTOP instruction is executed

MV — Accumulator M Overflow Flag
Set when overflow into AM35 has occurred.

H — Half Carry Flag
Set when a carry from bit 3 in A or B occurs during BCD addition.

EV — Extension Bit Overflow Flag
Set when an overflow into AM31 has occurred.

N — Negative Flag
Set when the MSB of a result register is set.

Z — Zero Flag
Set when all bits of a result register are zero.

V — Overflow Flag
Set when two’s complement overflow occurs as the result of an operation.

C — Carry Flag
Set when carry or borrow occurs during arithmetic operation. Also used during shift
and rotate to facilitate multiple word operations.

IP[2:0] — Interrupt Priority Field
The priority value in this field (0 to 7) is used to mask interrupts.

SM — Saturate Mode Bit
When SM is set, if either EV or MV is set, data read from AM using TMER or TMET
will be given maximum positive or negative value, depending on the state of the AM
sign bit before overflow.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK
 MOTOROLA SYSTEM RESOURCES CPU16

3-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PK[3:0] — Program Counter Address Extension Field
This field is concatenated with the program counter to form a 20-bit address.

3.2.6 Address Extension Register and Address Extension Fields

There are six 4-bit address extension fields. EK, XK, YK, and ZK are contained by the
address extension register, PK is part of the CCR, and SK stands alone.

Extension fields are the bank portions of 20-bit concatenated bank : byte addresses
used in the CPU16 pseudolinear memory management scheme.

All extension fields except EK correspond directly to a register. XK, YK, and ZK extend
registers IX, IY, and IZ; PK extends the PC; and SK extends the SP. EK holds the four
MSB of the 20-bit address used by extended addressing mode.

The function of extension fields is discussed in 3.3 Memory Management.

3.2.7 Multiply and Accumulate Registers

The multiply and accumulate (MAC) registers are part of a CPU submodule that per-
forms repetitive signed fractional multiplication and stores the cumulative result. These
operations are part of control-oriented digital signal processing.

There are four MAC registers. Register H contains the 16-bit signed fractional multipli-
er. Register I contains the 16-bit signed fractional multiplicand. Accumulator M is a
specialized 36-bit product accumulation register. XMSK and YMSK contain 8-bit mask
values used in modulo addressing.

The CPU16 has a special subset of signal processing instructions that manipulate the
MAC registers and perform signal processing calculation. See SECTION 5 INSTRUC-
TION SET and SECTION 11 DIGITAL SIGNAL PROCESSING for more information.

3.3 Memory Management

The CPU16 uses bank switching to provide a 1 Megabyte address space. There are
16 banks within the address space. Each bank is made up of 64 Kbytes addressed
from $0000 to $FFFF. Banks are selected by means of address extension fields asso-
ciated with individual CPU16 registers.

In addition, address space can be split into discrete 1 Megabyte program and data
spaces by externally decoding the outputs described in 3.5.1.1 Function Codes.
When this technique is used, instruction fetches and RESET vector fetches access
program space, while exception vector fetches (other than RESET), data accesses,
and stack accesses are made in data space.

3.3.1 Address Extension

All CPU16 resources that are used to generate addresses are effectively 20 bits wide.
These resources include extended index registers, program counter, and stack point-
er. All addressing modes use 20-bit addresses.
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Twenty-bit addresses are formed from a 16-bit byte address generated by an individ-
ual CPU16 register and a 4-bit bank address contained in an associated extension
field. The byte address corresponds to ADDR[15:0] and the bank address corre-
sponds to ADDR[19:16].

3.3.2 Extension Fields

The six address extension fields are each used in a different type of access. As shown
in 3.2 Register Model, all but EK are associated with particular CPU16 registers.
There are a number of ways to manipulate extension fields and the address map.

3.3.2.1 Using Accumulator B to Modify Extension Fields

EK, XK, YK, ZK, and SK can be examined and modified by using the transfer exten-
sion field to B and transfer B to extension field instructions.

Transfer extension field to B instructions (TEKB, TXKB, TYKB, TZKB, and TSKB) copy
the designated extension field into the four LSB of accumulator B, where it can be
modified. Transfer B to extension field instructions (TBEK, TBXK, TBYK, TBZK, and
TBSK) replace the designated extension field with the contents of the four LSB of ac-
cumulator B.

3.3.2.2 Using Stack Pointer Transfer to Modify Extension Fields

XK, YK, ZK, and SK can be modified by using the transfer index register to stack point-
er and transfer stack pointer to index register instructions.

When the SP is transferred to (TSX, TSY, and TSZ) or from (TXS, TYS, and TZS) an
index register, the corresponding address extension field is also transferred. Before
the extension field is transferred, it is incremented or decremented if bank overflow oc-
curred as a result of the instruction.

3.3.2.3 Using Index Register Exchange to Modify Extension Fields

XK, YK, and ZK can be modified by using the transfer index register to index register
instructions.

When index registers are exchanged (TXY, TXZ, TYX, TYZ, TZX, and TZY), the cor-
responding address extension field is also exchanged.

3.3.2.4 Stacking Extension Field Values

The push multiple registers (PSHM) instruction can be used to store alternate exten-
sion field values on the stack. When bit 5 of the PSHM mask operand is set, the entire
address extension register (EK, XK, YK, and ZK values) is pushed onto the stack.

The pull multiple registers (PULM) instruction can be used to replace extension field
values. When bit 1 of the PULM mask operand is set, the entire address extension reg-
ister (EK, XK, YK, and ZK) will be replaced with stacked values.
 MOTOROLA SYSTEM RESOURCES CPU16

3-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.2.5 Adding Immediate Data to Registers

XK, YK, ZK, and SK are automatically modified when an AIX, AIY, AIZ, or AIS instruc-
tion causes an overflow from the corresponding register. The byte addresses con-
tained in the registers have a range of $0000 to $FFFF. If the operation results in a
value below $0000 or above $FFFF, the associated extension field is decremented or
incremented by the amount of overflow.

3.3.3 Program Counter Address Extension

The PK field cannot be altered by direct transfer or exchange like other address exten-
sion fields, but a number of instructions and addressing modes affect the program
counter and its associated extension field.

PK is automatically modified when an operation causes an overflow from the PC. The
PC has a range of $0000 to $FFFF. If it is decremented below $0000 or incremented
above $FFFF, PK is also incremented or decremented.

3.3.3.1 Effect of Jump Instructions on PK : PC

There are two forms of jump instruction in the CPU16 instruction set. Both use special
addressing modes that replace PK : PC with a 20-bit effective address, but do not af-
fect other address extension fields.

JMP causes an unconditional change in program execution. The effective address is
placed in PK : PC and execution continues at the new address.

JSR causes a branch to a subroutine. After the contents of the program counter and
the condition code register are stacked, the effective address is placed in PK : PC and
execution continues at the new address.

See SECTION 5 INSTRUCTION SET for detailed information about jump instructions.

3.3.3.2 Effect of Branch Instructions on PK : PC

The CPU16 instruction set includes a number of branch instructions. All add an offset
to the program counter when a branch is taken. The size of offset differs, but in all cas-
es, PK is automatically modified when addition of the offset causes PC overflow. The
PC has a range of $0000 to $FFFF. If it is decremented below $0000 or incremented
above $FFFF, PK is also decremented or incremented. Pipelining affects the actual
offset from the instruction. See SECTION 5 INSTRUCTION SET for detailed informa-
tion about branch instructions.

3.3.4 Effective Addresses and Extension Fields

It is important to distinguish address extension field values from effective address val-
ues. Effective address calculation is a part of addressing mode operation. Indexed and
accumulator offset addressing modes can generate effective addresses that cross
bank boundaries — ADDR[19:16] are changed to make an access, but extension field
values do not change as a result of the operation. See SECTION 4 DATA TYPES
AND ADDRESSING MODES for more information. Table 3-1 summarizes the effects
of various operations on address lines and address extension fields.
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4 Intermodule Bus

The intermodule bus is a standardized bus developed to facilitate design of modular
microcontrollers. Bus protocols are based on the MC68020 bus. The IMB contains cir-
cuitry to support exception processing, address space partitioning, multiple interrupt
levels, and vectored interrupts.

Modular microcontroller family modules communicate with one another via the IMB.
Although the full IMB supports 24 address and 16 data lines, CPU16 uses only 16 data
lines and 20 address lines — ADDR[23:20] are tied to ADDR19 when processor driv-
en.

3.5 External Bus Interface

The external bus interface (EBI) is contained in the system integration module of the
modular microcontroller. This section provides a general discussion of EBI capabili-
ties. Refer to the appropriate microcontroller user's manual for detailed information
about the bus interface.

The external bus is essentially an extension of the IMB. There are 24 address lines
and 16 data lines. ADDR[19:0] are normal address outputs, ADDR[23:20] follow the
output state of ADDR19. It provides dynamic sizing between 8- and 16-bit data ac-
cesses. A three-line handshaking interface performs bus arbitration.

Table 3-1 Operations that Cross Bank Boundaries

Type of Operation Extension Field Used Extension Field
Affected

Effect on
ADDR[19:16]

Normal PC Increments PK PK Equals new PK
Operand Read Using
Indexed Addressing Mode

XK, YK, ZK None Used for
Effective Address

Operand Write Using
Indexed Addressing Mode

XK, YK, ZK None Used for
Effective Address

Operand Read Using
Extended Addressing Mode

EK None Used for
Effective Address

Operand Write Using
Extended Addressing Mode

EK None Used for
Effective Address

Post-modified Indexed Addressing
(XK is modified after use as effective
address)

XK XK Used for
Effective Address

JMP, JSR Instruction None PK Equals new PK
Branch Instructions
(Including BSR and LBSR)

PK PK Equals new PK

Stack Access SK SK Stack at new SK
AIX, AIY, AIZ, or AIS Instruction XK, YK, ZK, or SK XK, YK, ZK, or SK None
TSX, TSY, or TSZ Instruction SK XK, YK, or ZK None
TXS, TYS, or TZS Instruction XK, YK, or ZK SK None
TXY or TXZ Instruction XK YK, ZK None
TYX or TYZ Instruction YK XK, ZK None
TZX or TZY Instruction ZK XK, YK None
 MOTOROLA SYSTEM RESOURCES CPU16

3-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The EBI transfers information between the MCU and external devices. It supports
byte, word, and long-word transfers. Data ports of 8 and 16 bits can be accessed
through the use of asynchronous cycles controlled by the data transfer (SIZ1 and
SIZ0) and data size acknowledge pins (DSACK1 andDSACK0). Multiple bus cycles
may be required for an operand transfer to an 8-bit port, due to misalignment or to port
width smaller than the operand size.

Port width is defined as the maximum number of bits accepted or provided during a
bus transfer. External devices must follow the handshake protocol described below.

3.5.1 Bus Control Signals

Control signals indicate the beginning of the cycle, the address space and size of the
transfer, and the type of cycle. The selected device controls the length of the cycle.
Strobe signals, one for the address bus and another for the data bus, indicate the va-
lidity of an address and provide timing information for data. The EBI operates asyn-
chronously for all port widths. A bus cycle is initiated by driving the address, size,
function code, and read/write outputs.

3.5.1.1 Function Codes

Function codes are automatically generated by the CPU16. Since the CPU16 always
operates in supervisor mode (FC2 = 1) FC1 and FC0 are encoded to select one of four
address spaces. One encoding (%00) is reserved. The remaining three spaces are
called program space, data space and CPU space. Program and data space are used
for instruction and operand accesses. CPU space is used for control information not
normally associated with read or write bus cycles, such as interrupt acknowledge cy-
cles, breakpoint acknowledge cycles, and low power stop broadcast cycles. Function
codes are valid while address strobe AS is asserted. The following table shows ad-
dress space encoding.

3.5.1.2 Size Signals

SIZ0 and SIZ1 indicate the number of bytes remaining to be transferred during an op-
erand cycle. They are valid while the AS is asserted. The following table shows SIZ0
and SIZ1 encoding.

Table 3-2 Address Space Encoding

FC2 FC1 FC0 Address Space
1 0 0 Reserved
1 0 1 Data Space
1 1 0 Program Space
1 1 1 CPU Space

Table 3-3 Size Signal Encoding

SIZ1 SIZ0 Transfer Size
0 1 Byte
1 0 Word
1 1 3 Byte
0 0 Long Word
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5.1.3 Read/Write Signal

R/W determines the direction of the transfer during a bus cycle. This signal changes
state, when required, at the beginning of a bus cycle, and is valid while AS is asserted.
The signal may remain low for two consecutive write cycles.

3.5.2 Address Bus

Bus signals ADDR[19:0] define the address of the byte (or the most significant byte)
to be transferred during a bus cycle. The MCU places the address on the bus at the
beginning of a bus cycle. The address is valid while address strobe (AS) is asserted.

AS is a timing signal that indicates the validity of an address on the address bus and
of many control signals. It is asserted one-half clock after the beginning of a bus cycle.

3.5.3 Data Bus

Bus signals DATA[15:0] comprise a bidirectional, nonmultiplexed parallel bus that
transfers data to or from the MCU. A read or write operation can transfer 8 or 16 bits
of data in one bus cycle. During a read cycle, the data is latched by the MCU on the
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data
bus are driven, regardless of the port width or operand size. The EBI places the data
on the data bus one-half clock cycle after AS is asserted in a write cycle.

Data strobe (DS) is a timing signal. For a read cycle, the MCU asserts DS to signal an
external device to place data on the bus. DS is asserted at the same time as AS during
a read cycle. For a write cycle, DS signals an external device that data on the bus is
valid. The EBI asserts DS one full clock cycle after the assertion of AS during a write
cycle.

3.5.4 Bus Cycle Termination Signals

During bus cycles, external devices assert the data transfer and size acknowledge sig-
nals (DSACK1 and/or DSACK0). During a read cycle, the signals tell the EBI to termi-
nate the bus cycle and to latch data. During a write cycle, the signals indicate that an
external device has successfully stored data and that the cycle may terminate. These
signals also indicate to the EBI the size of the port for the bus cycle just completed.

The bus error signal (BERR) is also a bus cycle termination indicator and can be used
in the absence of DSACK to indicate a bus error condition. It can also be asserted in
conjunction with DSACKx to indicate a bus error condition, provided it meets the ap-
propriate timing requirements. Simultaneous assertion of BERR and HALT is treated
in the same way as assertion of BERR alone.

An internal bus monitor can be used to generate the BERR signal for internal and in-
ternal-to-external transfers. An external bus master must provide its own BERR gen-
eration and drive the BERR pin, since the internal BERR monitor has no information
about transfers initiated by an external bus master.

Finally, autovector signal (AVEC) can be used to terminate external IRQ pin interrupt
acknowledge cycles. AVEC indicates to the EBI that it must internally generate a vec-
 MOTOROLA SYSTEM RESOURCES CPU16

3-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

tor number to locate an interrupt handler routine. If AVEC is continuously asserted, au-
tovectors will be generated for all external interrupt requests. AVEC is ignored during
all other bus cycles.

3.5.5 Data Transfer Mechanism

EBI architecture supports byte, word, and long-word operands, allowing access to 8-
and 16-bit data ports through the use of asynchronous cycles controlled by the data
transfer and size acknowledge inputs (DSACK1and DSACK0).

3.5.5.1 Dynamic Bus Sizing

The EBI dynamically interprets the port size of the addressed device during each bus
cycle, allowing operand transfers to or from 8- and 16-bit ports. During an operand
transfer cycle, the slave device signals its port size and indicates completion of the bus
cycle to the EBI through the use of the DSACKx inputs, as shown in the following table.

For example, if the CPU16 is executing an instruction that reads a long-word operand
from a 16-bit port, the EBI latches the 16 bits of valid data and runs another bus cycle
to obtain the other 16 bits. The operation for an 8-bit port is similar, but requires four
read cycles. The addressed device uses the DSACK signals to indicate the port width.
For instance, a 16-bit device always returns DSACK for a 16-bit port (regardless of
whether the bus cycle is a byte or word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or
from a particular port size be fixed. A 16-bit port must reside on data bus bits [15:0],
and an 8-bit port must reside on data bus bits [15:8]. This minimizes the number of bus
cycles needed to transfer data and ensures that the EBI transfers valid data.

The EBI always attempts to transfer a maximum amount of data during each bus cycle.
For a word operation, it is assumed that the port is 16 bits wide when the bus cycle
begins. Operand bytes are designated as shown in Figure 3-2. OP0 is the most sig-
nificant byte of a long-word operand, and OP3 is the least significant byte. The two
bytes of a word-length operand are OP0 (most significant) and OP1. The single byte
of a byte-length operand is OP0.

Table 3-4 Effect of DSACK Signals

DSACK1 DSACK0 Result
1 1 Insert Wait States in Current Bus Cycle
1 0 Complete Cycle — Data Bus Port Size is 8 Bits
0 1 Complete Cycle — Data Bus Port Size is 16 Bits
0 0 Reserved
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3-3 Operand Byte Order

3.5.5.2 Operand Alignment

Refer to Table 3-5 for required organization of 8- and 16-bit data ports. A data multi-
plexer establishes the necessary connections for different combinations of address
and data sizes. The multiplexer takes the two bytes of the 16-bit bus and routes them
to their required positions. Positioning of bytes is determined by the size and address
outputs. SIZ1 and SIZ0 indicate the remaining number of bytes to be transferred dur-
ing the current bus cycle. The number of bytes transferred is equal to or less than the
size indicated by SIZ1 and SIZ0, depending on port width.

ADDR0 also affects data multiplexer operation. During an operand transfer, AD-
DR[23:1] indicate the word base address of the portion of the operand to be accessed,
and ADDR0 indicates the byte offset from the base. Table 3-5 shows the number of
bytes required on the data bus for read cycles. OPn entries are portions of the request-
ed operand that are read or written during a bus cycle and are defined by SIZ1, SIZ0,
and ADDR0 for that bus cycle.

NOTES:
Operands in parentheses are ignored by the CPU16 during read cycles.
*The CPU16 treats misaligned long-word transfers as two misaligned word transfers.
†Three-byte transfer cases occur only as a result of a long word to byte transfer.

Operand Byte Order
31 24 23 16 15 8 7 0

Long Word OP0 OP1 OP2 OP3
Three Byte OP0 OP1 OP2

Word OP0 OP1
Byte OP0

Table 3-5 Operand Alignment

Transfer Case SIZ1 SIZ0 ADDR0 DSACK1 DSACK0 DATA
15 8

DATA
7 0

Byte to Byte 0 1 X 1 0 OP0 (OP0)
Byte to Word (Even) 0 1 0 0 X OP0 (OP0)
Byte to Word (Odd) 0 1 1 0 X (OP0) OP0
Word to Byte (Aligned) 1 0 0 1 0 OP0 (OP1)
Word to Byte (Misaligned) 1 0 1 1 0 OP0 (OP0)
Word to Word (Aligned) 1 0 0 0 X OP0 OP1
Word to Word (Misaligned) 1 0 1 0 X (OP0) OP0
3 Byte to Byte (Aligned)† 1 1 0 1 0 OP0 (OP1)
3 Byte to Byte (Misaligned)† 1 1 1 1 0 OP0 (OP0)
3 Byte to Word (Aligned)† 1 1 0 0 X OP0 OP1
3 Byte to Word (Misaligned)† 1 1 1 0 X (OP0) OP0
Long Word to Byte (Aligned) 0 0 0 1 0 OP0 (OP1)
Long Word to Byte (Misaligned)* 1 0 1 1 0 OP0 (OP0)
Long Word to Word (Aligned) 0 0 0 0 X OP0 OP1
Long Word to Word (Misaligned)* 1 0 1 0 X (OP0) OP0
 MOTOROLA SYSTEM RESOURCES CPU16

3-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.5.5.3 Misaligned Operands

The value of ADDR0 determines alignment. When ADDR0 = 0, the address is a word
and byte boundary. When ADDR0 = 1, the address is a byte boundary only. A byte
operand is properly aligned at any address; a word or long-word operand is misaligned
at an odd address.

The basic CPU16 operand size is a 16-bit word. The CPU16 fetches instruction words
and operands from word boundaries only. The CPU16 performs misaligned data word
and long-word transfers. This capability is provided in order to make the CPU16 com-
patible with the M68HC11.

At most, a bus cycle can transfer a word of data aligned on a word boundary. If data
words are misaligned, each byte of the misaligned word is treated as a separate word
transfer. If a long-word operand is transferred via a 16-bit port, the most significant op-
erand word is transferred on the first bus cycle and the least significant operand word
on a following bus cycle.
CPU16 SYSTEM RESOURCES MOTOROLA

REFERENCE MANUAL 3-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA SYSTEM RESOURCES CPU16

3-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 4 DATA TYPES AND ADDRESSING MODES
This section contains information about CPU16 data types and addressing modes. It
is intended to familiarize users with basic processor capabilities.

4.1 Data Types

The CPU16 uses the following types of data:

• Bits
• 4-bit signed integers
• 8-bit (byte) signed and unsigned integers
• 8-bit, 2-digit binary coded decimal numbers
• 16-bit (word) signed and unsigned integers
• 32-bit (long word) signed and unsigned integers
• 16-bit signed fractions
• 32-bit signed fractions
• 36-bit signed fixed-point numbers
• 20-bit effective addresses
• There are 8 bits in a byte, 16 bits in a word. Bit set and clear instructions use both

byte and word operands. Bit test instructions use byte operands.

Negative integers are represented in two’s-complement form. Four-bit signed integers,
packed two to a byte, are used only as X and Y offsets in MAC and RMAC operations.
Integers of 32 bits are used only by extended multiply and divide instructions, and by
the associated LDED and STED instructions.

Binary coded decimal numbers are packed, two digits per byte. BCD operations use
byte operands.

16-bit fractions are used in both fractional multiplication and division, and as multipli-
cand and multiplier operands in the MAC unit. Bit 15 is the sign bit. An implied radix
point lies between bits 15 and 14. There are 15 bits of magnitude — the range of val-
ues is –1 ($8000) to 1 – 2-15 ($7FFF).

Signed 32-bit fractions are used only by fractional multiplication and division instruc-
tions. Bit 31 is the sign bit. An implied radix point lies between bits 31 and 30. There
are 31 bits of magnitude — the range of values is –1 ($80000000) to 1 – 2-31

($7FFFFFFF).

Signed 36-bit fixed-point numbers are used only by the MAC unit. Bit 35 is the sign bit.
Bits [34:31] are sign extension bits. There is an implied radix point between bits 31 and
30. There are 31 bits of magnitude, but use of the extension bits allows representation
of numbers in the range –16 ($800000000) to 15.999999999 ($7FFFFFFFF).

20-bit effective addresses are formed by combining a 16-bit byte address with a 4-bit
address extension. See 4.3 Addressing Modes for more information.
CPU16 DATA TYPES AND ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 4-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2 Memory Organization

Both program and data memory are divided into sixteen 64-Kbyte banks. Addressing
is pseudolinear — a 20-bit extended address can access any byte location in the ap-
propriate address space.

A word is composed of two consecutive bytes. A word address is normally an even
byte address. Byte 0 of a word has a lower 16-bit address than byte 1. Long words and
32-bit signed fractions consist of two consecutive words, and are normally accessed
at the address of byte 0 in the word 0.

Instruction fetches always access word addresses. Word operands are normally ac-
cessed at even byte addresses, but may be accessed at odd byte addresses, with a
substantial performance penalty.

To be compatible with the M68HC11, misaligned word transfers and misaligned stack
accesses are allowed. Transferring a misaligned word requires two successive byte
transfer operations.

Figure 4-1 shows how each CPU16 data type is organized in memory. Consecutive
even addresses show size and alignment.
 MOTOROLA DATA TYPES AND ADDRESSING MODES CPU16

4-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-1 Data Types and Memory Organization

4.3 Addressing Modes

The CPU16 uses nine basic types of addressing. There are one or more addressing
modes within each type. Table 4-1 shows the addressing modes.

Memory/Register Data Types
Address Type

$0000 BIT
15

BIT
14

BIT
13

BIT
12

BIT
11

BIT
10

BIT
9

BIT
8

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

$0002 BYTE0 BYTE1
$0004 ± X OFFSET ± Y OFFSET ± X OFFSET ± Y OFFSET
$0006 BCD1 BCD0 BCD1 BCD0
$0008 WORD 0
$000A WORD1
$000C MSW LONG WORD 0
$000E LSW LONG WORD 0
$0010 MSW LONG WORD 1
$0012 LSW LONG WORD 1
$0014 ± ⇐ (Radix Point) 16-BIT SIGNED FRACTION 0
$0016 ± ⇐ (Radix Point) 16-BIT SIGNED FRACTION 1
$0018 ± ⇐ (Radix Point) MSW 32-BIT SIGNED FRACTION 0
$001A LSW 32-BIT SIGNED FRACTION 0 0
$001C ± ⇐ (Radix Point) MSW 32-BIT SIGNED FRACTION 1
$001E LSW 32-BIT SIGNED FRACTION 1 0

MAC Data Types
35 32 31 16
± « « « « ⇐ (Radix Point) MSW 32-BIT SIGNED FRACTION

15 0
LSW 32-BIT SIGNED FRACTION

± ⇐ (Radix Point) 16-BIT SIGNED FRACTION

Address Data Type
19 16 15 0

4-Bit Extension 16-Bit Address
CPU16 DATA TYPES AND ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 4-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All modes generate ADDR[15:0]. This address is combined with ADDR[19:16] from an
operand or an extension field to form a 20-bit effective address.

Note

Bank switching is transparent to most instructions. ADDR[19:16] of
the effective address are changed to make an access across a page
boundary. However, extension field values do not change as a result
of effective address computation.

4.3.1 Immediate Addressing Modes

In the immediate modes, an argument is contained in a byte or word immediately fol-
lowing the instruction. For IMM8 and IMM16 modes, the effective address is the ad-
dress of the argument.

There are three specialized forms of IMM8 addressing.

The AIS, AIX/Y/Z, ADDD and ADDE instructions decrease execution time by sign-
extending the 8-bit immediate operand to 16 bits, then adding it to an appropriate
register.

The MAC and RMAC instructions use an 8-bit immediate operand to specify two
signed 4-bit index register offsets.

The PSHM and PULM instructions use an 8-bit immediate operand to indicate
which registers must be pushed to or pulled from the stack.

Table 4-1 Addressing Modes

Addressing
Type

Mode
Mnemonic

Description

Accumulator Offset E, X Index Register X with Accumulator E offset
E, Y Index Register Y with Accumulator E offset
E, Z Index Register Z with Accumulator E offset

Extended EXT Extended
EXT20 20-bit Extended

Immediate IMM8 8-bit Immediate
IMM16 16-bit Immediate

Indexed 8-Bit IND8, X Index Register X with unsigned 8-bit offset
IND8, Y Index Register Y with unsigned 8-bit offset
IND8, Z Index Register Z with unsigned 8-bit offset

Indexed 16-Bit IND16, X Index Register X with signed 16-bit offset
IND16, Y Index Register Y with signed 16-bit offset
IND16, Z Index Register Z with signed 16-bit offset

Indexed 20-Bit IND20, X Index Register X with signed 20-bit offset
IND20, Y Index Register Y with signed 20-bit offset
IND20, Z Index Register Z with signed 20-bit offset

Inherent INH Inherent
Post-modified Index IXP Signed 8-bit offset added to Index Register X

after effective address is used
Relative REL8 8-bit relative

REL16 16-bit relative
 MOTOROLA DATA TYPES AND ADDRESSING MODES CPU16

4-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3.2 Extended Addressing Modes

Regular extended mode instructions contain ADDR[15:0] in the word following the op-
code. The effective address is formed by concatenating the EK field and the 16-bit byte
address. EXT20 mode is used only by JMP and JSR instructions. JMP and JSR in-
structions contain a complete 20-bit effective address —the operand is zero-extended
to 24 bits so that the instruction has an even number of bytes.

4.3.3 Indexed Addressing Modes

In the indexed modes, registers IX, IY, and IZ, together with their associated extension
fields, are used to calculate the effective address.

For 8-bit indexed modes an 8-bit unsigned offset contained in the instruction is added
to the value contained in an index register and its extension field.

For 16-bit modes, a 16-bit signed offset contained in the instruction is added to the val-
ue contained in an index register and its extension field.

For 20-bit modes, a 20-bit signed offset (zero-extended to 24 bits) is added to the val-
ue contained in an index register. These modes are used for JMP and JSR instructions
only.

4.3.4 Inherent Addressing Mode

Inherent mode instructions use information directly available to the processor to deter-
mine the effective address. Operands (if any) are system resources and are thus not
fetched from memory.

4.3.5 Accumulator Offset Addressing Mode

Accumulator offset modes form an effective address by sign-extending the content ac-
cumulator E to 20 bits, then adding the result to an index register and its associated
extension field. This mode allows use of an index register and an accumulator within
a loop without corrupting accumulator D.

4.3.6 Relative Addressing Modes

Relative modes are used for branch and long branch instructions. If a branch condition
is satisfied, a byte or word signed twos complement offset is added to the concatenat-
ed PK field and program counter. The new PK : PC value is the effective address.

4.3.7 Post-Modified Index Addressing Mode

Post-modified index mode is used only by the MOVB and MOVW instructions. A
signed 8-bit offset is added to index register X after the effective address formed by
XK : IX is used. Post-modified mode provides enhanced block-move capabilities —
programmers should carefully consider its effect on pointers.
CPU16 DATA TYPES AND ADDRESSING MODES MOTOROLA

REFERENCE MANUAL 4-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3.8 Use of CPU16 Indexed Mode to Replace M68HC11 Direct Mode

In M68HC11 systems, the direct addressing mode can be used to perform rapid ac-
cesses to RAM or I/O mapped into bank 0 ($0000 to $00FF), but the CPU16 uses the
first 512 bytes of bank 0 for exception vectors. To provide an enhanced replacement
for direct mode, the ZK field and index register Z have been assigned reset initializa-
tion vectors — by resetting the ZK field to a chosen page, and using indexed mode
addressing, a programmer can access useful data structures anywhere in the address
map.
 MOTOROLA DATA TYPES AND ADDRESSING MODES CPU16

4-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 5 INSTRUCTION SET
This section contains general information about the instruction set. It is organized into
instruction summaries grouped by function. If an instruction has a special purpose,
such as aiding indexed operations, it appears in the summary for that function, rather
than in a general summary. An instruction that is used for more than one purpose ap-
pears in more than one summary. SECTION 6 INSTRUCTION GLOSSARY contains
detailed information about individual instructions.

5.1 General

The instruction set is based upon that of the M68HC11, but the opcode map has been
rearranged to maximize performance with a 16-bit data bus. Most M68HC11 instruc-
tions are supported by the CPU16, although they may be executed differently. Much
M68HC11 code will run on the CPU16 following reassembly. The user must take into
account changed instruction times, the interrupt mask, and the new interrupt stack
frame. See 5.13 Comparison of CPU16 and M68HC11 Instruction Sets for more in-
formation.

The CPU16 has a full range of 16-bit arithmetic and logic instructions, including signed
and unsigned multiplication and division. A number of instructions support extended
addressing and expanded memory space. In addition, there are special instructions
related to digital signal processing.

5.2 Data Movement Instructions

The CPU16 has a complete set of 8- and 16-bit data movement instructions, as well
as instructions to support 32-bit intermodule bus (IMB) operations. General-purpose
load, store, transfer and move instructions facilitate movement of data to and from
memory and peripherals. Special purpose instructions enhance indexing, extended
addressing, stacking, and digital signal processing.

5.2.1 Load Instructions

Load instructions copy memory content into an accumulator or register. Memory con-
tent is not changed by the operation.

There are specialized load instructions for stacking, indexing, extended addressing,
and digital signal processing. Refer to the appropriate summary for more information.
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.2 Move Instructions

These instructions move data bytes or words from one location to another in memory.

5.2.3 Store Instructions

Store instructions copy the content of an accumulator or register to memory. Register/
accumulator content is not changed by the operation.

There are specialized store instructions for indexing, extended addressing, and CCR
manipulation. Refer to the appropriate summary for more information.

5.2.4 Transfer Instructions

These instructions transfer the content of a register or accumulator to another register
or accumulator. Content of the source is not changed by the operation.

There are specialized transfer instructions for stacking, indexing, extended address-
ing, CCR manipulation, and digital signal processing. Refer to the appropriate summa-
ry for more information.

Table 5-1 Load Summary

Mnemonic Function Operation

LDAA Load A (M) ⇒ A

LDAB Load B (M) ⇒ B

LDD Load D (M : M + 1) ⇒ D

LDE Load E (M : M + 1) ⇒ E

LDED Load Concatenated E and D (M : M + 1) ⇒ E
(M + 2 : M + 3) ⇒ D

Table 5-2 Move Summary

Mnemonic Function Operation

MOVB Move Byte (M1) ⇒ M2

MOVW Move Word (M : M + 11) ⇒ M : M + 12

Table 5-3 Store Summary

Mnemonic Function Operation

STAA Store A (A) ⇒ M

STAB Store B (B) ⇒ M

STD Store D (D) ⇒ M : M + 1

STE Store E (E) ⇒ M : M + 1

STED Store Concatenated D and E (E) ⇒ M : M + 1
(D) ⇒ M + 2 : M + 3
 MOTOROLA INSTRUCTION SET CPU16

5-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2.5 Exchange Instructions

These instructions exchange the contents of pairs of registers or accumulators. There
are specialized exchange instructions for indexing. Refer to the appropriate summary
for more information.

5.3 Mathematic Instructions

The CPU16 has a full set of 8- and 16-bit mathematic instructions. There are instruc-
tions for signed and unsigned arithmetic, division and multiplication, as well as a com-
plete set of 8- and 16-bit Boolean operators.

Special arithmetic and logic instructions aid stacking operations, indexing, extended
addressing, BCD calculation, and condition code register manipulation. There are also
dedicated multiply and accumulate unit instructions. Refer to the appropriate instruc-
tion summary for more information.

5.3.1 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit arithmetic instructions can be performed between
registers or between registers and memory. Instructions that also add or subtract the
value of the CCR carry bit facilitate multiple precision computation.

Table 5-4 Transfer Summary

Mnemonic Function Operation

TAB Transfer A to B (A) ⇒ B

TBA Transfer B to A (B) ⇒ A

TDE Transfer D to E (D)⇒ E

TED Transfer E to D (E) ⇒ D

Table 5-5 Exchange Summary

Mnemonic Function Operation

XGAB Exchange A with B (A) ⇔ (B)

XGDE Exchange D with E (D) ⇔ (E)

Table 5-6 Addition Summary

Mnemonic Function Operation
ABA Add B to A (A) + (B) ⇒ A

ADCA Add with Carry to A (A) + (M) + C ⇒ A
ADCB Add with Carry to B (B) + (M) + C ⇒ B
ADCD Add with Carry to D (D) + (M : M + 1) + C ⇒ D
ADCE Add with Carry to E (E) + (M : M + 1) + C ⇒ E
ADDA Add to A (A) + (M) ⇒ A
ADDB Add to B (B) + (M) ⇒ B
ADDD Add to D (D) + (M : M + 1) ⇒ D
ADDE Add to E (E) + (M : M + 1) ⇒ E
ADE Add D to E (E) + (D) ⇒ E
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following table shows the type of arithmetic operation performed by each addition
and subtraction instruction.

Table 5-7 Subtraction Summary

Mnemonic Function Operation

SBA Subtract B from A (A) – (B) ⇒ A

SBCA Subtract with Carry from A (A) – (M) – C ⇒ A

SBCB Subtract with Carry from B (B) – (M) – C ⇒ B

SBCD Subtract with Carry from D (D) – (M : M + 1) – C ⇒ D

SBCE Subtract with Carry from E (E) – (M : M + 1) – C ⇒ E

SDE Subtract D from E (E) – (D)⇒ E

SUBA Subtract from A (A) – (M) ⇒ A

SUBB Subtract from B (B) – (M) ⇒ B

SUBD Subtract from D (D) – (M : M + 1) ⇒ D

SUBE Subtract from E (E) – (M : M + 1) ⇒ E

Table 5-8 Arithmetic Operations

Mnemonic 8-Bit 16-Bit X ± X X ± M X ± M ± C

ABA x x

ADCA x x

ADCB x x

ADCD x x

ADCE x x

ADDA x x

ADDB x x

ADDD x x

ADDE x x

ADE x x

SBA x x

SBCA x x

SBCB x x

SBCD x x

SBCE x x

SDE x x

SUBA x x

SUBB x x

SUBD x x

SUBE x x
 MOTOROLA INSTRUCTION SET CPU16

5-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.2 Binary Coded Decimal Instructions

To add binary coded decimal operands, use addition instructions that set the half-carry
bit in the CCR, then adjust the result with the DAA instruction.

The following table shows DAA operation for all legal combinations of input operands.
Columns 1 through 4 represent the results of addition operations on BCD operands.
The correction factor in column 5 is added to the accumulator to restore the result of
an operation on two BCD operands to a valid BCD value, and to set or clear the C bit.
All values are hexadecimal.

5.3.3 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of registers or be-
tween a register and memory. The result is not stored, but condition codes are set by
the operation. These instructions are generally used to establish conditions for branch
instructions.

Table 5-9 BCD Summary

Mnemonic Function Operation

ABA Add B to A (A) + (B) ⇒ A

ADCA Add with Carry to A (A) + (M) + C ⇒ A

ADCB Add with Carry to B (B) + (M) + C ⇒ B

ADDA Add to A (A) + (M) ⇒ A

ADDB Add to B (B) + (M) ⇒ B

DAA Decimal Adjust A (A)10

SXT Sign Extend B into A If B7 = 1
then A = $FF
else A = $00

Table 5-10 DAA Function Summary

1 2 3 4 5 6

Initial
C Bit Value

Value of
A[7:4]

Initial
H Bit Value

Value of
A[3:0]

Correction
Factor

Corrected
C Bit Value

0 0 – 9 0 0 – 9 00 0

0 0 – 8 0 A – F 06 0

0 0 – 9 1 0 – 3 06 0

0 A – F 0 0 – 9 60 1

0 9 – F 0 A – F 66 1

0 A – F 1 0 – 3 66 1

1 0 – 2 0 0 – 9 60 1

1 0 – 2 0 A – F 66 1

1 0 – 3 1 0 – 3 66 1
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.4 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit multiplication, as well as
for signed 16-bit fractional multiplication. Eight-bit multiplication operations have a 16-
bit product. Sixteen-bit multiplication operations can have either 16- or 32-bit products.

All division operations have 16-bit divisors, but dividends can be either 16- or 32-bit
numbers. Quotients and remainders of all division operations are 16-bit numbers.
There are instructions for signed and unsigned division, as well as for fractional divi-
sion.

Fractional multiplication uses 16-bit operands. Bit 15 is the sign bit. There is an implied
radix point between bits 15 and 14. The range of values is –1 ($8000) to 0.999969482
($7FFF). The MSB of the result is its sign bit, and there is an implied radix point be-
tween the sign bit and the rest of the result.

There are special 36-bit signed fractional multiply and accumulate unit instructions to
support digital signal processing operations. Refer to the appropriate summary for
more information.

Table 5-11 Compare and Test Summary

Mnemonic Function Operation

CBA Compare A to B (A) – (B)

CMPA Compare A to Memory (A) – (M)

CMPB Compare B to Memory (B) – (M)

CPD Compare D to Memory (D) – (M : M + 1)

CPE Compare E to Memory (E) – (M : M + 1)

TST Test for Zero or Minus (M) – $00

TSTA Test A for Zero or Minus (A) – $00

TSTB Test B for Zero or Minus (B) – $00

TSTD Test D for Zero or Minus (D) – $0000

TSTE Test E for Zero or Minus (E) – $0000

TSTW Test for Zero or Minus Word (M : M + 1) – $0000

Table 5-12 Multiplication and Division Summary

Mnemonic Function Operation
EDIV Extended Unsigned Divide (E : D) / (IX)

Quotient ⇒ IX
Remainder ⇒ D

EDIVS Extended Signed Divide (E : D) / (IX)
Quotient ⇒ IX

Remainder ⇒ D
EMUL Extended Unsigned Multiply (E) ∗ (D) ⇒ E : D

EMULS Extended Signed Multiply (E) ∗ (D) ⇒ E : D
FDIV Unsigned Fractional Divide (D) / (IX) ⇒ IX

remainder ⇒ D
FMULS Signed Fractional Multiply (E) ∗ (D) ⇒ E : D

IDIV Integer Divide (D) / (IX) ⇒ IX
remainder ⇒ D

MUL Multiply (A) ∗ (B) ⇒ D
 MOTOROLA INSTRUCTION SET CPU16

5-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.5 Decrement and Increment Instructions

These instructions are optimized 8- and 16-bit addition and subtraction operations.
They are generally used to implement counters. Because they do not affect the carry
bit in the CCR, they are particularly well suited for loop counters in multiple-precision
computation routines.

5.3.6 Clear, Complement, and Negate Instructions

Each of these instructions performs a specific binary operation on a value in an accu-
mulator or in memory. Clear operations set the value to zero, complement operations
replace the value with its one’s complement, and negate operations replace the value
with its two’s complement.

Table 5-13 Decrement and Increment Summary

Mnemonic Function Operation

DEC Decrement Memory (M) – $01 ⇒ M

DECA Decrement A (A) – $01 ⇒ A

DECB Decrement B (B) – $01 ⇒ B

DECW Decrement Memory Word (M : M + 1) – $0001 ⇒ M : M + 1

INC Increment Memory (M) + $01 ⇒ M

INCA Increment A (A) + $01 ⇒ A

INCB Increment B (B) + $01 ⇒ B

INCW Increment Memory Word (M : M + 1) + $0001 ⇒ M : M + 1

Table 5-14 Clear, Complement, and Negate Summary

Mnemonic Function Operation

CLR Clear Memory $00 ⇒ M

CLRA Clear A $00 ⇒ A

CLRB Clear B $00 ⇒ B

CLRD Clear D $0000 ⇒ D

CLRE Clear E $0000 ⇒ E

CLRW Clear Memory Word $0000 ⇒ M : M + 1

COM One’s Complement Byte $FF – (M) ⇒ M

COMA One’s Complement A $FF – (A) ⇒ A

COMB One’s Complement B $FF – (B) ⇒ B

COMD One’s Complement D $FFFF – (D) ⇒ D

COME One’s Complement E $FFFF – (E) ⇒ E

COMW One’s Complement Word $FFFF – M : M + 1 ⇒ M : M + 1

NEG Two’s Complement Byte $00 – (M) ⇒ M

NEGA Two’s Complement A $00 – (A) ⇒ A

NEGB Two’s Complement B $00 – (B) ⇒ B

NEGD Two’s Complement D $0000 – (D) ⇒ D

NEGE Two’s Complement E $0000 – (E) ⇒ E

NEGW Two’s Complement Word $0000 – (M : M + 1) ⇒ M : M + 1
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.3.7 Boolean Logic Instructions

Each of these instructions performs the Boolean logic operation represented by the
mnemonic. There are 8- and 16-bit versions of each instruction.

There are special forms of logic instructions for stack pointer, program counter, index
register, and address extension field manipulation. Refer to the appropriate summary
for more information.

5.4 Bit Test and Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in an
accumulator or in memory. BITA and BITB provide a convenient means of setting con-
dition codes without altering the value of either operand.

5.5 Shift and Rotate Instructions

There are shift and rotate commands for all accumulators, for memory bytes, and for
memory words. All shift and rotate operations pass the shifted-out bit through the carry
bit in the CCR in order to facilitate multiple-byte and multiple-word operations. There
are no separate logical left shift operations. Use arithmetic shift left (ASL) for logic shift
left (LSL) functions — LSL mnemonics will be assembled as ASL operations.

Table 5-15 Boolean Logic Summary

Mnemonic Function Operation

ANDA AND A (A) × (M) ⇒ A

ANDB AND B (B) × (M) ⇒ B

ANDD AND D (D) × (M : M + 1) ⇒ D

ANDE AND E (E) × (M : M + 1) ⇒ E

EORA Exclusive OR A (A) ⊕ (M) ⇒ A

EORB Exclusive OR B (B) ⊕ (M) ⇒ B

EORD Exclusive OR D (D) ⊕ (M : M + 1) ⇒ D

EORE Exclusive OR E (E) ⊕ (M : M + 1) ⇒ E

ORAA OR A (A) ✛ (M) ⇒ A

ORAB OR B (B) ✛ (M) ⇒ B

ORD OR D (D) ✛ (M : M + 1) ⇒ D

ORE OR E (E) ✛ (M : M + 1) ⇒ E

Table 5-16 Bit Test and Manipulation Summary

Mnemonic Function Operation

BITA Bit Test A (A) × (M)

BITB Bit Test B (B) × (M)

BCLR Clear Bit(s) (M) × (Mask) ⇒ M

BCLRW Clear Bit(s) Word (M : M + 1) × (Mask) ⇒ M : M + 1

BSET Set Bit(s) (M) ✛ (Mask) ⇒ M

BSETW Set Bit(s) Word (M : M + 1) ✛ (Mask) ⇒ M : M + 1
 MOTOROLA INSTRUCTION SET CPU16

5-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Special shift commands move multiply and accumulate unit accumulator bits. See
5.10 Digital Signal Processing Instructions for more information.

Table 5-17 Logic Shift Summary

Mnemonic Function Operation

LSR Logic Shift Right

LSRA Logic Shift Right A

LSRB Logic Shift Right B

LSRD Logic Shift Right D

LSRE Logic Shift Right E

LSRW Logic Shift Right Word
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5-18 Arithmetic Shift Summary

Mnemonic Function Operation

ASL
(LSL)

Arithmetic Shift Left

ASLA
(LSLA)

Arithmetic Shift Left A

ASLB
(LSLB)

Arithmetic Shift Left B

ASLD
(LSLD)

Arithmetic Shift Left D

ASLE
(LSLE)

Arithmetic Shift Left E

ASLW
(LSLW)

Arithmetic Shift Left Word

ASR Arithmetic Shift Right

ASRA Arithmetic Shift Right A

ASRB Arithmetic Shift Right B

ASRD Arithmetic Shift Right D

ASRE Arithmetic Shift Right E

ASRW Arithmetic Shift Right Word
 MOTOROLA INSTRUCTION SET CPU16

5-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6 Program Control Instructions

Program control instructions affect the sequence of instruction execution.

Branch instructions cause sequence to change when specific conditions exist. The
CPU16 has short, long, and bit-condition branches.

Jump instructions cause immediate changes in sequence. The CPU16 has a true 20-
bit address jump instruction.

Subroutine instructions optimize the process of temporarily transferring control to a
segment of code that performs a particular task. The CPU16 can branch or jump to
subroutines.

Interrupt instructions handle immediate transfer of control to a routine that performs a
critical task. Software interrupts are a type of exception. SECTION 9 EXCEPTION
PROCESSING covers interrupt exception processing in detail.

Table 5-19 Rotate Summary

Mnemonic Function Operation

ROL Rotate Left

ROLA Rotate Left A

ROLB Rotate Left B

ROLD Rotate Left D

ROLE Rotate Left E

ROLW Rotate Left Word

ROR Rotate Right

RORA Rotate Right A

RORB Rotate Right B

RORD Rotate Right D

RORE Rotate Right E

RORW Rotate Right Word
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6.1 Short Branch Instructions

Short branch instructions operate as follows. When a specified condition is met, a
signed 8-bit offset is added to the value in the program counter. If addition causes the
value in the PC to be greater than $FFFF or less than $0000, the PK extension field is
incremented or decremented. Program execution continues at the new extended ad-
dress.

Short branch instructions can be classified by the type of condition that must be satis-
fied in order for a branch to be taken. Some instructions belong to more than one clas-
sification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register is in a spe-
cific state as a result of a previous operation.

Unsigned conditional branches are taken when comparison or test of unsigned quan-
tities results in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities results in a
specific combination of condition code register bits.

Table 5-20 Short Branch Summary

Mnemonic Opcode Equation Condition

BRA B0 1 = 1 True

BRN B1 1 = 0 False

Simple Branches

Mnemonic Opcode Equation Condition

BCC B4 C = 0 Equation

BCS B5 C = 1 Equation

BEQ B7 Z = 1 Equation

BMI BB N = 1 Equation

BNE B6 Z = 0 Equation

BPL BA N = 0 Equation

BVC B8 V = 0 Equation

BVS B9 V = 1 Equation

Unsigned Branches

Mnemonic Opcode Equation Condition

BCC B4 C = 0 (X) ≥ (M)

BCS B5 C = 1 (X) < (M)

BEQ B7 Z = 1 (X) = (M)

BHI B2 C ✛ Z = 0 (X) > (M)

BLS B3 C ✛ Z = 1 (X) ≤ (M)

BNE B6 Z = 0 (X) ≠ (M)
 MOTOROLA INSTRUCTION SET CPU16

5-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note

The numeric range of short branch offset values is $80 (–128) to $7F
(127), but actual displacement from the instruction differs from the
range for two reasons.

First, PC values are automatically aligned to word boundaries. Only
even offsets are valid — an odd offset value is rounded down. Maxi-
mum positive offset is $7E.

Second, instruction pipelining affects the value in the PC at the time
an instruction executes. The value to which the offset is added is the
address of the instruction plus $0006. At maximum positive offset
($7E), displacement from the branch instruction is 132. At maximum
negative offset ($80), displacement is –122.

5.6.2 Long Branch Instructions

Long branch instructions operate as follows. When a specified condition is met, a
signed 16-bit offset is added to the value in the program counter. If addition causes the
value in the PC to be greater than $FFFF or less than $0000, the PK extension field is
incremented or decremented. Program execution continues at the new extended ad-
dress. Long branches are used when large displacements between decision-making
steps are necessary.

Long branch instructions can be classified by the type of condition that must be satis-
fied in order for a branch to be taken. Some instructions belong to more than one clas-
sification.

Unary branch instructions always execute.

Simple branches are taken when a specific bit in the condition code register is in a spe-
cific state as a result of a previous operation.

Unsigned branches are taken when comparison or test of unsigned quantities results
in a specific combination of condition code register bits.

Signed branches are taken when comparison or test of signed quantities results in a
specific combination of condition code register bits.

Signed Branches

Mnemonic Opcode Equation Condition

BEQ B7 Z = 1 (X) = (M)

BGE BC N ⊕ V = 0 (X) ≥ (M)

BGT BE Z ✛ (N ⊕ V) = 0 (X) > (M)

BLE BF Z ✛ (N ⊕ V) = 1 (X) ≤ (M)

BLT BD N ⊕ V = 1 (X) < (M)

BNE B6 Z = 0 (X) ≠ (M)

Table 5-20 Short Branch Summary (Continued)
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note

The numeric range of long branch offset values is $8000 (–32768) to
$7FFF (32767), but actual displacement from the instruction differs
from the range for two reasons.

First, PC values are automatically aligned to word boundaries. Only
even offsets are valid — an odd offset value will be rounded down.
Maximum positive offset is $7FFE.

Second, instruction pipelining affects the value in the PC at the time
an instruction executes. The value to which the offset is added is the

Table 5-21 Long Branch Instructions

Unary Branches

Mnemonic Opcode Equation Condition

LBRA 3780 1 = 1 True

LBRN 3781 1 = 0 False

Simple Branches

Mnemonic Opcode Equation Condition

LBCC 3784 C = 0 Equation

LBCS 3785 C = 1 Equation

LBEQ 3787 Z = 1 Equation

LBEV 3791 EV = 1 Equation

LBMI 378B N = 1 Equation

LBMV 3790 MV = 1 Equation

LBNE 3786 Z = 0 Equation

LBPL 378A N = 0 Equation

LBVC 3788 V = 0 Equation

LBVS 3789 V = 1 Equation

Unsigned Branches

Mnemonic Opcode Equation Condition

LBCC 3784 C = 0 (X) ≥ (M)

LBCS 3785 C = 1 (X) < (M)

LBEQ 3787 Z = 1 (X) = (M)

LBHI 3782 C ✛ Z = 0 (X) > (M)

LBLS 3783 C ✛ Z = 1 (X) ≤ (M)

LBNE 3786 Z = 0 (X) ≠ (M)

Signed Branches

Mnemonic Opcode Equation Condition

LBEQ 3787 Z = 1 (X) = (M)

LBGE 378C N ⊕ V = 0 (X) ≥ (M)

LBGT 378E Z ✛ (N ⊕ V) = 0 (X) > (M)

LBLE 378F Z ✛ (N ⊕ V) = 1 (X) ≤ (M)

LBLT 378D N ⊕ V = 1 (X) < (M)

LBNE 3786 Z = 0 (X) ≠ (M)
 MOTOROLA INSTRUCTION SET CPU16

5-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

address of the instruction plus $0006. At maximum positive offset
($7FFE), displacement from the instruction is 32772. At maximum
negative offset ($8000), displacement is –32762.

5.6.3 Bit Condition Branch Instructions

Bit condition branches are taken when specific bits in a memory byte are in a specific
state. A mask operand is used to test a memory location pointed to by a 20-bit indexed
or extended effective address. If the bits in memory match the mask, an 8- or 16-bit
signed relative offset is added to the current value of the program counter. If addition
causes the value in the PC to be greater than $FFFF or less than $0000, the PK ex-
tension field is incremented or decremented. Program execution continues at the new
extended address.

Note

The numeric range of 8-bit offset values is $80 (–128) to $7F (127),
and the numeric range of 16-bit offset values is $8000 (–32768) to
$7FFF (32767), but actual displacement from the branch instruction
differs from the range, for two reasons.

First, PC values are automatically aligned to word boundaries. Only
even offsets are valid — an odd offset value is rounded down. Maxi-
mum positive 8-bit offset is $7E; maximum positive 16-bit offset is
$7FFE.

Second, instruction pipelining affects the value in the PC at the time
an instruction executes. The value to which the offset is added is the
address of the instruction plus $0006. Maximum positive ($7E) and
negative ($80) 8-bit offsets correspond to displacements of 132 and

Table 5-22 Bit Condition Branch Summary

Mnemonic Addressing Mode Opcode Equation

BRCLR IND8, X CB (M) • (Mask) = 0

IND8, Y DB

IND8, Z EB

IND16, X 0A

IND16, Y 1A

IND16, Z 2A

EXT 3A

BRSET IND8, X 8B (M) • (Mask) = 0

IND8, Y 9B

IND8, Z AB

IND16, X 0B

IND16, Y 1B

IND16, Z 2B

EXT 3B
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

–122 from the branch instruction. Maximum positive ($7FFE) and
negative ($8000) 16-bit offsets correspond to displacements of
32772 and –32762.

5.6.4 Jump Instruction

The CPU16 JMP instruction uses 20-bit addressing, so that control can be passed to
any address in the memory map. It should be noted that BRA and LBRA execute in
fewer cycles than the indexed forms of JMP.

5.6.5 Subroutine Instructions

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a jump
(JSR). A single instruction, RTS returns control to the calling routine.

All three types of calling instructions stack return PC and CCR values prior to transfer-
ring control to a subroutine. Stacking the CCR also saves the PK extension field. Other
resources can be saved by means of the PSHM instruction, if necessary.

Note

Instruction pipelining affects the operation of BSR. When a subrou-
tine is called, PK : PC contain the address of the calling instruction
plus $0006. LBSR and JSR stack this value, but BSR must adjust it
prior to stacking.

Table 5-23 Jump Summary

Mnemonic Function Operation

JMP Jump 20-bit Address ⇒ PK : PC

Table 5-24 Subroutine Summary

Mnemonic Function Operation

BSR Branch to Subroutine (PK : PC) − 2 ⇒ PK : PC
Push (PC)

(SK : SP) – 2 ⇒ SK : SP
Push (CCR)

(SK : SP) – 2 ⇒ SK : SP
(PK : PC) + Offset ⇒ PK : PC

JSR Jump to Subroutine Push (PC)
(SK : SP) – 2 ⇒ SK : SP

Push (CCR)
(SK : SP) – 2 ⇒ SK : SP

20-bit Address ⇒ PK : PC

LBSR Long Branch to Subroutine Push (PC)
(SK : SP) – 2 ⇒ SK : SP

Push (CCR)
(SK : SP) – 2 ⇒ SK : SP

(PK : PC) + Offset ⇒ PK : PC

RTS Return from Subroutine (SK : SP) + 2 ⇒ SK : SP
Pull PK

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) – 2 ⇒ PK : PC
 MOTOROLA INSTRUCTION SET CPU16

5-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBSR and JSR are 4-byte instructions. For program execution to re-
sume at the instruction immediately following them, RTS must sub-
tract $0002 from the stacked PK : PC value.

BSR is a 2-byte instruction. BSR subtracts $0002 from the stacked
value prior to stacking so that RTS will work correctly.

5.6.6 Interrupt Instructions

The SWI instruction initiates synchronous exception processing. First, return PC and
CCR values are stacked (stacking the CCR saves the PK extension field). After return
values are stacked, the PK field is cleared, and the PC is loaded with exception vector
6 (content of address $000C).

The RTI instruction is used to terminate all exception handlers, including interrupt ser-
vice routines. It causes normal execution to resume with the instruction following the
last instruction that executed prior to interrupt. See SECTION 9 EXCEPTION PRO-
CESSING for more information.

Note

Instruction pipelining affects the operation of SWI. When an interrupt
occurs, PK : PC contain the address of the interrupted instruction
plus $0006. This value is stacked during asynchronous exception
processing, but synchronous exceptions, such as SWI, must adjust
the stacked value so that RTI can work correctly.

