

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More I
 Go

n
c

..
.

C-5 Network ProcessorC-5 Network ProcessorC-5 Network ProcessorC-5 Network Processor
Architecture GuideArchitecture GuideArchitecture GuideArchitecture Guide
C-5 NP D0 Release

nformation On This Product,
to: www.freescale.com

C-Port Corporation
120 Water Street
N. Andover, MA
01845

www.cportcorp.com

Copyright © 2001 C-Port Corporation. All rights reserved. No part of this
documentation may be reproduced in any form or by any means or used to make any
derivative work (such as translation, transformation, or adaptation) without written
permission from C-Port Corporation.

C-Port Corporation reserves the right to revise this documentation and to make changes
in content from time to time without obligation on the part of C-Port Corporation to
provide notification of such revision or change.

C-Port Corporation provides this documentation without warranty, term, or condition of
any kind, either implied or expressed, including, but not limited to, the implied warranties,
terms or conditions of merchantability, satisfactory quality, and fitness for a particular
purpose. C-Port may make improvements or changes in the product(s) and/or the
program(s) described in this documentation at any time.

Unless otherwise indicated, C-Port registered trademarks are registered in the United
States and may or may not be registered in other countries.

C-5, C-Port, the C-Port logo, and C-Ware are trademarks of C-Port Corporation.

Other Trademarks
Adobe and Acrobat are registered trademarks of Adobe Systems, Inc. DigitalDNA and The
Heart of Smart are trademarks and Motorola is a registered trademark of Motorola, Inc.
Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
MIPS is a trademark of MIPS Technologies, Inc. Pentium is a registered trademark of Intel
Corporation. PowerPC is a trademark of International Business Machines Corporation and
used under license therefrom. Solaris is a trademark of Sun Microsystems, Inc. VxWorks,
Tornado, and Wind River Systems are registered trademarks or service marks of Wind River
Systems, Inc. TeraChannel is a registered trademark of Power X Networks, Inc.PRIZMA-E
and PRIZMA-EP are trademarks of IBM, Inc. All other company and product names may be
trademarks of their respective companies.

Document Part Number and Publication Date
Part Number: C5NPD0-AG/D
May 31, 2001

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Contents

 About This Guide
Guide Overview . 35
Using C-Port Electronic Documents . 37
Guide Conventions . 38
Revision History . 39

Related User Documentation . 40

CHAPTER 1 Introduction
Chapter Overview . 41
C-5 NP Architecture Overview . 42

Highly-Integrated Architecture . 42
C-5 NP Modes of Operation . 43

Single Channel Mode . 43

Pipeline Channel Mode . 43
Aggregate Channel Mode . 43

C-5 NP Supported Interfaces . 43
Major Components of the C-5 NP . 44
C-5 NP Interconnect Components . 45

Other Supported Features . 45
C-5 NP Block Diagram and Flow Process . 46

Cell and Packet Forwarding Overview . 47
Receiving Packets . 47

Transmitting Packets . 48
C-5 NP Address Mapping . 50

Configuration Register Definitions . 52
Processor Base Address Offsets . 52
Configuration Register Address Offsets . 53

Byte Ordering . 53

For More Information On This Product,

 Go to: www.freescale.com

4 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CHAPTER 2 Channel Processors
Chapter Overview . 55

Channel Processors (CPs) Overview . 56
CP Major Components . 56

Serial Data Processors (SDPs) Overview . 58
Supported External Interfaces . 58
SDPs Functions . 59

SDPs Major Components . 61
Common Components of the Programmable Processors . 62
RxSDP Detail Operations . 64

8b/10b Decode Configurable Logic Block . 64
RxSmallFIFO Configurable Logic Block . 65

RxBit Programmable Processor . 65
RxSONET Framer Configurable Logic Block . 66
RxSync Programmable Processor . 66
RxLargeFIFO Configurable Logic Block . 67
RxByte Programmable Processor . 67

TxSDP Detail Operations . 68
TxByte Programmable Processor . 68
TxLargeFIFO Configurable Logic Block and Options . 69

Automatic Idle Cell and PPP Flag Insertion Option . 69

Transmit FIFO High Water Mark Option . 69
TxSONET Framer Configurable Logic Block . 70
TxBit Programmable Processor . 71
TxSmallFIFO Configurable Logic Block . 71
8b/10b Encode Configurable Logic Block . 72

Configuration for Recirculation Operations Using RxSDP and TxSDP . 72
CP RISC (CPRC) Overview . 75

RISC Instruction Set Supported . 75
Fast Context Switching Configuration Using the CPRC . 77
Fast Context Switching Detail Operations . 78

Interrupts . 79
CP Memory (IMEM and DMEM) . 80

Instruction Memory (IMEM) . 80
Data Memory (DMEM) . 81

CP Memory Interface Transactions . 82

DataScope Purpose . 85
Data Scope Detail Operations . 86

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 5

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Configuration Space . 87
Address Mapping of the CPs . 87
Understanding CP Functions . 89

Extract Space . 89
Merge Space . 90
Control Block Registers . 91

Write Control Blocks (WrCB0_ , WrCB1_) . 91

Read Control Blocks (RdCB0_ , RdCB1_) . 95
SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_) 98
SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_) 102

Ring Bus Registers . 106
Ring Bus Transmit (Tx) Messages Registers . 106

Ring Bus (Rx) Receive Message Registers . 107
Ring Bus Receive (Rx) Response Registers . 108

SDP Control and Status Registers . 109
Miscellaneous Control Registers . 110

Event Registers . 110

Interrupt Access . 113
Queue Status Registers . 113
Cycle Counter . 114
Event Timer . 114

Understanding Block Moves of Data . 115

External Handling Overview . 115
Internal Handling Overview . 116
Using Multi-Use Control Blocks to Achieve Different Functions . 117

CHAPTER 3 Executive Processor
Chapter Overview . 121
Executive Processor (XP) Overview . 122

XP Major Components . 122

XP RISC (XPRC) Overview . 125
XPRC Instruction Set . 125
XPRC Registers . 125
Context Switching . 126

Interrupts . 127
Hardware Programming Resources . 129
Event Registers . 129

XP Memory (IMEM and DMEM) . 130
Instruction Memory . 130

For More Information On This Product,

 Go to: www.freescale.com

6 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Data Memory . 130
SDRAM . 130
IROM . 131

XP Supported Interfaces . 132
PCI Bus Interface . 132

PCI Access to C-5 NP Physical Address Space . 133
C-5 NP Access to PCI Address Space . 133

PCI Registers . 134
PROM Interface . 134
Serial Bus Interface . 136

C-5 NP Interface Options for Initialization . 137
Using the PCI Interface Initialization Option . 137

Using the PROM Interface Initialization Option . 137
Other XP Interfaces . 138
XP Configuration Space . 140

CHAPTER 4 Fabric Processor
Chapter Overview . 145
Fabric Processor (FP) Overview . 146

Terminology . 146

FP Block Diagram . 147
Multiple C-5 NP Configurations . 147

General FP specifications . 148
Fabric Processor Transmit (FPTx) . 149

Transmission Sequencing . 151

Descriptor Format . 152
Reading the Payload . 153
Microcode Generation of Headers . 153

FP Tx Microcoding . 154
External test conditions . 154

datascope . 154
Performance Requirement . 155
Header Inputs . 155

TxByte Processor Registers . 156

Merge Space . 157
Weighting Algorithm . 159

Example 1: . 159
Example 2: . 160

Error Reporting and Interrupts . 160

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 7

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Descriptor (QMU) Parity Error . 161
Buffer (BMU) Read Error . 161
Write (BMU) Error . 161

Dequeue (QMU) Failure . 162
Fabric Processor Receive (FPRx) . 163

Header and Payload Splitting . 165
Buffer Pool Configuration, BTag Allocation, and Buffer . 166

Storing the Payload . 167
Microcode Processing of Headers . 168

External Test Conditions . 171
Datascope . 172
Performance Requirement . 172

Setting Up Control Information . 173
Writing to Extract Space . 174
TLU Lookups . 174
TLU Lookup Programming Guidelines . 175
General Purpose Registers . 176

Discarding Segments . 176
Token Passing . 177
Rx Drop Mode . 177

Descriptor Build Engine Microcoding . 178
Descriptor Build Sequence Programming . 178

Extract and Response . 178
Handling TLU Errors . 179
Alignment . 181
Bit shift operation . 183

Enqueuing . 183
Interrupts . 183

Error Status FIFO Full . 184
Parity Error . 184
No BTags available on allocate . 184

Buffer Write Errors . 184
BTag Programming Error . 184
BTag ECC Error . 184
BTag Allocation Retry Timeout . 184

Error Handling and Statistics . 184

Enqueue Failures . 185
Segment Sequencing Errors . 185
Parity and CRC Errors . 185

For More Information On This Product,

 Go to: www.freescale.com

8 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP Functionality . 187
Initialization . 187

Accessing the Tx Flow Control CAM . 187

Accessing the FP Rx Descriptor Build Engine Write Control Store (WCS), Byte Proces-
sor WCSs, and Byte Processor CAMs . 188

Accessing the FP TxByte Processor WCSs and CAMs . 188
Accessing FP Rx WCSs and CAMs . 188

Fabric to C-5 NP Link-Level Flow Control . 192

C-5 NP to Fabric Link-Level Flow Control . 192
Latency . 192

Fabric to C-5 NP Per-Queue Flow Control . 193
C-5 NP to Fabric Per-Queue Flow Control . 194
Descriptor Sizes . 195

CRC . 195
Endianness (Byte and Bit Ordering) . 195

Big Endian Byte Ordering on Data Pins 31:0 . 196
Little Endian Byte Ordering on Data Pins 31:0 . 196

Debugging and Test Features . 196

1. Debug MUX . 196
2. FP Rx Statistics Registers . 196
3. Internal Debug State Registers . 196
4. Accessing FP Memories . 196

Writing and Reading the Rx PDU ID CAM . 197

Writing and Reading the Rx Flow Table and Descriptor Memory 197
Writing and Reading the Tx Flow Table . 198
Writing and Reading Merge Space . 198
Writing and Reading DMEMs . 198

Reading TLU Responses . 198
Fabric Interface Configuration and Operation . 199

FP Payload Bus Bandwidth . 199
Network Processor-to-Network Processor Operation (Back to back) 199
FP Interface Modes . 199

Utopia Modes . 199
C-5 NP Utopia Operation . 200

Utopia 3 . 201
General Compliance . 201

Control Signals . 201

TxClav Specification . 202
TxEnb Specification . 202

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 9

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSOC Specification . 202
RxClav Specification . 202
RxEnb Specification . 203

RxSOC Specification . 203
Utopia 2 . 203

General . 203
Control signals . 204

TxClav Specification . 204
TxEnb Specification . 204
TxSOC Specification . 205
RxClav Specification . 205
RxEnb Specification . 205

RxSOC Specification . 205
PRIZMA Mode . 206

Configuring for PRIZMA Mode . 208
PowerX Mode . 209

Constraints . 209

Requirements . 209
Byte Processor Unloading . 210

CHAPTER 5 Buffer Management Unit
Chapter Overview . 213
Buffer Management Unit (BMU) Overview . 214

BMU Major Components . 214
BMU Physical Memory Organization . 216

Out-of-Band Bits . 217
SECDED ECC Support . 217

BMU Buffer Memory Organization . 218
Buffer Pools . 218
Buffers . 218

Buffer Tags (BTags) . 218
Storage Space (SDRAM Partitions) . 218

Buffer Access . 219
Types of Transactions . 221

Buffer Memory Transactions . 224
Using Wr/Rd Control Blocks for Payload Transactions . 224
Using Rx/Tx Control Blocks for Payload Transactions . 224

Read/Write Ordering . 224
Unaligned Buffers . 224

For More Information On This Product,

 Go to: www.freescale.com

10 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag Management Transactions . 226
BTag Transaction Functions (Operation and Examples) . 226

BTag Initialization Operation . 226

BTag Initialization Example . 227
BTag Allocation Operation . 229
BTag Allocation Example . 229
BTag Deallocation Operation . 231

BTag Deallocation Example . 231
Multi-Use Counter (MUC) Management Transactions . 233

MUC Transaction Functions (Operation and Examples) . 234
MUC Allocation Operation . 234
MUC Allocation Example . 234

MUC Decrement Operation . 236
MUC Decrement Example . 236
MUC Read Operation . 238
MUC Read Example . 238

BMU Configuration Space . 240

Test and Debug Registers . 241
Memory Error Reporting . 241
ECC Test Modes . 242
Debug Register . 242

BMU Setup . 243

CHAPTER 6 Table Lookup Unit
Chapter Overview . 245

Table Lookup Unit (TLU) Overview . 246
TLU Major Components . 247

TLU Flow Process . 248
TLU Flow Process Details . 248

Ring Bus Interface and Command Parser . 248

Initial Index Generation . 249
Address Generation . 249
Compare Register Fetch . 249
SRAM Data Latch . 249

Index Generation . 250
SRAM Controller . 250

TLU Supported Table Types . 251
TLU Table Mapping . 253

Mapping Virtual Tables to Physical Tables . 253

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 11

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Commands Overview . 255
TLU Command Parameters . 256
Detail TLU Commands . 257

Write Command . 257
Write Command Format . 258
Write Command Data Alignment Rules . 259
Write Command Returned Data . 259

Write Command Error Types . 259
Read Command . 260

Read Command Format . 260
Read Command Data Alignment Rules . 261
Read Command Returned Data . 261

Read Command Error Types . 261
Find Command . 262

Find Command Format . 262
Find Command Data Alignment Rules . 263
Find Command Returned Data . 263

Find Command Error Types . 263
Findw Command . 264

Findw Command Format . 264
Findw Command Data Alignment Rules . 265
Findw Command Returned Data . 265

Findw Command Error Types . 265
Findr Command . 266

Findr Command Format . 266
Findr Command Data Alignment Rules . 267

Findr Command Returned Data . 267
Findr Command Error Types . 267

Add Command . 268
Add Command Format . 268
Add Command Data Alignment Rules . 269

Add Command Returned Data . 269
Add Command Error Types . 269

XOR Command . 270
XOR Command Format . 270
XOR Command Data Alignment Rules . 271

XOR Command Returned Data . 271
XOR Command Error Types . 271

CRC Mode (Using the Non-zero XOR Command Options) . 272

For More Information On This Product,

 Go to: www.freescale.com

12 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CRC Mode Flow . 273
CRC Mode Data Alignment Rules . 273
CRC Mode Returned Data . 273

CRC Mode Error Types . 273
Write Register Command . 274

WriteReg Command Format . 274
WriteReg Command Data Alignment Rules . 274

WriteReg Command Returned Data . 274
WriteReg Command Error Types . 274

Read Register Command . 275
ReadReg Command Format . 275
ReadReg Command Data Alignment Rules . 275

ReadReg Command Returned Data . 275
ReadReg Command Error Types . 275

Echo Command . 276
Echo Command Format . 276
Echo Command Data Alignment Rules . 276

Echo Command Returned Data . 276
Echo Command Error Types . 276

No-Operation (NOP) Command . 277
Data Alignment Rules for NOP Commands . 277
Returned Data for NOP Commands . 277

Error Types for NOP Commands . 277
TLU Configuration and Status Registers . 278

TLU Registers . 278
CRC-32_Checkvalue Register . 279

CRC-32_FCS_Correction_Table_Base_Address Register . 280
TLU_Statistics Register . 280
Table_Configuration1 Register . 281
Table_Configuration2_Lower Register . 283

Start Byte Field Usage Based on Table Type . 283

Table_Configuration2_Upper Register . 284
Virtual_Table_Configuration Register . 284
Lookup_Algorithm_Configuration1 Register . 285
Lookup_Algorithm_Configuration2 Register . 287

TLU Format and Examples of Table Types . 288

Indexed Pointer Tables . 288
Index Pointer Data Entry Format . 289

Hash Tables . 290

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 13

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Calculating Collisions . 290
TLU Hash Function . 290
Hash Data Entry Format . 291

Trie Tables . 292
Trie Data Entry Format . 292

Variable Prefix (VP) Trie Tables . 296
Variable Prefix (VP) Tries Data Entry Format . 297

Key Tables . 301
Key Data Entry Format . 301

Data Tables . 302
External Tables . 302

TLU Application Considerations . 304

TLU/Ring Bus Control Register Response Slot Usage . 304
TLU Performance . 305
Table Sizing Examples . 306

Bridge Address Table Sizing Example . 306
IP Routing Table Sizing Example . 306

TLU Special Applications . 307
Using the RxByte Processor for Long Lookups . 307

Long Lookup Example for an Ethernet Application . 309
Ethernet Application Example Implementation Notes . 310

Partial CRC-32 Support . 310

Partial CRC-32 Data Entry Format . 311
Partial CRC-32 General Setup . 311
Partial CRC-32 Rx Setup and Operation . 311
Partial CRC-32 Tx Setup and Operation . 312

CHAPTER 7 Queue Management Unit
Chapter Overview . 315
Queue Management Unit (QMU) Overview . 316

Payload Descriptors Enqueued to the QMU . 316
Used-Defined Inter-processor Messages Enqueued to the QMU . 316
QMU Major Components . 317

QMU Flow Process . 320

Flow Details for CPs/XP Inputs and FP Inputs . 320
CPs and XP Input Flow . 320
FP Input Flow . 320

Queue Organization . 322
External SRAM . 322

For More Information On This Product,

 Go to: www.freescale.com

14 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Descriptor Buffer . 322
Dynamic Descriptor Pools . 322
Dynamic Descriptor Usage Limit Pooln . 323

Internal SRAM . 324
QMU Variables . 326
Queue Mapping and Parameter Characteristics . 328

Queue to Processor Mapping . 328

Queue to Processor Mapping Rules . 329
Queue Length Allowance and Length Limit Parameters . 330

Queuing Operations . 332
QMU Run Enable . 332
Enqueue Operation . 332

Payload (Wr/Rd) Servicing Order During Enqueue Operation . 332
Causes of Enqueue Failure . 333

Dequeue Operation . 333
Queue Servicing Policy During Dequeuing Operation . 333
Causes of Dequeue Failures . 334

Status Reporting . 334
Mailbox Availability and Status Reporting of Mailboxes . 334
Queue Status Information . 335

Queue Empty to Non-empty State Notification Process Information 335
Dequeue Status Information . 336

Buffer Management Information . 336
Types of Transactions . 337
Queue Management Transactions . 340

Queue Transaction Functions (Operation and Examples) . 340

Configure Queue Operation . 340
Configure Queue Example . 340
Queue Status Operation . 342
Queue Status Example . 342
Unicast Enqueue Operation . 344

Unicast Enqueue Example . 344
Multicast Enqueue Operation . 346
Multicast Enqueue Example . 346
Dequeue Operation . 348
Dequeue Example . 348

QMU Multicast Support (Non-System Level) . 350
Multicast Operations Success or Failure . 352
Multicast Operation Throughput Considerations . 352

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 15

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Levels Supported in Multicast Operations . 353
Multicasting to the Fabric Processor . 354

QMU Configuration Space . 355

QMU Setup . 358
QMU Performance . 360

Execution Speed and Descriptor Size Relationship . 360
Multicast Support (System Level) . 361

Multicast Flow in the C-5 NP . 361
Multicast Receive Flow Transaction Process . 361
Multicast Transmit Flow Transaction Process . 363

CHAPTER 8 Internal Buses
Chapter Overview . 365
Internal Buses Overview . 366

Internal Buses Characteristics . 367

Payload Bus Overview . 368
Payload Bus Operation . 368
Payload Bus Latency . 368

Payload Bus Latency (Default Mode) . 369
Payload Bus Latency (FP Mode) . 369

Ring Bus Overview . 370
Ring Bus Major Components . 370
Ring Bus Node Operation . 371

Sending Downstream . 372
Receiving from Upstream . 373

Ring Bus Latency . 373
Ring Bus Interface Registers . 375

Ring Bus Transmit (Tx) Message Registers . 375
Ring Bus (Rx) Receive Message Registers . 375
Ring Bus Receive (Rx) Response Registers . 375

Global Bus Overview . 376

For More Information On This Product,

 Go to: www.freescale.com

16 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

APPENDIX A C-5 NP Registers
Appendix Overview . 377

Channel Processor (CP) Configuration Registers . 378
CP Registers . 378
CP Detailed Descriptions . 383

RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function) 383
TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0 Function) 383

RxCB0_Sys_Addr Register (CP Rx Control Block0 Function) . 384
RxCB0_Ctl Register (CP Rx Control Block0 Function) . 385
RxCB0_DMA_Addr Register (CP Rx Control Block0 Function) . 388
RxCB0_SDP_Addr Register (CP Rx Control Block0 Function) . 389
WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function) . 390

WrCB0_Ctl Register (CP Wr Control Block0 Function) . 391
WrCB0_DMA_Addr Register (CP Wr Control Block0 Function) . 392
RdCB0_Sys_Addr Register (CP Rd Control Block0 Function) . 393
RdCB0_Ctl Register (CP Rd Control Block0 Function) . 394
RdCB0_DMA_Addr Register (CP Rd Control Block0 Function) . 395

TxCB0_Sys _Addr Register (CP Tx Control Block0 Function) . 396
TxCB0_Ctl Register (CP Tx Control Block0 Function) . 397
TxCB0_DMA_Addr Register (CP Tx Control Block0 Function) . 398
TxCB0_SDP_Addr Register (CP Tx Control Block0 Function) . 399

TxCtl0_Status Register (CP Tx Control Block0 Function) . 400
TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function) 401
TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function) 403
TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function) 403
RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function) 404

RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function) 405
RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function) 405
RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function) 406
RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function) 407
Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function) 408

Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function) 408
RxCtl_ByteSeq0 Register (CP SDP Rx Control Function) . 408
RxCtl_SyncSeq Register (CP SDP Rx Control Function) . 409
RxCtl_BitSeq0 Register (CP SDP Rx Control Function) . 409
TxCtl_ByteSeq0 Register (CP SDP Tx Control Function) . 410

TxCtl_BitSeq0 Register (CP SDP Tx Control Function) . 410
CP_Mode0 Register (CP Mode Configuration Function) . 411

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 17

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP_Mode1 Register (CP Mode Configuration Function) . 414
SDP_Mode2 Register (CP Mode Configuration Function) . 417
SDP_Mode3 Register (CP Mode Configuration Function) . 418

SDP_Mode4 Register (CP Mode Configuration Function) . 422
SDP_Mode5 Register (CP Mode Configuration Function) . 424
Debug_Mode Register (CP Mode Configuration Function) . 429
PIN_Mode Register (CP Mode Configuration Function) . 431

Queue_Status0 Register (CP Queue Status Function) . 433
Queue_Update0 Register (CP Queue Status Function) . 433
Event_Timer Register (CP Miscellaneous Control Function) . 434
Cycle_Count_H Register (CP Miscellaneous Control Function) . 434
Cycle_Count_L Register (CP Miscellaneous Control Function) . 434

Event0 Register (CP Event and Interrupt Function) . 435
Event1 Register (CP Event and Interrupt Function) . 437
Event_Mask0 Register (CP Event and Interrupt Function) . 439
Event_Access Register (CP Event and Interrupt Function) . 439
Mask_Access Register (CP Event and Interrupt Function) . 441

Interrupt_Mask0 Register (CP Event and Interrupt Function) . 441
SONET_Event Register (CP Event and Interrupt Function) . 442
SONET_Mask Register (CP Event and Interrupt Function) . 445

Executive Processor (XP) Configuration Registers . 446
XPSlot 24 Configuration Registers . 446

XP Detailed Descriptions . 456
PCI Device ID Register (XP PCI Configuration Function) . 456
PCI Vendor ID Register (XP PCI Configuration Function) . 456
PCI Status Register (XP PCI Configuration Function) . 456

PCI Command Register (XP PCI Configuration Function) . 458
PCI Class Code Register (XP PCI Configuration Function) . 459
PCI Revision ID Register (XP PCI Configuration Function) . 460
PCI Header Type Register (XP PCI Configuration Function) . 460
PCI Latency Timer Register (XP PCI Configuration Function) . 461

PCI Inbound Memory Base Address Register0 (XP PCI Configuration Function) 461
PCI Inbound Memory Base Address Register1 (XP PCI Configuration Function) 462
PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function) 463
PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration Function) 463
PCI Interrupt Pin Register (XP PCI Configuration Function) . 463

PCI Interrupt Line Register (XP PCI Configuration Function) . 463
PCI Inbound BAR0 Translation Register (XP PCI Configuration Function) 464
PCI Inbound BAR1 Translation Register (XP PCI Configuration Function) 464

For More Information On This Product,

 Go to: www.freescale.com

18 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Auxiliary Control Register (XP PCI Configuration Function) . 465
PCI Subsystem ID Register (XP PCI Configuration Function) . 465
PCI Subsystem Vendor ID Register (XP PCI Configuration Function) 466

PCI Inbound Byte Swap Control Register (XP PCI Configuration Function) 466
Serial Bus Configuration Register (XP Miscellaneous Control Function) 467
Serial Bus Data Register (XP Miscellaneous Control Function) . 468
XP to CP Interrupt Request Registers (XP Miscellaneous Control Function) 469

Software Warm Reset Request Register (XP Miscellaneous Control Function) 470
Outbound PCI Base Address0 Register (XP Configuration Function) 471
Outbound BAR0 Translation Register (XP Configuration Function) 472
DMA Transmit Channel0 PCI Target Register (XP Configuration Function) 473
DMA Receive Channel0 PCI Target Register (XP Configuration Function) 474

DMA Receive Channel0 Transfer Count Register (XP Configuration Function) 475
XP Miscellaneous Control Register (XP Configuration Function) . 476
XP Auxiliary Event Register (XP Configuration Function) . 477
Inbound PCI Mailbox0 Register (XP Configuration Function) . 478
IMEM Overlay Target Address Register (XP Configuration Function) 479

RxCB #25 Transfer Count Register (XP Configuration Function) . 479
XP Diagnostic Register (XP Configuration Function) . 480
PCI Outbound Byte Swap Control Register (XP Configuration Function) 480
Debug Counter0 Start Value Register (XP Configuration Function) 482
Debug Counter0 Control Register (XP Configuration Function) . 483

Debug Counter0 Current Value Register (XP Configuration Function) 485
RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function) 486
TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function) 486
TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function) 487

XP_Mode Register (XP Mode Configuration Function) . 488
XP Debug Mode Register (XP Mode Configuration Function) . 490
Event0 Register (Event and Interrupt Control Function) . 492
Event1 Register (Event and Interrupt Control Function) . 493
RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function) 496

TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function) 497
Queue Management Unit (QMU) Configuration Registers . 498

QMU Registers . 499
QMU Detailed Descriptions . 501

QMU_Run_Enable Register (QMU Enable Queue Function) . 501

Base_Queue_CP0 to Base_Queue_CP15 Registers
(QMU CP’s Queue Allocation Function) . 501
Base_Queue_FP Register (QMU FP’s Queue Allocation Function) 502

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 19

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Base_Queue_XP Register (QMU XP’s Queue Allocation Function) 502
Num_Descriptors Register (QMU Configuration Function) . 503
Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function) 503

Operation_Mode Register (QMU Configuration Function) . 504
Descriptor_Size Register (QMU Configuration Function) . 504
Config_Q_Cnt Register (QMU Statistics Function) . 505
Rd_Q_Status_Cnt Register (QMU Statistics Function) . 505

CP_Uni_Enq_Cnt Register (QMU Statistics Function) . 505
CP_Multi_Enq_Cnt Register (QMU Statistics Function) . 505
CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function) . 505
CP_Dequeue_Cnt Register (QMU Statistics Function) . 505
FP_Uni_Enq_Cnt Register (QMU Statistics Function) . 505

FP_Multi_Enq_Cnt Register (QMU Statistics Function) . 505
FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function) . 506
FP_Dequeue_Cnt Register (QMU Statistics Function) . 506
QMU_Idle_Cycles Register (QMU Statistics Function) . 506
Payload_NACK_Cnt Register (QMU Statistics Function) . 506

Global_NACK_Cnt Register (QMU Statistics Function) . 506
Payload_Read_Failures_Cnt Register (QMU Statistics Function) . 506
Cmd_Processor_Err_Cnt Register (QMU Statistics Function) . 506
Q_Engine_Err_Cnt Register (QMU Statistics Function) . 507
Multicast_Destination0 to Multicast_Destination143 Registers (QMU Configuration

Function) . 507

Free_Descriptor_Buffer_List Register (QMU Status Function) . 510
Dyn_Descriptor_Pool0_Usage Register (QMU Status Function) . 511

Buffer Management Unit (BMU) Configuration Registers . 512
BMU Registers . 513

BMU Detailed Descriptions . 518
Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function) 518
Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool Function) 519
BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address Function) . 520
Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool Function) 520

Memory Size Register (Miscellaneous Function) . 521
SDRAM Config Register (Miscellaneous Function) . 522
Single ECC Errors Register (Miscellaneous Function) . 523
ECC Enable and Test Enable Register (Miscellaneous Function) . 523
Debug Config Register (Miscellaneous Function) . 524

Wr_Mem_Violation_Hi Register (Miscellaneous Function) . 525
Wr_Mem_Violation_Lo Register (Miscellaneous Function) . 525

For More Information On This Product,

 Go to: www.freescale.com

20 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Processor (FP) Configuration Registers . 526
FP Registers . 526
FP Detailed Descriptions . 530

TxFP_Enable Register (FP Tx Enable Function) . 530
TxFI_Configuration Register (FP Tx Configuration Function) . 530
TxDescInfo Register (FP Tx Configuration Function) . 532
TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function) 532

TxQueueWeight_Configuration Register (FP Tx Configuration Function) 533
TxSysConfig Register (FP Tx Configuration Function) . 534
TxFI_CRC Register (FP Tx Configuration) . 534
TxFCE_Configuration Register (FP Tx Configuration Function) . 535
TxDebugMux_Control Register (FP Tx DeBug Function) . 537

TxWCS_CAM (WCS_CAM Function) . 539
TxFlowTbI Register (FP Tx DeBug Function) . 540
TxFlowTblDL Register (FP Tx DeBug Function) . 540
TxFlowTblDH Register (FP Tx DeBug Function) . 541
TxFlowCam Register (FP Tx DeBug Function) . 541

TxMergeAddr (FPTx Debug Function) . 542
TxMergeData (FPTx Debug Function) . 543
TxFDP_Mrg0 - TxFDP_Mrg63 . 543
TxIdleData Register (FP Tx Configuration Function) . 544
TxFDP_CTL0 Register (TxByte General Purpose Function) . 544

TxFDP_CTL1 Register (TxByte General Purpose Function) . 545
TxDebug_Internal_State Register (FP Tx DeBug Function) . 545
RxStatus0 Register (FP RxByte Processor Function) . 546
RxFlowSeg0 Register (FP RxByte Processor Function) . 546

RxFlowSz0 Register (FP Rx Byte Processor Function) . 547
RxTxCgs0 Register (FP Rx Byte Processor Function) . 548
RxStatus1 Register (FP RxByte Processor Function) . 548
RxFlowSeg1 Register (FP RxByte Processor Function) . 549
RxFlowSz1 Register (FP RxByte Processor Function) . 550

RxTxCgs1 Register (FP RxByte Processor Function) . 550
RxEnable_Configuration Register (FP Rx Enable Function) . 551
RxFI_Configuration Register (FP Rx Configuration Function) . 551
RxDS_Header_Change1 Register (FP Rx Configuration Function) 553
RxDS_Header_Change2 Register (FP Rx Configuration Function) 554

RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function) 554
RxDS Header/Payload Delimiter1 Register (FP Rx Configuration Function) 554
RxDS_Header/Payload_Delimiter2 Register (FP Rx Configuration Function) 555
RxDS_Configuration Register (FP Rx Configuration Function) . 555

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 21

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFI_CRC Register (FP Rx Configuration Function) . 556
RxWCS_CAM Register (RxWCS_CAM Function) . 557
RxByte0 General Purpose Configuration Register (FP Rx Configuration Function) 559

RxByte1 General Purpose Configuration Register (FP Rx Configuration Function) 559
RxFCE_Configuration0 Register (FP Rx Configuration Function) . 559
RxFCE_Configuration1 Register (FP Rx Configuration Function) . 561
RxFCE_Configuration2 Register (FP Rx Configuration Function) . 562

Buffer Pools . 562
Pool0_CFG0 Register (FP Rx Pool Configuration Function) . 563
Pool0_CFG1 Register (FP Rx Pool Configuration Function) . 564
FDP_RxByte_Shared0 Register (FP Rx Shared Function) . 565
FDP_RxByte_Shared1 Register (FP Rx Shared Function) . 565

RxFP_Interrupt_Event Register (FP Rx Interrupt Function) . 566
RxFP_Interrupt_Enable Register (FP Rx Interrupt Function) . 567
RxFP_Debug_Event_Mux_Control (FP Rx DeBug Function) . 567
RxMemory_Address Register (FP Rx DeBug Function) . 570
RxMemory_Data Register (FP Rx DeBug Function) . 570

RxPDU_ID_CAM Register (FP Rx DeBug Function) . 570
RxFP_Statistics Registers (FP Rx Statistics Function) . 572
RxDebug_Internal_State Register (FP Rx Statistics Function) . 573

APPENDIX B Using Aggregate Mode
Appendix Overview . 577

Purpose of the C-5 NP Channel Aggregate Mode . 578
Aggregate Mode Requirements on the C-5 NP . 578
Packet/Cell Ordering Handling for Rx in Aggregate Mode . 579

Hardware Receive Tokens . 579
Software Receive Tokens . 580

Packet/Cell Ordering Handling for Tx in Aggregate Mode . 581
Hardware Transmit Tokens . 581
Software Transmit Tokens . 581

Clock Distribution in Aggregate Mode . 583
Aggregate Mode Application Examples . 583

Gigabit Ethernet and FibreChannel Applications . 583
PHY Connectivity . 583
SDP Components . 584

8b/10b Decode Block . 584
RxBit Processor . 584

RxSync and RxByte Processors . 584

For More Information On This Product,

 Go to: www.freescale.com

22 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxByte Processor . 585
TxBit Processor . 586
8b/10b Encode Block . 586

Implementation Options . 588
Non-blocking Operation . 588
Blocking Operation . 588

OC-12 and OC-12c Applications . 589

PHY Connectivity . 589
SDP Components . 589

RxBit Processor . 589
RxSONET Framer . 589
RxSync Processor . 590

RxByte Processor . 590
TxByte Processor . 591
TxSONET Framer . 593
TxBit Processor . 593

APPENDIX C SONET/SDH CP Support
Appendix Overview . 595

SONET/SDH Overview . 596
SONET Overhead Access . 598

SONET Overhead Writable Bytes . 599
OC-3c Writable Overhead Bytes . 599

OC-12c Writable Overhead Bytes . 600
OC-12 Writable Overhead Bytes . 601

SONET Overhead Definitions . 602
Receive OC-3c Transport Overhead Definitions . 602
Receive OC-3c Path Overhead Definitions . 604

Receive OC-12/OC-12c Transport Overhead Definitions . 605
Receive OC-12/OC-12c Path Overhead Definitions . 610
Transmit OC-3c Transport Overhead Definitions . 612
Transmit OC-3c Path Overhead Definitions . 613
Transmit OC-12/OC-12c Transport Overhead Definitions . 614

Transmit OC-12/OC-12c Path Overhead Definitions . 618
CP Configuration Space (SONET Specific) . 620

CP Mode (SONET Specific Enable) Registers . 620
CP Event and Interrupt (SONET Specific Event) Registers . 620

SONET/SDH Monitoring Example . 622

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS 23

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

APPENDIX D PCI Byte Swapping
Appendix Overview . 623

PCI Byte Swapping Overview . 624
Default Mode . 624
Byte Swapping Mode . 626

Primary Application Using Byte Swapping Mode . 628
Implementing Byte Swapping Mode . 629

PCI Inbound and Outbound Byte Swap Registers . 632

Glossary . 633

Index . 637

For More Information On This Product,

 Go to: www.freescale.com

24 CONTENTS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figures

1 C-5 NP Processors and Coprocessors . 42
2 Examples of SDP Programmability . 44
3 C-5 NP Simplified Block Diagram . 46
4 Typical Cell/Packet Forwarding Application Receive and Transmit Data Flow 49
5 C-5 NP Physical Address Memory Map. 51

6 Register Address Format (in bits) . 53
7 Channel Processor Block Diagram . 57
8 Rx and Tx SDP Programmable Processors and Configurable Logic Blocks 60
9 Common Components of Programmable Processors . 62

10 RxSDP Programmable Processors and Configurable Logic Blocks . 64
11 Operation of 8b/10b Decode Configurable Logic Block . 64
12 TxSDP Programmable Processors and Configurable Logic Blocks. 68
13 Operation of 8b/10b Encode Configurable Logic Block . 72
14 SDP Recirculation Path Using Both RxBitLoopBack and RxByteLoopBack Bits 73

15 Recirculation Shown for Normal Operations (for Cooperating CPs) 74
16 CP Context Switching Feature Block Diagram . 78
17 Local and Shared Memory in a Channel Processor. 80
18 Four (4) Data Scopes Between the CPRC and SDPs . 85
19 CP Configuration Space Memory Map . 87

20 DMA Operation (Buffer Transfer) Using WrCBn_ Registers . 92
21 DMA Operation (Buffer Transfer) Using RdCBn_ Registers . 95
22 DMA Operation (Buffer Transfer) Using RxCBn Registers . 98
23 DMA Operation (Buffer Transfer) Using TxCBn_ Registers . 103
24 Relationship Between Interruput_Mask0, IRQ0 and Event0 Registers 113

25 Rx and TxCBn_ Handling Process Overview (for External Flow). 116
26 Wr and RdCBn_ Handling Process Overview (for Internal Flow) . 117
27 Executive Processor Block Diagram. 124
28 Executive Processor Context Switching . 126

29 PROM Interface . 135
30 XP Configuration Space (Slot #24) . 141
31 XP Configuration Space (Slot #25) . 142
32 XP Slot #24 Configuration Space for PCI, XP and Miscellaneous Registers 143

For More Information On This Product,

 Go to: www.freescale.com

26 FIGURES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

33 Fabric Processor Block Diagram. 147
34 Multiple C-5 NPs with Switching Port . 147
35 Two C-5 NP Application . 148

36 FP Tx Block Diagram . 150
37 FPTx Memory Map . 151
38 TxByte Processor Memory Map . 158
39 FPRx Memory Map . 163

40 FP Rx Block Diagram . 165
41 RxByte Processor Memory Map . 168
42 Byte Load Sequence Map for WCS entry. 189
43 RxByte Scan Chain . 190
44 Mapping Per-Queue Flow Control Requests to FP Tx Queues . 193

45 BMU Block Diagram. 215
46 SDRAM Storage Space for User Data Example . 220
47 Buffer Wrapping . 225
48 Unaligned Buffer Access . 225
49 BTag Initialization Implementation . 228

50 BTag Allocation Implementation . 230
51 BTag Deallocation Implementation . 232
52 Multi-Use Counter Table . 233
53 Multi-Use Counter Allocation Implementation . 235
54 Multi-Use Counter Decrement Implementation . 237

55 Multi-Use Counter Read Implementation . 239
56 TLU Block Diagram . 247
57 Virtual Table Linking . 254
58 Indexed Pointer Table Data Structure . 288

59 Hash Table Data Structure. 290
60 Trie Table Showing Skip Function. 294
61 VP Trie Table Data Structure Showing Skip Function . 296
62 VP Trie Table Example 1: Root Node Pointed to by Alg2 Register 299
63 VP Trie Table Example 2: Root Node Pointed to by Indexed Pointer Table Entry. 300

64 Key Table Data Structure . 301
65 Data Table Data Structure . 302
66 External Table Interface Format. 303
67 TLU/Ring Bus Control Register Response Slot Usage . 304
68 QMU Block Diagram . 319

69 QMU Flow Diagram . 321
70 External SRAM Storage Space for Descriptor Buffer Data . 323
71 Internal SRAM Space . 325

For More Information On This Product,

 Go to: www.freescale.com

FIGURES 27

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

72 Mapping Queues to Processors for Unicast/ Multicast Enqueue Operations Example . 329
73 Configure Queue Implementation . 341
74 Queue Status Implementation . 343

75 Unicast Enqueue Implementation. 345
76 Multicast Enqueue Implementation . 347
77 Dequeue Implementation . 349
78 Multicast Enqueue Operation and Mapping Example. 351

79 Multicast Application Receive Process Flow . 362
80 Multicast Application Transmit Process Flow. 363
81 Internal Custom Buses . 366
82 Ring Bus Node Block Diagram. 371
83 Nodes on the Ring Bus . 374

84 RxSDP Token Buses. 580
85 TxSDP Token Bus . 582
86 SDP Receive Path for Gigabit Ethernet and FibreChannel . 585
87 SDP Transmit Path for Gigabit Ethernet and FibreChannel . 587
88 SDP Receive Path for OC-12 and OC-12c . 591

89 SDP Transmit Path for OC-12 and OC-12c . 593
90 SONET OC-3c Writable Overhead Bytes . 599
91 SONET OC-12c Writable Overhead Bytes. 600
92 SONET OC-12 Writable Overhead Bytes . 601
93 Little Endian vs. Big Endian . 624

94 PCI 32bit Aligned Double Word Access to C-5 NP . 625
95 PCI Byte Access to C-5 NP (PCI Address 3) . 625
96 C-5 NP 32bit Aligned Double Word Access to PCI . 626
97 C-5 NP Byte Access to PCI (C-5 NP Address 0) . 626

98 PCI 32bit Aligned Double Word Access to C-5 NP . 627
99 PCI Byte Access to C-5 NP (PCI Address 3) . 627
100 C-5 NP 32bit Aligned Double Word Access to PCI . 628
101 C-5 NP Byte Access to PCI (C-5 NP Address 0) . 628
102 C-5 NP 32bit Aligned Double Word Access to PCI . 629

For More Information On This Product,

 Go to: www.freescale.com

28 FIGURES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Tables

1 Navigating Within a C-Port Electronic Document . 38
2 C-5 NP Architecture Guide Revision History . 39
3 Related Documentation . 40
4 C-5 NP Major Components. 44
5 C-5 NP Interconnect Components. 45

6 C-5 NP Other Supported Interfaces . 45
7 Ring Bus Node IDs. 52
8 Major Components of the CPs and Their Functions. 56
9 Supported Interfaces & Transmit Clock Mux Selects . 58

10 Types of Hardware Features in the RxSDP and TxSDP. 61
11 Common Components of Programmable Processors and Their Functions 62
12 CPRC Supported Instruction Classes . 75
13 CPRC (32) Internal Registers Definitions . 76
14 C-Ports Coprocessor Zero Register Definitions . 77

15 CP Memory Interface Transactions . 82
16 CP Registers by Function . 88
17 Extract Space Registers . 90
18 Merge Space Registers . 90
19 Out-of-Band Bits and Functions . 101

20 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx) . 118
21 Major Components of the XP and Their Function. 122
22 Internal XPRC Register Definitions. 125
23 Coprocessor Zero Register Definitions . 128
24 Accessibility of XP Initiated Data Transactions to C-5 NP Resources. 139

25 Protocol-Specific Nomenclature . 146
26 Segment Types . 155
27 TxByte Processor Registers Summary . 158
28 RxByte Processor Memory Map Summary . 169

29 DBE Command Format . 179
30 DBE WCS . 180
31 DBE Operand Alignment Examples. . 182
32 FP Rx WCS and CAM Access . 188

For More Information On This Product,

 Go to: www.freescale.com

30 TABLES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

33 RxByte Scan Chain Fields . 191
34 Rx Flow Table Fields . 198
35 Utopia1, 2, 3 ATM Mode, C-5 NP to Fabric Interface Pin Mapping 200

36 Utopia1, 2, 3 PHY Mode, C-5 NP to Fabric Interface Pin Mapping. 200
37 C-Port Supported Utopia Modes . 201
38 PRIZMA Mode, C-5 Network Processor to Fabric Interface Pin Mapping 208
39 Power X Mode, Fabric Interface to Pin Mapping . 212

40 Major Components of the BMU and Their Functions . 214
41 Supported SDRAM Configurations . 216
42 Legal Ranges for SDRAM Partition Variables . 219
43 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx) . 221
44 WrCB0_ Variables per Field for BMU . 222

45 RdCB0_ Variables per Field for BMU. 223
46 WrCB0_ Settings for BTag Initialization. 227
47 RdCB0_ Settings for BTag Allocation . 229
48 WrCB0_ Settings for BTag Deallocation . 231
49 WrCB0_ Settings for Multi-Use Counter Allocation . 234

50 WrCB0_ Settings for Multi-Use Counter Decrement . 236
51 RdCB0_ Settings for Multi-Use Counter Read . 238
52 BMU Registers . 240
53 Major Components of the TLU and Their Functions . 247
54 TLU SRAM Configurations . 250

55 Supported Table Types. 251
56 TLU Commands . 255
57 TLU Command Parameters . 256
58 Non-zero CRC Modes and Their Names . 272

59 Non-zero CRC Modes and Their Functions. 272
60 TLU Registers . 278
61 Available TLU Table Types. 282
62 Legal Values for the Table Entry Size . 282
63 Legal LNK1, LNK2, and Data Types for Lookup_Algorithm_Configuration1 Register . . . 286

64 Algorithm Configuration Examples . 286
65 Table_Configuration2 Register Setup Examples . 289
66 TLU Performance Estimates . 305
67 TLU SRAM Accesses by Table Format. 305
68 Bridge Address Table Sizing Example . 306

69 IP Routing Table Sizing Example . 306
70 TxMsgn Registers and Their Size . 307
71 Large Key Data Format, >48bits . 308

For More Information On This Product,

 Go to: www.freescale.com

TABLES 31

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

72 Key Size versus Key Match . 308
73 Ethernet Application Lookup Format . 309
74 TxMsgn_Ctl Mapping . 309

75 Major Components of the QMU and Their Functions . 317
76 QMU Internal SRAM Sub-Sections and Their Functions . 324
77 Legal Ranges for SRAM Variables . 326
78 Multi-Use Control Blocks (for Wr and Rd) . 337

79 WrCB0_ Variables per Field for QMU. 338
80 RdCB0_ Variables per Field for QMU . 339
81 WrCB0_ Settings for Configure Queue. 340
82 RdCB0_ Settings for Queue Status. 342
83 WrCB0_ Settings for Unicast Enqueue . 344

84 WrCB0_ Settings for Multicast Enqueue . 346
85 RdCB0_ Settings for Dequeue. 348
86 Multicast Queue Mapping for <8 Queues Example . 353
87 QMU Registers . 355
88 Execution Rates Using a 200MHz Core-Clock Rate Example . 360

89 C-5 NP Interconnect Components. 366
90 Bus Characteristics . 367
91 Typical Payload Operations . 368
92 Payload Bus Arbitration Delay in Default Mode . 369
93 Payload Bus Arbitration Delay in FP Mode . 369

94 Ring Bus Components . 370
95 Ring Bus Node IDs. 372
96 CP Registers by Function . 375
97 Global Bus Latency . 376

98 CP Registers . 378
99 RxSDP1_Ext0 to RxSDP1_Ext15 Registers (for Datascope1) . 383
100 TxSDP1_Merge0 to TxSDP1_Merge15 Registers (for Datascope1) 384
101 RxCB1_Sys_Addr Register (for Datascope1) . 384
102 Transfer Control Block Error Codes . 386

103 RxCB1_Ctl Register (for Datascope1) . 387
104 RxCB1_DMA_Addr Register (for Datascope1) . 388
105 RxCB1_SDP_Sys_Addr Register (for Datascope1). 389
106 WrCB1_Sys_Addr Register (for Control Block1). 390
107 WrCB1_Ctl Register (for Control Block1) . 392

108 WrCB1_DMA_Addr Register (for Control Block1) . 392
109 RdCB1_Sys_Addr register (for Control Block1) . 393
110 RdCB1_Ctl Register (for Control Block1) . 395

For More Information On This Product,

 Go to: www.freescale.com

32 TABLES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

111 RdCB1_DMA_Addr Register (for Control Block1) . 395
112 TxCB1_Sys_Addr Register (for Datascope1) . 396
113 TxCB1_Ctl Register (for Datascope1) . 398

114 TxCB1_DMA_Addr Register (for Datascope1) . 398
115 TxCB1_SDP_Addr Register (for Datascope1). 399
116 TxCtl1_Status Register (for Datascope1). 400
117 Ring Bus Processor IDs . 402

118 TxMsgn_Ctl Registers (for Messages 1, 2 and 3). 402
119 TxMsgn_Data_H Registers (for Messages 1, 2 and 3) . 403
120 TxMsgn_Data_L Registers (for Messages 1, 2 and 3) . 403
121 RxRespn_Ctl Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 404
122 RxRespn_Data_H Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 405

123 RxRespn_Data_L Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) 405
124 RxCtl_ByteSeq1 Register (for Byte Sequence1) . 408
125 RxCtl_BitSeq1 Register (for Bit Sequence1) . 409
126 TxCtl_ByteSeq1 Register (for Byte Sequence1). 410
127 TxCtl_BitSeq1 Register (for Bit Sequence1) . 410

128 Global Bus Error Status Encoding . 416
129 PHY Status Bit - TxBit Processor Connections . 428
130 Debug Multiplexor Select Encodings. 430
131 Queue_Statusn Registers (for Queue Status 1, 2 and 3) . 433
132 Queue_Updaten Registers (for Queue Updates 1, 2 and 3) . 433

133 Event_Mask1 Register (for Mask1) . 439
134 Interrupt_Mask1 Register (for Mask Events [31:16] and [15:0]) . 441
135 XP Registers . 447
136 PCI Revision ID Register Reset Values . 460

137 Outbound PCI Base Addressn Registers (for BAR 1, 2, 3, 4, 5, 6 and 7) 471
138 Outbound BARn Translation Registers (for BAR1, 2, 3, 4, 5, 6 and 7) 473
139 DMA Transmit Channel1 PCI Target Register (for Channel1) . 474
140 DMA Receive Channel1 PCI Target Register (for Channel1) . 474
141 DMA Receive Channel1 Transfer Count Register (for Channel1). 475

142 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7) 478
143 Debug Countern Start Value Registers (for Debug Counter 1, 2 and 3) 482
144 Debug Countern Control Registers (for Debug Counter 1, 2 and 3). 484
145 Debug Countern Current Value Registers (for Debug Counter 1, 2 and 3) 485
146 RxCtl1_Status Register (for Datascope1) . 486

147 TxCB1_CTL Register. 487
148 TxCtl1_Status Register (for Datascope1). 487
149 XP Debug Multiplexor Select Encodings. 491

For More Information On This Product,

 Go to: www.freescale.com

TABLES 33

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

150 RxCtl1_Status Register . 496
151 TxCtl1_Status Register. 497
152 QMU Registers . 499

153 Dyn_Des_Usage_Lim_Pooln Registers (for Descriptor Pools 1, 2 and 3) 503
154 Queue Operating Mode Codes . 504
155 Descriptor Size Codes . 504
156 Multicast Mapping . 508

157 Dyn_Descriptor_Buffer_Usage_Pooln Register (for Pool1, 2 and 3). 511
158 BMU Registers . 513
159 BTag Shift Values and Corresponding Buffer Sizes . 519
160 BMU Debug Inputs . 524
161 Fabric Processor Registers . 526

162 FPTx_Debug Monitored Events . 538
163 Pooln_CFG0 Registers (for Pools 1, 2, and 3) . 563
164 Pooln_CFG1 Registers (for Pools 1, 2 and 3) . 564
165 RxFP Events . 568
166 Global Bus Receive FP Statistics Registers Map . 572

167 Enqueue QMU Programing Machine States . 574
168 Transfer Control Block Programing States . 574
169 Buffer Engine State Machine States . 575
170 Aggregate Mode Implications (for SDP and CPRC) . 578
171 Example of Events Reported in the SONET_Event Register . 596

172 Receive SONET OC-3 Transport Overhead Byte Addresses . 602
173 Pointer Values for H1 and H2. 604
174 Decode for Pointer Status [1:0] . 604
175 Receive SONET OC-3c Path Overhead Byte Addresses . 604

176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses 605
177 Receive SONET OC-12 and OC-12c Path Overhead Byte Addresses 610
178 Transmit SONET OC-3c Transport Overhead Byte Addresses . 612
179 Transmit SONET OC-3c Path Overhead Byte Addresses . 613
180 Transmit SONET OC-12 and OC-12c Transport Overhead Byte Addresses 614

181 Transmit SONET OC-12 and OC-12c Path Overhead Byte Addresses 618
182 SONET Specific Configuration Registers . 620
183 SONET Specific Event Registers . 621
184 Byte Swapping Support Specification . 630
185 Inbound and Outbound Barn Transaction Registers . 631

186 PCI Inbound and Outbound Byte Swap Control Registers . 632

For More Information On This Product,

 Go to: www.freescale.com

34 TABLES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

 About This Guide

Guide Overview The C-5 Network Processor Architecture Guide describes the full architecture of the C-5
Network Processor Revision D0. It is intended for system architects and developers to
enable you to fully understand how the C-5 network processor (C-5 NP) works and how
the processor can be used to implement your networking applications. This guide is also
useful as a reference during product design and development, and a Register Reference is
provided for that purpose. This guide assumes a good familiarity with communications
hardware design and implementation.

This guide covers the following topics:

• Introduction describes the major components and functions of the C-5 NP, supported
interfaces, addressing scheme, and cell/packet handling.

• Channel Processors describes the major components and functions of the CPs,
processing of data streams, memory areas, interface transactions, configuration space,
and using block moves.

• Executive Processor describes the major components and functions of the XP, memory
areas, supported external interfaces, initialization options, and internal XP interfaces.

• Fabric Processor describes the major components and functions of the FP, flow process
for both FPTx and FPRx, initialization, and Fabric configuration using Utopia, PRIZMA
and PowerX interfaces.

• Buffer Management Unit describes the major components and functions of the BMU,
memory areas, types of transactions, configuration space, and setup.

• Table Lookup Unit describes the major components and functions of the TLU, flow
process, supported table types, commands, configuration and status registers,
application considerations, and special applications.

• Queue Management Unit describes the major components and functions of the QMU,
flow process, memory areas, queuing operations, types of transactions, configuration
space, setup, multicast support, system level multicast operations, and performance.

For More Information On This Product,

 Go to: www.freescale.com

36 ABOUT THIS GUIDE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• Internal Buses describes the interconnect components of the C-5NP including the
Ring Bus, Payload Bus and Global Bus.

• C-5 NP Registers lists all the C-5 NP registers including their function, purpose, address,
access, fields, bit positions, default values, and options.

• Using Aggregate Mode describes using the C-5 NP in this mode of operation to
support Gigabit Ethernet, FibreChannel, OC-12 and OC-12c interfaces.

• SONET/SDH CP Support describes the mapping between the C-5 NP and SONET Byte
Overhead definitions for OC-3, OC-3c, OC-12, and OC-12c protocols, and configuration.

• PCI Byte Swapping describes the C-5 NP feature that allows easy transition between
the PCI Bus and C-5 NP environments.

Information contained in this guide does not represent a commitment on the part of
C-Port Corporation.

For More Information On This Product,

 Go to: www.freescale.com

Using C-Port Electronic Documents 37

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Using C-Port
Electronic Documents

C-Port electronic documents are provided as PDF files. Open and view them using the
Adobe® Acrobat® Reader application, version 3.0 or later. If necessary, download the
Acrobat Reader from the Adobe Systems, Inc. web site:

http://www.adobe.com/prodindex/acrobat/readstep.html

Each provided PDF file offers several ways for moving among the document’s pages,
as follows:

• To move quickly from section to section within the document, use the Acrobat
bookmarks that appear on the left side of the Acrobat Reader window. The bookmarks
provide an expandable ‘outline’ view of the document’s contents. To display the
document’s Acrobat bookmarks, press the ‘Display both bookmarks and page’ button
on the Acrobat Reader tool bar.

• To move to the referenced page of an entry in the document’s Contents or Index, click
on the entry itself, each of which is “hot linked.”

• To follow a cross-reference to a heading, figure, or table, click the blue text.

• To move to the beginning or end of the document, to move page by page within the
document, or to navigate among the pages you displayed by clicking on hyperlinks,
use the Acrobat Reader navigation buttons shown in this figure:

Beginning
of document End of document

Next pagePrevious page

Previous or next hyperlink

For More Information On This Product,

 Go to: www.freescale.com

www.adobe.com/prodindex/acrobat/readstep.html

38 ABOUT THIS GUIDE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 1 summarizes how to navigate within a C-Port electronic document.

Guide Conventions The following visual elements are used throughout this guide, where applicable:

This icon and text designates information of special note.

Warning: This icon and text indicate a potentially dangerous procedure. Instructions
contained in the warnings must be followed.

Warning: This icon and text indicate a procedure where the reader must take
precautions regarding laser light.

This icon and text indicate the possibility of electro-static discharge (ESD) in a procedure
that requires the reader to take the proper ESD precautions.

Table 1 Navigating Within a C-Port Electronic Document

To Navigate This Way Click This

Move from section to section within the
document.

A bookmark on the left side of the Acrobat Reader
window

Move to an entry in the document’s Contents
or Index.

The entry itself

Follow a cross-reference (highlighted in blue
text).

The cross-reference text

Move page by page. The appropriate Acrobat Reader navigation
buttons

Move to the beginning or end of the
document.

The appropriate Acrobat Reader navigation
buttons

Move backward or forward among a series of
hyperlinks you have selected.

The appropriate Acrobat Reader navigation
buttons

For More Information On This Product,

 Go to: www.freescale.com

Revision History 39

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Revision History Table 2 provides details about changes made for each revision of this guide.

Table 2 C-5 NP Architecture Guide Revision History

Revision Date
CST
Revision

CDS
Revision Changes

October 23, 2001 1.7 2.0 • Chapter 1, restructured.

• Chapter 2, restructured, updated, and
added information about understanding
block moves of data.

• Chapter 4, restructured, enhanced, and
updated.

• Chapter 5, restructured, enhanced,
updated, and added several new topics.

• Chapter 6, restructured, updated, and
added information about partial CRC-32
support and external tables.

• Chapter 7, restructured, enhanced,
updated, and added several new topics.

• Chapter 8, restructured and updated.

• Appendix A, restructured and updated.

• Appendix B, restructured.

• Appendix C, restructured, updated, and
added a monitoring example.

• Appendix D, restructured.

• Glossary added.

Typographic corrections throughout.

September 14, 2000 1.5 1.0 Refer to that printing.

For More Information On This Product,

 Go to: www.freescale.com

40 ABOUT THIS GUIDE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Related User
Documentation

Table 3 presents a list of C-5 and CST user documentation that is related to this guide. Find
these documents in the Support section of the C-Port Corporation web site:

http://www.cportcorp.com/support/

Table 3 Related Documentation

Document
Subject Document Name Purpose

Part
Number

Processor
Information

C-5 Network Processor D0 Data Sheet Describes hardware design specifications for the C-5
network processor

C5NPD0-DS

Software
Development
Tools

 C-Ware Application Building Guide Describes tools to build executable programs for the
C-5 network processor or the C-5 Simulator

4-011

C-Ware Debugger Guide Describes the GNU-based tool for debugging software
running on either the C-5 network processor or C-5
Simulator

4-013

C-Ware Development System Getting Started
Guide

Describes installation of the CDS 4-001

C-Ware Development System User Guide Describes operation of the CDS 4-002

C-Ware Performance Analyzer Guide Describes use of the Performance Analyzer tool for
gathering performance metrics of a C-5 based
application running under the C-5 Simulator

4-014

C-5 Simulator Guide Describes how to configure and run a simulation of a
C-5 based application using the C-5 Simulator tool

4-012

C-Ware Software Toolset Getting Started Guide Describes how to quickly become acquainted with the
CST’s software development tools

4-010

Application
Development

C-Ware Application Design Guide Describes design guidelines and trade-offs for
implementing new C-5 based communications
applications

4-023

C-Ware CPI User Guide Describes the subsystems and services that make up
the C-Ware Communications Programming Interface
for C-5 based communications applications

4-015

C-Ware Host Application Programming Guide Describes the CST software infrastructure and CPIs that
support host based communications applications

4-018

C-Ware Microcode Programming Guide Describes programming the C-5 network processor’s
Serial Data Processors and Fabric Processor

4-017

C-Ware Reference Library Guide Describes the CST’s C-5 based Reference Library
applications, including how they utilize C-5 network
processor resources

4-016

For More Information On This Product,

 Go to: www.freescale.com

http://www.cportcorp.com/support/

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 1
Introduction

Chapter Overview This chapter covers the following topics:

• C-5 NP Architecture Overview

• C-5 NP Block Diagram and Flow Process

• C-5 NP Address Mapping

For More Information On This Product,

 Go to: www.freescale.com

42 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Architecture
Overview

The C-5 NP implements an architecture specifically designed for communications
applications. Cell and packet processing, table lookup processing, and queue
management functions are all integrated into the C-5 NP architecture. With the addition
of physical interface chips, memory chips (for payload, circuit/routing tables, and payload
descriptor queues), and minimal support logic, a single C-5 NP can be used to implement
highly-intelligent mixed media, multiport, multiprotocol switches, multiplexors, and
concentrators. Multiple C-5 NPs can be used in conjunction with a switching fabric to
implement larger scale switching systems.

Highly-Integrated
Architecture

The C-5 NP’s highly-integrated architecture employs dedicated processors for each
networking channel and a series of coprocessors that offload many common
networking-specific tasks. Refer to Figure 1 on page 42. This architecture allows the
processors and coprocessors to support concurrent processing, which helps the C-5 NP to
deliver software flexibility at hardware speeds. In addition, the C-5 NPs RISC instruction
set is specially designed to handle communications functions efficiently, even further
enhancing its performance.

Figure 1 C-5 NP Processors and Coprocessors

Network I/O
5Gbps

Host I/O
2Gbps

Internal
I/O

60Gbps

Fabric I/O
5Gbps

CP0 CP1 CP15 XP FP TLU QMU BMU

SRAM or
Ext. QM

SDRAM

18 integrated processors
available for value-added
Networking Intelligence

3 optimized coprocessors offload
specialized networking tasks that
are common across applications

C-5
NP

SRAM or
Ext. TLE

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Architecture Overview 43

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Modes of
Operation

The C-5 NP supports three (3) different modes of operation (Single Channel, Pipeline
Channel, and Aggregate Channel) based upon your application needs, allowing you to
increase processing power or increase bandwidth.

Single Channel Mode
CPs operate independently of each other at full duplex and can support, for example,
OC-3.

Pipeline Channel Mode
To scale processing power for a particular application, the CPs can be linked for pipelined
processing on a single data stream. This allows processing power to be applied
independently of data rate. Using this mode, different CPs sequentially process
cells/packets, achieving a high-level of processing. For example, AAL2.

Aggregate Channel Mode
To scale serial bandwidth capabilities, the CPs can be aggregated into parallel clusters for
wider data streams. The C-5 NP’s 16 CPs can be partitioned into four (4) groups of four (4)
CPs called clusters. Clusters allow the CPs to share resources (IMEM and DMEM) and
support aggregation. A cluster of CPs can be configured, for example, to work together to
support one physical interface (such as OC-12), or either the receive or transmit portion of
one physical interface (such as Gigabit Ethernet). For more information about
Aggregation in the C-5 NP. Refer to Appendix B.

C-5 NP Supported
Interfaces

The C-5 NP’s architecture supports a variety of industry-standard serial and parallel
protocols and individual port data rates ranging from DS1 (1.544Mbps) to Gigabit
Ethernet (1000Mbps). The interfaces supported include:

• 10/100Mb Ethernet (RMII)

• 1Gb Ethernet (GMII and TBI)

• OC-3c

• OC-12 (as an aggregation of four OC-3c data streams)/OC-12c

• FibreChannel

Each CP comprises of a set of microprogrammable, special-purpose processors, called Serial
Data Processors (SDPs), that provide features such as Ethernet MAC and SONET framing,
multichannel HDLC control, and ATM cell delineation. Figure 2 on page 44 shows the
physical interfaces and examples of the processing provided by the CP’s SDPs for the
interface type.

For More Information On This Product,

 Go to: www.freescale.com

44 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The programmability of the C-5 NP can also support a variety of special interfaces, such
as various xDSL encapsulations and proprietary protocols.

Figure 2 Examples of SDP Programmability

Major Components of
the C-5 NP

The C-5 NP contains eighteen (18) processors (16CPs, XP, and FP) and three (3)
coprocessors that operate as shared resources for the CPs and each other, and perform
some networking-specific tasks. Refer to Table 4 on page 44.

CP

10/100/
GbE PHY

Ethernet
MAC

CP

OC-3/OC-12
PHY

SONET
Framer

ATM Cell
Delineator

CP

OC-3/OC-12
PHY

SONET
Framer

PPP (HDLC)
Framer

CP

Associated
PHY

CP

T/E-Carrier
Framers

Line
Interface

Unit (LIU)

Multi-
channel
HDLC

Controller

Virtually
any

protocol

Table 4 C-5 NP Major Components

Item Device Type Function

Channel
Processor (CP)

Programmable
Processor

The programmable Channel Processors (CPs) are
responsible for receiving, processing, and transmitting cells
or packets. The CP’s design and on-chip memory
architecture incorporate a number of features that result in
a uniquely capable engine for the execution of
high-performance data communication tasks.

Executive
Processor (XP)

Programmable
Processor

Provides network control and management functions in
user applications. The XP’s Peripheral Component Interface
(PCI) supplies an industry-standard 32bit 33/66MHz
channel to attach additional processors and line interfaces.
The XP also has a PROM and serial bus interface.

Fabric Processor
(FP)

Programmable
Processor

Manages the high-speed fabric interface. FP channels
attach to a switch fabric or very high performance line
interfaces. The FP supports the UTOPIA-1, -2, and -3
interface standards, as well as, Power X and RRIZMA
protocols.

Buffer
Management
Unit (BMU)

Programmable
Coprocessor

Manages centralized payload storage during the
forwarding process. An independent high-bandwidth
memory interface connects to external memory for the
actual storage of payload data.

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Architecture Overview 45

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Interconnect
Components

The C-5 NP also contains three (3) independent data buses that provide internal
communication paths between the eighteen (18) processors (16CPs, XP, and FP) and three
(3) coprocessors, supporting concurrent processing. Refer to Table 5 on page 45.

Other Supported
Features

In addition, the C-5 NP provides these other features that provide better application
integration. Refer to Table 6 on page 45.

Table Lookup
Unit (TLU)

Programmable
Coprocessor

 Provides table search and associated data storage services
to the CPs, XP, and FP. An independent high-bandwidth
memory interface connects to external memory for storage
of circuit and forwarding tables.

Queue
Management
Unit (QMU)

Programmable
Coprocessor

Manages application-defined descriptor queues among the
CPs, FP, and the XP. An independent high-bandwidth
memory interface connects to external memory for storage
of payload descriptor queues.

Table 4 C-5 NP Major Components (continued)

Item Device Type Function

Table 5 C-5 NP Interconnect Components

Item Device Type Function

Payload
Bus

Slotted,
multichannel, shared,
arbitrated bus

Carries payload data and payload descriptors between the
processors and the BMU and QMU.

RIng Bus Slotted ring-topology
bus

Provides bounded latency transactions between the
processors and the TLU. It also supports inter-processor
communication.

Global
Bus

Slotted,
multichannel, shared,
arbitrated bus

Supports inter-processor communication via a conventional
flat memory-mapped addressing scheme.

Table 6 C-5 NP Other Supported Interfaces

Features Function

Byte Swapping Used to move data between the PCI Bus Little Endian environment and
the C-5 NP Big Endian environment. Refer to Appendix D for details.

SONET/SDH Support Provides hardware support to extract, insert and analyze SONET/SDH
(Synchronous Digital Hierarchy). Refer to Appendix C for details.

Multicast Operations Allows multicast elaboration using the BMU and QMU components of
the C-5 NP. Refer to “Multicast Support (System Level)” on page 361 for
details.

For More Information On This Product,

 Go to: www.freescale.com

46 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Block Diagram
and Flow Process

The full architecture of the C-5 NP is shown in Figure 3 on page 46. The major components
of the C-5 NP are numbered on the diagram, and include:

1 Channel Processors (CPs)

2 Executive Processor (XP)

3 Fabric Processor (FP)

4 Buffer Management Unit (BMU)

5 Table Lookup Unit (TLU)

6 Queue Management Unit (QMU)

7 Internal Buses (Ring Bus, Global Bus and Payload Bus)

Figure 3 C-5 NP Simplified Block Diagram

PHY PHY PHY PHY PHY PHY PHY PHY

Payload Bus

Ring Bus

Global Bus

Cluster Cluster

CP1CP0 CP2 CP3 CP12 CP13 CP14 CP15

XP

TLU

QMU

External
Host
CPU

Table Storage
and Statistics

(SRAM)
Queue Storage

(SRAM)

Table
Lookup
Engine

SRAM
Ctrl

SRAM
Ctrl

Queue
Mgmt
Engine

External
PROM

(optional)

PROM
Interface

Serial
Bus

Interface
PCI

Control
Logic

(optional)

Fabric

FP

BMU

SDRAM
Ctrl

Processor Boundary

Buffer
Mgmt
Engine

SDRAM
Packet/

Cell
Storage

XP Prog/
Data

Storage

1

2

3

4

5

6 7

C-5 NP

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Block Diagram and Flow Process 47

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Cell and Packet
Forwarding Overview

Each CP within the C-5 NP has special-purpose components that aid in cell/packet parsing
and verification. These components also aid in creating separate data and control paths
for the cell/packet. Data is sent via the Payload Bus to the BMU for temporary storage in
SDRAM. In parallel with the data being stored, application-specific control data is
abstracted into a short descriptor that is used to make forwarding decisions. All interfaces
use the Ring Bus to consult forwarding tables in the TLU. The interfaces access the QMU
(to enqueue frame descriptors to another interface or processor) through the Payload Bus.
Cells/packets that are terminated in the chip or require management processing (such as
for routing updates) are enqueued for handling by the XP.

Note that the receive and transmit processes can occur on the same or on different CPs.

T he CP handles typical packet forwarding as described in the following sections. The
receive and transmit flows are described in detail and shown in Figure 4 on page 49.

Receiving Packets
1 On reception of a serial bit stream, the RxSDP (Receive Serial Data Processor) program

detects the packet framing and organizes the bit stream into a byte stream. The SDP
program also characterizes and parses the byte stream, performing pattern matching
and checking validity criteria.

2 The RxSDP places application-defined fields in Extract Space for access by the CPRC
(Channel Processor RISC Core).

3 The SDP launches table lookup requests on extracted data fields using the Ring Bus.

4 Concurrently, the byte stream is transported to a double 64-byte buffer in local DMEM
(Data Memory), where it accumulates 64-byte segments (until reaching the end of the
packet). The 64-byte segments are transported via the Payload Bus and the BMU to
pre-allocated packet buffers in external SDRAM.

5 The CPRC program, upon receiving the extracted data fields and table lookup results,
determines the destination queue and other forwarding parameters for the packet,
and constructs a forwarding descriptor data structure. This data structure, at a
minimum, includes the identity of the packet buffer in which the packet resides. The
descriptor is transmitted by the CPRC receive program to the QMU via the Payload Bus.
The QMU copies the descriptor into a descriptor buffer and chains that buffer onto the
desired queue.

For More Information On This Product,

 Go to: www.freescale.com

48 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transmitting Packets
6 The transmitting CPRC program discovers, via a background queue status distribution

mechanism, that a queue it services contains a forwarding descriptor. The program
reads the descriptor via the Payload Bus from the QMU.

7 The transmit CPRC program inspects the descriptor and using the information it
contains, parameterizes the TxSDP program by filling the Merge Space with the format
information and packet data field contents necessary to perform the packet
transformation. The CPRC sets up the payload transfer from SDRAM via the BMU to
local DMEM.

8 The data stream is transported from the BMU via the Payload Bus in 64-byte segments
to a double 64-byte buffer in DMEM. The segments are then passed as a byte stream to
the TxSDP program, which transforms the packet, substituting data fields from the
Merge Space.

9 As a part of either the receive or transmit process, the CPRC program can exercise
other C-5 NP resources, such as performing additional table lookups or accessing
packet data directly as it flows through the DMEM data buffers.

10 The TxSDP converts the byte stream to a serial bit stream, applies framing, and
transmits the bit stream.

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Block Diagram and Flow Process 49

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 4 Typical Cell/Packet Forwarding Application Receive and Transmit Data Flow

External QMU

External BMU

CPRC

Forwarding
Descriptor

Descriptor
Buffer

Extract
Space

BMUDMADMEMDMARxSDP

Data

Packet Cell

QMU

1

4

5

Inbound serial
data stream

Receiving Channel Processor

Buffers

External TLU

Forwarding

Statistics Tables

SRAM

SDRAM

Ring Bus
Registers

2

TLU

Buffer

SRAM

BMUDMADMEMDMATxSDP

Merge
Space

CPRC

Forwarding
Descriptor

Data

QMU

6

7

8

Transmitting Channel Processor

10

Buffers

Outbound serial
data stream

Ring Bus
Registers

9

TLU

Queues

3

Tables

For More Information On This Product,

 Go to: www.freescale.com

50 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Address
Mapping

The C-5 NP supports inter-processor communication using a single, flat memory model.
This allows all C-5 NP processors to view all memory-mapped state and configuration
registers.

The Channel Processors (CPs) cannot access certain registers reserved exclusively for the
Executive Processor (XP).

Each memory resource in the C-5 NP is mapped within its own contiguous 1MByte block
of memory. Thus, the specific location of any processor’s resource block (local DMEM and
registers) within the physical memory space can be mapped using multiple 1MByte
offsets.

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Address Mapping 51

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 5 C-5 NP Physical Address Memory Map

KSEG2
1 Gigabyte

KSEG1
0.5 Gigabytes

(Local Sys I/O)

KSEG0
0.5 Gigabytes

KUSEG
2 Gigabytes

PROM Space
4 Megabytes

60 - 1 Megabyte
Configuration

 Blocks for CPs,
XP, FP,

General System
I/O Space is:

Windows to PCI
Memory and

I/O Space, etc.

0.5GB KSEG1

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

Reserved

0xBD8FFFFF

0xBD8000000xA0000000

0xBFFFFFFF

0x00000000

0xFFFFFFFF

0xBFC00000

0xBFFFFFFF

0xBBFFFFFF

0xBFBFFFFF

0xBC000000

0xC0000000

Reserved
Configuration

Space

0xBFBFFFFF

0x7FFFFFFF

0x9FFFFFFF

0xA0000000

0x80000000

0xBDB00000

0xBD900000

0xBDC00000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

28 - 1 Megabyte

Reserved
Configuration

8 - 1 Megabyte

QMU, BMU, etc.

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBDF00000

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE00000

0xBCC00000

Space

Blocks

Blocks

448 Megabytes

Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.

Individual
Processor’s

Configuration
Space

(See memory
maps located
in each chap-

ter)

For More Information On This Product,

 Go to: www.freescale.com

52 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Configuration Register
Definitions

The CP configuration registers form the “base register set” for the C-5 NP. Each CP
duplicates the base register set within its own configuration space.

The XP registers include a subset of the base register set, as well as the system interface
registers. The XP’s “CP-like” base registers are located at the same address offsets within
the XP’s configuration space as are the CP configuration registers. The FP has a subset of
the “CP-like” base registers.

The configuration registers are listed in this chapter by incremental address (CPs, XP, FP,
QMU, and so on).

Processor Base Address
Offsets

Each C-5 NP processors/coprocessors have a unique 5bit processor ID value. The starting
address for any CP (as well as the XP, FP, QMU, BMU, and TLU) can be determined by
adding 0xBC000000 to the 5bit processor ID shifted left 20 bit positions, to provide the
1MByte of address space assigned to each processor. For example, the address space for
CP5 is: 0xBC000000 + (0x05 << 20) = 0xBC500000. Refer to the memory map in Figure 5
on page 51. In addition, the Ring Bus node IDs for the CPs, XP, FP, and TLU are listed in
Table 7 on page 52.

Table 7 Ring Bus Node IDs

Unit Node ID Unit Node ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* Transmit only. The FP cannot read messages on the Ring Bus. Thus
any messages sent to the FP cannot be removed from the Ring Bus,
eventually filling up the Ring Bus.

30

CP8 8 TLU 31

CP9 9

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Address Mapping 53

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

As shown in Figure 5 on page 51, within this space, CP0’s 12kBytes of local DMEM begins
at the base address (for CP0 this is 0xBC000000), the configuration register space begins at
the base address plus 16kBytes (0xBC004000) (with a CP ID shifted of 20 bits). This
mapping makes all of DMEM and configuration space available within the positive signed
16bit offset from the CP0 base address.

Configuration Register
Address Offsets

Most configuration registers are described only once in this manual. However, some
registers have unique variations for different processors. In this case, each register
variation is defined.

The register addresses as listed substitute the letter n in the address for the processor’s ID.
By substituting the processor’s ID for n, you can calculate the address for all individual
registers in the C-5 NPs address space. Refer to Figure 6 on page 53 and Figure 5 on
page 51.

Figure 6 Register Address Format (in bits)

Byte Ordering
The C-5 NP uses Big Endian byte ordering. However, the XP because of its Peripheral
Component Interface (PCI), is capable of handling either Big or Little Endian format from
the PCI.

It is recommended that developers use only Big Endian format when developing
applications.

1011 110x xxxx 0000 yyyy yyyy yyyy yyyy

CP ID

CSR

Register Address

5 bits

16 bits

For More Information On This Product,

 Go to: www.freescale.com

54 CHAPTER 1: INTRODUCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 2
Channel Processors

Chapter Overview This chapter covers the following topics:

• Channel Processors (CPs) Overview

• Serial Data Processors (SDPs) Overview

• CP RISC (CPRC) Overview

• CP Memory (IMEM and DMEM)

• CP Memory Interface Transactions

• CP Configuration Space

• Understanding Block Moves of Data

For More Information On This Product,

 Go to: www.freescale.com

56 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Channel Processors
(CPs) Overview

The C-5 NP has a dedicated, programmable CP for each of its sixteen (16) line interfaces to
handle cell and packet forwarding. The CPs are designated (CP0,CP1 ... CP14, CP15) and
can be aggregated to handle higher-speed interfaces and share memory resources. Each
CP consists of Serial Data Processors (SDP) and a Channel Processor RISC Core (CPRC),
which together perform cell and packet processing via special-purpose memories,
namely Instruction Memory (IMEM) and Data Memory (DMEM) that loosely couple these
processors. Refer to Appendix B for details about Aggregation.

CP Major Components The major components of each CP are listed in Table 8 on page 56. In addition, Figure 7 on
page 57 shows the CP Block Diagram.

Table 8 Major Components of the CPs and Their Functions

Item Function

SDPs Provide microprogrammable interfaces for receive (Rx) and transmit (Tx)
between external serial streams and the rest of the CP elements. The receive SDP
(RxSDP) and the transmit SDP (TxSDP) can be programmed to process some of
the most common types of networking traffic, such as SONET, Ethernet, and ATM.
The RxByte programmable processor of the RxSDP and the TxByte
programmable processor of the TxSDP can be further programmed for
specialized applications.
On receipt of a cell/packet, the RxSDP provides serial-to-parallel conversion,
validates and interprets the header and payload, and initiates table lookups. On
transmission of a cell/packet, the TxSDP applies the header and payload, and
provides parallel-to-serial conversion.

CPRC Programmed to support the following application functions:

• Characterizing cells/packets and building descriptors

• Initiating additional table lookups

• Collecting all table lookup results

• Making forwarding and filtering decisions based on the parsed header data
and table lookup results (classifying cells/packets)

• Making scheduling decisions (based on the characterization of cells/packets)

The CPRC implements a subset of the MIPSTM 1 instruction set (excluding
multiply, divide, floating point, and CPO instructions). In addition, the CPRCs
support four-way fast context switching.

For More Information On This Product,

 Go to: www.freescale.com

Channel Processors (CPs) Overview 57

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 7 Channel Processor Block Diagram

Memory Two (2) types of memory are available: IMEM and DMEM.
• Each CP has 6kBytes IMEM that contain the RISC Instructions in RAM. In

Cluster mode, four (4) adjacent CPs provide 24kBytes instruction memory
(IMEM) that are shared among the CPs within that cluster.

• Each CP has 12kBytes of local non-cached data memory (DMEM) for storage of
data. Each CPRC can access the local DMEM of any other CPRC within that
cluster within one to four additional cycles of latency (depending on CP
contention for the DMEM) for a total of 48kBytes. In addition, the DMEM can
also be accessed as remote memory by other CPs and the XP via the Global
Bus.

Configuration
Space

This area of the CP contains a number of registers used to communicate
with the SDP and the bus controllers (Payload Bus and Global Bus). The
CP’s registers can also be accessed by other components of the C-5 NP,
(XP and other CPs via the Global Bus).

Table 8 Major Components of the CPs and Their Functions (continued)

Item Function

Ring
Bus

Interface

DMA

Pin
Logic

Pin
Logic

RxSDP

TxSDP

IMEM

Extract
Space

CPn

Data Path

Data Path

Control
Paths

TxByte
Proc

TxBit
Proc

Merge
Space

RxByte
Proc

RxSync
Proc

RxBit
Proc

DMEM

Global
Bus

Interface

Payload
Bus

Interface

CP
RISC
Core

(CPRC)

For More Information On This Product,

 Go to: www.freescale.com

58 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Serial Data Processors
(SDPs) Overview

Each CP includes a Serial Data Processor (SDP) that contains microcode-programmable
components for receive processing (RxSDP) and for transmit processing (TxSDP). Each
SDP provides a programmable bit- and byte-level interface to the physical layer (PHY) and
acts as the interface between external serial data streams and all other CP elements. The
SDP can also launch table lookups to the Table Lookup Unit (TLU).

The SDPs and CPRC operate independently on their specific forwarding tasks and interact
to forward a packet to its destination. For example, during receive operations, the RxSDP
assembles cell/packet data into DMEM buffers that are written to SDRAM over the Payload
Bus under CPRC control. In the process, the RxSDP extracts application-defined fields,
placing them in shared registers for access by the CPRC.

Code running on the CPRC characterizes the incoming cell/packet, synthesizes a
descriptor that directs the management and routing of the cell/packet, and classifies the
cell/packet by enqueuing the descriptor to the appropriate QMU queue. Because the SDP
and the CPRC are pipelined to forward cells and packets, many parts of the forwarding
process can be performed concurrently.

Supported External
Interfaces

Each CP currently supports (in hardware and C-Ware application microcode) the following
external interfaces as shown in Table 9 on page 58.

The programmability feature of the SDPs enables support for many other physical
interface types, including various xDSL encapsulations and proprietary protocols.

Each type of physical layer PHY has both a characteristic frequency and a particular
configuration for the input and output clocks. To accommodate these needs, each CP has
a transmit clock mux (txclk mux) that can select among eight (8) global clocks that are
sourced externally, two (2) clocks that are sourced from CPs and driven globally, or a clock
that is received locally (that is, for OC-12c).

Table 9 Supported Interfaces & Transmit Clock Mux Selects

Supported Interface
Mux
Select Clock Source (MHz)

T1 1 1.544

E1 2 2.048

E3 3 34.368

T3 4 44.736

10/100Mbit Ethernet (RMII) 5 50

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 59

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The SDP can be run synchronously with the C-5 NP clock by driving the C-5 NP’s clock
signal into the corresponding external clock port to which the SDP is configured.

Up to two (2) receive clock muxes (rxclk mux), internal_0 and internal_1, can also be used
as transmit clocks for other CPs. This is intended for Telephony applications where the
received clock is considered to be more accurate than the local clock source. The CPs that
drive these internal clocks are limited to two fixed locations, CP0 and CP8.

CP I/O requires configuration based on the configuration register that specifies the type of
port. In addition, there are controls for the rclk mux and the tclk mux that are also based
on the port type.

SDPs Functions The SDP is a pipeline of serially-connected, microcode programmable processors and
configurable logic blocks, as shown in Figure 8 on page 60. The data path among these
processors and blocks is application configurable. These processors and blocks implement
a programmable interface between a port’s PHY, where data is serialized, encoded, and
encapsulated in protocol-dependent ways, and the CPRC, which expects data to be
byte-wide, decoded, delineated, and with header fields naturally aligned.

The receive SDP (RxSDP) accepts serial data from the C-5 NP’s physical layer circuitry and
performs serial-to-parallel conversion on the data. It delineates frames and cells from the
protocol that carries them, performs error and data integrity checks, and compares and
extracts fields in the data stream. It provides the contents of the extracted fields to the
CPRC in the CPRC’s Extract Space. The CPRC’s local memory (DMEM) provides buffering for
the payload data going to SDRAM.

1GBit Ethernet (GMII and TBI) and
1.0625GBit FibreChannel (TBI)

6 125

OC-3c 7 155.52

8 internal_0

9 internal_1

OC-12 and OC-12c A aggr rclk

B local rclk (loop timing)

C - F not assigned

Table 9 Supported Interfaces & Transmit Clock Mux Selects (continued)

Supported Interface
Mux
Select Clock Source (MHz)

For More Information On This Product,

 Go to: www.freescale.com

60 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

During data transmission, the CPRC’s DMEM buffers the payload data that originates from
SDRAM. The transmit SDP (TxSDP) performs field insertion, deletion, and replacement in
the outgoing data stream using fields from the CPRC’s Merge Space. It performs
checksum and CRC generation, frame encapsulation and encoding, and parallel-to-serial
conversion on the data. The TxSDP forwards the data to the C-5 NP’s external physical
layer circuitry.

Figure 8 Rx and Tx SDP Programmable Processors and Configurable Logic Blocks

If a set of CPs is aggregated, those CPs’ SDPs are also configured as aggregated. The
behavior of aggregated SDPs is described in Appendix B.

PHY Clock Core Clock

Merge
Space

Data from
DMEM

8b/10b
Decode
Block

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Large
FIFO

Small
FIFO

PHY Clock Core Clock

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

TxByte
Processor

Large
FIFO

Small
FIFOTransmit SDP

Receive SDP

Channel Processor

Co
nf

ig
ur

ab
le

 P
in

 L
og

ic

TLU
Lookups

Extract
Space

Data to
DMEM

RxByte
Processor

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 61

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDPs Major Components The RxSDP and TxSDP features two (2) types of hardware. Refer to Table 10 on page 61.

These programmable processors and configurable logic blocks are described in more
detail in “RxSDP Detail Operations” on page 64 and “TxSDP Detail Operations” on page 68.

The SDP’s processors are microcode programmable, and SDP’s blocks are configurable
only.

Each pipeline configuration uses FIFO blocks between certain pairs of processors. The
FIFOs allow for some elasticity during relatively short periods of time when one SDP
processor’s throughput does not exactly match that of another that feeds it or is fed by it.

The run-time path for data traffic through this pipeline of SDP processors and blocks is
configured by the application using higher-level calls to the C-Ware Communications
Programming Interfaces (CPIs). This configuration takes place under application control as
part of initializing the C-5 NP’s ports. The available pipeline configurations are determined
at the application level. Refer to the C-Ware Reference Library document in the C-Ware
Application Development Guide for more information. These CPI calls configure the RxSDP
and TxSDP by setting the appropriate bits in the SDP_Mode3 (RxSDP) and SDP_Mode5
(TxSDP) registers.

By distributing the SDP’s tasks among a pipeline of embedded programmable processors
and configurable logic blocks, the available processing achievable at wire speed can be
quite high. For OC-12, Gigabit Ethernet, and FibreChannel, the C-5 NP’s SDPs can be
configured (via C-Ware CPIs) into aggregated channels that cooperatively achieve an even
higher aggregate throughput.

Table 10 Types of Hardware Features in the RxSDP and TxSDP

Type of Hardware
Features Items Function

Programmable
Processors

RxBit Processor,
RxSync Processor,
RxByte Processor,
TxBit Processor and
TxByte Processor.
Refer to Figure 8 on
page 60.

Each embedded processor has special-purpose
hardware such as a dedicated instruction store, a
bank of internal registers, ALU, CAM, CRC engines,
and so on for performing a unique set of
operations. See the C-Ware Microcode
Programming Guide for more information.

Configurable Logic
Blocks

8b/10b Decode
Block, RxSONET
Framer Block, 8b/10b
Encode Block and
TxSONET Framer
Block. Refer to
Figure 8 on page 60.

Each block is optimized to perform one function,
and, while not fully programmable is configurable
by the application. Examples of these
configurable logic blocks are the SONET Framers
and the 8b/10b Decode/Encode Blocks used for
TBI protocols.

For More Information On This Product,

 Go to: www.freescale.com

62 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

A CP can also be configured to allow recirculation of data traffic from the TxSDP to the
RxSDP. Refer to “Configuration for Recirculation Operations Using RxSDP and TxSDP” on
page 72.

Common Components of
the Programmable

Processors

Refer to Table 11 on page 62 and Figure 9 on page 62 for the common components of the
programmable processors (RxBit, RxSync, RxByte, TxBit and TxByte) inside the SDPs and their
functions.

Figure 9 Common Components of Programmable Processors

Table 11 Common Components of Programmable Processors and Their Functions

Item Function

Arithmetic Logic Unit
(ALU)

The eight-bit arithmetic and logic unit, where computations take place.

Instruction
Registers (Iregs)

Consists of sixteen (16) (Ireg0 to Ireg15) registers for the embedded
processor’s internal use:

• Ireg0 to Ireg3 can serve as general-purpose registers but also can
serve as counters (can be incremented directly by microcode). Ireg0
to Ireg3 can be incremented separately as eight-bit registers or as
16bit register pairs (Ireg0/Ireg1 and Ireg2/Ireg3). If Ireg0 to Ireg3 are
used as pairs, Ireg1 is the least-significant half of its pair, as is Ireg3.

• Ireg4 to Ireg9 are eight-bit, general-purpose registers.

• Ireg10 to Ireg12 are currently not implemented.

• Ireg13’s two least significant bits (LSBs) provide access to the ninth
bit of Ireg0 and of Ireg15.

• Ireg14 is the Control/Status register.

• Ireg15 is the microcode program counter.

ALU

Shift Registers CRC Block

Iregs

Microprogram Store

CAM (9 bits wide)
24 Entries: RxSync, TxByte
64 Entries: RxBit, RxByte

RxBit, TxBit
only

RxByte, TxByte, and
RxSync only

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 63

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The CPRC restarts each SDP processor by toggling a reset signal. The microprogram stores
and CAMs are visible to the CPRC and XP programs only for the purpose of loading these
memories. The other registers and counters are not visible to CPRC and XP programs.

For information about the programmability of the SDP’s embedded processors, see the
Microcode Programming Guide.

Microprogram Store Provides storage for the processor’s microcode program. It comprises a
series of 52bit microprogram words. Its characteristics are shown here:

Content
Addressable
Memory (CAM)

Provides a nine (9) bit wide lookup table. Its characteristics are shown
here:

Shift Registers Supports serial-to-parallel conversion.
Note: Only applies to RxBit and TxBit programmable processors.

Cyclic Redundancy
Check (CRC)

 Provides CRC checking, generation, and scrambling.

Table 11 Common Components of Programmable Processors and Their Functions (continued)

Item Function

Programmable
Processors

Microprogram
Store Size *

RxBit 64 words

RxSync 64 words

RxByte 512 words

TxBit 256 words

TxByte 384 words

* 52bit word

Programmable
Processors CAM

RxBit 64 entries x 9 bits wide

RxSync 24 entries x 9 bits wide

RxByte 64 entries x 9 bits wide

TxBit None

TxByte 24 entries x 9 bits wide

For More Information On This Product,

 Go to: www.freescale.com

64 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxSDP Detail Operations This section provides more detail information regarding each RxSDP’s programmable
processors and configurable logic blocks. The individual items are shown in Figure 10 on
page 64.

Figure 10 RxSDP Programmable Processors and Configurable Logic Blocks

8b/10b Decode Configurable Logic Block
The 8b/10b Decode configurable logic block is located in the RxSDP.

This block contains hardware for encoding and decoding between 8-bit and 10-bit
formats. This enables support for protocols that require 8b/10b encoding, such as
FibreChannel or Gigabit Ethernet over the Ten Bit Interface (TBI).

As shown in Figure 11, in the RxSDP the 8b/10b Decode block decodes the 10-bit
encoded data into its 8-bit equivalent, plus a Special-K signal, which is passed upstream as
the ninth bit of the data stream. This bit is used during RxBit CAM lookups to differentiate
between control and data characters. Using this decoded data stream, RxBit can be
microprogrammed to perform frame delineation and to implement the Physical Coding
Sublayer (PCS) state machine, defined in the IEEE 802.3 specification, section 36.

Figure 11 Operation of 8b/10b Decode Configurable Logic Block

PHY Clock Core Clock

8b/10b
Decode
Block

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Large
FIFO

Small
FIFOReceive SDP

Channel Processor

Co
nf

ig
ur

ab
le

 P
in

 L
og

ic

TLU
Lookups

Extract
Space

Data to
DMEM

RxByte
Processor

RxBit
Processor

10bit
Encoded

Data
Data 0-7

8bit Data

Special-K

Sync Loss
(to Event Reg)

Data 8

RxSmall
FIFO

8b/10b
Decode
Block

Synch
State

Machine

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 65

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Also in the 8b/10b Decode block, a special hardware component implements the
synchronization state machine defined in the IEEE 802.3z specification, section 36.2.5.2.6
and in FibreChannel specifications. This component tracks whether comma code groups
appear on odd or even positions in the incoming data stream to establish a state of
synchronization, after which it tracks the occurrence of running disparity errors. After
observing a defined density of disparity errors, the SyncLoss signal is asserted. This signal
sets a bit in the SONET_Event register which then sets a bit in the Event0 register that can
be programmed to cause a CPRC interrupt, which allows the CPRC the opportunity to take
corrective action, such as to initiate a re-establishment of the physical link.

RxSmallFIFO Configurable Logic Block
The RxSmallFIFO configurable logic block provides elasticity for the RxBit Processor’s
throughput requirements.

The RxSmallFIFO block also bridges the network clock domain with the C-5 NP’s internal
clock domain. The block has two (2) parts: the internal half’s clock runs at the same
frequency as the core clock, and the external half’s clock runs at the same frequency (or a
submultiple) as the external PHY’s clock. This allows the input data stream to be converted
to the core clock’s higher frequency, thereby increasing all SDP throughput.

The RxSmallFIFO is sixteen (16) locations deep and ten (10) bits wide (that is, eight (8) data
bits and two (2) control bits).

RxBit Programmable Processor
The RxBit programmable processor performs frame and cell delineation (including
serial-to-parallel conversion), pattern matching, and field extraction on serial data up to
nine (9) bits at a time. The extracted fields are written to the CP’s Extract Space.

The payload output data is nine (9) bits wide.

The RxBit programmable processor can take specific actions in microcode in response to a
particular pattern match. The RxBit programmable processor processes the data stream as
a function of position. Pattern matches can include “don’t cares.” Extracted fields and
status are written to programmable locations in the CP’s Extract Space.

In a sense, the RxBit programmable processor is an intelligent serial-to-parallel converter,
in that it is:

• Capable of detecting High-level Data Link Control (HDLC) frames and invalid
sequences, as well as removing stuffed zeroes.

• Used to find the Synchronous Transport Signal (STS) frame in an OC-3c data stream.

For More Information On This Product,

 Go to: www.freescale.com

66 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• Capable of identifying and deleting the preamble of incoming Ethernet frames.

• Used for 1000BASE-X Gigabit Ethernet delimiter recognition.

• Used to implement the receive side of the 1000BASE-X physical convergence sub-layer
of IEEE 802.3z.

• Used to delineate FibreChannel frames.

RxSONET Framer Configurable Logic Block
The RxSONET Framer configurable logic block obtains recovered receive clock frame sync
(A1 and A2) and eight-bit (8) data from the physical layer interface chip or from the RxBit
programmable processor. It descrambles the data, demultiplexes the transport overhead,
checks (B1, B2) parity, and writes the overhead octets into the CP’s register space. Refer to
Figure 10 on page 64. Each STS frame has its own parity checker.

The RxSONET Framer also interprets the STS pointer in order to extract the Synchronous
Payload Envelope (SPE). From the payload envelope, it demultiplexes the path overhead,
checks (B3) parity, and writes the other overhead bytes to the CP’s Extract Space. The
remaining payload is passed downstream, which handles concatenated formats only.

The RxSONET Framer does no demultiplexing of the SPE payload. As such, it is only
suitable for receiving frames or cells.

The RxSONET framer also provides support for detection and monitoring by software of
various SONET/SDH defects such as Loss of Signal (LOS), Loss of Frame (LOF), Loss of
Pointer (LOP), Path Remote Defect Indication (RDI-P), Line Alarm Indication Signal (AIS-L)
to name just a few. Events of interest can be masked to enable either access via RC
interrupt or polling.

RxSync Programmable Processor
RxSync is a general-purpose programmable processor that can be used to perform any
generic processing to off-load either the RxBit or RxByte Processors. One example of this is
synchronizing on ATM cells.

When configured for ATM, the RxSync programmable processor receives a byte data
stream consisting of 53-byte ATM cells. It finds the cell boundaries by applying the Header
Error Check (HEC) CRC sequentially to five-byte (5) segments, checking the first four (4)
bytes against the fifth HEC byte. If the check fails, the cell delineator repeats the process.
When it finds an application-defined number of successful HEC checks in a row, it enters
the in_sync state. It remains in this state until there has been an application-defined
number of consecutive HEC check failures, then it resumes the search.

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 67

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

After the data stream is synchronized, the RxSync programmable processor appends a
status byte to the data stream so that the cell could be discarded if the HEC does not
check.

The RxSync programmable processor can be programmed to parse the cell header,
writing (Virtual Path Identifier (VPI), Virtual Channel Identifier (VCI)) payload_type and
cell_loss_priority to locations in the CP’s Extract Space.

When configured for Fast or Gigabit Ethernet, the RxSync programmable processor assists
in 802.3x pause packet processing, passing the pause time up to the CPRC for processing.

The RxSync programmable processor is also capable of handling the HDLC byte escape
sequence for Point-to-Point Protocol (PPP) over SONET.

RxLargeFIFO Configurable Logic Block
The RxLargeFIFO configurable logic block is located in front of the RxByte programmable
processor and provides elasticity for the RxByte programmable processor, which typically
has the greatest computational responsibility within the RxSDP. Therefore, this block can
stage a cell while its VPI/VCI is being looked up by the C-5 NP’s TLU.

RxByte Programmable Processor
The RxByte programmable processor performs pattern matching and field extraction. It
also detects and parses the Ethernet and IP headers when acting as a pre-processor to the
CPRC for switching and routing applications. It can extract fields and launch TLU lookups
on fields, stream data to DMEM and to the CP’s Extract Space, and has responsibility for
interfacing with the CPRC.

The RxByte programmable processor can also perform CRC computations and checks and
has the largest amounts of Content Addressable Memory (CAM) and microcode store
space. It is expected that the RxByte microcode contains the majority of the application’s
RxSDP-resident custom functionality.

The RxByte programmable processor can take specific actions as a result of a particular
pattern match on nine (9) bit words of data. The nine (9) bit match values are stored in a
CAM, which is loaded along with the SDP’s microcode. Refer to the SDP Programming
document in the C-Ware Application Development Guide for details about CAMs.

The extracted fields are written to the CP’s Extract Space, which is memory-mapped into
the CP’s Configuration Space. The RxByte programmable processor can also initiate
lookups in the C-5 NP’s TLU on the extracted fields via the Ring Bus interface.

For More Information On This Product,

 Go to: www.freescale.com

68 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The receive data can pass through the RxByte programmable processor multiple times
(via an idle port) by reading the processed data back from local memory and operating on
it again via the SDP’s recirculation path. Refer to “Configuration for Recirculation
Operations Using RxSDP and TxSDP” on page 72 for details.

The RxByte programmable processor implements operations with CRC-16 and CRC-32
only. It can be programmed to check Ethernet and ATM Adaptation Layer 5 (AAL5) Frame
Check Sequence (FCS). AAL5 CRC checking is performed with assistance from the TLU.

TxSDP Detail Operations This section provides more detail information regarding each TxSDP’s programmable
processors and configurable logic blocks. The individual items are shown in Figure 12 on
page 68.

Figure 12 TxSDP Programmable Processors and Configurable Logic Blocks

TxByte Programmable Processor
The TxByte programmable processor can be programmed to read data from DMEM,
generate a valid CRC, and insert, delete, and replace fields in the egress traffic data stream.
Like the RxByte programmable processor, it is expected that the TxByte microcode
contains the majority of the application’s TxSDP-resident custom functionality.

The transmit data can pass through the TxByte programmable processor multiple times
(via an idle port) by writing the processed data back to local memory and operating on it
again via the SDP’s recirculation path. Refer to “Configuration for Recirculation Operations
Using RxSDP and TxSDP” on page 72 for details.

Merge
Space

Data from
DMEM

PHY Clock Core Clock

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

TxByte
Processor

Large
FIFO

Small
FIFOTransmit SDP

Channel Processor

Co
nf

ig
ur

ab
le

 P
in

 L
og

ic

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 69

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxLargeFIFO Configurable Logic Block and Options
The TxLargeFIFO configurable logic block is located after TxByte programmable processor
and provides elasticity for the TxByte programmable processor, which typically has the
greatest computational responsibility within the TxSDP. This block provides elasticity for
field inserts and deletes by the TxByte programmable processor.

This FIFO is one-hundred-twenty-eight (128) locations deep and ten (10) bits wide (eight
(8) bits of data and two (2) control bits). The second control bit is not accessible to the
microcode and is used only for optional payload scrambling in OC-12 mode. The OC-12
data stream must consist of four (4) OC-3c streams. In addition, the TxLargeFIFO allows
two (2) selectable options: Automatic Idle Cell and PPP Flag Insertion, and Transmit FIFO
High Water Mark as described here.

Automatic Idle Cell and PPP Flag Insertion Option
For the C-5 NP Version D0, the TxLargeFIFO supports automatically inserting ATM idle cells
or PPP Flag characters into the output stream when needed.

For applications running on hardware prior to the C-5 NP Version D0, the TxByte
microcode was required to perform this work. That microcode was conservative about
when to send idle cells or PPP flags, to ensure that the TxLargeFIFO never emptied
completely. This resulted in more idle cells or PPP flags being sent out than necessary,
which in turn caused reduced bandwidth over the physical interface.

The new feature for the C-5 NP Version D0 sends idle cells or PPP flags only when the
TxLargeFIFO becomes empty. Using this feature ensures that only the minimal number of
idle cells or PPP flags are sent between packets or user data cells. It also allows
TxLargeFIFO to be filled with real payload and not cluttered with idle characters.

To use the new feature, set the Idle Insert Enable bit in the SDP_MODE4 register. For ATM
applications, also set the Idle Cell Mode bit in the SDP_MODE4 register. For PPP flag
insertion, make sure that the Idle Cell Mode bit is clear. Refer to “SDP_Mode4 Register (CP
Mode Configuration Function)” on page 422.

Transmit FIFO High Water Mark Option
Most applications process a protocol header in the SDP’s TxByte serial processor prior to
streaming payload data. The speed at which it processes a header is typically less than the
transmit speed of the physical interface. If the header bytes were popped off the
TxLargeFIFO at the rate of the physical interface while TxByte is sending them out at a rate
less than that of the physical interface, an under-run condition can occur. An under-run
causes corrupted data to be sent out on the interface when no payload data is available.

For More Information On This Product,

 Go to: www.freescale.com

70 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

To work-around this problem prior to the C-5 NP Version C0, applications padded the
TxLargeFIFO with enough flag bytes or idle cells to allow TxByte enough cycles to process
a header. For all non-SONET applications, TxByte can signal TxBit when the data is ready to
send at the physical interface speed. TxByte usually notifies TxBit at some point after it
finishes processing the protocol header. In the meantime, TxBit sends out idle bytes to
prevent under-running the physical interface.

In the C-5 NP Version D0 a high water mark feature has been added to eliminate the need
to pad the TxLargeFIFO or coordinate with TxBit. The high water mark is a count of bytes
that must be in the TxLargeFIFO for it to appear non-empty to the downstream SDP
components that pop data out of it.

The high water mark value is set in the SDP_MODE4 register. Setting this value to zero
results in the same behavior as occurred in the C-5 NP Version C0 chip. Setting
SDP_MODE4 to a non-zero value causes the transmit FIFO to appear empty until the “high
water mark” number of bytes are in the TxLargeFIFO. An application typically sets the high
water mark value to the number of bytes in the protocol header that TxByte must process
at less than the speed of the physical interface. Refer to “SDP_Mode4 Register (CP Mode
Configuration Function)” on page 422.

The high water mark depth is tested at the end of each packet. The transmit FIFO uses the
ninth bit as the end of packet or cell indication. If the TxLargeFIFO depth is less than the
high water mark when the last byte of a packet or cell is unloaded “popped” from the
TxLargeFIFO, the FIFO appears empty.

This feature can be used with the automatic Idle Cell and PPP Flag insertion logic. This logic
inserts idle cells or PPP flags whenever a downstream SDP component unloads “pops” a
byte from TxLargeFIFO and the FIFO appears empty.

TxSONET Framer Configurable Logic Block
The TxSONET Framer configurable logic block must receive data from TxLargeFIFO
configurable logic block. It obtains most of the transport overhead and path overhead
from the TxSONETOH0 to TxSONETOH31 registers. This allows the application developer to
insert values into the transmit overhead. Refer to Figure 12 on page 68.

The transmit pointer value (bytes H1 and H2 in the SONET frame’s Path Overhead
section) is fixed.

The TxSONET Framer block generates B1, B2, and B3 bit-interleaved parity, then inserts
the OC-12c overhead into the payload data and scrambles it to form either a SONET
OC-3c, OC-12, or OC-12c format.

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 71

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxBit Programmable Processor
The TxBit programmable processor receives byte-wide data. Under microcode control it
inserts, deletes, and replaces fields. Typically, the TxBit programmable processor provides
the reverse functions of the RxBit programmable processor. TxBit contains a
special-purpose shift register for performing parallel-to-serial conversion.

The TxBit programmable processor can impose minimum inter-frame gaps and monitor
PHY status, for instance, in order to detect MAC collisions.

Input to the TxBit programmable processor is nine (9) bits wide and its output can be one,
two, four, eight or ten (1, 2, 4, 8, or 10) bits at a time, depending on the type of physical
interface.

The TxBit programmable processor can be viewed as an intelligent parallel-to-serial
converter, because:

• The TxBit programmable processor modifies the data stream as a function of the data
stream.

• The TxBit programmable processor is used for collision detection when configured for
half-duplex 10Mbit/100Mbit Ethernet or Gigabit Ethernet.

• The TxBit programmable processor is used to implement the transmit side of the
1000BASE-X physical convergence sub-layer of IEEE 802.3z.

The TxBit programmable processor is capable of inserting the HDLC frame sequence, as
well as stuffing zeros into the data stream as appropriate, under microcode control.

TxSmallFIFO Configurable Logic Block
The TxSmallFIFO configurable logic block provides elasticity for the TxBit programmable
processor’s throughput requirements.

The TxSmallFIFO configurable logic block also bridges the network clock domain with the
C-5 NP’s internal clock domain. The TxSmallFIFO configurable logic block has two (2) parts:
the internal half’s clock runs at the same frequency as the C-5 NP’s core clock, and the
external half’s clock runs at the same frequency (or a submultiple) as the external physical
layer’s clock. This allows the outgoing data stream to be converted from the core clock’s
frequency to the PHY’s clock frequency.

The TxSmallFIFO configurable logic block is sixteen (16) locations deep and ten (10) bits
wide (that is, eight (8) data bits and two (2) control bits).

For More Information On This Product,

 Go to: www.freescale.com

72 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

8b/10b Encode Configurable Logic Block
The 8b/10b Encode configurable logic block is located in the TxSDP.

This one (1) block contains hardware for encoding between 8bit and 10bit formats. This
enables support for protocols that require 8b/10b encoding, such as FibreChannel or
Gigabit Ethernet over the Ten Bit Interface (TBI).

As shown in Figure 13 on page 72, in the TxSDP the 8b/10b Encode block receives as input
the 8bit data and Special-K bit (again, in the ninth bit position) and outputs the
appropriate 10bit encoded value.

Figure 13 Operation of 8b/10b Encode Configurable Logic Block

When transmitting idle code groups to the 8b/10b Encode block, the TxBit Processor
should be programmed to transmit a series of (K28.5, D31.7). The D31.7 will be converted
to the appropriate Dx.y value, either D5.6 or D16.2, depending on the block’s internal
odd/even state. This relieves TxBit from the burden of tracking the odd/even state of its
output stream.

Configuration for
Recirculation Operations
Using RxSDP and TxSDP

Enabling recirculation for an SDP means to configure its RxSDP and TxSDP so that the
output from the TxSDP processor is routed to the input of its corresponding RxSDP
processor. This method is one way to pipeline your C-5 NP. The C-5 NP Pipeline Channel
Mode, allows you to scale processing power for a particular application, the CPs can be
linked for pipelined processing on a single data stream. Refer to Figure 14 on page 73.

TxBit
Processor

8bit Data

Special-K

TxSmall
FIFO

8b/10b
Encode
Block

For More Information On This Product,

 Go to: www.freescale.com

Serial Data Processors (SDPs) Overview 73

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 14 SDP Recirculation Path Using Both RxBitLoopBack and RxByteLoopBack Bits

The SDP can be configured to permit recirculation of the data path in either of two (2)
ways:

• From the TxByte programmable processor’s output to the RxByte programmable
processor’s input, enabled by setting the SDP_Mode3 register bit [25] RxByteLoopBack
field.

• From the TxBit programmable processor’s output to RxBit programmable processor’s
input, enabled by setting the SDP_Mode3 register bit [24] RxBitLoopBack field.

Enabling recirculation for a CP’s SDP can be useful in two (2) different ways: pipelining
packet processing (during normal operations) and debugging and test.

• During normal operation, the ingress CP performs packet classification then enqueues
the packet descriptor. If additional classification is desired, another CP with loopback
set can dequeue the packet descriptor and process the packet again. The payload is
moved from SDRAM through DMEM in the TxSDP. Using either the byte or bit
loopback, the data is brought back through the RxSDP for further classification. The
second CP then enqueues the new packet descriptor for either actual transmit or for
another stage of loopback processing for classification or forwarding decisions.
Figure 15 on page 74 summarizes the data flow during normal operations. The
recirculation operation can be used for any application that requires greater degrees of
packet processing. For example, with applications such as multichannel HDLC and
encryption that use T1 and T3 data rates.

Merge
Space

Data from
DMEM

8b/10b
Decode
Block

Small
FIFO

Large
FIFOTransmit SDP

Receive SDP

Channel Processor

TLU
Lookups

Extract
Space

Data to
DMEM

TxSONET
Framer
Block

RxBit
Loopback

RxByte
Loopback

Small
FIFO

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxByte
Processor

TxBit
Processor

TxByte
Processor

Large
FIFO

8b/10b
Encode
Block

For More Information On This Product,

 Go to: www.freescale.com

74 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 15 Recirculation Shown for Normal Operations (for Cooperating CPs)

• SDP loopback can be used to debug the output of the TxSDP. Transmit data can be
brought back on the chip for traffic analysis or chip test through the RxSDP without
ever having to move data off chip.

CP1 CP5

CP2 CP6

CP3 CP7

CP4CP0
Recirculation
Path

CP Pairs

Ingress
Port

Receive
Process 1

Egress
Port

Recirculation
Path

Receive
Process 2

Transmit
Process 2

Transmit
Process 1

For More Information On This Product,

 Go to: www.freescale.com

CP RISC (CPRC) Overview 75

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP RISC (CPRC)
Overview

Each of the sixteen (16) CPs has a Reduced Instruction Set Computer (RISC) Core. The
dedicated CPRC in each channel orchestrates cell and packet processing. The CPRC
operates at the C-5 NP’s core clock rate.

The CPRC contains a 32bit data path and accesses memory using a 32bit physical address.
Within the address space, a CPRC can reference its own local memory with zero-wait-state
latency in the absence of remote contention from the Global Bus. Memory addresses
outside of local memory range refer to remote memory space contained within other CPs
and the Executive Processor (XP).

The CP contains memory-mapped, shared control registers used for CPRC-to-SDP
communication. Refer to “CP Configuration Space” on page 87. The shared control
registers also enable the CPRC to control the Payload and Ring Buses and enable the XP to
configure the channel during initialization.

RISC Instruction Set
Supported

The CPRC executes a MIPSTM1 instruction set (excluding multiply, divide, floating point).
The CPRC supports the classes of instructions shown in Table 12 on page 75. The CPRC
includes four (4) sets of 32 internal registers. Each associated with a CP’s context. These
internal registers are used to support fast context switching. These internal registers are
defined in Table 13 on page 76.

The standard MIPS Coprocessor Zero (CpO) instructions are not supported. However,
C-Port provides its own special purpose Coprocessor Zero registers. Refer to Table 14 on
page 77.

It is highly recommended that you use the C-Ware Compiler when building your
application code. Therefore, refer to the C-Ware Application Development Guide for
information on using the C-Port compiler, which supports the CPRC.

Table 12 CPRC Supported Instruction Classes

Class of Instruction Description

Load and Store Load immediate values and move data between memory and
general registers.

Computational Perform arithmetic and logical operations for values in registers.

Jump and Branch Change program control flow.

Coprocessor Interface Provide standard interfaces to the coprocessors.

Special Perform miscellaneous tasks.

For More Information On This Product,

 Go to: www.freescale.com

76 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

See the MIPSpro™ Assembly Language Programmer’s Guide for information about the
standard MIPSTM1 instruction set. It is available at
http://www.mips.com/publications/index.html.

Table 13 CPRC (32) Internal Registers Definitions

CPRC Internal
Register Names Software Name Use and Linkage

$0 — Always has the value of 0.

$at or $1 — Reserved for the assembler.

$2:$3 v0 to v1 Used for expression evaluations and to hold integer
function results. Also used to pass the static link when
calling nested procedures.

$4:$7 a0 to a3 Used to pass the first four words of integer type actual
arguments. Their values are not preserved across
procedure calls.

$8:$15 t0 to t7 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$16:$23 s0 to s7 Saved registers. Their values must be preserved across
procedure calls.

$24:$25 t8 to t9 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$26:$27 or
$kt0:$kt1

k0 to k1 Used internally by the C-5 NP system services.

$28 or $gp gp Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 s8 A saved register (like s0 - s7).

$31 ra Contains the return address used for expression
evaluation.

For More Information On This Product,

 Go to: www.freescale.com

http://www.mips.com/publications/index.html

CP RISC (CPRC) Overview 77

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

)

Fast Context Switching
Configuration Using the

CPRC

The CPRC and its memory architecture are optimized for the execution of real-time
communication tasks, typically multiplexing processing between a number of different
tasks (transmit and receive, at a minimum). The CPRC may be configured to incorporate a
fast, four-way, context switching feature that replicates the entire CPRC register space four
(4) times and can switch from one register set (one context) to another under software
control or hardware interrupt.

Thus, actual processing (as opposed to manually saving the contents of one set of
registers and then loading another) can begin on a different context in only two cycles.
Therefore, these four (4) contexts can be used for debugging, supervisory tasks, event
handlers, or other tasks.

Table 14 C-Ports Coprocessor Zero Register Definitions

Register Definition

R0 Whoami Register — Contains the DMEM base (hardcoded) for this CPRC.

R1 Interrupt Table Register — Contains the vector address for INT 0.

R2 Break Table Register — Contains the vector address for break 0.

R3 Current Context Register — The two LSBs are the current context register.

R4 DMEM Comparison Address — Contains the address at which debug pulse is
generated.

R5 DMEM Comparison Address Mask — Contains the mask for the DMEM address.

R6 DMEM Comparison Data — Contains the data value for which debug pulse is
generated.

R7 DMEM Comparison Data Mask — Contains the mask for the DMEM data.

R8 Interrupt Flag — The LSB in the Interrupt Flag.

R9 Read/Write Mask — The two LSBs are the Read mask and the Write mask for R4 to
R7.

For More Information On This Product,

 Go to: www.freescale.com

78 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 16 CP Context Switching Feature Block Diagram

Fast Context Switching
Detail Operations

Using the internal registers, context switching is accomplished two (2) ways:

1 Coprocessor instruction (software):

The software mechanism for executing a context switch is the C-Port Coprocessor Zero
instructions. Refer to Table 14 on page 77.

– MTC0 $1 $3

– where $1 specifies the destination context, and where $3 is the source or current
context. The contexts have no priority; how they are used is entirely designated by
software.

2 Interrupt (hardware):

The hardware interrupt sequence is:

– All interrupts are disabled until an Restore From Exception (RFE) instruction is
executed.

– The address of the next instruction to be executed in the interrupted context is
saved in K1. Refer to “Interrupts” on page 79.

– Program execution continues with the instruction at the address specified in the
interrupt vector.

Context 0 Context 3

Context 2Context 1

Other
Tasks

Debugging/
Supervisory Tasks/

Event Handlers

CPRC

Receive
Task

Transmit
Task

For More Information On This Product,

 Go to: www.freescale.com

CP RISC (CPRC) Overview 79

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Interrupts The CPRC supports four (4) prioritized hardware interrupts, that can be triggered from any
bits in the Event0/Event1 Registers. There are four (4) MIPS-like register sets corresponding
to each hardware context, one (1) register of which (K0) is shared by the other contexts.

K1 contains the program counter value and the context number of the interrupted
context. These values are used in the execution of the RFE instruction to return to the
previously interrupted context.

All interrupts and exceptions transfer control to a location found in the appropriate
interrupt or break table. The base address of the interrupt table is specified by the
contents of the interrupt table register ($1) in coprocessor zero. The base address of the
exception table is specified by the contents of the break table register ($2) in coprocessor
zero.

Interrupts are dispatched by a jump to the address equal to ((interrupt number * 8) +
(interrupt table register)). Exceptions are dispatched by a jump to the address equal to
((break number * 8) + (break table register)). In addition to the jump, the register context
is set to zero and interrupts are disabled. However, exceptions may still occur. Whether a
hardware interrupt or an exception, the interrupted routine’s register context and its next
program counter are saved in K1 of context zero.

The K1 value points at the next instruction to be executed after the interrupt is serviced.
RFE is normally used to: (1) resume the instruction flows at this point, (2) restore the
proper register context, and (3) restore the Interrupt Enable Flag (IEF) to its value at the
time of the interrupt or exception.

Interrupts are not recognized in a branch delay slot. Also, all exceptions fill the delay slot
following a change of flow with a NOP instruction.

Interrupts are enabled by setting the IEF which is the LSB of coprocessor zero, Register 8,
(Interrupt Flag). Refer to Table 14 on page 77. The IEF is preserved whenever an exception
or an interrupt occurs and is restored by the RFE instruction.

