

Document Number: BSCONRM
Rev. 2.0
06/2011

Freescale BeeStack Consumer
Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor i

Contents
About This Book. iii
Audience . iii
Organization . iii
Revision History . iii
Definitions, Acronyms, and Abbreviations . iv
References. iv

Chapter 1
Introduction

1.1 What This Document Describes . 1-1
1.2 What This Document Does Not Describe. 1-1

Chapter 2
BeeStack Consumer Software Overview

2.1 Network Topology . 2-1
2.2 Node Functionality Enumeration . 2-3
2.3 System Overview . 2-3
2.4 BeeStack Consumer Available Libraries . 2-4

Chapter 3
BeeStack Consumer Network Layer Interface Description

3.1 Network Layer Interface . 3-1
3.2 System API . 3-2
3.2.1 NLME_StartRequest. 3-5
3.2.2 NLME_AutoDiscoveryRequest . 3-7
3.2.3 NLME_DiscoveryRequest . 3-8
3.2.4 NLME_DiscoveryResponse . 3-11
3.2.5 NLME_PairRequest . 3-13
3.2.6 NLME_PairResponse . 3-15
3.2.7 NLME_UnpairRequest . 3-17
3.2.8 NLME_UnpairResponse. 3-18
3.2.9 NLME_UpdateKeyRequest . 3-19
3.2.10 NLME_GetRequest . 3-20
3.2.11 NLME_SetRequest . 3-21
3.2.12 NLME_RxEnableRequest . 3-22
3.2.13 NLME_ResetRequest . 3-24
3.2.14 NLDE_DataRequest . 3-25
3.2.15 NWK_GetNodePanId . 3-27
3.2.16 NWK_ GetNodeShortAddress . 3-28
3.2.17 NWK_GenerateShortAddress. 3-28
3.2.18 NWK_GenerateSecurityKey . 3-29
3.2.19 NWK_AddNewPairTableEntry . 3-30
3.2.20 NWK_SavePersistentData . 3-31

BeeStack Consumer Reference Manual, Rev. 2.0

ii Freescale Semiconductor

3.2.21 NWK_ SaveFrameCounter . 3-32
3.2.22 NWK_SetMacAddress . 3-33
3.2.23 NWK_GetMacAddress . 3-34
3.2.24 NWK_GetLastPacketLQI . 3-34
3.2.25 NWK_GetAllowedLowPowerInterval . 3-35
3.2.26 NWK_IsIdle . 3-36
3.3 Message Data Types . 3-36
3.3.1 nwkNlmeStartCnf_t . 3-38
3.3.2 nwkNlmeAutoDiscoveryCnf_t . 3-39
3.3.3 nwkNlmeDiscoveryCnf_t . 3-41
3.3.4 nwkNlmeDiscoveryInd_t . 3-43
3.3.5 nwkNlmePairCnf_t . 3-45
3.3.6 nwkNlmePairInd_t . 3-47
3.3.7 nwkNlmeUnpairCnf_t . 3-49
3.3.8 nwkNlmeUnpairInd_t . 3-50
3.3.9 nwkNlmeCommStatusInd_t . 3-50
3.3.10 nwkNldeDataCnf_t . 3-52
3.3.11 nwkNldeDataInd_t . 3-53
3.4 BeeStack Consumer Data Types. 3-54
3.4.1 NodeData Database. 3-54
3.4.2 BeeStack Consumer NIBs . 3-56
3.4.3 Saving BeeStack Consumer Sensitive Information in FLASH . 3-61

Chapter 4
BeeStack Consumer/SynkroRF Hybrid Software Overview

4.1 Network Topology . 4-1
4.2 Node Functionality Enumeration . 4-1
4.3 Hybrid Available Libraries . 4-2

Chapter 5
BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

5.1 General Hybrid Network Interface Information . 5-1
5.2 System API . 5-1
5.2.1 SynkroRF_PairRequest. 5-2
5.2.2 SynkroRF_PairResponse . 5-4
5.2.3 SynkroRF_ClearPairingInformation. 5-5
5.2.4 SynkroRF_SendCommand . 5-6
5.2.5 SynkroRF_AddNewPairTableEntry . 5-7
5.2.6 SynkroRF_GetPairedDeviceInfo . 5-9
5.2.7 Nwk_GetNodeType . 5-10
5.3 Message Data Types . 5-11
5.3.1 nwkSynkroRFPairCnf_t . 5-13
5.3.2 nwkSynkroRFPairInd_t . 5-14
5.3.3 nwkSynkroRFCommandCnf_t . 5-15

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor iii

5.3.4 nwkSynkroRFCommandInd_t . 5-16
5.4 Hybrid Data Types . 5-17
5.4.1 NodeData Database. 5-17
5.4.2 Hybrid NIBs . 5-17
5.4.3 Local SynkroRF Node Descriptors. 5-17
5.4.4 Saving Sensitive Information in FLASH . 5-18

BeeStack Consumer Reference Manual, Rev. 2.0

iv Freescale Semiconductor

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor iii

About This Book
This reference manual describes the functionality of the Freescale BeeStack Consumer network and
provides detailed descriptions which will allow users to develop upper layer or application code for this
product.