For program execution to resume with the interrupted instruction fol-
lowing an asynchronous interrupt, RTI must subtract $0006 from the
stacked PK : PC value.

Synchronous interrupts allow an interrupted instruction to finish exe-
cution before exception processing begins. The SWI instruction must
add $0002 prior to stacking in order for execution to resume correct-
ly.

Table 5-25 Interrupt Summary

Mnemonic Function Operation

RTI Return from Interrupt (SK : SP) + 2 ⇒ SK : SP
Pull CCR

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) – 6 ⇒ PK : PC

SWI Software Interrupt (PK : PC) + 2 ⇒ PK : PC
Push (PC)

(SK : SP) – 2 ⇒ SK : SP
Push (CCR)

(SK : SP) – 2 ⇒ SK : SP
$0 ⇒ PK

SWI Vector ⇒ PC
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.7 Indexing and Address Extension Instructions

The CPU16 has a complete set of instructions that enable a user to take full advantage
of 20-bit pseudolinear addressing. These instructions use specialized forms of math-
ematic and data transfer instructions to perform index register manipulation and exten-
sion field manipulation.

5.7.1 Indexing Instructions

Indexing instructions perform 8- and 16-bit operations on the three index registers and
accumulators, other registers, or memory. Index addition and transfer instructions also
affect the associated extension field.

Table 5-26 Indexing Summary

Addition Instructions

Mnemonic Function Operation

ABX Add B to IX (XK : IX) + (000 : B) ⇒ XK : IX

ABY Add B to IY (YK : IY) + (000 : B) ⇒ YK : IY

ABZ Add B to IZ (ZK : Z) + (000 : B) ⇒ ZK : IZ

ADX Add D to IX (XK : IX) + (« D) ⇒ XK : IX

ADY Add D to IY (YK : IY) + (« D) ⇒ YK : IY

ADZ Add D to IZ (ZK : IZ) + (« D) ⇒ ZK : IZ

AEX Add E to IX (XK : IX) + (« D)⇒ XK : IX

AEY Add E to IY (YK : IY) + (« E) ⇒ YK : IY

AEZ Add E to IZ (ZK : IZ) + (« E) ⇒ ZK : IZ

AIX Add Immediate Value to IX XK : IX + (« IMM8/16) ⇒ XK : IX

AIY Add Immediate Value to IY YK : IY + (« IMM8/16) ⇒ YK : IY

AIZ Add Immediate Value to IZ ZK : IZ + (« IMM8/16) ⇒ ZK : IZ

Compare Instructions

Mnemonic Function Operation

CPX Compare IX to Memory (IX) – (M : M + 1)

CPY Compare IY to Memory (IY) – (M : M + 1)

CPZ Compare IZ to Memory (IZ) – (M : M + 1)

Load Instructions

Mnemonic Function Operation

LDX Load IX (M : M + 1) ⇒ IX

LDY Load IY (M : M + 1) ⇒ IY

LDZ Load IZ (M : M + 1) ⇒ IZ

Store Instructions

Mnemonic Function Operation

STX Store IX (IX) ⇒ M : M + 1

STY Store IY (IY) ⇒ M : M + 1

STZ Store IZ (IZ) ⇒ M : M + 1
 MOTOROLA INSTRUCTION SET CPU16

5-18 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.7.2 Address Extension Instructions

Address extension instructions transfer extension field contents to or from accumula-
tor B. Other types of operations can be performed on the extension field value while it
is in the accumulator.

Transfer Instructions

Mnemonic Function Operation

TSX Transfer SP to IX (SK : SP) + 2 ⇒ XK : IX

TSY Transfer SP to IY (SK : SP) + 2 ⇒ YK : IY

TSZ Transfer SP to IZ (SK : SP) + 2 ⇒ ZK : IZ

TXS Transfer IX to SP (XK : IX) – 2 ⇒ SK : SP

TXY Transfer IX to IY (XK : IX) ⇒ YK : IY

TXZ Transfer IX to IZ (XK : IX) ⇒ ZK : IZ

TYS Transfer IY to SP (YK : IY) – 2 ⇒ SK : SP

TYX Transfer IY to IX (YK : IY) ⇒ XK : IX

TYZ Transfer IY to IZ (YK : IY) ⇒ ZK : IZ

TZS Transfer IZ to SP (ZK : IZ) – 2 ⇒ SK : SP

TZX Transfer IZ to IX (ZK : IZ) ⇒ XK : IX

TZY Transfer IZ to IY (ZK : IZ) ⇒ ZK : IY

Exchange Instructions

Mnemonic Function Operation

XGDX Exchange D with IX (D) ⇔ (IX)

XGDY Exchange D with IY (D) ⇔ (IY)

XGDZ Exchange D with IZ (D) ⇔ (IZ)

XGEX Exchange E with IX (E) ⇔ (IX)

XGEY Exchange E with IY (E) ⇔ (IY)

XGEZ Exchange E with IZ (E) ⇔ (IZ)

Table 5-27 Address Extension Summary

Mnemonic Function Operation
TBEK Transfer B to EK (B) ⇒ EK
TBSK Transfer B to SK (B) ⇒ SK
TBXK Transfer B to XK (B) ⇒ XK
TBYK Transfer B to YK (B) ⇒ YK
TBZK Transfer B to ZK (B) ⇒ ZK
TEKB Transfer EK to B $0 ⇒ B[7:4]

(EK) ⇒ B[3:0]
TSKB Transfer SK to B (SK) ⇒ B[3:0]

$0 ⇒ B[7:4]
TXKB Transfer XK to B $0 ⇒ B[7:4]

(XK) ⇒ B[3:0]
TYKB Transfer YK to B $0 ⇒ B[7:4]

(YK) ⇒ B[3:0]
TZKB Transfer ZK to B $0 ⇒ B[7:4]

(ZK) ⇒ B[3:0]

Table 5-26 Indexing Summary (Continued)
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-19

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8 Stacking Instructions

There are two types of stacking instructions. Stack pointer instructions use specialized
forms of mathematic and data transfer instructions to perform stack pointer manipula-
tion. Stack operation instructions save information on and retrieve information from the
system stack.

Table 5-28 Stacking Summary

Stack Pointer Instructions

Mnemonic Function Operation

AIS Add Immediate Data to SP SK : SP + (« IMM16) ⇒ SK : SP

CPS Compare SP to Memory (SP) – (M : M + 1)

LDS Load SP (M : M + 1) ⇒ SP

STS Store SP (SP) ⇒ M : M + 1

TSX Transfer SP to IX (SK : SP) + 2 ⇒ XK : IX

TSY Transfer SP to IY (SK : SP) + 2 ⇒ YK : IY

TSZ Transfer SP to IZ (SK : SP) + 2 ⇒ ZK : IZ

TXS Transfer IX to SP (XK : IX) – 2 ⇒ SK : SP

TYS Transfer IY to SP (YK : IY) – 2 ⇒ SK : SP

TZS Transfer IZ to SP (ZK : IZ) – 2 ⇒ SK : SP

Stack Operation Instructions

Mnemonic Function Operation

PSHA Push A (SK : SP) + 1 ⇒ SK : SP
Push (A)

(SK : SP) – 2 ⇒ SK : SP

PSHB Push B (SK : SP) + 1 ⇒ SK : SP
Push (B)

(SK : SP) – 2 ⇒ SK : SP

PSHM Push Multiple Registers
Mask bits:

0 = D 1 = E
2 = IX 3 = IY
4 = IZ 5 = K
6 = CCR 7 = (reserved)

For mask bits 0 to 6 :

If mask bit set
Push register

(SK : SP) – 2 ⇒ SK : SP

PULA Pull A (SK : SP) + 2 ⇒ SK : SP
Pull (A)

(SK : SP) – 1 ⇒ SK : SP

PULB Pull B (SK : SP) + 2 ⇒ SK : SP
Pull (B)

(SK : SP) – 1 ⇒ SK : SP

PULM Pull Multiple Registers
Mask bits:

0 = CCR[15:4] 1 = K
2 = IZ 3 = IY
4 = IX 5 = E
6 = D 7 = (reserved)

For mask bits 0 to 7:

If mask bit set
(SK : SP) + 2 ⇒ SK : SP

Pull register
 MOTOROLA INSTRUCTION SET CPU16

5-20 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9 Condition Code Instructions

Condition code instructions use specialized forms of mathematic and data transfer in-
structions to perform condition code register manipulation. Interrupts are not acknowl-
edged until after the instruction following ANDP, ORP, TAP, and TDP has executed.
Refer to 5.11 Stop and Wait Instructions for more information.

5.10 Digital Signal Processing Instructions

DSP instructions use the CPU16 multiply and accumulate unit to implement digital fil-
ters and other signal processing functions. Other instructions, notably those that oper-
ate on concatenated E and D accumulators, are also used. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Table 5-29 Condition Code Summary

Mnemonic Function Operation

ANDP AND CCR (CCR) ¥ IMM16 ⇒ CCR[15:4]

ORP OR CCR (CCR) ; IMM16 ⇒ CCR[15:4]

TAP Transfer A to CCR (A[7:0]) ⇒ CCR[15:8]

TDP Transfer D to CCR (D) ⇒ CCR[15:4]

TPA Transfer CCR MSB to A (CCR[15:8]) ⇒ A

TPD Transfer CCR to D (CCR) ⇒ D

Table 5-30 DSP Summary

Mnemonic Function Operation

ACE Add E to AM[31:15] (AM[31:15]) + (E) ⇒ AM

ACED Add concatenated E and D to AM (E : D) + (AM) ⇒ AM

ASLM Arithmetic Shift Left AM

ASRM Arithmetic Shift Right AM

CLRM Clear AM $000000000 ⇒ AM[35:0]

LDHI Initialize HR and IR (M : M + 1)X ⇒ HR
(M : M + 1)Y ⇒ IR

MAC Multiply and Accumulate
Signed 16-Bit Fractions

(HR) ∗ (IR) ⇒ E : D
(AM) + (E : D) ⇒ AM
Qualified (IX) ⇒ IX
Qualified (IY) ⇒ IY

(HR) ⇒ IZ
(M : M + 1)X ⇒ HR
(M : M + 1)Y ⇒ IR

PSHMAC Push MAC State MAC Registers ⇒ Stack

PULMAC Pull MAC State Stack ⇒ MAC Registers
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-21

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.11 Stop and Wait Instructions

There are two instructions that put the CPU16 in an inactive state. Both require that
either an interrupt or a reset exception occurs before normal execution of instructions
resumes. However, each operates differently.

LPSTOP minimizes microcontroller power consumption. The CPU16 initiates a stop,
but it and other controller modules are deactivated by the microcontroller system inte-
gration module. Reactivation is also handled by the integration module. The interrupt
priority field from the CPU16 condition code register is copied into the integration mod-
ule external bus interface, then the system clock to the processor is stopped. When a
reset or an interrupt of higher priority than the IP value occurs, the integration module
activates the CPU16, and the appropriate exception processing sequence begins.

WAI idles the CPU16, but does not affect operation of other microcontroller modules.
The IP field is not copied to the integration module. System clocks continue to run. The
processor waits until a reset or an interrupt of higher priority than the IP value occurs,
then begins the appropriate exception processing sequence.

Because the system integration module does not restart the CPU16, interrupts are ac-
knowledged more quickly following WAI than following LPSTOP. See SECTION 9 EX-
CEPTION PROCESSING for more information.

RMAC Repeating
Multiply and Accumulate
Signed 16-Bit Fractions

Repeat until (E) < 0
(AM) + (H) ∗ (I) ⇒ AM
Qualified (IX) ⇒ IX;
Qualified (IY) ⇒ IY;
(M : M + 1)X ⇒ H;
(M : M + 1)Y ⇒ I

(E) – 1 ⇒ E

TDMSK Transfer D to XMSK : YMSK (D[15:8]) ⇒ X MASK
(D[7:0]) ⇒ Y MASK

TEDM Transfer E and D to AM[31:0]
Sign Extend AM

(D) ⇒ AM[15:0]
(E) ⇒ AM[31:16]

AM[32:35] = AM31

TEM Transfer E to AM[31:16]
Sign Extend AM
Clear AM LSB

(E) ⇒ AM[31:16]
$00 ⇒ AM[15:0]

AM[32:35] = AM31

TMER Transfer AM to E Rounded Rounded (AM) ⇒ Temp
If (SM • (EV ; MV))

then Saturation ⇒ E
else Temp[31:16] ⇒ E

TMET Transfer AM to E Truncated If (SM • (EV ; MV))
then Saturation ⇒ E
else AM[31:16] ⇒ E

TMXED Transfer AM to IX : E : D AM[35:32] ⇒ IX[3:0]
AM35 ⇒ IX[15:4]
AM[31:16] ⇒ E
AM[15:0] ⇒ D

Table 5-30 DSP Summary (Continued)

Mnemonic Function Operation
 MOTOROLA INSTRUCTION SET CPU16

5-22 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To make certain that conditions for termination of LPSTOP and WAI are correct, inter-
rupts are not recognized until after the instruction following ANDP, ORP, TAP, and
TDP executes. This prevents interrupt exception processing during the period after the
mask changes but before the following instruction executes.

5.12 Background Mode and Null Operations

Background debug mode is a special CPU16 operating mode that is used for system
development and debugging. Executing BGND when BDM is enabled puts the CPU16
in this mode. For complete information refer to SECTION 10 DEVELOPMENT SUP-
PORT.

Null operations are often used to replace other instructions during software debugging.
Replacing conditional branch instructions with BRN, for instance, permits testing a de-
cision-making routine without actually taking the branches.

5.13 Comparison of CPU16 and M68HC11 Instruction Sets

Most M68HC11 instructions are a source-code compatible subset of the CPU16
instruction set. However, certain M68HC11 instructions have been replaced by func-
tionally equivalent CPU16 instructions, and some M68HC11 instructions operate dif-
ferently in the CPU16. APPENDIX A COMPARISON OF CPU16/M68HC11 CPU
ASSEMBLY LANGUAGE gives detailed information.

Table 5-33 shows M68HC11 instructions that have either been replaced by CPU16 in-
structions or that operate differently in the CPU16. Replacement instructions are not
identical to M68HC11 instructions; M68HC11 code must be altered to establish proper
preconditions.

All CPU16 instruction cycle counts and execution times differ from those of the
M68HC11. SECTION 6 INSTRUCTION GLOSSARY gives information on instruction
cycles. See SECTION 8 INSTRUCTION TIMING for information regarding calculation
of instruction cycle times.

Table 5-31 Stop and Wait Summary

Mnemonic Function Operation

LPSTOP Low Power Stop If S
then STOP
else NOP

WAI Wait for Interrupt WAIT

Table 5-32 Background Mode and Null Operations

Mnemonic Function Operation

BGND Enter Background Debugging Mode If BDM enabled
enter BDM;

else, illegal instruction

BRN Branch Never If 1 = 0, branch

LBRN Long Branch Never If 1 = 0, branch

NOP Null operation —
CPU16 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 5-23

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*Motorola assemblers will automatically translate LSL mnemonics

Table 5-33 CPU16 Implementation of M68HC11 Instructions

M68HC11 Instruction M68HC16 Implementation

BHS Replaced by BCC

BLO Replaced by BCS

BSR Generates a different stack frame

CLC Replaced by ANDP

CLI Replaced by ANDP

CLV Replaced by ANDP

DES Replaced by AIS

DEX Replaced by AIX

DEY Replaced by AIY

INS Replaced by AIS

INX Replaced by AIX

INY Replaced by AIY

JMP IND8 addressing modes replaced by IND20 and EXT modes

JSR IND8 addressing modes replaced by IND20 and EXT modes
Generates a different stack frame

LSL, LSLD Use ASL instructions*

PSHX Replaced by PSHM

PSHY Replaced by PSHM

PULX Replaced by PULM

PULY Replaced by PULM

RTI Reloads PC and CCR only

RTS Uses two-word stack frame

SEC Replaced by ORP

SEI Replaced by ORP

SEV Replaced by ORP

STOP Replaced by LPSTOP

TAP CPU16 CCR bits differ from M68HC11
CPU16 interrupt priority scheme differs from M68HC11

TPA CPU16 CCR bits differ from M68HC11
CPU16 interrupt priority scheme differs from M68HC11

TSX Adds two to SK : SP before transfer to XK : IX

TSY Adds two to SK : SP before transfer to YK : IY

TXS Subtracts two from XK : IX before transfer to SK : SP

TXY Transfers XK field to YK field

TYS Subtracts two from YK : IY before transfer to SK : SP

TYX Transfers YK field to XK field

WAI Waits indefinitely for interrupt or reset
Generates a different stack frame
 MOTOROLA INSTRUCTION SET CPU16

5-24 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 6 INSTRUCTION GLOSSARY
The instruction glossary presents detailed information concerning each CPU16 in-
struction in concise form. 6.1 Assembler Syntax shows standard assembler syntax
formats. 6.2 Instructions contains the glossary pages. 6.3 Condition Code Evalua-
tion lists Boolean expressions used to determine the effect of instructions on condition
codes. 6.4 Instruction Set Summary is a quick reference to the instruction set.

6.1 Assembler Syntax

Addressing mode determines standard assembler syntax. Table 6-1 shows the stan-
dard formats. Bit set and clear instructions, bit condition branch instructions, jump
instructions, multiply and accumulate instructions, move instructions and register
stacking instructions have special syntax. Information on syntax is given on the appro-
priate glossary page. APPENDIX B MOTOROLA ASSEMBLER SYNTAX is a de-
tailed syntax reference.

6.2 Instructions

Each instruction is listed alphabetically by mnemonic. Each listing contains complete
information about instruction format, operation, and the effect an operation has on the
condition code register.

The number of system clock cycles required to execute each instruction is also shown.
Cycle counts are based on bus accesses that require two system clock cycles each,
a 16-bit data bus, and aligned access. Cycle counts include system clock cycles re-
quired for prefetch, operand access, and internal operation. See SECTION 8 IN-
STRUCTION TIMING for more information.

Table 6-1 Standard Assembler Formats

Addressing Mode Instruction Mnemonic E,Index Register Symbol

Extended Instruction Mnemonic Address Extension Operand

Immediate Instruction Mnemonic #Operand

Indexed Instruction Mnemonic Offset Operand,Index Register Symbol

Inherent Instruction Mnemonic

Relative Instruction Mnemonic Displacement
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-1 Typical Instruction Glossary Entry

Source Form Address Mode

S X H

— — ∆

N: Set if MSB of resu

Z: Set if result is $00

V: 0; Cleared.

Addressing Modes, Machine Code, an

Load Inde

Operation: (M : M + 1) ⇒

Description: Loads the most significa
memory at the addres

Condition Codes and Boolean Form

LDX

Obje

 X

LDX
LDX
LDX
LDX
LDX
LDX
LDX
LDX

#opr16i
opr8a
opr16a
oprx0_xysp
oprx9,xysp
oprx16,xysp
[D,xysp]
[oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE jj
DE d
FE h
EE
E
E

EX GLO PG

DETAILED SYNTAX
AND

CYCLE-BY-CYCLE
OPERATION

EFFECT ON
CONDITION CODE REGISTER

STATUS BITS

DETAILED DESCRIPTION
OF OPERATION

SYMBOLIC DESCRIPTION
OF OPERATION

MNEMONIC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABA Add B to A ABA
Operation: (A) + (B) ⇒ A

Description: Adds the content of accumulator B to the content of accumulator A,
then places the result in accumulator A. Content of accumulator B
does not change. The ABA operation affects the CCR H bit, which
makes it useful for BCD arithmetic (see DAA for more information).

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from A during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — ∆ — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370B — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABX Add B to IX ABX
Operation: (XK : IX) + (000 : B) ⇒ XK : IX

Description: Adds the zero-extended content of accumulator B to the content of
index register X, then places the result in index register X. Content
of accumulator B does not change. If IX overflows as a result of the
operation, the XK is incremented or decremented.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 374F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABY Add B to IY ABY
Operation: (YK : IY) + (000 : B) ⇒ YK : IY

Description: Adds the zero-extended content of accumulator B to the content of
index register Y, then places the result in index register Y. Content of
accumulator B does not change. If IY overflows as a result of the op-
eration, the YK is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 375F — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ABZ Add B to IZ ABZ
Operation: (ZK : IZ) + (000 : B) ⇒ ZK : IZ

Description: Adds the zero-extended content of accumulator B to the content of
index register Z, then places the result in index register Z. Content of
accumulator B does not change. If IZ overflows as a result of the op-
eration, the ZK is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 376F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ACE Add E to AM ACE
Operation: (AM[31:16]) + (E) ⇒ AM

Description: Adds the content of accumulator E to bits 31 to 16 of accumulator M,
then places the result in accumulator M. Bits 15 to 0 of accumulator
M are not affected. The value in E is assumed to be a 16-bit signed
fraction. See SECTION 11 DIGITAL SIGNAL PROCESSING for
more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Set if overflow into AM35 occurs during addition; else not affected.

H: Not affected.
EV: Set if overflow into AM[34:31] occurs during addition; else cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 3722 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ACED Add E : D to AM ACED
Operation: (AM) + (E : D) ⇒ AM

Description: The concatenated contents of accumulators E and D are added to
accumulator M. The value in the concatenated registers is assumed
to be a 32-bit signed fraction. See SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Set if overflow into AM35 occurs as a result of addition; else cleared.

H: Not affected.
EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 3723 — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADCA Add with Carry to A ADCA
Operation: (A) + (M) + C ⇒ A

Description: Adds the value of the CCR carry bit to the sum of the content of ac-
cumulator A and a memory byte, then places the result in accumula-
tor A. Memory content is not affected. ADCA operation affects the
CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from A during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — ∆ — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 43 ff 6
IND8, Y 53 ff 6
IND8, Z 63 ff 6
IMM8 73 ii 2

IND16, X 1743 gggg 6
IND16, Y 1753 gggg 6
IND16, Z 1763 gggg 6

EXT 1773 hhll 6
E, X 2743 — 6
E, Y 2753 — 6
E, Z 2763 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADCB Add with Carry to B ADCB
Operation: (B) + (M) + C ⇒ B

Description: Adds the value of the CCR carry bit to the sum of the content of ac-
cumulator B and a memory byte, then places the result in accumula-
tor B. Memory content is not affected. ADCB operation affects the
CCR H bit, which makes it useful for BCD arithmetic.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Set if there is a carry from bit 3 during addition; else cleared.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if B = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from B during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — ∆ — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X C3 ff 6
IND8, Y D3 ff 6
IND8, Z E3 ff 6
IMM8 F3 ii 2

IND16, X 17C3 gggg 6
IND16, Y 17D3 gggg 6
IND16, Z 17E3 gggg 6

EXT 17F3 hhll 6
E, X 27C3 — 6
E, Y 27D3 — 6
E, Z 27E3 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADCD Add with Carry to D ADCD
Operation: (D) + (M : M + 1) + C ⇒ D

Description: Adds the value of the CCR carry bit to the sum of the content of ac-
cumulator D and a memory word, then places the result in accumu-
lator D. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from D during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 83 ff 6
IND8, Y 93 ff 6
IND8, Z A3 ff 6
IMM16 37B3 jjkk 4

IND16, X 37C3 gggg 6
IND16, Y 37D3 gggg 6
IND16, Z 37E3 gggg 6

EXT 37F3 hhll 6
E, X 2783 — 6
E, Y 2793 — 6
E, Z 27A3 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADCE Add with Carry to E ADCE
Operation: (E) + (M : M + 1) + C ⇒ E

Description: Adds the value of the CCR carry bit to the sum of the content of ac-
cumulator E and a memory word, then places the result in accumu-
lator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from E during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IMM16 3733 jjkk 4

IND16, X 3743 gggg 6
IND16, Y 3753 gggg 6
IND16, Z 3763 gggg 6

EXT 3773 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDA Add to A ADDA
Operation: (A) + (M) ⇒ A

Description: Adds a memory byte to the content of accumulator A, then places
the result in accumulator A. Memory content is not affected. ADDA
affects the CCR H bit . It is used for BCD arithmetic.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Set if operation requires a carry from A3; else cleared.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from A during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — ∆ — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 41 ff 6
IND8, Y 51 ff 6
IND8, Z 61 ff 6
IMM8 71 ii 2

IND16, X 1741 gggg 6
IND16, Y 1751 gggg 6
IND16, Z 1761 gggg 6

EXT 1771 hhll 6
E, X 2741 — 6
E, Y 2751 — 6
E, Z 2761 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDB Add to B ADDB
Operation: (B) + (M) ⇒ B

Description: Adds a memory byte to the content of accumulator B, then places
the result in accumulator B. Memory content is not affected. ADDB
affects the CCR H bit — it is used for BCD arithmetic.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Set if operation requires a carry from B3; else cleared.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from B during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — ∆ — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X C1 ff 6
IND8, Y D1 ff 6
IND8, Z E1 ff 6
IMM8 F1 ii 2

IND16, X 17C1 gggg 6
IND16, Y 17D1 gggg 6
IND16, Z 17E1 gggg 6

EXT 17F1 hhll 6
E, X 27C1 — 6
E, Y 27D1 — 6
E, Z 27E1 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDD Add to D ADDD
Operation: (D) + (M : M + 1) ⇒ D

Description: Adds a memory word to the content of accumulator D, then places
the result in accumulator D. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from D during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 81 ff 6
IND8, Y 91 ff 6
IND8, Z A1 ff 6
IMM8 FC ii 2
IMM16 37B1 jjkk 4

IND16, X 37C1 gggg 6
IND16, Y 37D1 gggg 6
IND16, Z 37E1 gggg 6

EXT 37F1 hhll 6
E, X 2781 — 6
E, Y 2791 — 6
E, Z 27A1 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDE Add to E ADDE
Operation: (E) + (M : M + 1) ⇒ E

Description: Adds a memory word to the content of accumulator E, then places
the result in accumulator E. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from E during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IMM8 7C ii 2
IMM16 3731 jjkk 4

IND16, X 3741 gggg 6
IND16, Y 3751 gggg 6
IND16, Z 3761 gggg 6

EXT 3771 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADE Add D to E ADE
Operation: (E) + (D) ⇒ E

Description: Adds the content of accumulator D to the content of accumulator E,
then places the result in accumulator E. Content of accumulator D is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if there is a carry from E during operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 2778 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADX Add D to IX ADX
Operation: (XK : IX) + (20 « D) ⇒ XK : IX

Description: Sign-extends the content of accumulator D to 20 bits, then adds it to
the content of concatenated XK and IX. Content of accumulator D
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37CD — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-18 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADY Add D to IY ADY
Operation: (YK : IY) + (20 « D) ⇒ YK : IY

Description: Sign-extends the content of accumulator D to 20 bits, then adds it to
the content of concatenated YK and IY. Content of accumulator D
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37DD — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-19

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADZ Add D to IZ ADZ
Operation: (ZK : IZ) + (20 « D) ⇒ ZK : IZ

Description: Sign-extends the content of accumulator D to 20 bits, then adds it to
the content of concatenated ZK and IZ. Content of accumulator D
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37ED — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-20 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AEX Add E to IX AEX
Operation: (XK : IX) + (20 « E) ⇒ XK : IX

Description: Sign-extends the content of accumulator E to 20 bits, then adds it to
the content of concatenated XK and IX. Content of accumulator E
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 374D — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-21

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AEY Add E to IY AEY
Operation: (YK : IY) + (20 « E) ⇒ YK : IY

Description: Sign-extends the content of accumulator E to 20 bits, then adds it to
the content of concatenated YK and IY. Content of accumulator E
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 375D — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-22 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AEZ Add E to IZ AEZ
Operation: (ZK : IZ) + (20 « E) ⇒ ZK : IZ

Description: Sign-extends the content of accumulator E to 20 bits, then adds it to
the content of concatenated ZK and IZ. Content of accumulator E
does not change.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 376D — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-23

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIS Add Immediate Value to Stack Pointer AIS
Operation: (SK : SP) + (20 « IMM)⇒ SK : SP

Description: Adds a 20-bit value to concatenated SK and SP. The 20-bit value is
formed by sign-extending an 8-bit or 16-bit signed immediate oper-
and.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
IMM8 3F ii 2
IMM16 373F jjkk 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-24 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIX Add Immediate Value to IX AIX
Operation: (XK : IX) + (20 « IMM) ⇒ XK : IX

Description: Adds a 20-bit value to the concatenated XK and IX. The 20-bit value
is formed by sign-extending an 8-bit or 16-bit signed immediate op-
erand.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Set if (IX) = $0000 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — ∆ — — — — —

Addressing Mode Opcode Operand Cycles
IMM8 3C ii 2
IMM16 373C jjkk 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-25

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIY Add Immediate Value to IY AIY
Operation: (YK : IY) + (20 « IMM) ⇒ YK : IY

Description: Adds a 20-bit value to the concatenated YK and IY. The 20-bit value
is formed by sign-extending an 8-bit or 16-bit signed immediate op-
erand.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Set if (IY) = $0000 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — ∆ — — — — —

Addressing Mode Opcode Operand Cycles
IMM8 3D ii 2
IMM16 373D jjkk 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-26 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIZ Add Immediate Value to IZ AIZ
Operation: (ZK : IZ) + (20 « IMM) ⇒ ZK : IZ

Description: Adds a 20-bit value to the concatenated ZK and IZ. The 20-bit value
is formed by sign-extending an 8-bit or 16-bit signed immediate op-
erand.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Set if (IZ) = $0000 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — ∆ — — — — —

Addressing Mode Opcode Operand Cycles
IMM8 3E ii 2
IMM16 373E jjkk 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-27

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDA AND A ANDA
Operation: (A) ≤ (M) ⇒ A

Description: Performs AND between the content of accumulator A and a memory
byte, then places the result in accumulator A. Memory content is not
affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 46 ff 6
IND8, Y 56 ff 6
IND8, Z 66 ff 6
IMM8 76 ii 2

IND16, X 1746 gggg 6
IND16, Y 1756 gggg 6
IND16, Z 1766 gggg 6

EXT 1776 hhll 6
E, X 2746 — 6
E, Y 2756 — 6
E, Z 2766 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-28 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDB AND B ANDB
Operation: (B) ≤ (M) ⇒ B

Description: Performs AND between the content of accumulator B and a memory
byte, then places the result in accumulator B. Memory content is not
affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X C6 ff 6
IND8, Y D6 ff 6
IND8, Z E6 ff 6
IMM8 F6 ii 2

IND16, X 17C6 gggg 6
IND16, Y 17D6 gggg 6
IND16, Z 17E6 gggg 6

EXT 17F6 hhll 6
E, X 27C6 — 6
E, Y 27D6 — 6
E, Z 27E6 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-29

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDD AND D ANDD
Operation: (D) ≤ (M : M + 1) ⇒ D

Description: Performs AND between the content of accumulator D and a memory
word, then places the result in accumulator D. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 86 ff 6
IND8, Y 96 ff 6
IND8, Z A6 ff 6
IMM16 37B6 jjkk 4

IND16, X 37C6 gggg 6
IND16, Y 37D6 gggg 6
IND16, Z 37E6 gggg 6

EXT 37F6 hhll 6
E, X 2786 — 6
E, Y 2796 — 6
E, Z 27A6 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-30 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDE AND E ANDE
Operation: (E) ≤ (M : M + 1) ⇒ E

Description: Performs AND between the content of accumulator E and a memory
word, then places the result in accumulator E. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IMM16 3736 jjkk 4

IND16, X 3746 gggg 6
IND16, Y 3756 gggg 6
IND16, Z 3766 gggg 6

EXT 3776 hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-31

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDP AND Condition Code Register ANDP
Operation: (CCR) ≤ IMM16 ⇒ CCR

Description: Performs AND between the content of the condition code register
and an unsigned immediate operand, then replaces the content of
the CCR with the result.

To make certain that conditions for termination of LPSTOP and WAI
are correct, interrupts are not recognized until after the instruction
following ANDP executes. This prevents interrupt exception process-
ing during the period after the mask changes but before the follow-
ing instruction executes.

Syntax: Standard

Condition Code Register:

S: Cleared if bit 15 of operand = 0; else unchanged.
MV: Cleared if bit 14 of operand = 0; else unchanged.

H: Cleared if bit 13 of operand = 0; else unchanged.
EV: Cleared if bit 12 of operand = 0; else unchanged.

N: Cleared if bit 11 of operand = 0; else unchanged.
Z: Cleared if bit 10 of operand = 0; else unchanged.
V: Cleared if bit 9 of operand = 0; else unchanged.
C: Cleared if bit 8 of operand = 0; else unchanged.
IP: Each bit in field cleared if corresponding bit [7:5] of operand = 0; else unchanged.

SM: Cleared if bit 4 of operand = 0; else unchanged.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ —

Addressing Mode Opcode Operand Cycles
IMM16 373A jjkk 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-32 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Left ASL
Operation:

Description: Shifts all eight bits of a memory byte one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 04 ff 8
IND8, Y 14 ff 8
IND8, Z 24 ff 8

IND16, X 1704 gggg 8
IND16, Y 1714 gggg 8
IND16, Z 1724 gggg 8

EXT 1734 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-33

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLA Arithmetic Shift Left A ASLA
Operation:

Description: Shifts all eight bits of accumulator A one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if A7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3704 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-34 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLB Arithmetic Shift Left B ASLB
Operation:

Description: Shifts all eight bits of accumulator B one place to the left. Bit 7 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3714 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-35

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLD Arithmetic Shift Left D ASLD
Operation:

Description: Shifts all sixteen bits of accumulator D one place to the left. Bit 15 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if D15 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27F4 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-36 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLE Arithmetic Shift Left E ASLE
Operation:

Description: Shifts all sixteen bits of accumulator E one place to the left. Bit 15 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if E15 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 2774 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-37

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLM Arithmetic Shift Left AM ASLM
Operation:

Description: Shifts all 36 bits of accumulator M one place to the left. Bit 35 is
transferred to the CCR C bit. Bit 0 is loaded with a zero. See SEC-
TION 11 DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Set if AM[35] has changed state as a result of operation; else unchanged.

H: Not affected.
EV: Cleared if AM[34:31] = $0000 or $1111 as a result of operation; else set.

N: Set if M35 = 1 as a result of operation; else cleared.
Z: Not affected.
V: Not affected.
C: Set if AM35 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ ∆ — — ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27B6 — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-38 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLW Arithmetic Shift Left Word ASLW
Operation:

Description: Shifts all sixteen bits of memory word one place to the left. Bit 15 is
transferred to the CCR C bit. Bit 0 is loaded with a zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M : M + 1[15] = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2704 gggg 8
IND16, Y 2714 gggg 8
IND16, Z 2724 gggg 8

EXT 2734 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-39

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Right ASR
Operation:

Description: Shifts all eight bits of a memory byte one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 set as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 0D ff 8
IND8, Y 1D ff 8
IND8, Z 2D ff 8

IND16, X 170D gggg 8
IND16, Y 171D gggg 8
IND16, Z 172D gggg 8

EXT 173D hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-40 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRA Arithmetic Shift Right A ASRA
Operation:

Description: Shifts all eight bits of accumulator A one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if A0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370D — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-41

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRB Arithmetic Shift Right B ASRB
Operation:

Description: Shifts all eight bits of accumulator B one place to the right. Bit 7 is
held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 371D — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-42 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRD Arithmetic Shift Right D ASRD
Operation:

Description: Shifts all sixteen bits of accumulator D one place to the right. Bit 15
is held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if D0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27FD — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-43

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRE Arithmetic Shift Right E ASRE
Operation:

Description: Shifts all sixteen bits of accumulator E one place to the right. Bit 15
is held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if E0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 277D — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-44 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRM Arithmetic Shift Right AM ASRM
Operation:

Description: Shifts all 36 bits of accumulator M one place to the right. Bit 35 is
held constant. Bit 0 is transferred to the CCR C bit. See SECTION
11 DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Cleared if AM[34:31] = $0000 or $1111 as a result of operation; else set.

N: Set if AM35 = 1 as a result of operation; else cleared.
Z: Not affected.
V: Not affected.
C: Set if AM0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — ∆ ∆ — — ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27BA — 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-45

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRW Arithmetic Shift Right Word ASRW
Operation:

Description: Shifts all sixteen bits of a memory word one place to the right. Bit 15
is held constant. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M : M + 1[0] = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 270D gggg 8
IND16, Y 271D gggg 8
IND16, Z 272D gggg 8

EXT 273D hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-46 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCC Branch If Carry Clear BCC
Operation: If C = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR carry bit has a value of zero.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple or
unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B4 rr 6, 2

Table 6-2 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-47

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR Clear Bits BCLR
Operation: (M) ≤ (Mask) ⇒ M

Description: Performs AND between a memory byte and the complement of a
mask byte. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory byte are unchanged. The location
of the mask differs for 8- and 16-bit addressing modes.

Syntax: BCLR address operand, [register symbol,] #mask

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Mask Operand Cycles
IND8, X 1708 mm ff 8
IND8, Y 1718 mm ff 8
IND8, Z 1728 mm ff 8

IND16, X 08 mm gggg 8
IND16, Y 18 mm gggg 8
IND16, Z 28 mm gggg 8

EXT 38 mm hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-48 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLRW Clear Bits in a Word BCLRW
Operation: (M : M + 1) ≤ (Mask) ⇒ M : M + 1

Description: Performs AND between a memory word and the complement of a
mask word. Bits in the mask are set to clear corresponding bits in
memory. Other bits in the memory word are unchanged.

Syntax: BCLRW Address Operand, [Index Register Symbol,] #Mask

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M15 = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Mask Cycles
IND16, X 2708 gggg mmmm 10
IND16, Y 2718 gggg mmmm 10
IND16, Z 2728 gggg mmmm 10

EXT 2738 hhll mmmm 10
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-49

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCS Branch If Carry Set BCS
Operation: If C = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR carry bit has a value of one.
An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple or
unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B5 rr 6, 2

Table 6-3 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-50 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BEQ Branch If Equal to Zero BEQ
Operation: If Z = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR zero bit has a value of one. An
8-bit signed relative offset is added to the current value of the pro-
gram counter. When the operation causes PC overflow, the PK field
is incremented or decremented. Used to implement simple, signed,
or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B7 rr 6, 2

Table 6-4 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-51

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGE Branch If Greater than or Equal to Zero BGE
Operation: If N ⊕ V = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR negative and overflow bits
both have a value of zero or both have a value of one. An 8-bit
signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is in-
cremented or decremented. Used to implement signed conditional
branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BC rr 6, 2

Table 6-5 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-52 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGND Enter Background Debug Mode BGND
Operation: If background debug mode is enabled, begin debug; else, illegal in-

struction trap

Description: Background debug mode is an operating mode in which the CPU16
microcode performs debugging functions. To prevent accidental en-
try, a specific method of enabling BDM is used. If BDM has been
correctly enabled, executing BGND will cause the CPU16 to sus-
pend normal operation. If BDM has not been correctly enabled, an
illegal instruction exception is generated. See SECTION 9 EXCEP-
TION PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37A6 — N/A
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-53

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGT Branch If Greater than Zero BGT
Operation: If Z ✛ (N ⊕ V) = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR negative and overflow bits
both have a value of zero or both have a value of one, and the CCR
zero bit has a value of zero. An 8-bit signed relative offset is added
to the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BE rr 6, 2

Table 6-6 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-54 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHI Branch If Higher BHI
Operation: If C ✛ Z = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR carry and zero bits both have
a value of zero. An 8-bit signed relative offset is added to the current
value of the program counter. When the operation causes PC over-
flow, the PK field is incremented or decremented. Used to imple-
ment unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B2 rr 6, 2

Table 6-7 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-55

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BITA Bit Test A BITA
Operation: (A) ≤ (M)

Description: Performs AND between the content of accumulator A and corre-
sponding bits in a memory byte. Condition codes are set, but neither
accumulator content nor memory content is changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 ≤ M7 = 1; else cleared.
Z: Set if (A) ≤ (M) = $00; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 49 ff 6
IND8, Y 59 ff 6
IND8, Z 69 ff 6
IMM8 79 ii 2

IND16, X 1749 gggg 6
IND16, Y 1759 gggg 6
IND16, Z 1769 gggg 6

EXT 1779 hhll 6
E, X 2749 — 6
E, Y 2759 — 6
E, Z 2769 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-56 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BITB Bit Test B BITB
Operation: (B) ≤ (M)

Description: Performs AND between the content of accumulator B and corre-
sponding bits in a memory byte. Condition codes are set, but neither
accumulator content nor memory content is changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 ≤ M7 = 1; else cleared.
Z: Set if (B) ≤ (M) = $00; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X C9 ff 6
IND8, Y D9 ff 6
IND8, Z E9 ff 6
IMM8 F9 ii 2

IND16, X 17C9 gggg 6
IND16, Y 17D9 gggg 6
IND16, Z 17E9 gggg 6

EXT 17F9 hhll 6
E, X 27C9 — 6
E, Y 27D9 — 6
E, Z 27E9 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-57

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLE Branch If Less than or Equal to Zero BLE
Operation: If Z ✛ (N ⊕ V) = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if either the CCR negative bit or overflow
bit has a value of one, or the CCR zero bit has a value of one. An 8-
bit signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is in-
cremented or decremented. Used to implement signed conditional
branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BF rr 6, 2

Table 6-8 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-58 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLS Branch If Lower or Same BLS
Operation: If C ✛ Z = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if either or both the CCR carry and zero
bits have a value of one. An 8-bit signed relative offset is added to
the current value of the program counter. When the operation caus-
es PC overflow, the PK field is incremented or decremented. Used
to implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B3 rr 6, 2

Table 6-9 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-59

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLT Branch If Less than Zero BLT
Operation: If N ⊕ V = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if either of the CCR negative or overflow
bits has a value of one. An 8-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented. Used to
implement signed conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BD rr 6, 2

Table 6-10 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-60 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMI Branch If Minus BMI
Operation: If N = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR negative bit has a value of
one. An 8-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple
conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BB rr 6, 2

Table 6-11 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-61

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BNE Branch If Not Equal to Zero BNE
Operation: If Z = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR zero bit has a value of zero. An
8-bit signed relative offset is added to the current value of the pro-
gram counter. When the operation causes PC overflow, the PK field
is incremented or decremented. Used to implement simple, signed,
and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B6 rr 6, 2

Table 6-12 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-62 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BPL Branch If Plus BPL
Operation: If N = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR negative bit has a value of ze-
ro. An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple con-
ditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 BA rr 6, 2

Table 6-13 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-63

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA
Operation: (PK : PC) + Offset ⇒ PK : PC

Description: Always branches. An 8-bit signed relative offset is added to the cur-
rent value of the program counter. When the operation causes PC
overflow, the PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B0 rr 6

Table 6-14 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-64 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRCLR Branch if Bits Clear BRCLR
Operation: If (M) ≤ (Mask) = 0, (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch when specified bits in memory have val-
ues of zero. Performs AND between a memory byte and a mask
byte. The memory byte is pointed to by a 20-bit indexed or extended
effective address.

If a mask bit has a value of one, the corresponding memory bit must
have a value of zero. When the result of the operation is zero, an 8-
or 16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented.

Syntax: BRCLR address operand, [register symbol,] #mask, displacement

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Addr Operand Branch Offset Cycles
IND8, X CB mm ff rr 10, 12
IND8, Y DB mm ff rr 10, 12
IND8, Z EB mm ff rr 10, 12

IND16, X 0A mm gggg rrrr 10, 14
IND16, Y 1A mm gggg rrrr 10, 14
IND16, Z 2A mm gggg rrrr 10, 14

EXT 3A mm hhll rrrr 10, 14
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-65

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRN Branch Never BRN
Operation: (PK : PC) + 2 ⇒ PK : PC

Description: Never branches. This instruction is effectively a NOP that requires
two cycles to execute. When the operation causes PC overflow, the
PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B1 rr 2

Table 6-15 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-66 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRSET Branch if Bits Set BRSET
Operation: If (M) ≤ (Mask) = 0, (PC) + Offset ⇒ PK : PC

Description: Causes a program branch when specified bits in memory have val-
ues of one. Performs AND between the complement of memory byte
and a mask byte. The memory byte is pointed to by a 20-bit indexed
or extended effective address.

If a mask bit has a value of one, the corresponding (uncomplement-
ed) memory bit must have a value of one. When the result of the op-
eration is zero, an 8- or 16-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented.

Syntax: BRSET address operand, [register symbol,] #mask, displacement

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Mask Addr Operand Branch Offset Cycles
IND8, X 8B mm ff rr 10, 12
IND8, Y 9B mm ff rr 10, 12
IND8, Z AB mm ff rr 10, 12

IND16, X 0B mm gggg rrrr 10, 14
IND16, Y 1B mm gggg rrrr 10, 14
IND16, Z 2B mm gggg rrrr 10, 14

EXT 3B mm hhll rrrr 10, 14
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-67

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET Set Bits in a Byte BSET
Operation: (M) ✛ (MASK) ⇒ M

Description: Performs OR between a memory byte and a mask byte. Bits in the
mask are set to set corresponding bits in memory. Other bits in the
memory word are unchanged. The location of the mask differs for 8-
and 16-bit addressing modes.

Syntax: BSET address operand, [register symbol,] #mask

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Mask Operand Cycles
IND8, X 1709 mm ff 8
IND8, Y 1719 mm ff 8
IND8, Z 1729 mm ff 8

IND16, X 09 mm gggg 8
IND16, Y 19 mm gggg 8
IND16, Z 29 mm gggg 8

EXT 39 mm hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-68 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSETW Set Bits in a Word BSETW
Operation: (M : M + 1) ✛ (Mask) ⇒ M : M + 1

Description: Performs OR between a memory word and a mask word. Set bits in
the mask to set corresponding bits in memory. Other bits in the
memory word are unchanged.

Syntax: BSETW address operand, [register symbol,] #mask

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M15 = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Mask Cycles
IND16, X 2709 gggg mmmm 10
IND16, Y 2719 gggg mmmm 10
IND16, Z 2729 gggg mmmm 10

EXT 2739 hhll mmmm 10
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-69

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSR Branch to Subroutine BSR
Operation: (PK : PC) − $0002 ⇒ PK : PC

Push (PC)
(SK : SP) − $0002 ⇒ SK : SP
Push (CCR)
(SK : SP) − $0002 ⇒ SK : SP
(PK : PC) + Offset ⇒ PK : PC

Description: Saves current program address and status, then branches to a sub-
routine. PK : PC are adjusted so that program execution will resume
correctly after return from subroutine.

The program counter is stacked, then the condition code register is
stacked (PK field as well as condition code bits and interrupt priority
mask). An 8-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 36 rr 10
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-70 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BVC Branch If Overflow Clear BVC
Operation: If V = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR overflow bit has a value of ze-
ro. An 8-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B8 rr 6, 2

Table 6-16 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-71

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BVS Branch If Overflow Set BVS
Operation: If V = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a program branch if the CCR overflow bit has a value of
one. An 8-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL8 B9 rr 6, 2

Table 6-17 Branch Instruction Summary (8-Bit Offset)

Mnemonic Opcode Equation Type Complement
BCC B4 C = 0 Simple, Unsigned BCS
BCS B5 C = 1 Simple, Unsigned BCC
BEQ B7 Z = 1 Simple, Unsigned, Signed BNE
BGE BC N ⊕ V = 0 Signed BLT
BGT BE Z ✛ (N ⊕ V) = 0 Signed BLE
BHI B2 C ✛ Z = 0 Unsigned BLS
BLE BF Z ✛ (N ⊕ V) = 1 Signed BGT
BLS B3 C ✛ Z = 1 Unsigned BHI
BLT BD N ⊕ V = 1 Signed BGE
BMI BB N = 1 Simple BPL
BNE B6 Z = 0 Simple, Unsigned, Signed BEQ
BPL BA N = 0 Simple BMI
BRA B0 1 Unary BRN
BRN B1 0 Unary BRA
BVC B8 V = 0 Simple BVS
BVS B9 V = 1 Simple BVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-72 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CBA Compare B to A CBA
Operation: (A) − (B)

Description: Subtracts the content of accumulator B from the content of accumu-
lator A and sets appropriate condition code register bits. The con-
tents of the accumulators are not changed by the operation, and no
result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R7 = 1 as a result of operation; else cleared.
Z: Set if (A) − (B) = $00; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 371B — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-73

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLR Clear a Byte in Memory CLR
Operation: $00 ⇒ M

Description: Content of a memory byte is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
IND8, X 05 ff 4
IND8, Y 15 ff 4
IND8, Z 25 ff 4

IND16, X 1705 gggg 6
IND16, Y 1715 gggg 6
IND16, Z 1725 gggg 6

EXT 1735 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-74 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRA Clear A CLRA
Operation: $00 ⇒ A

Description: Content of accumulator A is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 3705 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-75

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRB Clear B CLRB
Operation: $00 ⇒ B

Description: Content of accumulator B is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 3715 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-76 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRD Clear D CLRD
Operation: $0000 ⇒ D

Description: Content of accumulator D is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 27F5 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-77

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRE Clear E CLRE
Operation: $0000 ⇒ E

Description: Content of accumulator E is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 2775 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-78 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRM Clear AM CLRM
Operation: $000000000 ⇒ AM[35:0]

Description: Content of MAC accumulator is cleared to zero. See SECTION 11
DIGITAL SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Cleared.

H: Not affected.
EV: Cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— 0 — 0 — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 27B7 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-79

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLRW Clear a Word in Memory CLRW
Operation: $0000 ⇒ M : M + 1

Description: Content of a memory word is cleared to zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — 0 1 0 0 — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2705 gggg 6
IND16, Y 2715 gggg 6
IND16, Z 2725 gggg 6

EXT 2735 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-80 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPA Compare A CMPA
Operation: (A) − (M)

Description: Subtracts content of a memory byte from content of accumulator A
and sets condition code register bits. Accumulator and memory con-
tents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R7 = 1 as a result of operation; else cleared.
Z: Set if (A) − (M) = $00; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 48 ff 6
IND8, Y 58 ff 6
IND8, Z 68 ff 6
IMM8 78 ii 2

IND16, X 1748 gggg 6
IND16, Y 1758 gggg 6
IND16, Z 1768 gggg 6

EXT 1778 hhll 6
E, X 2748 — 6
E, Y 2758 — 6
E, Z 2768 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-81

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPB Compare B CMPB
Operation: (B) − (M)

Description: Subtracts content of a memory byte from content of accumulator B
and sets condition code register bits. Accumulator and memory con-
tents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R7 = 1 as a result of operation; else cleared.
Z: Set if (B) − (M) = $00; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X C8 ff 6
IND8, Y D8 ff 6
IND8, Z E8 ff 6
IMM8 F8 ii 2

IND16, X 17C8 gggg 6
IND16, Y 17D8 gggg 6
IND16, Z 17E8 gggg 6

EXT 17F8 hhll 6
E, X 27C8 — 6
E, Y 27D8 — 6
E, Z 27E8 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-82 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COM One’s Complement Byte COM
Operation: $FF − (M) ⇒ M, or M ⇒ M

Description: Replaces content of a memory byte with its one’s complement. Only
BEQ and BNE branches will perform consistently immediately after
COM on unsigned values. All signed branches are available after
COM on two’s complement values.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 is set; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
IND8, X 00 ff 8
IND8, Y 10 ff 8
IND8, Z 20 ff 8

IND16, X 1700 gggg 8
IND16, Y 1710 gggg 8
IND16, Z 1720 gggg 8

EXT 1730 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-83

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COMA One’s Complement A COMA
Operation: $FF − (A) ⇒ A, or M ⇒ A

Description: Replaces content of accumulator A with its one’s complement. Only
BEQ and BNE branches will perform consistently immediately after
COMA on an unsigned value. All signed branches are available after
COMA on a two’s complement value.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
INH 3700 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-84 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COMB One’s Complement B COMB
Operation: $FF − (B) ⇒ B, or B ⇒ B

Description: Replaces content of accumulator B with its one’s complement. Only
BEQ and BNE branches will perform consistently immediately after
COMB on an unsigned value. All signed branches are available after
COMB on a two’s complement value.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
INH 3710 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-85

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COMD One’s Complement D COMD
Operation: $FFFF − (D) ⇒ D, or D ⇒ D

Description: Replaces content of accumulator D with its one’s complement. Only
BEQ and BNE branches will perform consistently immediately after
COMD on an unsigned value. All signed branches are available after
COMD on a two’s complement value.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
INH 27F0 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-86 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COME One’s Complement E COME
Operation: $FFFF − (E) ⇒ E, or E ⇒ E

Description: Replaces content of accumulator E with its one’s complement. Only
BEQ and BNE branches will perform consistently immediately after
COME on an unsigned value. All signed branches are available after
COME on a two’s complement value.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
INH 2770 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-87

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COMW One’s Complement Word COMW
Operation: $FFFF − (M : M + 1) ⇒ M : M + 1, or

(M : M + 1) ⇒ M : M + 1

Description: Replaces content of a memory word with its one’s complement.
Only BEQ and BNE branches will perform consistently immediately
after COMW on unsigned values. All signed branches are available
after COMW on two’s complement values.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M15 is set; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 1 — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2700 gggg 8
IND16, Y 2710 gggg 8
IND16, Z 2720 gggg 8

EXT 2730 hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-88 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPD Compare D CPD
Operation: (D) − (M : M + 1)

Description: Subtracts content of a memory word from content of accumulator D
and sets condition code register bits. Accumulator and memory con-
tents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (D) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 88 ff 6
IND8, Y 98 ff 6
IND8, Z A8 ff 6
IMM16 37B8 jjkk 4

IND16, X 37C8 gggg 6
IND16, Y 37D8 gggg 6
IND16, Z 37E8 gggg 6

EXT 37F8 hhll 6
E, X 2788 — 6
E, Y 2798 — 6
E, Z 27A8 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-89

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPE Compare E CPE
Operation: (E) − (M : M + 1)

Description: Subtracts content of a memory word from content of accumulator E
and sets condition code register bits. Accumulator and memory con-
tents are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (E) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IMM16 3738 jjkk 4

IND16, X 3748 gggg 6
IND16, Y 3758 gggg 6
IND16, Z 3768 gggg 6

EXT 3778 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-90 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPS Compare Stack Pointer CPS
Operation: (SP) − (M : M + 1)

Description: Subtracts content of a memory word from content of the stack point-
er and sets condition code register bits. SP and memory contents
are not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (SP) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 4F ff 6
IND8, Y 5F ff 6
IND8, Z 6F ff 6
IMM16 377F jjkk 4

IND16, X 174F gggg 6
IND16, Y 175F gggg 6
IND16, Z 176F gggg 6

EXT 177F hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-91

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPX Compare IX CPX
Operation: (IX) − (M : M + 1)

Description: Subtracts content of a memory word from content of index register X
and sets condition code register bits. IX and memory contents are
not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (IX) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 4C ff 6
IND8, Y 5C ff 6
IND8, Z 6C ff 6
IMM16 377C jjkk 4

IND16, X 174C gggg 6
IND16, Y 175C gggg 6
IND16, Z 176C gggg 6

EXT 177C hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-92 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPY Compare IY CPY
Operation: (IY) − (M : M + 1)

Description: Subtracts content of a memory word from content of index register Y
and sets condition code register bits. IY and memory contents are
not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (IY) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 4D ff 6
IND8, Y 5D ff 6
IND8, Z 6D ff 6
IMM16 377D jjkk 4

IND16, X 174D gggg 6
IND16, Y 175D gggg 6
IND16, Z 176D gggg 6

EXT 177D hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-93

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPZ Compare IZ CPZ
Operation: (IZ) − (M : M + 1)

Description: Subtracts content of a memory word from content of index register Z
and sets condition code register bits. IZ and memory contents are
not changed, and no result is stored.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if R15 = 1 as a result of operation; else cleared.
Z: Set if (IZ) − (M) = $0000; else cleared.
V: Set if operation causes two’s complement overflow; else cleared.
C: Set if operation requires a borrow; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 4E ff 6
IND8, Y 5E ff 6
IND8, Z 6E ff 6
IMM16 377E jjkk 4

IND16, X 174E gggg 6
IND16, Y 175E gggg 6
IND16, Z 176E gggg 6

EXT 177E hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-94 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DAA Decimal Adjust A DAA
Operation: (A)10

Description: Adjusts the content of accumulator A and the state of the CCR carry
bit after binary-coded decimal operations, so that there is a correct
BCD sum and an accurate carry indication. The state of the CCR
half carry bit affects operation. Table 6-18 shows details of opera-
tion.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Undefined.
C: See Table 6-18.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ U ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3721 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-95

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DAA Decimal Adjust A DAA

The table shows DAA operation for all legal combinations of input operands. Columns
1 through 4 represent the results of ABA, ADC, or ADD operations on BCD operands.
The correction factor in column 5 is added to the accumulator to restore the result of
an operation on two BCD operands to a valid BCD value, and to set or clear the C bit.
All values are in hexadecimal.