For More Information On This Product,

 Go to: www.freescale.com

80 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Memory (IMEM
and DMEM)

The CP has local instruction memory (IMEM) and data memory (DMEM).

Instruction Memory
(IMEM)

Each CP shares access to a 24kByte IMEM among a cluster of four (4) adjacent CPs, as
shown in Figure 17 on page 80. The IMEM is configured as four (4) sub-arrays, with each
CP in the cluster given access to the arrays, one per cycle, in fixed round-robin order. With
this simple interleaved scheme, the four (4) adjacent CPRCs can access this memory at
nearly full bandwidth.

Figure 17 Local and Shared Memory in a Channel Processor

When adjacent channels are configured to handle similar communication protocols, the
large shared memory can contain both CP-specific code and cluster-shared code (such as
exception routines).

At initialization time, the 24kByte array can be divided so that each CP gets a dedicated
6kByte sub-array. This array allocation removes all CP contention for IMEM (and also
removes the ability to share code among CPs).

CPRC instruction execution outside of the shared local memory space is not supported.

CPRC Bus
Control

and
Registers

Bus
Control

and
Registers

Bus
Control

and
Registers

Bus
Control

and
Registers

CPRC

SDP

CPRC

SDP

SDP

CPRC

SDP

IMEM
(6kByte)

IMEM
(6kByte)

IMEM
(6kByte)

IMEM
(6kByte)

DMEM
(12kByte)

DMEM
(12kByte)

DMEM
(12kByte)

DMEM
(12kByte)

CP0

CP3 CP2

CP1

For More Information On This Product,

 Go to: www.freescale.com

CP Memory (IMEM and DMEM) 81

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Data Memory (DMEM) Each CPRC in a cluster has a local 12kByte DMEM and can access the local DMEM of any
other CPRC in the cluster with one additional cycle of latency.

The local 12kByte DMEM is organized as 16Byte lines providing 3.2GBps peak bandwidth
through a single port. The memory resides in the global address space of the C-5 NP. Local
CPRC and Global Bus references use a 4Byte (32bit) access path with zero-wait states in
the absence of contention.

The SDP assembles payload data into 16Byte lines and writes it into local DMEM for
receive cell/packet processing. For transmit, the SDP reads bytes of payload data from a
16Byte line buffer that is filled from DMEM using a single-cycle, 16Byte access. The Payload
Bus controller moves buffers to and from SDRAM through this memory in 64Byte bursts
comprised of four (4) consecutive 16Byte accesses.

The SDP and payload transactions have priority over CPRC transactions and use
predetermined slots to access DMEM; this provides predictable bandwidth and latency
and eliminates the need for extra data buffering. Global references and local CPRC
references contend for unused DMEM access slots.

For More Information On This Product,

 Go to: www.freescale.com

82 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Memory Interface
Transactions

The CP memory interface transactions are described in Table 15 on page 82.

Table 15 CP Memory Interface Transactions

Transaction
Type

Memory
Type Description

Payload Buffer
Write

DMEM to
SDRAM

The CPRC sets up a Write Control Block (WrCB0 or WrCB1) or Receive
Control Block (RxCB0 or RxCB1) and clears the Avail bit to cause the
bus controller to arbitrate for a payload write. When grant is
acquired, the controller transfers 64Bytes in a four-cycle,
16Byte-per-cycle burst from local DMEM directly onto the Payload
Bus. Transmission is successful if the receiver acknowledges (ACKs).
Otherwise, the bus controller can retry or terminate depending on
the programmable controller configuration.

Payload Buffer
Read

SDRAM to
DMEM

The CPRC sets up a Transmit Control Block (TxCB0 or TxCB1) or Read
Control Block (RdCB0 or RdCB1) and clears the Avail bit to cause the
bus controller to arbitrate for a payload read. When grant is acquired,
the controller transfers the read address and makes the request.
Transmission is successful if the receiver ACKs. Otherwise, the bus
controller can retry or terminate depending on the programmable
controller configuration.
If the memory controller or queue controller accepts the request, it
accesses SDRAM and returns the requested data. Access to DMEM is
guaranteed; no acknowledgment is required. The bus controller bus
moves 64Bytes in a four-cycle, 16Byte-per-cycle burst directly into
the DMEM in consecutive cycles.

Rx SDP Byte
Process

External
to DMEM

The CPRC sets up a Receive Control Block (RxCB0 or RxCB1) to control
the SDP RxByte Processor. When the accumulation buffer fills with
byte writes from the RxByte Processor, the 16Byte line is written into
the DMEM at the address in the RxCB0_SDP_Addr register bits [13:0]
ByteAddr field using the next guaranteed Receive access time to
DMEM.

Tx SDP Byte
Process

DMEM to
External

The CPRC sets up a Transmit Control Block (TxCB0 or TxCB1) to control
the SDP TxByte Processor. When the TxByte Processor requests a byte
read, a 16Byte line buffer is filled from DMEM at the address in the
RxCB0_SDP_Addr register. Subsequent byte reads from the SDP are
serviced from the line buffer. DMEM access uses the next guaranteed
Tx access time to DMEM.

For More Information On This Product,

 Go to: www.freescale.com

CP Memory Interface Transactions 83

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CPRC
Read/Write

DMEM The CPRC uses word, half-word, and byte loads and stores to access
the local DMEM cluster. Local DMEM access for transmit and receive
Direct Memory Access (DMA) transactions is guaranteed and takes
top priority. CPRC memory references falling within the local DMEM
address space receive single-cycle access if memory is available.
CPRC memory references falling outside the local DMEM but within
the DMEM cluster, take a cycle to arbitrate for the desired DMEM
array. When other CPRCs in the cluster have requested a DMEM array,
the local CPRC participates in the arbitration. The arbitration scheme
ensures that cluster accesses are serviced within the next four cycles
that are free of local transmit and receive DMA.

CPRC
Read/Write

Global
Space

The CPRC uses 32bit word loads and stores to access global memory
space. Load operations outside of the cluster DMEM space cause the
bus controller to arbitrate for a global transaction. Upon acquisition
of grant, the controller drives out the address and request.
Transmission of the request is successful if the receiver ACKs.
Otherwise, the controller can retry or terminate depending on the
programmable controller configuration. Later, the receiver drives
back the request data. The CPRC stalls until the load data arrives, so
there can only be a single load to global space outstanding per CPRC.
Store operations to global memory space dumps address and data
into a write buffer in the bus controller. If the write buffer is full, the
CPRC process stalls, otherwise the CPRC process continues. A valid
write buffer entry causes the bus controller to arbitrate for the global
bus. When grant is acquired, the controller drives out address and
data. Transmission is successful if the receiver ACKs. Otherwise, the
controller can retry or terminate depending on the programmable
controller configuration. Since these transactions do not involve the
local arrays, DMEM DMA can take place underneath.

CPRC
Instruction
Fetch

IMEM Instruction fetch is always local to cluster IMEM.
Note: Global memory addresses are not allowed.

Read IMEM The read uses the (lwc2) instruction.

Write IMEM The write uses the (swc2) instruction.

Table 15 CP Memory Interface Transactions (continued)

Transaction
Type

Memory
Type Description

For More Information On This Product,

 Go to: www.freescale.com

84 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Global Bus
Read/Write

DMEM Global Bus transactions are 32bit word length. From the
point-of-view of the target receiving a CPRC Global Memory Space
Read/Write, when the bus controller decodes a global read targeted
at its local DMEM, it loads a read address latch and either sends back
an ACK, if successful, or non-acknowledge (NACK) if the latch is full.
The controller arbitrates for DMEM along with cluster DMEM
requests. When granted, the controller reads the requested data of
the DMEM array into a latch, then arbitrates for the bus. When the
bus access is granted, the read data is returned to the requester
which must ACK.
When the bus control indicates a global write targeted at the local
DMEM, the bus controller loads a write address and data latch and
either sends back an ACK, if successful, or NACK if the latch is full. The
controller arbitrates for DMEM taking the next available cycle to write
the data into the array.

CPRC
Read/Write

Configura
tion
Space

Global configuration registers maintained on a per CP basis are
addressed in global memory space. The CPRC reads and writes the
registers over its 32bit data bus using word, half-word, and byte load
and store operations. Access is guaranteed since these transactions
do not involve the local arrays.

Global
Read/Write

Configura
tion
Space

Global access of configuration registers follows the same timing as
global access of DMEM.

Table 15 CP Memory Interface Transactions (continued)

Transaction
Type

Memory
Type Description

For More Information On This Product,

 Go to: www.freescale.com

CP Memory Interface Transactions 85

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

DataScope Purpose The CP architecture provides access to two (2) sets of packet headers and data fields
(Datascope0 and Datascope1) to enable a unique feature called data scoping. Data scoping
allows overlap of CPRC processing tasks while receiving and transmitting packets. Each
data scope provides the CPRC with a coherent view of an individual packet on reception
or transmission, including DMA parameters, Extract or Merge registers, and table lookup
results.

The exact contents of the Extract and Merge registers are determined by microcode. Refer
to the C-Ware Microcode Programming Guide for details.

Data scopes also eliminate the need for the CPRC program itself to manage the coherency
of these disparate operations, allowing the construction of a simple, efficient two-stage
software pipeline model. There are a total of four (4) data scopes available, two (2) for
receive (Receive Control Blocks RxCB0 and RxCB1) and two (2) for transmit (Transmit
Control Blocks TxCB0 and TxCB1 registers). A diagram of a CP depicting the receive and
transmit data scopes is shown in Figure 18 on page 85.

Figure 18 Four (4) Data Scopes Between the CPRC and SDPs

A hardware receive data scope is made up of Extract Space, an SDP Receive status register,
and a Receive Control Block (RxCB). A hardware transmit data scope is made up of Merge
Space, an SDP Transmit status register, and a Transmit Control Block (TxCB).

 Shared
Register
 File

Data Scope RxCB1
Data Scope RxCB0

Config
Reg

Extract
Space

Merge
Space

RxSDP

TxSDP

CPRC

Data Scope TxCB0
Data Scope TxCB1

For More Information On This Product,

 Go to: www.freescale.com

86 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Data Scope Detail Operations
Initially, the RxSDP brings in payload, extracts fields and writes them to Extract Space, and
launches table lookups on the Ring Bus in Datascope0. Hardware directs SDP DMEM
writes to RxCB0, Extract Space writes to RxSDP0_Ext0 to RxSDP0_Ext31, and status updates
to RxCtl0_Status. Subsequently, the RxSDP signals that it has finished processing a
cell/packet, triggering the hardware to switch to Datascope1.

Then the hardware directs SDP DMEM writes to RxCB1, Extract Space writes to
RxSDP1_Ext0 to RxSDP1_Ext31, and status updates to RxCtl1_Status. At the end of this
cell/packet, hardware switches back to scope 0. The SDP is required to test the status bits
in RxStatus to be sure the new scope is ready before processing the next cell/packet.

The CPRC must monitor both RxCtln_Status registers to track SDP processing. After the
SDP finishes a scope, the CPRC must:

• Examine and possibly remove relevant data from the associated Extract Space.

• Examine the RxCBn to confirm that the payload DMA finished and reprogram the
RxCBn if necessary.

• Examine and possibly remove relevant data from the Ring Bus response registers and
reset the ownership bits.

• Update the RxCtln_Status to make the scope available to the SDP.

The TxSDP and CPRC operate in a similar manner to transmit the datascopes.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 87

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Configuration
Space

Each CP has memory-mapped Configuration Space that contains a number of registers.
Refer to Table 16 on page 88 for a list of CP registers by function. The CPRC uses these
registers to communicate with the SDP, the bus controllers, and the XP.

Address Mapping of the
CPs

Since the CP configuration space is duplicated for each CP (CP0 to CP15), the address
listed in the memory maps and register descriptions begins with 0xBCn0 where n should
be replaced with the appropriate offset for the particular CP. Refer to Chapter 1 for
addressing details.

The Configuration Space provides a 1MB block or segment of Configuration Space for
each CP. Specific registers are located at offsets from each CP’s Configuration Space base
address.

Figure 19 CP Configuration Space Memory Map

0xBCnFFFFF

0xBCn03000
0xBCn02FFF

0xBCn00000

0xBCn03FFF
0xBCn04000

0xBCn04FFFCP Configuration
Space

(4k Bytes)

Reserved
(4k Bytes)

Local DMEM
(12k Bytes)

For More Information On This Product,

 Go to: www.freescale.com

88 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 16 CP Registers by Function

CP Function Specific Registers

DMEM See “Data Memory (DMEM)” on page 81

Rx Extract RxSDP0_Ext0 to RxSDP0_Ext15
RxSDP1_Ext0 to RxSDP1_Ext15

Rx Control Blocks RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr,
RxCB0_SDP_Addr, RxCB0_Status,
RxCB1_Sys_Addr, RxCB1_Ctl, RxCB1_DMA_Addr,
RxCB1_SDP_Addr, RxCB1_Status

Tx Merge TxSDP0_Merge0 to TxSDP0_Merge15
TxSDP1_Merge0 to TxSDP1_Merge15

Tx Control Blocks TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr,
TxCB0_SDP_Addr, TxCB0_Status,
TxCB1_Sys_Addr, TxCB1_Ctl, TxCB1_DMA_Addr,
TxCB1_SDP_Addr, TxCB1_Status

Wr Control Blocks WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr,
WrCB1_Sys_Addr, WrCB1_Ctl, WrCB1_DMA_Addr

Rd Control Blocks RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr,
RdCB1_Sys_Addr, RdCB1_Ctl, RdCB1_DMA_Addr

Ring Bus Tx Message Control TxMsg0_Ctl, TxMsg1_Ctl, TxMsg2_Ctl, TxMsg3_Ctl,
TxMsg0_Data_H, TxMsg0_Data_L, TxMsg1_Data_H,
TxMsg1_Data_L, TxMsg2_Data_H, TxMsg2_Data_L,
TxMsg3_Data_H, TxMsg3_Data_L

Ring Bus Rx Response Control RxResp0_Ctl, RxResp1_Ctl, RxResp2_Ctl, RxResp3_Ctl,
RxResp4_Ctl, RxResp5_Ctl, RxResp6_Ctl, RxResp7_Ctl,
RxResp0_DataH, RxResp0_DataL, RxResp1_DataH,
RxResp1_DataL, RxResp2_DataH, RxResp2_DataL,
RxResp3_DataH, RxResp3_DataL, RxResp4_DataH,
RxResp4_DataL, RxResp5_DataH, RxResp5_DataL,
RxResp6_DataH, RxResp6_DataL, RxResp7_DataH,
RxResp7_DataL

Ring Bus Rx Message Control RxMsg_Ctl, RxMsg_FIFO

SONET Rx Control Rx_SONETH0 to Rx_SONETH31

SONET Tx Control Tx_SONETH0 to Tx_SONETH31

SDP Rx Control RxCtl_ByteSeq0, RxCtl_ByteSeq1, RxCtl_SyncSeq,
RxCtl_BitSeq0, RxCtl_BitSeq1

SDP Tx Control TxCtl_ByteSeq0, TxCtl_ByteSeq1, TxCtl_BitSeq0,
TxCtl_BitSeq1

CP Mode Configuration CP_Mode0, CP_Mode1, SDP_Mode2, SDP_Mode3,
SDP_Mode4, SDP_Mode5, Debug_Mode, PIN_Mode

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 89

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For complete details about specific registers go to their reference. Refer to “CP Registers”
on page 378.

Understanding CP
Functions

The following is a discussion of the CP functions and the registers associated with each
function.

Extract Space
Configuration Space contains 64Bytes of Extract Space per datascope
(Datascope0/Datascope1) for passing fields extracted from the receive data stream (by
the SDP RxByte programmable processor) to the CPRC. The RxByte programmable
processor performs byte-wide write operations to the Extract Space by specifying the
configuration register destination commands in microcode.

The RxByte programmable processor cannot read the Extract Space registers.

The CPRC accesses the memory-mapped Extract Space using load and store instructions.
The CPRC can write to the Extract Space registers, but only during initialization and test
periods when the SDP_Mode3 register bit [30] RxEnable field is cleared.

The data format for the Extract Space is defined by agreement between the CPRC
program and the RxByte programmable processor microcode. Refer to Table 17 on
page 90 for Extract Space registers.

Queue Status Queue_Status0, Queue_Status1, Queue_Status2,
Queue_Status3, Queue_Update0, Queue_Update1,
Queue_Update2, Queue_Update3

Miscellaneous Event_Timer, Cycle_Counter_H, Cycle_Counter_L

Event and Interrupt Event0, Event0, Event_Mask1, Event_Mask1,
Event_Access, Mask_Access, Interrupt_Mask0,
Interrupt_Mask1, SONET_Event, SONET_Mask

Table 16 CP Registers by Function (continued)

CP Function Specific Registers

For More Information On This Product,

 Go to: www.freescale.com

90 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Merge Space
Configuration Space contains 64Bytes of Merge Space per datascope
(Datascope0/Datascope1) for passing fields from the CPRC to the SDP TxByte
programmable processor to merge in with the transmit data stream. The CPRC accesses
the memory-mapped Merge Space using load and store instructions. The TxByte
programmable processor performs byte-wide read operations from the Merge Space by
specifying the configuration register source in microcode. The data format for the Merge
Space registers is defined by the CPRC process and the SDP firmware. Refer to Table 18 on
page 90 for Merge Space registers.

The TxByte programmable processor cannot write to the Merge Space registers.

Table 17 Extract Space Registers

Register
Name Purpose Address Details

RxSDP0_Ext0 to
RxSDP0_Ext15

Used to pass fields extracted from
the receive data stream by the
RxSDP to the CPRC. These
registers are used only for receive
data scope0.

0xBCn04000 to
0xBCn0403C

See “RxSDP0_Ext0 to
RxSDP0_Ext15 Registers
(CP Rx Extract Space0
Function)” on page 383

RxSDP1_Ext0 to
RxSDP1_Ext15

Same as registers RxSDP0_Ext0 to
RxSDP0_Ext15, except for data
scope1.

0xBCn04200 to
0xBCn0423C

See “RxSDP1_Ext0 to
RxSDP1_Ext15 Registers
(for Datascope1)” on
page 383

Table 18 Merge Space Registers

Register Name Purpose Address Details

TxSDP0_Merge0 to
TxSDP0_Merge15

Used to pass fields from the CPRC
to the TxSDP to merge in with the
transmit data stream. These
registers are used only for
transmit data scope0.

0xBCn04100 to
0xBCn0413C

See “TxSDP0_Merge0
to TxSDP0_Merge15
Registers (CP Tx
Merge Space0
Function)” on
page 383

TxSDP1_Merge0 to
TxSDP1_Merge15

Same as registers TxSDP0_Merge0
to TxSDP0_Merge15, except for
data scope1.

0xBCn04300 to
0xBCn0433C

See “TxSDP1_Merge0
to TxSDP1_Merge15
Registers (for
Datascope1)” on
page 384

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 91

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Control Block Registers
Configuration Space includes eight (8) sets of control registers called Control Blocks (CBs)
that govern DMA operations to and from DMEM. The CPRC sets up the control registers to
perform four (4) types of DMEM DMA operations:

• Write Control Block (WrCB0_ , WrCB1_)

• Read Control Block (RdCB0_ , RdCB1_)

• SDP RxByte Processor Receive Control Block (RxCB0_ , RxCB1_)

• SDP TxByte Processor Transmit Control Block (TxCB0_ , TxCB1_)

Write Control Blocks (WrCB0_ , WrCB1_)
Two Write Control Blocks (WrCB0_ and WrCB1_) provide the capability for general
purpose write tasks, such as Buffer Transfers, QMU enqueues and BTag writes. These tasks
are DMA operations of programmable length that move data from DMEM over the
Payload Bus in bursts of four (4) cycles with 16 bytes per burst.

Figure 20 on page 92 shows a Buffer Transfer. In general, data is moved from DMEM (the
source) to SDRAM (the destination). Specifically, moving data starting at the LineAddr (1)
location inside DMEM with a Length (2) to SDRAM beginning at the (PoolID, BTag and
Offset (3,4,5)) location. These individual fields that are used to set up the details of the
block move make up parts of these registers: WrCBn_Sys_Addr, WrCBn_Ctl and
WrCBn_DMA_Addr.

For More Information On This Product,

 Go to: www.freescale.com

92 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 20 DMA Operation (Buffer Transfer) Using WrCBn_ Registers

Buffer Transfer Setup Using WrCBn_Sys_Addr, WrCBn_Ctl and WrCBn_DMA_Addr:
To set up this single contiguous data transfer, the CPRC writes a system address and a line
address for DMEM to the WrCB. The length is written by the CPRC to the desired transfer
length.

To perform Buffer Transfers involves setting the bits for WrCB0_Sys_Addr (0xBCn04400),
WrCB0_Ctl (0xBCn04404) and WrCB0_DMA_Addr (0xBCn04408).

To set up a general contiguous data transfer, the CPRC process must do the following:

1 Ensure that the WrCB0 is available by testing that WrCB0_Ctl bit [31] Avail field=1.

2 Write WrCB0_Sys_Addr with the system address to be written in the form of:
WrCB0_Sys_Addr bits [31:16] BTag field = BTag, and
WrCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically equal to 0, or aligned to a 64Byte
boundary).

Register Fields

WrCBn_Sys_Addr

WrCBn_Ctl

WrCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

2

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)Address

16Bytes

Source Destination

WrCB Block Move of Data

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 93

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

3 Write the Pool ID portion of the system address into WrCB0_DMA_Addr bits [20:16]
PoolID field. Write WrCB0_DMA_Addr bits [13:0] LineAddr field with the location of a
buffer in DMEM, typically aligned on a 64Byte boundary. This is the location that the
DMA engine uses to begin transferring data out of DMEM to SDRAM.

4 Write WrCB0_Ctl with WrCB0_Ctl bits [13:4] Length field equal to the number of bytes
to be transferred, and WrCB0_Ctl bit [31] Avail field equal to 0, and WrCB0_Ctl bit [29]
Modulo64 equal to 0 to cause the WrCB0_Sys_Addr bits [15:4] Offset field and
WrCB0_DMA_Addr bits [13:4] LineAddr field to increment during the DMA for a
contiguous block transfer.

For complete details about specific registers go to their reference. Refer to:
“WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)” on page 390, “WrCB0_Ctl
Register (CP Wr Control Block0 Function)” on page 391, and “WrCB0_DMA_Addr Register
(CP Wr Control Block0 Function)” on page 392. You also have the following registers
available for Control Block1: WrCB1_Sys_Addr, WrCB1_Ctl and WrCB1_DMA_Addr that
function in the same manner.

Buffer Transfer Operations Using WrCBn_Sys_Addr, WrCBn_Ctl and WrCBn_DMA_Addr:
An availability bit indicates DMA or CPRC control of the block of DMEM. When set, the
CPRC controls the block; when clear, the DMA engine controls the block and is free to
transfer out of it.

Clearing the availability bit, WrCB0_Ctl bit [31] Avail field, the CPRC process initiates a data
transfer from DMEM beginning at the line addressed by WrCB0_DMA_Addr bits [13:4]
LineAddr field to SDRAM beginning at the system address in WrCB0_Sys_Addr. The DMA
engine transfers payload out of DMEM in bursts, decrementing WrCB0_Ctl bits [13:0]
Length field by 64Bytes for each burst. Transfer continues until the WrCB0_Ctl bits [13:0]
Length field equals 0 (at which time the DMA engine sets WrCB_Ctl bit [31] Avail field, thus
returning control of the WrCB back to the CPRC process).

Initiating transfers with WrCB0_Ctl bits [13:0] Length field equal to 0 causes a single 64Byte
transfer. If a 4-cycle, 64Byte transfer is started with WrCB0_Ctl bits [13:0] Length field less
than 64 bytes, only the number of 16Byte lines needed to transmit the whole length
actually get written into SDRAM and the Length field is set to 0 after the burst.

If the WrCB0_Sys_Addr bits [15:4] Offset field is aligned to a 64Byte boundary, a contiguous
64Byte block of DRAM is written. If the WrCB0_Sys_Addr bits [15:4] Offset is 64Byte
unaligned, the DRAM block is written in a wrapped fashion which is typically not useful.
Typically, contiguous transfers start with aligned offsets.

For More Information On This Product,

 Go to: www.freescale.com

94 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

WrCB0_DMA_Addr bits [13:4] LineAddr field increments for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. Typically, WrCB0_DMA_Addr
bits [13:4] LineAddr field starts at a 64Byte aligned address. WrCB0_DMA_Addr bits [13:4]
LineAddr field can start unaligned, but the resulting wrap behavior is not useful. Transfers
with Offset unaligned make the most sense if the Length and Offset fields are set so that
the resulting SDRAM completes a block of SDRAM, but does not wrap. For example, if
WrCB0_Sys_Addr bits [15:4] Offset field= 0x0010 and WrCB0_Ctl bits [13:4] Length field=
0x0030, then the DMA moves three 16Byte lines from DMEM[1:3] to SDRAM[1:3]. The
burst wraps to DMEM[0] and SDRAM[0], but the write is inhibited. If WrCB0_Ctl bit [29]
Modulo64 field equal to 0, WrCB0_DMA_Addr bits [13:4] LineAddr field and
WrCB0_Sys_Addr bits [15:4] Offset field increment by 64 for each 64Byte burst.

Initiating transfers with the modulo64, WrCB0_Ctl bit [29] Modulo64 field, equal to
1prevents an update of the WrCB0_Sys_Addr bits [15:4] Offset field and causes
WrCB0_DMA_Addr bits [13:4] LineAddr field to increment modulo 64Bytes, effectively
returning WrCB0_DMA_Addr bits [13:4] LineAddr field to wrap back to the starting value
after a 4-cycle burst. This feature is useful for writes to the QMU or BMU when the system
address contains a command, not an address. The WrCB can be used again without
resetting the WrCB0_Sys_Addr bits [15:4] Offset field and WrCB0_DMA_Addr bits [13:4]
LineAddr field.

The CPRC process can read the state of the DMA machine from WrCB0_Ctl bits [17:16]
State field. The WrCB0_Ctl word generally should not be written by the CPRC process
when hardware is operating (that is, WrCB_Ctl bit [31] Avail field= 0). On a write to
WrCB0_Ctl, bits [17:16] State field is only updated if bit [31] Avail field =1.

When DMA transaction requests receive a no-acknowledge (NACK) on the Payload Bus,
the bus controller retries the request up to 16 (maximum) times before reporting a bus
error. The bus error sets status in WrCB0_Ctl bits [27:24] Error field with an encoding, this
generates an event for the Event0 or Event1 register, and immediately terminates the
transfer by setting WrCB0_Ctl bit [31] Avail field. When the WrCB0_Ctl bit [30] NoRetry field
is set, the bus controller does not retry, and reports the bus NACK immediately as a bus
error.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 95

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Read Control Blocks (RdCB0_ , RdCB1_)
Two Read Control Blocks (RdCB0_ and RdCB1_) provide the capability for general purpose
read tasks, such as Buffer Transfers, QMU dequeues and BTag allocates. These tasks move
data across the Payload Bus into DMEM in bursts of four (4) cycles with 16Bytes per cycle.

Figure 21 on page 95 shows a Buffer Transfer. In general, you are moving data from
SDRAM (the source) to DMEM (the destination). Specifically, you are moving data starting
at the (PoolID, BTag and Offset (3,4,5)) location inside DRAM to DMEM at the LineAddr (1)
location with a Length (2). These individual fields that are used to set up the details of the
block move make up parts of these registers: RdCBn_Sys_Addr, RdCBn_Ctl and
RdCBn_DMA_Addr.

Figure 21 DMA Operation (Buffer Transfer) Using RdCBn_ Registers

Buffer Transfer Setup Using RdCBn_Sys_Addr, RdCBn_Ctl and RdCBn_DMA_Addr:
To set up this single, contiguous data transfer, the CPRC writes a system address
(consisting of a PoolID, BTag, and Offset for buffer memory in SDRAM), a line address for
DMEM, to the RdCB. The length is written by the CPRC to be the desired transfer length.

Register Fields

RdCBn_Sys_Addr

RdCBn_Ctl

RdCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

2

3

4 5

1

2

5
4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)Address

16Bytes

SourceDestination

RdCB Block Move of Data

For More Information On This Product,

 Go to: www.freescale.com

96 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

To perform Buffer Transfers involves setting the bits for RdCB0_Sys_Addr (0xBCn04420),
RdCB0_Ctl (0xBCn04424) and RdCB0_DMA_Addr (0xBCn04428).

To set up a general contiguous data transfer, the CPRC process must do the following:

1 Ensure that the RdCB0 is available by reading RdCB0_Ctl bit [31] Avail field =1.

2 Write RdCB0_Sys_Addr with the system address to be read, in the form of:
RdCB0_Sys_Addr bits [31:6] BTag field = BTag, and
RdCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically equal to 0, or aligned to a 64Byte
boundary.

3 Write the PoolID portion of the system address to be read into RdCB0_DMA_Addr bits
[20:16] PoolID field. Write RdCB0_DMA_Addr bits [13:4] LineAddr field with the location
of a buffer in DMEM, typically aligned on a 64Byte boundary. This is the DMEM location
that the DMA engine uses to begin writing data from SDRAM.

4 Write RdCB0_Ctl with RdCB0_Ctl bits [13:0] Length field equal to the number of bytes to
be transferred, RdCB0_Ctl bit [31] Avail field equal to 0, and RdCB0_Ctl. bit [29]
Modulo64 equal to 0 to cause the RdCB0_Sys_Addr bits [15:4] Offset field and
RdCB0_DMA_Addr bits [13:4] LineAddr field to increment during the DMA for a
contiguous block register.

For complete details about specific registers go to their reference. Refer to:
“RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)” on page 393, “RdCB0_Ctl
Register (CP Rd Control Block0 Function)” on page 394, and “RdCB0_DMA_Addr Register
(CP Rd Control Block0 Function)” on page 395. You also have the following registers
available for Control Block: RdCB1_Sys_Addr, RdCB1_Ctl and RdCB1_DMA_Addr that
function in the same manner.

Buffer Transfer Operations Using RdCBn_Sys_Addr, RdCBn_Ctl and RdCBn_DMA_Addr:
An availability bit indicates that the block of DMEM is controller by to either DMA or CPRC.
When set, the CPRC controls the block; when clear, the DMA engine controls the block
and is free to transfer into it.

Clearing the available bit, RdCB0_Ctl bit [31] Avail field, the CPRC process initiates a 64Byte
data transfer from SDRAM beginning at the system address consisting of
(RdCB0_Sys_Addr bits [31:16] BTag field, RdCB0_Sys_Addr bits [15:4] Offset field, and
RdCB0_DMA_Addr bits [20:16] PoolID field to DMEM beginning at the 16Byte line
addressed by RdCB0_DMA_Addr bits [15:4] LineAddr field. The SDRAM DMA engine
transfers payload out of SDRAM in a 4-cycle, 16Byte-per-cycle burst, decrementing
RdCB0_Ctl bits [13:0] Length field by 64 for each burst.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 97

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transfer continues until RdCB0_Ctl bits [13:0] Length field equals 0 (at which time the DMA
engine sets RdCB0_Ctl bit [31] Avail field, thus returning control of the RdCB back to the
CPRC process).

Initiating transfers with RdCB0_Ctl bits [13:0] Length field equal to 0 causes a single 64Byte
transfer. If a 4-cycle, 64Byte transfer is started with RdCB0_Ctl bits [13:4] Length field
< 64Bytes, only the number of 16Byte lines needed to satisfy the whole length according
to the Length field actually get read from SDRAM. Unpredictable data completes the full
64Bytes returned, and the Length field after the burst is set to 0.

If the RdCB0_Sys_Addr bits [13:4] Offset field is aligned to a 64Byte boundary, a contiguous
64Byte block of SDRAM is read. If the Offset is 64Byte unaligned, the SDRAM block is read
in a wrapped fashion which is generally not useful. Typically, contiguous transfers start
with aligned offsets.

RdCB0_DMA_Addr bits [15:4] LineAddr field increments for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. Typically, RdCB0_DMA_Addr
bits [13:4] LineAddr field starts at a 64Byte aligned address. RdCB0_DMA_Addr bits [13:4]
LineAddr field can start unaligned, but the resulting wrap behavior is not useful. The burst
read from SDRAM always returns 64Bytes. RdCB0_Sys_Addr bits [15:4] Offset field
increments by 64 each 64Byte burst.

Initiating transfers with the modulo64, RdCB0_Ctl bit [29] Modulo64, equal to 1prevents
updates of the RdCB0_Sys_Addr bits [15:4] Offset field and causes RdCB0_DMA_Addr bits
[13:4] LineAddr field to increment modulo 64Bytes, effectively returning the LineAddr to
wrap back to the starting value. This feature is useful for reads from the QMU or BMU
where the system address contains a command, not an address. The RdCB can be used
again without resetting the Offset and RdCB0_DMA_Addr bits [13:4] LineAddr field.

The CPRC process can read the state of the DMA machine at any time from RdCB0_Ctl bits
[17:16] State field. The RdCB0_Ctl word generally should not be written by the CPRC
process when hardware is operating (that is, RdCB0_Ctl bit [31] Avail field=0). On a write to
RdCB0_Ctl bits [17:16] State field are only updated if bit [31] Avail field=1.

When DMA transaction requests receive a no-acknowledge (NACK) on the Payload Bus,
the bus controller retries the request up to 16 times before reporting a bus error. The bus
error sets status in RdCB0_Ctl bits [27:24] Error field, generates an event for the Event
register, and immediately terminates the transfer by setting RdCB0_Ctl bit [31] Avail field.
When the RdCB0_Ctl bit [30] NoRetry field is set, the bus controller does not retry, and
reports the bus NACK immediately as a bus error.

For More Information On This Product,

 Go to: www.freescale.com

98 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)
The CPRC controls receive operations using the two (2) Receive Control Blocks (RxCB0_
and RxCB1_) that handle the payload write operation much like the (WrCB0 and WrCB1),
but add the capability to control SDP RxByte Processor writes to DMEM. The SDP RxByte
Processor directs the incoming data stream into DMEM a byte at a time. In hardware, the
byte stream is accumulated into 16Byte lines that are written to DMEM in a single cycle.
Using a RxCB, the CPRC can set up a payload receive path from the RxByte Processor to
DMEM to SDRAM. Payload data movement happens in hardware with no further CPRC
control.

Figure 22 on page 98 shows a Buffer Transfer. In general, you are moving data from SDP
(the source) to SDRAM (the destination). Specifically, you are moving data from the SDP
RxByte Sequencer in 8bit units using ByteAddr (6) and counting the bytes moved with a
Length (2) starting at the LineAddr (1) location inside DMEM to SDRAM at the (PoolID, BTag
and Offset (3,4,5)) location. These individual fields are used to setup the details of the
block move and make up parts of these registers: RxCBn_Sys_Addr, RxCBn_Ctl,
RxCBn_DMA_Addr, and RxCBn_SDP_Addr.

Figure 22 DMA Operation (Buffer Transfer) Using RxCBn Registers

Register Fields

RdCBn_Sys_Addr

RdCBn_Ctl

RdCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)

Address

16Bytes

Source Destination

RxCB Block Move of Data

6Data (8 bits)

SDP RxByte Sequencer

16Bytes

4Lines

4Lines

RxCBn_SDP_Addr

Counts the Bytes
moved from the sequencer)

ByteAddr 6

2

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 99

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Buffer Transfer Setup Using RxCBn_Sys_Addr, RxCBn_Ctl RxCBn_DMA_Addr and
RxCBn_SDP_Addr:
To perform Buffer Transfers involves setting the bits for RxCB0_Sys_Addr (0xBCn04080),
RxCB0_Ctl (0xBCn4084), RxCB0_DMA_Addr (0xBCn04088), and RxCB0_SDP_Addr
(0xBCn0408C).

To set up a typical single receive operation, the CPRC must do the following:

1 Ensure that the RxCB0 is available by testing that RxCB0_Ctl bit [31] Avail field = 1.

2 Write RxCB0_Sys_Addr with the system address to be written in the form of:
RxCB0_Sys_Addr bits [31:16] BTag field = BTag, and
RxCB0_Sy_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically aligned to a 64Byte boundary).

3 Write the Pool ID portion of the system address to be written into RxCB0_DMA_Addr
bits [20:16] PoolID field. Write RxCB0_DMA_Addr bit [13:4] LineAddr field with a 16Byte
address in DMEM, typically aligned on a 128Byte boundary. This is the location that the
DMA engine uses to begin transferring data out of DMEM to SDRAM.

4 Write RxCB0_SDP_Addr bits [15:0] ByteAddr field with a 16Byte address in DMEM,
typically the same value (buffer) as RxCB0_DMA_Addr bits [13:4] LineAddr field. This is
the location that the SDP RxByte Processor uses to begin transferring bytes into DMEM.

5 Write the RxCB0_Ctl bits [15:0] RxLength field to zero, clear RxCB0_Ctl bit [23] Own1 field
and RxCB0_Ctl bit [22] Own0 field to give ownership of the double buffer to the SDP
DMA (rather than the SDRAM DMA) engine, and clear RxCB0_Ctl bit [31] Avail field that
starts the SDRAM DMA engine.

For complete details about specific registers go to their reference. Refer to:
“RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)” on page 384, “RxCB0_Ctl
Register (CP Rx Control Block0 Function)” on page 385, “RxCB0_DMA_Addr Register (CP
Rx Control Block0 Function)” on page 388 and “RxCB0_SDP_Addr Register (CP Rx Control
Block0 Function)” on page 389. You also have the following registers available for Control
Block1: RxCB1_Sys_Addr, RxCB1_Ctl, RxCB1_DMA_Addr and RxCB1_SDP_Addr that function
in the same manner.

Buffer Transfer Operations Using RxCBn_Sys_Addr, RxCBn_Ctl RxCBn_DMA_Addr and
RxCBn_SDP_Addr:

For More Information On This Product,

 Go to: www.freescale.com

100 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The DMA engine always uses 128Bytes double buffering (that is, two (2) sequential 64Byte
DMEM buffers (16bytes wide x 4lines high)) to handle payloads of arbitrary length. The
transfer of these buffers can be individually controlled by the CPRC. Typically, both buffers
are enabled by the CPRC via the RxCB0_Ctl bit [23] Own1 field and RxCB0_Ctl bit [22] Own0
field and the DMA initiates transfers whenever the next 64Byte block within the buffer
becomes available. Ownership bits track the status of the two contiguous 64Byte blocks in
DMEM.

RxCB0_DMA_Addr bits [13:4] LineAddr field and RxCB0_SDP_Addr bits [15:0] ByteAddr field
typically point to the 128Byte aligned buffer. Increments of RxCB0_SDP_Addr bits [15:0]
ByteAddr field and RxCB0_DMA_Addr bits [13:4] LineAddr field are done modulo 128 so
that writing or reading the last line in the buffer causes the pointers to wrap back to the
start of the buffer.

RxCB0_Ctl bit [23] Own1 field and RxCB0_Ctl bit [22] Own0 field track the ownership of the
two (2) 64Byte blocks in the 128Byte buffer. By clearing the ownership bits initially, the
CPRC allows the SDP RxByte Processor to write into the DMEM buffers. When RxCB0_SDP
Addr bits [15:0] ByteAddr field reaches a 64Byte boundary, the hardware sets the
corresponding ownership bit to indicate that the SDRAM DMA engine now owns the
block. It initiates a 64Byte transfer to SDRAM as soon as possible, incrementing
RxCB0_DMA_Addr bits [13:4] LineAddr field by 16 for each of the four (4), 16Byte-per-cycle
transfers to provide an address into DMEM. It also adds 64 to RxCB0_Sys_Addr bits [15:4]
Offset field to update the SDRAM address. When the DMA is complete, the RxCB0_Ctl bit
[23] Own1 field or RxCB0_Ctl bit [22] Own0 field is cleared to allow the SDP to reuse that
half of the double buffer.

Thus, RxCB0_SDP_Addr bits [15:0] ByteAddr field and RxCB0_DMA_Addr bits [13:4]
LineAddr field act as a pair, following one another through a payload transfer.
RxCB0_SDP_Addr bits [15:0] ByteAddr field leads as the SDP RxByte Processor fills DMEM
with payload bytes. When a 64Byte buffer is full, an SDRAM DMA transaction uses the
lagging RxCB0_DMA_Addr bits [13:4] LineAddr field to move the buffer to SDRAM. The SDP
RxByte Processor forces a line write when signaling end-of-frame by setting RxCtl0_Status
bit [31] Avail field, which must happen exclusive of an SDP byte write. Unwritten bytes at
the end of the 16Byte line are undefined. This clears RxCB0_SDP_Addr bits [6:0] within the
ByteAddr field, clears RxCB0_DMA_Addr bits [6:4] within the LineAddr field, and sets
RxCB0_Ctl bit [31] Avail field to realign the double buffer and to return control of the RxCB
to the CPRC.

In hardware, an accumulation buffer assembles sequential SDP RxByte Processor writes
until a 16Byte DMEM line boundary is crossed. This triggers a line write to DMEM at the

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 101

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

address in RxCB0_SDP_Addr bits [15:4] ByteAddr field if the associated ownership bit
allows it. There are no hardware interlocks that assure the RxCB is configured before
accepting SDP byte writes. The CPRC process must be sure to configure RxCB0_SDP_Addr
bits [15:0] ByteAddr field and both Own0 field bit [22] and Own1 field bit [23] before
passing the datascope to the SDP. For some applications, the CPRC process can choose to
write RxCB0_DMA_Addr, RxCB0_Sys_Addr, and RxCB0_Ctl bit [31] Avail field (using a byte
operation later). For each byte transferred, hardware increments the RxCB0_Ctl bits [15:0]
RxLength field to reflect the total number of bytes in the receive payload.

The RxCB can be used with RxCB0_Sys_Addr bits [15:4] Offset field and RxCB0_DMA_Addr
bits [13:4] LineAddr field pointing to 16Byte addresses that are not 64Byte aligned. In this
case, the SDRAM DMA inhibits any writes that wrap within the SDRAM block. This can be
used to transfer partial blocks from DMEM to SDRAM in assembly operations. After a
4-cycle burst, the RxCB0_Sys_Addr bits [15:4] Offset field is always set to the next aligned
64Byte block.

There are eight (8) bits in each of the Out-Of-Band fields (OOB). Refer toTable 19 on
page 101.They (OOB) are located in the TxCB0_SDP_Addr register, bits [31:24] are for OOB0
and bits [23:16] are for OOB1. Eight (8) Out-Of-Band bits are transferred to SDRAM along
with every 64Byte payload transfer. The 7th Bit of OOBn indicates that the SDP
encountered an error receiving this frame. The 6th Bit of OOBn indicates that this block of
64Bytes contains the End-of-Packet (EOP), and when the 6th Bit is set, the remaining six
bits in the OOBn field indicate the position of the last byte. These (OOBn) bits get
transferred to SDRAM automatically, based on SDP error signals and RxCB0_Ctl bits [15:0]
RxLength field. During test, the RxCB can be used to write the OOB bits. Writing a buffer in
DMEM and setting up RxCB0_Sys_Addr, RxCB0_DMA_Addr bits [13:4] LineAddr field,
RxCB0_Ctl bit [29] EOP field, and RxCB0_Ctl bits [15:0] RxLength field determine what
payload and OOBn bits get written to SDRAM.

Test software can force the transfer by clearing RxCB0_Ctl bit [31] Avail field and setting
the appropriate RxCB0_Ctl bits [23:22] Own1 or Own0 bit.

Table 19 Out-of-Band Bits and Functions

Side-Car
Bits Function

7 Packet Error (also asserted for double ECC errors)

6 End of Packet (EOP)

5:0 Encoded Value (for valid Bytes)
Legal Range= 0 to 63

For More Information On This Product,

 Go to: www.freescale.com

102 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The CPRC process can read the state of both DMA engines and the EOP status at any time
from RxCB0_Ctl bit [19] SDP State field and the RxCB0_Ctl bits [17:16] DMA State field. The
RxCB0_Ctl word generally should not be written by the CPRC process when hardware is
operating (that is, when RxCB0_Ctl bit [31] Avail field=0). On a write to RxCB0_Ctl bit [19]
SDP State field, bits [17:16] DMA State, and bit [29] EOP fields are only updated if bit [31]
Avail=1. Additionally, RxCB0_Ctl bit [29] EOP field is not updated if bit [28] Protect_EOP=1.

When DMA transaction requests receive no-acknowledge (NACK) on the Payload Bus, the
bus controller retries the request up to 16 (maximum) times before reporting a bus error.
The bus error sets status in RxCB0_Ctl bits [27:24] Error field, generates an event for the
Event 1, and immediately terminates the SDRAM transfer by setting RxCB0_Ctl bit [31]
Avail field. When the RxCB0_Ctl bit [30] NoRetry field is set, the bus controller does not
retry, and reports the bus NACK immediately as a bus error.

Receive payload can be recycled back through the SDP RxByte Processor using a
configuration option and explicit CPRC control. A path can be set up for payload bytes to
travel from the SDP to DMEM, back to the SDP to DMEM and then to SDRAM.

The NP supports two (2) near-end loopbacks for the purposes of recirculation. The first
connects the output of the Large Transmit FIFO to the input of the Large Receive FIFO, the
second connects the output of the Small Transmit FIFO to the input of the Small Receive
FIFO. For more information about recirculation, see “Configuration for Recirculation
Operations Using RxSDP and TxSDP” on page 72.

SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_)
The CPRC controls transmit operations using the two (2) Transmit Control Blocks (TxCB0_
and TxCB1_). The TxCBs handle the payload read operation much like the (RdCB0 and
RdCB1), but add the capability to control TxByte Processor reads from DMEM. Using a
TxCB, the CPRC can set up a payload transmit path from SDRAM to DMEM, and from
DMEM to the TxByte Processor. Payload data movement happens in hardware with no
further CPRC control.

Figure 23 on page 103 shows a Buffer Transfer. In general, you are moving data from
SDRAM (the source) to SDP (the destination). Specifically, you are moving data starting at
the (PoolID, BTag and Offset (3,4,5)) location inside the SDRAM to DMEM at the LineAddr (1)
location and moving 8bit units of data from the DMEM into the RxByte Sequencer using
ByteAddr (6) and counting the bytes moved with a Length (2). These individual fields that
are used to set up the details of the block move make up parts of these registers:
TxCBn_Sys_Addr, TxCBn_Ctl, TxCBn_DMA_Addr and TxCBn_SDP_Addr.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 103

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 23 DMA Operation (Buffer Transfer) Using TxCBn_ Registers

Buffer Transfer Setup Using TxCBn_Sys_Addr, TxCBn_Ctl TxCBn_DMA_Addr and
TxCBn_SDP_Addr:
To perform Buffer Transfers involves setting the bits for TxCB0_Sys_Addr (0xBCn04180),
TxCB0_Ctl (0xBCn4184), TxCB0_DMA_Addr (0xBCn04188), and TxCB0_SDP_Addr
(0xBCn0418C).

To set up a typical single transmit operation for > 64Bytes of data, the CPRC must do the
following:

1 Ensure that the TxCB0 is available by reading TxCB0_Ctl and testing that TxCB0_Ctl bit
[31] Avail field=1.

2 Write TxCB0_Sys with the system address to be written in the form of:
TxCB0_Sys_Addr bits [31:16] BTag field = BTag, and
TxCB0_Sys_Addr bits [15:4] Offset field = Offset
(Offset is a 16Byte starting buffer offset, typically aligned to a 64Byte boundary).

3 Write the Pool ID portion of the system address to be written into TxCB0_DMA_Addr
bits [20:16] PoolID field. TxCB0_DMA_Addr bits [13:4] LineAddr field with the location of
a 64Byte buffer in DMEM, typically aligned on a 128Byte boundary. This is the DMEM
location that the DMA engine uses to begin reading data from SDRAM.

Register Fields

TxCBn_Sys_Addr

TxCBn_Ctl

TxCBn_DMA_Addr

BTag

PoolID

Offset

Length

LineAddr

1

3

4 5

1

2

5

4

3

Address

DMEM DRAM

Payload Bus
(16Bytes)

Address

16Bytes

SourceDestination

TxCB Block Move of Data

6Data (8 bits)

SDP TxByte Sequencer

16Bytes

4Lines

4Lines

TxCBn_SDP_Addr

Counts the Bytes
moved from the sequencer)

ByteAddr 6

2

For More Information On This Product,

 Go to: www.freescale.com

104 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

4 Write TxCB0_SDP_Addr bits [15:0] ByteAddr field with a 16Byte address in DMEM,
typically the same value (buffer) as TxCB0_DMA_Addr bits [13:4] LineAddr field. This is
the location that the SDP TxByte Processor uses to begin transferring bytes out of
DMEM.

5 Write the TxCB0_Ctl register, to initialize the TxCB0_Ctl bits [15:0] TxLength field with
the number of bytes to transfer, clear TxCB0_Ctl bit [23] Own1 field and TxCB0_Ctl bit
[22] Own0 to give ownership of the buffer to the SDRAM (rather than the SDP) DMA
engine, enabling the prefetch of 128Bytes of payload, clear TxCB0_Ctl bit [31] Avail
field to start the SDRAM DMA engine.

For complete details about specific registers go to their reference. Refer to:
“TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)” on page 396, “TxCB0_Ctl
Register (CP Tx Control Block0 Function)” on page 397, “TxCB0_DMA_Addr Register (CP
Tx Control Block0 Function)” on page 398 and “TxCB0_SDP_Addr Register (CP Tx Control
Block0 Function)” on page 399. You also have the following registers available for Control
Block1: TxCB1_Sys_Addr, TxCB1_Ctl, TxCB1_DMA_Addr and TxCB1_SDP_Addr that function
in the same manner.

Buffer Transfer Operations Using TxCBn_Sys_Addr, TxCBn_Ctl TxCBn_DMA_Addr and
TxCBn_SDP_Addr:
The CPRC can set up a payload transfer of arbitrary length using double buffering.
TxCB0_DMA_Addr bits [13:4] LineAddr field and TxCB0_SDP_Addr bits [15:0] ByteAddr field
typically point to a 128Byte aligned buffer. Increments of TxCB_SDP bits [15:6] ByteAddr
field and TxCB0_DMA_Addr bits [13:4] LineAddr field are done to modulo 128 so that
writing or reading the last line in the buffer causes the pointers to wrap back to the start
of the buffer.

TxCB0_Ctl bit [22] Own0 field and TxCB0_Ctl bit [23] Own1 field track the ownership of the
two 64Byte blocks in the 128Byte double buffer. By clearing the ownership bits initially,
the CPRC allows the SDRAM DMA engine to prefetch payload into the DMEM buffers.
TxCB0_DMA_Addr bits [13:4] LineAddr field increments by 16 for each of the four
16Byte-per-cycle transfers to provide an address into DMEM. It also adds 64 to
TxCB0_Sys_Addr bits [15:4] Offset field to update the SDRAM address.

If the payload length is ≤64 bytes, only TxCB0_Sys_Addr bit [22] Own0 field should be
cleared and TxCB0_Sys_Addr bit [23] Own1 field set to keep the DMA engine from wasting
bandwidth by prefetching an extra block. If the payload length is >64 bytes,
TxCB0_Sys_Addr bit [22] Own0 field and TxCB0_Sys_Addr bit [23] Own1 field must be
cleared to prefetch the first two blocks of payload. When the blocks of payload arrive from
SDRAM, the DMA engine sets the corresponding ownership bit to indicate that the SDP
DMA engine now owns the block.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 105

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

In hardware, setting Own causes the SDP TxByte Processor to read and buffer a 16Byte line
of DMEM pointed to by TxCB0_SDP_Addr bits [15:6] ByteAddr field. The SDP TxByte
Processor byte reads are serviced from this read buffer. For each byte transferred, the
address in TxCB0_SDP_Addr bits [15:0] ByteAddr field is incremented. Crossing a 16Byte
DMEM line triggers another line read from DMEM from the address in TxCB0_SDP_Addr
bits [15:6] ByteAddr field. When the last line of a 64Byte block of payload has been read out
of DMEM, the SDP DMA engine clears the corresponding Own bit to allow the SDRAM
DMA engine to reuse that half of the buffer.

Thus, TxCB0_DMA_Addr bits [13:4] LineAddr field and TxCB0_SDP_Addr bits [15:0] ByteAddr
field act as a pair, following one another through a payload transfer. TxCB0_DMA_Addr bits
[13:4] LineAddr field leads as the DMA engine fills DMEM with payload from SDRAM. When
a 64Byte buffer is full, the SDP TxByte Processor uses the lagging TxCB0_SDP_Addr bits
[15:0] ByteAddr field to read bytes of payload from DMEM. When the TxCB0_Ctl bits [15:0]
TxLength field equals 0, the hardware clears the TxCB0_Sys_Addr bit [22] Own0 field and
the TxCB0_Sys_Addr bit [23] Own1 field and signals the SDP that the last byte was
transmitted. The SDP TxByte Processor signals end-of-frame by setting TxCtl_Status bit
[31] Avail field. This clears TxCB0_SDP_Addr bits [6:0] within the ByteAddr field, clears
TxCB0_DMA_Addr bits [6:4] with the LineAddr field and sets TxCB0_Ctl bit [31] Avail field to
realign to the double buffer and to return control of the TxCB to the CPRC.

There are eight (8) bits in each of the Out-Of-Band field (OOB). The OOB are located in the
TxCB0_SDP_Addr register. Bits [31:24] are for OOB0 and bits [23:16] are for OOB1. Eight (8)
OOB bits are transferred to SDRAM along with every 64Byte payload transfer. The 7th Bit of
the OOBn indicates that the SDP encountered an error receiving this frame.

The 6th Bit of the OOBn indicates that this block of 64Bytes contains the last byte of the
payload, and when the 6th Bit of the (OOBn) is set, the remaining six bits indicate the
position of the last byte. These (OOBn) bits get transferred to TxCB0_SDP_Addr bits [31:24]
OutOfBand0 and TxCB0_SDP_Addr bits [23:16] OutOfBand1 field for every payload read.
Based on the TxCB0_Ctl bit [28] OOB field, the hardware uses either the TxCB0_Ctl bits
[15:0] TxLength field or the TxCB0_SDP_Addr OutOfBand field to determine the last
payload byte. Hardware decrements the TxCB0_Ctl bits [15:0] TxLength field and the
appropriate TxCB0_SDP_Addr OutOfBandn field for each byte transferred. When TxCB0_Ctl
bit [28] OOB field is clear, the TxLength equals 0 indicates the payload transfer is finished.
When the TxCB0_Ctl bit [28] OOB is set, and the appropriate TxCB0_SDP_Addr OutOfBandn
field indicates last byte and the position equals 0, the payload transfer is finished.

For More Information On This Product,

 Go to: www.freescale.com

106 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

During test, the TxCB can be used to read the SDRAM data and OOB bits. Setting up
TxCB0_Sys_Addr and TxCB0_DMA _Addr bits [13:4] LineAddr field determines where
payload gets read into DMEM. Software can force the transfer by clearing TxCB0_Ctl bit
[31] Avail field and setting the appropriate TxCB0_Ctl bit [23 or 22] Ownn bit. When the
transfer finishes, the OOB bits can be read from TxCB0_SDP_Addr OutOfBandn field.

The CPRC process can read the state of both DMA engines and the EOP status at any time
from TxCB0_Ctl bits [19:18] SDP State field and TxCB0_Ctl bits [17:16] DMA State field. The
TxCB0_Ctl word generally should not be written by the CPRC process when hardware is
operating (that is, when TxCB0_Ctl bit [31] Avail=0). On writes to TxCB0_Ctl bits [17:16]
DMA State field, bits [19:18] SDP State field, and bit [29] EOP field are only updated if bit
[31] Avail=1.

When DMA transaction requests receive no-acknowledge (NACK) on the payload bus, the
bus controller retries the request up to 16 times before reporting a bus error. The bus error
sets status in TxCB0_Ctl bits [27:24] Error field, generates an event for the Event1 register,
and immediately terminates the SDRAM transfer by setting TxCB0_Ctl bit [31] Avail field.
When the TxCB_Ctl bit [30] NoRetry field is set, the bus controller does not retry, and
reports the bus NACK immediately as a bus error.

Transmit payload can be recycled back through DMEM and retransmitted using a
configuration option and explicit CPRC control. A path can be set up for the payload to
travel from the SDRAM to DMEM to the SDP to DMEM to the SDP (a process call
recirculation). For more information about recirculation, see “Configuration for
Recirculation Operations Using RxSDP and TxSDP” on page 72.

Ring Bus Registers
Configuration Space contains registers to control the Ring Bus, including transmitting
messages, receiving messages, and receiving responses.

Ring Bus Transmit (Tx) Messages Registers
Configuration Space includes four (4) sets of registers used to transmit messages on the
Ring Bus. The four (4) consist of:
TxMsg0_Ctl, TxMsg0_Data_H, and TxMsg0_Data_L; TxMsg1_Ctl, TxMsg1_Data_H, and
TxMsg1_Data_L; TxMsg2_Ctl,TxMsg2_Data_H, and TxMsg2_Data_L; TxMsg3_Ctl,
TxMsg3_Data_H, and TxMsg3_Data_L. The CPRC has access to all four (4) sets. The SDP
RxByte and TxByte Processors have access to only sets zero and one, (TxMsg0_Ctl,
TxMsg0_Data_H, and TxMsg0_Data_L; TxMsg1_Ctl, TxMsg1_Data_H, and
TxMsg1_Data_L).

Refer to the SDP Programming document in the C-Ware Application Development Guide for
SDP addressing of these registers.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 107

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When programming, mutual exclusivity among users of each TxMsgn_Ctl must be
maintained.

The 8Byte data portion of a single-slot Ring Bus message is written into two (2) 4Byte
TxMsg0_Data_H and TxMsg0_Data_L registers. The control portion of a Ring Bus message
is written into the TxMsg0_Ctl register bits [23, 19:0] in the exact format to be sent directly
out on the Ring Bus control wires. Clearing the TxMsg0_Ctl bit [31] Avail transfers
ownership of the transmit message registers to the Ring Bus control, effectively giving the
send command. The Ring Bus controller then puts the 21bits of control from the
TxMsg0_Ctl register and the 8Bytes of data from the TxMsg0_Data_L registers out on the
Ring Bus. The Ring Bus controller sets the TxMsg0_Ctl bit [31] Avail when the message has
gone out, indicating to the CPRC that the transmit message register set is available to send
subsequent messages. Four (4) messages of 8Byte data length can be sent independently
using the four (4) sets of transmit message registers. Transmit message register sets can
also be combined to send messages of 16Bytes and 32Bytes length (two and four Ring Bus
slots). Multiple slot messages may begin with any of the transmit message register sets.
The additional data is placed in sequential, wrapped TxMsg0_Data registers. The
beginning TxMsg0_Ctl register must contain the appropriate slot length. The sequential
TxMsg0_Ctl registers that match participating sequential TxMsg0_Data registers must
have the Avail bit [31] set, that is, must not be in use for another transmit, but otherwise
have no effect on the transaction.

Ring Bus (Rx) Receive Message Registers
Configuration Space includes a set of registers used to receive unsolicited messages
consisting of RxMsg_Ctl, and RxMsg_FIFO.

Unsolicited messages are of type: indication, confirmation, or request. These incoming
messages enter a 4-entry x 8-Byte FIFO in the Ring Bus controller. The CPRC process uses
load instructions to read the head of the FIFO from the RxMsg_Ctl and RxMsg_FIFO
registers. When set, RxMsg_Ctl bit [31] State indicates that a complete, valid message
resides in the FIFO. RxMsg_Ctl bits [23,14:10,4:0] contain the control portion of the
message as received off the Ring Bus. The Dst field [9:5] which must be this channel’s Ring
Bus ID is not reported.

For More Information On This Product,

 Go to: www.freescale.com

108 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When the FIFO contains a valid message, the CPRC reads RxMsg_FIFO to obtain the first
4Bytes of the data portion of the Ring Bus message. The CPRC continues to read from the
RxMsg_FIFO register to empty the complete message out of the FIFO. The CPRC process
must track the message length given by initial RxMsg_Ctl bits [17:15] Len to know how
many times to read the RxMsg_FIFO to obtain the complete message. When the
RxMsg_Ctl indicates a message is valid, the entire data portion of the message is available
through RxMsg_FIFO; there is no need for the CPRC process to check intermediate data
status.

Ring Bus Receive (Rx) Response Registers
Messages initiated by the CPRC as a request type expect to receive a subsequent response
type message, for example TLU requests. Configuration space includes eight (8) sets of
registers used to receive responses. The eight (8) consist of:
RxResp0_Ctl, RxResp0_Data_H, RxResp0_Data_L; RxResp1_Ctl, RxResp1_Data_H,
RxResp1_Data_L; RxResp2_Ctl, RxResp2_Data_H, RxResp2_Data_L; RxResp3_Ctl,
RxResp3_Data_H, RxResp3_Data_L; RxResp4_Ctl, RxResp4_Data_H, RxResp4_Data_L;
RxResp5_Ctl, RxResp5_Data_H, RxResp5_Data_L; RxResp6_Ctl, RxResp6_Data_H,
RxResp6_Data_L; RxResp7_Ctl, RxResp7_Data_H, RxResp7_Data_L.

The control field of a Ring Bus response is moved into a RxRespn_Ctl register and the data
field of a Ring Bus response slot is moved into a RxRespn_Data_H/RxRespn_Data_L
register pair. Responses are directed to the specific one of eight register sets based on the
sequence bits [12:10] of the incoming Ring Bus control field. The sequence field is merely
an echo of the sequence field that was sent in the control field of the request message
that triggered this response. Sequence field bits [14:13] have no effect on hardware and
can be used by software for additional ordering information.

When set, RxResp0_Ctl bit [31] Avail indicates that a complete, valid response has been
received. The Dst field [9:5] which must be this channel’s Ring Bus ID, the Type field bits
[19:18] which must be type response, and the Length field bits [17:15] which must be
known by requesting software, are not reported.

Eight (8) responses of 8Byte data length can be received independently using the eight
(8) sets of receive response registers. Receive response register sets can also be combined
to receive responses of 16Byte and 32Byte length (two or four Ring Bus slots). Multiple slot
responses begin with the receive response register set specified by the sequence bits. The
additional data is placed in sequential, wrapped RxResp0_Data registers. The beginning
RxResp0_Ctl register contains the Ring Bus control field. The sequential RxResp0_Ctl
registers that match participating sequential RxResp0_Data registers are not updated.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 109

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

While receiving cells/packets, the SDPRxByte Processor uses its access to the Ring Bus
transmit message registers to initiate lookup requests for the TLU based on various fields
(such as the destination address) extracted from the incoming header. The TLU responses
to the lookup requests are received and interpreted by the CPRC.

For complete details about specific registers go to their reference. Refer to:
“TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)” on page 401,
“TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)” on page 403,
“TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)” on page 403,
“RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)” on page 406,
“RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)” on page 407,
“RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)” on page 404,
“RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)” on page 405, and
“RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)” on page 405. You
also have the other registers available that comprise the sets, and function in the same
manner.

SDP Control and Status Registers
Configuration Space includes a number of general purpose registers for passing control
and status information between the CPRC and the SDP Processors.

Five (5) control registers (RxCtl_ByteSeq0, RxCtl_ByteSeq1, RxCtl_SyncSeq, RxCtl_BitSeq0
and RxCtl_BitSeq1) are allocated to communicating with the RxByte, RxBit, and RxSync
Processors. The Rx processors perform byte-wide read and write operations from and to
these registers under microcode control.

For complete details about specific registers go to their reference. Refer to:
“RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)” on page 408, Table 124 on
page 408, “RxCtl_SyncSeq Register (CP SDP Rx Control Function)” on page 409,
“RxCtl_BitSeq0 Register (CP SDP Rx Control Function)” on page 409, and Table 125 on
page 409.

Four (4) control registers (TxCtl_ByteSeq0, TxCtl_ByteSeq1, TxCtl_BitSeq0 and TxCtl_BitSeq1)
are allocated to communicating with the TxByte and TxBit Processors. The Tx processors
perform byte-wide read and write operations from and to these registers under
microcode control.

For complete details about specific registers go to their reference. Refer to:
“TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)” on page 410, Table 126 on
page 410, “TxCtl_BitSeq0 Register (CP SDP Tx Control Function)” on page 410, and
Table 127 on page 410.

For More Information On This Product,

 Go to: www.freescale.com

110 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

In addition, four (4) status registers (RxCtl0_Status, RxCtl1_Status,TxCtl0_Status, and
TxCtl1_Status), two (2) each for the RxSDP and the TxSDP, contain predefined status bits
used by the CPRC to track the SDP progress through cell/packet processing and
vice-versa.

The CPRC process accesses all of these memory-mapped SDP control registers using load
and store instructions. These registers have two (2) read and two (2) write ports, allowing
CPRC and SDP access at all times. The CPRC process and SDP firmware must cooperate to
ensure data integrity. For both receive and transmit, the SDP microcode sets the Avail bit
[31] to signal end-of-frame, and thereby switch data scopes. For more information about
data scopes. Refer to “Data Scope Detail Operations” on page 86.

For complete details about specific registers go to their reference. Refer to:
“RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)” on page 486,
Table 116 on page 400, “TxCtl0_Status Register (CP Tx Control Block0 Function)” on
page 400, and Table 116 on page 400.

Miscellaneous Control Registers
Configuration Space includes miscellaneous control registers.

Event Registers
There are a number of events that can occur in a C-5 NP that are asynchronous, and that
the CPRC must be able to process. These events must be recognized either by polling for
them, or via interrupt notification. Refer to “Interrupt Access” on page 113 for more
information. The C-5 NP has the capabilities to reduce the processing time required to
respond to an asynchronous event. This event handling mechanism in the CPRC has the
following properties:

• Software can identify events and dispatch them to their corresponding processing
routines very quickly.

• Software can dynamically prioritize events.

• Software can choose which events will generate interrupts (if any), and which events it
will poll.

Each of sixty-four (64) events in the CP is assigned an event number, and a corresponding
bit in one of the two (2) 32bit event registers (Event0 and Event1). When an event occurs in
the CP (that is, the signal transitions from 0 to 1), it sets the corresponding bit in event
registers.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 111

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Most of the bits in the event registers can be interrogated and cleared independently of
other state in Configuration Space. However, Event0 register bit [50] and Event1 register
bit [21] are exceptions; these bits are not edge sensitive and cannot be cleared directly. Bit
[21] represents the logical OR of the current bits in all of the four Queue Status registers
(Queue_Status0 to Queue_Status3). Clearing the Queue Status registers clears Event1
register bit [21]. Similarly, bit [50] SONET event represents the logical OR of the masked
bits in the SONET_Event register. Clearing or masking off all SONET events clears Event0
register bit [50].

The Event Registers comprise two (2) words in the CP (Event0 and Event1), and those
words can be read by the CPRC and written with value 1 to clear bits. The normal
mechanism for accessing the event status uses the “Event_Access Register (CP Event and
Interrupt Function)” on page 439.

For complete details about specific registers go to their reference. Refer to:
“Event0 Register (CP Event and Interrupt Function)” on page 435, and “Event1 Register (CP
Event and Interrupt Function)” on page 437.

Event Access registers are a set of four (4) registers used to provide access to the Event0
and Event1 registers. The Event Access registers consist of: Event_Mask0, Event_Mask1,
Event_Access, and Mask_Access register.

The Event_Mask defines which events the Event_Access responds to. It comprises two (2)
32bit registers in the CP. The event number in Event0 and Event1 registers is active if its
corresponding bit is set in the Event_Mask0 or Event_Mask1 registers. This can be done at
initialization time or dynamically. Individual bits can be set or cleared in Event_Mask by
using the Mask_Access.

The Event_Access returns the logical AND and the logical NOR of the bits from
Event0/Event1 that are active. When the CP reads the value of Event_Access, it gets a value
of 1 in bit [31] All field if all of the bits in the Event0/Event1 that are set in Event_Mask are
on. If any of the bits in the Event0/Event1 that are active in the Event Access registers are
reading, Event_Access returns 0 in bit [31] All field. This allows a program to check whether
all interesting events have occurred. If no events are active in the Event Access registers,
that is, the Event_Mask=0, reading Event_Access returns 1 in bit [31] All field. When the CP
reads the value of Event_Access, it gets a value of 0 in bit [15] None field if any of the bits in
the Event0/Event1 that are set in Event_Mask are on. If all of these bits are 0, reading
Event_Access returns 1 in bit [15] None field. This allows a program to check whether any
interesting events have occurred.

For More Information On This Product,

 Go to: www.freescale.com

112 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The Event_Access also provides access to the events in the Event_Mask0/Event_Mask1
registers, one at a time in a highest-to-lowest event number order. When a program reads
Event_Access, bits [7:2] EventNumber field denotes the “highest numbered active bit”,
which is set in Event0/Event1. The Event_Access, bits [7:2] EventNumber field is positioned
to allow software to use the read value directly as a word index. If Event_Mask &
Event0/Event1= 0, indicating that none of the events active has occurred, reading
Event_Access returns 0x8000 in bits [15:0] field.

While many of the bits in the Event0/Event1 correspond to other bits in the CP, they are not
directly linked to those bits. When an asynchronous event occurs in the CP, such as the
Avail bit [31] being set in Receive Control Block 0 (RxCB0_), the corresponding bit gets set
in the Event0/Event1. Clearing the bit in the Event0/Event1 does not clear the Avail bit [31]
in the RxCB0_Ctl register.

To clear a particular bit in Event0/Event1, a program writes the particular bit number into
Event_Access bits [7:2] ClearBit field. This lets a program clear an event bit (after processing
the event) by writing the same value to Event_Access.

To set a particular bit in Event0/Event1, a program writes the particular bit number into
Event_Access bits [23:18] field. This provides a mechanism for setting a software event and
having it recognized later in the event polling loop.

Another way to clear one or more bits in Event0/Event1 is to write a mask value containing
the bits to be cleared into the appropriate words of Event0/Event1 directly. Bits in the
Event0/Event1 are “write 1 to clear”.

Single bits in the Event_Mask can be set and cleared using the Mask_Access, which
provides a decode mechanism similar to the one for the Event0/Event1. This allows an
event dispatcher to dynamically change the events that are interesting to a program as
the program modules progress from one stage to the next.

To clear a particular bit in Event_Mask, a program writes the particular bit number into
Mask_Access bits [7:2] ClearBit field. To set a particular bit in Event_Mask, a program writes
the particular bit number into Mask_Access bits [23:18] SetBit field. Event_Mask0 and
Event_Mask1 registers are also directly writable.

For complete details about specific registers go to their reference. Refer to:
“Event_Mask0 Register (CP Event and Interrupt Function)” on page 439, “Event_Mask1
Register (for Mask1)” on page 439, “Event_Access Register (CP Event and Interrupt
Function)” on page 439 and “Mask_Access Register (CP Event and Interrupt Function)” on
page 441.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space 113

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Interrupt Access
The CPRC implements four prioritized hardware interrupts, IRQ0-IRQ3. Interrupt_Mask0
and Interrupt_Mask1 registers provide a means for software to configure which events in
the event register cause interrupts.

An interrupt is requested whenever a bit in the Event0 or Event1 register is set and its
corresponding bit in the Interrupt_Maskn is set. Bits [63:48] in Event0 register correspond
to bits [63:48] in the Interrupt_Mask0 register that also corresponds to IRQ0. This same
type of relationship applies for IRQ1, IRQ2 and IRQ3. Refer to Figure 24 on page 113.

Figure 24 Relationship Between Interruput_Mask0, IRQ0 and Event0 Registers

For complete details about specific registers go to their reference. Refer to:
“Interrupt_Mask0 Register (CP Event and Interrupt Function)” on page 441, and Table 134
on page 441.

Queue Status Registers
Queue status from the Queue Management Unit (QMU) is regularly broadcast on a side
band of the C-5 NP buses. This status is automatically loaded into the four (4) queue status
registers (Queue_Status0, Queue_Status1, Queue_Status2 and Queue_Status3) where it can
be read by the CPRC. The CPRC can set bits in the queue status registers by accessing
them through the update addresses. The logical OR of the bits in the status registers,
provides a level-sensitive event for input to Event1 register bit [21].

For complete details about specific registers go to their reference. Refer to:
“Queue_Status0 Register (CP Queue Status Function)” on page 433 and “Queue_Statusn
Registers (for Queue Status 1, 2 and 3)” on page 433.

63 48 3247

0

Interrupt_Mask0

IRQ0

63

IRQ1

Event0

31 16 015

0

Interrupt_Mask1

IRQ2

31

IRQ3

Event1

48 47 16 15

For More Information On This Product,

 Go to: www.freescale.com

114 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Cycle Counter
A 64bit Cycle counter is provided in Configuration Space (Cycle_Count_H and
Cycle_Count_L). The cycle counter initializes to 0 during reset and runs freely when reset is
released. Thus, the cycle counters in each of the channels are synchronized. The full
counter value is readable atomically by the CPRC reading two (2) registers. A copy of the
top word is updated whenever the bottom word is read. Only the frozen copy of the top
word can be read. For atomic access to the 64bit value, the bottom 32bit word should be
read first, then the frozen top 32bit word.

For complete details about specific registers go to their reference. Refer to:
“Cycle_Count_H Register (CP Miscellaneous Control Function)” on page 434, and
“Cycle_Count_L Register (CP Miscellaneous Control Function)” on page 434.

Event Timer
One event timer register is provided in the Configuration Space (Event_Timer). The timer
initializes to 0 during reset. After reset, the value in the timer always decrements once per
core clock cycle. During the cycle that the timer decrements through 0, a timer event is
recorded in the Event0 register bit [52] Time-out field. The timer value can also be read by
the CPRC. Applications can write a value into this register that decrements in the same
fashion.

For complete details about specific registers go to their reference. Refer to:
“Event_Timer Register (CP Miscellaneous Control Function)” on page 434.

For More Information On This Product,

 Go to: www.freescale.com

Understanding Block Moves of Data 115

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Understanding Block
Moves of Data

Block moves are used to move data from/to the CPs to/from the BMU, or from/to the CPs
to/from the QMU across the Payload Bus.This is done by using Wr, Rx, Rd and Tx features to
achieve many different functions. Therefore, to use this feature you should have a basic
understanding of the Payload process as described in the following sections.

Payload handling is divided into two (2) types:

• External, a data stream that is received from outside the C-5 NP and transmitted
outside the C-5 NP using the Rx and Tx functions, and

• Internal, a movement of data within the C-5 NP using the Wr and Rd functions.

External Handling
Overview

This is a general overview of the data movement coming into the C-5 NP. Refer to:
“SDP RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)” on page 98 for more
details of the Rx side, and “SDP TxByte Processor Transmit Control Block (TxCB0_, TxCB1_)”
on page 102 for details of the Tx side.

1 Payload handling process, the Rx side:

The flow of the payload handling process starts with a Rx of data from outside the C-5 NP
that is processed by the RxSDP, then using the following registers (RxCBn_Sys_Addr,
RxCBn_Ctl, RxCBn_DMA_Addr, and RxCBn_SDP_Addr) places data (data0) into a location
inside the DMEM. The data inside DMEM is then written through the BMU, into the SDRAM
for storage. This process explains why an external Rx is associated with an internal Wr. The
Rx Control Blocks are used to provide block data moves across the Payload Bus from the
CPs to SDRAM. Refer to Figure 25 on page 116.

2 Payload handling process, the Tx side:

The flow of the payload starts with a Tx of data from inside the C-5 NP using certain
registers (TxCBn_Sys_Addr, TxCBn_Ctl, TxCBn_DMA_Addr and TxCBn_SDP_Addr) that
reads the data stored in the SDRAM, through the BMU, then places the data (data0) into
the DMEM that is then processed by the TxSDP to outside the C-5 NP. This process explains
why an external Tx is associated with an internal Rd. The Tx Control Blocks are used to
provide block data moves across the Payload Bus from the SDRAM to the CPs. Refer to
Figure 25 on page 116.

For More Information On This Product,

 Go to: www.freescale.com

116 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 25 Rx and TxCBn_ Handling Process Overview (for External Flow)

Internal Handling
Overview

This is a general overview of the data movement inside the C-5 NP. Refer to:
“Write Control Blocks (WrCB0_ , WrCB1_)” on page 91 for more details of the Wr side, and
“Read Control Blocks (RdCB0_ , RdCB1_)” on page 95 for more details of the Rd side.

1 Payload handling process, the Wr side:

The flow of the payload handling process starts with a Wr of data from inside the C-5 NP
using (WrCBn_Sys_Addr, WrCBn_Ctl, and WrCBn_DMA_Addr) that takes data (data0)
from the DMEM and then writes it through the BMU into the SDRAM for storage. The Wr
Control Blocks are used to provide block data moves across the Payload Bus from the
SDRAM, QMU or BMU to the CPs. Refer to Figure 26 on page 117.

2 Payload handling process, the Rd side:

The flow of the payload handling process starts with a Rd of data from inside the C-5 NP
using (RdCBn_Sys_Addr, RdCBn_Ctl, and RdCBn_DMA_Addr) that reads the data stored in
the SDRAM, through the BMU then places the data (data0) into the DMEM. The Rd Control
Blocks are used to provide block data moves across the Payload Bus from SDRAM to the
CPs. Refer to Figure 26 on page 117.

Rx

Tx TxSDP

DMEM

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

Data0
Data1

Data2

Data3

DMEM

BMU

SDRAM

1

RxSDP 1

2

2

21Rx Tx

RxCBn_Sys_Addr TxCBn_Sys_Addr

RxCBn_Ctl TxCBn_Ctl

RxCBn_DMA_Addr TxCBn_DMA_Addr

RxCBn_SDP_Addr TxCBn_SDP_Addr

Internal to the C-5 NPExternal to the C-5 NP

For More Information On This Product,

 Go to: www.freescale.com

Understanding Block Moves of Data 117

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 26 Wr and RdCBn_ Handling Process Overview (for Internal Flow)

Using Multi-Use Control
Blocks to Achieve

Different Functions

The Multi-Use Control Blocks (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr,
WrCB0_SDP_Addr; RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr;
RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr, RdCB0_SDP_Addr; and
TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr, TxCB0_SDP_Addr) can be programmed
to make data moves to/from SDRAM, the BMU, or the QMU. All of these registers
physically reside in the CP memory map at their respective addresses.

The individual fields of these registers are used to perform different functions. Refer to
Table 20 on page 118. Detail examples of each, including actual field bit values, are shown
in other locations of this manual as noted in this table.

DMEM

Data0
Data1

Data2

Data3

Datan

DMEM

BMU

SDRAM

1

2

21Wr Rd

WrCBn_Sys_Addr RdBn_Sys_Addr

WrCBn_Ctl RdCBn_Ctl

WrCBn_DMA_Addr RdCBn_DMA_Addr

Data0
Data1

Data2

Data3

Datan

Internal to the C-5 NPExternal to the C-5 NP

For More Information On This Product,

 Go to: www.freescale.com

118 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 20 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx)

Mode Category Function Fields Used Details

CP
to/from
BMU

Memory
Transactions

Buffer
Memory
Transfer
Operation

PoolID, BTag,
Offset

See “Write Control Blocks (WrCB0_ ,
WrCB1_)” on page 91
See “SDP RxByte Processor Receive
Control Blocks (RxCB0_, RxCB1_)”
on page 98
See “Read Control Blocks (RdCB0_ ,
RdCB1_)” on page 95
See “SDP TxByte Processor Transmit
Control Block (TxCB0_, TxCB1_)” on
page 102

CP
to/from
BMU

BTag
Management
Transactions

Initializing
BTags

PoolID, BTag,
Command,
Pool

See “BTag Initialization Operation”
on page 226.

Allocating
BTags

See “BTag Allocation Operation” on
page 229.

Deallocating
BTags

See “BTag Deallocation Operation”
on page 231.

Multi-Use
Management
Transactions

Allocating
(Multi-Use
Counter)

See “MUC Allocation Operation” on
page 234.

Decrementing
(Multi-Use
Counter)

See “MUC Decrement Operation”
on page 236.

Reading
(Multi-Use
Counter)

See “MUC Read Operation” on
page 238.

CP
to/from
QMU

Queue
Management
Transactions

Configure
Queue

Mail Box#,
Queue#,
Command,
PoolID

See “Configure Queue
Operation” on page 340.

Queue Status See “Queue Status Operation” on
page 342.

Unicast
Enqueue

See “Unicast Enqueue
Operation” on page 344.

Multicast
Enqueue

Mail Box#,
QueueLevel#,
Command,
PoolID

See “Multicast Enqueue
Operation” on page 346.

Dequeue Mail Box#,
Queue#,
Command,
PoolID

See “Dequeue Operation” on
page 348.

For More Information On This Product,

 Go to: www.freescale.com

Understanding Block Moves of Data 119

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

120 CHAPTER 2: CHANNEL PROCESSORS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 3
Executive Processor

Chapter Overview This chapter covers the following topics:

• Executive Processor (XP) Overview

• XP RISC (XPRC) Overview

• XP Memory (IMEM and DMEM)

• XP Supported Interfaces

• C-5 NP Interface Options for Initialization

• Other XP Interfaces

• XP Configuration Space

For More Information On This Product,

 Go to: www.freescale.com

122 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Executive Processor
(XP) Overview

The XP serves as a centralized computing resource for the C-5 NP and manages the
system interfaces. One of the system interfaces it manages is the PCI bus, which is
generally used for communication to an external host processor. If present, a host
processor can provide device-wide coordination (for example, between multiple C-5 NPs),
network management, signaling, and could possibly build all routing tables for the device
of which the C-5 NP is a part. The XP can also perform many of these functions by itself.
The XP has access to the internal Global, Ring, and Payload buses.

Typical XP functions include:

• Chip initialization and code download

• Routing/Switching table maintenance (either building tables or importing updates
from the host)

• Statistics harvesting from CP DMEM and the TLU

• Fault detection/recovery

• Non-critical-path forwarding functions

XP Major Components The major components of the XP are listed in Table 21 on page 122. In addition, Figure 27
on page 124 shows the XP Block Diagram.

Table 21 Major Components of the XP and Their Function

Item Function

XP RISC Core
(XPRC)

Performs conventional supervisory tasks in the C-5 NP, including:

• Reset and initialization of the C-5 NP

• Program loading and control of CPs

• Centralized exception handling

• Management of a host interface through the PCI

• Management of system interfaces (PCI, PROM, Serial Bus)

This general purpose CPU implements a subset of the MIPS 1 instruction set
(multiply, divide, floating point, and CPO instructions are not supported) with its
own dedicated code and data store. The XPRC has Global Bus access to all CP
configuration registers and DMEMs. In addition, the XPRC has Ring Bus access for
table lookup operations. A 16-word Instruction ROM (IROM) is dedicated to the
XPRC. Refer to “XP RISC (XPRC) Overview” on page 125.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Overview 123

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Memory Two (2) types of memory are available: IMEM and DMEM.

• The XP has 32kBytes of IMEM that contains the RISC Instructions in RAM. It is
organized as two (2) 16kBytes banks for sharing within the XP.

• The XP has 32kBytes of local non-cached data memory (DMEM) for storage of
data. It is organized as two (2) 16kBytes banks. In addition, the DMEM can also
be accessed as remote memory by CPs via the Global Bus.

Refer to “XP Memory (IMEM and DMEM)” on page 130.

PCI Provides an industry standard 32bit 33/66MHz PCI channel used for chip-level
shared resources. The PCI has both initiator and target capabilities. A host is
optional, but when present, it is capable of:

• Requesting the Global Bus (which provides access to all CP configuration
registers and DMEMs)

• Requesting the Ring Bus (which provides access to table lookup operations)

• Requesting XP processing and communicating with the XP for additional
services

• Supporting C-5 NP initialization

Refer to “PCI Bus Interface” on page 132.

PROM
Interface

Allows the XP to boot from an external PROM. The PROM interface is a low-speed,
serial I/O interface that requires external glue logic to interface to an external
PROM up to 4MB in size. Refer to “PROM Interface” on page 134.

Serial Bus
Interface

 Consists of a general purpose bi-directional, two-wire serial bus and I/O port. It
allows the C-5 NP to control external logic with either of two (2) standard
protocols.

• The high-speed protocol uses a 16bit data format with 10bits of addressing,
and supports transfers up to 25MHz.

• The low-speed protocol uses an 8bit data format followed by an acknowledge
bit and supports transfers at up to 400kbps.

The bus supports a single master hierarchy that can operate as either a receiver or
a transmitter. The bus also supports an integrated addressing and data-transfer
protocol. Refer to “Serial Bus Interface” on page 136.

Configuration
Space

This area of the XP contains a number of registers used to communicate with the
SDP and the bus controllers (Payload Bus and Global Bus). The XP’s registers can
also be accessed by other components of the C-5 NP.(CPs via the Global Bus). Refer
to “XP Configuration Space” on page 140.

Table 21 Major Components of the XP and Their Function (continued)

Item Function

For More Information On This Product,

 Go to: www.freescale.com

124 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 27 Executive Processor Block Diagram

DMEM
(Bank 1)

XP

XP/CP
Configuration

Registers

XP/CP
Configuration

Registers

PROM
Interface

Serial
Bus

Interface

PCI

XP
Config
Regs

PCI Bus

DMEM
(Bank 2)

Ring
Bus

Interface

Global
Bus

Interface

Payload
Bus

Interface

Payload
Bus

Interface

XP
RISC
Core

(XPRC)

IMEM Loader

IMEM

IROM

For More Information On This Product,

 Go to: www.freescale.com

XP RISC (XPRC) Overview 125

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP RISC (XPRC)
Overview

The XPRC is a general purpose Central Processing Unit (CPU) founded on the same RISC
Core used for the CP. Operating at the C-5 NP’s core clock rate, the XPRC provides about.85
instructions per cycle (IPC) when executing out of local memory. The IPC and frequency
targets offer about 190MIPS per channel on non-blocking code.

The XPRC contains a 32bit data path and accesses memory using a 32bit physical address.
It has two (2) banks of local data memory (DMEM); references to memory within Bank 2
(also referred to as DMEM 25) occur with zero wait states; accesses to Bank 1 (also referred
to as DMEM 24) incur one core clock cycle latency. Memory addresses outside of local
memory range refer to remote memory (that is, the memory contained within the CPs,
SDRAM, or I/O devices).

The XP contains memory-mapped control registers (blocks) used for DMA between DMEM
and SDRAM, between PCI and SDRAM (via DMEM 24), as well as between SDRAM and
IMEM (via DMEM 25). In addition, Configuration Registers enable the XPRC (and PCI
interface) access to Payload, Global, and Ring Buses.

XPRC Instruction Set The XPRC processor uses a MIPS™1 instruction subset (mul, div, floating point, and CPO
instructions are not supported). Its 128 registers support fast context switching. See the
C-Ware Application Development Guide for information on using the compiler that
supports the XPRC. Also see the MIPSpro™ Assembly Language Programmer’s Guide
(available over the Internet at http://www.mips.com/publications/index.html) for
information about the standard MIPS1 instruction set.

XPRC Registers The set of internal XPRC registers is defined in Table 22.

Table 22 Internal XPRC Register Definitions

Register Name Software Name Use and Linkage

$0 — Always has the value of 0.

$at or $1 — Reserved for the assembler.

$2:$3 v0 to v1 Used for expression evaluations and for hold integer
function results. Also used to pass the static link when
calling nested procedures.

$4:$7 a0 to a3 Used to pass the first four words of integer type actual
arguments. Their values are not preserved across
procedure calls.

$8:$15 t0 to t7 Temporary registers used for expression evaluations,
Their values are not preserved across procedure calls.

For More Information On This Product,

 Go to: www.freescale.com

126 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Context Switching The XPRC incorporates a fast, four-way, context switching facility that replicates the entire
XPRC register space four times and can switch from one register set (one context) to
another under software control or hardware interrupt. Thus, actual processing (as
opposed to manually saving the contents of one set of registers and then loading
another) can begin on a different context in only two cycles. Therefore, you can use these
four contexts for debugging, supervisory tasks, event handlers, or other tasks.

Figure 28 Executive Processor Context Switching

The XPRC includes four sets of 32 internal registers. Each register set is associated with a
processor context. The set of registers are defined in Table 22.

$16:$23 s0 to s7 Saved registers. Their values must be preserved across
procedure calls.

$24:$25 t8 to t9 Temporary registers used for expression evaluations.
Their values are not preserved across procedure calls.

$26:$27 or
$kt0:$kt1

k0 to k1 Used internally by the C-5 NP system services.

$28 or $gp gp Contains the global pointer.

$29 or $sp sp Contains the stack pointer.

$30 s8 A saved register (like s0 - s7).

$31 ra Contains the return address used for expression
evaluation.

Table 22 Internal XPRC Register Definitions (continued)

Register Name Software Name Use and Linkage

Context 0 Context 3

Context 2Context 1

Other
Tasks

Debugging/
Supervisory Tasks/

Event Handlers

XPRC

Receive
Task

Transmit
Task

For More Information On This Product,

 Go to: www.freescale.com

XP RISC (XPRC) Overview 127

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Context switching is accomplished two (2) ways:

• Coprocessor instruction (software)

• Interrupt (hardware)

The software mechanism for executing a context switch is the MIPS MTC0 instruction:

MTC0 $1 $3

where $1 specifies the destination context. The contexts have no priority; how they are
used is entirely designated by software.

The hardware interrupt sequence is:

• All interrupts are disabled until an RFE instruction is executed.

• The address of the next instruction to be executed in the interrupted context is saved
in K1 (see “Interrupts”).

• Program execution continues with the instruction at the address specified in the
interrupt vector.

Interrupts The XPRC supports four prioritized hardware interrupts, that can be triggered from any
bits in the Event Register. There are four MIPS-like register sets corresponding to each
hardware context, one register of which (K0) is shared between the other contexts.

K1 contains the program counter value and the context number of the interrupted
context. These values are used in the execution of the RFE instruction to return to the
previously interrupted context.

All interrupts and exceptions transfer control to a location found in the appropriate
interrupt or break table. The base address of the interrupt table is specified by the
contents of the interrupt table register ($1) in coprocessor zero. The base address of the
exception table is specified by the contents of the break table register ($2) in coprocessor
zero.

Interrupts are dispatched by a jump to the address equal to ((interrupt number * 8) +
(interrupt table register)). Exceptions are dispatched by a jump to the address equal to
((break number * 8) + (break table register)). In addition to the jump, the register context
is set to zero and interrupts are disabled. However, exceptions may still occur. Whether a
hardware interrupt or an exception, the interrupted routine’s register context and its next
program counter are saved in K1 of context zero.

For More Information On This Product,

 Go to: www.freescale.com

128 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The K1 value points at the next instruction to be executed after the interrupt is serviced.
RFE is normally used to: (1) resume the instruction flows at this point, (2) restore the
proper register context, and (3) restore the Interrupt Enable Flag to its value at the time of
the interrupt or exception.

Note that interrupts are not recognized in a branch delay slot. ALso note that all
exceptions fill the delay slot following a change of flow with a NOP instruction.

Interrupts are enable by setting the Interrupt Enable Flag (IEF) which is the LSB of
coprocessor zero, Register 8 (see Table 23). The IEF is preserved whenever an exception or
an interrupt occurs and is restored by the RFE instruction.
)

Table 23 Coprocessor Zero Register Definitions

Register Definition

R0 Whoami Register — Contains the DMEM base (hardcoded) for this XPRC.

R1 Interrupt Table Register — Contains the vector address for INT 0.

R2 Break Table Register — Contains the vector address for break 0.

R3 Current Context Register — The two LSBs are the current context register. Set by
setting ictxt in decoder.v.

R4 DMEM Comparison Address — Contains the address at which debug pulse is
generated.

R5 DMEM Comparison Address Mask — Contains the mask for the DMEM address.

R6 DMEM Comparison Data — Contains the data value for which debug pulse is
generated.

R7 DMEM Comparison Data Mask — Contains the mask for the DMEM data.

R8 Interrupt Flag — The LSB in the Interrupt Flag.

R9 Read/Write Mask — The two LSBs are the Read mask and the Write mask for R4 to
R7.

For More Information On This Product,

 Go to: www.freescale.com

XP RISC (XPRC) Overview 129

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Hardware Programming
Resources

In addition to fast Context Switching, the XPRC contains resources to aid in efficient
program design. These include:

• Event Registers — Each bit indicates that the corresponding event has or has not
occurred since last set. Centralizing status monitoring into a single register allows for
efficient event-driven software design. Many bits are pre-defined, providing
high-speed reporting of events between on-chip subsystems (for example, data
available on QMU queue). Other bits are software programmable.

• Cycle Counter — This 64bit counter is set to 0 when the chip is reset, and increments
every core clock cycle thereafter. at overflow, the counter wraps to 0.

• Countdown Timer — Applications can set this timer to a value that decrements.
When the timer reaches 0, it generates an event for the application.

Event Registers There are a number of events that can occur in a C-5 NP that are asynchronous, and that
the XPRC must be able to recognize and process. These events must be recognized either
by polling for them, or via interrupt notification. To reduce the processing time required to
respond to an asynchronous event (and hence to improve latency and reduce the chance
of losing an event), this event handling mechanism in the XPRC has the following
properties:

• Software can identify events and dispatch to their corresponding processing routines
very quickly, on the order of 5 to 10 cycles.

• Software can dynamically prioritize events.

• Software can choose which events will generate interrupts (if any), and which it will
process via polling.

Each of 64 events in the XP is assigned an event number, and a corresponding bit in one of
the two (2) 32bit event registers (Event0 and Event1). When an event occurs in the XP (that
is, the signal transitions from 0 to 1), it sets the corresponding bit in event registers. The
normal mechanism for accessing the event status uses the Event Access Control Block.

Most of the bits in the event registers can be interrogated and cleared independently of
other state in Configuration Space. However, Event0 register bits [55:52] are an exception;
these bits are not edge sensitive and cannot be cleared directly. They represent the logical
OR of the current bits in each of the Queue Status registers (Queue_Status0 to
Queue_Status3). Clearing the Queue Status registers clears these Event0 register bits
[55:52]. Refer to “Executive Processor (XP) Configuration Registers” on page 446.

For More Information On This Product,

 Go to: www.freescale.com

130 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Memory (IMEM
and DMEM)

The XP has both local instruction memory (IMEM) and local data memory (DMEM). These
are local memory, not a level 1 cache. In addition, it has the capability to bring in overlays
from SDRAM to either IMEM or DMEM, using DMA under program control. The XP also has
a local Instruction ROM (IROM).

Instruction Memory The XP has 32kByte IMEM, configured as two (2) sub-arrays. This memory is shared two (2)
ways between the XP and the IMEM loader. The IMEM loader is a logical block that moves
code overlays from SDRAM to IMEM. Using the Code Overlay Transfer Control Block, the
IMEM loader can DMA code from SDRAM into IMEM via an intermediate buffer in DMEM
bank 2 (DMEM #25).

XPRC instruction references outside of the local memory space are not supported.
Similarly, the XP IMEM is not visible to any other processors on the chip or to the PCI
interface.

Data Memory The XP has a local 32kByte DMEM. This is organized into two 16kByte banks; bank 2
(DMEM #25) is accessed with zero latency; bank 1 (DMEM #24) is accessed with one
additional cycle of latency.

DMEM is organized as 16Byte lines providing 3.2GBps peak bandwidth through a single
port. It is accessed via a 4Byte (32bit) access path. The memory resides in the global
address space of the C-5 NP; however, only Bank 1 (DMEM24) is accessible by CPs; DMEM
Bank 2 (DMEM #25) is not visible to processors outside of the XP. Bank 2 does, however,
interface to the Payload bus for data and code transfers, as well as the PCI Bus. Refer to
“Executive Processor (XP) Configuration Registers” on page 446.

SDRAM The XP has DMA access to SDRAM to support data transfers to/from the PCI, IMEM code
overlays, and DMEM data overlays. All DMA is controlled using Control Blocks (WrCB0_,
RdCB0_, RxCB0_, TxCB0_). SDRAM is not addressable in the global address space. The XP’s
control blocks provide the following types of SDRAM access:

• DMA to/from DMEM Bank 1 and SDRAM for data overlays.
[control block RdCB/WrCB #24]

• DMA to/from DMEM Bank 2 and SDRAM for data overlays.
[control block RdCB/WrCB #25]

• DMA to/from the PCI bus and SDRAM (via buffer in DMEM bank 1).
[control block TxCB/RxCB #24]

For More Information On This Product,

 Go to: www.freescale.com

XP Memory (IMEM and DMEM) 131

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The transfer control block presents transaction requests to the XP Outbound
Transaction State Machine, which competes for access to the PCI Master in the XP
Outbound Transaction Arbiter. The PCI address and transfer count information for the
DMA transfer are provided via additional configuration registers in the XP
Configuration Register Block.

• DMA from SDRAM to IMEM (via buffer in DMEM bank 2) for code overlays.
[control block TxCB #25]

• DMA from a constant zero data to SDRAM. This is used to initialize SDRAM.
[control block RxCB #25]

The transfer control block presents transactions to the IMEM Loader that interfaces
directly into the IMEM. IMEM target address information for the DMA transfer is provided
via additional configuration registers in the XP Configuration Register Block.

IROM The IROM provides the first instructions when the chip is initialized. It is only accessible by
the XPRC. See “C-5 NP Interface Options for Initialization” on page 137 for more
information.

For More Information On This Product,

 Go to: www.freescale.com

132 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Supported
Interfaces

The XP manages the supervisory controls for the network interfaces as well as the set of
pins that provide interfaces to other components in the system that are not memories or
network interfaces. The XP supports three (3) system interfaces:

• 32bit PCI Interface (33MHz or 66MHz)

• PROM Interface

• Serial Bus Interface

PCI Bus Interface Host communication to the C-5 NP is provided through the PCI interface. A host is
optional, but when present, it is capable of requesting the Global Bus through the PCI
interface. Using the PCI interface, a host can request XP processing through the PCI
mailbox registers and communicate with the XP for additional services. A host is capable
of supporting C-5 NP initialization without a ROM.

The XP can be configured to support a 32bit PCI interface capable of operating at either
33MHz or 66MHz. The PCI interface on the C-5 NP is fully compliant with the PCI
Specification Revision 2.1. The C-5 NP PCI interface includes the following functions:

• Initiation of PCI transactions as a PCI Bus Initiator including:

– Memory Reads and Writes

– Internal DMA engines capable of transferring blocks of data between the C-5 NP’s
SDRAM and the PCI Bus under XP control

• Processing PCI transactions as a PCI Bus Target including:

– Memory Writes

– Memory Reads, Memory Read Line, and Memory Read Multiple

– Configuration Read and Write

– Single Delayed Transaction

– Medium DEVSEL timing

– Configurable via the PCI Interface and/or internal bus accesses from the XP

– 32bit Addressing

– 32bit Transfers

– 33MHz or 66MHz operation

For More Information On This Product,

 Go to: www.freescale.com

XP Supported Interfaces 133

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

– Support for a single PCI interrupt line (PCI_INTA)

The PCI Bus interface does not include support for the following functions:

• Exclusive accesses controlled by the PCI_LOCK_N signal as either an Initiator or a Target
(all requirements for access exclusion to memory space within the C-5 NP are assumed
to be handled through software semaphores)

• Special cycles

• PCI cache support (all memory space within the C-5 NP is NOT cacheable to an external
processor)

• JTAG (IEEE 1149.1)

• Power management

• Bus arbitration logic (an external PCI Central Resource is required to support this
function)

PCI Access to C-5 NP Physical Address Space
An external PCI Initiator can access C-5 NP physical address space through two 1MByte
windows in PCI address space. The System Interface Configuration Space contains two
standard PCI Base Address Registers (BARs) each defining a 1MB prefetchable memory
region.

While the regions are defined as prefetchable, software is responsible for properly
handling any read side effects that may occur within the C-5 NP.

For each of these BARs, there is a corresponding address translation register indicating the
1MByte page in C-5 NP physical address space that is to be accessed.

C-5 NP Access to PCI Address Space
The XP can access PCI address space through eight programmable windows in the C-5
NP’s physical address space. Each window is controlled by an XP BAR and a PCI address
translation register. The BAR controls the location and size of the window in C-5 NP
physical address space. The programmable window sizes are: 16kBytes, 32kBytes,
64kBytes, 128kBytes, 256kBytes, 512kBytes, 1MByte, or 2MByte. Each window can be up to
2MByte in size, but the windows can be programmed as any combination of the specified
sizes (for example, there could be eight 2MByte windows, or four 128kByte, three 1MByte,
and one 256kByte windows). The PCI Address Translation register controls the window’s
view into the PCI address space.

For More Information On This Product,

 Go to: www.freescale.com

134 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The C-5 NP provides an optional byte swapping mode for moving data between the PCI
Bus Little Endian environment and the C-5 NP Big Endian environment. Refer to “PCI Byte
Swapping Overview” on page 624.

PCI Registers
Table 135 on page 447 shows all the PCI Configuration registers. Refer to “Executive
Processor (XP) Configuration Registers” on page 446.

PROM Interface The PROM interface is a low-speed serial I/O interface that allows the C-5 NP to read from
an external PROM. The PROM interface clock is created internally in the C-5 NP by dividing
the core clock. The clock divider is programmable via the XP Miscellaneous Control register
and can be set to values ranging from 2 to 16. The maximum PROM size addressable is
4MB and must be provided by the your application in a “by 16” configuration.

The external glue logic (which must be provided by the application) is illustrated in
Figure 29 along with the internal mechanisms of the C-5 NP PROM interface. The glue
logic consists of an external 22bit shift register with parallel-in and parallel-out
capabilities, and a 22bit parallel-in/parallel-out register. Both registers must be positive
edge triggered by the PROM interface clock, and perform a synchronous parallel load
whenever SPLD is asserted high. For all other cycles, SPLD is asserted low, and the shift
register should shift and the parallel register should hold.

For More Information On This Product,

 Go to: www.freescale.com

XP Supported Interfaces 135

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 29 PROM Interface

The PROM interface operates in the following manner. Whenever the XPRC, or an inbound
transaction being serviced by the PCI target, requests a read from address 0xBFC00000
through 0xBFFFFFFC, the PROM interface initiates the following sequence (which accesses
the 16bit wide external PROM to return a 32bit result). Note that two accesses are
pipelined together to execute one 32bit fetch:

1 The PROM_ADDR is loaded into the C-5 NP internal shift register.

2 The PROM_ADDR is shifted into the external shift register for 22 SPCLK cycles.

3 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register.

4 SPLD is deasserted for 22 SPCLK cycles. The PROM presents the first 16bit PROM_DATA.
At the same time, the next PROM_ADDR is shifted into the external shift register.

5 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register and the first PROM_DATA into the external shift register.

6 SPLD is deasserted for 22 SPCLK cycles, shifting the first PROM_DATA into the C-5 NP
internal shift register.

External Logic

PROM_ADDR<21:1>

PROM _Return_Data

15

1516

PROM _H_Word

C-5 NP

PROM Clock Gen.

31

21
21

6
1
0

PROM _Return_Data

PROM Sequencer

21 0

0

CE

SPCLK

SPLD

SPDO

SPDI

Internal Shift
Register

PROM_ADDR<21:1>

CE

PROM _LO_Word

21 6 0

21 0

21 1

PROM PROM_Data

16

External Shift
Register

For More Information On This Product,

 Go to: www.freescale.com

136 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

7 SPLD is asserted for one SPCLK cycle, loading the first PROM_DATA into the C-5 NP
PROM_RETURN_DATA register and the second PROM_DATA into the external shift
register.

8 SPLD is deasserted for 22 SPCLK cycles, shifting the second PROM_DATA into the C-5
NP internal shift register.

9 SPLD is asserted for one SPCLK cycle, loading the second PROM_DATA into the C-5 NP
PROM_RETURN_DATA register.

Serial Bus Interface The Serial Bus interface is a general purpose bi-directional, two-wire serial bus and I/O
port. It allows the C-5 NP to control external logic with either of two standard protocols.
The high-speed protocol (MDIO) uses a 16bit data format with 10bits of addressing, and
supports transfers up to 25MHz. The low-speed protocol uses an 8bit data format
followed by an acknowledge bit and supports transfers at up to 400kbps. Software can
select which protocol to use by setting the appropriate bits in the Serial Bus Configuration
Register. When a serial bus transfer is active, an external pin is driven by the C-5 NP to
indicate which protocol is being used (SPLD=0 indicates high-speed protocol, SPLD=1
indicates low-speed protocol).

The bus only supports a single master hierarchy that can operate as either a receiver or a
transmitter. The bus also supports collision detection and arbitration, and an integrated
addressing and data-transfer protocol.

Both SIDA and SICL are bi-directional lines that are connected (via a pull-up resistor) to
the positive supply voltage. When the bus is free, both lines are HIGH. The output stages
of the devices connected to the bus must have either an open-drain or open-collector in
order to perform the wired-AND function required for its arbitration mechanism. Refer to
“Serial Bus Configuration Register (XP Miscellaneous Control Function)” on page 467, and
“Serial Bus Data Register (XP Miscellaneous Control Function)” on page 468.

For More Information On This Product,

 Go to: www.freescale.com

C-5 NP Interface Options for Initialization 137

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Interface
Options for
Initialization

Typically, you use either the PCI or PROM interface to initialize the C-5 NP. Upon
initialization, the XP begins executing at the first word of the 16-word IROM. The IROM
uses the contents of location BD808300h as a pointer to a formatted boot image, copies
the code from that image to the XP IMEM, and begins execution at the code’s start
address. Unless modified by an external system, the reset value in the boot image pointer
is 0xBFC000000, which is the standard address for the boot PROM.

Using the PCI Interface
Initialization Option

If you use the PCI to initialize the C-5 NP, you would normally use the C-5 NP as an
intelligent peripheral to a host processor. Upon deassertion of the C-5 NP reset, all of the
internal CPs and the XP continue to be held in a reset state and the external host processor
is responsible for initialization.

The external system contains a C-5 NP boot image that is accessible to the XP via the PCI
Bus. This image can be in a boot ROM or in any other memory region accessible via the PCI
bus. The external host processor sets up the configuration registers in the System PCI to
give the XP access to the boot image, sets the boot pointer to the address of the image in
C-5 NP address space, and then releases the XP to begin fetching code over the PCI bus.

Using the PROM
Interface Initialization

Option

You would use the PROM interface to initialize the C-5 NP if the C-5 NP is used as a
stand-alone processor in a single-C-5 NP system. Upon deassertion of reset, the XP
immediately begins to fetch code from the PROM.

For More Information On This Product,

 Go to: www.freescale.com

138 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Other XP Interfaces In addition, the XP has access to:

• PCI interface with both Initiator and Target capabilities.

• Global Bus access to all CP configuration registers and DMEMs from both the PCI
target and the XPRC.

• Ring Bus access from both the PCI target and the XPRC.

• Payload Bus access from both the PCI target and the XPRC via Control Blocks.

All CP configuration registers and DMEMs are accessible via the Global Bus from the
XPRC and PCI. However, CPs cannot access XP configuration registers or the PCI bus. Also,
CPs can only access one bank of XP DMEM (Bank 1) via the Global Bus; Bank 2 is not
visible. In addition, the PCI and XPRC have the same access to all resources with the
exception of the IMEM and IROM.

For More Information On This Product,

 Go to: www.freescale.com

Other XP Interfaces 139

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 24 lists the accessibility of XP initiated data transactions to various C-5 NP Resources.

Table 24 Accessibility of XP Initiated Data Transactions to C-5 NP Resources

Transaction Initiator*

XPRC
PCI
Target

CPs via
Global
Bus

TxCB/
RxCB
#24

TxCB/
RxCB
#25

RdCB/
WrCB
#24

RdCB/
WrCB
#25

R
es

o
u

rc
es

IROM W none none none none none none

XP Specific Configuration
Registers

W, H, B W, H, B none none none none none

XP CP-like Configuration
Registers†

W, H, B W, H, B none none none none none

External Serial Bus H, B H, B none none none none none

PROM W W none none none none none

Ring Bus Yes Yes none none none none none

CPs via Global Bus W W none none none none none

SDRAM (Payload Only) none none none 16Bytes 16Bytes 16Bytes 16Bytes

IMEM W none none none 16Bytes none none

DMEM #24 W, H, B (1 stall) W, H, B W 16Bytes none 16Bytes none

DMEM #25 W, H, B (no stall) W, H, B none none 16Bytes none 16Bytes

PCI W, H, B W, H, B none 16Bytes none none none

* The table entries indicate accessibility in terms of byte (B), half-word (H), 32bit word (W), and larger transfer operations.
† All control blocks

For More Information On This Product,

 Go to: www.freescale.com

140 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Configuration
Space

The Executive Processor (XP) has two areas of memory, referred to as XPSlot 24 and XPSlot
25. Both XPSlot 24 and XPSlot 25 has 1MByte of memory allocated to each for its use. Only
the DMEM part of XPSlot 24 can be accessed by all Channel Processor (CPs). In contrast, no
CP can access the XPSlot 25 area, however, the XP has full access to the XPSlot 25 area. The
memory maps for the XPSlot 24, XP Slot 25, and PCI, XP and other miscellaneous registers
are shown in Figure 30 on page 141, Figure 31 on page 142, and Figure 32 on page 143.

Although specific ranges of memory are allocated to specific functions, the entire area
may not be used.

For More Information On This Product,

 Go to: www.freescale.com

XP Configuration Space 141

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 30 XP Configuration Space (Slot #24)

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

0xBD8FFFFF

0xBD800000

Reserved
Configuration

Space

0xBFBFFFFF

0xBDB00000

0xBD900000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

Reserved
Configuration

Space

28 - 1 Megabyte

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE00000

0xBCC00000

Test and Set
Local DMEM #24

(16k Bytes)

Reserved
Configuration

Space

Local
DMEM #24
(16k Bytes)

XP “CP-like”
Configuration

(16kBytes)

PCI & XP Specific
Configuration

0xBD884000
0xBD883FFF

0xBD880000
0xBD87FFFF

0xBD808400
0xBD8083FF

0xBD808000
0xBD807FFF

0xBD804000
0xBD803FFF

Space

Reserved
Configuration

8 - 1 Megabyte

Space

Space (1kByte)

Blocks

Blocks

Reserved 0xBDC00000

0xBDF00000Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.

For More Information On This Product,

 Go to: www.freescale.com

142 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 31 XP Configuration Space (Slot #25)

CP0

CP15

CP14

CP13

CP12

CP11

CP10

CP9

CP8

CP7

CP6

CP5

CP4

CP3

CP2

CP1

0xBD9FFFFF

0xBD900000

Reserved
Configuration

Space

0xBFBC

0xBDB00000

0xBD900000

0xBDA00000

0xBC000000

0xBC100000

0xBC200000

0xBC300000

0xBC400000

0xBC500000

0xBC600000

0xBC700000

0xBCF00000

0xBD000000

0xBC800000

0xBC900000

0xBCA00000

Reserved
Configuration

Space

28 - 1 Megabyte

0xBCB00000

#27: BMU

#26: QMU (Internal)

0xBE000000

#25: XP1

#24: XP2 0xBD800000
0xBD7FFFFF

0xBCD00000

0xBCE 0000

0xBCC00000

Test and Set
Local DMEM #25

(16k Bytes)

Reserved
Configuration

Space

Local
DMEM #25
(16k Bytes)

0xBD984000
0xBD983FFF

0xBD980000
0xBD97FFFF

0xBD904000
0xBD903FFF

Space

Reserved
Configuration

8 - 1 Megabyte

Blocks

Blocks

Reserved 0xBDC00000

0xBDF00000Reserved

0xBDD00000

0xBDE00000
#29: TxFP

#30: RxFP

1: XP #25 can only be accessed by the XP, it is not visible to CPs.
2: The CPs can only access DMEM in XP #24.

For More Information On This Product,

 Go to: www.freescale.com

XP Configuration Space 143

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 32 XP Slot #24 Configuration Space for PCI, XP and Miscellaneous Registers

For complete details about specific registers go to their reference. Refer to “Executive
Processor (XP) Configuration Registers” on page 446.

Configuration
Space

0xBD8FFFFF

0xBD800000

Local DMEM
(16k Bytes)

(16k Bytes)

XP “CP-like”

Configuration
Space

PCI & XP Specific

Configuration
Space

Reserved

Configuration
Space

Reserved

Test & Set
Local DMEM
(16k Bytes)

Configuration
Registers

PCI

Configuration
Registers

XP Specific

Control
Registers

XP Miscellaneous

0xBD808000

0xBD808100
0xBD8080FF

0xBD808200
0xBD8081FF

0xBD8083FF

(256 Bytes)

(512 Bytes)

(256 Bytes)

0xBD883FFF
0xBD884000

0xBD87FFFF
0xBD880000

0xBD803FFF
0xBD804000

0xBD8083FF
0xBD808400

0xBD807FFF
0xBD808000(16k Bytes)

For More Information On This Product,

 Go to: www.freescale.com

144 CHAPTER 3: EXECUTIVE PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 4
Fabric Processor

Chapter Overview This chapter covers the following topics:

• Fabric Processor (FP) Overview

• Fabric Processor Transmit (FPTx)

• Fabric Processor Receive (FPRx)

• FP Functionality

• Fabric Interface Configuration and Operation

For More Information On This Product,

 Go to: www.freescale.com

146 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Processor (FP)
Overview

The FP provides a high-bandwidth port for the segmentation and reassembly of PDUs at
up to OC-48 speeds. It behaves like a high-speed network interface port (up to 110MHz
for two 32bit data paths) with advanced functionality that allows the C-5 NP to interface
to an application-specific switching solution or a switching fabric. The FP can be
configured to conform to the UTOPIA-1, -2, and -3, PRIZMA, and Power X interfaces. The
programming flexibility of the FP allows it to support standards-based and customer
proprietary switch fabric cell formats.

The FP performs flow mapping and management to and from the switching fabric. It can
receive up to 159 flows concurrently, and supports transmission of up to 128 prioritized,
simultaneous flows arranged as either a 32-port matrix with four priority levels or a
16-port matrix with eight priority levels. These flows support:

• Unicast and multicast topologies

• C-5 NP-to-fabric link-level flow control

• End-to-end congestion management and flow control

• Segmentation and reassembly (SAR) of Protocol Data Units (PDUs) to and from
configurable uniform fabric cells for the purposes of higher fabric utilization and
Quality of Service (QoS) based arbitration

You can think of the FP as a very high performance CP with limited programmability. It
uses the same bus interfaces and data path constructs as a CP. The receive and transmit
parts of the FP can operate both autonomously and asynchronously. Because it is
microcode programmable using the same instruction architecture as the SDP Byte
Processors, the FP can adapt to customer proprietary fabric header formats.

Terminology For definitions of terminology commonly associated with fabric, refer to the “Glossary” on
page 633, at the end of this book.

The word “segment” used in this chapter corresponds to the following:

Table 25 Protocol-Specific Nomenclature

Protocol Nomenclature

Utopia Cell

PRIZMA Packet

PowerX Frame

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Overview 147

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP Block Diagram Figure 33 shows a high-level diagram of the FP.

Figure 33 Fabric Processor Block Diagram

Multiple C-5 NP
Configurations

A switching fabric is used when more than two C-5 NPs are required in a system. The
switching solution has two or more FP-type ports and provides a mechanism for
switching cell or packet-based data from one C-5 NP to another. A homogenous, multi-C-5
NP application is shown in Figure 34.

Figure 34 Multiple C-5 NPs with Switching Port

FPRx

FPTx

Switching
Fabric

C-Port
Fabric
Interface

Global
Bus

Payload
Bus

Ring
Bus

C-5NP1

C-5NP2

Memory

Port 1
Port 2

Port 16

Port 17
Port 18

Port 32

Memory

Switching
Fabric

C-Port Fabric Interface

C-Port Fabric Interface

C-Port Fabric Interface

FP

FP

For More Information On This Product,

 Go to: www.freescale.com

148 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The FP is designed with symmetric receive (Rx) and transmit (Tx) interfaces. Therefore, the
C-5 NP can use the FP to provide a two chip solution, as shown in Figure 35.

Figure 35 Two C-5 NP Application

General FP specifications
• Fabric interface frequency of up to 110MHz

• Separate transmit and receive data buses of 8, 16, or 32bits

• Supported protocols: PowerX, PRIZMA, Utopia 1, 2, 3 ATM and PHY, (except 8bitPHY)

• Segment size: minimum of 40Bytes, maximum of 204Bytes. The size must be a
multiple of 4

• PDU size: 5Bytes minimum, 64K-1Bytes maximum

Memory

Memory

Port 1
Port 2

Port 16

Port 17
Port 18

Port 32

C-Port Fabric Interface

FP

FP

C-5NP1C-5NP1

C-5NP2C-5NP2

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 149

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Processor
Transmit (FPTx)

The FP Tx performs essentially the same transmit function as a Channel Processor (CP), but
with a high performance and mostly hard-wired implementation. It services a number of
QMU queues, using descriptors to identify the PDUs in the BMU buffers. The FP Tx
segments the PDUs and places a header at the beginning of each segment before
transmitting onto the external fabric interface. The FP Tx can actively transmit segments
in a round-robin fashion from up to 8 PDUs. As many as 128 queues can be serviced.

Figure 36 illustrates the main components of the FP Tx. The FP Tx functionality is
described below. For a description of functions which span the FP Rx and FP Tx such as
flow control, please refer to the FP Functionality section.

The basic flow of a PDU through the FP Tx is as follows.

1 Whenever there is something to transmit (as indicated by the QMU), the FP Tx makes
a dequeue request to the QMU via a dedicated FP-to-QMU interface.

2 The descriptor returns from QMU via payload bus.

3 The BTag, pool, PDU length, and multicast flag are extracted from descriptor.

4 The current queue length, which was returned along with the descriptor in step 2, is
saved.

5 The payload is read from the BMU buffer pointed to by BTag/pool.

6 The microcode generates headers for segments.

7 Payload and header merge to form segments.

8 The segment CRC is generated.

9 Segment data is adjusted according to endianness.

10 Segments are transmitted via FP Tx interface until entire PDU (as indicated by PDU
length) has been transmitted. The segments are interleaved with segments of other
PDUs in a round-robin fashion.

11 If a multicast flag was set, the multicast counter associated with pool/BTag is
decremented, otherwise the BTag is deallocated back to the pool.

For More Information On This Product,

 Go to: www.freescale.com

150 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 36 FP Tx Block Diagram

External
Fabric
Interface

Transmit
Fabric
Interface

Header
Payload
Merge

Payload FIFO

Header FIFO (2)

DMEM
12K Read Control

Block DMA
Engines (8)

Payload from
BMU/SDRAM

Link-Level
Flow Control
from FP Rx

Per-Queue
Flow Control
from FP Rx

Descriptors from
QMU Via Payload
Bus

Byte Pro-
cessors (2)

Merge
Space

Congestion
Control

Descriptors Multicast Counter
Decrement or
BTag Deallocate

910 7 8

6

3 4
5

11

1 2

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 151

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 37 FPTx Memory Map

Transmission
Sequencing

The FP Tx only begins dequeuing descriptors and transmitting segments after it has
received a queue ready notification from the QMU via the global bus. After that, it
continues transmitting PDUs from that queue until the queue length returned with a
descriptor is zero; indicating that the queue is empty.