The Freescale BeeStack Consumer network software is designed for use with the following families of
short range, low power, 2.4 GHz Industrial, Scientific, and Medical (ISM) band transceivers:

• Freescale MC1319x and MC1320x families, designed for use with the HC(S)08 GT/GB MCU.
• Freescale MC1321x family, that incorporate a low power 2.4 GHz radio frequency transceiver and

an 8-bit microcontroller into a single LGA package.
• Freescale MC1322x Platform-In-Package, that combines a low power 2.4 GHz frequency

transceiver and a 32-bit ARM7 microcontroller into a single LGA package.
• Freescale MC1323x low cost System-on-Chip (SoC) platform for the IEEE® 802.15.4 Standard

that incorporates a complete, low power, 2.4 GHz radio frequency transceiver with Tx/Rx switch,
an 8-bit HCS08 CPU, and a functional set of MCU peripherals into a 48-pin QFN package.

Audience
This reference manual is intended for application designers and users of the BeeStack Consumer network
library.

Organization
This document contains the following chapters:
Chapter 1 Introduction - Describes this document.
Chapter 2 BeeStack Consumer Software Overview - Introduces the BeeStack Consumer

software.
Chapter 3 BeeStack Consumer Network Layer Interface Description - Provides a description

of the network interfaces.
Chapter 4 Provides a brief overview of the BeeStack Consumer/SynkroRF hybrid network

software.
Chapter 5 Describes the BeeStack Consumer/SynkroRF hybrid network layer interface.

Revision History
The following table summarizes revisions to this manual since the previous release (Rev. 1.9).

Revision History

Date / Author Description / Location of Changes

June 2011, Dev Team Various updates throughout for MC1323x and CodeWarrior 10

BeeStack Consumer Reference Manual, Rev. 2.0

iv Freescale Semiconductor

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.
API Application Programming Interface
BeeStack Consumer Freescale’s implementation of the ZigBee RF4CE Standard
CE Consumer Electronics
LQI Link Quality Indication
NIB Network Information Base
NLDE Network Layer Data Entity
NLME Network Layer Management Entity
NVM Non volatile memory
NW Layer Network Layer
RC Remote Control
RF Radio Frequency
SAP Service Access Point
SynkroRF An entertainment control network technology
PAN Personal Area Network

References
The following sources were referenced to produce this book:

1. RF4CE Consumer Specification version 1.0.0, Document 080002r04
2. IEEE 802.15.4 Standard -2003, Part 14.5: Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), The
Institute of Electrical and Electronics Engineers, Inc. October 2003

3. BeeStack Consumer Application User's Guide (BSCONAUG)
4. Freescale BeeKit Wireless Connectivity Toolkit User's Guide (BKWCTKUG)

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 1-1

Chapter 1
Introduction
This manual describes the Freescale BeeStack Consumer protocol stack, its components and their
functional roles in building Remote Control (RC) networks. The application programming interfaces
(API) and messages included in this manual address every component required for communication in a RC
network.

1.1 What This Document Describes
This manual provides BeeStack Consumer software designers and developers all of the function
prototypes, macros and stack libraries required to develop applications for BeeStack Consumer wireless
networks.

1.2 What This Document Does Not Describe
This manual does not describe how to install software, configure the hardware, or set up and use BeeStack
Consumer applications.

See the following documents for help in setting up the Freescale hardware and using other Freescale
software to configure devices.

• BeeStack Consumer Application User’s Guide, (BSCONAUG)
• Freescale BeeKit Wireless Connectivity Toolkit User’s Guide, (BKWCTKUG)

Introduction

BeeStack Consumer Reference Manual, Rev. 2.0

1-2 Freescale Semiconductor

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 2-1

Chapter 2
BeeStack Consumer Software Overview
The BeeStack Consumer network is a software networking layer that sits on top of the IEEE 802.15.4
MAC and PHY layers. It is designed for Wireless Personal Area Networks (WPANs) and conveys
information over short distances among the participants in the network. It enables small, power efficient,
inexpensive solutions to be implemented for a wide range of applications. Some key characteristics of an
BeeStack Consumer network are:

• An over the air data rate of 250 kbit/s in the 2.4 GHz band
• Three independent communication channels in the 2.4 GHz band
• Two network node types, controller node and respectively target node
• Channel Agility mechanism
• Provides robustness and ease of use
• Includes essential functionality to build and support a CE network

Figure 2-1 shows the software architecture of an application using the BeeStack Consumer network.

Figure 2-1. BeeStack Consumer Network Application Structure

2.1 Network Topology
An RC PAN is composed of the following two types of devices:

• Target Node
• Controller Node

A target node has full PAN coordinator capabilities and can start a network in its own right. Both types of
node can join networks started by target nodes by pairing with that target. Multiple RC PANs form an RC
network and nodes in the network can communicate between RC PANs.

802.15.4 PHY

BeeStack Consumer

RF Modem
Transceiver

Application

802.15.4 MAC

MCU

BeeStack Consumer Software Overview

BeeStack Consumer Reference Manual, Rev. 2.0

2-2 Freescale Semiconductor

To communicate with a target node, a controller node first switches to the channel and assumes the PAN
identifier of the destination RC PAN. It then uses the network address, allocated through the pairing
procedure, to identify itself on the RC PAN and thus communicate with the desired target node.

Figure 2-2 shows an example BeeStack Consumer topology which includes three target nodes:
• TV
• DVD Player
• CD Player

Each target node creates its own RC PAN. The TV, DVD and CD player also have dedicated RCs which
are paired to each appropriate target node. A multi-function RC, capable of controlling all three target
nodes itself, is added to the network by successively pairing to the desired target nodes. The DVD is also
paired with the TV. For example the external input corresponding to the DVD can be selected on the TV
when a DVD is inserted and played.