Table 6-18 DAA Function Summary

1 2 3 4 5 6
Initial

C Bit Value
Value of
A[7:4]

Initial
H Bit Value

Value of
A[3:0]

Correction
Factor

Corrected
C Bit Value

0 0 – 9 0 0 – 9 00 0
0 0 – 8 0 A – F 06 0
0 0 – 9 1 0 – 3 06 0
0 A – F 0 0 – 9 60 1
0 9 – F 0 A – F 66 1
0 A – F 1 0 – 3 66 1
1 0 – 2 0 0 – 9 60 1
1 0 – 2 0 A – F 66 1
1 0 – 3 1 0 – 3 66 1
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-96 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEC Decrement Byte DEC
Operation: (M) − $01 ⇒ M

Description: Subtracts $01 from the content of a memory byte. Only BEQ and
BNE branches will perform consistently immediately after DEC on
unsigned values. All signed branches are available after DEC on
two’s complement values. Because DEC does not affect the C bit in
the condition code register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (M) = $80 before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 01 ff 8
IND8, Y 11 ff 8
IND8, Z 21 ff 8

IND16, X 1701 gggg 8
IND16, Y 1711 gggg 8
IND16, Z 1721 gggg 8

EXT 1731 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-97

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DECA Decrement A DECA
Operation: (A) − $01 ⇒ A

Description: Subtracts $01 from the content of accumulator A. Only BEQ and
BNE branches will perform consistently immediately after DECA on
unsigned values. All signed branches are available after DECA on
two’s complement values. Because DECA does not affect the C bit
in the condition code register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if (A) = $80 before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
INH 3701 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-98 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DECB Decrement B DECB
Operation: (B) − $01 ⇒ B

Description: Subtracts $01 from the content of accumulator B. Only BEQ and
BNE branches will perform consistently immediately after DECB on
unsigned values. All signed branches are available after DECB on
two’s complement values. Because DECB does not affect the C bit
in the condition code register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (B) = $80 before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
INH 3711 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-99

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DECW Decrement Word DECW
Operation: (M : M + 1) − $0001 ⇒ M : M + 1

Description: Subtracts $0001 from the content of a memory word. Only BEQ and
BNE branches will perform consistently immediately after DECW on
unsigned values. All signed branches are available after DECW on
two’s complement values. Because DECW does not affect the C bit
in the condition code register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (M : M + 1) = $8000 before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2701 gggg 8
IND16, Y 2711 gggg 8
IND16, Z 2721 gggg 8

EXT 2731 hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-100 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EDIV Extended Unsigned Integer Divide EDIV
Operation: (E : D) / (IX) ⇒ IX

Remainder ⇒ D

Description: Divides a 32-bit unsigned dividend contained in concatenated accu-
mulators E and D by a 16-bit divisor contained in index register X.
The quotient is placed in IX and the remainder in D. There is an im-
plied radix point to the right of the quotient (IX0). An implied radix
point is assumed to occupy the same position in both dividend and
divisor.

The states of condition code register bits N, Z, V, and C are unde-
fined after division by zero, but accumulator contents are not
changed. Division by zero causes an exception. See SECTION 9
EXCEPTION PROCESSING for more information. The states of the
N, Z, and C bits are also undefined after overflow.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if IX15 = 1 as a result of operation; else cleared. Undefined after overflow or division by zero.
Z: Set if (IX) = $0000 as a result of operation; else cleared. Undefined after overflow or division by zero.
V: Set if (IX) > $FFFF as a result of operation; else cleared. Undefined after division by zero.
C: Set if 2 ∗ Remainder ≥ Divisor; else cleared. Undefined after overflow or division by zero.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3728 — 24
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-101

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EDIVS Extended Signed Integer Divide EDIVS
Operation: (E : D) / (IX) ⇒ IX

Remainder ⇒ D

Description: Divides a 32-bit signed dividend contained in concatenated accumu-
lators E and D by a 16-bit divisor contained in index register X. The
quotient is placed in IX and the remainder in D. There is an implied
radix point to the right of IX0. Implied radix points in dividend and di-
visor must occupy the same bit position.

The states of condition code register bits N, Z, and C are undefined
after overflow. The states of bits N, Z, V, and C are undefined after
division by zero, but accumulator contents are not changed. Division
by zero causes an exception. See SECTION 9 EXCEPTION PRO-
CESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if IX15 = 1 as a result of operation; else cleared. Undefined after overflow or division by zero.
Z: Set if (IX) = $0000 as a result of operation; else cleared. Undefined after overflow or division by zero.
V: Set if (IX) > $7FFF for a positive quotient or if (IX) > $8000 for a negative quotient as a result of operation;

else cleared. Undefined after division by zero.
C: Set if 2 ∗ Remainder ≥ Divisor ; else cleared. Undefined after overflow or division by zero.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3729 — 38
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-102 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EMUL Extended Unsigned Multiply EMUL
Operation: (E) ∗ (D) ⇒ E : D

Description: Multiplies a 16-bit unsigned multiplicand contained in accumulator E
by a 16-bit unsigned multiplier contained in accumulator D, then
places the product in concatenated accumulators E and D. The CCR
carry bit can be used to round the high word of the product — exe-
cute EMUL, then ADCE #0.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E : D) = $00000000 as a result of operation; else cleared.
V: Not affected.
C: Set if D15 = 1 as a result of operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ — ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3725 — 10
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-103

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EMULS Extended Signed Multiply EMULS
Operation: (E) ∗ (D) ⇒ E : D

Description: Multiplies a 16-bit signed multiplicand contained in accumulator E by
a 16-bit signed multiplier contained in accumulator D, then places
the product in concatenated accumulators E and D. The CCR carry
bit can be used to round the high word of the product — execute
EMULS, then ADCE #0.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E : D) = $00000000 as a result of operation; else cleared.
V: Not affected.
C: Set if D15 = 1 as a result of operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ — ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3726 — 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-104 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EORA Exclusive OR A EORA
Operation: (A) ⊕ (M) ⇒ A

Description: Performs EOR between the content of accumulator A and a memory
byte, then places the result in accumulator A. Memory content is not
affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 44 ff 6
IND8, Y 54 ff 6
IND8, Z 64 ff 6
IMM8 74 ii 2

IND16, X 1744 gggg 6
IND16, Y 1754 gggg 6
IND16, Z 1764 gggg 6

EXT 1774 hhll 6
E, X 2744 — 6
E, Y 2754 — 6
E, Z 2764 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-105

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EORB Exclusive OR B EORB
Operation: (B) ⊕ (M) ⇒ B

Description: Performs EOR between the content of accumulator B and a memory
byte, then places the result in accumulator B. Memory content is not
affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X C4 ff 6
IND8, Y D4 ff 6
IND8, Z E4 ff 6
IMM8 F4 ii 2

IND16, X 17C4 gggg 6
IND16, Y 17D4 gggg 6
IND16, Z 17E4 gggg 6

EXT 17F4 hhll 6
E, X 27C4 — 6
E, Y 27D4 — 6
E, Z 27E4 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-106 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EORD Exclusive OR D EORD
Operation: (D) ⊕ (M : M + 1) ⇒ D

Description: Performs EOR between the content of accumulator D and a memory
word, then places the result in accumulator D. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 84 ff 6
IND8, Y 94 ff 6
IND8, Z A4 ff 6
IMM16 37B4 jjkk 4

IND16, X 37C4 gggg 6
IND16, Y 37D4 gggg 6
IND16, Z 37E4 gggg 6

EXT 37F4 hhll 6
E, X 2784 — 6
E, Y 2794 — 6
E, Z 27A4 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-107

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EORE Exclusive OR E EORE
Operation: (E) ⊕ (M : M + 1) ⇒ E

Description: Performs EOR between the content of accumulator E and a memory
word, then places the result in accumulator E. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IMM16 3734 jjkk 4

IND16, X 3744 gggg 6
IND16, Y 3754 gggg 6
IND16, Z 3764 gggg 6

EXT 3774 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-108 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FDIV Unsigned Fractional Divide FDIV
Operation: (D) / (IX) ⇒ IX

Remainder ⇒ D

Description: Divides a 16-bit unsigned dividend contained in accumulator D by a
16-bit unsigned divisor contained in index register X. The quotient is
placed in IX and the remainder is placed in D.

There is an implied radix point to the left of the quotient (IX15). An
implied radix point is assumed to occupy the same position in both
dividend and divisor. If the dividend is greater than or equal to the di-
visor, or if the divisor is equal to zero, (IX) is set to $FFFF and (D) is
indeterminate. To maintain compatibility with the M68HC11, no ex-
ception is generated on overflow or division by zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Set if (IX) = $0000 as a result of operation; else cleared.
V: Set if (IX) ≤ (D) before operation; else cleared.
C: Set if (IX) = $0000 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 372B — 22
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-109

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FMULS Signed Fractional Multiply FMULS
Operation: (E) ∗ (D) ⇒ E : D[31:1]

0 ⇒ E : D[0]

Description: Multiplies a 16-bit signed fractional multiplicand contained in accu-
mulator E by a 16-bit signed fractional multiplier contained in accu-
mulator D. The implied radix points are between bits 15 and 14 of
the accumulators. The product is left-shifted one place to align the
radix point between bits 31 and 30, then placed in bits 31 to 1 of
concatenated accumulators E and D. D0 is cleared. The CCR carry
bit can be used to round the high word of the product — execute
FMULS, then ADCE #0.

When both accumulators contain $8000 (–1), the product is
$80000000 (–1.0) and the CCR V bit is set.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E : D) = $00000000 as a result of operation; else cleared.
V: Set when operation is (–1)2; else cleared.
C: Set if D15 = 1 as a result of operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3727 — 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-110 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IDIV Integer Divide IDIV
Operation: (D) / (IX) ⇒ IX

Remainder ⇒ D

Description: Divides a 16-bit unsigned dividend contained in accumulator D by a
16-bit unsigned divisor contained in index register X. The quotient is
placed in IX and the remainder is placed in D.

There is an implied radix point to the right of the quotient (IX0). An
implied radix point is assumed to occupy the same position in both
dividend and divisor. If the divisor is equal to zero, (IX) is set to
$FFFF and (D) is indeterminate. To maintain compatibility with the
M68HC11, no exception is generated on division by zero.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Set if (IX) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Set if (IX) = $0000 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — ∆ 0 ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 372A — 22
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-111

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INC Increment Byte INC
Operation: (M) + $01 ⇒ M

Description: Adds $01 to the content of a memory byte. Only BEQ and BNE
branches will perform consistently immediately after INC on un-
signed values. All signed branches are available after INC on two’s
complement values. Because INC does not affect the C bit in the
condition code register, it can be used to implement a loop counter
in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (M) = $7F before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 03 ff 8
IND8, Y 13 ff 8
IND8, Z 23 ff 8

IND16, X 1703 gggg 8
IND16, Y 1713 gggg 8
IND16, Z 1723 gggg 8

EXT 1733 hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-112 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INCA Increment A INCA
Operation: (A) + $01 ⇒ A

Description: Adds $01 to the content of accumulator A. Only BEQ and BNE
branches will perform consistently immediately after INCA on un-
signed values. All signed branches are available after INCA on two’s
complement values. Because INCA does not affect the C bit in the
condition code register, it can be used to implement a loop counter
in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if (A) = $7F before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
INH 3703 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-113

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INCB Increment B INCB
Operation: (B) + $01 ⇒ B

Description: Adds $01 to the content of accumulator B. Only BEQ and BNE
branches will perform consistently immediately after INCB on un-
signed values. All signed branches are available after INCB on two’s
complement values. Because INCB does not affect the C bit in the
condition code register, it can be used to implement a loop counter
in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (B) = $7F before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
INH 3713 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-114 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INCW Increment Word INCW
Operation: (M : M + 1) + $0001 ⇒ M : M + 1

Description: Adds $0001 to the content of a memory word. Only BEQ and BNE
branches will perform consistently immediately after INCW on un-
signed values. All signed branches are available after INCW on
two’s complement values. Because INCW does not affect the C bit
in the condition code register, it can be used to implement a loop
counter in multiple-precision computation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (M : M + 1) = $7FFF before operation (operation causes two’s complement overflow); else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ — — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2703 gggg 8
IND16, Y 2713 gggg 8
IND16, Z 2723 gggg 8

EXT 2733 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-115

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JMP Jump JMP
Operation: Effective Address ⇒ PK : PC

Description: Causes an unconditional change in program execution. A 20-bit ef-
fective address is placed in the concatenated program counter ex-
tension field and program counter. The next instruction is fetched
from the new address. The effective address can be generated in
two ways:

1. Effective Address = Extension: 16-bit Extended Address

When extended addressing mode is employed, the effective ad-
dress is formed by a zero-extended 4-bit right-justified address
extension and a 16-bit byte address that are both contained in
the instruction. The EK field is not changed.

2. Effective Address = $0: (index register) + 20-bit Offset

When indexed addressing mode is employed, the effective ad-
dress is calculated by adding a zero-extended 20-bit signed off-
set to the zero-extended content of an index register. The
associated extension field is not changed.

Syntax: JMP (effective address)

JMP (offset)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT20 7A zb hhll 6

IND20, X 4B zg gggg 8
IND20, Y 5B zg gggg 8
IND20, Z 6B zg gggg 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-116 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSR Jump to Subroutine JSR
Operation: Push (PC)

(SK : SP) − $0002 ⇒ SK : SP
Push (CCR)
(SK : SP) − $0002 ⇒ SK : SP
Effective Address ⇒ PK : PC

Description: Causes a branch to a subroutine. After the current content of the
program counter and the condition code register are stacked, a 20-
bit effective address is placed in the concatenated program counter
extension field and program counter. The next instruction is fetched
from the new address. The effective address can be generated in
two ways:

1. Effective Address = Extension: 16-bit Extended Address

When extended addressing mode is employed, the effective ad-
dress is formed by a zero-extended 4-bit right-justified address
extension and a 16-bit extended address that are both contained
in the instruction. The EK field is not changed.

2. Effective Address = $0 : (index register) + 0 : 20-bit Offset

When indexed addressing mode is employed, the effective ad-
dress is calculated by adding a zero-extended 20-bit signed off-
set to the zero-extended content of an index register. The
associated extension field is not changed.

Syntax: JSR (effective address)

JSR (offset)

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT20 FA zb hh ll 10

IND20, X 89 zg gggg 12
IND20, Y 99 zg gggg 12
IND20, Z A9 zg gggg 12
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-117

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBCC Long Branch If Carry Clear LBCC
Operation: If C = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR carry bit has a value of
zero. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple
or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3784 rrrr 6, 4

Table 6-19 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-118 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBCS Long Branch If Carry Set LBCS
Operation: If C = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR carry bit has a value of
one. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple
or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3785 rrrr 6, 4

Table 6-20 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-119

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBEQ Long Branch If Equal to Zero LBEQ
Operation: If Z = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR zero bit has a value of
one. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple,
signed, or unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3787 rrrr 6, 4

Table 6-21 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-120 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBEV Long Branch If EV Set LBEV
Operation: If EV = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the EV bit in the condition code
register has a value of one. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation caus-
es PC overflow, the PK field is incremented or decremented. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more informa-
tion.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3791 rrrr 6, 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-121

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBGE Long Branch If Greater than or Equal to Zero LBGE
Operation: If N ⊕ V = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR negative and overflow
bits both have a value of zero or both have a value of one. A 16-bit
signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is in-
cremented or decremented. Used to implement signed conditional
branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378C rrrr 6, 4

Table 6-22 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-122 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBGT Long Branch If Greater than Zero LBGT
Operation: If Z ✛ (N ⊕ V) = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR negative and overflow
bits both have a value of zero or both have a value of one, and the
CCR zero bit has a value of zero. A 16-bit signed relative offset is
added to the current value of the program counter. When the opera-
tion causes PC overflow, the PK field is incremented or decrement-
ed. Used to implement signed conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378E rrrr 6, 4

Table 6-23 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-123

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBHI Long Branch If Higher LBHI
Operation: If C ✛ Z = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR carry and zero bits both
have a value of zero. A 16-bit signed relative offset is added to the
current value of the program counter. When the operation causes
PC overflow, the PK field is incremented or decremented. Used to
implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3782 rrrr 6, 4

Table 6-24 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-124 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBLE Long Branch If Less than or Equal to Zero LBLE
Operation: If Z ✛ (N ⊕ V) = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if either the CCR negative bit or
overflow bit has a value of one, or the CCR zero bit has a value of
one. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement signed
conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378F rrrr 6, 4

Table 6-25 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-125

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBLS Long Branch If Lower or Same LBLS
Operation: If C ✛ Z = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if either or both the CCR carry and
zero bits have a value of one. A 16-bit signed relative offset is added
to the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3783 rrrr 6, 4

Table 6-26 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-126 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBLT Long Branch If Less than Zero LBLT
Operation: If N ⊕ V = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if either the CCR negative or over-
flow bits has a value of one. A 16-bit signed relative offset is added
to the current value of the program counter. When the operation
causes PC overflow, the PK field is incremented or decremented.
Used to implement signed conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378D rrrr 6, 4

Table 6-27 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-127

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBMI Long Branch If Minus LBMI
Operation: If N = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR negative bit has a value
of one. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple
conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378B rrrr 6, 4

Table 6-28 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-128 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBMV Long Branch If MV Set LBMV
Operation: If MV = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the MV bit in the condition code
register has a value of one. A 16-bit signed relative offset is added to
the current value of the program counter. When the operation caus-
es PC overflow, the PK field is incremented or decremented. See
SECTION 11 DIGITAL SIGNAL PROCESSING for more informa-
tion.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3790 rrrr 6, 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-129

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBNE Long Branch If Not Equal to Zero LBNE
Operation: If Z = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR zero bit has a value of ze-
ro. A 16-bit signed relative offset is added to the current value of the
program counter. When the operation causes PC overflow, the PK
field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3786 rrrr 6, 4

Table 6-29 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-130 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBPL Long Branch If Plus LBPL
Operation: If N = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR negative bit has a value
of zero. A 16-bit signed relative offset is added to the current value
of the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple
conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 378A rrrr 6, 4

Table 6-30 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-131

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBRA Long Branch Always LBRA
Operation: (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch. A 16-bit signed relative offset is
added to the current value of the program counter. When the opera-
tion causes PC overflow, the PK field is incremented or decrement-
ed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3780 rrrr 6

Table 6-31 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-132 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBRN Long Branch Never LBRN
Operation: (PK : PC) + 4 ⇒ PK : PC

Description: Never branches. This instruction is effectively a NOP that requires
three cycles to execute. When the operation causes PC overflow,
the PK field is incremented or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3781 rrrr 6

Table 6-32 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-133

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBSR Long Branch to Subroutine LBSR
Operation: Push (PC)

(SK : SP) − $0002 ⇒ SK : SP
Push (CCR)
(SK : SP) − $0002 ⇒ SK : SP
(PK : PC) + Offset ⇒ PK : PC

Description: Saves current address and flags, then branches to a subroutine. The
current value of the program counter is stacked, then the condition
code register is stacked (which preserves the PK field as well as
condition code bits and the interrupt priority mask). A 16-bit signed
relative offset is added to the current value of the program counter.
When the operation causes PC overflow, the PK field is incremented
or decremented.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 27F9 rrrr 10
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-134 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBVC Long Branch If Overflow Clear LBVC
Operation: If V = 0, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR overflow bit has a value of
zero. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3788 rrrr 6, 4

Table 6-33 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-135

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBVS Long Branch If Overflow Set LBVS
Operation: If V = 1, then (PK : PC) + Offset ⇒ PK : PC

Description: Causes a long program branch if the CCR overflow bit has a value of
one. A 16-bit signed relative offset is added to the current value of
the program counter. When the operation causes PC overflow, the
PK field is incremented or decremented. Used to implement simple,
signed, and unsigned conditional branches.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
REL16 3789 rrrr 6, 4

Table 6-34 Branch Instruction Summary (16-Bit Offset)

Mnemonic Opcode Equation Type Complement
LBCC 3784 C = 0 Simple, Unsigned LBCS
LBCS 3785 C = 1 Simple, Unsigned LBCC
LBEQ 3787 Z = 1 Simple, Unsigned, Signed LBNE
LBGE 378C N ⊕ V = 0 Signed LBLT
LBGT 378E Z ✛ (N ⊕ V) = 0 Signed LBLE
LBHI 3782 C ✛ Z = 0 Unsigned LBLS
LBLE 378F Z ✛ (N ⊕ V) = 1 Signed LBGT
LBLS 3783 C ✛ Z = 1 Unsigned LBHI
LBLT 378D N ⊕ V = 1 Signed LBGE
LBMI 378B N = 1 Simple LBPL
LBNE 3786 Z = 0 Simple, Unsigned, Signed LBEQ
LBPL 378A N = 0 Simple LBMI
LBRA 3780 1 Unary LBRN
LBRN 3781 0 Unary LBRA
LBVC 3788 V = 0 Simple LBVS
LBVS 3789 V = 1 Simple LBVC
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-136 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDAA Load A LDAA
Operation: (M) ⇒ A

Description: Loads the content of a memory byte into accumulator A. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 45 ff 6
IND8, Y 55 ff 6
IND8, Z 65 ff 6
IMM8 75 ii 2

IND16, X 1745 gggg 6
IND16, Y 1755 gggg 6
IND16, Z 1765 gggg 6

EXT 1775 hhll 6
E, X 2745 — 6
E, Y 2755 — 6
E, Z 2765 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-137

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDAB Load B LDAB
Operation: (M) ⇒ B

Description: Loads the content of a memory byte into accumulator B. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X C5 ff 6
IND8, Y D5 ff 6
IND8, Z E5 ff 6
IMM8 F5 ii 2

IND16, X 17C5 gggg 6
IND16, Y 17D5 gggg 6
IND16, Z 17E5 gggg 6

EXT 17F5 hhll 6
E, X 27C5 — 6
E, Y 27D5 — 6
E, Z 27E5 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-138 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDD Load D LDD
Operation: (M : M + 1) ⇒ D

Description: Loads the content of a memory word into accumulator D. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 85 ff 6
IND8, Y 95 ff 6
IND8, Z A5 ff 6
IMM16 37B5 jjkk 4

IND16, X 37C5 gggg 6
IND16, Y 37D5 gggg 6
IND16, Z 37E5 gggg 6

EXT 37F5 hhll 6
E, X 2785 — 6
E, Y 2795 — 6
E, Z 27A5 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-139

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDE Load E LDE
Operation: (M : M + 1) ⇒ E

Description: Loads the content of a memory word into accumulator E. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IMM16 3735 jjkk 4

IND16, X 3745 gggg 6
IND16, Y 3755 gggg 6
IND16, Z 3765 gggg 6

EXT 3775 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-140 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDED Load Concatenated E and D LDED
Operation: (M : M + 1) ⇒ E

(M + 2 : M + 3) ⇒ D

Description: Loads four successive bytes of memory into concatenated accumu-
lators E and D. Used to transfer long word operands and 32-bit
signed fractions from memory. Can also be used to transfer 32-bit
words from IMB peripherals. Misaligned long transfers are converted
into two misaligned word transfers.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT 2771 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-141

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDHI Load MAC Registers H and I LDHI
Operation: (M : M + 1)X ⇒ HR

(M : M + 1)Y ⇒ IR

Description: Initializes MAC registers H and I. HR is loaded with a memory word
located at address (XK : IX). IR is loaded with a memory word locat-
ed at address (YK : IY). Memory content is not changed by the oper-
ation. See SECTION 11 DIGITAL SIGNAL PROCESSING for more
information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
EXT 27B0 — 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-142 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDS Load Stack Pointer LDS
Operation: (M : M + 1) ⇒ SP

Description: Loads the content of a memory word into the stack pointer. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if SP15 = 1 as a result of operation; else cleared.
Z: Set if (SP) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X CF ff 6
IND8, Y DF ff 6
IND8, Z EF ff 6
IMM16 37BF jjkk 4

IND16, X 17CF gggg 6
IND16, Y 17DF gggg 6
IND16, Z 17EF gggg 6

EXT 17FF hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-143

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDX Load IX LDX
Operation: (M : M + 1) ⇒ IX

Description: Loads the content of a memory word into index register X. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if IX15 = 1 as a result of operation; else cleared.
Z: Set if (IX) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X CC ff 6
IND8, Y DC ff 6
IND8, Z EC ff 6
IMM16 37BC jjkk 4

IND16, X 17CC gggg 6
IND16, Y 17DC gggg 6
IND16, Z 17EC gggg 6

EXT 17FC hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-144 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDY Load IY LDY
Operation: (M : M + 1) ⇒ IY

Description: Loads the content of a memory word into index register Y. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if IY15 = 1 as a result of operation; else cleared.
Z: Set if (IY) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X CD ff 6
IND8, Y DD ff 6
IND8, Z ED ff 6
IMM16 37BD jjkk 4

IND16, X 17CD gggg 6
IND16, Y 17DD gggg 6
IND16, Z 17ED gggg 6

EXT 17FD hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-145

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDZ Load IZ LDZ
Operation: (M : M + 1) ⇒ IZ

Description: Loads the content of a memory word into index register Z. Memory
content is not changed by the operation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if IZ15 = 1 as a result of operation; else cleared.
Z: Set if (IZ) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X CE ff 6
IND8, Y DE ff 6
IND8, Z EE ff 6
IMM16 37BE jjkk 4

IND16, X 17CE gggg 6
IND16, Y 17DE gggg 6
IND16, Z 17EE gggg 6

EXT 17FE hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-146 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LPSTOP Low Power Stop LPSTOP
Operation: If S, then enter low-power mode

Else NOP

Description: Operation is controlled by the S bit in the CCR. If S = 0 when LP-
STOP is executed, the IP field from the condition code register is
copied into an external bus interface, and the system clock input to
the CPU is disabled. If S = 1, LPSTOP operates in the same way as
a 4-cycle NOP.

Normal execution of instructions can resume in one of two ways. If a
reset occurs, a reset exception is generated. If an interrupt request
of higher priority than the copied IP value is received, an interrupt
exception is generated. See SECTION 9 EXCEPTION PROCESS-
ING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Cycle times are for S = 1, S = 0 respectively.

Addressing Mode Opcode Operand Cycles
INH 27F1 — 4, 20
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-147

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logic Shift Right LSR
Operation:

Description: Shifts all eight bits of a memory byte one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 0F ff 8
IND8, Y 1F ff 8
IND8, Z 2F ff 8

IND16, X 170F gggg 8
IND16, Y 171F gggg 8
IND16, Z 172F gggg 8

EXT 173F hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-148 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSRA Logic Shift Right A LSRA
Operation:

Description: Shifts all eight bits of accumulator A one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (A) = $00; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if A0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370F — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-149

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSRB Logic Shift Right B LSRB
Operation:

Description: Shifts all eight bits of accumulator B one place to the right. Bit 7 is
cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 371F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-150 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSRD Logic Shift Right D LSRD
Operation:

Description: Shifts all sixteen bits of accumulator D one place to the right. Bit 15
is cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if D0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27FF — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-151

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSRE Logic Shift Right E LSRE
Operation:

Description: Shifts all sixteen bits of accumulator E one place to the right. Bit 15
is cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if E0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 277F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-152 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSRW Logic Shift Right Word LSRW
Operation:

Description: Shifts all sixteen bits of a memory word one place to the right. Bit 15
is cleared. Bit 0 is transferred to the CCR C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M : M + 1[0] = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — 0 ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 270F gggg 8
IND16, Y 271F gggg 8
IND16, Z 272F gggg 8

EXT 273F hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-153

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC Multiply and Accumulate MAC
Operation: (HR) ∗ (IR) ⇒ E : D

(AM) + (E : D) ⇒ AM
((IX) ≤ X MASK) ✛ ((IX) + xo) ≤ X MASK)⇒ IX
((IY) ≤ Y MASK) ✛ ((IY) + yo) ≤ Y MASK)⇒ IY
(HR) ⇒ IZ
(M : M + 1)X ⇒ HR
(M : M + 1)Y ⇒ IR

Description: Multiplies a 16-bit signed fractional multiplicand in MAC register I by
a 16-bit signed fractional multiplier in MAC register H. There are im-
plied radix points between bits 15 and 14 of the registers. The prod-
uct is left-shifted one place to align the radix point between bits 31
and 30, then placed in bits 31:1 of concatenated accumulators E
and D. D0 is cleared. The aligned product is then added to the con-
tent of AM.

As multiply and accumulate operations take place, 4-bit offsets xo
and yo are sign-extended to 16 bits and used with X and Y masks to
qualify the X and Y index registers.

Writing a non-zero value into a mask register prior to MAC execution
enables modulo addressing. The TDMSK instruction writes mask
values. When a mask contains $0, modulo addressing is disabled,
and the sign-extended offset is added to the content of the corre-
sponding index register.

After accumulation, the content of HR is transferred to IZ, then a
word at the address pointed to by XK : IX is loaded into HR, and a
word at the address pointed to by YK : IY is loaded into IR. The frac-
tional product remains in concatenated E and D.

When both registers contain $8000 (–1), a value of $80000000 (1.0
in 36-bit format) is accumulated, (E : D) is $80000000 (–1 in 32-bit
format), and the V bit in the condition code register is set. See SEC-
TION 11 DIGITAL SIGNAL PROCESSING for more information.
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-154 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC Multiply and Accumulate MAC
Syntax: MAC xo, yo

Condition Code Register:

S: Not affected.
MV: Set if overflow into AM35 occurs as a result of addition; else not affected.

H: Not affected.
EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.
Z: Not affected.
V: Set if operation is (–1)2; else cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— ∆ — ∆ — — ∆ — — — —

Addressing Mode Opcode Offset Cycles
IMM8 7B xoyo 12
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-155

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVB Move Byte MOVB
Operation: (M1) ⇒ M2

Description: Moves a byte of data from a source address to a destination ad-
dress. Data is examined as it is moved, and condition codes are set.
Source data is not changed. A combination of source and destina-
tion addressing modes is used. Extended addressing can be used
to specify source, destination, or both. A special form of indexed ad-
dressing, in which an 8-bit signed offset is added to the content of
index register X after the move is complete, can be used to specify
source or destination. If addition causes IX to overflow, the XK field
is incremented or decremented.

Syntax: MOVB Source Offset Operand, X, Destination Address Operand
MOVB Source Address Operand, Destination Offset Operand,
XMOVB Source Address Operand, Destination Address Operand

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if MSB of source data = 1; else cleared.
Z: Set if source data = $00; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Offset Addr Operand Cycles
IXP to EXT 30 ff hh ll 8
EXT to IXP 32 ff hh ll 8
EXT to EXT 37FE — hhll hhll 10
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-156 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOVW Move Word MOVW
Operation: (M : M + 11) ⇒ M : M + 12

Description: Moves a data word from a source address to a destination address.
Data is examined as it is moved, and condition codes are set.
Source data is not changed. A combination of source and destina-
tion addressing modes is used. Extended addressing can be used
to specify source, destination, or both. A special form of indexed ad-
dressing, in which an 8-bit signed offset is added to the content of
index register X after the move is complete, can be used to specify
source or destination only. If addition causes IX to overflow, the XK
field is incremented or decremented.

Syntax: MOVB Source Offset Operand, X, Destination Address Operand
MOVB Source Address Operand, Destination Offset Operand,
XMOVB Source Address Operand, Destination Address Operand

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if MSB of source data = 1; else cleared.
Z: Set if source data = $0000; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Offset Operand Cycles
IXP to EXT 31 ff hhll 8
EXT to IXP 33 ff hhll 8
EXT to EXT 37FF — hhll hhll 10
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-157

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MUL Unsigned Multiply MUL
Operation: (A) ∗ (B) ⇒ D

Description: Multiplies an 8-bit unsigned multiplicand contained in accumulator A
by an 8-bit unsigned multiplier contained in accumulator B, then
places the product in accumulator D. Unsigned multiply can be used
to perform multiple-precision operations. The CCR Carry bit can be
used to round the high byte of the product — execute MUL, then
ADCA #0.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Set if D7 = 1 as a result of operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — — — — ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3724 — 10
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-158 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEG Negate Byte NEG
Operation: $00 − (M) ⇒ M

Description: Replaces the content of a memory byte with its two’s complement. A
value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (M) = $80 after operation (two’s complement overflow); else cleared.
C: Cleared if (M) = $00 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 02 ff 8
IND8, Y 12 ff 8
IND8, Z 22 ff 8

IND16, X 1702 gggg 8
IND16, Y 1712 gggg 8
IND16, Z 1722 gggg 8

EXT 1732 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-159

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEGA Negate A NEGA
Operation: $00 − (A) ⇒ A

Description: Replaces the content of accumulator A with its two’s complement. A
value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if (A) = $80 after operation (two’s complement overflow); else cleared.
C: Cleared if (A) = $00 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3702 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-160 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEGB Negate B NEGB
Operation: $00 − (B) ⇒ B

Description: Replaces the content of accumulator B with its two’s complement. A
value of $80 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (B) = $80 after operation (two’s complement overflow); else cleared.
C: Cleared if (B) = $00 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 3712 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-161

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEGD Negate D NEGD
Operation: $0000 − (D) ⇒ D

Description: Replaces the content of accumulator D with its two’s complement. A
value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (D) = $8000 after operation (two’s complement overflow); else cleared.
C: Cleared if (D) = $0000 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27F2 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-162 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEGE Negate E NEGE
Operation: $0000 − (E) ⇒ E

Description: Replaces the content of accumulator E with its two’s complement. A
value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (E) = $8000 after operation (two’s complement overflow); else cleared.
C: Cleared if (E) = $0000 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 2772 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-163

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEGW Negate Word NEGW
Operation: $0000 − (M : M + 1) ⇒ M : M + 1

Description: Replaces the content of a memory word with its two’s complement.
A value of $8000 will not be changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (M : M + 1) = $8000 after operation (two’s complement overflow); else cleared.
C: Cleared if (M : M + 1) = $0000 before operation; else set.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2702 gggg 8
IND16, Y 2712 gggg 8
IND16, Z 2722 gggg 8

EXT 2732 hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-164 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP Null Operation NOP
Operation: None

Description: Causes program counter to be incremented, but has no other effect.
Often used to temporarily replace other instructions during debug,
so that execution continues with a routine disabled. Can be used to
produce a time delay based on CPU clock frequency, although this
practice makes programs system-specific.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 274C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-165

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORAA OR A ORAA
Operation: (A) ✛ (M) ⇒ A

Description: Performs inclusive OR between the content of accumulator A and a
memory byte, then places the result in accumulator A. Memory con-
tent is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 47 ff 6
IND8, Y 57 ff 6
IND8, Z 67 ff 6
IMM8 77 ii 2

IND16, X 1747 gggg 6
IND16, Y 1757 gggg 6
IND16, Z 1767 gggg 6

EXT 1777 hhll 6
E, X 2747 — 6
E, Y 2757 — 6
E, Z 2767 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-166 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORAB OR B ORAB
Operation: (B) ✛ (M) ⇒ B

Description: Performs inclusive OR between the content of accumulator B and a
memory byte, then places the result in accumulator B. Memory con-
tent is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X C7 ff 6
IND8, Y D7 ff 6
IND8, Z E7 ff 6
IMM8 F7 ii 2

IND16, X 17C7 gggg 6
IND16, Y 17D7 gggg 6
IND16, Z 17E7 gggg 6

EXT 17F7 hhll 6
E, X 27C7 — 6
E, Y 27D7 — 6
E, Z 27E7 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-167

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORD OR D ORD
Operation: (D) ✛ (M : M + 1) ⇒ D

Description: Performs inclusive OR between the content of accumulator D and a
memory word, then places the result in accumulator D. Memory con-
tent is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 87 ff 6
IND8, Y 97 ff 6
IND8, Z A7 ff 6
IMM16 37B7 jjkk 4

IND16, X 37C7 gggg 6
IND16, Y 37D7 gggg 6
IND16, Z 37E7 gggg 6

EXT 37F7 hhll 6
E, X 2787 — 6
E, Y 2797 — 6
E, Z 27A7 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-168 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORE OR E ORE
Operation: (E) ✛ (M : M + 1) ⇒ E

Description: Performs inclusive OR between the content of accumulator E and a
memory word, then places the result in accumulator E. Memory con-
tent is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IMM16 3737 jjkk 4

IND16, X 3747 gggg 6
IND16, Y 3757 gggg 6
IND16, Z 3767 gggg 6

EXT 3777 hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-169

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORP OR Condition Code Register ORP
Operation: (CCR) ✛ IMM16 ⇒ CCR

Description: Performs inclusive OR between the content of the condition code
register and a 16-bit unsigned immediate operand, then replaces
the content of the CCR with the result.

To make certain that conditions for termination of LPSTOP and WAI
are correct, interrupts are not recognized until after the instruction
following ORP executes. This prevents interrupt exception process-
ing during the period after the mask changes but before the follow-
ing instruction executes.

Syntax: Standard

Condition Code Register:

S: Set if bit 15 of operand = 1; else unchanged.
MV: Set if bit 14 of operand = 1; else unchanged.

H: Set if bit 13 of operand = 1; else unchanged.
EV: Set if bit 12 of operand = 1; else unchanged.

N: Set if bit 11 of operand = 1; else unchanged.
Z: Set if bit 10 of operand = 1; else unchanged.
V: Set if bit 9 of operand = 1; else unchanged.
C: Set if bit 8 of operand = 1; else unchanged.
IP: Each bit in field set if corresponding bit [7:5] of operand = 1; else unchanged.

SM: Set if bit 4 of operand = 1; else unchanged.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ —

Addressing Mode Opcode Operand Cycles
IMM16 373B jjkk 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-170 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHA Push A PSHA
Operation: (SK : SP) + $0001 ⇒ SK : SP

Push (A)
(SK : SP) − $0002 ⇒ SK : SP

Description: Increments (SK : SP) by one, stores the content of accumulator A at
that address, then decrements (SK : SP) by two. If the SP overflows
as a result of the operation, the SK field is incremented or decre-
mented.

Pushing byte data to the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION TIMING for
more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3708 — 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-171

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHB Push B PSHB
Operation: (SK : SP) + $0001 ⇒ SK : SP

Push (B)
(SK : SP) − $0002 ⇒ SK : SP

Description: Increments (SK : SP) by one, stores the content of accumulator B at
that address, then decrements (SK : SP) by two. If the SP overflows
as a result of the operation, the SK field is incremented or decre-
mented.

Pushing byte data to the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION TIMING for
more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3718 — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-172 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHM Push Multiple Registers PSHM
Operation: For mask bits 0 to 7

If bit set
push corresponding register
(SK : SP) − $0002 ⇒ SK : SP
Next

Mask bits:
0 = accumulator D
1 = accumulator E
2 = index register X
3 = index register Y
4 = index register Z
5 = extension register
6 = condition code register
7 = (Reserved)

Description: Stores contents of selected registers on the system stack. Registers
are designated by setting bits in a mask byte. The PULM instruction
restores registers from the stack. PUSHM mask order is the reverse
of PULM mask order. If SP overflow occurs as a result of operation,
the SK field is decremented.

Stacking into the highest available memory address causes the
PULM instruction to attempt a prefetch from inaccessible memory.
Pushing to an odd SK : SP can degrade performance. See SEC-
TION 8 INSTRUCTION TIMING for more information.

Syntax: PSHM (mask)

Condition Code Register: Not affected.

Instruction Format:

*N = Number of registers to be pushed.

Addressing Mode Opcode Mask Cycles
IMM8 34 ii 4 + 2N*
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-173

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHMAC Push MAC Registers PSHMAC
Operation: Stack registers in sequence shown, beginning at address pointed to

by stack pointer.

Description: Stores multiply and accumulate unit internal state on the system
stack. The SP is decremented after each save operation (stack
grows downward in memory). If SP overflow occurs as a result of
operation, the SK field is decremented. See SECTION 11 DIGITAL
SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

15 14 8 7 3 0
Start (SP) H REGISTER

(SP) + $0002 I REGISTER
(SP) + $0004 ACCUMULATOR M[15:0]
(SP) + $0006 ACCUMULATOR M[31:16]
(SP) + $0008 SL RESERVED AM[35:32]

End (SP) + $000A IX ADDRESS MASK IY ADDRESS MASK

Addressing Mode Opcode Operand Cycles
INH 27B8 — 14
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-174 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULA Pull A PULA
Operation: (SK : SP) + $0002 ⇒ SK : SP

Pull (A)
(SK : SP) − $0001 ⇒ SK : SP

Description: Increments (SK : SP) by two, restores the content of accumulator A
from that address, then decrements (SK : SP) by one. If the SP over-
flows as a result of the operation, the SK field is incremented or dec-
remented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION TIMING for
more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3709 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-175

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULB Pull B PULB
Operation: (SK : SP) + $0002 ⇒ SK : SP

Pull (B)
(SK : SP) − $0001 ⇒ SK : SP

Description: Increments (SK : SP) by two, restores the content of accumulator B
from that address, then decrements (SK : SP) by one. If the SP over-
flows as a result of the operation, the SK field is incremented or dec-
remented.

Pulling byte data from the stack can misalign the stack pointer and
degrade performance. See SECTION 8 INSTRUCTION TIMING for
more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 3719 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-176 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULM Pull Multiple Registers PULM
Operation: For mask bits 0 to 7

If bit set
(SK : SP) + $0002 ⇒ SK : SP
Pull corresponding register
Next

Mask bits:

0 = condition code register
1 = extension register
2 = index register Z
3 = index register Y
4 = index register X
5 = accumulator E
6 = accumulator D
7 = (Reserved)

Description: Restores contents of registers stacked by a PSHM instruction. Reg-
isters are designated by setting bits in a mask byte. PULM mask or-
der is the reverse of PSHM mask order. If SP overflow occurs as a
result of operation, the SK field is incremented.

PULM prefetches a stacked word on each iteration. If SP points to
the highest available stack address after the last register has been
restored, the prefetch will attempt to read inaccessible memory. Pull-
ing from an odd SK : SP can degrade performance. See SECTION 8
INSTRUCTION TIMING for more information.

Syntax: PULM (mask)

Condition Code Register:

Set according to CCR pulled from stack. Not affected unless CCR is
pulled.

Instruction Format:

*N = Number of registers to be pulled.

Addressing Mode Opcode Mask Cycles
IMM8 35 ii 4+ 2 (N + 1)*
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-177

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULMAC Pull MAC Registers PULMAC
Operation: Restore registers in sequence shown, beginning at address pointed

to by stack pointer.

Description: Restores multiply and accumulate unit internal state from the sys-
tem stack. The SP is incremented after each restoration (stack
shrinks upward in memory). If SP overflow occurs as a result of op-
eration, the SK field is incremented. See SECTION 11 DIGITAL
SIGNAL PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

15 14 8 7 3 0
End (SP) + $000C IX ADDRESS MASK IY ADDRESS MASK

(SP) + $000A SL RESERVED AM[35:32]
(SP) + $0008 ACCUMULATOR M[31:16]
(SP) + $0006 ACCUMULATOR M[15:0]
(SP) + $0004 I REGISTER
(SP) + $0002 H REGISTER

Start (SP) (Top of Stack)

Addressing Mode Opcode Operand Cycles
INH 27B9 — 16
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-178 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RMAC Repeating Multiply and Accumulate RMAC
Operation: Repeat:

(AM) + ((HR) ∗ (IR)) ⇒ AM
((IX) ≤ X MASK) ✛ ((IX) + xo) ≤ X MASK) ⇒ IX
((IY) ≤ Y MASK) ✛ ((IY) + yo) ≤ Y MASK) ⇒ IY
(M : M + 1)X ⇒ HR
(M : M + 1)Y ⇒ IR
(E) − $0001 ⇒ EUntil (E) < $0000

Description: Performs repeated multiplication of 16-bit signed fractional multipli-
cands in MAC register I by 16-bit signed fractional multipliers in MAC
register H. Each product is added to the content of accumulator M.
Accumulator D is used for temporary storage during multiplication. A
16-bit signed integer in accumulator E determines the number of
repetitions.

There are implied radix points between bits 15 and 14 of HR and IR.
Each product is left-shifted one place to align the radix point be-
tween bits 31 and 30 before addition to AM.

As multiply and accumulate operations take place, 4-bit offsets xo
and yo are sign-extended to 16 bits and used with X and Y masks to
qualify the X and Y index registers.

Writing a non-zero value into a mask register prior to RMAC execu-
tion enables modulo addressing. The TDMSK instruction writes
mask values. When a mask contains $0, modulo addressing is dis-
abled, and the sign-extended offset is added to the content of the
corresponding index register.

After accumulation, a word pointed to by XK : IX is loaded into HR,
and a word pointed to by YK : IY is loaded into IR, then the value in
E is decremented and tested. After execution, content of E is inde-
terminate.
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-179

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RMAC Repeating Multiply and Accumulate RMAC
RMAC always iterates at least once, even when executed with a
zero or negative value in E. Since the value in E is decremented,
then tested, loading E with $8000 results in 32,769 iterations.

If HR and IR both contain $8000 (–1), a value of $80000000 (1.0 in
36-bit format) is accumulated, but no condition code is set.

RMAC execution is suspended during asynchronous exceptions.
Operation resumes when RTI is executed. All registers used by
RMAC must be restored prior to RTI. See SECTION 11 DIGITAL
SIGNAL PROCESSING for more information.

Syntax: RMAC xo, yo

Condition Code Register:

S: Not affected.
MV: Set if overflow into AM35 occurs as a result of addition; else not affected.

H: Not affected.
EV: Set if overflow into AM[34:31] occurs as a result of addition; else cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ — — — — — — —

Addressing Mode Opcode Offset Cycles
IMM8 FB xoyo 6 + 12 per iteration
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-180 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL Rotate Left Byte ROL
Operation:

Description: Rotates all eight bits of a memory byte one place to the left. Bit 0 is
loaded from the CCR carry bit. Bit 7 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple bytes.
For example, use the sequence ASL Byte0, ROL Byte1, ROL Byte2
to shift a 24-bit value contained in bytes 0 to 2 left one bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ — — — — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 0C ff 8
IND8, Y 1C ff 8
IND8, Z 2C ff 8

IND16, X 170C gggg 8
IND16, Y 171C gggg 8
IND16, Z 172C gggg 8

EXT 173C hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-181

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLA Rotate Left A ROLA
Operation:

Description: Rotates all eight bits of accumulator A one place to the left. Bit 0 is
loaded from the CCR carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if A7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370C — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-182 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLB Rotate Left B ROLB
Operation:

Description: Rotates all eight bits of accumulator B one place to the left. Bit 0 is
loaded from the CCR carry bit. Bit 7 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B7 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 371C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-183

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLD Rotate Left D ROLD
Operation:

Description: Rotates all sixteen bits of accumulator D one place to the left. Bit 0 is
loaded from the CCR carry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if D15 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27FC — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-184 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLE Rotate Left E ROLE
Operation:

Description: Rotates all sixteen bits of accumulator E one place to the left. Bit 0 is
loaded from the CCR carry bit. Bit 15 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if E15 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 277C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-185

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLW Rotate Left Word ROLW
Operation:

Description: Rotates all sixteen bits of a memory word one place to the left. Bit 0
is loaded from the CCR carry bit. Bit 15 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence ASLW Word0, ROLW Word1, ROLW
Word2 to shift a 48-bit value contained in words 0 to 2 left one bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M : M + 1[15] = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 270C gggg 8
IND16, Y 271C gggg 8
IND16, Z 272C gggg 8

EXT 273C hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-186 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROR Rotate Right Byte ROR
Operation:

Description: Rotates all eight bits of a memory byte one place to the right. Bit 7 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence LSR Byte2, ROR Byte1, ROR Byte0
to shift a 24-bit value contained in bytes 0 to 2 right one bit. Replace
LSR with ASR to maintain the value of a sign bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 set as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 0E ff 8
IND8, Y 1E ff 8
IND8, Z 2E ff 8

IND16, X 170E gggg 8
IND16, Y 171E gggg 8
IND16, Z 172E gggg 8

EXT 173E hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-187

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RORA Rotate Right A RORA
Operation:

Description: Rotates all eight bits of accumulator A one place to the right. Bit 7 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if A0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370E — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-188 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RORB Rotate Right B RORB
Operation:

Description: Rotates all eight bits of accumulator B one place to the right. Bit 7 is
loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if B0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 371E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-189

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RORD Rotate Right D RORD
Operation:

Description: Rotates all sixteen bits of accumulator D one place to the right. Bit
15 is loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if D0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 27FE — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-190 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RORE Rotate Right E RORE
Operation:

Description: Rotates all sixteen bits of accumulator E one place to the right. Bit
15 is loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if E0 = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 277E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-191

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RORW Rotate Right Word RORW
Operation:

Description: Rotates all sixteen bits of a memory word one place to the right. Bit
15 is loaded from the CCR C bit. Bit 0 is transferred to the C bit.

Rotation through the C bit aids shifting and rotating multiple words.
For example, use the sequence LSRW Word2, RORW Word1,
RORW Word0 to shift a 48-bit value contained in words 0 to 2 right
one bit. Replace LSRW with ASRW to maintain value of a sign bit.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Set if (N is set and C is clear) or (N is clear and C is set) as a result of operation; else cleared.
C: Set if M : M + 1[0] = 1 before operation; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND16, X 270E gggg 8
IND16, Y 271E gggg 8
IND16, Z 272E gggg 8

EXT 273E hhll 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-192 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTI Return From Interrupt RTI
Operation: (SK : SP) + 2 ⇒ SK : SP

Pull CCR
(SK : SP) + 2 ⇒ SK : SP
Pull PC(PK : PC) − 6 ⇒ PK : PC

Description: Causes normal program execution to resume after an interrupt, or
any exception other than reset. The condition code register and pro-
gram counter are restored from the system stack. When the CCR is
pulled, the PK field is restored, so that execution resumes on the
proper page after the PC is pulled.

Syntax: Standard

Condition Code Register:

S: Set or cleared according to CCR restored from stack.
MV: Set or cleared according to CCR restored from stack.

H: Set or cleared according to CCR restored from stack.
EV: Set or cleared according to CCR restored from stack.

N: Set or cleared according to CCR restored from stack.
Z: Set or cleared according to CCR restored from stack.
V: Set or cleared according to CCR restored from stack.
C: Set or cleared according to CCR restored from stack.
IP: Value changes according to CCR restored from stack.

SM: Set or cleared according to CCR restored from stack.
PK: Value changes according to CCR restored from stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Addressing Mode Opcode Operand Cycles
INH 2777 — 12
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-193

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTS Return From Subroutine RTS
Operation: (SK : SP) + 2 ⇒ SK : SP

Pull PK
(SK : SP) + 2 ⇒ SK : SP
Pull PC
(PK : PC) − 2 ⇒ PK : PC

Description: Returns control to a routine that executed JSR. The PK field and
program counter are restored from the system stack, so that execu-
tion resumes on the proper page. Use PSHM/PULM to conserve
other program resources.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Value changes to that of PK restored from stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — — — — — — ∆

Addressing Mode Opcode Operand Cycles
INH 27F7 — 12
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-194 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBA Subtract B from A SBA
Operation: (A) − (B) ⇒ A

Description: Subtracts the content of accumulator B from the content of accumu-
lator A, then places the result in accumulator A. Content of accumu-
lator B does not change. The CCR C bit represents a borrow for
subtraction.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (A) < (B) ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 370A — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-195

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBCA Subtract with Carry from A SBCA
Operation: (A) − (M) − C ⇒ A

Description: Subtracts the content of a memory byte minus the value of the C bit
from the content of accumulator A, then places the result in accumu-
lator A. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (A) < (M) + C ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 42 ff 6
IND8, Y 52 ff 6
IND8, Z 62 ff 6
IMM8 72 ii 2

IND16, X 1742 gggg 6
IND16, Y 1752 gggg 6
IND16, Z 1762 gggg 6

EXT 1772 hhll 6
E, X 2742 — 6
E, Y 2752 — 6
E, Z 2762 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-196 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBCB Subtract with Carry from B SBCB
Operation: (B) − (M) − C ⇒ B

Description: Subtracts the content of a memory byte minus the value of the C bit
from the content of accumulator B, then places the result in accumu-
lator B. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (B) < (M) + C ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X C2 ff 6
IND8, Y D2 ff 6
IND8, Z E2 ff 6
IMM8 F2 ii 2

IND16, X 17C2 gggg 6
IND16, Y 17D2 gggg 6
IND16, Z 17E2 gggg 6

EXT 17F2 hhll 6
E, X 27C2 — 6
E, Y 27D2 — 6
E, Z 27E2 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-197

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBCD Subtract with Carry from D SBCD
Operation: (D) − (M : M + 1) − C ⇒ D

Description: Subtracts the content of a memory word minus the value of the C bit
from the content of accumulator D, then places the result in accumu-
lator D. Memory content is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of operation; else cleared.
C: Set if (D) < (M : M + 1) + C ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 82 ff 6
IND8, Y 92 ff 6
IND8, Z A2 ff 6
IMM16 37B2 jjkk 4

IND16, X 37C2 gggg 6
IND16, Y 37D2 gggg 6
IND16, Z 37E2 gggg 6

EXT 37F2 hhll 6
E, X 2782 — 6
E, Y 2792 — 6
E, Z 27A2 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-198 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STAA Store A STAA
Operation: (A) ⇒ M

Description: Stores content of accumulator A in a memory byte. Content of accu-
mulator is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 is set as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 4A ff 4
IND8, Y 5A ff 4
IND8, Z 6A ff 4

IND16, X 174A gggg 6
IND16, Y 175A gggg 6
IND16, Z 176A gggg 6

EXT 177A hhll 6
E, X 274A — 4
E, Y 275A — 4
E, Z 276A — 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-199

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STAB Store B STAB
Operation: (B) ⇒ M

Description: Stores content of accumulator B in a memory byte. Content of accu-
mulator is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 is set as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X CA ff 4
IND8, Y DA ff 4
IND8, Z EA ff 4

IND16, X 17CA gggg 6
IND16, Y 17DA gggg 6
IND16, Z 17EA gggg 6

EXT 17FA hhll 6
E, X 27CA — 4
E, Y 27DA — 4
E, Z 27EA — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-200 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STD Store D STD
Operation: (D) ⇒ M : M + 1

Description: Stores content of accumulator D in a memory word. Content of ac-
cumulator is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 8A ff 4
IND8, Y 9A ff 4
IND8, Z AA ff 4

IND16, X 37CA gggg 6
IND16, Y 37DA gggg 6
IND16, Z 37EA gggg 6

EXT 37FA hhll 6
E, X 278A — 6
E, Y 279A — 6
E, Z 27AA — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-201

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STE Store E STE
Operation: (E) ⇒ M : M + 1

Description: Stores content of accumulator E in a memory word. Content of ac-
cumulator is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND16, X 374A gggg 6
IND16, Y 375A gggg 6
IND16, Z 376A gggg 6

EXT 377A hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-202 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STED Store Concatenated E and D STED
Operation: (E) ⇒ (M : M + 1)

(D) ⇒ (M + 2 : M + 3)

Description: Stores concatenated accumulators E and D into four successive
bytes of memory. Used to transfer long-word and 32-bit fractional
operands to memory. Can also be used to perform coherent long
word transfers to IMB peripherals. Misaligned long word transfers
are converted into two misaligned word transfers.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

EXT 2773 hhll 8
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-203

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STS Store Stack Pointer STS
Operation: (SP) ⇒ M : M + 1

Description: Stores content of stack pointer in a memory word. Content of pointer
is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 8F ff 4
IND8, Y 9F ff 4
IND8, Z AF ff 4

IND16, X 178F gggg 6
IND16, Y 179F gggg 6
IND16, Z 17AF gggg 6

EXT 17BF hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-204 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STX Store IX STX
Operation: (IX) ⇒ M : M + 1

Description: Stores content of index register X in a memory word. Content of reg-
ister is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 8C ff 4
IND8, Y 9C ff 4
IND8, Z AC ff 4

IND16, X 178C gggg 6
IND16, Y 179C gggg 6
IND16, Z 17AC gggg 6

EXT 17BC hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-205

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STY Store IY STY
Operation: (IY) ⇒ M : M + 1

Description: Stores content of index register Y in a memory word. Content of reg-
ister is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 8D ff 4
IND8, Y 9D ff 4
IND8, Z AD ff 4

IND16, X 178D gggg 6
IND16, Y 179D gggg 6
IND16, Z 17AD gggg 6

EXT 17BD hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-206 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STZ Store IZ STZ
Operation: (IZ) ⇒ M : M + 1

Description: Stores content of index register Z in a memory word. Content of reg-
ister is unchanged.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] is set as a result of operation; else cleared.
Z: Set if (M : M + 1) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
IND8, X 8E ff 4
IND8, Y 9E ff 4
IND8, Z AE ff 4

IND16, X 178E gggg 6
IND16, Y 179E gggg 6
IND16, Z 17AE gggg 6

EXT 17BE hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-207

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBA Subtract from A SUBA
Operation: (A) − (M) ⇒ A

Description: Subtracts the content of a memory byte from the content of accumu-
lator A, then places the result in accumulator A. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 is set by operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (A) < (M) ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 40 ff 6
IND8, Y 50 ff 6
IND8, Z 60 ff 6
IMM8 70 ii 2

IND16, X 1740 gggg 6
IND16, Y 1750 gggg 6
IND16, Z 1760 gggg 6

EXT 1770 hhll 6
E, X 2740 — 6
E, Y 2750 — 6
E, Z 2760 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-208 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBB Subtract from B SUBB
Operation: (B) − (M) ⇒ B

Description: Subtracts the content of a memory byte from the content of accumu-
lator B, then places the result in accumulator B. Memory content is
not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 is set by operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (B) < (M) ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 5 4 3 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X C0 ff 6
IND8, Y D0 ff 6
IND8, Z E0 ff 6
IMM8 F0 ii 2

IND16, X 17C0 gggg 6
IND16, Y 17D0 gggg 6
IND16, Z 17E0 gggg 6

EXT 17F0 hhll 6
E, X 27C0 — 6
E, Y 27D0 — 6
E, Z 27E0 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-209

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBD Subtract from D SUBD
Operation: (D) − (M : M + 1) ⇒ D

Description: Subtracts the content of a memory word from the content of accu-
mulator D, then places the result in accumulator D. Memory content
is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 is set by operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of operation; else cleared.
C: Set if (D) < (M : M + 1) ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IND8, X 80 ff 6
IND8, Y 90 ff 6
IND8, Z A0 ff 6
IMM16 37B0 jjkk 4

IND16, X 37C0 gggg 6
IND16, Y 37D0 gggg 6
IND16, Z 37E0 gggg 6

EXT 37F0 hhll 6
E, X 2780 — 6
E, Y 2790 — 6
E, Z 27A0 — 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-210 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUBE Subtract from E SUBE
Operation: (E) − (M : M + 1) ⇒ E

Description: Subtracts the content of a memory word from the content of accu-
mulator E, then places the result in accumulator E. Memory content
is not affected.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 is set by operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Set if two’s complement overflow occurs as a result of the operation; else cleared.
C: Set if (E) < (M : M + 1) ; else cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
IMM16 3730 jjkk 4

IND16, X 3740 gggg 6
IND16, Y 3750 gggg 6
IND16, Z 3760 gggg 6

EXT 3770 hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-211

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt SWI
Operation: (PK : PC) + $0002 ⇒ PK : PC

Push (PC)
(SK : SP) – $0002 ⇒ SK : SP
Push (CCR)
(SK : SP) – $0002 ⇒ SK : SP
$0 ⇒ PK
(SWI Vector) ⇒ PC

Description: Causes an internally generated interrupt exception. Current pro-
gram counter and condition code register (including the PK field) are
saved on the system stack, then PK is cleared and the PC is loaded
with exception vector 6 (content of address $000C). See SECTION
9 EXCEPTION PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not Affected.
MV: Not Affected.