Event
Registers 0xBDD04670

RCB7 0xBDD04490

RCB6 0xBDD04480

RCB5 0xBDD04470

RCB4 0xBDD04460

RCB3 0xBDD04450

RCB2 0xBDD04440

RCB1 0xBDD04430

RCB0 0xBDD04420

WCB1 0xBDD04180

WCB0 0xBDD04080

Configuration
Space 0xBDD04000

DMEM (12K)

0xBDD00000

For More Information On This Product,

 Go to: www.freescale.com

152 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The FP Tx can service up to 128 queues. Its base queue is configured via the Queue Offset
field of the TxSysConfig register and must be configured to be the same queue as the QMU
configuration specifies. The FP Tx has no knowledge of the number of queues assigned to
it. It will service any queue for which it receives a queue ready notification from the QMU.
For details about the specific register, see “TxSysConfig Register (FP Tx Configuration
Function)” on page 534 in Appendix A.

If more than one queue is non-empty, the FP Tx transmits segments in an interleaved
fashion, with up to eight queues being transmitted simultaneously.

The FP Tx will always complete transmission of one PDU from a queue before beginning
another PDU from that queue, thus ensuring in-order transmission from queues.

The FP Tx can be configured to cause its 128 queues to be organized as 32 ports with 4
priorities per port or 16 ports with 8 priorities per port. The organization is selected via the
Queue Depth field of the TxFCE Configuration register. Even if fewer than 128 FP Tx queues
are used, the port organization is the same. The FP Tx does not know how many queues
are used.

Ports are contiguous sets of queues with the highest priority queue being the lowest
numbered queue. For example, with a 32x4 organization, queues 0 to 3 are part of port 0,
with queue 0 being the highest priority queue within that port and queue 3 being the
lowest priority queue within that port. When multiple queues are non-empty, the FP Tx
uses the algorithm shown in “Weighting Algorithm” on page 159 to select the next queue
from which to transmit.

Descriptor Format Every descriptor that the FP Tx dequeues must contain:

• A 5bit pool and 16bit BTag that point to the buffer to be transmitted

• A 16bit PDU length indicating the amount of data in that buffer which should be
transmitted

• A 1bit multicast flag

The FP Tx can be configured to extract these parameters from different locations within
the descriptor with a few constraints. This configuration is done using the TxDescInfo
register.

For multibit fields (length, pool, and BTag), the "position" indicates the position within the
descriptor of the least significant bit of the field.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 153

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Bit positions within the descriptor are numbered so that bit position 0 is the least
significant bit of the first 32bit word of the descriptor, bit position 32 is the least significant
bit of the second 32bit word of the descriptor, etc.

Multibit fields must be positioned so that they do not cross 32bit boundaries. For
example, the 5bit pool field cannot be positioned at bit 30 of the descriptor because it
would require some bits in the first 32bit word of the descriptor and some bits in the
second 32bit word. For details about the specific register, see “TxDescInfo Register (FP Tx
Configuration Function)” on page 532 in Appendix A.

Reading the Payload When the FP Tx begins transmitting a PDU from a buffer, it always transmits from the
beginning (offset 0) of that buffer. It is not possible for the FP Tx to begin transmission
from any offset inside the buffer.

The FP Tx ignores the out-of-band bits returned from the BMU and relies on the length
passed to it in the descriptor to determine what portion of the buffer to transmit.

Microcode Generation of
Headers

Because header formats vary from fabric protocol to fabric protocol and application to
application, the FP Tx includes a microcoded Byte Processor, similar to those in the
Channel Processors, to generate the header for each segment. In fact, there are two Byte
Processors in the FP Tx. Headers for consecutive segments are generated alternately by
one of the two.

Typically, more information needs to be included in the header of the first segment of a
PDU than is required in subsequent segments. For example, the header of the first
segment typically must include information about the length of the PDU and the
destination queue on the receiving network Processor. This information needn't be
conveyed in subsequent segments for that PDU.

For this reason, the FP Tx supports two different header sizes; one which is used for first or
only segments and another which is used for middle or last segments. Because the FP Tx
will always append as much payload as possible after the header, this allows more payload
to be transmitted with each middle and last segment, thus increasing the efficiency of the
transmission. The header sizes are configured via the Header Length fields of the TxDM
Header/Payload Delimiter register. Headers for all cells can be configured to be the same
size. FP Tx microcode must generate headers of exactly the sizes configured. Header sizes
must be non-zero and multiples of 4. For details about the specific register, see
“TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)” on page 532 in
Appendix A.

For More Information On This Product,

 Go to: www.freescale.com

154 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP Tx Microcoding
In order for the the FP Tx Microcode to operate properly, the minimum requirements for
FP Tx microcode are that it:

• Wait for datascope ownership

• Wait for the header FIFO to be empty using the header FIFO empty test condition

• Build the header by writing out the header Bytes in sequence

• Flip ownership for that datascope

Generally, FP Tx microcoding is done much like microcoding for an SDP Byte Processor.
The FP Tx Byte Processor is capable of the same sequencing and ALU operations as the
SDP Byte Processor, with 64 control store entries and 24 CAM entries. The unique aspects
of the FP Tx Byte Processor, compared to an SDP are:

• The external test conditions

• Inputs

• No input FIFO

External test conditions
The external test conditions available to the FP Tx Byte Processor are:

0 Not used

1 Header FIFO empty

2 Not used

3 Not used

4 Not used

5 Not used

6 Not used

7 Not used

The header FIFO empty test condition is true when the header FIFO for the Byte Processor
is empty.

datascope
Because the FP Tx can transmit up to eight queues at a time, it provides context or
"datascope" for one of eight PDUs at a time to the Byte Processor. There are times during

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 155

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

which the FP Tx hardware is updating this context and so the datascope is not ready for
processing. Because of this, microcode must wait until it is granted ownership of a
datascope before it begins constructing a header. Microcode tests for datascope
availability using the Ownership bit in the TxStatus register.

When FP Tx microcode has finished generating a header, it passes ownership for the
datascope to hardware by setting the Ownership bit. This indicates to the FP Tx hardware
that the full header is constructed and ready to be merged with payload to form a
segment.

Performance Requirement
A segment will not begin transmission until both its payload and header are ready. For
optimal performance, FP Tx microcode should be constructed to complete header
building at a rate faster than segments can be transmitted on the interface, otherwise,
bandwidth will be wasted.

Header Inputs
The Byte Processor can read a number of different things to construct a header. These are:

• Current payload length

This value represents the number of Bytes of payload appended to the header to form
the segment. Typically this is only useful for applications such as PowerX where the
segment size is included in the fabric header. See “Pay_Len [7:0]” on page 158.

If the CRC is enabled, the payload length includes an additional 4Bytes of CRC.

• Current segment type (bits 1:0 in the TxStatus register). Encoding:

For details about the specific registers see “TxByte Processor Registers” on page 156.

Table 26 Segment Types

Encoded
Value

Segment
Type

00 Middle

01 Last

10 First

11 Only

For More Information On This Product,

 Go to: www.freescale.com

156 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• FP queue

This value represents the FP queue number (offset from the FP base queue) from
which the current segment's PDU came. Typically, this would be used to form the PDU
ID or fabric address. See “Src_Queue [6:0]” on page 158.

• General Purpose Configuration Registers

There are 8Bytes of general purpose registers that can be initialized with global writes
and read by either Byte Processor. For example, one of these Bytes might be initialized
to contain a unique Network Processor ID (for a multiple Network Processor system)
that could then be incorporated into a PDU ID in the header used by the FP Rx for
reassembly. Both Byte Processors read the same value from these registers. There are
no restrictions for when the two Byte Processors can read these registers; that is, they
can both read any Byte any time, including different Bytes at the same time. The Byte
Processors cannot write to these registers. See “General Purpose Registers” on
page 176.

• Descriptor contents

Typically, headers contain at least some portion of the descriptor that the FP Tx
dequeued. All Bytes of the current descriptor are made available to the Byte Processor
through an internal memory known as Merge Space.

• Information from FP Rx Byte Processors

There are 17 bits of information that the FP Rx sends to the FP Tx hardware for per-queue
flow control, as will be described later (see “Fabric to C-5 NP Per-Queue Flow Control” on
page 193). These bits can also be read by the FP Tx Byte Processors as a general purpose
communication mechanism from the FP Rx Byte Processors.

If used for this purpose, disable flow control. For details about the specific register, see
“TxFI_Configuration Register (FP Tx Configuration Function)” on page 530 in Appendix A.
Refer also to the registers beginning “Pool0_CFG0” on page 69.

• Literals

TxByte Processor
Registers

The TxByte Processor Register Block is composed of three sets of registers:

• Merge Space — 64, 32bit Merge registers (256Bytes) organized as eight datascopes
of 32Bytes.

For details about accessing merge space, see “TxMergeAddr (FPTx Debug Function)” on
page 542, “TxMergeData (FPTx Debug Function)” on page 543 and “TxFDP_Mrg0 -
TxFDP_Mrg63” on page 543 in Appendix A.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 157

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• Control Space — control information unique to each Byte Processor.

• TxByte General Purpose Registers — two 4Byte registers shared by both Processors

While all but the TxByte General Purpose (GP) registers are used to pass information
between the TxByte Processor and associated FP hardware, all of these registers are
mapped to Global Address Space for debug purposes. Figure 38 on page 158 shows a
TxByte Processor memory map and Table 27 on page 158 provides a summary of the
Extract registers.

Merge Space
The Merge space is globally accessed via the TxMergeAddr and TxMergeData registers
shown below. The TxMergeAddr register is used to index into the Merge Block and
read/write data via the TxMergeData Register.

Merge space contains 64, four Byte Merge registers used for passing fields to be inserted
as part of the Segment Header by the FDP TxByte Processor. During normal operation the
FDP TxByte Byte Processor performs Byte-width reads and the FPTx hardware writes the
Merge registers with the entire Internal Descriptor. Byte 0 of the Descriptor is written to
Merge[0], Byte n of the descriptor is written to Merge[n], and so on. The FDP TxByte Byte
Processor cannot write these registers and is restricted to one descriptor (up to 32Bytes at
a time dependent upon datascope).

The Merged information is prepended as part of the Segment Header and formatted to
the fabric destination descriptor format. There are eight descriptors of either 32 or 16Bytes
in length as configured by the “TxFCE_Configuration Register (FP Tx Configuration
Function)” on page 535 in Appendix A.

For More Information On This Product,

 Go to: www.freescale.com

158 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 38 TxByte Processor Memory Map

Control Space

Merge Space

0x000

0x01F

0x08F
through
0x080 0x08B

0x08A

0x089

0x088

0x087

0x086

0x082

0x080

TxCG ID L

TxCG ID H

TxCG PR

Pay_Len

Src_Queue

Reserved

Reserved

TxStatus

0
1

7

TxFDP_CTL1, 0
0x0A7
through
0x0A0

0x0A6

0x0A5

0x0A4

0x0A3

0x0A2

0x0A1

0x0A0

0x0A7
TxFDP_CTL1 (15:8)

TxFDP_CTL1 (23:16)

TxFDP_CTL1 (31:24)

TxFDP_CTL0 (7:0)

TxFDP_CTL0 (15:8)

TxFDP_CTL0 (23:16)

TxFDP_CTL0 (31:24)

TxFDP_CTL1 (7:0)

through

32Bytes per
Scope

Table 27 TxByte Processor Registers Summary

Fabric Data
Processor
Offset Register Name Register Description

Access

Global
Bus

Fabric
Data
Processor

0x000 - 0x01F Merge0 - Merge63 64 32bit merge registers used for descriptor data, organized as eight
groups of 32Bytes. The datascope number selects the group and the FDP
offset selects the Byte.

R/W1 R

0x0A0 - 0x0A7 TxByte0 Ctl0 - Ctl7 Shared general purpose registers R/W R

0x080 TxStatus [7:0] Status register — R/W

0x087 Src_Queue [6:0] Cell Source Queue # (0 - 127) — R

0x088 Pay_Len [7:0] Payload Length within cell — R

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 159

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The FP TxByte Processor is analogous to the RxSync Processor in the SDP.

Weighting Algorithm A weighting algorithm can be used to balance the number of PDUs which get transmitted
from each of the 128 queues. For applications which use only one queue, the algorithm
has no effect. It is most useful for applications with fixed-size PDUs; in such a case the
algorithm effectively acts as a bandwidth allocator.

Using the TxQueueWeight register, each queue can be configured with a static 4bit weight
value. If not explicitly configured, all queues will default to a weight of 1. To configure a
weight value to something other than the default, write the queue number and desired
weight to the TxQueueWeight register, while also setting the Write bit in that register.
When all of the weights have been set, deassert the Write bit.

Each queue also has a dynamic 4bit field which specifies PDUs remaining in the current
round for this port. This count initially equals the weight value. As a PDU is completely
transmitted for a queue, the count is decremented.

When deciding which queue to transmit the next PDU from, the FP Tx advances to the
next port, and then choose the highest priority queue (within that port) which satisfies 2
conditions: (1) it is non-empty, and (2) the PDUs remaining in this rounds' count is
nonzero. The same algorithm is applied to each port in a round-robin fashion. When the
counts reach zero for all nonempty queues within a port, the counts for all queues in that
port are reset to the initial weight value.

Example 1:
Queue Organization: 32 ports with 4 priorities per port (that is, q0 is the most
significant queue for port0, and q3 is the least significant queue for port0)

All 128 queue weights equal 1

0x089 TxCG PR [0] Congestion register Pause/Resume bit (bit 0) — R

0x08A TXCG ID H Congestion Flow ID High [15:8] — R

0x08B TXCG ID L Congestion Flow ID Low [7:0] — R

1 Accessed via Merge Address/Data registers.

Table 27 TxByte Processor Registers Summary (continued)

Fabric Data
Processor
Offset Register Name Register Description

Access

Global
Bus

Fabric
Data
Processor

For More Information On This Product,

 Go to: www.freescale.com

160 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Presume all queues have something to transmit (non-empty)

PDU transmission order: q0, q4, q8….q124, q1, q5, q9….125, q2, q6, q10….q126, q3, q7,
q11….q127 (repeat)

Example 2:
Queue organization: 16 ports with 8 priorities per port (port0 is represented by
q0-q7)

The application uses 16 queues; 8 on port0, 8 on port1, with the rest unused (always
empty)

The 8 weights for each port are configured to be: 3, 2, 1, 1, 1, 1, 1, 1.

Presume all 16 queues remain non-empty

PDU transmission order: q0, q8, q0, q8, q0, q8, q1, q9, q1, q9, q2, q10, q3, q11, q4, q12, q5,
q13, q6, q14, q7, q15 (repeat)

The weight value of 3 on queue 0 causes 3 PDUs to be transmitted from that queue for
every port0 round. The FP Tx alternates ports in a round-robin fashion. In this example
ports 2 to 15 have nothing to transmit, so the queues are chosen alternately from ports
0 & 1.

Error Reporting and
Interrupts

The following four errors are detected by the FP Tx and logged in bits [31:28] of the TxFCE
Configuration register. In addition to being logged, these errors will cause an interrupt to
be sent to the XP (if the Interrupt Enable bit in the TxFCE Configuration register is
asserted). For details about the specific register, see “TxFCE_Configuration Register (FP Tx
Configuration Function)” on page 535 in Appendix A.

The register bits for each error remains asserted until the Interrupt Acknowledge bit [26]
(again, in the “TxFCE_Configuration Register (FP Tx Configuration Function)” on
page 535) is written to a 1. When writing the register, be careful not to change the other
configuration fields, such as Descriptor Size. The Interrupt Acknowledge bit must then be
set to a 0 again. When writing the register, be careful not to change the other
configuration fields, such as Descriptor Size.

These topics are covered in the following sections.

• Descriptor (QMU) Parity Error

• Buffer (BMU) Read Error

• Write (BMU) Error

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Transmit (FPTx) 161

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• Dequeue (QMU) Failure

Descriptor (QMU) Parity Error
Indicates that a parity error occurred when the QMU sent a descriptor. This error will only
be logged if the QMU Parity Error Enable bit (“TxFCE_Configuration Register (FP Tx
Configuration Function)” on page 535, bit [27]) is set. In this case, the error has a separate
enable in addition to the interrupt enable.

Descriptor parity errors are not detected and reported by the QMU if 12Byte descriptors
are used and are only detected and reported for some words of the descriptor for 24Byte
descriptors.

If the error occurs (and is enabled), no additional PDUs will be transmitted for the queue in
question. Further, no PDUs will be transmitted for the lower priority queues in the same
port.

Buffer (BMU) Read Error
A buffer read error may occur for a number of different reasons.

• ECC error - BMU detects an ECC error when it reads the buffer from SDRAM

• Retry timeout - BMU is unable to satisfy the buffer read request because it is too busy.

• Non-existent memory error - this would only occur if the BMU were misconfigured
to be storing buffers in a non-existent memory location.

Whatever data is transferred from the BMU will be transmitted.

Write (BMU) Error
• Retry Timeout - A BTag deallocate operation or a multi-use counter (MUC) operation

could fail because the BMU is too busy to service the request or because the pool ID
used for the operation is invalid. The invalid pool ID errors only occurs if the pool value
in a descriptor passed to the FP Tx is invalid or the FP Rx was illegally configured to use
an invalid pool. The BMU should never be too busy to service these operations.

• Multi-use Counter Decrement Error - Multiuse counter decrement operations can
also fail if the multi-use counter does not exist in the BMU. This could only occur in the
event of a CP/XP software error; for example, if it failed to set up the counter, initialized
it to a value which was too small, or decremented a counter more than once after
transmitting.

If one of these write errors occurs, the FP Tx will not retry the operation and the buffer will
effectively be leaked because its BTag will never be freed.

For More Information On This Product,

 Go to: www.freescale.com

162 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Dequeue (QMU) Failure
A dequeue operation will fail if the queue is empty when the request is made. A dequeue
from an empty queue should only occur in the event of a CP/XP programming error
where a CP or XP removes something from a queue belonging to the FP Tx.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 163

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Processor
Receive (FPRx)

The FP Rx performs essentially the same receive function that a CP does, but with a
high-performance and mostly hard-wired implementation. The FP Rx receives segments
and writes them to BMU buffers, reassembling them into PDUs, while building and
enqueuing the associated descriptors.

Figure 39 FPRx Memory Map

Base Addr

Debug State 0xBDE04700

CFG & Status
Registers 0xBDE04600

TLU Response
256Bytes 0xBDE04500

Ring Bus 0xBDE04440

RCB1 0xBDE04430

RCB0 0xBDE04420

WCB3 0xBDE04380

RxByte1 oxBDE04290

WCB2 0xBDE04280

Extract 1
(128Bytes) 0xBDE04200

WCB1 0xBDE04180

RxByte0 0xBDE04090

WCB0 0xBDE04080

Extract0
(128Bytes) 0xBDE04000

0xBDE02FFF

DMEM (12K)
0xBDE00000

For More Information On This Product,

 Go to: www.freescale.com

164 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The FP Rx can reassemble segments from up to 159 interleaved PDUs.

Figure 40 illustrates the main components of the FP Rx. The FP Rx functionality is
described here. For a description of functions which span the FP Rx and FP Tx such as flow
control, please refer to “FP Functionality” on page 187.

The basic flow of a segment through the FP Rx is as follows.

1 A segment arrives at fabric interface.

2 The in-band link-level flow control information extracted from the header (PRIZMA
mode).

3 The segment data is adjusted according to endianness. See “Endianness (Byte and Bit
Ordering)” on page 195.

4 The segment CRC is checked.

5 The segment header is sent to header FIFO of one Byte Processor, the payload is sent
to payload FIFO.

6 The Byte Processor microcode processes the header.

a It extracts PDU ID and segment type.

b It extracts PDU length (optional).

c It processes in-band per-queue flow control (optional).

d It launches TLU lookup (optional).

e It saves header content for descriptor building (optional).

7 If this is the first segment of a PDU, then a buffer is selected for payload based on PDU
length.

8 The payload is written to the BMU buffer.

9 The TLU response is returned (optional).

10 If this is the first segment of a PDU, the descriptor is built.

11 If this is the last segment of a PDU, the descriptor is enqueued.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 165

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 40 FP Rx Block Diagram

Header and Payload
Splitting

Because different segment types can have different sized header and payload regions, the
FP Rx supports splitting header and payload for up to three different types of segment.
The segment type must be identifiable by checking the masked value of some single Byte
of the segment. Which Byte to check, the mask, and the comparison value are all
configurable via the change registers. For details about the specific registers, see
“RxDS_Header_Change1 Register (FP Rx Configuration Function)” on page 553 and
“RxDS_Header_Change2 Register (FP Rx Configuration Function)” on page 554 in
Appendix A. Segment type checking is done in a prioritized order with the first match
specifying the type. If neither of the change registers matches, a configurable default
splitting is done.

Delimiter0 register must always be used and properly configured. Delimiters 1 and 2 are
optional. C-Port recommends that if you use more than 1 delimiter, use the #1 delimiter
before the #2 delimiter.

Switching
Fabric

Receive
Fabric
Interface

Header
Payload
Splitter

Payload FIFO

Header FIFO

DMEM
12K

Write Control
Block DMA
Engines (4)

Payload
to BMU/
SDRAM

Link-Level
Flow Control
to FP Tx

Per Queue
Flow Control
to FP Tx

To TLE Via
Ring Bus

From TLE Via
Dedicated TLE-
FP Interface

Enqueue
Descriptors
to QMU Via
FP-QMU
Interface

Byte Pro-
cessors (2)

Extract
Space

Descriptor
Build
Engine

TLE
Lookup
Request

TLE
Lookup
Response

2

21 3 4

6

5

7 8

10 11

6e

6d

6c

9

For More Information On This Product,

 Go to: www.freescale.com

166 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

If (change reg 2 enabled AND (segment[change 2 reg index] &
change reg 2 mask) ==
change reg 2 value))
Use delimiter reg 2

Else If (change reg 1 enabled AND (segment[change 1 reg
index] & change reg 1 mask) == change reg 1 value))
Use delimiter reg 1

Else
Use delimiter reg 0

In the equation above, “&” means “bitwise”.

For each segment type, the number of segment Bytes to be directed to the header FIFO of
a Byte Processor for header processing is configurable. Headers are always presumed to
begin with the first Byte of the segment (Byte offset is zero). The portion of the segment
which will be directed to the payload FIFO, ultimately to be stored in a BMU buffer, is also
configurable. Header/payload regions are configured via the delimiter registers. The
delimiter registers allow you to specify a header and payload which overlap, allowing as
much or all of the header to go to the payload or leaving a gap between header and
payload. For details about the specific registers, see the pool config registers starting with
“RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)” on page 554
in Appendix A.

The Payload Last FP Rx index must have the bottom two bits (LSBs) set (that is,
0xmmmmmm11) as C-5 NP only supports 4Byte multiples for both payload and header.
Correspondingly, the Payload First Index must have the two LSBs cleared (that is,
0xmmmmmm00).

The payload cannot end on Byte 3 of the cell, so the Payload Last index must be greater
than 3.

As segments arrive, their headers are directed alternately to the header FIFOs belonging
to the two Byte Processors. All payload is directed into a single payload FIFO.

Buffer Pool
Configuration, BTag

Allocation, and Buffer

As the FP Rx receives PDUs it must determine which BMU buffer they will be stored in. The
FP Rx can be configured to use buffers in up to 4 of the BMU’s 30 pools. Which of the 30
BMU pools the FP Rx will use is configurable.

To prepare for incoming PDUs, the FP Rx keeps a store of BTags for each pool that it is
using. It can store a maximum of 256 BTags (8 blocks of 32 BTags) per pool. When the FP
Rx is enabled, it will request BTags from the BMU to fill its store for each pool up to a
configured maximum for each pool. As PDUs are received and BTags used, the FP Rx BTag
stores will be depleted. When the number of BTags in a store drops below a configurable

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 167

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

threshold, the FP Rx will begin requesting more BTags from the BMU and will continue to
do so until it has filled to its configurable maximum. If the FP Rx requests BTags from the
BMU and the BMU cannot satisfy that request, a statistics register will be incremented and
the "No BTags available from BMU" interrupt error (if enabled) will be sent to the XP. The
FP Rx will continue to request until the request is satisfied. If the request cannot be
completed after 16 attempts, a "BTag allocation timeout" interrupt error (if enabled) will
be generated.

FP Rx buffer pool configuration is done using the Pool Configuration registers. For details
about the specific registers, see “Buffer Pools” on page 101 in Appendix A.

When the first segment of a PDU arrives, a Byte Processor will extract the PDU length from
the header. This length will be used by the FP Rx to select a BMU buffer for the PDU which
is big enough for it. The FP Rx will compare this length to the size buffers for the four
system pools that it has been configured to use. It checks the pools in order (from FP Rx
pool 0 to FP Rx pool 3) and when the first match is found, it will try to use a buffer from
that pool. If there are no BTags available for that pool, that PDU will be dropped.

Because the pools will be checked in sequential order and the PDU assigned based on the
first fit, the FP Rx should be configured to use buffer pools with monotonically increasing
sized buffers. For example, FP Rx pools 0-3 might be assigned to buffer pools with buffers
of size 64B, 256KB, 2KB, and 64KB respectively.

The BMU does not support a buffer size of 128B.

If the length of the PDU cannot be extracted from the first segment, the FP Rx can be
configured to use a default PDU length. If this default length is used, all PDUs will be
assumed to be this length for purposes of buffer selection. As PDU payload is received, it
will be stored in a buffer until a last segment for the PDU is received.

The entire contents of that last segment will be stored in the buffer because the FP Rx has
no way of knowing how much of the segment's payload is valid. The use of default PDU
length is configured via the RxFCE Configuration1 register. For details about the specific
register, see “RxFCE_Configuration1 Register (FP Rx Configuration Function)” on page 561
in Appendix A.

The PDU length check must also be disabled if this feature is used.

Storing the Payload It is required that PDU segments be delivered to the FP Rx interface in order. Payload Bytes
for a PDU are always stored in a BMU buffer in the order that they are received on the FP

For More Information On This Product,

 Go to: www.freescale.com

168 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

interface beginning at offset 0 in the buffer. When writing payload to a BMU buffer, the FP
does not set the out-of-band bits of the BMU buffer to meaningful values, so they cannot
be used by any transmitting CP.

Microcode Processing of
Headers

Because header formats vary from fabric to fabric and application to application, the FP Rx
includes a microcoded Byte Processor, similar to those in the Channel Processors, to
process the header for each segment. In fact, there are two Byte Processors in the FP Rx.
Headers for consecutive segments are processed alternately by one of the two. Only a
single microcode program can be loaded for both Processors, however there are ways
microcode execution can be made different for each Processor. The memory map of the
registers accessible by each Byte Processor is shown in Figure 41. Refer to the C-Ware
Microcode Programming Guide, Part number: 4-017, Most recent publication date: April
19, 2001

The FP RxByte Processor is analogous to the RxSync Processor in the SDP.

Figure 41 RxByte Processor Memory Map

Control Space

Extract Space

000

01F /
(00F)

08F
080 08D

08E

08F

08A

08B

085

086

087

TxCG PR

TxCG ID H

TxCG ID L

Flow Sz H

Flow Type

Status

0

7

Ring Bus
0D7
0C0

0CC

0CB

0C9

0C8

0D0-0D7

0C0-0C7

0CD

TxMSG_CTL_TYP

TxMSG_CTL_LEN

TxMSG_CTL_DST

TxMSG_CTL_SRC

TxMSGData Slot 1 (8)

TxMSG Data Slot 0 (8)

TxMSG_CTL_Avail

RxByte Shared

RxByteGPR

Flow Sz L

Flow Err

Flow ID H

Flow ID L

080

084

0B7
0B0
0A3
0A0

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 169

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 28 RxByte Processor Memory Map Summary

Global Address Offset
from 0xBDE04000

FDP
Offset Register Name Register Description Access

GB FDP HW

000h-07Fh, 200h-27Fh 000-01Fh 1 Extract Space Extract registers0/1 used for descriptor dats. R/W W R

0090h / 0290h 080h RxStatus Status register 0 / 12 R/W R/W R/W

094h-097h / 0294h-0297h 084h- 87h Flow Seg Flow Segment Information 0 / 1 2, 3 R/W R/W R

086h–087h Flow_Seg[15:0] PDU ID

085h Flow_Seg[[17:16] Flow Error

084h Flow_Seg[26:24] Flow Type

09Ah-09Bh / 029Ah-029Bh 08A-08Bh Flow Size[15:0] Flow Size 0 / 1 2, 3 R/W R/W R

09Ch-09Fh / 029Ch-029Fh 08Ch-08Fh TCGS Tx Congestion 0 / 1 2, 3 R/W R/W R

08Dh TCGS[21] Pause / Resume (1 = pause)

08Eh-08Fh TCGS[15:0] Flow ID

0628h-062Bh (SBP0)
062Ch-062Fh (SBP1)

0A0h-0A3h RxByte GPR RxByte General Purpose Config Reg. (4 bytes for
each SBP0 and 1) 3

R/W R N/A

0660h-0667h 0B0h-0B7h RxByte SR RxByte Shared Registers (8 bytes mapped to
both SBP0 and SBP1) 3

R R/W N/A

440h C8h–CDh TXMSG0 _CTL Ring Bus0 (TxMsg) control 4 R/W W N/A

0CDh TXMSG0_ CTL[31] Ring Bus0 Avail5

0CCh TXMSG0_ CTL[19:18] Ring Bus0 Type

0CBh TXMSG0_ CTL[17:15] Ring Bus0 Length – Bit 17 set to 0

- - RB0 Seq set to datascope by hardware

0C9h TXMSG0_ CTL[9:5] Ring Bus0 Destination

0C8h TXMSG0_CTL[4:0] Ring Bus0 Source

460h / 464h C0 – C7h TXMSG0_D0H/L Data (*See WARNING) 6, 3 R/W W N/A

480h / 484h D0 – D7h TXMSG0_D1H/L R/W W

448h C8h-CDh TXMSG1_CTL R/W W

468h / 46Ch C0 – C7h TXMSG1_ D0H/L R/W W

488h / 48Ch D0 – D7h TXMSG1_ D1H/L NOTE: maps to RB1 D1 H/L R/W W

450h C8h-CDh TXMSG2_ CTL R/W W

470h / 474h C0 – C7h TXMSG2_ D0H/L R/W W

490h / 494h D0 – D7h TXMSG2_D1H/L NOTE: maps to RB2 D1 H/L R/W W

For More Information On This Product,

 Go to: www.freescale.com

170 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Warning: Because datascope selects the actual RB register set, the RxByte Processor
cannot pre-initialize certain static fields. The RxByte should write all dynamic registers,
for example index / key for lookup, on a per segment basis. Static fields, that is,
command type, return length etc, should be initialized by the XP or host. Refer to SDP
Programmers guide for byte mapping.

The minimum requirements for FP Rx microcode are that it:

• Wait for datascope ownership

• Set up a PDU ID and segment type for the segment

• Remove all Bytes for that header from the header FIFO

• Flip ownership for that datascope

Other functions FP Rx may perform include:

• Setting up a PDU length for first or only segments, if a default PDU length isn't used

• Launching a TLU lookup for use in descriptor building and enqueuing

• Processing per-queue flow control information and sending flow control messages to
the FP Tx

• Storing header data in extract space for descriptor building

458h C8h-CDh TXMSG3_ CTL R/W W N/A

478h / 47Ch C0 – C7h TXMSG3_D0H/L R/W W

498h / 49Ch D0 – D7h TXMSG3_D1H/L NOTE: maps to RB3 D1 H/L R/W W

1 16 or 32 bytes mapped to FDP by datascope index

2 0 / 1 refers to Processor register set 0 and 1 respectively.

3 The FDP uses little endian addressing for the bytes within this register (least significant byte is associated with the highest address).

4 The TXMSG_CTL register fields are spread out over a range of 6 bytes from the FDP perspective (as listed), but note that global accesses to
the register can be done with one 32-bit access.

5 Although the TXMSG_CTL registers are in general not readable by the FDP, the exception is the Ring Bus Avail bit, which can be read as bit
0 from byte offset xCD.

6 Ring bus Registers 0/1 map to RxByte0, Ring bus Register 2/3 map to RxByte1 and in each case are indexed by datascope. Refer to your
SDP Programmers guide for byte mapping. See WARNING, below.

Table 28 RxByte Processor Memory Map Summary (continued)

Global Address Offset
from 0xBDE04000

FDP
Offset Register Name Register Description Access

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 171

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Generally, FP Rx microcoding is done much like microcoding for an SDP Byte Processor.
The FP Rx Byte Processor is capable of the same sequencing and ALU operations as the
SDP Byte Processor. The unique aspects of the FP Rx Byte Processor are:

• The external test conditions

• Outputs

• There are 96 control store entries (as opposed to 64 in the SDP Byte Processor). The
CAM has 24 entries just like the SDP.

External Test Conditions
The external test conditions available to the FP Tx Byte Processor are:

0 Input data valid

The input data valid test condition indicates that the Byte feeding the Processor is
valid.

1 Token

The token test condition can be used to test for ownership of a token passed
between the two Byte Processors.

2 Not used

3 Not used

4 Not used

5 First/last header Byte

The first/last header Byte test condition can be used to test if the Byte currently
being unloaded from the header FIFO is the first or last Byte of the header. It is
configurable whether this test condition indicates the first or last Byte of the header
via the Rx Byte Processor End Of Header field of the RxDS Configuration register. For
details about the specific register, see “RxDS_Configuration Register (FP Rx
Configuration Function)” on page 555 in Appendix A.

6 Drop mode

The drop mode test condition indicates that a cell needs to be dropped because the
payload FIFO is full (504Bytes). See “Rx Drop Mode” on page 177.

7 Control word

For More Information On This Product,

 Go to: www.freescale.com

172 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The control word test condition indicates that the Byte currently being unloaded is
coming from the control FIFO, not the header FIFO. The control FIFO is only used in
PowerX mode so details of its usage are provided in the PowerX section.

Datascope
The FP Rx provides each Byte Processor with a number of datascopes or contexts into
which it can store data. If 12- or 16Byte descriptors are being used, each Processor has 8
datascopes available to it. If 24- or 32Byte descriptors are being used, each Processor has 4
datascopes available to it. There are times when datascopes are not available to a Byte
Processor because FP Rx has not finished consuming its contents. Because of this,
microcode must wait until it is granted ownership of a datascope before it begins
processing a header. Microcode tests for datascope availability using the Ownership bit of
the RxStatus register. For details about the specific register, see “RxStatus1 Register (FP
RxByte Processor Function)” on page 548 in Appendix A.

When FP Rx microcode has finished processing a header, it passes ownership for the
datascope to hardware by setting the Ownership bit of the RxStatus register. This
indicates that all of the data has been set up and the hardware can begin processing the
segment. The hardware uses the datascope number as an index into extract space and
TLU response space. The datascope also serves to keep the PDUs in order. Once the
hardware is done handling the payload and enqueuing the PDU, the datascope is freed
up.

Performance Requirement
Because there is no back pressure mechanism related to header FIFOs filling, FP Rx
microcode must be designed to process headers in the amount of time it takes two
(because only every other header is directed to a given Byte Processor) segments to arrive
at the FP Rx interface. The header FIFOs can hold 64Bytes each to withstand temporary
congestion.

The number of microcode instructions that can be executed in the time it takes a segment
to arrive on the interface is a function of:

• Segment size (or minimum number of fabric clock cycles between segments)

• Fabric width

• Core clock speed - the Byte Processor operates on this clock

• Fabric clock speed

• Number of Byte Processors (2)

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 173

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

minimum number of core clocks per segment =
minimum number of fabric clocks between first cycles of
segments x
(1/fabric clock frequency) x
core clock frequency x
2

This minimum number of core clocks per segment constrains the number of Byte
Processor instructions that can be executed to process a header. The minimum number of
fabric clocks between first cycles of segments might be:

• The number of fabric clock cycles per segment, for a fabric protocol with fixed-length
segments

• The number of fabric clock cycles per minimum-sized segment, for a fabric protocol
with variable-length segments

If a segment-spacing mechanism is part of a fabric's protocol (for example the minimum
SOF-to-SOF gap requirement of the PowerX protocol), it would be the number of fabric
clock cycles, guaranteed by this mechanism, to be between segments.

For the PowerX protocol, because the Byte Processors must also process per-queue flow
control messages which can be interspersed between and within segments, the
microcode performance requirements must take the presence and frequency of these
flow control messages into account. The calculation of this performance requirement is
beyond the datascope of this document.

Another performance requirement is avoiding datascope overrun. If the number of
outstanding cells in the FP Rx is more than the number of datascopes, and the microcode
needs to obtain a new datascope, that is, not an idle cell, then the microcode would have
to stall, and the header FIFOs would eventually overflow, which is not allowable. This type
of datascope overrun can be avoided by configuring the payload FIFO XOFF threshold, so
link-level flow control is applied to the fabric before a dangerous number of cells is
received.

Setting Up Control Information
FP Rx microcode must set up certain control information for each segment. At a minimum
it must set up a PDU ID and a segment type.

The PDU ID is a 16bit value that associates the payload within the segment with the
payload from other segments from the same PDU.

There is a configurable mask which the FP Rx will apply to the PDU ID before this
association is done. The PDU ID mask is configured via the PDU Mask [15:0] field of the

For More Information On This Product,

 Go to: www.freescale.com

174 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFCE Configuration0 register. Typically the PDU ID is extracted from the header. For
details about the specific register, see “RxFCE_Configuration0 Register (FP Rx
Configuration Function)” on page 559 and “RxFlowSeg1 Register (FP RxByte Processor
Function)” on page 549 in Appendix A.

The segment type indicates whether the segment is a first, middle, last, or only segment
for the PDU. Typically the segment type is extracted from the header.

If the segment is a first or only segment, a PDU length must also be set up if the default
PDU length is not being used. This should indicate the number of Bytes of payload in the
PDU and is used to find an appropriately sized buffer. Typically, the PDU length is
extracted from the header of a first or only segment. For details about the specific register,
see “RxFlowSz1 Register (FP RxByte Processor Function)” on page 550in Appendix A.

Some applications may not be able to provide a PDU length in first and only segment
headers. For those applications, the FP Rx can optionally use a default length value for all
PDUs and thus, the PDU length need not be written by microcode. In this mode, the same
PDU length is presumed for all PDUs and the default length should be set up to be greater
than or equal to the maximum PDU size. This option is configured via the RxFCE
Configuration1 register. For details about the specific register, see “RxFCE_Configuration1
Register (FP Rx Configuration Function)” on page 561 in Appendix A.

When the default PDU length option is used, the FP Rx error check which detects the
premature arrival of a last segment, must be disabled because last segments may
appear to be premature because the PDU length is assumed to be a maximum length.
Also, when this mode is used, all PDUs are delivered to the same BMU pool because the
length being used to select a pool will always be the same.

Writing to Extract Space
The FP Rx Byte Processors can write Bytes to extract space to be made available for
descriptor building. The number of Bytes available per datascope depends on the
descriptor size. If the FP is configured to use 12-, or 16Byte descriptors, 16Bytes of extract
space are available. Otherwise, 32Bytes of extract space are available.

Because the Descriptor Build Engine (DBE) may start building a descriptor as soon as it
receives ownership, microcode must finish writing all Bytes to extract space before
passing ownership of the first segment to the hardware. In other words, extract space
cannot be written for middle or last segments of PDUs.

TLU Lookups
The FP Rx can launch requests on the ring bus to perform TLU (Table Lookup Unit)
lookups. The requests are made via the MSG_CTL and MSG_DATA0 registers (plus

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 175

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MSG_DATA1 in the case of 16Byte requests). Refer to “Table Lookup Unit” on page 245,
Chapter 6. Many of the register fields can be statically configured via global writes: Type,
Length of request (8 or 16Bytes), Source Ring Bus Node, Destination Ring Bus Node. Fields
which are unique to each segment can be written by the RxByte Processor. Examples of
these are the key and index, which are a part of the ring bus data (that is, MSG_DATA0). For
more information about the standard TLU lookups please refer to the TLU documentation.
After filling out any necessary request fields and checking the Available bit in the ring bus
control register (MSG_CTL_AVAIL), the microcode can clear the Available bit to launch the
request on to the ring bus.

The responses to the TLU lookups will come back via a dedicated TLU->FP interface, as
opposed to via the ring bus. The data will be placed in response memory (256Bytes)
where it can be accessed by the Descriptor Build Engine (DBE).

TLU Lookup Programming Guidelines
Since the FP does not use the ring bus for responses (only requests), do not send any ring
bus messages to the FP. A message targeting the FP will circulate the ring indefinitely, and
enough of these would degrade ring bus performance to zero. For this reason, the only
node to which the FP should send messages is the TLU, which has a dedicated response
interface to the FP. The exception is proxy requests; the FP can safely send these to any
node on the ring bus because there is no response.

• Only one TLU operation can be performed per-segment (that is, the sequence number
of the request and the index into response memory are determined by the datascope,
and there is only one datascope per segment).

• TLU operations can only be launched on first/only segments, because those are the
only segment types for which a descriptor is built.

• TLU operations, if used, must always be launched on every first/only segment. If the
microcode wants to discard a segment via the Discard or Error indicators, it should set
the segment type to middle and not launch a TLU operation. If the segment type
remains first/only, a TLU operation would have to be launched.

• The response size can be 8, 16, or 32Bytes. This response size is a function of fields
within the lookup request data (that is, MSG_DATA0) - refer to TLU documentation. The
size of the request and size of the response are independent, but the response size
cannot be greater than the size of the response memory (256Bytes) divided by the
number of datascopes. For example, with a 16-datascope configuration (that is, 16Byte
descriptors), the response size can be 8 or 16Bytes. For 8-datascope configurations
(that is, 24 or 32Bytes descriptors), the response size can be 8, 16, or 32.

For More Information On This Product,

 Go to: www.freescale.com

176 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Do not use 32Byte responses with 16 or 24Byte descriptors.

General Purpose Registers
There are 8Bytes of shared general purpose registers which are available to both Byte
Processors, plus two 4Byte configuration registers (one for each Processor). All of these
can be initialized via global writes.

Both Processors have read and write access to the 8Bytes of shared space. The Processors
can read any Byte at any time. The microcode should prevent the Processors from writing
the same Byte at the same time, or else the resulting value will be undefined. All other
combination of writes are allowed, including simultaneous writes to different Bytes.

The 4Byte configuration registers act as separate, private storage for each Processor.
Typically, they are used to customize the execution behavior of one Processor from the
other. They are configured via global writes, and can be read (not written) by the
associated Byte Processor.

For details about the specific registers, see “TxFDP_CTL0 Register (TxByte General
Purpose Function)” on page 544 and “TxFDP_CTL1 Register (TxByte General Purpose
Function)” on page 545 in Appendix A.

Discarding Segments
Sometimes the FP Rx Byte Processor may want to discard a segment. A common use for
discarding segments would be to discard "idle" segments which only convey flow control
information.

To discard a cell, FP Rx microcode must:

• Set the PDU ID to be some value that does not match any PDU ID that the C-5 NP
might use for valid PDUs

• Set the segment type to be a middle segment

• Set the FLOW_DISC or FLOW_ERR bit in the RxFlowSeg register. For details about the
specific register, see “RxFlowSeg0 Register (FP RxByte Processor Function)” on
page 546 in Appendix A. These bits both cause the segment to be dropped, and
increment separate counters in the FP Rx statistics registers.

• Pass ownership of the segment to hardware

The effect of discarding a segment is that any payload associated with the segment in the
payload FIFO will be dropped (not written to any BMU buffer).

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 177

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Token Passing
If needed for synchronization purposes, a token can be passed between the two Byte
Processors. After reset, the token is owned by Byte Processor 0. To pass the token to the
other Processor, a Byte Processor should set Token Out, which is bit 2 in the Processor's
control register. The Token Out bit must have been previously cleared, so that there will be
a 0->1 transition. Ownership of the token bit can be tested by using external test
condition bit 1.

Rx Drop Mode
When the amount of data in the payload FIFO passes the configurable XOFF threshold,
link-level flow control can be applied by the FP Rx back to the fabric (refer to “Fabric to C-5
NP Link-Level Flow Control” on page 192). Despite this, some applications such as PRIZMA
will continue to transmit idle segments. Thus it is possible for the payload FIFO to
continue filling up well past its threshold. When it fills up to the maximum of 504Bytes,
Drop Mode is activated, causing subsequent payloads to be dropped.

In Drop Mode, the Byte Processors will continue to process incoming headers. There will
be no payload associated with these headers, so the microcode must not advance the
datascope (which would pass the ownership of the segment to the remainder of the
hardware pipeline). Thus the microcode needs to test for Drop Mode via external test
condition 6 (see“External Test Conditions” on page 171), before deciding whether to
advance the datascope.

To keep the headers and payload in sync, be sure that a transition into Drop Mode does
not occur while a header is being received. This can be guaranteed through a proper
configuration of the header/payload delimiter registers, as follows:

1 The header and payload regions for idle segments cannot be configured to overlap.

2 The microcode can test for the Drop Mode external test condition at any point during
the header processing, with the following restriction.

When Drop Mode is first engaged by an incoming idle segment, the test condition is
invalid until 2 words after the last word of that segment’s payload region. In the
meantime, the microcode can start processing the header of the next idle segment,
and needs to know whether Drop Mode is engaged or not. The easiest way to handle
this is to configure the payload region for idle segments to end before the true end of
the segment. This typically occurs anyway, since only a portion of the idle segment
needs to be treated as payload. With this configuration, the Drop Mode condition will
be guaranteed to be valid in time to flag the next header Bytes appropriately.
Alternatively, if the payload region extends to the end of the idle segment, then Drop
Mode will not be valid for the first word of the next header, so the microcode would

For More Information On This Product,

 Go to: www.freescale.com

178 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

have to avoid testing for Drop Mode on Bytes within that word. Instead, Drop Mode
could be tested starting with the second word of the header, implying that the
header region for idle segments would have to be greater than 1 word (that is, 8Bytes
instead of 4).

Descriptor Build Engine
Microcoding

The Descriptor Build Engine (DBE) is responsible for composing descriptors and specifying
the queue onto which descriptors will be enqueued. The DBE begins constructing a
descriptor each time ownership of a first or only segment is passed to hardware. The DBE
has the option to use and manipulate the following types of data to compose the
descriptor:

• Extract space contents for the current datascope. This is typically header data, which
was copied to extract space by a Byte Processor.

• TLU response (if any) for the current datascope.

• BTag and pool information for the PDU

• Literal field

Descriptor Build Sequence Programming
The descriptor build sequence is programmed using DBE microcode. The microcode
control store has room for 64 52bit microinstructions. The instruction set is limited to
variations of Move Data (from Source to Destination) with bit manipulation capabilities
(mask, shift). Operations may be performed on words, half words or Bytes. A literal field
can be used for mask operations, or to write absolute data of up to 16bits. No jump,
branch, or loop control exists, so all descriptors are built with the same straight-line path
through the microcode. When the descriptor is completely built, the microcode must
write the queue number using a Move Special instruction with the Destination Index set
to 0. This write operation signals to the hardware that the descriptor is ready to be
enqueued. Finally, the last microinstruction should set the opcode to NOP and assert the
Restart bit.

When the descriptor has been built, and the entire PDU has been received without an
error, the descriptor is enqueued to the QMU. The queue number is not part of the
descriptor but is sent to the QMU along with the descriptor.

Extract and Response
Each of the extract and response areas is divided into multiple datascopes to allow
pipelining. The Extract space is either 16 or 32Bytes per datascope depending on the
configured descriptor size, and the Response area is either 8, 16 or 32Bytes depending

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 179

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

upon the response size configuration. A descriptor build operation will begin once the
associated Byte Processor has passed extract ownership to hardware (that is, written a 1 to
the msb of the status Byte). Additionally, if configured to do so, the DBE will wait until the
TLU has provided a response for the given datascope. 32Bytes of descriptor memory are
always available for writing by the DBE, however only the amount of the descriptor
specified by the size, starting at relative offset 0 (in the datascope), is transferred to the
QMU.

Handling TLU Errors
If the DBE algorithm uses TLU response data, it should handle the case where the TLU
lookup fails. A failed lookup has no valid response data associated with it and has an error
returned to it by the TLU. Two methods for handling this are described below:

1 Default Queue Feature

For applications which derive the queue number from TLU response data, the default
queue feature allows a configurable default queue number to be used in the case of a
TLU lookup error. To enable this feature, configure the default queue number and
assert the enable bit in the RxFCE Configuration2 register. The register description can
be found at “RxFCE_Configuration0 Register (FP Rx Configuration Function)” on
page 559 in Appendix A.

2 Drop On TLU Error

If desired, PDUs can be dropped when a TLU lookup error is encountered. To
implement this feature, the DBE should perform a Move Special instruction with the
Source Index set to 100. The effect of this instruction is to set the Drop bit if there was
a TLU error. This instruction can occur anywhere within the DBE sequence, as long as it
is before the queue number write and final Restart instruction. When the DBE finishes
building the descriptor and writes the queue number, the state of the Drop bit
determines whether the descriptor gets dropped or enqueued.

The format and definition of the DBE microcode fields are shown in Table 29 and Table 30
on page 180.

Table 29 DBE Command Format

Bit
Position

51 50 49 48 47 46 44 43 39 38 34 33 30 29 16 15 0

Field
Name

Restart Op-Code Desc Size Source Src Indx Dest Indx Src Shift Reserved Literal

For More Information On This Product,

 Go to: www.freescale.com

180 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 30 DBE WCS

Field
Name

Bit
Position Description

Restart 51 A microinstruction with Restart=1 causes the microinstruction pointer to restart
the algorithm for the next descriptor. Restart=0 has no effect on the descriptor
build process.
Since the Restart effectively terminates the instruction flow for a given descriptor,
this bit should only be used on the last microinstruction (which should also set
Op-Code = NOP) and after the queue number has been written to the flow table
(see Move Special).
Refer to C-Ware Microcode Programming Guide, Part number: 4-017, Most recent
publication date: April 19, 2001

Op-Code 50:49 Operation to be performed on Descriptor:
00 Move/Write from Src -> Dest
01 Move Mask/Read Modify Write

Uses the Mask field (which is also the Literal field) to determine which bits of the
destination descriptor data should be updated. This operation can only be used
with Byte and half-word operand sizes. For each bit in the mask that is a ‘1’, the
corresponding bit will be updated in the destination data. For each ‘0’, the bit in
the destination data will retain its previous value.

For Byte operations, bits 7:0 of the mask field act as the mask. For half-word
operations, all 16 bits of the mask field are used as the mask.

10 Move Special - see 2 cases below

If Destination Indx = 00, the hardware takes this instruction to mean the
descriptor has been built. The descriptor is saved in descriptor memory, and the
9bit queue number and Drop Packet bit are saved in a flow table memory, ready
to be enqueued to the QMU.

If Destination Indx = 04, Set Drop Packet equal to bit 24 of the source data.

11 No-op

Operand
Size

48:47 Operand Size
00 Word
01 Byte
10 Half Word
11 Reserved

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 181

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Alignment
The source and destination addresses must be aligned to a 32bit boundary for full word
operations, and aligned to a 16bit boundary for half-word operations. The addresses can
use any alignment for Byte operations. See Table 31 on page 182.

Source 46:44 Data can be sourced from the following:
000 Extract Space
001 TLU Response (note: TLU responds directly to TLU/RB requests)
010 Buffer Memory Info

Source data = {11’b0, Pool ID[4:0], BTag[15:0]}

011 Literal

The location of the literal data within the 32bit source data is dependent on the
operand size. Literals can only be used for Byte and half-word operations.

Byte operations: Source data = {Literal[7:0], 0x000000}

Half-word operations: Source data = {Literal[15:0], 0x0000}

100 Special, IDX [0] = TLU_ERROR in bit 24 of the data word.

NOTE: TLU error aligns with drop packet to allow ease of use

101, 110, 111 Reserved

Src Indx 43:39 Source Index – Byte offset into source (e.g. extract space offset, buffer offset)

Dest Indx 38:34 Destination Index – Byte offset into destination descriptor. The destination index
is also used to select between the two types of Move Special operations (see
above).

Src Shift 33:30 SrcShift[33] = 1 indicates shift left, 0 indicates shift right
SrcShift[32:30] = Number of bits to shift. Range is 0 to 7.
NOTE 1: This is a shift and not a rotate operation; bits do not wrap. For Shift Right,
0’s are shifted into the MSB. Likewise for Shift Left, 0’s are shifted into the LSB.
NOTE 2: Shift operations occur prior to mask operations.

Reserved 29:16 Reserved

Literal/
Mask

15:0 Literal/Mask Field - can be used as source data (when Source=011), or as a mask
for a Move Mask operation. In either case, this field can only be used with Byte or
half-word operand sizes.
When used as literal source data, the location of the literal data within the 32bit
source data is dependent on the operand size.

Byte operations: Source data = {Literal[7:0], 0x000000}

Half-word operations: Source data = {Literal[15:0], 0x0000}

When used as a mask, this field determines which of the bits in the destination data
should be updated and which should retain their previous value. Only destination
bits which have the corresponding mask bit set to 1 will be updated.

Table 30 DBE WCS (continued)

For More Information On This Product,

 Go to: www.freescale.com

182 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The table shows what the destination data would look like after the write operation.
Based on the alignment and operand size, certain destination Bytes are updated, and
others retain their previous value.

Assume a write operation is performed with source data = AABBCCDDh.

Table 31 DBE Operand Alignment Examples.

Operand
Size SRC IDX[1:0] DST IDX[1:0]

DATA DST
(hex)1

1 A dash in the DST field means no change to existing destination data.

Byte 00 00 AA------

01 --AA----

10 ----AA--

11 ------AA

01 00 BB------

01 --BB----

10 ----BB--

11 ------BB

10 00 CC------

01 --CC----

10 ----CC--

11 ------CC

11 00 DD------

01 --DD----

10 ----DD--

11 ------DD

Half
Word

00 00 AABB----

10 ----AABB

10 00 CCDD----

10 ----CCDD

Word 00 00 AABBCCDD

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 183

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Bit shift operation
The shift operation is a true shift as opposed to a rotate because zeroes are shifted in,
(either left or right as selected by the MSB of the shift field), as bits of the operand field are
shifted out.

The bits which get shifted outside of the operand source field get dropped. The shift
operation has no effect on which destination bits get updated (the destination data is a
function of the operand size, the destination index, and optionally a bit mask).

Enqueuing After the last, or only segment of a PDU has been received and processed by a Byte
Processor and a descriptor has been built by the DBE, the FP Rx will enqueue the
descriptor. The FP Rx only does unicast enqueues; it never does multicast enqueues. The
descriptor weight accompanying the descriptor always has a value of 1.

The FP Rx will not enqueue a descriptor if the DBE has indicated that the PDU should be
dropped or, if some other error has been detected with the PDU in such a way that the
PDU will be dropped.

The FP Rx can be configured to enqueue descriptors to a default queue if a TLU error
occurs. This default queue is used instead of the queue indicated by the DBE. This is done
by setting up the default queue number and default queue enable fields in the FCE
Configuration2 register. For details about the specific register, see “RxFCE_Configuration2
Register (FP Rx Configuration Function)” on page 562 in Appendix A. See “Default Queue
Feature” on page 179.

Interrupts Seven events in the FP Rx are logged in the Rx Interrupt Event Register. Each register bit will
remain asserted until written with a ‘1’ (“write 1 to clear”), for instance by an interrupt
handler running on the XP. The Interrupt Enable Mask register determines which events
cause an interrupt are sent to the XP.

These topics are covered in the following sections.

• Error Status FIFO Full

• Parity Error

• No BTags available on allocate

• Buffer Write Errors

• BTag Programming Error

• BTag ECC Error

For More Information On This Product,

 Go to: www.freescale.com

184 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• BTag Allocation Retry Timeout

Error Status FIFO Full
Indicates that all 32 entries of the error status FIFO are in use. The FIFO contains the error
status for each outstanding cell, plus a record of any out-of-frame errors that occurred
(either a parity error on the first word of a cell, or a parity error on a PowerX control word).
Only one out-of-frame error can be logged between each cell. Thus the FIFO would only
fill if there were 16 outstanding cells with 16 out-of-frame errors. In practice, the payload
FIFO XOFF threshold should prevent the number of outstanding cells from reaching 16;
thus the error status FIFO should never become full.

Parity Error
A parity error was detected on the receive interface.

No BTags available on allocate
A BTag allocation request failed because none were available from the BMU.

Buffer Write Errors
The only condition which can cause a buffer write error would be the BMU being unable
to satisfy repeated buffer write attempts because it is too busy.

BTag Programming Error
Non-existent memory error - this would only occur if the BMU were misconfigured to be
storing BTags in a non-existent memory location.

BTag ECC Error
ECC error - BMU detects an ECC error when it reads a block of BTags out of SDRAM

BTag Allocation Retry Timeout
Retry timeout - BMU is unable to satisfy the allocate request because it is too busy.

Error Handling and
Statistics

The FP Rx collects a variety of statistics on traffic and events. These statistics are available
through nineteen 32bit registers that can be read or written at any time. The available
statistics are shown in “RxFP_Statistics Registers (FP Rx Statistics Function)” on page 572
in Appendix A.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor Receive (FPRx) 185

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Enqueue Failures
If the FP Rx performs an enqueue and the QMU indicates that the enqueue operation
failed, the PDU is dropped because the FP Rx does not retry the enqueue operation and it
deallocates the BTag back to the BMU.

Segment Sequencing Errors
Generally, the FP Rx expects to see a first segment for a PDU, some number of middle
segments, and a last segment. If a PDU is small enough, it might be transmitted with a
single only segment, or perhaps first segment followed directly by a last segment. There
are a number of error scenarios related to these expected sequences that the FP Rx will
detect and handle.

• If a middle or last segment arrives for a PDU, without any preceding first segment, that
segment will be dropped.

• If at the end of a last segment the amount of payload received is less than the
expected PDU length (as indicated by the PDU length in the header of the first
segment), the entire PDU will be dropped. This PDU length check bit can be disabled.

• If a first segment arrives for a PDU, when the FP Rx is expecting a middle or last
segment for the PDU, that segment and the PDU that was in progress will be dropped.

It is possible that some number of middle segments and the last segment of one PDU can
be dropped and then the first and some number of middle segments are dropped from
the subsequent PDU with the same PDU ID in such a way that, to the FP Rx, these
segments seem to form a coherent PDU and no error would be detected. This event is
highly improbable.

When PDUs are dropped, the enqueue operation is not performed and the BTag will be
deallocated back to the BMU.

Parity and CRC Errors
If parity checking is enabled and a bus parity error is detected for any cycle of a segment,
that segment will be dropped. See “Common Components of the Programmable
Processors” on page 62.

If a CRC checking is enabled and a CRC error is detected for a segment, that segment will
be dropped. See the CRC section for details of CRC usage and configuration.

If individual segments are dropped because of CRC or parity errors, effectively this looks
like missing segments to the FP Rx. Ultimately, subsequent segments will appear to cause
a segment sequencing error as described above and PDUs will be dropped.

For More Information On This Product,

 Go to: www.freescale.com

186 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Headers are always passed to Byte Processors, even if they have CRC or parity errors in
them. The Byte Processor has no way of knowing if the header is in error or not so it must
assume that it is not.

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 187

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP Functionality Initialization
The following sequence should be performed to initialize the FP.

1 While keeping the FP Rx and FP Tx disabled, set up the configuration registers. Load
all FP control stores (microcode). Configure and enable all of the resources used by
the FP (BMU, QMU, TLU).

2 Enable the FP Rx (RxFP Enable register) and FP Tx (TxFP Enable register).

3 Once the FP Rx has had time to acquire BTags for all of its pools, set the CFI Enable bit
in the RxFI configuration register.

4 Set the CFI Enable bit in the TxFI configuration register.

Once initialized, the FP cannot be dynamically reconfigured and reinitialized. There must
be a full C-5 NP reset to reinitialize the FP.

Another initialization issue has to do with SDRAM. When the FP Rx receives payload and
writes it into SDRAM, the write is done with 16Byte granularity. This means the PDU
payload could end at address 0, 16, 32 or 48 within the last 64Byte block. If the PDU is
transmitted by an SDP, the payload is read in 64Byte blocks, so there may be some
unitialized data in the last block. This uninitialized data can cause an ECC error. There are
several ways to handle this case:

• Initialize SDRAM at startup OR:

• Disable ECC checking OR:

• Configure the FP Rx to always write in 64Byte blocks, via a bit in the RxFCE
Configuration2 Register called Force 64Byte WRCB Transfers.

Accessing the Tx Flow Control CAM
The internal CAM through which the FP Tx maps a per-queue flow control request to a
queue number can be read and written, using the “TxFlowCam Register (FP Tx DeBug
Function)” on page 541 in Appendix A. The default mapping preloaded into the CAM by
hardware is simply a one-to-one mapping, such that the 7bit queue number equals the
16bit match value, for the range of 0 to 127. The procedure to configure the CAM is as
follows:

1 Set the flow mask to 0xffff in the TxFCE Register.

2 Then delete the preloaded CAM entries by performing 128 writes to the TxFlowCAM
register; on each write set the DEL (delete) bit and the next 16bit Match value.

For More Information On This Product,

 Go to: www.freescale.com

188 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Remember that the preloaded match values are simply 0 through 127.

3 Next, write the desired entries into the CAM by writing to the TxFlowCAM register,
with the WT bit asserted. The 16bit match value and 8bit write data will be placed into
the CAM.

Bit7 of the write data must be zero; bits [6:0] represent the 7bit queue number.

Accessing the FP Rx Descriptor Build Engine Write Control Store (WCS), Byte Processor
WCSs, and Byte Processor CAMs
The Byte Processor control stores and CAMs in the FP Rx and Tx can be written and read.
Physically, in both the FP Rx and Tx, there is a separate control store for each of the two
Byte Processors, but the same data is written to both Byte Processor control stores
simultaneously; that is, both FP Tx control stores and CAMs contain the same data and
both FP Rx control stores and CAMs contain the same data.

Accessing the FP TxByte Processor WCSs and CAMs
The FP Tx Byte Processors each contain a WCS and a CAM (not to be confused with the FP
Tx flow control CAM). Each of these WCSs and CAMs must be loaded by internal scan
chains accessible via the TxWCS_CAM register. As with the SDPs these memories must be
loaded via an internal scan chain accessible in Global Address Space.

Accessing FP Rx WCSs and CAMs
The FP Rx Byte Processors each contain a WCS and a CAM. In addition, the Descriptor Build
Engine (DBE) contains a WCS. Of these three WCSs and two CAMs, all may be read via
scan, but only the CAMs may be written via scan. The WCSs, are written via a special Byte
writing mechanism. Both the scan access and Byte write access is provided via the
“RxWCS_CAM Register (RxWCS_CAM Function)” on page 557.

The RxWCS_CAM Register allows the writing and reading of the FP RxByte WCS, CAMs and
the Descriptor Build Engine WCS. The CAMs referred to are the Byte Processor CAMs (not
be confused with the FP Rx PDU ID CAM, which does not need to be loaded by software).

Table 32 FP Rx WCS and CAM Access

Store Type Description

Scan Access

Rd Wr
Byte Wr
Access

RxByte WCS (0 & 1) RxByte Processors 0 and 1, 96-word Writable
Control Store

Y N Y

RxByte CAM (0 & 1) RxByte Processors 0 and 1, 24-entry CAM Y Y N

DBE WCS Descriptor Build Engine WCS Y N Y

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 189

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For details about the specific register, see “RxWCS_CAM Register (RxWCS_CAM Function)”
on page 557 in Appendix A.

Warning:

The mechanisms described below can only be used when the FP Rx is held in reset.

There are two RxByte Processors in the FP. When writing or reading from the associated
stores, both are written and read at the same time. There is no mechanism to separately
load RxByte0 WCS / CAM and RxByte1 WCS/CAM. This enforces RxByte0 to run the same
Processor code / CAM data as RxByte1. The CAM must be written and read via scan as
described below. The WCSs must be written via the Byte write mechanism described
below. Data may only be read back from both the WCSs and CAMs via scan. This is
intended for diagnostics use only (i.e. memory validation), as such the procedure is rather
complex and not optimized for operational use. When the data is read back, via scan, the
data from each of the two RxByte Processors is streamed back to bits Scan_Out0 and
Scan_Out1 respectively. Data from the DBE is streamed to the DBE Scan Out bit.

The two FP Tx Byte Processors are loaded in parallel. That is, the two TxByte Processors
run identical microcode.

For details about the specific register, see “TxWCS_CAM (WCS_CAM Function)” on
page 539 in Appendix A.

Byte Write: To Byte write either the FP RxByte or the DBE WCS, the FP must be placed in
reset. This ensures the Byte 'Address' counter is pointing to Byte 0. There is no direct ability
to specify the addressing in RxByte or DBE WCS. The WCSs are loaded left to right, with the
most significant Byte first. The most significant Byte of each word is only half used, with
the most significant 4bits of this Byte as "don't care" values. Thus each WCS "word" is
7Bytes long as shown in the figure below.

Figure 42 Byte Load Sequence Map for WCS entry

For More Information On This Product,

 Go to: www.freescale.com

190 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Each of the FP-RxByte and DBE WCS has a Byte pointer that advances sequentially. The
pointer starts with the most significant Byte (nibble) of the WCS, and increments through
to the least significant Byte of the WCS moving from WCS location 0 through to WCS
location 63, that is, left (msb) to right (lsb), bottom (addr0) to top (addr 63).

The Byte write hardware along with the scan chain organization has been designed and
optimized for Byte write loading of the WCS (vs. scan loading). Specifically the CAM is first
in the chain, followed by the WCS. This allows the CAM to be loaded first via scan with out
the need to shift bits down the entire chain for the WCS (See Scan operations below).
When the CAM is loaded in this fashion, the WCS will have undetermined data written to
it. In this case it is expected that the WCS will be loaded after the CAMs have been
initialized.

Scan Write: The CAM/WCS Scan Chain is 94bits long comprised of the following fields left
to right where the right most bit of the right most field is shifted in first: CAM Addr (6),
Cam Group(9), CAM Pattern(18), CAM Tag (9), WCS Addr (9), WCS Data(52). The CAMs are
at the near end of the chain (i.e. all WCS fields are at the end of the chain).

The CAMs, if used, should be written prior to the WCS Byte loading. It is only required to
scan the 42bits of CAM fields and the perform an Update operation via bit 2 of the FP Rx
WCS_CAM Register. Scanning to the CAM may be done on a Random Access basis since
the CAM Addr field selects the specific CAM location during the update operation. Both
RxByte0 and RxByte1 CAMs are updated simultaneously.

Figure 43 RxByte Scan Chain

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 191

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

 WARNING: Writing the CAMs can invalidate WCS entries. As such, the CAMs, if used,
should be written first followed by WCS Byte write operations to load the WCSs.

WCS/CAM Scan Read: The CAM/WCS Scan Read Chain is the same 94bit chain used in
the Scan Write operation described above and is not optimized for operational reading
(i.e. it is intended for diagnostic manufacturing pass/fail screening. The address of the
CAM during reads is selected by the CAM Group and Match values, that is, the CAM addr
field is not used. The address of the WCS is selected by the Byte write counter, requiring a
destructive write to the WCS prior to the SCAN CAPTURE selection via the FP WCSs
register. To further complicate matters, and to avoid writing the word or WCS intended to
be read, bit 2 of the Byte address selection is inverted during the read so that you first
write to location 0xabcd XOR 0x0004, to read 0xabcd. After you have captured the scan
and scanned out the results, you select the next WCS address by performing seven
additional Byte writes, thereby incrementing the WCS Byte address to the next word, and
again performing a SCAN CAPTURE. In reading the WCS in this destructive fashion, you

Table 33 RxByte Scan Chain Fields

Field Name Description

Addr[6] CAM Address - Six bits. Used during Writes only to select a CAM location for
initialization. For the FP Rx the CAM is 24 entries long (i.e. Addr 0-23 valid)

Group[9] Group – A nine bit index created by the RxByte Program Counter used during
reads to qualify the pattern match.

Pattern[18] Match Pattern- A nine – two bit pattern used to qualify a match on ‘1’, ‘0’, ‘X’. The
Pattern may be driven from either RxByte Processor IREG3 from the Payload bus.
Each two sequential bits of this field select: 00 – Match ‘X’, 01 – Match ‘1’, 10 –
Match ‘0’, 11 – Invalid entry (no match possible)

Tag[9] Tag - A nine bit value associated with a match. When a Match on a pattern is
made the Tag Value is available for use on the RxByte Processor B-Bus.

WCS[52] Writable Control Store

Addr[6] CAM Address - Six bits. Used during Writes only to select a CAM location for
initialization. For the FP Rx the CAM is 24 entries long (i.e. Addr 0-23 valid)

Group[9] Group – A nine bit index created by the RxByte Program Counter used during
reads to qualify the pattern match.

Pattern[18] Match Pattern- A nine – two bit pattern used to qualify a match on ‘1’, ‘0’, ‘X’. The
Pattern may be driven from either RxByte Processor IREG3 from the Payload bus.
Each two sequential bits of this field select: 00 – Match ‘X’, 01 – Match ‘1’, 10 –
Match ‘0’, 11 – Invalid entry (no match possible)

Tag[9] Tag - A nine bit value associated with a match. When a Match on a pattern is
made the Tag Value is available for use on the RxByte Processor B-Bus.

For More Information On This Product,

 Go to: www.freescale.com

192 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

must be careful to either Byte write original data back to 0xabcd XOR 0x0004 or to rewrite
the entire WCS between reads.

In all cases where the WCS/CAM has been written, since both RxByte 0 and 1 CAM and
WCSs are written at the same time, Scan Out0 should always equal Scan Out1.

DBE Scan Read: The DBE Scan Chain is a separate 52bit Scan Chain but operates, using
the appropriate FP Rx WCS_CAM Register bits, precisely as described for WCS/CAM Scan
Read operation described above.

Fabric to C-5 NP
Link-Level Flow Control

Fabric to C-5 NP link-level flow control occurs when the fabric asks the FP Tx to stop
transmission for the entire link; that is, all queues. In Utopia modes, this is effected using
the Utopia protocol flow control signaling. For non-Utopia modes, the fabric will make a
flow control request to the FP Rx which gets passed to the FP Tx. PowerX fabrics send
out-of-band link-level requests using the control pins. PRIZMA fabrics send in-band
messages, embedded in the segment header.

C-5 NP to Fabric
Link-Level Flow Control

The C-5 NP will apply link-level flow control to the fabric when the FP Rx runs out of
payload FIFO space. The flow control request is either made using the Utopia protocols, or
(in non-Utopia modes) the FP Rx asks the FP Tx to transmit a flow control request to the
fabric on its behalf. Non-Utopia link-level flow control will be covered in more detail in the
mode-specific sections.

The FP Rx payload FIFO can hold up to 504Bytes of payload from segments. When the
number of Bytes available in the payload FIFO becomes lower than a configurable XOFF
threshold, the FP Rx requests link-level flow control. As the payload FIFO then drains and
the number of Bytes available reaches a separate, configurable XON threshold, the FP Rx
allows transmission to continue. For details about the specific register, see
“RxDS_Configuration Register (FP Rx Configuration Function)” on page 555 in
Appendix A.

Latency
Flow control operations have an inherent latency due to pipelining of data feeding the
payload FIFO, delays in issuing a pause request to the fabric, and latencies in a fabric's
ability to pause. The XOFF threshold must be set high enough so that even with such
latency, the incoming payload does not overrun the payload FIFO, which would cause
unpredictable behavior. For details about the specific register, see “RxDS_Configuration
Register (FP Rx Configuration Function)” on page 555 in Appendix A.

There is some latency between the time that the FIFO threshold is hit and the time a
pause is requested of the fabric. For example, with the various Utopia protocols, the flow

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 193

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

enable signal can only be deasserted at certain times during cell transmission. If the XOFF
condition is reached after that time has passed, the FP Rx must be capable of receiving
another full cell after the one currently arriving. The XOFF threshold must be set with this
in mind. Other protocols which request link-level flow control via an FP Tx transmission
have analogous latencies that must be considered when setting the threshold.

The XON threshold should always be set to a value greater than the XOFF
threshold.Typically it is set to a value high enough that the XOFF condition won't
immediately recur.

Fabric to C-5 NP
Per-Queue Flow Control

A fabric can request that the FP Tx pause or resume transmission from a particular queue.
The flow control request is handled by the FP Rx Byte Processor microcode, which then
passes a 16bit flow ID and a pause/resume bit to the FP Tx (this could be different from a
PDU ID). This flow ID is qualified with a 16bit mask (see the “TxFCE_Configuration Register
(FP Tx Configuration Function)” on page 535) and then used for a lookup in the Tx flow
control CAM (content addressable memory). The output of the CAM is a 7bit queue
number which corresponds to one of the 128 FP Tx queues; this is how the Tx knows
which queue to pause or resume. Please see Figure 44 following.

Figure 44 Mapping Per-Queue Flow Control Requests to FP Tx Queues

If the lookup matches a CAM entry, the corresponding queue is paused or resumed. If the
lookup does not match any CAM entry, no queue will be paused or resumed. The default
mapping preloaded into the CAM by hardware is simply a one-to-one mapping, such that
the queue number equals the match value, for the range of 0 to 127. The mask and CAM
are completely configurable to any mapping scheme.

To configure the CAM, follow this procedure:

1 Set the flow mask to 0xffff in the TxFCE Register.

2 Then delete the preloaded CAM entries by performing 128 writes to the TxFlowCAM
register; on each write set the DEL (delete) bit and the next 16bit Match value.

Tx Flow
Control CAM
(Configurable)

16 bit Flow ID
From FP Rx

16 bit Mask
(Statically Configured)

7 bit Queue Number
(0 - 127)

For More Information On This Product,

 Go to: www.freescale.com

194 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Remember that the preloaded match values are 0 through 127.

3 Next, write the desired entries into the CAM by writing to the TxFlowCAM register,
with the WT bit asserted. The 16bit match value and 8bit write data will thus be
placed into the CAM.

Bit7 of the write data must be zero; bits [6:0] represent the 7bit queue number.

To enable flow control, the Flow Control Enable configuration bit must be asserted.

If a queue is paused while not actively transmitting, the FP Tx will simply not begin
transmission from that queue even if it is non-empty. Similarly, if a queue is resumed while
it is not active, the FP Tx will transmit from that queue when it next has an opportunity.

Per-queue flow control requests are sent to the FP Tx using the FP Rx Byte Processors. To
process these, the FP Rx Byte Processor must write 2Bytes to form a 16bit flow ID and then
write to the pause/resume register. If one of the flow ID Bytes is not being used, that is, it is
being masked off), then the Byte Processor need not write to that Byte. It is the act of
writing to the pause/resume register which sends the request to the FP Tx, so that must
be done after the flow ID has been set up.

Per-queue flow control requests are sent to a 4-deep FIFO for each Byte Processor. A
single, 16-entry FIFO in the FP Tx is fed alternately from the two Byte Processors' FIFOs.
The FP Tx drains a flow control request from its FIFO once every 6 core clock cycles. There
is no back pressure mechanism on the Byte Processors’ FIFOs, so microcode must be
constructed such that, between the two Byte Processors, neither overflows their FIFO.

Because the FP Tx FIFO is fed alternately from the two Byte Processors' FIFOs, there is no
inherent ordering between flow control requests from the two Byte Processors. This could
be accomplished through microcode synchronization if required.

There is no harm in sending a pause request for a queue that is already paused or a
resume request for a queue which has already been resumed. This has no effect on the FP
Tx's per-queue flow control.

The C-5 NP does not apply per-queue flow control to the fabric. It relies only on link-level
flow control in that direction.

To configure the CAM, use the procedure described in “Initialization” on page 187.

To enable flow control, the Flow Control Enable configuration bit must be asserted.

C-5 NP to Fabric
Per-Queue Flow Control

The C-5 does not apply per-queue flow control to the fabric. It relies only on link-level flow
control in that direction.

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 195

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Descriptor Sizes The FP Tx supports descriptor sizes of 12, 16, 24, and 32Bytes. The descriptor size is
configured via the Desc Size field of the TxFCE Configuration register on the FP Tx and the
Desc Size field of the RxFCE Configuration0 register on the FP Rx. The encodings for these
two fields are different; the important point is that the descriptors sizes must be the same
for the Rx and Tx. For details about the specific registers, see “TxFCE_Configuration
Register (FP Tx Configuration Function)” on page 535 and “RxFCE_Configuration0 Register
(FP Rx Configuration Function)” on page 559 in Appendix A.

CRC A 32bit CRC can optionally be generated and included in each segment. The region of the
segment for which CRC is calculated can be specified in the TxFI CRC and RxFI CRC
registers. The start of the region (First Index) is configurable but must be a multiple of 4.
The end of the region must extend to end of the segment; the CRC value resides in the last
4Bytes of the segment. Refer to the TxFI CRC and RxFI CRC descriptions for details
regarding the Last Index field (the values in these 2 fields will not be exactly equal). With
CRC checking enabled, the CRC of each segment is checked for all segments that are
received, and failing segments are dropped.

The inclusion of CRC in each segment decreases the amount of payload included in each
segment. CRC is configurable via the TxFI CRC register in the FP Tx and the RxFI CRC
register in the FP Rx.

The CRC cannot be used in conjunction with variable length cells in the PowerX mode.

Endianness (Byte and Bit
Ordering)

The FP can handle either Big Endian or Little Endian Byte ordering. This is configurable via
the TxFI Configuration and RxFI Configuration registers. See “Big Endian Byte Ordering on
Data Pins 31:0” on page 196 and “Little Endian Byte Ordering on Data Pins 31:0” on
page 196, below. The Byte Processors in both the FP Tx and FP Rx will process the most
significant Byte first.

Bit ordering is always fixed at [7:0] within a Byte.

• Byte ordering must be configured as Little Endian for PowerX mode

• Byte ordering must be configured as Big Endian for PRIZMA mode.

• Utopia mode applications can be designed to be either Big or Little Endian.

For More Information On This Product,

 Go to: www.freescale.com

196 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Big Endian Byte Ordering on Data Pins 31:0

Little Endian Byte Ordering on Data Pins 31:0

Debugging and Test
Features

1. Debug MUX
Through use of the configurable Debug MUX, certain FP events can be logged in event
counters located in the XP. For instance, the number of PDUs which are transmitted can be
logged. For details about the specific FP events which can be monitored, see
“RxFP_Debug_Event_Mux_Control (FP Rx DeBug Function)” on page 567 in Appendix A.
For information on how to use the XP event counters, refer to the XP Chapter.

2. FP Rx Statistics Registers
In addition to the Debug MUX mechanism mentioned above, the FP Rx contains its own
statistics registers for logging the number of received segments, PDUs, errors, etc. These
registers are automatically updated by hardware, and can be initialized to a value of 0 at
any time by simply performing a global write to a particular statistics register. The
statistics can be read with global reads. They are described in further detail in the FP Rx
section earlier in this chapter.

3. Internal Debug State Registers
Some internal FP state points are made visible through two 32bit debug state registers,
one in the FP Tx and one in the FP Rx. These registers can be accessed with global reads,
and contain the current status of internal state machines and other key state points. For
descriptions of the register fields, refer to “TxDebug_Internal_State Register (FP Tx DeBug
Function)” on page 545 and “RxDebug_Internal_State Register (FP Rx Statistics Function)”
on page 573 in Appendix A.

4. Accessing FP Memories
For debugging and testing purposes, it is possible to write to and read from several of the
internal memories in the FP. While accessing these memories, the FP should be disabled .

Most
Significant
Byte

Least
Significant

Byte

31:24 23:16 15:8 7:0

Least
Significant
Byte

Most
Significant

Byte

31:24 23:16 15:8 7:0

For More Information On This Product,

 Go to: www.freescale.com

FP Functionality 197

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The WCSs and most CAMs are loaded by software during initialization, and can also be
accessed for debug purposes. Refer to the Initialization section for more information on
accessing those.

The other memories, listed below, are not programmable, but can be read and written for
debug purposes while the FP is disabled.

Writing and Reading the Rx PDU ID CAM
The internal CAM that the FP Rx uses to keep track of active PDU IDs can be read and
written using the “RxPDU_ID_CAM Register (FP Rx DeBug Function)” on page 570 at
address 0xbde04698. To write to the CAM, set up the 16-match value and the
corresponding 8bit data value, and assert the Write bit. To delete an entry, write the match
value to the register and assert the Delete bit. To read an entry, set up the match value, set
the Search bit, and then read out the 8bit result by reading the register.

Writing and Reading the Rx Flow Table and Descriptor Memory
The internal memory that the FP Rx uses to save the current state of active PDUs as well as
the memory in which the descriptor build engine stores descriptors can be read and
written. These two spaces are accessed via the “RxMemory_Data Register (FP Rx DeBug
Function)” on page 570 and “RxMemory_Address Register (FP Rx DeBug Function)” on
page 570in Appendix A, using the addresses listed below. To write a location in one of
these memories, set up the memory address register and then write the data to the
memory data register. The act of writing to the data register triggers the hardware to
perform the memory write. To read a location, simply set up the address register, and then
collect the result by reading the data register.

Bit 13 of the address selects between the Descriptor Memory (0) and RxFlowTable (1).

• The Descriptor Memory is organized as 1280 entries of 32bits. bits 12:2 in the address
register select the entry. Address bits 1:0 are irrelevant because accesses are performed
in 32bit quantities.

• The Rx Flow Table is organized as 160 entries of 72 bits. Bits 11:4 select the entry. bits
3:2 select between fields within the 72bit word.

Descriptor Memory/RxFlowTable Debug Address Map

0 to (8K-1) Descriptor Memory

8K to (12K-1) Rx Flow Table

For More Information On This Product,

 Go to: www.freescale.com

198 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Writing and Reading the Tx Flow Table
The internal memory that the FP Tx uses to save the current state of active PDUs can be
read and written. Refer to the descriptions of “TxFlowTbI Register (FP Tx DeBug Function)”
on page 540, (TxFlowTbl_Data_Low and TxFlowTbl_Data_High) in Appendix A. To read an
entry, simply write the 7bit index (Tx queue number) to TxFlowTbl, and then read the
resulting 60bit data from the high (upper 28 bits) and low (lower 32 bits) data registers. To
write an entry, set up the data registers first, then write the 7bit address to TxFlowTbl
while asserting the WT bit.

Writing and Reading Merge Space
Merge Space is an internal memory into which the FP Tx copies descriptors, to make their
content available to the Byte Processors for header construction. This space can be read
and written via the “TxMergeAddr (FPTx Debug Function)” on page 542 and
“TxMergeData (FPTx Debug Function)” on page 543 registers in Appendix A.

Writing and Reading DMEMs
The FP Tx and Rx each have a 12K data memory which can be accessed with global reads
and writes, using the addresses from the “TxByte Processor Memory Map” on page 158
and “RxByte Processor Memory Map” on page 168.

• The FP Tx uses 2KB for storing payload for its 8 active flows, 8KB for up to 128
descriptors, and the remainder for BTags to be deallocated.

• The FP Rx uses 10KB for storing payload in 64B buffers (one for each of 159 concurrent
flows), and 2KB for storing BTags.

Reading TLU Responses
The TLU response area in the FP Rx (256Bytes) can be globally read for debug purposes
only, at the locations specified in the “RxByte Processor Memory Map” on page 168.

Table 34 Rx Flow Table Fields

Address[3:2] Data[31:0]

00 btag[15:0], offset[15:0]

01 3‘b0, pool[4:0], buffer[7:0], length[15:0]

10 21‘b0, Drop, Queue Valid, Queue[8:0]

11 Reserved

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 199

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Interface
Configuration and
Operation

FP Payload Bus Bandwidth
Depending on the bandwidth needed by an FP application, the payload bus should be
configured to allocate a higher proportion of its bandwidth to the FP. This is accomplished
via a bit called Payload Bus Arbiter FP More Slots bit in the XP Miscellaneous Control
Register in the XP. For details about the specific registers, begin with Table 135 on
page 447 and “Serial Bus Configuration Register (XP Miscellaneous Control Function)” on
page 467.

Network Processor-to-Network Processor Operation (Back to back)
Two C-5s can be directly connected via the fabric port. In this configuration, the Network
Processors should be configured in Utopia 3 mode, with the FP Tx's configured as an ATM
device and the FP Rx's configured to be PHY devices.

FP Interface Modes
The FP interface can be configured to operate in a number of different modes:

• Utopia 3

• Utopia 2

• PRIZMA

• PowerX

Utopia Modes The FP Tx can be configured to operate using either the Utopia 1/2 or Utopia 3 protocol.
For either protocol, it can be programmed to operate as either the ATM (master) device or
the PHY (slave) device. As an ATM device, the interface can be operated with an 8-, 16-, or
32bit bus width. As a PHY device, it can only be operated with a 16- or 32bit bus width.

For Utopia 2 or 3, set the Interface field appropriately in the RxFI register. The FP Tx
naturally defaults to Utopia 3 mode unless one of the Utopia 2, PRIZMA or PowerX mode
bits is asserted in the TxFI register. For Utopia 2, set the U2 Mode and U2 Tristate Enable
bits in the TxFI register. For details about the specific registers, see “TxFI_Configuration
Register (FP Tx Configuration Function)” on page 530 in Appendix A.

See Table 35 and Table 36 on page 200, Utopia1, 2, and 3 ATM Mode and PHY mode, C-5
Network Processor to Fabric Interface Pin Mapping.

For More Information On This Product,

 Go to: www.freescale.com

200 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP Utopia Operation Because the Utopia specifications are ambiguous and subject to interpretation, this
document provides C-Port's interpretation of the specifications as well as the notes about

Table 35 Utopia1, 2, 3 ATM Mode, C-5 NP to Fabric Interface Pin Mapping

Rx Signals Tx Signals

C-5 NP I/O Utopia Note C-5 NP I/O Utopia Note

FRXCTL0 Output RxEnb1 Pullup or nc 2 FTXCTL0 Output TxEnb* Pullup or nc

FRXCTL1 Input RxClav Pulldown FTXCTL1 Input TxClav Pulldown

FRXCTL2 Input RxSOC Pulldown FTXCTL2 Output TxSOC Pulldown

FRXCTL3 Input n/a Pullup or
Pulldown

FTXCTL3 Input n/a Pullup or
Pulldown

FRXCTL4 Input n/a Pullup or
Pulldown

FTXCTL4 Input n/a Pullup or
Pulldown

FRXCTL5 Input n/a Pullup or
Pulldown

FTXCTL5 Input n/a Pullup or
Pulldown

FRXCTL6 Input RxPrty FTXCTL6 Output TxPrty

1 Active Low
2 No Connection

Table 36 Utopia1, 2, 3 PHY Mode, C-5 NP to Fabric Interface Pin Mapping

Rx Signals Tx Signals

C-5 NP I/O Utopia Note C-5 NP I/O Utopia Note

FRXCTL0 Input TxEnb1 Pullup FTXCTL0 Input RxEnb* Pullup

FRXCTL1 Output TxClav Pulldown or nc 2 FTXCTL1 Output RxClav Pulldown or nc

FRXCTL2 Input TxSOC Pulldown FTXCTL2 Output RxSOC Pulldown

FRXCTL3 Input n/a Pullup or
Pulldown

FTXCTL3 Input n/a Pullup or
Pulldown

FRXCTL4 Input n/a Pullup or
Pulldown

FTXCTL4 Input n/a Pullup or
Pulldown

FRXCTL5 Input n/a Pullup or
Pulldown

FTXCTL5 Input n/a Pullup or
Pulldown

FRXCTL6 Input TxPrty FTXCTL6 Output RxPrty

1 Active Low
2 No Connection

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 201

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

the C-5 NP's implementation. Where aspects of the Utopia specifications are optional,
whether C-5 NP supports them or not is described.

This document attempts to clarify the Utopia standards by reducing them to a few
assertions, with references to the Utopia specifications from the ATM Forum Technical
committee. The following versions of the document were used:

• Utopia Specification Level 1, Version 2.01, af-phy-0017.000, March 21, 1994

• Utopia Level 2, Version 1.0, af-phy-0039.000, June 1995

• Utopia 3 Physical Layer Interface, af-phy-0136.000, November, 1999

Utopia 3

General Compliance
• Must support single PHY operation; multi-PHY support is optional - C-5 NP supports

single PHY only

• Must support at least one of 8-, 16-, or 32bit interface - C-5 NP supports 8, 16, and 32

• Must support 52Byte cells

• Parity pin/support is optional - C-5 NP supports parity

• The C-5 NP only supports full transfer (cell-level handshaking). Once cell transmission
starts, the cell is transferred, uninterrupted. (Section 2.2.5)

• RxClk and TxClk are never driven by the C-5 NP. They are inputs

Control Signals
The "cell transfer" period referred to in the descriptions below refers to the consecutive
bus cycles, starting with the cycle in which Start of Cell (SOC) is asserted and lasting the
number of bus cycles required to transfer the fixed cell size. The first cycle of a cell transfer
is the cycle in which SOC is asserted. All cycles during the cell transfer are valid data cycles.

Table 37 C-Port Supported Utopia Modes

Bus

Width
(bits)

U1

PHY

U1

ATM

U2

PHY

U2

ATM

U3

PHY

U3

ATM

32 n/a n/a n/a n/a Yes Yes

16 n/a n/a Yes Yes Yes Yes

8 No Yes No Yes No Yes

For More Information On This Product,

 Go to: www.freescale.com

202 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

"Asserted" and "deasserted" are used as logical terms, and correspond to different logic
values depending on the active state of the signal. For example, RxEnb and TxEnb are
active low, therefore asserted is a logic value of 0 and deasserted is a logic value of 1.

TxClav Specification
• Asserted by PHY to indicate readiness to accept a cell

• Can change from deasserted to asserted at any time

• Can only change from asserted to deasserted two cycles after the cycle in which
TxSOC is asserted (Section 3.2.1)

• Once asserted (indicating readiness to accept a cell), it must stay asserted until
associated cell transfer begins (Section 3.2.1)

TxEnb Specification
• Asserted during cell transfer

• Can only change from deasserted to asserted if TxClav was asserted two cycles
previously (Section 3.1.1)

• Can only change from deasserted to asserted with the assertion of TxSOC

• Can only change from asserted to deasserted at end of cell transfer

• Must be deasserted at end of cell if another cell is not starting immediately after the
current one.

In Utopia 3 mode, C-5 NP ignores the TxEnb signal and considers there to be valid cell
data on the data lines for consecutive cycles starting with an SOC cycle, until the fixed
cell size number of Bytes have been received.

TxSOC Specification
• Asserted for one cycle to indicate first cycle of cell

• Can only be asserted for a single cycle

• Can only be asserted when TxEnb is asserted (Section 3.1.1)

• Can only be asserted when TxClav was asserted for the two previous cycles

• Cannot be asserted in the middle of cell transfer

RxClav Specification
• Asserted by PHY whenever it has a cell available to transfer

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 203

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• Can only change from asserted to deasserted at the same time RxSOC changes from
deasserted to asserted (Section 3.2.2); that is, If the PHY does not have a subsequent
cell to transmit, it must indicate so at the beginning of the current cell

• Once asserted, it must stay asserted until the cycle after the next RxSOC assertion
(Section 3.2.2)

• Can change from deasserted to asserted at any time

RxEnb Specification
• Asserted "in response" (Section 3.2.2) to RxClav assertion to "initiate" (Section 3.1.2)

a cell transfer

• Can only change from deasserted to asserted when RxClav was asserted 2 cycles
before

• Must remain asserted during the cell transfer, at least until two cycles before end of cell
(Section 3.2)

• Must be deasserted two cycles before end of cell if:

– Another cell cannot be received or

– RxClav has been deasserted during the cell transfer

• Once asserted (indicating readiness to accept a cell), it must stay asserted until an
associated cell transfer begins

RxSOC Specification
• Asserted for one cycle to indicate first cycle of cell

• Can only be asserted for a single cycle

• Can only be asserted when RxEnb was asserted for the two previous cycles

• Cannot be asserted in the middle of cell transfer

Utopia 2

General
Handshaking response time is expected to be one cycle, not two like Utopia 3. For
example, if RxEnb is deasserted during the middle of a cell transfer for one cycle, the
Utopia PHY is expected to insert one invalid data cycle on the very next cycle.

Clocks are expected to be provided by (outputs from) the ATM device. The C-5 NP does
not drive any clocks. It requires them to be inputs.

For More Information On This Product,

 Go to: www.freescale.com

204 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The C-5 NP only supports cell-level handshaking.

C-Port recommends that a Utopia 1 or 2 PHY device tristate the RxSOC, RxData (and we
presume RxPrty) lines during cycles following cycles where RxEnb is not asserted. C-5 NP
implements this recommendation.

Control signals
The "cell transfer" period referred to in the descriptions below refers to the consecutive
bus cycles, starting with the cycle in which SOC is asserted and ending with the valid bus
cycle which transfers the last Byte of the fixed cell size. During the cell transfer there can
be any number of invalid data cycles as indicated by deassertion of the Enb signal. The
first cycle of a cell transfer is the cycle in which SOC is asserted.

"Asserted" and "deasserted" are used as logical terms, and correspond to different logic
values depending on the active state of the signal. For example, RxEnb and TxEnb are
active low, therefore asserted is a logic value of 0 and deasserted is a logic value of 1.

TxClav Specification
• Asserted by PHY to indicate readiness to accept a cell

• Can change from deasserted to asserted at any time.

• Can change from asserted to deasserted any time.

• Once asserted (indicating readiness to accept a cell), it must stay asserted until an
associated cell transfer begins.

• Must deassert 4 cycles before the end of a cell transfer to avoid transfer of a
subsequent cell. If asserted 4 cycles before the end of a cell transfer, it must stay
asserted at least until a subsequent cell transfer begins.

As recommended by the Utopia specification, C-5 NP will keep TxClav asserted
through the cell transfer until at least the fourth cycle before the end of the cell.

TxEnb Specification
• Asserted during valid cycles of a cell transfer

• Must be asserted with TxSOC

• Can be deasserted during a cell transfer to indicate invalid data cycles. When TxEnb is
deasserted, data on TxData is invalid.

• Cannot be asserted when a cell transfer is not in progress

The C-5 NP will not deassert TxEnb during a cell transfer.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 205

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSOC Specification
• Asserted for one cycle to indicate first cycle of cell

• Can only be asserted for a single cycle

• Can only be asserted when TxEnb is asserted

• Can only be asserted when TxClav was asserted in the previous cycles

TxSOC cannot be asserted in the middle of cell transfer

RxClav Specification
• Asserted by PHY whenever it has a cell available to transfer

• Can change from deasserted to asserted at any time

• Once asserted, it must stay asserted until the cycle after the next cell transfer begins

• Must remain asserted throughout a cell transfer

• Must be asserted to coincide with the cycle following the last cycle of a cell transfer to
allow back-to-back cell transfer.

RxEnb Specification
• Asserted in response to RxClav assertion to a cell transfer

• Must be asserted with RxSOC

• Can only change from deasserted to asserted when RxClav was asserted in the
previous cycle

• Must be deasserted one cycle before end of cell if a subsequent cell cannot be
received.

• Can be deasserted during a cell transfer to indicate invalid data cycles. When RxEnb is
deasserted, data on RxData in the following cycle is invalid.

C-5 NP will not deassert RxEnb during a cell transfer.

RxSOC Specification
• Asserted for one cycle to indicate first cycle of cell

• Can only be asserted for a single cycle

• Can only be asserted when RxEnb was asserted in the previous cycle

• Cannot be asserted in the middle of cell transfer

For More Information On This Product,

 Go to: www.freescale.com

206 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

C-5 NP will tristate RxSOC in cycles following cycles where RxEnb is deasserted.

PRIZMA Mode The FP can be configured to operate with the IBM PRIZMA switching fabric. The interface
to the PRIZMA fabric is through the UDASL chip. In PRIZMA fabric terminology, the
segment is called a "packet". That term will be used in this section.

See Table 38 on page 208, PRIZMA Mode, C-5 NP to Fabric Interface Pin Mapping.

While the PRIZMA fabric supports operation up to 125MHz, the C-5 NP will only support
operation up to 110MHz.

This sectionexplains how the C-5 NP handles the following PRIZMA mode parameters.

• Packet Sizes

• In-Band Flow Control

• Link-Level Flow Control

• Idle Packets

• Queue Grants

• Packet Sizes

The PRIZMA fabric supports packet sizes between 64 and 80Bytes. The C-5 NP
supports this range of packet sizes but packet sizes must be a multiple of 4Bytes. The
PRIZMA fabric must be configured to place the packet qualifier Byte as the first Byte
of the header. Typically, the destination bitmap (on ingress to the fabric) or queue
grants (on egress from the fabric) would be the next Bytes of the header but there is
no requirement for this. Because microcode generates the PRIZMA address bitmap
and processes, the queue grant bits in the PRIZMA header, the PRIZMA fabric can be
configured to have 16 or 32 queues per priority.

• In-Band Flow Control

When operating with a PRIZMA fabric, the fabric is configured to use in-band flow
control and the Utopia protocol Enb and Clav signals are not used. The Enb inputs to
the C-5 NP should be pulled down and the Clav inputs to the UDASL chip should be
pulled up. The SOC pins of the C-5 NP and the UDASL should be connected.

When using in-band flow control, the FP Tx generates PRIZMA-format idle packets
whenever it has no segments to transmit or whenever it has been paused by the
PRIZMA fabric. Packets (data or idle) are transmitted from the C-5 NP in an absolutely
back-to-back fashion on the interface; that is, there will be no unused cycles on the

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 207

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

bus. The C-5 NP must be configured to generate idle packets using the TxFI
Configuration register to enable idle packet generation and the TxDM Header/Payload
Delimiter register to specify the length of idle packets so they are the same length as
data packets. The TxIdleHdr register must be programmed to a value of 0xCCCCCCCC
so that the content of idle packets is correct.

For details about the specific registers, see TxFI_Configuration Register (FP Tx
Configuration Function) and TxDM_Header/Payload Delimiter Register (FP Tx
Configuration Function) in Appendix A.

When idle packets are generated, no microcode generated header is used, so PRIZMA
microcode needs no support for idle packet header generation.

• Link-Level Flow Control

If the C-5 NP requires link-level flow control, the FP Tx will assert the TxPause bits in
the PRIZMA packet qualifier Byte of the packets that it transmits. The FP Tx will always
assert or deassert all four of the TxPause bits together; that is, if one TxPause bit is
asserted (deasserted) all TxPause bits are asserted (deasserted).

The C-5 NP presumes that the UDASL chip is configured to use full inband flow control
in such a way that, when the UDASL's input FIFO fills and it requires link-level flow
control, it is expected to deassert the shared memory grant bit, for at least one
priority, in the packet qualifier of packets that it transmits to the C-5 NP. This occurs
while the FP Rx extracts PRIZMA shared memory grant information from the packet
qualifier Byte of each packet; microcode does not have to do this.

If a shared memory grant is lost for any priority, the C-5 NP will pause all data packet
transmission and transmit only idle packets to the fabric. After the C-5 NP powers up,
it does not allow the FP Tx to transmit until it has received a PRIZMA packet with a
shared memory grant for each of four priorities. Because of this, the PRIZMA fabric
must be operated using 4 priorities or, if fewer priorities are to be used, the fabric
must first be configured for 4 priorities so that it generates idle packets with shared
memory grants for each of four priorities and then, reconfigured to the desired
number of priorities.

• Idle Packets

The FP Rx expects that idle packets will be received whenever the fabric has no data
packets to transmit or whenever the C-5 NP has paused the fabric. FP Rx data splitting
registers must be configured to appropriately identify and split idle packets. Idle
packets should be configured so at least 32Bytes are treated as payload. Microcode
must recognize and discard idle packets. See “Discarding Segments” on page 176

For More Information On This Product,

 Go to: www.freescale.com

208 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When the PRIZMA fabric is paused, it will stop transmitting data packets but will
continue to transmit idle packets into the C-5 NP. Because some portion of these
packets must be directed into the payload FIFO, the payload FIFO may eventually
overflow and lose some of this idle packet data. This is not a problem because this
payload would be discarded when it is popped from the payload FIFO anyway. Refer
to the section regarding “Rx Drop Mode” on page 177.

• Queue Grants

Queue grants in PRIZMA headers sent into the C-5 NP can be handled by FP Rx
microcode so they generate per-queue flow control messages to the FP Tx.

Configuring for PRIZMA Mode
To configure the FP to operate with a PRIZMA interface, the interface is configured
essentially like it is for 32bit Utopia 3 PHY operation with a few small changes and
additions. These differences are:

• The PRIZMA bit of the FP TxFI Configuration register must be set

• The Interface field of the FP RxFI Configuration register must have a value of four.

• The idle cell enable bit of the FP TxFI Configuration register must be set

• The TxIdleHdr register must contain a value of 0xCCCCCCCC

• The idle packet length field of the TxDM Header/Payload Delimiter register must be
programmed with a value which is 1 less than the number of fabric interface cycles
required to transmit a packet

For details about the specific registers, see “TxDM_Header/Payload Delimiter Register (FP
Tx Configuration Function)” on page 532 in Appendix A.

While the C-5 NP supports the basic protocol of the PRIZMA fabric, a particular
application may not be possible due to limitations of microcode space and cycle time.
Consult the PRIZMA application note to understand some of the trade-offs involved in
developing a PRIZMA application.

Table 38 PRIZMA Mode, C-5 Network Processor to Fabric Interface Pin Mapping

Rx Signals Tx Signals

C-5 NP I/O Utopia Note C-5 NP I/O Utopia Note

FRXCTL0 Input TxEnb1 pulldown
(not connected to
fabric) 2

FTXCTL0 Input RxEnb* pulldown
(not connected to
fabric)

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 209

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PowerX Mode The FP can be configured to operate with the PowerX TeraChannel� Switch Fabric.

See Table 39 on page 212, PowerX Mode, Fabric Interface to Pin Mapping.

The C-5 NP supports the 32bit PowerX interface, not the 16bit interface.

The C-5 NP transmits: invalid data, start of frame data, valid frame data, pause, and resume
PowerX bus cycles. It never transmits abort or flow control cycles.

C-5 NP supports: the receipt of invalid data, start of frame data, valid frame data, pause,
and resume and flow control bus cycles. It ignores abort or reserved bus cycles that it
receives.

Constraints
The C-5 NP can be programmed to support any of the PowerX frame types, however it
may not be possible to support all types in a single application given microcode and
configuration constraints. The use of the service channel and urgency fields of the PowerX
header is completely a function of the application microcode.

Requirements
The payload length field of the PowerX header must be generated by FP Tx microcode. FP
Tx hardware makes the current segment length available to microcode for this purpose.
FP Rx hardware extracts the payload length field of the PowerX header on frames that it

FRXCTL1 Output TxClav nc FTXCTL1 Output RxClav nc

FRXCTL2 Input TxSOP Pulldown FTXCTL2 Output RxSOP Pulldown

FRXCTL3 Input n/a Pullup or
Pulldown

FTXCTL3 Input n/a Pullup or
Pulldown

FRXCTL4 Input n/a Pullup or
Pulldown

FTXCTL4 Input n/a Pullup or
Pulldown

FRXCTL5 Input n/a Pullup or
Pulldown

FTXCTL5 Input n/a Pullup or
Pulldown

FRXCTL6 Input TxPrty Pullup or
Pulldown, unless
connected to
TxPrty

FTXCTL6 Output RxPrty nc

1 Active Low
2 No connect

Table 38 PRIZMA Mode, C-5 Network Processor to Fabric Interface Pin Mapping (continued)

Rx Signals Tx Signals

C-5 NP I/O Utopia Note C-5 NP I/O Utopia Note

For More Information On This Product,

 Go to: www.freescale.com

210 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

receives to determine when the frame has been completely delivered. There is no need
for FP Rx microcode to process the payload length field.

The FP Tx can optionally generate variable-length frames which the PowerX fabric
supports. When configured to do so, the FP Tx generates fixed, maximum-sized frames for
all frames of a PDU except the last one. For the last frame of the PDU, the FP Tx transmits
the shortest possible frame (which is a multiple of 4Bytes). For short frames, dead cycles
will be inserted as necessary to meet the minimum SOF-to-SOF spacing as configured in
the “TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)” on
page 532. If variable-length frames are not enabled, the FP Tx will always transmit
maximum-sized frames for all frames of a PDU. The use of variable-length frames can be
enabled via the TxFI Configuration register.

The use of variable-length frames is incompatible with the use of CRC in those frames. If
CRC is to be used, fixed frames must be used.

The PowerX fabric must be guaranteed a minimum number of clock cycles between
consecutive SOF cycles. This is done by setting the Min. Cell Size field mentioned above,
which guarantees a minimum SOF-to-SOF gap by having a minimum size variable frame
length.

The PowerX fabric must be configured to provide a minimum SOF-to-SOF gap to
guarantee that FP Rx microcode can keep up with an extended stream of
minimally-spaced frames (with minimally-spaced flow control cycles interspersed). The
size of this gap is dependent on the performance of the FP Rx microcode. Refer to the
formula in “Performance Requirement” on page 172.

As PowerX flow control bus cycles are received by the C-5 NP, the FP Rx directs the flow
control messages to a control FIFO in one of the Byte Processors. The control FIFOs parallel
the header FIFOs in the two Byte Processors and control messages are delivered
alternately to each of the Byte Processors. The C-5 NP should be configured to direct only
the 2 meaningful Bytes of PowerX flow control bus cycles to a control FIFO. This is done via
the Control Word Size field in the RxDS Configuration Register. For details about the specific
registers, see “RxDS_Configuration Register (FP Rx Configuration Function)” on page 555
in Appendix A.

Byte Processor Unloading
In PowerX mode, when a Byte Processor unloads the header FIFO, it is really unloading the
control or header FIFO. Control FIFO contents take precedence over header FIFO contents
so that if a Byte Processor does a FIFO unload it gets a control FIFO Byte if there are any
present. The Byte Processor can test whether the Byte it has unloaded came from the

For More Information On This Product,

 Go to: www.freescale.com

Fabric Interface Configuration and Operation 211

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

control FIFO instead of the header FIFO using the "control word" test condition. If it is true,
the Byte came from the control FIFO and is part of a flow control message.

For PowerX flow control messages (16bits), just as with headers, the Byte Processors
process the most significant Byte first. Since PowerX uses Little Endian Byte ordering, the
Byte Processor will first see the Byte which was received on pins 7:0, and next see the Byte
received on pins 15:8.

Upon receiving a flow control message, an FP Rx Byte Processor can pause or resume the
corresponding FP Tx queue by writing a flow control message to the FP Tx.

To configure the FP to operate with a PowerX interface the following setting must be
done:

• Set the PowerX bit of the TxFI register (“TxFI_Configuration Register (FP Tx
Configuration Function)” on page 530)

• The Interface field of the RxFI register must have a value of 3 (“RxFI_Configuration
Register (FP Rx Configuration Function)” on page 551)

• Minimum SOF

• Set the Control Word Disable bit of the RxDS Configuration Register to 0
(“RxDS_Configuration Register (FP Rx Configuration Function)” on page 555)

• Set the Control Word Size field of the RxDS Configuration Register to 2
(“RxDS_Configuration Register (FP Rx Configuration Function)” on page 555)

• If variable size frames are desired, the variable size frame enable bit should be set in the
TxFI Configuration register, and CRC turned off (“TxFI_Configuration Register (FP Tx
Configuration Function)” on page 530)

• Set the Byte parity bit of the FP Rx interface configuration register to 1
(“RxFI_Configuration Register (FP Rx Configuration Function)” on page 551

• Set the Parity Mask bit of the RxFI register to 0000111 so that control pins 2:0 are
included in parity calculations

• Enable little endianness in the RxFI and TxFI registers (set Big Endian bit = 0 in both
registers)

• Set the Registered Input bit to 1 in the RxFI register. (The same bit in the TxFI register is
irrelevant for PowerX mode since there are no inputs to the FP Tx.)

While the C-5 NP supports the basic protocol of the PowerX fabric, a particular
application may not be possible due to limitations of microcode space and time. You

For More Information On This Product,

 Go to: www.freescale.com

212 CHAPTER 4: FABRIC PROCESSOR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

should consult the PowerX Application Note to understand some of the trade-offs
involved in developing a PowerX application.

Table 39 Power X Mode, Fabric Interface to Pin Mapping

Rx Signals Tx Signals

C-5 NP I/O Power X Note C-5 NP I/O Power X Note

FRXCTL0 Input RxCtrl[0] Pulldown FTXCTL0 Output TxCtrl[0] Pulldown

FRXCTL1 Input RxCtrl[1] Pulldown FTXCTL1 Output TxCtrl[1] Pulldown

FRXCTL2 Input RxCtrl[2] Pulldown FTXCTL2 Output TxCtrl[2] Pulldown

FRXCTL3 Input RxPrty[3] FTXCTL3 Output TxPrty[3]

FRXCTL4 Input RxPrty[2] FTXCTL4 Output TxPrty[2]

FRXCTL5 Input RxPrty[1] FTXCTL5 Output TxPrty[1]

FRXCTL6 Input RxPrty[0] FTXCTL6 Output TxPrty[0]

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 5
Buffer Management Unit

Chapter Overview This chapter covers the following topics:

• Buffer Management Unit (BMU) Overview

• BMU Physical Memory Organization

• BMU Buffer Memory Organization

• Types of Transactions

• Buffer Memory Transactions

• BTag Management Transactions

• Multi-Use Counter (MUC) Management Transactions

• BMU Configuration Space

• BMU Setup

For More Information On This Product,

 Go to: www.freescale.com

214 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Buffer Management
Unit (BMU) Overview

The Buffer Management Unit (BMU) provides the interface to external SDRAM for the C-5
NP. The BMU partitions the SDRAM into buffers accessible to the Channel Processors (CPs),
the Executive Processor (XP), and the Fabric Processor (FP) for payload storage. The BMU
also provides services for managing the buffer handles called Buffer Tags (BTags) and
services for maintaining BTag reference count tables called the Multi-Use Counters (MUC),
which are used for forwarding payload to multiple targets.

BMU Major Components The major components of the BMU are listed inTable 40 on page 214. In addition,
Figure 45 on page 215 shows the BMU Block Diagram.

Table 40 Major Components of the BMU and Their Functions

Item Function

Memory Controller Processes all requests for SDRAM transactions, primarily buffer memory
requests for Payload storage. Buffer access is made from CP or XP
application software, or the FP hardware using a Payload transaction
Control Block (WrCB0, RdCB0,RxCB0,TxCB0).

BTag Manager Handles BTag allocation and deallocation. BTag operations are made from
CP or XP application software, or the FP hardware using a Payload
transaction Control Block (WrCB0, RdCB0,RxCB0,TxCB0).

Multi-Use Counter
Manager

Handles Multi-Use Counter (MUC) allocation, decrement and automatic
BTag deallocation. MUC operations are made from CP or XP application
software using a Payload transaction Control Block (WrCB0, RdCB0,
RxCB0, TxCB0).

Configuration
Registers

Used for setting up physical and buffer memory configuration, and for
debug and test. Configuration operations are made from CP or XP
application software using loads/stores from/to Global memory space.

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Overview 215

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 45 BMU Block Diagram

BMU

SDRAM

Global
Bus

Interface

Payload
Bus

Interface

Multi-Use
Counters
 Manager

Configuration
Registers

Memory
Controller

BTag
Manager

For More Information On This Product,

 Go to: www.freescale.com

216 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Physical
Memory Organization

The SDRAM memory array is organized as 128bit words operating in accordance with
Joint Electronic Device Engineering Council (JEDEC) specifications at 100MHz and
125MHz (depending on the SDRAM used). This provides a maximum bandwidth of
12.8Gbps or 16Gbps respectively. The BMU supports four-beat bursts of 16 Bytes each,
optimized for 64-Mbyte parts, and for similar parts with four (4) internal banks. The C-5 NP
supports one (1) physical bank of SDRAM, but a number of parts and arrays are supported.
Registered DIMMs can be supported by adjusting timing parameters.

In addition to the 128bit words of user data, the BMU be configured to handle an
additional eleven (11) bits of data, two (2) Out-of-Band (OOB) bits and nine (9) ECC (Error
Correction Code) bits when ECC is enabled.

When the Out-of-Band (OOB) (2bits) and ECC (9bits) are used the total bits stored is
increased from 128bit words to 139bit words. Therefore, the number of parts increase to
accommodate the additional 11bits. Refer to Table 41 on page 216.

All transactions with the SDRAMs are 4 beat bursts=64Bytes of data. Writes of quantities
< 16Bytes are not supported due to the addition of SECDED (Single Error Correcting,
Double Error Detecting) ECC (Error Correction Code) support. Such writes would require
read-modify-write transactions using up twice the write bandwidth.

Table 41 Supported SDRAM Configurations

Parts
Number
of Parts

Capacity
of SDRAM
Card

Address
Bits

Open
Page
Size*

* Open page size is determined by the formula (512KB * Number of Parts). Each part has 512KB of open
page.

Bandwidth
(Min.)

Bandwidth
(Max.)

64Mbx8 18 128MB 27 8KB 1GB@125MHz 2GB@125MHz

64Mbx16 9 64MB 26 4KB

64Mbx32 5 32MB 25 2KB

128Mbx8 18 256MB 28 8KB

128Mbx16 9 128MB 27 4KB

128Mbx32 5 64MB 26 2KB

256Mbx16 9 256MB 28 4KB

256Mbx32 5 128MB 27 2KB

For More Information On This Product,

 Go to: www.freescale.com

BMU Physical Memory Organization 217

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Out-of-Band Bits The Out-of-Band (OOB) bits hold control information that travels with payload data. The
bits are organized as 8bits per 64Bytes of data and stored as 2bits for each 16Bytes.
Therefore, to move all Out-of-Band (OOB) bits [7:0] with 64Bytes of user data the sequence
is: 2bits are stored with the first 16Bytes of data, then the next 2bits are stored with the
second 16Bytes of data, then the next 2bits are stored with the third 16Bytes of data, then
the next 2bits are stored with the fourth and final 16Bytes of user data. Refer toTable 19 on
page 101.

SECDED ECC Support Data stored in SDRAM can be protected by a Single Error Correcting, Double Error Detecting
(SECDED) Error Correction Code (ECC) if ECC is enabled and extra memory is included in the
system. Nine (9) ECC bits can correct all single bit errors and detect all double bit errors
across 130bits (128bits of data and 2bits for OOB) of data read/written per SDRAM clock
cycle. For each 130bit write, nine (9) ECC check bits are generated and stored along with
the user data (typically 128bits). When the data is read back from SDRAM, the nine (9)
check bits are re-generated and checked against the check bits that were stored. If they
are the same, then there is no error. If there is an odd number of bits that differ, then there
is a single bit error. If there is an even number of bits that differ then there is a double bit
error. This is implemented using the ECC Enable single bit register and the Single ECC Error
register, that counts the number of (ECC) errors that have occurred. Refer to Table 52 on
page 240.

For More Information On This Product,

 Go to: www.freescale.com

218 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Buffer Memory
Organization

The Buffer Memory is organized as described in the following sections.

Buffer Pools The BMU divides SDRAM into sections called buffer pools. Pools are intended to provide
protection among the many users of buffer memory, and to allow the applications (via
chip configuration) to carve memory into different size buffers. Up to 30 buffer pools can
be configured. Each Pool Area= (Buffer Size * Number of Buffers). The Pool0 Base to Pool29
Base registers are used to define the base address in SDRAM for a pool (Buffer Memory).
Refer to Figure 46 on page 220.

Configuration software must ensure that pools do not overlap and that there is enough
physical memory to hold all the pools.

Buffers Each buffer pool contains up to 65,536 fixed size buffers. The number of buffers and size
of the buffers can be different for each buffer pool. The number of buffers in a pool must
be a multiple of eight (8) and the size of each buffer must be a power of two (2) between
64kBytes and 64Bytes, excluding 128Byte buffers. The Buffer Size is user selectable using
the Pool0 BTag Shift to Pool29 BTag Shift registers. Refer to Table 42 on page 219 and
Figure 46 on page 220.

Pools are generally configured during system initialization. Unpredictable behavior
results when a pool is accessed prior to initialization. Refer to “BMU Setup” on page 243.

Buffer Tags (BTags) Each buffer in a pool has a handle defined that identifies its location in the pool. These
handles are called Buffer Tags (BTags). There is a one to one relationship between Buffers
and BTags (1Buffer to 1BTag). Each BTag is 2Bytes. The BTags themselves are stored in
SDRAM and inside the BMU. To allocate (assign) a buffer to a CP or XP, software must issue
a BTag read (RdCB) request. Buffers are allocated in multiples of eight (8). The Num BTag0
to Num BTag29 registers are used to set the number of BTags in a Pool. The BTag FIFO
Base0 to BTag Base29 registers are used to define the base address in SDRAM for the Pool
BTag FIFO. Each Pool BTag FIFO Area= (2Bytes * Number of Buffers).

Storage Space (SDRAM Partitions)
The SDRAM space is partitioned using the variables shown in Table 42 on page 219. In
addition, refer to Figure 46 on page 220.

For More Information On This Product,

 Go to: www.freescale.com

BMU Buffer Memory Organization 219

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Buffer Access All transactions with the SDRAM are 64Bytes in length. Access to buffers<64Bytes in
length still requires 64Byte transactions. Operations of <16Bytes of data are not supported
in the BMU. All buffer accesses must be aligned to 16Byte boundaries. The minimum size
of an internal data transfer is 64Bytes, taking four (4) 16Byte slots on the Payload Bus.
Buffer transfers of <64Bytes result in empty slots on the Payload Bus. Buffer writes
of<64Bytes use data masking to suppress the undesired writes to SDRAM.

The BMU is optimized for 64Byte aligned access to buffers. Unaligned transfers are
possible, but require special handling. Refer to “Unaligned Buffers” on page 224.