Figure 2-2. Example BeeStack Consumer Network Topology

As a consequence, this RC network consists of three separate RC PANs:
• Pan 1, managed by the TV that contains the TV RC, the multi-function RC and the DVD.
• Pan 2, managed by the CD player that contains the CD RC and the multi function RC.
• Pan 3, managed by the DVD that contains the DVD RC, multi-function RC and the TV.

BeeStack Consumer Software Overview

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 2-3

2.2 Node Functionality Enumeration
The basic node types for the Freescale BeeStack Consumer network software are as follows:

• Controller node - This device contains a subset of the BeeStack Consumer features. The controller
node type is used in remote control applications. This node does not start a PAN. During the pairing
process, it receives a Pan Id and Short Address from the target node it has paired with. These values
are used in future communications with the paired target node.

• Target node - This device contains a subset of the BeeStack Consumer features. The target node
type is used in Consumer Electronics device applications (e.g. TV’s, DVD’s, etc.). It is intended to
be used in backbone powered devices. Starting a target node always starts a new PAN.

2.3 System Overview
The BeeStack Consumer layer implements an interface between the application and the IEEE.802.15.4
MAC layer. The BeeStack Consumer layer conceptually includes a management entity that provides the
service interfaces through which layer management functions may be invoked. This management entity is
also responsible for maintaining a database of managed objects pertaining to the BeeStack Consumer layer.

Figure 2-3. BeeStack Consumer Layer Interfaces

The BeeStack Consumer layer provides a number of services, accessed through the BeeStack Consumer
API. The BeeStack Consumer services are listed in Table 3-1, Table 3-2 and Table 3-3 and they have the
following characteristics:

• Are started using BeeStack Consumer API function calls
• Communicate to application the execution status using confirm messages
• Inform the application layer about asynchronous network information arrival using indication

messages

802.15.4 PHY

Network

Application

802.15.4 MAC

NLDE-SAP NLME-SAP

MCPS-SAP MLME-SAP

PD-SAP PLME-SAP

Specified by the
implementation

Specified by
BeeStack Consumer

Specified by
IEEE 802.15.4

BeeStack Consumer Software Overview

BeeStack Consumer Reference Manual, Rev. 2.0

2-4 Freescale Semiconductor

2.4 BeeStack Consumer Available Libraries
This section describes the libraries available for the BeeStack Consumer software stack. There are two
available libraries, with different code sizes due to functionality reduction.

Table 2-1. BeeStack Consumer Libraries

Library Description Usage

BeeStackConsumer.lib Contains all BeeStack Consumer features Should be used by applications exercising
all network features. Includes API
parameters validation.

BeeStackConsumer_NV.lib Same as BeeStackConsumer.lib but no
code for the verification of the parameters of
any of the network services requested by
the application through the network API.

Should be used by applications which are
confident that the values of the API
parameters are within the valid ranges
specified by the RF4CE specification

BeeStackConsumer_NS.lib Same as BeeStackConsumer.lib but no
code for implementing the security support
in the network.

Should be used by applications which are
not exchanging encrypted data.

BeeStackConsumer_NA.lib Same as BeeStackConsumer.lib but no
code for the implementing the
AutoDiscovery network feature.

Should be used by applications that do not
need the AutoDiscovery network service to
implement the PushButtonPairing
procedure of ZRC profile.

BeeStackConsumer_NVNSNA.lib Same as BeeStackConsumer.lib but no
code for the API parameter verification,
security support and AutoDiscovery service.

Should be used by applications that do not
need security and do not require ZRC
profile support features. API parameters
are not verified, to achieve the smallest
code size possible.

BeeStackConsumer_ZTC.lib Contains all BeeStackConsumer features
and also supports monitoring the interface
between the MAC and the network from the
ZTC application

Should be used in the development and
validation phase. The added support for
monitoring the stack interfaces increases
the code size requirements.

BeeStackConsumer_ZTC_NV.lib Same as BeeStackConsumer_ZTC but no
code for the verification of network API
parameters.

Should be used in the development and
validation phase. The added support for
monitoring the stack interfaces increases
the code size requirements. Does not
include API parameters validation.

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-1

Chapter 3
BeeStack Consumer Network Layer Interface Description

3.1 Network Layer Interface
The interface between the Application Layer and the Network Layer Management Entity (NLME) as well
as the Network Layer Data Entity (NLDE) is based on primitives passed from one layer to the other
through APIs and messages, as illustrated in Figure 3-1 All the requests and responses in the BeeStack
Consumer standard have a distinct API while all the confirms and the indications have a distinct message.

Figure 3-1. BeeStack Consumer Layer Interfaces

BeeStack Consumer Layer

Application Layer

NLDE-SAPNLME-SAP

NLME-API Utility-API

Calls Calls Calls

Messages NLDE-API Messages

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-2 Freescale Semiconductor

3.2 System API
This section describes the structures and functions available in the System API. To use the API, the
NwkInterface.h header file must be included in the relevant source code files.