H: Not Affected.
EV: Not Affected.

N: Not Affected.
Z: Not Affected.
V: Not Affected.
C: Not Affected.
IP: Not Affected.

SM: Not Affected.
PK: Cleared.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — — — — — — — 0

Addressing Mode Opcode Operand Cycles
INH 3720 — 16
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-212 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SXT Sign Extend B into A SXT
Operation: If B7 = 1

then $FF ⇒ A
else $00 ⇒ A

Description: Extends an 8-bit two’s complement value contained in accumulator
B into a 16-bit two’s complement value in accumulator D.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ — — — — —

Addressing Mode Opcode Operand Cycles
INH 27F8 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-213

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TAB Transfer A to B TAB
Operation: (A) ⇒ B

Description: Replaces the content of accumulator B with the content of accumu-
lator A. Content of A is not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
INH 3717 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-214 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TAP Transfer A to Condition Code Register TAP
Operation: (A) ⇒ CCR[15:8]

Description: Replaces bits 15 to 8 of the condition code register with the content
of accumulator A. Content of A is not changed.

To make certain that conditions for termination of LPSTOP and WAI
are correct, interrupts are not recognized until after the instruction
following TAP executes. This prevents interrupt exception processing
during the period after the mask changes but before the following in-
struction executes.

Syntax: Standard

Condition Code Register:

S: Set or cleared according to content of A.
MV: Set or cleared according to content of A.

H: Set or cleared according to content of A.
EV: Set or cleared according to content of A.

N: Set or cleared according to content of A.
Z: Set or cleared according to content of A.
V: Set or cleared according to content of A.
C: Set or cleared according to content of A.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ — — —

Addressing Mode Opcode Operand Cycles
INH 37FD — 4
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-215

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBA Transfer B to A TBA
Operation: (B) ⇒ A

Description: Replaces the content of accumulator A with the content of accumu-
lator B. Content of B is not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
INH 3707 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-216 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBEK Transfer B to EK TBEK
Operation: (B[3:0]) ⇒ EK

Description: Replaces the content of the EK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 27FA — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-217

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBSK Transfer B to SK TBSK
Operation: (B[3:0]) ⇒ SK

Description: Replaces the content of the SK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 379F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-218 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBXK Transfer B to XK TBXK
Operation: (B[3:0]) ⇒ XK

Description: Replaces the content of the XK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 379C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-219

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBYK Transfer B to YK TBYK
Operation: (B[3:0]) ⇒ YK

Description: Replaces the content of the YK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 379D — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-220 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TBZK Transfer B to ZK TBZK
Operation: (B[3:0]) ⇒ ZK

Description: Replaces the content of the ZK field with the content of bits 0 to 3 of
accumulator B. Bits 4 to 7 are ignored. Content of B is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 379E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-221

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TDE Transfer D to E TDE
Operation: (D) ⇒ E

Description: Replaces the content of accumulator E with the content of accumu-
lator D. Content of D is not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
INH 277B — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-222 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TDMSK Transfer D to XMSK:YMSK TDMSK
Operation: (D[15:8]) ⇒ XMSK

(D[7:0]) ⇒ YMSK

Description: Replaces the content of the MAC X and Y masks with the content of
accumulator D. Content of D is not changed. Masks are used to im-
plement modulo buffers. See SECTION 11 DIGITAL SIGNAL PRO-
CESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 372F — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-223

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TDP Transfer D to Condition Code Register TDP
Operation: (D) ⇒ CCR[15:4]

Description: Replaces bits 15 to 4 of the condition code register with the content
of accumulator D. Content of D is not changed.

To make certain that conditions for termination of LPSTOP and WAI
are correct, interrupts are not recognized until after the instruction
following TDP executes. This prevents interrupt exception process-
ing during the period after the mask changes but before the follow-
ing instruction executes.

Syntax: Standard

Condition Code Register:

S: Set or cleared according to content of D.
MV: Set or cleared according to content of D.

H: Set or cleared according to content of D.
EV: Set or cleared according to content of D.

N: Set or cleared according to content of D.
Z: Set or cleared according to content of D.
V: Set or cleared according to content of D.
C: Set or cleared according to content of D.
IP: Set or cleared according to content of D.

SM: Set or cleared according to content of D.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ —

Addressing Mode Opcode Operand Cycles
INH 372D — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-224 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TED Transfer E to D TED
Operation: (E) ⇒ D

Description: Replaces the content of accumulator D with the content of accumu-
lator E. Content of E is not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 — — — —

Addressing Mode Opcode Operand Cycles
INH 27FB — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-225

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TEDM Transfer E and D to AM TEDM
Operation: (E) ⇒ AM[31:16]

(D) ⇒ AM[15:0]
AM[32:35] = AM31

Description: Replaces bits 31 to 16 of the MAC accumulator with the content of
accumulator E, then replaces bits 15 to 0 of the MAC accumulator
with the content of accumulator D. AM[35:32] reflect the state of
AM31. Content of E and D are not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Cleared.

H: Not affected.
EV: Cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— 0 — 0 — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 27B1 — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-226 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TEKB Transfer EK to B TEKB
Operation: (EK) ⇒ B[3:0]

$0 ⇒ B[7:4]

Description: Replaces bits 0 to 3 of accumulator B with the content of the EK
field. Bits 4 to 7 of B are cleared. Content of EK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 27BB — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-227

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TEM Transfer E to AM TEM
Operation: (E) ⇒ AM[31:16]

$00 ⇒ AM[15:0]
AM[35:32] = AM31

Description: Replaces bits 31 to 16 of the MAC accumulator with the content of
accumulator E. AM[15:0] are cleared. AM[35:32] reflect the state of
bit 31. Content of E is not changed.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Cleared.

H: Not affected.
EV: Cleared.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— 0 — 0 — — — — — — —

Addressing Mode Opcode Operand Cycles
INH 27B2 — 4
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-228 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TMER Transfer Rounded AM to E TMER
Operation: Rounded (AM) ⇒ Temp

If (SM • (EV ÷ MV))
then Saturation Value ⇒ E

else Temp ⇒ E

Description: The content of the MAC accumulator is rounded and transferred to
temporary storage. If the saturation mode bit in the CCR is set and
overflow occurs, a saturation value is transferred to accumulator E.
Otherwise, the rounded value is transferred to accumulator E. TMER
uses convergent rounding. Refer to SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Set if overflow into AM35 occurs as a result of rounding; else not affected.

H: Not affected.
EV: Set if overflow into AM[34:31] occurs as a result of rounding; else not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $00 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— ∆ — ∆ ∆ ∆ — — — — —

Addressing Mode Opcode Operand Cycles
INH 27B4 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-229

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TMET Transfer Truncated AM to E TMET
Operation: If (SM ≤ (EV ✛ MV))

then Saturation Value ⇒ E
else AM[31:16] ⇒ E

Description: If the saturation mode bit in the CCR is set and overflow has
occurred, a saturation value is transferred to accumulator E. Other-
wise, AM[31:16] are transferred to accumulator E. Refer to SEC-
TION 11 DIGITAL SIGNAL PROCESSING for more information on
overflow and data saturation.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $00 as a result of operation; else cleared.
V: Not affected.
C: Not affected.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ — — — — —

Addressing Mode Opcode Operand Cycles
INH 27B5 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-230 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TMXED Transfer AM to IX : E : D TMXED
Operation: AM[35:32] ⇒ IX[3:0]

AM35 ⇒ IX[15:4]
AM[31:16] ⇒ E
AM[15:0] ⇒ D

Description: Transfers content of the MAC accumulator to index register X, accu-
mulator E, and accumulator D. See SECTION 11 DIGITAL SIGNAL
PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 27B3 — 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-231

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TPA Transfer Condition Code Register to A TPA
Operation: (CCR[15:8]) ⇒ A

Description: Replaces the content of accumulator A with bits 15 to 8 of the condi-
tion code register. Content of CCR is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 37FC — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-232 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TPD Transfer Condition Code Register to D TPD
Operation: (CCR) ⇒ D

Description: Replaces the content of accumulator D with the content of the condi-
tion code register. Content of CCR is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 372C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-233

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSKB Transfer SK to B TSKB
Operation: (SK) ⇒ B[3:0]$0 ⇒ B[7:4]

Description: Replaces bits 0 to 3 of accumulator B with the content of the SK
field. Bits 4 to 7 of B are cleared. Content of SK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 37AF — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-234 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TST Test Byte TST
Operation: (M) − $00

Description: Subtracts $00 from the content of a memory byte and sets bits in the
condition code register accordingly. The operation does not change
memory content.

TST has minimal utility with unsigned values. BLO and BLS, for ex-
ample, will not function because no unsigned value is less than zero.
BHI will function the same as BNE, which is preferred.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M7 = 1 as a result of operation; else cleared.
Z: Set if (M) = $00 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
IND8, X 06 ff 6
IND8, Y 16 ff 6
IND8, Z 26 ff 6

IND16, X 1706 gggg 6
IND16, Y 1716 gggg 6
IND16, Z 1726 gggg 6

EXT 1736 hhll 6
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-235

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSTA Test A TSTA
Operation: (A) − $00

Description: Subtracts $00 from the content of accumulator A and sets bits in the
condition code register accordingly. The operation does not change
accumulator content.

TSTA has minimal utility with unsigned values. BLO and BLS, for ex-
ample, will not function because no unsigned value is less than zero.
BHI will function the same as BNE, which is preferred.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if A7 = 1 as a result of operation; else cleared.
Z: Set if (A) = $00 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 3706 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-236 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSTB Test B TSTB
Operation: (B) − $00

Description: Subtracts $00 from the content of accumulator B and sets bits in the
condition code register accordingly. The operation does not change
accumulator content.

TSTB has minimal utility with unsigned values. BLO and BLS, for ex-
ample, will not function because no unsigned value is less than zero.
BHI will function the same as BNE, which is preferred.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if B7 = 1 as a result of operation; else cleared.
Z: Set if (B) = $00 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 3716 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-237

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSTD Test D TSTD
Operation: (D) − $0000

Description: Subtracts $0000 from the content of accumulator D and sets bits in
the condition code register accordingly. The operation does not
change accumulator content.

TSTD provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example, have
no utility because no unsigned value is less than zero. BHI will func-
tion the same as BNE, which is preferred. All signed branch instruc-
tions are available after test of signed values.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if D15 = 1 as a result of operation; else cleared.
Z: Set if (D) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 27F6 — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-238 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSTE Test E TSTE
Operation: (E) − $0000

Description: Subtracts $0000 from the content of accumulator E and sets the bits
in the condition code register accordingly. The operation does not
change accumulator content.

TSTE provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example, have
no utility because no unsigned value is less than zero. BHI will func-
tion the same as BNE, which is preferred. All signed branch instruc-
tions are available after test of signed values.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if E15 = 1 as a result of operation; else cleared.
Z: Set if (E) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
INH 2776 — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-239

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSTW Test Word TSTW
Operation: (M : M + 1) − $0000

Description: Subtracts $0000 from the content of a memory word and sets the
bits in the condition code register accordingly. The operation does
not change memory content.

TSTW provides minimum information to subsequent instructions
when unsigned values are tested. BLO and BLS, for example, have
no utility because no unsigned value is less than zero. BHI will func-
tion the same as BNE, which is preferred. All signed branch instruc-
tions are available after test of signed values.

Syntax: Standard

Condition Code Register:

S: Not affected.
MV: Not affected.

H: Not affected.
EV: Not affected.

N: Set if M : M + 1[15] = 1 as a result of operation; else cleared.
Z: Set if (M : M + 1) = $0000 as a result of operation; else cleared.
V: Cleared.
C: Cleared.
IP: Not affected.

SM: Not affected.
PK: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

— — — — ∆ ∆ 0 0 — — —

Addressing Mode Opcode Operand Cycles
IND16, X 2706 gggg 6
IND16, Y 2716 gggg 6
IND16, Z 2726 gggg 6

EXT 2736 hhll 6
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-240 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSX Transfer SP to IX TSX
Operation: (SK : SP) + $0002 ⇒ XK : IX

Description: Replaces the contents of the XK field and index register X with the
contents of the SK field and the stack pointer plus two. Contents of
SK and SP are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 274F — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-241

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSY Transfer SP to IY TSY
Operation: (SK : SP) + $0002 ⇒ YK : IY

Description: Replaces the contents of the YK field and index register Y with the
contents of the SK field and the stack pointer plus two. Contents of
SK and SP are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 275F — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-242 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSZ Transfer SP to IZ TSZ
Operation: (SK : SP) + $0002 ⇒ ZK : IZ

Description: Replaces the contents of the ZK field and index register Z with the
contents of the SK field and the stack pointer plus two. Contents of
SK and SP are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:
Addressing Mode Opcode Operand Cycles

INH 276F — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-243

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXKB Transfer XK to B TXKB
Operation: (XK) ⇒ B[3:0]$0 ⇒ B[7:4]

Description: Replaces bits 0 to 3 of accumulator B with the content of the XK
field. Bits 4 to 7 of B are cleared. Content of XK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37AC — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-244 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXS Transfer IX to SP TXS
Operation: (XK : IX) − $0002 ⇒ SK : SP

Description: Replaces the content of the SK field and the stack pointer with the
content of the XK field and index register X minus two. Content of
XK and IX are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 374E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-245

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXY Transfer IX to IY TXY
Operation: (XK : IX) ⇒ YK : IY

Description: Replaces the content of the YK field and index register Y with the
content of the XK field and index register X. Content of XK and IX
are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 275C — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-246 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXZ Transfer IX to IZ TXZ
Operation: (XK : IX) ⇒ ZK : IZ

Description: Replaces the content of the ZK field and index register Z with the
content of the XK field and index register X. Content of XK and IX
are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 276C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-247

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TYKB Transfer YK to B TYKB
Operation: (YK) ⇒ B[3:0]$0 ⇒ B[7:4]

Description: Replaces bits 0 to 3 of accumulator B with the content of the YK
field. Bits 4 to 7 of B are cleared. Content of YK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37AD — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-248 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TYS Transfer IY to SP TYS
Operation: (YK : IY) − $0002 ⇒ SK : SP

Description: Replaces the content of the SK field and the stack pointer with the
content of the YK field and index register Y minus two. Content of YK
and IY are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 375E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-249

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TYX Transfer IY to IX TYX
Operation: (YK : IY) ⇒ XK : IX

Description: Replaces the content of the XK field and index register X with the
content of the YK field and index register Y. Content of YK and IY are
not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 274D — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-250 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TYZ Transfer IY to IZ TYZ
Operation: (YK : IY) ⇒ ZK : IZ

Description: Replaces the content of the ZK field and index register Z with the
content of the YK field and index register Y. Content of YK and IY are
not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 276D — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-251

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TZKB Transfer ZK to B TZKB
Operation: (ZK) ⇒ B[3:0]

$0 ⇒ B[7:4]

Description: Replaces bits 0 to 3 of accumulator B with the content of the ZK
field. Bits 4 to 7 of B are cleared. Content of ZK is not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37AE — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-252 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TZS Transfer IZ to SP TZS
Operation: (ZK : IZ) − $0002 ⇒ SK : SP

Description: Replaces the content of the SK field and the stack pointer with the
content of the ZK field and index register Z minus two. Content of ZK
and IZ are not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 376E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-253

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TZX Transfer IZ to IX TZX
Operation: (ZK : IZ) ⇒ XK : IX

Description: Replaces the content of the XK field and index register X with the
content of the ZK field and index register Z. Content of ZK and IZ are
not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 274E — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-254 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TZY Transfer IZ to IY TZY
Operation: (ZK : IZ) ⇒ YK : IY

Description: Replaces the content of the YK field and index register Y with the
content of the ZK field and index register Z. Content of ZK and IZ are
not changed.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 275E — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-255

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WAI Wait for Interrupt WAI
Operation: WAIT

Description: Internal CPU clocks are stopped, and normal execution of instruc-
tions ceases. Instruction execution can resume in one of two ways. If
a reset occurs, a reset exception is generated. If an interrupt request
of higher priority than the current IP value is received, an Interrupt
exception is generated.

Interrupts are acknowledged faster after WAI than after LPSTOP, be-
cause IMB clocks continue to run during WAI operation, and the
CPU16 does not copy the IP field to the system integration module
external bus interface. However, LPSTOP minimizes microcontroller
power consumption during inactivity. Refer to SECTION 9 EXCEP-
TION PROCESSING for more information.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 27F3 — 8
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-256 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGAB Exchange A and B XGAB
Operation: (A) ⇔ (B)

Description: Exchanges contents of accumulators A and B.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 371A — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-257

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGDE Exchange D and E XGDE
Operation: (D) ⇔ (E)

Description: Exchanges contents of accumulators D and E.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 277A — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-258 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGDX Exchange D and IX XGDX
Operation: (D) ⇔ (IX)

Description: Exchanges contents of accumulator D and index register X.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37CC — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-259

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGDY Exchange D and IY XGDY
Operation: (D) ⇔ (IY)

Description: Exchanges contents of accumulator D and index register IY.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37DC — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-260 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGDZ Exchange D and IZ XGDZ
Operation: (D) ⇔ (IZ)

Description: Exchanges contents of accumulator D and index register IZ.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 37EC — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-261

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGEX Exchange E and IX XGEX
Operation: (E) ⇔ (IX)

Description: Exchanges contents of accumulator E and index register X.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 374C — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-262 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGEY Exchange E and IY XGEY
Operation: (E) ⇔ (IY)

Description: Exchanges contents of accumulator E and index register Y.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 375C — 2
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-263

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

XGEZ Exchange E and IZ XGEZ
Operation: (E) ⇔ (IZ)

Description: Exchanges contents of accumulator E and index register Z.

Syntax: Standard

Condition Code Register: Not affected.

Instruction Format:

Addressing Mode Opcode Operand Cycles
INH 376C — 2
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-264 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3 Condition Code Evaluation

The following table contains Boolean expressions used to evaluate the effect of an op-
eration on condition code register status flags.

Table 6-35 Condition Code Evaluation

Mnemonic Evaluation

ABA H = A3 • B3 ÷ B3 • R3 ÷ R3 • A3
N = R7
Z = R7 • R6 • ... • R1 • R0
V = A7 • B7 • R7 ÷ A7 • B7 • R7
C = A7 • B7 ÷ B7 • R7 ÷ R7 • A7

ACE
ACED

EV = [(AM35 ÷...÷ AM31) • (AM35 ÷... ÷ AM31)] ÷ MV
MV — cannot be represented by a Boolean equation

ADCA
ADCB

H = X3 • M3 ÷ M3 • R3 ÷ R3 • X3
N = R7
Z = R7 • R6 • ... • R1 • R0
V = X7 • M7 • R7 ÷ X7 • M7 • R7
C = X7 • M7 ÷ M7 • R7 ÷ R7 • X7

ADCD
ADCE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = X15 • M15 • R15 ÷ X15 • M15 • R15
C = X15 • M15 ÷ M15 • R15 ÷ X15 • R15

ADDA
ADDB

H = X3 • M3 ÷ M3 • R3 ÷ R3 • X3
N = R7
Z = R7 • R6 • ... • R1 • R0
V = X7 • M7 • R7 ÷ X7 • M7 • R7
C = X7 • M7 ÷ M7 • R7 ÷ R7 • X7

ADDD
ADDE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = X15 • M15 • R15 ÷ X15 • M15 • R15
C = X15 • M15 ÷ M15 • R15 ÷ X15 • R15

ADE N = R15
Z = R15 • R14 • ... • R1 • R0
V = D15 • E15 • R15 ÷ D15 • D15 • R15
C = D15 • E15 ÷ D15 • R15 ÷ E15 • R15

AIX
AIY
AIZ

Z = R15 • R14 • ... • R10 • R9

ANDA
ANDB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

ANDD
ANDE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

ANDP CCR[15:4] changed by AND with 16-bit immediate data,
CCR[3:0] not affected.

ASL
ASLA
ASLB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted byte (accumulator)

ASLD
ASLE
ASLW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted word (accumulator)
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-265

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASLM EV = [(AM35 ÷... ÷ AM31) • (AM35 ÷... ÷ AM31)] ÷ MV
N = R35
C = MSB of unshifted accumulator
MV — cannot be represented by a Boolean equation

ASR
ASRA
ASRB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = LSB of unshifted byte (accumulator)

ASRD
ASRE
ASRW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = LSB of unshifted word (accumulator)

ASRM EV = [(AM35 ÷... ÷ AM31) • (AM35 ÷... ÷ AM31)] ÷ MV
N = R35
C = LSB of unshifted accumulator

BCLR N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

BCLRW N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

BITA
BITB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

BSET N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

CBA N = R7
Z = R7 • R6 • ... • R1 • R0
V = A7 • B7 • R7 ÷ A7 • B7 • R7
C = A7 • B7 ÷ B7 • R7 ÷ R7 • A7

CLR
CLRA
CLRB
CLRD
CLRE
CLRW

N = 0
Z = 1
V = 0
C = 0

CLRM EV = 0
MV = 0

CMPA
CMPB

N = R7
Z = R7 • R6 • .. • R1 • R0
V = X7 • M7 • R7 ÷ X7 • M7 • R7
C = X7 • M7 ÷ M7 • R7 ÷ R7 • X7

COM
COMA
COMB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0
C = 1

COMD
COME
COMW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0
C = 1

Table 6-35 Condition Code Evaluation

Mnemonic Evaluation
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-266 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPD
CPE
CPS
CPX
CPY
CPZ

N = R15
Z = R15 • R14 • ... • R1 • R0
V = X15 • M15 • R15 ÷ X15 • M15 • R15
C = X15 • M15 ÷ M15 • R15 ÷ R15 • X15

DAA N = R7
Z = R7 • R6 • ... • R1 • R0
V = U
C = Determined by adjustment

DEC
DECA
DECB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = R7 • R6 • ... • R1 • R0

DECW N = R15
Z = R15 • R14 • ... • R1 • R0
V = R15 • R14 • ... • R1 • R0

EDIV
EDIVS

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 1 if R > $FFFF
C = 1 if 2 ∗ Remainder ≥ Divisor

EORA
EORB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

EORD
EORE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

FDIV Z = R15 • R14 • ... • R1 • R0
V = 1, if (IX) • (D)
C = IX15 • IX14 • ... • IX1 • IX0

FMULS N = R31 (E15)
Z = R31 • R30 • ... • R1 • R0
V = (D15 • (D14 • D13 • ... • D1 • D0)) •
(E15 • (E14 • E13 • ... • E1 • E0))
C = R15 (D15)

IDIV Z = R15 • R14 • ... • R1 • R0
V = 0
C = IX15 • IX14 • ... • IX1 • IX0

INC
INCA
INCB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = R7 • R6 • ... • R1 • R0

INCW N = R15
Z = R15 • R14 • ... • R1 • R0
V = R15 • R14 • ... • R1 • R0

LDAA
LDAB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

LDD
LDE
LDS
LDX
LDY
LDZ

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

Table 6-35 Condition Code Evaluation

Mnemonic Evaluation
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-267

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR
LSRA
LSRB

N = 0
Z = R7 • R6 • ... • R1 • R0
V = [N • C] ÷ [N • C]
C = MSB of unshifted byte (accumulator)

LSRD
LSRE
LSRW

N = 0
Z = R15 • R14 • ... • R1 • R0
V = [N • C] ÷ [N • C]
C = MSB of unshifted word (accumulator)

MAC EV = [(AM35 ÷ ... ÷ AM31) • (AM35 ÷ ... ÷ AM31)] ÷ MV
V = (H15 • (H14 • ... • H0)) • (I15 • (I14 • ... • I0))
MV — cannot be represented by a Boolean equation

MOVB N = MSB of source data
Z = S7 • S6 • ... • S1 • S0

MOVW N = MSB of source data
Z = S15 • S14 • ... • S1 • S0

MUL C = R7 (D7)

ORAA
ORAB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

ORD
ORE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

ORP CCR[15:4] changed by OR with 16-bit immediate data,
CCR[3:0] not affected.

PULM Entire CCR changed if a stacked CCR is pulled.

RMAC EV = [(AM35 ÷ ... ÷ AM31) • (AM35 ÷ ... ÷ AM31)] ÷ MV
V = (H15 • (H14 • ... • H0)) • (I15 • (I14 • ... • I0))
MV — cannot be represented by a Boolean equation

ROL
ROLA
ROLB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted byte (accumulator)

ROLD
ROLE
ROLW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted word (accumulator)

ROR
RORA
RORB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted byte (accumulator)

RORD
RORE
RORW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = N ⊕ C = [N • C] ÷ [N ÷ C]
C = MSB of unshifted word (accumulator)

RTI Entire CCR changed when stacked CCR is pulled.

SBA N = R7
Z = R7 • R6 • ... • R1 • R0
V = A7 • B7 • R7 ÷ A7 • B7 • R7
C = A7 • B7 ÷ B7 • R7 ÷ R7 • A7

SBCA
SBCB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = X7 • M7 • R7 ÷ X7 • M7 • R7
C = X7 • M7 ÷ M7 • R7 ÷ R7 • X7

Table 6-35 Condition Code Evaluation

Mnemonic Evaluation
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-268 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBCD
SBCE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = X15 • M15 • R15 ÷ X15 • M15 • R15
C = X15 • M15 ÷ X15 • R15 ÷ M15 • R15

SDE N = R15
Z = R15 • R14 • ... • R1 • R0
V = E15 • D15 • R15 ÷ E15 • D15 • R15
C = E15 • D15 ÷ E15 • R15 ÷ D15 • R15

STAA
STAB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

STD
STE
STS
STX
STY
STZ

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

SUBA
SUBB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = X7 • M7 • R7 ÷ X7 • M7 • R7
C = X7 • M7 ÷ M7 • R7 ÷ R7 • X7

SUBD
SUBE

N = R15
Z = R15 • R14 • ... • R1 • R0
V = X15 • M15 • R15 ÷ X15 • M15 • R15
C = X15 • M15 ÷ X15 • R15 ÷ M15 • R15

SXT N = R15
Z = R15 • R14 • ... • R1 • R0

TAB
TBA

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0

TAP CCR[15:8] replaced by content of Accumulator A.
CCR[7:0] not affected.

TDE
TED

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0

TDP CCR[15:4] replaced by content of Accumulator D.
CCR[3:0] not affected.

TEDM
TEM

EV = 0
MV = 0

TMER EV = [(AM35 ÷ ... ÷ AM31) • (AM35 ÷ ... ÷ AM31)] ÷ MV
MV not representable with Boolean equation

TMET N = R15
Z = R15 • R14 • ... • R1 • R0

TST
TSTA
TSTB

N = R7
Z = R7 • R6 • ... • R1 • R0
V = 0
C = 0

TSTD
TSTE
TSTW

N = R15
Z = R15 • R14 • ... • R1 • R0
V = 0
C = 0

Table 6-35 Condition Code Evaluation

Mnemonic Evaluation
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-269

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4 Instruction Set Summary

The following table is a summary of the CPU16 instruction set. Because it is only af-
fected by a few instructions, the LSB of the condition code register is not shown in the
table — instructions that affect the interrupt mask and PK field are noted.

Table 6-36 Instruction Set Summary
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

ABA Add B to A (A) + (B) ⇒ A INH 370B — 2 — — ∆ — ∆ ∆ ∆ ∆
ABX Add B to IX (XK : IX) + (000 : B) ⇒ XK : IX INH 374F — 2 — — — — — — — —

ABY Add B to IY (YK : IY) + (000 : B) ⇒ YK : IY INH 375F — 2 — — — — — — — —

ABZ Add B to IZ (ZK : IZ) + (000 : B) ⇒ ZK : IZ INH 376F — 2 — — — — — — — —

ACE Add E to AM (AM[31:16]) + (E) ⇒ AM INH 3722 — 2 — ∆ — ∆ — — — —

ACED Add E : D to AM (AM) + (E : D) ⇒ AM INH 3723 — 4 — ∆ — ∆ — — — —

ADCA Add with Carry to A (A) + (M) + C ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

43
53
63
73

1743
1753
1763
1773
2743
2753
2763

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADCB Add with Carry to B (B) + (M) + C ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C3
D3
E3
F3

17C3
17D3
17E3
17F3
27C3
27D3
27E3

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADCD Add with Carry to D (D) + (M : M + 1) + C ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

83
93
A3

37B3
37C3
37D3
37E3
37F3
2783
2793
27A3

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADCE Add with Carry to E (E) + (M : M + 1) + C ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3733
3743
3753
3763
3773

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADDA Add to A (A) + (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

41
51
61
71

1741
1751
1761
1771
2741
2751
2761

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-270 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADDB Add to B (B) + (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C1
D1
E1
F1

17C1
17D1
17E1
17F1
27C1
27D1
27E1

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADDD Add to D (D) + (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM8
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

81
91
A1
FC

37B1
37C1
37D1
37E1
37F1
2781
2791
27A1

ff
ff
ff
ii

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
4
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADDE Add to E (E) + (M : M + 1) ⇒ E IMM8
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

7C
3731
3741
3751
3761
3771

ii
jj kk
gggg
gggg
gggg
hh ll

2
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADE Add D to E (E) + (D) ⇒ E INH 2778 — 2 — — — — ∆ ∆ ∆ ∆
ADX Add D to IX (XK : IX) + («D) ⇒ XK : IX INH 37CD — 2 — — — — — — — —

ADY Add D to IY (YK : IY) + («D) ⇒ YK : IY INH 37DD — 2 — — — — — — — —

ADZ Add D to IZ (ZK : IZ) + («D) ⇒ ZK : IZ INH 37ED — 2 — — — — — — — —

AEX Add E to IX (XK : IX) + («E) ⇒ XK : IX INH 374D — 2 — — — — — — — —

AEY Add E to IY (YK : IY) + («E) ⇒ YK : IY INH 375D — 2 — — — — — — — —

AEZ Add E to IZ (ZK : IZ) + («E) ⇒ ZK : IZ INH 376D — 2 — — — — — — — —

AIS Add Immediate Data
to Stack Pointer

(SK : SP) + (20 « IMM) ⇒
SK : SP

IMM8
IMM16

3F
373F

ii
jj kk

2
4

— — — — — — — —

AIX Add Immediate Value
to IX

(XK : IX) + (20 « IMM) ⇒
XK : IX

IMM8
IMM16

3C
373C

ii
jj kk

2
4

— — — — — ∆ — —

AIY Add Immediate Value
to IY

(YK : IY) + (20 « IMM) ⇒
YK : IY

IMM8
IMM16

3D
373D

ii
jj kk

2
4

— — — — — ∆ — —

AIZ Add Immediate Value
to IZ

(ZK : IZ) + (20 « IMM) ⇒
ZK : IZ

IMM8
IMM16

3E
373E

ii
jj kk

2
4

— — — — — ∆ — —

ANDA AND A (A) • (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

46
56
66
76

1746
1756
1766
1776
2746
2756
2766

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ANDB AND B (B) • (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C6
D6
E6
F6

17C6
17D6
17E6
17F6
27C6
27D6
27E6

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-271

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ANDD AND D (D) • (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

86
96
A6

37B6
37C6
37D6
37E6
37F6
2786
2796
27A6

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ANDE AND E (E) • (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3736
3746
3756
3766
3776

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

ANDP1 AND CCR (CCR) • IMM16⇒ CCR IMM16 373A jj kk 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

ASL Arithmetic Shift Left IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

04
14
24

1704
1714
1724
1734

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASLA Arithmetic Shift Left A INH 3704 — 2 — — — — ∆ ∆ ∆ ∆

ASLB Arithmetic Shift Left B INH 3714 — 2 — — — — ∆ ∆ ∆ ∆

ASLD Arithmetic Shift Left D INH 27F4 — 2 — — — — ∆ ∆ ∆ ∆

ASLE Arithmetic Shift Left E INH 2774 — 2 — — — — ∆ ∆ ∆ ∆

ASLM Arithmetic Shift Left
AM

INH 27B6 — 4 — ∆ — ∆ ∆ — — ∆

ASLW Arithmetic Shift Left
Word

IND16, X
IND16, Y
IND16, Z

EXT

2704
2714
2724
2734

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASR Arithmetic Shift Right IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0D
1D
2D

170D
171D
172D
173D

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASRA Arithmetic Shift Right
A

INH 370D — 2 — — — — ∆ ∆ ∆ ∆

ASRB Arithmetic Shift Right
B

INH 371D — 2 — — — — ∆ ∆ ∆ ∆

ASRD Arithmetic Shift Right
D

INH 27FD — 2 — — — — ∆ ∆ ∆ ∆

ASRE Arithmetic Shift Right
E

INH 277D — 2 — — — — ∆ ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-272 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASRM Arithmetic Shift Right
AM

INH 27BA — 4 — — — ∆ ∆ — — ∆

ASRW Arithmetic Shift Right
Word

IND16, X
IND16, Y
IND16, Z

EXT

270D
271D
272D
273D

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

BCC2 Branch if Carry Clear If C = 0, branch REL8 B4 rr 6, 2 — — — — — — — —

BCLR Clear Bit(s) (M) • (Mask) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

1708
1718
1728
08
18
28
38

mm ff
mm ff
mm ff

mm gggg
mm gggg
mm gggg
mm hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 —

BCLRW Clear Bit(s) in a Word (M : M + 1) • (Mask) ⇒
M : M + 1

IND16, X

IND16, Y

IND16, Z

EXT

2708

2718

2728

2738

gggg
mmmm
gggg

mmmm
gggg

mmmm
hh ll

mmmm

10

10

10

10

— — — — ∆ ∆ 0 —

BCS2 Branch if Carry Set If C = 1, branch REL8 B5 rr 6, 2 — — — — — — — —

BEQ2 Branch if Equal If Z = 1, branch REL8 B7 rr 6, 2 — — — — — — — —

BGE2 Branch if Greater Than
or Equal to Zero

If N ⊕ V = 0, branch REL8 BC rr 6, 2 — — — — — — — —

BGND Enter Background
Debug Mode

If BDM enabled,
begin debug;

else, illegal instruction trap

INH 37A6 — — — — — — — — — —

BGT2 Branch if Greater Than
Zero

If Z ✛ (N ⊕ V) = 0, branch REL8 BE rr 6, 2 — — — — — — — —

BHI2 Branch if Higher If C ✛ Z = 0, branch REL8 B2 rr 6, 2 — — — — — — — —

BITA Bit Test A (A) • (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

49
59
69
79

1749
1759
1769
1779
2749
2759
2769

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

BITB Bit Test B (B) • (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C9
D9
E9
F9

17C9
17D9
17E9
17F9
27C9
27D9
27E9

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

BLE2 Branch if Less Than or
Equal to Zero

If Z ✛ (N ⊕ V) = 1, branch REL8 BF rr 6, 2 — — — — — — — —

BLS2 Branch if Lower or
Same

If C ✛ Z = 1, branch REL8 B3 rr 6, 2 — — — — — — — —

BLT2 Branch if Less Than
Zero

If N ⊕ V = 1, branch REL8 BD rr 6, 2 — — — — — — — —

BMI2 Branch if Minus If N = 1, branch REL8 BB rr 6, 2 — — — — — — — —

BNE2 Branch if Not Equal If Z = 0, branch REL8 B6 rr 6, 2 — — — — — — — —

BPL2 Branch if Plus If N = 0, branch REL8 BA rr 6, 2 — — — — — — — —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-273

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always If 1 = 1, branch REL8 B0 rr 6 — — — — — — — —

BRCLR2 Branch if Bit(s) Clear If (M) • (Mask) = 0, branch IND8, X
IND8, Y
IND8, Z

IND16, X

IND16, Y

IND16, Z

EXT

CB
DB
EB
0A

1A

2A

3A

mm ff rr
mm ff rr
mm ff rr

mm gggg
rrrr

mm gggg
rrrr

mm gggg
rrrr

mm hh ll
rrrr

10, 12
10, 12
10, 12
10, 14

10, 14

10, 14

10, 14

— — — — — — — —

BRN Branch Never If 1 = 0, branch REL8 B1 rr 2 — — — — — — — —

BRSET2 Branch if Bit(s) Set If (M) • (Mask) = 0, branch IND8, X
IND8, Y
IND8, Z

IND16, X

IND16, Y

IND16, Z

EXT

8B
9B
AB
0B

1B

2B

3B

mm ff rr
mm ff rr
mm ff rr

mm gggg
rrrr

mm gggg
rrrr

mm gggg
rrrr

mm hh ll
rrrr

10, 12
10, 12
10, 12
10, 14

10, 14

10, 14

10, 14

— — — — — — — —

BSET Set Bit(s) (M) ✛ (Mask) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

1709
1719
1729
09
19
29
39

mm ff
mm ff
mm ff

mm gggg
mm gggg
mm gggg
 mm hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 ∆

BSETW Set Bit(s) in Word (M : M + 1) ✛ (Mask)
⇒ M : M + 1

IND16, X

IND16, Y

IND16, Z

EXT

2709

2719

2729

2739

gggg
mmmm
gggg

mmmm
gggg

mmmm
hh ll

mmmm

10

10

10

10

— — — — ∆ ∆ 0 ∆

BSR Branch to Subroutine (PK : PC) - 2 ⇒ PK : PC
Push (PC)

(SK : SP) - 2 ⇒ SK : SP
Push (CCR)

(SK : SP) - 2 ⇒ SK : SP
(PK : PC) + Offset ⇒ PK : PC

REL8 36 rr 10 — — — — — — — —

BVC2 Branch if Overflow
Clear

If V = 0, branch REL8 B8 rr 6, 2 — — — — — — — —

BVS2 Branch if Overflow Set If V = 1, branch REL8 B9 rr 6, 2 — — — — — — — —

CBA Compare A to B (A) − (B) INH 371B — 2 — — — — ∆ ∆ ∆ ∆
CLR Clear a Byte in

Memory
$00 ⇒ M IND8, X

IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

05
15
25

1705
1715
1725
1735

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — 0 1 0 0

CLRA Clear A $00 ⇒ A INH 3705 — 2 — — — — 0 1 0 0

CLRB Clear B $00 ⇒ B INH 3715 — 2 — — — — 0 1 0 0

CLRD Clear D $0000 ⇒ D INH 27F5 — 2 — — — — 0 1 0 0

CLRE Clear E $0000 ⇒ E INH 2775 — 2 — — — — 0 1 0 0

CLRM Clear AM $000000000 ⇒ AM[35:0] INH 27B7 — 2 — 0 — 0 — — — —

CLRW Clear a Word in
Memory

$0000 ⇒ M : M + 1 IND16, X
IND16, Y
IND16, Z

EXT

2705
2715
2725
2735

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — 0 1 0 0

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-274 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMPA Compare A to Memory (A) − (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

48
58
68
78

1748
1758
1768
1778
2748
2758
2768

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CMPB Compare B to Memory (B) − (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C8
D8
E8
F8

17C8
17D8
17E8
17F8
27C8
27D8
27E8

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

COM One’s Complement $FF − (M) ⇒ M, or M ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

00
10
20

1700
1710
1720
1730

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 1

COMA One’s Complement A $FF − (A) ⇒ A, or M ⇒ A INH 3700 — 2 — — — — ∆ ∆ 0 1

COMB One’s Complement B $FF − (B) ⇒ B, or B ⇒ B INH 3710 — 2 — — — — ∆ ∆ 0 1

COMD One’s Complement D $FFFF − (D) ⇒ D, or D ⇒ D INH 27F0 — 2 — — — — ∆ ∆ 0 1

COME One’s Complement E $FFFF − (E) ⇒ E, or E ⇒ E INH 2770 — 2 — — — — ∆ ∆ 0 1

COMW One’s Complement
Word

$FFFF − M : M + 1 ⇒
M : M + 1, or (M : M + 1) ⇒

M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2700
2710
2720
2730

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ 0 1

CPD Compare D to Memory (D) − (M : M + 1) IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

88
98
A8

37B8
37C8
37D8
37E8
37F8
2788
2798
27A8

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPE Compare E to Memory (E) − (M : M + 1) IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3738
3748
3758
3768
3778

jjkk
gggg
gggg
gggg
hhll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPS Compare Stack
Pointer to Memory

(SP) − (M : M + 1) IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

4F
5F
6F

377F
174F
175F
176F
177F

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-275

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPX Compare IX to
Memory

(IX) − (M : M + 1) IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

4C
5C
6C

377C
174C
175C
176C
177C

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPY Compare IY to
Memory

(IY) − (M : M + 1) IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

4D
5D
6D

377D
174D
175D
176D
177D

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPZ Compare IZ to
Memory

(IZ) − (M : M + 1) IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

4E
5E
6E

377E
174E
175E
176E
177E

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

DAA Decimal Adjust A (A)10 INH 3721 — 2 — — — — ∆ ∆ U ∆

DEC Decrement Memory (M) − $01 ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

01
11
21

1701
1711
1721
1731

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ —

DECA Decrement A (A) − $01 ⇒ A INH 3701 — 2 — — — — ∆ ∆ ∆ —

DECB Decrement B (B) − $01 ⇒ B INH 3711 — 2 — — — — ∆ ∆ ∆ —

DECW Decrement Memory
Word

(M : M + 1) − $0001
 ⇒ M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2701
2711
2721
2731

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ —

EDIV Extended Unsigned
Integer Divide

(E : D) / (IX)
Quotient ⇒ IX

Remainder ⇒ D

INH 3728 — 24 — — — — ∆ ∆ ∆ ∆

EDIVS Extended Signed
Integer Divide

(E : D) / (IX)
Quotient ⇒ IX

Remainder ⇒ D

INH 3729 — 38 — — — — ∆ ∆ ∆ ∆

EMUL Extended Unsigned
Multiply

(E) ∗ (D) ⇒ E : D INH 3725 — 10 — — — — ∆ ∆ — ∆

EMULS Extended Signed
Multiply

(E) ∗ (D) ⇒ E : D INH 3726 — 8 — — — — ∆ ∆ — ∆

EORA Exclusive OR A (A) ⊕ (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

44
54
64
74

1744
1754
1764
1774
2744
2754
2764

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-276 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EORB Exclusive OR B (B) ⊕ (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C4
D4
E4
F4

17C4
17D4
17E4
17F4
27C4
27D4
27E4

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

EORD Exclusive OR D (D) ⊕ (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

84
94
A4

37B4
37C4
37D4
37E4
37F4
2784
2794
27A4

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

EORE Exclusive OR E (E) ⊕ (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3734
3744
3754
3764
3774

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

FDIV Fractional
Unsigned Divide

(D) / (IX) ⇒ IX
Remainder ⇒ D

INH 372B — 22 — — — — — ∆ ∆ ∆

FMULS Fractional Signed
Multiply

(E) ∗ (D) ⇒ E : D[31:1]
0 ⇒ D[0]

INH 3727 — 8 — — — — ∆ ∆ ∆ ∆

IDIV Integer Divide (D) / (IX) ⇒ IX
Remainder ⇒ D

INH 372A — 22 — — — — — ∆ 0 ∆

INC Increment Memory (M) + $01 ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

03
13
23

1703
1713
1723
1733

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ —

INCA Increment A (A) + $01 ⇒ A INH 3703 — 2 — — — — ∆ ∆ ∆ —

INCB Increment B (B) + $01 ⇒ B INH 3713 — 2 — — — — ∆ ∆ ∆ —

INCW Increment Memory
Word

(M : M + 1) + $0001
 ⇒ M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2703
2713
2723
2733

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ —

JMP Jump 〈ea〉 ⇒ PK : PC EXT20
IND20, X
IND20, Y
IND20, Z

7A
4B
5B
6B

zb hh ll
zg gggg
zg gggg
zg gggg

6
8
8
8

— — — — — — — —

JSR Jump to Subroutine Push (PC)
(SK : SP) − $0002 ⇒ SK : SP

Push (CCR)
(SK : SP) − $0002 ⇒ SK : SP

〈ea〉 ⇒ PK : PC

EXT20
IND20, X
IND20, Y
IND20, Z

FA
89
99
A9

zb hh ll
zg gggg
zg gggg
zg gggg

10
12
12
12

— — — — — — — —

LBCC2 Long Branch if Carry
Clear

If C = 0, branch REL16 3784 rrrr 6, 4 — — — — — — — —

LBCS2 Long Branch if Carry
Set

If C = 1, branch REL16 3785 rrrr 6, 4 — — — — — — — —

LBEQ2 Long Branch if Equal
to Zero

If Z = 1, branch REL16 3787 rrrr 6, 4 — — — — — — — —

LBEV2 Long Branch if EV Set If EV = 1, branch REL16 3791 rrrr 6, 4 — — — — — — — —

LBGE2 Long Branch if Greater
Than or Equal to Zero

If N ⊕ V = 0, branch REL16 378C rrrr 6, 4 — — — — — — — —

LBGT2 Long Branch if Greater
Than Zero

If Z ✛ (N ⊕ V) = 0, branch REL16 378E rrrr 6, 4 — — — — — — — —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-277

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LBHI 2 Long Branch if Higher If C ✛ Z = 0, branch REL16 3782 rrrr 6, 4 — — — — — — — —

LBLE2 Long Branch if Less
Than or Equal to Zero

If Z ✛ (N ⊕ V) = 1, branch REL16 378F rrrr 6, 4 — — — — — — — —

LBLS2 Long Branch if Lower
or Same

If C ✛ Z = 1, branch REL16 3783 rrrr 6, 4 — — — — — — — —

LBLT2 Long Branch if Less
Than Zero

If N ⊕ V = 1, branch REL16 378D rrrr 6, 4 — — — — — — — —

LBMI2 Long Branch if Minus If N = 1, branch REL16 378B rrrr 6, 4 — — — — — — — —

LBMV2 Long Branch if MV Set If MV = 1, branch REL16 3790 rrrr 6, 4 — — — — — — — —

LBNE2 Long Branch if Not
Equal to Zero

If Z = 0, branch REL16 3786 rrrr 6, 4 — — — — — — — —

LBPL2 Long Branch if Plus If N = 0, branch REL16 378A rrrr 6, 4 — — — — — — — —

LBRA Long Branch Always If 1 = 1, branch REL16 3780 rrrr 6 — — — — — — — —

LBRN Long Branch Never If 1 = 0, branch REL16 3781 rrrr 6 — — — — — — — —

LBSR Long Branch to
Subroutine

Push (PC)
(SK : SP) − 2 ⇒ SK : SP

Push (CCR)
(SK : SP) − 2 ⇒ SK : SP

(PK : PC) + Offset ⇒
PK : PC

REL16 27F9 rrrr 10 — — — — — — — —

LBVC2 Long Branch if
Overflow Clear

If V = 0, branch REL16 3788 rrrr 6, 4 — — — — — — — —

LBVS2 Long Branch if
Overflow Set

If V = 1, branch REL16 3789 rrrr 6, 4 — — — — — — — —

LDAA Load A (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

45
55
65
75

1745
1755
1765
1775
2745
2755
2765

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

LDAB Load B (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C5
D5
E5
F5

17C5
17D5
17E5
17F5
27C5
27D5
27E5

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 ∆

LDD Load D (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

85
95
A5

37B5
37C5
37D5
37E5
37F5
2785
2795
27A5

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

LDE Load E (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3735
3745
3755
3765
3775

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

LDED Load Concatenated
E and D

(M : M + 1) ⇒ E
(M + 2 : M + 3) ⇒ D

EXT 2771 hh ll 8 — — — — — — — —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-278 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDHI Initialize H and I (M : M + 1)X ⇒ H R

(M : M + 1)Y ⇒ I R

INH 27B0 — 8 — — — — — — — —

LDS Load SP (M : M + 1) ⇒ SP IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CF
DF
EF

17CF
17DF
17EF
17FF
37BF

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ 0 —

LDX Load IX (M : M + 1) ⇒ IX IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

CC
DC
EC

37BC
17CC
17DC
17EC
17FC

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

LDY Load IY (M : M + 1) ⇒ IY IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

CD
DD
ED

37BD
17CD
17DD
17ED
17FD

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

LDZ Load IZ (M : M + 1) ⇒ IZ IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

CE
DE
EE

37BE
17CE
17DE
17EE
17FE

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll

6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

LPSTOP Low Power Stop If S
then STOP
else NOP

INH 27F1 — 4, 20 — — — — — — — —

LSR Logical Shift Right IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0F
1F
2F

170F
171F
172F
173F

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — 0 ∆ ∆ ∆

LSRA Logical Shift Right A INH 370F — 2 — — — — 0 ∆ ∆ ∆

LSRB Logical Shift Right B INH 371F — 2 — — — — 0 ∆ ∆ ∆

LSRD Logical Shift Right D INH 27FF — 2 — — — — 0 ∆ ∆ ∆

LSRE Logical Shift Right E INH 277F — 2 — — — — 0 ∆ ∆ ∆

LSRW Logical Shift Right
Word

IND16, X
IND16, Y
IND16, Z

EXT

270F
271F
272F
273F

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — 0 ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-279

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MAC Multiply and
Accumulate

Signed 16-Bit
Fractions

(HR) ∗ (IR) ⇒ E : D
(AM) + (E : D) ⇒ AM
Qualified (IX) ⇒ IX
Qualified (IY) ⇒ IY

(HR) ⇒ IZ
(M : M + 1)X ⇒ HR

(M : M + 1)Y ⇒ IR

IMM8 7B xoyo 12 — ∆ — ∆ — — ∆ —

MOVB Move Byte (M1) ⇒ M2 IXP to EXT
EXT to IXP

EXT to
EXT

30
32

37FE

ff hh ll
ff hh ll

hh ll hh ll

8
8
10

— — — — ∆ ∆ 0 —

MOVW Move Word (M : M + 11) ⇒ M : M + 12 IXP to EXT
EXT to IXP

EXT to
EXT

31
33

37FF

ff hh ll
ff hh ll

hh ll hh ll

8
8
10

— — — — ∆ ∆ 0 —

MUL Multiply (A) ∗ (B) ⇒ D INH 3724 — 10 — — — — — — — ∆
NEG Negate Memory $00 − (M) ⇒ M IND8, X

IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

02
12
22

1702
1712
1722
1732

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

NEGA Negate A $00 − (A) ⇒ A INH 3702 — 2 — — — — ∆ ∆ ∆ ∆
NEGB Negate B $00 − (B) ⇒ B INH 3712 — 2 — — — — ∆ ∆ ∆ ∆
NEGD Negate D $0000 − (D) ⇒ D INH 27F2 — 2 — — — — ∆ ∆ ∆ ∆
NEGE Negate E $0000 − (E) ⇒ E INH 2772 — 2 — — — — ∆ ∆ ∆ ∆
NEGW Negate Memory Word $0000 − (M : M + 1)

⇒ M : M + 1
IND16, X
IND16, Y
IND16, Z

EXT

2702
2712
2722
2732

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

NOP Null Operation — INH 274C — 2 — — — — — — — —

ORAA OR A (A) ✛ (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

47
57
67
77

1747
1757
1767
1777
2747
2757
2767

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ORAB OR B (B) ✛ (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C7
D7
E7
F7

17C7
17D7
17E7
17F7
27C7
27D7
27E7

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ORD OR D (D) ✛ (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

87
97
A7

37B7
37C7
37D7
37E7
37F7
2787
2797
27A7

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-280 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORE OR E (E) ✛ (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3737
3747
3757
3767
3777

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

ORP 1 OR Condition Code
Register

(CCR) ✛ IMM16 ⇒ CCR IMM16 373B jj kk 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

PSHA Push A (SK : SP) + $0001 ⇒ SK : SP
Push (A)

(SK : SP) − $0002 ⇒ SK : SP

INH 3708 — 4 — — — — — — — —

PSHB Push B (SK : SP) + $0001 ⇒ SK : SP
Push (B)

(SK : SP) − $0002 ⇒ SK : SP

INH 3718 — 4 — — — — — — — —

PSHM Push Multiple
Registers

Mask bits:
0 = D
1 = E
2 = IX
3 = IY
4 = IZ
5 = K

6 = CCR
7 = (Reserved)

For mask bits 0 to 7:

If mask bit set
Push register

(SK : SP) − 2 ⇒ SK : SP

IMM8 34 ii 4 + 2N

N =
number of
registers
pushed

— — — — — — — —

PSHMAC Push MAC Registers MAC Registers ⇒ Stack INH 27B8 — 14 — — — — — — — —

PULA Pull A (SK : SP) + $0002 ⇒ SK : SP
Pull (A)

(SK : SP) – $0001 ⇒ SK : SP

INH 3709 — 6 — — — — — — — —

PULB Pull B (SK : SP) + $0002 ⇒ SK : SP
Pull (B)

(SK : SP) – $0001 ⇒ SK : SP

INH 3719 — 6 — — — — — — — —

PULM1 Pull Multiple Registers

Mask bits:
0 = CCR[15:4]

1 = K
2 = IZ
3 = IY
4 = IX
5 = E
6 = D

7 = (Reserved)

For mask bits 0 to 7:

If mask bit set
(SK : SP) + 2 ⇒ SK : SP

Pull register

IMM8 35 ii 4+2(N+1)

N =
number of
registers

pulled

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

PULMAC Pull MAC State Stack ⇒ MAC Registers INH 27B9 — 16 — — — — — — — —

RMAC Repeating
Multiply and
Accumulate

Signed 16-Bit
Fractions

Repeat until (E) < 0
(AM) + (H) ∗ (I) ⇒ AM
Qualified (IX) ⇒ IX;
Qualified (IY) ⇒ IY;
(M : M + 1)X ⇒ H;

(M : M + 1)
Y
 ⇒ I

(E) − 1 ⇒ E
Until (E) < $0000

IMM8 FB xoyo 6 + 12
per

iteration

— ∆ — ∆ — — — —

ROL Rotate Left IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0C
1C
2C

170C
171C
172C
173C

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ROLA Rotate Left A INH 370C — 2 — — — — ∆ ∆ ∆ ∆

ROLB Rotate Left B INH 371C — 2 — — — — ∆ ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-281

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROLD Rotate Left D INH 27FC — 2 — — — — ∆ ∆ ∆ ∆

ROLE Rotate Left E INH 277C — 2 — — — — ∆ ∆ ∆ ∆

ROLW Rotate Left Word IND16, X
IND16, Y
IND16, Z

EXT

270C
271C
272C
273C

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

ROR Rotate Right Byte IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0E
1E
2E

170E
171E
172E
173E

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

RORA Rotate Right A INH 370E — 2 — — — — ∆ ∆ ∆ ∆

RORB Rotate Right B INH 371E — 2 — — — — ∆ ∆ ∆ ∆

RORD Rotate Right D INH 27FE — 2 — — — — ∆ ∆ ∆ ∆

RORE Rotate Right E INH 277E — 2 — — — — ∆ ∆ ∆ ∆

RORW Rotate Right Word IND16, X
IND16, Y
IND16, Z

EXT

270E
271E
272E
273E

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

RTI3 Return from Interrupt (SK : SP) + 2 ⇒ SK : SP
Pull CCR

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) − 6 ⇒ PK : PC

INH 2777 — 12 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

RTS4 Return from Subrou-
tine

(SK : SP) + 2 ⇒ SK : SP
Pull PK

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) − 2 ⇒ PK : PC

INH 27F7 — 12 — — — — — — — —

SBA Subtract B from A (A) − (B) ⇒ A INH 370A — 2 — — — — ∆ ∆ ∆ ∆
SBCA Subtract with Carry

from A
(A) − (M) − C ⇒ A IND8, X

IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

42
52
62
72

1742
1752
1762
1772
2742
2752
2762

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-282 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBCB Subtract with Carry
from B

(B) − (M) − C ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C2
D2
E2
F2

17C2
17D2
17E2
17F2
27C2
27D2
27E2

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SBCD Subtract with Carry
from D

(D) − (M : M + 1) − C ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

82
92
A2

37B2
37C2
37D2
37E2
37F2
2782
2792
27A2

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SBCE Subtract with Carry
from E

(E) − (M : M + 1) − C ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3732
3742
3752
3762
3772

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SDE Subtract D from E (E) − (D)⇒ E INH 2779 — 2 — — — — ∆ ∆ ∆ ∆
STAA Store A (A) ⇒ M IND8, X

IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

4A
5A
6A

174A
175A
176A
177A
274A
275A
276A

ff
ff
ff

gggg
gggg
gggg
hh ll
—
—
—

4
4
4
6
6
6
6
4
4
4

— — — — ∆ ∆ 0 —

STAB Store B (B) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

CA
DA
EA

17CA
17DA
17EA
17FA
27CA
27DA
27EA

ff
ff
ff

gggg
gggg
gggg
hh ll
—
—
—

4
4
4
6
6
6
6
4
4
4

— — — — ∆ ∆ 0 —

STD Store D (D) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

8A
9A
AA

37CA
37DA
37EA
37FA
278A
279A
27AA

ff
ff
ff

gggg
gggg
gggg
hh ll
—
—
—

4
4
4
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

STE Store E (E) ⇒ M : M + 1 IND16, X
IND16, Y
IND16, Z

EXT

374A
375A
376A
377A

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — ∆ ∆ 0 —

STED Store Concatenated
D and E

(E) ⇒ M : M + 1
(D) ⇒ M + 2 : M + 3

EXT 2773 hh ll 8 — — — — — — — —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-283

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STS Store Stack Pointer (SP) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8F
9F
AF

178F
179F
17AF
17BF

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STX Store IX (IX) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8C
9C
AC

178C
179C
17AC
17BC

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STY Store IY (IY) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8D
9D
AD

178D
179D
17AD
17BD

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STZ Store Z (IZ) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8E
9E
AE

178E
179E
17AE
17BE

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

SUBA Subtract from A (A) − (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

40
50
60
70

1740
1750
1760
1770
2740
2750
2760

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SUBB Subtract from B (B) − (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C0
D0
E0
F0

17C0
17D0
17E0
17F0
27C0
27D0
27E0

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SUBD Subtract from D (D) − (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM16

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

80
90
A0

37B0
37C0
37D0
37E0
37F0
2780
2790
27A0

ff
ff
ff

jj kk
gggg
gggg
gggg
hh ll
—
—
—

6
6
6
4
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SUBE Subtract from E (E) − (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3730
3740
3750
3760
3770

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-284 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt (PK : PC) + $0002 ⇒ PK : PC
Push (PC)

(SK : SP) − $0002 ⇒ SK : SP
Push (CCR)

(SK : SP) − $0002 ⇒ SK : SP
$0 ⇒ PK

SWI Vector ⇒ PC

INH 3720 — 16 — — — — — — — —

SXT Sign Extend B into A If B7 = 1
then $FF ⇒ A
else $00 ⇒ A

INH 27F8 — 2 — — — — ∆ ∆ — —

TAB Transfer A to B (A) ⇒ B INH 3717 — 2 — — — — ∆ ∆ 0 —

TAP Transfer A to CCR (A[7:0]) ⇒ CCR[15:8] INH 37FD — 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
TBA Transfer B to A (B) ⇒ A INH 3707 — 2 — — — — ∆ ∆ 0 —

TBEK Transfer B to EK (B[3:0]) ⇒ EK INH 27FA — 2 — — — — — — — —

TBSK Transfer B to SK (B[3:0]) ⇒ SK INH 379F — 2 — — — — — — — —

TBXK Transfer B to XK (B[3:0]) ⇒ XK INH 379C — 2 — — — — — — — —

TBYK Transfer B to YK (B[3:0]) ⇒ YK INH 379D — 2 — — — — — — — —

TBZK Transfer B to ZK (B[3:0]) ⇒ ZK INH 379E — 2 — — — — — — — —

TDE Transfer D to E (D) ⇒ E INH 277B — 2 — — — — ∆ ∆ 0 —

TDMSK Transfer D to
XMSK : YMSK

(D[15:8]) ⇒ X MASK
(D[7:0]) ⇒ Y MASK

INH 372F — 2 — — — — — — — —

TDP1 Transfer D to CCR (D) ⇒ CCR[15:4] INH 372D — 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

TED Transfer E to D (E) ⇒ D INH 27FB — 2 — — — — ∆ ∆ 0 —

TEDM Transfer E and D to
AM[31:0]

Sign Extend AM

(E) ⇒ AM[31:16]
(D) ⇒ AM[15:0]

AM[35:32] = AM31

INH 27B1 — 4 — 0 — 0 — — — —

TEKB Transfer EK to B (EK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 27BB — 2 — — — — — — — —

TEM Transfer E to
AM[31:16]

Sign Extend AM
Clear AM LSB

(E) ⇒ AM[31:16]
$00 ⇒ AM[15:0]

AM[35:32] = AM31

INH 27B2 — 4 — 0 — 0 — — — —

TMER Transfer Rounded AM
to E

Rounded (AM) ⇒ Temp
If (SM • (EV ✛ MV))

then Saturation Value ⇒ E
else Temp[31:16] ⇒ E

INH 27B4 — 6 — ∆ — ∆ ∆ ∆ — —

TMET Transfer Truncated
AM to E

If (SM • (EV ✛ MV))
then Saturation Value ⇒ E

else AM[31:16] ⇒ E

INH 27B5 — 2 — — — — ∆ ∆ — —

TMXED Transfer AM to
IX : E : D

AM[35:32] ⇒ IX[3:0]
AM35 ⇒ IX[15:4]
AM[31:16] ⇒ E
AM[15:0] ⇒ D

INH 27B3 — 6 — — — — — — — —

TPA Transfer CCR to A (CCR[15:8]) ⇒ A INH 37FC — 2 — — — — — — — —

TPD Transfer CCR to D (CCR) ⇒ D INH 372C — 2 — — — — — — — —

TSKB Transfer SK to B (SK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 37AF — 2 — — — — — — — —

TST Test Byte
Zero or Minus

(M) − $00 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

06
16
26

1706
1716
1726
1736

ff
ff
ff

gggg
gggg
gggg
hh ll

6
6
6
6
6
6
6

— — — — ∆ ∆ 0 0

TSTA Test A for
Zero or Minus

(A) − $00 INH 3706 — 2 — — — — ∆ ∆ 0 0

TSTB Test B for
Zero or Minus

(B) − $00 INH 3716 — 2 — — — — ∆ ∆ 0 0

TSTD Test D for
Zero or Minus

(D) − $0000 INH 27F6 — 2 — — — — ∆ ∆ 0 0

TSTE Test E for
Zero or Minus

(E) − $0000 INH 2776 — 2 — — — — ∆ ∆ 0 0

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
CPU16 INSTRUCTION GLOSSARY MOTOROLA

REFERENCE MANUAL 6-285

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTES:
1. CCR[15:4] change according to the results of the operation. The PK field is not affected.
2. Cycle times for conditional branches are shown in “taken, not taken” order.
3. CCR[15:0] change according to the copy of the CCR pulled from the stack.
4. PK field changes according to the state pulled from the stack. The rest of the CCR is not affected.