Table 42 Legal Ranges for SDRAM Partition Variables

Item Range

Number of Pools 0 to 29

Number of Buffers per Pool 0 to 65,535 (must be in multiples of 8)

Individual Buffer Size

Number of BTags per Pool 0 to 65,535 (must be in multiples of 8)

Size Encoded Value

64kB 0

32kB 1

16kB 2

8kb 3

4kB 4

2kB 5

1kB 6

512B 7

256B 8

128B (Not Supported)

64B 10

For More Information On This Product,

 Go to: www.freescale.com

220 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 46 SDRAM Storage Space for User Data Example

Pool0

Pool0
Base Address

Pool0 BTag FIFO
Base Address

Buffer0 Buffer1 Buffer2

Buffern
Pool0 Area=
(Buffer Size * # of Buffers)

Pool0 BTag FIFO Area=
(2Bytes * # of Buffers)

BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)

Pool8
Base Address Buffer0 Buffer1 Buffer2

Buffern

Pool0

Pool8

Pool8 Area=
(Buffer Size * # of Buffers)

Pool29
Base Address Pool29Area=

(Buffer Size * # of Buffers)

Buffer0 Buffer1 Buffer2

Buffern
Pool29

Pool8

Pool8 BTag FIFO
Base Address BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)

Pool8 BTag FIFO Area=
(2Bytes * # of Buffers)

Pool29 BTag FIFO
Base Address Pool29 BTag FIFO Area=

(2Bytes * # of Buffers)
BTag0 (2Bytes) BTag1 (2Bytes) BTag2 (2Bytes)

BTagn (2Bytes)
Pool29

For More Information On This Product,

 Go to: www.freescale.com

Types of Transactions 221

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Types of Transactions The BMU supports seven (7) functions divided into three (3) categories. The different
functions are initiated by CPs, XP or the FP using the Multi-Use Control Blocks by just
changing the fields. Multi-Use Control Blocks use the following registers:
WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr; RxCB0_Sys_Addr,
RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; RdCB0_Sys_Addr, RdCB0_Ctl,
RdCB0_DMA_Addr, RdCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr. Refer to Table 43 on page 221, Table 44 on page
222, and Table 45 on page 223.

Table 43 Multi-Use Control Blocks (for Wr, Rx, Rd and Tx)

Mode Category Function Fields Used Details

• CP to/from
BMU

• XP to/from
BMU

• FP to/from
BMU

Memory
Transactions

Buffer Memory
Transfer
Operation

PoolID, BTag,
Offset

See “Using Wr/Rd Control
Blocks for Payload
Transactions” on page 224
and “Using Rx/Tx Control
Blocks for Payload
Transactions” on
page 224.

BTag
Management
Transactions

Initializing BTags PoolID, BTag,
Command,
Pool

See“BTag Initialization
Operation” on page 226.

Allocating BTags See “BTag Allocation
Operation” on page 229.

Deallocating
BTags

See “BTag Deallocation
Operation” on page 231.

Multi-Use
Counter
Management
Transaction

Allocating
Multi-Use
Counters

See “MUC Allocation
Operation” on page 234.

Decrementing
Multi-Use
Counters

See “MUC Decrement
Operation” on page 236.

Reading
Multi-Use
Counters

See “MUC Read
Operation” on page 238.

For More Information On This Product,

 Go to: www.freescale.com

222 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 44 WrCB0_ Variables per Field for BMU

Register
Field
Name

Bit
Position Description

WrCB0_DMA_
Addr

PoolID 20:16 PoolID —

WrCB0_Sys_
Addr

BTag 31:16 Buffer Tag —

Offset 15:4 Offset —

CMD 15:9 Command —

Pool 8:4 Buffer Pool —

Operation Type Value
Buffer Memory Transfer 0 to 29

BTag 30

Multi-Use Counter 30

Operation Type Value
Buffer Memory
Transfer

Enter the BTag associated with the Buffer. Legal Range= 0 to 65535.

BTag 0

Multi-Use Counter Enter the BTag associated with the counter. Legal Range= 0 to 65535.

Operation Type Value
Buffer Memory Transfer Enter the Offset within a Buffer.

Operation Type Value
BTag Initialization 0

BTag Deallocate 1

Multi-Use Counter Allocation 2

Multi-Use Counter Decrement 3

Operation Type Function Value
BTag Initialization Enter the Pool to write to. 0 to 29

BTag Deallocation Enter the Pool of the Buffer being
deallocated.

Multi-Use Counter Allocation Enter the Pool associated with the counter.

Multi-Use Counter Decrement Enter the Pool associated with the counter.

For More Information On This Product,

 Go to: www.freescale.com

Types of Transactions 223

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 45 RdCB0_ Variables per Field for BMU

Register
Field
Name

Bit
Position Description

RdCB0_DMA_
Addr

PoolID 20:16 PoolID —

RdCB0_Sys_
Addr

BTag 31:16 Buffer Tag —

Offset 15:4 Offset —

CMD 15:9 Command —

Pool 8:4 Buffer Pool —

Operation Type Value
Buffer Memory Transfer 0 to 29

BTag 30

Multi-Use Counter 30

Operation Type Value
Buffer Memory
Transfer

Enter the BTag associated with the Buffer. Legal Range= 0 to 65535.

BTag 0

Multi-Use Counter Enter the BTag associated with the counter. Legal Range= 0 to 65535.

Operation Type Value
Buffer Memory Transfer Enter the Offset within a Buffer.

Operation Type Value
BTag Allocation 0

Multi-Use Counter Read 1

Operation Type Function Value
BTag Allocation Enter the Pool from which to allocate the Buffers. 0 to 29

Multi-Use Counter Read Enter the Pool associated with the counter.

For More Information On This Product,

 Go to: www.freescale.com

224 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Buffer Memory
Transactions

Buffer Memory Transactions are Payload Data Block Moves using Control Blocks (WrCB0,
RdCB0, RxCB0 and TxCB0). Each is described here.

Using Wr/Rd Control
Blocks for Payload

Transactions

Writes to SDRAM and reads from SDRAM use: WrCB0_Sys_Addr, WrCB0_Ctl,
WrCB0_DMA_Addr registers and RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr
registers. Refer to “Write Control Blocks (WrCB0_ , WrCB1_)” on page 91 and “Read Control
Blocks (RdCB0_ , RdCB1_)” on page 95.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr and RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr) are physically located in the respective CPs, XP, and FP and
not in the BMU Configuration Space.

Using Rx/Tx Control
Blocks for Payload

Transactions

Receiving payload to SDRAM and transmitting payload from SDRAM use:
RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr registers and
TxCB0_Sys_Addr,TxCB0_Ctl, TxCB0_DMA_Addr, TxCB0_SDP_Addr registers. Refer to “SDP
RxByte Processor Receive Control Blocks (RxCB0_, RxCB1_)” on page 98 and “SDP TxByte
Processor Transmit Control Block (TxCB0_, TxCB1_)” on page 102.

These registers (RxCB0_Sys_Addr,RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr and
TxCB0_Sys_Addr, TxCB0_Ctl, TxCB0_DMA_Addr, TxCB0_SDP_Addr) are physically
located in the respective CPs, and XP and not in the BMU Configuration Space.

Read/Write Ordering
Since SDRAM is four-way bank interleaved, the BMU uses a round-robin algorithm to
choose requests for each bank. This can result in a read response returning in an order
other than the order they were issued or acknowledged on the buses.

Unaligned Buffers
The memory controller reads and writes to the SDRAM in naturally aligned 64Byte
quantities. Any portion of a naturally aligned 64Bytes block can be read or written;
however, special attention must be given to algorithms that require the crossing of a
64Byte boundary. Any transaction that attempts to read or write a data length from an
address that causes the least significant two (2) bits of offset to increment from 0x3 to 0x0
will wrap. That is, the other bits of the address are not affected. For example, a write of
length 48Bytes to an address with offset bit [1:0]== 0x2 will write memory as shown in
Figure 47 on page 225.

For More Information On This Product,

 Go to: www.freescale.com

Buffer Memory Transactions 225

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 47 Buffer Wrapping

If the intent is to write across the 64Byte boundary then two (2) writes are required. For
the same alignment as above, the first write is length 32Bytes at offset bits [1:0] == 0x2
and the second write is length 16Byte at the address of the next contiguous block. Refer to
Figure 48 on page 225.

Figure 48 Unaligned Buffer Access

Contents Beat 2 Beat 0 Beat 3

Address[1:0] 0 1 2 3 0 1 2 3

First Write Second Write

Contents Beat 0 Beat 1 Beat 0

Address[1:0] 0 1 2 3 0 1 2 3

For More Information On This Product,

 Go to: www.freescale.com

226 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag Management
Transactions

The BMU maintains a BTag FIFO for BTag allocation and deallocation.

Space for the entire BTag FIFO for each pool is located in the SDRAM, the location defined
in the BTag FIFO Base0 to BTag FIFO Base29 registers. BTags are allocated from the FIFO and
deallocated to the FIFO. The BMU reads BTags in groups of eight (8) and collects eight (8)
BTags before writing them back to the FIFO. The BMU maintains an on-chip,
hardware-managed cache that can temporarily store BTags from the various pools. The
BTag cache typically provides quicker access for allocation and deallocation of BTags and
reduces the use of SDRAM bandwidth for BTag management. When the BTag FIFO Cache
is empty, operations bypass directly to SDRAM FIFO space. The BTag FIFO Cache space and
BTag FIFO SDRAM space are extensions of each other rather than a subset/superset
relationship.

BTag Transaction
Functions (Operation

and Examples)

BTag transactions consist of three (3) different functions: Initialization, Allocation, and
Deallocation. BTag transactions are invoked using Control Blocks (WrCB0, and RdCB0).
Each is described here along with examples.

BTag Initialization Operation
Warning: All BTags must be initialized by software before allocating them to access
buffer memory.

BTag Initialization uses a control block (WrCB0) to write starting values from the DMEM of
either the requesting CP or XP to initialize BTag FIFO Space.

The base address of the BTag FIFO SDRAM Space is specified in the BTag FIFO Base address
register for each pool (BTag FIFO Base0 to BTag FIFO Base29). The size of the Pooln BTag
FIFO Area= (2Bytes * Number of Buffers). A BTag must be written for each buffer in the
pool. The number of BTags per pool must be a multiple of eight (8) because all BTags are
written, stored, and read in groups of eight (8).

BTags are 16bit values written to the BTag FIFO Space in groups of 8, 16, 24, or 32. The
write control blocks (WrCB) are used for this purpose. The software must generate a buffer
in local DMEM containing the 16bit BTags. The BTag numbers themselves can be in any
order but they must use all integral values for a given pool from 0 to the number of BTags
minus 1. Internally, BMU hardware takes care of allocating the BTags between BTag FIFO
Cache Space and BTag FIFO SDRAM Space.

For More Information On This Product,

 Go to: www.freescale.com

BTag Management Transactions 227

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag Initialization Example
Buffer Initialization uses a control block (WrCB0) to write the BTags to the BMU from the
DMEM of either the requesting CP or XP.

The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 46 on page 227.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. All 32BTags, (16bit BTags, 128bits) are located inside the
64Byte DMEM as shown in Figure 49 on page 228.

Table 46 WrCB0_ Settings for BTag Initialization

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal range =16 to 64Bytes.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation.

CMD 15:9 Command — Enter 0 for BTag Initialization.

Pool 8:4 Buffer Pool — Pool to write to.
Legal range= 0 to 29

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

Length (Bytes) Number of BTags
16 8

32 16

48 24

64 32

For More Information On This Product,

 Go to: www.freescale.com

228 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 49 BTag Initialization Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

BTag8(16bits) BTag BTag BTag BTag BTag BTag BTag15
BTag0(16bits) BTag BTag BTag BTag BTag BTag BTag7

BTag16(16bits) BTag BTag BTag BTag BTag BTag BTag23
BTag24(16bits) BTag BTag BTag BTag BTag BTag BTag31

=128bits

=64Bytes

For More Information On This Product,

 Go to: www.freescale.com

BTag Management Transactions 229

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag Allocation Operation
Buffer Allocation uses a control block (RdCB0) to read BTags from the BMU into the DMEM
of the requesting CP, XP, or FP. Allocation assigns a particular BTag (from the BMU) to be
used by a particular processor.

BTag Allocation Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 47 on page 229.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. All 32BTags, (16bit BTags, 128bits) are located inside the
64Byte DMEM as shown in Figure 50 on page 230.

Table 47 RdCB0_ Settings for BTag Allocation

Register
Field
Name

Bit
Position Description

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.
Legal range=16 to 64Bytes.

RdCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation.

CMD 15:9 Command — Enter 0 to BTag Allocation.

Pool 8:4 Buffer Pool — Pool from which to allocate the
Buffers. Legal range= 0 to 29

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

Length (Bytes) Number of BTags
16 8

32 16

48 24

64 32

For More Information On This Product,

 Go to: www.freescale.com

230 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 50 BTag Allocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

BTag8(16bits) BTag BTag BTag BTag BTag BTag BTag15
BTag0(16bits) BTag BTag BTag BTag BTag BTag BTag7

BTag16(16bits) BTag BTag BTag BTag BTag BTag BTag23
BTag24(16bits) BTag BTag BTag BTag BTag BTag BTag31

=128bits

=64Bytes

For More Information On This Product,

 Go to: www.freescale.com

BTag Management Transactions 231

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag Deallocation Operation
Buffer Deallocation uses a control block (WrCB0) to write BTags back to the BMU from
DMEM by either the requesting CP, XP, or FP. Deallocation returns a particular BTag (from a
particular CP or XP) back to a pool in the BMU.

BTag Deallocation Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl and WrCB0_DMA_Addr are set as shown in
Table 48 on page 231.

The WrCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first two Bytes inside the first 32bit word of the 64Byte DMEM
holds the BTag (the first two Bytes) as shown in Figure 51 on page 232.

Table 48 WrCB0_ Settings for BTag Deallocation

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line of
DMEM.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — Enter 0 for BTag Operation

CMD 15:9 Command — Enter 1 for BTag Deallocation.

Pool 8:4 Buffer Pool — Pool of Buffers being
Deallocated. Legal range= 0 to 29

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for BTag Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

Length (Bytes) Number of BTags
16 1

For More Information On This Product,

 Go to: www.freescale.com

232 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 51 BTag Deallocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

BTag0(16bits)

For More Information On This Product,

 Go to: www.freescale.com

Multi-Use Counter (MUC) Management Transactions 233

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multi-Use Counter
(MUC) Management
Transactions

Multi-Use Counters (MUC) are used to track buffer accesses when a buffer has multiple
targets (CPs, XP, or FP), such as, a multicast packet. Each time an application running on a
particular CP accesses the Multi-Use buffer, its Multi-Use Counter is decremented. When a
counter reaches zero, all users have accessed the buffer and the BTag is deallocated.

Typically, the software prefetches a number of BTags without knowing whether or not
they are going to be used as single BTags or Multi-Use BTags. That fact only becomes
apparent later during processing, after the buffer has been written to memory. At that
point the software tries to allocate a counter for the Multi-Use BTag from a particular Pool.

There are 1024 8bit counters available. One counter is associated with one (1) BTag at any
one time using a Content Addressable Memory (CAM) array. BTag & PoolID are stored in the
CAM to form the association. An initial Reference Count is stored in the counter. When the
software must associate a counter with a buffer, it sends a command to the BMU to
allocate a MUC. Refer to Figure 52 on page 233.

Figure 52 Multi-Use Counter Table

CAM RAM

BTag & PoolID Counter1 (8Bits)

BTag & PoolID

BTag & PoolID Counter0 (8Bits)

Counter3 (8Bits)

BTag & PoolID Counter1023 (8Bits)
BTag & PoolID Counter1022 (8Bits)

Search Key=BTag3 & PoolID3

Counter Contents=
Reference Count

Match=

Returned Reference Count
for BTag3 & PoolID3

BTag3 & PoolID3 Counter2 (8Bits)

For More Information On This Product,

 Go to: www.freescale.com

234 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MUC Transaction
Functions (Operation

and Examples)

MUC transactions consist of three (3) different functions: Allocation, Decrement, and
Read. MUC transactions are invoked using Control Blocks (WrCB0, and RdCB0). Each is
described here along with examples.

MUC Allocation Operation
MUC Allocation uses a control block (WrCB0) to write an initial reference count from
DMEM of the requesting CP or XP. MUC Allocation assigns the (BTag & Pool) to a MUC
(from the BMU) with the initial reference count.

MUC Allocation Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 49 on page 234.

The WrCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first Byte inside the first 32bit word of the 64Byte DMEM holds
the reference count as shown in Figure 53 on page 235.

Table 49 WrCB0_ Settings for Multi-Use Counter Allocation

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line of
DMEM.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal range= 0 to 65535.

CMD 15:9 Command — Enter 2 for Multi-use Counter
Allocation.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal range= 0 to 29.

WrCB0_DMA_Addr PoolID 20:16 Pool ID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

Length (Bytes) Number of BTags
16 1

For More Information On This Product,

 Go to: www.freescale.com

Multi-Use Counter (MUC) Management Transactions 235

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 53 Multi-Use Counter Allocation Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

Reference Count(8bits)

For More Information On This Product,

 Go to: www.freescale.com

236 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MUC Decrement Operation
MUC Decrement uses a control block (WrCB0) to identify a MUC in the BMU and
decrement the associated reference count. Only one (1) counter can be decremented per
operation. When the MUC decrements to zero, the BMU hardware automatically
deallocates the counter and the associated BTag.

MUC Decrement Example
The write control block (WrCB) is used to send the BMU MUC decrement command. The
bits for WrCB0_Sys_Addr, WRCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 50 on page 236.

The WrCB0_DMA_Addr bits [13:4] LineAddr field is not used as shown in Figure 54 on
page 237.

Table 50 WrCB0_ Settings for Multi-Use Counter Decrement

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to generate a single
line operation.

WrCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal Range= 0 to 65535.

CMD 15:9 Command — Enter 3 for Multi-Use Counter
Decrement.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal Range= 0 to 29.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — Not used.

Length (Bytes) Number of BTags
16 1

For More Information On This Product,

 Go to: www.freescale.com

Multi-Use Counter (MUC) Management Transactions 237

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 54 Multi-Use Counter Decrement Implementation

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

For More Information On This Product,

 Go to: www.freescale.com

238 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MUC Read Operation
A control block (RdCB0) is used to read specific MUC contents from the BMU into DMEM
by either the requesting CP or XP. This function is intended for debug and test purposes. A
MUC read request can read one (1) counter per operation.

MUC Read Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 51 on page 238.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is 16Byte aligned. The first Byte inside the first 32bit word of the 64Byte DMEM holds
the reference count as shown in Figure 55 on page 239.

Table 51 RdCB0_ Settings for Multi-Use Counter Read

Register
Field
Name

Bit
Position Description

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.
Legal value=16Bytes, required to access 1 line
of DMEM.

RdCB0_Sys_Addr BTag 31:16 Buffer Tag — The BTag associated with the
counter. Legal Range= 0 to 65535.

CMD 15:9 Command — Enter 1 for Multi-Use Counter
Read.

Pool 8:4 Buffer Pool — The Pool associated with the
counter. Legal Range= 0 to 29.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 30 for Multi-Use Counter
Operation.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line
address for DMA.

Length (Bytes) Number of BTags
16 1

For More Information On This Product,

 Go to: www.freescale.com

Multi-Use Counter (MUC) Management Transactions 239

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 55 Multi-Use Counter Read Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Rest of 64Byte DMEM

Reference Count(8bits)

For More Information On This Product,

 Go to: www.freescale.com

240 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Configuration
Space

The BMU has memory-mapped Configuration Space that contains a number of registers.
The registers are used for three (3) purposes: physical memory configuration, buffer
memory configuration, and test and debug. Refer to Table 52 on page 240 for a list of
BMU registers by function.

Table 52 BMU Registers

BMU
Register
Types Register Function

Specific Register
Details

Physical
Memory
Configuration

Physical memory size in Bytes. This configuration
register is written with a value representing the
amount of physical memory that software had
determined was present in the system.

See “Memory Size Register
(Miscellaneous Function)”
on page 521.

SDRAM controller configuration register. A write to
this register tells the SDRAM controller the timing
properties of the SDRAM and also initiates the
SDRAM configuration process.

See “SDRAM Config
Register (Miscellaneous
Function)” on page 522.

A single bit in a register that enables the Single Error
Correction/Double Error Detecting (SECDED) error
code if set to 1. ECC is disabled if the register bit is
set to 0.

See “ECC Enable and Test
Enable Register
(Miscellaneous Function)”
on page 523.

Buffer
Memory
Configuration

Starting physical address in SDRAM for each Pool. See “Pool0 Base to Pool29
Base Registers (Buffer Pool
Base Address Function)” on
page 518.

BTag shift amount is an encoded version of buffer
size for each Pool telling hardware how much to
shift the BTag during address calculations.

See “Pool0 BTag Shift to
Pool29 BTag Shift Registers
(Buffer Size for a Pool
Function)” on page 519.

Starting physical address in SDRAM for the BTag
FIFO for each Pool.

See “BTag FIFO Base0 to
BTag FIFO Base29 Registers
(BTag FIFO Base Address
Function)” on page 520.

The number of BTags in each Pool. See “Num BTags0 to Num
BTags29 Registers (Number
of BTags in a Pool
Function)” on page 520.

For More Information On This Product,

 Go to: www.freescale.com

BMU Configuration Space 241

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Test and Debug
Registers

The BMU contains various registers to provide test and debug access to internal state.

Memory Error Reporting
The Single ECC Error register is reset to 0 by hardware. After reset, the register counts the
number of corrected single-bit ECC errors encountered during SDRAM access. Single-bit,
corrected errors are not reported anywhere else.

Error conditions detected by the BMU are generally reported back to the requester except
for single-bit ECC corrected errors and some violations on write transactions. The
Wr_Mem_Violation_Hi and Wr_Mem_Violation_Lo registers capture the global or payload
address of transactions that cause write violations.

Test and
Debug

This read-only register counts the number of single
Error Correction Code (ECC) errors that have
occurred.

See “Single ECC Errors
Register (Miscellaneous
Function)” on page 523.

Control for ECC read and write test modes. See “ECC Enable and Test
Enable Register
(Miscellaneous Function)”
on page 523.

BMU C-5 NP debug register in canonical format. See “Debug Config
Register (Miscellaneous
Function)” on page 524.

These two (2) registers capture the write address of
a transaction that led to a write memory violation.

See
“Wr_Mem_Violation_Hi
Register (Miscellaneous
Function)” on page 525
and
“Wr_Mem_Violation_Lo
Register (Miscellaneous
Function)” on page 525.

Table 52 BMU Registers (continued)

BMU
Register
Types Register Function

Specific Register
Details

For More Information On This Product,

 Go to: www.freescale.com

242 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

ECC Test Modes
The ECC_Enable and Test _Enable register controls error checking during normal
operation. In addition, the ECC Enable and Test Enable register provides ECC write and
read test modes for testing ECC RAMs and portions of the chip data path. When bit [1] ECC
Write Test field is enabled, the ECC WriteTest Bits field bits [10:2] provide the test ECC write
data directly rather than the normal ECC generation logic. When this mode is enabled, all
four (4) 16Byte beats of a payload write transaction write the same test ECC write data.
When ECC Read Test Enable field bit [11] is enabled, rather than checking the ECC, the ECC
bits are returned directly from SDRAM in the least significant 9bits of the data on a
payload read transaction. All four (4) 16Byte beats of the payload read return the
associated ECC data for the beat.

Debug Register
The BMU has a tap for the global debug logic. The Debug Config register controls
multiplexors that allow selection of various BMU events or transactions for routing to the
global debug counters located in the XP. Refer to “XP Debug Mode Register (XP Mode
Configuration Function)” on page 490, and “Debug Counter0 Control Register (XP
Configuration Function)” on page 483.

For complete details about specific registers go to their reference. Refer to “Buffer
Management Unit (BMU) Configuration Registers” on page 512.

For More Information On This Product,

 Go to: www.freescale.com

BMU Setup 243

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Setup Prior to the CP, XP, or FP accessing the SDRAM, the BMU must be set up properly,
configured, and initialized as described in the following steps and using the applicable
registers listed in Table 52 on page 240.

Warning: Attempting to access a buffer pool before it is set up results in unpredictable
behavior.

1 Configure physical memory:

a Write encoded physical memory size (either 64, 128, or 256MBytes) to the Memory
Size register.

b Write memory timing parameters to the SDRAM Config register.

c Hardware disables ECC error correction and detection on reset. Write a 1 to bit [0] of
the ECC Enable register to enable checking.

2 Configure buffer memory:

a Write the physical address for the starting location in SDRAM for each Pool used
into the Pool0 Base to Pool29 Base registers. Pool Base registers for unused Pools
need not be configured.

b Write the BTag shift amount to set buffer size for each Pool used into the Pool0 BTag
Shift to Pool29 BTag Shift registers. Pool BTag Shift registers for unused Pool need
not be configured.

c Write the physical address for the starting location in SDRAM for the BTag FIFO for
each Pool used into the BTag FIFO Base0 to BTag FIFO Base29 registers. BTag FIFO
Base registers for unused Pools need not be configured.

d Write number of BTags for each Pool used into the Num BTag0 to Num BTag29
registers. The number of BTags per pool must be a multiple of 8. Num BTag
registers for unused Pools need not be configured.

3 Initialize BTags:

a All BTags must be initialized before they can be allocated. Initialization software
must write the BTag values to the BTag FIFO for each Pool used using the BTag
initialization payload transaction. Refer to “BTag Initialization Example” on
page 227. BTags can be written in groups of 8, 16, 24, or 32 at a time. Specific values
can be written in any order, but when completely initialized each FIFO must use all
the BTags numbered from 0 to Pool size minus 1.

For More Information On This Product,

 Go to: www.freescale.com

244 CHAPTER 5: BUFFER MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

If memory size is not known at configuration time, software must auto size physical
memory. Hardware sets Memory Size to the maximum value at reset. Software
configures a temporary pool or fabricates a BTag directly (in this case 0) without
allocating and writes to location 0 of physical memory. Then software writes to location
64M and reads back location 0. If location 0 is overwritten, the physical memory limit has
been reached and the address wrapped. If location is not overwritten, software tests the
next physical memory boundary, that is, 128M, and so on until the physical memory
limit is discovered. Then the Memory Size register can be written and buffer memory
configured for normal operation.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 6
Table Lookup Unit

Chapter Overview This chapter covers the following topics:

• Table Lookup Unit (TLU) Overview

• TLU Flow Process

• TLU Supported Table Types

• TLU Table Mapping

• TLU Commands Overview

• TLU Configuration and Status Registers

• TLU Format and Examples of Table Types

• TLU Application Considerations

• TLU Special Applications

For More Information On This Product,

 Go to: www.freescale.com

246 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table Lookup Unit
(TLU) Overview

The Table Lookup Unit (TLU) provides access to application-defined topology, control, and
statistics tables in external SRAM. It accesses an external SRAM array operating at up to
142MHz. Communication between the processors (CPs, XP, and FP) and the TLU is carried
out via messages passed on the Ring Bus. Each processor (16CPs, XP, and FP), as well as
the TLU is a node on the Ring Bus. The Ring Bus uses a 64bit wide data path. Refer to “Ring
Bus Overview” on page 370.

The internal architecture of the TLU is extensively pipelined. Thus, the TLU can service a
number of outstanding requests simultaneously to ensure the most efficient use of the
available external SRAM cycles. Near 100% cycle utilization of the SRAM array is achieved.

The TLU supports several types of table lookup algorithms and provides resources for
efficient generation of table entry addresses in SRAM, “hash” generation of addresses, and
binary table searching algorithms for both exact-match and longest-prefix-match
strategies.

The TLU also provides resources for efficiently managing and manipulating table keys and
associated data. Table entry insertion is performed by the XPRC, CPRCs, or by memory
mapped access to the Ring Bus registers on the XP from an external host processor.

To optimize application performance, the TLU allows: up to eight (8) lookup algorithms,
the mapping of sixteen (16) lookup tables, supports seven (7) different table types, and
configurable table sizes.

The associated data maintenance facilities of the TLU also serve as a high-performance
statistics accumulation resource and as an intermediate storage medium for
segmentation and reassembly (SAR) operations. The C-5 NP uses external 64bit wide
Pipelined Bursting Static RAM (SRAM) modules for storage of its tables. These modules
allow implementation of tables of 220 x 64bit entries at a cycle time of up to seven (7
nanoseconds) using 4Mbit SRAM technology.

For More Information On This Product,

 Go to: www.freescale.com

Table Lookup Unit (TLU) Overview 247

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Major Components The major components of the TLU are listed in Table 53 on page 247. In addition, Figure 56
on page 247 shows the TLU Block Diagram.

Figure 56 TLU Block Diagram

Table 53 Major Components of the TLU and Their Functions

Item Function

Table Lookup
Engine (TLE)

Performs table lookups. The TLE comprises six (6) blocks: command parser,
initial index generation hash, address generation, compare register fetch,
SRAM data latch, and index generation. The TLE supports seven (7)
different table types: Indexed Pointers, Hash, Trie, VP Trie, Key, Data and
External.

SRAM Controller Manages the external storage arrays. The bandwidth to external SRAM is
64bits at 133MHz, achieving an aggregate capacity of 1.04GBytes per
second.

TLU

SRAM
Controller SRAM

SRAM
Data
Latch

Compare
Register

Fetch

Ring
Bus

Interface

Address
Generation

Initial Index
Generation

Index
Generation

Command
Parser

Table Lookup Engine
(TLE)

For More Information On This Product,

 Go to: www.freescale.com

248 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Flow Process The TLU consists of several blocks that allow you to implement a variety of table lookup
algorithms to meet your application needs. In general, its functional blocks are organized
in a basic loop that performs the following functions:

1 Parses a Ring Bus command.

2 Calculates the initial index based on a Key (for example, the head of a Trie or an initial
hash value).

3 Fetches the Key.

4 Compares the index value with the Key (and if they match go to step 6, if no match go
to step 5).

5 Calculates a new index (and then go back to step 3).

6 Fetches the data at the current index.

7 Returns the data to the CPs or XP via the Ring Bus, or to the FP via a dedicated path
between the TLU and FP.

Each block has several programmable, pipelined stages. Each stage, passes data to the
next downstream stage. At any given time, every stage can have valid data, allowing
many TLU operations to occur simultaneously.

TLU Flow Process Details This section describes the transactional flow through the TLU in more detail. All of the
blocks involved in the flow are shown in Figure 56 on page 247.

Ring Bus Interface and Command Parser
The Ring Bus Interface block of the TLU is the only interface between the TLU and the rest
of the C-5 NP. The Ring Bus comprises a receive (Rx) and a transmit (Tx) side.

• The Receive (Rx) section of the Ring Bus Interface monitors the Ring Bus for
commands destined for the TLU. When a command is received (Rx), the command is
removed from the Ring Bus and sent to the TLU’s Command Parser block. TLU
commands can be either an indication or a request message type. Indications are
messages from a source node to a destination node that automatically generates a
confirmation from hardware. Whereas, requests are messages that generate a
response through software. Refer to Table 56 on page 255 for list of the TLU
commands, descriptions and parameters.

For More Information On This Product,

 Go to: www.freescale.com

TLU Flow Process 249

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• The Transmit (Tx) side of the Ring Bus Interface is responsible for returning data to the
requesting CPs or XP. Each Ring Bus slot message returns at most 32Bytes. If more than
32Bytes are requested, then multiple messages are transmitted. Since all Ring Bus
responses are initiated by a specific request, the only command information passed
back to the requesting node (CPs, or XP) is the sequence number. Refer to“Ring Bus
Registers” on page 106, and “Ring Bus Overview” on page 370.

Responses sent to the TLU are discarded.

Initial Index Generation
The Initial Index Generator block calculates the initial index into a table.

Address Generation
The Address Generation block calculates the SRAM address for the next SRAM access. An
address is calculated as follows:

SRAM address = (base_address * 256) + index + offset

The TLU does not support the burst access feature of the SRAMs. Instead, it has an
internal burst counter that automatically increments the address for consecutive reads
and writes.

Compare Register Fetch
The Compare Register Fetch block is responsible for comparing the last SRAM read data
with the current key. Compares occur whenever a find type command (Find, Findw, or
Findr) accesses a Key table. Successful compares allow Findw commands to execute and
Findr commands to return TLU response data.

Each node compare of a Trie or Hash table takes a SRAM cycle.

SRAM Data Latch
The SRAM Data Latch block latches the data from an SRAM read so that it can be
processed by the next stage.

For More Information On This Product,

 Go to: www.freescale.com

250 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Index Generation
The Index Generator block incrementally calculates the next index into a table. Branch
decisions are calculated by examining a number of different operands. These include: the
current Key, fields from the last Key Fetch operation, the current index, and a variety of
internal registers. These internal registers are used to keep track of the current bit position
for tries, pointers for most significant prefix matching, and other general record keeping
functions. After the first calculation is performed, the Index Generation block calculates
the next index for iterative functions.

The Index Generation block can be programmed on a per table basis using one of two (2)
methods for generating a new index. The two (2) methods include:

• Incrementing of the previous index.

• Using a pointer from the previous Key Fetch operation. This method is used for all tries
and hashes. For lists with multiple pointers (that is, tries), the previous stage passes
control information to this block describing the correct pointer to choose.

SRAM Controller
The TLU’s SRAM Memory Controller is designed to maximize the bandwidth utilization of
the SRAMs. The SRAM Memory Controller supports SRAM frequencies to 133MHz using
3.3V LVTTL. The SRAM physical interface supports SRAM technologies up to 64Mbits. Refer
to Table 54 on page 250.

The TLU can perform a read or write operation every cycle using ZBT SRAMs. The physical
interface provides four (4) copies of CEx (chip enable) and WEx (write enable), as well as,
inverted copies of the four (4) MSBs of the address. The multiple CExs and WExs are used
to decrease loading on these signals. The inverted address bits are used for bank
expansion. They are tied to the CE2 and CE2x inputs of the ZBT RAMs for bank expansion.

The SRAM controller does not support bursting. Sequential accesses are generated using
an internal address incrementer.

Table 54 TLU SRAM Configurations

SRAM Technology Minimum Table Size, 1 Bank Maximum Table Size, 4 Banks

1Mb (32k x 32pins) 256kB 1MB

2Mb (64k x 32pins) 512KB 2MB

4Mb (256k x 18pins) 2MB 8MB

8Mb (512k x 18pins) 4MB 16MB

64Mb (4M x 18pins) 32MB (128MB is not supported)

For More Information On This Product,

 Go to: www.freescale.com

TLU Supported Table Types 251

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Supported Table
Types

Networking systems use synchronized tables containing topology and control
information to make forwarding and characterization decisions. Such tables are accessed
in the forwarding path for lookup resolution and forwarding decisions, and are typically
managed by an agent that runs on an application processor that adds, removes, and
modifies entries in these tables. Examples of such databases would be an IP Routing Table
or an ATM Virtual Connection (VC) table. The TLU supports seven (7) different types of
tables listed in Table 55 on page 251 along with their functions. Each table type has a
particular data structure. Search algorithms (lookup algorithms) are constructed by
linking various tables together.

The TLU supports four (4) different Key sizes: 32, 48, 96 and 112bit. In addition,
intermediate key sizes are supported by masking unused bits to zero.

Warning: Ensure all table memory areas are initialized before performing table inserts or
lookups. Possible unreported errors providing erroneous data could occur.

Table 55 Supported Table Types

Item Function

Indexed Pointer Contain entries that point to an entry (via an index) in another table.
This type of table can be used to evaluate a portion of a lookup key.

Hash Used for exact match algorithms. That is, algorithms that require a
lookup key to be matched exactly. Hash tables evaluate the lookup key
via a hash function.

Trie These binary trees provide an efficient means for resolving Hash table
collisions.

Variable Prefix (VP) Trie Used for most-specific match algorithms.

Key Used in exact match algorithms, and contain both the key of an entry
and the associated data.

Data Contain the data associated with an entry. Data tables can be used as a
stand-alone table or as the last table (that contains the associated data
for a previously evaluated key) in a set of tables.

External Used to interface with external lookup engines when it is swapped with
a SRAM bank.

For More Information On This Product,

 Go to: www.freescale.com

252 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table memory in SRAM is divided into sixteen (16) separate tables that are numbered
from (0 to 15).

• Tables (0 to 7) can consist of the following types:

– Data

– Variable Prefix (VP) Trie

– Trie

– Hash

– Index Pointers

– Key

• Tables (8 to 15) can only consist the following types:

– Key

– Data

Each table can be divided into table entries (from 256 to 1024k) that are accessed through
an index. Table entries are a fixed length and can be (from 8Bytes to 1024Bytes) in length.
The table number, number of entries, and entry size are configurable using the TLU
configuration registers.

After creation of the tables, an application has the ability to specify the order in which
lookups are performed through a series of tables. Up to three (3) tables can be linked
together to more efficiently obtain a lookup result. Generally, the table linking is
configured using the Lookup_Algorithm_Configuration1 register. In a linked-table
scenario, the last table must always point to either a Data or Key table, where the
associated data is stored.

For More Information On This Product,

 Go to: www.freescale.com

TLU Table Mapping 253

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Table Mapping The TLU uses virtual tables (VTB#) to access physical tables (TBL#). The TLU has sixteen (16)
virtual tables, these virtual tables are mapped to physical tables using the
Virtual_Table_Configuration register. Each virtual table can mapped to anyone of the
sixteen (16) physical tables. This provides the ability to change the virtual table to physical
table mapping on the fly.

In addition, virtual tables allow you to build and update one (1) copy of a topology table in
the TLU while another table is being used by the forwarding path for lookups. The TLU can
switch between these two (2) tables simply by adjusting the value of the
Virtual_Table_Configuration register to point to the new table. This technique is called hot
swapping of tables.

Mapping Virtual Tables
to Physical Tables

The Virtual_Table_Configuration register controls the mapping of virtual tables to the
physical tables. By changing the value of the TBL# field in the Virtual_Table_Configuration
register, the application can start performing its lookups in the new table as soon as the
new value is written. The Virtual_Table_Configuration register is written to using the TLU
WriteReg (0x0/0x10) command.

Ensure the WriteReg command’s FLUSH field bit [48] is set. This ensures that all table
lookups in progress are completed before changing the virtual to physical table
mapping.

Figure 57 on page 254 shows an example where there are two (2) copies of the Key table:

• One that is actively being used in the forwarding process

• The other is being populated by an application running on the XP or an external host

For More Information On This Product,

 Go to: www.freescale.com

254 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 57 Virtual Table Linking

Original table

New table

Hash - Table 5 Trie - Table 7 Key - Table 12

Key - Table 13

(in use while “original”
table is being updated)

(currently being updated)

Table Number

Virtual Actual

5 5

7 6

12 12

12 13

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 255

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Commands
Overview

The following section describes the eleven (11) commands used to control the TLU. These
commands are sent to the TLU via the Ring Bus. Refer to Table 56 on page 255 for a list of
the TLU commands with their parameters, command ID/extended command ID, returned
data, and function.

Table 56 TLU Commands

Command
(Parameters)

Command
ID/Extended
Command ID

Returned
Data Function

Write
(VTB#, IDX, MSK,
DATA, OFF, LEN)

0x2 None Write data into a virtual table at index.

Read
(VTB#, IDX, OFF, LEN

0x3 Data Reads data from a virtual table.

Find
(ALG#, KEY)

0x6 Virtual Table
Value, Index,
or Error

Finds a key using ALG#. Sets Ring Bus
Error Flag if key is not found.

Findw
(ALG#, KEY, DATA, OFF,
LEN)

0x4 Error Writes data into a table using a key.
Sets Ring Bus Error Flag if the key is
not found.

Findr
(ALG#, KEY,DATA, OFF,
LEN)

0x5 Data, or Error Reads length double words of data
from a vtable# using a key at offset
double words. Sets Ring Bus Error Flag
if the key is not found.

XOR
(VTB#, IDX,
DATA/PCRC, OFF, MSK,
LAST)

0x1 None, or CRC
in CRC mode.

XORs up to a 32bit value to offset. Only
masks of up to four (4) consecutive
bytes are valid.
Note: A special CRC mode exists for
CRC calculations.

Add
(VTB#, IDX, DATA, OFF,
MSK)

0x7 None Adds up to a 32bit value to offset. Only
masks of up to four (4) consecutive
bytes are valid.

WriteReg
(ADDR, DATA)

0x0/0x10 None Write data to TLU register at ADDR.

ReadReg
(ADDR, DATA)

0x0/0x11 Data Read data from TLU register at ADDR.

Echo
(DATA)

0x0/0x04 Data Return data from TLU. For test
purposes.

NOP
()

0x0/0x05 None Inserts a NOP into the TLU pipe. Used
to skip an SRAM access during that
cycle.

For More Information On This Product,

 Go to: www.freescale.com

256 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Command
Parameters

The TLU command parameters along with their functions are listed in Table 57 on
page 256.

Table 57 TLU Command Parameters

TLU
Command
Parameter
Field

TLU
Command
Parameter
Name Function

VTB# Virtual table
number

Virtual tables are mapped to a physical tables using the
Virtural_Table_Configuration register. The actual physical table
(TBL#) accessed is translated using the
Virtual_Table_Configuration register.

IDX Table index
number

The index number points to a specific entire in a table.
The index is used by the Read, Write, Add, and XOR
commands. It is a 24bit value.

OFF Offset The offset in 8Byte increments into the table entry. The legal
range= 0 to 127. The actual SRAM address is given by:
(base_address [table# [vtable#]] * 256)+ (index << size
[table# [vtable#]]) + offset

LEN Length The number of 8Byte words to read. Valid values are:

• 1 for 8Bytes

• 2 for 16Bytes

• 4 for 32Bytes

MSK Mask Byte mask for Writes and Arithmetic Logic Unit (ALU)
operations. Each bit corresponds to one (1) Byte.

ALG# Algorithm
number

The lookup algorithm is a method used for linking up to
three (3) tables together in order to perform a better
search with the last table storing the associated data. Up
to eight (8) algorithms are supported. The legal range= 0
to 7, (0x400 to 0x407). Using the
Lookup_Algorithm_Configuration1 register you can define
each algorithm. The specific algorithm number selects
which of the eight (8) lookup algorithm to use. Refer to
Table 64 on page 286 for an example.

KEY Key The key is used for all find commands (Find, Findw, Findr), to
generate an index using the ALG#. The TLU supports four (4)
different Key sizes: 32, 48, 96 and 112bit. In addition,
intermediate key sizes are supported by masking unused bits
to zero.

ADDR Address Address of a register to write or read.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 257

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CRC parameter is only used in the CRC Mode associated with the XOR command. Refer to
“XOR Command” on page 270.

Detail TLU Commands Each of the eleven (11) TLU commands are described in the following section along with
its purpose, command ID/extended ID, fields, bit positions. Also provided, where
applicable are the command’s data alignment rules, returned data and error types.

Write Command
The Write command is used to write data to the TLU’s SRAM. Two (2) types of writes are
available:

• The first type, is a masked write from one (1) to two (2) bytes in length. The bytes are
selected using the MSK field bits [31:24]. Bytes must be contiguous and aligned on
word boundaries (that is, a mask of 0x06 is illegal, while 0x03 and 0xC0 are both legal
mask values). The write data is contained in the DATA field bits [47:32] in the first
control word.

• The second type, uses consecutive Ring Bus slots to write to consecutive SRAM
locations. Since the write command occupies the first Ring Bus slot, up to three (3)
SRAM locations may be written consecutively. The TLU uses the value in the Ring Bus
length field to determine the actual number of SRAM location to write. For two-slot
writes, the mask can be set at either 0x0F or 0xF0 to write 32bits to the SRAM; or set to
0xFF to write 64bits. For four-slot writes the mask field should be set to 0xFF.

Data written with masks set to anything other than 0xFF generate a read-modify write
cycle. This means that a read occurs and then four clocks later the value is written back to
the SRAM. Note that since this operation is not locked, another process could be
executing a read-modify write on the same address resulting in corrupted data.

DATA Data Data refers to the DATA field in each individual TLU command
format. The purpose of the data field varies based on the TLU
command. Therefore, for the specific definition of the DATA
field refer to the particular TLU command format.

CRC CRC enable This enables the CRC mode.

Table 57 TLU Command Parameters (continued)

TLU
Command
Parameter
Field

TLU
Command
Parameter
Name Function

For More Information On This Product,

 Go to: www.freescale.com

258 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Write Command Format
Purpose Writes data to the TLU’s SRAM.

Command ID 0x2

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name CMD TBL# Rsvd OFF DATA MSK Rsvd IDX

Optional TABLE DATA

Optional TABLE DATA

Optional TABLE DATA

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x2 for Write.

TBL# 60:57 Table Number — Identifies table number. Legal range= 0 to 15.

Reserved 56:55 Read as zero.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for read/write.
Legal range= 0 to 127.

DATA 47:32 Data — Data field for 8 or 16bit (single bus slot) writes. MSK
field determines data alignment in SRAM.

MSK 31:24 Write Mask — Byte mask for single slot writes (8Bytes). The
mask is also used for two-slot and four-slot writes.

Reserved 23:20 Read as zero.

IDX 19:0 Index — Designates a table entry in a given TBL#.

TABLE DATA 63:0 Table Data — Data to write to SRAM. If these fields are present,
then the Data field bits [47: 32] in the first slot is ignored. Set
MSK field bits [31:24] to 0xFF.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 259

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Write Command Data Alignment Rules
• 8bit writes are placed in the DATA field of the first slot and aligned to a byte boundary.

– For masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32] of
slot1.

– For masks of 0x02, 0x08, 0x20, 0x80 data is stuffed into DATA field bits [47:40].

• 16bit writes are also placed in the DATA field bits [47:32] of the first slot.

• 32bit write data is stuffed into TABLE DATA field bits [31:0] of the second slot.

• 64bit write data is stuffed into TABLE DATA field bits [63:0] of the second slot.

• 192bit write data is stuffed into TABLE DATA field bits [63:0] of the second, third, and
fourth slot.

Write Command Returned Data
The Write command does not return any data.

Write Command Error Types
The Write command does not return any errors.

For More Information On This Product,

 Go to: www.freescale.com

260 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Read Command
The Read command is used to read data from the TLU SRAM.

Read Command Format
.

Purpose Read data from the TLU’s SRAM.

Command ID 0x3

Bit Position 63 61 60 57 56 55 54 48 47 20 19 0

Field Name CMD TBL# LEN OFF Reserved IDX

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x3 for Read.

TBL# 60:57 Table Number — Identifies a table number. Legal range= 0 to 15.

LEN 56:55 Length — Tells the TLU how many SRAM locations to access. All
SRAM reads are in multiples of 8Bytes. Number of 8Byte double
words to read - 1. Legal ranges are detailed here:

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write. Legal
range= 0 to 127.

Reserved 47:20 Read as zero.

IDX 19:0 Index — Designates a table entry in a given TBL#.

Encoded
Value Actual Length

0 1

1 2

2 Illegal (Not supported)

3 4

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 261

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Read Command Data Alignment Rules
The Read command does not have these rules.

Read Command Returned Data
The Read command returns the requested data to the calling function (CP or XP). If index
or offset is out of range, the returned data is undefined.

Read Command Error Types
The Read command does not return any errors.

For More Information On This Product,

 Go to: www.freescale.com

262 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Find Command
The Find command attempts to locate a key in a table using a preprogrammed,
linked-table algorithm as specified by ALG#.

Prior to executing this command, ensure the Lookup_Alogorithm_Configuration1
register references the ALG#, using the LNK1, LNK2, or DATA fields. Also, ensure that
reference coincide with the ALG# field bits [60:57] of the Findr command format. If not,
the Find command returns a indeterminate value. Refer to “TLU Table Mapping” on
page 253.

Find Command Format
Purpose Find an index and a table, given a key.

Command ID 0x6

Bit Position 63 61 60 57 56 55 54 48 47 32 31 0

Field Name CMD ALG# Rsvd Reserved KEY_U1 KEY_U2

Optional KEY_L1 KEY_L2

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x6 for Find.

ALG# 60:57 Algorithm Number — Identifies an algorithm to use for the
lookup. Legal range= 0 to 7.

Reserved 56:55 Read as zero.

Reserved 54:48 Read as zero.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle 32bits
of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bit key.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 263

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Find Command Data Alignment Rules
The Find command does not have these rules.

Find Command Returned Data
• The Find command returns a virtual table value and an index. The data is formatted

with the index in the KEY_U2 field bits [31:0] and table in KEY_U1 field bits [35:32].

• If the key is not found, then undetermined data is returned to the calling function (CP
or XP) and the Ring Bus error bit is set to one (1).

Find Command Error Types
If a Find command takes more than 255 SRAM accesses, the Find command times out, the
Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

For More Information On This Product,

 Go to: www.freescale.com

264 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Findw Command
The Findw command performs a Find followed by Write. As with a Find command, it
locates a key in a table using a preprogrammed, linked-table algorithm as specified by
ALG#.

Prior to executing this command, ensure the Lookup_Alogorithm_Configuration1
register references the ALG#, using the LNK1, LNK2, or DATA fields. Also, ensure that
reference coincides with the ALG# field bits [60:57] of the Findw command format. If not,
the Findw command returns a indeterminate value. Refer to “TLU Table Mapping” on
page 253.

Findw Command Format
The Findw has a similar format to Write, except it can only write 8Bytes of data, and does
not support write masks.

Findw 2-slot format:

Findw 4-slot format:

Purpose Find an index and a table, given a key and write data to the TLU’s SRAM.
Note: The Findw accommodates both a 2-slot and 4-slot format, as
shown here.

Command ID 0x4

Bit Position 63 61 60 57 56 55 54 48 47 32 31 0

Field Name CMD ALG# Rsvd OFF KEY_U1 KEY_U2

Field Name TABLE DATA

Bit Position 63 61 60 57 56 55 54 48 47 32 31 0

Field Name CMD ALG# Rsvd OFF KEY_U1 KEY_U2

Field Name KEY_L1 KEY_L2

Field Name TABLE DATA

Optional DUMMY DATA

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x4 for Findw.

ALG# 60:57 Algorithm Number — Identifies an algorithm. Legal range= 0
to 7.

Reserved 56:55 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 265

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Findw Command Data Alignment Rules
The Findw command does not have these rules.

Findw Command Returned Data
The Findw command does not return any data.

Findw Command Error Types
• If the Findw command takes more than 255 SRAM accesses, the Findw command times

out, the Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

• If the key is not found, then the Ring Bus error bit is set to one (1), and the data field
bits [31:0] is set to 0x1.

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write.
Legal range= 0 to 127.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit
key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle
32bits of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bits key.

TABLE DATA 63:0 Table Data — Data to write to SRAM.

DUMMY DATA 63:0 Dummy Data — Dummy field sent when long keys (>48bits)
are used.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

266 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Findr Command
The Findr command performs a Find on a key and then a Read. As with a the Find
command, it locates a key in a table using a preprogrammed, linked-tables algorithm as
specified by ALG#.

Prior to executing this command, ensure the Lookup_Alogorithm_Configuration1
register references the ALG#, using the LNK1, LNK2, or DATA fields. Also, ensure that
reference coincides with the ALG# field bits [60:57] of the FIndr command format. If not,
an the Find commands returns an indeterminate value. Refer to “TLU Table Mapping” on
page 253.

Findr Command Format
Purpose Find an index and a table, given a key and read data from the TLU’s

SRAM.

Command ID 0x5

Bit Position 63 61 60 57 56 55 54 48 47 32 31 0

Field Name CMD ALG# LEN OFF KEY_U1 KEY_U2

Optional KEY_L1 KEY_L2

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x5 for Findr.

ALG# 60:57 Algorithm Number — Identifies an algorithm. Legal values are
0 to 7.

LEN 56:55 Length — Tells the TLU how many SRAM locations to access. All
SRAM reads are in multiples of 8Bytes. Number of 8Byte double
words to read - 1. Legal ranges are detailed here:

OFF 54:48 Offset — Offset (in 8Byte increments) into table entry for read.
Legal range= o to 127.

KEY_U1 47:32 Key Upper 1 — Upper 16bits of a 48bit or 112bit key.

Encoded Value Actual Length

0 1

1 2

2 Illegal (Not supported)

3 4

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 267

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Findr Command Data Alignment Rules
The Findr command does not have these rules.

Findr Command Returned Data
The Findr command returns the requested data to the calling function (CP or XP). If offset
is out-of-range, the returned data is undefined.

Findr Command Error Types
• If a Findr command takes more than 255 SRAM accesses, the command times out, the

Ring Bus error bit is set to one (1), and the data field bits [31:0] is set to 0x2.

• If the key is not found, then the Ring Bus error bit is set to one (1), and the data field
bits [31:0] is set to 0x1.

KEY_U2 31:0 Key Upper 2 — All 32bits of a 32bit key; lower 32bits of 48bit
key; upper 32bits of 96bit key; upper-middle 32bits of 112bit
key.

KEY_L1 63:32 Key Lower 1 — Middle 32bits of 96bit key; lower-middle 32bits
of 112bit key.

KEY_L2 31:0 Key Lower 2 — Lower 32bits of 96bit key or 112bit key.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

268 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Add Command
The Add command behaves similarly to the Write command, except that data is added to
the existing data in the table. Add supports 8, 16, and 32bit add-ends.

• For 8 and 16bit add-ends, the data is packed in the DATA field bits [47:32] of the first
register. The MSK field bits [31:24] is used to identify the correct byte lane of the target
add.

• For 32bit add-ends, the data is located in the lower 32bits of the ADD DATA field bits
[31:0] in the optional register. The MSK field [31:24] is used to indicate if the target is
aligned in the upper half of the SRAM (0xF0) or the lower half (0x0F) of the SRAM. To
read the result of the Add, issue a Read at least four (4) clocks after the Add has been
issued.

The Add command generates a read-modify-write cycle. This means that a read occurs
and then four (4) clocks later the value is written back to the SRAM. This operation
currently is not locked. Another process could be executing a read-modify-write on the
same address resulting in corrupted data.

Add Command Format
Purpose Adds data to a Table Entry.

Command ID 0x7

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name CMD TBL# Rsvd OFF DATA MSK Rsvd IDX

Optional Reserved ADD DATA

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x7 for Add.

TBL# 60:57 Table Number — Identifies a table number. Legal range= 0 to 15.

Reserved 56:55 Read as zero.

OFF 54:48 Offset — Offset (in 8Byte increments) into table entry for write.
Legal range= 0 to 127.

DATA 47:32 Data — Data field for 8 or 16bit (single bus slot) writes. MSK field
determines data alignment in SRAM.

MSK 31:24 Byte Mask — Byte mask for single slot writes (8Bytes).

Reserved 23:20 Read as zero.

IDX 19:0 Index — Designates a table entry in a given TBL#.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 269

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Add Command Data Alignment Rules
• 8bit writes are placed in the DATA field bits [47:32] of the first slot and aligned to a byte

boundary.

– For masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32] of
slot1.

– For masks of 0x02, 0x08, 0x20, and 0x80 data is stuffed into DATA field bits [47:40].

• 16bit writes are placed in the DATA field bits [47:32] of the first slot.

• 32bit write data is stuffed into the ADD DATA field bits [31:0] of the optional register.

Add Command Returned Data
The Add command does not return any data.

Add Command Error Types
The Add command does not return any errors.

Reserved 63:32 Read as zero.

ADD DATA 31:0 Additional Data — Optional Data field for 32bit adds. MSK field
bits [31:24] determines data alignment in SRAM.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

270 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XOR Command
The XOR command behaves similarly to the Add command when CRC field bits [56:55] is
set to 0x0. XOR supports 8, 16, and 32bit operands.

If the CRC field bits [56:55] are set to non-zero, 0x1, then the XOR command functions
differently. Refer to “CRC Mode (Using the Non-zero XOR Command Options)” on
page 272.

XOR Command Format
Purpose Performs partial XOR operation on table data.

Note: The XOR command provides an alternative CRC Mode function
using the available CRC field non-zero options.

Command ID 0x1

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name CMD VTB# CRC OFF DATA MSK Rsvd IDX

Optional Reserved PCRC or XOR DATA

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x1 for XOR operation.

VTB# 60:57 Virtual Table Number — Identifies a Virtual table number. Legal
range= 0 to 15.

CRC 56:55 CRC — This entry is the CRC has detailed here:

OFF 54:48 Offset — Offset (in 8Byte increments) into table for write. Legal
range= 0 to 127.

DATA 47:32 Data — The data to be XORed when using 1-Slot. Mask
determines destination. The TLU always initializes this field to all
zeros at the end of the CRC calculation.

MSK 31:24 Byte Mask — Byte mask for single slot writes (8Bytes)

Encoded
Value Function

00 XOR

01 CRC (non-last)

10 CRC Tx Last

11 CRC Rx Last

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 271

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XOR Command Data Alignment Rules
• 32bit write data is stuffed into bits [31:0] in the optional register, PCRC or XOR DATA

field bits [31:0].

• 16bit writes are placed in the DATA field bits [47:32] of the first slot.

• 8bit writes are placed in the DATA field bits [47:32] of the first slot and aligned to a byte
boundary.

– So for masks of 0x01, 0x04, 0x10, and 0x40 data is stuffed into DATA field bits [39:32]
of slot1.

– For masks of 0x02, 0x08, 0x20, and 0x80 data is stuffed into DATA field bits [47:40].

XOR Command Returned Data
The XOR command does not return any data.

XOR Command Error Types
XOR command does not return any errors.

Reserved 23:20 Read as zero.

IDX 19:0 Index — Designates a table entry in a given TBL#.

Reserved 63:32 Read as zero.

PCRC 31:0 Partial CRC — Generated by the SDP. This value is XORed with the
value at VTB#, IDX, and OFF.

XOR DATA XOR Data — Optional data for 32bit XORs.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

272 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CRC Mode (Using the Non-zero XOR Command Options)
The CRC Mode also uses the same XOR command format. However, if the CRC field bits
[56:55] are set to non-zero, 0x1, then the XOR command functions differently. When a
non-zero value is selected three (3) CRC modes are available. Refer to Table 58 on
page 272.

The TLU expects the target data to be in the format as described in “Partial CRC-32
Support” on page 310. Refer to “Partial CRC-32 Support” on page 310 and this section for
a better understanding of the XOR command CRC Mode functions.

After a CRC Mode has been executed and completed, either a CRC Tx Last (10) or CRC Rx
Last (11). Their data is located in the DATA field bits [47:32] in the XOR command format,
and are transferred to the CRC_Len field bits [47:32] in the Partial CRC-32 Data Entry
Format. The DATA field [47:32] (16bits) should hold a zero (0) for CRC Tx Last (10),
whereas, it should hold a one (1) for CRC Rx Last (11). The DATA field bits [47:32] value is
transferred to the CRC_Len field bits [47:32] which is used to reset the cell counter, that is,
to either a zero (0) or a one (1). Refer to “Partial CRC-32 Support” on page 310.

Table 58 Non-zero CRC Modes and Their Names

Encoded
Value Function Name

00 XOR

01 CRC (non-last)

10 CRC TX Last

11 CRC Rx Last

Table 59 Non-zero CRC Modes and Their Functions

Encoded
Value/
Name Function Details

01/CRC
(Non-last)

If set to 01,then the PCRC optional field bits [31:0] is XORed with the data at index and
offset. CRC_Len field bits [47:32] of the Partial CRC-32 Data Entry Format is
incremented by one (1). Refer to “Partial CRC-32 Data Entry Format” on page 311.

10/CRC
Tx Last

If set to 10, then PCRC field bits [31:0] is XORed as above except, the data is not
written back to SRAM. Instead, a 12bit index is generated from the upper 12bits of
CRC_Len field bits [47:32].

11/CRC
Rx Last

If set to 11, then PCRC field bits [31:0] is XORed as above except, the data is not
written back to SRAM. Instead, a 12bit index is generated from the upper 12bits of
CRC_Len field bits [47:32].

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 273

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CRC Mode Flow
The generated 12bit index, resulting from either a CRC Tx Last (10) or CRC Rx Last (11), is
used to access the Partial CRC table. The Partial CRC table is a 4K table that is used to
convert from CRC-32 to FCS or from FCS to CRC-32, starting at the
CRC-32_FCS_Correction_Table_Base_Address register. The data from this table is rotated
and XORed up to 16 times depending on the bottom four (4) bits of the CRC_Len field bits
[47:32] of the Partial CRC-32 Data Entry Format and finally XORed with the PCRC field bits
[31:0].

For CRC Rx Last (11) only, t he final value is compared with CRC 32_Checkvalue register bits
[31:0]. Next, the TLU returns the data in the CRC data structure with the Ring Bus error flag
set to one (1) to indicate the status of the compare.

For both the CRC Tx Last (10) and CRC Rx Last (11), the TLU resets the PCRC field bits [31:0]
to zero (0).

The XOR DATA field bits [47:32] are copied to the CRC_Len field bits [47:32] in the SRAM
entry.

If CRC field bits [56:55] are set to non-zero, then MSK field bits [31:24] must be set to 0x0F.

CRC Mode Data Alignment Rules
The alternative XOR function does not have these rules.

CRC Mode Returned Data
• For CRC (non-last) (01), does not return any data.

• For CRC Tx Last (10), the returned value is the actual (Full) CRC calculation.

• For CRC Rx Last (11), the final CRC is calculated then compared with the CRC-32
Checkvalue register.

CRC Mode Error Types
• For CRC Rx Last (11) only:

– If a match, then a response is returned. Note: The returned response data should be
ignored.

– If no match, then a response is returned, and the Ring Bus error bit is set to one (1).

For More Information On This Product,

 Go to: www.freescale.com

274 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Write Register Command
The WriteReg command writes data to the register at index.

WriteReg Command Format

WriteReg Command Data Alignment Rules
All registers are 32 bits.

WriteReg Command Returned Data
The WriteReg command does not return any data.

WriteReg Command Error Types
The WriteReg command does not return any errors.

Purpose Write data to a Register.

Command ID 0x0

Extended
Command ID

0x10

Bit Position 63 61 60 56 55 49 48 47 32 31 0

Field Name CMD EXTD Reserved FLUSH ADDR Data

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x0 for Write Register command.

EXTD 60:56 Extended Command — 0x10

Reserved 56:49 Read as zero.

FLUSH 48 Flush — If set during a register write, then the TLU stalls until the
pipe is empty before updating the register. This bit MAY need to
be set if switching virtual tables on the fly.
Note: Using this bit, significantly slows down the TLU.

ADDR 47:32 Address — Address of register to write.

Data 31:0 Write data.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 275

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Read Register Command
The ReadReg command reads a register at an address.

ReadReg Command Format

ReadReg Command Data Alignment Rules
All registers are 32 bits.

ReadReg Command Returned Data
The ReadReg command returns data and returns the value of the register in the lower
32bits of the Ring Bus returned data, while the upper 32bits are undefined.

ReadReg Command Error Types
The ReadReg command does not return any errors.

Purpose Reads data from a Register.

Command ID 0x0

Extended
Command ID

0x11

Bit Position 63 61 60 56 55 48 47 32 31 0

Field Name CMD EXTD Reserved ADDR Reserved

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x0 for a Read Register command.

EXTD 60:56 Extended Command — 0x11

Reserved 55:48 Read as zero.

ADDR 47:32 Address — Address of register to read.

Reserved 23:20 Read as zero.

Reserved 31:0 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

276 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Echo Command
The Echo command “echoes” the input command and returns the input data to the
output. The length of the returned data is always 8Bytes.

Echo Command Format

Echo Command Data Alignment Rules
The Echo command does not have these rules.

Echo Command Returned Data
The Echo command does not return any data.

Echo Command Error Types
The Echo command does not return any errors.

Purpose Copy the input command to the output.

Command ID 0x0

Extended
Command ID

0x04

Bit Position 63 61 60 56 55 32 31 0

Field Name CMD EXTD DATA_U1 DATA_U2

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x0 for the Echo command.

EXTD 60:56 Extended Command — 0x4

DATA_U1 55:32 Data Upper 1 — Data to echo.

DATA_U2 31:0 Data Upper 2 — Data to echo.

For More Information On This Product,

 Go to: www.freescale.com

TLU Commands Overview 277

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

No-Operation (NOP) Command
The NOP command inserts an empty slot into the TLU control pipe, causing the TLU to skip
an SRAM access during that cycle.

Data Alignment Rules for NOP Commands
The NOP command does not have these rules.

Returned Data for NOP Commands
The NOP command does not return any data.

Error Types for NOP Commands
The NOP command does not return any errors.

Purpose Insert an empty slot into the TLU pipeline.

Command ID 0x0

Extended
Command ID

0x05

Bit Position 63 61 60 56 55 0

Field Name CMD EXTD Reserved

Field Name Bit Position Description

CMD 63:61 Command — Set to 0x0 for NOP.

EXTD 60:56 Extended Command — 0x05

Reserved 55:0 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

278 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Configuration
and Status Registers

TLU registers are 32bits wide, are accessed through the Ring Bus, and are addressed with a
16bit address. The TLU supports sixteen (16) table types and eight (8) lookup algorithms.

A table is a collection of entries that are managed by a user application. A table is defined
by: type, number of entries, entry size and other parameters that are specified at table
creation time. Tables are numbered from (0 to 15). Tables (0 to 7) can be: Data, VP Trie, Trie,
Hash, Index Pointers or Key type tables, and tables (8 to 15) can only be Key or Data type
tables.

An algorithm defines a search order for a lookup to the TLU. For example, an algorithm
would instruct the TLU to start a particular search at table3 (Hash), then go to table5 (Trie,
for collision resolution) and do an exact match key comparison and return the associated
data at table12 (Key + Data). Lookup algorithms are numbered from (0 to 7). The lookup
algorithm is a method for linking tables together and is defined using the
Lookup_Algorithm_Configuration1 and Lookup_Algorithm_Configuration2 registers.

For TLU registers ≥ 0x100, the least significant byte defines the table number (TBL#) for
the associated register. For example, to write the Table _Configuration2 register for TBL#6,
the register address would be 0x206.

TLU Registers Nine (9) registers are used to set up the TLU’s virtual tables. The registers are used for four
(4) purposes: CRC-32 mode operation, collecting TLU statistics, configuration of the tables,
and configuration of algorithms.

Table 60 TLU Registers

TLU Register
Type Register Function Specific Register Details

CRC-32 Mode Compares the final CRC-32 checksums. See “CRC-32_Checkvalue
Register” on page 279

Contains base address of 2k Entry
C0rrection Table.

See
“CRC-32_FCS_Correction_Table
_Base_Address Register” on
page 280

Statistics Records the minimum number of TLU FIFO
slots after register reset.

See “TLU_Statistics Register” on
page 280

For More Information On This Product,

 Go to: www.freescale.com

TLU Configuration and Status Registers 279

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Each register is listed here along with its purpose, applicable fields, and parameters:

CRC-32_Checkvalue Register
This register compares the final CRC-32 checksums. It is used with the XOR command, CRC
Mode function.

Table
Configuration

Defines table type’s, size and base address. See “Table_Configuration1
Register” on page 281

Defines the key length for physical tables
(0 to 7).

See
“Table_Configuration2_Lower
Register” on page 283

Defines the key length for physical tables
(8 to 15).

See
“Table_Configuration2_Upper
Register” on page 284

Maps a virtual table to a physical table. See
“Virtual_Table_Configuration
Register” on page 284

Algorithm
Configuration

Assigns virtual tables to an algorithm. See
“Lookup_Algorithm_Configurati
on1 Register” on page 285

Assigns virtual tables to an algorithm for
either a Trie or VP Trie table.

See
“Lookup_Algorithm_Configurati
on2 Register” on page 287

Purpose Used to compare the final Cyclic Redundancy Check (CRC) 32 checksums.

Address 0x0

Bit Position 31 0

Field Name CRC-32CV

Reset Value 0xc704dd7b

Field Name Bit Position Description

CRC-32CV 31:0 CRC-32 Check Value — Used to compare the final CRC-32
checksums.

Table 60 TLU Registers (continued)

TLU Register
Type Register Function Specific Register Details

For More Information On This Product,

 Go to: www.freescale.com

280 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CRC-32_FCS_Correction_Table_Base_Address Register
This register contains the base address of the 2K Entry Correction Table used to convert
from CRC-32 to FCS or from FCS to CRC-32. The 2K Entry Correction Table is used by the
XOR command, CRC Mode function, to calculate a final CRC given a sequence of partial
CRCs.

TLU_Statistics Register
This register records the minimum number of TLU input FIFO slots after the register was
reset. The input TLU FIFO is 68 slots deep (0x44). The register is reset to 0x43 at power up,
or can be reset to an arbitrary value by writing to the register. If values >0x43 are written,
the values are rounded down to 0x43.

Purpose Base address for the 2K Correction Factor table used to convert between FCS
and CRC-32.

Address 0x1

Bit Position 31 16 15 0

Field Name Reserved CRC/FCS Base

Reset Value raz 0x0

Field Name Bit Position Description

Reserved 31:16 Read as zero.

CRC/FCS Base 15:0 CRC/FCS Base Address — This is the base address of the 2k
Entry Correction Table used to convert from FCS to CRC or from
CRC to FCS. The base address format is the same as for
Table_Configuration1 register.

Purpose Records the minimum number of TLU input FIFO slots after the register
was reset.

Address 0x2

Bit Position 31 8 7 0

Field Name Rsvd MINFIFO

Reset Value 0x0 0x43

For More Information On This Product,

 Go to: www.freescale.com

TLU Configuration and Status Registers 281

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 Table_Configuration1 Register

This register defines the table’s type, size and its base address. The TLU SRAM is 64bits
wide and all addressing is on an 8Byte boundary. Therefore, a TLU SRAM address of 1
refers to byte 8, and an address of 8 refers to byte 64, and so on. The base address in
Table_Configuration1 register is the TLU SRAM address divided by 256. Thus, the next base
address is: current base address + (table entry size/8) x number of entries) with the result
rounded up to the next 2KByte boundary.

Field Name Bit Position Description

Reserved 31:8 Read as zero.

MINFIFO 7:0 Minimum FIFO Slots — Records the minimum number of TLU
input FIFO slots after the register was reset.

Purpose Defines the base address, size, and type of the table.

Address 0x100 - 0x10F

Bit Position 31 28 27 26 24 23 16 15 0

Field Name TYPE S SIZE Rsvd BADDR

Reset Value 0 0 0 0 0

Field Name Bit Position Description

TYPE 31:28 Table Type — Defines table type. Legal range= 0 to 6. Refer to
Table 61 on page 282.

S 27 Increment Table Size — Increases the Table Entry Size in VP Trie
tables by one. Must=0 for all other table types.

SIZE 26:24 Table Entry Size — This field defines the size of an individual
table entry. The entry size is 2(Table_Entry_Size +3) + Size bytes. The
minimum entry is 8Bytes and the maximum is 1024Bytes. Refer to
Table 62 on page 282.
Note: VP Tries are a special case of the Size field. The encoding of
S=1 sets the number of entries per index to 3 (3 x 8 = 24Bytes).

Reserved 23:16 Read as zero.

BADDR 15:0 Base Address — Defines the base offset (index) of a table. The
base offset is defined as (BADDR x 8) x 256Bytes. The upper
bounds of the table are not defined.

For More Information On This Product,

 Go to: www.freescale.com

282 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 61 Available TLU Table Types

Table
Type Name Description

0 Data Generic Data Table.

1 VP Trie Variable Prefix Trie. The key is compared with every node down a
branch. The final leaf node then points directly to a data table.

2 Trie Trie with “Patricia” Tree style skip fields. The leaf nodes of this
table typically point to a key table, so that the key can be
matched.

3 Hash The search key is hashed to generate an index into this table. A
node in this table either points to another data table or it points
to another table if there was a collision.

4 Index Pointers A table of indices that are used to link to a new table.

5 Key A Key table is a Data table where the first and second entries are a
key for the associated data. A search key is compared against the
key in the table. If they match then the TLU returns the index (or
data) associated with this key. If they don’t match, then a 0 is
returned.

6 External Used to interface with external lookup engines when it is
swapped with a SRAM bank.

Table 62 Legal Values for the Table Entry Size

Table Type

Table Entry Size (Bits)

112 96 48 32

Data Unrestricted Unrestricted Unrestricted Unrestricted

VP Trie 1 (S=1) 1 (S=1) 1 (S=1) 1 (S=1)

Trie 0 0 0 0

Hash 0 0 0 0

Index Pointers 0 0 0 0

Key ≥0 ≥0 ≥0 ≥0

For More Information On This Product,

 Go to: www.freescale.com

TLU Configuration and Status Registers 283

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table_Configuration2_Lower Register
This register defines the key length of physical tables (0 to 7), (TBL#), which comprises:
Data, VP Trie, Trie, Hash, Index Pointers or Key type tables.

Start Byte Field Usage Based on Table Type
For an Index table lookup, the Start Byte field bits [31:28] tells the TLU where to apply the
mask. This is shown in “Index Pointer Data Entry Format” on page 289, and in Table 65 on
page 289.

• For Hash and Trie tables, the Start Byte field bits [31:28] is not referenced. Instead the
start byte/bit is calculated using the count field in each table’s configuration register.

• For Data, Key, and VP Trie tables, the Start Byte field bits [31:28] is not used and the
value of this field should always be set to zero (0).

Purpose Defines the key length for physical tables 0 to 7.

Address 0x200 - 0x207

Bit Position 31 28 27 24 23 20 19 0

Field Name SB KLEN Rsvd MASK

Field Name Bit Position Description

SB 31:28 Start Byte — Byte to start the mask. If the Key Length = 32bits,
then start must be 2 to 5. Note: The implementation of the Start
Byte field is based on the table type. Refer to “Start Byte Field
Usage Based on Table Type” on page 283.

KLEN 27:24 Key Length — Defines the length of the key as detailed here:
Note: These bits [27:24], are only valid for registers 0x200 to
0x207. Intermediate key sizes are supported by masking unused
bits to zero.

Reserved 23:20 Read as zero.

MASK 19:0 Mask — Masks off the initial index from a hash or a lookup key.

Encoded Value Key Size (bits)

0x4 32

0xC 48

0x7 96

0xF 112

For More Information On This Product,

 Go to: www.freescale.com

284 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table_Configuration2_Upper Register
This register defines the key length of physical tables (8 to 15), (TBL#), which can only be
Key or Data type tables.

Virtual_Table_Configuration Register
This register maps a virtual table (VTB#) to a physical table (TBL#). All TLU commands use a
virtual table number (VTB#) as an argument. The default reset value is the least significant
three (3) bits of the table address, so the default value of the register at address 0x306 is
0x6. All table references are through a virtual table (VTB#).

Purpose Defines the key length for physical tables 8 to 15.

Address 0x208 - 0x20F

Bit Position 31 28 27 24 23 0

Field Name Rsvd KLEN Rsvd

Field Name Bit Position Description

Reserved 31:28 Read as zero.

KLEN 27:24 Key Length — Defines the length of the key as detailed here:
Note: Intermediate key sizes are supported by masking unused
bits to zero.

Reserved 23:0 Read as zero.

Purpose Maps a virtual table to a physical table.

Address 0x300 - 0x30F

Bit Position 31 4 3 0

Field Name Rsvd TBL

Encoded
Value Key Size (bits)

0x4 32

0xC 48

0x7 96

0xF 112

For More Information On This Product,

 Go to: www.freescale.com

TLU Configuration and Status Registers 285

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Lookup_Algorithm_Configuration1 Register
This register assigns virtual tables (VTB#) to an algorithm. It defines the algorithm to use
for the three (3) types of find commands (Find, Findw, and Findr). The data structures have
fields in them that control branching between various tables. The TLU has the capability to
link together up to three (3) different lookup (or “search”) algorithms. The first table is
specified using LNK1 field bits [31:28], the second using LNK2 field bits [26:24], and the
third using DATA field [15:12]. The virtual table’s data is specified with the DATA field bits
[15:12].

Up to eight (8) lookup algorithms may be set up to perform linked-table operations. The
legal range= 0 to 7, (0x400 to 0x407).

For example, to program a hash function, specify VTB#2 as a Hash table, and set LNK1 to 2.
Assuming collision branching to a Trie table, specify VTB#3 as a Trie table, and set LNK2 to
3. The associated data for the table would actually be defined as a Key table type (because
you want to do a full compare on the Key after the Hash). The Key table could then be set
as VTB#6, so the DATA field bits [15:12] would be set to 6.

Indexed accesses do not need to set this register.

Field Name Bit Position Description

Reserved 31:4 Read as zero.

TBL 3:0 Table Number — Physical table number.

Purpose Assign virtual tables to an algorithm.

Address 0x400 - 0x407

Bit Position 31 28 27 24 23 16 15 12 11 8 7 4 3 0

Field Name LNK1 LNK2 Reserved DAT Rsvd Rsvd Rsvd

Field Name Bit Position Description

LNK1 31:28 Link Table 1 — Start lookup at this virtual table.

LNK2 27:24 Link Table 2 — Identifies the second lookup virtual table.

Reserved 23:16 Read as zero.

DATA 15:12 Data — Associated data is in this algorithm.

Reserved 11:4 Read as zero.

Reserved 3:0 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

286 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The supported table linkage combinations are listed in Table 63 on page 286, in which the
Associated Data column lists the type of Data table to which the linkage points.

All other linkage combinations are illegal, and only Key and Data tables can be used as
the “data” table in a linkage.

Up to eight (8) algorithms can be configured using up to the three (3) fields (LNK1, LNK2,
and DATA) contained within this register to perform various lookups. A restriction is that
the last table in a linked-table configuration (algorithm) must always be a Key or Data
type table. Additionally, you can have just two (2) tables configured in a linked-table
algorithm. Refer to Table 64 on page 286.

Table 63 Legal LNK1, LNK2, and Data Types for Lookup_Algorithm_Configuration1 Register

Legal LNK1 Types Legal LNK2 Types Legal Associated Data Types

Index Trie Key

Index VP Trie Data

Hash Trie Key

Trie No table Key

VP Trie No table Data

Table 64 Algorithm Configuration Examples

Algorithm
Lookup_Algorithm_Configuration1 Register

ALG#0 LNK1[31:28]=
VTB7=TBL0=Hash

LNK2[31:28]=
VTB5=TBL2=Trie

DATA[15:12]=
VTB6=TBL1=Key

ALG#1 LNK1[31:28]=
VTB4=TBL0=VP Trie

LNK2[31:28]=
VTB5=TBL2=Index

DATA[15:12]=
VTB6=TBL1=Key

ALG#2 LNK1[31:28]=
VTB5=TBL2=Index

LNK2[31:28]=
Not Used

DATA[15:12]=
VTB3=TBL1=Data

ALG#3 LNK1[31:28]=
Not Used

LNK2[31:28]=
VTB2=TBL2=Trie

DATA[15:12]=
VTB3=TBL1=Data

.

.

.

.

.

.

.

.

.

.

.

.

ALG#7 LNK1[31:28]=
VTB3=TBL0=Hash

LNK2[31:28]=
VTB2=TBL4=Index

DATA[15:12]=
VTB3=TBL1=Data

For More Information On This Product,

 Go to: www.freescale.com

TLU Configuration and Status Registers 287

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 64 on page 286 is only an example, virtual tables and physical tables can be
mapped in many different ways.

Lookup_Algorithm_Configuration2 Register
This register assigns virtual tables (VBT#) to an algorithm only when LNK1 field bits [31:28]
in Lookup_Algorithm_Configuration1 register is either a Trie table or VP Trie table. This
register contains the root index for VP Trie and Trie tables.

Purpose Assign virtual tables to an algorithm, only when the VP Trie or Trie table
is used in LNK1 field of the Lookup_Algorithm_Configuration1 register.

Address 0x500 - 0x507

Bit Position 31 30 29 24 23 20 19 0

Field Name Rsvd CNT Rsvd IDX

Field Name Bit Position Description

Reserved 31:30 Read as zero.

CNT 30:24 Skip Count — Initial skip count for “Patricia” style tries.

Reserved 23:20 Read as zero.

IDX 19:0 Index — Initial index for all VP Tries.

For More Information On This Product,

 Go to: www.freescale.com

288 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Format and
Examples of Table
Types

This section describes the proper data entry format and gives an example of each of the
seven (7) supported table types. These examples are provided to show the difference in
data structure between each table type.

Indexed Pointer Tables
Indexed pointer tables contain entries that point to an entry (via an index) in another
table. Refer to Figure 58 on page 288. This type of table can be used to evaluate a portion
of a lookup key. For instance, you can use an Indexed Pointer table to evaluate the first 8 or
16bits of a 32bit key and use a another table to lookup the rest of the key.

A practical example would be using a 16bit indexed pointer lookup on the first 32bits of a
variable-prefix IP lookup, and then using a VP Trie table to evaluate the remaining 16bits
of the address.

Figure 58 Indexed Pointer Table Data Structure

Index Pointer Table Trie Table

CNT
[0]

F
[1] Rsvd LINK

[100001] Rsvd

CNT
[4]

F
[1] Rsvd LINK

[100010] Rsvd

CNT
[0]

F
[0] Rsvd LINK

[0] Rsvd

CNT
[0]

F
[1] Rsvd LINK

[101010] Rsvd

CNT
[0]

F
[0] Rsvd LINK

[101011] Rsvd
[101011]

[101010]

[100010]

[100001]

Index Pointer Table Entries

Data

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 289

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Index Pointer Data Entry Format

Figure 64 on page 301 provides an examples of how to set up the Table_Configuration2
register for 8 and 16bit index pointer tables.

Bit Position 63 56 55 54 52 51 32 31 24 23 0

Field Name CNT F Rsvd LINK CNTVP Reserved

Field Name Bit Position Description

CNT 63:56 Count — The total number of bits that match traversing down the
branch.

F 55 Chain Flag — A 1 indicates that this node points to a new table in
which to resume the search. A 0 indicates that this node points to
the associated data.

Reserved 54:52 Read as zero.

LINK 51:32 Link — Index of associated data if F = 0 or index to an element in
the next table in the algorithm if F = 1.

CNTVP 31:24 Count VP — The number of bits that match in the parent of the
node pointed to by the LINK field.
Note: This field is only required when the new table is a VP table,
otherwise this field is reserved.

Reserved 23:0 Read as zero.

Table 65 Table_Configuration2 Register Setup Examples

Total Key Size (bits) Index Size (bits) Start Byte Mask

48 8 0 0x00FF

48 16 1 0xFFFF

32 8 2 0x00FF

32 16 3 0xFFFF

For More Information On This Product,

 Go to: www.freescale.com

290 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Hash Tables
Hash Tables are used for exact match algorithms. That is, algorithms that require a lookup
key to be matched exactly. Hash tables evaluate the lookup key via a hash function. The
hash function returns an index into the Hash table that contains an entry that points to
another entry in another table. The table entry pointed to by the Hash table can be either
an entry in a Trie table (used for collision resolution), a data entry in a data table, or a key
to be used for comparison in a key table.

Figure 59 Hash Table Data Structure

Calculating Collisions
You can calculate the number of collisions using a Chi2 distribution. Thus, the probability
of a collision based on random data is:

real entries/# buckets

For example, if you have 64k real 32bit keys and hash to a 18bit index, your hash table
would have 256k buckets. Dividing the 64k entries by 256k indicates that there would be
an average of one (1) collision for every four (4) entries. At most one (1) bucket would
have eight (8) entries, and all of the other buckets would have something less than eight
(8).

TLU Hash Function
The TLU hash function is a fixed function that produces a hash index of the lookup key.
Typically, the hash function exhibits good randomness such that changing one (1) bit in a
key causes approximately half of the bits (in the hash index) to change as a result.

An example of a Hash table is an 802.1D Bridge Forwarding Table. Collisions can be
resolved by having entries that collide point to a Trie table. Ultimately, the entry key and
associated data are stored in a data table.

[0101]

[0110]

[1110]

[1111]

CNT [0] FL [1] Rsvd LINK
[0101] Rsvd

CNT [0] FL [1] Rsvd LINK
[0110] Rsvd

CNT [0] FL [0] Rsvd LINK
[0] Rsvd

CNT [0] FL [0] Rsvd LINK
[1110] Rsvd

CNT [0] FL [1] Rsvd LINK
[1111] Rsvd

Hash Table Entries

Data

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 291

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Hash Data Entry Format

Bit Position 63 56 55 54 52 51 32 31 0

Field Name CNT F Rsvd LINK Reserved

Field Name Bit Position Description

CNT 63:56 Count — The total number of bits that match traversing down
the branch.

F 55 Chain Flag — A 1 indicates that this node points to a new table in
which to resume the search. A 0 indicates that this node points to
the associated data.

Reserved 54:52 Read as zero.

LINK 51:32 Link — Index of associated data of F = 0, or index to an element
in the next table in the algorithm if F = 1.

Reserved 31:0 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

292 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Trie Tables
Trie tables are binary trees that provide an efficient means for resolving Hash table
collisions. A benefit of using Trie tables for collision resolution in conjunction with a Hash
table is that for n keys that collide in the table, only log2(n) entries need to be checked to
resolve the collisions. For collision resolution, only the bits that differ in the collided keys
are checked. Leaf nodes point to a Key table entry that does a complete key match of the
input key. The size of each node of this table structure is 8Bytes or one (1) SRAM location.

The TLU uses a modified “Patricia” tree to store Trie tables.

Trie Data Entry Format

Bit Position 63 56 55 54 52 51 32 31 24 23 22 20 19 0

Field Name CNTL FL Rsvd LINKL CNTR FR Rsvd LINKR

Field Name Bit Position Description

CNTL 63:56 Count Left — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next left branch node.
If the CNTL value is a non-zero, then the CNTL value refers to an
individual bit in the Key, and if that bit value is 0 take left branch
and if the bit is 1 take right branch.
If the CNTL value is 0x00, then this field indicates that the next
node is a leaf node.

FL 55 Chain Flag Left — If 0, continue to next “left” node of this table if
the associated count field is non-zero, or to the Key table entry if
the associated count field is 0. If 1, this node points to the next
table in the algorithm linked-table chain.

Reserved 54:52 Read as zero.

LINKL 51:32 Link Left — Index to the left branch of the Trie if FL = 0, or to the
next table if FL = 1.

CNTR 31:24 Count Right — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next right branch node.
If the CNTL value is a non-zero, then the CNTL value refers to an
individual bit in the Key, and if that bit value is 0 take left branch
and if the bit is 1 take right branch.
If the CNTL value is 0x00, then this field indicates that the next
node is a leaf node.

FR 23 Chain Flag Right — If 0, continue to next “right” node of this table
if the associated count field is non-zero, or to the Key table entry if
the associated count field is 0. If 1, this node points to the next
table in the algorithm linked-table chain.

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 293

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Trie tables evaluate the lookup key one bit at a time. As the table is traversed, the count
fields in the previous node are used to specify which bit of the key is to be evaluated in the
current node. The value (0 or 1) of the bit being evaluated indicates whether to take the
left branch or the right branch (0=left branch, 1=right branch) of the tree.

The use of the count field is shown in Figure 60 on page 294. The 3 in the Hash table’s CNT
field means that the third MSB of the three collision entries is to be used when evaluating
the lookup key in the next “node”. The index value of the entry in the Hash table points the
next entry. In this case, the index points to the “root” node in a new table (a Trie table) to
be used for collision resolution. Examining the third MSB of the collided values shows that
one (1) entry has a bit value of (0) and the other two (2) entries have bit values of (1). The
(0) value indicates to take the left branch from the root node and the (1) value indicates to
take the right branch from the root node.

Since there is only one (1) entry with the third MSB equal to zero (0), the next left branch
node (level 2) in the Trie table can point to the Key table entry that contains the data.

Reserved 22:20 Read as zero.

LINKR 19:0 Link Right — Index to the right branch of the Trie if FL = 0, or the
next table if FR = 1.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

294 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 60 Trie Table Showing Skip Function

However, there are two (2) “collision” entries with a value of (1) for their third bit (00101
and 00110). Thus, the program must move to a lower level in the tree to obtain the correct
indexes (to Key table entries) for each lookup key. Notice that the root node’s CNTR (count
right) field is set to four (4). This means that in the next right node (level 2), the fourth bit
of the lookup key should be evaluated. Again, a bit value of (0) indicates branch left and a
value of (1) indicates branch right, (0=left branch, 1=right branch).

Since there are only two (2) remaining collision entries and their fourth bits are different
(one is a 0 and the other is a 1), both the left and right nodes will match the first four bits
of one of the two unresolved entries and since the CNT is zero (0), each link points to the
correct index into the associated Key table.

0 0 0 1 0
0 0 1 0 1
0 0 1 1 0

Collisions

Hash Table

Root Node [00]
CNTL

[0]
FL
[0] Rsvd LINKL

[000]
CNTR

[4]
FR
[0] Rsvd LINKR

[001]

CNT = 3 Index

Bit Position: 1 2 3 4 5

Node [001]
CNTL
0x0

FL
[0] Rsvd LINKL

[0010]
CNTR

[0]
FR
[0] Rsvd LINKR

[0011]
Key Table Entry

Key Table Entry Key Table Entry

Level 1

Level 2

A count (CNT) of 3 “skips” (or ignore) the first two bits of the lookup
key and use the third bit to decide whether to take the left or right
branch of the next node. If the value of the next bit is zero (0) take
the left, and if the bit is one (1) take the right branch.

A count of 4 for the right branch (CNTR) indicates
that the fourth bit of the lookup key is the one to
compare in the next right branch.

[0011][0010]

[000x]

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 295

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The exact match on the lookup key takes place in the Key table. The Trie is used to resolve
search key values that collided in the Hash table. Thus, the depth of the Trie table needs to
be only deep enough to distinguish two (2) or more keys (depending on the number of
collisions) from each other.

The CNTL (count left) and CNTR fields also allow you to “ignore or skip” one (1) or more bits
in a lookup key and thus omit what would be the corresponding nodes on a branch of the
tree. Thus, if the values for a number of bits in the Trie entries are the same across a
number of entries, the TLU can perform an “exact” match without traversing a level of the
Trie for every bit in the lookup key.

For More Information On This Product,

 Go to: www.freescale.com

296 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Variable Prefix (VP) Trie Tables
VP Trie tables are used for most-specific match algorithms. An entry in a VP Trie table
contains sets of pointers (LINKL, LINKR, and LINKD) and partial key information (VMASK
and PKEY) that allows a TLU lookup to compare a table entry with a key and return the
most-specific match to the lookup key in the table. The last entry (or, in a branch, each
entry) in the table points to the Data table entry where the associated data is stored.

A VP Trie table is typically used in conjunction with an Indexed Pointer table. In this case,
the Indexed Pointer table evaluates either the first 8 or 16bits of a lookup key and the VP
Trie table evaluates the rest of the key. This is a good method for a most-specific match of
a 32bit key value like an IP destination address in the IP routing table.

VP Trie tables can also “skip or ignore” one or more bits in a lookup key in the same way as
Trie tables. But an important difference is their comparison algorithm. Each leaf of a VP
Trie table contains the partial key (PKEY) to that point. If the partial key compare fails, the
previous node in the table that was the “best partial match” is returned. Refer to Figure 61
on page 296.

Figure 61 VP Trie Table Data Structure Showing Skip Function

0 1

0 1

0 10 1

Skip 4

Points to data for 0000001

Points to data
for 00xxxxx

A

B

Search for 0000001 (exact match) returns the value at B.
Search for 0010101 “fails” and returns the value at A.
NOTE: that skip bits are still used in the compares in a VP Trie table.
Thus, fails return to the last good prefix match node.

x

x

x

x

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 297

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Variable Prefix (VP) Tries Data Entry Format

Bit Position 63 56 55 54 53 52 51 32 31 24 23 16 15 0

Field Name CNTL Rsvd C Rsvd LINKL Reserved VMASK PKEY

Field Name Reserved Rsvd C Rsvd LINKR CNTR VMASK PKEY

Field Name Reserved LINKD Reserved VMASK PKEY

Field Name Bit Position Description

CNTL 63:56 Count Left — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next left branch node.
If the CNTL value is a non-zero, then the CNTL value refers to an
individual bit in the Key, and if that bit value is 0 take left branch
and if the bit is 1 take right branch.
If the CNTL value is 0x00, then this field indicates that the next
node is a leaf node.

Reserved 55 Read as zero.

C 54 Compare Node — If this is set to 0, then the LINKD field in this
entry points to an entry in the associated data table in the
algorithm linked-table chain. If this field is set to 1, then do not
use the associated data linked-table (this is a dummy node).

Reserved 53:52 Read as zero.

LINKL 51:32 Link Left — Index to the left branch of the VP Trie.

CNTR 31:24 Count Right — Specifies the position of the bit in the key that is
used to determine whether to take the left or right branch in the
next right branch node.
If the CNTL value is a non-zero, then the CNTL value refers to an
individual bit in the Key, and if that bit value is 0 take left branch
and if the bit is 1 take right branch.
If the CNTL value is 0x00, then this field indicates that the next
node is a leaf node.

VMASK 23:16 Variable Mask — The number of valid bits in this partial key
(PKEY).

PKEY 15:0 Partial Key — The 16bit word that contains the bit indicated by
the count field (CNTL or CNTR) this nodes parent.

LINKR 51:32 Link Right — Index to the right branch of the VP Trie.

LINKD 51:32 Link Data — Points to data associated with this node.

For More Information On This Product,

 Go to: www.freescale.com

298 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Each VP Trie table entry is 24Bytes long and occupies three (3) consecutive 8Byte SRAM
offset locations.

A node’s count field (CNTL or CNTR) generates the offset into the next data structure, and
that it is the previous node’s count field (CNTL or CNTR) that generates the offset into the
current data structure.

When traversing through a node, the TLU compares PKEY with the corresponding bits of
the search key as indicated by the VMASK field. If the PKEY compare passes, the node
replaces the last “best match” node and then moves to the next node in the table. If the
PKEY compare fails, then the last “best match” node is passed to the calling function.

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 299

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 62 VP Trie Table Example 1: Root Node Pointed to by Alg2 Register

Node #2 [1]
CNTL

[0]
Rsv

d
C

[0]Rsvd LINKL
[0000] Rsvd VMAS

K [1]
PKEY

[8000]

Rsvd Rsv
d

C
[0]Rsvd LINKR

[0000]
CNTR

[0]
VMAS
K [1]

PKEY
[8000]

Reserved [0] LINKD
[0002] Rsvd VMAS

K [1]
PKEY

[8000]

Node #3 [x] (Dummy)

CNTL
[2]

Rsv
d

C
[1] Rsvd LINKL

[0005] Rsvd VMAS
K [0]

PKEY
[000

0]

Rsvd Rsv
d

C
[1] Rsvd LINKR

[0002]
CNTR

[0]
VMAS
K [0]

PKEY
[000

0]

Reserved LINKD
[0000] Rsvd VMAS

K [0]

PKEY
[000

0]

Node #5 [0] [Dummy]
CNTL

[4]
Rsv

d
C

[1]Rsvd LINKL
[0001] Rsvd VMAS

K [1]
PKEY

[0000]

Rsvd Rsv
d

C
[1]Rsvd LINKR

[0004]
CNTR

[3]
VMAS
K [1]

PKEY
[0000]

Reserved [0] LINKD
[0000] Rsvd VMAS

K [1]
PKEY

[0000]

Node #1 [00]
CNTL

[0]
Rsv

d
C

[0]Rsvd LINKL
[0006] Rsvd VMAS

K [2]
PKEY

[0000]

Rsvd Rsv
d

C
[0]Rsvd LINKR

[0000]
CNTR

[1]
VMAS
K [2]

PKEY
[0000]

Reserved [0] LINKD
[0001] Rsvd VMAS

K [2]
PKEY

[0000]

Node #4 [01]
CNTL

[0]
Rsv

d
C

[0]Rsvd LINKL
[0007] Rsvd VMAS

K [2]
PKEY

[4000]

Rsvd Rsv
d

C
[0]Rsvd LINKR

[0008]
CNTR

[0]
VMAS
K [2]

PKEY
[4000]

Reserved [0] LINKD
[0003] Rsvd VMAS

K [2]
PKEY

[4000]

Node #6 [0010]
CNTL

[0]
Rsv

d
C

[0] Rsvd LINKL
[0000] Rsvd VMAS

K [4]
PKEY

[2000]

Rsvd Rsv
d

C
[0] Rsvd LINKR

[0000]
CNTR

[0]
VMAS
K [4]

PKEY
[2000]

Reserved [0] LINKD
[0004] Rsvd VMAS

K [4]
PKEY

[2000]

Node #7 [0101]
CNTL

[0]
Rsv

d
C

[0]Rsvd LINKL
[0000] Rsvd VMAS

K [4]
PKEY

[5000]

Rsvd Rsv
d

C
[0]Rsvd LINKR

[0000]
CNTR

[0]
VMAS
K [4]

PKEY
[5000]

Reserved [0] LINKD
[0005] Rsvd VMAS

K [4]
PKEY

[5000]

Node #8 [011x]
CNTL

[0]
Rsv

d
C

[0]Rsvd LINKL
[0000] Rsvd VMAS

K [3]
PKEY

[6000]

Rsvd Rsv
d

C
[0]Rsvd LINKR

[0000]
CNTR

[0]
VMAS
K [3]

PKEY
[6000]

Reserved [0] LINKD
[0006] Rsvd VMAS

K [3]
PKEY

[6000]

00xx = A
0010 = B
0101 = C
011x = D

Table Entries

01xx = E

VP Trie Table Data Structures

C (0101) D (011x)B (0010)

A (00xx)

1xxx = E

Root Pointer
CNT
[1]

Index
[0003]

TLU Alg2 Register

E (1xxx)

0

0

0 0

1

1

1
E (01xx)

For More Information On This Product,

 Go to: www.freescale.com

300 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 63 VP Trie Table Example 2: Root Node Pointed to by Indexed Pointer Table Entry

CNT Index

3 [00]

3 [01]

0 [10]

0 [11]

00xx = A
0010 = B
0101 = C
0110 = D

Table Entries

xxxx = E

Indexed Pointer Table

Node [001]
CNT
L [0]

C
[0]

Rsv
d LINKL Rsvd VMAS

K [3]
PKEY
[001]

Rsvd C
[0]

Rsv
d LINKR CNTR

[0]

VMAS
K

[3]

PKEY
[001]

Reserved LINKD Rsvd
VMAS

K
[3]

PKEY
[001]

Root Node [01]
CNTL

[3]
C

[1] Rsvd LINKL
[010] Rsvd VMAS

K [2]
PKEY
[01]

Rsvd C
[1] Rsvd LINKR

[011]
CNTR

[3]
VMAS
K [2]

PKEY
[01]

Reserved [0] LINKD Rsvd VMAS
K [2]

PKEY
[01]

VP Trie Table Data Structures

Root Node [00]
CNTL

[0]
C

[1] Rsvd LINKL
[000] Rsvd VMAS

K [2]
PKEY
[00]

Rsvd C
[1] Rsvd LINKR

[001]
CNTR

[4]
VMAS
K [2]

PKEY
[00]

Reserved LINKD Rsvd VMAS
K [2]

PKEY
[00]

A

C DB

Node [011]
CNT
L [0]

C
[0]

Rsv
d LINKL Rsvd VMAS

K [3]
PKEY
[011]

Rsvd C
[0]

Rsv
d LINKR CNTR

[0]

VMAS
K

[3]

PKEY
[011]

Reserved LINKD Rsvd
VMAS

K
[3]

PKEY
[011]

Node [000]
CNT

L
C

[0]
Rsv

d LINKL Rsvd VMAS
K PKEY

Rsvd C
[0]

Rsv
d LINKR CNTR VMAS

K PKEY

Reserved LINKD Rsvd
VMAS

K
[3]

PKEY
[000]

Node [010]
CNT
L [0]

C
[0]

Rsv
d LINKL Rsvd VMAS

K [3]
PKEY
[010]

Rsvd C
[0]

Rsv
d LINKR CNTR

[0]

VMAS
K

[3]

PKEY
[010]

Reserved LINKD Rsvd
VMAS

K
[3

PKEY
[010]

Leaf Node [0010]
CNT

L C Rsv
d LINKL Rsvd VMAS

K PKEY

Rsvd C Rsv
d LINKR CNTR VMAS

K PKEY

Reserved LINKD Rsvd
VMAS

K
[4]

PKEY
[001

0]

Leaf Node [0101]
CNT

L C Rsv
d LINKL Rsvd VMAS

K PKEY

Rsvd C Rsv
d LINKR CNTR VMAS

K PKEY

Reserved LINKD Rsvd
VMAS

K
[4]

PKEY
[010

1

Leaf Node [0110]
CNT

L C Rsv
d LINKL Rsvd VMAS

K PKEY

Rsvd C Rsv
d LINKR CNTR VMAS

K PKEY

Reserved LINKD Rsvd
VMAS

K
[4]

PKEY
[011

0]

E
E

A E

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 301

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Key Tables
Key tables are used in exact match algorithm, and contain both the key of an entry and the
associated data. The last step of an exact match algorithm compares the lookup key with
the key from the entry in the Key table. The TLU supports key sizes of 32, 48, 96, and
112bits. The associated data portion of the entry in a Key table is typically returned to the
requesting node (CP or XP) via the Ring Bus.

Figure 64 Key Table Data Structure

An example of an exact match algorithm that would be implemented using the TLU is an
802.1D forwarding table for layer 2 bridging applications. In this application, you would
use a Hash table for the initial index evaluation, a Trie table to resolve collisions (if
necessary), and a Key table to store both the key and associated data.

Key Data Entry Format

Bit Position 63 48 47 32 31 0

Field Name (optional) KEY_L1 KEY_L2

Field Name Reserved KEY_U1 KEY_U2

Field Name Bit Position Description

KEY_L1* 63:32 Key Lower 1 — Contains the lower middle portion for 112 and
96bit keys

KEY_L2* 31:0 Key Lower 2 — Contains the LSB for 112 and 96bit keys.

Reserved 63:52 Read as zero.

KEY_U1*

* For key sizes up to 48 bits, only one entry is used (KEY_U1 & KEY_U2). For larger key sizes, both fields are
used.

51:32 Key Upper 1 — The MSB of 48bit and 112bit keys.

KEY_U2* 31:0 Key Upper 2 — The MSB of 32bit and 96bit keys. Used also for the
upper middle portion of 112 and 48bit keys.

Offset

01111

00101
00110

01110

KEY_L1 KEY_L2
KEY_U2Rsvd KEY_U1 [00101]

Data
Data
Data
Data

Key Table Entries

0

6

1
2
3
4
5

For More Information On This Product,

 Go to: www.freescale.com

302 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

A Key Data structure occupies the first one (1) or two (2) entries of a data entry. It is used
by the TLU to verify that a node’s data matches the search key. It is typically the
termination of Trie and Hash tables. For key sizes up to 48bits, only one (1) entry is used.
For larger key sizes, both fields are used.

Data Tables
Data tables contain the data associated with an entry. Data tables can be used as a
stand-alone table or as the last table (that contains the associated data for a previously
evaluated key) in a set of linked tables.

Figure 65 Data Table Data Structure

A common example of a stand-alone Data table would be the ATM VC table. Data can be
read and written to this table by an index. Typically the concatenated VPI/VCI makes up
the index. Another more specific example would be a implementing Partial CRC-32’s for
ATM Adaptation Layer-type 5 (AAL-5) reassembly that are stored in a Data table type
structure. Refer to “Partial CRC-32 Support” on page 310.

External Tables
The SRAM interface may alternatively be used to communicate with third party lookup
engines. One or more SRAM banks are replaced by dual ported memories accessible to
both the external lookup engine and the TLU. This memory serves as go-between for the
two (2) devices. An external lookup table is constructed in at least one (1) of the shared
memories. The table contains one (1) or more entries. Each entry must comply with the
“external table interface format”. These entries serve as mailboxes to synchronize data
transfer between the two (2) devices.

00101

00110

01110

01111

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

For More Information On This Product,

 Go to: www.freescale.com

TLU Format and Examples of Table Types 303

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When a Find or Findr lookup command is used to access the external table, the least
significant 24 bits of the Key (32 or 48 bit keys only) are used to index the appropriate
entry. The TLU then proceeds to continuously poll the entry until the READY field bit [62] is
set by the external lookup engine. The TLU then checks the contents of the HIT field bit
[63], if set to one (1), the TLU returns the appropriate lookup data, if set to zero (0), a
lookup miss error (type 1) is returned.

The TLU polls for the READY field bit [62] assertion for up to 255 times before quitting and
returning a watchdog time error (type 2).

Figure 66 External Table Interface Format

Bit Position 63 62 61 24 23 0

Field Name HIT READY User Defined IDX

TLU
External
Lookup
Engine

Index
Index
Index

64bit wide

Bank Replaced
with Dual Port SRAM

Dual Port SRAM

For More Information On This Product,

 Go to: www.freescale.com

304 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Application
Considerations

The following section covers issues that are important to application design. For more
information about how implement tables in applications see the C-Ware Reference Library
document in the C-Ware Application Development Guide.

TLU/Ring Bus Control
Register Response Slot

Usage

TLU lookup results are returned via the Ring Bus and put into the RxRespn_Ctl register that
was specified during the Ring Bus launch. If a TLU response slot is currently “occupied”
with a previous response (Resp1) and a second lookup result (Resp2) destined for the
same slot is ready, the second response (Resp2) is placed in the eight (8) slot receive
response FIFO and remains in the FIFO until the first response is released and response
slot is cleared. A response slot is released by deasserting the AVAIL bit [31] in the Ring Bus’
RxRespn_Ctl register. Refer to Figure 67 on page 304.

Figure 67 TLU/Ring Bus Control Register Response Slot Usage

Responses move into the receive response FIFO on the destined processor (CP or XP). If
the response at the head of the FIFO can’t get into a response register slot because it’s
occupied by another response, then it is “trapped” at the head of the FIFO, causing
head-of-line blocking. When the entire response FIFO is full, then other responses
destined for this CP start circling the Ring Bus. Refer to “Ring Bus Overview” on page 370.

RxResp2n

RxResp3n

RxResp1b

Receive
Response
FIFO

RxResp1b is blocked from being
written to the RxResp1_Ctl register
and thus cannot be drained from the
Receive Response FIFO.

RxResp0
AVAIL = 0

RxResp1a
AVAIL = 1

RxResp2
AVAIL = 0

RxResp3
AVAIL = 0

RxResp7
AVAIL = 0

Because RxResp1b cannot be drained from the
Ring Bus Receive Response FIFO until RxResp1a
is cleared, RxResp1b continues occupying the "TLU
receive response" slot as it moves around the ring.
Thus, RxResp3 and RxResp2 remain stalled in the
FIFO because they cannot land in their target slot.

RxResp1b

Ring Bus

RxRespn_Ctl Registers (0 - 7)

For More Information On This Product,

 Go to: www.freescale.com

TLU Application Considerations 305

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Performance Table 66 on page 305 describes the TLU latency and the number of SRAM cycles for
various operations. All performance estimates are relative to the SRAM clock. For 100MHz
SRAMs a clock cycle is 10ns. Performance estimates are based on a ZBT SRAM. The TLU
operation frequency is assumed to be synchronous with the SRAM clock frequency.
Synchronization occurs using the input and output FIFOs.

The FIFO delay is dependent on the FIFO backlog. The backlog is a function of the input
command rate versus the SRAM access rate. If every CP is limited to four (4) lookups at one
time, then the maximum FIFO delay is 16 * 4 = 64 clocks. When the fabric interface is
added it increases the maximum delay to about 80 clocks.

The number of SRAM cycles to issue a Find type command is highly dependent on the
algorithm being used and upon the table entries themselves. Estimated values are given
in Table 67 on page 305. For the Trie structures, assume an equally balanced tree with 64k
nodes. These latencies do not include round trip time on the Ring Bus (18-90) clock cycles.
For a Hash structure with ((n real entries < 2) x n buckets), the number of collisions is
almost always less than eight (8).

Table 66 TLU Performance Estimates

TLU
Command SRAM Cycles TLU Latency

Write() Roundup (# bytes written/8) FIFO delay + 5 + SRAM cycles * 4

Read() Roundup (# bytes read/8) FIFO delay + 5 + SRAM cycles * 4

Add() or XOR() 2 FIFO delay + 5 + SRAM cycles * 4

Find() Refer to Table 67 on page 305. FIFO delay + 5 + SRAM cycles * 4

Findw() Find + Roundup (# bytes written/8 +1) FIFO delay + 5 + SRAM cycles * 4

Findr() Find + Roundup (# bytes read/8 +1) FIFO delay + 5 + SRAM cycles * 4

Table 67 TLU SRAM Accesses by Table Format

Table Type

SRAM Cycles TLU Latency (ns)

Min. Typical Max. Min. Typical Max.

Hash with no collisions 1 1 1 20 20 20

Hash with n collisions 2 2 + log2 n 2 + n 30 30 + 10* log2 n 30 + 10* n

VP Trie 2 20 32 30 220 340

VP Trie using 16bit index 2 10 18 30 120 200

Trie 2 10 18 30 120 200

For More Information On This Product,

 Go to: www.freescale.com

306 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table Sizing Examples To aid in sizing tables, examples using two (2) typical applications are described in this
section. Both examples are for a Layer 2/3 switch and list the required tables types,
number of entries, sizes of entry, and sizes for the tables.

As the numbers indicate in the sizing examples shown in this section, an application
implementing both a Bridge Address table and an IP Routing table uses about 8.5M of
SRAM space. Refer to Table 68 on page 306, and Table 69 on page 306.

These examples do not include any other types of statistics or QoS tables, nor do they
count an external TLU device out one bank.

Bridge Address Table Sizing Example
The Bridge Address table consists of an Index table to map VIDs to FIDs for 802.1Q, a Hash
table, a Trie table, and a Key table for the associated data. A common size is anywhere
from 64k to 256k entries. This example uses a 128k entry table.

IP Routing Table Sizing Example
The IP Routing table consists of an Index, a VP Trie, and a Data table. A common size for an
IP routing table is between 32k and 256k. This example uses 64k.

Table 68 Bridge Address Table Sizing Example

Table Type
Number of
Entries Entry Size Table Size

Index 4k 8 32k

Hash 256k 8 2.1M

Trie 32k 8 262k

Key 128k 32 4.1M

Table 69 IP Routing Table Sizing Example

Table Type
Number of
Entries Entry Size Table Size

Index 64k 8 524k

VP Trie 32k 24 786k

Data 64k 16 1.0M

For More Information On This Product,

 Go to: www.freescale.com

TLU Special Applications 307

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU Special
Applications

This section describes two (2) specific applications that are supported: long lookups and
partial CRC-32 for ATM Adaptation Layer-type 5 (AAL-5).

Using the RxByte
Processor for Long

Lookups

Some protocols that are implemented in the RxByte processor require that sophisticated,
long lookups be launched from the SDP to hide latency.

Since the RxByte processor only has access to two (2) of the TxMsg registers to launch
lookups from, the SDP can only launch lookups of keys that are up to 112bits in length.
The two (2) lookup slots are referred to as TxMsg0 and TxMsg1. The size of these registers
are listed in Table 70 on page 307.

When launching a lookup from the SDP, the TxMsgn_Ctl register contains control
information for putting the request onto the Ring Bus. Such information would contain
the source Ring Bus node, destination Ring Bus node, message length, return message
slot, and so on.

To use multi-slots, you must launch the lookup using the TxMsg0_Ctl register in addition
to the TxMsgn_Data_n registers. The keys are contained in some or all of TxMsg0_Data_H,
TxMsg0_Data_L, TxMsg1_Data_H, and TxMsg1_Data_L registers.

The TxMsgn_Data_n registers contain the actual data that the destination node (in this
case the TLU) processes. Information contained in the TxMsgn_Data_n registers would
include: the lookup table in the TLU, the command (Read, Findr, XOR, etc.) and most
importantly the lookup key.

For keys that are 48bits, 96bits, and 112bits, two (2) sets of the TxMsgn_Data_n registers
must be used. The formats of these registers are shown in Table 71 on page 308.

Table 70 TxMsgn Registers and Their Size

Register Size (bits)

TxMsgn_Ctl 32

TxMsgn_Data_H 32

TxMsgn_Data_L 32

For More Information On This Product,

 Go to: www.freescale.com

308 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XXX = Reserved by TLU.
KU1 = Key upper 1 (upper 16b of key 1)
KU2 = Key upper 2 (lower 32b of key 1)
KL1 = Key lower 1 (upper 32b of key 2)
KL2 = Key lower 2 (lower 32b of key 2)

Depending on the configuration of the TLU table's key size, the information looked up as
the key from the set of registers varies as listed in Table 72 on page 308.

Table 71 Large Key Data Format, >48bits

Field

MSB LSB

Byte 0 Byte 1 Byte 2 Byte 3

TxMsg0_Data_H XXX XXX KU1 KU1

TxMsg0_Data_L KU2 KU2 KU2 KU2

TxMsg1_Data_H KL1 KL1 KL1 KL1

TxMsg1_Data_L KL2 KL2 KL2 KL2

Table 72 Key Size versus Key Match

Key Size Key Match

32bit Key match is done on contents of KU2 fields

48bit Key match is done on contents of KU1 + KU2 fields

96bit Key match is done on contents of KU2 + KL1 + KL2 fields

112bit Key match is done on contents of KU1 + KU2 + KL1 + KL2 fields

For More Information On This Product,

 Go to: www.freescale.com

TLU Special Applications 309

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Long Lookup Example for an Ethernet Application
For IEEE 802.1Q tagged frames, the Ethernet application must lookup the MAC address
and the VLAN ID of the frame which is: 48bits + 12bits = 60bits. Since there is no 60bit key
size available, use the next larger key size available which is (96bit). The format for the
lookup is listed in Table 73 on page 309.

XXX = Reserved by the TLU
UUU = Unused
VVV = VLAN ID
MMn = MAC address
PPP = Not used by application (padded). These bits should be cleared by the application when doing lookups

and when installing entries into the TLU.

From the SDP's perspective, the TxMsgn_Data words are mapped as shown in Table 74 on
page 309.

Table 73 Ethernet Application Lookup Format

Field

MSB LSB

Byte 0 Byte 1 Byte 2 Byte 3

TxMsg0_Ctl control information + length, indicating lookup uses both slots

TxMsg0_Data_H XXX XXX UUU UUU

TxMsg0_Data_L VVV VVV MM0 MM1

TxMsg1_Data_H MM2 MM3 MM4 MM5

TxMsg1_Data_L PPP PPP PPP PPP

Table 74 TxMsgn_Ctl Mapping

Bit Mapping

TxMsg0_Data7 XXX

TxMsg0_Data6 XXX

TxMsg0_Data5 UUU

TxMsg0_Data4 UUU

TxMsg0_Data3 VVV

TxMsg0_Data2 VVV

TxMsg0_Data1 MM0

TxMsg0_Data0 MM1

TxMsg1_Data7 MM2

For More Information On This Product,

 Go to: www.freescale.com

310 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

In this case, the fields that are matched (given that this is a 96bit key) are the VVV + MMn
fields, resulting in the lookup of the MAC address + VLAN ID according to the 802.1Q
specification.

Ethernet Application Example Implementation Notes
In the Ethernet application example, the SDP lookups just the VID in the RxByte processor
if the frame is VLAN tagged. The CPRC gets the result of that looks up and looks up the
returned FID + MAC address using the described method above to lookup the rest of the
frame.

If the frame is untagged, then the MAC addresses are used with the Port VLAN ID (PVID) of
the port from the SDP to only do one (1) lookup and therefore saves the extra latency of
having the CPRC program do a lookup.

Only the TxMsg0_Ctl register can be used for multi-slot lookups.

Partial CRC-32 Support Partial CRC-32’s for ATM Adaptation Layer-type 5 (AAL-5) reassembly can be stored and
accumulated in a Data table type structure. The format and implementation steps are
described in this section.

This is achieved using the SDP in conjunction with the TLU to accumulate the partial CRC’s
for many Virtual Connections (VC). Specifically, this is supported using the TLU’s XOR
command, a VC data table, a CRC-32 Correction Table, the
CRC-32_Correction_Table_Base_Address register, and the CRC-32_Checkvalue register. The
XOR command automatically increments the CRC_Len field bits [47:32] after adding a new
partial CRC. Refer to “XOR Command” on page 270.

TxMsg1_Data6 MM3

TxMsg1_Data5 MM4

TxMsg1_Data4 MM5

TxMsg1_Data3 PPP

TxMsg1_Data2 PPP

TxMsg1_Data1 PPP

TxMsg_Data0 PPP

Table 74 TxMsgn_Ctl Mapping (continued)

Bit Mapping

For More Information On This Product,

 Go to: www.freescale.com

TLU Special Applications 311

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Partial CRC-32 Data Entry Format
The Cyclic Redundancy Check (CRC) entry is used for CRC error checking as part of a
Virtual Connection (VC) data table. The entry must conform to this format:

Partial CRC-32 General Setup
Follows these steps to implement the Partial CRC-32 Operation:

1 Create and initialize CRC-32 Correction Table. (Each entry contains a CRC calculated for
0xFF plus 48 times the number of cells; that is, 4Bytes of zeros).

2 Set up CRC-32_Correction_Table_Base_Address register to the start address of the
newly created table (CRC-32 Correction Table).

3 In the SDPMode3 and SDPMode5 registers, set both the RxByteCRCinit field and
TxByteCRCinit field= 0 in order to initialize the CRC-32 block to zero when the CRCinit
command is executed by the RxByte and TxByte programmable processor’s
microcode.

Partial CRC-32 Rx Setup and Operation
Follow this step to implement the Rx side of the Partial CRC-32 Operation:

1 Set up Rx CRC data entry in the receive VC table as follows: CRC_Len= 1, PCRC= 0.

All cells except for the last end of message (EOM) cell are handled via the RxByte
programmable processor, as follows:

1 RxByte programmable processor calculates PCRC on current cell.

2 RxByte programmable processor sends TLU XOR command with current PCRC.

Bit Position 63 48 47 32 31 0

Field Name USER CRC_LEN PCRC

Field Name Bit Position Description

USER 63:48 User Defined Data — The user can insert anything here.

CRC_LEN 47:32 CRC length — Number of cells holding current packet.

PCRC 31:0 Partial CRC — The current partial CRC.

For More Information On This Product,

 Go to: www.freescale.com

312 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TLU’s XOR command settings are indicated here:

3 TLU XORs PCRC with (accumulated) PCRC and obtains a (new accumulated) PCRC.
Then this value is shifted by 48Bytes and stored as the new PCRC in the VC table’s
CRC-32 Entry.

Last cell end of message (EOM) is handled via the RxByte programmable processor, as
follows:

1 RxByte programmable processor calculates PCRC on last cell.

2 RxByte programmable processor sends TLU XOR command with PCRC and sets the
XOR command bits [56:55] CRC field= 11 (Rxlast).

TLU’s XOR command settings are indicated here:

3 TLU receives request and XORs PCRC with (accumulated PCRC); TLU does a table
lookup based on PDU length to PCRC and adds the value looked up with the
(accumulated PCRC). TLU compares (accumulated PCRC) with CRC-32_Checkvalue
register. If the CRC_Checkvalue register does not match, the TLU sets a Ring Bus error
indication for the PCRC. TLU re-sets accumulated PCRC=0, and CRC_Len= 1.

Partial CRC-32 Tx Setup and Operation
Follow this step to implement the Tx side of the Partial CRC-32 Operation:

1 Initialize Tx CRC data entry in the transmit VC Table as follows: CRC_Len=0, and
PCRC=0.

All cells except for the last end of message (EOM) are implemented via the SDP, as follows:

1 CPRC make the cell available to SDP for transmission.

2 TxByte programmable processor calculates PCRC as it transmits the cell.

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name/Setting CMD=1
VTB#=

User
Defined

CRC=
0x01

OFF=User
Defined
Offset

N/A MSK=0x0F Rsvd IDX=User Defined Index

Optional Reserved PCRC=From RxByte Calculation

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name/Setting CMD=1
VTB#=

User
Defined

CRC=
0x11

OFF=User
Defined
Offset

N/A MSK=0x0F Rsvd IDX=User Defined Index

Optional Reserved PCRC=From RxByte Calculation

For More Information On This Product,

 Go to: www.freescale.com

TLU Special Applications 313

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

3 TxByte programmable processor sends TLU XOR command request containing PCRC;
TLU XORs with the PCRC, performs 48Byte shift and sends command to store this in the
table as the (new accumulated PCRC).