Table 3-1. BeeStack Consumer API in the Application to BeeStack Consumer Direction

BeeStack Consumer
API Function Name Description

O
ve

r t
he

 a
ir

A
ct

iv
ity

Sy
nc

hr
on

ou
s

C
al

l

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

Ta

rg
et

Se
ct

io
n

N
LM

E

NLME_StartRequest NLME-START.request 1) X X 3.3.1

NLME_AutoDiscoveryRequest NLME-AUTO-DISCOVERY.request X X X 3.3.2

NLME_DiscoveryRequest NLME-DISCOVERY.request X X X 3.3.3

NLME_DiscoveryResponse NLME-DISCOVERY.response X X X 3.3.4

NLME_PairRequest NLME-PAIR.request X X X 3.3.5

NLME_PairResponse NLME-PAIR.response X X X 3.3.6

NLME_UnpairRequest NLME-UNPAIR.request X X X 3.3.7

NLME_UnpairResponse NLME-UNPAIR.response X X X 3.3.8

NLME_UpdateKeyRequest NLME-Update-Key.request X X X 3.3.9

NLME_GetRequest NLME-GET.request X X X 3.3.10

NLME_SetRequest NLME-SET.request X X X 3.3.11

NLME_RxEnableRequest NLME-RX-ENABLE.request X X X 3.2.12

NLME_ResetRequest NLME-RESET.request X X X 3.2.13

N
LD

E

NLDE_DataRequest NLME-DATA.request X X X 3.2.14

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-3

The call has activity over the air only for target nodes.

The asynchronous API calls start a network internal process. The value returned by the call only informs
the calling entity if the request is accepted to be processed or not, and in the second case it offers
information about the reason why the request was denied. If the return value indicates success, the
BeeStack Consumer layer has accepted and already initiated the process. When the process will be
completed, the application layer will be notified by a confirm message which will be sent by BeeStack
Consumer layer through one of the BeeStack Consumer NLME/NLDE SAPs.

Fr
ee

sc
al

e
Im

pl
em

en
ta

tio
n

Sp
ec

ifi
c

U
til

ity
 S

er
vi

ce
s

NWK_GetNodePanId This macro allows the application to X X X 3.2.15

NWK_GetNodeShortAddress This macro allows the application to
obtain the short address of the local node.

X X X 3.2.16

NWK_GenerateShortAddress This function allows the application to
request the generation of a short address,
that does not match any of the short
addresses of the devices in the pair table.

X X X 3.2.17

NWK_GenerateSecurityKey This function allows the application to
request the generation of a security key,
that does not match any of the security
keys of the devices in the pair table.

X X X 3.2.18

NWK_AddNewPairTableEntry This function allows the application to
insert ‘offline’ the information of a new
entry in the pair table, without initiating a
pair process.

X X X 3.2.19

NWK_SavePersistentData This function allows the application to
request the immediate saving of the
BeeStack Consumer sensitive information
into FLASH.

X X X 3.2.20

NWK_SaveFrameCounter This function allows the application to
request the immediate saving of the
nwkFrameCounter NIB attribute’s current
value into FLASH.

X X X 3.2.21

NWK_SetMacAddress This function allows the application to
request the setting of the IEEE 802.15.4
MAC address of the local node.

X X X 3.2.22

NWK_GetMacAddress This function allows the application to
obtain the IEEE 802.15.4 MAC address of
the local node.

X X X 3.2.23

NWK_GetLastPacketLQI This function allows the application to
obtain the LQI of the last packet received
by the network.

X X X 3.2.24

NWK_GetAllowedLowPowerInterval This function allows the application to
determine if BeeStack Consumer layer
can safely enter a low power mode and for
how much time.

X X X 3.2.25

NWK_IsIdle This function allows the application to be X X X 3.2.26

Table 3-1. BeeStack Consumer API in the Application to BeeStack Consumer Direction (continued)

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-4 Freescale Semiconductor

The BeeStack Consumer network layer is able to handle only one process at a time. There are two types
of processes the network can execute:

• Non-interruptible processes: These are processes that cannot be interrupted by other requests from
the application that will trigger the start of a new process. In this case, the second request will fail
with the gNWDenied_c status and the network will continue to run the process started by the first
request.
— Non interruptible processes are: NLME_StartRequest, NLME_DiscoveryResponse,

NLME_PairRequest, NLME_PairResponse, NLME_UnpairRequest.
• Interruptible processes: These are processes that are aborted if other requests from the application

that will trigger the start of a new process are received while they are being executed. In this case,
a confirm message with the status set to gNWAborted_c will be sent to the application, informing
it about the aborting of the initial request. The second request will begin to be processed.
— Interruptible processes: NLME_DiscoveryRequest, NLME_AutoDiscovery,

NLDE_DataRequest

The synchronous API calls do not start a network internal process. When the application layer receives the
return value of the API call, the primitive is completely executed. There will be no other confirm message
sent by BeeStack Consumer layer trough the BeeStack Consumer NLME/NLDE SAP.