TSTW Test for
Zero or Minus Word

(M : M + 1) − $0000 IND16, X
IND16, Y
IND16, Z

EXT

2706
2716
2726
2736

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — ∆ ∆ 0 0

TSX Transfer SP to X (SK : SP) + $0002 ⇒ XK : IX INH 274F — 2 — — — — — — — —

TSY Transfer SP to Y (SK : SP) + $0002 ⇒ YK : IY INH 275F — 2 — — — — — — — —

TSZ Transfer SP to Z (SK : SP) + $0002 ⇒ ZK : IZ INH 276F — 2 — — — — — — — —

TXKB Transfer XK to B (XK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 37AC — 2 — — — — — — — —

TXS Transfer X to SP (XK : IX) − $0002 ⇒ SK : SP INH 374E — 2 — — — — — — — —

TXY Transfer X to Y (XK : IX) ⇒ YK : IY INH 275C — 2 — — — — — — — —

TXZ Transfer X to Z (XK : IX) ⇒ ZK : IZ INH 276C — 2 — — — — — — — —

TYKB Transfer YK to B (YK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 37AD — 2 — — — — — — — —

TYS Transfer Y to SP (YK : IY) − $0002 ⇒ SK : SP INH 375E — 2 — — — — — — — —

TYX Transfer Y to X (YK : IY) ⇒ XK : IX INH 274D — 2 — — — — — — — —

TYZ Transfer Y to Z (YK : IY) ⇒ ZK : IZ INH 276D — 2 — — — — — — — —

TZKB Transfer ZK to B (ZK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 37AE — 2 — — — — — — — —

TZS Transfer Z to SP (ZK : IZ) − $0002 ⇒ SK : SP INH 376E — 2 — — — — — — — —

TZX Transfer Z to X (ZK : IZ) ⇒ XK : IX INH 274E — 2 — — — — — — — —

TZY Transfer Z to Y (ZK : IZ) ⇒ YK : IY INH 275E — 2 — — — — — — — —

WAI Wait for Interrupt WAIT INH 27F3 — 8 — — — — — — — —

XGAB Exchange A with B (A) ⇔ (B) INH 371A — 2 — — — — — — — —

XGDE Exchange D with E (D) ⇔ (E) INH 277A — 2 — — — — — — — —

XGDX Exchange D with IX (D) ⇔ (IX) INH 37CC — 2 — — — — — — — —

XGDY Exchange D with IY (D) ⇔ (IY) INH 37DC — 2 — — — — — — — —

XGDZ Exchange D with IZ (D) ⇔ (IZ) INH 37EC — 2 — — — — — — — —

XGEX Exchange E with IX (E) ⇔ (IX) INH 374C — 2 — — — — — — — —

XGEY Exchange E with IY (E) ⇔ (IY) INH 375C — 2 — — — — — — — —

XGEZ Exchange E with IZ (E) ⇔ (IZ) INH 376C — 2 — — — — — — — —

Table 6-36 Instruction Set Summary (Continued)
Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C
 MOTOROLA INSTRUCTION GLOSSARY CPU16

6-286 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 7 INSTRUCTION PROCESS
This section explains how the CPU16 fetches and executes instructions. Topics in-
clude instruction format, pipelining, and changes in program flow. Other forms of the
instruction process are covered in SECTION 9 EXCEPTION PROCESSING and SEC-
TION 11 DIGITAL SIGNAL PROCESSING. See SECTION 5 INSTRUCTION SET
and SECTION 6 INSTRUCTION GLOSSARY for detailed information concerning in-
structions.

7.1 Instruction Format

CPU16 instructions consist of an 8-bit opcode, which may be preceded by an 8-bit pre-
byte and/or followed by one or more operands.

Opcodes are mapped in four 256-instruction pages. Page 0 opcodes stand alone, but
page 1, 2, and 3 opcodes are pointed to by a prebyte code on page 0. The prebytes
are $17 (page 1), $27 (page 2), and $37 (page 3).

Operands can be four bits, eight bits, or sixteen bits in length. However, because the
CPU16 fetches 16-bit instruction words from even byte boundaries, each instruction
must contain an even number of bytes.

Operands are organized as bytes, words, or a combination of bytes and words. Four-
bit operands are either zero-extended to eight bits, or packed two to a byte. The largest
instructions are six bytes in length. Size, order, and function of operands are evaluated
when an instruction is decoded.

A page 0 opcode and an 8-bit operand can be fetched simultaneously. Instructions that
use 8-bit indexed, immediate, and relative addressing modes have this form — code
written with these instructions is very compact.

Table 7-1 shows basic CPU16 instruction formats. Table 7-2, Table 7-3, Table 7-4,
and Table 7-5 show instructions in opcode order by page.
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.2 Execution Model

This description builds up a conceptual model of the mechanism the CPU16 uses to
fetch and execute instructions. The functional divisions in the model do not necessarily
correspond to distinct architectural subunits of the microprocessor. SECTION 10 DE-
VELOPMENT SUPPORT expands the model to include the concept of deterministic
opcode tracking.

As shown in Figure 7-1, there are three functional blocks involved in fetching, decod-
ing, and executing instructions. These are the microsequencer, the instruction pipe-
line, and the execution unit. These elements function concurrently; at any given time,
all three may be active.

Table 7-1 Basic Instruction Formats
8-Bit Opcode with 8-Bit Operand

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Operand

8-Bit Opcode with 4-Bit Index Extensions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode X Extension Y Extension

8-Bit Opcode, Argument(s)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Operand

Operand(s)

Operand(s)

8-Bit Opcode with 8-Bit Prebyte, No Argument

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Prebyte Opcode

8-Bit Opcode with 8-Bit Prebyte, Argument(s)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Prebyte Opcode

Operand(s)

Operand(s)

8-Bit Opcode with 20-Bit Argument

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode $0 Extension

Operand
 MOTOROLA INSTRUCTION PROCESS CPU16

7-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-1 Instruction Execution Model

7.2.1 Microsequencer

The microsequencer controls the order in which instructions are fetched, advanced
through the pipeline, and executed. It increments the program counter and generates
multiplexed external tracking signals IPIPE0 and IPIPE1 from internal signals that con-
trol execution sequence.

7.2.2 Instruction Pipeline

The pipeline is a three stage FIFO that holds instructions while they are decoded and
executed. Depending upon instruction size, as many as three instructions can be in
the pipeline at one time (single-word instructions, one held in stage C, one being exe-
cuted in stage B, and one latched in stage A).

7.2.3 Execution Unit

The execution unit evaluates opcodes, interfaces with the microsequencer to advance
instructions through the pipeline, and performs instruction operations.

A B C

MICROSEQUENCER

EXECUTION UNIT

DATA
BUS

INSTRUCTION PIPELINE

IPIPE0
IPIPE1

16 EXEC UNIT MODEL
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3 Execution Process

Fetched opcodes are latched into stage A, then advanced to stage B. Opcodes are
evaluated in stage B. The execution unit can access operands in either stage A or
stage B (stage B accesses are limited to 8-bit operands). When execution is complete,
opcodes are moved from stage B to stage C, where they remain until the next instruc-
tion is complete.

A prefetch mechanism in the microsequencer reads instruction words from memory
and increments the program counter. When instruction execution begins, the program
counter points to an address six bytes after the address of the first word of the instruc-
tion being executed.

The number of machine cycles necessary to complete an execution sequence varies
according to the complexity of the instruction. SECTION 8 INSTRUCTION TIMING
gives detailed information concerning execution time calculation.

7.3.1 Detailed Process

The following description divides execution processing into discrete steps in order to
describe it fully. Events in the steps are often concurrent. Refer to SECTION 10 DE-
VELOPMENT SUPPORT for information concerning signals used to track the se-
quence of execution. Relative PC values are given to aid following instructions through
the pipeline.

A. PK : PC points to the first word address (FWA) of the instruction to be executed
(PK : PC = FWA + $0000).

B. The microsequencer initiates a read from the memory address pointed to by PK
: PC, signals pipeline stage A to latch the word (FWA + $0000) read from mem-
ory, then increments PK : PC (PK : PC = FWA + $0002).

C. The latched word contains either an 8-bit prebyte and an 8-bit opcode or an 8-
bit opcode and an 8-bit operand. The microsequencer advances (FWA +
$0000) to stage B, prefetches (FWA + $0002) from the data bus, and incre-
ments PK : PC (PK : PC = FWA + $0004).

D. Stage A now contains (FWA + $0002) and stage B contains (FWA + $0000).
The execution unit determines what operations must be performed and the
character of the operands needed to perform them. The microsequencer ini-
tiates a prefetch from FWA + $0004 and increments PK : PC (PK : PC = FWA
+ $0006). Subsequent execution depends upon instruction format.
1. 8-bit opcode with 8-bit operand — The execution unit reads the operand and

signals that execution has begun. The instruction executes, the content of
stage B advances to stage C, the content of stage A advances to stage B,
and (FWA + $0004) is latched into stage A.

2. 16-bit opcode with no argument — The execution unit signals that execution
has begun. The instruction executes, the content of stage B advances to
stage C, the content of stage A advances to stage B, and (FWA + $0004) is
latched into stage A.
 MOTOROLA INSTRUCTION PROCESS CPU16

7-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3. 8-bit opcode with 20-bit argument — The execution unit reads the operand
byte from stage B and the operand word from stage A, then signals that ex-
ecution has begun. The instruction executes, the content of stage B advanc-
es to stage C, and (FWA + $0004) is latched into stage A.

4. 8-bit opcode with argument — The execution unit determines the number of
operands needed, reads an operand byte from stage B and an operand
word from stage A, then signals that execution has begun. The instruction
executes, the content of stage B advances to stage C, and (FWA + $0004)
is latched into stage A — this word can be either the third word of the current
instruction or the first word of a new instruction.

5. 16-bit opcode with argument — The execution unit determines the number
of operand words needed, reads the first operand word from stage A, then
signals that execution has begun. The instruction executes, the content of
stage B advances to stage C, and (FWA + $0004) is latched into stage A —
this word can be either the third word of the current instruction or the first
word of a new instruction.

E. At this point PK : PC = $0006, and the process repeats, but entry points differ
for instructions of different lengths:
1. One-word instructions — Stage B contains a new opcode for the execution

unit to evaluate, and process repeats from D.
2. Two-word instructions — Stage A contains a new opcode, and process re-

peats from C.
3. Three-word instructions — Stages A and B contain operands from the in-

struction just completed, and process repeats from B.

Note

Due to the action of the prefetch mechanism, it is necessary to leave
a two-word buffer at the end of program space. The last word of an
instruction must be located at End of Memory – $0004.

The microsequencer always prefetches two words past the first word
address of an instruction while that instruction is executing.

If an instruction is placed in either of the two highest available word
addresses, these fetches may attempt access to addresses that do
not exist — these attempts can cause bus errors.

7.3.2 Changes in Program Flow

When program flow changes, instructions are fetched from a new address. Before ex-
ecution can begin at the new address, instructions and operands from the previous in-
struction stream must be removed from the pipeline. If a change in flow is temporary,
a return address must be stored, so that execution of the original instruction stream
can resume after the change in flow.
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

At the time an instruction that causes a change in program flow executes, PK : PC
point to FWA + $0006. During execution of an instruction that causes a change of flow,
PK : PC is loaded with the FWA of the new instruction stream. However, stages A and
B still contain words from the old instruction stream. Process steps A through C must
be performed prior to execution from the new instruction stream.

7.3.2.1 Jumps

Jump instructions cause an immediate, unconditional change in program flow. The
CPU16 jump instruction uses 20-bit extended and indexed addressing modes. It con-
sists of an 8-bit opcode with a 20-bit argument.

7.3.2.2 Branches

Branch instructions cause a change in program flow when a specific precondition is
met. The CPU16 supports 8-bit relative displacement (short), and 16-bit relative dis-
placement (long) branch instructions, as well as specialized bit condition branches that
use indexed addressing modes.

Short branch instructions consist of an 8-bit opcode and an 8-bit operand contained in
one word. Long branch instructions consist of an 8-bit prebyte and an 8-bit opcode in
one word, followed by an operand word. Bit condition branches consist of an 8-bit op-
code and an 8-bit operand in one word, followed by one or two operand words.

At the time a branch instruction is executed, PK : PC point to an address equal to the
address of the instruction plus $0006. The range of displacement for each type of
branch is relative to this value, not to the address of the instruction. In addition, be-
cause prefetches are automatically aligned to word boundaries, only even offsets are
valid — an odd offset value is rounded down.

The numeric range of short branch and 8-bit indexed offset values is $80 (–128) to $7F
(127). Due to word-alignment, maximum positive offset is $7E. At maximum positive
offset, displacement from the branch instruction is 132. At maximum negative offset
($80), displacement is –122.

The numeric range of long branch and 16-bit indexed offset values is $8000 (–32768)
to $7FFF (32767). Due to word-alignment, maximum positive offset is $7FFE. At max-
imum positive offset, displacement from the instruction is 32772. At maximum nega-
tive offset ($8000), displacement is –32762.

7.3.2.3 Subroutines

Subroutine instructions optimize the process of temporarily executing instructions from
another instruction stream, usually to perform a particular task. The CPU16 can
branch or jump to subroutines. A single instruction returns to the original instruction
stream.
 MOTOROLA INSTRUCTION PROCESS CPU16

7-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a jump
(JSR). The RTS instruction returns control to the calling routine. BSR consists of an 8-
bit opcode with an 8-bit operand. LBSR consists of an 8-bit prebyte and an 8-bit op-
code in one word, followed by an operand word. JSR consists of an 8-bit opcode with
a 20-bit argument. RTS consists of an 8-bit prebyte and an 8-bit opcode in one word.

When a subroutine instruction is executed, PK : PC contain the address of the calling
instruction plus $0006. All three calling instructions stack return PK : PC values prior
to processing instructions from the new instruction stream. In order for RTS to work
with all three calling instructions, however, the value stacked by BSR must be adjust-
ed.

LBSR and JSR are two-word instructions. In order for program execution to resume
with the instruction immediately following them, RTS must subtract $0002 from the
stacked PK : PC value. BSR is a one-word instruction — it subtracts $0002 from PK :
PC prior to stacking so that execution will resume correctly after RTS.

7.3.2.4 Interrupts

An interrupt routine usually performs a critical task, then returns control to the inter-
rupted instruction stream. Interrupts are a type of exception, and are thus subject to
special rules regarding execution process. SECTION 9 EXCEPTION PROCESSING
covers interrupt exception processing in detail. This discussion is limited to the effects
of SWI (software interrupt) and RTI (return from interrupt) instructions.

Both SWI and RTI consist of an 8-bit prebyte and an 8-bit opcode in one word. SWI
initiates synchronous exception processing. RTI causes execution to resume with the
instruction following the last instruction that completed execution prior to interrupt.

Asynchronous interrupts are serviced at instruction boundaries. PK : PC + $0006 for
the following instruction is stacked, and exception processing begins. In order to re-
sume execution with the correct instruction, RTI subtracts $0006 from the stacked val-
ue.

Interrupt exception processing is included in the SWI instruction definition. The PK :
PC value at the time of execution is the first word address of SWI plus $0006. If this
value were stacked, RTI would cause SWI to execute again. In order to resume exe-
cution with the instruction following SWI, $0002 is added to the PK : PC value prior to
stacking.
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-2 Page 0 Opcodes

Opcode Mnemonic Mode Opcode Mnemonic Mode
00 COM IND8, X 20 COM IND8, Z
01 DEC IND8, X 21 DEC IND8, Z
02 NEG IND8, X 22 NEG IND8, Z
03 INC IND8, X 23 INC IND8, Z
04 ASL IND8, X 24 ASL IND8, Z
05 CLR IND8, X 25 CLR IND8, Z
06 TST IND8, X 26 TST IND8, Z
07 — — 27 PREBYTE PAGE 2
08 BCLR IND16, X 28 BCLR IND16, Z
09 BSET IND16, X 29 BSET IND16, Z
0A BRCLR IND16, X 2A BRCLR IND16, Z
0B BRSET IND16, X 2B BRSET IND16, Z
0C ROL IND8, X 2C ROL IND8, Z
0D ASR IND8, X 2D ASR IND8, Z
0E ROR IND8, X 2E ROR IND8, Z
0F LSR IND8, X 2F LSR IND8, Z
10 COM IND8, Y 30 MOVB IXP to EXT
11 DEC IND8, Y 31 MOVW IXP to EXT
12 NEG IND8, Y 32 MOVB EXT to IXP
13 INC IND8, Y 33 MOVW EXT to IXP
14 ASL IND8, Y 34 PSHM INH
15 CLR IND8, Y 35 PULM INH
16 TST IND8, Y 36 BSR REL8
17 PREBYTE PAGE 1 37 PREBYTE PAGE 3
18 BCLR IND16, Y 38 BCLR EXT
19 BSET IND16, Y 39 BSET EXT
1A BRCLR IND16, Y 3A BRCLR EXT
1B BRSET IND16, Y 3B BRSET EXT
1C ROL IND8, Y 3C AIX IMM8
1D ASR IND8, Y 3D AIY IMM8
1E ROR IND8, Y 3E AIZ IMM8
1F LSR IND8, Y 3F AIS IMM8
40 SUBA IND8, X 60 SUBA IND8, Z
41 ADDA IND8, X 61 ADDA IND8, Z
42 SBCA IND8, X 62 SBCA IND8, Z
43 ADCA IND8, X 63 ADCA IND8, Z
44 EORA IND8, X 64 EORA IND8, Z
45 LDAA IND8, X 65 LDAA IND8, Z
46 ANDA IND8, X 66 ANDA IND8, Z
47 ORAA IND8, X 67 ORAA IND8, Z
48 CMPA IND8, X 68 CMPA IND8, Z
49 BITA IND8, X 69 BITA IND8, Z
4A STAA IND8, X 6A STAA IND8, Z
4B JMP IND20, X 6B JMP IND20, Z
4C CPX IND8, X 6C CPX IND8, Z
4D CPY IND8, X 6D CPY IND8, Z
4E CPZ IND8, X 6E CPZ IND8, Z
4F CPS IND8, X 6F CPS IND8, Z
 MOTOROLA INSTRUCTION PROCESS CPU16

7-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

50 SUBA IND8, Y 70 SUBA IMM8
51 ADDA IND8, Y 71 ADDA IMM8
52 SBCA IND8, Y 72 SBCA IMM8
53 ADCA IND8, Y 73 ADCA IMM8
54 EORA IND8, Y 74 EORA IMM8
55 LDAA IND8, Y 75 LDAA IMM8
56 ANDA IND8, Y 76 ANDA IMM8
57 ORAA IND8, Y 77 ORAA IMM8
58 CMPA IND8, Y 78 CMPA IMM8
59 BITA IND8, Y 79 BITA IMM8
5A STAA IND8, Y 7A JMP EXT
5B JMP IND20, Y 7B MAC IMM8
5C CPX IND8, Y 7C ADDE IMM8
5D CPY IND8, Y 7D — —
5E CPZ IND8, Y 7E — —
5F CPS IND8, Y 7F — —
80 SUBD IND8, X A0 SUBD IND8, Z
81 ADDD IND8, X A1 ADDD IND8, Z
82 SBCD IND8, X A2 SBCD IND8, Z
83 ADCD IND8, X A3 ADCD IND8, Z
84 EORD IND8, X A4 EORD IND8, Z
85 LDD IND8, X A5 LDD IND8, Z
86 ANDD IND8, X A6 ANDD IND8, Z
87 ORD IND8, X A7 ORD IND8, Z
88 CPD IND8, X A8 CPD IND8, Z
89 JSR IND20, X A9 JSR IND20, Z
8A STD IND8, X AA STD IND8, Z
8B BRSET IND8, X AB BRSET IND8, Z
8C STX IND8, X AC STX IND8, Z
8D STY IND8, X AD STY IND8, Z
8E STZ IND8, X AE STZ IND8, Z
8F STS IND8, X AF STS IND8, Z
90 SUBD IND8, Y B0 BRA REL8
91 ADDD IND8, Y B1 BRN REL8
92 SBCD IND8, Y B2 BHI REL8
93 ADCD IND8, Y B3 BLS REL8
94 EORD IND8, Y B4 BCC REL8
95 LDD IND8, Y B5 BCS REL8
96 ANDD IND8, Y B6 BNE REL8
97 ORD IND8, Y B7 BEQ REL8
98 CPD IND8, Y B8 BVC REL8
99 JSR IND20, Y B9 BVS REL8
9A STD IND8, Y BA BPL REL8
9B BRSET IND8, Y BB BMI REL8
9C STX IND8, Y BC BGE REL8
9D STY IND8, Y BD BLT REL8
9E STZ IND8, Y BE BGT REL8
9F STS IND8, Y BF BLE REL8

Table 7-2 Page 0 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C0 SUBB IND8, X E0 SUBB IND8, Z
C1 ADDB IND8, X E1 ADDB IND8, Z
C2 SBCB IND8, X E2 SBCB IND8, Z
C3 ADCB IND8, X E3 ADCB IND8, Z
C4 EORB IND8, X E4 EORB IND8, Z
C5 LDAB IND8, X E5 LDAB IND8, Z
C6 ANDB IND8, X E6 ANDB IND8, Z
C7 ORAB IND8, X E7 ORAB IND8, Z
C8 CMPB IND8, X E8 CMPB IND8, Z
C9 BITB IND8, X E9 BITB IND8, Z
CA STAB IND8, X EA STAB IND8, Z
CB BRCLR IND8, X EB BRCLR IND8, Z
CC LDX IND8, X EC LDX IND8, Z
CD LDY IND8, X ED LDY IND8, Z
CE LDZ IND8, X EE LDZ IND8, Z
CF LDS IND8, X EF LDS IND8, Z
D0 SUBB IND8, Y F0 SUBB IMM8
D1 ADDB IND8, Y F1 ADDB IMM8
D2 SBCB IND8, Y F2 SBCB IMM8
D3 ADCB IND8, Y F3 ADCB IMM8
D4 EORB IND8, Y F4 EORB IMM8
D5 LDAB IND8, Y F5 LDAB IMM8
D6 ANDB IND8, Y F6 ANDB IMM8
D7 ORAB IND8, Y F7 ORAB IMM8
D8 CMPB IND8, Y F8 CMPB IMM8
D9 BITB IND8, Y F9 BITB IMM8
DA STAB IND8, Y FA JSR EXT
DB BRCLR IND8, Y FB RMAC IMM8
DC LDX IND8, Y FC ADDD IMM8
DD LDY IND8, Y FD — —
DE LDZ IND8, Y FE — —
DF LDS IND8, Y FF — —

Table 7-2 Page 0 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
 MOTOROLA INSTRUCTION PROCESS CPU16

7-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-3 Page 1 Opcodes

Opcode Mnemonic Mode Opcode Mnemonic Mode
1700 COM IND16, X 1720 COM IND16, Z
1701 DEC IND16, X 1721 DEC IND16, Z
1702 NEG IND16, X 1722 NEG IND16, Z
1703 INC IND16, X 1723 INC IND16, Z
1704 ASL IND16, X 1724 ASL IND16, Z
1705 CLR IND16, X 1725 CLR IND16, Z
1706 TST IND16, X 1726 TST IND16, Z
1707 — — 1727 — —
1708 BCLR IND8, X 1728 BCLR IND8, Z
1709 BSET IND8, X 1729 BSET IND8, Z
170A — — 172A — —
170B — — 172B — —
170C ROL IND16, X 172C ROL IND16, Z
170D ASR IND16, X 172D ASR IND16, Z
170E ROR IND16, X 172E ROR IND16, Z
170F LSR IND16, X 172F LSR IND16, Z
1710 COM IND16, Y 1730 COM EXT
1711 DEC IND16, Y 1731 DEC EXT
1712 NEG IND16, Y 1732 NEG EXT
1713 INC IND16, Y 1733 INC EXT
1714 ASL IND16, Y 1734 ASL EXT
1715 CLR IND16, Y 1735 CLR EXT
1716 TST IND16, Y 1736 TST EXT
1717 — — 1737 — —
1718 BCLR IND8, Y 1738 — —
1719 BSET IND8, Y 1739 — —
171A — — 173A — —
171B — — 173B — —
171C ROL IND16, Y 173C ROL EXT
171D ASR IND16, Y 173D ASR EXT
171E ROR IND16, Y 173E ROR EXT
171F LSR IND16, Y 173F LSR EXT
1740 SUBA IND16, X 1760 SUBA IND16, Z
1741 ADDA IND16, X 1761 ADDA IND16, Z
1742 SBCA IND16, X 1762 SBCA IND16, Z
1743 ADCA IND16, X 1763 ADCA IND16, Z
1744 EORA IND16, X 1764 EORA IND16, Z
1745 LDAA IND16, X 1765 LDAA IND16, Z
1746 ANDA IND16, X 1766 ANDA IND16, Z
1747 ORAA IND16, X 1767 ORAA IND16, Z
1748 CMPA IND16, X 1768 CMPA IND16, Z
1749 BITA IND16, X 1769 BITA IND16, Z
174A STAA IND16, X 176A STAA IND16, Z
174B — — 176B — —
174C CPX IND16, X 176C CPX IND16, Z
174D CPY IND16, X 176D CPY IND16, Z
174E CPZ IND16, X 176E CPZ IND16, Z
174F CPS IND16, X 176F CPS IND16, Z
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1750 SUBA IND16, Y 1770 SUBA EXT
1751 ADDA IND16, Y 1771 ADDA EXT
1752 SBCA IND16, Y 1772 SBCA EXT
1753 ADCA IND16, Y 1773 ADCA EXT
1754 EORA IND16, Y 1774 EORA EXT
1755 LDAA IND16, Y 1775 LDAA EXT
1756 ANDA IND16, Y 1776 ANDA EXT
1757 ORAA IND16, Y 1777 ORAA EXT
1758 CMPA IND16, Y 1778 CMPA EXT
1759 BITA IND16, Y 1779 BITA EXT
175A STAA IND16, Y 177A STAA EXT
175B — — 177B — —
175C CPX IND16, Y 177C CPX EXT
175D CPY IND16, Y 177D CPY EXT
175E CPZ IND16, Y 177E CPZ EXT
175F CPS IND16, Y 177F CPS EXT
1780 — — 17A0 — —
1781 — — 17A1 — —
1782 — — 17A2 — —
1783 — — 17A3 — —
1784 — — 17A4 — —
1785 — — 17A5 — —
1786 — — 17A6 — —
1787 — — 17A7 — —
1788 — — 17A8 — —
1789 — — 17A9 — —
178A — — 17AA — —
178B — — 17AB — —
178C STX IND16, X 17AC STX IND16, Z
178D STY IND16, X 17AD STY IND16, Z
178E STZ IND16, X 17AE STZ IND16, Z
178F STS IND16, X 17AF STS IND16, Z
1790 — — 17B0 — —
1791 — — 17B1 — —
1792 — — 17B2 — —
1793 — — 17B3 — —
1794 — — 17B4 — —
1795 — — 17B5 — —
1796 — — 17B6 — —
1797 — — 17B7 — —
1798 — — 17B8 — —
1799 — — 17B9 — —
179A — — 17BA — —
179B — — 17BB — —
179C STX IND16, Y 17BC STX EXT
179D STY IND16, Y 17BD STY EXT
179E STZ IND16, Y 17BE STZ EXT
179F STS IND16, Y 17BF STS EXT

Table 7-3 Page 1 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
 MOTOROLA INSTRUCTION PROCESS CPU16

7-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

17C0 SUBB IND16, X 17E0 SUBB IND16, Z
17C1 ADDB IND16, X 17E1 ADDB IND16, Z
17C2 SBCB IND16, X 17E2 SBCB IND16, Z
17C3 ADCB IND16, X 17E3 ADCB IND16, Z
17C4 EORB IND16, X 17E4 EORB IND16, Z
17C5 LDAB IND16, X 17E5 LDAB IND16, Z
17C6 ANDB IND16, X 17E6 ANDB IND16, Z
17C7 ORAB IND16, X 17E7 ORAB IND16, Z
17C8 CMPB IND16, X 17E8 CMPB IND16, Z
17C9 BITB IND16, X 17E9 BITB IND16, Z
17CA STAB IND16, X 17EA STAB IND16, Z
17CB — — 17EB — —
17CC LDX IND16, X 17EC LDX IND16, Z
17CD LDY IND16, X 17ED LDY IND16, Z
17CE LDZ IND16, X 17EE LDZ IND16, Z
17CF LDS IND16, X 17EF LDS IND16, Z
17D0 SUBB IND16, Y 17F0 SUBB EXT
17D1 ADDB IND16, Y 17F1 ADDB EXT
17D2 SBCB IND16, Y 17F2 SBCB EXT
17D3 ADCB IND16, Y 17F3 ADCB EXT
17D4 EORB IND16, Y 17F4 EORB EXT
17D5 LDAB IND16, Y 17F5 LDAB EXT
17D6 ANDB IND16, Y 17F6 ANDB EXT
17D7 ORAB IND16, Y 17F7 ORAB EXT
17D8 CMPB IND16, Y 17F8 CMPB EXT
17D9 BITB IND16, Y 17F9 BITB EXT
17DA STAB IND16, Y 17FA STAB EXT
17DB — — 17FB — —
17DC LDX IND16, Y 17FC LDX EXT
17DD LDY IND16, Y 17FD LDY EXT
17DE LDZ IND16, Y 17FE LDZ EXT
17DF LDS IND16, Y 17FF LDS EXT

Table 7-3 Page 1 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-4 Page 2 Opcodes

Opcode Mnemonic Mode Opcode Mnemonic Mode
2700 COMW IND16, X 2720 COMW IND16, Z
2701 DECW IND16, X 2721 DECW IND16, Z
2702 NEGW IND16, X 2722 NEGW IND16, Z
2703 INCW IND16, X 2723 INCW IND16, Z
2704 ASLW IND16, X 2724 ASLW IND16, Z
2705 CLRW IND16, X 2725 CLRW IND16, Z
2706 TSTW IND16, X 2726 TSTW IND16, Z
2707 — — 2727 — —
2708 BCLRW IND16, X 2728 BCLRW IND16, Z
2709 BSETW IND16, X 2729 BSETW IND16, Z
270A — — 272A — —
270B — — 272B — —
270C ROLW IND16, X 272C ROLW IND16, Z
270D ASRW IND16, X 272D ASRW IND16, Z
270E RORW IND16, X 272E RORW IND16, Z
270F LSRW IND16, X 272F LSRW IND16, Z
2710 COMW IND16, Y 2730 COMW EXT
2711 DECW IND16, Y 2731 DECW EXT
2712 NEGW IND16, Y 2732 NEGW EXT
2713 INCW IND16, Y 2733 INCW EXT
2714 ASLW IND16, Y 2734 ASLW EXT
2715 CLRW IND16, Y 2735 CLRW EXT
2716 TSTW IND16, Y 2736 TSTW EXT
2717 — — 2737 — —
2718 BCLRW IND16, Y 2738 BCLRW EXT
2719 BSETW IND16, Y 2739 BSETW EXT
271A — — 273A — —
271B — — 273B — —
271C ROLW IND16, Y 273C ROLW EXT
271D ASRW IND16, Y 273D ASRW EXT
271E RORW IND16, Y 273E RORW EXT
271F LSRW IND16, Y 273F LSRW EXT
2740 SUBA E, X 2760 SUBA E, Z
2741 ADDA E, X 2761 ADDA E, Z
2742 SBCA E, X 2762 SBCA E, Z
2743 ADCA E, X 2763 ADCA E, Z
2744 EORA E, X 2764 EORA E, Z
2745 LDAA E, X 2765 LDAA E, Z
2746 ANDA E, X 2766 ANDA E, Z
2747 ORAA E, X 2767 ORAA E, Z
2748 CMPA E, X 2768 CMPA E, Z
2749 BITA E, X 2769 BITA E, Z
274A STAA E, X 276A STAA E, Z
274B — — 276B — —
274C NOP INH 276C TXZ INH
274D TYX INH 276D TYZ INH
274E TZX INH 276E — —
274F TSX INH 276F TSZ INH
 MOTOROLA INSTRUCTION PROCESS CPU16

7-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2750 SUBA E, Y 2770 COME INH
2751 ADDA E, Y 2771 LDED EXT
2752 SBCA E, Y 2772 NEGE INH
2753 ADCA E, Y 2773 STED EXT
2754 EORA E, Y 2774 ASLE INH
2755 LDAA E, Y 2775 CLRE INH
2756 ANDA E, Y 2776 TSTE INH
2757 ORAA E, Y 2777 RTI INH
2758 CMPA E, Y 2778 ADE INH
2759 BITA E, Y 2779 SDE INH
275A STAA E, Y 277A XGDE INH
275B — — 277B TDE INH
275C TXY INH 277C ROLE INH
275D — — 277D ASRE INH
275E TZY INH 277E RORE INH
275F TSY INH 277F LSRE INH
2780 SUBD E, X 27A0 SUBD E, Z
2781 ADDD E, X 27A1 ADDD E, Z
2782 SBCD E, X 27A2 SBCD E, Z
2783 ADCD E, X 27A3 ADCD E, Z
2784 EORD E, X 27A4 EORD E, Z
2785 LDD E, X 27A5 LDD E, Z
2786 ANDD E, X 27A6 ANDD E, Z
2787 ORD E, X 27A7 ORD E, Z
2788 CPD E, X 27A8 CPD E, Z
2789 — — 27A9 — —
278A STD E, X 27AA STD E, Z
278B — — 27AB — —
278C — — 27AC — —
278D — — 27AD — —
278E — — 27AE — —
278F — — 27AF — —
2790 SUBD E, Y 27B0 LDHI EXT
2791 ADDD E, Y 27B1 TEDM INH
2792 SBCD E, Y 27B2 TEM INH
2793 ADCD E, Y 27B3 TMXED INH
2794 EORD E, Y 27B4 TMER INH
2795 LDD E, Y 27B5 TMET INH
2796 ANDD E, Y 27B6 ASLM INH
2797 ORD E, Y 27B7 CLRM INH
2798 CPD E, Y 27B8 PSHMAC INH
2799 — — 27B9 PULMAC INH
279A STD E, Y 27BA ASRM INH
279B — — 27BB TEKB INH
279C — — 27BC — —
279D — — 27BD — —
279E — — 27BE — —
279F — — 27BF — —

Table 7-4 Page 2 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

27C0 SUBB E, X 27E0 SUBB E, Z
27C1 ADDB E, X 27E1 ADDB E, Z
27C2 SBCB E, X 27E2 SBCB E, Z
27C3 ADCB E, X 27E3 ADCB E, Z
27C4 EORB E, X 27E4 EORB E, Z
27C5 LDAB E, X 27E5 LDAB E, Z
27C6 ANDB E, X 27E6 ANDB E, Z
27C7 ORAB E, X 27E7 ORAB E, Z
27C8 CMPB E, X 27E8 CMPB E, Z
27C9 BITB E, X 27E9 BITB E, Z
27CA STAB E, X 27EA STAB E, Z
27CB — — 27EB — —
27CC — — 27EC — —
27CD — — 27ED — —
27CE — — 27EE — —
27CF — — 27EF — —
27D0 SUBB E, Y 27F0 COMD INH
27D1 ADDB E, Y 27F1 LPSTOP INH
27D2 SBCB E, Y 27F2 NEGD INH
27D3 ADCB E, Y 27F3 WAI INH
27D4 EORB E, Y 27F4 ASLD INH
27D5 LDAB E, Y 27F5 CLRD INH
27D6 ANDB E, Y 27F6 TSTD INH
27D7 ORAB E, Y 27F7 RTS INH
27D8 CMPB E, Y 27F8 SXT INH
27D9 BITB E, Y 27F9 LBSR REL16
27DA STAB E, Y 27FA TBEK INH
27DB — — 27FB TED INH
27DC — — 27FC ROLD INH
27DD — — 27FD ASRD INH
27DE — — 27FE RORD INH
27DF — — 27FF LSRD INH

Table 7-4 Page 2 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
 MOTOROLA INSTRUCTION PROCESS CPU16

7-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-5 Page 3 Opcodes

Opcode Mnemonic Mode Opcode Mnemonic Mode
3700 COMA INH 3720 SWI INH
3701 DECA INH 3721 DAA INH
3702 NEGA INH 3722 ACE INH
3703 INCA INH 3723 ACED INH
3704 ASLA INH 3724 MUL INH
3705 CLRA INH 3725 EMUL INH
3706 TSTA INH 3726 EMULS INH
3707 TBA INH 3727 FMULS INH
3708 PSHA INH 3728 EDIV INH
3709 PULA INH 3729 EDIVS INH
370A SBA INH 372A IDIV INH
370B ABA INH 372B FDIV INH
370C ROLA INH 372C TPD INH
370D ASRA INH 372D TDP INH
370E RORA INH 372E — —
370F LSRA INH 372F TDMSK INH
3710 COMB INH 3730 SUBE IMM16
3711 DECB INH 3731 ADDE IMM16
3712 NEGB INH 3732 SBCE IMM16
3713 INCB INH 3733 ADCE IMM16
3714 ASLB INH 3734 EORE IMM16
3715 CLRB INH 3735 LDE IMM16
3716 TSTB INH 3736 ANDE IMM16
3717 TAB INH 3737 ORE IMM16
3718 PSHB INH 3738 CPE IMM16
3719 PULB INH 3739 — —
371A XGAB INH 373A ANDP IMM16
371B CBA INH 373B ORP IMM16
371C ROLB INH 373C AIX IMM16
371D ASRB INH 373D AIY IMM16
371E RORB INH 373E AIZ IMM16
371F LSRB INH 373F AIS IMM16
3740 SUBE IND16, X 3760 SUBE IND16, Z
3741 ADDE IND16, X 3761 ADDE IND16, Z
3742 SBCE IND16, X 3762 SBCE IND16, Z
3743 ADCE IND16, X 3763 ADCE IND16, Z
3744 EORE IND16, X 3764 EORE IND16, Z
3745 LDE IND16, X 3765 LDE IND16, Z
3746 ANDE IND16, X 3766 ANDE IND16, Z
3747 ORE IND16, X 3767 ORE IND16, Z
3748 CPE IND16, X 3768 CPE IND16, Z
3749 — — 3769 — —
374B — — 376A STE IND16, Z
374A STE IND16, X 376B — —
374C XGEX INH 376C XGEZ INH
374D AEX INH 376D AEZ INH
374E TXS INH 376E TZS INH
374F ABX INH 376F ABZ INH
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3750 SUBE IND16, Y 3770 SUBE EXT
3751 ADDE IND16, Y 3771 ADDE EXT
3752 SBCE IND16, Y 3772 SBCE EXT
3753 ADCE IND16, Y 3773 ADCE EXT
3754 EORE IND16, Y 3774 EORE EXT
3755 LDE IND16, Y 3775 LDE EXT
3756 ANDE IND16, Y 3776 ANDE EXT
3757 ORE IND16, Y 3777 ORE EXT
3758 CPE IND16, Y 3778 CPE EXT
3759 — — 3779 — —
375A STE IND16, Y 377A STE EXT
375B — — 377B — —
375C XGEY INH 377C CPX IMM16
375D AEY INH 377D CPY IMM16
375E TYS INH 377E CPZ IMM16
375F ABY INH 377F CPS IMM16
3780 LBRA REL16 37A0 — —
3781 LBRN REL16 37A1 — —
3782 LBHI REL16 37A2 — —
3783 LBLS REL16 37A3 — —
3784 LBCC REL16 37A4 — —
3785 LBCS REL16 37A5 — —
3786 LBNE REL16 37A6 BGND INH
3787 LBEQ REL16 37A7 — —
3788 LBVC REL16 37A8 — —
3789 LBVS REL16 37A9 — —
378A LBPL REL16 37AA — —
378B LBMI REL16 37AB — —
378C LBGE REL16 37AC TXKB INH
378D LBLT REL16 37AD TYKB INH
378E LBGT REL16 37AE TZKB INH
378F LBLE REL16 37AF TSKB INH
3790 LBMV REL16 37B0 SUBD IMM16
3791 LBEV REL16 37B1 ADDD IMM16
3792 — — 37B2 SBCD IMM16
3793 — — 37B3 ADCD IMM16
3794 — — 37B4 EORD IMM16
3795 — — 37B5 LDD IMM16
3796 — — 37B6 ANDD IMM16
3797 — — 37B7 ORD IMM16
3798 — — 37B8 CPD IMM16
3799 — — 37B9 — —
379A — — 37BA — —
379B — — 37BA — —
379C TBXK INH 37BC LDX IMM16
379D TBYK INH 37BD LDY IMM16
379E TBZK INH 37BE LDZ IMM16
379F TBSK INH 37BF LDS IMM16

Table 7-5 Page 3 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
 MOTOROLA INSTRUCTION PROCESS CPU16

7-18 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

37C0 SUBD IND16, X 37E0 SUBD IND16, Z
37C1 ADDD IND16, X 37E1 ADDD IND16, Z
37C2 SBCD IND16, X 37E2 SBCD IND16, Z
37C3 ADCD IND16, X 37E3 ADCD IND16, Z
37C4 EORD IND16, X 37E4 EORD IND16, Z
37C5 LDD IND16, X 37E5 LDD IND16, Z
37C6 ANDD IND16, X 37E6 ANDD IND16, Z
37C7 ORD IND16, X 37E7 ORD IND16, Z
37C8 CPD IND16, X 37E8 CPD IND16, Z
37C9 — — 37E9 — —
37CA STD IND16, X 37EA STD IND16, Z
37CB — — 37EB — —
37CC XGDX INH 37EC XGDZ INH
37CD ADX INH 37ED ADZ INH
37CE — — 37EE — —
37CF — — 37EF — —
37D0 SUBD IND16, Y 37F0 SUBD EXT
37D1 ADDD IND16, Y 37F1 ADDD EXT
37D2 SBCD IND16, Y 37F2 SBCD EXT
37D3 ADCD IND16, Y 37F3 ADCD EXT
37D4 EORD IND16, Y 37F4 EORD EXT
37D5 LDD IND16, Y 37F5 LDD EXT
37D6 ANDD IND16, Y 37F6 ANDD EXT
37D7 ORD IND16, Y 37F7 ORD EXT
37D8 CPD IND16, Y 37F8 CPD EXT
37D9 — — 37F9 — —
37DA STD IND16, Y 37FA STD EXT
37DB — — 37FB — —
37DC XGDY INH 37FC TPA INH
37DD ADY INH 37FD TAP INH
37DE — — 37FE MOVB EXT to EXT
37DF — — 37FF MOVW EXT to EXT

Table 7-5 Page 3 Opcodes (Continued)

Opcode Mnemonic Mode Opcode Mnemonic Mode
CPU16 INSTRUCTION PROCESS MOTOROLA

REFERENCE MANUAL 7-19

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA INSTRUCTION PROCESS CPU16

7-20 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 8 INSTRUCTION TIMING
This section gives detailed information concerning calculating the amount of time re-
quired to execute instructions.

8.1 Execution Time Components

CPU16 instruction execution time has three components:

Bus cycles required to prefetch the next instruction.
Bus cycles required for operand accesses.
Clock cycles required for internal operations.

Each bus cycle requires a minimum of two system clock cycles. If the time required to
access an external device exceeds two system clock cycles, bus cycles must be long-
er. However, all bus cycles must be made up of an integer number of clock cycles.
CPU16 internal operations always require an integer multiple of two system clock cy-
cles.

NOTE

To avoid confusion between bus cycles and system clock cycles, this
discussion subsequently refers to the time required by system clock
cycles, or clock periods, rather than to the clock cycles themselves.

Dynamic bus sizing affects bus cycle time. The CPU16 is a component of a modular
microcontroller. Modules in the system communicate via a standardized intermodule
bus and access external devices via an external bus interface. The microcontroller
system integration module manages all accesses in order to make more efficient use
of common resources. See SECTION 3 SYSTEM RESOURCES for more information.

The CPU16 does not execute more than one instruction at a time. The total time re-
quired to execute a particular instruction stream can be calculated by summing the in-
dividual execution times of each instruction in the stream.

Total execution time is calculated using the expression:

(CLT) = (CLP) + (CLO) + (CLI)

Where:

(CLT) = Total clock periods per instruction
(CLI) = Clock periods used for internal operation
(CLP) = Clock periods used for program access
(CLO) = Clock periods used for operand access

CLT is the value provided in the instruction glossary pages.
CPU16 INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL 8-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2 Program and Operand Access Time

The number of bus cycles required by a prefetch or an operand access generally de-
pends upon three factors:

Data bus width (8- or 16-bit). Access size (byte, word, or long-word). Access alignment
(aligned or misaligned with even byte boundaries).

Prefetches are always word-sized, and are always aligned with even byte boundaries.
Operand accesses vary in size and alignment. Table 8-1 shows the number of bus cy-
cles required by accesses of various sizes and alignments.

8.2.1 Program Accesses

For all instructions except those that cause a change in program flow, there is one
prefetch access per instruction word. These accesses keep the instruction pipeline
full. Once the number of prefetches is determined, the number of bus cycles can be
found in Table 8-1.

Instructions that cause changes in program flow also have various forms of operand
access. See 8.2.2.3 Change-of-Flow Instructions for complete information on
prefetch access and operand access.

8.2.2 Operand Accesses

The number of operand accesses per instruction is not fixed. Most instructions follow
a regular pattern, but there are several variant types. Immediate operands are consid-
ered to be part of the instruction — immediate operand access time is considered to
be a prefetch access.

8.2.2.1 Regular Instructions

Regular instructions require one operand access per operand. Determine the number
of byte and/or word operands, then use Table 8-1 to determine the number of cycles.

8.2.2.2 Read-Modify-Write Instructions

Read-modify-write instructions, which include the byte and word forms of ASL, ASR,
BCLR, BSET, COM, DEC, LSR, NEG, ROL, and ROR, require two accesses per
memory operand. The first access is needed to read the operand, and the second ac-
cess is needed to write it back after modification. Determine the number and size of
operands, multiply by two (the mask used in bit clear and set instructions is considered
to be an immediate operand), then use Table 8-1 to determine the number of cycles.

Table 8-1 Access Bus Cycles

Access
Size

8-Bit
Data Bus

16-Bit Data Bus
Aligned

16-Bit Data Bus
Misaligned

Byte 1 1 —
Word 2 1 2

Long-word 4 2 4
 MOTOROLA INSTRUCTION TIMING CPU16

8-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2.2.3 Change-of-Flow Instructions

Operand access for change of flow instructions varies according to type. Unary
branches, conditional branches, and jumps have no operand access. Bit-condition
branches must make one memory access in order to perform masking. Subroutine
and interrupt instructions must make stack accesses.

In addition, when an instruction that can cause a change in flow executes, no prefetch
is made until after the precondition for change of flow is evaluated.

There are two evaluation cases:

If the instruction causes an unconditional change, or meets a specific precondition
for change, the program counter is loaded with the first address of a new instruction
stream, and the pipeline is filled with new instructions.

If the instruction does not meet a specific precondition (preconditions of unary
branches are always true or always false), prefetch is made and execution of the
old instruction stream resumes.

Table 8-2 shows the number of program and operand access cycles for each instruc-
tion that causes a change in program flow.

In program access values for conditional branches, the first value is for branch taken, the second value is for branch
not taken.

Table 8-2 Change-of-Flow Instruction Timing

Instruction Operand
Access

Program
Access

Comment

BRA 0 3 Unary branch (1 = 1)
BRN 0 1 Unary branch (1 = 0)

Short Branches 0 3/1 Conditional branches
LBRA 0 3 Unary branch (1 = 1)
LBRN 0 2 Unary branch (1 = 0)

Long Branches 0 3/2 Conditional branches
BRCLR 1 4/3 Bit-condition branch,

IND8 addressing mode
BRCLR 1 5/3 Bit-condition branch,

EXT, IND16 addressing modes
BRSET 1 4/3 Bit-condition branch,

IND8 addressing mode
BRSET 1 5/3 Bit-condition branch,

EXT, IND16 addressing modes
JMP 0 3 Unconditional
JSR 2 3 Operand accesses include stack access
BSR 2 3 Operand accesses include stack access
LBSR 2 3 Operand accesses include stack access
RTS 2 3 Operand accesses include stack access
SWI 3 3 Operand accesses include stack access

and vector fetch
RTI 2 3 Operand accesses include stack access
CPU16 INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL 8-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2.2.4 Stack Manipulation Instructions

Aligned stack manipulation instructions comply with normal program access con-
straints, but have extra operand access cycles for stacking operations. Treat mis-
aligned stacking operations as byte transfers on a misaligned 16-bit bus.

Table 8-3 shows program and operand access cycles for each instruction.

*The last operand read from the stack is ignored

8.2.2.5 Stop and Wait Instructions

Stop and wait instructions have normal program access cycles, but differ from regular
instructions in number of operand accesses. If LPSTOP is executed at a time when
the CCR S bit is equal to zero, it must make one operand access to store the CCR IP
field. WAI performs one prefetch access to establish a PC value that insures proper
stacking and return from interrupt.

Table 8-4 shows program and operand access cycles for each instruction.

8.2.2.6 Move Instructions

Move instructions have normal program access cycles, but differ from regular instruc-
tions in number of operand accesses. Each move requires two operand accesses, one
to read the data from the source address and one to write it to the destination address.

Table 8-5 shows program and operand access cycles for each instruction.

Table 8-3 Stack Manipulation Timing

Instruction Operand
Access

Program
Access

Comment

PSHA/PSHB 1 1 Byte operation
PULA/PULB 1 1 Byte operation

PSHM N 1 N = Number of registers pushed
PULM N + 1 1 N = Number of registers pulled*

PSHMAC/PULMAC 6 1 Stacks/retrieves all MAC registers

Table 8-4 Stop and Wait Timing

Instruction Operand
Access

Program
Access

Comment

LPSTOP1 1 Operand access only when CCR S Bit = 0
WAI 0 1 —

Table 8-5 Move Timing

Instruction Operand
Access

Program
Access

Comment

MOVB/MOVW 2 2 IXP to EXT, EXT to IXP addressing modes
MOVB/MOVW 2 3 EXT to EXT addressing mode
 MOTOROLA INSTRUCTION TIMING CPU16

8-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.2.2.7 Multiply and Accumulate Instructions

MAC instructions have normal program access cycles, but differ from regular instruc-
tions in number of operand accesses. During multiply and accumulate operation, two
words pointed to by index registers X and Y are accessed and transferred to the H and
I registers. MAC makes only these two operand accesses, but RMAC repeats the op-
eration a specified number of times.