TLU’s XOR command settings are indicated here:

Last cell end of message (EOM) is implemented, as follows:

1 CPRC sends TLU XOR command (prior to giving last cell to SDP). The TLU does a lookup
into the CRC-32 Correction Table indexed by the CRC_Len field (which is equivalent to
the number of cells in the PDU -1). The TLU XORs this with the (accumulated) PCRC and
returns the PCRC (accumulated for all cells except the last) to the CPRC via the Ring
Bus. The TLU sets PCRC= 0, CRC_Len= 0 (based upon data field) after returning the
(accumulated PCRC) in the Partial CRC-32 Data Entry Format. The TLU sets the error bit
in the Ring Bus register.

The Ring Bus error bit should be ignored.

TLU’s XOR command settings are indicated here:

2 CPRC writes (accumulated) PCRC to its merge register space.

3 The TxByte programmable processor accumulates a PCRC for the last cell. It then XORs
this value with the (accumulated PCRC) from its CPRC’s merge space, performs the 1’s
complement and appends to the frame. SDP transmits cell with correct CRC.

Single cell packets are implemented, as follows:

1 CPRC writes PCRC Accumulated= 0xFFFFFFFF to merge register space.

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name/Setting CMD=1
VTB#=

User
Defined

CRC=
0x01

OFF=User
Defined
Offset

N/A MSK=0x0F Rsvd IDX=User Defined Index

Optional Reserved PCRC=From TxByte Calculation

Bit Position 63 61 60 57 56 55 54 48 47 32 31 24 23 20 19 0

Field Name/Setting CMD=1
VTB#=

User
Defined

CRC=
0x10

OFF=User
Defined
Offset

N/A MSK=0x0F Rsvd IDX=User Defined Index

Optional Reserved PCRC=0

For More Information On This Product,

 Go to: www.freescale.com

314 CHAPTER 6: TABLE LOOKUP UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 7
Queue Management Unit

Chapter Overview This chapter covers the following topics:

• Queue Management Unit (QMU) Overview

• QMU Flow Process

• Queue Organization

• QMU Variables

• Queue Mapping and Parameter Characteristics

• Queuing Operations

• Types of Transactions

• Queue Management Transactions

• QMU Multicast Support (Non-System Level)

• QMU Configuration Space

• QMU Setup

• QMU Performance

• Multicast Support (System Level)

For More Information On This Product,

 Go to: www.freescale.com

316 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Management
Unit (QMU) Overview

The Queue Management Unit (QMU) provides queuing service to all the processors (CPs,
XP and FP) on the C-5 NP. The QMU queues are used by the processors to switch payload
descriptors from input processors (CPs, XP and FP) to output processors (CPs, XP and FP)
using Control Blocks (WrCB0_ or RdCB0_) via the Payload Bus.

The C-5 NP processors generate the descriptor data in their respective (DMEM), then write
the data into a queue stored in the SRAM. The configurable QMU performs queue
management while simply passing the descriptor data through without modification; it
does not parse the data records that it enqueues.

The QMU provides up to five-hundred-twelve (512) queues using an on-chip memory
(internal SRAM) for control structures and off-chip memory (external SRAM) for descriptor
storage.

Queues can be allocated asymmetrically to processors, such that one (1) CP could have
zero (0) to one-hundred-twenty-eight (128) queues. Up to 16,384 descriptor buffers can
be enqueued simultaneously across all queues.

Generally, the data types enqueued in the QMU are either:

• A payload descriptor including a payload buffer tag (BTag), or

• A user-defined inter-processor message.

Payload Descriptors
Enqueued to the QMU

Payload Descriptors are small fixed-size (12, 16, 24, or 32Bytes) data structures that
contain all the information required to complete the forwarding of a received payload
data unit from the ingress processor, for example, the information required to build a
header at the output interface. Payload descriptors are created by the application
program running on the ingress processor, generally a Channel Processor RISC Core
(CPRC).

Typically, the QMU queues are used as egress queues associated with specific data for
egress processors, (CPs, the XP, or the FP). Only one (1) egress processor can drain each
queue, but any of the ingress processors can write into any queue.

Used-Defined
Inter-processor

Messages Enqueued to
the QMU

Inter-processor messages are also small fixed-sized (12, 16, 24, or 32Bytes) data structures
that contain user defined information. Generally, inter-processor messages are used to
orchestrate control plane activities such as flow control, statistics gathering, or table
maintenance. For example, an ingress processor could build a message then enqueue it to
a queue serviced by the XP for off-line processing.

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Overview 317

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Major Components The major components of the QMU are listed inTable 75 on page 317. In addition,
Figure 68 on page 319 shows the QMU Block Diagram.

Table 75 Major Components of the QMU and Their Functions

Item Function

Queue
Manage
ment
Engine

The Queue Management Engine (QME) manages all descriptor queues in SRAM and
maintains per-queue status information (descriptor weight, queue weight, and
queue length) that is delivered with each descriptor to the dequeuing processor
(CPs, XP, or FP).
The QME provides multicast elaboration for descriptors that must be replicated to
more than one queue. A single buffer descriptor can be enqueued to any number of
output processors (CPs, XP, or FP) with a single command (multicast enqueue) from
the descriptor generator (CPs, or XP). The descriptor is enqueued at a specified
queue level at each listed output port so that each port receives a copy of the
descriptor.
The QME implements and operates on a link-list of descriptors. Every descriptor buffer
in the QMU starts out as an entry on a free-descriptor buffer list. Then during an
enqueue operation, a descriptor buffer is removed from the free-descriptor buffer list
and the payload descriptor is copied into a queue. The reverse process happens for
dequeue operations.
The QME must perform (2) two functions to respond to a processor’s (CPs, XP, or FP)
enqueue or dequeue request. First, the descriptor must be stored in or retrieved from
the external QMU SRAM array. Second, the internal queue controls inside the internal
SRAM must be updated to add the entry onto or remove the entry from the desired
queue.

Direct
Access
Controller

Initialization, queue configuration changes, and read/write of the QMU internal
registers and QMU external memory are performed using loads and stores on the
Global Bus.
If the transaction is a read, the Direct Access Controller (DAC) gathers the value from
the addressed location in the QMU and returns it to the requesting processor on the
Global Bus.
When one of the QMU’s queues state changes from empty to non-empty as the result
of an enqueue operation, the Queue Ready Generator (QRG) takes the queue number,
determines the processor to notify, then generates the appropriate message.

Mailboxes Multi-Use Control Block (WrCB0_, RdCB0_) transfers from CPs and the XP arrive at the
QMU over the Payload Bus and are held in a Mailbox. Each processor (CPs, XP) has its
own Write Mailbox (CPn Wr MailBox) and its own Read Mailbox (CPn Rd Mailbox).
Each mailbox holds a single command used to perform specific operations. Queue
status and dequeue operations are performed using (RdCB0_). Unicast enqueue,
multicast enqueue, and configure queue operations are performed using (WrCB0_).
Each of the two (2) mailboxes for each CP or the XP operate independently of the
other. They each have their own available/busy status and success/fail status
information reported to the CP or XP independently.

For More Information On This Product,

 Go to: www.freescale.com

318 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric
Port
Interface

The Fabric Port has a separate interface to the QMU because of its very high
throughput requirement. When the FP has queuing operations pending, it receives
no less than half the QMU’s descriptor throughput.
A dedicated path is used to write FP queuing operations from the FP to the QMU’s FP
command FIFO. The QMU returns descriptors to the FP over the Payload Bus. Queue
Ready Generator (QRG) reports from the QMU are sent to the FP, just like those for any
of the CPs or the XP.
The QMU buffers up to eight (8) enqueue operations and eight (8) dequeue
operations for the FP.

Data
Engine

The Data Engine moves payload descriptors or user-defined inter-processor messages
on and off the queues stored in external SRAM. This interface adjusts the timing of
the internal information (address and data) so that the setup and hold times on the
external memory interface are met for both memory writes and reads.

External
SRAM

The QMU uses external ZBT SRAM to hold the data enqueued in the QMU queues. The
interface is 32bits wide and runs at half of the core clock rate. The memory is
organized in power-of-2 sized blocks big enough to hold the configured descriptors.

Internal
SRAM

Contains queue configuration information that includes descriptor link-list,
descriptor weight, descriptor dynamic memory, queue head-tail, queue
length, queue weight, queue parameters, and dynamic descriptor Pooln
usage.

Configura
tion
Registers

Used for mapping of queues to CPs, XP and FP, configuration of the QMU, QMU
debugging, and collecting QMU statistics.

Table 75 Major Components of the QMU and Their Functions (continued)

Item Function

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Overview 319

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 68 QMU Block Diagram

QMU

Global
Bus

Interface

SRAM

Data
Engine

Queue
Mgmt

Engine
(QME)

Mailboxes
(CPs & XP)

Payload
Bus

Interface

FP
Interface

Direct Access
Controller

For More Information On This Product,

 Go to: www.freescale.com

320 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Flow Process The QMU flow is described in this section.

Flow Details for CPs/XP
Inputs and FP Inputs

The front part of the input flow is a little different between the CPs/XP and the FP.
However, the activities occurring from the Command Processor on are the same for both
the CPs/XP and FP. The entire CPs/XP input flow is detailed first, then the front part of the
FP later.

CPs and XP Input Flow
Each processor (CPs, XP) writes the descriptor or message data (user-defined
inter-processor message) into its DMEM, then writes the data and a command using a
Control Block (WrCB0_) to the processors’ dedicated mailbox (CPn Wr Mailbox) via the
Payload Bus. This data remains in this holding register until the command processor (Cmd.
Proc.) arbitrates to determine which mailbox to execute next. The command status
generator (CSG) monitors the status of each mailbox throughout the process and reports
that status back to the processor. The mailbox empty or non-empty state is used to
determine when the applicable mailbox is available for a new operation.

The queuing management engine (QME), upon receipt of the command, manages the
free descriptor buffer list, queueing, and storage of queue data in the SRAM using a
link-list. A link-list tracks the free descriptor buffers, used descriptor buffers for queueing,
and the location of the data (descriptor data) in queues in the SRAM. The queue ready
generator (QRG), upon receipt of the data, notifies the processor that the queue is
non-empty. It determines the correct processor using the queue number and sends the
message over the Payload Bus. The data engine (DE), upon direction of the queue engine
(QE), physically transfers the data to/from the external SRAM. During a write (enqueue
operation), the data engine (DE) reads the content of the (CPn Wr Mailbox) that holds the
data, then writes that data into SRAM per the queuing engine (QE) and its link-list. During
a read (dequeue operation), the data engine (DE) reads the data (descriptor data) from
the SRAM per the queuing engine (QE) link-list, then FIFOs them to transmit back to the
CPs/XP using the (RdCB0_) via Payload Bus.

FP Input Flow
The FP writes the descriptor data and a command into its (DMEM), then writes the data
and a command using a dedicated interface to the FP command FIFO in the QMU. This
data is held in a FP command FIFO (FPCFIFO) until the command processor (Cmd. Proc.)
arbitrates to determine which holding register to execute next. At this point, the rest of
the FP input flow is identical to the CPs/XP flow starting with the command status
generator (CSG), as described in “CPs and XP Input Flow” on page 320.

For More Information On This Product,

 Go to: www.freescale.com

QMU Flow Process 321

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 69 QMU Flow Diagram

CPs & XP Input

Descriptor/
Message Data

WrCB0/RdCB0

Transaction

CPs or XP Mail Box

CP0 Wr Mailbox
CP0 Rd Mailbox
CPnWr Mailbox
CPn Rd Mailbox

XP Wr Mailbox
XP Rd Mailbox

CP15 Rd Mailbox
CP15 Wr Mailbox

Cmd. Proc.
Arbitrates

A: QMU Flow Using CPs/XP Input

B: QMU Flow Using FP Input

FP Input Dedicated HW

Transaction

FP Command FIFO

Comd. Slot
Comd. Slot

QM Engine

Dedicated Path

Data Engine
Transfers to/from
SRAM

QRdy Gen.
Status to CPs, XP
& FP

DMEM

DMEM

Via Payload Bus

Output to
CPs, XP, FP

Manages
 Link-list & Limits

Status to CPs, XP
& FP

Cmd. Status

Via Payload Bus

Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot
Comd. Slot

Descriptor/
Message Data

Descriptor
Data

For More Information On This Product,

 Go to: www.freescale.com

322 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Organization The queue memory consists of both external and internal SRAM. Each is described here.

External SRAM The queue memory’s external SRAM is organized in the following manner:

Descriptor Buffer
Descriptor buffers are fixed-sized data structures that are written with payload descriptors
and linked to a queue during an enqueue operation. Descriptors are stored in the
descriptor buffers located in the QMU’s external (SRAM). The QMU allows (0 to 16,384)
total descriptor buffers using the Num_Descriptors register. The Descriptor buffer sizes
supported are (12, 16, 24, or 32Bytes), using the Descriptor_Size register. Refer to Figure 70
on page 323, and Table 77 on page 326.

Dynamic Descriptor Pools
The QMU maintains sections of SRAM called dynamic descriptor pools containing
descriptors. Pools are intended to provide protection among the many users of the
queues. Up to four (4) dynamic descriptor pools can be configured. Each Dynamic
Descriptor Pool Area= (Descriptor Buffer Size * Number of Descriptors per Pool). Each
Dynamic Descriptor Pooln can grow to contain a number of descriptors, the legal range is
(0 to 16K). A limit is used to guarantee a maximum number of descriptor buffers a queue
may hold within the (0 to 16K) range. This limit is implemented using a Dynamic
Descriptor Usage Limit Pool. There are four (4) of these registers:
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3. Each Dynamic Descriptor Pool
has an associated Dynamic Descriptor Usage Limit Pool. Refer to Figure 70 on page 323
and Table 77 on page 326.

For More Information On This Product,

 Go to: www.freescale.com

Queue Organization 323

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 70 External SRAM Storage Space for Descriptor Buffer Data

Dynamic Descriptor Usage Limit Pooln
During a unicast enqueue to a queue, permission to take the next free descriptor buffer
and enqueue it on the queue is based on the state of that queue’s Dynamic Descriptor
Usage Limit. Each queue is assigned to one (1) of four (4) registers:
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3. Each pool has a usage counter
and a usage limit parameter. The usage count is not allowed to exceed the usage limit
during unicast enqueues.

The idea behind the Dynamic Descriptor Buffer Usage Limit pools is to provide separation
between service classes that need to use dynamic buffering. For example, the use of
dynamic buffers by ATM’s Variable Bit Rate (VBR) service should not impact the availability
of dynamic buffers used by the Constant Bit Rate (CBR) service. The limit on each dynamic
pool’s descriptor usage is individually configurable because different services require
different degrees of traffic variability (burstyness).

Dynamic Descriptor Pool0

Descriptor0 Descriptor1 Desccriptor2

Descriptorn
Dynamic Descriptor
Pool0 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Dynamic Descriptor
Pool1 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Descriptor20 Descriptor16 Descriptorn

Dynamic Descriptor
Pool2 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Descriptor85 Descriptor521 Descriptor322

Descriptorn

Dynamic Descriptor Pool1

Dynamic Descriptor Pool3

Descriptor40 Descriptorn

Dynamic Descriptor Pool2

Dynamic Descriptor
Pool3 Area=
(Descriptor Buffer Size
 * # of Descriptor Buffers/Pool)

Free Descriptor Buffer List

Free Descriptor Buffer Area=
(Total # of Descriptors
 - Dynamic Descriptor Pool Areas
 for (Pool0 to Pool3)

Desc. Buffer0 Desc. Buffer1 Desc. Buffer3

(0 to 16,384)

For More Information On This Product,

 Go to: www.freescale.com

324 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When an enqueue is requested to a queue that is in its dynamic range, the queue’s pool
descriptor usage is compared to that pool’s usage limit. If the current pool usage is below
the pool’s limit, the enqueue is done and the pool usage count is incremented. When that
descriptor is later dequeued, the pool usage count is decremented. Refer to “Queue
Length Allowance and Length Limit Parameters” on page 330.

When the QMU is initialized, the pool usage limits, the total number of descriptors, and
the allowances of all the initialized queues must be configured to work together. The total
number of Descriptors allocated among all four (4) pools of the
Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers should be < the
number of dynamically enqueued descriptors. This way, there will be no depletions of the
supply of free descriptor buffers.

All queues that are members of a single multicast group should share the same pool. See
“Multicast Operation Throughput Considerations” on page 352 for more information.

Internal SRAM The queue memory’s internal SRAM contains all the data structures required to build the
queues, maintain queue status, and provide descriptor buffer management. The internal
memory is divided into the following sub-sections. Refer to Figure 71 on page 325, and
Table 76 on page 324.

Table 76 QMU Internal SRAM Sub-Sections and Their Functions

Memory Sub-Sections Function

Descriptor Link-list Descriptor links that form the queues.

Descriptor Dynamic One (1) bit per descriptor that flags wether the descriptor was
allocated in a queue’s dynamic range.

Descriptor Weight The weight of each descriptor.

Queue Head-Tail Pointers to each queue’s head and tail.

Queue Length The length of each queue.

Queue Weight The accumulated weight of each queue.

Queue Parameters Configuration for each queue.

Free Descriptor List Head Pointer to free descriptor list head.

Free Descriptor List Tail Pointer to free descriptor list tail.

Free Descriptor List Length The length of free descriptor list.

Dynamic Descriptor Pool0 Usage
to Dynamic Descriptor Pool3

The number of dynamically enqueued descriptors in each
pool.

For More Information On This Product,

 Go to: www.freescale.com

Queue Organization 325

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 71 Internal SRAM Space

16,384 words (14bits each)

Descriptor Link-list
0xBDA40000

Descriptor Dynamic
Range Status
0xBDA50000

Link Linkn

Descriptor_Weight
0xDBA60000

Queue Head-Tail
0xBDA76000

Queue Length
0xBDA78000

Queue Weight
0xBDA78800

Queue Dyn. Pool [29:28] (2bits)

Flag

16,384 words (1bits each)

16,384 words (8bits each)

1024words (14bits each, 1words/queue)

512words (14bits each)

512words (22bits each)
Queue Parameters
0xBDA79000

512words (30bits each)

Queue Length Allowance [27:14] (14bits)
Queue Length Limit [13:0] (14bits)

Free Descriptor List Head
0xBDA7E000

 (14bits)
Free Descriptor List Tail
0xBDA7E004

 (14bits)

 (15bits)

Free Descriptor List Length
0xBDA7E008

 (14bits)

Dyn_Descriptor_ Pool0_Usage
0xBDA7E080

 (14bits)

 (14bits)

 (14bits)

Dyn_Descriptor_ Pool1_Usage
0xBDA7E084

Dyn_Descriptor_ Pool3_Usage
0xBDA7E08C

Memory Partitions

Dyn_Descriptor_ Pool2_Usage
0xBDA7E088

Weight Weight Weightn

Pointer Pointer Pointern

Length Length Lengthn

Weight Weight Weightn

Link

FlagnFlag

For More Information On This Product,

 Go to: www.freescale.com

326 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Variables The QMU uses the following variables shown in Table 77 on page 326.

Table 77 Legal Ranges for SRAM Variables

Item Range

Number of Dynamic Descriptor Buffer Pools Up to 4

Number of Descriptor Buffers per Pool 0 to 16K

Number of Descriptors allowed in the QMU 0 to 16,384 as detailed here:

Individual Descriptor Size

Number of Descriptors Enqueued Dynamically
to the Queues Associated with a Pool

0 to 16K

Number of Queues Allowed in the QMU 0 to 511 as detailed here:

Programmed
Value

Number of
Descriptors

0
.
.
.
16,383

1
.
.
.
16,384

Size (Bytes) Encoded Value

12 0

16 1

24 2

32 3

Programmed
Value

Number of
Queues

0
.
.
.
511

1
.
.
.
512

For More Information On This Product,

 Go to: www.freescale.com

QMU Variables 327

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Number of Queues Mapped per Processor Up to 128

Queue Level Number (for Multicast Enqueue
Operations Only)

0 to 7

Table 77 Legal Ranges for SRAM Variables (continued)

Item Range

For More Information On This Product,

 Go to: www.freescale.com

328 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Mapping and
Parameter
Characteristics

The basic queue characteristics are described in this section.

Queue to Processor
Mapping

A queue is a FIFO that contains descriptor data.The QMU supports (0 to 511) queues
available to the entire C-5 NP. Up to 128 (of those 512) queues can be mapped to a given
processor, (CPs, XP, or FP).

The QMU uses a simple mapping scheme to establish a flexible association between
processors and their queues for both unicast enqueue and multicast enqueue operations.

The QMU maps individual queue numbers (0 to 511) to their respective processors (CPs,
XP, or FP) using the Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_FP, and
Base_Queue_XP registers. Specifically, using the Base_Queue_Number bits [8:0] field
contained in the Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_FP, and
Base_Queue_XP registers.

The Base_Queue_nnn is the lowest numbered queue owned by that processor. The rest of
a processor’s queues are located at offsets above the Base_Queue_nnn. The offset range
cannot be larger than one-hundred-twenty-eight (128). Each processor is assigned its
queues sequentially within the (0 to 511) queue number range.

These queues are the ones targeted by unicast and multicast enqueues to that processor,
and are the queues that stimulate queue non-empty transition notifications to the
processor. This scheme allows an arbitrary number of queues to be assigned to each
processor (the Base_Queue_ Number bits [8:0] fields are unconstrained). Refer to Figure 72
on page 329.

For More Information On This Product,

 Go to: www.freescale.com

Queue Mapping and Parameter Characteristics 329

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 72 Mapping Queues to Processors for Unicast/ Multicast Enqueue Operations Example

Queue to Processor Mapping Rules
The assignment of queues to processors must follow these rules:

• The ranges of queues starts with queue 0 for CP0.

• The range for CP1 follows immediately after the range for CP0 with no gap. This
pattern continues through the remaining CPs in increasing CP number, and then to the
FP and the XP.

• The last XP queue must not exceed the total number queues initialized.

• There can be no more than one-hundred-twenty-eight (128) queues per processor.

Base_Queue_CP0
Address Queue0

Base_Queue_FP
Address

Available Queues= 0 to 511

Queue1

Queue2

Queue3
Base_Queue_CP1
Address Queue4

Queue5

Queue6

Queue7

Queue8

Queue507

Queue505

Queue504

Queue509

Queue510

Queue511

Base_Queue_XP
Address

Queue508

Queue506

For More Information On This Product,

 Go to: www.freescale.com

330 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When there are no queues assigned to a processor, its Base_Queue_nnn register must still
be programmed. Its value should be the offset for the “next available queue” following
the last queue of the next lower numbered processor.

If a processor is assigned zero (0) queues, the next higher processor (based on Processor
ID) is assigned the same Base_Queue_Number bits [8:0] as the lower processor.
Therefore, two (or more) processors can have the same Base_Queue_Number bits [8:0]
value if the lower processor(s) has been assigned zero (0) queues.

If any descriptors are enqueued for a processor with no queues, those descriptors are
enqueued in a queue of the higher numbered processor. When one of the next-higher
numbered processor’s queues is non-empty, the notification is sent to the highest
numbered processor sharing the Base_Queue_Number bits [8:0] value, but the higher
numbered processor becomes the owner of the queue.

Queue Length
Allowance and Length

Limit Parameters

The supply of Descriptor Buffers within the QMU must be properly managed to prevent
the depletion of Descriptor Buffers for queues not at the “traffic hot-spots”. To avoid this
situation, a minimum number of Descriptor Buffers always needs to be available to each
queue regardless of the use of Descriptor Buffers by other queues. Two (2) parameters are
used to set the minimum and maximum amount of Descriptor Buffers used to provide a
free flow of Descriptor Buffers to the queues that need them at a given point in time. They
are: Queue Length Allowance and the Queue Length Limit. Allowance is the minimum
amount of the (0 to 16K) range, whereas, Limit is the maximum of the (0 to 16K) range.
Thus, each queue is initialized with these two (2) parameters:

• Queue Length Allowance — Is the guaranteed minimum allocation of Descriptor
Buffers of (0 to 16K) range. Buffers are implicitly reserved so that a queue can always fill
to its allowance. The sum of the allowances of all the queues is always smaller than the
total supply of Descriptor Buffers, typically much smaller.

• Queue Length Limit — Is the guaranteed maximum number of unicast Descriptor
Buffers a queue is allowed to hold in the range of (0 to 16K). The sum of the limits of all
the queues is typically much greater than the supply of Descriptor Buffers.

These parameters (Allowance and Limit) refer to the number of Descriptors enqueued in
a queue; they do not specify which Descriptor Buffers are enqueued in any given queue.

When a queue has filled to an amount between its Allowance and its Limit, it is in its
dynamic range. In this dynamic range, Descriptor Buffers may or may not be available to
the queue for enqueuing depending on the use of Descriptor Buffers by other queues.
Whether or not a Descriptor Buffer is available in this situation depends on the number of
Descriptor Buffers currently enqueued in other queues.

For More Information On This Product,

 Go to: www.freescale.com

Queue Mapping and Parameter Characteristics 331

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Descriptor Buffer availability is dynamic in that it depends on the current state of the QMU
that results from the dynamic traffic pattern. If other queues are not using many
Descriptor Buffers at a given moment in time, a queue at the “traffic hot-spot” can get
more than its share. If there are a lot of enqueued Descriptor Buffers, each queue gets at
least its Allowance, (that is, its fair share under congestion). This gives the QMU the
appearance of many more Descriptor Buffers than it actually has if they had been
dedicated to specific queues.

For More Information On This Product,

 Go to: www.freescale.com

332 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queuing Operations The QMU receives queue operation requests via the Payload Bus. Enqueue Operations use
a control block (WrCB0) to write the descriptor data into a queue in the QMU’s external
SRAM from the DMEM of either the requesting CP, or XP via the Payload Bus. In addition,
Dequeue Operations use a control block (RdCB0) to read descriptor data from a queue in
the QMU’s SRAM into the DMEM of the requesting CP, or XP via the Payload Bus.
Descriptor data is transferred to/from the QMU in 16Byte units; up to two (2) units
(32Bytes) can be transferred in one (1) Payload operation along with other information
contained in the payload transaction.

QMU Run Enable The QMU must be enabled to process queuing operation requests from the processors
(CPs, XP, or FP). The QMU_Run_Enable register has one (1) bit that enables the QMU to
process Payload Bus operations. This bit must be set after initialization to allow the QMU
to go online.

This bit can be cleared at any time. Once cleared, this bit disables the QMU from starting
the processing of any subsequent queue operations. A queue operation currently being
executed is not interrupted by the clearing of this bit, but no subsequent queue
operations are started. This allows a clean shutdown of the QMU so that its internal state is
not corrupted. Once the QMU is shut down, a processor (CPs, XP, or FP) can access all of
the internal state of the QMU (both registers and memory). Any queue commands left in
the mailboxes (Wr Mailbox/Rd Mailbox) are executed in normal order when the QMU is
re-enabled, just as if the QMU had never been disabled. Refer to “QMU_Run_Enable
Register (QMU Enable Queue Function)” on page 501.

Enqueue Operation Processors (CPs, XP, or FP) enqueue payload descriptors to designate to the output
processor how to forward packets/cells. Upon a successful enqueue, the requesting
processor is freed from having to keep track of the packet/cell buffer. It has effectively
handed this packet/cell buffer off to the output function by way of the QMU.

Payload (Wr/Rd) Servicing Order During Enqueue Operation
Queue operations arriving from the CPs and the XP are serviced from the mailboxes by
type (Wr/Rd) in the order of their arrival at the QMU over the Payload Bus. Payload write
(Wr) operations from any CP or the XP are executed in arrival order before any waiting
payload read (Rd) operations are executed in their arrival order. In order to facilitate the FP
operating at full capacity, the QME gives FP commands at least one half the queuing
bandwidth in proportion to its traffic bandwidth. The CP/XP operations, either read or
write operations, are interleaved with FP operations.

For More Information On This Product,

 Go to: www.freescale.com

Queuing Operations 333

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Since only one (1) command of each type (Wr/Rd) can be buffered in the QMU from each
of the CPs and the XP, a mailbox status for each ensures that commands are not lost. Direct
wiring of mailbox status and command execution status information from the QMU to the
CP_Mode0 register ensures that the CPs do not need to spend system-level resources to
determine if the previous command completed successfully or not.

An attempt to over-write a busy mailbox causes a Payload Bus NACK. An attempt does not
disturb the previously written command.

Causes of Enqueue Failure
When an enqueue operation failure occurs, the requesting processor (CPs, XP, or FP) must
either retry the enqueue at a later time or drop the packet/cell and reuse the Buffer Tag
(BTag). An enqueue operation can fail for the following reasons:

• A Dyn_Descriptor_Pooln_Usage shows that the pool is empty when a queue is in its
dynamic range.

• The Free_Descriptor_Buffer_List has no descriptor buffers left.

• The unicast target queue has exceeded its buffer-use limit.

• The target queue does not exist (that is, it was never configured).

Dequeue Operation Because the QMU queues are output queues, there must be a single processor that owns
each active queue. That owner is responsible for draining the queue. A successful
dequeue operation triggers the entire forwarding process. Therefore, when a dequeue
failure occurs, there is no descriptor to drive a packet/cell transmission.

Queue Servicing Policy During Dequeuing Operation
The dequeuing processors (CPs, XP, or FP) determine the queue service policy, not the
QMU. In addition, several queues can be assigned to each CP for Quality of Service (QoS)
purposes. The dequeuing processor is free to implement any priority, service weighting, or
scheduling policy.

Dequeuing processors are responsible for scheduling their own workloads. To aid in this,
the QMU provides weights for each queue. Each queue entry has a weighting factor
associated with it. In typical frame-switching applications, each descriptor is assigned a
weight which is related to the length of the frame stored in the associated BMU buffer. The
sum of the enqueued descriptor weights is kept for each QMU queue. Each enqueue and
dequeue operation updates the value for its queue. For multicast enqueue operations, the
queue weight is adjusted for all the specified queues.

For More Information On This Product,

 Go to: www.freescale.com

334 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

When a descriptor is dequeued from a queue, the descriptor’s weight, the queue’s new
weight, and the queue’s length are returned to the processor’s DMEM along with the
descriptor itself. Refer to “Dequeue Operation” on page 348.

Causes of Dequeue Failures
A dequeue operation can fail for these reasons:

• The target queue is empty.

• The target queue does not exist (that is, it was never configured).

Status Reporting Status is reported on Mailboxes and Queues. Queue status information is made up of
three (3) types: Empty to Non-Empty State Notification, Dequeue Operation, and Buffer
Management.

Mailbox Availability and Status Reporting of Mailboxes
The QMU maintains a write (CPn Wr Mailbox) and a read (CPn Rd Mailbox) mailbox for
each CP and the XP (XP Wr Mailbox, and XP Rd Mailbox). These mailboxes are invisible to
application developers except that the state of each is reported via the CP_Mode0 register
for the processor. Specifically, the CP_Mode0 register, bits [23:22] QMURdMbxStatus field
and bits [21:20] QMUWrMbxStatus field are visible. Using these two (2), two (2) bit fields,
status states reported include: operation success, operation error, busy-wait, or
busy-executing. The mailbox scheme provides a single holding register per source (that is,
only one (1) command is outstanding per mailbox at a time).

This allows success/fail operation information to be conveyed back to the requesting
processor (CPs or XP) in an orderly fashion. Errors reported (set to 1) in the CP_Mode0
register occur when the previous queue operation encountered an error and should be
repeated. Generally, it means the queue operation failed, because of a resource error such
as queue non-empty or descriptor buffer pool limit was exceeded.

Mailbox status is also reported through both Event0 and Event1 registers. Specifically,
Event0 register bit [60] QMUError field, as well as the Event1 register bit [31] QRdMbxAvail
field, bit [26] QRdMbxBusy field, bit [15] QWrMbxAvail field, and bit [10] QWrMbxBusy field
are used to determine when the applicable mailbox is available for a new queue. The avail
bits indicate the mailbox made a state transition from busy to empty. The busy bits
indicate a transition from empty to busy. The error bit indicates a transition from busy to
error.

For More Information On This Product,

 Go to: www.freescale.com

Queuing Operations 335

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Status Information
There are several types of queue status information that can be accessed to inform the
processors (CP, XP, or FP) in their forwarding tasks:

• Queue non-empty transition notifications presented via Queue_Status0,
Queue_Status1, Queue_Status2 and Queue_Status3 registers, as well as, the Event0 and
Event1 registers.

• Dequeue status information (the Queue’s weight and length) that is included with a
descriptor when it is dequeued. Refer to “Dequeue Operation” on page 348.

• Buffer management status that is included in the Free_Descriptor_Buffer_List and
Dyn_Descriptor_Pooln_Usage registers.

Queue Empty to Non-empty State Notification Process Information
Queue status is made visible to the processors (CPs, XP, or FP) via the Event1 register and
the Queue_Status0, Queue_Status1, Queue_Status2, Queue_Status3 registers in each
processor’s configuration space. Payload operations (RdCB0) can be used to read the
complete queue status from the QMU when the normal updates that come with a
dequeue are insufficient. Refer to “Queue Status Operation” on page 342. Autonomous
announcements of queue status by the QMU are made on the Global Bus and are handled
by CP and XP hardware.

When a queue becomes non-empty, its dequeuing processor (CP, XP, or FP) can begin to
drain it. The QMU announces this change of state (empty to non-empty) to the queue’s
dequeuing processor indicating the queue is now ready to be serviced. The dequeuing
processor’s software is then responsible to keep track of the ready status of the queue
until the queue is completely drained.

Queue change of state (empty to non-empty) notifications are issued whether the
enqueued descriptor came from a unicast or a multicast enqueue. Each multicast target
queue is treated individually in the generation of these notifications.

Queue status non-empty transitions are automatically loaded into the four (4) queue
status registers, where they can be read by the CPRC. Queue_Status0, Queue_Status1,
Queue_Status2, Queue_Status3 bits are set to one (1) when a queue state changes from
empty to non-empty. The dequeuing processor is responsible for clearing these bits when
it handles the status change (that is, before it begins to read descriptors from the queue).
The logical OR of the bits in these status registers also provides a level-sensitive event for
input to the Event1 register. Refer to “Queue_Status0 Register (CP Queue Status Function)”
on page 433,Table 131 on page 433.

For More Information On This Product,

 Go to: www.freescale.com

336 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Dequeue Status Information
The dequeuing processor (CPs, XP, or FP) of the descriptors is given a queue and
descriptor status with each dequeue operation. The QMU sends the following three (3)
types of status information to DMEM along with the descriptor being delivered:

• Descriptor Weight, Queue Weight, and Queue Length

– The Descriptor Weight — The weight of that descriptor.

– The Queue Weight — Accumulated weight of the queue after the dequeue of this
descriptor.

– Queue Length — The queue length after the dequeue of this descriptor.

The queue status information can also be obtained using the Queue Status Operation.
Refer to“Queue Status Operation” on page 342.

Buffer Management Information
The processor receives an update of the queue’s length with each descriptor read (RdCB0
for Dequeue Operation and Queue Status Operations). When the reported queue length
drops to zero (0), the processor has just received the last enqueued descriptor and should
stop issuing descriptor reads until it receives a queue non-empty transition notification
for that queue.

Additional QMU status information can be read during on-line operation via Global Bus
transactions using Load operations from an egress processor. These Global reads deliver
the values of these registers instantaneously. Their values typically vary (very rapidly and
widely) when the QMU is active. Some form of sampling and time-averaging is necessary
to get an accurate sense of the congestion level.

The QMU makes available status information about the processors level of congestion.
That status information is contained in the Free_Descriptor_Buffer_List and
Dyn_Descriptor_Pooln_Usage registers. These two (2) registers can be read using Global
reads when the QMU is on-line to access the status information. Refer to
“Free_Descriptor_Buffer_List Register (QMU Status Function)” on page 510,
“Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)” on page 511, and
Table 157 on page 511.

Processors can also read the instantaneous contents of the various statistics counters
using Loads over the Global Bus. There are sixteen (16) QMU Statistics registers that are
available. Refer to “QMU Registers” on page 355.

For More Information On This Product,

 Go to: www.freescale.com

Types of Transactions 337

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Types of Transactions The QMU supports five (5) Queuing functions. The different functions are initiated by CPs
or the XP using the Multi-Use Control Blocks by just changing the fields. Multi-Use Control
Blocks use the following registers: WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr,
WrCB0_SDP_Addr; and RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr,
RdCB0_SDP_Addr. Refer to Table 78 on page 337, Table 79 on page 338, and Table 80 on
page 339.

Table 78 Multi-Use Control Blocks (for Wr and Rd)

Mode Category Function Fields Used Details

• CP to/from
QMU

• XP to/from
QMU

Queue
Management
Transactions

Configure Queue Mail Box#,
Queue#, Cmd,
PoolID

See “Configure Queue
Operation” on page 340.

Queue Status See “Queue Status
Operation” on page 342.

Unicast Enqueue See “Unicast Enqueue
Operation” on page 344.

Multicast
Enqueue

Mail Box#,
QueueLevel#,
Cmd, PoolID

See “Multicast Enqueue
Operation” on page 346.

Dequeue Mail Box#,
Queue#, Cmd,
PoolID

See “Dequeue Operation”
on page 348.

For More Information On This Product,

 Go to: www.freescale.com

338 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 79 WrCB0_ Variables per Field for QMU

Register
Field
Name

Bit
Posit
ion Description

WrCB0_DMA_Addr PoolID 20:16 PoolID —

WrCB0_Sys_Addr Mail
Box#

27:24 Mail Box Number —

Queue# 20:12 Queue Number —

QLevel# 18:16 Queue Level Number —

CMD 10:8 Command —

Operation Type Value
Configure Queue 31

Unicast Enqueue

Multicast Enqueue

Operation Type Value
Configure Queue Enter the number of the processor’s mailbox. Legal range=0 to

16. Generally, the initiating processors ID. Unicast Enqueue

Multicast Enqueue

Operation Type Value
Configure Queue Queue to configure. Legal range=0 to 511.

Unicast Enqueue Queue to write to. Legal range=0 to 511.

Operation Type Value
Multicast Enqueue Index to the Queue Number to write to. Legal range=0 to 7.

Operation Type Value
Configure Queue 1

Unicast Enqueue 4

Multicast Enqueue 6

For More Information On This Product,

 Go to: www.freescale.com

Types of Transactions 339

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 80 RdCB0_ Variables per Field for QMU

Register
Field
Name

Bit
Posit
ion Description

RdCB0_DMA_Addr PoolID 20:16 PoolID —

RdCB0_Sys_Addr Mail
Box#

27:24 Mail Box Number —

Queue# 20:12 Queue Number—

CMD 10:8 Command —

Operation Type Value
Queue Status 31

Dequeue

Operation Type Value
Queue Status Enter the number of the processor’s mailbox. Legal range=0 to 16.

Generally, the initiating processors ID.Dequeue

Operation Type Value
Queue Status Queue Status being read. Legal range=0 to 511.

Dequeue Queue being Dequeued. Legal range=0 to 511.

Operation Type Value
Queue Status 2

Dequeue 5

For More Information On This Product,

 Go to: www.freescale.com

340 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Management
Transactions

Queue transactions consist of five (5) different functions (Configure Queue, Queue Status,
Unicast Enqueue, Multicast Enqueue, and Dequeue). Queue transactions are invoked
using Control Blocks (WrCB0, and RdCB0).

Queue Transaction
Functions (Operation

and Examples)

Each is described here along with examples.

Configure Queue Operation
Configure Queue uses a control block (WrCB0) to send configuration information from the
(DMEM) of either the requesting CP or XP to the QMU’s Queue Management Engine
(QME).

Configure Queue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 81 on page 340.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The descriptor limit [45:32] (14bits), descriptor pool
[15:14] (2bits) and descriptor allowance [13:0] (14bits) are located in the first 128bit line
inside the 64Byte DMEM as shown in Figure 73 on page 341. The second, third and fourth
128bit lines are not used.

Table 81 WrCB0_ Settings for Configure Queue

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 27:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue to write to configure.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 1 for Configure Queue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

Length (Bytes)
64

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Transactions 341

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 73 Configure Queue Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Des. Limit [45:32](14bits) Des. Pool [15:14](2bits) Des. Allowance [13:0] (14bits)

Not Used

=128bits

=64Bytes

Not Used

Not Used

For More Information On This Product,

 Go to: www.freescale.com

342 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Status Operation
Queue Status uses a control block (RdCB0) to read a single queue’s length and weight
from the QMU into the (DMEM) of the requesting CP, or XP.

Queue Status Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 82 on page 342.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The queue’s weight [53:32] (22bits) and its length [13:0]
(14bits) are located in the first 128bit line inside the 64Byte DMEM as shown in Figure 74
on page 343. The second, third and fourth 128bit lines are not used.

Table 82 RdCB0_ Settings for Queue Status

Register
Field
Name

Bit
Position Description

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.

RdCB0_Sys_Addr MailBox# 27:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue Status being read.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 2 for Queue Status
Operation.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

Length (Bytes)
64

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Transactions 343

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 74 Queue Status Implementation

LineAddr [13:4]

CP/XP Control Block

RrCB0_Sys_Addr (32bits)

RdCB0_Ctl (32bits)

RdCB0_DMA_Addr (32bits)

64Byte DMEM

Queue Weight [53:32](22bits) Queue Length [13:0] (14bits)

Not Used

=128bits

=64Bytes

Not Used

Not Used

For More Information On This Product,

 Go to: www.freescale.com

344 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Unicast Enqueue Operation
Unicast Enqueue uses a control block (WrCB0) to write the Descriptor data into a queue in
the QMU’s (SRAM) from the (DMEM) of either the requesting CP or XP.

Unicast Enqueue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 83 on page 344.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The descriptor weight [7:0] (8bits) is located in the first
128bit line followed with descriptors (depending on 12, 16, 24, or 32Byte sizes) located in
the second and third 128bit lines inside the 64Byte DMEM as shown in Figure 75 on
page 345. The fourth 128bit line is not used.

Table 83 WrCB0_ Settings for Unicast Enqueue

Register/
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 27:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue to write to. Legal
range=0 to 511.

Cmd 10:8 Command — Enter 4 for Unicast Enqueue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

Length (Bytes)
64

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Transactions 345

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 75 Unicast Enqueue Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Descriptor Weight [7:0] (8bits)

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)

For More Information On This Product,

 Go to: www.freescale.com

346 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multicast Enqueue Operation
Multicast Enqueue uses a control block (WrCB0) to write a Descriptor’s data into multiple
queues in the QMU’s SRAM from the DMEM of either the requesting CP, or XP.

Multicast Enqueue Example
The bits for WrCB0_Sys_Addr, WrCB0_Ctl, and WrCB0_DMA_Addr are set as shown in
Table 84 on page 346.

The WrCB0_DMA_Addr bits [13:0] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The multicast vector [49:32] (18bits) and descriptor
weight [7:0] (8bits) are located inside the first 128bit line followed with descriptors (12, 16,
24, or 32Byte sizes) located in the second and third 128bit lines inside the 64Byte DMEM
as shown in Figure 76 on page 347. The fourth 128bit line is not used.

Table 84 WrCB0_ Settings for Multicast Enqueue

Register
Field
Name

Bit
Position Description

WrCB0_Ctl Length 13:0 Length — Length of DMA transfer in Bytes.

WrCB0_Sys_Addr Mail Box# 27:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

QLevel# 18:16 Queue Level Number — Index to the Queue
Number to write to. Legal range=0 to7.

Cmd 10:8 Command — Enter 6 for Multicast Enqueue
Operation.

WrCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

Length (Bytes)
64

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Transactions 347

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 76 Multicast Enqueue Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Multicast Vector [49:32](18bits) Descriptor Weight [7:0] (8bits)

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)

For More Information On This Product,

 Go to: www.freescale.com

348 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Dequeue Operation
Dequeue uses a control block (RdCB0) to read Descriptor data from a queue in the QMU’s
SRAM into the DMEM of the requesting CP, or XP. Dequeue frees a Descriptor Buffer from a
queue.

Dequeue Example
The bits for RdCB0_Sys_Addr, RdCB0_Ctl and RdCB0_DMA_Addr are set as shown in
Table 85 on page 348.

The RdCB0_DMA_Addr bits [13:4] LineAddr field refers to the Local DMEM buffer address
that is generally 64Byte aligned. The descriptor weight [71:64] (8bits), queue weight
[53:32] (22bits) and queue length [13:0] (14bits) are located inside the first 128bit line
followed with descriptors (depending on 12, 16, 24, or 32Byte sizes) located in the second
and third 128bit lines inside the 64Byte DMEM as shown in Figure 77 on page 349. The
fourth 128bit line is not used.

Table 85 RdCB0_ Settings for Dequeue

Register
Field
Name

Bit
Position Description

RdCB0_Ctl Length 13:4 Length — Length of DMA transfer in Bytes.

RdCB0_Sys_Addr MailBox# 27:24 Mail Box Number — Enter the number of the
processor’s mailbox. Legal range=0 to 16.

Queue# 20:12 Queue Number — Queue being Dequeued.
Legal range=0 to 511.

Cmd 10:8 Command — Enter 5 for Dequeue Operation.

RdCB0_DMA_Addr PoolID 20:16 PoolID — Enter 31 for Queue Operation.

LineAddr 13:4 DMEM Line Address — DMEM 64Byte line
address for DMA.

Length (Bytes)
64

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Transactions 349

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 77 Dequeue Implementation

LineAddr [13:4]

CP/XP Control Block

WrCB0_Sys_Addr (32bits)

WrCB0_Ctl (32bits)

WrCB0_DMA_Addr (32bits)

64Byte DMEM

Des. Weight [71:64](8bits) Q. Weight [53:32](22bits) Q. Length [13:0] (14bits)

Not Used

=128bits

=64Bytes

Descriptors (128bits)

Descriptors (128bits)

For More Information On This Product,

 Go to: www.freescale.com

350 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Multicast
Support (Non-System
Level)

Multicast enqueue operations take a single multicast descriptor from the DMEM of a
processor (CPs, or XP) and copy it to the designated target queue numbers. To get from
the DMEM to the selected targeted queue number requires certain items. Two (2) basic
formulas can be used to illustrate the required items. They are:

• (QLevel# + (Multicast Vector Bit * 8)) = Queue_Offset

• (Queue_Offset + Base_Queue_nnn) = Target Queue Number

The multicast operation is implemented using the Control Blocks (WrCB0_). Specifically,
the WrCB0_Sys_Addr register, bits [18:16] QLevel# field that are used to select the queue
level number (0 to 7). This allows eight (8) multicast queuing levels to be mapped to as
many as eight (8) queues for each processor. Processors can have < 8 multicast-enabled
queues if desired. Additionally, the multicast vector (18bits), a bitmask, determines which
processors (CPs, XP, or FP) are the output ports for this multicast operation. Generally, the
multicast vector is fetched from a multicast table in the TLU by the processor that built the
descriptor.

The multicast vector’s 18bits correspond to the processors. For example, 0bit= CP0,
1bit= CP1, 15bit= CP15, 16bit= FP, 17bit=XP. These two (2) items combined provide the
Queue_Offset address (0 to 143) into the Multicast Destination Table. Use the
Multicast_Destination0 to Multicast_Destination143 registers bits [6:0] Queue_Offset field
for selecting applicable processors (CPs, XP, or FP) for programming output ports using
their ID’s (0=CP0, 1=CP1, 15=CP15, 16=FP, 17=XP) and the applicable queue level number
(0 to 7) (QLevel#). Refer to Table 156 on page 508 for a complete listing of all the multicast
mapping addresses including: processor ID numbers, queue level number, and queue
offset address.

One of the QMU’s setup steps is to map individual queue numbers (0 to 511) to their
respective processors (CPs, XP, or FP) using the Base_Queue_CP0 to Base_Queue_CP15,
Base_Queue_FP, and Base_Queue_XP registers. This already provides the association
between the queue numbers and their mapped processors. Take the Queue_Offset
address result from the first formula and add the applicable base queue address
(Base_Queue_CPnn, Base_Queue_XP, or Base_Queue_FP) to determine the targeted queue
number that the single multicast descriptor needs to be copied for each output port.

For More Information On This Product,

 Go to: www.freescale.com

QMU Multicast Support (Non-System Level) 351

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 78 Multicast Enqueue Operation and Mapping Example

Multicast elaboration is performed by copying the descriptor into a descriptor buffer for
each of the appropriate output queues. Other than the availability of
Free_Descriptor_Buffer_List and Dyn_Descriptor_Pooln_Usage, the QMU imposes no limit
on the number of descriptors that can simultaneously be in the queues as the result of
multicast operations. However, the BMU has a fixed number (1024 8bit) of Multi-Use
Counters (MUC) that it can maintain that can be used to track buffer accesses when a
buffer has multiple targets (CPs, XP or FP). Refer to “Multi-Use Counter (MUC)
Management Transactions” on page 233. Each of the sixteen (16) CPs, the XP, and the FP
can receive a copy of a descriptor. This totals a maximum of eighteen (18) copies.
However, the external switching fabric must be capable of multicast replication for
multiple fabric ports from a single multicast queue.

CPs, XP, FP Input

Multicast Operation
(QLevel# & M.C. Vector)

CP0

Single Multicast
Descriptor
DMEM

M.C. Vector (18bits)

Descriptor

Output Port-Processors
(18bits)
17 0

1 1000 0 0

XP

M.C. Map (0 to 143)
Queue_Offset

CP1

CP2

0

7

0

7

QL
ev

el
#

0

7

0

CP0
Queues (0 to 511)

Queue0
Queue1
Queue2
Queue3
Queue4
Queue5
Queue6

Queue12
Queue13
Queue14

Queue11

Queue511
Queue510

CP1

XP

(Entry=0)

(Entry= 143)

Queue7
Queue8
Queue9
Queue10

Queue509
Queue508
Queue507
Queue506
Queue505
Queue504

=Target Queue
 Number

=Target Queue
 Number

1) (QLevel# + (M.C. Vector Bit * 8)) = Queue_Offset
2) (Queue_Offet + Base_Queue_nnn) = Target Queue Number

Ba
se

_Q
ue

ue
_n

nn

QLevel# (0 to 7)

(QLevel# +
 CP0) =

(QLevel# +
 CP1) =

(Queue_Offset +
 Base_Queue_nnn) =

(Queue_Offset +
 Base_Queue_nnn) =

For More Information On This Product,

 Go to: www.freescale.com

352 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multicast Operations
Success or Failure

Descriptors enqueued in the QMU correspond to payload buffers located in the BMU. If a
descriptor does not make it to a destination processor, the corresponding payload buffer
is effectively lost as well because it is not deallocated. In a multicast operation, a payload
buffer is assigned a destination count equal to the number of destination processors to
receive a copy of the descriptor. When all the destination processors have received their
copy of the descriptor, the payload buffer is released because the destination-count
reaches zero (0).

It is critical that the QMU succeed at multicasting the descriptor to all the destination
processors. If it does not, one or more processors never receive a copy of the buffer
descriptor, and the payload buffer’s destination count never reaches zero (0) and the
payload buffer is never released. This would cause a “memory leak”. If the QMU cannot
successfully enqueue a descriptor to all the specified destinations, it rejects the entire
multicast enqueue request. When a multicast enqueue request fails, the requesting
processor can either retry the multicast enqueue, or drop the payload.

Multicast Operation
Throughput

Considerations

An N-way multicast enqueue operation cannot take longer than N unicast enqueues if the
C-5 NP is to maintain its throughput. Therefore, the QMU cannot afford to take the time to
visit each target queue to determine if its length is over its limit before actually beginning
to do the series of enqueues. Since the QMU cannot check ahead of time and it cannot fail
to enqueue to each queue, it cannot check the queue limit while it is doing the enqueues.
This means that a multicast operation can push a queue above its length limit.

Before the QMU begins the individual enqueues of a multicast enqueue operation, it
checks that there are enough free descriptor buffers (Free_Descriptor_Buffer_List register)
and enough room within the dynamic pool (Dyn_Des_Usage_Lim_Pooln register) to
complete the series of enqueues. As with the queue length limit, the QMU cannot know
ahead of actually doing the individual enqueues how many of the target queues will be
above their allowances and therefore need a dynamic descriptor buffer. The initial pool
usage check insures that there will be enough dynamic buffers no matter what. However,
the pool usage check might find that there are not enough buffer credits left if all the
target queues need one, when, in actuality, there are enough pool credits available for the
number of queues that actually need them. In this case, the multicast operation will be
rejected when it could have succeeded.

Because the QMU only has time to check the dynamic pool of the first queue, all member
queues of a multicast group must share the same dynamic buffer pool.

For More Information On This Product,

 Go to: www.freescale.com

QMU Multicast Support (Non-System Level) 353

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Levels Supported
in Multicast Operations

The QMU supports eight (8) levels (0 to 7) of multicast queuing. The purpose of using
levels is to assign a specific queue to each level in order to implement a multicast
operation. In a multicast operation, a single payload descriptor is simply copied to each of
the targeted queues specified using the Queue Level Number field (QLevel#) in the
WrCB0_Sys_Addr. The Queue Level Number is an index to the Queue Number to write to.

Although levels are available only through multicast commands, unicast descriptors can
also use queuing levels if enqueued via a multicast command with a fanout of 1. A
multicast descriptor specifies only the target processors and the queuing level; the QMU
then maps that onto the specific queue corresponding to the given level for each target
processor. The presumption is that a given descriptor is associated with a class-of-service
that applies at each output port (CPs, XP, or FP). When different queuing levels are needed
at different output ports, multiple multicast enqueues can be issued so that each one
covers the destinations at each of the required queuing levels.

Multicast mapping uses a configurable look-up table to store the queue number for each
combination of processor and queuing level. For eighteen (18) processors and eight (8)
queueing levels, this requires one-hundred-forty-four (144) entries. Each entry holds a
7bit queue offset that when added to the processor’s base queue number, gives the
number of the target queue. With this scheme, each processor with eight (8) or more
queues can have up to eight (8) queues for transmitting multicast traffic. These queues
could also receive unicast traffic. Target processors can accept < 8 queues. Refer to
“Multicast_Destination0 to Multicast_Destination143 Registers (QMU Configuration
Function)” on page 507 and Table 156 on page 508.

If a processor is to accept multicast traffic in < 8 queues, each of its eight (8) look-up table
entries must still be configured to point at one (1) of its queues. For example, if there are to
be only two (2) queues receiving multicast traffic, at queue offsets 3 and 4, the eight (8)
look-up table entries could be programmed. Refer to Table 86 on page 353.

Table 86 Multicast Queue Mapping for <8 Queues Example

M. C. QLevel#’s
Points to Single
Queue

SIngle Queue’s
Receive of M. C.
Traffic

Single Queue
Target#

QLevel0 Queue_Offset3 Queue25

QLevel1 Queue_Offset3

QLevel2 Queue_Offset3

QLevel3 Queue_Offset3

For More Information On This Product,

 Go to: www.freescale.com

354 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The actual mapping depends on the particular relationship of queuing levels to service
classes in each application.

Multicasting to the
Fabric Processor

The FP multicast vector bit in the descriptor is set by the originating processor and directs
the descriptor to one FP queue at the appropriate queuing level.

QLevel4 Queue_Offset4 Queue83

QLevel5 Queue_Offset4

QLevel6 Queue_Offset4

QLevel7 Queue_Offset4

Table 86 Multicast Queue Mapping for <8 Queues Example (continued)

M. C. QLevel#’s
Points to Single
Queue

SIngle Queue’s
Receive of M. C.
Traffic

Single Queue
Target#

For More Information On This Product,

 Go to: www.freescale.com

QMU Configuration Space 355

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Configuration
Space

The QMU has memory-mapped Configuration Space that contains a number of registers.
The registers are used for four (4) purposes: mapping of queues to CPs, XP and FP,
configuration of the QMU, QMU debugging, and collecting QMU statistics. Refer to
Table 87 on page 355.

Table 87 QMU Registers

QMU
Register
Types Register Function Specific Register Details

CP’s Queue
Mapping

These registers specify the base
address for a CP’s queues.

See “Base_Queue_CP0 to
Base_Queue_CP15 Registers (QMU
CP’s Queue Allocation Function)” on
page 501.

XP’s Queue
Mapping

These registers specify the base
address for a XP’s queues.

See “Base_Queue_XP Register (QMU
XP’s Queue Allocation Function)” on
page 502.

FP’s Queue
Mapping

These registers specify the base
address for a FP’s queues.

See “Base_Queue_FP Register (QMU
FP’s Queue Allocation Function)” on
page 502.

QMU
Configuration

Specifies the number of descriptor
buffers to be available in the QMU.

See “Num_Descriptors Register
(QMU Configuration Function)” on
page 503.

Specifies the maximum number of
descriptors that can be enqueued
dynamically to the queues associated
with Pooln.

See “Dyn_Des_Usage_Lim_Pool0
Register (QMU Configuration
Function)” on page 503.

Specifies the operating mode of the
QMU.

See “Operation_Mode Register (QMU
Configuration Function)” on
page 504.

Specifies the size of the data stored
for each descriptor in an encoded
form.

See “Descriptor_Size Register (QMU
Configuration Function)” on
page 504.

Provides the mapping of the
multicast destination port and queue
level to a target queue number for
each leaf of a multicast elaboration.

See “Multicast_Destination0 to
Multicast_Destination143 Registers
(QMU Configuration Function)” on
page 507.

QMU Status Designates the total number of free
descriptors.

See “Free_Descriptor_Buffer_List
Register (QMU Status Function)” on
page 510.

For More Information On This Product,

 Go to: www.freescale.com

356 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Status
(continued)

Designates how many buffers are in
use in Pooln.

See “Dyn_Descriptor_Pool0_Usage
Register (QMU Status Function)” on
page 511.

QMU Statistics Count of Queue Configuration
Operations.

See “Config_Q_Cnt Register (QMU
Statistics Function)” on page 505.

Count of Read Status operations. See “Rd_Q_Status_Cnt Register
(QMU Statistics Function)” on
page 505.

Count of Unicast Enqueues from the
CPs.

See “CP_Uni_Enq_Cnt Register (QMU
Statistics Function)” on page 505.

Count of Multicast Enqueues from
the CPs.

See “CP_Multi_Enq_Cnt Register
(QMU Statistics Function)” on
page 505.

Count of Total Multicast Enqueues
Targets from the CPs.

See “CP_Multi_Enq_Target_Cnt
Register (QMU Statistics Function)”
on page 505.

Count of Dequeue operations from
the CPs.

See “CP_Dequeue_Cnt Register
(QMU Statistics Function)” on
page 505.

Count of Unicast Enqueues from the
FP.

See “FP_Uni_Enq_Cnt Register (QMU
Statistics Function)” on page 505.

Count of Multicast Enqueues from
the FP.

See “FP_Multi_Enq_Cnt Register
(QMU Statistics Function)” on
page 505.

Count of Total Multicast Enqueues
Targets from the FP.

See “FP_Multi_Enq_Target_Cnt
Register (QMU Statistics Function)”
on page 506.

Count of Dequeue Operations from
the FP.

See “FP_Dequeue_Cnt Register
(QMU Statistics Function)” on
page 506.

Count of QMU Idle Clock Cycles. See “QMU_Idle_Cycles Register
(QMU Statistics Function)” on
page 506.

Count of Payload NACKs. See “Payload_NACK_Cnt Register
(QMU Statistics Function)” on
page 506.

Table 87 QMU Registers (continued)

QMU
Register
Types Register Function Specific Register Details

For More Information On This Product,

 Go to: www.freescale.com

QMU Configuration Space 357

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For complete details about specific registers go to their reference. Refer to “Queue
Management Unit (QMU) Configuration Registers” on page 498.

QMU Statistics
(continued)

Count of Global NACKs. See “Global_NACK_Cnt Register
(QMU Statistics Function)” on
page 506.

Count of Payload Read Failures. See “Payload_Read_Failures_Cnt
Register (QMU Statistics Function)”
on page 506.

Count of Command Processor Errors,
illegal opcodes and out of range
queue numbers.

See “Cmd_Processor_Err_Cnt
Register (QMU Statistics Function)”
on page 506.

Count of Queue Engine Errors. See “Q_Engine_Err_Cnt Register
(QMU Statistics Function)” on
page 507.

Table 87 QMU Registers (continued)

QMU
Register
Types Register Function Specific Register Details

For More Information On This Product,

 Go to: www.freescale.com

358 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Setup The QMU must be initialized to operate. Using Global Bus operations, various registers and
memories must be written with appropriate values to allow the QMU to function.
Initialization must be completed before the QMU can be put online. See Table 87 on
page 355 for more complete descriptions of the registers listed below.

As with most C-5 NP components, QMU initialization is completely handled by C-Port’s
programming interface, so that programmers never directly deal with the registers listed
in this section.

Initializing the QMU involves writing the following:

1 Configure the pools using the following registers:

– Operation_Mode register (Internal=0x1)

– Descriptor_Size register (12, 16, 24, 32Bytes)

– Num_Descriptors register (0 to 16, 384)

– Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers for each of the
four (4) Dyn_Descriptor_Pooln_Usage registers

2 Map the queues to their applicable processors (CPs, XP, or FP):

This maps specific processors to specific queues to be used for Unicast Enqueue
Operations, as well as mapping specific processors to specific queues to be used for
Multicast Enqueue Operations.

– Base_Queue_CP0 to Base_Queue_CP15, Base_Queue_XP and Base_Queue_FP
registers for each of the eighteen (18) processors need to be initialized.

– 144 mapping table entries need to be written for Multicast Enqueue Operations.

3 Establish the Free_Descriptor_Buffer_List:

– This requires coordinated initialization of the Free Descriptor Buffer List register
(head pointer, tail pointer, and length) and the internal descriptor linkage-list
pointers. If there are 16,384 descriptors buffers, 16,383 linkage pointers must be
initialized to point one to the next. The last descriptor’s buffer linkage pointer is a
don’t-care.

For More Information On This Product,

 Go to: www.freescale.com

QMU Setup 359

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

4 Set the queue parameters:

– Queue Length Allowance — The guaranteed minimum amount of allocated
descriptor buffers of the (0 to 16K) range. Implemented using the Configure Queue
Operation.

– Queue Length Limit — The guaranteed maximum number of allocated descriptor
buffers a queue is allowed to hold of the (0 to 16K) range. In other words,
Allowance is the minimum amount of the (0 to 16K) range, where as, Limit is the
maximum of the (0 to 16K) range. Implemented using the Configure Queue
Operation. Refer to “Configure Queue Operation” on page 340.

5 Set the queue Link-lists:

– The queue lengths must be initialized to zero. With a length of zero, the queue
head and tail pointers are don’t-cares.

6 Enable the QMU_Run_Enable bit:

– The QMU must be run enabled before it can process queuing operations. The
QMU_Run_Enable register is written with a “1” to do this.

For More Information On This Product,

 Go to: www.freescale.com

360 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Performance The QMU uses pipelining, so that the execution latency of the queuing operations (i.e., the
time between the request, at the QMU, until the descriptor is returned to the requester) is
greater than the time interval between the beginning of the execution of the descriptors.

Execution Speed and
Descriptor Size

Relationship

The actual maximum speed achievable by the QMU is a function of both the descriptor
size and the speed of the Queue Management Engine (QME). The Queue Management
Engine (QME) uses seven (7) clock cycles to do a unicast enqueue, a dequeue, or a single
destination of a multicast enqueue. The descriptor data storage/retrieval process requires
two (2) core clock cycles for each word of four (4) descriptor bytes. The actual execution
period is the larger of the two (2) of these intervals.

For example, 12Byte descriptors need six (6) core-clock cycles to be transferred to and
from the external SRAM. Since the queuing-engine needs seven (7) clock cycles, the
overall execution interval is seven (7) clock cycles. For 16Byte descriptors, the descriptor
transfer rate is eight (8) core-clock cycles, so it is the dominant time for overall execution.
With 24Byte descriptors, the execution interval is twelve (12) clock cycles. For 32Byte
descriptors, the minimum execution rate is sixteen (16) clock cycles.

Table 88 Execution Rates Using a 200MHz Core-Clock Rate Example

Descriptor
Size

Core-Clock
Cycles Queue Operations/Second

12Byte 7 28.6M

16Byte 8 25.0M

24Byte 12 16.7M

32Byte 16 12.5M

For More Information On This Product,

 Go to: www.freescale.com

Multicast Support (System Level) 361

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multicast Support
(System Level)

The C-5 NP supports multicasting Ethernet packets and multi-pointing ATM frames or
cells. Several C-5 NP components are involved in the multicast process.

Multicast elaboration from the Fabric Processor (FP) to the QMU is not supported for this
version of the C-5 NP.

Multicast Flow in the
C-5 NP

The overall multicast transaction flow is described below. It has been separated into the
receive and the transmit portions for clarity.

Multicast Receive Flow Transaction Process
The following describes the receive flow for a multicast transaction (see Figure 79).

1 RxSDP receives the “multicast/multipoint” packet/cell.

2 Based on a combination of SDP processing, table lookup, and CPRC processing, the CP
determines that the packet/cell requires a multicast forwarding operation.

3 The CPRC requests and assigns a multiuse Buffer Tag (BTag) to the packet/cell and
requests the BMU to associate a multi-use counter (MUC) BTag with the BTag.

4 The BMU assigns a multi-use counter (MUC) BTag (the count equals the number of
transmit ports) and associates the counter with a buffer.

5 The CPRC can perform additional processing and then sends the descriptor to the
QMU.

6 The QMU removes the multicast vector and queue level information and then tries to
enqueue the descriptor to the specified output queues. It assesses the supply of
descriptor buffers and if there are enough, it proceeds to do the enqueues.

Each descriptor queue maintains an allocated descriptor count and an overall
descriptor usage limit. The QMU checks the dynamic buffer pool for the first output
queue, and if that pool has enough buffers to match the number of transmit ports, the
QMU proceeds. Otherwise, it signals a failure of the enqueue operation and does not
complete the multicast operation. Thus, all members of a multicast group should share
the same dynamic buffer pool.

For More Information On This Product,

 Go to: www.freescale.com

362 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 79 Multicast Application Receive Process Flow

enqueues copies of the descriptor into all

External QMU

External BMU

CPRC

Forwarding
Descriptor

Multicast
Descriptor

Extract
Space

RxSDP

Packet/Cell

QMU

Inbound “multicast”
serial data stream

Receiving Channel Processor

External TLU

Forwarding

Statistics

SRAM

SDRAM

Ring Bus
Registers

TLU

Buffer

SRAM

Queues

RxSDP launches
table lookup to

TLU returns lookup
indicating multicast

CPRC forwards single “multicast”
descriptor to QMU for enqueuing.

Buffers

Transmit Transmit Transmit

QMU takes single descriptor from CPRC and

“multicast table”
in TLU.

CPRC requests pool of BTags;
BTags given to CPRC. When a multicast

operation, the CPRC sends separate
 request to initialize the BTag counter.

Pool
of

BTags

operation to CPRC.
(Lookup includes list
of Tx ports and service

Transmit CP queues listed in CPRC descriptor.

level.)

CP CP CP

1

2
3

5

BMU

4 BMU sets multiuse BTag counter.

6

Tables

Tables

For More Information On This Product,

 Go to: www.freescale.com

Multicast Support (System Level) 363

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multicast Transmit Flow Transaction Process
The multicast transmit process is identical to a unicast operation. The following describes
the transmit flow for a multicast transaction (see Figure 80).

1 The CPRC requests the descriptor in its assigned queue.

2 The CPRC processes the descriptor (if necessary) and then forwards it to the TxSDP.

3 The TxSDP drains the corresponding buffer and appends the header.

4 The CPRC drains the buffer and then sends a message to the BMU to decrement the
counter. When the multi-use counter (MUC) BTag reaches 0 (all buffers associated with
this multicast operation have been drained), the BTag is deallocated.

5 The TxSDP forwards the packet. Each port sends the packet/cell out when it is able,
based on the amount of traffic that is queued for that port.

Figure 80 Multicast Application Transmit Process Flow

TxSDP

Merge
Space

RISC Core

Forwarding
Descriptor QMU

Packet Cell

Transmitting Channel Processor

Outbound serial
data stream

External BMU
SDRAM

Buffer

forwards it to Transmit CPRC

External QMU

Multicast
Descriptor

SRAM

Queues

Buffers

Transmit

QMU dequeues descriptor and

associated with that queue.

it if necessary. It then forwards the descriptor to
CPRC processes descriptor and modifies/merges

the TxSDP.

The TxSDP forwards the packet.

BMU

the counter is zero, the BMU deallocates BTag.
BMU decrements BTag counter. When

1

CP
Transmit

CP

Transmit
CP

5

The TxSDP drains the buffer.3

4

2

For More Information On This Product,

 Go to: www.freescale.com

364 CHAPTER 7: QUEUE MANAGEMENT UNIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Chapter 8
Internal Buses

Chapter Overview This chapter covers the following topics:

• Internal Buses Overview

• Payload Bus Overview

• Ring Bus Overview

• Global Bus Overview

For More Information On This Product,

 Go to: www.freescale.com

366 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Internal Buses
Overview

The C-5 NP contains three (3) independent data buses that provide internal
communication paths between the C-5 NP’s eighteen (18) processors (16CPs, XP, and FP)
and three (3) coprocessors (TLU, QMU, and BMU), thus supporting concurrent processing.
Refer to Table 89 on page 366. In addition, Figure 81 on page 366 shows the internal
buses.

Figure 81 Internal Custom Buses

Table 89 C-5 NP Interconnect Components

Item Device Type Function

Payload
Bus

Slotted,
multichannel, shared,
arbitrated bus

Carries payload data and payload descriptors between the
processors and the BMU and QMU.

Ring Bus Slotted ring-topology
bus

Provides bounded latency transactions between the
processors and the TLU. It also supports inter-processor
communication.

Global
Bus

Slotted,
multichannel, shared,
arbitrated bus

Supports inter-processor communication via a conventional
flat memory-mapped addressing scheme.

Payload
Bus

Ring Bus

Global Bus (Flat Memory Space)

CP-15 XP FP TLU QMU BMU

Mem Mem Mem Reg Reg

CP-0 CP-1

Mem Mem

Reg Reg Reg Reg Reg

For More Information On This Product,

 Go to: www.freescale.com

Internal Buses Overview 367

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Internal Buses
Characteristics

The three (3) buses have the bandwidth, bus width, and transfer size characteristics
defined in Table 90 on page 367.

Table 90 Bus Characteristics

Bus Bandwidth Bus Width Transfer Size

Payload Bus 34.1Gbps 128bits 64Bytes

Ring Bus 21.2Gbps 64bits 8Byte to 32Bytes

Global Bus 4.2Gbps 32bits 4Bytes

For More Information On This Product,

 Go to: www.freescale.com

368 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Payload Bus Overview The Payload Bus is a slotted, multichannel, shared, arbitrated bus that provides a high
bandwidth path for C-5 NP’s (16CPs, XP, and FP) to shared services in the BMU and QMU. It
has a guaranteed arbitration latency to satisfy CP programming constraints, a retry
feature, and a bus acknowledgment to indicate when a transaction is complete.

Payload Bus Operation The Payload Bus uses a 128bit wide data path in four-cycle bursts to transfer up to
64 Bytes of payload data, descriptors, buffer tags, and other information to or from a
processor on each of two (2) independent channels. To achieve high bus utilization,
operations are pipelined and reads are split into a read request and a write response.
Typical payload operations are described in Table 91 on page 368.

Payload Bus Latency The Payload Bus arbitrates differently for the FP than for other clients (CPs and XP). This
behavior is configurable by a ZBFP bit [9] in the XP Miscellaneous Control register. Refer to
“XP Miscellaneous Control Register (XP Configuration Function)” on page 476. Setting this
bit provides the FP with three (3) additional slots on the Payload Bus. Thus, you can
optimize for greater FP access to the Payload Bus by setting this bit to 1, or optimize for
better CP/XP access to the Payload Bus by setting this bit to 0 (the default configuration).

Table 91 Typical Payload Operations

Operation Type of Information Quantity/PDU

Rx Transactions

Payload read BTags (32 BTags are
passed together)

1 per 32 PDUs

Payload write Data PDU size/64Bytes

Payload write Descriptor 1

Tx Transactions

Payload read Descriptor 1

Payload read Data PDU size/64Bytes

Payload write BTag 1

For More Information On This Product,

 Go to: www.freescale.com

Payload Bus Overview 369

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Payload Bus Latency (Default Mode)
In default mode (ZBFP = 0), the bus assigns/reserves one (1) bus slot for each processor.
The default mode latency is shown in Table 92 on page 369.

Payload Bus Latency (FP Mode)
In FP mode (ZBFP = 1), additional bus slots are allocated to the TxFP for reads and to the
RxFP for writes. This ensures that the FP can maintain a high data flow rate to the fabric.
The FP mode latency is shown in Table 93 on page 369.

Table 92 Payload Bus Arbitration Delay in Default Mode

Latency Reads Writes

Minimum 10 cycles 10 cycles

Maximum CPs, XP, and FP = 110 cycles CPs, XP, and FP = 110 cycles

Table 93 Payload Bus Arbitration Delay in FP Mode

Latency Reads Writes

Minimum 10 cycles 10 cycles

Maximum • TxFP = 40 cycles

• CPs, XP, and RxFP = 140 cycles

• RxFP = 40 cycles

• CPs, XP, and TxFP = 140 cycles

For More Information On This Product,

 Go to: www.freescale.com

370 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Ring Bus Overview The C-5 NP implements a ring-topology bus for communication between the TLU and the
eighteen (18) processors (16CPs, XP, and FP), each of which is a node on the ring. It uses a
64bit wide data path and is clocked at the C-5 NP core clock rate. The Ring Bus supports
the following types of message transactions:

• Unacknowledged transaction

• Hardware acknowledged transaction

• Software acknowledged transaction

Ring Bus Major
Components

A Ring Bus node consists of four (4) items. Refer to Table 94 on page 370 and Figure 82 on
page 371.

Table 94 Ring Bus Components

Item Function

Message FIFO To pass messages to the Receive Message registers.

Response FIFO To pass messages to the Receive Response registers.

Expansion FIFO Where messages/responses passed from upstream are temporarily held
when the active slot is busy.

Fixed-Size Active
Slot

Where the upstream messages/responses or the local node’s
messages/responses are forwarded on the Ring Bus to the downstream
node. The active slot comprises one (1) clock cycle, and the Ring Bus
supports simultaneous node transmission and reception on each clock
cycle.

For More Information On This Product,

 Go to: www.freescale.com

Ring Bus Overview 371

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 82 Ring Bus Node Block Diagram

Ring Bus Node
Operation

A Ring Bus node can perform the following actions:

• Sending Downstream

– Send a new message or response to a downstream node.

• Receiving from Upstream

– Receive a message destined for the local node.

– Receive a response destined for the local node.

– Pass through a message or response to a downstream node.

A node can send on the Ring Bus as long as the active slot (the slot currently available to
the node) is free. Table 95 on page 372 lists the Ring Bus node IDs for the CPs, XP, FP, and
TLU.

From
Upstream

Node

From Local
CP (Send)

To Downstream
Node

To Receive
Message
Control Regs

To Receive
Response
Control Regs

Message FIFO

Response FIFO

Expansion FIFO

Active
Slot

Ring Bus
Node

For More Information On This Product,

 Go to: www.freescale.com

372 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Sending Downstream
A local node uses its active slot to send downstream. When the local node is in the
process of sending and then receives an upstream message targeted for a downstream
node, the upstream message is placed in one of the local node’s four (4) Expansion FIFO
slots until the local node completes sending. Then the node passes the upstream
message to the next node on the bus.

Contiguous “multi-slot” messages can be transmitted on the Ring Bus. Multi-slot
messages are treated as one (1) message and are not divided as they move on the Ring
Bus. The local node can send contiguous “multi-slot” messages (2 or 4 slots in length) as
long as there are sufficient slots in the Expansion FIFO to hold the upstream messages. For
example, if the local node wants to send a message requiring two slots, there must be two
slots available in the Expansion FIFO. A four (4) slot message requires the expansion FIFO
to be completely empty.

Table 95 Ring Bus Node IDs

Unit Node ID Unit Node ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* Transmit only. The FP cannot read messages on the Ring Bus. Thus
any messages sent to the FP cannot be removed from the Ring Bus,
eventually filling up the Ring Bus.

30

CP8 8 TLU 31

CP9 9

For More Information On This Product,

 Go to: www.freescale.com

Ring Bus Overview 373

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Receiving from Upstream
When a node receives a message or response from an upstream neighbor, it processes
that message or response in one of three (3) ways:

• If a message is destined for the local node, it is forwarded through the four-slot (4)
Message FIFO to the Receive Message registers. When the program reads these
registers, the FIFO is popped. Refer to “Ring Bus (Rx) Receive Message Registers” on
page 375.

• If a response is destined for this local node, it is forwarded through the eight-slot (8)
Response FIFO to the Receive Response registers. A sequence number in the response
dictates how the Receive Response registers are filled. If the target receive response
block is already used in the register, then the FIFO can become blocked, possibly filling
up the entire ring if incoming messages continue. The program must clear the Receive
Response Register. Refer to “Ring Bus Receive (Rx) Response Registers” on page 375.

• If the node is simply forwarding a message/response downstream, it can send if the
local node is not trying to send a message simultaneously. If its local node is sending a
message, then the upstream message/response is placed in the local node’s four-slot
(4) Expansion FIFO. If this FIFO reaches capacity, the first item on the stack takes
priority over the local node sending its own message/response and gets forwarded to
the active slot.

Ring Bus Latency When describing the Ring Bus’s latency, it is important to understand that a “complete”
transaction usually requires a round trip of the entire Ring Bus. For example, CP13 is
located two nodes upstream from the TLU. If CP13 sends a request to the TLU, the
“request” latency is two (2) clock cycles assuming that the TLU node is not busy. However,
since the Ring Bus is unidirectional, the minimum latency to return data from the TLU to
CP13 is 19 clock cycles. Thus round trip latency is 21 cycles, best case. Refer to Figure 83 on
page 374.

For More Information On This Product,

 Go to: www.freescale.com

374 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 83 Nodes on the Ring Bus

Because of the unidirectional nature of the Ring Bus and the fact that transactions on
the Ring Bus are usually request/response, latency is not affected by which node delivers
messages to the ring first. Therefore, the position of nodes on the Ring Bus should not be
a consideration when designing your program.

The latency is also affected by the fact that the Ring Bus is expandable. Nodes (with the
exception of the two (2) dummy nodes) can expand from one (1) slot to four (4) additional
slots to increase Ring Bus node accessibility. The expansion is automatic. When upstream
data is injected into a node, the node can expand to guarantee that the receiving node
can still output data to the Ring Bus. This expansion enables the node to send four (4)
slots of contiguous data.

Taking into account that Ring Bus message transactions are one-way operations and that
nodes can expand up to four (4) additional slots, we can see that the worst case round trip
latency is:

((19 nodes x 5 slots) + (the two dummy nodes)) = 97 clock cycles (assuming that the
target node is not busy when the message arrives).

In rare cases, the latency might increase due to the target node being busy. In this case,
the message continues around the bus and until it arrives at the target node again. If the
target node is free, the transaction is completed.

A TLU response to the FP does not use the Ring Bus. Rather, these responses are sent via a
dedicated path between the TLU and the FP.

CP0

CP4

CP1

CP2

CP3

CP5

CP6

CP7 CP8

CP9 CP10

CP11 CP12

CP13 CP14

CP15

TLU

XP

FP

D

D

21 Ring Bus Nodes
(including two dummy (D) nodes)

For More Information On This Product,

 Go to: www.freescale.com

Ring Bus Overview 375

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Ring Bus Interface
Registers

This section describes three (3) type of Ring Bus functions and their registers as shown in
Table 96 on page 375.

For complete details about specific registers go to their references. Refer to: “TxMsg0_Ctl
Register (CP Ring Bus Tx Message Control Function)” on page 401, “TxMsg0_Data_H
Register (CP Ring Bus Tx Message Control Function)” on page 403, “TxMsg0_Data_L
Register (CP Ring Bus Tx Message Control Function)” on page 403, “RxResp0_Ctl Register
(CP Ring Bus Rx Response Control Function)” on page 404, “RxResp0_Data_H Register (CP
Ring Bus Rx Response Control Function)” on page 405, “RxResp0_Data_L Register (CP
Ring Bus Rx Response Control Function)” on page 405, “RxMsg_Ctl Register (CP Ring Bus
Rx Message Control Function)” on page 406, and “RxMsg_FIFO Register (CP Ring Bus Rx
Message Control Function)” on page 407.

Ring Bus Transmit (Tx) Message Registers
Configuration Space includes four (4) sets of registers used to transmit messages on the
Ring Bus. Refer to “Ring Bus Transmit (Tx) Messages Registers” on page 106.

Ring Bus (Rx) Receive Message Registers
Configuration Space includes a set of registers used to receive unsolicited messages.Refer
to “Ring Bus (Rx) Receive Message Registers” on page 107.

Ring Bus Receive (Rx) Response Registers
Messages initiated by the CPRC as a request type expect to receive a subsequent response
type message, for example TLU requests. Configuration space includes eight (8) sets of
registers used to receive responses. Refer to “Ring Bus Receive (Rx) Response Registers” on
page 108.

Table 96 CP Registers by Function

CP Function Specific Registers

Ring Bus Tx Message Control TxMsg0_Ctl, TxMsg0_Data_H, TxMsg0_Data_L;
TxMsg1_Ctl, TxMsg1_Data_H, TxMsg1_Data_L;
TxMsg2_Ctl, TxMsg2_Data_H, TxMsg2_Data_L;
TxMsg3_Ctl, TxMsg3_Data_H, TxMsg3_Data_L

Ring Bus Rx Response Control RxResp0_Ctl, RxResp0_DataH, RxResp0_DataL;
RxResp1_Ctl, RxResp1_DataH, RxResp1_DataL;
RxResp2_Ctl, RxResp2_DataH, RxResp2_DataL;
RxResp3_Ctl, RxResp3_DataH, RxResp3_DataL;
RxResp4_Ctl, RxResp4_DataH, RxResp4_DataL;
RxResp5_Ctl, RxResp5_DataH, RxResp5_DataL;
RxResp6_Ctl, RxResp6_DataH, RxResp6_DataL;
RxResp7_Ctl, RxResp7_DataH, RxResp7_DataL

Ring Bus Rx Message Control RxMsg_Ctl, RxMsg_FIFO

For More Information On This Product,

 Go to: www.freescale.com

376 CHAPTER 8: INTERNAL BUSES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Global Bus Overview The Global Bus is a slotted, multichannel, shared, arbitrated bus that supports
inter-processor I/O using a single, flat memory model and provides direct access (via
load/store operations) to all C-5 NP memory regions except CPRC IMEM, TLU table storage
memory, SDP control stores, PCI configuration registers, and some XP configuration
registers.

The Global Bus uses a 32bit wide data path with separate control and address path. It can
transfer 4Bytes of data on each of two (2) independent data channels. It also has a
guaranteed arbitration latency and a bus acknowledgment feature to indicate transaction
completion. To achieve high bus utilization, operations are pipelined and reads are split
into a read request and a write response. Retry selection is per CP (not per transaction).

Table 97 Global Bus Latency

Worst Case Average Case Best

110 cycles (Total global bandwidth/2) / (Num. of active processors) 10 cycles

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Appendix A
C-5 NP Registers

Appendix Overview This appendix covers the following topics:

• “Channel Processor (CP) Configuration Registers” on page 378

• “Executive Processor (XP) Configuration Registers” on page 446

• “Queue Management Unit (QMU) Configuration Registers” on page 498

• “Buffer Management Unit (BMU) Configuration Registers” on page 512

• “Fabric Processor (FP) Configuration Registers” on page 526

Although specific ranges of memory are allocated to specific functions, the entire area
may not be used.

For More Information On This Product,

 Go to: www.freescale.com

378 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Channel Processor
(CP) Configuration
Registers

Configuration Space in the CPs is an area that contains a number of registers. The CPRC
uses these registers to communicate with the SDP and the bus controllers (Payload Bus
and Global Bus). The CP’s registers can also be accessed by other components of the C-5
NP (XP and other CPs).

CP Registers The following is a list of each CP register along with its address, function, and reference to
its detailed parameters. The detailed parameters provide: purpose, field name, bit
positions and descriptions. Refer to Table 98 on page 378.

Table 98 CP Registers

Address Register Name Function Detailed Parameters

0xBCn00000 DMEM_Base CP DMEM See “Data Memory (DMEM)” on
page 81

0xBCn04000
to
0xBCn0403C

RxSDP0_Ext0 to
RxSDP0_Ext15

CP Rx Extract Space0 See page 383

0xBCn04080 RxCB0_Sys_Addr CP Rx Control Block0 See page 384

0xBCn04084 RxCB0_Ctl See page 385

0xBCn04088 RxCB0_DMA_Addr See page 388

0xBCn0408C RxCB0_SDP_Addr See page 389

0xBCn04090 RxCtl0_Status See page 486

0xBCn04100
to
0xBCn0413C

TxSDP0_Merge0 to
TxSDP0_Merge15

CP Tx Merge Space0 See page 383

0xBCn04180 TxCB0_Sys_Addr CP Tx Control Block0 See page 396

0xBCn04184 TxCB0_Ctl See page 397

0xBCn04188 TxCB0_DMA_Addr See page 398

0xBCn0418C TxCB0_SDP_Addr See page 399

0xBCn04190 TxCtl0_Status See page 400

0xBCn04200
to
0xBCn0423C

RxSDP1_Ext0 to
RxSDP1_Ext15

CP Rx Extract Space1 See Table 99 on page 383

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 379

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBCn04280 RxCB1_Sys_Addr CP Rx Control Block1 See Table 101 on page 384

0xBCn04284 RxCB1_Ctl See Table 103 on page 387

0xBCn04288 RxCB1_DMA_Addr See Table 104 on page 388

0xBCn0428C RxCB1_SDP_Addr See Table 105 on page 389

0xBCn04290 RxCtl1_Status See Table 116 on page 400

0xBCn04300
to
0xBCn0433C

TxSDP1_Merge0 to
TxSDP1_Merge15

CP Tx Merge Space1 See Table 100 on page 384

0xBCn04380 TxCB1_Sys_Addr CP Tx Control Block1 See Table 112 on page 396

0xBCn04384 TxCB1_Ctl See Table 113 on page 398

0xBCn04388 TxCB1_DMA_Addr See Table 114 on page 398

0xBCn0438C TxCB1_SDP_Addr See Table 115 on page 399

0xBCn04390 TxCtl1_Status See Table 116 on page 400

0xBCn04400 WrCB0_Sys_Addr CP Wr Control Block0 See page 390

0xBCn04404 WrCB0_Ctl See page 391

0xBCn04408 WrCB0_DMA_Addr See page 392

0xBCn04410 WrCB1_Sys_Addr CP Wr Control Block1 See Table 106 on page 390

0xBCn04414 WrCB1_Ctl See Table 107 on page 392

0xBCn04418 WrCB1_DMA_Addr See Table 108 on page 392

0xBCn04420 RdCB0_Sys_Addr CP Rd Control Block0 See page 393

0xBCn04424 RdCB0_Ctl See page 394

0xBCn04428 RdCB0_DMA_Addr See page 395

0xBCn04430 RdCB1_Sys_Addr CP Rd Control Block1 See Table 109 on page 393

0xBCn04434 RdCB1_Ctl See Table 110 on page 395

0xBCn04438 RdCB1_DMA_Addr See Table 111 on page 395

Table 98 CP Registers (continued)

Address Register Name Function Detailed Parameters

For More Information On This Product,

 Go to: www.freescale.com

380 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBCn04440 TxMsg0_Ctl Ring Bus Tx Message
Control

See page 401

0xBCn04448 TxMsg1_Ctl See Table 118 on page 402

0xBCn04450 TxMsg2_Ctl

0xBCn04458 TxMsg3_Ctl

0xBCn04460 TxMsg0_Data_H See page 403

0xBCn04464 TxMsg0_Data_L See page 403

0xBCn04468 TxMsg1_Data_H See Table 119 on page 403

0xBCn0446C TxMsg1_Data_L See Table 120 on page 403

0xBCn04470 TxMsg2_Data_H See Table 119 on page 403

0xBCn04474 TxMsg2_Data_L See Table 120 on page 403

0xBCn04478 TxMsg3_Data_H See Table 119 on page 403

0xBCn0447C TxMsg3_Data_L See Table 120 on page 403

0xBCn04480 RxResp0_Ctl Ring Bus Rx Response
Control

See page 404

0xBCn04484 RxResp1_Ctl See Table 121 on page 404

0xBCn04488 RxResp2_Ctl

0xBCn0448C RxResp3_Ctl

0xBCn04490 RxResp4_Ctl

0xBCn04494 RxResp5_Ctl

0xBCn04498 RxResp6_Ctl

0xBCn0449C RxResp7_Ctl

0xBCn044A0 RxResp0_Data_H See page 405

0xBCn044A4 RxResp0_Data_L See page 405

0xBCn044A8 RxResp1_Data_H See Table 122 on page 405

0xBCn044AC RxResp1_Data_L See Table 123 on page 405

Table 98 CP Registers (continued)

Address Register Name Function Detailed Parameters

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 381

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBCn044B0 RxResp2_Data_H Ring Bus Rx Response
Control (continued)

See Table 122 on page 405

0xBCn044B4 RxResp2_Data_L See Table 123 on page 405

0xBCn044B8 RxResp3_Data_H See Table 122 on page 405

0xBCn044BC RxResp3_Data_L See Table 123 on page 405

0xBCn044C0 RxResp4_Data_H See Table 122 on page 405

0xBCn044C4 RxResp4_Data_L See Table 123 on page 405

0xBCn044C8 RxResp5_Data_H See Table 122 on page 405

0xBCn044CC RxResp5_Data_L See Table 123 on page 405

0xBCn044D0 RxResp6_Data_H See Table 122 on page 405

0xBCn044D4 RxResp6_Data_L See Table 123 on page 405

0xBCn044D8 RxResp7_Data_H See Table 122 on page 405

0xBCn044DC RxResp7_Data_L See Table 123 on page 405

0xBCn044E0 RxMsg_Ctl Ring Bus Rx Message
Control

See page 406

0xBCn044E4 RxMsg_FIFO See page 407

0xBCn04500
to
0xBCn0457C

Rx_SONETOH0 to
Rx_SONETOH31

SONET Rx Control See page 408

0xBCn04580
to
0xBCn045FC

Tx_SONETOH0 to
Tx_SONETOH31

SONET Tx Control See page 408

0xBCn04600 RxCtl_ByteSeq0 SDP Rx Control See page 408

0xBCn04604 RxCtl_ByteSeq1 See Table 124 on page 408

0xBCn04608 RxCtl_SyncSeq See page 409

0xBCn0460C RxCtl_BitSeq0 See page 409

0xBCn04610 RxCtl_BitSeq1 See Table 125 on page 409

0xBCn04620 TxCtl_ByteSeq0 SDP Tx Control See page 410

0xBCn04624 TxCtl_ByteSeq1 See Table 126 on page 410

0xBCn0462C TxCtl_BitSeq0 SDP Tx Control
(continued)

See page 410

0xBCn04630 TxCtl_BitSeq1 See Table 127 on page 410

Table 98 CP Registers (continued)

Address Register Name Function Detailed Parameters

For More Information On This Product,

 Go to: www.freescale.com

382 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBCn04640 CP_Mode0 CP Mode Configuration See page 411

0xBCn04644 CP_Mode1 See page 414

0xBCn04648 SDP_Mode2 See page 417

0xBCn0464C SDP_Mode3 See page 418

0xBCn04650 SDP_Mode4 See page 422

0xBCn04654 SDP_Mode5 See page 424

0xBCn04658 Debug_Mode See page 429

0xBCn0465C PIN_Mode See page 431

0xBCn04660 Queue_Status0 CP Queue Status See page 433

0xBCn04664 Queue_Status1 See Table 131 on page 433

0xBCn04668 Queue_Status2

0xBCn0466C Queue_Status3

0xBCn04670 Queue_Update0 See page 433

0xBCn04674 Queue_Update1 See Table 132 on page 433

0xBCn04678 Queue_Update2

0xBCn0467C Queue_Update3

0xBCn04684 Event_Timer CP Miscellaneous
Control

See page 434

0xBCn04688 Cycle_Count_H See page 434

0xBCn0468C Cycle_Count_L See page 434

0xBCn046A0 Event0 CP Event and Interrupt
Control

See page 435

0xBCn046A4 Event1 See page 437

0xBCn046A8 Event_Mask0 See page 439

0xBCn046AC Event_Mask1 See Table 133 on page 439

0xBCn046B0 Event_Access See page 439

0xBCn046B4 Mask_Access See page 441

0xBCn046B8 Interrupt_Mask0 See page 441

0xBCn046BC Interrupt_Mask1 See Table 134 on page 441

0xBCn046C0 SONET_Event See page 442

0xBCn046C4 SONET_Mask See page 445

Table 98 CP Registers (continued)

Address Register Name Function Detailed Parameters

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 383

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Detailed Descriptions The following is a detailed description of each of the CP registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function)

TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0
Function)

Purpose Used to pass fields extracted from the receive data stream by the RxSDP
to the CPRC. These registers are used only for receive datascope0. See
Table 99 on page 383 for similar registers.

Address 0xBCn04000 to 0xBCn0403C

Access CPRC Read, CPRC Write only writable for test purposes when
SDP_Mode3 RxResetx==0, SDP RxByte Processor Write - byte
addressable.

Bit Position 31 0

Field Name Data

Table 99 RxSDP1_Ext0 to RxSDP1_Ext15 Registers (for Datascope1)

Register Name Purpose Address

RxSDP1_Ext0 to
RxSDP1_Ext15

Same as registers RxSDP0_Ext0 to
RxSDP0_Ext15, but for datascope1.

0xBCn04200 to 0xBCn0423C

Purpose Used to pass fields from the CPRC to the TxSDP to merge in with the
transmit data stream. These registers are used only for transmit
datascope0. See Table 100 on page 384 for similar registers.

Address 0xBCn04100 to 0xBCn0413C

Access CPRC Read, CPRC Write, SDP TxByte Processor Read - byte addressable

Bit Position 31 0

Field Name Data

For More Information On This Product,

 Go to: www.freescale.com

384 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)

Table 100 TxSDP1_Merge0 to TxSDP1_Merge15 Registers (for Datascope1)

Register Name Purpose Address

TxSDP1_Merge0 to
TxSDP1_Merge15

Same as registers TxSDP0_Merge0 to
TxSDP0_Merge15, but pertains to transmit
datascope1.

0xBCn04300 to 0xBCn0433C

Purpose Provides an address consisting of a Pool ID, BTag and offset for
datascope0. See Table 101 on page 384 for similar register.

Address 0xBCn04080

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

Field Name Bit Position Description

BTag 31:16 Buffer Tag — Address.
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to Table 20 on page 118
Legal range= 0 to 65,520Bytes, or 0 to 0xFFF0. Values must be
16Byte aligned.

Reserved 3:0 Read as zero.

Table 101 RxCB1_Sys_Addr Register (for Datascope1)

Register Name Purpose Address

RxCB1_Sys_Addr Same asRxCB0_Sys_Addr, except for datascope1. 0xBCn04280

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 385

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCB0_Ctl Register (CP Rx Control Block0 Function)

Purpose Controls DMA for payload receive operation for datascope0. See
Table 103 on page 387 for similar register.

Address 0xBCn04084

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 0

Field Name Avail NoRetry EOP Protect
EOP Error Own

1
Own

0 Ctx SDP
state Rsvd DMA

state RxLength

Reset Value 1 x 0 raz x x x x 0 raz 00 x

Field Name Bit Position Description

Avail 31 Availability Bit — 1=RxCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=Retry, up to 16 (Max.) times before reporting an error.

EOP 29 End-of-Packet — Typically this is set by the SDP when scope is
switched and cleared by the DMA engine when a transfer
completes successfully.

Protect EOP 28 Protect End-of-Packet — When set during a RxCB_Ctl write, the
EOP bit contained in field [29] is not written. When cleared
during a RxCB_Ctl write, the EOP bit is written.

Error 27:24 Error — When a DMA operation completes and the Avail bit [31]
=1, then a non-zero value indicates that the DMA operation
completed with an error. Refer to Table 102 on page 386 for error
code definitions.

Own1 23 Block Ownership Bit — 0=SDP owns, 1= DMA owns.

Own0 22 Block Ownership Bit — 0=SDP owns, 1= DMA owns.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. This filed has no impact
on the operation.

SDP state 19 SDP State — Shows the state of the SDP engine:
0=Ready, 1=Wait for line update.
During a RxCBn_Ctl write, this field is updated if Avail bit [31] is
set, and not changed if Avail bit [31] is clear.

Reserved 18 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

386 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle,10 = Request, 01 = Grant.
During a RxCBn_Ctl write, this field is updated if Avail bit [31] is
set, and not changed if Avail bit [31] is clear.

RxLength 15:0 Receive Length — Count of bytes in the receive payload.

Table 102 Transfer Control Block Error Codes

Error Type
Enco
ding

Read/
Write Target Description

Success 0 Wr, Rx,
Rd, Tx

Buffer
memory:
PID== 0-29
BMU:PID==30
QMU:PID==31

The payload bus transaction completed
successfully.

RxSDP Error 8 Rx Not Applicable The SDP RxByte sequencer indicated an error by
writing to the RxCtl_Status bit [30].

NACK Retry
Limit

9 Wr, Rx,
Rd, Tx

Buffer
memory:
PID== 0-29

The BMU was unable to accept a buffer memory
transaction. The payload bus transaction was
attempted until the NACK retry limit was reached.

NACK Retry
Limit

9 Wr BMU: PID==30 The BMU was unable to accept BTag command, or
the multi-use counter table was full on an allocate
command. The payload bus transaction was
attempted until the NACK retry limit was reached.

NACK Retry
Limit

9 Rd BMU: PID==30 The BMU was unable to accept BTag or multi-use
counter command. The payload bus transaction
was attempted until the NACK retry limit was
reached.

NACK Retry
Limit

9 Wr QMU:PID==31 The QMU was unable to accept a command
because the write mailbox was full. The payload
bus transaction was attempted until the NACK
retry limit was reached.

NACK Retry
Limit

9 Rd QMU:PID==31 The QMU was unable to accept a command
because the read mailbox was full. The payload
bus transaction was attempted until the NACK
retry limit was reached.

Bad Pool A Rd BMU:PID==30 BTag allocate command requested a non-existent
pool.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 387

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Bad BMU
Command

A Wr BMU:PID==30 Any of the following conditions occurred:

• BMU command requested a non-existent pool,

• BTag write found more BTags written than
configured,

• Multi-use counter allocate found a counter
already allocated for this pool/BTag,

• Multi-use counter decrement to a non-existent
counter.

BTag
Unavailable

C Rd BMU:PID==30 BTag allocate command found insufficient BTags
to complete the allocation.

QMU Read
Error

C Rd QMU:PID==31 QMU detected a dequeue of an empty queue.

Payload ECC
Error

D Rd Buffer
memory:
PID==0-29

Un-correctable ECC error occurred on a buffer
memory read.

BTag ECC
Error

D Rd BMU:PID==30 Uncorrected ECC error occurred then reading
memory for a BTag allocate command.

Non-Existen
t memory

E Rd Buffer
memory:
PID==0-29

A payload read of buffer memory that was out of
bounds due to an error in the way software
configured the BMU.

Non-Existen
t memory

E Rd BMU:PID==30 A BTag read from memory was out of bounds due
to an error in the way software configured the
BMU.

No Match
on
Multi-use
Counter
Read

F Rd BMU:PID==30 A multi-use counter read command of a
non-existent counter.

Table 103 RxCB1_Ctl Register (for Datascope1)

Register Name Purpose Address

RxCB1_Ctl Same as RxCB0_Ctl, except for datascope1. 0xBCn04284

Table 102 Transfer Control Block Error Codes

Error Type
Enco
ding

Read/
Write Target Description

For More Information On This Product,

 Go to: www.freescale.com

388 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCB0_DMA_Addr Register (CP Rx Control Block0 Function)

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
of the buffer to write for datascope0. See Table 104 on page 388 for
similar register.

Address 0xBCn04088

Access CPRC Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Reserved Pool ID Rsvd LineAddr Rsvd

Field Name Bit Position Description

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to write too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-incremented during DMA; bits [6:4] cleared by the DMA
engine when a transfer completes successfully.

Reserved 3:0 Read as zero.

Table 104 RxCB1_DMA_Addr Register (for Datascope1)

Register Name Purpose Address

RxCB1_DMA_Addr Same as RxCB0_DMA_Addr, except for datascope1. 0xBCn04288

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 389

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCB0_SDP_Addr Register (CP Rx Control Block0 Function)

Purpose Supplies the address of a byte in DMEM for DMA. It is auto-incremented
during DMA for datascope0. See Table 105 on page 389 for similar
register.

Address 0xBCn0408C

Access CPRC Read/Write

Bit Position 31 16 15 0

Field Name Reserved ByteAddr

Field Name Bit Position Description

Reserved 31:16 Read as zero.

ByteAddr 15:0 DMEM Byte Address — DMEM byte address for DMA. It is
auto-increment during DMA; bits [6:0] cleared by the DMA engine
when a transfer completes successfully.

Table 105 RxCB1_SDP_Sys_Addr Register (for Datascope1)

Register Name Purpose Address

RxCB1_SDP_Sys_Addr Same as RxCB0_SDP_Addr, except for datascope1. 0xBCn0428C

For More Information On This Product,

 Go to: www.freescale.com

390 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)

Purpose Provides an address consisting of a Pool ID, BTag and offset. See
Table 106 on page 390 for similar register.

Address 0xBCn04400

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

Field Name Bit Position Description

BTag 31:16 Buffer Tag —
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 117.
Legal range= 0 to 65,520Bytes, or 0 to 0xFFFF. Values must be
16Bytes aligned.

Reserved 3:0 Read as zero.

Table 106 WrCB1_Sys_Addr Register (for Control Block1)

Register Name Purpose Address

WrCB1_Sys_Addr Same as WrCB0_Sys_Addr, except for control block1. 0xBCn04410

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 391

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

WrCB0_Ctl Register (CP Wr Control Block0 Function)

Purpose Controls DMA for payload write operation. See Table 107 on page 392
for similar register.

Address 0xBCn04404

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 13 0

Field Name Avail NoRetry Mod64 Rsvd Error Rsvd Ctx Rsvd State Rsvd Length

Reset Value 1 x x raz x raz x raz 0 raz x

Field Name Bit Position Description

Avail 31 Availability Bit — 1= WrCB is available to the CPRC,
0=Start the DRAM DMA engine.

NoRetry 30 No Retry — 1= Do not retry the transaction on bus NACK,
0=Retry 16 (Max.) times before reporting an error.

Mod64 29 Modulo 64 — 1=Increment WrCB0_Sys_Addr bits [15:4] Offset
field and WrCB0_DMA_Addr bits [13:4] LineAddr field modulo
64Bytes during DMA to perform a wrap.
0=Increment WrCB0_Sys_Addr bits [15:4] Offset field and
WrCB0_DMA_Addr bits [13:4] LineAddr field linearly during DMA
that steps through memory.

Reserved 28 Read as zero.

Error 27:24 Error — When Avail bit [31]=1 and a non-zero value is returned
after a DMA operation completes, the DMA operation encountered
an error. See Table 102 on page 386 for error code definitions.

Reserved 23:22 Read as zero.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. This filed has no impact on
the operation.

Reserved 19:18 Read as zero.

State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle, 10 = Request, 01 = Grant.
During a WrCBn_Ctl write, this field is updated if Avail bit [31] is set
and not changed if Avail bit [31] is clear.

Reserved 15:14 Read as zero.

Length 13:0 Length — Length of DMA transfer in Bytes.
Legal range is a physical limit=12Kbytes.

For More Information On This Product,

 Go to: www.freescale.com

392 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

WrCB0_DMA_Addr Register (CP Wr Control Block0 Function)

Table 107 WrCB1_Ctl Register (for Control Block1)

Register Name Purpose Address

WrCB1_Ctl Same as WrCB0_Ctl, except for control block1. 0xBCn04414

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
of the buffer to write. See Table 108 on page 392 for similar register.

Address 0xBCn04408

Access Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Rsvd Pool ID Rsvd LineAddr Rsvd

Field Name Bit Position Description

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to write too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-increment during DMA.

Reserved 3:0 Read as zero.

Table 108 WrCB1_DMA_Addr Register (for Control Block1)

Register Name Purpose Address

WrCB1_DMA_Addr Same as WrCB0_DMA_Addr, except for control block1. 0xBCn04418

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 393

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)

Purpose Provides an address consisting of a pool ID, BTag, and offset. See
Table 109 on page 393 for similar register.

Address 0xBCn04420

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

Field Name Bit Position Description

BTag 31:16 Buffer Tag — Address
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 117.
Legal range= 0 to 65,520Bytes, or 0 to 0xFFFF. Values must be
16Bytes aligned.

Reserved 3:0 Read as zero.

Table 109 RdCB1_Sys_Addr register (for Control Block1)

Register Name Purpose Address

RdCB1_Sys_Addr Same as RdCB0_Sys_Addr, except for control block1. 0xBCn04430

For More Information On This Product,

 Go to: www.freescale.com

394 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RdCB0_Ctl Register (CP Rd Control Block0 Function)

Purpose Controls DMA for payload read operation. See Table 110 on page 395 for
similar register.

Address 0xBCn04424

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 14 13 4 3 0

Field Name Avail NoRetry Mod64 Rsvd Error Rsvd Ctx Rsvd State Rsvd Length Rsvd

Reset Value 1 x x raz x raz x raz 0 raz x

Field Name Bit Position Description

Avail 31 Availability Bit — 1=RdCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=retry, up to 16 (Max.) times.

Mod64 29 Modulo 64 — 1=Increment RdCB0_Sys_Addr bits [15:4] Offset
field and RdCB0_DMA_Addr bits [13:4] LineAddr field modulo
64Bytes during DMA to perform a wrap.
0=Increment RdCB0_Sys_Addr bits [15:4] Offset field and
RdCB0_DMA_Addr bits [13:4] LineAddr field linearly during DMA
that steps through memory.

Reserved 28 Read as zero.

Error 27:24 Error — When Avail bit [31]=1 and a non-zero value is returned
after a DMA operation completes, the DMA operation
encountered an error. Refer to Table 102 on page 386 for error
code definitions.

Reserved 23:22 Read as zero.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. This filed has no impact
on the operation.

Reserved 19:18 Read as zero.

State 17:16 DMA State — Shows the state of the DMA engine (read only):
00 =Idle, 10 = Request, 01 = Grant.
During a RdCBn_Ctl write, this field is updated if Avail bit [31] is
set and not changed if Avail bit [31] is clear.

Reserved 15:14 Read as zero.

Length 13:0 Length — Length of DMA transfer in bytes. Legal range is a
physical limit=12KBytes.

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 395

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RdCB0_DMA_Addr Register (CP Rd Control Block0 Function)

Table 110 RdCB1_Ctl Register (for Control Block1)

Register Name Purpose Address

RdCB1_Ctl Same as RdCB0_Ctl, except for control block1. 0xBCn04434

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
for buffer to read. See Table 111 on page 395 for similar register.

Address 0xBCn04428

Access CPRC Read/Write

Bit Position 31 21 20 16 15 4 3 0

Field Name Rsvd Pool ID LineAddr Rsvd

Field Name Bit Position Description

Reserved 31:21 Read as zero.

PoolID 20:16 Pool ID — Pool to read too. Legal range= 0 to 31.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA
operation. It is auto-incremented during DMA.

Reserved 3:0 Read as zero.

Table 111 RdCB1_DMA_Addr Register (for Control Block1)

Register Name Purpose Address

RdCB1_DMA_Addr Same as RdCB0_DMA_Addr, except for control block1. 0xBCn04438

For More Information On This Product,

 Go to: www.freescale.com

396 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)

Purpose Provides an address consisting of a Pool ID, BTag and offset for
datascope0. See Table 112 on page 396 for similar register.

Address 0xBCn04180

Access CPRC Read/Write

Bit Position 31 16 15 4 3 0

Field Name BTag Offset Rsvd

Field Name Bit Position Description

BTag 31:16 Buffer Tag — Address
Legal range is a physical limit= 0 to 65,532Bytes or 0 to 0xFFFF.

Offset 15:4 Offset — Address or Command. Refer to “Using Multi-Use Control
Blocks to Achieve Different Functions” on page 117.
Legal range= 0 to 65,520Bytes, or 0 to 0xFFF0. Values must be
16Byte aligned.

Reserved 3:0 Read as zero.

Table 112 TxCB1_Sys_Addr Register (for Datascope1)

Register Name Purpose Address

TxCB1_Sys_Addr Same as TxCB0_Sys_Addr, except for datascope1. 0xBCn04380

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 397

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCB0_Ctl Register (CP Tx Control Block0 Function)

Purpose Controls DMA for payload transmit operation for datascope0. See
Table 113 on page 398 for similar register.

Address 0xBCn04184

Access CPRC Read/Write

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 0

Field Name Avail NoRetry EOP OOB Error Own1 Own0 Ctx SDP
state

DMA
state TxLength

Reset Value 1 x 0 x x 0 0 x 0 00 x

Field Name Bit Position Description

Avail 31 Availability Bit — 1=TxCB is available to the CPRC, 0=Start the
DRAM DMA engine.

NoRetry 30 No Retry — 1=Do not retry the transaction on bus NACK,
0=Retry, up to 16 (Max.) times before reporting an error.

EOP 29 End of Packet — Typically this is set by the SDP when scope is
switched and cleared by the DMA engine when a transfer
completes successfully.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

OOB 28 Out of Band — 1=Use out-of-band (OOB) bits, 0=Use the length
field to determine end-of-frame.

Error 27:24 Error —When a DMA operation completes and the Avail bit [31]
=1, then a non-zero value indicates that the DMA operation
completed with an error. Refer to Table 102 on page 386 for error
code definitions.

Own1 23 Block Ownership Bit — 1=SDP owns, 0=DMA owns.

Own0 22 Block Ownership Bit — 1=SDP owns, 0=DMA owns.

Ctx 21:20 Context — Two bit field that software can use to provide context
or identifying information per requests. This filed has no impact on
the operation.

SDP state 19:18 SDP State — Shows the state of the SDP engine. 0=Waiting for
data, Non-zero value= Ready for transmit.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

State 17:16 DMA State — Shows the state of the DMA engine:
00 = Idle,10 = Request, 01 = Grant.
During a TxCBn_Ctl write, this field is updated if Avail bit [31] is set,
and not changed if Avail bit [31] is clear.

For More Information On This Product,

 Go to: www.freescale.com

398 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCB0_DMA_Addr Register (CP Tx Control Block0 Function)

TxLength 15:0 Transmit Length — Counts down the bytes of transmit payload.

Table 113 TxCB1_Ctl Register (for Datascope1)

Register Name Purpose Address

TxCB1_Ctl Same as TxCB0_Ctl, except for datascope1. 0xBCn04384

Purpose Supplies the address of a 16Byte line in DMEM for DMA and the Pool ID
of buffer to read for datascope0. See Table 114 on page 398 for similar
register.

Address 0xBCn04188

Access CPRC Read/Write

Bit Position 31 21 20 16 15 14 13 4 3 0

Field Name Rsvd Pool ID Rsvd LineAddr Rsvd

Field Name Bit Position Description

Reserved 31:21 Read as zero.

Pool ID 20:16 Pool ID — Pool to read too. Legal range= 0 to 31.

Reserved 15:14 Read as zero.

LineAddr 13:4 DMEM Line Address — DMEM 16Byte line address for DMA. It is
auto-incremented during DMA; bits [6:4] cleared by DMA engine
when a transfer completes successfully.

Reserved 3:0 Read as zero.

Table 114 TxCB1_DMA_Addr Register (for Datascope1)

Register Name Purpose Address

TxCB1_DMA_Addr Same as TxCB0_DMA_Addr, except for datascope1. 0xBCn04388

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 399

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCB0_SDP_Addr Register (CP Tx Control Block0 Function)

Purpose Supplies the address of a byte in DMEM for DMA for transmit
datascope0. See Table 115 on page 399 for similar register.

Address 0xBCn0418C

Access CPRC Read/Write

Bit Position 31 24 23 16 15 0

Field Name OutOfBand0 OutOfBand1 ByteAddr

Field Name Bit Position Description

OutOfBand0 31:24 Out of Band0 — The eight (OOB) bits accompanying DMEM
buffer 0.

OutOfBand1 23:16 Out of Band1 — The eight (OOB) bits accompanying DMEM
buffer 1.

ByteAddr 15:0 DMEM Byte Address — DMEM byte address for DMA. It is
auto-incremented during DMA; bits [6:0] cleared by the DMA
engine when a transfer completes successfully.

Table 115 TxCB1_SDP_Addr Register (for Datascope1)

Register Name Purpose Address

TxCB1_SDP_Addr Same as TxCB0_SDP_Addr, except for datascope1. 0xBCn0438C

For More Information On This Product,

 Go to: www.freescale.com

400 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCtl0_Status Register (CP Tx Control Block0 Function)

Purpose Semaphores governing SDP transmit operation for data cope0. See
Table 116 on page 400 for similar register.

Address 0xBCn04190

Access Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 0

Field Name Avail Error L5 L4 L3 L2 L1 L0 Rsvd

Reset Value 1 x x x x x x x raz

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, CPRC owns. When the bit is 0,
SDP owns the scope.

Error 30 TxSDP Error — SDP sets this bit to indicate and error during
transmit processing.

L5 - L0 29:24 SDP Level Bits — SDP sets the corresponding bit to indicate level
of processing, software defined.

Reserved 23:0 Read as zero.

Table 116 TxCtl1_Status Register (for Datascope1)

Register Name Purpose Address

TxCtl1_Status Same as TxCtl0_Status, except for datascope1. 0xBCn04390

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 401

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)

Purpose Provides the control portion of an outgoing Ring Bus message. See
Table 118 on page 402 for similar registers.

Address 0xBCn04440

Access CPRC Read/Write = byte addressable, SDP Receive Byte Sequencer
Write = field addressable

Bit Position 31 30 24 23 22 20 19 18 17 15 14 10 9 5 4 0

Field Name Avail Rsvd Error Rsvd Type Len Seq Dst Src

Reset Value 1 raz x raz x x x x x

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, slot is available to the CPRC.
When the bit is 0, start the Ring Bus transmit engine.

Reserved 30:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of transmit message definable by the
transmitter.

Reserved 22:20 Read as zero.

Type 19:18 Transmit Message Type:

Len 17:15 Transmit Message Length — Length field of transmit message
in 8-byte slots. Valid values are 1, 2, 4.

Seq 14:10 Transaction Sequence Number — Transaction sequence
number of transmit message.
Note: That the low-order three bits of this field specify the Receive
Response Slot on which the message to be transmitted will be
received.

Dst 9:5 Transaction Message Destination — Message destination,
(Processor ID) typically the TLU.

Encoded
Value Type

0 Indication

1 Confirmation

2 Request

3 Response

For More Information On This Product,

 Go to: www.freescale.com

402 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Src 4:0 Transmit Message Source — Source of transmit message,
typically the processor’s Ring Bus node ID. See Table 117 on page
402.

Table 117 Ring Bus Processor IDs

Processor Ring Bus Node ID Processor Ring Bus Node ID

CP0 0 CP10 10

CP1 1 CP11 11

CP2 2 CP12 12

CP3 3 CP13 13

CP4 4 CP14 14

CP5 5 CP15 15

CP6 6 XP 24

CP7 7 FP*

* can only send messages on the Ring Bus. There is a direct connection from the
TLU to the FP for responses. If some other node tries to send to the FP, the
messages will circulate forever on the Ring Bus.

30

CP8 8 TLU 31

CP9 9

Table 118 TxMsgn_Ctl Registers (for Messages 1, 2 and 3)

Register Name Purpose Address

TxMsg1_Ctl Same as TxMsg0_Ctl. 0xBCn04448

TxMsg2_Ctl Same as TxMsg0_Ctl, but not writable from RxByte
Processor.

0xBCn04450

TxMsg3_Ctl Same as TxMsg0_Ctl, but not writable from RxByte
Processor.

0xBCn04458

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 403

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)

TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)

Purpose Bits [63:32] of the transmit message data slot (big endian bytes 0-3). See
Table 119 on page 403 for similar registers.

Address 0xBCn04460

Access CPRC Read/Write, RxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 119 TxMsgn_Data_H Registers (for Messages 1, 2 and 3)

Register Name Purpose Address

TxMsg1_Data_H Same as TxMsg0_Data_H. 0xBCn04468

TxMsg2_Data_H Same as TxMsg0_Data_H, but not writable form RxByte
Processor.

0xBCn04470

TxMsg3_Data_H Same as TxMsg0_Data_H, but not writable form RxByte
Processor.

0xBCn04478

Purpose Bits [31:0] of the transmit message data slot (big endian bytes 4-7). See
Table 120 on page 403 for similar registers.

Address 0xBCn04464

Access CPRC Read/Write, RxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 120 TxMsgn_Data_L Registers (for Messages 1, 2 and 3)

Register Name Purpose Address

TxMsg1_Data_L Same as TxMsg0_Data_l. 0xBCn0446C

TxMsg2_Data_L Same as TxMsg0_Data_l, but not writable from RxByte
Processor.

0xBCn04474

TxMsg3_Data_L Same as TxMsg0_Data_l, but not writable from RxByte
Processor.

0xBCn0447C

For More Information On This Product,

 Go to: www.freescale.com

404 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)

Purpose The control portion of an incoming Ring Bus response. See Table 121 on
page 404 for similar registers.

Address 0xBCn04480

Access CPRC Read/Write

Bit Position 31 30 24 23 22 13 12 8 7 5 4 0

Field Name Avail Rsvd Error Rsvd Seq Rsvd Src

Reset Value 0 raz x raz x raz x

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, slot is valid for the CPRC.
When the bit is 0, allow Ring Bus to fill.

Reserved 30:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of response definable by user
programming.

Reserved 22:13 Read as zero.

Seq 12:8 Response Sequence Number — Sequence number of the
response, bits [10:8] match RxRespCtl register number.

Reserved 7:5 Read as zero.

Src 4:0 Response Source — Source field of the response, typically the
processor’s Ring Bus node ID. See Table 117 on page 402.