All BeeStack Consumer API calls return a code to report on their operation. The codes are defined as
follows:
/* Return codes from the network */
#define gNWSuccess_c 0x00 /* Requested action was completed successfully */
#define gNWNoOrigCapacity_c 0xb0 /* No room in the originator pair table to add a new
entry */
#define gNWNoRecipCapacity_c 0xb1 /* No room in the recipient pair table to add a new
entry */
#define gNWDeviceIdNotPaired_c 0xb2 /* No pair information at the location specified by
deviceId */
#define gNWNoResponse_c 0xb3 /* No response was received by the originator from
the recipient */
#define gNWNotPermitted_c 0xb4 /* Operation not permitted */
#define gNWDuplicatePairing_c 0xb5 /* A duplicate pairing table entry was detected in a
pair request command */
#define gNWFrameCounterExpired_c 0xb6 /* The frame counter has reached its maximum value */
#define gNWDiscoveryError_c 0xb7 /* Too many unique discovery request or response
command frames were received than requested */
#define gNWDiscoveryTimeout_c 0xb8 /* No discovery request or response command frames
were received during discovery */
#define gNWSecurityTimeout_c 0xb9 /* The security link key exchange or recovery procedure
did not complete within the required time */
#define gNWSecurityFailure_c 0xba /* A security link key was not successfully established
between both ends of a pairing link */
#define gNWInvalidParam_c 0xe8 /* One of the parameters of the API function is invalid
*/
#define gNWUnsupportedAttribute_c 0xf4 /* NIB Attribute not supported */
#define gNWInvalidIndex_c 0xf9 /* Table index out of range */

/* Freescale specific return codes */

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-5

#define gNWDenied_c 0x80 /* Request denied by the BeeStack Consumer layer, as
a result of the fact that another request that has started an non-interruptible process is
already executing */
#define gNWNoMemory_c 0x81 /* No memory available for the BeeStack Consumer to
perform requested action */
#define gNWNodeAlreadyStarted_c 0x82 /* Received when trying to start an already started
BeeStack Consumer node */
#define gNWNodeNotStarted_c 0x83 /* BeeStack Consumer node should be started before
executing requested action */
#define gNWNoTimers_c 0x84 /* No free timers available to perform the requested
action */
#define gNWAborted_c 0x85 /* The previously started interruptible process
(NLME_DiscoveryRequest, NLME_AutoDiscoveryRequest or NLDE_DataRequest) was aborted as a result
of the received request to start another process */

/* Mac return codes */
#define gSuccess_c 0x00
#define gPanAtCapacity_c 0x01
#define gPanAccessDenied_c 0x02
#define gBeaconLoss_c 0xE0
#define gChannelAccessFailure_c 0xE1
#define gDenied_c 0xE2
#define gDisableTrxFailure_c 0xE3
#define gFailedSecurityCheck_c 0xE4
#define gFrameTooLong_c 0xE5
#define gInvalidGts_c 0xE6
#define gInvalidHandle_c 0xE7
#define gInvalidParameter_c 0xE8
#define gNoAck_c 0xE9
#define gNoBeacon_c 0xEA
#define gNoData_c 0xEB
#define gNoShortAddress_c 0xEC
#define gOutOfCap_c 0xED
#define gPanIdConflict_c 0xEE
#define gRealignment_c 0xEF
#define gTransactionExpired_c 0xF0
#define gTransactionOverflow_c 0xF1
#define gTxActive_c 0xF2
#define gUnavailableKey_c 0xF3
#define gUnsupportedAttribute_c 0xF4

Each BeeStack Consumer API function is covered in more detail in the following sections.

3.2.1 NLME_StartRequest

Prototype
uint8_t NLME_StartRequest (void)

Arguments

The NLME_StartRequest primitive has no parameters.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-6 Freescale Semiconductor

NOTE
The behavior of the primitive depends on the value of the
gNwkNib_StartWithNetworkInfoFromFlash_c NIB entry.

If the StartWithNetworkInfoFromFlash_c NIB entry is TRUE, the network
will be started after loading the relevant data from FLASH.

If the StartWithNetworkInfoFromFlash_c NIB entry is FALSE, the network
will not load the data from FLASH before executing the start procedure.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeAlreadyStarted_c — The request is rejected as the node is already started
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWNoTimers_c — The request is rejected as no timers can be allocated to handle the request
• gNWFrameCounterExpired_c — Returned only when the start is made using persistent

information from FLASH and when by adding the nwkcFrameCounterWindow value to the value
of the frameCounter NIB from FLASH, the frameCounter NIB maximum range would be reached.

Functional Description

The NLME_StartRequest is an asynchronous API function available both for controller and target nodes.
It makes a request for a BeeStack Consumer node to start the network layer.

This function call requests the starting of a BeeStack Consumer Start process. If the return value is
gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to process the Start request.
When the Start process will be completed, the application layer will be notified by a Start Confirm message
which will be sent by BeeStack Consumer layer trough the BeeStack Consumer NLME SAP. If the return
value is not gNWSuccess_c, the BeeStack Consumer Start process will not be started. At this point, the
request is considered to be completed and therefore the application should not wait for any Start Confirm
message to be received later.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-7

3.2.2 NLME_AutoDiscoveryRequest

Prototype
uint8_t NLME_AutoDiscoveryRequest
(

appCapabilities_t recipAppCapabilities,
uint8_t* recipDeviceTypeList,
uint8_t* recipProfileIdList,
uint32_t autoDiscDuration

);

Arguments

Table 3-2 specifies the parameters for the NLME_AutoDiscoveryRequest primitive.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{
 uint8_t bUserStringSpecified :1;
 uint8_t nrSupportedDeviceTypes :2;
 uint8_t reserved1 :1;
 uint8_t nrSupportedProfiles :3;
 uint8_t reserved2 :1;
}appCapabilities_t;

Where bUserStringSpecified indicates whether the requesting device has a defined user string which will
be transmitted over the air, while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of
recipDeviceTypeList and recipProfileIdList.

The recipDeviceTypeList and recipProfileIdList must contain at least one element each.