Table 8-6 shows program and operand access cycles for each instruction.

8.3 Internal Operation Time

To determine the number of clock periods associated with internal operation, first de-
termine program and operand access time using the appropriate table, then use in-
struction cycle time (CLT) from the instruction glossary to evaluate the following
expression:

CLI = (CLT) − (CLP + CLO)

Assume that:

1. All program and operand accesses are aligned on a 16-bit data bus.
2. Each bus cycle takes two clock periods.

This figure is constant regardless of the speed of memory used. Internal operations,
prefetches, and operand fetches are wholly concurrent for many instructions — the
calculated CLI will be zero.

8.4 Calculating Execution Times for Slower Accesses

Because CLI is constant for all bus speeds, CLT will only change when CLP and CLO
change. Clock periods are calculated using the following expression:

CLX = (Clock periods per bus cycle) (Number of bus cycles)

Where:

CLX is either CLP or CLO

To determine the number of clock periods required to execute an instruction when bus
cycles longer than two system clock periods are necessary, determine the number of
cycles needed, calculate CLP and CLO values, then add to CLI.

Table 8-6 MAC Timing

Instruction Operand
Access

Program
Access

Comment

MAC 2 1 —
RMAC 2N 1 N = Number of iterations
CPU16 INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL 8-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.5 Examples

The examples below illustrate the effect of bus width, alignment, and access speed on
three instructions. Separate entries for operand and program access show the effect
of accesses from differing types of memory.

The first example for each instruction assumes two system clock cycles per bus cycle
and 16-bit aligned access, so that CLI can be determined and used in the subsequent
examples. Calculated values are underlined.

8.5.1 LDD (Load D) Instruction

The general form of this instruction is: LDD (operand). Examples show effects of var-
ious access parameters on a single-word instruction.

8.5.1.1 LDD IND8, X

8.5.1.2 LDD IND8, X

8.5.1.3 LDD IND8, X

16-bit operand data bus, 2 clocks per bus cycle, aligned
16-bit program data bus, 2 clocks per bus cycle

CLT
6

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

1 16 1 2 2
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

1 16 1 2 2
CLI
2

8-bit operand data bus, 3 clocks per bus cycle, aligned
16-bit program data bus, 2 clocks per bus cycle

CLT
10

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

1 8 2 3 6
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

1 16 1 2 2
CLI
2

16-bit operand data bus, 2 clocks per bus cycle, misaligned CLT
8-bit program data bus, 3 clocks per bus cycle 12

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

1 16 2 2 4
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

1 8 2 3 6
CLI
2

 MOTOROLA INSTRUCTION TIMING CPU16

8-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.5.2 NEG (Negate) Instruction

The general form of this instruction is: NEG (operand). Examples show effects of var-
ious access parameters on a two-word instruction. Note that operand alignment af-
fects only the 8-bit operand data bus.

8.5.2.1 NEG EXT

8.5.2.2 NEG EXT

8.5.2.3 NEG EXT

16-bit operand data bus, 2 clocks per bus cycle CLT
16-bit program data bus, 2 clocks per bus cycle 8

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

2 16 2 2 4
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

2 16 2 2 4
CLI
0

8-bit operand data bus, 3 clocks per bus cycle, aligned
8-bit program data bus, 3 clocks per bus cycle

CLT
18

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

2 8 2 3 6
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

2 8 4 3 12
CLI
0

16-bit operand data bus, 3 clocks per bus cycle
16-bit program data bus, 3 clocks per bus cycle

CLT
12

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

2 16 2 3 6
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

2 16 2 3 6
CLI
0

CPU16 INSTRUCTION TIMING MOTOROLA

REFERENCE MANUAL 8-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

8.5.3 STED (Store Accumulators E and D) Instruction

The general form of this instruction is: STED (operand). Examples show effects of var-
ious access parameters on an instruction that writes to memory twice during execu-
tion.

8.5.3.1 STED EXT

8.5.3.2 STED EXT

16-bit operand data bus, 2 clocks per bus cycle, aligned
16-bit program data bus, 2 clocks per bus cycle

CLT
8

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

1 16 2 2 4
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

2 16 2 2 4
CLI
0

8-bit operand data bus, 2 clocks per bus cycle, misaligned
16-bit program data bus, 3 clocks per bus cycle

CLT
14

Operand Number of
Accesses

Bus
Width

Number of
Bus Cycles

Clocks per
Bus Cycle

CLO

1 8 4 2 8
Program Number of

Accesses
Bus

Width
Number of
Bus Cycles

Clocks per
Bus Cycle

CLP

2 16 2 3 6
CLI
0

 MOTOROLA INSTRUCTION TIMING CPU16

8-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 9 EXCEPTION PROCESSING
This section discusses exception handling, exception processing sequence, and spe-
cific features of individual exceptions.

9.1 Definition of Exception

An exception is an event that pre-empts normal instruction process. Exception pro-
cessing makes the transition from normal instruction execution to execution of a rou-
tine that deals with an exception.

Each exception has an assigned vector that points to an associated handler routine.
Exception processing includes all operations required to transfer control to a handler
routine, but does not include execution of the handler routine itself. Keep the distinc-
tion between exception processing and execution of an exception handler in mind
while reading this section.

9.2 Exception Vectors

An exception vector is the address of a routine that handles an exception. Exception
vectors are contained in a data structure called the instruction vector table, which is
located in the first 512 bytes of bank 0.

All vectors except the reset vector consist of one word and reside in data space. The
reset vector consists of four words that reside in program space. There are 52 pre-
defined or reserved vectors, and 200 user-defined vectors.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are
generated by external devices; others are supplied by the processor. There is a direct
mapping of vector number to vector table address. The processor left shifts the vector
number one place (multiplies by two) to convert it to an address.

Table 9-1 shows exception vector table organization. Vector numbers and addresses
are given in hexadecimal notation.
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.3 Types of Exceptions

Exceptions can be either internally or externally generated. External exceptions, which
are defined as asynchronous, include interrupts, bus errors (BERR), breakpoints
(BKPT), and resets (RESET). Internal exceptions, which are defined as synchronous,
include the software interrupt (SWI) instruction, the background (BGND) instruction,
illegal instruction exceptions, and the divide-by-zero exception.

9.4 Exception Stack Frame

During exception processing, a subset of the current processor state is saved on the
current stack. Specifically, the contents of the program counter and condition code
register at the time exception processing begins are stacked at the location pointed to
by SK: SP. Unless specifically altered during exception processing, the stacked PK:
PC value is the address of the next instruction in the current instruction stream, plus
$0006. Figure 9-1 shows the exception stack frame.

Figure 9-1 Exception Stack Frame Format

Table 9-1 Exception Vector Table

Vector
Number

Vector
Address

Address
Space

Type of
Exception

0 0000 P RESET — Initial ZK, SK, and PK
0002 P RESET — Initial PC
0004 P RESET — Initial SP
0006 P RESET — Initial IZ (Direct Page)

4 0008 D BKPT (Breakpoint)
5 000A D BERR (Bus Error)
6 000C D SWI (Software Interrupt)
7 000E D Illegal Instruction
8 0010 D Division by Zero

9 – E 0012 – 001C D Unassigned, Reserved
F 001E D Uninitialized Interrupt
10 0020 D Unassigned, Reserved
11 0022 D Level 1 Interrupt Autovector
12 0024 D Level 2 Interrupt Autovector
13 0026 D Level 3 Interrupt Autovector
14 0028 D Level 4 Interrupt Autovector
15 002A D Level 5 Interrupt Autovector
16 002C D Level 6 Interrupt Autovector
17 002E D Level 7 Interrupt Autovector
18 0030 D Spurious Interrupt

19 – 37 0032 – 006E D Unassigned, Reserved
38 – FF 0070 – 01FE D User-defined Interrupts

Low Address ⇐ SP After Exception Stacking
Condition Code Register

High Address Program Counter ⇐ SP Before Exception Stacking
 MOTOROLA EXCEPTION PROCESSING CPU16

9-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.5 Exception Processing Sequence

This is a general description of exception processing. Figure 9-2 shows detailed pro-
cessing flow and relative priority of each type of exception.

Exception processing is performed in four distinct phases.

1. Priority of all pending exceptions is evaluated, and the highest priority exception
is processed first.

2. Processor state is stacked, then the CCR PK extension field is cleared.
3. An exception vector number is acquired and converted to a vector address.
4. The content of the vector address is loaded into the PC, and the processor

jumps to the exception handler routine.

There are variations within each phase for differing types of exceptions. However, all
vectors but RESET are 16-bit addresses, and the PK field is cleared — either excep-
tion handlers must be located within bank 0, or vectors must point to a jump table. See
9.7 Processing of Specific Exceptions.
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-2 (Sheet 1 of 5) Exception Processing Flow Diagram

DID BERR
OCCUR

1A

NO 2C

2A

2B YES DID BKPT
OCCUR

1B

NO

INSURE
INSTRUCTION

PIPE FULL

RESET
NEGATED

LATCH STATE
OF BKPT

INITIALIZE CCR
CLEAR

K REGISTER

FETCH RESET
VECTORS

DID BERR
OCCUR

YES

2D

1A

NO
 MOTOROLA EXCEPTION PROCESSING CPU16

9-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-2 (Sheet 2 of 5) Exception Processing Flow Diagram

2C

4A3A

NO

2B

1A

2A

1B

2D

STACK PROCESSOR
STATE

CLEAR PK
FETCH BERR

VECTOR

INSURE
INSTRUCTION

PIPE FULL

DID
ANOTHER

BERR
OCCUR

BDM
ENABLED

STOP
INSTRUCTION
EXECUTION

ASSERT HALT
ENTER

BDM

YES

NO

NO

YES

BACKGROUND
MODE

ENABLED

ENTER
BACKGROUND

MODE

RUN BKPT
ACKNOWLEDGE

CYCLE
STACK PROCESSOR

STATE
CLEAR PK

FETCH BKPT VECTOR

FIRST
INSTRUCTION OF

EXCEPTION
ROUTINE

YES

NO YES
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-2 (Sheet 3 of 5) Exception Processing Flow Diagram

RUN IACK CYCLE

FETCH SPURIOUS
INTERRUPT VECTOR

1A

3A

4A

3B

1A 1A

NOIS PENDING
INTERRUPT >

IP MASK

YES

STACK PROCESSOR
STATE

CLEAR PK

SET IP MASK TO
INTERRUPT
PRIORITY

SPURIOUS
INTERRUPT

NO AUTO VECTOR

YES YES

FETCH INTERRUPT
AUTO VECTOR

FETCH INTERRUPT
VECTOR

NO
 MOTOROLA EXCEPTION PROCESSING CPU16

9-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-2 (Sheet 4 of 5) Exception Processing Flow Diagram

NO

ILLEGAL
INSTRUCTION

NO

4C

NONO

NO

RUN CPU SPACE
3 BUS CYCLE

1A

4A

1A

1A

4B

3B

5A

4C

STACK PROCESSOR
STATE

CLEAR PK
FETCH ILLEGAL

VECTOR

YES

NO

YES

YES

SWI
INSTRUCTION

WAIT
INSTRUCTION

LPSTOP
INSTRUCTION

IS PENDING
INTERRUPT >

MASK

STACK PROCESSOR
STATE

CLEAR PK
FETCH SWI VECTOR

S BIT SET IN
CCR

YES

YES

YES
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9-2 (Sheet 5 of 5) Exception Processing Flow Diagram

9.6 Multiple Exceptions

Each exception has a priority based upon its relative importance to system operation.
Asynchronous exceptions have higher priorities than synchronous exceptions. Excep-
tion processing for multiple exceptions is done by priority, from highest to lowest. Pri-
ority governs the order in which exception processing occurs, not the order in which
exception handlers are executed.

When simultaneous exceptions occur, handler routines for lower priority exceptions
are generally executed before handler routines for higher priority exceptions.

Unless BERR, BKPT, or RESET occur during exception processing, the first instruc-
tion of all exception handler routines is guaranteed to execute before another excep-
tion is processed. Since interrupt exceptions have higher priority than synchronous
exceptions, this means that the first instruction in an interrupt handler will be executed
before other interrupts are sensed.

NO

RTI
INSTRUCTION

BGND
INSTRUCTION NO

NO

4B

NO

NO

5A

1A

1A

1A

RESTORE
PROCESSOR

STATE

YES

BACKGROUND
MODE

ENABLED

YES

EXECUTE ILLEGAL
INSTRUCTION

ENTER
BACKGROUND

MODE

YES

STACK PROCESSOR
STATE

CLEAR PK
FETCH DIVIDE BY

ZERO VECTOR

DIVISOR
ZERO

YES

EXECUTE
INSTRUCTION

EDIV, EDIVS
INSTRUCTION

YES
 MOTOROLA EXCEPTION PROCESSING CPU16

9-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note

If interrupt latency is a concern, it is best to lead interrupt service rou-
tines with a NOP instruction, rather than with an instruction that re-
quires considerable cycle time to execute, such as PSHM.

RESET, BERR, and BKPT exceptions that occur during exception processing of a pre-
vious exception will be processed before the first instruction of that exception's handler
routine. The converse is not true — if an interrupt occurs during BERR exception pro-
cessing, for example, the first instruction of the BERR handler will be executed before
interrupts are sensed. This permits the exception handler to mask interrupts during ex-
ecution.

9.7 Processing of Specific Exceptions

The following detailed discussion of exceptions is organized by type and priority. Prox-
imate causes of each exception are discussed, as are variations from the standard
processing sequence described above.

9.7.1 Asynchronous Exceptions

Asynchronous exceptions occur without reference to CPU16 or IMB clocks, but excep-
tion processing is synchronized. For all asynchronous exceptions besides RESET, ex-
ception processing begins at the first instruction boundary following detection of an
exception.

Because of pipelining, the stacked return PK : PC value for all asynchronous excep-
tions, other than RESET, is equal to the address of the next instruction in the current
instruction stream plus $0006. The RTI instruction, which must terminate all exception
handler routines, subtracts $0006 from the stacked value in order to resume execution
of the interrupted instruction stream.

9.7.1.1 Processor Reset (RESET)

RESET is the highest-priority exception. It provides for system initialization and for re-
covery from catastrophic failure. The RESET vector contains information necessary
for basic CPU16 initialization. Figure 9-3 shows the RESET vector.

Figure 9-3 RESET Vector

RESET is caused by assertion of the IMB MSTRST signal. Conditions for assertion of
MSTRST may vary among members of the modular microcontroller family. Refer to
the appropriate microcontroller user's manual for details.

Address 15 12 11 8 7 4 3 0
$0000 Reserved Initial ZK Initial SK Initial PK
$0002 Initial PC
$0004 Initial SP
$0006 Initial IZ (Direct Page Pointer)
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Unlike all other exceptions, RESET occurs at the end of a bus cycle, and not at an in-
struction boundary. Any processing in progress at the time RESET occurs will be
aborted, and cannot be recovered.

The following events take place when MSTRST is asserted.

A. Instruction execution is aborted.
B. The condition code register is initialized.

1. The IP field is set to $7, disabling all interrupts below priority 7.
2. The S bit is set, disabling LPSTOP mode.
3. The SM bit is cleared, disabling MAC saturation mode.

C. The K register is cleared.

It is important to be aware that all CCR bits that are not initialized are not affected by
reset. However, out of power-on reset, these bits will be indeterminate.

The following events take place when MSTRST is negated after assertion.

A. The CPU16 samples the BKPT input.
B. The CPU16 fetches RESET vectors in the following order:

1. Initial ZK, SK, and PK extension field values.
2. Initial PC.
3. Initial SP.
4. Initial IZ value.

C. The CPU16 begins fetching instructions pointed to by the initial PK : PC.

The CPU16 samples the BKPT inputs to determine whether to enable background de-
bugging mode.

If either BKPT input is at logic level zero when sampled, an internal BDM flag is set,
and the CPU16 enters BDM whenever either BKPT input is subsequently asserted.

If both BKPT inputs are at logic level one when sampled, normal BKPT exception pro-
cessing begins whenever either BKPT input is subsequently asserted.

When BDM is enabled, the CPU16 will enter debugging mode whenever the condi-
tions for breakpoint are met. See 9.7.1.3 Breakpoint Exception (BKPT) for more in-
formation.

ZK : IZ are initialized for use as a direct bank pointer. Using the pointer, any location
in memory can be accessed out of reset by means of indexed addressing. This capa-
bility maintains compatibility with MC68HC11 routines that use direct addressing
mode.

Only essential RESET tasks are performed during exception processing. Other initial-
ization tasks must be accomplished by the exception handler routine.
 MOTOROLA EXCEPTION PROCESSING CPU16

9-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.7.1.2 Bus Error (BERR)

BERR is caused by assertion of the IMB BERR signal. BERR can be asserted by any
of three sources:

1. External logic, via the BERR pin.
2. Another microcontroller module.
3. Microcontroller system watchdog functions.

Refer to the appropriate microcontroller user's manual for more information.

BERR assertions do not force immediate exception processing. The signal is synchro-
nized with normal bus cycles and is latched into the CPU16 at the end of the bus cycle
in which it was asserted. Since bus cycles can overlap instruction boundaries, bus er-
ror exception processing may not occur at the end of the instruction in which the bus
cycle begins. Timing of BERR detection/acknowledge is dependent upon several fac-
tors:

Which bus cycle of an instruction is terminated by assertion of BERR.

The number of bus cycles in the instruction during which BERR is asserted.

The number of bus cycles in the instruction following the instruction in which BERR
is asserted.

Whether BERR is asserted during a program space access or a data space ac-
cess.

Because of these factors, it is impossible to predict precisely how long after occur-
rence of a bus error the bus error exception will be processed.

Caution

The external bus interface in the system integration module does not
latch data when an external bus cycle is terminated by a bus error.
When this occurs during an instruction prefetch, the IMB precharge
state (bus pulled high, or $FF) is latched into the CPU16 instruction
register, with indeterminate results. Refer to SECTION 3 SYSTEM
RESOURCES for more information concerning the IMB and bus in-
terfacing.

Bus error exception support in the CPU16 is provided to allow for dynamic memory
sizing after reset. To implement this feature, use a small routine similar to the example
below. The example assumes that memory starts at address $00000, and is contigu-
ous through the highest memory address —it must be modified for other memory
maps.
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example — Dynamic Memory Sizing

clrb set xk = 0
tbxk
ldx #$0000 xk:ix initialized to address $00000

loop ldd 0,x access memory location
nop nop in case a bus error is pending
aix #2 increment pointer to next word address.
bra loop

*
* When xk:ik is incremented past the highest available memory
* address, a BERR exception occurs; after exception processing,
* the CPU16 executes the exception handler at location berr_ex.
*
* berr_ex – BERR Exception Handler for Dynamic Memory Sizing
*
* This routine computes the address of the last word of memory,
* then stores the bank number at a location called “bank” and the
* word address within the bank at a location called “address”.
* It assumes that ek is properly initialized.
*
berr_ex aix #–2 compute LWA of memory

txkb
stab bank store bank number
stx address store address

Exception processing for bus error exceptions follows the standard exception process-
ing sequence. However, two special cases of bus error, called double bus faults, can
abort exception processing.

BERR assertion is not detected until an instruction is complete. The BERR latch is
cleared by the first instruction of the BERR exception handler. Double bus fault occurs
in two ways:

1. When bus error exception processing begins and a second BERR is detected
before the first instruction of the BERR exception handler is executed.

2. When one or more bus errors occur before the first instruction after a RESET
exception is executed.

Multiple bus errors within a single instruction which can generate multiple bus cycles,
such as read-modify-write instructions (refer to SECTION 8 INSTRUCTION TIMING
for more information), will cause a single bus error exception after the instruction has
executed.

Immediately after assertion of a second BERR, the CPU16 ceases instruction pro-
cessing and asserts the IMB HALT signal. The CPU16 will remain in this state until a
RESET occurs.

9.7.1.3 Breakpoint Exception (BKPT)

BKPT is caused by internal assertion of the IMB BKPT signal or by external assertion
of the microcontroller BKPT pin. BKPT assertions do not force immediate exception
processing. They are synchronized with normal bus cycles and latched into the
CPU16 at the end of the bus cycle in which they are asserted.
 MOTOROLA EXCEPTION PROCESSING CPU16

9-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When a BKPT assertion is synchronized with an instruction prefetch, processing of the
BKPT exception occurs at the end of that instruction. The prefetched instruction is
“tagged” with the breakpoint when it enters the instruction pipeline, and the breakpoint
exception occurs after the instruction executes. When a BKPT assertion is synchro-
nized with an operand fetch, exception processing occurs at the end of the instruction
during which BKPT is latched.

When background debugging mode has been enabled, the CPU16 will enter BDM
whenever either BKPT input is asserted. Refer to SECTION 10 DEVELOPMENT
SUPPORT for complete information on background debugging mode. When back-
ground debugging mode is not enabled, a breakpoint acknowledge bus cycle is run,
and subsequent exception processing follows the normal sequence.

Breakpoint acknowledge is a type of CPU space cycle. Cycles of this type are man-
aged by the external bus interface (EBI) in the microcontroller system integration mod-
ule. See SECTION 3 SYSTEM RESOURCES for more information.

9.7.1.4 Interrupts

There are eight levels of interrupt priority (0–7), seven automatic interrupt vectors, and
200 assignable interrupt vectors. All interrupts with priorities less than 7 can be
masked by writing to the CCR interrupt priority field.

Interrupt requests do not force immediate exception processing, but are left pending
until the current instruction is complete. Pending interrupts are processed at instruc-
tion boundaries or when exception processing for higher-priority exceptions is com-
plete. All interrupt requests must be held asserted until they are acknowledged by the
CPU.

Interrupt recognition and subsequent processing are based on the state of interrupt re-
quest signals IRQ7 – IRQ1 and the IP mask value.

IRQ6 – IRQ1 are active-low level-sensitive inputs. IRQ7 is an active-low transition-
sensitive input. A transition-sensitive input requires both an edge and a voltage level
for validity. Interrupt requests are synchronized and debounced by input circuitry on
consecutive rising edges of the processor clock. To be valid, an interrupt request must
be asserted for at least two consecutive clock periods. Each input corresponds to an
interrupt priority. IRQ1 has the lowest priority, and IRQ7 has the highest priority.

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111 provide
eight priority masks. Masks prevent an interrupt request of a priority less than or equal
to the mask value (except for IRQ7) from being recognized and processed. When IP
contains %000, no interrupt is masked.

IRQ6 – IRQ1 are maskable. IRQ7 is non-maskable. The IRQ7 input is transition-sen-
sitive in order to prevent redundant servicing and stack overflow. An NMI is generated
each time IRQ7 is asserted, and each time the priority mask changes from %111 to a
lower number while IRQ7 is asserted.
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The IP field is automatically set to the priority of the pending interrupt as a part of in-
terrupt exception processing. The TDP, ANDP, and ORP instructions can be used to
change the IP mask value. IP can also be changed by pushing a modified CCR onto
the stack, then using the PULM instruction. IP is also modified by the action of the re-
turn from interrupt (RTI) instruction.

Interrupt exception processing sequence is as follows:

A. Priority of all pending exceptions is evaluated, and the highest priority exception
is processed first.

B. Processor state is stacked, then the CCR PK extension field is cleared.
C. Mask value of the pending interrupt is written to the IP field.
D. An interrupt acknowledge cycle (IACK) is run.

1. If the interrupting device supplies a vector number, the CPU16 acquires it.
2. If the interrupting device asserts the autovector (AVEC) signal in response

to IACK, the CPU16 generates an autovector number corresponding to the
interrupt priority.

3. If a BERR signal occurs during IACK, the CPU16 generates the spurious in-
terrupt vector number.

E. The vector number is converted to a vector address.
F. The content of the vector address is loaded into the PC, and the processor

jumps to the exception handler routine.

SECTION 3 SYSTEM RESOURCES contains more information about bus control sig-
nals and interfacing.

9.7.2 Synchronous Exceptions

Synchronous exception processing is part of an instruction definition. Exception pro-
cessing for synchronous exceptions will always be completed, and the first instruction
of the handler routine will always be executed, before interrupts are detected.

Because of pipelining, the value of PK : PC at the time a synchronous exception exe-
cutes is equal to the address of the instruction that causes the exception plus $0006.
Since RTI always subtracts $0006 upon return, the stacked PK : PC must be adjusted
by the instruction that caused the exception so that execution will resume with the fol-
lowing instruction —$0002 is added to the PK : PC value before it is stacked.

9.7.2.1 Illegal Instructions

An illegal instruction exception can occur at two times:

1. When the execution unit identifies an opcode for which there is no instruction
definition.

2. When an attempt is made to execute the BGND instruction with background de-
bugging mode disabled.

In both cases, exception processing follows the normal sequence, except that the PK
: PC value is adjusted before it is stacked.
 MOTOROLA EXCEPTION PROCESSING CPU16

9-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

9.7.2.2 Division By Zero

This exception is a part of the instruction definition for division instructions EDIV and
EDIVS. If the divisor is zero when either is executing, the exception is taken. In both
cases, exception processing follows the normal sequence, except that the PK : PC val-
ue is adjusted before it is stacked.

9.7.2.3 BGND Instruction

Execution of the BGND instruction differs depending upon whether background de-
bugging mode has been enabled. See 9.7.1.3 Breakpoint Exception (BKPT) for in-
formation concerning enabling BDM.

1. If BDM has been enabled, BDM is entered. See SECTION 10 DEVELOPMENT
SUPPORT for more information concerning BDM.

2. If BDM is not enabled, an illegal instruction exception occurs. In this case, ex-
ception processing follows the normal sequence, except that the PK : PC value
is adjusted before it is stacked.

9.7.2.4 SWI Instruction

The software interrupt instruction initiates synchronous exception processing. Excep-
tion processing for SWI follows the normal sequence, except that the PK : PC value is
adjusted before it is stacked.

9.8 Return from Interrupt (RTI)

RTI must be the last instruction in all exception handlers except for the RESET han-
dler. RTI pulls the exception stack frame and restores processor state. Normal pro-
gram flow resumes at the address of the instruction that follows the last instruction
executed before exception processing began. RTI is not used in the RESET handler
because RESET initializes the stack pointer and does not create a stack frame.
CPU16 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 9-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA EXCEPTION PROCESSING CPU16

9-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 10 DEVELOPMENT SUPPORT
The CPU16 incorporates powerful tools for tracking program execution and for system
debugging. These tools are deterministic opcode tracking, breakpoint exceptions, and
the background debugging mode. Judicious use of CPU16 capabilities permits in-cir-
cuit emulation and system debugging using a bus state analyzer, a simple serial inter-
face, and a terminal.

10.1 Deterministic Opcode Tracking

The CPU16 has two multiplexed outputs, IPIPE0 and IPIPE1, that enable external
hardware to monitor the instruction pipeline during normal program execution. The sig-
nals IPIPE0 and IPIPE1 can be demultiplexed into six pipeline state signals that allow
a state analyzer to synchronize with instruction stream activity.

10.1.1 Instruction Pipeline

There are three functional blocks involved in fetching, decoding, and executing in-
structions. These are the microsequencer, the instruction pipeline, and the execution
unit. These elements function concurrently. Figure 10-1 shows the functional blocks.

The microsequencer controls the order in which instructions are fetched, advanced
through the pipeline, and executed. It increments the program counter and generates
IPIPE0 and IPIPE1 from internal signals.

The execution unit evaluates opcodes, interfaces with the microsequencer to advance
instructions through the pipeline, and performs instruction operations.

The effects of microsequencer and execution unit actions are always reflected in pipe-
line status — consequently, monitoring the pipeline provides an accurate picture of
CPU16 operation for debugging purposes.

The pipeline is a three stage FIFO. Fetched opcodes are latched into stage A, then
advanced to stage B, where opcodes are evaluated. The execution unit accesses op-
erands from either stage A or stage B (stage B accesses are limited to 8-bit operands).
After execution, opcodes are moved from stage B to stage C, where they remain until
the next instruction is complete.
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-1 Instruction Execution Model

10.1.2 IPIPE0/IPIPE1 Multiplexing

Six types of information are required to track pipeline activity. To generate the six state
signals, eight pipeline states are encoded and multiplexed into IPIPE0 and IPIPE1.
The multiplexed signals have two phases. State signals are active low. Table 10-1
shows the encoding and multiplexing scheme.

IPIPE0 and IPIPE1 are timed so that a logic analyzer can capture all six pipeline state
signals and address, data, or control bus state in any single bus cycle.

Table 10-1 IPIPE0/IPIPE1 Encoding

Phase IPIPE1 State IPIPE0 State State Signal Name

1 0
0
1
1

0
1
0
1

START & FETCH
FETCH
START
NULL

2 0
0
1
1

0
1
0
1

INVALID
ADVANCE

EXCEPTION
NULL

IPIPE0
IPIPE1

BKPT

DATA
BUS

BKPT BKPT

INSTRUCTION PIPELINE

MICROSEQUENCER

A B C

EXECUTION UNIT
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

State signals can be latched asynchronously on the falling and rising edges of either
address strobe (AS) or data strobe (DS). They can also be latched synchronously us-
ing the microcontroller CLKOUT signal. SECTION 3 SYSTEM RESOURCES contains
more information about bus control signals. Refer to the appropriate microcontroller
user's manual for specific timing information.

Figure 10-2 shows minimum logic required to demultiplex IPIPE0 and IPIPE1.

Figure 10-2 IPIPE DEMUX Logic

10.1.3 Pipeline State Signals

The six state signals show instruction execution sequence. The order in which a de-
velopment system evaluates the signals is critical. In particular, the development sys-
tem must first evaluate START, then ADVANCE, and then FETCH for each instruction
word. When combined START & FETCH signals are asserted, START applies to the
current content of pipeline stage B, while FETCH applies to current data bus content.
Relationships between state signals are discussed in the following descriptions.

10.1.3.1 NULL — No Instruction Pipeline Activity

NULL assertion indicates that there is no instruction pipeline activity associated with
the current bus cycle.

10.1.3.2 START — Instruction Start

START assertion indicates that an instruction in stage B has begun to execute. START
affects subsequent operation of ADVANCE and FETCH. The development system
must flag the instruction word in stage B as started when START is asserted.

IPIPE0
(PHASE 2)

IPIPE0
(PHASE 1)

IPIPE1
(PHASE 2)

IPIPE1
(PHASE 1)

ANALYZER
STROBE

IPIPE0

IPIPE1

AS

DS

D Q

D Q
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.1.3.3 ADVANCE — Instruction Pipeline Advance

ADVANCE assertion indicates that words in the instruction pipeline are being copied
from one stage to another.

If START has been asserted for the word in stage B, the content of stage B is copied
into stage C. Regardless of START assertion, content of stage A is copied into stage
B.

When a word is copied from stage B to stage C, instruction execution is complete, and
a new opcode must be copied into stage B.

When the content of stage A is copied into stage B, prior content of stage B is over-
written. ADVANCE assertion without an associated START assertion indicates that
the pipeline is being filled, either before normal execution of instructions begins or after
a change of program flow.

If the development system has flagged the instruction word in stage B as started, that
flag must be cleared when ADVANCE is asserted.

10.1.3.4 FETCH — Instruction Fetch

FETCH assertion shows that the current content of the data bus is being latched into
stage A. FETCH occurs only during instruction fetch bus cycles.

10.1.3.5 EXCEPTION — Exception Processing in Progress

EXCEPTION assertion indicates that all subsequent bus cycles until the next START
assertion are part of an exception processing sequence.

EXCEPTION is not asserted during exceptions initiated by the SWI instruction nor dur-
ing division by zero exceptions. The timing of EXCEPTION assertion for other excep-
tions differs according to the type of exception.

Exceptions are recognized at instruction boundaries. Time elapses between detection
of the exception and the start of exception processing. A prefetch bus cycle for the next
instruction is initiated during this period.

Because interrupts are recognized quickly, EXCEPTION is asserted during the
prefetch bus cycle. The bus cycle is completed, and the prefetched word is overwritten
when the pipeline is filled with interrupt handler instructions.

For exceptions other than interrupt, the prefetch bus cycle is completed before EX-
CEPTION is asserted. Assertion coincides with the first stacking operation. The
prefetched word is overwritten when the pipeline is refilled with exception handler in-
structions.

10.1.3.6 INVALID — PHASE1/PHASE2 Signal Invalid

INVALID is always asserted during phase 2. INVALID assertion indicates that all non-
null signals derived from PHASE1 must be ignored.
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.1.4 Combining Opcode Tracking with Other Capabilities

Pipeline state signals are useful during normal instruction execution and execution of
exception handlers. Refer to SECTION 9 EXCEPTION PROCESSING for a detailed
discussion of exceptions and exception handlers. The signals provide a complete
model of the pipeline up to the point a breakpoint is acknowledged.

Breakpoints are acknowledged after an instruction has executed, when it is in pipeline
stage C. A breakpoint can initiate either exception processing or background debug-
ging mode. See10.2 Breakpoints10.2 Breakpoints and 10.3 Opcode Tracking and
Breakpoints10.3 Opcode Tracking and Breakpointsfor more information. IPIPE0/
IPIPE1 are not usable when the CPU16 is in background debugging mode. Complete
information is contained in 10.4 Background Debug Mode (BDM).

10.1.5 CPU16 Instruction Pipeline State Signal Flow

Figure 10-3 is the flow diagram required to properly interpret instruction pipeline state
signals.

10.2 Breakpoints

Breakpoints are set by internal assertion of the IMB BKPT signal or by external asser-
tion of the microcontroller BKPT pin. The CPU16 supports breakpoints on any memory
access. Acknowledged breakpoints can initiate either exception processing or back-
ground debugging mode. After BDM has been enabled, the CPU16 will enter BDM
when either BKPT input is asserted.

If BKPT assertion is synchronized with an instruction prefetch, the instruction is
“tagged” with the breakpoint when it enters the pipeline, and the breakpoint occurs af-
ter the instruction executes.

If BKPT assertion is synchronized with an operand fetch, breakpoint processing oc-
curs at the end of the instruction during which BKPT is latched.

Breakpoints on instructions that are flushed from the pipeline before execution are not
acknowledged, but operand breakpoints are always acknowledged. There is no break-
point acknowledge bus cycle when BDM is entered. See SECTION 9 EXCEPTION
PROCESSING for complete information about breakpoint exceptions.
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-3 (Sheet 1 of 3) Instruction Pipeline Flow

START

1

LATCH
IPIPE0/IPIPE1

DECODE
(BOTH PHASES)

BOTH
PHASES

NULL
1

1INVALID
ASSERTED

START
ASSERTED

FLAG WORD
IN STAGE B

2

NO

YES

NO

YES

NO

YES
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-3 (Sheet 2 of 3) Instruction Pipeline Flow

2

ADVANCE
ASSERTED

YES

3

NO

WORD
FLAGGED

NO

YES

COPY STAGE B
INTO STAGE C:

CLEAR FLAG

COPY STAGE A
INTO STAGE B
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-3 (Sheet 3 of 3) Instruction Pipeline Flow

10.3 Opcode Tracking and Breakpoints

Breakpoints are acknowledged after a tagged instruction has executed, when it is cop-
ied from pipeline stage B to stage C. At the time START is asserted for an instruction,
stage C contains the opcode of the previous instruction.

When an instruction is tagged, IPIPE0/IPIPE1 show START and the appropriate num-
ber of ADVANCE and FETCH assertions for instruction execution before the break-
point is acknowledged. If background debugging mode is enabled, these signals
model the pipeline before BDM is entered.

10.4 Background Debug Mode (BDM)

Microprocessor debugging programs are generally implemented in external software.
CPU16 BDM provides a debugger implemented in CPU microcode.

BDM incorporates a full set of debug options — registers can be viewed and altered,
memory can be read or written, and test features can be invoked.

3

FETCH
ASSERTED

YES

LATCH WORD
FROM DATA BUS

INTO STAGE A

EXCEPTION
ASSERTED

EXCEPTION
PROCESSING
UNTIL NEXT

START ASSERTION

YES

NO

NO

1

 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BDM also simplifies in-circuit emulation. In a common setup (Figure 10-4), emulator
hardware replaces the target system processor. Communication between target sys-
tem and emulator takes place via a complex interface.

Figure 10-4 In-Circuit Emulator Configuration

CPU16 emulation requires a bus state analyzer only. The processor remains in the tar-
get system (see Figure 10-5) and the interface is less complex.

Figure 10-5 Bus State Analyzer Configuration

The analyzer monitors processor operation and the on-chip debugger controls the op-
erating environment. Emulation is much “closer” to target hardware, and interfacing
problems such as limited clock speed, AC and DC parametric mismatch, and restrict-
ed cable length are minimized.

BDM is an alternate CPU16 operating mode. During BDM, normal instruction execu-
tion is suspended, and special microcode performs debugging functions under exter-
nal control.

BDM can be initiated by external assertion of the BKPT input, by internal assertion of
the IMB BKPT signal, or by the BGND instruction. While in BDM, the CPU16 ceases
to fetch instructions via the parallel bus and communicates with the development sys-
tem via a dedicated serial interface.

TARGET
SYSTEM

IN-CIRCUIT
EMULATOR

TARGET
MCU

TARGET
SYSTEM

BUS STATE
ANALYZER

TARGET
MCU
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.1 Enabling BDM

The CPU16 samples the BKPT inputs during reset to determine whether to enable
BDM. If either BKPT input is at logic level zero when sampled, an internal BDM en-
abled flag is set.

BDM operation is enabled when BKPT is asserted at the rising edge of the RESET sig-
nal. BDM remains enabled until the next system reset. If BKPT is at logic level one on
the trailing edge of RESET, BDM is disabled. BKPT is relatched on each rising transi-
tion of RESET. BKPT is synchronized internally, and must be asserted for at least two
clock cycles prior to negation of RESET.

BDM enable logic must be designed with special care. If BKPT hold time extends into
the first bus cycle following reset, the bus cycle could inadvertently be tagged with a
breakpoint. Figure 10-6 shows a sample BDM enable circuit.

Figure 10-6 Sample BDM Enable Circuit

The microcontroller itself asserts RESET for 512 clock periods after it is released by
external reset logic, and latches the state of BKPT on the rising edge of RESET at the
end of this period. If enable circuitry only monitors the external reset, BKPT will not be
enabled. Figure 10-7 shows BDM enable timing. Refer to the appropriate modular mi-
crocontroller user's manual for specific timing information.

Figure 10-7 BDM Enable Waveforms

EXTERNAL
RESET
LOGIC

MCU

BKPT

RESET

RESET DRIVEN BY EXTERNAL LOGIC

BDM ENABLE LATCHED

512 CLOCK PERIODS
RESET DRIVEN BY MICROCONTROLLER

2 CLOCK
PERIODS

RESET

BKPT

≥10 CLOCK PERIODS
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.2 BDM Sources

When BDM is enabled, external breakpoint hardware, internal IMB module break-
points, and the BGND instruction can cause the CPU16 to enter BDM. If BDM is not
enabled when a breakpoint occurs, a breakpoint exception is processed. Table 10-2
summarizes the processing of each source for both enabled and disabled cases.

10.4.2.1 BKPT Signal

If enabled, BDM is initiated when assertion of BKPT is acknowledged. BKPT can be
asserted on the IMB by another module in the microcontroller, or by taking the micro-
controller BKPT pin low. There is no breakpoint acknowledge bus cycle when BDM is
entered. See the appropriate microcontroller user's manual for more information con-
cerning assertion of BKPT.

10.4.2.2 BGND Instruction

If BDM has been enabled, executing BGND will cause the CPU16 to suspend normal
operation and enter BDM. If BDM has not been correctly enabled, an illegal instruction
exception is generated. Illegal instruction exceptions are discussed in SECTION 9 EX-
CEPTION PROCESSING.

10.4.2.3 Microcontroller Module Breakpoints

If BDM has been enabled, the CPU16 will enter BDM when other microcontroller mod-
ules assert the BKPT signal. Consult the appropriate microcontroller user's manual for
a description of these capabilities.

10.4.2.4 Double Bus Fault

If BDM has been enabled, the CPU16 will enter BDM when a double bus fault is de-
tected. If BDM has not been enabled, the HALT signal is asserted and processing
stops.

10.4.3 BDM Signals

When BDM is entered, the BKPT and IPIPE signals change function and become BDM
serial communication signals. The following table summarizes the changes.

Table 10-2 BDM Source Summary

Source BDM Enabled BDM Disabled
BKPT Background Breakpoint Exception

BGND Instruction Background Illegal Instruction
Double Bus Fault Background Assert HALT
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.4 Entering BDM

When the processor detects a breakpoint or decodes a BGND instruction, it suspends
instruction execution and asserts the FREEZE output. Once FREEZE has been as-
serted, the CPU enables the serial communication hardware and awaits a command.

Assertion of FREEZE causes opcode tracking signals IPIPE0 and IPIPE1 to change
definition and become serial communication signals DSO and DSI. FREEZE is assert-
ed at the next instruction boundary after BKPT is asserted. IPIPE0 and IPIPE1 change
function before an EXCEPTION signal can be generated. The development system
must use FREEZE assertion as an indication that BDM has been entered. When BDM
is exited, FREEZE is negated prior to initiation of normal bus cycles — IPIPE0 and
IPIPE1 will be valid when normal instruction prefetch begins.

10.4.5 Command Execution

Figure 10-8 summarizes BDM command execution. Commands consist of one 16-bit
operation word and can include one or more 16-bit extension words. Each incoming
word is read as it is assembled by the serial interface. The microcode routine corre-
sponding to a command is executed as soon as the command is complete. Result op-
erands are loaded into the output shift register to be shifted out as the next command
is read. This process is repeated for each command until the CPU returns to normal
operating mode.

Table 10-3 BDM Signals

State Signal Name Type Description
No Background Mode BKPT

IPIPE0
IPIPE1

Input
Output
Output

Signals breakpoint to CPU16
Shows instruction pipeline state
Shows instruction pipeline state

Background Mode DSCLCK
DSO
DSI

Input
Output
Input

BDM serial clock
BDM serial output
BDM serial input
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-8 BDM Command Flow Diagram

10.4.6 Returning from BDM

BDM is terminated when a resume execution (GO) command is received. GO refills
the instruction pipeline from address (PK: PC − $0006). FREEZE is negated prior to
the first prefetch. Upon negation of FREEZE, the serial subsystem is disabled, and the
DSO/DSI signals revert to IPIPE0/IPIPE1 functionality.

10.4.7 BDM Serial Interface

The serial interface uses a synchronous protocol similar to that of the Motorola Serial
Peripheral Interface (SPI). Figure 10-9 is a development system serial logic diagram.

NO

CONTINUE

SEND INITIAL COMMAND

CPU ACTIVITY

IF RESULTS =
"NOT READY"

DEVELOPMENT SYSTEM ACTIVITY

LOAD COMMAND REGISTER
ENABLE SHIFT CLOCK
SHIFT OUT 17 BITS
DISABLE SHIFT CLOCK

READ RESULTS/NEW COMMAND

LOAD COMMAND REGISTER
ENABLE SHIFT CLOCK
SHIFT IN/OUT 17 BITS
DISABLE SHIFT CLOCK
READ RESULT REGISTER

YES

EXECUTE COMMAND

LOAD:NOT READY/RESPONSE
PERFORM COMMAND
STORE RESULTS

ENTER BDM

ASSERT FREEZE SIGNAL
WAIT FOR COMMAND
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-9 BDM Serial I/O Block Diagram

The development system serves as the master of the serial link, and is responsible for
the generation of serial interface clock signal DSCLK.

Serial clock frequency range is from DC to one-half the CPU16 clock frequency. If
DSCLK is derived from the CPU16 system clock, development system serial logic can
be synchronized with the target processor.

The serial interface operates in full-duplex mode. Data transfers occur on the falling
edge of DSCLK and are stable by the following rising edge of DSCLK. Data is trans-
mitted MSB first, and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide — 16 data bits and a status/control bit.

Figure 10-10 Serial Data Word Format

16 15 0

S/C DATA FIELD

 ⇑

STATUS CONTROL BIT

16

16

16 16
0

CPU

INSTRUCTION
REGISTER BUS

RCV DATA LATCH

SERIAL IN
PARALLEL OUT

PARALLEL IN
SERIAL OUT

STATUS

EXECUTION
UNIT

SYNCHRONIZE
MICROSEQUENCER

CONTROL
LOGIC

DSI

DSO

DSCLK

STATUS DATA

SERIAL
CLOCK

CONTROL
LOGIC

RESULT LATCH

SERIAL IN
PARALLEL OUT

PARALLEL IN
SERIAL OUT

COMMAND LATCH

DATA

DEVELOPMENT SYSTEM
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bit 16 indicates status of CPU-generated messages as shown in Table 10-4.

Command and data transfers initiated by the development system must clear bit 16.
All commands that return a result return 16 bits of data plus one status bit.

10.4.7.1 CPU Serial Logic

CPU16 serial logic, shown in the left-hand portion of Figure 10-9, consists of transmit
and receive shift registers and of control logic that includes synchronization, serial
clock generation circuitry, and a received bit counter.

Both DSCLK and DSI are synchronized to internal clocks. Data is sampled during the
high phase of CLKOUT. At the falling edge of CLKOUT, the sampled value is made
available to internal logic. If there is no synchronization between CPU16 and develop-
ment system hardware, the minimum hold time on DSI with respect to DSCLK is one
full period of CLKOUT.

Serial transfer is based on the DSCLK signal (see Figure 10-11). At the rising edge of
the internal synchronized DSCLK, synchronized data is transferred to the input shift
register, and the received bit counter is decremented. One-half clock period later, the
output shift register is updated, bringing the next output bit to the DSO signal. DSO
changes relative to the rising edge of DSCLK and does not necessarily remain stable
until the falling edge of DSCLK.

Table 10-4 CPU Generated Message Encoding

Bit 16 Data Message Type
0 xxxx Valid Data Transfer
0 FFFF Command Complete; Status OK
1 0000 Not Ready with Response; Come Again
1 FFFF Illegal Command
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-11 Serial Interface Timing Diagram

One full clock period after the rising edge of DSCLK, the updated counter value is
checked. If the counter has reached zero, the receive data latch is updated from the
input shift register. At the same time, the output shift register is reloaded with a “not
ready/come again” response. When the receive data latch is loaded, the CPU is re-
leased to act on the new data. Response data overwrites “not ready” when the CPU
has completed the current operation.

Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from logic level one (“not ready”) to
logic level zero (valid data). However, this level change only occurs if the transfer is
completed. Error conditions cause the “not ready” status bit to be overwritten.

The DSO state change can be used to signal interface hardware that the next serial
transfer may begin. A time-out of sufficient length to trap error conditions that do not
change the state of DSO must be incorporated into the design. Hardware interlocks in
the CPU prevent result data from corrupting serial transfers in progress.

10.4.7.2 Development System Serial Logic

The development system must initiate BDM and supply the BDM serial clock. Serial
logic must be designed so that these functions do not affect one another.

CLKOUT

FREEZE

DSCLK

DSI

SAMPLE
WINDOW

INTERNAL
SYNCHRONIZED

DSCLK

INTERNAL
SYNCHRONIZED

DSI

DSO

CLKOUT
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Breakpoint requests are made by asserting BKPT in either of two ways. The preferred
method is to assert BKPT during the bus cycle for which an exception is desired. The
second method is to assert BKPT until the CPU16 responds by asserting FREEZE.
This method is useful for forcing a transition into BDM when the bus is not being mon-
itored. Both methods require logic that precludes spurious serial clocks.

Figure 10-12 shows timing for BKPT assertion during a single bus cycle. Figure 10-
13 shows BKPT/FREEZE timing. In both cases, the serial clock output is left high after
the final shift of each transfer. This prevents tagging the prefetch initiated when BDM
terminates.

Figure 10-12 BKPT Timing for Single Bus Cycle

Figure 10-13 BKPT Timing for Forcing BDM

Figure 10-14 shows a sample circuit that accommodates either method of BKPT as-
sertion. FORCE_BGND can either be pulsed or remain asserted until FREEZE is as-
serted. Once FORCE_BGND is asserted, the set-reset latch holds BKPT low until the
first SHIFT_CLK is applied.

FREEZE

BKPT

BKPT_TAG

FORCE_BGND

SHIFT_CLK

SHIFT_CLK

FORCE_BGND

BKPT_TAG

BKPT

FREEZE
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-17

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-14 BKPT/DSCLK Logic Diagram

Since it is not latched, BKPT_TAG must be synchronized with CPU16 bus cycles. If
negation of BKPT_TAG extends past FREEZE assertion, the CPU16 will clock on it as
though it were the first DSCLK pulse.

DSCLK is the gated serial clock. Normally high, it pulses low for each bit transferred.
At the end of the seventeenth clock period, it remains high until the start of the next
transmission. Clock frequency is implementation dependent and may range from dc
to the maximum specified frequency.

10.4.8 BDM Command Format

The following standard bit format is utilized by all BDM commands.

Operation Word

All commands have a unique 16-bit operation word. No command requires an exten-
sion word to specify the operation to be performed.

Extension Words

Some commands require extension words for addresses or immediate data. Address-
es require two extension words to accommodate 20 bits. Immediate data can be either
one or two words in length — byte and word data each require a single extension word,
long-word data requires two words. Both operands and addresses are transferred
most significant word first.

10.4.9 Command Sequence Diagram

A command sequence diagram illustrates the serial bus traffic for each command.
Each bubble in the diagram represents a single 17-bit transfer across the bus. The top
half of each bubble shows data sent from the development system to the CPU16. The
bottom half shows data returned by the CPU16 in response to commands. Transmis-
sions overlap to minimize latency.

15 0

OPERATION WORD

EXTENSION WORD(S)

RESET

BKPT/DSCLK

BKPT_TAG

SHIFT_CLK

FORCE_BGND

S1

S2

R

Q

Q

 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-18 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 10-15 shows an example command sequence diagram. A description of the in-
formation in the diagram follows.

Figure 10-15 Command Sequence Diagram Example

The cycle in which the command is issued contains the command word (RPMEM).
During the same cycle, the CPU16 responds with either the low order results of the
previous command or with a command complete status if no results were required.

During the second cycle, the development system supplies the 4 high-order bits of a
memory address. The CPU16 returns a NOT READY response unless the received
command was decoded as unimplemented, in which case the response is the ILLE-
GAL command encoding. When an ILLEGAL response occurs, the development sys-
tem must retransmit the command.

In the third cycle, the development system supplies the 16 low-order bits of the mem-
ory address. The CPU16 always returns a NOT READY response in this cycle. At the
completion of the third cycle, the CPU16 initiates a memory read operation. Any serial
transfers that begin while the memory access is in progress return the NOT READY
response.

Results are returned in the serial transfer cycle following completion of the memory ac-
cess. If the serial clock is slow, there may be additional NOT READY responses from
the CPU16. The data transmitted to the CPU during the final transfer is the next com-
mand word.

NEXT
COMMAND

CODE

NEXT CMD
RESULT

NOT USED
NOT READY

SEQUENCE TAKEN
WHEN OPERATION
IS NOT COMPLETE

COMMAND
EXECUTION

16 LSB OF
ADDRESS

4 MSB OF
ADDRESS

READ
MEMORY

LOCATION

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

COMMAND
TRANSMITTED

THIS CYCLE

LS ADDR
NOT READY

NEXT CMD
NOT READY

SEQUENCE TAKEN WHEN
AN ILLEGAL COMMAND
IS RECEIVED

RESPONSES FROM
THE CPU16

MS ADDR
NOT READY

NOT USED
ILLEGAL

RPMEM
*

COMMANDS
TRANSMITTED TO
THE CPU16
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-19

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.10 BDM Command Set

The BDM command set is summarized in Table 10-5. Subsequent pages contain a
BDM command glossary. Glossary entries are in the same order as the table. Each
entry contains detailed information concerning commands and results, and includes a
command sequence diagram.

10.4.10.1 BDM Memory Commands and Bus Errors

If a bus error occurs while a BDM command that accesses memory (RDMEM, WD-
MEM, RPMEM, or WPMEM) is executing, it is ignored by the CPU16. Data returned
by a read access during which a bus error occurs is indeterminate.

Table 10-5 Command Summary

Command Mnemonic Description
Read Registers

from Mask
RREGM Read contents of registers specified by

command word register mask
Write Registers

from Mask
WREGM Write to registers specified by

command word register mask
Read MAC Registers RDMAC Read contents of entire

multiply and accumulate register set
Write MAC Registers WRMAC Write to entire multiply and accumulate register set

Read PC and SP RPCSP Read contents of program counter and stack pointer
Write PC and SP WPCSP Write to program counter and stack pointer

Read Data Memory RDMEM Read data from specified 20-bit address
in data space

Write Data Memory WDMEM Write data to specified 20-bit address
in data space

Read Program Memory RPMEM Read data from specified 20-bit address
in program space

Write Program Memory WPMEM Write data to specified 20-bit address
in program space

Execute from current
PK: PC

GO Instruction pipeline flushed and refilled;
instructions executed from current PC – $0006

Null Operation NOP Null command — performs no operation
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-20 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RREGM Read Registers From Mask RREGM
Description: Registers specified by a register mask operand are read and

returned via the serial link.

Operand: A 7-bit mask operand is right-justified in an operand word. Registers
are specified as follows:

Bit 0: Condition Code Register [15:4]
Bit 1: Address Extension (K) Register
Bit 2: Index Register Z
Bit 3: Index Register Y
Bit 4: Index Register X
Bit 5: Accumulator E
Bit 6: Accumulator D

Registers are received in order from bit 0 to bit 6.

Result: A 16-bit word for each register specified. Register content is
returned MSB first. Command complete status ($FFFF) is returned
after the last register has been returned.

Command Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0

NOT USED MASK
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-21

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RREGM Read Registers From Mask RREGM
Command Sequence Diagram:

NOT USED
ILLEGAL

NOT USED
CCR[15:4]

NOT USED
K

NOT USED
IZ

NOT USED

NOT USED

NOT USED
E

NOT USED
D

NEXT CMD
COMPLETE

IX

IY

BIT 1 SET

BIT 0 SET

BIT 2 SET

BIT 3 SET

BIT 4 SET

BIT 5 SET

BIT 6 SET

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NEXT CMD
NOT READY

MASK
NOT READY

RREGM
*

 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-22 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WREGM Write Registers From Mask WREGM
Description: Registers specified by a register mask operand are written with data

received via the serial link.

Operand: A 7-bit mask operand is right-justified in an operand word. Registers
are specified as follows:

Bit 0: Condition Code Register [15:4]
Bit 1: Address Extension (K) Register
Bit 2: Index Register Z
Bit 3: Index Register Y
Bit 4: Index Register X
Bit 5: Accumulator E
Bit 6: Accumulator D

Registers are written in order from bit 0 to bit 6.

Result: A 16-bit word for each register specified. Register content is
returned MSB first. Command complete status ($FFFF) is returned
after the last register has been written.

Command Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1

NOT USED MASK
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-23

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WREGM Write Registers From Mask WREGM
Command Sequence Diagram:

NOT USED
ILLEGAL

CCR
NOT READY

K
NOT READY

IZ
NOT READY

IY

IX

E
NOT READY

D
NOT READY

NEXT CMD
COMPLETE

NOT READY

NOT READY

BIT 1 SET

BIT 0 SET

BIT 2 SET

BIT 3 SET

BIT 4 SET

BIT 5 SET

BIT 6 SET

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NEXT CMD
NOT READY

MASK
NOT READY

WREGM
*

 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-24 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RDMAC Read MAC Register Set RDMAC
Description: The entire multiply and accumulate register set is read and returned

via the serial link.

Operand: None

Result: A 16-bit word for each register. Register content is returned MSB
first in the following order:

H Register
I Register
AM[15:0]
AM[31:16]
SL and AM[35:32]
XM: YM

DSP sign latch bit SL is returned in bit 15 of a result word,
AM[35:32] are returned in bits [3:0] of the same word, and bits [14:4]
are undefined.
Command complete status ($FFFF) is returned after the last register
value has been returned.

Command Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 0
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-25

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RDMAC Read MAC Register Set RDMAC
Command Sequence Diagram:

NOT USED
ILLEGAL

RDMAC
*

NOT USED
H

NOT USED
I

NOT USED
AM [15:0]

NOT USED
AM [31:16]

NOT USED
SL:AM[35:32]

NOT USED

NEXT CMD
NOT READY

XM/YM

NEXT CMD
COMPLETE

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-26 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WRMAC Write MAC Register Set WRMAC
Description: The entire multiply and accumulate register set is written with data

received via the serial link.

Operand: A 16-bit word for each register is received (MSB first) via the serial
link. Words are read and written in the following order:

XM: YM
SL and AM[35:32]
AM[31:16]
AM[15:0]
I Register
H Register

DSP sign latch bit SL must be bit 15 of an operand, AM[35:32] must
be bits [3:0] of the same word, and bits [14:4] can be undefined.

Result: Command complete status ($FFFF) is returned after the last register
is written.