Table 121 RxRespn_Ctl Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

RxResp1_Ctl Same as RxResp0_Ctl. 0xBCn04484

RxResp2_Ctl Same as RxResp0_Ctl. 0xBCn04488

RxResp3_Ctl Same as RxResp0_Ctl. 0xBCn0448C

RxResp4_Ctl Same as RxResp0_Ctl. 0xBCn04490

RxResp5_Ctl Same as RxResp0_Ctl. 0xBCn04494

RxResp6_Ctl Same as RxResp0_Ctl. 0xBCn04498

RxResp7_Ctl Same as RxResp0_Ctl. 0xBCn0449C

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 405

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)

RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)

Purpose Bits [63:32] of the data portion of an incoming Ring Bus response (big
endian bytes 0-3). See Table 122 on page 405 for similar registers.

Address 0xBCn044A0

Access CPRC Read/Write

Bit Position 31 0

Field Name Data

Table 122 RxRespn_Data_H Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

RxResp1_Data_H Same as RxResp0_Data_H. 0xBCn044A8

RxResp2_Data_H Same as RxResp0_Data_H. 0xBCn044B0

RxResp3_Data_H Same as RxResp0_Data_H. 0xBCn044B8

RxResp4_Data_H Same as RxResp0_Data_H. 0xBCn044C0

RxResp5_Data_H Same as RxResp0_Data_H. 0xBCn044C8

RxResp6_Data_H Same as RxResp0_Data_H. 0xBCn044D0

RxResp7_Data_H Same as RxResp0_Data_H. 0xBCn044D8

Purpose Bits [31:0] of the data portion of an incoming Ring Bus response (big
endian bytes 4-7). See Table 123 on page 405 for similar registers.

Address 0xBCn044A4

Access CPRC Read/Write

Bit Position 31 0

Field Name Data

Table 123 RxRespn_Data_L Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

RxResp1_Data_L Same as RxResp0_Data_L. 0xBCn044AC

RxResp2_Data_L Same as RxResp0_Data_L. 0xBCn044B4

For More Information On This Product,

 Go to: www.freescale.com

406 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)

RxResp3_Data_L Same as RxResp0_Data_L. 0xBCn044BC

RxResp4_Data_L Same as RxResp0_Data_L. 0xBCn044C4

RxResp5_Data_L Same as RxResp0_Data_L. 0xBCn044CC

RxResp6_Data_L Same as RxResp0_Data_L. 0xBCn044D4

RxResp7_Data_L Same as RxResp0_Data_L. 0xBCn044DC

Purpose The top of the control portion of the Ring Bus receive message FIFO.

Address 0xBCn044E0

Access CPRC Read/Write

Bit Position 31 30 29 24 23 22 20 19 18 17 15 14 10 9 5 4 0

Field Name State Rsvd Error Rsvd Type Len Seq Rsvd Src

Reset Value 0 raz x raz x x x raz x

Field Name Bit Position Description

State 31:30 Receive Message State:

If State equals 1, there is at least one valid message is in the
receive FIFO available to the CPRC process. State equals 1 for as
long as any portion of a valid message remains in the FIFO.

Reserved 29:24 Read as zero.

ErrorFlag 23 Error Flag — Error bit of receive message definable by user
programming.

Reserved 22:20 Read as zero.

Table 123 RxRespn_Data_L Registers (for Ring Bus Responses 1, 2, 3, 4, 5, 6 and 7) (continued)

Register Name Purpose Address

Encoded
Value State

00 Empty

10 High word

11 Low word

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 407

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)

Type 19:18 Receive Message Type:

Len 17:15 Length — Length of receive message in 8Byte slots. Valid values
are 1, 2, or 4.

Seq 14:10 Transaction Sequence Number — Transaction sequence
number of receive message.

Reserved 9:5 Read as zero.

Src 4:0 Source — Source field of receive message, typically the
processor’s Ring Bus node ID. See Table 117 on page 402.

Purpose The next four bytes of data from the Ring Bus receive message FIFO.

Address 0xBCn044E4

Access CPRC Read – Reading any portion of this register advances the receive
FIFO. CPRC Write for test purposes only, writes the register but does not
effect the receive FIFO.

Bit Position 31 0

Field Name Data

Field Name Bit Position Description

Encoded
Value Type

0 Indication

1 Confirmation

2 Request

For More Information On This Product,

 Go to: www.freescale.com

408 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function)

Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function)

RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)

Purpose Used for passing SONET Overhead fields extracted from the receive data
stream by the framer to the CPRC.

Address 0xBCn04500 to 0xBCn0457C

Access CPRC Read, CPRC Write (during test), SDP Receive SONET Framer Write,
and is byte addressable

Bit Position 31 0

Field Name Data

Purpose Used for merging SONET Overhead fields from the CPRC into the
transmit data stream.

Address 0xBCn04580 to 0xBCn045FC

Access CPRC Read, CPRC Write, SDP Transmit SONET Framer Read, and is byte
addressable

Bit Position 31 0

Field Name Data

Purpose Provides an area for passing information between the CPRC and RxByte
Processor. See Table 124 on page 408 for similar register.

Address 0xBCn04600

Access CPRC Read/Write, SDP Receive Byte Sequencer Read/Write, and is byte
addressable

Bit Position 31 0

Field Name Data

Table 124 RxCtl_ByteSeq1 Register (for Byte Sequence1)

Register Name Purpose Address

RxCtl_ByteSeq1 Same as RxCtl_ByteSeq0. 0xBCn04604

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 409

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCtl_SyncSeq Register (CP SDP Rx Control Function)

RxCtl_BitSeq0 Register (CP SDP Rx Control Function)

Purpose Provides an area for passing information between the CPRC and RxSync
Processor.

Address 0xBCn04608

Access CPRC Read/Write, RxSync Sequencer Read/Write, and is byte
addressable

Bit Position 31 0

Field Name Data

Purpose Provides an area for passing information between the CPRC and RxBit
Processor. See Table 125 on page 409 for similar register.

Address 0xBCn0460C

Access CPRC Read/Write, RxBit Sequencer Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 125 RxCtl_BitSeq1 Register (for Bit Sequence1)

Register Name Purpose Address

RxCtl_BitSeq1 Same as RxCtl_BitSeq0. 0xBCn04610

For More Information On This Product,

 Go to: www.freescale.com

410 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)

TxCtl_BitSeq0 Register (CP SDP Tx Control Function)

Purpose Provides an area for passing information between the CPRC and TxByte
Processor. See Table 126 on page 410 for similar register.

Address 0xBCn04620

Access CPRC Read/Write, TxByte Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 126 TxCtl_ByteSeq1 Register (for Byte Sequence1)

Register Name Purpose Address

TxCtl_ByteSeq1 Same as TxCtl_ByteSeq0. 0xBCn04624

Purpose Provides an area for passing information between the CPRC and TxBit
Processor. See Table 127 on page 410 for similar register.

Address 0xBCn0462C

Access CPRC Read/Write, TxBit Processor Read/Write, and is byte addressable

Bit Position 31 0

Field Name Data

Table 127 TxCtl_BitSeq1 Register (for Bit Sequence1)

Register Name Purpose Address

TxCtl_BitSeq1 Same as TxCtl_BitSeq0. 0xBCn04630

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 411

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP_Mode0 Register (CP Mode Configuration Function)

Purpose Collects mode and control bits relevant to general CPRC and CP
configuration.

Address 0xBCn04640

Bit Position 31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

Field Name RC
Resetx

Wind
Down

CP to
XP IRQ

CP to
all IRQ Rsvd QMU

rdmbx
QMU

wrmbx Rsvd Imode
Retry

Global

WCS
Write
Byte

Scan
Data
Out

RxWCS
Write

TxWCS
Write Rsvd Scan

Capture
Scan

Update
Scan

DataIn1
Scan

DataIn0

Reset Value 0 raz raz raz raz 0 0 raz 0 0 raz x raz raz raz raz raz raz raz

Field Name Bit Position Description

RC_Resetx 31 CPRC Resetx — The active low CPRC Resetx bit
powers up asserted, that is, = 0, so that the CPRC is in
the reset state. It must be set by the XP or another
CPRC to release the reset and enable the CPRC to
begin the boot sequence. A CP can not enable itself.

WindDown 30 Wind Down — When the bit is written to 1, it asserts
a global signal informing all chip functions to wind
down as soon as possible, and to leave as much
predictable error recovery state around as possible.

CPtoXPIRQ 29 CP to XP IRQ — When the bit is written to 1, it asserts
a global signal causing an XP interrupt from this CP.

CPtoAllIRQ 28 CP to All IRQ - When the bit is written to 1, it asserts a
global signal that causes an interrupt to every CP.

Reserved 27:24 Read as zero.

QMU rdmbx 23:22 QMU rdmbx Status:

Encoded
Value Status

00 QMU idle or operation finished
successfully

01 operation finished with error
(probably resource error, see above)

10 busy, waiting to begin execution

11 busy, executing in QMU engine

For More Information On This Product,

 Go to: www.freescale.com

412 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU wrmbx 21:20 QMU wrmbx Status:

Reserved 19 Read as zero.

Imode 18:17 IMEM Configuration Mode:

When using cluster memory, only CP0,4,8 & 12 use
these 2 bits, therefore, CP1-3, 5-7, 9-11 & 13-15 do not
use these 2 bits.

RetryGlobal 16 Global Bus Transaction Retry — This bit causes
global load and store operations through the Global
bus controller to be retried up to 256 times when
NACK’d. When 256 tries have been NACK’d, the bus
controller terminates the operation and asserts a bus
error.

WCS Write Byte 15:8 Writable Control Store Write Byte — Writing this
byte coincident with writing bit 6 and/or bit 5 causes
the byte data to be written to SDP control store.

ScanDataOut 7 Scan Chain Data Out — the value of this last bit in
the SDP scan chain.

Field Name Bit Position Description

Encoded
Value Status

00 QMU idle or operation finished
successfully

01 operation finished with error
(probably resource error, see above)

10 busy, waiting to begin execution

11 busy, executing in QMU engine

Encoded
Value Mode

00 Unshared memory

11 4-way shared memory

01 Unsupported

10 Unsupported

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 413

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxWCSWrite 6 RxWritable Control Store Write — When the bit is 1,
it causes the data in the WCS Write Byte field to be
loaded into RxSDP control store at a value pointed to
by the internal SDP WCS load address register, and the
address to increment.

TxWCSWrite 5 TxWritable Control Store Write — When the bit is 1,
it causes the data in the WCS Write Byte field to be
loaded into Transmit SDP control store at a value
pointed to by the internal SDP WCS load address
register, and the address to increment.

Reserved 4 Read as zero.

ScanCapture 3 Scan Capture — Parallel load of the SDP scan chain
with chip state.

ScanUpdate 2 Scan Update — Parallel drive SDP scan chain data
into chip state.

ScanDataIn1 1 Scan Data In 1 — Shift a 1 serially into the SDP scan
chain.

ScanDataIn0 0 Scan Data In 0 — Shift a 0 serially into the SDP scan
chain.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

414 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP_Mode1 Register (CP Mode Configuration Function)

Purpose Collects mode and status bits relevant to general CP configuration.

Address 0xBCn04644

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 16

Field Name
POH

Avail

TOH

Avail
SONET J1

Avail LOS RxByte
Req

RxSync
Req

RxBit
Req

TBI
Error

OH
Avail

TxByte
Req

TxBit
Req Rsvd

Bit Position 15 12 11 8 7 5 4 3 2 1 0

Field Name PErrStat GErrStat Rsvd NXM LFOF SFOF LFUF SFUF

Field Name Bit Position Description

POH Avail 31 SONET Payload Overhead Address Avail — When set,
indicates that the final byte of path overhead (Z5) has just
been written to the receive SONET overhead register area.
All desired path overhead must be read out before the next
time this signal is asserted or it will be overwritten

TOH Avail 30 SONET Transport Overhead Address Avail — When set,
indicates that the final byte of transport overhead (E2) has
just been written to the receive SONET overhead register
area. All desired transport overhead must be read out before
the next time this signal is set to a one or it will be
overwritten. This bit is also available in SONET event register.

SONET J1 Avail 29 SONET J1 Avail — Indicates that the new j1 index written
by the CPRC now has the corresponding J1 in the J1
overhead register area. This is cleared by writing a new j1
index. This is set by writing a J1 byte to the overhead
register. This bit is also available in SONET event register.

LOS 28 Loss of Signal — This signal is either loss of
synchronization or loss of frame as a function of other mode
bits.

RxSONET
Enable

LOS
Mode Function

0 0 Gigabit ethernet loss of sync

0 1 Fibre channel loss of sync

1 x All zeros received for
> 2.3 µseconds

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 415

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxByteReq 27 SDP RxByte Service Request — When set, RxByte
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the RxByte processor.

RxSyncReq 26 SDP RxSync Service Request — When set, RxSync
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the RxSync processor.

RxBitReq 25 SDP RxBit Service Request — When set, RxBit processor
microcode needs the attention of the CPRC. This is also
connected to the CP event register. This bit is written by the
RxBit processor.

TBI Error 24 Ten Bit Interface Symbol Error — When set to a one,
indicates that there has been a ten bit symbol error since
this bit was last cleared. This bit is set by the ten bit decoder
and cleared by the CPRC by writing a one to this bit. It is
readable by the CPRC.
This cannot be used for error counting, but it does give
some indication as to the health of the link.

OH Avail 23 SONET Overhead Avail — show the current value of the
SDP Transmit SONET Framer’s address bit 6 into the SONET
overhead registers.

TxByteReq 22 SDP TxByte Service Request — When set, TxByte
processor microcode needs attention of the CPRC. This is
also connected to the CP event register. This bit is written by
the TxByte processor.

TxBitReq 21 SDP TxBit Service Request — When set, TxBit processor
microcode needs attention of the CPRC. This is also
connected to the CP event register. This bit is written by the
TxBit processor.

Reserved 20:16 Read as zero.

PErrStat 15:12 Payload Error Status — loaded when a Payload Error
occurs and is locked until the CPRC Process clears the PErr
bit. The individual control blocks can be interrogated to
determine the specific offender. Write 1 to clear. Refer to
Table 102 on page 386 for error code definitions.

GErrStat 11:8 Global Error Status — loaded when a Global Error occurs
and locked until the RC process clears the GErr bit. Codes are
shown in Table 128. Write 1 to clear.

Reserved 7:5 Read as zero.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

416 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

NXM 4 Cluster Non-Existent Memory — CPRC reference to
cluster space addressed non-existent Data Memory (DMEM)
or non-local configuration register space. Write 1 to clear.

LFOF 3 Receive Large FIFO Overflow — Receive Large FIFO
overflow condition. Write 1 to clear.

SFOF 2 Receive Small FIFO Overflow —Receive Small FIFO
overflow condition. Write 1 to clear.

LFUF 1 Transmit Large FIFO Underflow — Transmit Large FIFO
underflow condition. Write 1 to clear.

SFUF 0 Transmit Small FIFO Underflow — Transmit Small FIFO
underflow condition. Write 1 to clear.

Table 128 Global Bus Error Status Encoding

Error Type Encoding Read/Write Description

Success 0 R, W The transaction completed successfully. If an
error is reported, it is due to a non-cluster
local DMEM reference.

NACK Retry Limit 9 R, W The target was unable to accept a global
memory request. The global bus transaction
was attempted until the NACK retry limit was
reached.

Non-Existent
Memory

A R, W Reference made to an un-subscribed 1MByte
CP block.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 417

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDP_Mode2 Register (CP Mode Configuration Function)

Purpose Collects SONET alarm and status information.

Address 0xBCn04648

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22 21 16 15 8 7 6 5 0

Field Name LOS LOF ASI-L REI-L RDI-L LOP-P ASI-P REI-P RDI-P LCD-P Rsvd SONET_C2_Exp Rsvd SONET_Rx J1_Idx

Field Name Bit Position Description

LOS 31 Loss Of Signal — Bit is read-only and level-sensitive. This bit is
meaningful for SONET, Gigabit Ethernet, and FibreChannel
applications. When set to 1, LOS is on.

LOF 30 Loss Of Framing — Bit is read-only and level-sensitive. SONET
only bit. When set to 1, LOF is on.

AIS-L 29 Alarm Indication Signal - Line — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, AIS-L is on.

REI-L 28 Remote Error Indicator - Line — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, REI-L is on.

RDI-L 27 Remote Defect Indicator - Line — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, RDI-L is on.

LOP-P 26 Loss Of Pointer - Path — Bit is read-only and level-sensitive.
SONET only bit. When set to 1, LOP-P is on.

AIS-P 25 Alarm Indication Signal - Path — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, AIS-P is on.

REI-P 24 Remote Error Indicator - Path — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, REI-P is on.

RDI-P 23 Remote Defect Indicator - Path — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, RDI-P is on.

LCD-P 22 Loss of Cell/Packet Delineation - Path — Bit is read-only and
level-sensitive. SONET only bit. When set to 1, LCD is on.

Reserved 21:16 Read as zero.

Sonet_C2_Exp 15:8 SONET C2 Expected — This is the value for C2 signal label that
is expected to be received from the link partner. Used to
generate ERDI-P (extended remote defect indication - path) on
transmit. Also, causes the setting of C2_ERROR bit in the
SONET_EVENT register when received signal label doesn’t
match this value.

Reserved 7:6 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

418 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 SDP_Mode3 Register (CP Mode Configuration Function)

Sonet_J1_Idx 5:0 RxSONET J1 Index — Indicate which of the 64Byte path trace
(J1) message should be written to the receive overhead
location for J1. Changing this field clears J1_AVAIL in the
SONET_EVENT register. J1_AVAILbecomes set when the J1 is
actually written to the overhead register.

Purpose Collects configuration mode bits relevant for programming the RxSDP
machines.

Address 0xBCn0464C

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22 21

Field Name RxResetx RxEnable RxByteEna RxBitEna RxSonetEna RxSyncEna RxByte
Loopback

RxBit
Loop
back

RxAgg
Mode

RxSync
CRC16/32

Reset Value 0 0 0 0 0 0 x x x x

Bit Position 20 19 18 17 16 15 14 13 12 11 10

Field Name RxSyncCRC
Init RxSyncFOL RxSonet

Concat
RxSync
CRCInv LOSenable LOSmode Rsvd Manual_febe RxBitInWidth SonetOC

Reset Value x x x x x x x x x x

Bit Position 9 8 7 6 5 4 3 2 1 0

Field Name SonetDscr RxByteCRCInit RxByteCRC
16/32

RxByteCRC
Inv

RxByteFirst
OnLeft

RxBitFirst
OnLeft

Payload
Dscr

RxFifo
ExDis Rx10Bit Bit2Bit

Source

Reset Value x x x x x x x x x x

Field Name Bit Position Description

RxResetx 31 RxSDP Master Reset — When 0, puts RxSDP in reset
state. When 1, RxSDP is in run state. This must be low
(asserted) in order to load the microcode.

RxEnable 30 RxSDP Master Enable — When 1, enables all Rx
Sequencers. Allows all Rx processors and the SONET logic
to be enabled at once.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 419

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxByteEnable 29 RxByte Processor Enable — Enables the RxByte
processor, when set to 1. Freezes the micropc at the
current microaddress when disabled. Receive master
enable must be set in order for this bit to have an effect.
The RxByte processor should be enabled for all
applications.

RxBitEnable 28 RxBit Processor Enable — Enables the RxBit processor,
when set to 1. Freezes the processor at the current
microaddress when disabled. Receive master enable must
be set in order for this bit to have an effect. This processor
should be enabled for all applications.

RxSonetEnable 27 RxSONET Enable — When a one, the SONET pointer
interpreter, payload demultiplexer and overhead
termination logic is enabled. When a zero, this SONET logic
is disabled and bypassed. Effects operation of the loss of
sync signal bit.

RxSyncEnable 26 RxSync Enable — Enables the rxsync processor, when set
to a one. Freezes the micropc at the current microaddress
when disabled. Receive master enable must be set in order
for this bit to have an effect.

RxSDP Configuration 25:0 See below:

RxByteLoopback 25 RxByte Loopback Enable — Connects network side of
transmit large FIFO to network side of receive large FIFO,
when set to a one. Only works for aggregation mode = 0
(groups of one).

RxBitLoopback 24 RxBit Loopback Enable — Connects network side of
transmit small FIFO to network side of receive small FIFO,
when set to a one. Only works for aggregation mode = 0
(groups of one). The pin logic is not included in this
loopback.

RxAggMode 23:22 SDP Receive Aggregation Mode — Controls the
number of receive SDPs in a cluster that work as a unit

00 = each SDP works independently
01 = SDPs work in two groups of two
10 = SDPs work as one group of four
11 = unused

RxSyncCRC16/32 21 RxSync CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

RxSyncCRCInit 20 RxSync CRC Initialize to Ones — When a one, resetting
the CRC register sets the CRC register to all ones. When a
zero, resetting the CRC register sets the CRC register to all
zeroes.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

420 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxSyncFOL 19 RxSync CRC First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit of
the byte. Must be set the same as RxBitFirstOnLeft.

RxSonetConcat 18 RxSONET Concatenation Mode — When in OC-12 mode
and set to a one, the receive logic is configured to SONET
OC-12c / SDH STM-4 VC-4-4c (one pipe). When in OC-12
mode and set to a zero, the receive logic is configured to
SONET OC-12 (four OC-3c streams) / SDH STM-4 (four
VC-4-1c streams).
When RXSONET OC-12/OC-3 is set to a zero (OC-3 mode),
this bit must be set.

RxSyncCRCInv 17 RxSync CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a zero,
read the CRC register directly.

LOSenable 16 Loss of Synchronization Enable — When set, the 8 bit
10 bit (TBI) decoder runs the loss of synchronization state
machine on the incoming ten bit data. The loss of sync
signal bit is a one if this enable is set to zero.

LOSmode 15 Loss of Synchronization Mode — This signal is either
loss of synchronization or loss of frame as a function of
other mode bits

Reserved 14 Read as zero.

Manual_febe 13 Manual FEBE — When a one, the transmitted values of
K2, M1, and G1 are completely determined by the
contents of the TxSONET overhead registers. When a zero,
all of M1, G1, and the far end block error portion of K2 are
automatically generated by the hardware as a function of
the receive data.

Field Name Bit Position Description

RxSONET
Enable

LOS
Mode Function

0 0 Gigabit ethernet loss of sync

0 1 Fibre channel loss of sync

1 x All zeros received for
> 2.3 µseconds

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 421

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxBitInWidth 12:11 RxBit Input Width — Determines the input data width
received by RxBit.

If the ten bit decoder is enabled, this field is ignored.

SonetOC 10 RxSONET OC12/OC3 Select — When a one, the
SONET/SDH receive logic is configured to receive SONET
OC-12 / SDH STM-4. When a zero, this receive logic is
configured to receive SONET OC-3c / SDH STM-1 VC-4-1c.

SonetDscr 9 SONET Descramble Enable — Enables the SONET / SDH
descramble operation, when set to a one. When a zero, no
descrambling occurs. Normally enabled if SONET is
enabled.

RxByteCRCInit 8 RxByte CRC Initialize to Ones — When a one, resetting
the CRC register sets the CRC register to all ones. When a
zero, resetting the CRC register sets the CRC register to all
zeroes.

RxByteCRC16/32 7 RxByte CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

RxByteCRCInv 6 RxByte CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a zero,
read the CRC register directly.

RxByteFirstOnLeft 5 RxByte CRC First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit of
the byte. Must be set the same as RxBitFirstOnLeft.

RxBitFirstOnLeft 4 RxBit First on Left — When a zero, the first bit on
received is on the right-most bit of the byte. When a one,
the first bit received is on the left-most bit of the byte.
Set to zero for Ethernet. Set to one for SONET / SDH.

PayloadDscr 3 RxSync Payload Descramble Enable — When a one,
self-synchronous payload descrambling is applied to the
receive data if the microcode also enables it. When a zero,
data is not descrambled.

Field Name Bit Position Description

RxBit Input Width Input Width in Bits

0 1

1 2

2 4

3 8

For More Information On This Product,

 Go to: www.freescale.com

422 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDP_Mode4 Register (CP Mode Configuration Function)

RxFifoExDis 2 RxFIFO Exception Disable — When set to a zero, allow
the RxSDP overflow handler to empty the RxSDP pipeline
in the event of FIFO overflow. When set to a one, inhibit
the SDP overflow handler from emptying the RxSDP in the
event of FIFO overflow.
For diagnostics. This bit is normally set to zero.

Rx10Bit 1 Fix 10 Bit Decoder Mode — When set, the 8 bit to 10 bit
decoder is enabled. The rxbit input width is set to 10 bits.
When clear, the 8 bit to 10 bit decoder is disabled and rxbit
input width is determined by the rxbit input width field as
described above.
This is used for gigabit ethernet 1000BaseX and Fibre
Channel.

Bit2BitSource 0 Receive Bit-tobit Source — When set to one 1, selects
the bit-tobit signal from RxBit processor 0 of its neighbor
cluster. If we call the four clusters 0, 1, 2, and 3. 0 and 1 are
neighbors. Clusters 2 and 3 are also neighbors. When set
to 0, selects the bit-tobit signal from an RxBit processor in
the local cluster. Which RxBit processor of the four is
selected is a function of the aggregation mode.
The bit-tobit signal is readable by the RxBit processor.

Purpose Configures the TxLarge FIFO and Aggregation Multiplexer.

Address 0xBCn04650

Access CPRC Read/Write

Bit Position 31 26 25 24 23 11 10 9 8 7 6 0

Field Name Reserved AgMux
State Reserved Idle

Cell
Idle

Insert
Auto

Token Rsvd Large FIFO
Watermark

Reset Value raz 0 raz x x x raz x

Field Name Bit Position Description

Reserved 31:26 Read as zero.

AgMuxState 25:24 Aggregation Multiplexer State — Allows the base
CPRC of an aggregate group to determine which
CPRC of the aggregate group is currently selected by
the aggregation multiplexer.

Reserved 23:11 Read as zero.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 423

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Idle Cell 10 Idle Cell Mode — If the Idle Insertion Enable bit is set
to 1, Idle Cell Mode determines what is inserted in to
the data stream when no other data is available.

0 = insert a packet over SONET flag character
1 = insert an ATM idle cell

Idle Insert 9 Idle Insertion Enable — If set to 1, the transmit
pipeline inserts either a packet over SONET flag
(0x7E) or an ATM idle cell (if there is no other data
available) depending on the state of the idle cell
mode bit. This insertion occurs either before or after
the aggregation multiplexer, depending on the state
of the Scramble/Insertion mode bit in SDP_MODE5
register. If set to a 0, no insertion takes place.

Auto Token 8 AutoToken Enable — When set to 1 and the
aggregation group size is four, the token is passed
without micro sequencer intervention whenever
data_nine is read from the aggregation multiplexer
output stage.

Reserved 7 Read as zero.

Large FIFO
Watermark

6:0 Large FIFO Watermark — The TxLarge FIFO (128
words) has a watermark associated with it. Starting
from the empty state, the FIFO remains empty until
the entry count becomes greater than the watermark
at which point it then becomes not-empty.
The watermark depth is recalculated each time the
last byte of a packet or cell has been transmitted. The
last byte is defined as any byte with the 9th bit set. If
the FIFO depth is less than the watermark number of
bytes when the last byte is transmitted from the FIFO,
the FIFO appears empty.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

424 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDP_Mode5 Register (CP Mode Configuration Function)

Purpose Collects configuration mode bits relevant for programming the TxSDP
machines.

Address 0xBCn04654

Access CPRC Read/Write

Bit Position 31 30 29 28 27 26 25 24 23 22

Field Name TxResetx TxEnable TxByteEna TxBitEna TxSonetEna ForceLineAIS TxSonetOh
Comp

ForceSonet
PErr TxAggMode

Reset Value 0 0 0 0 0 x x x x

Bit Position 21 20 19 18 17 16 15 14 13 12 11 10

Field Name TxFifoExDisab TxBitPHY TxSonet
ConcMode

ForcePath
AIS3

ForcePath
AIS2

ForcePath
AIS1

ForcePath
AIS0

Sonet
j1Mis

TxBitOut
Width

TxSonet
OC

Reset Value x x x x x x x x x x

Bit Position 9 8 7 6 5 4 3 2 1 0

Field Name TxSonetScr TxByteByte
CRCInit1

TxByteCRC
16

TxByte
CRCInv

TxByteFirst
OnLeft

TxBitFirst
OnLeft

Payload
ScrEna

Payload
ScrMode Tx10bit ForceLOS

Reset Value X x x x x x x x x x

Field Name Bit Position Description

TxResetx 31 TxSDP Master Reset — When 0, puts TxSDP in reset
state. When 1, puts TxSDP in run state. Must be low
(asserted) in order to load the microcode.

TxEnable 30 TxSDP Master Enable — When 1, enables all Rx
Sequencers. This allows all of the processors and the
SONET logic to be started at the same time.

TxByteEna 29 TxByte Enable — Enables the TxByte processor,
when set to 1. Freezes the micropc at the current
microaddress when disabled. TxEnable must be set in
order for this bit to have an effect. This processor
should be enabled for all applications.

TxBitEna 28 TxBit Enable — Enables the TxBit processor, when
set to a one. Freezes the micropc at the current
microaddress when disabled. Transmit master enable
must be set in order for this bit to have an effect. The
TxBit processor should be enabled for all
applications.

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 425

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSonetEna 27 TxSONET Enable — When one, enables the
TxSONET logic. When a zero, TxSONET logic is
disabled and bypassed. When enabled this logic
inserts SONET transport and path overhead into the
data stream.

ForceLineAIS 26 TxSONET Force Line Alarm Indicator Signal —
When a one, force the transmission of line alarm
indication signal (AIS-L). However, when set to a one
when sonet_force_path_alarm_indication_signal is
set to a one, this bit does not force AIS-L; it enables
transmission of new data flag in H1.

TxSonetOhComp 25 TxSONET Overhead Complete — When set to a
one, the final element (E2) of transmit path and
transport overhead has been read from the SONET
transmit overhead buffer. Indicates that one more J1
has been updated in the J1 portion of that buffer.
Operation of this indicator is complicated by the
following: The SONET transmit pointer is fixed at
decimal 40. Because of this, a complete set of path
overhead is read in this order: Z3 Z4 Z5 J1 B3 C2 G1
F2 H4, not in the expected order of J1... Z5 This bit is
also available in the SONET event register.

ForceSONETPErr 24 TxSONET Force Parity Error — When a one,
transmits parity errors on all bit lanes of B1 B2 and B3.
For diagnostics.

TxAggMode 23:22 SDP Transmit Aggregation Mode — Controls the
number of TxSDPs in a cluster that work as a unit.

00 = each SDP works independently
01 = SDPs work in two groups of two
10 = SDPs work as one group of four
11 = unused

TxFifoExDisab 21 TXFIFO Exception Disable — When set to 0, allow
the TxSDP underflow handler to transmit
well-formed, but benign PDUs in the case of FIFO
underflow. When set to 1, prevent this mechanism
from operating, which will cause the last data in the
Tx small FIFO to be repeated until new data is
available.
For diagnostics. This bit is normally set to zero.

TxBitPHY 20:19 TxBit PHY Status Select — Selects how the physical
layer status bits from the PHY or transceiver chips are
connected to the TxBit processor. The TxBit processor
has two PHY status tests: phy_status_0 and
phy_status_1. See Table 129.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

426 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSonetConcMode 18 TxSONET Concatenation Mode — When in OC-12
mode and set to 1, the transmit logic is configured to
SONET OC-12c / SDH STM-4 VC4-4c (one pipe). When
in OC-12 mode and set to zero, the transmit logic is
configured to SONET OC-12 (four OC-3c streams) /
SDH STM-4 (four VC-4-1c streams).
When TxSonetOC is set to a zero (OC-3 mode), this bit
must be set.

ForcePathAIS3 17 SONET Force Path Alarm Indicator Signal 3 —
When a one, forces the path alarm indication signal
(AIS-P) to be transmitted. The operation of this varies
according to the SONET mode selected. In OC-3c
mode, the ForcePathAIS0 is the only bit that is used.
In OC-12c mode, the ForcePathAIS0 of CP0 is the
only bit that is used. In OC-12 non-concatenated
mode, each of the four bits in CP0 only controls one
of the four OC-3c tributaries. However, when set to 1
when the sonet_force_line_alarm_indication_signal
is set to 1, this bit does not force AIS-P; it enables
transmission of new data flag in H1.

ForcePathAIS2 16 SONET Force Path Alarm Indicator Signal 2 — See
ForcePathAIS3.

ForcePathAIS1 15 SONET Force Path Alarm Indicator Signal 1 — See
ForcePathAIS3.

ForcePathAIS0 14 SONET Force Path Alarm Indicator Signal 0 — See
ForcePathAIS3.

SonetJ1Mis 13 SONET J1 Mismatch — When 1, the path extended
remote defect indication field (ERDI-P), is set to
reflect this condition. This bit is to be set when the
received 64Byte J1 message does not match the
message that is expected.

TxBitOutWidth 12:11 TxBit Output Width — Determines the output data
width transmitter by TxBit.

Overridden if the ten bit encoder is enabled

Field Name Bit Position Description

RxBit Input Width Input Width in Bits

0 1

1 2

2 4

3 8

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 427

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSonetOC 10 TxSONET OC12/OC3 Select — When a one, the
SONET/SDH transmit logic is configured to transmit
SONET OC-12 / SDH STM-4. When a zero, this
transmit logic is configured to transmit SONET OC-3c
/ SDH STM-1 VC-4-1c.

TxSonetScr 9 TxSONET Scramble Enable — When 1, the data is
frame-synchronously scrambled. When zero, the data
is not scrambled.

TxByteCRCInit1 8 TxByte CRC Initialize to Ones — When a one,
resetting the CRC register sets the CRC register to all
ones. When a zero, resetting the CRC register sets the
CRC register to all zeroes.

TxByteCRC16 7 TxByte CRC 16/32 — When a one, selects CRC-16
operation. When a zero, selects CRC-32 operation.

TxByteCRCInv 6 TxByte CRC Output Invert — Read the ones
complement of the CRC register, when a one. When a
zero, read the CRC register directly.

TxByteFirstOnLeft 5 TxByte First on Left — Calculate CRC on the data
assuming that the first bit received is the left-most bit
of the byte. Must be set the same as RxBitFirstOnLeft.

TxBitFirstOnLeft 4 TxBit First on Left — When 0, the first bit
transmitted is the right-most bit of the byte. When 1,
the first bit transmitted is the left-most bit of the
byte.
Set to 0 for Ethernet. Set to 1 for SONET / SDH.

PayloadScrEna 3 TxByte Payload Scramble Enable — When set to a
one, enables the self-synchronous payload scrambler
if the microcode also enables it. Otherwise, data is
transferred without scrambling. Usually set if SONET
is enabled.

PayloadScrMode 2 TxByte Payload Scramble Insertion Mode —
Selects whether optional insertion and/or payload
scrambling of is done before or after aggregation
multiplexing. When zero, insert/scramble before
multiplexing. When one, insert/scramble after
multiplexing.
OC-12c applications must set this to a one. OC-3c and
OC-12 non concatenated applications must set this
to a zero.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

428 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Tx10bit 1 Tx Ten Bit Enable — When set, the 8 bit to 10 bit
encoder is enabled. The TxBit output width is set to
10 bits. When clear, the 8 bit to 10 bit encoder is
disabled and TxBit output width is determined by the
TxBit output width field as described below. This is
used for Gigabit Ethernet 1000BaseX and Fibre
Channel.

ForceLOS 0 TxSONET Force Loss Of Signal — When a one,
turns the entire SONET frame, post-scrambling to
zeroes.
For diagnostics. To the receiver this looks just like a
fiber cut.

Table 129 PHY Status Bit - TxBit Processor Connections

Select
Field Operation

0 or 3 phy_status_0 is connected to receive data signal A
phy_status_1 is connected to receive data signal B
Where signals A and B are the following:

Pin Mode Signal A Signal B

DS1/3 frame sync undefined

OC-3 undefined signal detect

OC-12 frame pulse PLL lock detect

1 phy_status_0 is connected to carrier sense (RMII)
phy_status_1 is connected to collision (RMII)

2 phy_status_0 is connected to carrier sense (GMII)
phy_status_1 is connected to collision (GMII)

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 429

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Debug_Mode Register (CP Mode Configuration Function)

Purpose Configures the CP debug tap for the global debug counters.

Address 0xBCn04658

Access CPRC Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX3

Reset Value 0 raz x 0 raz x 0 raz x 0 raz x

Field Name Bit Position Description

Enb0 31 Global Debug Wire 0 Enable — Enable the driver onto global
debug wire 0.

reserved 30:28 Read as zero.

MUX0 27:24 Global Debug Wire 0 MUX — Select 1 of 16 debug events onto
global debug wire 0.

Enb1 23 Global Debug Wire 1 Enable — Enable the driver onto global
debug wire 1.

reserved 22:20 Read as zero.

MUX1 19:16 Global Debug Wire 1 MUX — Select 1 of 16 debug events onto
global debug wire 1.

Enb2 15 Global Debug Wire 2 Enable — Enable the driver onto global
debug wire 2.

reserved 14:12 Read as zero.

MUX2 11:8 Global Debug Wire 2 MUX — Select 1 of 16 debug events onto
global debug wire 2.

Enb3 7 Global Debug Wire 3 Enable — Enable the driver onto global
debug wire 3.

reserved 6:4 Read as zero.

MUX3 3:0 Global Debug Wire 3 MUX — Select 1 of 16 debug events onto
global debug wire 3.

For More Information On This Product,

 Go to: www.freescale.com

430 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

There are four global debug wires that carry inputs to the global debug counter block.
Each CP has a multiplexor that can select one of the 16 events enumerated in Table 130 to
drive on each of the respective debug wires. Each multiplexor has a 4bit register to select
what event to drive, and an enable bit to turn on the debug wire driver. Chip-wide, only
one debug wire driver should be enabled at any time. Because of this restriction, the
recommended procedure for software to manipulate debug taps is as follows:

1 Clear the master debug enable bit in the global debug configuration register space in
the XP.

2 Clear the set driver enable bits. It may be safest to invoke a routine that clears all driver
enable bits on every change regardless of the previous configuration.

3 Set one chip-wide driver enable bit and its corresponding multiplexor select value for
each global debug wire.

4 Set up the global debug configuration bits and master debug enable.

Table 130 Debug Multiplexor Select Encodings

MUX input Encoding Description

1 15 Always selects 1 for multiplexor.

0 14:8 Always selects 0 for multiplexor (unused).

SDP service
request

7 Logical OR of all SDP sequencers service requests.

SDP TXByte 6 SDP TxByte sequence moved a byte of payload from DMEM.

SDP RxByte 5 SDP RxByte sequence moved a byte of payload to DMEM.

Istall 4 CPRC instruction stall cycle.

Stall 3 CPRC data read or write stall cycle.

CPRC Read 2 CPRC data read.

CPRC Write 1 CPRC data write.

DeBugMatch 0 The CPRC data, data address, or instruction address matches the
programmed match registers in the CPRC.

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 431

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PIN_Mode Register (CP Mode Configuration Function)

Purpose Provides programmable pin configuration state.

Address 0xBCn0465C

Access CPRC Read/Write

Bit Position 31 23 22 21 20 18 17 14 13 7 6 0

Field Name Reserved DataCntg RxClkMUX TxClkMUX Reserved TxDataEna

Reset Value raz 0 0 0 raz 0

Field Name Bit Position Description

Reserved 31:23 Read as zero.

DataCnfg 22:21 Pin Data Configuration — Sets CP configuration pins:

0,1 = CP pins in read-only mode
2 = CP pins in lvttl mode (all other configurations)
3 = CP pins in pecl mode (OC-3)

RxClkMUX 20:18 Receive Clock MUX Control — For CP0, CP4, CP8, and CP12 in
each cluster, the receive clock MUX control cannot be disabled (set
to a value of 0) for any cluster that is to be used for either RxSDP or
TxSDP processing since this is how clock is driven throughout the
SDPs for that cluster. For example, if the cluster consisting of CP0 -
CP3 is being used to receive data, CP0 could be set to RxClkMux =
TxClkMux (5) and the TxClkMux must select a driven input clock.
RxClkMUX configurations are:

1 = local (CPn_1)
2 = x2 aggregate (CPn_1 of the aggregation pair)
3 = TBI - recovered from CP2_1 and CP3_1 in a four CP cluster
4 = PECL (for OC-3, from CPn_0 and CPn_1 differential input)
5 = transmit clock (for RMII)
6 = inverted transmit clock (for local loopback)
7 = x4 aggregate (CP2_1 is the clock in a four CP Cluster)
0 = disable receive clock (set internally to 0)

For More Information On This Product,

 Go to: www.freescale.com

432 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxClkMUX 17:14 Transmit Clock MUX Control — Indicates the source of the
TxClock used by the SDP:

Reserved 13:7 Read as zero.

TxDataEna 6:0 Transmit Data Enable — Selects transmit or receive mode for
each of the CP’s pins:

0 = Receive
1 = Transmit

Bits 0 - 6 map individually to each of the seven pins in each CP. Bit 1
maps CPn_1, bit 2 maps to CPn_2, and so on. Thus pins 0-4 could
be in Rx mode while pins 5 and 6 could be in Tx mode.

Field Name Bit Position Description

Encoded
Value Source Applicable Notes

1 T1 N/A

2 E1

3 E3

4 T3

5 RMII

6 Fibre Channel

7 MII To be used by MII Mode for GMII
autonegotiate down to
100/10BaseT.

9 GMII/Gigabit
Ethernet

N/A

A OC3

B internal0 Internal0 and internal1 are
internally buffered versions of
the receive clocks on CP4 and
CP8, respectively.

C internal1

D receive clock Use the 'even' receive clock in an
'even-odd' pair, for example CP8
and CP9 will use receive clock
from CP8.

E receive clock N/A

0,8,F = transmit clock disabled (internally set to 0)

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 433

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue_Status0 Register (CP Queue Status Function)

Queue_Update0 Register (CP Queue Status Function)

Purpose Stores queue status broadcast by the queue controller. See Table 131 on
page 433 for similar registers.

Address 0xBCn04660

Access CPRC Read, Write one to clear

Bit Position 31 0

Field Name Status

Table 131 Queue_Statusn Registers (for Queue Status 1, 2 and 3)

Register Name Purpose Address

Queue_Status1 Same as Queue_Status0. 0xBCn04664

Queue_Status2 Same as Queue_Status0. 0xBCn04668

Queue_Status3 Same as Queue_Status0. 0xBCn0466C

Purpose Address through which bits are set in the queue status registers. See
Table 132 on page 433 for similar registers.

Address 0xBCn04670

Access CPRC write one to set the corresponding bit of the queue status register.

Bit Position 31 0

Field Name Update

Table 132 Queue_Updaten Registers (for Queue Updates 1, 2 and 3)

Register Name Purpose Address

Queue_Update1 Same as Queue_Update0. 0xBCn04674

Queue_Update2 Same as Queue_Update0. 0xBCn04678

Queue_Update3 Same as Queue_Update0. 0xBCn0467C

For More Information On This Product,

 Go to: www.freescale.com

434 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event_Timer Register (CP Miscellaneous Control Function)

Cycle_Count_H Register (CP Miscellaneous Control Function)

Cycle_Count_L Register (CP Miscellaneous Control Function)

Purpose Cycle counter used to schedule timed events.

Address 0xBCn04684

Access CPRC Read/Write

Bit Position 31 0

Field Name Event Timer

Purpose Most significant four bytes of the 64bit cycle counter, updated
whenever Cycle_Count_L is read.

Address 0xBCn04688

Access CPRC Read

Bit Position 63 32

Field Name Frozen Count

Reset Value 0

Purpose Least significant four bytes of the 64bit cycle counter.

Address 0xBCn0468C

Access CPRC Read

Bit Position 31 0

Field Name Count

Reset Value 0

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 435

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event0 Register (CP Event and Interrupt Function)

Purpose Collects event bits relevant to datascope independent tasks.

Address 0xBCn046A0

Access CPRC Read, CPRC Write 1 bit to clear.

Bit Position 63 32

Field Name Datascope independent events

Field Name Bit Position Description

WindDown 63 Wind Down — When unmasked, this global input is a request
to wind down all CP activity as soon as possible, and leave as
much predictable error recovery state around as possible.

GlobalError 62 CPRC Global Reference Error - when asserted, this bit means
a CPRC Write received an error on the Global Bus or a
non-existent memory error within the cluster.

MCError 61 Memory Controller Request Error — Indicates an
unrecoverable error occurred during a request sent to the
BMU. An error status code is stored in the cp_mode_register,
and also in the control block that initiated the request.

QMUError 60 QMU Error — Indicates an unrecoverable error occurred
during a request sent to the QMU. An error status code is
stored in the cp_mode_register.

XPInterrupt 59 XP Interrupt Request —The XP issued an interrupt request to
this CP.

PayloadAlert 58 Payload Request Alert — A non-fatal bus error has occurred
while trying to send a request to the BMU or QMU.

DebugMatch 57 XPRC Debug Match — The XPRC data, data address, and
instruction address matched the programmed match registers
in the CPRC.

TLUError 56 TLU Error — Indicates that an unrecoverable error occurred
during a request sent to the TLU.

For More Information On This Product,

 Go to: www.freescale.com

436 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSDPError 55 TxSDP Error — Indicates that the SDP has encountered an
error during processing. An error status code is stored in the
sdp_mode register. This bit is the logical OR of the following
conditions which are represented as bits in the CP_MODE1
register:

SDP TxBit service request [21]
SDP TxByte service request [22]
TxSmallFIFO underflow (SFUF) [0]
TxLargeFIFO underflow (LFUF) [1]

as well as these two bits:
TxCtl0_Status [30] and TxCtl1_Status [30] error bit set (by
TxByte)

RxSDPError 54 RxSDP Error — Indicates that the SDP has encountered an
error during processing. An error status code is stored in the
sdp_mode register.This bit is the logical OR of the following
conditions which are represented as bits in the CP_MODE1
register:

SDP RxBit service request [25]
SDP RxSync service request [26]
SDP RxByte service request [27]
RxSmallFIFO overflow (SFOF) [2]
RxLargeFIFO overflow (LFOF) [3]

as well as these two bits:
RxCtl0_Status [30] and RxCtl1_Status [30] error bit set (by
RxByte)

RxMsgFIFO 53 Ring Bus Receive Message Available — This bit indicates
the availability of a Ring Bus message in the receive FIFO, and
corresponds to RxMsgCtl.State [31].

TimerEvent 52 Event Timer Time-out — This bit indicates the event timer
counted down to 0.

AllCpInt 51 All CPs Interrupt Request — One CP has interrupted all other
CPs.

SonetOH 50 SONET Overhead Event — Masked OR of all bits in the SONET
Event register. This bit is level sensitive.

Reserved 49:48 Software controlled.

RxResp7-0 47:40 Ring Bus Receive Response Available — These eight bits
correspond to the available bit for the eight Ring Bus receive
response available bits. Bit 47 represents RxResp7Ctl.Avail, and
bit 40 represents RxRespCtl0.Ctl.

TxMsg3-0 39:36 Ring Bus Transmit Message Available — These four bits
correspond to the available bit for the four Ring Bus transmit
message control registers. Bit 39 represents TxMsg3Ctl.Avail,
and bit 36 represents TxMsg0Ctl.Avail.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 437

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event1 Register (CP Event and Interrupt Function)

WrCB 35:34 Write Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus write control blocks. Bit
35 corresponds to WrCB1Ctl.Avail, and bit 34 corresponds to
WrCB0Ctl.Avail.

RdCB 33:32 Read Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus read control blocks. Bit 33
corresponds to RdCB1Ctl.Avail, and bit 32 corresponds to
RdCB0Ctl.Avail.

Purpose Collects together event bits relevant to transmit and receive
datascopes.

Address 0xBCn046A4

Access CPRC Read, CPRC Write 1 bits to clear

Bit Position 31 0

Field Name Transmit and receive scope events

Field Name Bit Position Description

QRdMbxAvail 31 Queue Read Mailbox Available — This bit indicates that
this CP’s read mailbox in the QMU went from busy to
available.

TxCB1_Avail 30 TxCB1 Available — Indicates that the available bit for
datascope 1 Payload bus transmit control block
TxCB1Ctl.Avail was set.

TxStatus1_Avail 29 TxStatus1 Available — Indicates that the TxSDP has set
the TxStatus1.Avail.

TxStatus1_L1 28 TxStatus1 Bit 1 — Indicates that the TxSDP has set the
TxStatus1 bit 1.

TxStatus1_L0 27 TxStatus1 Bit 0 — Indicates that the TxSDP has set the
TxStatus1 bit 0.

QRdMbxBusy 26 Queue Read Mailbox Busy — This bit indicates that this
CP’s read mailbox in the QMU went from available to busy.

TxCB0_Avail 25 TxCB0 Available — Indicates that the available bit for
datascope 0 payload bus transmit control block
TxCB0Ctl.Avail was set.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

438 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxStatus0_Avail 24 TxStatus0 Available — Indicates that the TxSDP has set
the TxStatus0.Avail.

TxStatus0_L1 23 TxStatus0 Bit 1 — Indicates that the TxSDP has set the
TxStatus0 bit 1.

TxStatus0_L0 22 TxStatus0 Bit 0 — Indicates that the TxSDP has set the
TxStatus0 bit 0.

QueueStatus 21 Queue Status — This bit corresponds to the logical OR of
all the bits in the four Queue_Status registers. The bit is level
sensitive.

SoftEvent2 [4:0] 20:16 Software Events 2 [4:0] — These five bits correspond to
events that are set explicitly by software.

QWrMbxAvail 15 Queue Write Mailbox Available — This bit indicates that
this CP’s write mailbox in the QMU went from busy to
available.

RxCB1_Avail 14 RxCB1 Available — Indicates that the available bit for
datascope 1 payload bus receive control block
RxCB1Ctl.Avail was set.

RxStatus1_Avail 13 RxStatus1 Available — Indicates that the RxSDP has set
the RxStatus1.Avail.

RxStatus1_L1 12 RxStatus1 Bit 1 — Indicates that the RxSDP has set the
RxStatus1 bit 1.

RxStatus1_L0 11 RxStatus1 Bit 0 — Indicates that the RxSDP has set the
RxStatus1 bit 0.

QWrMbxBusy 10 Queue Write Mailbox Busy — This bit indicates that this
CP’s write mailbox in the QMU went from available to busy.

RxCB0_Avail 9 RxCB0 Available — Indicates that the available bit for
datascope 0 payload bus receive control block
RxCB0Ctl.Avail was set.

RxStatus0_Avail 8 RxStatus0 Available — Indicates that the RxSDP has set
the RxStatus0.Avail.

RxStatus0_L1 7 RxStatus0 Bit 1 — Indicates that the RxSDP has set the
RxStatus0 bit 1.

RxStatus0_L0 6 RxStatus0 Bit 0 — Indicates that the RxSDP has set the
RxStatus0 bit 0.

Reserved 5 Software controlled.

SoftEvent3 [5:0] 4:0 Software Events 3 [5:0] — These six bits correspond to
events that are set explicitly by software. Bit 5 corresponds
to software_event3_5.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 439

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event_Mask0 Register (CP Event and Interrupt Function)

Event_Access Register (CP Event and Interrupt Function)

The Read Format is:

Purpose Provides mask that selects bits in the Event0 register for event access.
See Table 133 on page 439 for similar register.

Address 0xBCn046A8

Access CPRC Read, CPRC Write

Bit Position 31 0

Field Name Event Mask Bits [63:32]

Table 133 Event_Mask1 Register (for Mask1)

Register Name Purpose Address

Event_Mask1 Same as Event_Mask0, except it masks events [31:0] 0xBCn046AC

Purpose Provides access to next high bit (1) of Event register pair (Event0 and
Event1) that is set in Event_Mask register pair (Event_Mask0 and
Event_Mask1) and also provides event summaries.

Note: The fields for this register change when performing a Read as
opposed to performing a Write.

Address 0xBCn046B0

Access CPRC Read, CPRC Write to set/clear Event register bit.

Bit Position 31 30 16 15 14 8 7 2 1 0

Field Name All Rsvd None Rsvd EventNumber Rsvd

Reset Value x raz x raz x raz

Field Name Bit Position Description

All 31 All — Provides logical-AND of EVENT register bits that are
active in the mask.

Reserved 30:16 Read as zero.

None 15 None — Provides logical-NOR of EVENT register bits that are
active in the mask.

For More Information On This Product,

 Go to: www.freescale.com

440 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 The Write Format is:

Reserved 14:8 Read as zero.

EventNumber 7:2 Event Number — Denotes the highest number selected
event.

Reserved 1:0 Read as zero.

Bit Position 31 24 23 18 17 8 7 2 1 0

Field Name Rsvd SetBit Rsvd ClearBit Rsvd

Reset Value raz x raz x raz

Field Name Bit Position Description

Reserved 31:24 Read as zero.

SetBit 23:18 Set Bit — Sets an individual bit in the EVENT_MASKn
register.

Reserved 17:8 Read as zero.

ClearBit 7:2 Clear Bit — Clears an individual bit in the EVENT_MASKn
register.

Reserved 1:0 Read as zero.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 441

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Mask_Access Register (CP Event and Interrupt Function)

Interrupt_Mask0 Register (CP Event and Interrupt Function)

Purpose Provides decoder to access bits in Event_Mask register pair
(Event_Mask0 and Event_Mask1)one at a time.

Address 0xBCn046B4

Access CPRC Write

Bit Position 31 24 23 18 17 8 7 2 1 0

Field Name Rsvd SetBit Rsvd ClearBit Rsvd

Reset Value raz x raz x raz

Field Name Bit Position Description

Reserved 31:24 Read as zero.

SetBit 23:18 Set Bit — Sets an individual bit in the EVENT_MASKn
register.

Reserved 17:8 Read as zero.

ClearBit 7:2 Clear Bit — Clears an individual bit in the EVENT_MASKn
register.

Reserved 1:0 Read as zero.

Purpose Provides mask that select bits in the Event register pair (Event0 and
Event1) for interrupt reporting events [63:48] for IRQ0 and events [47:32]
for IRQ1. See Table 134 on page 441 for similar register.

Address 0xBCn046B8

Access CPRC Read/ Write

Bit Position 31 16 15 0

Field Name Interrupt Mask Bits [63:48] OR IRQ0 Interrupt Mask Bits [47:32] OR IRQ1

Table 134 Interrupt_Mask1 Register (for Mask Events [31:16] and [15:0])

Register Name Purpose Address

Interrupt_Mask1 Same as Interrupt_Mask0, except it masks events [31:16] for
IRQ2 and events [15:0] for IRQ3.

0xBCn046BC

For More Information On This Product,

 Go to: www.freescale.com

442 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET_Event Register (CP Event and Interrupt Function)

Purpose Collects together SONET event bits from the SDPs.

For all the _DELTA fields only, a 1 indicates a change in that bit’s state
since it was last cleared. For the bit’s status, see SDP_Mode2 register bits
[31:22]. For the current values in the SONET Overhead data received, see
registers starting at Rx_SONETOH0 to Rx_SONETOH31 in Appendix C.

Address 0xBCn046C0

Access CPRC Read, CRC Write 1 bit to clear.

Bit Position 31 0

Field Name SONET_EVENT

Field Name Bit Position Description

LOS_DELTA 31 Loss of Signal State Changed — LOS occurs when
all-zeros are detected: 2.3µs for OC-3c, or 4.6µs for OC-12.
LOS clears when the FRAMELOSS bit in the control/status
register (ireg14) in RxBit programmable processor is cleared.

LOF_DELTA* 30 Loss of Framing State Changed — Out of frame for 3ms.
Turned off with framing achieved for 1-3 ms. (A1, A2). This
bit is controlled through the rxBit processor within the SDP.
rxBit microcode must set or clear the FRAMELOSS bit in the
control/status register (ireg14) indicating whether it has
achieved or lost SONET frame synchronization (SEF). The
SONET block then times out this condition for 3ms
(24frames) before setting the LOF bit. Requires 24 frames to
clear LOS.

AIS_L_DELTA 29 Line Alarm Indication Signal State Changed — Five
frames worth of Line AIS-L detected in bits 6, 7, and 8 of K2
byte. Bits 6, 7, and 8 must be all ones (111). Requires 5
frames to clear AIS_L.

REI_L 28 Line Remote Error Indicator — Far end B2 errors which
were accumulated on the frame. This bit indicates that 1 or
more B2 parity errors were detected by the far end on the
frame this port transmitted.

RDI_L_DELTA 27 Line Remote Defect Indicator State Changed — Ten
frames worth of Line RDI_L detected in bits 6, 7, and 8 of K2
byte. Bits 6, 7 must be ones and bit 8 must be zero (110).
Requires 10 frames to clear RDI_L.

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 443

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

LOP_P_DELTA 26 Loss Of Pointer at Path State Changed — LOP is declared
when ten frames of invalid pointers of NDF enabled
indications are observed. LOP is removed when the same
valid pointer with normal NDF is detected for three
consecutive frames. Exit defect when 3 good pointers
received.

AIS_P_DELTA 25 Path Alarm Indication Signal State Changed — The
AIS-P signal is detected when the H1 and H2 bytes for the
first STS-1 path contains an all-ones pattern in three
consecutive frames. Exit defect when 3 good pointers
received.

REI_P 24 Path Remote Error Indicator — Path is detected by
extracting the 4bit Remote Error Indication field from the
path status byte (G1). This bit indicates that 1 or more B3
parity errors were detected by the far end on the frame this
port transmitted.

RDI_P_DELTA 23 Path Remote Defect Indicator State Changed — The
RDI-P is detected by extracting bit 5 of the path status byte
(G1). Path RDI is declared when the values 2, 5, or 6 are
detected for ten consecutive frames.

LCD_P_DELTA 22 Loss of Cell (or Packet) Delineation State Changed —
This bit is controlled through the rxSync processor within
the SDP. rxSync microcode must set or clear the DELINLOSS
bit in the control/status register (ireg14) indicating whether
it has achieved or lost cell or frame delineation.

APS_ERROR 21 APS Inconsistency Error — In previous 12 frames, there
were no three consecutive frames that had the same value
for K1 or K2.

B1_ERROR 20 B1 Section Parity Error — Indicates that 1 or more B1
parity errors were detected on the incoming frame.

B2_ERROR 19 B2 Line Parity Error — Indicates that 1 or more B2 parity
errors were detected on the incoming frame.

Z2_1_DELTA 18 Z2-1 Value Changed — Z2-1 growth byte value has
changed.

Z2_0_DELTA 17 Z2-0 Value Changed — Z2-0 growth byte value has
changed.

Z1_2_DELTA 16 Z1-1 Value Changed — Z1-1 growth byte value has
changed.

Z1_1_DELTA 15 Z1-0 Value Changed — Z1-0 growth byte value has
changed.

S1_DELTA 14 S1 Value Changed — S1 value has changed.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

444 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

APS_DELTA 13 APS Value Changed — K1 or K2 value has changed and
received 3 new values in a row.

J0_DELTA 12 J0 Value Changed — J0 value has changed.

B3_ERROR 11 B3 Path Parity Error — Indicates that 1 or more B3 parity
errors were detected on the incoming frame.

PTR_JUST_EVENT 10 Pointer Justification Event — Pointer has incremented or
decremented.

NDF 9 New Data Flag in Pointer — The most significant nibble of
H1 determines this flag. If the nibble is set to 6, the SONET
pointer is processed normally. If the nibble is set to 9, the
pointer is set to the contents of the pointer field in H1 and
the following H2. This bit indicates a NDF detection in the
pointer.

C2_ERROR 8 Path Payload Label Mismatch or Unequipped — The
PLM-P is provided when a change in the value of C2 has
been detected for five consecutive frames. Software
compares with previous payload label.

J1_AVAIL 7 Receive J1 Available — J1 is available to be read for the
current frame. Cleared upon read.

Z5_DELTA 6 Z5 Value Changed — The value of Z5 has changed.

Z4_DELTA 5 Z4 Value Changed — The value of Z4 has changed.

Z3_DELTA 4 Z3 Value Changed — The value of Z3 has changed.

H4_DELTA 3 H4 Value Changed — The value of H4 has changed.

TX_OH_COMPLETE 2 Transmit Overhead Complete — The transmit overhead
has been transmitted for the current frame. Software can
use this as an indicator for when to write new transmit
overhead data to the transmit SONET registers.

RX_POH_AVAIL 1 Receive Path Overhead Available — The path overhead
for the current frame has been received and written to the
receive SONET registers.

RX_TOH_AVAIL 0 Receive Transport Overhead Available — The section
and line overhead for the current frame has been received
and written to the receive SONET registers.

* The LOS indication requires the transmit logic enabled and the SONET clock set to the correct frequency.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Channel Processor (CP) Configuration Registers 445

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET_Mask Register (CP Event and Interrupt Function)

Purpose Provides mask that selects bits in the SONET_Event register for event
access. See bit field definitions in SONET_Event register.

When SONET_Event register logical AND SONET_Mask register results in
any bit=1, then the CP Event0 register SONETOH Event field bit [50]=1.

Address 0xBCn046C4

Access CPRC Read/ Write

Bit Position 31 0

Field Name SONET_MASK

For More Information On This Product,

 Go to: www.freescale.com

446 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Executive Processor
(XP) Configuration
Registers

Configuration Space in the XP is an area that contains a number of registers. The XPRC
uses these registers to communicate with the SDP and the bus controllers (Payload Bus
and Global Bus). The XP’s registers can also be accessed by other components of the C-5
NP (all CPs).

XPSlot 24 Configuration
Registers

The following is a list of each XP Slot 24 register along with its address, function, and
reference to its detailed parameters. The detailed parameters provide, purpose, field
name, bit position, and descriptions. Refer to Table 135 on page 447.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 447

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 135 XP Registers

Address Register Name Function
Detailed
Parameters

0xBD808000 PCI Device ID PCI Configuration See page 456

0xBD808002 PCI Vendor ID See page 456

0xBD808004 PCI Status See page 456

0xBD808006 PCI Command See page 458

0xBD808008 PCI Class Code See page 459

0xBD80800B PCI Revision ID See page 460

0xBD80800D PCI Header Type See page 460

0xBD80800E PCI Latency Timer See page 461

0xBD808010 PCI Inbound Memory Base
Address0

See page 461

0xBD808014 PCI Inbound Memory Base
Address1

See page 462

0xBD80802C PCI Subsystem ID (Read Only) See page 463

0xBD80802E PCI Subsystem Vendor ID (Read
Only)

See page 463

0xBD80803E PCI Interrupt Pin See page 463

0xBD80803F PCI Interrupt Line See page 463

0xBD808040 PCI Inbound BAR0 Translation See page 464

0xBD808044 PCI Inbound BAR1 Translation See page 464

0xBD808048 PCI Auxiliary Control See page 465

0xBD80804C PCI Subsystem ID (Read/Write) See page 465

0xBD80804E PCI Subsystem Vendor ID
(Read/Write)

See page 466

0xBD808050 PCI Inbound Byte Swap Control See page 466

0xBD808100 Serial Bus Configuration XP Miscellaneous
Control

See page 467

0xBD808104 Serial Bus Data See page 468

0xBD808108 XP to CP Interrupt Request See page 469

0xBD80810C Software Warm Reset Request See page 470

For More Information On This Product,

 Go to: www.freescale.com

448 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD808200 Outbound PCI Base Address0 XP Configuration See page 471

0xBD808204 Outbound PCI Base Address1

0xBD808208 Outbound PCI Base Address2

0xBD80820C Outbound PCI Base Address3

0xBD808210 Outbound PCI Base Address4

0xBD808214 Outbound PCI Base Address5

0xBD808218 Outbound PCI Base Address6

0xBD80821C Outbound PCI Base Address7

0xBD808220 Outbound BAR0 Translation See page 472

0xBD808224 Outbound BAR1 Translation

0xBD808228 Outbound BAR2 Translation

0xBD80822C Outbound BAR3 Translation

0xBD808230 Outbound BAR4 Translation

0xBD808234 Outbound BAR5 Translation

0xBD808238 Outbound BAR6 Translation

0xBD80823C Outbound BAR7 Translation

0xBD808240 DMA Transmit Channel0 PCI
Target

See page 473

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 449

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD808244 DMA Transmit Channel1 PCI
Target

XP Configuration
(continued)

See Table 139 on
page 474

0xBD808248 DMA Receive Channel0 PCI
Target

See page 474.

0xBD80824C DMA Receive Channel0 PCI
Target Count

See page 474

0xBD808250 DMA Receive Channel1 PCI
Target

See Table 140 on
page 474

0xBD808254 DMA Receive Channel1 PCI
Target Count

See Table 141 on
page 475

0xBD808258 XP Miscellaneous Control See page 476.

0xBD80825C XP Auxiliary Event See page 477

0xBD808260 Inbound PCI Mailbox0 See page 478

0xBD808264 Inbound PCI Mailbox1

0xBD808268 Inbound PCI Mailbox2

0xBD80826C Inbound PCI Mailbox3

0xBD808270 Inbound PCI Mailbox4

0xBD808274 Inbound PCI Mailbox5

0xBD808278 Inbound PCI Mailbox6

0xBD80827C Inbound PCI Mailbox7

0xBD808280 IMEM Overlay Target Address See page 479

0xBD808284 RxCB #25 Transfer Count See page 479

0xBD808288 XP Diagnostic See page 480

0xBD80828C PCI Outbound Byte Swap Control See page 480

0xBD808300 Debug Counter0 Start Value XP Configuration
(continued)

See page 481

0xBD808304 Debug Counter1 Start Value See Table 144 on
page 484

0xBD808308 Debug Counter2 Start Value

0xBD80830C Debug Counter3 Start Value

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

450 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD808340 Debug Counter0 Control XP Configuration
(continued)

See page 483

0xBD808344 Debug Counter1 Control See Table 144 on
page 484

0xBD808348 Debug Counter2 Control

0xBD80834C Debug Counter3 Control

0xBD808380 Debug Counter0 Current Value XP Configuration
(continued)

See page 485

0xBD808384 Debug Counter1 Current Value See Table 145 on
page 485

0xBD808388 Debug Counter2 Current Value

0xBD80838C Debug Counter3 Current Value

0xBD804080 RxCB0_Sys_Addr XP DMEM#24
Transfer RxControl
Block0
These register are
used to set up a
DMA transaction
from the PCI bus to
SDRAM via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

 See “CP Registers” on
page 378

0xBD804084 RxCB0_Ctl

0xBD804088 RxCB0_DMA_Addr

0xBD80408C RxCB0_SDP_Addr

0xBD804090 RxCtl0_Status XP DMEM#24
Transfer RxControl
Block0 (continued)

See page 486

0xBD804180 TxCB0_Sys_Addr XP DMEM#24
Transfer TxControl
Block0 (continued)
These registers are
used to set up a
DMA transaction
from the SDRAM to
the PCI bus via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378 and page 486

0xBD804184 TxCB0_Ctl

0xBD804188 TxCB0_DMA_Addr

0xBD80418C TxCB0_SDP_Addr

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 451

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD804190 TxCtl0_Status XP DMEM#24
Transfer TxConttrol
Block0 (continued)

See page 487

0xBD804280 RxCB1_Sys_Addr XP DMEM#24
Transfer RxControl
Block1
These register are
used to set up a
DMA transaction
from the PCI bus to
SDRAM via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378

0xBD804284 RxCB1_Ctl

0xBD804288 RxCB1_DMA_Addr

0xBD80428C RxCB1_SDP_Addr

0xBD804290 RxCtl1_Status XP DMEM#24
Transfer RxControl
Block1 (continued)

See Table 146 on
page 486

0xBD804380 TxCB1_Sys_Addr XP DMEM#24
Transfer TxControl
Block1 (continued)
These registers are
used to set up a
DMA transaction
from the SDRAM to
the PCI bus via
DMEM#24. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378 and Table 147
on page 4870xBD804384 TxCB1_Ctl

0xBD804388 TxCB1_DMA_Addr

0xBD80438C TxCB1_SDP_Addr

0xBD804390 TxCB1_Status XP DMEM#24
Transfer TxControl
Block1 (continued)

See Table 148 on
page 487

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

452 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD804400 WrCB0_Sys_Addr XP DMEM#24
Transfer WrControl
Block0 (continued)
These register are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 378

0xBD804404 WrCB0_Ctl

0xBD804408 WrCB0_DMA_Addr

0xBD804410 WrCB1_Sys_Addr XP DMEM#24
Transfer WrControl
Block1 (continued)
These register are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 378

0xBD804414 WrCB1_Ctl

0xBD804418 WrCB1_DMA_Addr

0xBD804420 RdCB0_Sys_Addr XP DMEM#24
Transfer RdControl
Block0 (continued)

See “CP Registers” on
page 378

0xBD804424 RdCB0_Ctl

0xBD804428 RdCB0_DMA_Addr

0xBD804430 RdCB1_Sys_Addr XP DMEM#24
Transfer RdControl
Block1 (continued)

See “CP Registers” on
page 378

0xBD804434 RdCB1_Ctl

0xBD804438 RdCB1_DMA_Addr

0xBD804440
to
0xBD8044E4

XP Ring Bus Control
Configuration Registers

These registers are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 378

0xBD804640 XP_Mode XP Mode
Configuration

See page 488

0xBD804658 Debug_Mode See page 490

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 453

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD804660 Queue_Status0 Queue Status
These register are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 378

0xBD804664 Queue_Status1

0xBD804668 Queue_Status2

0xBD80466C Queue_Status3

0xBD804670 Queue_Update0

0xBD804674 Queue_Update1

0xBD804678 Queue_Update2

0xBD80467C Queue_Update3

0xBD804684 Event_Timer Miscellaneous
Control
These register are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 378

0xBD804688 Cycle_Counter_H

0xBD80468C Cycle_Counter_L

0xBD8046A0 Event0 Event and Interrupt
Control

See page 492

0xBD8046A4 Event1 See page 493

0xBD8046A8 Event_Mask0 Event and Interrupt
Control
(continued)
These register are
identical to their
counterparts in the
CP except their
addresses are
different.

See “CP Registers” on
page 378

0xBD8046AC Event_Mask1

0xBD8046B0 Event_Access

0xBD8046B4 Mask_Access

0xBD8046B8 Interrupt_Mask0

0xBD8046BC Interrupt_Mask1

0xBD804880 RxCB0_Sys_Addr XP DMEM#25
Transfer RxControl
Block0 (continued)
Theses registers are
used to initialize
SDRAM. The fields
of these registers
are identical to
their counterparts
in the CP.

 See “CP Registers” on
page 378

0xBD804884 RxCB0_Ctl

0xBD804888 RxCB0_DMA_Addr

0xBD80488C RxCB0_SDP_Addr

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

454 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD804890 RxCtl0_Status XP DMEM#25
Transfer RxControl
Block0 (continued)

See page 496

0xBD804980 TxCB0_Sys_Addr XP DMEM#25
Transfer TxControl
Block0 (continued)
These register are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378

0xBD804984 TxCB0_Ctl

0xBD804988 TxCB0_DMA_Addr

0xBD80498C TxCB0_SDP_Addr

0xBD804990 TxCtl0_Status XP DMEM#25
Transfer Control
Block0 (continued)

See page 497

0xBD804A80 RxCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)
Theses registers are
used to initialize
SDRAM. The fields
of these registers
are identical to
their counterparts
in the CP.

See “CP Registers” on
page 378

0xBD804284 RxCB1_Ctl

0xBD804A88 RxCB1_DMA_Addr

0xBD804A8C RxCB1_SDP_Addr

0xBD80A290 RxCB1_Status XP DMEM#25
Transfer Control
Block1 (continued)

See page 496

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 455

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBD804B80 TxCB1_Sys_Addr XP DMEM#25
Transfer TxControl
Block1 (continued)
These register are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378

0xBD804B84 TxCB1_Ctl

0xBD804B88 TxCB1_DMA_Addr XP DMEM#25
Transfer TxControl
Block1 (continued)
These register are
used to set up a
DMA transaction
from the SDRAM to
the XP’s IMEM. The
fields of these
registers are
identical to their
counterparts in the
CP.

See “CP Registers” on
page 378

0xBD804B8C TxCB1_SDP_Addr

0xBD804B90 TxCB1_Status XP DMEM#25
Transfer Control
Block1 (continued)

See page 497

0xBD804C00 WrCB0_Sys_Addr XP DMEM#25
Transfer Control
Block0 (continued)
These register are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 378

0xBD804C04 WrCB0_Ctl

0xBD804C08 WrCB0_DMA_Addr

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

456 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Detailed Descriptions The following is a detailed description of each of the XPSlot 24 registers and their
individual parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions.

PCI Device ID Register (XP PCI Configuration Function)

PCI Vendor ID Register (XP PCI Configuration Function)

PCI Status Register (XP PCI Configuration Function)

0xBD804C10 WrCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)
These register are
identical to their
counterparts in the
CP except their
addresses are
different

See “CP Registers” on
page 378

0xBD804C14 WrCB1_Ctl

0xBD804C18 WrCB1_DMA_Addr

0xBD804C20 RdCB0_Sys_Addr XP
DMEM#25Transfer
Control Block0
(continued)

See “CP Registers” on
page 378

0xBD804C24 RdCB0_Ctl

0xBD804C28 RdCB0_DMA_Addr

0xBD804C30 RdCB1_Sys_Addr XP DMEM#25
Transfer Control
Block1 (continued)

See “CP Registers” on
page 378

0xBD804C34 RdCB1_Ctl

0xBD804C38 RdCB1_DMA_Addr

Table 135 XP Registers (continued)

Address Register Name Function
Detailed
Parameters

Purpose Uniquely Identifies the Device.

Address 0xBD808000

Access Read only

Purpose Uniquely Identifies the Device Vendor.

Address 0xBD808002

Access Read only

Purpose Captures Status Information for PCI bus related events.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 457

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Address 0xBD808004

Access Read/Write, write 1 to clear

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 0

Field Name DPE SSE RMA RTA STA DEVSEL DPE FBC UDF 66M NCP Rsvd

Reset Value 0 0 0 0 0 01 0 1 0 1 0 0000

Field Name Bit Position Description

DPE 15 Detected Parity Error — This bit is set by the device whenever it
detects a parity error, even if parity error handling is disabled (as
controlled by bit 6 in the Command Register).

SSE 14 Signaled System Error — This bit is set whenever the device
asserts SERR#.

RMA 13 Received Master Abort — This bit is set by the master whenever
its transaction is terminated with a Master Abort.

RTA 12 Received Target Abort — This bit is set by the master whenever
its transaction is terminated with a Target Abort.

STA 11 Signaled Target Abort — This bit is set by the target whenever it
terminates a transaction wit a Target Abort.

DEVSEL 10:9 DEVSEL Timing — These two read-only bits are hardwired to
“01” indicating the medium DEVSEL response time of this device.

DPE 8 Data Parity Error Detected — This bit is set when three
conditions are met: 1) this device asserted PERR# itself or
observed PERR# asserted; 2) this devices was acting as the bus
master for the operation in which the error occurred; 3) the Parity
Error Response bit (Command Register) is set.

FBC 7 Fast Back-to-Back Capable — This read-only bit is hardwired to
1 indicating that this device is capable of performing fast
back-to-back transactions.

UDF 6 UDF Supported — This read-only bit is hardwired to 0 indicating
that User Definable Features is not supported.

66M 5 66MHz Capable — This read-only bit is hardwired to 1 indicating
that this device is capable of 66MHz operation.

NCP 4 New Capabilities Pointer Support — This read-only bit is
hardwired to 0 indicating that there are no new capabilities
pointers supported in the configuration register space.

Reserved 3:0 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

458 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Command Register (XP PCI Configuration Function)

Purpose Provides control over the device’s ability to generate and respond to PCI
transactions.

Address 0xBD808006

Access Read/Write

Bit Position 15 10 9 8 7 6 5 4 3 2 1 0

Field Name Rsvd FB2B SERR WAIT PERR Rsvd MWI SPC MST MEM IO

Reset Value 000000 0 0 0 0 0 0 0 0 0 0

Field Name Bit Position Description

Reserved 15:10 Read as zero.

FB2B 9 Fast Back-to-Back — When the bit is 0, the PCI Master will
generate no fast back-to-back transactions. When the bit is 1, the
PCI Master will generate fast back-to-back transactions
whenever possible.

SERR 8 System Error — When the bit is 0, the System Error indication is
masked off. When the bit is 1, all System Errors will be reported.

WAIT 7 Wait — This bit is used to control whether or not a device does
address/data stepping. This device never does address/data
stepping, therefore this bit is hardwired to 0 and is read-only.

PERR 6 Parity Error — This bit controls the device’s response to parity
errors. When the bit is set to 1, the device will take its normal
action when a parity error is detected. When the bit is 0, all parity
errors are ignored.

Reserved 5 Read as zero.

MWI 4 Memory Write and Invalidate — This is an enable bit for using
the Memory Write and Invalidate command. This device will
never generate a MWI command, therefore this bit is hardwired
to 0 and is read-only.

SPC 3 Special Cycles — This device always ignores special cycles,
therefore this bit is hardwired to 0 and is read-only.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 459

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Class Code Register (XP PCI Configuration Function)

MST 2 PCI Master — This bit controls the device’s ability to act as a
master on the PCI bus. When the bit is 0, it disables the device
from generating PCI accesses. When the bit is 1, it allows the
device to behave as a bus master.

MEM 1 Memory Space — This bit controls the device’s response to
Memory Space accesses. When the bit is 0, it disables the device’s
response. When the bit is 1, it allows the device to respond to
Memory Space accesses

IO 0 Input/Output Mapping — This device requires no I/O spacing
mappings, therefore this bit is hardwired to 0 and is read-only.

Purpose Identifies the generic function of the device.

Address 0xBD808008

Reset Value 0xFF0000

Access Read only

Bit Position 31 24 23 16 15 8

Field Name BCC SCC RLPI

Reset Value 0xFF 0x00 0x00

Field Name Bit Position Description

BCC 31:24 Base Class Code — Hardwired to FFh indicating that the device
does not fit in any of the PCI pre-defined classes.

SCC 23:16 Sub-Class Code — Hardwired to 00h. This field has no real
meaning since the device has a base class code of FFh.

RLPI 15:8 Register-Level Programming Interface — Hardwired to 00h.
This field has no real meaning since the device has a base class
code of FFh

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

460 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Revision ID Register (XP PCI Configuration Function)

PCI Header Type Register (XP PCI Configuration Function)

Purpose Provides a device specific revision identifier.

Address 0xBD80800B

Reset Value See Table 136.

Access Read only

Bit Position 7 0

Field Name Revision

Reset Value 0x40

Field Name Bit Position Description

Revision 7:0 Revision — Indicates the revision level of the device.

Table 136 PCI Revision ID Register Reset Values

Revision Reset Value

A0 (1.0) 0x10

A1 (1.0.1) 0x11

A2 (1.0.2) 0x12

B0 (1.1) 0x20

C0 (1.2) 0x30

D0 (1.3) 0x40

Purpose Identifies the PCI Configuration Register layout.

Address 0xBD80800D

Reset Value 0x00

Access Read only

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 461

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Latency Timer Register (XP PCI Configuration Function)

PCI Inbound Memory Base Address Register0 (XP PCI Configuration
Function)

Purpose Limits the master’s tenure on the bus in the presence of other bus
access requests.

Address 0xBD80800E

Reset Value 0x00

Access Read/Write

Bit Position 7 3 2 0

Field Name LAT Rsvd

Reset Value 00000 000

Field Name Bit Position Description

LAT 7:4 Latency Timer Value — The high order 5bits of an 8bit latency
timer counting the number of PCI clock cycles that the master has
tenure on the PCI bus.

Reserved 2:0 Read as zero.

Purpose Provides the Base Address for a 1Mbyte window into C-5 NP Address
Space.

Address 0xBD808010

Reset Value 0x0008

Access Read/Write

Bit Position 31 20 19 4 3 2 1 0

Field Name BA Rsvd PREF TYPE IO/M

Reset Value 0x000 0x0_000 1 00 0

Field Name Bit Position Description

BA 31:20 Base Address — Provides the top 12bits of a 1MByte aligned
address used for decoding and to identify PCI bus transactions for
which this device is to act as a target.

Reserved 19:4 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

462 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Inbound Memory Base Address Register1 (XP PCI Configuration
Function)

PREF 3 Prefetchable — This read-only bit is hardwired to 1 indicating
that there are no side effects on reads. The device returns all bytes
on reads regardless of byte enables, and host bridges can merge
processor writes into this range without causing errors.

TYPE 2:1 Address Type — These read-only bits are hardwired to 00
indicating that the base address can be set to locate this window
anywhere in the 32bit PCI address space.

IO/M 0 I/O or Memory Indicator — This read-only bit is hardwired to 0
to indicate that this register is a memory space base address
register.

Purpose Provides the Base Address for a 1Mbyte window into C-5 NP Address
Space.

Address 0xBD808014

Reset Value 0x0008

Access Read/Write

Bit Position 31 20 19 4 3 2 1 0

Field Name BA Rsvd PREF TYPE IO/M

Reset Value 0x000 0x0_000 1 00 0

Field Name Bit Position Description

BA 31:20 Base Address — Provides the top 12bits of a 1Mbyte aligned
address used for decoding, and to identify PCI bus transactions
for which this device is to act as a target.

Reserved 19:4 Read as zero.

PREF 3 Prefetchable — This read-only bit is hardwired to 1 indicating
that there are no side effects on reads. The device returns all bytes
on reads regardless of byte enables, and host bridges can merge
processor writes into this range without causing errors.

TYPE 2:1 Address Type — These read-only bits are hardwired to 00
indicating that the base address can be set to locate this window
anywhere in the 32bit PCI address space.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 463

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function)

PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration
Function)

PCI Interrupt Pin Register (XP PCI Configuration Function)

PCI Interrupt Line Register (XP PCI Configuration Function)

IO/M 0 I/O or Memory Indicator — This read-only bit is hardwired to 0
to indicate that this register is a memory space base address
register.

Purpose Used to uniquely identify the subsystem where the PCI device resides.

Address 0xBD80802C

Reset Value 0x0000

Access Read only

Purpose Used to uniquely identify the vendor of the subsystem where the PCI
device resides.

Address 0xBD80802E

Reset Value 0x0000

Access Read only

Purpose Indicates that interrupt pin INTA# is the one being used.

Address 0xBD80803E

Reset Value 0x01

Access Read/Write

Purpose Used to communicate interrupt line routing information.

Address 0xBD80803F

Reset Value 0x00

Access Read/Write

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

464 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Inbound BAR0 Translation Register (XP PCI Configuration Function)

PCI Inbound BAR1 Translation Register (XP PCI Configuration Function)

Purpose Provides Address Translation and Control for the PCI Inbound Memory
Base Address Register 0 [Address: 10-13h].

Address 0xBD808040

Reset Value 0xA000

Access Read/Write

Bit Position 31 29 28 20 19 0

Field Name 101 TRANS Rsvd

Reset Value 101 0_0000_0000 0000_0000_0000_0000_0000

Field Name Bit Position Description

101 31:29 “101” Translation Address — Bits 31 through 29 of the
transaction address are always translated to 101. This limits the
translated address to the range of 0xA0000000 to 0xBFFFFFFF.

TRANS 28:20 Translation Address — Provides the replacement values for
bits 28 through 20 of the transaction address to translate it to a
different 1MByte window in C-5 NP Address Space.

Reserved 19:0 Read as zero.

Purpose Provides Address Translation and Control for the PCI Inbound Memory
Base Address Register 1 [Address: 14-17h].

Address 0xBD808044

Reset Value 0xA000

Access Read/Write

Bit Position 31 29 28 20 19 0

Field Name 101 TRANS Rsvd

Reset Value 101 0_0000_0000 0000_0000_0000_0000_0000

Field Name Bit Position Description

101 31:29 “101” Translation Address — Bits 31 through 29 of the
transaction address are always translated to 101. This limits the
translated address to the range of 0xA0000000 to 0xBFFFFFFF.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 465

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 PCI Auxiliary Control Register (XP PCI Configuration Function)

PCI Subsystem ID Register (XP PCI Configuration Function)

TRANS 28:20 Translation Address — Provides the replacement values for bits
28 through 20 of the transaction address to translate it to a
different 1MByte window in C-5 NP Address Space.

Reserved 19:0 Read as zero.

Purpose Provides Control for Miscellaneous Functions within the PCI interface.

Address 0xBD808048

Reset Value 0x00

Access Read/Write

Bit Position 31 3 2 1 0

Field Name Rsvd P2S MA2S TA2S

Reset Value 0000_0000_0000 0 0 0

Field Name Bit Position Description

Reserved 31:3 Read as zero.

P2S 2 Map Parity Errors to SERR# — When the bit is 1, any PCI parity
error that is detected and reported will result in the device
signaling SERR#.

MA2S 1 Map Master Abort to SERR# — When the bit is 1, whenever the
master has a transaction terminated by a Master Abort, the device
will signal SERR#.

TA2S 0 Map Target Abort to SERR# — When the bit is 1, whenever the
master has a transaction terminated by a Target Abort the device
will signal SERR#.

Purpose Writable image of the PCI Subsystem ID.

Address 0xBD80804C

Reset Value 0x0000

Access Read/Write

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

466 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Subsystem Vendor ID Register (XP PCI Configuration Function)

PCI Inbound Byte Swap Control Register (XP PCI Configuration Function)

Purpose Writable image of the PCI Subsystem Vendor ID.

Address 0xBD80804E

Reset Value 0x0000

Access Read/Write

Purpose Provides control of the byte swapping feature for inbound transactions.

Address 0xBD808050

Reset Value 0x0000

Access Read/Write

Bit Position 31 2 1 0

Field Name Rsvd SWAP1 SWAP0

Reset Value 0000_0000_0000_0000_0000_0000_0000_00 0 0

Field Name Bit Position Description

Reserved 31:2 Read as zero.

SWAP1 1 BAR1 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address 1 register.

SWAP0 0 BAR0 Byte Swap Enable — When this bit is set to a 1, byte
swapping occurs as data passes through the PCI interface for any
transaction decoded by PCI Inbound Base Address 1 register.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 467

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Serial Bus Configuration Register (XP Miscellaneous Control Function)

Purpose Sets the configuration of the Serial Bus.

Address 0xBD808100

Reset Value 0x000001F4

Access Read/Write

Bit Position 31 13 12 11 10 9 8 0

Field Name Reserved MDIO_Cycles EN PROTOCOL PRE_SUPP CLKDIV

Reset Value 0 0 0 0 0 1_1111_0100

Field Name Bit Position Description

Reserved 31:13 Read as zero.

MDIO_Cycles 12 MDIO Turn Around Cycles — When deasserted, which is the
default, enables one turnaround cycle. When asserted, enables
two turnaround cycles on reads.

EN 11 Serial Bus Enable — This is an enable control bit for the serial
bus. When the bit is 1, the bus is enabled.

PROTOCOL 10 Protocol Select — Determines which of 2 possible protocols will
be followed by the C-5 NP on the serial bus. A value of 0 selects
the MDIO protocol and a value of 1 selects the low-speed serial
bus protocol.

PRE_SUPP 9 MDIO Preamble Suppression — When this bit is 1, the 32bit
preamble pattern will be skipped during MDIO transfers.

CLKDIV 8:0 Core Clock Divider — With the value N programmed into this
9bit field, the C-5 NP core clock will be divided by a factor of 4xN
to form the Serial bus clock. The default value of “500” causes the
166 MHz core clock to be divided by 4*500, generating a 83kHz
Serial bus clock.
Note: That when this CLKDIV field equals 0, the divider will be 512,
resulting in a factor of 4*512=2048.

For More Information On This Product,

 Go to: www.freescale.com

468 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Serial Bus Data Register (XP Miscellaneous Control Function)

Purpose Specifies the address, data, and write/read of a serial bus transfer. A
transfer will be initiated when the REQ bit gets set.

Address 0xBD808104

Reset Value 0x00000000

Access Read/Write

Bit Position 31 30 29 28 27 18 17 16 15 0

Field Name REQ Rsvd WR ADDR AACK DACK DATA

Reset Value 0 00 0 00_0000_0000 0 0 0000_0000_0000_0000

Field Name Bit Position Description

REQ 31 Request — Indicates that a serial bus transfer is pending.
Software should set this bit to a 1 to begin a serial bus transfer.
When the REQ bit is set, the transfer will be performed using the
values of WR and ADDR in this register, and using the
configuration from the Serial Bus Configuration Register. The REQ
bit will remain a 1 until the transfer is done (also indicated by the
SB_TRANSFER_DONE bit in XP EVENT0), after which it is cleared by
the hardware. Writes to the serial bus data register are delayed
until the serial bus is idle (and the REQ bit is deasserted). It is
acceptable to set the REQ bit with the same register access that
sets up the proper values of WR, ADDR, and DATA fields.

Reserved 30:29 Read as zero.

WR 28 Write — Specifies whether the serial bus transfer is a write or a
read: 1 = write, 0 = read.

ADDR 27:18 Address — Specifies the address of the serial bus transfer. In
MDIO mode, bits [27:23] act as the PHY address, and bits [22:18]
act as the register address. In low-speed serial bus mode, bits
[24:18] make up the 7bit address (bits [27:25] are unused).

AACK 17 Address Acknowledge — This bit indicates the address
acknowledge value captured on the serial bus. It is read-only (and
is not affected by writes to this register) and applies only to the
low-speed serial bus mode. When the bit is a 1, the previously
attempted access failed due to a missing address
acknowledgement.

DACK 16 Data Acknowledge — This bit indicates the data acknowledge
value captured on the serial bus. It is read-only (and is not
affected by writes to this register) and applies only to low-speed
serial bus mode. When the bit is a 1, the previously attempted
access failed due to a missing data acknowledgement.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 469

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP to CP Interrupt Request Registers (XP Miscellaneous Control Function)

DATA 15:0 Data — For writes to the serial bus, this field indicates the data to
be written. For reads from the serial bus, this field contains the
data that was read from the bus. The data is valid once the
transfer is done, as indicated by the deassertion of the REQ bit and
also by the SB_TRANSFER_DONE bit in XP EVENT0.
Note: That bits [15:0] are valid for MDIO mode. For the low-speed
serial bus mode, bits [15:8] are undefined and only bits [7:0] are
valid.

Purpose Initiates Interrupt Requests from the XP to individual CPs

Address 0xBD808108

Reset Value 0x00

Access Write only

Bit Position 31 19 18 17 16 15 0

Field Name Rsvd PCI_IRQ Rsvd XP2CP_IRQ

Reset Value raz raz N/A

Field Name Bit Position Description

Reserved 31:19 Read as zero.

PCI_IRQ 18 PCI Interrupt Request — Provides a way for software to cause a
PCI interrupt. When set to 1, the PCI Interrupt Line will be asserted.

Reserved 17:16 Read as zero.

XP2CP_IRQ 15:0 XP to CP Interrupt Request Vector — When the bit is 1, an
interrupt request is sent to the CP corresponding to the bit
number.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

470 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Software Warm Reset Request Register (XP Miscellaneous Control Function)

Purpose Trigger Reset Sequences for the C-5 NP and the XP.

Address 0xBD80810C

Reset Value 0x00

Access Write only

Bit Position 31 30 29 28 0

Field Name DCPRST XPURST WARM_XPUHOT Rsvd

Reset Value N/A N/A N/A N/A

Field Name Bit Position Description

NPRST 31 NP Warm Reset Request — When the bit is 1, a state machine
is triggered that waits for PCI inbound and outbound activity to
idle, asserts reset to the entire C-5 NP, waits for 128 C-5 NP core
clock cycles, and then deasserts reset.

XPURST 30 XP Warm Reset Request — When the bit is 1, a state machine
is triggered that waits for XP activity to idle, asserts reset to the
XPRC, waits for 128 C-5 NP core clock cycles, and then deasserts
reset.

WARM_XPUHOT 29 Warm XPUHOT — When a C-5 NP warm reset or XP warm reset
is requested (using one of the above bits), this bit specifies
whether the XP will be turned on (XPUHOT=1) or off
(XPUHOT=0) after the warm reset completes. This only applies
to warm resets; on cold resets, the XP will be turned on based
on how the XPUHOT external pin is sampled.

Reserved 28:0 Read as zero

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 471

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Outbound PCI Base Address0 Register (XP Configuration Function)

Purpose Provides the Base Address for a variable size window for the XP into PCI
Space. See Table 137 on page 471 for similar registers.

Address 0xBD808200

Reset Value 0x00

Access Read/Write

Bit Position 31 14 13 0

Field Name BA Rsvd

Reset Value 0000_0000_0000_0000_00 00_0000_0000_0000

Field Name Bit Position Description

BA 31:14 Base Address — Provides the high order address bytes used for
decoding an access by the XP into a window into PCI Space. The
number of bits used in the decode depends on the size
specification for the window.

Reserved 13:0 Read as zero.

Table 137 Outbound PCI Base Addressn Registers (for BAR 1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

Outbound PCI Base Address1 Same as Outbound PCI Base
Address0 Register, except for BAR 1.

0xBD808204

Outbound PCI Base Address2 Same as Outbound PCI Base
Address0 Register, except for BAR 2.

0xBD808208

Outbound PCI Base Address3 Same as Outbound PCI Base
Address0 Register, except for BAR 3.

0xBD80820C

Outbound PCI Base Address4 Same as Outbound PCI Base
Address0 Register, except for BAR 4.

0xBD808210

Outbound PCI Base Address5 Same as Outbound PCI Base
Address0 Register, except for BAR 5.

0xBD808214

Outbound PCI Base Address6 Same as Outbound PCI Base
Address0 Register, except for BAR 6.

0xBD808218

Outbound PCI Base Address7 Same as Outbound PCI Base
Address0 Register, except for BAR 7.

0xBD80821C

For More Information On This Product,

 Go to: www.freescale.com

472 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Outbound BAR0 Translation Register (XP Configuration Function)

Purpose Provides the Translation Address and control for a variable size window
for the XP into the PCI Space. See Table 138 on page 473 for similar
registers.

Address 0xBD808220

Reset Value 0x00

Access Read/Write

Bit Position 31 14 13 4 3 1 0

Field Name TRANS Rsvd SIZE EN

Reset Value 0000_0000_0000_0000_00 raz 000 0

Field Name Bit Position Description

TRANS 31:14 Translation Address — Provides the high order address bits to
replace the high order address bits from the original address to
create an address in PCI space. The number of bits replaced
depends on the size specification for the window.

Reserved 13:4 Read as zero

SIZE 3:1 Window Size — Specifies the size of the address region viewed
by the window.
Note: That the base address and the translation address will be
interpreted as being size aligned.

Encoded Value Window Size

000 16 kB

001 32 kB

010 64 kB

011 128 kB

100 256 kB

101 512 kB

110 1 MB

111 2 MB

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 473

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

DMA Transmit Channel0 PCI Target Register (XP Configuration Function)

EN 0 BAR Enable — This bit controls whether or not the corresponding
BAR is used to decode XP accesses to PCI. When the bit is 1, the
corresponding BAR is used in transaction decode. When the bit is
0, the BAR will be ignored.

Table 138 Outbound BARn Translation Registers (for BAR1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

Outbound Bar1 Translation Same as Outbound BAR0 Translation Register,
except for BAR1.

0xBD808224

Outbound Bar2 Translation Same as Outbound BAR0 Translation Register,
except for BAR2.

0xBD808228

Outbound Bar3 Translation Same as Outbound BAR0 Translation Register,
except for BAR3.

0xBD80822C

Outbound Bar4 Translation Same as Outbound BAR0 Translation Register,
except for BAR4.

0xBD808230

Outbound Bar5 Translation Same as Outbound BAR0 Translation Register,
except for BAR5.

0xBD808234

Outbound Bar6 Translation Same as Outbound BAR0 Translation Register,
except for BAR6.

0xBD808238

Outbound Bar7 Translation Same as Outbound BAR0 Translation Register,
except for BAR7.

0xBD80823C

Purpose Provides the PCI Target Address for the DMA Transmit Channel0. See
Table 139 on page 474 for similar registers.

Address 0xBD808240

Reset Value 0x00

Access Read/Write

Bit Position 31 4 3 0

Field Name ADDR Rsvd

Reset Value 0000_000 raz

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

474 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

DMA Receive Channel0 PCI Target Register (XP Configuration Function)

Field Name Bit Position Description

ADDR 31:4 Target Address — Provides a 16Byte aligned PCI address to start
an outbound PCI write of data coming from Transmit Channel0.

Reserved 3:0 Read as zero.

Table 139 DMA Transmit Channel1 PCI Target Register (for Channel1)

Register Name Purpose Address

DMA Transmit Channel1 PCI
Target

Same as DMA Transmit Channel0 PCI Target,
except for channel1.

0xBD808244

Purpose Provides the PCI Target Address for DMA Receive Channel0. See
Table 140 on page 474 for similar registers.

Address 0xBD808248

Reset Value 0x00

Access Read/Write

Bit Position 31 4 3 0

Field Name ADDR Rsvd

Reset Value 0000_000 raz

Field Name Bit Position Description

ADDR 31:4 Target Address — Provides a 16Byte aligned PCI address to start
an outbound PCI read of data going to Receive Channel 0.

Reserved 3:0 Read as zero.

Table 140 DMA Receive Channel1 PCI Target Register (for Channel1)

Register Name Purpose Address

DMA Receive Channel1 PCI
Target

Same as DMA Receive Channel0 PCI Target, except
for channel1.

0xBD808250

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 475

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

DMA Receive Channel0 Transfer Count Register (XP Configuration Function)

Purpose Provides the transfer count for DMA Receive Channel0. See Table 141 on
page 475 for similar register.

Address 0xBD80824C

Reset Value 0x0000

Access Read/Write

Bit Position 31 14 13 0

Field Name Rsvd COUNT

Reset Value raz 00_0000_0000_0000

Field Name Bit Position Description

Reserved 31:14 Read as zero.

COUNT 13:0 Transfer Count — Specifies the number of 4Byte transfers to be
initiated on the PCI Bus when retrieving data for DMA Receive
Channel 0. The transfer count legal range is 1 to 16k. The value of
16k is denoted by a programmed value of 0.

Table 141 DMA Receive Channel1 Transfer Count Register (for Channel1)

Register Name Purpose Address

DMA Receive Channel1
Transfer Count

Same as DMA Receive Channel0 Transfer Count,
except for channel1.

0xBD808254

For More Information On This Product,

 Go to: www.freescale.com

476 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Miscellaneous Control Register (XP Configuration Function)

Purpose Provides control for the PROM and PCI interrupt line.

Address 0xBD808258

Reset Value 0x00

Access Read/Write

Bit Position 31 24 23 22 21 20 19 10 9 8 3 2 0

Field Name Rsvd PCI_IMSK3 PCI_IMSK2 PCI_IMSK1 PCI_IMSK0 Rsvd ZBFP Rsvd PROMCLK

Reset Value 0 0 0 0 0 0 0 raz 000

Field Name Bit Position Description

Reserved 31:24 Read as zero.

PCI_IMSK3 23 PCI Interrupt Mask 3 — When the bit is 1, any interrupt
intended for the XP on IRQ3 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK2 22 PCI Interrupt Mask 2 — When the bit is 1, any interrupt
intended for the XP on IRQ2 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK1 21 PCI Interrupt Mask 1 — When the bit is 1, any interrupt
intended for the XP on IRQ1 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

PCI_IMSK0 20 PCI Interrupt Mask 0 — When the bit is 1, any interrupt
intended for the XP on IRQ0 is redirected to the PCI Interrupt
Line. When the bit is 0, the interrupt is directed to the XP.

Reserved 19:10 Read as zero.

ZBFP 9 Payload Bus Arbiter FP More Slots — When the bit is 1, the FP
is given more slots on the Payload Bus.

Reserved 8:3 Read as zero.

PROMCLK 2:0 PROM Clock Divider — Specifies the clock divider applied to
the core clock to generate the PROM Interface serial clock. The
default is zero which, sets the clock divider to 16. All other
values result in a clock divider that is 2 times the value.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 477

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Auxiliary Event Register (XP Configuration Function)

Purpose Contains flags for CP Interrupts and PCI Mailbox Interrupts.

Address 0xBD80825C

Reset Value 0x00

Access Read/Write, write 1 clear

Bit Position 31 30 29 28 27 26 25 24 23 19 18 17 16 15 0

Field Name R7 R6 R5 R4 R3 R2 R1 R0 Rsvd PCI_INT FPTX_INT FPRX_INT CP_INT

Reset Value 0 0 0 0 0 0 0 0 raz 0 0 0 0000

Field Name Bit Position Description

R7 31 Mailbox Register 7 Status Bit — This bit is set by hardware
when an inbound PCI transaction writes to Inbound PCI Mailbox
Register 7, and is reset by hardware when the XP reads from
Inbound Mailbox Register 7.
This bit can also be reset by software by writing a 1 to the bit
position.

R6 30 Mailbox Register 6 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 6.

R5 29 Mailbox Register 5 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 5.

R4 28 Mailbox Register 4 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 4.

R3 27 Mailbox Register 3 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 3.

R2 26 Mailbox Register 2 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 2.

R1 25 Mailbox Register 1 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 1.

R0 24 Mailbox Register 0 Status Bit — Same as R7 but pertains to
Inbound PCI Mailbox Register 0.

Reserved 23:19 Read as zero.

PCI_INT 18 PCI Interrupt — Indicates that a PCI interrupt is active. (A PCI
interrupt request can be made by setting a bit in the XP To CP
Interrupt Request Register.)

FPtx_INT 17 TxFP Interrupt Status Bits — When read as 1, indicates that
an interrupt request was made by the TxFP unit.

For More Information On This Product,

 Go to: www.freescale.com

478 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Inbound PCI Mailbox0 Register (XP Configuration Function)

FPrx_INT 16 RxFP Interrupt Status Bits — When read as 1, indicates that
an interrupt request was made by the RxFP unit.

CP_INT 15:0 CP Interrupt Status Bits — When read as 1, indicates that an
interrupt request was made by the CP corresponding to the bit
number.

Purpose Inbound PCI mailbox registers. See Table 142 on page 478 for similar
registers.

Address 0xBD808260

Reset Value 0x0000

Access Read/Write

Bit Position 31 0

Field Name Message

Reset Value 00000000_00000000_00000000_00000000

Field Name Bit Position Description

Message 31:0 Mailbox Message

Table 142 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7)

Register Name Purpose Address

Inbound PCI Mailbox1 Same as Inbound PCI Mailbox0
Register, except for mailbox 1.

0xBD808264

Inbound PCI Mailbox2 Same as Inbound PCI Mailbox0
Register, except for mailbox 2.

0xBD808268

Inbound PCI Mailbox3 Same as Inbound PCI Mailbox0
Register, except for mailbox 3.

0xBD80826C

Inbound PCI Mailbox4 Same as Inbound PCI Mailbox0
Register, except for mailbox 4.

0xBD808270

Inbound PCI Mailbox5 Same as Inbound PCI Mailbox0
Register, except for mailbox 5.

0xBD808274

Inbound PCI Mailbox6 Same as Inbound PCI Mailbox0
Register, except for mailbox6.

0xBD808278

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 479

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

IMEM Overlay Target Address Register (XP Configuration Function)

RxCB #25 Transfer Count Register (XP Configuration Function)

Inbound PCI Mailbox7 Same as Inbound PCI Mailbox0
Register, except for mailbox7.

0xBD80827C

Purpose IMEM Overlay Target Address Register.

Address 0xBD808280

Access Read/Write

Table 142 Inbound PCI Mailboxn Registers (for Mailbox 1, 2, 3, 4, 5, 6 and 7) (continued)

Register Name Purpose Address

Bit Position 31 30 18 17 15 14 2 1 0

Field Name Rsvd IMEM ADDR0 Rsvd IMEM ADDR1 Rsvd

Reset Value raz 0000_0000_0000_00 raz 0000_0000_0000_00 raz

Field Name Bit Position Description

Reserved 31 Read as zero.

IMEM ADDR0 30:18 IMEM ADDR0 – This is the target address into the IMEM that is
used during transfers driven by DataScope0 of the TxCB#25.

Reserved 17:15 Read as zero.

IMEM ADDR1 14:2 IMEM ADDR1 – This is the target address into the IMEM that is
used during transfers driven by DataScope1 of the TxCB#25.

Reserved 1:0 Read as zero.

Purpose RxCB #25 Transfer Count Register.

Address 0xBD808284

Reset Value 0x0

Access Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0x00000000

For More Information On This Product,

 Go to: www.freescale.com

480 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Diagnostic Register (XP Configuration Function)

PCI Outbound Byte Swap Control Register (XP Configuration Function)

Purpose Retains data through warm reset. Used for diagnostic purposes.

Address 0xBD808288

Reset Value 0x0 (hard reset only; retains data on warm reset)

Access Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0x00000000

Purpose Provides control of the byte swapping feature for outbound
transactions.

Address 0xBD80828C

Reset Value 0x0000

Access Read/Write

Bit Position 31 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Name Rsvd TX1 TX0 RX1 RX0 BAR7 BAR6 BAR4 BAR4 BAR3 BAR2 BAR1 BAR0

Reset Value 0x00000 0 0 0 0 0 0 0 0 0 0 0 0

Field Name Bit Position Description

Reserved 31:12 Read as zero.

TX1 11 TX1 Byte Swap Enable — When set to 1, byte swapping occurs as
data passes through the PCI interface for any transaction
associated with DMA Transmit Channel 1 register.

TX0 10 TX0 Byte Swap Enable — When set to 1, byte swapping occurs as
data passes through the PCI interface for any transaction
associated with DMA Transmit Channel 0 register.

RX1 9 RX1 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
associated with DMA Receive Channel 1 register.

RX0 8 RX0 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
associated with DMA Receive Channel 0 register.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 481

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BAR7 7 BAR7 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 7 register.

BAR6 6 BAR6 Byte Swap Enable — When set to1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 6 register.

BAR5 5 BAR5 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 5 register.

BAR4 4 BAR4 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 4 register.

BAR3 3 BAR3 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 3 register.

BAR2 2 BAR2 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 2 register.

BAR1 1 BAR1 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 1 register.

BAR0 0 BAR0 Byte Swap Enable — When set to 1, byte swapping occurs
as data passes through the PCI interface for any transaction
decoded by PCI Outbound Base Address 0 register.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

482 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Debug Counter0 Start Value Register (XP Configuration Function)

Purpose Provides the start value for the associated 32bit debug event counter.
See Table 143 on page 482 for similar registers.

Note: That following a RESET, this register contains the boot address
read by the XP’s IROM.

Address 0xBD808300

Reset Value 0xBFC00000

Access Read/Write

Bit Position 31 0

Field Name Start Value

Reset Value 0x0000_0000

Table 143 Debug Countern Start Value Registers (for Debug Counter 1, 2 and 3)

Register Name Purpose Address Reset Value

Debug Counter1 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 1.

0xBD808304 0x00000000

Debug Counter2 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 2.

0xBD808308

Debug Counter3 Start Value Same as DebugCounter0
Start Value Register, except
for debug counter 3.

0xBD80830C

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 483

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Debug Counter0 Control Register (XP Configuration Function)

Purpose Provides control for the associated debug counter register. See
Table 144 on page 484 for similar registers.

Address 0xBD808340

Reset Value 0x00008888

Access Read/Write

Bit Position 31 30 20 19 18 17 16 15 12 11 8 7 4 3 0

Field Name DEBUG_EN Rsvd INC_ED LD_ED STRT_ED STP_ED INCSEL LDSEL STRTSEL STPSEL

Reset Value raz 0 0 0 0 1000 1000 1000 1000

Field Name Bit Position Description

DEBUG_EN 31 Debug Enable — When the bit is 1, it enables the debug
counters. When the bit is 0, it disables the debug counters.

Reserved 30:20 Read as zero.

INC_ED 19 Increment Control Edge Detect Enable — When the bit is 1, a
rising edge detect is performed on the signal selected as the
increment signal for the debug counter, providing a one core
clock long pulse for each rising edge appearing on the input
signal. When the bit is 0, the raw signal is used as the increment
signal.

LD_ED 18 Load Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the load signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the load signal.

STRT_ED 17 Start Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the start signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the start signal.

STP_ED 16 Stop Control Edge Detect Enable — When the bit is 1, a rising
edge detect is performed on the signal selected as the stop signal
for the debug counter, providing a one core clock long pulse for
each rising edge appearing on the input signal. When the bit is 0,
the raw signal is used as the stop signal.

For More Information On This Product,

 Go to: www.freescale.com

484 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

INCSEL 15:12 Increment Control Select — Selects the signal to use to control
the increment line for the debug counter as listed below.

LDSEL 11:8 Load Control Select — Selects the signal to use to control the
load line for the debug counter. The selection values are the same
as shown above for INCSEL.

STRTSEL 7v4 Start Control Select — Selects the signal to use to enable the
debug counter for counting. The selection values are the same as
shown above for INCSEL.

STPSEL 3:0 Stop Control Select — Selects the signal to use to disable the
debug counter for counting. The selection values are the same as
shown above for INCSEL.

Table 144 Debug Countern Control Registers (for Debug Counter 1, 2 and 3)

Register Name Purpose Address

Debug Counter1 Control Same as Debug Counter0 Control Register, except for
debug counter 1.

0xBD808344

Debug Counter2 Control Same as Debug Counter0 Control Register, except for
debug counter 2.

0xBD808348

Debug Counter3 Control Same as Debug Counter0 Control Register, except for
debug counter 3.

0xBD80834C

Field Name Bit Position Description

Encoded
Value Control Value

0000 Debug bus 0

0001 Debug bus 1

0010 Debug bus 2

0011 Debug bus 3

0100 Counter0 overflow

0101 Counter1 overflow

0110 Counter2 overflow

0111 Counter3 overflow

1000 0

1001 1

1010 -1111 Reserved

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 485

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Debug Counter0 Current Value Register (XP Configuration Function)

All of the registers that pertain to XP DMEM #24 (0xBD804000 to 0xBD80443C) are
identical to their counterparts in the Channel Processors (CP) except for those (6) registers
documented here. These same (6) registers are also found in the (CP), however, the
registers provide different functions for the XP versus the CP. By changing the use of the
individual bits inside these registers they are capability of providing the different
functions needed in the XP and CPs.

Purpose Provides access to the current value of the associated 32bit debug event
counter. See Table 145 on page 485 for similar registers.

Address 0xBD808380

Reset Value 0x00

Access Read only

Bit Position 31 0

Field Name Current Value

Reset Value 0x0000_0000

Table 145 Debug Countern Current Value Registers (for Debug Counter 1, 2 and 3)

Register Name Purpose Address

Debug Counter1 Current Value Same as Debug Counter0 Current Value Register,
except for counter 1.

0xBD808384

Debug Counter2 Current Value Same as Debug Counter0 Current Value Register,
except for counter 2.

0xBD808388

Debug Counter3 Current Value Same as Debug Counter0 Current Value Register,
except for counter 3.

0xBD80838C

For More Information On This Product,

 Go to: www.freescale.com

486 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)

TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function)

Purpose Semaphores governing PCI DMA receive operation for datascope0. See
Table 146 on page 486 for similar register.

Address 0xBD804090

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, the XP owns receive
datascope 0. When the bit is 0, PCI DMA owns receive
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 146 RxCtl1_Status Register (for Datascope1)

Register Name Purpose Address

RxCtl1_Status Same as RxCtl0_Status, but pertains to datascope1. 0xBD804290

Purpose Controls DMA for payload transmit operation for datascope0. See
Table 147 on page 487 for similar register.

Address 0xBD804184

Reset Value 1x0xxxxxxx000x00xxxxxxxxxxxxxxxxb

Access CPRC Read/Write. Usage is the same as for the CPs with the exception
that when using TxCB0_CTL to perform DMAs on the PCI bus, the
transfer length (TxLength) must be a multiple of four bytes.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 487

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function)

All of the registers that pertain to XP Mode, Queue Status and Event (0xBD804500 to
0xBD8046C0) are identical to their counterparts in the Channel Processors (CP) except for
those (4) registers documented here. These same (4) registers are also found in the (CP),
however, the registers provide different functions for the XP versus the CP. By changing
the use of the individual bits inside these registers they are capability of providing the
different functions needed in the XP and CPs.

Table 147 TxCB1_CTL Register

Register Name Purpose Address Access

TxCB1_CTL Same as TxCB0_CTL, but pertains
to transmit datascope1.

0xBD804384 Same as TxCB0_CTL

Purpose Semaphores governing PCI DMA transmit operation for datascope0.
See Table 148 on page 487 for similar register.

Address 0xBD804190

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, the XP owns transmit
datascope 0. When the bit is 0, PCI DMA owns transmit
datascope 0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 148 TxCtl1_Status Register (for Datascope1)

Register Name Purposes Address

TxCtl1_ Status Same as TxCtl0_Status, but pertains to transmit
datascope1.

0xBD804390

For More Information On This Product,

 Go to: www.freescale.com

488 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP_Mode Register (XP Mode Configuration Function)

Purpose Collects mode and error status bits relevant to general XP configuration.

Address 0xBD804640

Access Upper 16 bits are XP Read/Write, Lower 16 bits are Write 1 to clear, hardware
update, except for QMU rdmbx and QMU wrmbx which are read only.

Bit Position 31 30 29 17 23 22 21 20 19 17 16 15 13 12 11 10 8 7 6 4 3 2 0

Field Name XP
Reset

Wind
Down Rsvd QMU

rdmbx
QMU

wrmbx Rsvd Retry
Global Rsvd NXM PErr

#24
PErr Status

#24
PErr
#25

PErr Status
#25 GErr GErr

Status

Reset Value 1 raz raz 0 0 raz 0 raz 0 000 0 000 0 000

Field Name Bit Position Description

XP Reset 31 XP Reset — When the bit is 0, the XP is held in reset state. To
bring the XP out of reset, this bit must be set to 1 with a PCI
inbound transaction.

WindDown 30 WindDown — When the bit is 1, this bit asserts a global signal
informing all chip functions to wind down as soon as possible,
and leave as much predictable error recovery state around as
possible. This bit is readable, allowing a process to determine
that the global signal was caused by a process setting this bit,
however, the write causes only a single global wind down
request.

Reserved 29:24 Read as zero.

QMU rdmbx 23:22 QMU Read Mailbox Status (read only):

Encoded
Value Status

00 QMU idle or operation finished successfully

01 operation finished with error (probably resource
error, see above

10 busy, waiting to begin execution

11 busy, executing in QMU engine

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 489

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU wrmbx 21:20 QMU Write Mailbox Status (read only):

Reserved 19:17 Read as zero.

RetryGlobal 16 Global Bus Transaction Retry — This bit causes global load
and store operations through the Global Bus controller to be
retried up to 16 times when NACK’d. When 16 tries have been
NACK’d, the bus controller terminates the operation and asserts
a bus error.

Reserved 15:13 Read as zero.

NXM 12 Non-Existent Memory — Indicates that an access has
occurred to a non-existent memory location (NXM). This bit is
write 1 to clear.

PErr #24 11 Payload #24 Error — An error was detected on a payload bus
read or write on Payload Bus Node #24.

PErr Status #24 10:8 Payload #24 Error Status — Loaded when a Payload Error
occurs in Payload Bus Node #24, and is locked until the XPRC
clears the Payload #24 Error bit. The individual control blocks
can be interrogated to determine the specific offender.

PErr #25 7 Payload #25 Error — An error was detected on a payload bus
read or write on Payload Bus Node #25.

PErr Status #25 6:4 Payload #25 Error Status — Loaded when a Payload Error
occurs in Payload Bus Node #25, and locked until the XPRC
clears the Payload #25 Error bit. The individual control blocks
can be interrogated to determine the specific offender.

GErr 3 Global Bus Controller Error — An error was detected on a
Global read or write attempted by the XPRC.

GErr Status 2:0 Global Bus Error Status — Loaded when a global error occurs,
and is locked until the XPRC process clears the global error bit.
Status codes are identical to those for the CPs.

Field Name Bit Position Description

Encoded
Value Status

00 QMU idle or operation finished successfully

01 operation finished with error (probably resource
error, see above

10 busy, waiting to begin execution

11 busy, executing in QMU engine

For More Information On This Product,

 Go to: www.freescale.com

490 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

XP Debug Mode Register (XP Mode Configuration Function)

There are four (4) global debug wires that carry inputs to the global debug counter block.
Each CP and XP have a multiplexor that can select one of the 16 events. The selectable
events in the XP to drive on each of the respective debug wires are enumerated in
Table 149. Each multiplexor has a 4bit register to select what event to drive, and an enable
bit to turn on the debug wire driver. Since chip-wide only one debug wire driver should
be enabled at any time, the recommended procedure to use the debug taps is:

1 Clear the master debug enable bit in the global debug configuration register space in
the XP.

2 Clear the set driver enable bits. It may be safest to invoke a routine that clears all driver
enable bits on every change regardless of the previous configuration.

Purpose Configures the XP debug tap for the global debug counters.

Address 0xBD804658

Access XP Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX
3

Reset Value 0 raz x 0 raz x 0 raz x 0 raz x

Field Name Bit Position Description

Enb0 31 Enable Driver 0 — Enable the driver onto global debug wire 0.

Reserved 30:28 Read as zero.

MUX0 27:24 Mux 0 — Select 1 of 16 debug events onto global debug wire 0.

Enb1 23 Enable Driver 1 — Enable the driver onto global debug wire 1.

reserved 22:20 Read as zero.

MUX1 19:16 Mux 1 — Select 1 of 16 debug events onto global debug wire 1.

Enb2 15 Enable Driver 2 — Enable the driver onto global debug wire 2.

reserved 14:12 Read as zero.

MUX2 11:8 Mux 2 — Select 1 of 16 debug events onto global debug wire 2.

Enb3 7 Enable Driver 3 — Enable the driver onto global debug wire 3.

reserved 6:4 Read as zero.

MUX3 3:0 Mux 3 — Select 1 of 16 debug events onto global debug wire 3.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 491

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

3 Set one chip-wide driver enable bit and its corresponding multiplexor select value for
each global debug wire.

4 Set up the global debug configuration bits and master debug enable.

Table 149 XP Debug Multiplexor Select Encodings

MUX Input Encoding Description

0 16:13 Select 0 for multiplexor

ISM_TRAN 12 PCI Master Transaction Initiated

ISM_WRXFER 11 PCI Master has completed a write data phase

ISM_RDXFER 10 PCI Master has completed a read data phase

ISM_DISC 9 PCI Master transaction has been disconnected by addressed
target

TSM_TRAN 8 PCI Target has decoded a new inbound transaction

TSM_WRXFER 7 PCI Target has completed a write data phase

TSM_RDXFER 6 PCI Target has completed a read data phase

TSM_LATTO 5 PCI Target has disconnected due to a data latency time-out

Bubble 4 XPRC has inserted a bubble into its pipeline

Stall 3 XPRC data read or write stall cycle

RC Read 2 XPRC data Read

RC Write 1 XPRC data Write

Debug/Match 0 The XPRC data, data address, or instruction address matches the
programmed match registers in the XPRC

For More Information On This Product,

 Go to: www.freescale.com

492 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event0 Register (Event and Interrupt Control Function)

Purpose Collects together event bits relevant to datascope independent tasks.