Returns

Possible return values and their significance:
• gNWSuccess_c: the request has been accepted for processing by the network layer
• gNWNodeNotStarted_c: the request is rejected as the node is not started yet.
• gNWDenied_c: the request is rejected as the network layer is already processing another

non-interruptible request

Table 3-2. NLME_AutoDiscoveryRequest Parameters

Name Type Valid range Description

recipAppCapabilities appCapabilities_t - The application capabilities of this node.

recipDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by this node.

recipProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile identifiers supported by this node.

autoDiscDuration uint32_t 0x000000 –
0xffffff

The maximum number of MAC symbols NLME will
be in auto discovery response mode.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-8 Freescale Semiconductor

• gNWNoMemory_c: : the request is rejected as the network needs to allocate messages from the
common message pool which is empty

• gNWInvalidParam_c:
— The request is rejected as autoDiscDuration parameter is bigger than 0xFFFFFF
— The request is rejected as recipAppCapabilities.nrSupportedDeviceTypes is equal to 0
— The request is rejected as receipAppCapabilities.nrSupportedProfiles is equal to 0

• gNWNotPermitted_c — The request is rejected as the node is in power save mode (NIB attribute
nwkInPowerSave is set to TRUE)

• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its
maximum value

Functional Description

The NLME_AutoDiscoveryRequest is an asynchronous API function available both for controller and
target nodes. It makes a request for a BeeStack Consumer node to enter the auto discovery response mode.

This function call requests the starting of a BeeStack Consumer Auto Discovery process. If the return value
is gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to process the Auto
Discovery request. When the Auto Discovery process will be completed, the application layer will be
notified by an Auto Discovery Confirm message which will be sent by BeeStack Consumer layer trough
the BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer Auto Discovery process will not be
started. At this point, the request is considered to be completed and therefore the application should not
wait for any Auto Discovery Confirm message to be received later.

3.2.3 NLME_DiscoveryRequest

Prototype
uint8_t NLME_DiscoveryRequest
(

uint8_t* recipPanId,
uint8_t* recipShortAddress,
uint8_t recipDeviceType,
appCapabilities_t origAppCapabilities,
uint8_t* origDeviceTypeList,
uint8_t* origProfileIdList,
uint8_t discProfileIdListSize,
uint8_t* discProfileIdList,
uint32_t discDuration

);

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-9

Arguments

Table 3-3 specifies the parameters for the NLME_DiscoveryRequest primitive.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{
 uint8_t bUserStringSpecified :1;
 uint8_t nrSupportedDeviceTypes :2;
 uint8_t reserved1 :1;
 uint8_t nrSupportedProfiles :3;
 uint8_t reserved2 :1;
}appCapabilities_t;

where bUserStringSpecified indicates whether the requesting device has a defined user string which will
be transmitted on the air, while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of
origDeviceTypeList and origProfileIdList.

The origDeviceTypeList and origProfileIdList must contain at least one element each.

Table 3-3. NLME_DiscoveryRequest Parameters

Name Type Valid range Description

recipPanId uint8_t* A valid PAN Identifier
(different of NULL)

The PAN identifier of the destination device for the
discovery.
This value can be set to 0xffff to indicate a wildcard.

recipShortAddress uint8_t* A valid short network
address (different of NULL)

The address of the destination device for the
discovery.
This value can be set to 0xffff to indicate a wildcard.

recipDeviceType uint8_t 0x00 – 0xff The device type to discover.
This value can be set to 0xff to indicate a wildcard.

origAppCapabilities appCapabilities_t - The application capabilities of this node.

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by this node.

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile identifiers supported by this node.

discProfileIdListSize uint8_t 0x00 – 0xff The number of profile identifiers
contained in the discProfileIdList parameter.

discProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile identifiers against which profile
identifiers contained in received discovery response
command frames will be matched for acceptance.

discDuration uint32_t 0x000000 –
0xffffff

The maximum number of MAC symbols to wait for
discovery responses to be sent back from potential
target nodes on each channel.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-10 Freescale Semiconductor

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c:

— The request is rejected as discDuration parameter is bigger than 0xFFFFFF
— The request is rejected as discDuration parameter is bigger than (0.33 * NIB attribute

nwkDiscoveryRepetitionInterval)
— The request is rejected as origAppCapabilities.nrSupportedDeviceTypes is equal to 0
— The request is rejected as origAppCapabilities.nrSupportedProfiles is equal to 0

Functional Description

The NLME_DiscoveryRequest is an asynchronous API function available both for controller and target
nodes. It makes a request for a BeeStack Consumer node to discover other devices of interest (controller
or target nodes), operating in its Personal Operating Space (POS).

This function call requests the starting of a BeeStack Consumer DiscoveryRequest process. If the return
value is gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to process the
Discovery request. When the DiscoveryRequest process will be completed, the application layer will be
notified by a Discovery confirm message which will be sent by BeeStack Consumer layer trough the
BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer Discovery process will not be started. At
this point, the request is considered to be completed and therefore the application should not wait for any
Discovery Confirm message to be received later.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-11

3.2.4 NLME_DiscoveryResponse

Prototype
uint8_t NLME_DiscoveryResponse
(

uint8_t status,
uint8_t* recipMacAddress,
appCapabilities_t origAppCapabilities,
uint8_t* origDeviceTypeList,
uint8_t* origProfileIdList,
uint8_t discoveryReqLQI

);

Arguments

Table 3-4 specifies the parameters for the NLME_DiscoveryResponse primitive.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{
 uint8_t bUserStringSpecified :1;
 uint8_t nrSupportedDeviceTypes :2;
 uint8_t reserved1 :1;
 uint8_t nrSupportedProfiles :3;
 uint8_t reserved2 :1;
}appCapabilities_t;

where bUserStringSpecified indicates whether the requesting device has a defined user string which will
be transmitted on the air, while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of
origDeviceTypeList and origProfileIdList.