Command Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-27

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WRMAC Write MAC Register Set WRMAC
Command Sequence Diagram:

NOT USED
ILLEGAL*

AM[31:16]

AM[15:0]

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NEXT CMD
COMPLETE

H
NOT READY

I
NOT READY

NOT READY

NOT READY

NOT READY

NOT READY
XM/YM

SL:AM[35:32]

NOT READY
NEXT CMDWRMAC
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-28 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RPCSP Read PC and SP RPCSP
Description: Program counter and stack pointer are read, then transmitted via the

serial link.

Operand: None

Result: Four words are returned MSB first in the following order:
PK extension field and PCSK extension field and SP
PK and SK are contained in bits [3:0] of the respective result words.
Bits [15:4] of the words are undefined.
Command complete status ($FFFF) is returned after the last register
is returned.

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0

NOT USED
ILLEGAL

RPSCP
*

NOT USED
PK

NOT USED
PC

NOT USED
SK

NOT USED
SP

NEXT CMD
COMPLETE

NOT READY

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NEXT CMD
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-29

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WPCSP Write PC and SP WPCSP
Description: Program counter and stack pointer are written with data received via

the serial link.

Operand: Registers are received and written in the following order:
PK extension field and PCSK extension field and SP
PK and SK are contained in bits [3:0] of the respective operand
words. Bits [15:4] of the words are undefined.

Result: Command complete status ($FFFF) is returned after the last register
is written.

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1

NOT USED
ILLEGAL

NEXT CMDWPSCP
*

PK
NOT READY

PC
NOT READY

SK
NOT READY

SP
NOT READY

NEXT CMD
COMPLETE

NOT READY

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-30 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RDMEM Read Data Space Memory RDMEM
Description: A byte, word, or long word is read from an address in data space

and transmitted via the serial link.

Operand: Two extension words specify 20-bit memory address and operand
size. Bits [3:0] of the first word are the bank address. Bits [15:14] are
encoded to specify operand size. Bits [13:4] are reserved for future
use. The second word is the operand address.

Result: Eight, 16, and 32-bit data. Eight and 16-bit data are transmitted as
16-bit data words, MSB first. For 8-bit data, the upper byte of each
word contains $FF. 32-bit data is transmitted as two 16-bit data
words in MSW, LSW order beginning with the MSB of each word.

Command Format:

Command Sequence Diagram:

Table 10-6 Operand Size Encoding

Bits
[15:14]

Operand
Size

00 Byte
01 Word
1X Long Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0

EXT WD 1

NOT USED
ILLEGAL

EXT WD 2

RESULT

NOT USED

RESULT

NOT USED

NOT USED

RESULT

NOT USED

WORD

LONG
WORD

RDMEM
* NOT READY NOT READY

NEXT CMD
NOT READY

BYTE
READ

MEMORY
LOCATION

READ
MSW

LOCATION

READ
LSW

LOCATION

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NOT READY

NEXT CMD

NOT READY

NOT READY

NOT USED
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-31

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WDMEM Write Data Space Memory WDMEM
Description: A byte, word, or long word is received via the serial link and written

to an address in data space.

Operand: Two extension words specify 20-bit memory address and operand
size. Third and fourth (long word operands only) words contain data
to be written. Bits [3:0] of the first word are the bank address. Bits
[15:14] are encoded to specify operand size. Bits [13:4] are reserved
for future use. The second word is the operand address. When byte
data is written, the upper byte of the third extension word is not used
— these bits are reserved for future use.

Result: Command complete status ($FFFF) is returned after memory is writ-
ten.

Command Format:

Command Sequence Diagram:

Table 10-7 Operand Size Encoding

Bits
[15:14]

Operand
Size

00 Byte
01 Word
1X Long Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1

NOT USED
ILLEGAL

EXT WD 2
*

LONG
WORD

WDMEM EXT WD 1
NOT READY

LSW DATA
NOT READY

WRITE
LSW

LOCATION

WRITE
MSW

LOCATION

WRITE
MEMORY

LOCATION

NOT USED
NOT READY

NEXT CMD
COMPLETE

NOT USED
NOT READY

NOT USED
NOT READY

NEXT CMD
COMPLETE

BYTE
WORD

MSW DATA
NOT READY

DATA
NOT READYNOT READY

NOT READY
NEXT CMD

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-32 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RPMEM Read Program Space Memory RPMEM
Description: A 16-bit memory word is read from an address in program space

and transmitted via the serial link.

Operand: Two extension words specify the 20-bit memory address. Bits [3:0]
of the first word are the bank address (bits [15:4] are undefined).
The second word is the word address. A word address must be even
— misaligned program space reads are not allowed — address LSB
is cleared before the read.

Result: 16-bit data word, transmitted MSB first.

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0

NOT USED
ILLEGAL

LS ADDR
*

NOT USEDREAD
MEMORY

LOCATION NOT READY

NEXT CMD
RESULT

RPMEM MS ADDR
NOT READY NOT READY

NOT READY
NEXT CMD

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-33

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WPMEM Write Program Space Memory WPMEM
Description: A 16-bit memory word is received via the serial link and written to an

address in program space.

Operand: Two extension words specify the 20-bit memory address, and a third
word contains the data to be written. Bits [3:0] of the first word are
the bank address (bits [15:4] are undefined). The second word is the
word address. A word address must be even — misaligned program
space writes are not allowed — address LSB is cleared before the
read.

Result: Command complete status ($FFFF) is returned after memory is writ-
ten.

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1

*

MEMORY
LOCATION

*RESULTS OF PREVIOUS COMMAND

LS ADDR
NOT READY

NOT READY

NOT READYNOT READY
DATA NOT USED

NEXT CMD
COMPLETE

WRITE

NEXT CMD
ILLEGAL

NOT USED

MS ADDRWPMEM
NOT READY
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-34 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

GO Execute Instructions From Current PK: PC GO
Description: Background debugging mode is exited, the pipeline is flushed and

refilled, then the CPU16 resumes normal execution of instructions at
PK: PC − $0006. PK and PC retain the values they had when BDM
began unless altered by a WPCSP command.

Operand: None

Result: None

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0

NOT USED
ILLEGAL

*
GO

NOT READY
NEXT CMD

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

NORMAL
MODE
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-35

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP Null Operation NOP
Description: A command is transmitted, but no operation is performed.

Operand: None

Result: Command complete status ($FFFF) is returned.

Command Format:

Command Sequence Diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1

NOT USED
ILLEGAL

*
GO

NOT READY
NEXT CMD

*RESULTS OF PREVIOUS COMMAND
OR COMMAND COMPLETE STATUS

COMPLETE
NEXT CMD
 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-36 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

10.4.11 Future Commands

Unassigned command opcodes are reserved by Motorola for future expansion. All un-
used formats within any revision level will perform a NOP and return the ILLEGAL
command response.

10.4.12 Recommended BDM Connection

In order to provide for use of development tools when an MCU is installed in a system,
Motorola recommends that appropriate signal lines be routed to a male Berg connec-
tor or double-row header installed on the circuit board with the MCU, as shown in the
following figure.

Figure 10-16 BDM Connector Pinout

16 BERG

DS

GND

GND

RESET

VDD

BERR

BKPT/DSCLK

FREEZE

IPIPE1/DSI

IPIPE0/DSO

1

3

5

7

9

2

4

6

8

10
CPU16 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 10-37

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA DEVELOPMENT SUPPORT CPU16

10-38 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SECTION 11 DIGITAL SIGNAL PROCESSING
This section contains detailed information about CPU16 digital signal processing
(DSP) capabilities. A comprehensive presentation of signal processing theory is be-
yond the scope of this manual — discussion is limited to CPU16 hardware and instruc-
tions that support control-oriented DSP.

11.1 General

The CPU16 performs low frequency digital signal processing algorithms in real time.
The most common DSP operation in embedded control applications is filtering, but the
CPU16 can perform several other useful DSP functions. These include autocorrelation
(detecting a periodic signal in the presence of noise), cross-correlation (determining
the presence of a defined periodic signal), and closed-loop control routines (selective
filtration in a feedback path).

Although derivation of DSP algorithms is often a complex mathematic task, the algo-
rithms themselves typically consist of a series of multiply and accumulate (MAC) op-
erations. The CPU16 contains a dedicated set of registers that are used to perform
MAC operations. These are collectively called the MAC unit.

DSP operations generally require a large number of MAC iterations. The CPU16 in-
struction set includes instructions that perform MAC setup and repetitive MAC opera-
tions. Other instructions, such as 32-bit load and store instructions, can also be used
in DSP routines.

Many DSP algorithms require extensive data address manipulation. To increase
throughput, the CPU16 performs effective address calculations and data prefetches
during MAC operations. In addition, the MAC unit provides modulo addressing to effi-
ciently implement circular DSP buffers.

11.2 Digital Signal Processing Hardware

The MAC unit consists of a 16-bit multiplicand register (IR), a 16-bit multiplier register
(HR), a 36-bit accumulator (AM), and two 8-bit address mask registers (XMSK and
YMSK). Figure 11-1 is a programmer's model of the MAC unit.
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 11-1 MAC Unit Register Model

11.3 Modulo Addressing

The MAC unit uses a simplified form of modulo addressing to implement finite impulse
response filters and circular buffers during execution of MAC and RMAC instructions.
It is accomplished by means of address masks.

During execution of MAC and RMAC, an offset is added to the content of IX and IY to
compute the effective address of data accesses. XMSK and YMSK are used to deter-
mine which bits change when an offset is added.

Each address mask consists of eight bits. Each bit in the mask corresponds to a bit in
the low byte of an index register. When a mask bit is set, the corresponding index reg-
ister bit is changed by addition of the offset. This permits modulo addressing on any
power of two boundary from 21 to 28. The possible buffer sizes are 2, 4, 8, 16, 32, 64,
128, and 256 bytes.

To enable a buffer, set the mask bits corresponding to a particular power of two. All
set bits must be right-justified within the mask. For example, a mask value of
$00011111 (25) enables a 32-byte buffer, while a mask value of $00001111 (24) en-
ables a 16-byte buffer. If all set bits in the mask are not right-justified, results of the
masking operation are undefined. Clear the masks to disable modulo addressing.

Modulo addressing cannot cross bank boundaries. Buffers must be within the bank
specified by the current index register extension field (XK or YK).

11.4 MAC Data Types

Multiplicand and multiplier operands are 16-bit fractions. Bit 15 is the sign bit. An im-
plied radix point lies between bits 15 and 14. There are 15 bits of magnitude. The
range of values is –1 ($8000) to 1 – 2 -15 ($7FFF).

The product of a MAC multiplication is a 32-bit signed fraction. Bit 31 is the sign bit. An
implied radix point lies between bits 31 and 30. There are 31 bits of magnitude, but bit
0 is always cleared. The range of values is –1 ($80000000) to 1 – 2 -30 ($7FFFFFFE).

20 16 15 8 7 0 Bit Position

HR MAC Multiplier Register

IR MAC Multiplicand Register

AM MAC Accumulator MSB [35:16]
AM MAC Accumulator LSB [15:0]

XMSK YMSK MAC XY Mask Register
 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MAC accumulator uses 36-bit signed mixed numbers. The accumulator contains
36 bits. Bit 35 is the sign bit. Bits [34:31] are extension bits. Bits [30:0] are a 31-bit
fixed-point fraction. There is an implied radix point between bits 31 and 30. There are
31 bits of magnitude, but use of the sign and extension bits allows representation of
numbers in the range –16 ($800000000) to 15.999999999 ($7FFFFFFFF).

Figure 11-2 shows fractional data types and weighting of bits. Notice that signed frac-
tions and signed mixed numbers can be interpreted as different arithmetic values
when the same bits in the numbers are set.

Figure 11-2 MAC Data Types

11.5 MAC Accumulator Overflow

It is possible to accumulate to the point of overflow during successive and iterative
multiply and accumulate operations. Overflow becomes important when the 36-bit
number in AM is transferred to accumulator E by a TMER or TMET instruction. The
16-bit fraction in E does not have as great a range of values as the 36-bit number in
AM. Two types of overflow detection are used.

15 0

2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–
10

2–
11

2–
12

2–
13

2–
14

2–
15

± ⇐ (Radix Point) 16-BIT SIGNED FRACTION

31 16

2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–
10

2–
11

2–
12

2–
13

2–
14

2–
15

± ⇐ (Radix Point) MSW 32-BIT SIGNED FRACTION 1

15 0

2–
16

2–
17

2–
18

2–
19

2–
20

2–
21

2–
22

2–
23

2–
24

2–
25

2–
26

2–
27

2–
28

2–
29

2–
30

2–
31

 LSW 32-BIT SIGNED FRACTION 1 0

35 32 31 16

23 22 21 20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–
10

2–
11

2–
12

2–
13

2–
14

2–
15

± « « « « ⇐ (Radix Point) MSW 32-BIT SIGNED FRACTION

15 0

2–
16

2–
17

2–
18

2–
19

2–
20

2–
21

2–
22

2–
23

2–
24

2–
25

2–
26

2–
27

2–
28

2–
29

2–
30

2–
31

LSW 32-BIT SIGNED FRACTION
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.5.1 Extension Bit Overflow

Extension bit overflow occurs when successive accumulation causes overflow into
AM[34:31]. Although an overflow has occurred, sign and magnitude are still represent-
ed in 36 bits. Accumulator content cannot be directly converted into a 16-bit fraction,
but it is possible to recover from extension bit overflow during subsequent multiply and
accumulate operations.

A check for overflow into AM[34:31] is performed at the end of MAC, TMER, ACED,
ASLM, and ACE instructions, and after each iteration of the RMAC instruction. When
overflow has occurred, the EV bit in the CPU16 condition code register is set. Table
11-1 shows the range of AM values and the effects of extension bit overflow. Bit values
are binary.

EV is set when extension bit overflow occurs, but will be cleared when a subsequent
accumulation produces a value within the acceptable range.

Note

The RMAC instruction can be interrupted and restarted. Interrupt ser-
vice routines which include branches based on EV status must be
carefully designed.

11.5.2 Sign Bit Overflow

Sign bit overflow occurs when successive accumulation causes AM35 to be overwrit-
ten. The sign of the number in AM is lost. It is no longer accurately represented in 36
bits and accurate conversion to a 16-bit value is impossible.

A check for overflow into AM35 is performed at the end of MAC, TMER, ACED, ASLM,
and ACE instructions, and after each iteration of the RMAC instruction. When overflow
has occurred, the MV bit in the CPU16 condition code register is set. Since sign bit
overflow can only occur after bits [34:31] have been overwritten, the EV bit must also
be set.

The value of AM35 is latched when MV is set. The latched bit, called the sign latch
(SL), shows the sign of AM immediately after overflow, and is therefore the comple-
ment of the value in AM35 at the time of overflow. SL is stacked by the PSHM instruc-
tion.

Even when a subsequent accumulation produces a value within the acceptable range,
and EV is cleared, MV remains set until cleared by an ANDP, CLRM, TAP, TDP, TEM,
or TEDM instruction. The SL value remains latched until the first sign bit overflow after
MV has been cleared.

Table 11-1 AM Values and Effect on EV

AM Magnitude AM35 AM[34:31] EV
1 ≤ AM ≤ 15.999999999 0 0001 — 1111 1

0 ≤ AM < 1 0 0000 0
–1 ≤ AM < 0 1 1111 0

–16 ≤ AM < –1 1 0000 — 1110 1
 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.6 Data Saturation

The CPU16 can simulate the effect of saturation in analog systems. Saturation mode
is enabled by setting the SM bit in the condition code register. If saturation mode is
enabled, a saturation value will be written to accumulator E when either of the TMER
or TMET instructions is executed while EV or MV is set. Saturation mode operation
does not affect the content of AM.

$7FFF is the positive saturation value; $8000 is the negative saturation value. When
extension overflow occurs, AM35 determines saturation value. When sign bit overflow
occurs, SL determines saturation value. Table 11-2 summarizes bit values and satu-
ration values.

11.7 DSP Instructions

Following are detailed descriptions of each DSP instruction. Instructions are grouped
by function.

11.7.1 Initialization Instructions

The following instructions are used to set up multiply and accumulate operations.

11.7.1.1 LDHI — Load Registers H and I

LDHI must be used to initialize the multiplier and multiplicand registers before execu-
tion of MAC and RMAC instructions. HR is loaded with a memory word located at ad-
dress (XK : IX). IR is loaded with a memory word located at address (YK : IY). LDHI
operation does not affect the CCR.

11.7.1.2 TDMSK — Transfer D to XMSK:YMSK

TDMSK must be used to initialize the X and Y address masks prior to execution of
MAC and RMAC instructions. The contents of the masks are replaced by the content
of accumulator D. D[15:8] are transferred to XMSK, and D[7:0] are transferred to YM-
SK. The masks are used in modulo addressing. TDMSK operation does not affect the
CCR.

11.7.1.3 TEDM — Transfer E and D to AM

TEDM places 32 bits of data in accumulator M. The content of accumulator E is trans-
ferred to AM[31:16], and the content of accumulator D is transferred to AM[15:0].
AM[35:32] reflect the state of AM31 after transfer is complete. TEDM also clears the
CCR EV and MV bits.

Table 11-2 Saturation Values

AM35 EV MV SL Saturation Value
0 1 0 — $7FFF
1 1 0 — $8000

 — 1 1 1 $7FFF
 — 1 1 0 $8000
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.7.1.4 TEM — Transfer E to AM

TEM initializes the upper 16 bits of accumulator M and clears the lower 16 bits. The
content of accumulator E is transferred to AM[31:16]. AM[15:0] are cleared. AM[35:32]
reflect the state of bit 31 after transfer is complete. TEM also clears the CCR EV and
MV bits.

11.7.2 Transfer Instructions

The following instructions are used to transfer MAC data to general-purpose accumu-
lators.

11.7.2.1 TMER — Transfer AM to E Rounded

The TMER instruction rounds a signed 32-bit fraction in accumulator M to 16 bits, then
places the signed 16-bit fraction in accumulator E. The value represented by bits [15:0]
of the fraction are rounded into the value represented by bits [31:16].

Bits [15:0] can have any value in the range $0000 to $FFFF. A value greater than
$8000 must be rounded up, and a value less than $8000 must be rounded down. How-
ever, rounding values equal to $8000 in a single direction will introduce a bias. The
CPU16 uses convergent rounding to avoid bias.

In convergent rounding, bit 16 determines whether a value of $8000 in bits [15:0] will
be rounded up or down. When bit 16 = 1, a value of $8000 is rounded up; when bit 16
= 0, a value of $8000 is rounded down.

The EV, MV, N and Z bits in the CCR are set according to the results of the rounding
operation. When saturation mode has been enabled, and either EV or MV is set, the
appropriate saturation value will be placed in accumulator E.

If TMER is executed when saturation mode has not been enabled, and either EV or
MV is set, the value in accumulator E will be meaningless.

11.7.2.2 TMET — Transfer AM to E Truncated

The TMET instruction truncates a signed 32-bit fraction in accumulator M to 16 bits,
then places the signed 16-bit fraction in accumulator E. AM[31:16] are transferred to
accumulator E.

The N and Z bits in the CCR are set according to the results of the transfer operation.
When AM31 is set, N is set. When saturation mode has been enabled, and either EV
or MV is set, the appropriate saturation value will be placed in accumulator E.

If TMER is executed when saturation mode has not been enabled, and either EV or
MV is set, the value in accumulator E will be meaningless.

11.7.2.3 TMXED — Transfer AM to IX : E : D

TMXED provides a way to normalize AM when saturation mode is disabled and recov-
ery from an extension bit overflow is necessary. AM[35:32] are transferred to IX[3:0].
IX[15:4] are sign-extended according to the content of AM35. AM[31:16] are trans-
ferred to accumulator E. AM[15:0] are transferred to accumulator D.
 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

After TMXED is executed, transfer the content of IX to a RAM location, load data into
E : D, then shift and round appropriately.

11.7.2.4 LDED/STED — Long Word Load and Store Instructions

While LDED and STED are not specifically intended for DSP, they operate on the con-
catenated E and D accumulators, and are useful for handling DSP values. See listings
in SECTION 6 INSTRUCTION GLOSSARY.

11.7.3 Multiplication and Accumulation Instructions

These instructions are the heart of CPU16 digital signal processing capability. The
MAC and RMAC instructions provide flexible control-oriented processing with modulo
addressing, while the FMULS, ACE, and ACED instructions provide the ability to pres-
cale and add constants.

11.7.3.1 MAC — Multiply and Accumulate

MAC multiplies a 16-bit signed fractional multiplicand contained in IR by a 16-bit
signed fractional multiplier contained in HR. The product is left-shifted once to align
the radix point between bits 31 and 30, then placed in E : D[31:1]. D0 is cleared. The
aligned product is then added to the content of AM.

As the multiply and accumulate operation takes place, 4-bit X and Y offsets (xo, yo)
specified by an instruction operand are sign-extended to 16 bits and used with XMSK
and YMSK values to qualify the corresponding index registers. The following expres-
sions are used to qualify the index registers:

IX = ((IX) • X MASK) ✛ ((IX) + xo) • X MASK)
IY = ((IY) • Y MASK) ✛ ((IY) + yo) • Y MASK)

Writing a non-zero value into a mask register prior to MAC execution enables modulo
addressing. The TDMSK instruction writes mask values. When a mask contains $0,
the sign-extended offset is added to the content of the corresponding index register.

After accumulation, HR content is transferred to IZ, then a word at the address pointed
to by IX is loaded into HR, and a word at the address pointed to by IY is loaded into
IR. The fractional product remains in E : D.

When both registers contain $8000 (–1), a value of $80000000 (1.0 in 36-bit format)
is accumulated, (E : D) is $80000000 (–1.0 in 32-bit format), and the CCR V bit is set.

11.7.3.2 RMAC — Repeating Multiply and Accumulate

RMAC performs repeated multiplication of 16-bit signed fractional multiplicands con-
tained in IR by 16-bit signed fractional multipliers contained in HR. Accumulator D is
used for temporary storage during multiplication. Each product is added to the content
of the accumulator M. A 16-bit integer contained by accumulator E determines the
number of repetitions.

There are implied radix points between bits 15 and 14 of HR and IR. Each product is
left-shifted one place to align the radix point between bits 31 and 30 before addition to
AM.
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As multiply and accumulate operations take place, 4-bit offsets (xo, yo) specified by
an instruction operand are sign-extended to 16 bits and used with XMSK and YMSK
to qualify the corresponding index registers. The following expressions are used to
qualify the index registers:

IX = ((IX) • X MASK) ✛ ((IX) + xo) • X MASK)
IY = ((IY) • Y MASK) ✛ ((IY) + yo) • Y MASK)

Writing a non-zero value into a mask register prior to RMAC execution enables modulo
addressing. The TDMSK instruction writes mask values. When a mask contains $0,
the sign-extended offset is added to the content of the corresponding index register.

After accumulation, a word pointed to by XK: IX is loaded into HR, and a word pointed
to by YK: IY is loaded into IR, then the value in E is decremented and tested. If these
values are to be used in successive RMAC operations, the registers must be re-initial-
ized with the LDHI instruction. RMAC always iterates at least once, even when exe-
cuted with a zero or negative value in E. Since the value in E is decremented, then
tested, loading E with $8000 results in 32,770 iterations.

If HR and IR both contain $8000 (–1), a value of $80000000 (1.0 in 36-bit format) is
accumulated, but no condition code is set.

RMAC execution is suspended during bus error, breakpoint, and interrupt exceptions.
Operation resumes when RTI is executed at the end of the exception handler. In order
for execution to resume correctly, all registers used by RMAC must be stacked or left
unchanged by the exception handler. The PSHMAC and PULMAC instructions stack
MAC unit resources. See SECTION 9 EXCEPTION PROCESSING for more informa-
tion.

11.7.3.3 FMULS — Signed Fractional Multiply

FMULS left-shifts the product of a 16-bit signed fractional multiplication once before
placing it in concatenated accumulators E and D.

A 16-bit signed fractional multiplicand contained by accumulator E is multiplied by a
16-bit signed fractional multiplier contained by accumulator D. There are implied radix
points between bits 15 and 14 of the accumulators. The product is left-shifted one
place to align the radix point between bits 31 and 30, then placed in E : D[31:1]. D0 is
cleared.

When both accumulators contain $8000 (–1), the product is $80000000 (–1.0) and the
CCR V bit is set.

11.7.3.4 ACED — Add E: D to AM

ACED is used with either of the FMULS or MAC instructions. It allows direct addition
of 32-bit signed fractions to accumulator M. The concatenated contents of accumula-
tors E and D are added to the content of accumulator M.

The value in the concatenated accumulators is assumed to be a 32-bit signed fraction
with an implied radix point aligned between bits 31 and 30.

EV and MV in the CCR are set according to the result of ACED operation.
 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.7.3.5 ACE — Add E to AM

ACE is used with either of the FMULS or MAC instructions. It allows direct addition of
16-bit signed fractions to accumulator M. The content of accumulator E is added to
AM[31:16]. Bits 15 to 0 of accumulator M are not affected.

The value in E is assumed to be a 16-bit signed fraction with an implied radix point
between bits 15 and 14.

EV and MV in the CCR are set according to the result of ACE operation.

11.7.4 Bit Manipulation Instructions

There are three instructions that operate directly on the bits in accumulator M. ASLM
and ASRM perform 36-bit arithmetic shifts and CLRM clears the accumulator.

11.7.4.1 ASLM — Arithmetic Shift Left AM

Shifts all 36 bits of accumulator M one place to the left. Bit 35 is transferred to the CCR
C bit. Bit 0 is loaded with a zero.

EV, MV, and N in the CCR are set according to the result of ASLM operation.

11.7.4.2 ASRM — Arithmetic Shift Right AM

Shifts all 36 bits of accumulator M one place to the right. Bit 0 is transferred to the CCR
C bit. Bit 35 is held constant.

EV, MV, and N in the CCR are set according to the result of ASRM operation.

11.7.4.3 CLRM — Clear AM

CLRM provides a simple way to initialize accumulator M when a starting value of
$000000000 is needed. AM[35:0] are cleared to zero. EV and MV in the CCR are also
cleared.
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

11.7.5 Stacking Instructions

The PSHMAC and PULMAC instructions stack and restore all MAC resources.

11.7.5.1 PSHMAC — Push MAC Registers

PSHMAC stacks MAC registers in the sequence shown, beginning at the address
pointed to by the stack pointer.

The entire MAC unit internal state is saved on the system stack. Registers are stacked
from high to low address. The stack pointer is automatically decremented after each
save operation (the stack grows downward in memory). If SP overflow occurs as a re-
sult of operation, the SK field is decremented.

11.7.5.2 PULMAC — Pull MAC Registers

PULMAC restores MAC registers in the sequence shown, beginning at the address
pointed to by the stack pointer.

The entire MAC unit internal state is restored from the system stack. Registers are re-
stored in order from low to high address. The SP is incremented after each restoration
(stack shrinks upward in memory). If SP overflow occurs as a result of operation, the
SK field is incremented.

11.7.6 Branch Instructions

LBEV and LBMV are conditional long branch instructions associated with the EV and
MV bits in the CCR.

11.7.6.1 LBEV — Long Branch if EV Set

LBEV causes a long program branch if the EV bit in the condition code register has a
value of one. A 16-bit signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is incremented or dec-
remented.

15 8 7 0
(SP) H REGISTER

(SP) – $0002 I REGISTER
(SP) – $0004 ACCUMULATOR M[15:0]
(SP) – $0006 ACCUMULATOR M[31:16]
(SP) – $0008 SL RESERVED AM[35:32]
(SP) – $000A IX ADDRESS MASK IY ADDRESS MASK

15 8 7 0
(SP) + $000A IX ADDRESS MASK IY ADDRESS MASK
(SP) + $0008 SL RESERVED AM[35:32]
(SP) + $0006 ACCUMULATOR M[31:16]
(SP) + $0004 ACCUMULATOR M[15:0]
(SP) + $0002 I REGISTER

(SP) H REGISTER
 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Because the EV flag can be set and cleared more than once during the execution of
RMAC instructions, exception handler routines that contain an LBEV instruction must
be carefully designed.

11.7.6.2 LBMV — Long Branch if MV Set

LBMV causes a long program branch if the MV bit in the condition code register has a
value of one. A 16-bit signed relative offset is added to the current value of the program
counter. When the operation causes PC overflow, the PK field is incremented or dec-
remented.

The MV bit is latched when sign bit overflow occurs, and must be cleared by an ANDP,
CLRM, TAP, TDP, TEM, or TEDM instruction.
CPU16 DIGITAL SIGNAL PROCESSING MOTOROLA

REFERENCE MANUAL 11-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA DIGITAL SIGNAL PROCESSING CPU16

11-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

APPENDIX A COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY
LANGUAGE

A.1 Introduction

This appendix compares the assembly language of the M68HC11 microcontroller and
the M68HC16 microcontroller. It provides information concerning functionally equiva-
lent instructions and discusses cases that need special attention. It is intended to sup-
plement the CPU16 Reference Manual — refer to appropriate sections of the manual
for detailed information on system resources, addressing modes, instruction set, and
processing flow.

The appendix is divided into eight sections. The first section shows M68HC11 CPU
and CPU16 register models. The second discusses CPU16 instruction formats and
pipelining. The third lists M68HC11 CPU instructions that have an equivalent CPU16
instruction. The fourth lists M68HC11 CPU instructions that operate differently on the
CPU16. The fifth lists M68HC11 CPU assembler directives that operate differently on
the CPU16, but for which the difference is transparent to the programmer. The sixth
lists directives that have a new syntax. The seventh section discusses changes to
addressing modes. The last section is an assembly language comparison in tabular
format.

The CPU16 is designed for maximum compatibility with the M68HC11 CPU, and only
moderate effort is required to port an application from an M68HC11 microcontroller to
an M68HC16 microcontroller. Certain M68HC11instructions have been modified to
support the improved addressing and exception handling capabilities of the CPU16.
Other M68HC11 CPU instructions, particularly those related to manipulation of the
condition code register, have been replaced.
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.2 Register Models

Figure A-1 M68HC11 CPU Registers

Figure A-2 M68HC11 CPU Condition Code Register

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

IX INDEX REGISTER X

IY INDEX REGISTER Y

SP STACK POINTER

PC PROGRAM COUNTER

CCR CONDITION CODE REGISTER

7 6 5 4 3 2 1 0
N X H I N Z V C
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure A-3 CPU16 Registers

Figure A-4 CPU16 Condition Code Register

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

E ACCUMULATOR E

XK IX INDEX REGISTER X

YK IY INDEX REGISTER Y

ZK IZ INDEX REGISTER Z

SK SP STACK POINTER

PK PC PROGRAM COUNTER

CCR PK CONDITION CODE REGISTER/
PC EXTENSION REGISTER

EK XK YK ZK ADDRESS EXTENSION REGISTER

SK STACK EXTENSION REGISTER

HR MAC MULTIPLIER REGISTER

IR MAC MULTIPLICAND REGISTER

AM MAC ACCUMULATOR MSB [35:16]
AM MAC ACCUMULATOR LSB [15:0]

XMSK YMSK MAC XY MASK REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3 CPU16 Instruction Formats and Pipelining Mechanism

A.3.1 Instruction Format

CPU16 instructions consist of an 8-bit opcode, which may be preceded by an 8-bit pre-
byte and/or followed by one or more operands.

Opcodes are mapped in four 256-instruction pages. Page 0 opcodes stand alone, but
page 1, 2, and 3 opcodes are pointed to by a prebyte code on page 0. The prebytes
are $17 (page 1), $27 (page 2), and $37 (page 3).

Operands can be four bits, eight bits or sixteen bits in length. However, because the
CPU16 fetches instructions from even byte boundaries, each instruction must contain
an even number of bytes.

Operands are organized as bytes, words, or a combination of bytes and words. Four-
bit operands are either zero-extended to eight bits, or packed two to a byte. The largest
instructions are 6 bytes in length. Size, order, and function of operands are evaluated
when an instruction is decoded.

A page 0 opcode and an 8-bit operand can be fetched simultaneously. Instructions that
use 8-bit indexed, immediate, and relative addressing modes have this form — code
written with these instructions is very compact.

A.3.2 Execution Model

This description is a simplified model of the mechanism the CPU16 uses to fetch and
execute instructions. Functional divisions in the model do not necessarily correspond
to distinct architectural subunits of the microprocessor.

There are three functional blocks involved in fetching, decoding, and executing
instructions. These are the microsequencer, the instruction pipeline, and the execution
unit. These elements function concurrently — at any given time, all three may be
active.

A.3.2.1 Microsequencer

The microsequencer controls the order in which instructions are fetched, advanced
through the pipeline, and executed. It increments the program counter and generates
multiplexed external tracking signals IPIPE0 and IPIPE1 from internal signals that con-
trol execution sequence.

A.3.2.2 Instruction Pipeline

The pipeline is a three stage FIFO that holds instructions while they are decoded and
executed. As many as three instructions can be in the pipeline at one time (single-word
instructions, one held in stage C, one being executed in stage B, and one latched in
stage A).
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3.2.3 Execution Unit

The execution unit evaluates opcodes, interfaces with the microsequencer to advance
instructions through the pipeline, and performs instruction operations.

A.3.3 Execution Process

Fetched opcodes are latched into stage A, then advanced to stage B. Opcodes are
evaluated in stage B. The execution unit can access operands in either stage A or
stage B (stage B accesses are limited to 8-bit operands). When execution is complete,
opcodes are moved from stage B to stage C, where they remain until the next instruc-
tion is complete.

A prefetch mechanism in the microsequencer reads instruction words from memory
and increments the program counter. When instruction execution begins, the program
counter points to an address six bytes after the address of the first word of the instruc-
tion being executed.

The number of machine cycles necessary to complete an execution sequence varies
according to the complexity of the instruction.

A.3.4 Changes in Program Flow

When program flow changes, instructions are fetched from a new address. Before
execution can begin at the new address, instructions and operands from the previous
instruction stream must be removed from the pipeline. If a change in flow is temporary,
a return address must be stored, so that execution of the original instruction stream
can resume after the change in flow.

At the time an instruction that causes a change in program flow executes, PK : PC
point to the address of the first word of the instruction + $0006. During execution of the
instruction, PK : PC is loaded with the address of the first word of the new instruction
stream. However, stages A and B still contain words from the old instruction stream.
The CPU16 prefetches to advance the new instruction to stage C, and fills the pipeline
from the new instruction stream.

A.3.4.1 Jumps

The CPU16 jump instruction uses 20-bit extended and indexed addressing modes. It
consists of an 8-bit opcode with a 20-bit argument. No return PK : PC is stacked for a
jump.

A.3.4.2 Branches

The CPU16 supports 8-bit relative displacement (short), and 16-bit relative displace-
ment (long) branch instructions, as well as specialized bit condition branches that use
indexed addressing modes. CPU16 short branches are generally equivalent to
M68HC11 CPU branches, although opcodes are not identical. M68HC11 BHI and
BLO are replaced by CPU16 BCC and BCS.
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Short branch instructions consist of an 8-bit opcode and an 8-bit operand contained in
one word. Long branch instructions consist of an 8-bit prebyte and an 8-bit opcode in
one word, followed by an operand word. Bit condition branches consist of an 8-bit
opcode and an 8-bit operand in one word, followed by one or two operand words.

When a branch instruction executes, PK : PC point to an address equal to the address
of the first word of the instruction plus $0006. The range of displacement for each type
of branch is relative to this value. In addition, because prefetches are automatically
aligned to word boundaries, only even offsets are valid — an odd offset value is
rounded down.

A.3.4.3 Subroutines

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a jump
(JSR). The RTS instruction returns control to the calling routine. BSR consists of an 8-
bit opcode with an 8-bit operand. LBSR consists of an 8-bit prebyte and an 8-bit
opcode in one word, followed by an operand word. JSR consists of an 8-bit opcode
with a 20-bit argument. RTS consists of an 8-bit prebyte and an 8-bit opcode in one
word.

When a subroutine instruction is executed, PK: PC contain the address of the calling
instruction plus $0006. All three calling instructions stack return PK : PC values prior
to processing instructions from the new instruction stream. In order for RTS to work
with all three calling instructions, however, the value stacked by BSR must be
adjusted.

LBSR and JSR are two-word instructions. In order for program execution to resume
with the instruction immediately following them, RTS must subtract $0002 from the
stacked PK : PC value. BSR is a one-word instruction — it subtracts $0002 from PK :
PC prior to stacking so that execution will resume correctly.

A.3.4.4 Interrupts

Interrupts are a type of exception, and are thus subject to special rules regarding exe-
cution process. This comparison is limited to the effects of SWI (software interrupt) and
RTI (return from interrupt) instructions.

Both SWI and RTI consist of an 8-bit prebyte and an 8-bit opcode in one word. SWI
initiates synchronous exception processing. RTI causes execution to resume with the
instruction following the last instruction that completed execution prior to interrupt.

Asynchronous interrupts are serviced at instruction boundaries. PK : PC + $0006 for
the following instruction is stacked, and exception processing begins. In order to
resume execution with the correct instruction, RTI subtracts $0006 from the stacked
value.

Interrupt exception processing is included in the SWI instruction definition. The PK :
PC value at the time of execution is the first word address of SWI plus $0006. If this
value were stacked, RTI would cause SWI to execute again. In order to resume exe-
cution with the instruction following SWI, $0002 is added to the PK : PC value prior to
stacking.
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3.4.5 Interrupt Priority

There are eight levels of interrupt priority. All interrupts with priorities less than seven
can be masked by writing to the CCR interrupt priority (IP) field.

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111 provide
eight priority masks. Masks prevent an interrupt request of a priority less than or equal
to the mask value (except for NMI) from being recognized and processed. When IP
contains %000, no interrupt is masked.

A.3.5 Stack Frame

When a change of flow occurs, the contents of the program counter and condition code
register are stacked at the location pointed to by SK : SP. Figure A-5 shows the stack
frame. Unless it is altered during exception processing, the stacked PK : PC value is
the address of the next instruction in the current instruction stream, plus $0006. RTS
restores only stacked PK : PC – 2, while RTI restores PK : PC – 6 and the CCR.

Figure A-5 CPU16 Stack Frame Format

A.4 Functionally Equivalent Instructions

A.4.1 BHS

The CPU16 uses only the BCC mnemonic. BHS is used in the M68HC11 CPU instruc-
tion set to differentiate a branch based on a comparison of unsigned numbers from a
branch based on operations that clear the carry bit.

A.4.2 BLO

The CPU16 uses only the BCS mnemonic. BLO is used in the M68HC11 CPU instruc-
tion set to differentiate a branch based on a comparison of unsigned numbers from a
branch based on operations that set the carry bit.

A.4.3 CLC

The CLC instruction has been replaced by ANDP. ANDP performs AND between the
content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[0:3]) is
not affected.

The following code can be used to clear the C bit in the CCR:

ANDP #$FEFF

The ANDP instruction can clear the entire CCR, except for the PK extension field, at
once.

Low Address ⇐ SP After Stacking
Condition Code Register

High Address Program Counter ⇐ SP Before Stacking
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.4 CLI

The CLI instruction has been replaced by ANDP. ANDP performs AND between the
content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[0:3]) is
not affected.

The following code can be used to clear the IP field in the CCR:

ANDP #$FF1F

The ANDP instruction can clear the entire CCR, except for the PK extension field, at
once.

A.4.5 CLV

The CLV instruction has been replaced by ANDP. ANDP performs AND between the
content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[0:3]) is
not affected.

The following code can be used to clear the V bit in the CCR:

ANDP #$FDFF

The ANDP instruction can clear the entire CCR, except for the PK extension field, at
once.

A.4.6 DES

The DES instruction has been replaced by AIS. AIS adds a 20-bit value to concate-
nated SK and SP. The 20-bit value is formed by sign-extending an 8-bit or 16-bit
signed immediate operand.

The following code can be used to perform a DES:

AIS –1

CPU16 stacking operations normally use 16-bit words and even word addresses,
while M68HC11 CPU stacking operations normally use bytes and byte addresses. If
the CPU16 stack pointer is misaligned as a result of a byte operation, performance can
be degraded.

A.4.7 DEX

The DEX instruction has been replaced by AIX. AIX adds a 20-bit value to concate-
nated XK and IX. The 20-bit value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

The following code can be used to perform a DEX:

AIX –1
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.8 DEY

The DEY instruction has been replaced by AIY. AIY adds a 20-bit value to concate-
nated YK and IY. The 20-bit value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

The following code can be used to perform a DEY:

AIY –1

A.4.9 INS

The INS instruction has been replaced by AIS. AIS adds a 20-bit value to concate-
nated SK and SP. The 20-bit value is formed by sign-extending an 8-bit or 16-bit
signed immediate operand.

The following code can be used to perform an INS:

AIS –1

CPU16 stacking operations normally use 16-bit words and even word addresses,
while M68HC11 CPU stacking operations normally use bytes and byte addresses. If
the CPU16 stack pointer is misaligned as a result of a byte operation, performance can
be degraded.

A.4.10 INX

The INX instruction has been replaced by AIX. AIX adds a 20-bit value to concate-
nated XK and IX. The 20-bit value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

The following code can be used to perform an INX:

A.4.11 INY

The INY instruction has been replaced by AIY. AIY adds a 20-bit value to concate-
nated YK and IY. The 20-bit value is formed by sign-extending an 8-bit or 16-bit signed
immediate operand.

The following code can be used to perform an INY:

AIY 1

A.4.12 PSHX

The PSHX instruction has been replaced by PSHM. PSHM stores the contents of
selected registers on the system stack. Registers are designated by setting bits in a
mask byte.

The following code can be used to stack index register X:

PSHM X

The CPU16 can stack up to seven registers with a single PSHM instruction.
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.13 PSHY

The PSHY instruction has been replaced by PSHM. PSHM stores the contents of
selected registers on the system stack. Registers are designated by setting bits in a
mask byte.

The following code can be used to stack index register Y:

PSHM Y

The CPU16 can stack up to seven registers with a single PSHM instruction.

A.4.14 PULX

The PULX instruction has been replaced by PULM. PULM restores the contents of
selected registers from the system stack. Registers are designated by setting bits in a
mask byte.

The following code can be used to restore index register X:

PULM X

The CPU16 can restore up to seven registers with a single PULM instruction. As a part
of normal execution, PULM reads an extra location in memory. The extra data is dis-
carded. A PULM from the highest available location in memory will cause an attempt
to read an unimplemented location, with unpredictable results.

A.4.15 PULY

The PULY instruction has been replaced by PULM. PULM restores the contents of
selected registers from the system stack. Registers are designated by setting bits in a
mask byte.

The following code can be used to restore index register Y:

PULM Y

The CPU16 can restore up to seven registers with a single PULM instruction. As a part
of normal execution, PULM reads an extra location in memory. The extra data is dis-
carded. A PULM from the highest available location in memory will cause an attempt
to read an unimplemented location, with unpredictable results.

A.4.16 SEC

The SEC instruction has been replaced by ORP. ORP performs inclusive OR between
the content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[3:0]) is
not affected.

The following code can be used to set the CCR C bit:

ORP #$0100

The ORP instruction can set all CCR bits, except the PK extension field, at once.
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.4.17 SEI

The SEI instruction has been replaced by ORP. ORP performs inclusive OR between
the content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[3:0]) is
not affected.

The following code can be used to set all the bits in the CCR IP field:

ORP #$00E0

The ORP instruction can set all CCR bits, except the PK extension field, at once.

A.4.18 SEV

The SEV instruction has been replaced by ORP. ORP performs inclusive OR between
the content of the condition code register and an unsigned immediate operand, then
replaces the content of the CCR with the result. The PK extension field (CCR[3:0]) is
not affected.

The following code can be used to set the CCR V bit:

ORP #$0200

The ORP instruction can set all CCR bits, except the PK extension field, at once.

A.4.19 STOP (LPSTOP)

LPSTOP is used to minimize microcontroller power consumption. The CPU16 has
seven levels of interrupt priority. If an interrupt request of higher priority than the prior-
ity value stored when the microcontroller enters low-power stop mode is received, the
microcontroller is activated, and the CPU16 processes an interrupt exception.

A.5 Instructions that Operate Differently

A.5.1 BSR

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16
stacks the current PC and CCR, but restores only the return PK: PC. The programmer
must designate (PSHM) which other registers are stacked during a subroutine.
Because SK : SP point to the next available word address, stacked CPU16 parameters
are at a different offset from the stack pointer than stacked M68HC11 CPU parame-
ters. In order for RTS to work with all three calling instructions, the PK : PC value
stacked by BSR is decremented by two before being pushed on to the stack. Stacked
PC value is the return address + $0002.

A.5.2 JSR

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16
stacks the current PC and CCR, but restores only the return PK : PC. The programmer
must designate (PSHM) which other registers are stacked during a subroutine.
Because SK : SP point to the next available word address, stacked CPU16 parameters
are at a different offset from the stack pointer than stacked M68HC11 CPU
parameters.
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.5.3 PSHA, PSHB

These instructions operate in the same way as the M68HC11 instructions with the
same mnemonics. However, because the CPU16 normally pushes words from an
even boundary, pushing byte data to the stack can misalign the stack pointer and
degrade performance.

A.5.4 PULA, PULB

These instructions operate in the same way as the M68HC11 instructions with the
same mnemonics. However, because the CPU16 normally pulls words from the stack,
pulling byte data can misalign the stack pointer and degrade performance.

A.5.5 RTI

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16
stacks only the current PC and CCR before exception processing begins. In order to
resume execution after interrupt with the correct instruction, RTI subtracts $0006 from
the stacked PK : PC.

A.5.6 SWI

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The PK : PC
value at the time of execution is the first word address of SWI plus $0006. If this value
were stacked, RTI would cause SWI to execute again. In order to resume execution
with the instruction following SWI, $0002 is added to the PK : PC value prior to stack-
ing. The programmer must designate (PSHM) which other registers are stacked during
an interrupt.

A.5.7 TAP

The CPU16 CCR and the M68HC11 CPU CCR are different. The CPU16 interrupt pri-
ority scheme differs from that of the M68HC11 CPU. The CPU16 interrupt priority field
cannot be changed by the TAP instruction.

A.5.7.1 M68HC11 CPU Implementation:

A.5.7.2 CPU16 Implementation:

7 6 5 4 3 2 1 0
A7 A6 A5 A4 A3 A2 A1 A0
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
7 6 5 4 3 2 1 0
S X H I N Z V C

7 6 5 4 3 2 1 0
A7 A6 A5 A4 A3 A2 A1 A0
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.5.8 TPA

The CPU16 CCR and the M68HC11 CPU CCR are different. TPA cannot be used to
read CPU16 interrupt priority status. Use TPD to read the CPU16 CCR interrupt prior-
ity field.

A.5.8.1 M68HC11 CPU Implementation:

A.5.8.2 CPU16 Implementation:

A.5.9 WAI

The CPU16 does not stack registers during WAI. The CPU16 acknowledges interrupts
faster out of WAI than LPSTOP. However, LPSTOP minimizes microcontroller power
consumption.

A.6 Instructions With Transparent Changes

A.6.1 RTS

The CPU16 stack frame differs from the M68HC11 CPU stack frame. PK : PC is
restored during an RTS. The PK field in the CCR is restored, then the PC value read
from the stack is decremented by two before being loaded into the PC. The PC value
is decremented because LBSR and JSR are two-word instructions. In order for pro-
gram execution to resume with the instruction immediately following them, RTS must
subtract $0002 from the stacked PK : PC value. Because BSR is a one-word instruc-
tion, it subtracts $0002 from PK : PC prior to stacking so that execution will resume
correctly after RTS.

A.6.2 TSX

The CPU16 adds two to SK : SP before the transfer to XK : IX. The M68HC11 CPU
adds one.

A.6.3 TSY

The CPU16 adds two to SK : SP before the transfer to YK : IY. The M68HC11 CPU
adds one.

7 6 5 4 3 2 1 0
S X H I N Z V C
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S MV H EV N Z V C IP SM PK
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-13

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.6.4 TXS

The CPU16 subtracts two from XK : IX before the transfer to SK : SP. The M68HC11
CPU subtracts one.

A.6.5 TYS

The CPU16 subtracts two from YK : IY before the transfer to SK : SP. The M68HC11
CPU subtracts one.

A.7 Unimplemented Instructions

A.7.1 TEST

Causes the program counter to be continuously incremented.

A.8 Addressing Mode Differences

A.8.1 Extended Addressing Mode

In M68HC11 CPU extended addressing mode, the effective address of the instruction
appears explicitly in the two bytes following the opcode. In CPU16 extended address-
ing mode, the effective address is formed by concatenating the EK field and the 16-bit
byte address. A 20-bit extended mode (EXT20) is used only by the JMP and JSR
instructions. These instructions contain a 20-bit effective address that is zero-
extended to 24 bits to give the instruction an even number of bytes.

A.8.2 Indexed Addressing Mode

M68HC11 CPU indexed addressing mode forms the effective address by adding the
fixed, 8-bit, unsigned offset to the index register. In CPU16 indexed addressing mode,
a fixed 16-bit offset can be used. Note however, that the 16-bit offset is signed and can
give a negative offset from the index register. An 8-bit unsigned mode is still available
on the CPU16. A 20-bit indexed mode is used for JMP and JSR instructions. In 20-bit
modes, a 20-bit signed offset is added to the value contained in an index register.

A.8.3 Post-Modified Index Addressing Mode

Post-modified index mode is used with the CPU16 MOVB and MOVW instructions. A
signed 8-bit offset is added to index register X after the effective address formed by
XK : IX is used.