Address 0xBD8046A0

Access XPRC Read/Write, write 1 to clear.

Bit Position 63 32

Field Name Datascope independent events

Field Name Bit Position Description

WindDown 63 Wind Down — When unmasked, this global input is a request
to wind down all CP activity as soon as possible, and leave as
much predictable error recovery state around as possible.

GlobalError 62 CPRC Global Reference Error - when asserted, this bit means
a CPRC Write received an error on the Global Bus or a
non-existent memory error within the cluster.

MCError 61 Memory Controller Request Error — Indicates an
unrecoverable error occurred during a request sent to the
BMU. An error status code is stored in the xp_mode_register,
and also in the control block that initiated the request.

QMUError 60 QMU Error — Indicates an unrecoverable error occurred
during a request sent to the QMU. An error status code is
stored in the xp_mode_register.

CP_Interrupt 59 CP Interrupt Request — One of the CPs issued an interrupt
request to the XP.

PayloadAlert 58 Payload Request Alert — A non-fatal bus error has occurred
while trying to send a request to the BMU or QMU.

DebugMatch 57 XPRC Debug Match — The XPRC data, data address, and
instruction address matched the programmed match registers
in the CPRC.

TLUError 56 TLU Error — Indicates that an unrecoverable error occurred
during a request sent to the TLU.

SB_TransDone 55 Serial Bus Transfer Done — Indicates that a read or write
transfer completed on the serial bus.

Reserved 54 Read as zero.

RxMsgFIFO 53 Ring Bus Receive Message Available — This bit indicates
the availability of a Ring Bus message in the receive FIFO, and
corresponds to RxMsgCtl.State [31].

TimerEvent 52 Event Timer Time-out — This bit indicates the event timer
counted down to 0.

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 493

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Event1 Register (Event and Interrupt Control Function)

PCI Mailbox 51 PCI Mailbox Interrupt — One of the PCI mailbox registers has
been written to by an inbound PCI transaction and contains a
pending message.

Reserved 50 Read as zero.

Reserved 49:48 Software controlled.

RxResp7-0 47:40 Ring Bus Receive Response Available — These eight bits
correspond to the available bit for the eight Ring Bus receive
response available bits. Bit 47 represents RxResp7Ctl.Avail, and
bit 40 represents RxRespCtl0.Ctl.

TxMsg3-0 39:36 Ring Bus Transmit Message Available — These four bits
correspond to the available bit for the four Ring Bus transmit
message control registers. Bit 39 represents TxMsg3Ctl.Avail,
and bit 36 represents TxMsg0Ctl.Avail.

WrCB 35:34 Write Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus write control blocks. Bit
35 corresponds to WrCB1Ctl.Avail, and bit 34 corresponds to
WrCB0Ctl.Avail.

RdCB 33:32 Read Control Blocks 0/1 — These two bits correspond to the
available bit for the two payload bus read control blocks. Bit 33
corresponds to RdCB1Ctl.Avail, and bit 32 corresponds to
RdCB0Ctl.Avail.

Purpose Collects together event bits relevant to transmit and receive
datascopes.

Address 0xBD8046A4

Access CPRC Read/Write, write 1 to clear

Bit Position 31 0

Field Name Transmit and receive scope events

Field Name Bit Position Description

QRdMbxAvail 31 Queue Read Mailbox Available — This bit indicates that
this CP’s read mailbox in the QMU went from busy to
available.

TxCB1_Avail
(DMEM #24)

30 Transmit Control Block Available - Indicates that the
available bit for datascope1 Payload Bus transmit control
block #24 (TxCB1Ctl.Avail) was set.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

494 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxStatus1_Avail
(DMEM #24)

29 PCI Transmit Datascope1 Available - Indicates that the
PCI transmit state machine has set TxStatus1.Avail.

TxCB1_Avail
(DMEM #25)

28 Transmit Control Block Available - Indicates that the
available bit for datascope1 Payload Bus transmit control
block #25 (TxCB1Ctl.Avail) was set.

TxStatus1_Avail
(DMEM #25)

27 IMEM Loader Datascope1 Available — Indicates that the
IMEM Loader state machine has set TxStatus1_Avail.

QRdMbxBusy 26 Queue Read Mailbox Busy — This bit indicates that this
CP’s read mailbox in the QMU went from available to busy.

TxCB0_Avail
(DMEM #24)

25 Transmit Control Block Available — Indicates that the
available bit for datascope0 payload bus transmit control
block #24 (TxCB0Ctl.Avail) was set.

TxStatus0_Avail
(DMEM #24)

24 PCI Transmit datascope0 Available — Indicates that the
PCI transmit state machine has set TxStatus0.Avail.

TxCB0_Avail
(DMEM #25)

23 Transmit Control Block Available — Indicates that the
available bit for datascope0 payload bus transmit control
block #25 (TxCB0Ctl.Avail) was set.

TxStatus0_Avail
(DMEM #25)

22 IMEM Loader Datascope0 Available — Indicates that the
IMEM Loader state machine has set TxStatus0_Avail.

QueueStatus 21 Queue Status — This bit corresponds to the logical OR of
the bits within each of the four Queue_Status registers. The
bit is level sensitive.

Reserved 20 Read as zero.

WrCB1-0
(DMEM #25)

19:18 Write Control Block Available — These two bits
correspond to the available bit for the two payload bus
write control blocks associated with DMEM #25. Bit 19
corresponds to WrCB1Ctl, and bit 18 corresponds to
WrCB0Ctl.Avail.

RdCB1-0
(DMEM #25)

17:16 Read Control Block Available — These two bits
correspond to the available bit for the two payload bus read
control blocks associated with DMEM #25. Bit 19
corresponds to RdCB1Ctl, and bit 18 corresponds to
RdCB0Ctl.Avail.

QWrMbxAvail 15 Queue Write Mailbox Available — This bit indicates that
this CP’s write mailbox in the QMU went from busy to
available.

RdCB1_Avail
(DMEM #24)

14 Receive Control Block Available — Indicates that the
available bit for datascope1 payload bus receive control
block #24 (RxCB1_Ctl.Avail) was set.

RxStatus1_Avail
(DMEM #24)

13 PCI Receive Datascope1 Available — Indicates that the
PCI receive state machine has set RxStatus1.Avail.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 495

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

All of the registers that pertain to XP DMEM #25 (0xBD804800 to 0xBD804C3C) are
identical to their counterparts in the Channel Processors (CP) except for those (4) registers
documented here. These same (4) registers are also found in the (CP), however, the
registers provide different functions for the XP versus the CP. By changing the use of the
individual bits inside these registers they are capability of providing the different
functions needed in the XP and CPs.

RdCB1_Avail
(DMEM #25)

12 Receive Control Block Available — Indicates that the
available bit for datascope1 payload bus receive control
block #25 (RxCB1_Ctl.Avail) was set.

RxStatus1_Avail
(DMEM #25)

11 #25 Receive Datascope1 Available — Indicates that the
#25 receive state machine has set RxStatus1.Avail.

QWrMbxBusy 10 Queue Read Mailbox Busy — This bit indicates that this
CP’s write mailbox in the QMU went from available to busy.

RxCB0_Avail
(DMEM #24)

9 Receive Control Block Available — Indicates that the
available bit for datascope0 payload bus receive control
block #24 (RxCB0_Ctl.Avail) was set.

RxStatus0_Avail
(DMEM #24

8 PCI Receive Datascope0 Available — Indicates that the
PCI receive state machine has set RxStatus0.Avail.

RxCB0_Avail
(DMEM #25)

7 Receive Control Block Available — Indicates that the
available bit for datascope0 payload bus receive control
block #25 (RxCB0_Ctl.Avail) was set.

RxStatus0_Avail
(DMEM #25

6 #25 Receive Datascope0 Available — Indicates that the
#25 receive state machine has set RxStatus0.Avail.

Ext_Interrupt 5 External PHY Interrupt — A PHY generated external
interrupt that comes in through the XPU_HOT pin when not
in reset, causes an event in this bit.

PCI Master Abort 4 PCI Master Transaction Aborted — The PCI Master has
experienced either a Master Abort, a Target Abort, or an
abort caused by the PCI Master being disabled.

Debug Events 3:0 Debug Events — Bits 3:0 correspond to debug counters
3:0, and are set whenever a debug counter triggers its event
signal.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

496 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

Purpose Semaphores governing PCI DMA receive operation for datascope0. See
Table 150 on page 496 for similar register.

Address 0xBD804890

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, the XP owns receive
datascope0. When the bit is 0, PCI DMA owns receive
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 150 RxCtl1_Status Register

Register Name Purpose Address

RxCtl1_Status Same as RxCtl0_Status, but for datascope1. 0xBD80A290

For More Information On This Product,

 Go to: www.freescale.com

Executive Processor (XP) Configuration Registers 497

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

Purpose Semaphores governing PCI DMA transmit operation for datascope0.
See Table 151 on page 497 for similar register.

Address 0xBD804990

Reset Value 0x80000000

Access XP Read/Write

Bit Position 31 30 24 23 0

Field Name Avail Reserved Reserved

Reset Value 1 raz raz

Field Name Bit Position Description

Avail 31 Availability Bit — When the bit is 1, the XP owns transmit
datascope0. When the bit is 0, PCI DMA owns transmit
datascope0.

Reserved 30:24 Read as zero.

Reserved 23:0 Read as zero.

Table 151 TxCtl1_Status Register

Register Name Purpose Address

TxCtl1_Status Same as TxCtl0_Status, but pertains
to transmit datascope1.

0xBD804B90

For More Information On This Product,

 Go to: www.freescale.com

498 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Queue Management
Unit (QMU)
Configuration
Registers

Configuration Space in the QMU is an area that contains a number of registers. The QMU
occupies 1MByte within the C-5 NP’s Configuration Space starting at 0xBDA00000 to
0xBDAFFFFF. The QMU only supports 32bit aligned operations. The QMU uses these
registers to: map queues to CPs, XP and FP, configure the QMU, debug the QMU, and
collect QMU statistics. Processor registers (WrCB0, and RdCB0) are described in Chapter 2
to move data through the internal QMU and external QMU to/from SRAM from/to the
DMEM of either the requesting CPs, or XP.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr and RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr) are physically located in the Configuration Space of their
respective CPs, or XP and not in the BMU Configuration Space.

WARNING: When the QMU is run-enabled, an attempt to read or write many of the
internal registers and memories will interfere with the operation of the QMU.

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 499

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Registers The following is a list of each QMU register along with its address, function, and reference
to its detailed parameters. The detailed parameters provide: purpose, field name, bit
position, and descriptions.

Table 152 QMU Registers

Address Register Name Function
Detailed
Parameters

0xBDA00000 QMU_Run_Enable Enables QMU See page 501

0xBDA00040 Base_Queue_CP0 CP’s Queue
Allocation

See page 501

0xBDA00044 Base_Queue_CP1

0xBDA00048 Base_Queue_CP2

0xBDA0004C Base_Queue_CP3

0xBDA00050 Base_Queue_CP4

0xBDA00054 Base_Queue_CP5

0xBDA00058 Base_Queue_CP6

0xBDA0005C Base_Queue_CP7

0xBDA00060 Base_Queue_CP8

0xBDA00064 Base_Queue_CP9

0xBDA00068 Base_Queue_CP10

0xBDA0006C Base_Queue_CP11

0xBDA00070 Base_Queue_CP12

0XBDA00074 Base_Queue_CP13

0xBDA00078 Base_Queue_CP14

0xBDA0007C Base_Queue_CP15

0xBDA000C0 Base_Queue_FP FP’s Queue
Allocation

See page 502

0xBDA000C8 Base_Queue_XP XP’s Queue
Allocation

See page 502

For More Information On This Product,

 Go to: www.freescale.com

500 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDA000D4 Num_Descriptors QMU Configuration See page 503

0xBDA000DC Dyn_Des_Usage_Lim_Pool0 See page 503

0xBDA000E0 Dyn_Des_Usage_Lim_Pool1

0xBDA000E4 Dyn_Des_Usage_Lim_Pool2

0xBDA000E8 Dyn_Des_Usage_Lim_Pool3

0xBDA000F0 Operation_Mode See page 504

0xBDA000F4 Descriptor_Size See page 504

0xBDA00180 Config_Q_Cnt QMU Statistics See page 505

0xBDA00184 Rd_Q_Status_Cnt See page 505

0xBDA00188 CP_Uni_Enq_Cnt See page 505

0xBDA0018C CP_Multi_Enq_Cnt See page 505

0xBDA00190 CP_Multi_Enq_Target_Cnt See page 505

0xBDA00194 CP_Dequeue_Cnt See page 505

0xBDA00198 FP_Uni_Enq_Cnt See page 505

0xBDA0019C FP_Multi_Enq_Cnt See page 505

0xBDA001A0 FP_Multi_Enq_Target_Cnt See page 506

0xBDA001A4 FP_Dequeue_Cnt See page 506

0xBDA001A8 QMU_Idle_Cycles See page 506

0xBDA001AC Payload_NACK_Cnt See page 506

0xBDA001B0 Global_NACK_Cnt See page 506

0xBDA001B4 Payload_Rd_Failures_Cnt See page 506

0xBDA001B8 Cmd_Processor_Err_Cnt See page 506

0xBDA001BC Q_Engine_Err_Cnt See page 507

0xBDA00400
to
0xBDA0063C

Multicast_Destination0 to
Multicast_Destination143

QMU Configuration See page 507

Table 152 QMU Registers (continued) (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 501

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

QMU Detailed
Descriptions

The following is a detailed description of each of the QMU registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

QMU_Run_Enable Register (QMU Enable Queue Function)

Base_Queue_CP0 to Base_Queue_CP15 Registers (QMU CP’s Queue
Allocation Function)

0xBDA7E008 Free_Descriptor_Buffer_List QMU Status See page 510

0xBDA7E080 Dyn_Descriptor_Pool0_Usage See page 511

0xBDA7E084 Dyn_Descriptor_Pool1_Usage See Table 157 on
page 511.

0xBDA7E088 Dyn_Descriptor_Pool2_Usage

0xBDA7E08C Dyn_Descriptor_Pool3_Usage

Table 152 QMU Registers (continued) (continued)

Address Register Name Function
Detailed
Parameters

Purpose When this one bit wide register is 1, it enables the QMU’s processing of
queue operations. When this bit is 0, it disables the QMU’s execution of
queue operations. The QMU powers up when this bit is clear. This bit
must be set to a “1” before the QMU can process any queue operations.

Address 0xBDA00000

Bit Position 31 1 0

Field Name Rsvd Enable

Purpose These registers specify the base address for a CP’s queues.

Addresses 0xBDA00040 (CP 0 base address), 0xBDA00044 (CP 1 base address)
0xBDA00048 (CP 2 base address), 0xBDA0004C (CP 3 base address)
0xBDA00050 (CP 4 base address), 0xBDA00054 (CP 5 base address)
0xBDA00058 (CP 6 base address), 0xBDA0005C (CP 7 base address)
0xBDA00060 (CP 8 base address), 0xBDA00064 (CP 9 base address)
0xBDA00068 (CP 10 base address), 0xBDA0006C (CP 11 base address)
0xBDA00070 (CP 12 base address), 0xBDA00074 (CP 13 base address)
0xBDA00078 (CP 14 base address), 0xBDA0007C (CP 15 base address)

For More Information On This Product,

 Go to: www.freescale.com

502 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Base_Queue_FP Register (QMU FP’s Queue Allocation Function)

Base_Queue_XP Register (QMU XP’s Queue Allocation Function)

Bit Position 31 9 8 0

Field Name Rsvd base_queue_num

Field Name Bit Position Description

Reserved 31:9 Read as zero.

Base_Queue_Num 8:0 Establishes the base queue address for the CP (0 to 15).

Purpose This register specifies the base address for the FP’s queues.

Address 0xBDA000C0

Bit Position 31 9 8 0

Field Name Rsvd base_queue_num

Field Name Bit Position Description

Reserved 31:9 Read as zero.

Base_Queue_Num 8:0 Specifies the base address for the FP’s queues

Purpose This register specifies the base address for the XP queues. It has the
same data format as Base_Queue_FP register.

Address 0xBDA000C8

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 503

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Num_Descriptors Register (QMU Configuration Function)

Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function)

Purpose This 14 bit wide register specifies the number of descriptor buffers to be
available in the QMU. Legal range= 0 to 16,384 as detailed here:

Address 0xBDA000D4

Bit Position 31 14 13 0

Field Name Rsvd Data

Purpose Specify the maximum number of descriptors that can be enqueued
dynamically to the queues associated with Pool0. Legal range= 0 to 16K.

The total number of Descriptors allocated among all four (4) pools of
the Dyn_Des_Usage_Lim_Pool0 to Dyn_Des_Usage_Lim_Pool3 registers
should be < the number of dynamically enqueued descriptors. See
Table 153 on page 503 for similar registers.

Address 0xBDA000DC

Bit Position 31 14 13 0

Field Name Rsvd Data

Table 153 Dyn_Des_Usage_Lim_Pooln Registers (for Descriptor Pools 1, 2 and 3)

Register Name Purpose Address

Dyn_Des_Usage_Lim_Pool1 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool1.

0xBDA000E0

Dyn_Des_Usage_Lim_Pool2 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool2.

0xBDA000E4

Programmed
Value

Number of
Descriptors

0
.
.
.
16,383

1
.
.
.
16,384

For More Information On This Product,

 Go to: www.freescale.com

504 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Operation_Mode Register (QMU Configuration Function)

Descriptor_Size Register (QMU Configuration Function)

Dyn_Des_Usage_Lim_Pool3 Same as Dyn_Des_Usage_Lim_Pool0, except for
descriptor pool2.

0xBDA000E8

Purpose This four bit wide register specifies the operating mode of the QMU. The
codes for the modes are listed in Table 154.

Address 0xBDA000F0

Bit Position 31 4 3 0

Field Name Rsvd Data

Table 154 Queue Operating Mode Codes

Mode Code

Internal-Queues 0x1

External-Queues Not implemented

Purpose This two bit wide register specifies the size of the data stored for each
descriptor in an encoded form.

Address 0xBDA000F4

Bit Position 31 2 1 0

Field Name Rsvd Data

Table 155 Descriptor Size Codes

Descriptor Size Code

12 Bytes 0

16 Bytes 1

24 Bytes 2

32 Bytes 3

Table 153 Dyn_Des_Usage_Lim_Pooln Registers (for Descriptor Pools 1, 2 and 3)

Register Name Purpose Address

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 505

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Config_Q_Cnt Register (QMU Statistics Function)

Rd_Q_Status_Cnt Register (QMU Statistics Function)

CP_Uni_Enq_Cnt Register (QMU Statistics Function)

CP_Multi_Enq_Cnt Register (QMU Statistics Function)

CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)

CP_Dequeue_Cnt Register (QMU Statistics Function)

FP_Uni_Enq_Cnt Register (QMU Statistics Function)

FP_Multi_Enq_Cnt Register (QMU Statistics Function)

Purpose Count of Queue Configuration operations.

Address 0xBDA00180

Purpose Count of Read Status operations.

Address 0xBDA00184

Purpose Count of Unicast Enqueues from the CPs.

Address 0xBDA00188

Purpose Count of Multicast Enqueues from the CPs.

Address 0xBDA0018C

Purpose Count of Total Multicast Enqueues Targets from the CPs.

Address 0xBDA00190

Purpose Count of Dequeue operations from the CPs.

Address 0xBDA00194

Purpose Count of Unicast Enqueues from the FP.

Address 0xBDA00198

Purpose Count of Total Multicast Enqueues from the FP.

Address 0xBDA0019C

For More Information On This Product,

 Go to: www.freescale.com

506 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)

FP_Dequeue_Cnt Register (QMU Statistics Function)

QMU_Idle_Cycles Register (QMU Statistics Function)

Payload_NACK_Cnt Register (QMU Statistics Function)

Global_NACK_Cnt Register (QMU Statistics Function)

Payload_Read_Failures_Cnt Register (QMU Statistics Function)

Cmd_Processor_Err_Cnt Register (QMU Statistics Function)

Purpose Count of Multicast Enqueue Targets from the FP.

Address 0xBDA001A0

Purpose Count of Dequeue operations from the FP.

Address 0xBDA001A4

Purpose Count of QMU Idle Clock Cycles.

Address 0xBDA001A8

Purpose Count of payload NACKs.

Address 0xBDA001AC

Purpose Count of Global NACKs.

Address 0xBDA001B0

Purpose Count of payload read failures.

Address 0xBDA001B4

Purpose Count of command processor errors, illegal opcodes and out of range
queue numbers.

Address 0xBDA001B8

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 507

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Q_Engine_Err_Cnt Register (QMU Statistics Function)

Multicast_Destination0 to Multicast_Destination143 Registers (QMU
Configuration Function)

Purpose Count of queue engine errors.

Address 0xBDA001BC

Purpose Provide the mapping of the multicast destination port and queue level
number to target a queue number for each leaf of a multicast
elaboration.

Addresses 0xBDA00400 — 0xBDA0063C

Bit Position 31 7 6 0

Field Name Reserved queue_offset

Field Name Bit Position Description

Reserved 31:7 Read as zero.

queue_offset 6:0 Destination Queue Offset — The queue offset for the
specified processor. The QMU adds this number to the
processor’s base number (Base_Queue_CPnn,
Base_Queue_XP, Base_Queue_FP) to yield the target queue
number. (Note: That only the least-significant seven bits
of the address are used).
These registers can only be accessed when the QMU is
off-line. (QMU_Run_Enable=0).
Refer to Table 156 on page 508 for detail Queue_Offset
addresses.

For More Information On This Product,

 Go to: www.freescale.com

508 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 156 Multicast Mapping

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

0 for (CP0) 0 0xBDA00400 1 for (CP1) 0 0xBDA00420

1 0xBDA00404 1 0xBDA00424

2 0xBDA00408 2 0xBDA00428

3 0xBDA0040C 3 0xBDA0042C

4 0xBDA00410 4 0xBDA00430

5 0xBDA00414 5 0xBDA00434

6 0xBDA00418 6 0xBDA00438

7 0xBDA0041C 7 0xBDA0043C

2 for (CP2) 0 0xBDA00440 3 for (CP3) 0 0xBDA00160

1 0xBDA00444 1 0xBDA00164

2 0xBDA00448 2 0xBDA00168

3 0xBDA0044C 3 0xBDA0016C

4 0xBDA00450 4 0xBDA00170

5 0xBDA00454 5 0xBDA00174

6 0xBDA00458 6 0xBDA00178

7 0xBDA0045C 7 0xBDA0047C

4 for (CP4) 0 0xBDA00480 5 for (CP5) 0 0xBDA004A0

1 0xBDA00484 1 0xBDA004A4

2 0xBDA00488 2 0xBDA004A8

3 0xBDA0048C 3 0xBDA004AC

4 0xBDA00490 4 0xBDA004B0

5 0xBDA00494 5 0xBDA004B4

6 0xBDA00498 6 0xBDA004B8

7 0xBDA0049C 7 0xBDA004BC

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 509

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

6 for (CP6) 0 0xBDA004C0 7 for (CP7) 0 0xBDA004E0

1 0xBDA004C4 1 0xBDA004E4

2 0xBDA004C8 2 0xBDA004E8

3 0xBDA004CC 3 0xBDA004EC

4 0xBDA004D0 4 0xBDA004F0

5 0xBDA004D4 5 0xBDA004F4

6 0xBDA004D8 6 0xBDA004F8

7 0xBDA004DC 7 0xBDA004FC

8 for (CP8) 0 0xBDA00500 9 for (CP9) 0 0xBDA00520

1 0xBDA00504 1 0xBDA00524

2 0xBDA00508 2 0xBDA00528

3 0xBDA0050C 3 0xBDA0052C

4 0xBDA00510 4 0xBDA00530

5 0xBDA00514 5 0xBDA00534

6 0xBDA00518 6 0xBDA00538

7 0xBDA0051C 7 0xBDA0053C

10 for (CP10) 0 0xBDA00540 11 for (CP11) 0 0xBDA00560

1 0xBDA00544 1 0xBDA00564

2 0xBDA00548 2 0xBDA00568

3 0xBDA0054C 3 0xBDA0056C

4 0xBDA00550 4 0xBDA00570

5 0xBDA00554 5 0xBDA00574

6 0xBDA00558 6 0xBDA00578

7 0xBDA0055C 7 0xBDA0057C

Table 156 Multicast Mapping (continued)

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

For More Information On This Product,

 Go to: www.freescale.com

510 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Free_Descriptor_Buffer_List Register (QMU Status Function)

12 for (CP12) 0 0xBDA00580 13 for (CP13) 0 0xBDA005A0

1 0xBDA00584 1 0xBDA005A4

2 0xBDA00588 2 0xBDA005A8

3 0xBDA0058C 3 0xBDA005AC

4 0xBDA00590 4 0xBDA005B0

5 0xBDA00594 5 0xBDA005B4

6 0xBDA00598 6 0xBDA005B8

7 0xBDA0059C 7 0xBDA005BC

14 for (CP14) 0 0xBDA005C0 15 for (CP15) 0 0xBDA005E0

1 0xBDA005C4 1 0xBDA005E4

2 0xBDA005C8 2 0xBDA005E8

3 0xBDA005CC 3 0xBDA005EC

4 0xBDA005D0 4 0xBDA005F0

5 0xBDA005D4 5 0xBDA005F4

6 0xBDA005D8 6 0xBDA005F8

7 0xBDA005DC 7 0xBDA005FC

16 for (XP) 0 0xBDA00600 17 for (FP) 0 0xBDA00620

1 0xBDA00604 1 0xBDA00624

2 0xBDA00608 2 0xBDA00628

3 0xBDA0060C 3 0xBDA0062C

4 0xBDA00610 4 0xBDA00630

5 0xBDA00614 5 0xBDA00634

6 0xBDA00618 6 0xBDA00638

7 0xBDA0061C 7 0xBDA0063C

Purpose Designates the total number of free descriptors.

Address 0xBDA7E008

Table 156 Multicast Mapping (continued)

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

Processor ID
Number

Queue
Level
Number

Queue_Offset
Address

For More Information On This Product,

 Go to: www.freescale.com

Queue Management Unit (QMU) Configuration Registers 511

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)

Purpose Designates how many descriptor buffers are in use in Pool0. Legal
range= 0 to 16K. See Table 157 on page 511 for similar register.

Address 0xBDA7E080

Table 157 Dyn_Descriptor_Buffer_Usage_Pooln Register (for Pool1, 2 and 3)

Register Name Purpose Address

Dyn_Descriptor_Pool1_Usage Same as Dyn_Descriptor_Pool0_Usage, but
for pool1.

0xBDA7E084

Dyn_Descriptor_Pool2_Usage Same as Dyn_Descriptor_Pool0_Usage, but
for pool2.

0xBDA7E088

Dyn_Descriptor_Pool3_Usage Same as Dyn_Descriptor_Pool0_Usage, but
for pool3.

0xBDA7E08C

For More Information On This Product,

 Go to: www.freescale.com

512 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Buffer Management
Unit (BMU)
Configuration
Registers

Configuration Space in the BMU contains a number of registers. The BMU uses these
registers to configure and operate the BMU. The BMU uses others registers (WrCB0,
RdCB0, RxCB0 and TxCB0) as described in Chapter 2 to move data through the BMU
to/from SDRAM from/to the DMEM of either the requesting CPs, XP or FP.

These registers (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr;
RdCB0_Sys_Addr, RdCB0_Ctl, RdCB0_DMA_Addr, RdCB0_SDP_Addr; RxCB0_Sys_Addr,
RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr) are physically located in the Configuration Space
of their respective CPs and not in the BMU Configuration Space.

The BMU registers are located in the KSEG1 region, (0xA0000000 to 0xBFFFFFFF), which is
uncached, starting at address 0xBDB00000. Refer to “C-5 NP Address Mapping” on
page 50.

Warning: Attempting to access a buffer pool before it is setup results in unpredictable
behavior.

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 513

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Registers The following is a list of each register along with its address, function and reference to its
detailed parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions.

Table 158 BMU Registers

Address Register Name Function
Detailed
Parameters

0xBDB00000 Pool0 Base Buffer Pool Base
Address

See page 518

0xBDB00004 Pool1 Base

0xBDB00008 Pool2 Base

0xBDB0000C Pool3Base

0xBDB00010 Pool4 Base

0xBDB00014 Pool5 Base

0xBDB00018 Pool6 Base

0xBDB0001C Pool7 Base

0xBDB00020 Pool8 Base

0xBDB00024 Pool Base

0xBDB00028 Pool10 Base

0xBDB0002C Pool11 Base

0xBDB00030 Pool12 Base

0xBDB00034 Pool13 Base

0xBDB00038 Pool14 Base

0xBDB0003C Pool15 Base

0xBDB00040 Pool16 Base

0xBDB00044 Pool17 Base

0xBDB00048 Pool18 Base

0xBDB0004C Pool19 Base

For More Information On This Product,

 Go to: www.freescale.com

514 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDB00050 Pool20 Base Buffer Pool Base
Address
(continued)

See page 518

0xBDB00054 Pool21 Base

0xBDB00058 Pool22 Base

0xBDB0005C Pool23 Base

0xBDB00060 Pool24 Base

0xBDB00064 Pool25 Base

0xBDB00068 Pool26 Base

0xBDB0006C Pool27 Base

0xBDB00070 Pool28 Base

0xBDB00074 Pool29 Base

0xBDB10000 Pool0 BTag Shift Encoded Buffer
Size

See page 519

0xBDB10004 Pool1 BTag Shift

0xBDB10008 Pool2 BTag Shift

Table 158 BMU Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 515

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDB1000C Pool3 BTag Shift Encoded Buffer
Size l (continued)

See page 519

0xBDB10010 Pool4 BTag Shift

0xBDB10014 Pool5 BTag Shift

0xBDB10018 Pool6 BTag Shift

0xBDB1001C Pool7 BTag Shift

0xBDB10020 Pool 8 BTag Shift

0xBDB10024 Pool9 BTag Shift

0xBDB10028 Pool10 BTag Shift

0xBDB1002C Pool11 BTag Shift

0xBDB10030 Pool12 BTag Shift

0xBDB10034 Pool13 BTag Shift

0xBDB10038 Pool14 BTag Shift

0xBDB1003C Pool15 BTag Shift

0xBDB10040 Pool16 BTag Shift

0xBDB10044 Pool17 BTag Shift

0xBDB10048 Pool18 BTag Shift

0xBDB1004C Pool19 BTag Shift

0xBDB10050 Pool20 BTag Shift

0xBDB10054 Pool21 BTag Shift

0xBDB10058 Pool22 BTag Shift

0xBDB1005C Pool23 BTag Shift

0xBDB10060 Pool24 BTag Shift

0xBDB10064 Pool25 BTag Shift

0xBDB10068 Pool26 BTag Shift

0xBDB1006C Pool27 BTag Shift

0xBDB10070 Pool28 BTag Shift

0xBDB10074 Pool29 BTag Shift

0xBDB20000 BTag FIFO Base0 BTag FIFO Base
Address

See page 520

Table 158 BMU Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

516 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDB20004 BTag FIFO Base1 BTag FIFO Base
Address
(continued)

See page 520

0xBDB20008 BTag FIFO Base2

0xBDB2000C BTag FIFO Base3

0xBDB20010 BTag FIFO Base4

0xBDB20014 BTag FIFO Base5

0xBDB20018 BTag FIFO Base6

0xBDB2001C BTag FIFO Base7

0xBDB20020 BTag FIFO Base8

0xBDB20024 BTag FIFO Base9

0xBDB20028 BTag FIFO Base10

0xBDB2002C BTag FIFO Base11

0xBDB20030 BTag FIFO Base12

0xBDB20034 BTag FIFO Base13

0xBDB20038 BTag FIFO Base14

0xBDB2003C BTag FIFO Base15

0xBDB20040 BTag FIFO Base16

0xBDB20044 BTag FIFO Base17

0xBDB20048 BTag FIFO Base18

0xBDB2004C BTag FIFO Base19

0xBDB20050 BTag FIFO Base20

0xBDB20054 BTag FIFO Base21

0xBDB20058 BTag FIFO Base22

0xBDB2005C BTag FIFO Base23

0xBDB20060 BTag FIFO Base24

0xBDB20064 BTag FIFO Base25

0xBDB20068 BTag FIFO Base26

0xBDB2006C BTag FIFO Base27

0xBDB20070 BTag FIFO Base28

0xBDB20074 BTag FIFO Base29

Table 158 BMU Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 517

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDB30000 Num BTag0 Number of BTags
in a Pool

See page 520

0xBDB30004 Num BTag1

0xBDB30008 Num BTag2

0xBDB3000C Num BTag3

0xBDB30010 Num BTag4

0xBDB30014 Num BTag5

0xBDB30018 Num BTag6

0xBDB3001C Num BTag7

0xBDB30020 Num BTag8

0xBDB30024 Num BTag9

0xBDB30028 Num BTag10

0xBDB3002C Num BTag11

0xBDB30030 Num BTag12

0xBDB30034 Num BTag13

0xBDB30038 Num BTag14

0xBDB3003C Num BTag15

0xBDB30040 Num BTag16

0xBDB30044 Num BTag17

0xBDB30048 Num BTag18

0xBDB3004C Num BTag19

0xBDB30050 Num BTag20

0xBDB30054 Num BTag21

0xBDB30058 Num BTag22

0xBDB3005C Num BTag23

0xBDB30060 Num BTag24

0xBDB30064 Num BTag25

0xBDB30068 Num BTag26

0xBDB3006C Num BTag27

Table 158 BMU Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

518 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BMU Detailed
Descriptions

The following is a detailed description of each of the BMU registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function)
Buffer pools must be configured during system initialization. Unpredictable behavior
results when a pool is accessed prior to its initialization. The following registers are used to
initialize buffer pools.

0xBDB30070 Num BTag28 Number of BTags
in a Pool
(continued)

See page 520

0xBDB30074 Num BTag29

0xBDB40000 Memory Size Physical Memory
Configuration, Test
and Debug

See page 521

0xBDB40008 SDRAM Config See page 522

0xBDB4000C Single ECC Errors See page 523

0xBDB40010 ECC Enable and Test
Enable

See page 523

0xBDB40014 Debug Config See page 524

0xBDB40018 Wr_Mem_Violation_Hi See page 525

0xBDB4001C Wr_Mem_Violation_Lo See page 525

Table 158 BMU Registers (continued)

Address Register Name Function
Detailed
Parameters

Purpose Buffer pool base address. Width depends upon physical memory size:
minimum value is 0, maximum value is the physical memory limit.

Software is responsible for ensuring that there is enough space to hold
all of the pool’s buffers.

Note: That the buffer pool “ends” at the next allocated piece of memory.

Address 0xBDB00000 - 0xBDB00074

Access Read/Write

Bit Position 31 24 23 0

Field Name Rsvd Pool Base

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 519

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool
Function)

Purpose BTag shift amount for address calculation. This value encodes the buffer
size for a pool. Table 159 lists legal buffer sizes and their encodings.

Minimum value is 0. Maximum value is 10.

Address 0xBDB10000 - 0xBDB10074

Access Read/Write

Bit Position 31 4 3 0

Field Name Reserved Pool BTag Shift

Table 159 BTag Shift Values and Corresponding Buffer Sizes

BTag Shift Buffer Size BTag Shift Buffer Size

0 64kB 6 1kB

1 32kB 7 512B

2 16kB 8 256B

3 8kB 9 Not Supported

4 4kB 10 64B

5 2kB

For More Information On This Product,

 Go to: www.freescale.com

520 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address
Function)

Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool
Function)

Purpose Buffer pool BTag FIFO base address. Used for BTag FIFO management.

Software is responsible for ensuring that there is enough space to hold
all of the pool’s BTags.

Note: That the FIFO “ends” at the next allocated piece of memory. Each
BTag consumes two bytes of memory.

Minimum value is 0. Maximum value is the physical memory limit.

Address 0xBDB20000 - 0xBDB20074

Access Read/Write

Bit Position 31 24 23 0

Field Name Rsvd BTag Base

Purpose Number of BTags in pool, in multiples of eight.

Address 0xBDB30000 - 0xBDB30074

Access Read/Write

Bit Position 31 13 12 0

Field Name Rsvd Num BTags

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 521

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Memory Size Register (Miscellaneous Function)

Purpose Physical memory size in bytes. Software determines the amount of
physical memory by writing and reading bit patterns to SDRAM. This
configuration register is written with a value representing the amount
of physical memory that software had determined that was present in
the system.

Address 0xBDB40000

Reset Value 10

Access Read/Write

Bit Position 31 2 1 0

Field Name Reserved physMemSize

Field Name Bit Position Description

Reserved 31:2 Read as zero.

phyMemSize 1:0 Physical Memory Size — Size of physical memory in bytes.
Supported values are:

Encoded
Value Size

00 64MB

01 128MB

10 256MB

11 Reserved

For More Information On This Product,

 Go to: www.freescale.com

522 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDRAM Config Register (Miscellaneous Function)

Purpose SDRAM controller configuration register.

A write to this register tells the SDRAM controller the timing properties
of the SDRAM and also initiates the SDRAM configuration process.

Note: That SDRAMs require a manufacturer specific initial settling time
before the configuration process can begin. It is software’s responsibility
to ensure that this time has elapsed before the SDRAM configuration
register is written.

Address 0xBDB40008

Reset Value 0

Access Read/Write

Bit Position 31 29 28 26 25 23 22 20 19 16 15 4 3 0

Field Name Tmrd Trp Tcas Trcd Trc Refresh RfrNum

Field Name Bit Position Description

Tmrd 31:29 Timing Mode Register Delay

Trp 28:26 Precharge Command Period Timing

Tcas 25:23 CAS Timing — CAS timing.

Trcd 22:20 Timing From Active to Command — Active to command
timing.

Trc 19:16 Timing RAS Cycle Time — RAS cycle time.

Refresh 15:4 Refresh Period — Refresh rate of SDRAM. For Micron SDRAM
memory parts, this value is computed as 15.625 µsec times the
clock rate for the memory. For example: for 100MHz Micron
SDRAM parts, this value must be less than or equal to 1562.

RfrNum 3:0 Refresh Number — Number of initial refreshes.

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 523

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Single ECC Errors Register (Miscellaneous Function)

ECC Enable and Test Enable Register (Miscellaneous Function)

Purpose This read only register counts the number of single Error Correction
Code (ECC) errors that have occurred.

Address 0xBDB4000C

Reset Value 0

Access Read

Purpose During normal operation, the Single Error Correction/Double Error
Detecting (SECDED) error code if bit [0] is set to 1. ECC is disabled if bit
[0] is set to 0. ECC test modes are controlled by bits [11:1].

Address 0xBDB40010

Reset Value 0

Access Read/Write

Bit Position 11 10 2 1 0

Field Name ECC Read Test Enable ECC Write Test Bits ECC Write Test Enable ECC Enable

Field Name
Bit
Position Description

ECC Read Test Enable 11 ECC Read Test Enable – This enables the ECC read test
function, placing ECC bits directly on the Payload Bus.

ECC Write Test Bits 10:2 ECC Write Test Bits – Provides ECC bits for ECC write test.

ECC Write Test Enable 1 ECC Write Test Enable –This bit enables the ECC write test
function, writing ECC write test bits directly to SDRAM.

ECC Enable 0 ECC Enable – This bit enables ECC checking during normal
operation.

For More Information On This Product,

 Go to: www.freescale.com

524 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Debug Config Register (Miscellaneous Function)

Purpose BMU C-5 NP debug register in canonical format.

Address 0xBDB40014

Access Read/Write

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name Enb0 Rsvd MUX0 Enb1 Rsvd MUX1 Enb2 Rsvd MUX2 Enb3 Rsvd MUX3

Reset Value 0 raz 0 0 raz 0 0 raz 0 0 raz 0

Table 160 BMU Debug Inputs

Muxn Value Event Chosen

0 Payload read

1 Payload write

2 Global read

3 Global write

4 BTag read

5 BTag write

6 BTag deallocation

7 Counter allocation

8 Counter decrement

9 Global read to SDRAM

10 Global write to SDRAM

11 BTag write to SDRAM

12 BTag deallocation to SDRAM

13 Counter decrement deallocation to SDRAM

14 BTag read to SDRAM

15 Write causing a memory violation

For More Information On This Product,

 Go to: www.freescale.com

Buffer Management Unit (BMU) Configuration Registers 525

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Wr_Mem_Violation_Hi Register (Miscellaneous Function)

Wr_Mem_Violation_Lo Register (Miscellaneous Function)

Purpose Captures the global or payload address of transactions that led to the
write error. Used in conjunction with Wr_Mem_Violation_Lo register.

Address 0xBDB40018

Access Read

Bit Position 7 6 5 0

Field Name Error Bus Payload_Addr_Ctl [37:32]

Reset Value 0 0 0

Field Name Bit Position Description

Error 7 Error — 1=Error, 0=No error.

Bus 6 Bus — 1=Global bus, 0=Payload bus.

Bus Addr 0:5 Bus Addr — Records the high order of the Payload bus error
bits that caused the error.

Purpose Captures the global or payload address of transactions that led to the
write error. Used in conjunction with Wr_Mem_Viloation_Hi.

Address 0xBDB4001C

Access Read

Bit Position 31 0

Field Name Global_Addr [31:0] or Payload_Addr [31:0]

Reset Value 0

Field Name Bit Position Description

Bus Addr 31:0 Bus Addr — Records the Global or Payload bus that caused the
error. If Payload this register capture only the low order bits.
Where as, the high order are recorded in the
Wr_Mem_Violation_Hi register.

For More Information On This Product,

 Go to: www.freescale.com

526 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Fabric Processor (FP)
Configuration
Registers

Configuration Space in the FP is an area that contains a number of registers. The FP uses
these registers to communicate with the SDP and the bus controllers (Payload Bus and
Global Bus). The FP performs flow mapping and management to and from the switching
fabric.

FP Registers The following is a list of each FP register and its address, function, and reference to its
detailed parameters. The detailed parameters provide: purpose, field name, bit positions
and descriptions. You should also refer to “TxByte Processor Registers” on page 156.

Table 161 Fabric Processor Registers

Address Register Name Function
Detailed
Parameters

0xBDD04000 TxFP_Enable FP Tx Enable See page 530

0xBDD04004 TxFI_Configuration FP Tx
Configuration

See page 530

0xBDD04008 TxDescInfo See page 532

0xBDD0400C TxDM_Header/Payload Delimiter See page 532

0xBDD04010 TxQueueWeight_Configuration See page 532

0xBDD04014 TxSysConfig See page 534

0xBDD04018 TxFI_CRC See page 534

0xBDD0401C TxFCE_Configuration See page 535

0xBDD04020 TxDebugMux_Control FP Tx DeBug See page 537

0xBDD04024 TxWCS_CAM TxWCS_CAM
Function

See page 539

0xBDD0402C TxFlowTbl FP Tx DeBug See page 540

0xBDD04030 TxFlowTblDl See page 540

0xBDD04034 TxFlowTblDH See page 541

0xBDD04038 TxFlowCam FP Tx
Configuration

See page 541

0xBDD0403C TxMergeAddr FP Tx DeBug See page 542

0xBDD04040 TxMergeData FP Tx DeBug See page 543

0xBDD04044 TxIdleData FP Tx
Configuration

See page 544

0xBDD04040 TxFDP_Mrg0 to TxFDP_Mrg63 FP Tx DeBug See page 543

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 527

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDD0404C TxByte FDP_CTL1
General
Purpose

See page 544

0xBDD04048 TxByte FDP_CTL0
General
Purpose

See page 545

0xBDD04050 TxDebug Internal State FP Tx DeBug See page 545

0xBDE04090 RxStatus0 FP RxByte
processor

See page 546

0xBDE04094 RxFlowSeg0 See page 546

0xBDE04098 RxFlowSz0 See page 547

0xBDE0409A RxTxCgs0 See page 548

0xBDE04290 RxStatus1 See page 548

0xBDE04294 RxFlowSeg1 See page 549

0xBDE04298 RxFlowSz1 See page 550

0xBDE0429A RxTxCgs1 See page 550

0xBDE04600 RxEnable_Configuration0 FP Rx Enable See page 551

0xBDE04604 RxFI_Configuration FP Rx
Configuration

See page 551

0xBDE04608 RxDS_Header_Change1 See page 553

0xBDE0460C RxDS_Header_Change2 See page 554

0xBDE04610 RxDS_Header/Payload_Delimiter0 See page 554

0xBDE04614 RxDS_Header/Payload_Delimiter1 See page 554

0xBDE04618 RxDS_Header/Payload_Delimiter2 See page 555

0xBDE0461C RxDS_Configuration See page 555

0xBDE04620 RxFI_CRC See page 556

0xBDE04624 RxWCS_CAM RxWCS_CAM
Function

See page 557

0xBDE04628 RxByte0 FP Rx
Configuration

See page 559

0xBDE0462C RxByte1 See page 559

0xBDE04630 FCE_Configuration0 See page 559

0xBDE04634 FCE_Configuration1 See page 561

0xBDE04638 FCE_Configuration2 See page 562

Table 161 Fabric Processor Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

528 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDE04640 Pool0_CFG0 FP Rx Pool
Configuration

See page 563

0xBDE04648 Pool1_CFG0 See page 563

0xBDE04650 Pool2_CFG0 See page 563

0xBDE04658 Pool3_CFG0 See page 563

0xBDE04644 Pool0_CFG1 See page 564

0xBDE0464C Pool1_CFG1 See page 564

0xBDE04654 Pool2_CFG1 See page 564

0xBDE0465C Pool3_CFG1 See page 564

0xBDE04660 RxByte_Shared0 FP RxByte
Shared
Function

See page 565

0xBDE04664 RxByte_Shared1 See page 565

0xBDE04680 RxFP_Interrupt_Event FP Rx Interrupt See page 566

0xBDE04684 RxFP_Interrupt_Enable See page 567

0xBDE04688 RxFP_Debug_Event_Mux_Control FP Rx DeBug See page 567

0xBDE04690 RxMemory_Address See page 570

0xBDE04694 RxMemory_Data See page 570

0xBDE04698 RxPDU_ID_CAM See page 570

0xBDE046A0 SEGS_RCVD FP Rx Statistics See Table 166 on
page 572

0xBDE046A4 PDUS_RCVD

0xBDE046A8 SEGS_LOST

0xBDE046AC PDUS_LOST

Table 161 Fabric Processor Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 529

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

0xBDE046C0 CPARITY_ERR FP Rx Statistics
(continued)

See Table 166 on
page 572

0xBDE046C4 ERR_HDR

0xBDE046C8 PARITY_ERR

0xBDE046CC LENGTH_ERR

0xBDE046D0 Reserved

0xBDE046D4 CRC_ERR

0xBDE046D8 ODD_PDU

0xBDE046DC SEQ_ERR

0xBDE046E0 SEQ_DIS

0xBDE046E4 LOST_PDU

0xBDE046E8 NO_FLOW_TBL

0xBDE046EC NO_BTAG

0xBDE046F0 BTAG_ERR

0xBDE046F4 ALLOC_ERR

0xBDE046F8 ENQUE_ERR

0xBDE04700 RxDebug_Internal_State See page 573

Table 161 Fabric Processor Registers (continued)

Address Register Name Function
Detailed
Parameters

For More Information On This Product,

 Go to: www.freescale.com

530 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FP Detailed Descriptions The following is a detailed description of each of the FP registers and their individual
parameters. The detailed parameters provide: purpose, field name, bit positions and
descriptions.

TxFP_Enable Register (FP Tx Enable Function)
The transmit path is enabled via the TxEnable register.

The FPTx cannot be re-enabled after it has been disabled.

TxFI_Configuration Register (FP Tx Configuration Function)

Purpose Provides TxFP enable/disable.

Address 0xBDD04000

Access Global Read/Write

Bit Position 31 30 0

Field Name Enable Reserved

Reset Value 0 0

Field Name Bit Position Description

Enable 31 Tx Fabric Port Enable — 1 enables the internal FP Tx logic;
0 disables the FP Tx and holds it in reset.

Reserved 30:0 Read/write

Purpose Allows physical configuration of the TxFP Interconnect.

Address 0xBDD04004

Access Global Read/Write

Bit Position 31 30 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

Field Name Enable Rsvd U2 Tri
Enable

U2
Mode

Variab
le

Cells
Rsvd PRIZMA Rsvd PowerX Idle Rsvd Rsvd SEG

Size Rsvd Bus
Width BigEnd ATM OddP Rsvd RegIn

Reset Value 0

Field Name Bit Position Description

Enable 31 CFI Enable — 1 enables the external C-Port Fabric Interface; 0
disables (external pins are tri-stated).

Reserved 30:26 Read/write

U2 Tri Enable 25 Utopia 2 Tri-state Enable — Must be set to 1. 1 enables tri-state
controls in Utopia 2 mode.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 531

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

U2 Mode 24 Utopia 2 Mode Enable — 1 enables Utopia 2 mode; 0 disables
Utopia 2 mode.

Variable Cells 23 Variable Cell Size Enable — 1 enables variable length cells; 0
disables.

Reserved 22 Read/write

PRIZMA 21 PRIZMA Mode Enable — 1 enables PRIZMA fabric mode; 0
disables the PRIZMA fabric mode. Cannot be set with PowerX
bit 19.

Reserved 20 Read/write

PowerX 19 PowerX Mode Enable — 1 enables PowerX mode; 0 deselects
PowerX mode. Cannot be set with PRIZMA bit 21.

Idle 18 Idle Cell Enable — 1 generates idle cell when the transmit FIFO is
empty; 0 inhibits generation of idle cell. Idle cells are only
supported for PRIZMA mode. Must be set in PRIZMA mode.

Reserved 17 Read/write

Reserved 16 Must be set to a 1.

SEG Size 15:8 Segment Size— Configures segment size of fabric (legal values
are from 40 to 204Bytes).
NOTE: The segment size must be a multiple of four Bytes (1 word).
Unpredictable results may occur for values outside of this range or
non word aligned.

Reserved 7 Must be set to zero.

Bus Width 6:5 Bus Width — Specifies Fabric bus width:

BigEnd 4 Select Big Endian — 1 select big endian; 0 selects little endian.

ATM 3 ATM — Selects ATM or PHY mode for Utopia. 1 selects ATM; 0
selects PHY.

OddP 2 Odd Parity — 1 selects odd parity; 0 selects even parity.

Field Name Bit Position Description

Encoded
Value

Width
(Bits)

00 8

01 16

10 undefined

11 32

For More Information On This Product,

 Go to: www.freescale.com

532 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxDescInfo Register (FP Tx Configuration Function)

TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)

Reserved 1 Read/write

RegIn 0 Select Registered Inputs — 1 selects registered inputs; 0 selects
non-registered inputs. Must be configured to 0 for Utopia2 mode.
Must be a 1 for Utopia3 and PRIZMA. This bit is a “don’t care” for
PowerX mode since there are no inputs to the FPTx; it is
recommended to set the bit to a 1.

Purpose Describes descriptor layout allowing TxFCE to extract key information.

Address 0xBDD04008

Access Global Read/Write

Bit Position 31 24 23 16 15 8 7 0

Field Name Multicast Position Length Position Pool Position BTag Position

Reset Value 0 0 0 0

Field Name Bit Position Description

Multicast Position 31:24 Multicast Position — Offset bit position in descriptor of
multicast bit.

Length Position 23:16 Length Position — Offset bit position in descriptor of PDU
length.

Pool Position 15:8 Pool Position — Offset bit position in descriptor of Pool ID.

BTag Position 7:0 BTag Position — Offset bit position in descriptor of BTag.

Purpose Used by the Data Merge hardware to prepend the header to the payload.

Address 0xBDD0400C

Access Global Read/Write

Bit Position 31 29 28 24 23 16 15 8 7 0

Field Name Reserved Min SOF-SOF Idle Cell Len Header Len2 Header Len1

Reset Value 0 0 0 0 0

Field Name Bit Position Description

Reserved 31:29 Read/write

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 533

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxQueueWeight_Configuration Register (FP Tx Configuration Function)

Min SOF-SOF
Spacing

28:24 Minimum Cell Size — Specifies minimum Start of Frame
(SOF)-to-SOF timing, in terms of fabric clocks for short cells in
PowerX mode.

Idle Cell Len 23:16 Idle Cell Length — Length of Idle Cell in bus cycles. (Used in
conjunction with TxFI Configuration register’s Idle Cell Enable
field and the Idle Cell Header register.) Only in PRIZMA mode.

Header Len2 15:8 Header Length 2 — Length of middle and last segment
headers in Bytes.

Header Len1 7:0 Header Length 1 — Length of first and only segment headers
in Bytes.

Purpose A globally accessible register that allows the configuration of relative
FPTx queue priorities.

Address 0xBDD04010

Access Global Read/Write

Bit Position 31 28 27 24 23 17 16 15 11 10 7 6 0

Field Name Reserved Queue Wgt (Rd) Reserved Write Reserved Queue Wgt(Wr) Queue Number

Reset Value raz n/a 0 0 0 0 0

Field Name Bit Position Description

Reserved 31:28 Read as zero.

Queue Wgt
(Read only)

27:24 Queue Weight Read Data — When read with the Write field
(bit 16) set to zero (0), it provides the weight of specified
queue number.

Reserved 23:17 Read/write

Write 16 Write — Writes queue weight value to queue number
specified.

Reserved 15:11 Read/write

Queue Wgt
(Write only)

10:7 Queue Weight Write Data — Weight value to be written to
queue number specified (default weight for each queue is 1).

Queue Number 6:0 Queue Number — Number of the queue to be accessed.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

534 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSysConfig Register (FP Tx Configuration Function)

TxFI_CRC Register (FP Tx Configuration)

Purpose Sets the base queue number for the FP.

Address 0xBDD04014

Access Global Read/Write

Bit Position 31 25 24 16 15 0

Field Name Reserved Queue Offset Fabric ID

Reset Value 0 0 0

Field Name Bit Position Description

Reserved 31:25 Read/write

Queue Offset 24:16 Queue Offset — Base queue number for FP block of 128
queues in QMU.

Fabric ID 15:0 Reserved

Purpose The TxFI CRC register configures the CRC function. The result can be
configured in two ways:

• Initial value of the CRC accumulator (0 or all 1s)

• Inverted (one’s complement)

The TxFI CRC provides index fields that allow the CRC to be calculated
over any sequential portion of the segment, and then appended or
inserted anywhere afterward.

Address 0xBDD04018

Access Global Read/Write

Bit Position 31 30 28 27 26 25 24 23 16 15 8 7 0

Field Name Enable Reserved Rsvd CRC Ini1 Rsvd Invert First Index Last Index Append Index

Reset Value 0 0 1 0 or 1 0 0 or 1 0 0 0

Field Name Bit Position Description

Enable 31 CRC Enable — 1 enables CRC mechanism; 0 disables and leaves
the CRC mechanism in reset

Reserved 30:28 Read/write

Reserved 27 Must be set to 1

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 535

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxFCE_Configuration Register (FP Tx Configuration Function)

Init1 26 CRC Initialization — 1 initializes the CRC register to all 1s; 0
initializes it to a 0.

Reserved 25 Must be set to 0

Invert 24 Invert CRC — 1 selects CRC to be inverted prior to being
appended to Segment; 0 selects not inverted.

First Index 23:16 First Index — Offset from Byte 0 of segment to start of CRC
accumulation Byte. Index must be a multiple of 4.

Last Index 15:8 Last Index — Must be equal to (cell size - 4). This represents the
offset (plus 1 byte) from byte 0 of segment to the last byte to be
part of the CRC accumulation.

Append
Index

7:0 Append Index — Byte offset from byte 0 of segment to
appended CRC (currently not supported).

Purpose Configures FCE descriptor size, queue configuration, and flow mask.

Address 0xBDD0401C

Access Global Read/Write. Bits [31:28] are read only from a global perspective;
they are written by FP hardware.

Field Name Bit Position Description

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0

Field Name QMU Parity
Error

Rd
Error

Wr
Error

QMU
Error

INT
Ack

INT
Enable

Desc
Size Rsvd QMU Parity

Error Enable
PDU

Pause
FC

Enab.
Queue
Depth Rsvd Rsvd Flow Mask

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Field Name Bit Position Description

QMU Parity
Error

31 QMU Parity Error — Indicates QMU dequeue parity error status.

Rd Error 30 Read Error — Indicates the TxFCE Read Control Block transfer
failed.

Wr Error 29 Write Error — Indicates the TxFCE Write Control Block transfer
failed.

QMU Error 28 QMU Error — Indicates the TxFCE dequeue operation failed.

INT Ack 27 Interrupt Acknowledge — Set to a 1 to acknowledge and clear
an interrupt, then set to 0.

For More Information On This Product,

 Go to: www.freescale.com

536 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

INT Enable 26 Interrupt Enable — 1 enables interrupts to be generated to the
XP for the following errors (see bits 31:28):

• QMU parity error

• Read error

• Write error

• QMU error

Desc Size 25:24 Descriptor Size:

Reserved 23:22 Read/write

QMU Parity
Error Enable

21 QMU Parity Error Enable— 1 enables QMU dequeue parity
error checking, 0 disables parity checking.

PDU Pause 20 Reserved. Must be set to zero

FC Enable 19 Flow Control Enable— 1 enables per-queue flow control; 0
disables per-queue flow control.

Queue Depth 18 Queue Depth — 1 selects 16 queues x eight priorities; 0 selects
32 queues x four priorities.

Reserved 17 Must be set to 1.

Reserved 16 Read as zero.

Flow Mask 15:0 Flow Mask — Used to mask ‘x’ bits of 16bit Flow ID during CAM
operation on congestion messages.
When matching entries in the Tx Flow ID CAM using the
TxFlowCam register (0xBDD0438), you must be sure to also set
this register’s Flow Mask field. The value of the Flow Mask is
AND’ed with the value of the TxFlowCam register's Match field to
obtain the result submitted to the CAM. The default value for the
Flow Mask is zero. Hence failing to set the Flow Mask means you
will never match any entry in the CAM.

Field Name Bit Position Description

Encoded
Value Size (Bytes)

00 12

01 16

10 24

11 32

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 537

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxDebugMux_Control Register (FP Tx DeBug Function)
For the purposes of debug, most of the internal registers are made visible via Global
Address Space, and a limited number of events (usually used to count) can be viewed via
the TxDebugMux register.

The selectable events are shown in Table 162. Any event can be viewed in association with
any of the four selection fields, including simultaneously being selected in more than one
field (that is, viewed multiple times).

Purpose Allows you to monitor events for FPTx debug purposes. These events are
selectable. Refer to Table 162 on page 538.

For the purposes of debug, specific monitoring points with in the FP Tx
are wired to the event register as selected by the TxDebugMux Control
register.

Address 0xBDD04020

Access FDP Read/Write, Global Read

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name EN0 RSVD SEL0 EN1 RSVD SEL1 EN2 RSVD SEL2 EN3 RSVD SEL3

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0

Field Name Bit Position Description

EN0 31 TxDebug Event Mux Control Enable 0 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 30:28 Read/write

SEL0 27:24 TxDebug Event Mux Control Select 0 — Selects one of the
eight FP Tx events to be viewed for the corresponding field.

EN1 23 TxDebug Event Mux Control Enable 1 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 22:20 Read/write

SEL1 19:16 TxDebug Event Mux Control Select 1 — Selects one of the
eight FP Tx events to be viewed for the corresponding field.

EN2 15 TxDebug Event Mux Control Enable 2 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 14:12 Read/write

For More Information On This Product,

 Go to: www.freescale.com

538 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SEL2 11:8 TxDebug Event Mux Control Select 2 — Selects one of the
eight FP Tx events to be viewed for the corresponding field.

EN3 7 TxDebug Event Mux Control Enable 3 — 1 enables the
associated selected events; 0 disables the associated event
from being viewed.

Reserved 6:4 Read/write

SEL3 3:0 TxDebug Event Mux Control Select 3 — Selects one of the
eight FP Tx events to be viewed for the corresponding field.

Table 162 FPTx_Debug Monitored Events

Select Value Monitored Event Description

0 Congestion control,
stops receive

Pulses once per flow stop request from the RxByte
processor.

1 Cell complete Pulses once per cell.

2 PDU complete Pulses once per complete PDU transmitted.

3 DMA request Pulses once per payload DMA.

4 PDU resume Pulses once per PDU resumed after a per flow stop.

5 Fabric FIFO empty Active for every clock that the transmit FIFO is empty.

6 Send pause Pulses once per RxCFI request to send a link-level pause.

7 Pause Pulses once per FPRx request to link-level pause.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 539

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxWCS_CAM (WCS_CAM Function)

Purpose Interface in global address space to initialize FP Tx Byte processor WCSs
and CAMs.

Address 0xBDD04024

Access Global Read / Write (bits [7:6] are read only)

Bit Position 31 16 15 8 7 6 5 4 3 2 1 0

Field Name Reserved WCS Write Data WCS Scan Out WCS Write
Cmd CAM Reset CAM Update WCS/CAM

Capture
WCS DATA

IN1
WCS DATA

IN0

Reset Value 0 0 0 0 0 0 0 0 0

Field Name Bit Position Description

Reserved 31:16 Read/write

WCS Write
Data

15:8 TxWCS_CAM WCS Write — Data to be written to both WCSes
via the Byte write interface.

WCS Scan Out 7:6 TxWCS_CAM WCS Scan — Read only. WCS scan shift out for
Byte processors 1 & 0 (in that order).

WCS Write
Cmd

5 TxWCS_CAM WCS Write Cmd — Setting this to a 1 launches a
Byte write to both WCSes. Cleared by hardware.

CAM Reset 4 TxWCS_CAM Reset — Setting this to a 1 resets the TxByte
CAM.

CAM Update 3 TxWCS_CAM Update — Setting this to a 1 updates the CAM
array from the CAM’s shift registers. Cleared by hardware.

WCS/CAM
Capture

2 TxWCS_CAM WCS/CAM Capture — Setting this to a 1
launches a WCS and CAM scan capture for diagnostic purposes
(loads data into the WCS and CAM shift registers). Cleared by
hardware.

WCS DATAIN1 1 TxWCS_CAM WCS DATAIN1 — Setting this to a 1 shifts a 1 into
the WCSes. Cleared by hardware.

WCS DATAIN0 0 TxWCS_CAM WCS DATAIN0 — Setting this to a 1 shifts a 0 into
the WCSes. Cleared by hardware.

For More Information On This Product,

 Go to: www.freescale.com

540 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxFlowTbI Register (FP Tx DeBug Function)

TxFlowTblDL Register (FP Tx DeBug Function)

Purpose Allows access to global address space read flow table inside the TxFCE.

Address 0xBDD0402C

Access Global Read/Write, 128 60bit entries

Bit Position 31 17 16 15 8 7 0

Field Name Reserved WT Reserved ADDR

Reset Value 0 0 0 0

Field Name Bit Position Description

Reserved 31:17, 15:8 Read/write.

WT 16 Write Flow Table — Writing a 1 initiates a flow table write. This
bit is automatically cleared by hardware.

ADDR 7:0 Flow Table Address — Address of flow table to write or read
NOTE: Only the first128 entries are valid.

Purpose Least significant word of flow table data.

Address 0xBDD04030

Access Global Read/Write

Bit Position 31 0

Field Name DATA_LOW

Reset Value Undefined

Field Name Bit Position Description

DATA_LOW 31:0 This is the low order data which was read from a flow table read,
or the data to be written on a flow table write.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 541

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxFlowTblDH Register (FP Tx DeBug Function)

TxFlowCam Register (FP Tx DeBug Function)

Purpose Most significant word of flow table data.

Address 0xBDD04034

Access Global Read/Write

Bit Position 31 28 27 0

Field Name Reserved DATA_HIGH

Reset Value raz Undefined

Field Name Bit Position Description

Reserved 31:28 Read As Zero (raz)

DATA_HIGH 27:0 This is the high order data which was read from a flow table read,
or the data to be written on a flow table write.

Purpose Interface to global address space to initialize the FDP TxFlow Cam store.

Address 0xBDD04038

Access Global Read/Write

Bit Position 31 27 26 25 24 23 8 7 0

Field Name Reserved WT DEL SRCH Match CAM WT Data

Reset Value raz raz raz raz raz (except bit 8) 0

Field Name Bit Position Description

Reserved 31:27 Read as zero.

WT 26 Write CAM Location — This bIt is always read as zero.Writes
the location matched, or the next free location if nothing
matches (for diagnostic purposes only). Setting this bit to a 1
launches a CAM write of the write data. After the CAM write, the
bit is cleared by the hardware.

1 = write Cam entry
0 = do not write Cam entry

For More Information On This Product,

 Go to: www.freescale.com

542 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxMergeAddr (FPTx Debug Function)

DEL 25 Delete CAM Entry — This bit is always read as zero.Deletes
CAM entry matched (for diagnostic purposes only). Setting this
bit to a 1 launches a CAM delete of the entry corresponding to
the previous match value. After the CAM write, the bit is cleared
by the hardware.

SRCH 24 CAM Search — 1 selects CAM search. This bit is always read as
zero.

Match 23:8 16Bit CAM Match Value — Value to search on. On reads, bits
23:9 return zeros, while bit 8 returns the CAM free indication.
When matching entries in the Tx Flow ID CAM using this
register, you must be sure to also set the TxFCE Configuration
(0xBDD0438) register’s Flow Mask field. The value of the Flow
Mask is AND’ed with the value of the TxFlowCam register's Match
field to obtain the result submitted to the CAM. The default
value for the Flow Mask is zero. Hence, failing to set the Flow
Mask means you will never match any entry in the CAM.

CAM WT Data 7:0 CAM Write Data — CAM data read from the CAM, or to be
written to the CAM. Field is 6:0, but bit 7 is always set to 0.

Purpose Used to select the Merge Block address and access (read/write), bits [5]
Selects Merge block 1/ 0, and bits [4:0] select the word offset (0-31).

Global Address 0xBDD0403C

Access Global Read, Global Write

Bit Position 31 17 16 15 8 5 0

Field Name Reserved WMB Reserved ADDR

Reset Value raz 0 raz 0

Field Name Bit Position Description

Reserved 31:17 Read as zero.

Field Name Bit Position Description

Encoded
Value CAM Action

1 Delete Cam entry

0 Do not delete Cam
entry

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 543

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 TxMergeData (FPTx Debug Function)

TxFDP_Mrg0 - TxFDP_Mrg63

WMB 16 Write Merge Block — 1 selects write; 0 selects read.

Reserved 15:8 Read as zero.

ADDR 5:0 Merge Space Address — Address of Merge Space to write/read.

Purpose Used to Write / Read Data from each Merge block

Global Address 0xBDD04040

Access Global Read, Global Write

Bit Position 31 0

Field Name DATA

Reset Value 0

Purpose Used for passing Merge data to the transmit data stream from the
Descriptor

Address Globally accessed via Mailbox registers shown above (TxMergeAddr (FPTx
Debug Function) and TxMergeData (FPTx Debug Function).

Access Global Read, Global Write (during test), FDP Receive Byte processor Write -
Byte addressable

Bit Position 31 0

Field Name Data

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

544 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxIdleData Register (FP Tx Configuration Function)

This register is meaningful only in PRIZMA mode.

TxFDP_CTL0 Register (TxByte General Purpose Function)

Purpose Provides data for idle cells.

Address 0xBDD04044

Access Global Read/Write

Bit Position 31 0

Field Name Idle Cell Data

Reset Value 0

Field Name Bit Position Description

Idle Cell Data 31:0 Idle Cell Data — Four Bytes of data for Idle cell generation.
(Used in conjunction with the TxFI Configuration register’s Idle
Cell Enable field, and the TxDM Header Payload Delimiter
register).

Purpose General purpose data which is accessible globally and by the FDP. There
are 2 32bit registers (FDP_CTL0, FDP_CTL1).

Address 0xBDD04048 (FDP_CTL0),

Access Global Read, Global Write, FDP Read

Bit Position 31 0

Field Name Data

Reset Value 0

Field Name Bit Position Description

Data 31:0 Global Read/Write, FDP Read

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 545

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxFDP_CTL1 Register (TxByte General Purpose Function)

TxDebug_Internal_State Register (FP Tx DeBug Function)

Purpose General purpose data which is accessible globally and by the FDP. There
are 2 32bit registers (FDP_CTL0, FDP_CTL1).

Address 0xBDD0404C (FDP_CTL1)

Access Global Read, Global Write, FDP Read

Bit Position 31 0

Field Name Data

Reset Value 0

Field Name Bit Position Description

Data 31:0 Global Read/Write, FDP Read

Purpose The TxDebug State register has 4 8bit fields that provide an internal
signal debug for the eight internal scopes.

While the FP Tx handles 128 flows, only eight flows (flows 0 through 7)
are active at any one time. Thus the bit fields indicate the state of each
active flow (within each field the LSB identifies flow 0 and the MSB
identifies flow 7).

Address 0xBDD04050

Access Global Read, Written by FDP hardware

Bit Position 31 24 23 16 15 8 7 0

Field Name seg_pending dma_pending pause_flow flow_valid

Field Name Bit Position Description

seg_pending 31:24 Segment Pending— 1 indicates the flow(s) (0-7) have
started to transmit a segment and are waiting for the
segment transmit to complete prior to getting the PDU
segment.

dma_pending 23:16 DMA Pending— 1 indicates the flow(s) (0-7) have
requested a PDU segment to be DMA'ed from DRAM to
DMEM and are currently awaiting the segment DMA to
complete so that it can be transmitted.

For More Information On This Product,

 Go to: www.freescale.com

546 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxStatus0 Register (FP RxByte Processor Function)

RxFlowSeg0 Register (FP RxByte Processor Function)
The Flow Segment register is used by the RxByte processor to associate a segment with a
flow. Specifically the RxByte extracts the Flow ID, Segment type, and whether the
segment is part of a multicast flow.

pause_flow 15:8 Pause Flow— 1 indicates the flow(s) (0 through 7) have
been paused (that is, flow controlled) and will be moved
to the 'sleep' state to allow another ready' flow to go
active.

flow_valid 7:0 Flow Valid— 1 indicates the flow(s) (0 through 7) are
actively transmitting. 0 indicates that the active flow slot
is not being used, that is, there are no additional flows
ready to be transmitted.

Purpose Read/modified Writes governing FDP receive operation for datascope0.

Address 0xBDE04090

FDP Address 0x80

Access FDP Read/Write, Global Read

Bit Position 7 6 1 0

Field Name OWN Reserved FID VLD

Reset Value 1 raz 0

Field Name Bit Position Description

OWN 7 Extract Space Ownership — 1 = FCE owns; 0 = FDP owns.

Reserved 6:1 Read as zero.

FID_VLD 0 Flow ID Valid — Indicates the FID is valid allowing hardware to
pipeline payload transfer at the earliest possible moment. 1 = FID
valid; 0 = FID not valid.

Purpose Associates a received Segment to a Flow

Address 0xBDE04094

Access FDP Read/Write, Global Read

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 547

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFlowSz0 Register (FP Rx Byte Processor Function)

Bit Position 31 27 26 25 24 23 18 17 16 15 0

Field Name Reserved Multicast Seg Type Reserved Flow Disc Flow Error PDU ID

Reset Value raz 0 0 raz 0 0 0

Field Name Bit Position Description

Reserved 31:27 Read as zero.

Mulitcast 26 Multicast Enable — Reserved. Must be set to 0.

Seg Type 25:24 Segment Type — Defines the Segment (PDU Segment):

Reserved 23:18 Read as zero.

Flow Disc 17 Flow Discard — 1 = Discards flow; 0 = does not discard flow.

Flow Error 16 Flow Error — 1 = FDP detects error (packet discarded with error);
0 = FDP detects no error.

PDU ID 15:0 PDU ID — The 16bit PDU ID.

Purpose Identifies the Length of the PDU for a given flow.

Address 0xBDE04098

Access FDP Read/Write, Global Read

Bit Position 15 0

Field Name Rx Flow Size

Reset Value 0

Field Name Bit Position Description

Rx Flow Size 15:0 Receive Flow Size — Length in Bytes of PDU of the current flow.

Encoded
Value Type

00 Middle segment

01 End of Message (last) segment

10 Beginning of Message (first) segment

11 First and only segment (last and first)

For More Information On This Product,

 Go to: www.freescale.com

548 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxTxCgs0 Register (FP Rx Byte Processor Function)

RxStatus1 Register (FP RxByte Processor Function)

Purpose Transmit Congestion Flow ID, signals transmit side that a specific flow has
congestion and should be stopped.

Address 0xBDE0409A

Access FDP Read/Write, Global Read

Bit Position 31 22 21 20 16 15 0

Field Name Reserved PAUSE_RES Reserved Flow ID

Reset Value raz 0 raz 0

Field Name Bit Position Description

Reserved 31:22 Read as zero.

PAUSE_RES 21 Pause Resume — 1 = disable transmit (Pause), 0 = enables or
resumes transmit.
NOTE: Writing the PAUSE_RES bit validates the data in the register.
This bit MUST be written last.

Reserved 20:16 Read as zero.

Flow ID 15:0 Flow ID — 16bit Flow ID (FID) that is masked and then mapped to
a 7bit queue Index by the TxFDP.

Purpose Read/modified Writes governing FDP receive operation for datascope1.

Address 0xBDE04290

FDP Address 0x80

Access FDP Read/Write, Global Read

Bit Position 7 6 1 0

Field Name OWN Reserved FID VLD

Reset Value 1 raz 0

Field Name Bit Position Description

OWN 7 Extract Space Ownership — 1 = FCE owns; 0 = FDP owns.

Reserved 6:1 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 549

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFlowSeg1 Register (FP RxByte Processor Function)
The RxFlow Segment register is used by the RxByte Byte processor to associate a segment
with a flow. Specifically the RxByte extracts the Flow ID, Segment type, and whether the
segment is part of a multicast flow.

FID_VLD 0 Flow ID Valid — Indicates the FID is valid allowing hardware to
pipeline payload transfer at the earliest possible moment. 1 = FID
valid; 0 = FID not valid

Purpose Associates a received Segment to a Flow

Address 0xBDE04294

Access FDP Read/Write, Global Read

Bit Position 31 27 26 25 24 23 18 17 16 15 0

Field Name Reserved Multicast Seg Type Reserved Flow Disc Flow Error PDU ID

Reset Value raz 0 0 raz 0 0 0

Field Name Bit Position Description

Reserved 31:27 Read as zero.

Mulitcast 26 Multicast Enable — Reserved. Must be set to 0.

Seg Type 25:24 Segment Type — Defines the Segment (PDU Segment):

Reserved 23:18 Read as zero.

Flow Disc 17 Flow Discard — 1 = Discards flow; 0 = does not discard flow.

Flow Error 16 Flow Error — 1 = FDP detects error (packet discarded with error);
0 = FDP detects no error.

PDU ID 15:0 PDU ID — The 16bit PDU ID.

Field Name Bit Position Description

Encoded
Value Type

00 Middle segment

01 End of Message (last) segment

10 Beginning of Message (first) segment

11 First and only segment (last and first

For More Information On This Product,

 Go to: www.freescale.com

550 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFlowSz1 Register (FP RxByte Processor Function)

RxTxCgs1 Register (FP RxByte Processor Function)

Purpose Identifies Length of PDU for a given flow.

Address 0xBDE04298

Access FDP Read/Write, Global Read

Bit Position 15 0

Field Name Rx Flow Size

Reset Value 0

Field Name Bit Position Description

Rx Flow Size 15:0 Receive Flow Size — Length in Bytes of PDU of the current flow.

Purpose Transmit Congestion Flow ID, signals transmit side that a specific flow has
congestion and should be stopped.

Address 0xBDE0429A

Access FDP Read/Write, Global Read

Bit Position 31 22 21 20 16 15 0

Field Name Reserved PAUSE_RES Reserved Flow ID

Reset Value raz 0 raz 0

Field Name Bit Position Description

Reserved 31:22 Read as zero.

PAUSE_RES 21 Pause Resume — 1 = disable transmit (Pause), 0 = enables or
resumes transmit.
NOTE: Writing the Byte that includes the PAUSE_RES bit validates
the data in the register. This Byte MUST be written last.

Reserved 20:16 Read as zero.

Flow ID 15:0 Flow ID — 16bit Flow ID (FID) that is masked and then mapped to
a 7bit queue Index by the TxFDP.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 551

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxEnable_Configuration Register (FP Rx Enable Function)
The internal FP Rx logic is enabled via the RxEnable Register.

A separate enable bit exists in the RxFI register for the FP Rx external fabric interface.

RxFI_Configuration Register (FP Rx Configuration Function)
The FDP contains eight configuration registers residing in global address space allocated
to the FP block. These registers enable configuration of each of the stages and are defined
below.

Purpose Setting the enable to a 1 turns on the internal FP Rx logic.

Address 0xBDE04600

Access Global Read/Write

Bit Position 31 30 0

Field Name Enable Reserved

Reset Value 0 raz

Field Name Bit Position Description

Enable 31 FP Rx Enable — 1 enables FP Rx; 0 disables FP Rx and holds it in
reset.

Purpose Allows physical configuration of the FP Rx Interconnect.

Address 0xBDE04604

Access Global Read, Global Write

Bit Position 31 30 27 26 25 24 23 22 16 15 8 7 6 5 4 3 2 1 0

Field Name CFI
Enable Inf Byte

Parity
Odd

Parity
Check
Parity Rsvd Ctrl

Mask
SEG
Size CLH Fab

Size
Fabric
Width

Big
Endian Rsvd ATM Reg

Input

Reset Value 0 0 0 1 0 raz 0 0 1 0 0 1 raz 0 1

Field Name Bit Position Description

CFI Enable 31 Interface Enable Bit — 1 enables the Fabric Interface state
machines and I/O buffers; 0 disables Fabric Interface (external pins
are tri-stated). This enable, separate from the Rx Enable, allows
software to delay the asynchronous payload from entering the
port until the C-5 NP synchronous portions of the FP are ready.

For More Information On This Product,

 Go to: www.freescale.com

552 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Interface 30:27 Interface Type — Interface type encoding.

Byte Parity 26 Byte Parity — 1 selects parity on each Byte lane. 0 deselects Byte
lane parity. Used in PowerX mode only. When selected, one bit of
parity is matched for each Byte of fabric width (pins CFI_CTL [6:3]
= P[0:3]). Must be 1 for PowerX mode, 0 for all other modes.

Odd Parity 25 Odd Parity — 1 selects odd parity check, 0 selects even parity.

Check Parity 24 Check Parity — 1 enables parity checking, 0 disables parity
checking.

Reserved 23, 2 Read as zero.

Parity Ctrl
Mask

22:16 Parity Control Mask — Only used in PowerX mode and must
be set to 7. Mask used to identify the valid CFI control pins that
parity is calculated over. (Parity of selected control pins is always
XOR’ed to least significant parity bit).

SEG Size 15:8 Segment Size — Configures segment size of fabric (legal values
are from 40 to 204Bytes).
NOTE: The segment size must be a multiple of four Bytes (1 word).
Unpredictable results may occur for values outside of this range or
non word aligned.

CLH 7 Cell Level Handshake — Must be set to 1. When selected, flow
control threshold values in RxDS Header register (see page 553)
enable flow control on nearest cell boundary. When not selected,
flow control threshold values are directly used to assert flow
control.

Fabric Size 6 Reserved

Field Name Bit Position Description

Encoded
Value Function

0x0 Utopia 3

0x1 Reserved

0x2 Reserved

0x3 PowerX

0x4 PRIZMA

0x5 Utopia1 and 2

0x6 to 0xF Reserved

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 553

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxDS_Header_Change1 Register (FP Rx Configuration Function)

Fabric Width 5:4 Fabric Bus Width — Specifies Fabric bus width:

Big Endian 3 Big Endian — 1 selects Big Endian mode, 0 selects Little Endian
mode.

ATM 1 ATM Mode — 1 selects ATM mode, 0 selects PHY mode. This bit is
meaningful only in Utopia mode.

Reg Input 0 Register Control and Data Input Pins — Used in all modes
except UTOPIA1 and 2. 1 selects Registered Input; 0 selects
non-Registered Input.

Purpose Configures Data Separator use of Payload Delimiter0 and Payload
Delimiter1 registers

Address 0xBDE04608

Access Global Read/Write

Bit Position 31 30 24 23 16 15 8 7 0

Field Name Change Reserved Change Index Change Value Change Mask

Reset Value 0 raz 0 0 0

Field Name Bit Position Description

Change 31 Change — Enable ability to switch from RxDS Header Delimiter0
register to RxDS Header Delimiter1 register.

Reserved 30:24 Read as zero.

Change Index 23:16 Change Index — Index into segment for match comparison
Byte.

Change Value 15:8 Change Value — Value to match against.

Change Mask 7:0 Change Mask — Mask to apply to match comparison Byte.

Field Name Bit Position Description

Encoded
Value Width (Bits)

00 8

01 16

10 Reserved

11 32

For More Information On This Product,

 Go to: www.freescale.com

554 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxDS_Header_Change2 Register (FP Rx Configuration Function)

RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)

RxDS Header/Payload Delimiter1 Register (FP Rx Configuration Function)

Purpose Same as RxDS Header Change Register 1 above.

Address 0xBDE0460C

Purpose Used by the Data Separator hardware to separate the header from the
payload.

Address 0xBDE04610

Access Global Read/Write

Bit Position 31 24 23 16 15 8 7 0

Field Name Reserved Header Last Index Payload First Index Payload Last Index

Reset Value raz 0 0 0

Field Name Bit Position Description

Reserved 31:24 Read as zero.

Header Last
Index

23:16 Header Last Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the last Byte of the header. Must be less
than or equal to (cell_size_5).

Payload First
Index

15:8 Payload First Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the first Byte of the payload.

Payload Last
Index

7:0 Payload Last Index — Byte position offset from 0 Byte (first
Byte) of cell identifying the last Byte of the payload.
Must be greater than 3.
NOTE: The Payload Last Index typically equals (cell_size_1),
using the Cell Size value programmed into the RxFI
configuration register. See RxFI_Configuration Register (FP Rx
Configuration Function).
NOTE: There must be at least a 32Byte difference between
Payload First Index and Payload Last Index.

Purpose Same as RxDSHeader/Payload Delimiter0 register, except for Payload
Delimiter1.

Address 0xBDE04614

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 555

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxDS_Header/Payload_Delimiter2 Register (FP Rx Configuration Function)

RxDS_Configuration Register (FP Rx Configuration Function)

Purpose Same as RxDSHeader/Payload Delimiter0 register, except for Payload
Delimiter2.

Address 0xBDE04618

Purpose Configures the Data Separator Hardware.

Address 0xBDE0461C

Access Global Read/Write

Bit Position 31 30 29 23 22 20 19 18 17 16 15 8 7 0

Field Name QUE GNT
DIS

SM GNT
DIS Rsvd CTL Word

Size
CTL Word

Disable Rsvd DROP
HDR

Rx Byte
EOH

Data XOFF
Threshold

Data XON
Threshold

Reset Value 0 0 raz 0 raz 0 32 32

Field Name Bit Position Description

QUE_GNT_DIS 31 Queue Grant Disable, PRIZMA mode only — Must be set to
1. 0 enables hardware interpretation of Queue Grants to link
level flow control Tx side of C-5 NP. 1 disables hardware so that
RxByte microcode can invoke per-flow flow control. When
enabled, link level flow control is asserted whenever any of the
Queue Grants are not enabled.

SM_GNT_DIS 30 Shared Memory Grant Disable, PRIZMA mode only —
Must be set to 0. A 0 value enables hardware interpretation of
Shared Memory Pool Grants to link level flow control Tx side of
C-5 NP. 1 disables hardware so that RxByte microcode can
invoke per-flow flow control. When this bit is zero, link level
flow control is asserted whenever any of the Shared Memory
Grants are not asserted.

Reserved 29:23, 18 Read as zero.

CTL Word Size 22:20 Control Word Size, PowerX only — Must be set to 2.
Indicates the size of control words for fabrics which support
them. For instance, 0=disabled, 010b=2 bytes, 100b=4 bytes.
Control words are directed to the appropriate Byte processor
between cells. Between cells, a Byte processor needs to test a
control word condition prior to each cell being processed. The
Byte processor needs to handle all control words prior to
handling the next cell.

CTL Word
Disable

19 Control Word Disable — Must be set to 0 for PowerX and 1
for all other modes. 1 deselects the Control word FIFO
operation; 0 enables CTL word FIFO operation. By deselecting
the CTL word FIFO, control words will be ignored by the Data
Splitter logic and not presented to the Byte processor.

For More Information On This Product,

 Go to: www.freescale.com

556 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFI_CRC Register (FP Rx Configuration Function)

DROP_HDR 17 Drop Header — Must be set to 0. 1 selects header to be
dropped when payload is being dropped due to congestion; 0
selects header to be forwarded to Byte processors even when
payload is being dropped.

Rx Byte
processor EOH

16 Receive Byte Processor End of Header Indication —
Reserved. Must be set to 0. 1 selects RxByte Byte processor
Data9 test condition to be set true coincident with the last
Byte of the header (PDU + SFR) (Refer to SDP Programmer
Guide). 0 selects RxByte Data9 test condition to be set true
coincident with the first Byte of the header.

Data XOFF
Threshold

15:8 Payload FIFO Flow Control threshold for XOFF — Number
of 32bit words left in the payload input FIFO when flow control
is asserted. Valid Range 0-125.
NOTE: The XOFF threshold must be less than the XON
threshold.

Data XON
Threshold

7:0 Payload FIFO Flow Control threshold for XON — Number
of 32bit words -1 left in the payload input FIFO when flow
control is deasserted. Valid Range: 1-126.
NOTE: The XON should always be greater than the Data XOFF
Threshold. If Data XON Threshold is less than Data XOFF,
unpredictable results will occur.

Purpose The RxFI CRC register configures the CRC function.

• Initial Value of the FP accumulator (0 or all 1s)

• Inverted (ones complement)

The RxFI CRC provides INDEX fields which allow the CRC to be calculated
over any sequential portion of the Segment and then appended or
inserted anywhere afterward.

Address 0xBDE04620

Access Global Read/Write

Bit Position 31 30 28 27 26 25 24 23 16 15 8 7 0

Field Name Enable Rsvd Rsvd Init1 Reflect Invert First Index Last Index Rsvd

Reset Value 0 raz 0 0 0 0 0 0 0

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 557

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxWCS_CAM Register (RxWCS_CAM Function)

Field Name Bit Position Description

Enable 31 CRC Enable — 1 enables CRC mechanism; 0 disables and leaves
the CRC mechanism in reset.

Reserved 30:28 Read/write

Reserved 27 Must be set to 1

Init1 26 CRC Initialization — 1 initializes the CRC register to all 1s; 0
initializes it to a 0.

Reflect 25 Reserved. Must be set to 0.

Invert 24 Invert CRC — 1 selects CRC to be inverted prior to being
appended to Segment; 0 selects not inverted.

First Index 23:16 First Index — Offset from byte 0 of segment to start of CRC
accumulation byte. Index must be a multiple of 4.

Last Index 15:8 Last Index — Must be set to (cell size - 1). Represents the offset
from byte 0 of segment to the last byte of the CRC value itself (not
the last byte of the CRC accumulation region). Must be equal to or
less than (cell size -1), even if CRC is not enabled.

Reserved 7:0 Append Index — Unused. Byte offset from byte 0 of segment to
appended CRC.

Purpose Interface in Global address space to initialize the FP RxByte processor
WCSs and CAMs along with the DBE WCS.

Address 0xBDE04624

Access Global Read / Write

Bit Position 31 24 23 22 21 20 19 18 17 16

Field Name DBE DATA IN DBE Scan
Out Rsvd DBE Write Rsvd DBE Scan

Capture
DBE Scan
Update

DBE Scan1
In

DBE Scan0
In

Reset Value 0 x raz 0 raz 0 0 0 0

Bit Position 15 8 7 6 5 4 3 2 1 0

Field Name WCS DATA IN WCS Scan1
Out

WCS Scan0
Out WCS Write Rsvd

WCS /CAM
Scan

Capture

WCS /CAM
Scan

Update

WCS /CAM
Scan1 In

WCS /CAM
Scan0 In

Reset Value 0 x x 0 raz 0 0 0 0

Field Name Bit Position Description

DBE Data in 31:24 WCS_CAM Data in — DBE WCS Byte wide data

For More Information On This Product,

 Go to: www.freescale.com

558 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

DBE Scan Out 23 WCS_CAM Scan Out — Output of DBE Scan Chain (Read
Only).

DBE Write 21 WCS_CAM Write — DBE WCS Byte Write (1 Selects
Write)

DBE Scan Capture 19 WCS_CAM Scan Capture — Capture data from selected
address field from the DBE WCS to the DBE Scan Chain

DBE Scan Update 18 WCS_CAM Scan Update —S tore or Update the DBE
WCS location as defined on the DBE Addr bits with the 52
bits of data in the DBE WCS.

DBE Scan1 In 17 WCS_CAM Scan1 In — Shift a 1 into the DBE Scan
Chain.

DBE Scan0 in 16 WCS_CAM Scan0 in— Shift a 0 into the DBE Scan Chain.

Rsvd 22, 20, 4 Reserved, Read as Zero.

WCS Data in 15:8 WCS_CAM Data in — WCS Byte wide data

WCS Scan1 Out 7 WCS_CAM Scan1 Out — Output of WCS1 Scan Chain
(Read Only).

WCS Scan0 Out 6 WCS_CAM Scan0 Out — Output of WCS0 Scan Chain
(Read Only).

WCS Write 5 WCS_CAM Write — WCS Byte Write (1-Selects Write)

WCS/CAM Scan
Capture

3 WCS_CAM Scan Capture — Capture data from selected
address fields from WCS/CAM to WCS/CAM Scan Chain.

WCS/CAM Scan
Update

2 WCS_CAM Scan Update — Store or Update the CAM
entry as defined on the CAM Addr bits with the 36 bits of
data in the CAM Group, CAM Pattern, and CAM Tag.

WCS/CAM Scan1 In 1 WCS_CAM Scan1 In — Shift a 1 into the Scan Chain.

WCS/CAM Scan0 in 0 WCS_CAM Scan0 in —Shift a 0 into the Scan Chain.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 559

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxByte0 General Purpose Configuration Register (FP Rx Configuration
Function)

RxByte1 General Purpose Configuration Register (FP Rx Configuration
Function)

RxFCE_Configuration0 Register (FP Rx Configuration Function)
The RxFCE contains configuration registers that reside in global address space and are
allocated to the FP block. These registers enable configuration of descriptors and Buffer
Pools as defined below.

Purpose The FDP RxByte0 General Purpose Configuration Register (PCR) provides
an area for passing information between the XP and the FDP RxByte
processor0.

Global Address 0xBDE04628

FDP Address 0xA0 – 0xA3

Access Global bus Read/Write, RxByte Read only – Byte addressable

Bit Position 31 0

Field Name Data

Reset Value 0

Purpose Same as the FDP RxByte0 General Purpose Configuration register except
for RxByte Processor1.

Global Address 0xBDE0462C

FDP Address 0xA0 – 0xA3

Purpose Configures RxFCE descriptor size, Ring Bus response size, and flow
mask.

Address 0xBDE04630

Access Global Read/Write,

Bit Position 31 26 25 24 23 22 18 17 16 15 0

Field Name Reserved Desc Size TLU Resp Reserved Resp Size PDU ID Mask

Reset Value raz 10 0 raz 10 0xFFFF

Field Name Bit Position Description

Reserved 31:26 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

560 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Desc Size 25:24 QMU Descriptor Size — Selects the Descriptor Size and
implicitly selects the extract space to 16 Byte x 16 scopes
(Desc Size = 12 or 16), or 32 Byte x 8 scopes (Desc Size = 24
or 32).

TLU Resp 23 Enable TLU Response — Force DBE to wait until TLU
response is complete before beginning to build a
descriptor.

1= enabled
0 = disabled

Reserved 22:18 Read as zero.

Resp Size 17:16 Response Size — Selects the TLU Response Size. For 16
Byte x 16 scopes, Resp Size = 16. For 32 Byte x 8 scopes,
Resp Size = 16 or 32.

PDU ID Mask 15:0 PDU ID Mask — Used to mask bits of PDU ID.
NOTE: This could be used in lieu of microcode to
automatically mask a PDU ID of less than 16bits.

Field Name Bit Position Description

Encoded
Value Size (Bytes)

00 32

01 12

10 16

11 24

Encoded
Value Size (Bytes)

00 32

01 8

10 16

11 reserved

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 561

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFCE_Configuration1 Register (FP Rx Configuration Function)

Purpose Configures the RxFCE.

Address 0xBDE04634

Access Global Write Only

Bit Position 31 16 15 14 13 10 9 8 7 0

Field Name PDU Size Default Size
Enable

PDU LEN
CK DIS Rsvd Drop on

Flow
Drop on

BTag
Allocation

Delay

Reset Value 0 raz 0 raz 0 0 0

Field Name Bit Position Description

PDU_Size 31:16 Default PDU Size — Used in place of the RxFlowSz register if
bit 10 (DFLT_SZ_EN) is selected.

DFLT_SZ_ EN 15 Default Size Enable — 1 selects default size; 0 requires
RxByte processor code to fill out PDU length (usually obtained
from first PDU segment header).

PDU_LEN_CK_DIS 14 PDU Length Check Disable — 1 disables PDU length check;
0 enables PDU length check. Used with protocols that do not
supply a length field in the header of the PDU. Here the
RxByte processor selects a PDU length to ensure a large
enough buffer. With this bit enabled, a final PDU length check
will not be performed, allowing the buffer to be enqueued
without error.

Reserved 13:10 Read as zero.

Drop on Flow 9 Drop on Flow — This bit must be set to 1. 1 selects drop
segment if a Flow Table CAM entry is not available; 0 selects
do not drop flow and wait for a Flow Table entry to become
available.

Drop on BTag 8 Drop on BTag — This bit should be set to 1. 1 selects drop
segment if BTag is not available; 0 selects wait for BTag to
become available. Leaving this set to 0 presumes that under a
worst case scenario, the BTag will become available prior to
the first segment fully arriving.

Allocation Delay 7:0 Allocation Delay — This bit must be set to 0. Back-off time
delay between retries when the FP Rx Buffer Pool Manager is
replenishing BTags. The default is 0. Can change using
(number of core clocks 8), but not recommended.

For More Information On This Product,

 Go to: www.freescale.com

562 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFCE_Configuration2 Register (FP Rx Configuration Function)

Buffer Pools
Associated with each of the four buffer pools are two configuration registers Pooln_CFG0
and Pooln_CFG1, where n=0,1,2,3.

Purpose Configures the FCE.

Address 0xBDE04638

Access Global Write Only (Global Reads return inaccurate data).

Bit Position 31 11 10 9 8 0

Field Name Reserved

 Force
64Byte
WrCB

Transfers

DFLT_Q_EN Default Queue

Reset Value raz 0 0 0

Field Name Bit Position Description

Reserved 31:11 Read as Zero

Force 64Byte
WrCB
Transfers

10 Force 64Byte WrCB Transfers — When asserted, the FP_Rx write
control blocks (WrCB’s) always performs a 64Byte DMA transfer to
SDRAM. Otherwise, DMA transfers are in 16Byte increments (16,
32, 48 or 64).

DFLT_Q_EN 9 Default Queue Enable — 1 selects the use of the Default Queue
(see Default Queue field) in the event of a TLU error; 0 disables the
use of the default queue.
NOTE: If both the DFLT_Q_EN bit is set and DBE code writes the
TLU_ERROR to the Drop Packet Bit, the DFLT_Q_EN takes
precedence and the packet is enqueued to the default queue.

Default
Queue

8:0 Default Queue Number — 9bit queue number to be used if
DFLT_Q_EN bit set and a TLU_ERROR occurs.

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 563

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Pool0_CFG0 Register (FP Rx Pool Configuration Function)

Purpose Configures FCE Buffer Pool0 ID and buffer size parameters. See Table 163
on page 563 for similar registers.

Address 0xBDE04640

Access Global Read/Write

Bit Position 31 21 20 16 15 6 5 0

Field Name Reserved Pool ID Buffer Size Reserved

Reset Value raz 0 0 raz

Field Name Bit Position Description

Reserved 31:21 Read as zero.

Pool Id 20:16 Pool ID — Maps to BMU Pool.

Buffer Size 15:6 Buffer Size — Must match BMU buffer size (between 64 and
64Kbytes) for specified pool ID. The sizes are in terms of 64 Byte
blocks. Buffer Size[15:6]=1 corresponds to a size of 64. Buffer
Size[15:6]=0b1111111111 corresponds to a size of 64K-64. NOTE:
A size of 0 is not valid; Buffer Size[15:6]=0 corresponds to a size of
64K.

Reserved 5:0 Read as zero.

Table 163 Pooln_CFG0 Registers (for Pools 1, 2, and 3)

Address Register Name Purpose
Counter
Width (Bits)

0xBDE04648 Pool1_CFG0 Same as Pool0_CFG0 reg, except for pool 1. 32

0xBDE04650 Pool2_CFG0 Same as Pool0_CFG0 reg, except for pool 2. 32

0xBDE04658 Pool3_CFG0 Same as Pool0_CFG0 reg, except for pool 3. 32

For More Information On This Product,

 Go to: www.freescale.com

564 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Pool0_CFG1 Register (FP Rx Pool Configuration Function)

Purpose Configures FCE Buffer Pool0, backup, allocation threshold, and last block
parameters. See Table 164 on page 564 for similar registers.

Address 0xBDE04644

Access Global Read/Write

Bit Position 31 26 25 24 23 11 10 8 7 3 2 0

Field Name Reserved Backup Reserved Alloc Threshold Rsvd Last Block

Reset Value raz n raz 0 raz 0

Field Name Bit Position Description

Reserved 31:26 Read as zero.

Backup 25:24 Backup Pool — Identifies the backup pool (0-3). If the backup
pool number equals itself, then there is no further backup.
Default to n, where n is the Pooln_CFG1 register. For example,
backup pool 0 = 0.

Reserved 23:11 Read as zero.

Alloc
Threshold

10:8 Allocation Threshold — Specifies a threshold value such that
when the number of blocks drops below that threshold,
additional BTags are fetched until the 'Last Block' level is reached.
Rules:

Allocation Threshold must ALWAYS be ≤ Last Block.
Last Block = 0 disables pool refill.

Reserved 7:3 Read as zero.

Last Block 2:0 Last Block of BTags — Specifies the blocks (0-7) that are to be
filled. Specifying a Last block of 0 disables a given pool. Therefore
the useful range is 1 to 7, where a value of 1 with an Allocation
Threshold = 1 fills two blocks (0 and 1).

Table 164 Pooln_CFG1 Registers (for Pools 1, 2 and 3)

Register Name Purpose Address

Pool1_CFG1 Same as Pool0_CFG1 reg, except for pool 1. 0xBDE0464C

Pool2_CFG1 Same as Pool0_CFG1 reg, except for pool 2. 0xBDE04654

Pool3_CFG1 Same as Pool0_CFG1 reg, except for pool 3. 0xBDE0465C

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 565

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

FDP_RxByte_Shared0 Register (FP Rx Shared Function)
The FDP provides two, 4Byte shared general purpose registers (FDP RxByte Shared0 and
FDP RxByte Shared1) that are accessible by both the FDP’s RxByte0 and RxByte1 Byte
processors (see page 559). The registers are Byte writable from each of the Byte
processors.

The use of the FDP RxByte Shared0 and FDP RxByte Shared1 registers are application
specific. For example, they could be used by the FDP microcode to pass information
between the RxByte0 and RxByte1 Byte processors.

One Byte of these registers could serve as a read/modified write, (where the value of the
read/modified write is passed to each Byte processor from the FDP GPR), if needed by the
application.

FDP_RxByte_Shared1 Register (FP Rx Shared Function)

Purpose Provides four Bytes for passing information between the FDP’s RxByte0
and RxByte1 processors.

Global Address 0xBDE04660

FDP Address 0xB0 – 0xB3

Access XP Read/Write FDP Receive Byte processor Read/Write – Byte
addressable

Bit Position 31 0

Field Name Data

Reset Value 0

Purpose Same as the FDP RxByte Shared0 register except that it provides an
additional four Bytes for passing information between the FDP’s
RxByte0 and the RxByte1 processors.

Global Address 0xBDE04664

FDP Address 0xB4 – 0xB7

For More Information On This Product,

 Go to: www.freescale.com

566 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFP_Interrupt_Event Register (FP Rx Interrupt Function)

Purpose Access to interrupt events (interrupts directed to the XP via the RxFP
Interrupt Event Mask register).

Address 0xBDE04680

Access Global Read/Write, Write 1 to Clear

Bit Position 31 7 6 5 4 3 2 1 0

Field Name Reserved
Error
FIFO
Full

Parity
Error

No
BTags

on Alloc
WR FAIL BTag PRG BTag

ECC
Alloc

Timeout

Reset Value raz 0 0 0 0 0 0 0

Field Name Bit Position Description

Reserved 31:7 Read as zero.

Error FIFO
Full

6 Error FIFO Full — Indicates all 32 entries of the error FIFO stack
are full.

Parity Error 5 Parity Error — Indicates a parity error was detected on the C-Port
Fabric interface.

No BTags on
Allocation

4 No BTags on Allocation — BTag allocation failed because of no
BTags available from the BMU.

WR FAIL 3 Payload Fail — Indicates a Payload Bus parity error during a
Payload Write via the WrCB.

BTag PRG 2 BTag PRG — Indicates either bad pool request (code 0x2) or a
non-existent memory location (code 0x6) was attempted by the
RdCB. These result from an inconsistent programming of the FP Rx
Pools relative to the FP Rx BTag.

BTag ECC 1 BTag ECC — Indicates a double ECC error was returned as a result
of an attempt by the RxCB to transfer BTags from the BMU. A code
of 0x5 is returned by the RdCB.

Allocation
Timeout

0 Allocation Time-out— Indicates the number of BTag allocation
retries exceeded, (16 max.)

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 567

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFP_Interrupt_Enable Register (FP Rx Interrupt Function)

RxFP_Debug_Event_Mux_Control (FP Rx DeBug Function)
Four of 13 events can be viewed via the RxDebug Event Mux Control register. The selectable
events are shown in Table 165. Many of these events relate to FIFO full conditions which, if
the FP Rx is programmed correctly, should never occur.

Any event can be viewed in association with any of the four selection fields, including
simultaneously being selected in more than one field, that is, viewed multiple times.

Purpose Enable interrupts for the corresponding bits in the RxFP Interrupt Event
register. Set a bit to 1 to enable the interrupt.

Address 0xBDE04684

Access Global Read/ Write

Bit Position 31 7 6 5 4 3 2 1 0

Field Name Reserved Error FIFO
Full EN

Parity
Error EN

No BTags
on Alloc

EN

WR FAIL
EN

BTag PRG
EN

BTag ECC
EN

Alloc
Timeout

EN

Reset Value raz 0 0 0 0 0 0 0

Purpose For the purposes of diagnostics and debug. Enables key test points to the
system event register to be viewed.

Address 0xBDE04688

Access FDP Read/Write, Global Read

Bit Position 31 30 28 27 24 23 22 20 19 16 15 14 12 11 8 7 6 4 3 0

Field Name EN0 RSVD SEL0 EN1 RSVD SEL1 EN2 RSVD SEL2 EN3 RSVD SEL3

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0

Field Name Bit Position Description

EN0 31 Enable0 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 30:28 Read as zero.

SEL0 27:24 Select0 — Selects one of the thirteen FP Rx events to be
viewed for the corresponding field. See Table 165 on page 568.

EN1 23 Enable1 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 22:20 Read as zero.

For More Information On This Product,

 Go to: www.freescale.com

568 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SEL1 19:16 Select1 — Selects one of the thirteen FP Rx events to be
viewed for the corresponding field. See Table 165 on page 568.

EN2 15 Enable2 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 14:12 Read as zero.

SEL2 11:8 Select2 — Selects one of the thirteen FP Rx events to be
viewed for the corresponding field. See Table 165 on page 568.

EN3 7 Enable3 — 1 enables the associated selected events; 0
disables the associated event from being viewed.

Reserved 6:4 Read as zero.

SEL3 3:0 Select3 — Selects one of the thirteen RxFP events to be
viewed for the corresponding field. See Table 165 on page 568.

Table 165 RxFP Events

Select Value Event Name Description

0 RX_NEXT_SEG Indicates that internal hardware is requesting the next
segment for processing. This event should occur
normally as a result of correct FP operation for each
segment received independent of whether an error is
detected in the segment or not.

1 RX_FLOW Indicates a good Queue status has been received from
the QMU as a result of either an enqueue or dequeue
operation. This event normally occurs as a result of
correct operation of the RxFP for non-errored PDUs.

2 RX_ERR Indicates one or more of the errors (as defined in the
error statistics table has occurred. This event occurs
operationally as a result of the non-fatal interface type
errors.

3 FLOW_ERR Indicates a valid buffer deallocation has been made as a
result of a flow error, that is, both the buffer deallocation
signal is high AND the tx_bde request FIFO is not full.
Flow errors occur during operation anytime an error is
detected in a flow after the first segment has been
successfully received, that is, resources allocated for the
flow and a subsequent segment has been detected to be
in error.

4 BPM_ERR_ALLOC Indicates Buffer Pool manager Allocation Error sourced
from the BMU. This can occur as a result of either a Minor
NAK or a lack of BTags for a requested pool cache update.

Field Name Bit Position Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 569

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

5 AFIFO_FULL Indicates Async Fabric Interface FIFO is full. This should
never occur under any circumstances and would indicate
a hardware failure. This FIFO is ‘deallocated’ upon the
condition that it is not empty, that is, data is moved out
on the following clock cycle. Data is dropped at the
synchronous payload FIFO under congested operation.

6 HFIFO_FULL Indicates the header processing FIFO is full. This FIFO is
filled by the Data Splitter with the selected header Bytes
as configured in the header/payload Delimiter registers. If
the header/payload Delimiter registers and RxByte
Processors are programmed correctly this FIFO should
never overflow. If this FIFO does overflow, then the FP Rx
must be reset to re-sync header and payload.

7 EFIFO_FULL Indicates an internal FIFO which passes detected
interface errors, for example, Parity or FP, between Fabric
Interface logic and internal hardware is full. This
condition should never occur.

8 PFIFO_PAUSE Indicates the pause (XOFF) threshold has been exceeded.
This typically occurs during a congested or
flow-controlled situation.

9 FLOW_FULL Either of two Internal ‘Flow FIFOs’ are full. Each of the Rx
Byte processors, upon selecting scope ‘Avail’, push the
current flow forward into the flow handling hardware of
the FP Rx. A ‘Flow Full’ event indicates that one of these
FIFOs is full and in effect the flow handling hardware is
stalled for some reason. Typically this is due to Internal
hardware pending upon lack of some resource such as
BTags (although DROP_ON_BTAG should be selected to
prevent this). This event should never occur.

10 DBE_FULL An Internal FIFO which passes the requests for the DBE to
Build a Descriptor for a given flow is full. This event
should never occur. This type of an event could occur if
the DBE or TLU is improperly programmed so that the
DBE is stalled, for example, waiting for a TLU operation to
complete.

11 ENQ_FULL FP Rx Enqueue Request FIFO Full. This event should never
occur. This would indicate that FP Rx internal hardware
has completed reassembly of a PDU and is enqueuing
requests faster than the enqueue hardware / QMU can
accept them.
NOTE: This error could be a result of a DBE / TLU
programming error such that the Q_NUM_VALID bit has
not been set by the DBE.

Table 165 RxFP Events (continued)

Select Value Event Name Description

For More Information On This Product,

 Go to: www.freescale.com

570 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxMemory_Address Register (FP Rx DeBug Function)

RxMemory_Data Register (FP Rx DeBug Function)

RxPDU_ID_CAM Register (FP Rx DeBug Function)

12 DEQ_FULL FP Rx Dequeue Request FIFO Full. This event should never
occur. This would indicate that FP Tx is requesting
Dequeue operations faster than Queue Request
hardware can process them.

Purpose Configures target memory address.

Address 0xBDE04690

Access Global Read/Write

Bit Position 31 0

Field Name Address

Reset Value 0

Purpose Used to write or read target Flow Table and Descriptor Memory locations.

Address 0xBDE04694

Access Global Read/Write

Bit Position 31 0

Field Name Data

Reset Value 0

Purpose Provides access to the FP Rx PDU_ID CAM for debug purposes.

The PDU_ID CAM is a 160-entry CAM in the FP Rx that maps a 16bit PDU
ID to an 8bit internal PDU index used by hardware. The CAM can be
accessed by software only for debug purposes.

Address 0xBDE04698

Access Global Read/Write. The CAM hardware updates the Free bit
continuously. The hardware updates the CAM data field after a Search
operation.

Table 165 RxFP Events (continued)

Select Value Event Name Description

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 571

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Bit Position 31 28 27 26 25 24 23 8 7 0

Field Name Reserved Free Write Delete Search Match CAM Data

Reset Value raz 0 raz raz 0 0 0

Field Name Bit Position Description

Reserved 31:28 Read as zero.

Free 27 Free - Indicates that at least one entry in the CAM is free
(available for use). This bit is read-only.

Write 26 Write CAM Location — Writes the location matched, or the
next free location if nothing matches (for diagnostic purposes
only). Setting this bit to a 1 launches a CAM write of the write
data. The bit will then be cleared by the hardware. It will always
be read as zero.

Delete 25 Delete CAM Entry — Deletes CAM entry matched (for
diagnostic purposes only). Setting this bit to a 1 launches a CAM
delete of the entry corresponding to the match value. The bit
will then be cleared by the hardware. It will always be read as
zero.

Search 24 Search — 1 selects CAM search, using the match value. After
the search, the result is returned via the CAM data field in this
register.

Match 23:8 16bit CAM Match Value — Value to search on.

CAM Data 7:0 CAM Data - Contains the 8bit value that was read out of the
CAM after the most recent Search operation. Alternatively, this
represents the data that is written into the CAM on a Write
operation.

Encoded
Value CAM Action

1 Delete Cam entry

0 Do not delete Cam
entry

For More Information On This Product,

 Go to: www.freescale.com

572 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxFP_Statistics Registers (FP Rx Statistics Function)
The FP Rx provides nineteen 32bit registers that accumulate statistics. These registers are
only accessible via the global bus. Table 166 defines these registers and provides their
Global Bus address. The RxFP Statistics Registers are read in 32bit quantities. For counters
that are only 16bits, the upper 16bits of the register are read as zero (raz) and the lower
16bits hold the contents of the requested counter. A global write to one of these registers,
regardless of the write data, will reset the counter to 0.

When a counter reaches its maximum value, it rolls over to 0 and starts counting again.

Table 166 Global Bus Receive FP Statistics Registers Map

Address Name Description

Counter
Width
(Bits)

0xBDE046A0 SEGS_RCVD Number of segments received. 32

0xBDE046A4 PDUS_RCVD Number of PDUs received. 32

0xBDE046A8 SEGS_LOST Number of segments lost. 32

0xBDE046AC PDUS_LOST Number of PDUs lost for any reason. 32

0xBDE046C0 CPARITY_ERR Number of Control Word Parity Errors (PowerX only). 16

0xBDE046C4 ERR_HDR Number of Errored headers (HDR FIFO overrun –
Fatal Error).

16

0xBDE046C8 PARITY_ERR Number of received parity errors. 16

0xBDE046CC LENGTH_ERR Number of segments length errors. 16

0xBDE046D0 Reserved Reserved. Read as zero. 16

0xBDE046D4 CRC_ERR Number of CRC errors. 16

0xBDE046D8 ODD_PDU Number of odd PDUs (middle or last Segment with
no CAM entry).

16

0xBDE046DC SEQ_ERR Number of sequencer errors (set by RxByte
processor).

16

0xBDE046E0 SEQ_DIS Number of sequencer discards (set by RxByte
processor).

16

0xBDE046E4 LOST_PDU Number of PDUs lost because of missing cells (PDU
length error).

16

0xBDE046E8 NO_FLOW_TBL Number of times no Flow Table entry available (all
160 flows are in use).

16

0xBDE046EC NO_BTAG Number of times no BTag available from the Pool
Cache in the FP Rx.

16

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 573

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxDebug_Internal_State Register (FP Rx Statistics Function)

0xBDE046F0 BTAG_ERR Bits [23:16] represent the number of BTag
Programming Errors, for example, because of a bad
Pool ID. Bits [7:0] represent the number of BTag ECC
errors. The remaining bits are unused.

32
(contains
2 8bit
counters)

0xBDE046F4 ALLOC_ERR Number of BTag allocation errors, due to lack of
available BTags in the BMU.

16

0xBDE046F8 ENQUE_ERR Number of enqueue errors (QMU responded with a
NAK, i.e. due to lack of descriptors).

16

Purpose Enables viewing key internal states including: SBP0/1 Program counter,
Descriptor Build Engine Program Counter, Internal Buffer (BFR)
State-machine states, Internal DMA Transfer (‘XCB’) states, and internal
Enqueue Engine states.

Address 0xBDE04700

Access Global Read Only

Bit Position 31 30 25 24 19 18 14 13 8 7 6 5 0

Field Name Rsvd SBP0 SBP1 BFR STATE DBE PC XCB ENQ STATE

Reset Value 0 0 0 0 0 0 0

Field Name Bit Position Description

Reserved 31 Read a zero.

SBP0 30:25 Serial Byte Processor Program Counter0 — Program Counter0
for the Serial Byte Processor [5:0], bit 6 is not available.

SBP1 24:19 Serial Byte Processor Program Counter1 — Program Counter1
for the Serial Byte Processor [5:0], bit 6 is not available.

BFR STATE 18:14 Buffer State Machine States — See Table 169 on page 575.

DBE PC 13:8 Descriptor Build Engine Program Counter — Program counter
for the Descriptor Build Engine.

XCB 7:6 Transfer Control Block Programming States — See Table 168
on page 574.

ENQ STATE 5:0 Enqueue State Machine States — See Table 167 on page 574.

Table 166 Global Bus Receive FP Statistics Registers Map (continued)

Address Name Description

Counter
Width
(Bits)

For More Information On This Product,

 Go to: www.freescale.com

574 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Each state machine runs off the core clock and requires at least one clock cycle to
transition to the exit state. States are either conditional, that is, waiting for one or more
conditions to become true so they can exit to an alternate state, or they are transitional
whereby they will always exit to an alternate state in a single clock cycle.

While transitional states may have conditions that allow them to transition to one or more
possible states, if no condition is true, a default exit state ensures that they cannot remain
in the current state. The importance of this distinction is that when asynchronously
polling the RxDebug Internal State register, it is important to realize that by chance you
may hit upon transitional states that indicate that the machine is operating and that a cell
is being processed by the FP Rx. Consistently seeing a conditional state indicates that the
machine is most likely waiting for a condition to be fulfilled. This can help you identify a
related illegal configuration.

Whether a state is conditional (C) or transitional (T) is called out in the following Machine
State tables.

Table 167 Enqueue QMU Programing Machine States

State
Number

State
Type State Name Description / Exit Condition

0 C IDLE Idle state awaiting BFR Enqueue request

1 T PEND Pend State provided for timing purposes

10 T PRG_CTRL Program Control Info to QMU such as Weight, MCAST etc.

18 - 11 T ENQ8-ENQ1 Program Words 8 – 1.
NOTE: For 32Byte descriptors states ENQ8-1 are transitioned,
24Byte descriptors ENQ6-1, 16Byte descriptors ENQQ4-1, 12
Byte descriptors ENQ3-1. Once an ENQ state is entered they
cycle down to ENQ1, then PEND, then back to idle, all one
clock per state.

Table 168 Transfer Control Block Programing States

State
Number

State
Type State Name Description / Exit Condition

0 C IDLE/
PRG_SYS

IDLE State awaiting BFR Payload DMEM flush to DRAM. Upon
which Write CB System Register is programmed as state is
exited

1 T PRG_DMA Write CB DMA Register being programmed

2 T PRG_CTL Write CB Control Register being programmed

For More Information On This Product,

 Go to: www.freescale.com

Fabric Processor (FP) Configuration Registers 575

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 169 Buffer Engine State Machine States

State
Number

State
Type State Name Description / Exit Condition

0 C IDLE Idle, waiting for Valid Segment Indication from SBP0 and 1
in alternating order

1 T CAM_WAIT Flow ID (FID) CAM lookup delay state

2 C SEARCH Match FID to produce Flow Index (FIN), Determines
Segment type. Requires available FID entry OR Drop on
Flow bit enabled (Bit9 selected to 1 in the RxFCE Config1
Register).

3 T RD_TABLE FIN is used to index into Flow State Table

4 C GET_BTAG For beginning of messages (firsts), state to get a BTag.
Technically this state is Transitional, however if no BTags
exist, the BFR will alternate between states 2 and 4 until
BTags with correctly sized buffers become available.

5 C XFR_DATA Transfer Data from Payload FIFO to 64Byte DMEM Buffer.
XFR DMEM to DRAM every 64Byte boundary. Stays in this
state until End of Segment (EOS) or End of Packet (EOP).

6 C DROP_DATA Discard state for pad Bytes of last segment or discard due
to Segment/Flow error. Exit upon EOS.

7 C ENQUEUE Enqueue Assessment state. Waits if Enqueue and no room
in Enqueue Request FIFO.

8 T ERROR Delay state to wait for worst case parity / FP errors

9 C NEW_BFR State to get a new 64Byte DMEM buffer as XFR to buffer
DRAM BTag. Wait in this state until a new DMEM buffer is
available.

10 C PEND_BFR Special case where end of segment and 64 byte DMEM
buffer are full. Need to get a new buffer before updating
state table. Wait in this state until new DMEM buffer is
available.

11 T RTN_PEND Special delay state to allow DMEM buffer to be returned
during transfer if an error detected.

For More Information On This Product,

 Go to: www.freescale.com

576 APPENDIX A: C-5 NP REGISTERS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Appendix B
Using Aggregate Mode

Appendix Overview This appendix covers the following topics:

• Purpose of the C-5 NP Channel Aggregate Mode

• Aggregate Mode Requirements on the C-5 NP

• Packet/Cell Ordering Handling for Rx in Aggregate Mode

• Packet/Cell Ordering Handling for Tx in Aggregate Mode

• Clock Distribution in Aggregate Mode

• Aggregate Mode Application Examples

For More Information On This Product,

 Go to: www.freescale.com

578 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Purpose of the C-5 NP
Channel Aggregate
Mode

The C-5 NP Aggregate Mode enables you to scale serial bandwidths. The CPs can be
aggregated into parallel clusters for wider data streams. The C-5 NP’s 16 CPs can be
partitioned into four (4) groups of four (4) CPs called clusters. Clusters allow the CPs to
share resources (IMEM and DMEM) and support aggregation. A cluster of CPs can be
configured, for example, to work together to support one physical interface (such as
OC-12), or either the receive or transmit portion of one physical interface (such as Gigabit
Ethernet).