The origDeviceTypeList and origProfileIdList must contain at least one element each.

Table 3-4. NLME_DiscoveryResponse Parameters

Name Type Valid range Description

status uint8_t gNWSuccess or
gNWNoRecipCapacity_c

The status of the associated discovery
indication

recipMacAddress uint8_t* Valid IEEE address
(different of NULL)

The IEEE address of the device requesting
discovery

origAppCapabilities appCapabilities_t - The application capabilities of this node

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by this node

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by this node

discoveryReqLQI uint8_t 0x0 – 0xff The LQI of the associated discovery indication

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-12 Freescale Semiconductor

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c:

— The request is rejected as origAppCapabilities.nrSupportedDeviceTypes is equal to 0
— The request is rejected as origAppCapabilities.nrSupportedProfiles is equal to 0

Functional Description

The NLME_DiscoveryResponse is an asynchronous API function available both for controller and target
nodes. It makes a request for a BeeStack Consumer node to respond after it has received a discovery
request command.

This function call requests the starting of a BeeStack Consumer CommStatus process. The CommStatus
process includes the Discovery response and Pair response subprocesses.

If the return value is gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to
process the CommStatus (Discovery response). When the CommStatus (Discovery response) process will
be completed, the application layer will be notified by a CommStatus indication message which will be
sent by BeeStack Consumer layer trough the BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer CommStatus process will not be started.
At this point, the request is considered to be completed and therefore the application should not wait for
any CommStatus indication message to be received later.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-13

3.2.5 NLME_PairRequest

Prototype
uint8_t NLME_PairRequest
(

uint8_t recipChannel,
uint8_t* recipPanId,
uint8_t* recipMacAddress,
appCapabilities_t origAppCapabilities,
uint8_t* origDeviceTypeList,
uint8_t* origProfileIdList,
uint8_t keyExTransferCount

);

Arguments

Table 3-5 specifies the parameters for the NLME_PairRequest primitive.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{
 uint8_t bUserStringSpecified :1;
 uint8_t nrSupportedDeviceTypes :2;
 uint8_t reserved1 :1;
 uint8_t nrSupportedProfiles :3;
 uint8_t reserved2 :1;
}appCapabilities_t;

where bUserStringSpecified indicates whether the requesting device has a defined user string which will
be transmitted on the air, while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of
origDeviceTypeList and origProfileIdList.

The origDeviceTypeList and origProfileIdList must contain at least one element each.

Table 3-5. NLME_PairRequest Parameters

Name Type Valid range Description

recipChannel uint8_t 0x0f, 0x14 or 0x19 The logical channel of the device with which to pair.

recipPanId uint8_t* A valid PAN identifier
(different of NULL)

The PAN identifier of the device with which to pair.

recipMacAddress uint8_t* A valid IEEE address
(different of NULL)

The IEEE address of the device with which to pair.

origAppCapabilities appCapabilities_t The application capabilities of this node

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by this node

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by this node

keyExTransferCount uint8_t 0x00 – 0xff The number of transfers the target should use to
exchange the link key with the pairing originator.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-14 Freescale Semiconductor

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWNoOrigCapacity_c — The request is rejected as there is no room in the originator pair table

to add a new entry
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c:

— The request is rejected as recipChannel parameter is not in the valid range
— The request is rejected as origAppCapabilities.nrSupportedDeviceTypes is equal to 0
— The request is rejected as origAppCapabilities.nrSupportedProfiles is equal to 0

Functional Description

The NLME_PairRequest is an asynchronous API function available both for controller and target nodes.
It makes a request for a BeeStack Consumer node to establish a connection link with another BeeStack
Consumer node that has known network identifiers (panId and MAC address). The information exchanged
during the PairRequest process can be defined as application level information, which is delivered from
originator’s application layer to the recipient’s application layer, like capabilities, device type list or profile
ID list.

This function call requests the starting of a BeeStack Consumer PairRequest process. If the return value is
gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to process the Pair request.
When the PairRequest process will be completed, the application layer will be notified by a Pair confirm
message which will be sent by BeeStack Consumer layer trough the BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer Pair Request process will not be started.
At this point, the request is considered to be completed and therefore the application should not wait for
any Pair Confirm message to be received later.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-15

3.2.6 NLME_PairResponse

Prototype
uint8_t NLME_PairResponse
(

uint8_t status,
uint8_t* recipPanId,
uint8_t* recipMacAddress,
appCapabilities_t origAppCapabilities,
uint8_t* origDeviceTypeList,
uint8_t* origProfileIdList,
uint8_t deviceId

);

Arguments

Table 3-6 specifies the parameters for the NLME_PairResponse primitive.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{
 uint8_t bUserStringSpecified :1;
 uint8_t nrSupportedDeviceTypes :2;
 uint8_t reserved1 :1;
 uint8_t nrSupportedProfiles :3;
 uint8_t reserved2 :1;
}appCapabilities_t;

where bUserStringSpecified indicates whether the requesting device has a defined user string which will
be transmitted on the air, while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of
origDeviceTypeList and origProfileIdList.