A.8.4 Use of CPU16 Indexed Mode to Replace M68HC11 CPU Direct Mode

In M68HC11 systems, direct addressing mode can be used to perform rapid accesses
to RAM or I/O mapped into bank 0 ($0000 to $00FF), but the CPU16 uses the first 512
bytes of bank 0 for exception vectors. To provide an enhanced replacement for direct
mode, the ZK field and index register Z have been assigned reset initialization vectors.
After ZK : IZ have been initialized, indexed addressing provides rapid access to useful
data structures.
 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-14 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

*Motorola assemblers will automatically translate LSL mnemonics

Table A-1 M68HC16 Implementation of M68HC11 Instructions

M68HC11 Instruction M68HC16 Implementation
BHS Replaced by BCC
BLO Replaced by BCS
BSR Generates a different stack frame
CLC Replaced by ANDP
CLI Replaced by ANDP
CLV Replaced by ANDP
DES Replaced by AIS
DEX Replaced by AIX
DEY Replaced by AIY
INS Replaced by AIS
INX Replaced by AIX
INY Replaced by AIY
JMP IND8 addressing modes replaced by IND20 and EXT modes
JSR IND8 addressing modes replaced by IND20 and EXT modes

Generates a different stack frame
LSL, LSLD Use ASL instructions*

PSHX Replaced by PSHM
PSHY Replaced by PSHM
PULX Replaced by PULM
PULY Replaced by PULM
RTI Reloads PC and CCR only
RTS Uses two-word stack frame
SEC Replaced by ORP
SEI Replaced by ORP
SEV Replaced by ORP

STOP Replaced by LPSTOP
TAP CPU16 CCR bits differ from M68HC11

CPU16 interrupt priority scheme differs from M68HC11
TPA CPU16 CCR bits differ from M68HC11

CPU16 interrupt priority scheme differs from M68HC11
TSX Adds two to SK : SP before transfer to XK : IX
TSY Adds two to SK : SP before transfer to YK : IY
TXS Subtracts two from XK : IX before transfer to SK : SP
TXY Transfers XK field to YK field
TYS Subtracts two from YK : IY before transfer to SK : SP
TYX Transfers YK field to XK field
WAI Waits indefinitely for interrupt or reset

Generates a different stack frame
CPU16 COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE MOTOROLA

REFERENCE MANUAL A-15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MOTOROLA COMPARISON OF CPU16/M68HC11 CPU ASSEMBLY LANGUAGE CPU16

A-16 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

APPENDIX B MOTOROLA ASSEMBLER SYNTAX

Name Mode Syntax Name Mode Syntax
ABA INH aba ADCE IMM16 adce #jjkk
ABX INH abx IND16, X adce gggg,x
ABY INH aby IND16, Y adce gggg,y
ABZ INH abz IND16, Z adce gggg,z
ACE INH ace EXT adce hhll

ACED INH aced ADDA IND8, X adda ff,x
ADCA IND8, X adca ff,x IND8, Y adda ff,y

IND8, Y adca ff,y IND8, Z adda ff,z
IND8, Z adca ff,z IMM8 adda #ii
IMM8 adca #ii IND16, X adda gggg,x

IND16, X adca gggg,x IND16, Y adda gggg,y
IND16, Y adca gggg,y IND16, Z adda gggg,z
IND16, Z adca gggg,z EXT adda hhll

EXT adca hhll E, X adda e,x
E, X adca e,x E, Y adda e,y
E, Y adca e,y E, Z adda e,z
E, Z adca e,z ADDB IND8, X addb ff,x

ADCB IND8, X adcb ff,x IND8, Y addb ff,y
IND8, Y adcb ff,y IND8, Z addb ff,z
IND8, Z adcb ff,z IMM8 addb #ii
IMM8 adcb #ii IND16, X addb gggg,x

IND16, X adcb gggg,x IND16, Y addb gggg,y
IND16, Y adcb gggg,y IND16, Z addb gggg,z
IND16, Z adcb gggg,z EXT addb hhll

EXT adcb hhll E, X addb e,x
E, X adcb e,x E, Y addb e,y
E, Y adcb e,y E, Z addb e,z
E, Z adcb e,z ADDD IND8, X addd ff,x

ADCD IND8, X adcd ff,x IND8, Y addd ff,y
IND8, Y adcd ff,y IND8, Z addd ff,z
IND8, Z adcd ff,z IMM8 addd #ii
IMM16 adcd #jjkk IMM16 addd #jjkk

IND16, X adcd gggg,x IND16, X addd gggg,x
IND16, Y adcd gggg,y IND16, Y addd gggg,y
IND16, Z adcd gggg,z IND16, Z addd gggg,z

EXT adcd hhll EXT addd hhll
E, X adcd e,x E, X addd e,x
E, Y adcd e,y E, Y addd e,y
E, Z adcd e,z E, Z addd e,z
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-1

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
ADDE IMM8 adde #ii ANDB IND8, X andb ff,x

IMM16 adde #jjkk IND8, Y andb ff,y
IND16, X adde gggg,x IND8, Z andb ff,z
IND16, Y adde gggg,y IMM8 andb #ii
IND16, Z adde gggg,z IND16, X andb gggg,x

EXT adde hhll IND16, Y andb gggg,y
ADE INH ade IND16, Z andb gggg,z
ADX INH adx EXT andb hhll
ADY INH ady E, X andb e,x
ADZ INH adz E, Y andb e,y
AEX INH aex E, Z andb e,z
AEY INH aey ANDD IND8, X andd ff,x
AEZ INH aez IND8, Y andd ff,y
AIS IMM8 ais #ii IND8, Z andd ff,z

IMM16 ais #jjkk IMM16 andd #jjkk
AIX IMM8 aix #ii IND16, X andd gggg,x

IMM16 aix #jjkk IND16, Y andd gggg,y
AIY IMM8 aiy #ii IND16, Z andd gggg,z

IMM16 aiy #jjkk EXT andd hhll
AIZ IMM8 aiz #ii E, X andd e,x

IMM16 aiy #jjkk E, Y andd e,y
ANDA IND8, X anda ff,x E, Z andd e,z

IND8, Y anda ff,y ANDE IMM16 ande #jjkk
IND8, Z anda ff,z IND16, X ande gggg,x
IMM8 anda #ii IND16, Y ande gggg,y

IND16, X anda gggg,x IND16, Z ande gggg,z
IND16, Y anda gggg,y EXT ande hhll
IND16, Z anda gggg,z ANDP IMM16 andp #jjkk

EXT anda hhll ASL IND8, X asl ff,x
E, X anda e,x IND8, Y asl ff,y
E, Y anda e,y IND8, Z asl ff,z
E, Z anda e,z IND16, X asl gggg,x

IND16, Y asl gggg,y
IND16, Z asl gggg,z

EXT asl hhll
ASLA INH asla
ASLB INH aslb
ASLD INH asld
ASLE INH asle
ASLM INH aslm
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
ASLW IND16, X aslw gggg,x BITA IND8, X bita ff,x

IND16, Y aslw gggg,y IND8, Y bita ff,y
IND16, Z aslw gggg,z IND8, Z bita ff,z

EXT aslw hhll IMM8 bita #ii
ASR IND8, X asr ff,x IND16, X bita gggg,x

IND8, Y asr ff,y IND16, Y bita gggg,y
IND8, Z asr ff,z IND16, Z bita gggg,z

IND16, X asr gggg,x EXT bita hhll
IND16, Y asr gggg,y E, X bita e,x
IND16, Z asr gggg,z E, Y bita e,y

EXT asr hhll E, Z bita e,z
ASRA INH asra BITB IND8, X bitb ff,x
ASRB INH asrb IND8, Y bitb ff,y
ASRD INH asrd IND8, Z bitb ff,z
ASRE INH asre IMM8 bitb #ii
ASRM INH asrm IND16, X bitb gggg,x
ASRW IND16, X asrw gggg,x IND16, Y bitb gggg,y

IND16, Y asrw gggg,y IND16, Z bitb gggg,z
IND16, Z asrw gggg,z EXT bitb hhll

EXT asrw hhll E, X bitb e,x
BCC REL8 bcc rr E, Y bitb e,y
BCLR IND8, X bclr ff,x,#mm E, Z bitb e,z

IND8, Y bclr ff,y,#mm BLE REL8 ble rr
IND8, Z bclr ff,z,#mm BLS REL8 bls rr

IND16, X bclr gggg,x,#mm BLT REL8 blt rr
IND16, Y bclr gggg,y,#mm BMI REL8 bmi rr
IND16, Z bclr gggg,z,#mm BNE REL8 bne rr

EXT bclr hhll,#mm BPL REL8 bpl rr
BCLRW IND16, X bclrw gggg,x,#mmmm BRA REL8 bra rr

IND16, Y bclrw gggg,y,#mmmm BRCLR IND8, X brclr ff,x,#mm,rr
IND16, Z bclrw gggg,z,#mmmm IND8, Y brclr ff,y,#mm,rr

EXT bclrw hhll,#mmmm IND8, Z brclr ff,z,#mm,rr
BCS REL8 bcs rr IND16, X brclr gggg,x,#mm,rrrr
BEQ REL8 beq rr IND16, Y brclr gggg,y,#mm,rrrr
BGE REL8 bge rr IND16, Z brclr gggg,z,#mm,rrrr

BGND INH bgnd EXT brclr hhll,#mm,rrrr
BGT REL8 bgt rr BRN REL8 brn rr
BHI REL8 bhi rr
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
BRSET IND8, X brset ff,x,#mm,rr CMPA IND8, X cmpa ff,x

IND8, Y brset ff,y,#mm,rr IND8, Y cmpa ff,y
IND8, Z brset ff,z,#mm,rr IND8, Z cmpa ff,z

IND16, X brset gggg,x,#mm,rrrr IMM8 cmpa #ii
IND16, Y brset gggg,y,#mm,rrrr IND16, X cmpa gggg,x
IND16, Z brset gggg,z,#mm,rrrr IND16, Y cmpa gggg,y

EXT brset hhll,#mm,rrrr IND16, Z cmpa gggg,z
BSET IND8, X bset ff,x,#mm EXT cmpa hhll

IND8, Y bset ff,y,#mm E, X cmpa e,x
IND8, Z bset ff,z,#mm E, Y cmpa e,y

IND16, X bset gggg,x,#mm E, Z cmpa e,z
IND16, Y bset gggg,y,#mm CMPB IND8, X cmpb ff,x
IND16, Z bset gggg,z,#mm IND8, Y cmpb ff,y

EXT bset hhll,#mm IND8, Z cmpb ff,z
BSETW IND16, X bsetw gggg,x,#mmmm IMM8 cmpb #ii

IND16, Y bsetw gggg,y,#mmmm IND16, X cmpb gggg,x
IND16, Z bsetw gggg,z,#mmmm IND16, Y cmpb gggg,y

EXT bsetw hhll,#mmmm IND16, Z cmpb gggg,z
BSR REL8 bsr rr EXT cmpb hhll
BVC REL8 bvc rr E, X cmpb e,x
BVS REL8 bvs rr E, Y cmpb e,y
CBA INH cba E, Z cmpb e,z
CLR IND8, X clr ff,x COM IND8, X com ff,x

IND8, Y clr ff,y IND8, Y com ff,y
IND8, Z clr ff,z IND8, Z com ff,z

IND16, X clr gggg,x IND16, X com gggg,x
IND16, Y clr gggg,y IND16, Y com gggg,y
IND16, Z clr gggg,z IND16, Z com gggg,z

EXT clr hhll EXT com hhll
CLRA INH clra COMA INH coma
CLRB INH clrb COMB INH comb
CLRD INH clrd COMD INH comd
CLRE INH clre COME INH come
CLRM INH clrm COMW IND16, X comw gggg,x
CLRW IND16, X clrw gggg,x IND16, Y comw gggg,y

IND16, Y clrw gggg,y IND16, Z comw gggg,z
IND16, Z clrw gggg,z EXT comw hhll

EXT clrw hhll
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
CPD IND8, X cpd ff,x CPZ IND8, X cpz ff,x

IND8, Y cpd ff,y IND8, Y cpz ff,y
IND8, Z cpd ff,z IND8, Z cpz ff,z
IMM16 cpd #jjkk IMM16 cpz #jjkk

IND16, X cpd gggg,x IND16, X cpz gggg,x
IND16, Y cpd gggg,y IND16, Y cpz gggg,y
IND16, Z cpd gggg,z IND16, Z cpz gggg,z

EXT cpd hhll EXT cpz hhll
E, X cpd e,x DAA INH daa
E, Y cpd e,y DEC IND8, X dec ff,x
E, Z cpd e,z IND8, Y dec ff,y

CPE IMM16 cpe #jjkk IND8, Z dec ff,z
IND16, X cpe gggg,x IND16, X dec gggg,x
IND16, Y cpe gggg,y IND16, Y dec gggg,y
IND16, Z cpe gggg,z IND16, Z dec gggg,z

EXT cpe hhll EXT dec hhll
CPS IND8, X cps ff,x DECA INH deca

IND8, Y cps ff,y DECB INH decb
IND8, Z cps ff,z DECW IND16, X decw gggg,x
IMM16 cps #jjkk IND16, Y decw gggg,y

IND16, X cps gggg,x IND16, Z decw gggg,z
IND16, Y cps gggg,y EXT decw hhll
IND16, Z cps gggg,z EDIV INH ediv

EXT cps hhll EDIVS INH edivs
CPX IND8, X cpx ff,x EMUL INH emul

IND8, Y cpx ff,y EMULS INH emuls
IND8, Z cpx ff,z EORA IND8, X eora ff,x
IMM16 cpx #jjkk IND8, Y eora ff,y

IND16, X cpx gggg,x IND8, Z eora ff,z
IND16, Y cpx gggg,y IMM8 eora #ii
IND16, Z cpx gggg,z IND16, X eora gggg,x

EXT cpx hhll IND16, Y eora gggg,y
CPY IND8, X cpy ff,x IND16, Z eora gggg,z

IND8, Y cpy ff,y EXT eora hhll
IND8, Z cpy ff,z E, X eora e,x
IMM16 cpy #jjkk E, Y eora e,y

IND16, X cpy gggg,x E, Z eora e,z
IND16, Y cpy gggg,y

EXT cpy hhll
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
EORB IND8, X eorb ff,x INCW IND16, X incw gggg,x

IND8, Y eorb ff,y IND16, Y incw gggg,y
IND8, Z eorb ff,z IND16, Z incw gggg,z
IMM8 eorb #ii EXT incw hhll

IND16, X eorb gggg,x JMP EXT20 jmp zb hhll
IND16, Y eorb gggg,y IND20, X jmp zg gggg,x
IND16, Z eorb gggg,z IND20, Y jmp zg gggg,y

EXT eorb hhll IND20, Z jmp zg gggg,z
E, X eorb e,x JSR EXT20 jsr zb hhll
E, Y eorb e,y IND20, X jsr zg gggg,x
E, Z eorb e,z IND20, Y jsr zg gggg,y

EORD IND8, X eord ff,x IND20, Z jsr zg gggg,z
IND8, Y eord ff,y LBCC REL8 lbcc rrrr
IND8, Z eord ff,z LBCS REL8 lbcs rrrr
IMM16 eord #jjkk LBEQ REL8 lbeq rrrr

IND16, X eord gggg,x LBEV REL8 lbev rrrr
IND16, Y eord gggg,y LBGE REL8 lbge rrrr
IND16, Z eord gggg,z LBGT REL8 lbgt rrrr

EXT eord hhll LBHI REL8 lbhi rrrr
E, X eord e,x LBLE REL8 lble rrrr
E, Y eord e,y LBLS REL8 lbls rrrr
E, Z eord e,z LBLT REL8 lblt rrrr

EORE IMM16 eore #jjkk LBMI REL8 lbmi rrrr
IND16, X eore gggg,x LBMV REL8 lbmv rrrr
IND16, Y eore gggg,y LBNE REL8 lbne rrrr
IND16, Z eore gggg,z LBPL REL8 lbpl rrrr

EXT eore hhll LBRA REL8 lbra rrrr
FDIV INH fdiv LBM REL8 lbrn rrrr

FMULS INH fmuls LBSR REL8 lbsr rrrr
IDIV INH idiv LBVC REL8 lbvc rrrr
INC IND8, X inc ff,x LBVS REL8 lbvs rrrr

IND8, Y inc ff,y
IND8, Z inc ff,z

IND16, X inc gggg,x
IND16, Y inc gggg,y
IND16, Z inc gggg,z

EXT inc hhll
INCA INH inca
INCB INH incb
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
LDAA IND8, X ldaa ff,x LDS IND8, X lds ff,x

IND8, Y ldaa ff,y IND8, Y lds ff,y
IND8, Z ldaa ff,z IND8, Z lds ff,z
IMM8 ldaa #ii IMM16 lds #jjkk

IND16, X ldaa gggg,x IND16, X lds gggg,x
IND16, Y ldaa gggg,y IND16, Y lds gggg,y
IND16, Z ldaa gggg,z IND16, Z lds gggg,z

EXT ldaa hhll EXT lds hhll
E, X ldaa e,x LDX IND8, X ldx ff,x
E, Y ldaa e,y IND8, Y ldx ff,y
E, Z ldaa e,z IND8, Z ldx ff,z

LDAB IND8, X ldab ff,x IMM16 ldx #jjkk
IND8, Y ldab ff,y IND16, X ldx gggg,x
IND8, Z ldab ff,z IND16, Y ldx gggg,y
IMM8 ldab #ii IND16, Z ldx gggg,z

IND16, X ldab gggg,x EXT ldx hhll
IND16, Y ldab gggg,y LDY IND8, X ldy ff,x
IND16, Z ldab gggg,z IND8, Y ldy ff,y

EXT ldab hhll IND8, Z ldy ff,z
E, X ldab e,x IMM16 ldy #jjkk
E, Y ldab e,y IND16, X ldy gggg,x
E, Z ldab e,z IND16, Y ldy gggg,y

LDD IND8, X ldd ff,x IND16, Z ldy gggg,z
IND8, Y ldd ff,y EXT ldy hhll
IND8, Z ldd ff,z LDZ IND8, X ldz ff,x
IMM16 ldd #jjkk IND8, Y ldz ff,y

IND16, X ldd gggg,x IND8, Z ldz ff,z
IND16, Y ldd gggg,y IMM16 ldz #jjkk
IND16, Z ldd gggg,z IND16, X ldz gggg,x

EXT ldd hhll IND16, Y ldz gggg,y
E, X ldd e,x IND16, Z ldz gggg,z
E, Y ldd e,y EXT ldz hhll
E, Z ldd e,z LPSTOP INH lpstop

LDE IMM16 lde #jjkk LSL IND8, X lsl ff,x
IND16, X lde gggg,x IND8, Y lsl ff,y
IND16, Y lde gggg,y IND8, Z lsl ff,z
IND16, Z lde gggg,z IND16, X lsl gggg,x

EXT lde hhll IND16, Y lsl gggg,y
LDED EXT lded hhll IND16, Z lsl gggg,z
LDHI EXT ldhi hhll EXT lsl hhll

LSLA INH lsla
LSLB INH lslb
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
LSLD INH lsld NEGW IND16, X negw gggg,x
LSLE INH lsle IND16, Y negw gggg,y
LSLM INH lslm IND16, Z negw gggg,z
LSLW IND16, X lslw gggg,x EXT negw hhll

IND16, Y lslw gggg,y NOP INH nop
IND16, Z lslw gggg,z ORAA IND8, X oraa ff,x

EXT lslw hhll IND8, Y oraa ff,y
LSR IND8, X lsr ff,x IND8, Z oraa ff,z

IND8, Y lsr ff,y IMM8 oraa #ii
IND8, Z lsr ff,z IND16, X oraa gggg,x

IND16, X lsr gggg,x IND16, Y oraa gggg,y
IND16, Y lsr gggg,y IND16, Z oraa gggg,z
IND16, Z lsr gggg,z EXT oraa hhll

EXT lsr hhll E, X oraa e,x
LSRA INH lsra E, Y oraa e,y
LSRB INH lsrb E, Z oraa e,z
LSRD INH lsrd ORAB IND8, X orab ff,x
LSRE INH lsre IND8, Y orab ff,y
LSRW IND16, X lsrw gggg,y IND8, Z orab ff,z

IND16, Y lsrw gggg,y IMM8 orab #ii
IND16, Z lsrw gggg,z IND16, X orab gggg,x

EXT lsrw hhll IND16, Y orab gggg,y
MAC IMM8 mac xo,yo IND16, Z orab gggg,z

MOVB IXP to EXT movb ff,x,hhll EXT orab hhll
EXT to IXP movb hhll,ff,x E, X orab e,x
EXT to EXT movb hhll,hhll E, Y orab e,y

MOVW IXP to EXT movw ff,x,hhll E, Z orab e,z
EXT to IXP movw hhll,ff,x ORD IND8, X ord ff,x
EXT to EXT movw hhll,hhll IND8, Y ord ff,y

MUL INH mul IND8, Z ord ff,z
NEG IND8, X neg ff,x IMM16 ord #jjkk

IND8, Y neg ff,y IND16, X ord gggg,x
IND8, Z neg ff,z IND16, Y ord gggg,y

IND16, X neg gggg,x IND16, Z ord gggg,z
IND16, Y neg gggg,y EXT ord hhll
IND16, Z neg gggg,z E, X ord e,x

EXT neg hhll E, Y ord e,y
NEGA INH nega E, Z ord e,z
NEGB INH negb
NEGD INH negd
NEGE INH nege
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-8 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
ORE IMM16 ore #jjkk RORW IND16, X rorw gggg,x

IND16, X ore gggg,x IND16, Y rorw gggg,y
IND16, Y ore gggg,y IND16, Z rorw gggg.z
IND16, Z ore gggg,z EXT rorw hhll

EXT ore hhll RTI INH rti
ORP IMM16 orp #jjkk RTS INH rts
PSHA INH psha SBA INH sba
PSHB INH pshb SBCA IND8, X sbca ff,x
PSHM IMM8 pshm d,e,x,y,z,k,ccr IND8, Y sbca ff,y

PSHMAC INH pshmac IND8, Z sbca ff,z
PULA INH pula IMM8 sbca #ii
PULB INH pulb IND16, X sbca gggg,x
PULM IMM8 pulm d,e,x,y,z,k,ccr IND16, Y sbca gggg,y

PULMAC INH pulmac IND16, Z sbca gggg,z
RMAC IMM8 rmac xo,yo EXT sbca hhll
ROL IND8, X rol ff,x E, X sbca e,x

IND8, Y rol ff,y E, Y sbca e,y
IND8, Z rol ff,z E, Z sbca e,z

IND16, X rol gggg,x SBCB IND8, X sbcb ff,x
IND16, Y rol gggg,y IND8, Y sbcb ff,y
IND16, Z rol gggg,z IND8, Z sbcb ff,z

EXT rol hhll IMM8 sbcb #ii
ROLA INH rola IND16, X sbcb gggg,x
ROLB INH rolb IND16, Y sbcb gggg,y
ROLD INH rold IND16, Z sbcb gggg,z
ROLE INH role EXT sbcb hhll
ROLW IND16, X rolw gggg,x E, X sbcb e,x

IND16, Y rolw gggg,y E, Y sbcb e,y
IND16, Z rolw gggg,z E, Z sbcb e,z

EXT rolw hhll SBCD IND8, X sbcd ff,x
ROR IND8, X ror ff,x IND8, Y sbcd ff,y

IND8, Y ror ff,y IND8, Z sbcd ff,z
IND8, Z ror ff,z IMM16 sbcd #jjkk

IND16, X ror gggg,x IND16, X sbcd gggg,x
IND16, Y ror gggg,y IND16, Y sbcd gggg,y
IND16, Z ror gggg,z IND16, Z sbcd gggg,z

EXT ror hhll EXT sbcd hhll
RORA INH rora E, X sbcd e,x
RORB INH rorb E, Y sbcd e,y
RORD INH rord E, Z sbcd e,z
RORE INH rore
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-9

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
SBCE IMM16 sbce #jjkk STS IND8, X sts ff,x

IND16, X sbce gggg,x IND8, Y sts ff,y
IND16, Y sbce gggg,y IND8, Z sts ff,z
IND16, Z sbce gggg,z IND16, X sts gggg,x

EXT sbce hhll IND16, Y sts gggg,y
SDE INH sde IND16, Z sts gggg,z
STAA IND8, X staa ff,x EXT sts hhll

IND8, Y staa ff,y STX IND8, X stx ff,x
IND8, Z staa ff,z IND8, Y stx ff,y

IND16, X staa gggg,x IND8, Z stx ff,z
IND16, Y staa gggg,y IND16, X stx gggg,x
IND16, Z staa gggg,z IND16, Y stx gggg,y

EXT staa hhll IND16, Z stx gggg,z
E, X staa e,x EXT stx hhll
E, Y staa e,y STY IND8, X sty ff,x
E, Z staa e,z IND8, Y sty ff,y

STAB IND8, X stab ff,x IND8, Z sty ff,z
IND8, Y stab ff,y IND16, X sty gggg,x
IND8, Z stab ff,z IND16, Y sty gggg,y

IND16, X stab gggg,x IND16, Z sty gggg,z
IND16, Y stab gggg,y EXT sty hhll
IND16, Z stab gggg,z STZ IND8, X stz ff,x

EXT stab hhll IND8, Y stz ff,y
E, X stab e,x IND8, Z stz ff,z
E, Y stab e,y IND16, X stz gggg,x
E, Z stab e,z IND16, Y stz gggg,y

STD IND8, X std ff,x IND16, Z stz gggg,z
IND8, Y std ff,y EXT stz hhll
IND8, Z std ff,z SUBA IND8, X suba ff,x

IND16, X std gggg,x IND8, Y suba ff,y
IND16, Y std gggg,y IND8, Z suba ff,z
IND16, Z std gggg,z IMM8 suba #ii

EXT std hhll IND16, X suba gggg,x
E, X std e,x IND16, Y suba gggg,y
E, Y std e,y IND16, Z suba gggg,z
E, Z std e,z EXT suba hhll

STE IND16, X ste gggg,x E, X suba e,x
IND16, Y ste gggg,y E, Y suba e,y
IND16, Z ste gggg,z E, Z suba e,z

EXT ste hhll
STED EXT sted hhll
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-10 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax Name Mode Syntax
SUBB IND8, X subb ff,x TEKB INH tekb

IND8, Y subb ff,y TEM INH tem
IND8, Z subb ff,z TMER INH tmer
IMM8 subb #ii TMET INH tmet

IND16, X subb gggg,x TMXED INH tmxed
IND16, Y subb gggg,y TPA INH tpa
IND16, Z subb gggg,z TPD INH tpd

EXT subb hhll TSKB INH tskb
E, X subb e,x TST IND8, X tst ff,x
E, Y subb e,y IND8, Y tst ff,y
E, Z subb e,z IND8, Z tst ff,z

SUBD IND8, X subd ff,x IND16, X tst gggg,x
IND8, Y subd ff,y IND16, Y tst gggg,y
IND8, Z subd ff,z IND16, Z tst gggg,z
IMM16 subd #jjkk EXT tst hhll

IND16, X subd gggg,x TSTA INH tsta
IND16, Y subd gggg,y TSTB INH tstb
IND16, Z subd gggg,z TSTD INH tstd

EXT subd hhll TSTE INH tste
E, X subd e,x TSTW IND16, X tstw ff,x
E, Y subd e,y IND16, Y tstw ff,y
E, Z subd e,z IND16, Z tstw ff,z

SUBE IMM16 sube #jjkk EXT tstw hhll
IND16, X sube gggg,x TSX INH tsx
IND16, Y sube gggg,y TSY INH tsy
IND16, Z sube gggg,z TSZ INH tsz

EXT sube hhll TXKB INH txkb
SWI INH swi TXS INH txs
SXT INH sxt TXY INH txy
TAB INH tab TXZ INH txz
TAP INH tap TYKB INH tykb
TBA INH tba TYS INH tys

TBEK INH tbek TYX INH tyx
TBSK INH tbsk TYZ INH tyz
TBXK INH tbxk TZKB INH tzkb
TBYK INH tbyk TZS INH tzs
TBZK INH tbzk TZX INH tzx
TDE INH tde TZY INH tzy

TDMSK INH tdmsk WAI INH wai
TDP INH tdp XGAB INH xgab
TED INH ted XGDE INH xgde

TEDM INH tedm XGDX INH xgdx
CPU16 MOTOROLA ASSEMBLER SYNTAX MOTOROLA

REFERENCE MANUAL B-11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Name Mode Syntax
XGDY INH xgdy
XGDZ INH xgdz
XGEX INH xgex
XGEY INH xgey
XGEZ INH xgez
 MOTOROLA MOTOROLA ASSEMBLER SYNTAX CPU16

B-12 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

–A–

ABA 5-3, 5-4, 6-3
ABX 6-4
ABY 6-5
ABZ 6-6
Accumulator 3-2

A 2-1, 3-2
AM 11-1
B 2-1, 3-2
D 2-1, 3-2
E 2-1, 3-2
M 2-1

Overflow 3-4
MAC 11-3

Overflow 11-3
ACE 6-7, 11-4, 11-9
ACED 6-8, 11-4, 11-8
ADCA 5-3, 5-4, 6-9
ADCB 5-3, 5-4, 6-10
ADCD 5-3, 5-4, 6-11
ADCE 5-3, 5-4, 6-12
ADDA 5-3, 5-4, 6-13
ADDB 5-3, 5-4, 6-14
ADDD 5-3, 5-4, 6-15
ADDE 5-3, 5-4, 6-16
ADDR[15:0] 4-4
ADDR[19:0] 3-10
ADDR[19:16] 4-4
Address strobe 3-10
Addressing

Modes 2-3, 4-3
Extended 2-1, A-14
Indexed A-14
Post-Modified Index A-14

ADE 5-3, 5-4, 6-17
ADVANCE 10-3
ADX 6-18
ADY 6-19
ADZ 6-20
AEX 6-21
AEY 6-22
AEZ 6-23
AIS 6-24
AIX 6-25
AIY 6-26
AIZ 6-27
Alignment

Operand 3-12
AM 11-1
ANDA 5-8, 6-28
CPU16

REFERENCE MANUAL

For More Informati
 Go to: www
ANDB 5-8, 6-29
ANDD 5-8, 6-30
ANDE 5-8, 6-31
ANDP 5-21, 5-23, 6-32, 9-14
ASL 5-8, 6-33
ASLA 6-34
ASLB 6-35
ASLD 6-36
ASLE 6-37
ASLM 6-38, 11-4, 11-9
ASLW 6-39
ASR 6-40
ASRA 6-41
ASRB 6-42
ASRD 6-43
ASRE 6-44
ASRM 6-45, 11-9
ASRW 6-46
Assembler syntax 6-1, B-1
AVEC 3-10

–B–

BCC 6-47
BCD 5-3, 5-5
BCLR 5-8, 6-48
BCLRW 5-8, 6-49
BCS 6-50
BDM 5-23, 10-8

Connection 10-37
BEQ 6-51
BERR 3-10, 9-2, 9-8, 9-11
BGE 6-52
BGND 5-23, 6-53, 9-2, 9-15, 10-11
BGT 6-54
BHI 6-55
BHS A-7
BITA 5-8, 6-56
BITB 5-8, 6-57
BKPT 9-2, 9-8, 9-12
BLE 6-58
BLO A-7
BLS 6-59
BLT 6-60
BMI 6-61
BNE 6-62
BPL 6-63
BRA 5-16, 6-64
BRCLR 6-65
Breakpoints 10-5, 10-11
BRN 5-23, 6-66
MOTOROLA

I-1on On This Product,
.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRSET 6-67
BSET 5-8, 6-68
BSETW 5-8, 6-69
BSR 5-16, 6-70, 7-7, A-11
Bus cycle 8-1, 8-2
Bus cycles

Termination 3-10
Bus error 3-10
Bus fault 10-11

Double 10-11
Bus signals

Address bus 3-10
Data bus 3-10

Bus sizing
Dynamic 3-11, 8-1

BVC 6-71
BVS 6-72

–C–

CBA 5-6, 6-73
CCR 2-1, 2-2, 3-4, 5-2, 5-5, 11-5, A-2

Manipulation 5-2
CCR bits

C 2-2, 3-4
EV 2-2
H 2-2
IP 2-2, 3-4, 8-4
MV 2-2
N 2-2, 3-4
PK 2-2, 3-5
S 2-2, 3-4, 8-4
SM 2-2, 3-4
V 2-2, 3-4
Z 2-2, 3-4

Change of flow 7-6
CLC A-7
CLI A-8
CLR 5-7, 6-74
CLRA 5-7, 6-75
CLRB 5-7, 6-76
CLRD 5-7, 6-77
CLRE 5-7, 6-78
CLRM 6-79, 11-9
CLRW 5-7, 6-80
CLV A-8
CMPA 5-6, 6-81
CMPB 5-6, 6-82
COM 5-7, 6-83
COMA 5-7, 6-84
COMB 5-7, 6-85
COMD 5-7, 6-86
COME 5-7, 6-87
Comparison

M68HC11 vs CPU16 A-1
COMW 5-7, 6-88
Condition Code Register A-2
Connection

BDM 10-37
Control bit

Saturation mode 2-2
Stop disable 2-2

CPD 5-6, 6-89
CPE 5-6, 6-90
CPS 6-91
CPX 6-92
CPY 6-93
CPZ 6-94
Cycle time 8-5

–D–

DAA 5-5, 6-95, 6-96
Data

Types 4-1
Binary coded decimal 4-1
Negative 4-1
Signed 4-1

Data saturation 11-5
Data strobe 3-10
Data transfer 3-11
DATA[15:0] 3-10
Debug 10-8
DEC 5-7, 6-97
DECA 5-7, 6-98
DECB 5-7, 6-99
DECW 5-7, 6-100
DES A-8
Development 10-16
DEX A-8
DEY A-9
DSACK0 3-10
DSACK1 3-10
DSCLK 10-14
DSP 11-1

–E–

EBI 3-8
EDIV 5-6, 6-101, 9-15
EDIVS 5-6, 6-102, 9-15
EK 2-1
EMUL 5-6, 6-103
Emulation 10-9
EMULS 5-6, 6-104
EORA 5-8, 6-105
EORB 5-8, 6-106
EORD 5-8, 6-107
EORE 5-8, 6-108
EV 3-4
Exception

Asynchronous 9-9
Definition 9-1
External 9-2
Internal 9-2
Multiple 9-8
Processing 9-3, 10-4
Stack frame 9-2
Synchronous 9-14
Vector 9-1
MOTOROLA CPU16

I-2 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Execution
Model A-4
Process 7-4, A-5
Unit 7-3

Extension
Address 3-5
Bit overflow 11-4
Fields 3-5, 3-6
Registers 3-5

Extension bit
Overflow flag 3-4

Extension field 2-1, 3-6
Extended addressing 2-1
Modifying 3-6
Program counter 2-1, 2-2, 3-5
SK 3-3
Stack pointer 2-1
Stacking values 3-6

–F–

FDIV 5-6, 6-109
FETCH 10-3
FMULS 5-6, 6-110, 11-8

–G–

GO 10-35

–H–

HALT 3-10
HR 2-1, 11-1

–I–

IDIV 5-6, 6-111
IMB 3-8, 5-1, 10-5
IMM16 4-4
IMM8 4-4
Implementation

CPU16 A-12
M68HC11 CPU A-12

INC 5-7, 6-112
INCA 5-7, 6-113
INCB 5-7, 6-114
INCW 5-7, 6-115
Indicator

Accumulator M overflow 3-4
AM extended overflow 2-2
AM overflow 2-2
Carry/borrow 2-2
H 3-4
Half carry 2-2, 3-4
MV 3-4
Negative 2-2
Two’s complement overflow 2-2
Zero 2-2

INS A-9

Instruction
Glossary 6-1
Set

Comparison 5-23
Summary 6-270

Instruction format 2-3
Instructions 1-1

Address Extension 5-18
Arithmetic 5-1
Background 9-15
BGND 9-15
Binary coded decimal 5-5
Bit condition 5-15
Bit manipulation 11-9
Bit test 5-8
Boolean logic 5-8
Branch 3-7, 7-6, 11-10, A-5
Clear 5-7
Compare 5-5
Complement 5-7
Condition Code 5-21
Data movement 5-1
Decrement 5-7
Digital signal processing 5-1, 5-21
Division 5-1
DSP 11-5
Exchange 5-3
Format 7-1, A-4
Functionally equivalent A-7
Illegal 9-14
Increment 5-7
Indexing 5-18
Initialization 11-5
Interrupt 5-17
Jump 3-7, 5-16, 7-6, A-5
Load 5-1
Logic 5-1
Long branch 5-13
MAC 11-5
Manipulation 5-8
Mathematic 5-3
Move 5-2, 8-4
Multiplication 5-1
Multiply and accumulate 8-5, 11-7
Negate 5-7
Operand access 8-2
Pipeline 7-2, 10-1, A-4
Pipelining 7-1
Program access 8-2
Program control 5-11
Program flow changes 7-1
Read-modify-write 8-2
Regular 8-2
RMAC 11-5
Rotate 5-8
Set 5-1
Shift 5-8
Short branch 5-12
Signed 5-1
Special purpose 5-1
CPU16 MOTOROLA

REFERENCE MANUAL I-3

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Stack
Manipulation 8-4
Operations 5-20
Pointer 5-20

Stacking 11-10
Stop 5-22, 8-4
Store 5-2
Subroutine 5-16, 7-6, A-6
TDMSK 11-5
Test 5-5
Timing 8-1
TMER 11-6
TMET 11-6
TMXED 11-6
Transfer 5-2, 11-6
Unimplemented A-14
Unsigned 5-1
Wait 5-22, 8-4

Interrupt 9-13, A-6
Priority 2-2, 9-13, A-7

Field 3-4
Invalid

Signal 10-4
INX A-9
INY A-9
IP 2-2
IPIPE0 7-3, 10-1
IPIPE1 7-3, 10-1
IR 2-1, 11-1
IX 3-3
IY 3-3
IZ 3-3

–J–

JMP 5-16, 6-116
JSR 5-16, 6-117, 7-7, A-11

–K–

K 2-1

–L–

LBCC 6-118
LBCS 6-119
LBEQ 6-120
LBEV 6-121, 11-10
LBGE 6-122
LBGT 6-123
LBHI 6-124
LBLE 6-125
LBLS 6-126
LBLT 6-127
LBMI 6-128
LBMV 6-129, 11-10
LBNE 6-130
LBPL 6-131
LBRA 5-16, 6-132
LBRN 6-133

LBSR 5-16, 6-134, 7-7
LBVC 6-135
LBVS 6-136
LDAA 5-2, 6-137
LDAB 5-2, 6-138
LDD 5-2, 6-139, 8-6
LDE 5-2, 6-140
LDED 5-2, 6-141
LDHI 6-142, 11-5
LDS 6-143
LDX 6-144
LDY 6-145
LDZ 6-146
LPSTOP 5-22, 6-147, 8-4, A-11
LSL 5-8
LSR 6-148
LSRA 6-149
LSRB 6-150
LSRD 6-151
LSRE 6-152
LSRW 6-153

–M–

MAC 6-154, 6-155, 11-1, 11-4
Memory

Organization 4-2
Microsequencer 7-3
Modes

Accumulator Offset 4-5
Background 5-23
Direct 4-6
Extended 4-5
Immediate 4-4
Indexed 4-5, 4-6
Inherent 4-5
Post-modified index 4-5
Relative 4-5
Saturate 3-4

Modulo addressing 2-1, 11-2
MOVB 5-2, 6-156
MOVW 5-2, 6-157
MUL 5-6, 6-158
Multiplexing 10-2
Multiply and accumulate

Multiplicand register 2-1
Multiplier register 2-1
Sign latch 2-1

–N–

NEG 5-7, 6-159, 8-7
NEGA 5-7, 6-160
NEGB 5-7, 6-161
NEGD 5-7, 6-162
NEGE 5-7, 6-163
NEGW 5-7, 6-164
NOP 6-165, 10-36
NULL 10-3
Null Operations 5-23
MOTOROLA CPU16

I-4 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

–O–

Opcode
Deterministic 10-1
Tracking 10-1

Operands
Byte order 3-11
Multiplicand 11-2
Multiplier 11-2

ORAA 5-8, 6-166
ORAB 5-8, 6-167
ORD 5-8, 6-168
ORE 5-8, 6-169
ORP 5-21, 5-23, 6-170, 9-14

–P–

PC 2-1
Pipeline 7-3, 10-1, A-4
PK 2-1, 2-2, 3-7
Program counter 2-1

extension field 2-1
Program flow

Changes A-5
PSHA 6-171, A-12
PSHB 6-172, A-12
PSHM 3-6, 6-173
PSHMAC 6-174, 11-10
PSHX A-9
PSHY A-10
PULA 6-175, A-12
PULB 6-176, A-12
PULM 3-6, 6-177
PULMAC 6-178, 11-10
PULX A-10
PULY A-10

–R–

R/W 3-10
RDMAC 10-25, 10-26
RDMEM 10-20, 10-31
Register

Notation 2-1
Registers 11-5

Address extension 2-1, 3-5
Concatenated 3-3
Condition code 2-1, 3-4
Condition code bits 2-2
Index 2-1, 3-3
MAC 3-5
Model 3-1
Multiply and Accumulate 2-1, 3-5
Result

Carry flag 3-4
Negative 3-4
Overflow flag 3-4
Zero 3-4

RESET 9-2, 9-8, 9-9
RMAC 6-179, 6-180, 11-7

ROL 6-181
ROLA 6-182
ROLB 6-183
ROLD 6-184
ROLE 6-185
ROLW 6-186
ROR 6-187
RORA 6-188
RORB 6-189
RORD 6-190
RORE 6-191
RORW 6-192
Routine

Interrupt 7-7
RPCSP 10-29
RPMEM 10-19, 10-20, 10-33
RREGM 10-21, 10-22
RTI 5-17, 6-193, 7-7, 9-15, A-12
RTS 5-17, 6-194, 7-7, A-13

–S–

Saturate mode 3-4
SBA 5-4, 6-195
SBCA 5-4, 6-196
SBCB 5-4, 6-197
SBCD 5-4, 6-198
SBCE 5-4
SDE 5-4
SEC A-10
SEI A-11
SEV A-11
Sign

Bit overflow 11-4
SIZ0 3-9
SIZ1 3-9
Size acknowledge 3-11
SK 2-1
SL 2-1
SM 2-2
SP 2-1
SPI 10-13
STAA 5-2, 6-199
STAB 5-2, 6-200
Stack

Frame A-7
Implementation 3-3
Manipulation 8-4
Pointer 2-1
Pointer (SP) 3-3

START 10-3
State Signals 10-3
STD 5-2, 6-201
STE 5-2, 6-202
STED 5-2, 6-203, 8-8
STOP 3-4, A-11
Stop Enable 3-4
STS 6-204
STX 6-205
STY 6-206
CPU16 MOTOROLA

REFERENCE MANUAL I-5

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STZ 6-207
SUBA 5-4, 6-208
SUBB 5-4, 6-209
SUBD 5-4, 6-210
SUBE 5-4, 6-211
Subroutines A-6
SWI 5-17, 6-212, 7-7, 9-2, 9-15, A-12
SXT 6-213

–T–

TAB 5-3, 6-214
TAP 5-21, 5-23, 6-215, A-12
TBA 5-3, 6-216
TBEK 6-217
TBSK 6-218
TBXK 6-219
TBYK 6-220
TBZK 6-221
TDE 5-3, 6-222
TDMSK 6-223, 11-5
TDP 5-21, 5-23, 6-224, 9-14
TED 5-3, 6-225
TEDM 6-226, 11-5
TEKB 3-6, 6-227
TEM 6-228
TMER 6-229, 11-4, 11-6
TMET 6-230, 11-6
TMXED 6-231, 11-6
TPA 6-232, A-13
TPD 6-233
TSKB 3-6, 6-234
TST 5-6, 6-235
TSTA 5-6, 6-236
TSTB 5-6, 6-237
TSTD 5-6, 6-238
TSTE 5-6, 6-239
TSTW 5-6, 6-240
TSX 3-6, 6-241, A-13
TSY 3-6, 6-242, A-13
TSZ 3-6, 6-243
TXKB 3-6, 6-244
TXS 3-6, 6-245, A-14
TXY 3-6, 6-246
TXZ 3-6, 6-247
TYKB 3-6, 6-248
TYS 3-6, 6-249, A-14
TYX 3-6, 6-250
TYZ 3-6, 6-251
TZKB 3-6, 6-252
TZS 3-6, 6-253
TZX 3-6, 6-254
TZY 3-6, 6-255

–W–

WAI 5-23, 6-256, A-13
WDMEM 10-20, 10-32
WPCSP 10-30
WPMEM 10-20, 10-34

WREGM 10-23, 10-24
WRMAC 10-27, 10-28

–X–

X 2-1
X mask 2-1
XGAB 5-3, 6-257
XGDE 5-3, 6-258
XGDX 6-259
XGDY 6-260
XGDZ 6-261
XGEX 6-262
XGEY 6-263
XGEZ 6-264
XK 2-1, 3-3
XMSK 2-1, 11-1

–Y–

Y 2-1
Y mask 2-1
YK 2-1, 3-3
YMSK 2-1, 11-1

–Z–

Z 2-1, 3-4
ZK 2-1, 3-3
MOTOROLA CPU16

I-6 REFERENCE MANUAL

For More Information On This Product,
 Go to: www.freescale.com

	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	SECTION 1 OVERVIEW
	SECTION 2 NOTATION
	2.1 Register Notation
	2.2 Condition Code Register Bits
	2.3 Condition Code Register Activity
	2.4 Condition Code Expressions
	2.5 Memory Addressing
	2.6 Addressing Modes
	2.7 Instruction Format
	2.8 Symbols and Operators
	2.9 Conventions

	SECTION 3 SYSTEM RESOURCES
	3.1 General
	3.2 Register Model
	Figure 3-1 CPU16 Register Model
	3.2.1 Accumulators
	3.2.2 Index Registers
	3.2.3 Stack Pointer
	3.2.4 Program Counter
	3.2.5 Condition Code Register
	Figure 3-2 Condition Code Register

	3.2.6 Address Extension Register and Address Exten...
	3.2.7 Multiply and Accumulate Registers

	3.3 Memory Management
	3.3.1 Address Extension
	3.3.2 Extension Fields
	3.3.2.1 Using Accumulator B to Modify Extension Fi...
	3.3.2.2 Using Stack Pointer Transfer to Modify Ext...
	3.3.2.3 Using Index Register Exchange to Modify Ex...
	3.3.2.4 Stacking Extension Field Values
	3.3.2.5 Adding Immediate Data to Registers

	3.3.3 Program Counter Address Extension
	3.3.3.1 Effect of Jump Instructions on PK : PC
	3.3.3.2 Effect of Branch Instructions on PK : PC

	3.3.4 Effective Addresses and Extension Fields
	Table 3-1 Operations that Cross Bank Boundaries

	3.4 Intermodule Bus
	3.5 External Bus Interface
	3.5.1 Bus Control Signals
	3.5.1.1 Function Codes
	Table 3-2 Address Space Encoding
	3.5.1.2 Size Signals
	Table 3-3 Size Signal Encoding
	3.5.1.3 Read/Write Signal

	3.5.2 Address Bus
	3.5.3 Data Bus
	3.5.4 Bus Cycle Termination Signals
	3.5.5 Data Transfer Mechanism
	3.5.5.1 Dynamic Bus Sizing
	Table 3-4 Effect of DSACK Signals
	Figure 3-3 Operand Byte Order
	3.5.5.2 Operand Alignment
	Table 3-5 Operand Alignment
	3.5.5.3 Misaligned Operands

	SECTION 4 DATA TYPES AND ADDRESSING MODES
	4.1 Data Types
	4.2 Memory Organization
	Figure 4-1 Data Types and Memory Organization

	4.3 Addressing Modes
	Table 4-1 Addressing Modes
	4.3.1 Immediate Addressing Modes
	4.3.2 Extended Addressing Modes
	4.3.3 Indexed Addressing Modes
	4.3.4 Inherent Addressing Mode
	4.3.5 Accumulator Offset Addressing Mode
	4.3.6 Relative Addressing Modes
	4.3.7 Post-Modified Index Addressing Mode
	4.3.8 Use of CPU16 Indexed Mode to Replace M68HC11...

	SECTION 5 INSTRUCTION SET
	5.1 General
	5.2 Data Movement Instructions
	5.2.1 Load Instructions
	Table 5-1 Load Summary

	5.2.2 Move Instructions
	Table 5-2 Move Summary

	5.2.3 Store Instructions
	Table 5-3 Store Summary

	5.2.4 Transfer Instructions
	Table 5-4 Transfer Summary

	5.2.5 Exchange Instructions
	Table 5-5 Exchange Summary

	5.3 Mathematic Instructions
	5.3.1 Addition and Subtraction Instructions
	Table 5-6 Addition Summary
	Table 5-7 Subtraction Summary
	Table 5-8 Arithmetic Operations

	5.3.2 Binary Coded Decimal Instructions
	Table 5-9 BCD Summary
	Table 5-10 DAA Function Summary

	5.3.3 Compare and Test Instructions
	Table 5-11 Compare and Test Summary

	5.3.4 Multiplication and Division Instructions
	Table 5-12 Multiplication and Division Summary

	5.3.5 Decrement and Increment Instructions
	Table 5-13 Decrement and Increment Summary

	5.3.6 Clear, Complement, and Negate Instructions
	Table 5-14 Clear, Complement, and Negate Summary

	5.3.7 Boolean Logic Instructions
	Table 5-15 Boolean Logic Summary

	5.4 Bit Test and Manipulation Instructions
	Table 5-16 Bit Test and Manipulation Summary

	5.5 Shift and Rotate Instructions
	Table 5-17 Logic Shift Summary
	Table 5-18 Arithmetic Shift Summary
	Table 5-19 Rotate Summary

	5.6 Program Control Instructions
	5.6.1 Short Branch Instructions
	Table 5-20 Short Branch Summary (Continued)

	5.6.2 Long Branch Instructions
	Table 5-21 Long Branch Instructions

	5.6.3 Bit Condition Branch Instructions
	Table 5-22 Bit Condition Branch Summary

	5.6.4 Jump Instruction
	Table 5-23 Jump Summary

	5.6.5 Subroutine Instructions
	Table 5-24 Subroutine Summary

	5.6.6 Interrupt Instructions
	Table 5-25 Interrupt Summary

	5.7 Indexing and Address Extension Instructions
	5.7.1 Indexing Instructions
	Table 5-26 Indexing Summary (Continued)

	5.7.2 Address Extension Instructions
	Table 5-27 Address Extension Summary

	5.8 Stacking Instructions
	Table 5-28 Stacking Summary

	5.9 Condition Code Instructions
	Table 5-29 Condition Code Summary

	5.10 Digital Signal Processing Instructions
	Table 5-30 DSP Summary (Continued)

	5.11 Stop and Wait Instructions
	Table 5-31 Stop and Wait Summary

	5.12 Background Mode and Null Operations
	Table 5-32 Background Mode and Null Operations

	5.13 Comparison of CPU16 and M68HC11 Instruction S...
	Table 5-33 CPU16 Implementation of M68HC11 Instruc...

	SECTION 6 INSTRUCTION GLOSSARY
	6.1 Assembler Syntax
	Table 6-1 Standard Assembler Formats

	6.2 Instructions
	Figure 6-1 Typical Instruction Glossary Entry
	Table 6-2 Branch Instruction Summary (8-Bit Offset...
	Table 6-3 Branch Instruction Summary (8-Bit Offset...
	Table 6-4 Branch Instruction Summary (8-Bit Offset...
	Table 6-5 Branch Instruction Summary (8-Bit Offset...
	Table 6-6 Branch Instruction Summary (8-Bit Offset...
	Table 6-7 Branch Instruction Summary (8-Bit Offset...
	Table 6-8 Branch Instruction Summary (8-Bit Offset...
	Table 6-9 Branch Instruction Summary (8-Bit Offset...
	Table 6-10 Branch Instruction Summary (8-Bit Offse...
	Table 6-11 Branch Instruction Summary (8-Bit Offse...
	Table 6-12 Branch Instruction Summary (8-Bit Offse...
	Table 6-13 Branch Instruction Summary (8-Bit Offse...
	Table 6-14 Branch Instruction Summary (8-Bit Offse...
	Table 6-15 Branch Instruction Summary (8-Bit Offse...
	Table 6-16 Branch Instruction Summary (8-Bit Offse...
	Table 6-17 Branch Instruction Summary (8-Bit Offse...
	Table 6-18 DAA Function Summary
	Table 6-19 Branch Instruction Summary (16-Bit Offs...
	Table 6-20 Branch Instruction Summary (16-Bit Offs...
	Table 6-21 Branch Instruction Summary (16-Bit Offs...
	Table 6-22 Branch Instruction Summary (16-Bit Offs...
	Table 6-23 Branch Instruction Summary (16-Bit Offs...
	Table 6-24 Branch Instruction Summary (16-Bit Offs...
	Table 6-25 Branch Instruction Summary (16-Bit Offs...
	Table 6-26 Branch Instruction Summary (16-Bit Offs...
	Table 6-27 Branch Instruction Summary (16-Bit Offs...
	Table 6-28 Branch Instruction Summary (16-Bit Offs...
	Table 6-29 Branch Instruction Summary (16-Bit Offs...
	Table 6-30 Branch Instruction Summary (16-Bit Offs...
	Table 6-31 Branch Instruction Summary (16-Bit Offs...
	Table 6-32 Branch Instruction Summary (16-Bit Offs...
	Table 6-33 Branch Instruction Summary (16-Bit Offs...
	Table 6-34 Branch Instruction Summary (16-Bit Offs...

	6.3 Condition Code Evaluation
	Table 6-35 Condition Code Evaluation

	6.4 Instruction Set Summary
	Table 6-36 Instruction Set Summary (Continued)

	SECTION 7 INSTRUCTION PROCESS
	7.1 Instruction Format
	Table 7-1 Basic Instruction Formats

	7.2 Execution Model
	Figure 7-1 Instruction Execution Model
	7.2.1 Microsequencer
	7.2.2 Instruction Pipeline
	7.2.3 Execution Unit

	7.3 Execution Process
	7.3.1 Detailed Process
	7.3.2 Changes in Program Flow
	7.3.2.1 Jumps
	7.3.2.2 Branches
	7.3.2.3 Subroutines
	7.3.2.4 Interrupts
	Table 7-2 Page 0 Opcodes (Continued)
	Table 7-3 Page 1 Opcodes (Continued)
	Table 7-4 Page 2 Opcodes (Continued)
	Table 7-5 Page 3 Opcodes (Continued)

	SECTION 8 INSTRUCTION TIMING
	8.2 Program and Operand Access Time
	Table 8-1 Access Bus Cycles
	8.2.1 Program Accesses
	8.2.2 Operand Accesses
	8.2.2.1 Regular Instructions
	8.2.2.2 Read-Modify-Write Instructions
	8.2.2.3 Change-of-Flow Instructions
	Table 8-2 Change-of-Flow Instruction Timing
	8.2.2.4 Stack Manipulation Instructions
	Table 8-3 Stack Manipulation Timing
	8.2.2.5 Stop and Wait Instructions
	Table 8-4 Stop and Wait Timing
	8.2.2.6 Move Instructions
	Table 8-5 Move Timing
	8.2.2.7 Multiply and Accumulate Instructions
	Table 8-6 MAC Timing

	8.3 Internal Operation Time
	8.4 Calculating Execution Times for Slower Accesse...
	8.5 Examples
	8.5.1 LDD (Load D) Instruction
	8.5.1.1 LDD IND8, X
	8.5.1.2 LDD IND8, X
	8.5.1.3 LDD IND8, X

	8.5.2 NEG (Negate) Instruction
	8.5.2.1 NEG EXT
	8.5.2.2 NEG EXT
	8.5.2.3 NEG EXT

	8.5.3 STED (Store Accumulators E and D) Instructio...
	8.5.3.1 STED EXT
	8.5.3.2 STED EXT

	SECTION 9 EXCEPTION PROCESSING
	9.1 Definition of Exception
	9.2 Exception Vectors
	Table 9-1 Exception Vector Table

	9.3 Types of Exceptions
	9.4 Exception Stack Frame
	Figure 9-1 Exception Stack Frame Format

	9.5 Exception Processing Sequence
	Figure 9-2 (Sheet 1 of 5) Exception Processing Flo...
	Figure 9-2 (Sheet 2 of 5) Exception Processing Flo...
	Figure 9-2 (Sheet 3 of 5) Exception Processing Flo...
	Figure 9-2 (Sheet 4 of 5) Exception Processing Flo...
	Figure 9-2 (Sheet 5 of 5) Exception Processing Flo...

	9.6 Multiple Exceptions
	9.7 Processing of Specific Exceptions
	9.7.1 Asynchronous Exceptions
	9.7.1.1 Processor Reset (RESET)
	Figure 9-3 RESET Vector
	9.7.1.2 Bus Error (BERR)
	9.7.1.3 Breakpoint Exception (BKPT)
	9.7.1.4 Interrupts

	9.7.2 Synchronous Exceptions
	9.7.2.1 Illegal Instructions
	9.7.2.2 Division By Zero
	9.7.2.3 BGND Instruction
	9.7.2.4 SWI Instruction

	9.8 Return from Interrupt (RTI)

	SECTION 10 DEVELOPMENT SUPPORT
	10.1 Deterministic Opcode Tracking
	10.1.1 Instruction Pipeline
	Figure 10-1 Instruction Execution Model

	10.1.2 IPIPE0/IPIPE1 Multiplexing
	Table 10-1 IPIPE0/IPIPE1 Encoding
	Figure 10-2 IPIPE DEMUX Logic

	10.1.3 Pipeline State Signals
	10.1.3.1 NULL — No Instruction Pipeline Activity
	10.1.3.2 START — Instruction Start
	10.1.3.3 ADVANCE — Instruction Pipeline Advance
	10.1.3.4 FETCH — Instruction Fetch
	10.1.3.5 EXCEPTION — Exception Processing in Progr...
	10.1.3.6 INVALID — PHASE1/PHASE2 Signal Invalid

	10.1.4 Combining Opcode Tracking with Other Capabi...
	10.1.5 CPU16 Instruction Pipeline State Signal Flo...

	10.2 Breakpoints
	Figure 10-3 (Sheet 1 of 3) Instruction Pipeline Fl...
	Figure 10-3 (Sheet 2 of 3) Instruction Pipeline Fl...
	Figure 10-3 (Sheet 3 of 3) Instruction Pipeline Fl...

	10.3 Opcode Tracking and Breakpoints
	10.4 Background Debug Mode (BDM)
	Figure 10-4 In-Circuit Emulator Configuration
	Figure 10-5 Bus State Analyzer Configuration
	10.4.1 Enabling BDM
	Figure 10-6 Sample BDM Enable Circuit
	Figure 10-7 BDM Enable Waveforms

	10.4.2 BDM Sources
	Table 10-2 BDM Source Summary
	10.4.2.1 BKPT Signal
	10.4.2.2 BGND Instruction
	10.4.2.3 Microcontroller Module Breakpoints
	10.4.2.4 Double Bus Fault

	10.4.3 BDM Signals
	Table 10-3 BDM Signals

	10.4.4 Entering BDM
	10.4.5 Command Execution
	Figure 10-8 BDM Command Flow Diagram

	10.4.6 Returning from BDM
	10.4.7 BDM Serial Interface
	Figure 10-9 BDM Serial I/O Block Diagram
	Figure 10-10 Serial Data Word Format
	Table 10-4 CPU Generated Message Encoding
	10.4.7.1 CPU Serial Logic
	Figure 10-11 Serial Interface Timing Diagram
	10.4.7.2 Development System Serial Logic
	Figure 10-12 BKPT Timing for Single Bus Cycle
	Figure 10-13 BKPT Timing for Forcing BDM
	Figure 10-14 BKPT/DSCLK Logic Diagram

	10.4.8 BDM Command Format
	10.4.9 Command Sequence Diagram
	Figure 10-15 Command Sequence Diagram Example

	10.4.10 BDM Command Set
	Table 10-5 Command Summary
	10.4.10.1 BDM Memory Commands and Bus Errors

	10.4.11 Future Commands
	10.4.12 Recommended BDM Connection
	Figure 10-16 BDM Connector Pinout

	SECTION 11 DIGITAL SIGNAL PROCESSING
	11.1 General
	11.2 Digital Signal Processing Hardware
	Figure 11-1 MAC Unit Register Model

	11.3 Modulo Addressing
	11.4 MAC Data Types
	Figure 11-2 MAC Data Types

	11.5 MAC Accumulator Overflow
	11.5.1 Extension Bit Overflow
	Table 11-1 AM Values and Effect on EV

	11.5.2 Sign Bit Overflow

	11.6 Data Saturation
	Table 11-2 Saturation Values

	11.7 DSP Instructions
	11.7.1 Initialization Instructions
	11.7.1.1 LDHI — Load Registers H and I
	11.7.1.2 TDMSK — Transfer D to XMSK:YMSK
	11.7.1.3 TEDM — Transfer E and D to AM
	11.7.1.4 TEM — Transfer E to AM

	11.7.2 Transfer Instructions
	11.7.2.1 TMER — Transfer AM to E Rounded
	11.7.2.2 TMET — Transfer AM to E Truncated
	11.7.2.3 TMXED — Transfer AM to IX : E : D
	11.7.2.4 LDED/STED — Long Word Load and Store Inst...

	11.7.3 Multiplication and Accumulation Instruction...
	11.7.3.1 MAC — Multiply and Accumulate
	11.7.3.2 RMAC — Repeating Multiply and Accumulate
	11.7.3.3 FMULS — Signed Fractional Multiply
	11.7.3.4 ACED — Add E: D to AM
	11.7.3.5 ACE — Add E to AM

	11.7.4 Bit Manipulation Instructions
	11.7.4.1 ASLM — Arithmetic Shift Left AM
	11.7.4.2 ASRM — Arithmetic Shift Right AM
	11.7.4.3 CLRM — Clear AM

	11.7.5 Stacking Instructions
	11.7.5.1 PSHMAC — Push MAC Registers
	11.7.5.2 PULMAC — Pull MAC Registers

	11.7.6 Branch Instructions
	11.7.6.1 LBEV — Long Branch if EV Set
	11.7.6.2 LBMV — Long Branch if MV Set

	APPENDIX A COMPARISON OF CPU16/M68HC11 CPU ASSEMBL...
	A.1 Introduction
	A.2 Register Models
	Figure A-1 M68HC11 CPU Registers
	Figure A-2 M68HC11 CPU Condition Code Register
	Figure A-3 CPU16 Registers
	Figure A-4 CPU16 Condition Code Register

	A.3 CPU16 Instruction Formats and Pipelining Mecha...
	A.3.1 Instruction Format
	A.3.2 Execution Model
	A.3.2.1 Microsequencer
	A.3.2.2 Instruction Pipeline
	A.3.2.3 Execution Unit

	A.3.3 Execution Process
	A.3.4 Changes in Program Flow
	A.3.4.1 Jumps
	A.3.4.2 Branches
	A.3.4.3 Subroutines
	A.3.4.4 Interrupts
	A.3.4.5 Interrupt Priority

	A.3.5 Stack Frame
	Figure A-5 CPU16 Stack Frame Format

	A.4 Functionally Equivalent Instructions
	A.4.1 BHS
	A.4.2 BLO
	A.4.3 CLC
	A.4.4 CLI
	A.4.6 DES
	A.4.7 DEX
	A.4.8 DEY
	A.4.9 INS
	A.4.10 INX
	A.4.11 INY
	A.4.12 PSHX
	A.4.13 PSHY
	A.4.14 PULX
	A.4.15 PULY
	A.4.16 SEC
	A.4.17 SEI
	A.4.18 SEV
	A.4.19 STOP (LPSTOP)

	A.5 Instructions that Operate Differently
	A.5.1 BSR
	A.5.2 JSR
	A.5.3 PSHA, PSHB
	A.5.4 PULA, PULB
	A.5.5 RTI
	A.5.6 SWI
	A.5.7 TAP
	A.5.7.1 M68HC11 CPU Implementation:
	A.5.7.2 CPU16 Implementation:

	A.5.8 TPA
	A.5.8.1 M68HC11 CPU Implementation:
	A.5.8.2 CPU16 Implementation:

	A.5.9 WAI

	A.6 Instructions With Transparent Changes
	A.6.1 RTS
	A.6.2 TSX
	A.6.3 TSY
	A.6.4 TXS
	A.6.5 TYS

	A.7 Unimplemented Instructions
	A.7.1 TEST

	A.8 Addressing Mode Differences
	A.8.1 Extended Addressing Mode
	A.8.2 Indexed Addressing Mode
	A.8.3 Post-Modified Index Addressing Mode
	A.8.4 Use of CPU16 Indexed Mode to Replace M68HC11...
	Table A-1 M68HC16 Implementation of M68HC11 Instru...

	APPENDIX B MOTOROLA ASSEMBLER SYNTAX
	INDEX