The types of physical interfaces that require aggregation in the C-5 NP include: Gigabit
Ethernet, FibreChannel, OC-12 and OC-12c.

Aggregate Mode
Requirements on the
C-5 NP

Aggregation requires that the C-5 NP fulfill two (2) requirements for processing data from
high-speed physical interface. These are needed to ensure that the C-5 NP is able to keep
up with the speed of these high-bandwidth physical interfaces, as well as effectively use
the processing power of the C-5 NP; the following requirements must be met:

1 Individual packets and cells must be distributed among the CPs in a cluster to
effectively share the processing load.

2 Packet and cell ordering between the ingress and egress physical interfaces must be
preserved.

Supporting these two (2) requirements have the following implications for the Serial Data
Processor (SDP) and Channel Processor RISC Core (CPRC) components as described in
Table 170 on page 578.

Table 170 Aggregate Mode Implications (for SDP and CPRC)

Component Implication

RxSDP The RxSDP must distribute incoming packets and cells to the different CPs within
a cluster in a round robin fashion.

CPRC The CPRC receive program must ensure that order is maintained with enqueue
operations to the QMU within a cluster.

The CPRC transmit program must ensure that order is maintained with dequeue
operations from the QMU within a cluster.

TxSDP The TxSDP must serialize outgoing packets and cells from the CPs within a cluster
to a single physical interface correctly.

For More Information On This Product,

 Go to: www.freescale.com

Packet/Cell Ordering Handling for Rx in Aggregate Mode 579

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Packet/Cell Ordering
Handling for Rx in
Aggregate Mode

Most network protocols at Layer 2 and Layer 3 require that the forwarding component
maintain ordering, but some do not. At the physical layer the distinction between these
two (2) scenarios cannot be made. To solve this problem, the C-5 NP maintains ordering of
all packets and cells that it processes from a physical interface when aggregated.

To support distribution of packets or cells evenly to the CPs within a cluster, the C-5 NP
uses two (2) types of tokens:

• Hardware tokens in the RxSDP to deliver packets and cells to CPs in a round-robin
fashion

• The CPRC software receive programs use software tokens to serialize enqueue
operations. This maintains the ordering of descriptors to the QMU

Hardware Receive
Tokens

The RxSDP processor provides four (4) token buses that run among the RxBit processors,
the RxSONET Framer blocks, the RxSync processors, and the RxByte processors within a
cluster. Refer to Figure 84 on page 580. The token buses in the RxSDP pass tokens
between sequencers. A sequencer cannot forward a packet or cell upstream in the RxSDP
until it has the token. The token passing function is asserted by a microprogram running
in an RxSDP sequencer, and the token is typically passed by a microprogram based on
packet or cell delineation. This ensures that different packets and cells are delivered to
different CPs within a cluster in a round robin fashion.

For More Information On This Product,

 Go to: www.freescale.com

580 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 84 RxSDP Token Buses

Software Receive
Tokens

The CPRC receive program is typically notified of packet or cell arrival from the RxSDP. It
then makes a forwarding decision and enqueues a descriptor to the QMU for forwarding
to the egress interface. In the aggregated case, the software program running on the
receive CPRC must ensure that the QMU receives application-defined descriptors in the
same order that the packets that the descriptors represent arrived from the physical
interface. To achieve this requirement, the software programs running on the CPRC must
ensure that the descriptor enqueue operations are serialized.

The CPRC programs achieve this by using a piece of shared DMEM as a software token.
A CPRC program only enqueues when it owns the token. The program passes the token to
its neighbor after enqueueing the descriptor.

This operation ensures that transactions to the QMU are in the same order in which the
packets arrived on the physical interface.

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

8b/10b
Decode
Block

Large
FIFO

Small
FIFORxSDP

Token
Bus

Token
Bus

Token
Bus

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

RxBit
Processor

RxSONET
Framer
Block

RxSync
Processor

Token
Bus

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

For More Information On This Product,

 Go to: www.freescale.com

Packet/Cell Ordering Handling for Tx in Aggregate Mode 581

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Packet/Cell Ordering
Handling for Tx in
Aggregate Mode

Like receive aggregation, transmit aggregation must maintain ordering from the QMU to
the physical interface. This requires the same level of synchronization and ordering as
receive aggregation.

Hardware Transmit
Tokens

There is a single hardware token bus that is used in the TxByte processor. Refer to
Figure 85 on page 582. The management of this token bus is controlled by the microcode
running in the TxByte processor. This token controls the draining of the large FIFO
downstream of the TxByte processor.

This function allows the TxByte processors to prime the FIFOs even if they do not happen
to own the token. When the TxByte processor does own the token, the large FIFO is filled
with enough data to keep the TxBit processor — and the physical interface — full.

There is only one (1) TxBit processor that operates per aggregated cluster. This processor
gets the data from the large FIFO selected by the TxByte token that is being passed in a
round-robin fashion.

Software Transmit
Tokens

The CPRC transmit program maintains a software token in shared DMEM for the cluster
doing transmit processing for the aggregated physical interface. The transmit program
can only send the packet or cell to its TxSDP when it owns the token. After the TxSDP
begins packet or cell transmission, the CPRC transmit program passes the token to its
neighbor so it can begin the same process.

For More Information On This Product,

 Go to: www.freescale.com

582 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 85 TxSDP Token Bus

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

8b/10b
Encode
Block

TxBit
Processor

TxSONET
Framer
Block

Large
FIFO

Small
FIFOTxSDP

Token
Bus

TxByte
Processor

TxByte
Processor

TxByte
Processor

TxByte
Processor

For More Information On This Product,

 Go to: www.freescale.com

Clock Distribution in Aggregate Mode 583

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Clock Distribution in
Aggregate Mode

The pad data and clocks are wired so that they can be accessed equally by all CPs in the
cluster.

Latching is performed at the pads using the configured clock, with the latched data
circulated to the SDPs. The pads are grouped such that two (2) CPs have sufficient pads to
meet the needs of either transmit or receive. During aggregation, the receive clock from
one (1) CP cluster becomes the master receive clock for all of the pads in the two (2) CP
clusters. In addition, the PHY chip in OC-12c generates the transmit clock, so the clock is
received and then forwarded through the transmit clock mux to become the master
transmit clock for the cluster.

The transmit data and clock are available to all four (4) transmit SDPs in CPs 0 to 3 through
busing from the pins. Similarly, the receive data and clock is available for all four (4) receive
SDPs in CPs 4 to 7 through busing from the pins. OC-12 aggregation of four (4) CPs has the
transmit pins allocated from CPs 0 and 2 and receive pins allocated from CPs 1 and 3.

Aggregate Mode
Application Examples

Each application that uses CP aggregation (Gigabit Ethernet, FibreChannel, OC-12 and
OC-12c) has a slightly different implementation. This section provides details on each.

Gigabit Ethernet and
FibreChannel
Applications

Both Gigabit Ethernet and FibreChannel use the TBI (ten-bit interface) physical layer
encoding. Even though Layer 2 and above of the protocol is different, each of these
protocols implements aggregation in the same fashion. GMII for Gigabit Ethernet also
follows this same aggregation scheme.

PHY Connectivity
The pins that connect the TBI/GMII and the C-5 NP are spread across all of the pins in a CP
cluster. It so happens that the transmit pins from the TBI/GMII are on CP0 and CP1 of the
cluster and the receive pins are on CP2 and CP3 of the cluster. Since every CP only has 7
pins associated with it, this configuration is necessary for processing of TBI/GMII protocols.
For complete descriptions of Gigabit Ethernet and FibreChannel pinouts, see the C-5 NP
Data Sheet.

After the pins are routed inside the C-5 NP, they are muxed together and sent as a single
10bit stream to each CP in the cluster for processing as a single stream. Refer to Figure 86
on page 585.

For More Information On This Product,

 Go to: www.freescale.com

584 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SDP Components
The RxSDP components that are used by these protocols are the 8b/10b Decode block,
the RxBit processor, the RxSync processor, and the RxByte processor. The TxSDP
components that are used by these protocols are the TxByte processor, the TxBit
processor, and the 8b/10b Encode block. The receive path is shown in Figure 86 on
page 585, and the transmit path is shown in Figure 87 on page 587.

8b/10b Decode Block
Since Gigabit Ethernet and FibreChannel are 10bit protocols, they each use the 8b/10b
Decode block in the RxSDP to convert the 10bit physical layer encoding into the 8bit data
on which the C-5 NP can operate.

FibreChannel has a slightly different Loss-of-Synchronization state machine than Gigabit
Ethernet that is implemented in this block.

RxBit Processor
The RxBit processor delivers received packets to the RxSync processor upstream when it
owns the token. It then passes the token to the next RxBit processor in line. If the token is
not owned by the RxBit processor, the bits are dropped.

Functionally, the RxBit processor is used in these applications for frame delineation,
stripping of control characters, and preamble for delivery of the packet without physical
layer or control information into the RxSync processor.

RxSync and RxByte Processors
The RxSync processor is used in both FibreChannel and Gigabit for auxiliary processing.
The RxByte processor is used for function parsing and processing of Layer 2 and above in
Gigabit Ethernet and FibreChannel.

For More Information On This Product,

 Go to: www.freescale.com

Aggregate Mode Application Examples 585

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 86 SDP Receive Path for Gigabit Ethernet and FibreChannel

TxByte Processor
The TxByte processor is used in these protocols to distribute packets from the cluster of
CPs to a single physical interface by way of the TxBit processor. This is done by each of the
TxByte processors in a cluster filling the large FIFO with bytes, but not allowing the TxBit
processor to empty its FIFO until it owns the hardware token.

Functionally, the TxByte processor does header updating and replacement, CRC and
checksum recalculation of data flowing through to the physical interface.

C-
5

NP
 B

ou
nd

ar
y

PHY Clock Core Clock

Large
FIFO

8b/10b
Decode
Block

CP0 RxSDP

PHY Clock Core Clock

Large
FIFOCP1 RxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

Large
FIFOCP2 RxSDP

PHY Clock Core Clock

Large
FIFOCP3 RxSDP

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxBit
Processor

RxBit
Processor

RxBit
Processor

RxBit
Processor

Small
FIFO

Small
FIFO

Small
FIFO

Small
FIFO

8b/10b
Decode
Block

8b/10b
Decode
Block

8b/10b
Decode
Block

M
U

X

11 (TBI)/13 (GMII)

Token Bus

For More Information On This Product,

 Go to: www.freescale.com

586 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxBit Processor
The TxBit processor is used to send the 8bit data bytes to the 8b/10b block for 10bit
encoding and transmission out to the physical interface. The TxBit processor appears to
receive a single stream of data from the set of large FIFOs from other TxSDPs (in order of
what TxByte processor owns the hardware token). Functionally, the TxBit processor is
responsible for inserting idle characters, control characters, and inter-packet gaps.

8b/10b Encode Block
The 8b/10b Encode block takes the 8bit data from the TxBit processor and does the
proper 10bit encoding before transmission to the physical interface.

In the case of FibreChannel, this encoder inserts the correct End-of-Frame (EOF) word
based on the 8b/10b running disparity. There is no such requirement in Gigabit Ethernet.

For More Information On This Product,

 Go to: www.freescale.com

Aggregate Mode Application Examples 587

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 87 SDP Transmit Path for Gigabit Ethernet and FibreChannel

PHY Clock

C-
5

NP
 B

ou
nd

ar
y

Core Clock

RxBit
Processor

Large
FIFOCP4 TxSDP

PHY Clock Core Clock

CP5 TxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

CP6 TxSDP

PHY Clock Core Clock

CP7 TxSDP

11 (TBI)/13 (GMII)DE
M

U
X

TxBit
Processor

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

TxByte
Processor

Large
FIFO

Small
FIFO

TxByte
Processor

TxByte
Processor

TxByte
Processor

8b/10b
Encode
Block

Large
FIFO

Large
FIFO

Token Bus

For More Information On This Product,

 Go to: www.freescale.com

588 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Implementation Options
Both Gigabit Ethernet and FibreChannel can be implemented in two (2) different designs.

Non-blocking Operation
For non-blocking switching, one (1) CP cluster can be dedicated to receive processing and
one to transmit processing. The reason that this is necessary is to ensure that the CPRC has
enough processor cycles to keep up with the speed of the physical interface and not to
overload the BMU for memory bandwidth.

This is how the reference applications in the C-Ware Applications Library are implemented.
Clusters 0 and 2 are dedicated to receive processing and clusters 1 and 3 are dedicated to
transmit processing.

The physical design implications are that the transmit pins on CP0 and CP1 on clusters 0
and 2 are tied down since they are not used. Likewise, the receive pins on CP2 and CP3 on
clusters 1 and 3 are tied down since they are not used.

Blocking Operation
To have a system with twice the port density, but potentially blocks the C-5 NP, can be
configured to have four (4) Gigabit Ethernet or FibreChannel ports by wiring all the
receive and transmit data pins on a cluster.

That is each cluster would have a full-duplex PHY connected to it by wiring all the pins on
the cluster to one (1) PHY.

For More Information On This Product,

 Go to: www.freescale.com

Aggregate Mode Application Examples 589

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

OC-12 and OC-12c
Applications

Both OC-12 and OC-12c applications, which include Packet-Over-SONET (POS) and ATM,
can be implemented with the C-5 NP using CP aggregation. Both of these protocols use
the SDP in the same configuration but have subtle differences in serialization and
synchronization of the SDPs.

PHY Connectivity
The pins that the physical interface are wired to on the C-5 NP are spread out over the
cluster. This is because each CP on the C-5 NP only has 7 external pins associated with it
and that is too few to support OC-12 or OC-12c. Internally, the OC-12 or OC-12c data pins
are replicated and sent to each of the CPs within the cluster for processing. For complete
descriptions of OC-12/OC-12c pinouts, see the C-5 NP Data Sheet.

SDP Components
The RxSDP components that are used by these protocols are the RxBit processor, the
RxSONET Framer block, the RxSync processor, and the RxByte processor. The TxSDP
components that are used by these protocols are the TxByte processor, the TxSONET
Framer block, and the TxBit processor. The receive path is shown in Figure 88 on page 590,
and the transmit path is shown in Figure 89 on page 592.

RxBit Processor
The RxBit processor is used to perform SONET Frame delineation, that is, it locates the
A1/A2 bytes and determines when it is in the Loss-Of-Frame (LOF) .

RxSONET Framer
The RxSONET Framer block has different responsibilities in OC-12 and OC-12c.

• In OC-12, each SONET frame contains four (4) independent OC-3c streams. Each
RxSONET Framer block processes the SONET overhead for its OC-3c stream and sends
the associated payload up to the RxSync processor.

• In OC-12c, each RxSONET Framer block processes the overhead for the entire OC-12c
SONET frame and sends all SONET payload up to the RxSync processor.

RxSync Processor
The RxSync processor performs ATM cell delineation for an STM cell stream, or a
Point-to-Point Protocol (PPP) packet processing for Packet-over-SONET (POS) data stream.

The data stream is sightly different between OC-12 and OC-12c applications.

• In OC-12, the RxSync processor receives one (1) of the four (4) OC-3c payload streams.

For More Information On This Product,

 Go to: www.freescale.com

590 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

• In OC-12c, each RxSync processor receives all of the payload for the entire OC-12c
stream.

RxByte Processor
The RxByte processor does functional parsing of ATM cells or PPP packets and has no
special aggregation function.

Figure 88 SDP Receive Path for OC-12 and OC-12c

C-
5

NP
 B

ou
nd

ar
y

PHY Clock Core Clock

OC-12 OC-12c

Large
FIFOCP0 RxSDP

PHY Clock Core Clock

Large
FIFOCP1 RxSDP

PHY Clock

10

5

5

PHY

OC-12/
OC-12c

Core Clock

CP2 RxSDP

PHY Clock Core Clock

CP3 RxSDP

9M
U

X

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

TLU
Lookups

Extract
Space

Data to
DMEM

RxBit
Processor

Small
FIFO

Small
FIFO

Small
FIFO

Small
FIFO

RxSONET
Framer
Block

RxSONET
Framer
Block

RxBit
Processor

Large
FIFO

RxSONET
Framer
Block

RxBit
Processor

Large
FIFO

RxSONET
Framer
Block

RxBit
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxSync
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

RxByte
Processor

For More Information On This Product,

 Go to: www.freescale.com

Aggregate Mode Application Examples 591

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxByte Processor
Functionally, the TxByte processor does any type of translation, re-encapsulation, or
checksum/CRC regeneration for the protocol.

Transmit FIFO Automatic Token Passing:
All aggregated applications must pass a token in TxByte to switch the data source from
one Channel Processor to the next. For the C-5 NP Version C0, TxBit was required to tell
TxByte when to pass the token; TxBit waited for the end of a packet to notify TxByte. If
TxByte passed the token before TxBit received the last byte of a packet, a new packet from
the next Channel Processor would truncate the current packet, leaving the remainder in
the previous Channel Processor’s FIFO.

The side effect of this technique for handling aggregation is that the transmit FIFO is filled
up with a packet, and must be drained until empty. Thus, the effectiveness of the FIFO is
greatly reduced.

This technique made it extremely difficult for the Reference Library’s OC-12 applications
to work properly before the D0 changes. When the TxByte processor passes the token, the
TxSONETFramer has already popped several more bytes from the TxLargeFIFO. To work
around this problem, the Packet-Over-SONET (POS) applications were required to add
approximately five PPP flag characters at the end of each packet so that the
TxSONETFramer had valid data to unload “pop” from the TxLargeFIFO as the token was
being passed. This same problem prevented ATM applications from working at all in
OC-12c.

For the C-5 NP Version D0 a new automatic token passing mechanism was implemented.
The new method is for the TxLargeFIFO to check whether the Merge9 bit is set on a
payload byte. When it sees the ninth bit set, it automatically passes the token enabling the
TxLargeFIFO on the next Channel Processor.

The advantage of this approach is that TxByte and TxBit no longer need to coordinate the
token passing. It also allows TxByte to take full advantage of the transmit FIFO. There is no
need to load a packet and wait for the FIFO to drain before sending the next packet, as it
can remain as full as possible all the time.

For the POS application the problem of padding out packets with PPP flags is also
removed. The minimum number of PPP flag characters can be placed between packets.
OC-12 ATM applications now work with the C-5 NP Version D0.

To enable this feature for the C-5 NP Version D0, set the new Auto Token Enable bit in the
SDP_MODE4 register. Refer to “SDP_Mode4 Register (CP Mode Configuration Function)”
on page 422.

For More Information On This Product,

 Go to: www.freescale.com

592 APPENDIX B: USING AGGREGATE MODE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxSONET Framer
The TxSONET Framer block in these applications adds the correct SONET overhead to the
OC-12 or OC-12c payload for transmission out onto the physical medium. The output of
the TxSONET Framer block goes to the TxBit processor in the base CP of the cluster.

TxBit Processor
The TxBit processor sends the data bytes to the physical interface for transmission by way
of the small FIFO.

Figure 89 SDP Transmit Path for OC-12 and OC-12c

PHY Clock

C-
5

NP
 B

ou
nd

ar
y

Core Clock

RxBit
Processor

Large
FIFOCP4 TxSDP

PHY Clock Core Clock

CP5 TxSDP

PHY Clock

10

5

5

PHY

TBI/
GMII

Core Clock

CP6 TxSDP

PHY Clock Core Clock

CP7 TxSDP

9DE
M

U
X

TxBit
Processor

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

Merge
Space

Data from
DMEM

TxByte
Processor

Large
FIFO

Small
FIFO

TxByte
Processor

TxByte
Processor

TxByte
Processor

Large
FIFO

Large
FIFO

TxSONET
Framer
Block

Token Bus

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Appendix C
SONET/SDH CP Support

Appendix Overview This appendix covers the following topics:

• SONET/SDH Overview

• SONET Overhead Access

• CP Configuration Space (SONET Specific)

• SONET/SDH Monitoring Example

For More Information On This Product,

 Go to: www.freescale.com

596 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET/SDH Overview SONET/SDH provides a diagnostic utility for monitoring line quality and fault isolation.

The C-5 NP SONET/SDH transmit support consists of inserting payload into the
SONET/SDH frame on the transmit side. The SONET frame data is read from the Channel
Processor (CP) Configuration registers.

The SONET/SDH receive support consists of extracting payload from the SONET/SDH
frame and forwarding this payload to the large FIFO of the CPRC. The SONET/SDH frame
data is written to the Channel Processor (CP) Configuration registers.

The C-5 NP allows access to a large portion of the SONET Overhead Read Directory by the
CPRC or the XP/Host via the Global Bus. This allows a given application the flexibility to
add code to support such features as Orderwire or Data Communication Channels.

The C-5 NP Supports three (3) SONET/SDH (Synchronous Digital Hierarchy)
configurations:

• OC-3c,

• OC-12c,

• OC-12 with OC-3c streams embedded.

In addition, to the SONET Overhead access on both the transmit (Tx) and receive (Rx) side,
the SONET/SDH block provides a function for defect monitoring purposes. SONET defect
events are flagged in the SONET_Event register. An example of the types of events
supported are listed in Table 171 on page 596.

Table 171 Example of Events Reported in the SONET_Event Register

Event Category Examples Use

Defects
(Non-Pointer
related)

LOS, LOF, C2 error (PLM-P), LCD-P Near-end fault detection.

AIS-L, RDI-L, AIS-P, RDI-P Far-end fault detection.

Counters B1, B2, B3 Near-end error rate detection.

REI-L, REI-P Far-end error rate detection.

Pointer Defects LOP-P, PTR-Change, NDF, H4 Change Near-end fault detection.

APS Support APS-Error, K2 Change Switching protection.

Other OH Support Z1, Z2, Z3, Z4, Z5 Change, S1
Change

Synchronization states and
country specific SDH support.

Trail Trace Support J0 Change, J1 Available J0/J1 Patt & Section trace
support.

For More Information On This Product,

 Go to: www.freescale.com

SONET/SDH Overview 597

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

In addition, the SONET block can automatically forward far-end alarm indications on the
same port when errors are detected on the line (e. g. LOS, LOF, B1, etc.) This is done when
the SDP_Mode3 register bit [13] Manual_FEBE field is set to 0.

General Support Tx overhead complete, Rx transport
overhead available, Rx patt
overhead available

Useful for updating overhead
on Tx and checking other
SONET overhead on Rx when
no other interrupt is available.

Table 171 Example of Events Reported in the SONET_Event Register (continued)

Event Category Examples Use

For More Information On This Product,

 Go to: www.freescale.com

598 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET Overhead
Access

Configuration Space of the CPs includes a number of registers that are pertain to
implementing and using the SONET functions. Primarily, thirty-two (32) (4Byte) (128Byte
wide) registers are used for storing receive (Rx) and transmit (Tx) SONET overhead. The
SDP RxSONET Framer block writes bytes to the space in a manner similar to way the SDP
RxByte Processor writes to Extract Space. The CPRC can read the Receive SONET registers
at any time. The CPRC can write to the Receive SONET registers, but only during
initialization and test periods (when the SDP_Mode3 register bit [30] RxEnable field is
clear).

The SDP TxSONET Framer block reads bytes from the space, similar to the way merge
registers are used by the SDP TxByte Processor. The CPRC process can read or write the
Transmit SONET registers at any time. Refer to “Rx_SONETOH0 to Rx_SONETOH31
Registers (CP SONET Rx Control Function)” on page 408 and “Tx_SONETOH0 to
Tx_SONETOH31 Registers (CP SONET Tx Control Function)” on page 408.

The SONET Overhead positions are shown:

• For SONET OC-3 refer to Figure 90 on page 599,

• For SONET OC-12c refer to Figure 91 on page 600, and

• For SONET OC-12 refer to Figure 92 on page 601.

The detail mapping information listing the SONET overhead definitions and C-5 NP
addresses are grouped by protocol (OC-3c or OC-12/OC-12c) and whether the overhead
contents are Transport or Path bytes are shown:

• For Rx SONET OC-3 Transport Overhead Byte Address refer to Table 172 on page 602,

• For Rx SONET OC-3c Path Overhead Definitions refer to Table 175 on page 604,

• For Rx SONET OC-12/OC-12c Transport Overhead Definitions refer to Table 176 on
page 605,

• For Rx SONET OC-12/OC-12c Path Overhead Definitions refer to Table 177 on page
610,

• For Tx SONET OC-3 Transport Overhead Definitions refer to Table 178 on page 612,

• For Tx SONET OC-3 Path Overhead Definitions refer to Table 179 on page 613,

• For Tx SONET OC-12/OC-12c Transport Overhead Definitions refer to Table 180 on
page 614,

• For Tx OC-12/OC-12c Path Overhead Definitions refer to Table 181 on page 618.

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 599

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET Overhead
Writable Bytes

The following figures show the writable bytes in the SONET Overhead.

OC-3c Writable Overhead Bytes
Figure 90 on page 599 shows the writable bytes in the OC-3c SONET Overhead.

Figure 90 SONET OC-3c Writable Overhead Bytes

A1
Framing

B1
BIP-8

H1
Pointer

B2
BIP-24

D4
Datacom

D7
Datacom

D10
Datacom

S1
Sync

Status

D1
Datacom

A1
Framing

H1
Pointer

B2
BIP-24

Z1
Growth

A1
Framing

MD0
Media

Depend.

H1
Pointer

B2
BIP-24

Z1
Growth

J1
Path Trace

B3
BIP-8

G1
Path

Status

F2
User

H4
Multiframe

Z3
PUC

Z4
Growth

Z5
NOB

C2
Signal
Label

Path
Overhead

A2
Framing

E1
User

H2
Pointer

K1
APS

D5
Datacom

D8
Datacom

D11
Datacom

Z2
Growth

D2
Datacom

A2
Framing

H2
Pointer

Z2
Growth

A2
Framing

H2
Pointer

M1
FEBE

J0
Trace

F1
User

H3
Pointer
Action

K2
APS

D6
Datacom

D9
Datacom

D12
Datacom

E2
Orderwire

D3
Datacom

Z0
Nat Use

CS0
Nat Use

H3
Pointer
Action

CS1
Nat Use

Z0
Nat Use

CS0
Nat Use

H3
Pointer
Action

CS1
Nat Use

1 2 3 1 2 3 1 2 3

1

2

3

4

5

6

7

8

9

Column

R
o
w

STS

Section
Overhead

Line
Overhead

= reserved for future use

MD0
Media

Depend.

MD1
Media

Depend.

MD2
Media

Depend.

MD2
Media

Depend.

MD3
Media

Depend.

1 2 3

= Special manual FEBE

= Unconditionally writable bytes

For More Information On This Product,

 Go to: www.freescale.com

600 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

OC-12c Writable Overhead Bytes
Figure 91 on page 600 shows the writable bytes in the OC-12c SONET Overhead.

Figure 91 SONET OC-12c Writable Overhead Bytes

1 2 3

A1

B1

D1

H1

B2

D4

D7

D10

S1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

A1 A1 A1 A1 A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

M1

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

J0

F1

D3

H3

K2

D6

D9

D12

E2

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

R
o
w

1

2

3

4

5

6

7

8

9

Column

STS

= Reserved for future use

= Special manual FEBE

= Unconditionally writable bytes

Section
Overhead

Line
Overhead

STS 1

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Path
Overhead

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 601

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

OC-12 Writable Overhead Bytes
Figure 92 on page 601 shows the writable bytes in the OC-12 SONET Overhead.

Figure 92 SONET OC-12 Writable Overhead Bytes

1 2 3

A1

B1

D1

H1

B2

D4

D7

D10

S1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

MD0

MD2

H1

B2

Z1

A1 A1 A1 A1 A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A1

MD0

MD2

H1

B2

Z1

A2

E1

D2

H2

K1

D5

D8

D11

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

M1

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

MD1

MD3

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

A2

H2

Z2

J0

F1

D3

H3

K2

D6

D9

D12

E2

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

Z0

CS0

H3

CS1

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

R
o
w

1

2

3

4

5

6

7

8

9

Column

STS

= Reserved for future use

= Special manual FEBE

= Unconditionally writable bytes

Section
Overhead

Line
Overhead

1

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

Path
Overhead

2

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

3

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

4

J1

B3

C2

G1

F2

H4

Z3

Z4

Z5

STS

For More Information On This Product,

 Go to: www.freescale.com

602 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET Overhead
Definitions

The following tables list the SONET Overhead definitions and addresses.

For detail descriptions of the SONET transport overhead bytes. Refer to Telcordia Generic
Requirements (GR-253-CORE) Synchronous Optical Network: (SONET) Transport Systems:
Generic Criteria (Issue 2, Revision 2).

Receive OC-3c Transport Overhead Definitions

Table 172 Receive SONET OC-3 Transport Overhead Byte Addresses

Transport Overhead
Byte C-5 NP Address

J0 0xBCn04500

Z0, STS #2 0xBCn04501

Z0, STS #3 0xBCn04502

B1* 0xBCn04503

MD0, STS #2† 0xBCn04504

MD0, STS #3† 0xBCn04505

E1 0xBCn04506

MD1, STS #2† 0xBCn04507

F1 0xBCn04508

CS0, STS #2‡ 0xBCn04509

CS0, STS #3‡ 0xBCn0450A

D1 0xBCn0450B

MD2, STS #2† 0xBCn0450C

MD2, STS #3† 0xBCn0450D

D2 0xBCn0450E

MD3, STS #2† 0xBCn0450F

D3 0xBCn04510

H1, STS #1** 0xBCn04511

H2, STS #1** 0xBCn04512

B2, STS #1†† 0xBCn04513

B2, STS #2†† 0xBCn04514

B2, STS #3†† 0xBCn04515

K1‡‡ 0xBCn04516

K2‡‡ 0xBCn04517

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 603

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

D4 0xBCn04518

D5 0xBCn04519

D6 0xBCn0451A

D7 0xBCn0451B

D8 0xBCn0451C

D9 0xBCn0451D

D10 0xBCn0451E

D11 0xBCn0451F

D12 0xBCn04520

S1 0xBCn04521

Z1, STS #2 0xBCn04522

Z1, STS #3 0xBCn04523

Z2, STS #1 0xBCn04524

Z2, STS #2 0xBCn04525

M1 0xBCn04526

E2 0xBCn04527

CS1, STS #2‡ 0xBCn04528

CS1, STS #3‡ 0xBCn04529

* For the parity bytes locations for B1 and B3, it is not the actual parity byte written to the register, but the
number of bit lanes in error. The number of errors reported is therefore 0 through 8.

† These refer to the SDH media dependent overhead.
‡ These refer to the SDH country specific overhead.
** For the pointer byte slots H1 and H2, it is not the actual values of H1 and H2 that are written, but the pointer

processing results listed in Table 173 on page 604.
††For the parity bytes locations for B2, it is not the actual parity byte written to the register, but an error count.

For the least significant (lowest index) STS of a CPRC, the number of errors reported is the sum of bit lanes in
error present in all three of the STSs received by that CPRC. The number of errors reported is therefore 0
through 24. For other than the least significant STS received by the CPRC, the reported error count is the
number of bit lanes in error for that one STS. The number of errors reported is therefore 0 through 8.

‡‡These APS bytes are written to the registers only when three identical bytes have been received in
consecutive frames.

Table 172 Receive SONET OC-3 Transport Overhead Byte Addresses (continued)

Transport Overhead
Byte C-5 NP Address

For More Information On This Product,

 Go to: www.freescale.com

604 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

The decode for pointer status (H1 bits [7:6]) is shown in Table 174.

Receive OC-3c Path Overhead Definitions

Table 173 Pointer Values for H1 and H2

Bit H1 Value H2 Value

7 pointer status (bit 1) current pointer bit 7

6 pointer status (bit 0) current pointer bit 6

5 new data flag current pointer bit 5

4 pointer increment current pointer bit 4

3 pointer decrement current pointer bit 3

2 zero current pointer bit 2

1 current pointer bit 9 current pointer bit 1

0 current pointer bit 8 current pointer bit 0

Table 174 Decode for Pointer Status [1:0]

Pointer Status (H1 bits [7:6]) Condition

00 good pointer

01 unused

10 path AIS (AIS-P)

11 loss of pointer (LOP)

Table 175 Receive SONET OC-3c Path Overhead Byte Addresses

Path Overhead
Byte C-5 NP Address

J1, STS #1* 0xBCn0452C

B3, STS #1† 0xBCn0452D

C2, STS #1 0xBCn0452E

G1, STS #1 0xBCn0452F

F2, STS #1 0xBCn04530

H4, STS #1 0xBCn04531

Z3, STS #1 0xBCn04532

Z4, STS #1 0xBCn04533

Z5, STS #1 0xBCn04534

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 605

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Receive OC-12/OC-12c Transport Overhead Definitions

* The contents of this register is the Nth J1 of the 64 byte path trace message. N starts at zero when the receive
SONET logic is enabled and increments modulo 64 every SONET SPE.

† For the parity bytes locations for B1 and B3, it is not the actual parity byte written to the register, but the
number of bit lanes in error. The number of errors reported is therefore 0 through 8.

Table 176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

J0 0 0xBCn04500

Z0, STS #2 1 0xBC(n+1)04500

Z0, STS #3 2 0xBC(n+2)04500

Z0, STS #4 3 0xBC(n+3)04500

Z0, STS #5 0 0xBCn04501

Z0, STS #6 1 0xBC(n+1)04501

Z0, STS #7 2 0xBC(n+2)04501

Z0, STS #8 3 0xBC(n+3)04501

Z0, STS #9 0 0xBCn04502

Z0, STS #10 1 0xBC(n+1)04502

Z0, STS #11 2 0xBC(n+2)04502

Z0, STS #12 3 0xBC(n+3)04502

B1† 0 0xBCn04503

MD0, STS #2‡ 1 0xBC(n+1)04503

MD0, STS #3‡ 2 0xBC(n+2)04503

MD0, STS #4‡ 3 0xBC(n+3)04503

MD0, STS #5‡ 0 0xBCn04504

MD0, STS #6‡ 1 0xBC(n+1)04504

MD0, STS #7‡ 2 0xBC(n+2)04504

MD0, STS #8‡ 3 0xBC(n+3)04504

MD0, STS #9‡ 0 0xBCn04505

MD0, STS #10‡ 1 0xBC(n+1)04505

MD0, STS #11‡ 2 0xBC(n+2)04505

MD0, STS #12‡ 3 0xBC(n+3)04505

For More Information On This Product,

 Go to: www.freescale.com

606 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

E1 0 0xBCn04506

MD1, STS #2‡ 1 0xBC(n+1)04506

MD1, STS #3‡ 2 0xBC(n+2)04506

MD1, STS #4‡ 3 0xBC(n+3)04506

MD1, STS #5‡ 0 0xBCn04507

MD1, STS #6‡ 1 0xBC(n+1)04507

MD1, STS #7‡ 2 0xBC(n+2)04507

MD1, STS #8‡ 3 0xBC(n+3)04507

F1 0 0xBCn04508

CS0, STS #2** 1 0xBC(n+1)04508

CS0, STS #3** 2 0xBC(n+2)04508

CS0, STS #4** 3 0xBC(n+3)04508

CS0, STS #5** 0 0xBCn04509

CS0, STS #6** 1 0xBC(n+1)04509

CS0, STS #7** 2 0xBC(n+2)04509

CS0, STS #8** 3 0xBC(n+3)04509

CS0, STS #9** 0 0xBCn0450A

CS0, STS #10** 1 0xBC(n+1)0450A

CS0, STS #11** 2 0xBC(n+2)0450A

CS0, STS #12** 3 0xBC(n+3)0450A

D1 0 0xBCn0450B

MD2, STS #2‡ 1 0xBC(n+1)0450B

MD2, STS #3‡ 2 0xBC(n+2)0450B

MD2, STS #4‡ 3 0xBC(n+3)0450B

MD2, STS #5‡ 0 0xBCn0450C

MD2, STS #6‡ 1 0xBC(n+1)0450C

MD2, STS #7‡ 2 0xBC(n+2)0450C

MD2, STS #8‡ 3 0xBC(n+3)0450C

MD2, STS #9‡ 0 0xBCn0450D

Table 176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 607

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MD2, STS #10‡ 1 0xBC(n+1)0450D

MD2, STS #11‡ 2 0xBC(n+2)0450D

MD2, STS #12‡ 3 0xBC(n+3)0450D

D2 0 0xBCn0450E

MD3, STS #2‡ 1 0xBC(n+1)0450E

MD3, STS #3‡ 2 0xBC(n+2)0450E

MD3, STS #4‡ 3 0xBC(n+3)0450E

MD3, STS #5‡ 0 0xBCn0450F

MD3, STS #6‡ 1 0xBC(n+1)0450F

MD3, STS #7‡ 2 0xBC(n+2)0450F

MD3, STS #8‡ 3 0xBC(n+3)0450F

D3 N/A 0xBCn04510

H1, STS #1†† 0 0xBCn04511

H1, STS #2†† 1 0xBC(n+1)04511

H1, STS #3†† 2 0xBC(n+2)04511

H1, STS #4†† 3 0xBC(n+3)04511

H2, STS #1†† 0 0xBCn04512

H2, STS #2†† 1 0xBC(n+1)04512

H2, STS #3†† 2 0xBC(n+2)04512

H2, STS #4†† 3 0xBC(n+3)04512

B2, STS #1‡‡ 0 0xBCn04513

B2, STS #2‡‡ 1 0xBC(n+1)04513

B2, STS #3‡‡ 2 0xBC(n+2)04513

B2, STS #4‡‡ 3 0xBC(n+3)04513

B2, STS #5‡‡ 0 0xBCn04514

B2, STS #6‡‡ 1 0xBC(n+1)04514

B2, STS #7‡‡ 2 0xBC(n+2)04514

B2, STS #8‡‡ 3 0xBC(n+3)04514

B2, STS #9‡‡ 0 0xBCn04515

Table 176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

608 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

B2, STS #10‡‡ 1 0xBC(n+1)04515

B2, STS #11‡‡ 2 0xBC(n+2)04515

B2, STS #12‡‡ 3 0xBC(n+3)04515

K1*** N/A 0xBCn04516

K2*** N/A 0xBCn04517

D4 N/A 0xBCn04518

D5 N/A 0xBCn04519

D6 N/A 0xBCn0451A

D7 N/A 0xBCn0451B

D8 N/A 0xBCn0451C

D9 N/A 0xBCn0451D

D10 N/A 0xBCn0451E

D11 N/A 0xBCn0451F

D12 N/A 0xBCn04520

S1 0 0xBCn04521

Z1, STS #2 1 0xBC(n+1)04521

Z1, STS #3 2 0xBC(n+2)04521

Z1, STS #4 3 0xBC(n+3)04521

Z1, STS #5 0 0xBCn04522

Z1, STS #6 1 0xBC(n+1)04522

Z1, STS #7 2 0xBC(n+2)04522

Z1, STS #8 3 0xBC(n+3)04522

Z1, STS #9 0 0xBCn04523

Z1, STS #10 1 0xBC(n+1)04523

Z1, STS #11 2 0xBC(n+2)04523

Z1, STS #12 3 0xBC(n+3)04523

Z2, STS #1 0 0xBCn04524

Z2, STS #2 1 0xBC(n+1)04524

M1 2 0xBC(n+2)04524

Table 176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 609

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Z2, STS #4 3 0xBC(n+3)04524

Z2, STS #5 0 0xBCn04525

Z2, STS #6 1 0xBC(n+1)04525

Z2, STS #7 2 0xBC(n+2)04525

Z2, STS #8 3 0xBC(n+3)04525

Z2, STS #9 0 0xBCn04526

Z2, STS #10 1 0xBC(n+1)04526

Z2, STS #11 2 0xBC(n+2)04526

Z2, STS #12 3 0xBC(n+3)04526

E2 0 0xBCn04527

CS1, STS #2** 1 0xBC(n+1)04527

CS1, STS #3** 2 0xBC(n+2)04527

CS1, STS #4** 3 0xBC(n+3)04527

CS1, STS #5** 0 0xBCn04528

CS1, STS #6** 1 0xBC(n+1)04528

CS1, STS #7** 2 0xBC(n+2)04528

CS1, STS #8** 3 0xBC(n+3)04528

CS1, STS #9** 0 0xBCn04529

CS1, STS #10** 1 0xBC(n+1)04529

CS1, STS #11** 2 0xBC(n+2)04529

CS1, STS #12** 3 0xBC(n+3)04529

* n can be CP0, CP4, CP8, or CP12
† For the parity bytes locations for B1 and B3, it is not the actual parity byte written to the register, but the

number of bit lanes in error. The number of errors reported is therefore 0 through 8.
‡ These refer to the SDH media dependent overhead.
** These refer to the SDH country specific overhead.
††For the pointer byte slots H1 and H2, it is not the actual values of H1 and H2 that are written, but the pointer

processing results listed in Table 173.

Table 176 Receive SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

610 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.
 Receive OC-12/OC-12c Path Overhead Definitions

‡‡For the parity bytes locations for B2, it is not the actual parity byte written to the register, but an error count.
For the least significant (lowest index) STS of a CPRC, the number of errors reported is the sum of bit lanes in
error present in all three of the STSs received by that CPRC. The number of errors reported is therefore 0
through 24. For other than the least significant STS received by the CPRC, the reported error count is the
number of bit lanes in error for that one STS. The number of errors reported is therefore 0 through 8.

***These APS bytes are written to the registers only when three identical bytes have been received in
consecutive frames.

Table 177 Receive SONET OC-12 and OC-12c Path Overhead Byte Addresses

Path
Overhead
Byte

CP# Within
a Cluster C-5 NP Address*

J1, STS #1† 0 0xBCn0452C

J1, STS #2† 1 0xBC(n+1)0452C

J1, STS #3† 2 0xBC(n+2)0452C

J1, STS #4† 3 0xBC(n+3)0452C

B3, STS #1‡ 0 0xBCn0452D

B3, STS #2‡ 1 0xBC(n+1)0452D

B3, STS #3‡ 2 0xBC(n+2)0452D

B3, STS #4‡ 3 0xBC(n+3)0452D

C2, STS #1 0 0xBCn0452E

C2, STS #2 1 0xBC(n+1)0452E

C2, STS #3 2 0xBC(n+2)0452E

C2, STS #4 3 0xBC(n+3)0452E

G1, STS #1 0 0xBCn0452F

G1, STS #2 1 0xBC(n+1)0452F

G1, STS #3 2 0xBC(n+2)0452F

G1, STS #4 3 0xBC(n+3)0452F

F2, STS #1 0 0xBCn04530

F2, STS #2 1 0xBC(n+1)04530

F2, STS #3 2 0xBC(n+2)04530

F2, STS #4 3 0xBC(n+3)04530

H4, STS #1 0 0xBCn04531

H4, STS #2 1 0xBC(n+1)04531

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 611

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

H4, STS #3 2 0xBC(n+2)04531

H4, STS #4 3 0xBC(n+3)04531

Z3, STS #1 0 0xBCn04532

Z3, STS #2 1 0xBC(n+1)04532

Z3, STS #3 2 0xBC(n+2)04532

Z3, STS #4 3 0xBC(n+3)04532

Z4, STS #1 0 0xBCn04533

Z4, STS #2 1 0xBC(n+1)04533

Z4, STS #3 2 0xBC(n+2)04533

Z4, STS #4 3 0xBC(n+3)04533

Z5, STS #1 0 0xBCn04534

Z5, STS #2 1 0xBC(n+1)04534

Z5, STS #3 2 0xBC(n+2)04534

Z5, STS #4 3 0xBC(n+3)04534

* n can be CP0, CP4, CP8, or CP12
† The contents of this register is the Nth J1 of the 64 byte path trace message. N starts at zero when the receive

SONET logic is enabled and increments modulo 64 every SONET SPE.
‡ For the parity bytes locations for B1 and B3, it is not the actual parity byte written to the register, but the

number of bit lanes in error. The number of errors reported is therefore 0 through 8.

Table 177 Receive SONET OC-12 and OC-12c Path Overhead Byte Addresses (continued)

Path
Overhead
Byte

CP# Within
a Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

612 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transmit OC-3c Transport Overhead Definitions

Table 178 Transmit SONET OC-3c Transport Overhead Byte Addresses

Transport
Overhead Byte C-5 NP Address

J0 0xBCn04580

Z0, STS #2 0xBCn04581

Z0, STS #3 0xBCn04582

MD0, STS #2* 0xBCn04584

MD0, STS #3* 0xBCn04585

E1 0xBCn04586

MD1, STS #2* 0xBCn04587

F1 0xBCn04588

CS0, STS #2* 0xBCn04589

CS0, STS #3* 0xBCn0458A

D1 0xBCn0458B

MD2, STS #2* 0xBCn0458C

MD2, STS #3* 0xBCn0458D

D2 0xBCn0458E

MD3, STS #2* 0xBCn0458F

D3 0xBCn04590

K1 0xBCn04591

K2 0xBCn04592

D4 0xBCn04593

D5 0xBCn04594

D6 0xBCn04595

D7 0xBCn04596

D8 0xBCn04597

D9 0xBCn04598

D10 0xBCn04599

D11 0xBCn0459A

D12 0xBCn0459B

S1 0xBCn0459C

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 613

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transmit OC-3c Path Overhead Definitions

Z1, STS #2 0xBCn0459D

Z1, STS #3 0xBCn0459E

Z2, STS #1 0xBCn0459F

Z2, STS #2 0xBCn045A0

M1 0xBCn045A1

E2 0xBCn045A2

CSE2, STS #2† 0xBCn045A3

CSE2, STS #3† 0xBCn045A4

* These refer to the SDH media dependent overhead.
† These refer to the SDH country specific overhead.

Table 179 Transmit SONET OC-3c Path Overhead Byte Addresses

Path Overhead
Byte C-5 NP Address

C2, STS #1 0xBCn045A5

G1, STS #1 0xBCn045A6

F2, STS #1 0xBCn045A7

H4, STS #1 0xBCn045A8

Z3, STS #1 0xBCn045A9

Z4, STS #1 0xBCn045AA

Z5, STS #1 0xBCn045AB

J1, STS #1*

* 64 bytes of J1 are buffered. All other transmit overhead in single buffered.

0xBCn045AC to 0xBCn045EB

H1, STS #1 0xBCn45EC

Table 178 Transmit SONET OC-3c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte C-5 NP Address

For More Information On This Product,

 Go to: www.freescale.com

614 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transmit OC-12/OC-12c Transport Overhead Definitions

Table 180 Transmit SONET OC-12 and OC-12c Transport Overhead Byte Addresses

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

J0 0 0xBCn04580

Z0, STS #2 1 0xBC(n+1)04580

Z0, STS #3 2 0xBC(n+2)04580

Z0, STS #4 3 0xBC(n+3)04580

Z0, STS #5 0 0xBCn04581

Z0, STS #6 1 0xBC(n+1)04581

Z0, STS #7 2 0xBC(n+2)04581

Z0, STS #8 3 0xBC(n+3)04581

Z0, STS #9 0 0xBCn04582

Z0, STS #10 1 0xBC(n+1)04582

Z0, STS #11 2 0xBC(n+2)04582

Z0, STS #12 3 0xBC(n+3)04582

MD0, STS #2† 1 0xBC(n+1)04583

MD0, STS #3† 2 0xBC(n+2)04583

MD0, STS #4† 3 0xBC(n+3)04583

MD0, STS #5† 0 0xBCn04584

MD0, STS #6† 1 0xBC(n+1)04584

MD0, STS #7† 2 0xBC(n+2)04584

MD0, STS #8† 3 0xBC(n+3)04584

MD0, STS #9† 0 0xBCn04585

MD0, STS #10† 1 0xBC(n+1)04585

MD0, STS #11† 2 0xBC(n+2)04585

MD0, STS #12† 3 0xBC(n+3)04585

E1 0 0xBCn04586

MD1, STS #2† 1 0xBC(n+1)04586

MD1, STS #3† 2 0xBC(n+2)04586

MD1, STS #4† 3 0xBC(n+3)04586

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 615

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MD1, STS #5† 0 0xBCn04587

MD1, STS #6† 1 0xBC(n+1)04587

MD1, STS #7† 2 0xBC(n+2)04587

MD1, STS #8† 3 0xBC(n+3)04587

F1 0 0xBCn04588

CS0, STS #2† 1 0xBC(n+1)04588

CS0, STS #3† 2 0xBC(n+2)04588

CS0, STS #4† 3 0xBC(n+3)04588

CS0, STS #5‡ 0 0xBCn04589

CS0, STS #6‡ 1 0xBC(n+1)04589

CS0, STS #7‡ 2 0xBC(n+2)04589

CS0, STS #8‡ 3 0xBC(n+3)04589

CS0, STS #9‡ 0 0xBCn0458A

CS0, STS #10‡ 1 0xBC(n+1)0458A

CS0, STS #11‡ 2 0xBC(n+2)0458A

CS0, STS #12‡ 3 0xBC(n+3)0458A

D1 0 0xBCn0458B

MD2, STS #2† 1 0xBC(n+1)0458B

MD2, STS #3† 2 0xBC(n+2)0458B

MD2, STS #4† 3 0xBC(n+3)0458B

MD2, STS #5† 0 0xBCn0458C

MD2, STS #6† 1 0xBC(n+1)0458C

MD2, STS #7† 2 0xBC(n+2)0458C

MD2, STS #8† 3 0xBC(n+3)0458C

MD2, STS #9† 0 0xBCn0458D

MD2, STS #10† 1 0xBC(n+1)0458D

MD2, STS #11† 2 0xBC(n+2)0458D

MD2, STS #12† 3 0xBC(n+3)0458D

D2 0 0xBCn0458E

Table 180 Transmit SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

616 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

MD3, STS #2† 1 0xBC(n+1)0458E

MD3, STS #3† 2 0xBC(n+2)0458E

MD3, STS #4† 3 0xBC(n+3)0458E

MD3, STS #5† 0 0xBCn0458F

MD3, STS #6† 1 0xBC(n+1)0458F

MD3, STS #7† 2 0xBC(n+2)0458F

MD3, STS #8† 3 0xBC(n+3)0458F

D3 N/A 0xBCn04590

K1 N/A 0xBCn04591

K2 N/A 0xBCn04592

D4 N/A 0xBCn04593

D5 N/A 0xBCn04594

D6 N/A 0xBCn04595

D7 N/A 0xBCn04596

D8 N/A 0xBCn04597

D9 N/A 0xBCn04598

D10 N/A 0xBCn04599

D11 N/A 0xBCn0459A

D12 N/A 0xBCn0459B

S1 0 0xBCn0459C

Z1, STS #2 1 0xBC(n+1)0459C

Z1, STS #3 2 0xBC(n+2)0459C

Z1, STS #4 3 0xBC(n+3)0459C

Z1, STS #5 0 0xBCn0459D

Z1, STS #6 1 0xBC(n+1)0459D

Z1, STS #7 2 0xBC(n+2)0459D

Z1, STS #8 3 0xBC(n+3)0459D

Z1, STS #9 0 0xBCn0459E

Z1, STS #10 1 0xBC(n+1)0459E

Table 180 Transmit SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 617

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Z1, STS #11 2 0xBC(n+2)0459E

Z1, STS #12 3 0xBC(n+3)0459E

Z2, STS #1 0 0xBCn0459F

Z2, STS #2 1 0xBC(n+1)0459F

M1 2 0xBC(n+2)0459F

Z2, STS #4 3 0xBC(n+3)0459F

Z2, STS #5 0 0xBCn045A0

Z2, STS #6 1 0xBC(n+1)045A0

Z2, STS #7 2 0xBC(n+2)045A0

Z2, STS #8 3 0xBC(n+3)045A0

Z2, STS #9 0 0xBCn045A1

Z2, STS #10 1 0xBC(n+1)045A1

Z2, STS #11 2 0xBC(n+2)045A1

Z2, STS #12 3 0xBC(n+3)045A1

E2 0 0xBCn045A2

CSE2, STS #2‡ 1 0xBC(n+1)045A2

CSE2, STS #3‡ 2 0xBC(n+2)045A2

CSE2, STS #4‡ 3 0xBC(n+3)045A2

CS2, STS #5‡ 0 0xBCn045A3

CS2, STS #6‡ 1 0xBC(n+1)045A3

CS2, STS #7‡ 2 0xBC(n+2)045A3

CS2, STS #8‡ 3 0xBC(n+3)045A3

CS3, STS #9‡ 0 0xBCn045A4

CS3, STS #10‡ 1 0xBC(n+1)045A4

CS3, STS #11‡ 2 0xBC(n+2)045A4

CS3, STS #12‡ 3 0xBC(n+3)045A4

* n can be CP0, CP4, CP8, or CP12
† These refer to the SDH media dependent overhead.
‡ These refer to the SDH country specific overhead.

Table 180 Transmit SONET OC-12 and OC-12c Transport Overhead Byte Addresses (continued)

Transport
Overhead Byte

CP#
Within a
Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

618 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Transmit OC-12/OC-12c Path Overhead Definitions

Table 181 Transmit SONET OC-12 and OC-12c Path Overhead Byte Addresses

Path Overhead
Byte

CP# Within
a Cluster C-5 NP Address*

C2, STS #1 0 0xBCn045A5

C2, STS #2 1 0xBC(n+1)045A5

C2, STS #3 2 0xBC(n+2)045A5

C2, STS #4 3 0xBC(n+3)045A5

G1, STS #1 0 0xBCn045A6

G1, STS #2 1 0xBC(n+1)045A6

G1, STS #3 2 0xBC(n+2)045A6

G1, STS #4 3 0xBC(n+3)045A6

F2, STS #1 0 0xBCn045A7

F2, STS #2 1 0xBC(n+1)045A7

F2, STS #3 2 0xBC(n+2)045A7

F2, STS #4 3 0xBC(n+3)045A7

H4, STS #1 0 0xBCn045A8

H4, STS #2 1 0xBC(n+1)045A8

H4, STS #3 2 0xBC(n+2)045A8

H4, STS #4 3 0xBC(n+3)045A8

Z3, STS #1 0 0xBCn045A9

Z3, STS #2 1 0xBC(n+1)045A9

Z3, STS #3 2 0xBC(n+2)045A9

Z3, STS #4 3 0xBC(n+3)045A9

Z4, STS #1 0 0xBCn045AA

Z4, STS #2 1 0xBC(n+1)045AA

Z4, STS #3 2 0xBC(n+2)045AA

Z4, STS #4 3 0xBC(n+3)045AA

Z5, STS #1 0 0xBCn045AB

Z5, STS #2 1 0xBC(n+1)045AB

Z5, STS #3 2 0xBC(n+2)045AB

Z5, STS #4 3 0xBC(n+3)045AB

For More Information On This Product,

 Go to: www.freescale.com

SONET Overhead Access 619

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

J1, STS #1† 0 0xBCn045AC to 0xBCn045EB

J1, STS #2† 1 0xBC(n+1)045AC to 0xBC(n+1)045EB

J1, STS #3† 2 0xBC(n+2)045AC to 0xBC(n+2)045EB

J1, STS #4† 3 0xBC(n+3)045AC to 0xBC(n+3)045EB

H1, STS #1 0 0xBCn045EC

H1, STS #2 1 0xBC(n+1)045EC

H1, STS #3 2 0xBC(n+2)045EC

H1, STS #4 3 0xBC(n+3)045EC

* n can be CP0, CP4, CP8, or CP12
† 64 bytes of J1 are buffered. All other transmit overhead in single buffered.

Table 181 Transmit SONET OC-12 and OC-12c Path Overhead Byte Addresses (continued)

Path Overhead
Byte

CP# Within
a Cluster C-5 NP Address*

For More Information On This Product,

 Go to: www.freescale.com

620 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

CP Configuration
Space (SONET
Specific)

In addition to the CPs thirty-two (32) (4Byte) (128Byte wide) registers used for storing
receive (Rx) and transmit (Tx) SONET overhead (Rx_SONETOH0 to Rx_SONETOH31 registers
and the Tx_SONETOH0 to Tx_SONETOH3) that were mentioned before there are additional
registers in the Configuration Space of the CPs. Some of them are described here.

CP Mode (SONET Specific
Enable) Registers

The RxSONET and TxSONET blocks are enabled and disabled using the SDP_Mode3
register bit [30] RxEnable field and the SDP_Mode5 register bit [30] TxEnable. The mode
registers also contain other configuration bits which control SONET scrambling,
OC-12/OC-12c/OC-3c modes, automatic insertion of far-end alarms (via clearing the
Manual FEBE bit) and other SONET configurations.

CP Event and Interrupt
(SONET Specific Event)

Registers

SONET/SDH events including as LOS, LOF, LOP, RDI-L, RDI-P, AIS-L, and AIS-P are monitored
via the SONET_Event, SONET_Event_Mask, and SDP_Mode2 registers. The SONET_Event
register indicates whether a change in the state of any SONET event has occurred. The
SONET_Event_Mask register is used to select which SONET events are of interest. If a
SONET event occurs and that particular event has been enabled in the SONET_Event_Mask
register, the Event0 register bit [50] SONETOH field is set. This mechanism can be used to
generate interrupts on state changes for various SONET defect conditions. Refer to
“Event0 Register (CP Event and Interrupt Function)” on page 435.

The SDP_Mode2 register bits [31:22] SONET State field detail the current defect condition
(ON or OFF). Using this mechanism, defects can be monitored via interrupts on the CPRC
(where interrupts are generated when the defect condition goes ON or OFF).

Table 182 SONET Specific Configuration Registers

Register
Name Purpose Address Details

SDP_Mode3 Collects configuration mode bits
relevant for programming the RxSDP
machines.

0xBCn0464C See “SDP_Mode3 Register
(CP Mode Configuration
Function)” on page 418.

SDP_Mode5 Collects configuration mode bits
relevant for programming the TxSDP
machines.

0xBCn04654 See “SDP_Mode5 Register
(CP Mode Configuration
Function)” on page 424.

For More Information On This Product,

 Go to: www.freescale.com

CP Configuration Space (SONET Specific) 621

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 183 SONET Specific Event Registers

Register
Name Purpose Address Details

SDP_Mode2 Collects SONET alarm and
status information.

0xBCn04648 See “SDP_Mode2 Register (CP
Mode Configuration Function)”
on page 417.

SONET_Event Collects together SONET event
bits from the SDP’s.

0xBCn046C0 See “SONET_Event Register (CP
Event and Interrupt Function)” on
page 442.

SONET_Mask Provides mask that selects bits
in the SONET_Event register for
event access.

0xBCn046C4 See “SONET_Mask Register (CP
Event and Interrupt Function)” on
page 445.

For More Information On This Product,

 Go to: www.freescale.com

622 APPENDIX C: SONET/SDH CP SUPPORT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

SONET/SDH
Monitoring Example

The following is an example of a procedure for monitoring a given defect in the C-5 NP.
Specifically, to detect loss of signal (LOS) in an interrupt handler.

1 Set bit [31] Loss of Signal field in the SONET_Mask register. This allows LOS to be
flagged in the SONET_Event register.

2 Set bit [50] SONETOH Event field in the Event_Mask0 register. This allows interrupts to
be generated from changes in the SONET_Event register.

3 Using KsEventRegisterInterrupt(), link the interrupt handler function with the interrupt
using the C-Port CPI software. This allows the CPRC to call the SONET interrupt handler
when the SONETOH Event field, bit [50] state changes, in the Event_Mask0 register.

4 In the interrupt handler function, check bit [31] Loss of Signal field in the SDP_Mode2
register to determine the state of the defect (on or off).

5 Set bit [31] Loss of Signal field in the SONET_Event register to clear the event, so that
future LOS events are not missed.

6 Perform any notification services required to the XPRC, or write information to local
DMEM.

7 Exit the interrupt handler function.

8 The CPI clears the SONETOH Event field bit [50] before existing, thus enabling new
SONET events to generate future interrupts.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Appendix D
PCI Byte Swapping

Appendix Overview This appendix covers the following topics:

• PCI Byte Swapping Overview

• PCI Inbound and Outbound Byte Swap Registers

For More Information On This Product,

 Go to: www.freescale.com

624 APPENDIX D: PCI BYTE SWAPPING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Byte Swapping
Overview

The C-5 NP provides a byte swapping feature used to move data between the PCI Bus
Little Endian environment and the C-5 NP Big Endian environment.

Most endianess issues come from the difference in the addressing (and/or byte enable
assignment) and the position of bytes within a 32bit double word between the two (2)
environments as shown in Figure 93.

Figure 93 Little Endian vs. Big Endian

These differences create a problem when 32bit double word and byte transactions pass
from one environment to the other.

Default Mode The current hardware handles this transition by maintaining the data byte positions
within the 32bit double word and effectively swapping the byte address of the bytes.
Figure 94 illustrates a 32bit double word write from the PCI bus into a register somewhere
in the Big Endian C-5 NP environment. Notice how the data that was in bits [31:24] on the
PC I bus are stored in bits [31:24] in the C-5 NP register even though the address of that
byte is 3 on the PCI Bus and 0 within the C-5 NP.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Environment

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5 NP Big Endian Environment

Bits
Address
Contents

For More Information On This Product,

 Go to: www.freescale.com

PCI Byte Swapping Overview 625

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 94 PCI 32bit Aligned Double Word Access to C-5 NP

This means that software must be very careful with the address when performing
accesses to smaller than a 32bit double word. For example, in Figure 95 the PCI performs a
byte write to address 3 on the PCI Bus. Again the data on bits [31:24] on the PCI Bus arrives
in bits [31:24] in the C-5 NP register; however, as far as a processing element within the C-5
NP is concerned that byte is at address 0.

Figure 95 PCI Byte Access to C-5 NP (PCI Address 3)

The same rules apply when data flows in the opposite direction. Byte position remain the
same, but the addresses associated with the bytes swap as the data crosses the interface.
Figure 96 illustrates a 32bit double word access and Figure 97 shows a byte access flowing
from the C-5 NP to the PCI.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5 NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5 NP Big Endian Env.

Bits
Address
Contents

For More Information On This Product,

 Go to: www.freescale.com

626 APPENDIX D: PCI BYTE SWAPPING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 96 C-5 NP 32bit Aligned Double Word Access to PCI

Figure 97 C-5 NP Byte Access to PCI (C-5 NP Address 0)

Byte Swapping Mode The Byte Swapping Mode is an alternative to the Default Mode that handles this transition
by maintaining consistent byte addresses and swapping the data byte positions.
Figure 98 illustrates a 32bit double word write from the PCI bus into a register somewhere
in the Big Endian C-5 NP environment. Notice how the data that was in bits [31:24] on the
PC I bus are stored in bits [7:0] in the C-5 NP register, which is the byte at the same address
as that on the PCI bus. This means that if a C-5 NP internal processing element accesses
the same 32bit double word, the data will be byte swapped from what the PCI originally
wrote.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5 NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5 NP Big Endian Env.

Bits
Address
Contents

For More Information On This Product,

 Go to: www.freescale.com

PCI Byte Swapping Overview 627

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 98 PCI 32bit Aligned Double Word Access to C-5 NP

In this mode, the software does not have to worry about the byte addresses, because they
remain consistent across the interface. For example, in Figure 99 the PCI is doing a byte
write to address 3 on the PCI Bus. Again the data on bits [31:24] on the PCI Bus arrive in
bits [7:0] in the C-5 NP register, which is also C-5 NP internal byte address 3.

Figure 99 PCI Byte Access to C-5 NP (PCI Address 3)

The same rules apply when data is flowing in the opposite direction. Byte address remains
the same, but the byte positions are swapped as the data crosses the interface. Figure 100
illustrates a 32bit double word access and Figure 101 shows a byte access flowing from
the C-5 NP to the PCI.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xDD

23:16
1

0xCC

15:8
2

0xBB

7:0
3

0xAA

C-5 NP Big Endian Env.

Bits
Address
Contents

31:24
3

0xAA

23:16
2

15:8
1

7:0
0

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

23:16
1

15:8
2

7:0
3

0xAA

C-5 NP Big Endian Env.

Bits
Address
Contents

For More Information On This Product,

 Go to: www.freescale.com

628 APPENDIX D: PCI BYTE SWAPPING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 100 C-5 NP 32bit Aligned Double Word Access to PCI

Figure 101 C-5 NP Byte Access to PCI (C-5 NP Address 0)

Primary Application Using Byte Swapping Mode
The primary application of the Byte Swapping Mode is when the host processor in the
system is a Big Endian processor and the processor’s bridge to the Little Endian PCI Bus
performs byte swapping, as illustrated in Figure 102. Note that the two (2) byte swapping
operations that occur as data passes from or to the PowerPC Big Endian Environment,
over the PCI Bus and to or from the C-5 NP Big Endian Environment cancel each other out.
This provides both processing environments with a consistent view of all of the data.

31:24
3

0xDD

23:16
2

0xCC

15:8
1

0xBB

7:0
0

0xAA

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

C-5 NP Big Endian Env.

Bits
Address
Contents

31:24
3

23:16
2

15:8
1

7:0
0

0xAA

PCI Little Endian Env.

Bits
Address
Contents

31:24
0

0xAA

23:16
1

15:8
2

7:0
3

C-5 NP Big Endian Env.

Bits
Address
Contents

For More Information On This Product,

 Go to: www.freescale.com

PCI Byte Swapping Overview 629

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Figure 102 C-5 NP 32bit Aligned Double Word Access to PCI

Implementing Byte Swapping Mode
The default configuration for access to or from the C-5 NP does not perform byte
swapping, that is, the Default Mode. The Byte Swapping Mode can be enabled for specific
accesses based on programmable bits within the two (2) PCI Inbound BARn Translation
registers, the eight (8) PCI Outbound BARn Translation registers, or the control registers
associated with the PCI transmit and receive transfer control blocks. Table 184 on
page 630 defines the details for each transaction source/target pair that uses the PCI
interface. Table 185 on page 631 lists the Inbound and Outbound Bar Translation registers.

31:24
3

0xAA

23:16
2

0xBB

15:8
1

0xCC

7:0
0

0xDD

Bits
Address
Contents

31:24
0

0xDD

23:16
1

0xCC

15:8
2

0xBB

7:0
3

0xAA

Bits
Address
Contents

PowerPC Big Endian Env.

PCI Little Endian Env.

31:24
0

0xAA

23:16
1

0xBB

15:8
2

0xCC

7:0
3

0xDD

Bits
Address
Contents

PCI Little Endian Env.

C-5 NP Big Endian Env.

For More Information On This Product,

 Go to: www.freescale.com

630 APPENDIX D: PCI BYTE SWAPPING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 184 Byte Swapping Support Specification

Source Target Byte Swapping Support

PCI Bus C-5 NP PCI Config. Registers No Byte Swapping

PCI Bus XP Config. Registers
C-5 NP Serial Bus
PROM Interface
CPs via Global Bus
C-5 NP Ring Bus
DMEM24
DMEM25

Byte swapping controlled by bit 0 (BAR0 accesses)
and bit 1 (BAR 1 accesses) of the PCI Inbound Byte
Swap Control register. If the bit is set to a 1, byte
swapping occurs as the data passes through the PCI.
Each enable bit control s the byte swapping for only
transactions decoded by its corresponding base
address register.

XP/RC C-5 NP PCI Config Regs No Byte Swapping

XP/RC External PCI Space Byte swapping controlled by bits 0 through 7 of the
PCI Outbound Byte Swap Control register. If the bit is
set to a 1, byte swapping occurs as the data passes
through the PCI. Each enable bit controls the byte
swapping for only transactions decoded by its
corresponding base address register, where bits 0
through 7 correspond with BARs 0 through 7,
respectively.

Rx XCB#24
(Scope 0)

External PCI Space Byte swapping controlled by bit 8 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Rx XCB#24
(Scope 1)

External PCI Space Byte swapping controlled by bit 9 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Tx XCB #24
(Scope 0)

External PCI Space Byte swapping controlled by bit 10 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

Tx XCB #24
(Scope 1)

External PCI Space Byte swapping controlled by bit 11 of PCI Outbound
Byte Swap Control register. If the bit is set to a 1,
byte swapping occurs as the data passes through
the PCI interface.

For More Information On This Product,

 Go to: www.freescale.com

PCI Byte Swapping Overview 631

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Table 185 Inbound and Outbound Barn Transaction Registers

Address Register Name Details

0xBD808040 PCI Inbound BAR0 Translation See “PCI Inbound BAR0 Translation
Register (XP PCI Configuration
Function)” on page 464

0xBD808044 PCI Inbound BAR1 Translation See “PCI Inbound BAR1 Translation
Register (XP PCI Configuration
Function)” on page 464

0xBD808220 to
0xBD80823C

Outbound BAR0 Transaction to
Outbound Bar7 Transaction

See “Outbound BAR0 Translation
Register (XP Configuration
Function)” on page 472

For More Information On This Product,

 Go to: www.freescale.com

632 APPENDIX D: PCI BYTE SWAPPING

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

PCI Inbound and
Outbound Byte Swap
Registers

The control bits for byte swapping are located in dedicated configuration registers, to
allow these bits to be configured and then “forgotten”. This makes it possible for more of
the code to be written without knowing about the proper setting of these bits. Table 186
on page 632 lists the two (2) PCI Inbound and Outbound Byte Swap Control registers.

Table 186 PCI Inbound and Outbound Byte Swap Control Registers

Address Register Name Details

0xBD808050 PCI Inbound Byte Swap Control See “PCI Inbound Byte Swap Control
Register (XP PCI Configuration Function)”
on page 466.

0xBD80828C PCI Outbound Byte Swap Control See “PCI Outbound Byte Swap Control
Register (XP Configuration Function)” on
page 480.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Glossary

Aggregate Channel
Mode

A mode of the C-5 NP that use the CPs in parallel clusters for wider data stream processing
for higher OC speeds like OC-12 or Gigabit Ethernet.

Allocate To assign a BTag to a given requester (CP, XP or FP) from the BTags configured in BMU.

Buffer A partitioned area of the BMU’s SDRAM that holds data.

Buffer Tag (BTag) A partitioned area of the BMU’s SDRAM that is used to identify a buffer’s location in a pool.
It points the buffer.

Buffer Pool A partitioned area of SDRAM that contains buffers.

Configure Queue To send configuration information from the DMEM of a requesting processor (CP, or XP).

Constant Bit Rate (CBR) Specifies a fixed bit rate so that data is sent in a steady stream. This is analogous to a
leased line.

Content Addressable
Memory (CAM)

A memory area that contains programmable content that can be searched.

Deallocate To return a BTag from a given requester (CP, XP or FP) back to the BMU.

Descriptor A specific type of data used for traffic forwarding.

Descriptor Buffer A specific type of data used for traffic forwarding stored in a buffer in the QMU’s external
SRAM.

For More Information On This Product,

 Go to: www.freescale.com

634 GLOSSARY

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Dequeue To read descriptor data from a queue in QMU’s SRAM into the DMEM of the requesting
processor (CP, or XP).

Dynamic Descriptor
Buffer Pool

A partitioned area of the QMU’s external SRAM that contains descriptor buffers.

FP Payload A portion of segment, after the header, that is taken from or stored into a BMU buffer.

FP Protocol Data Unit
(PDU)

Data to be transmitted from or received into a BMU buffer.

FP PDU ID An identifier that allows a receiving FP to associate segments for reassembly. This ID need
only be unique in the FPRx while the PDU is being reassembled; that is, a given PDU ID
can be reused by a subsequent PDU. Typically, a "flow" of PDUs, transmitted from a single
queue of a Network Processor, might all use the same PDU ID.

FP Segment A basic package of FP data and header information that is transferred on fabric interface,
usually a fixed size.

FP Segment Header The beginning portion of a segment containing information used to route the segment
through the fabric and allow the receiving FP to reassemble the PDU from segments.

FP Segment Type Indicates the portion of the PDU that the segment carries. There are four types; first,
middle, last, and only (first and last).

FP Scope A set of internal hardware resources. The FPTx has 8 scopes. The FPRx can be configured
for either 8 or 16 scopes.

Link-List Tracks the free descriptor buffers, used descriptor buffers for queueing, and the location
of the data (descriptor data) in queues in the SRAM.

Literals A value written exactly as it's meant to be interpreted.

Multicast Enqueue To write a single descriptor’s data into multiple queues in the QMU’s SRAM from the
DMEM of the requesting processor (CP, or XP).

For More Information On This Product,

 Go to: www.freescale.com

Multi-Use Control Blocks 635

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Multi-Use Control Blocks A group of registers that can be programmed to make data moves to/from SDRAM, the
BMU, or the QMU. (WrCB0_Sys_Addr, WrCB0_Ctl, WrCB0_DMA_Addr, WrCB0_SDP_Addr;
RxCB0_Sys_Addr, RxCB0_Ctl, RxCB0_DMA_Addr, RxCB0_SDP_Addr; RdCB0_Sys_Addr,
RdCB0_Ctl, RdCB0_DMA_Addr, RdCB0_SDP_Addr; and TxCB0_Sys_Addr, TxCB0_Ctl,
TxCB0_DMA_Addr, TxCB0_SDP_Addr).

Multi-Use Counter When a BTag is assigned to more than one target (CP, XP or FP), a counter is needed to
track the multi-use BTag.

Pipeline Channel Mode A mode of the C-5 NP that links the individual CPs together for processing a single data
stream to achieve higher processing speeds.

PowerX Mode A FP mode that interfaces to a Power X TeraChannel® switch fabric product.

PRIZMA Mode A FP mode that interfaces to a IBM PRIZMA-E™ or PRIZMA-EP™ switch fabric product.

Queue A FIFO that contains descriptor data.

Queue Level A index to the queue number with a port to a processor (CP, or XP). It’s purpose is to copy
a single descriptor to multiple queues mapped to multiple processors.

Queue Status To read a single queue’s length and weight from the QMU into the DMEM of the
requesting processor (CP, or XP).

Recirculation A method used to pipeline your C-5 NP. To configure the C-5 Channel Processors (CPs)
RxSDP and TxSDP so that the output from the TxSDP is routed to the input of its
corresponding RxSDP.

Reference Count An initial count that is entered by hardware into the 8bit counter that is used to track
multi-use BTags.

Single Channel Mode A mode of the C-5 NP where the CPs operate independently of each other at full duplex
and can support for example, OC-3.

For More Information On This Product,

 Go to: www.freescale.com

636 GLOSSARY

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Unicast Enqueue To write descriptor data into a queue in the QMU’s SRAM from the DMEM of the
requesting processor (CP, or XP).

User-Defined
Inter-processor Message

Small fixed-sized (12, 16, 24, or 32Bytes) data structures that contain user defined
information. Generally, inter-processor messages are used to orchestrate control plane
activities such as flow control, statistics gathering, or table maintenance.

Variable Bit Rate (VBR) A specified throughput capacity but data is not sent evenly. This is a popular choice for
voice and video-conference data.

For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

Index

Symbols
8b/10b Decode block 64
8b/10b Encode block 72

A
Add Value to Table Entry command 268
aggregation

Channel Processor RISC Core receive program, role of 580
Channel Processor RISC Core transmit program, role of 581
clock distribution 583
C-Ware Reference Library application examples 583
hardware support for

using receive tokens 579
using transmit tokens 581

implications for C-5 NP components 578
receive processing 579
transmit processing 581

audience, for this guide 35
automatic idle cell and PPP flag insertion option 69

B
Bridge Address Table sizing example 306
Buffer Management Unit (BMU) 213

block diagram of 215
BTag allocation 229
BTag deallocation 231
BTag initialization 226
buffer pools 218
Buffer Tags 218
buffer usage and access 219
components of 214
Configuration Space 240
functionality, overview of 214
memory organization of 216

For More Information O

 Go to: www.fre
multi-use counters allocation 234
register memory map 513
SDRAM error correction, support for 217
unaligned buffer access 225

buffer pools
in Buffer Management Unit’s SDRAM 218

Buffer Tags (BTags) 218
buffers

Buffer Management Unit
unaligned access in 225
usage and access in 219

multi-use counters 233

C
C-5 NP

architecture
diagram of 46
overview of 42

component integration 42
coprocessors

Buffer Management Unit 44
Queue Management Unit 45
Table Lookup Unit 45

data buses
Global Bus 45, 366
Payload Bus 45, 366
Ring Bus 45, 366

interface support 43
packet forwarding example

receiving packets 47
transmitting packets 48

physical address memory map 51
processors

Channel Processor 44
Executive Processor 44
Fabric Processor 44

protocol support 43
n This Product,
escale.com

638 INDEX: D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

cell forwarding
example of 47

Channel Processor memory interface transactions 82
Channel Processor RISC Core

interacts with Serial Data Processor 58
Channel Processor RISC Core (CPRC)

component of Channel Processor 56
context switching 77
instruction set for 75

Channel Processors (CPs)
aggregated

clock distribution among 583
block diagram of 57
clusters of 43
components of 56
Configuration Space 87

Event Access Registers 111
Extract Space 89
Merge Space 90
Queue Status Registers 113
Read Control Blocks 95
Receive Control Blocks 98
Ring Bus Registers 106, 375
Transmit Control Blocks 102
Write Control Blocks 91

cycle counter 114
data scoping 85
event registers 110
event timer 114
external interfaces 58
functionality, overview of 56
instruction memory 80
interrupt mask registers 113
memory transactions

Configuration Space registers, global reads/writes of 84
Configuration Space registers, RISC core reads/writes of 84
data memory, Global Bus reads/writes of 84
RISC core instruction fetch 83
RISC core reads/writes data memory 83
RISC core reads/writes global memory 83
Rx payload buffer write 82
RxByte processor accesses data memory 82
Tx payload buffer read 82

receive clock mux 59
register memory map 378
RISC Core 75

context switching 77

For More Informati

 Go to: www
interacts with Serial Data Processor 58
Serial Data Processor

interacts with Channel Processor RISC Core 58
transmit clock mux 58

clocks
distribution, for aggregated Channel Processors 583

clusters
Channel Processors 43

Configuration Space 87, 240
Event Access Registers 111
Extract Space 89
in Buffer Management Unit (BMU) 512
in Channel Processors 57, 378
in Executive Processor 123, 446
in Queue Management Unit 498
Merge Space 90
Queue Status Registers 113
Read Control Blocks 95
Receive Control Blocks 98
Transmit Control Blocks 102
Write Control Blocks 91

context switching
Channel Processor RISC Core 77

control registers
for Serial Data Processor 109

C-Ware Reference Library applications
aggregation examples 583

cycle counter
in Channel Processor 114

cyclic redundancy check (CRC)
performed by RxByte processor 67

D
Data Engine

in Queue Management Unit 318
data memory (DMEM)

in Executive Processor 130
data scoping

overview of 85
receive 85
transmit 86

Data table type 302
Diagram

Fabric Processor 147
Direct Access Controller

in Queue Management Unit 317
on On This Product,
.freescale.com

INDEX: E 639

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

dynamic descriptor buffer pools
in Queue Management Unit’s SRAM 322

E
Echo command 276
Event Access Registers 111
event registers

in Channel Processors 110
event timer

in Channel Processor 114
Executive Processor (XP)

block diagram of 124
components of 122

data memory 123
instruction memory 123
PCI bus interface 123
PROM interface 123, 134
RISC Core 122
Serial Bus interface 123, 136

data memory 130
DMA access to SDRAM 130
functionality, overview of 122
initializing the C-5 NP 137

PCI initialization 137
PROM interface initialization 137

instruction memory 130
IROM 131
memory map Slot #24 141
memory map Slot #25 142
network interfaces, supervisory control of 132
other interfaces, accessibility of 138
PCI bus interface 132

PCI address space, access to 133
PCI Configuration registers 134

register memory map 447
Executive Processor RISC Core (XPRC) 122, 125

context switching 126
Event Registers 129
hardware interrupts 79, 127
instruction set for 125

Extract Space 89

For More Information O

 Go to: www.fre
F
Fabric Port Interface

in Queue Management Unit 318
Fabric Processor 145

Buffer Engine State Machine States 575
Buffer Pool Configuration, Btag Allocation, and Buffer 166
C-5 NP Utopia Operation 200
Control Space 157
Debugging and Test Features 196
Descriptor Build Engine Microcoding 178
Descriptor Format 152
Descriptor Sizes 195
Enqueue QMU Programing Machine States 574
Enqueuing 183
Error Reporting and Handling 160
Fabric Interface Configuration and Operation 199
Fabric Processor Receive 163
Fabric to Network Processor Link-Level Flow Control 192
FCE Configuration0 Register 559
FCE Configuration1 Register 561
FCE Configuration2 Register 562
FDP RxByte Shared0 Registers 565
FDP RxByte Shared1 Register 565
FlowTbl Register 540
FP Detailed Descriptions 530
FP Functionality 187
Global Bus Receive FP Statistics Registers Map 572
Header and Payload Splitting 165
Merge Space 156
Microcode Generation of Headers 153
Microcode Processing of receive Headers 168
Multiple C-5 NP Configurations 147
Multiple C-5 NPs with Switching Port 147
Network Processor to Fabric Link-Level Flow Control 192
Network Processor-to-Network Processor Operation 199
Per-Queue Flow Control 193, 194
Pool0_CFG0 Register 563
Pool0_CFG1 Register 564
Poolx_CFG0 Registers (for Pools 1, 2, and 3) 563
Poolx_CFG1 Registers (for Pools 1, 2 and 3) 564
Power X Mode, Fabric Interface to Pin Mapping 212
PowerX Mode 209
Prizma Mode 206
Reading the Payload 153
RxByte0 General Programmable Configuration Register 559
RxDebug Internal State Register 573
n This Product,
escale.com

640 INDEX: F

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

RxDS Configuration Register 555
RxDS Header Change1 Register 553
RxDS Header Change2 Register 554
RxDS Header/Payload Delimiter0 Register 554
RxDS Header/Payload Delimiter1 Register 554
RxDS Header/Payload Delimiter2 Register 555
RxEnable Configuration Register 551
RxFI Configuration register 551
RxFI CRC Register 556
RxFlowSeg Register, Byte1 549
RxFlowSeg0 Register 546
RxFlowSeg1 Register 549
RxFlowSz Register 547, 550
RxFlowSz0 Register 547
RxFlowSz1 Register 550
RxFP Debug Event Mux Control 567
RxFP Events 568
RxFP Interrupt Event Mask Register 567
RxFP Interrupt Event Register 566
RxFP Statistics Registers 572
RxMemory Address register 570
RxMemory Data register 570
RxStatus0 Register 546
RxStatus1 Register 548
RxTxCgs Register 548, 550
RxTxCgs0 Register 548
RxTxCgs1 Register 550
RxWCS_CAM Register 557
Storing the Payload 167
Transfer Control Block Programing States 574
Transmission Sequencing 151
Two C-5 NP Application 148
Tx Byte Processor Registers 156
TxByte General Purpose Registers 157
TxByte Processor Registers Summary 158
TxDebug Internal State Register 545
TxDebug Monitored Events 538
TxDebugMux Control Register 537
TxDescInfo register 532
TxDM Header/Payload Delimiter register 532
TxFCE Configuration register 535
TxFDP Merge Space 157
TxFDP0_Mrg registers 543
TxFI Configuration Register 530
TxFI CRC Register 534
TxFlowCam Register 541, 570
TxFlowTblDH Register 541

For More Informati

 Go to: www
TxFlowTblDl Register 540
TxFP Enable register 530
TxIdleData Register (FP Tx DeBug Function 544
TxMergeAddr register 542
TxMergeData register 543
TxQueWeight Configuration register 533
TxSysConfig Register 534
Utopia 2 203

Control signals 204
RxClav 205
RxEnb 205
RxSOC 205
TxClav 204
TxEnb 204
TxSOC 205

Utopia 3 201
RxClav 202
RxEnb 203
RxSOC 203
TxClav 202
TxEnb 202
TxSOC 202

Utopia Modes 199
Utopia2/Utopia3 ATM Mode, C-5 Network Processor to Fabric

Interface Pin Mapping 200
Weighting Algorithm 159

Fabric Processor (FP)
receiving multicast queue descriptors from Queue Management

Unit 354
register memory map 526
TxByte Processor memory map 158

Fabric Processor Block Diagram 147
Fabric Processor Overview 145
Fabric Processor Rx Registers 546
Fabric Processor Transmit 149
Fabric Processor Tx Registers 530
FibreChannel

aggregation 583
specifications 65

Find and Read Table Entry command 266
Find and Write Table Entry command 264
Find Table Entry command 262
FP Registers 526
on On This Product,
.freescale.com

INDEX: G 641

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

G
Gigabit Ethernet

aggregation 583
Global Bus 376

H
Hash table type 290

I
IEEE 802.3 specification 64
IEEE 802.3z specification 65
Indexed Pointer table type 288
instruction memory (IMEM)

in Channel Processors 57, 80
in Executive Processor 130

instruction set
for Channel Processor RISC Core 75

interrupt mask registers
in Channel Processors 113

IP Routing Table sizing example 306
IROM, processor utilization instructions 131

K
Key table type 301

M
Merge Space 90
multicasting packets and frames 361

flow of processing 361
queue limit testing 352
queuing levels 353
receive flow 361
role of Queue Management Unit 350
success versus failure 352
to Fabric Processor 354
transmit flow 363

For More Information O

 Go to: www.fre
N
NOP command 277

O
OC-12

aggregation 589
OC-12c

aggregation 589

P
packet forwarding

example of 47
Payload Bus 368

latency 368
operation 368

PCI bus interface 132
compliance with PCI Specification, Revision 2.1 132
external PCI Initiator, support for 133
PCI address space, access from Executive Processor 133
PCI Configuration registers 134

PCI Specification, Revision 2.1 132
Processor, Fabric 145
PROM interface

in Executive Processor 134

Q
Queue Command Mailbox

in Queue Management Unit 317
Queue Management Engine (QME)

in Queue Management Unit 317
Queue Management Unit (QMU)

block diagram of 319
components of

Data Engine 318
Direct Access Controller 317
Fabric Port Interface 318
Queue Command Mailbox 317
Queue Management Engine 317
SRAM 318

Configure Queue Operation 340
Dequeue Operation 348
dynamic descriptor buffer pools 322
functionality, overview of 316
n This Product,
escale.com

642 INDEX: R

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

initialization
assigning queue owners 328
enabling execution 332
limiting dynamic pools usage 323
specifying queue parameters 330

Multicast Enqueue Operation 346
multicasting packets and frames 350

queue limit testing 352
queuing levels 353
success versus failure 352
to Fabric Processor 354

performance of 360
descriptor size and execution speed 360
latency 360

Queue Status Operation 342
queuing operations 332

dequeing 333
enqueing descriptors 332
obtaining queue statuses 335
specifying queue service policy 333
using mailboxes 334

register memory map 499
setup 358
Unicast Enqueue Operation 344

Queue Status Registers 113
queue statuses 335

dequeue status 336
extended queue status information 336
queue non-empty transition status 335

R
Read Control Blocks (RdCBs) 95
Read Indexed Table Entry command 260
Read TLU Register command 275
receive clock mux 59
Receive Control Blocks (RxCBs) 98
recirculating data

debug and test 73, 74
within a Serial Data Processor 72

Registers
Fabric Processor Rx 546
Fabric Processor Tx 530

Registers, FP 526
Ring Bus 370

control register response slot usage 304
interface registers 375

For More Informati

 Go to: www
nodes
’receive from upstream’ action 373
’send downstream’ action 372
components of 370

supported message transactions 370
Table Lookup Unit commands 255
transaction latency 373

Ring Bus Registers 106, 375
Rx_SONETOH0 — Rx_SONETOH31 registers

Overhead Byte Addresses 598
RxBit processor 65

token bus for 579
RxByte processor 67
RxLargeFIFO block 67
RxSmallFIFO block 65
RxSONETFramer block 66

token bus for 579
RxSync processor 66

token bus for 579

S
Serial Bus interface

in Executive Processor 136
Serial Data Processors (SDPs) 58

8b/10b Decode block 64
8b/10b Encode block 72
alternate recirculation paths 73
common processor components 62
component of Channel Processor 56
control registers 109
interact with Channel Processor RISC Cores 58
processors and blocks

differentiating 61
in Receive Serial Data Processor 64
in Transmit Serial Data Processor 68
pipelining 61

recirculating data 72
debug and test 74
normal operation 73

RxBit processor 65
RxByte processor 67
RxLargeFIFO block 67
RxSmallFIFO block 65
RxSONETFramer block 66
RxSync processor 66
TxBit processor 71
on On This Product,
.freescale.com

INDEX: T 643

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxByte processor 68
TxLargeFIFO block 69

automatic idle cell and PPP flag insertion option 69
transmit FIFO high water mark option 69

TxSmallFIFO block 71
TxSONETFramer block 70

Single Error Correcting, Double Error Detecting (SECDED) Error
Correction Code (ECC) 217

SONET Mask register 621
SONET overhead writable bytes 599

OC-12 601
OC-12c 600
OC-3c 599

SONET registers
Rx SONET OC-12/OC-12c Path Overhead Byte Addresses 610
Rx SONET OC-12/OC-12c Transport Overhead Byte Addresses 605
Rx SONET OC-3 Path Overhead Byte Addresses 604
Rx SONET OC-3 Transport Overhead Byte Addresses 602
Rx_SONETOH0 — Rx_SONETOH31

Overhead Byte Addresses 598
SONET_MASK register 621
Tx SONET OC-12/OC-12c Path Overhead Byte Addresses 618
Tx SONET OC-12/OC-12c Transport Overhead Byte Addresses 614
Tx SONET OC-3c Path Overhead Byte Addresses 613
Tx SONET OC-3c Transport Overhead Byte Addresses 612
Tx_SONETOH0 — Tx_SONETOH31

Overhead Byte Addresses 598
SRAM

in Queue Management Unit 318

T
Table Lookup Unit (TLU)

Address Generation block 249
application design issues 304

Ring Bus control register response slot usage 304
sizing tables 306
TLU performance 305

block diagram of 247
Bridge Address Table sizing example 306
Compare Register Fetch block 249
components of 247
configuration and status registers 278
functionality, overview of 246
Hash Function 290
Index Generation block 250
Initial Index Generation block 249

For More Information O

 Go to: www.fre
IP Routing Table sizing example 306
lookup commands 257

Add Value to Table Entry 268
Echo 276
Find and Read Table Entry 266
Find and Write Table Entry 264
Find Table Entry 262
NOP 277
Read TLU Register 275
Write Table Entry 257
Write TLU Register 274

physical storage 246
Ring Bus commands 255
Ring Bus Interface block 248
SRAM Data Latch block 249
SRAM Memory Controller 250
supported algorithms 246
supported table types 253
table configuration 252
transactional flow 248

table types
Data 302
Hash 290
Indexed Pointer 288
Key 301
Trie 292
Variable Prefix (VP) Trie 296

tables
linking 252
virtual 253

token buses
among aggregated Receive Serial Data Processors 579
among aggregated Transmit Serial Data Processors 581

transmit clock mux 58
Transmit Control Blocks (TxCBs) 102
transmit FIFO high water mark option 69
Trie table type 292
Tx_SONETOH0 — Tx_SONETOH31 registers

Overhead Byte Addresses 598
TxBit processor 71

aggregation of 581
TxByte processor 68

token bus for aggregation 581
TxFDP_CTL0 Register

(TxByte General Purpose Function) 544
TxFDP_CTL1 Register

(TxByte General Purpose Function) 545
n This Product,
escale.com

644 INDEX: V

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

n
c

..
.

TxLargeFIFO block 69
TxSmallFIFO block 71
TxSONETFramer block 70

V
Variable Prefix (VP) Trie table type 296
virtual tables 253

W
Write Control Blocks (WrCBs) 91
Write Table Entry command 257
Write TLU Register command 274

X
XOR a Value to Table Entry command 270

For More Informati

 Go to: www

on On This Product,
.freescale.com

	C-5 Network Processor Architecture Guide
	Contents
	Figures
	Tables
	About This Guide
	Guide Overview
	Using C-Port Electronic Documents
	Guide Conventions
	Revision History
	Related User Documentation

	Introduction
	Chapter Overview
	C-5 NP Architecture Overview
	Highly-Integrated Architecture
	C-5 NP Modes of Operation
	Single Channel Mode
	Pipeline Channel Mode
	Aggregate Channel Mode

	C-5 NP Supported Interfaces
	Major Components of the C-5 NP
	C-5 NP Interconnect Components
	Other Supported Features

	C-5 NP Block Diagram and Flow Process
	Cell and Packet Forwarding Overview
	Receiving Packets
	Transmitting Packets

	C-5 NP Address Mapping
	Configuration Register Definitions
	Processor Base Address Offsets
	Configuration Register Address Offsets
	Byte Ordering

	Channel Processors
	Chapter Overview
	Channel Processors (CPs) Overview
	CP Major Components

	Serial Data Processors (SDPs) Overview
	Supported External Interfaces
	SDPs Functions
	SDPs Major Components
	Common Components of the Programmable Processors
	RxSDP Detail Operations
	8b/10b Decode Configurable Logic Block
	RxSmallFIFO Configurable Logic Block
	RxBit Programmable Processor
	RxSONET Framer Configurable Logic Block
	RxSync Programmable Processor
	RxLargeFIFO Configurable Logic Block
	RxByte Programmable Processor

	TxSDP Detail Operations
	TxByte Programmable Processor
	TxLargeFIFO Configurable Logic Block and Options
	TxSONET Framer Configurable Logic Block
	TxBit Programmable Processor
	TxSmallFIFO Configurable Logic Block
	8b/10b Encode Configurable Logic Block

	Configuration for Recirculation Operations Using RxSDP and TxSDP

	CP RISC (CPRC) Overview
	RISC Instruction Set Supported
	Fast Context Switching Configuration Using the CPRC
	Fast Context Switching Detail Operations
	Interrupts

	CP Memory (IMEM and DMEM)
	Instruction Memory (IMEM)
	Data Memory (DMEM)

	CP Memory Interface Transactions
	DataScope Purpose
	Data Scope Detail Operations

	CP Configuration Space
	Address Mapping of the CPs
	Understanding CP Functions
	Extract Space
	Merge Space
	Control Block Registers
	Ring Bus Registers
	SDP Control and Status Registers
	Miscellaneous Control Registers

	Understanding Block Moves of Data
	External Handling Overview
	Internal Handling Overview
	Using Multi-Use Control Blocks to Achieve Different Functions

	Executive Processor
	Chapter Overview
	Executive Processor (XP) Overview
	XP Major Components

	XP RISC (XPRC) Overview
	XPRC Instruction Set
	XPRC Registers
	Context Switching
	Interrupts
	Hardware Programming Resources
	Event Registers

	XP Memory (IMEM and DMEM)
	Instruction Memory
	Data Memory
	SDRAM
	IROM

	XP Supported Interfaces
	PCI Bus Interface
	PCI Access to C-5 NP Physical Address Space
	C-5 NP Access to PCI Address Space
	PCI Registers

	PROM Interface
	Serial Bus Interface

	C-5 NP Interface Options for Initialization
	Using the PCI Interface Initialization Option
	Using the PROM Interface Initialization Option

	Other XP Interfaces
	XP Configuration Space

	Fabric Processor
	Chapter Overview
	Fabric Processor (FP) Overview
	Terminology
	FP Block Diagram
	Multiple C-5 NP Configurations
	General FP specifications

	Fabric Processor Transmit (FPTx)
	Transmission Sequencing
	Descriptor Format
	Reading the Payload
	Microcode Generation of Headers
	FP Tx Microcoding

	TxByte Processor Registers
	Merge Space

	Weighting Algorithm
	Example 1:
	Example 2:

	Error Reporting and Interrupts
	Descriptor (QMU) Parity Error
	Buffer (BMU) Read Error
	Write (BMU) Error
	Dequeue (QMU) Failure

	Fabric Processor Receive (FPRx)
	Header and Payload Splitting
	Buffer Pool Configuration, BTag Allocation, and Buffer
	Storing the Payload
	Microcode Processing of Headers
	External Test Conditions
	Datascope
	Performance Requirement
	Setting Up Control Information
	Writing to Extract Space
	TLU Lookups
	TLU Lookup Programming Guidelines
	General Purpose Registers
	Discarding Segments
	Token Passing
	Rx Drop Mode

	Descriptor Build Engine Microcoding
	Descriptor Build Sequence Programming
	Extract and Response
	Handling TLU Errors
	Alignment
	Bit shift operation

	Enqueuing
	Interrupts
	Error Status FIFO Full
	Parity Error
	No BTags available on allocate
	Buffer Write Errors
	BTag Programming Error
	BTag ECC Error
	BTag Allocation Retry Timeout

	Error Handling and Statistics
	Enqueue Failures
	Segment Sequencing Errors
	Parity and CRC Errors

	FP Functionality
	Initialization
	Accessing the FP TxByte Processor WCSs and CAMs
	Accessing FP Rx WCSs and CAMs
	Fabric to C-5 NP Link-Level Flow Control
	C-5 NP to Fabric Link-Level Flow Control
	Latency

	Fabric to C-5 NP Per-Queue Flow Control
	C-5 NP to Fabric Per-Queue Flow Control
	Descriptor Sizes
	CRC
	Endianness (Byte and Bit Ordering)
	Debugging and Test Features
	1. Debug MUX
	2. FP Rx Statistics Registers
	3. Internal Debug State Registers
	4. Accessing FP Memories

	Fabric Interface Configuration and Operation
	FP Payload Bus Bandwidth
	Network Processor-to-Network Processor Operation (Back to back)
	FP Interface Modes
	Utopia Modes
	C-5 NP Utopia Operation
	Utopia 3
	Control Signals
	Utopia 2
	Control signals

	PRIZMA Mode
	Configuring for PRIZMA Mode

	PowerX Mode

	Buffer Management Unit
	Chapter Overview
	Buffer Management Unit (BMU) Overview
	BMU Major Components

	BMU Physical Memory Organization
	Out-of-Band Bits
	SECDED ECC Support

	BMU Buffer Memory Organization
	Buffer Pools
	Buffers
	Buffer Tags (BTags)
	Storage Space (SDRAM Partitions)

	Buffer Access

	Types of Transactions
	Buffer Memory Transactions
	Using Wr/Rd Control Blocks for Payload Transactions
	Using Rx/Tx Control Blocks for Payload Transactions
	Read/Write Ordering
	Unaligned Buffers

	BTag Management Transactions
	BTag Transaction Functions (Operation and Examples)
	BTag Initialization Operation
	BTag Initialization Example
	BTag Allocation Operation
	BTag Allocation Example
	BTag Deallocation Operation
	BTag Deallocation Example

	Multi-Use Counter (MUC) Management Transactions
	MUC Transaction Functions (Operation and Examples)
	MUC Allocation Operation
	MUC Allocation Example
	MUC Decrement Operation
	MUC Decrement Example
	MUC Read Operation
	MUC Read Example

	BMU Configuration Space
	Test and Debug Registers
	Memory Error Reporting
	ECC Test Modes
	Debug Register

	BMU Setup

	Table Lookup Unit
	Chapter Overview
	Table Lookup Unit (TLU) Overview
	TLU Major Components

	TLU Flow Process
	TLU Flow Process Details
	Ring Bus Interface and Command Parser
	Initial Index Generation
	Address Generation
	Compare Register Fetch
	SRAM Data Latch
	Index Generation
	SRAM Controller

	TLU Supported Table Types
	TLU Table Mapping
	Mapping Virtual Tables to Physical Tables

	TLU Commands Overview
	TLU Command Parameters
	Detail TLU Commands
	Write Command
	Read Command
	Find Command
	Findw Command
	Findr Command
	Add Command
	XOR Command
	CRC Mode (Using the Non-zero XOR Command Options)
	Write Register Command
	Read Register Command
	Echo Command
	No-Operation (NOP) Command

	TLU Configuration and Status Registers
	TLU Registers
	CRC-32_Checkvalue Register
	CRC-32_FCS_Correction_Table_Base_Address Register
	TLU_Statistics Register
	Table_Configuration1 Register
	Table_Configuration2_Lower Register
	Table_Configuration2_Upper Register
	Virtual_Table_Configuration Register
	Lookup_Algorithm_Configuration1 Register
	Lookup_Algorithm_Configuration2 Register

	TLU Format and Examples of Table Types
	Indexed Pointer Tables
	Hash Tables
	Trie Tables
	Variable Prefix (VP) Trie Tables
	Key Tables
	Data Tables
	External Tables

	TLU Application Considerations
	TLU/Ring Bus Control Register Response Slot Usage
	TLU Performance
	Table Sizing Examples
	Bridge Address Table Sizing Example
	IP Routing Table Sizing Example

	TLU Special Applications
	Using the RxByte Processor for Long Lookups
	Long Lookup Example for an Ethernet Application

	Partial CRC-32 Support
	Partial CRC-32 Data Entry Format

	Queue Management Unit
	Chapter Overview
	Queue Management Unit (QMU) Overview
	Payload Descriptors Enqueued to the QMU
	Used-Defined Inter-processor Messages Enqueued to the QMU
	QMU Major Components

	QMU Flow Process
	Flow Details for CPs/XP Inputs and FP Inputs
	CPs and XP Input Flow
	FP Input Flow

	Queue Organization
	External SRAM
	Descriptor Buffer
	Dynamic Descriptor Pools
	Dynamic Descriptor Usage Limit Pooln

	Internal SRAM

	QMU Variables
	Queue Mapping and Parameter Characteristics
	Queue to Processor Mapping
	Queue to Processor Mapping Rules

	Queue Length Allowance and Length Limit Parameters

	Queuing Operations
	QMU Run Enable
	Enqueue Operation
	Payload (Wr/Rd) Servicing Order During Enqueue Operation
	Causes of Enqueue Failure

	Dequeue Operation
	Queue Servicing Policy During Dequeuing Operation
	Causes of Dequeue Failures

	Status Reporting
	Mailbox Availability and Status Reporting of Mailboxes
	Queue Status Information

	Types of Transactions
	Queue Management Transactions
	Queue Transaction Functions (Operation and Examples)
	Configure Queue Operation
	Configure Queue Example
	Queue Status Operation
	Queue Status Example
	Unicast Enqueue Operation
	Unicast Enqueue Example
	Multicast Enqueue Operation
	Multicast Enqueue Example
	Dequeue Operation
	Dequeue Example

	QMU Multicast Support (Non-System Level)
	Multicast Operations Success or Failure
	Multicast Operation Throughput Considerations
	Queue Levels Supported in Multicast Operations
	Multicasting to the Fabric Processor

	QMU Configuration Space
	QMU Setup
	QMU Performance
	Execution Speed and Descriptor Size Relationship

	Multicast Support (System Level)
	Multicast Flow in the C-5�NP
	Multicast Receive Flow Transaction Process
	Multicast Transmit Flow Transaction Process

	Internal Buses
	Chapter Overview
	Internal Buses Overview
	Internal Buses Characteristics

	Payload Bus Overview
	Payload Bus Operation
	Payload Bus Latency
	Payload Bus Latency (Default Mode)
	Payload Bus Latency (FP Mode)

	Ring Bus Overview
	Ring Bus Major Components
	Ring Bus Node Operation
	Sending Downstream
	Receiving from Upstream

	Ring Bus Latency
	Ring Bus Interface Registers
	Ring Bus Transmit (Tx) Message Registers
	Ring Bus (Rx) Receive Message Registers
	Ring Bus Receive (Rx) Response Registers

	Global Bus Overview

	C-5 NP Registers
	Appendix Overview
	Channel Processor (CP) Configuration Registers
	CP Registers
	CP Detailed Descriptions
	RxSDP0_Ext0 to RxSDP0_Ext15 Registers (CP Rx Extract Space0 Function)
	TxSDP0_Merge0 to TxSDP0_Merge15 Registers (CP Tx Merge Space0 Function)
	RxCB0_Sys_Addr Register (CP Rx Control Block0 Function)
	RxCB0_Ctl Register (CP Rx Control Block0 Function)
	RxCB0_DMA_Addr Register (CP Rx Control Block0 Function)
	RxCB0_SDP_Addr Register (CP Rx Control Block0 Function)
	WrCB0_Sys_ Addr Register (CP Wr Control Block0 Function)
	WrCB0_Ctl Register (CP Wr Control Block0 Function)
	WrCB0_DMA_Addr Register (CP Wr Control Block0 Function)
	RdCB0_Sys_Addr Register (CP Rd Control Block0 Function)
	RdCB0_Ctl Register (CP Rd Control Block0 Function)
	RdCB0_DMA_Addr Register (CP Rd Control Block0 Function)
	TxCB0_Sys _Addr Register (CP Tx Control Block0 Function)
	TxCB0_Ctl Register (CP Tx Control Block0 Function)
	TxCB0_DMA_Addr Register (CP Tx Control Block0 Function)
	TxCB0_SDP_Addr Register (CP Tx Control Block0 Function)
	TxCtl0_Status Register (CP Tx Control Block0 Function)
	TxMsg0_Ctl Register (CP Ring Bus Tx Message Control Function)
	TxMsg0_Data_H Register (CP Ring Bus Tx Message Control Function)
	TxMsg0_Data_L Register (CP Ring Bus Tx Message Control Function)
	RxResp0_Ctl Register (CP Ring Bus Rx Response Control Function)
	RxResp0_Data_H Register (CP Ring Bus Rx Response Control Function)
	RxResp0_Data_L Register (CP Ring Bus Rx Response Control Function)
	RxMsg_Ctl Register (CP Ring Bus Rx Message Control Function)
	RxMsg_FIFO Register (CP Ring Bus Rx Message Control Function)
	Rx_SONETOH0 to Rx_SONETOH31 Registers (CP SONET Rx Control Function)
	Tx_SONETOH0 to Tx_SONETOH31 Registers (CP SONET Tx Control Function)
	RxCtl_ByteSeq0 Register (CP SDP Rx Control Function)
	RxCtl_SyncSeq Register (CP SDP Rx Control Function)
	RxCtl_BitSeq0 Register (CP SDP Rx Control Function)
	TxCtl_ByteSeq0 Register (CP SDP Tx Control Function)
	TxCtl_BitSeq0 Register (CP SDP Tx Control Function)
	CP_Mode0 Register (CP Mode Configuration Function)
	CP_Mode1 Register (CP Mode Configuration Function)
	SDP_Mode2 Register (CP Mode Configuration Function)
	SDP_Mode3 Register (CP Mode Configuration Function)
	SDP_Mode4 Register (CP Mode Configuration Function)
	SDP_Mode5 Register (CP Mode Configuration Function)
	Debug_Mode Register (CP Mode Configuration Function)
	PIN_Mode Register (CP Mode Configuration Function)
	Queue_Status0 Register (CP Queue Status Function)
	Queue_Update0 Register (CP Queue Status Function)
	Event_Timer Register (CP Miscellaneous Control Function)
	Cycle_Count_H Register (CP Miscellaneous Control Function)
	Cycle_Count_L Register (CP Miscellaneous Control Function)
	Event0 Register (CP Event and Interrupt Function)
	Event1 Register (CP Event and Interrupt Function)
	Event_Mask0 Register (CP Event and Interrupt Function)
	Event_Access Register (CP Event and Interrupt Function)
	Mask_Access Register (CP Event and Interrupt Function)
	Interrupt_Mask0 Register (CP Event and Interrupt Function)
	SONET_Event Register (CP Event and Interrupt Function)
	SONET_Mask Register (CP Event and Interrupt Function)

	Executive Processor (XP) Configuration Registers
	XPSlot 24 Configuration Registers
	XP Detailed Descriptions
	PCI Device ID Register (XP PCI Configuration Function)
	PCI Vendor ID Register (XP PCI Configuration Function)
	PCI Status Register (XP PCI Configuration Function)
	PCI Command Register (XP PCI Configuration Function)
	PCI Class Code Register (XP PCI Configuration Function)
	PCI Revision ID Register (XP PCI Configuration Function)
	PCI Header Type Register (XP PCI Configuration Function)
	PCI Latency Timer Register (XP PCI Configuration Function)
	PCI Inbound Memory Base Address Register0 (XP PCI Configuration Function)
	PCI Inbound Memory Base Address Register1 (XP PCI Configuration Function)
	PCI Subsystem ID Register (Read Only) (XP PCI Configuration Function)
	PCI Subsystem Vendor ID Register (Read Only) (XP PCI Configuration Function)
	PCI Interrupt Pin Register (XP PCI Configuration Function)
	PCI Interrupt Line Register (XP PCI Configuration Function)
	PCI Inbound BAR0 Translation Register (XP PCI Configuration Function)
	PCI Inbound BAR1 Translation Register (XP PCI Configuration Function)
	PCI Auxiliary Control Register (XP PCI Configuration Function)
	PCI Subsystem ID Register (XP PCI Configuration Function)
	PCI Subsystem Vendor ID Register (XP PCI Configuration Function)
	PCI Inbound Byte Swap Control Register (XP PCI Configuration Function)
	Serial Bus Configuration Register (XP Miscellaneous Control Function)
	Serial Bus Data Register (XP Miscellaneous Control Function)
	XP to CP Interrupt Request Registers (XP Miscellaneous Control Function)
	Software Warm Reset Request Register (XP Miscellaneous Control Function)
	Outbound PCI Base Address0 Register (XP Configuration Function)
	Outbound BAR0 Translation Register (XP Configuration Function)
	DMA Transmit Channel0 PCI Target Register (XP Configuration Function)
	DMA Receive Channel0 PCI Target Register (XP Configuration Function)
	DMA Receive Channel0 Transfer Count Register (XP Configuration Function)
	XP Miscellaneous Control Register (XP Configuration Function)
	XP Auxiliary Event Register (XP Configuration Function)
	Inbound PCI Mailbox0 Register (XP Configuration Function)
	IMEM Overlay Target Address Register (XP Configuration Function)
	RxCB #25 Transfer Count Register (XP Configuration Function)
	XP Diagnostic Register (XP Configuration Function)
	PCI Outbound Byte Swap Control Register (XP Configuration Function)
	Debug Counter0 Start Value Register (XP Configuration Function)
	Debug Counter0 Control Register (XP Configuration Function)
	Debug Counter0 Current Value Register (XP Configuration Function)
	RxCtl0_Status Register (XP DMEM#24 Transfer Rx Control Block0 Function)
	TxCB0_Ctl Register (XP DMEM#24 Transfer Tx Control Block0 Function)
	TxCtl0_Status Register (XP DMEM#24 Transfer Tx Control Block0 Function)
	XP_Mode Register (XP Mode Configuration Function)
	XP Debug Mode Register (XP Mode Configuration Function)
	Event0 Register (Event and Interrupt Control Function)
	Event1 Register (Event and Interrupt Control Function)
	RxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)
	TxCtl0_Status Register (XP DMEM#25 Transfer Control Block0 Function)

	Queue Management Unit (QMU) Configuration Registers
	QMU Registers
	QMU Detailed Descriptions
	QMU_Run_Enable Register (QMU Enable Queue Function)
	Base_Queue_CP0 to Base_Queue_CP15 Registers (QMU CP’s Queue Allocation Function)
	Base_Queue_FP Register (QMU FP’s Queue Allocation Function)
	Base_Queue_XP Register (QMU XP’s Queue Allocation Function)
	Num_Descriptors Register (QMU Configuration Function)
	Dyn_Des_Usage_Lim_Pool0 Register (QMU Configuration Function)
	Operation_Mode Register (QMU Configuration Function)
	Descriptor_Size Register (QMU Configuration Function)
	Config_Q_Cnt Register (QMU Statistics Function)
	Rd_Q_Status_Cnt Register (QMU Statistics Function)
	CP_Uni_Enq_Cnt Register (QMU Statistics Function)
	CP_Multi_Enq_Cnt Register (QMU Statistics Function)
	CP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)
	CP_Dequeue_Cnt Register (QMU Statistics Function)
	FP_Uni_Enq_Cnt Register (QMU Statistics Function)
	FP_Multi_Enq_Cnt Register (QMU Statistics Function)
	FP_Multi_Enq_Target_Cnt Register (QMU Statistics Function)
	FP_Dequeue_Cnt Register (QMU Statistics Function)
	QMU_Idle_Cycles Register (QMU Statistics Function)
	Payload_NACK_Cnt Register (QMU Statistics Function)
	Global_NACK_Cnt Register (QMU Statistics Function)
	Payload_Read_Failures_Cnt Register (QMU Statistics Function)
	Cmd_Processor_Err_Cnt Register (QMU Statistics Function)
	Q_Engine_Err_Cnt Register (QMU Statistics Function)
	Multicast_Destination0 to Multicast_Destination143 Registers (QMU Configuration Function)
	Free_Descriptor_Buffer_List Register (QMU Status Function)
	Dyn_Descriptor_Pool0_Usage Register (QMU Status Function)

	Buffer Management Unit (BMU) Configuration Registers
	BMU Registers
	BMU Detailed Descriptions
	Pool0 Base to Pool29 Base Registers (Buffer Pool Base Address Function)
	Pool0 BTag Shift to Pool29 BTag Shift Registers (Buffer Size for a Pool Function)
	BTag FIFO Base0 to BTag FIFO Base29 Registers (BTag FIFO Base Address Function)
	Num BTags0 to Num BTags29 Registers (Number of BTags in a Pool Function)
	Memory Size Register (Miscellaneous Function)
	SDRAM Config Register (Miscellaneous Function)
	Single ECC Errors Register (Miscellaneous Function)
	ECC Enable and Test Enable Register (Miscellaneous Function)
	Debug Config Register (Miscellaneous Function)
	Wr_Mem_Violation_Hi Register (Miscellaneous Function)
	Wr_Mem_Violation_Lo Register (Miscellaneous Function)

	Fabric Processor (FP) Configuration Registers
	FP Registers
	FP Detailed Descriptions
	TxFP_Enable Register (FP Tx Enable Function)
	TxFI_Configuration Register (FP Tx Configuration Function)
	TxDescInfo Register (FP Tx Configuration Function)
	TxDM_Header/Payload Delimiter Register (FP Tx Configuration Function)
	TxQueueWeight_Configuration Register (FP Tx Configuration Function)
	TxSysConfig Register (FP Tx Configuration Function)
	TxFI_CRC Register (FP Tx Configuration)
	TxFCE_Configuration Register (FP Tx Configuration Function)
	TxDebugMux_Control Register (FP Tx DeBug Function)
	TxWCS_CAM (WCS_CAM Function)
	TxFlowTbI Register (FP Tx DeBug Function)
	TxFlowTblDL Register (FP Tx DeBug Function)
	TxFlowTblDH Register (FP Tx DeBug Function)
	TxFlowCam Register (FP Tx DeBug Function)
	TxMergeAddr (FPTx Debug Function)
	TxMergeData (FPTx Debug Function)
	TxFDP_Mrg0 - TxFDP_Mrg63
	TxIdleData Register (FP Tx Configuration Function)
	TxFDP_CTL0 Register (TxByte General Purpose Function)
	TxFDP_CTL1 Register (TxByte General Purpose Function)
	TxDebug_Internal_State Register (FP Tx DeBug Function)
	RxStatus0 Register (FP RxByte Processor Function)
	RxFlowSeg0 Register (FP RxByte Processor Function)
	RxFlowSz0 Register (FP Rx Byte Processor Function)
	RxTxCgs0 Register (FP Rx Byte Processor Function)
	RxStatus1 Register (FP RxByte Processor Function)
	RxFlowSeg1 Register (FP RxByte Processor Function)
	RxFlowSz1 Register (FP RxByte Processor Function)
	RxTxCgs1 Register (FP RxByte Processor Function)
	RxEnable_Configuration Register (FP Rx Enable Function)
	RxFI_Configuration Register (FP Rx Configuration Function)
	RxDS_Header_Change1 Register (FP Rx Configuration Function)
	RxDS_Header_Change2 Register (FP Rx Configuration Function)
	RxDS_Header/Payload_Delimiter0 Register (FP Rx Configuration Function)
	RxDS Header/Payload Delimiter1 Register (FP Rx Configuration Function)
	RxDS_Header/Payload_Delimiter2 Register (FP Rx Configuration Function)
	RxDS_Configuration Register (FP Rx Configuration Function)
	RxFI_CRC Register (FP Rx Configuration Function)
	RxWCS_CAM Register (RxWCS_CAM Function)
	RxByte0 General Purpose Configuration Register (FP Rx Configuration Function)
	RxByte1 General Purpose Configuration Register (FP Rx Configuration Function)
	RxFCE_Configuration0 Register (FP Rx Configuration Function)
	RxFCE_Configuration1 Register (FP Rx Configuration Function)
	RxFCE_Configuration2 Register (FP Rx Configuration Function)
	Buffer Pools
	Pool0_CFG0 Register (FP Rx Pool Configuration Function)
	Pool0_CFG1 Register (FP Rx Pool Configuration Function)
	FDP_RxByte_Shared0 Register (FP Rx Shared Function)
	FDP_RxByte_Shared1 Register (FP Rx Shared Function)
	RxFP_Interrupt_Event Register (FP Rx Interrupt Function)
	RxFP_Interrupt_Enable Register (FP Rx Interrupt Function)
	RxFP_Debug_Event_Mux_Control (FP Rx DeBug Function)
	RxMemory_Address Register (FP Rx DeBug Function)
	RxMemory_Data Register (FP Rx DeBug Function)
	RxPDU_ID_CAM Register (FP Rx DeBug Function)
	RxFP_Statistics Registers (FP Rx Statistics Function)
	RxDebug_Internal_State Register (FP Rx Statistics Function)

	Using Aggregate Mode
	Appendix Overview
	Purpose of the C-5 NP Channel Aggregate Mode
	Aggregate Mode Requirements on the C-5 NP
	Packet/Cell Ordering Handling for Rx in Aggregate Mode
	Hardware Receive Tokens
	Software Receive� Tokens

	Packet/Cell Ordering Handling for Tx in Aggregate Mode
	Hardware Transmit Tokens
	Software Transmit Tokens

	Clock Distribution in Aggregate Mode
	Aggregate Mode Application Examples
	Gigabit Ethernet and FibreChannel Applications
	PHY Connectivity
	SDP Components
	Implementation Options

	OC-12 and OC-12c Applications
	PHY Connectivity
	SDP Components

	SONET/SDH CP Support
	Appendix Overview
	SONET/SDH Overview
	SONET Overhead Access
	SONET Overhead Writable Bytes
	OC-3c Writable Overhead Bytes
	OC-12c Writable Overhead Bytes
	OC-12 Writable Overhead Bytes

	SONET Overhead Definitions
	Receive OC-3c Transport Overhead Definitions
	Receive OC-3c Path Overhead Definitions
	Receive OC-12/OC-12c Transport Overhead Definitions
	Receive OC-12/OC-12c Path Overhead Definitions
	Transmit OC-3c Transport Overhead Definitions
	Transmit OC-3c Path Overhead Definitions
	Transmit OC-12/OC-12c Transport Overhead Definitions
	Transmit OC-12/OC-12c Path Overhead Definitions

	CP Configuration Space (SONET Specific)
	CP Mode (SONET Specific Enable) Registers
	CP Event and Interrupt (SONET Specific Event) Registers

	SONET/SDH Monitoring Example

	PCI Byte Swapping
	Appendix Overview
	PCI Byte Swapping Overview
	Default Mode
	Byte Swapping Mode
	Primary Application Using Byte Swapping Mode
	Implementing Byte Swapping Mode

	PCI Inbound and Outbound Byte Swap Registers

	Glossary
	Index