The origDeviceTypeList and origProfileIdList must contain at least one element each.

Table 3-6. NLME_PairResponse Parameters

Name Type Valid range Description

status uint8_t gNWSuccess_c,
gNWNoRecipCapacity_c
, gNWNotPermitted_c

The status of the pairing request

recipPanId uint8_t* A valid PAN identifier
(different of NULL)

The PAN identifier of the device requesting the pair

recipMacAddress uint8_t* A valid IEEE address
(different of NULL)

The IEEE address of the device requesting the pair

origAppCapabilities appCapabilities_t - The application capabilities of this node

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by this node

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by this node

deviceId uint8_t 0x00 – 0xfe The reference to the provisional pairing entry

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-16 Freescale Semiconductor

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c:

— The request is rejected as origAppCapabilities.nrSupportedDeviceTypes is equal to 0
— The request is rejected as origAppCapabilities.nrSupportedProfiles is equal to 0
— The request is rejected as status parameter is out of the valid range
— The request is rejected as deviceId parameter is bigger than the maximum number of entries

supported in the pairing table and is not equal to 0xFF
— The request is rejected as deviceId parameter is equal to 0xFF and the status parameter is

gNWSuccess_c
— The request is rejected as deviceId parameter is not equal to 0xFF and recipMacAddress

parameter is not the one received in the Pair indication message
— The request is rejected as deviceId parameter is not equal to 0xFF and recipPanId parameter is

not the one received in the Pair indication message

Functional Description

The NLME_PairResponse is an asynchronous API function available both for controller and target nodes.
It makes a request for a BeeStack Consumer node to exchange information with an BeeStack Consumer
node that previously initiated a pair request command. The information exchanged during the
PairResponse process can be defined as application level information, which is delivered from the pair
request recipient application layer to the pair request originator application layer, like capabilities, device
type list or profile ID list.

This function call requests the starting of a BeeStack Consumer CommStatus process. The CommStatus
process includes the Discovery response and Pair response subprocesses.

If the return value is gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to
process the CommStatus (Pair response). When the CommStatus (Pair response) process will be
completed, the application layer will be notified by a CommStatus indication message which will be sent
by BeeStack Consumer layer trough the BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer CommStatus process will not be started.
At this point, the request is considered to be completed and therefore the application should not wait for
any CommStatus indication message to be received later.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-17

3.2.7 NLME_UnpairRequest

Prototype
uint8_t NLME_UnpairRequest
(

uint8_t deviceId
);

Arguments

Table 3-7 specifies the parameters for the NLME_UnpairRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWDeviceIdNotPaired_c — The request is rejected as no pair information exists at the location

specified by deviceId
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c — The request is rejected as deviceId parameter is not in the valid range

Functional Description

The NLME_UnpairRequest is an asynchronous API function available both for controller and target
nodes. It makes a request for a BeeStack Consumer node to remove a pairing link with another device from
its pairing table.

This function call requests the starting of a BeeStack Consumer UnpairRequest process. When the
UnpairRequest process will be completed, the application layer will be noticed by an Unpair confirm
message which will be sent by BeeStack Consumer layer trough the BeeStack Consumer NLME SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer Unpair Request process will not be
started. At this point, the request is considered to be completed and therefore the application should not
wait for any Unpair Confirm message to be received later.

Table 3-7. NLME_UnpairRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries – 1) The reference into the local pairing table that is to be removed.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-18 Freescale Semiconductor

3.2.8 NLME_UnpairResponse

Prototype
uint8_t NLME_UnpairResponse
(

uint8_t deviceId
);

Arguments

Table 3-8 specifies the parameters for the NLME_UnpairResponse primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The local pair table entry was successfully removed
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDeviceIdNotPaired_c — The request is rejected as no pair information exists at the location

specified by deviceId
• gNWInvalidParam_c — The request is rejected as deviceId parameter is out of the valid range

Functional Description

The NLME_UnpairResponse API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to remove the pairing link indicated by the deviceId
parameter from the pairing table.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NLME_UnpairResponse is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

Table 3-8. NLME_UnpairResponse Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries - 1) The reference into the local pairing table of the entry that
is to be removed.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-19

3.2.9 NLME_UpdateKeyRequest

Prototype
uint8_t NLME_UpdateKeyRequest
(

uint8_t deviceId,
uint8_t* newLinkKey

);

Arguments

Table 3-8 specifies the parameters for the NLME_UpdateKeyRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The security key of the entry pointed by deviceId was successfully updated
• gNWNotPermitted_c — The request is rejected as either the local node or the node in the pair table

do not support security
• gNWDeviceIdNotPaired_c — The request is rejected as no pair information exists at the location

specified by deviceId
• gNWInvalidParam_c — The request is rejected as deviceId parameter is out of the pair table size

range

Functional Description

The NLME_UpdateKeyRequest API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to update the security key of one of the nodes that is
paired with.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NLME_UpdateKeyRequest is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

Table 3-9. NLME_UpdateKeyRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries - 1) The reference into the local pairing table of the entry to
update the security key to.

newLinkKe
y

uint8_t* Any value Pointer to a 16 bytes memory location that contains the
security key to be written in the pair table entry pointed by
deviceId parameter

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-20 Freescale Semiconductor

3.2.10 NLME_GetRequest

Prototype
uint8_t NLME_GetRequest
(

uint8_t nibAttribute,
uint8_t nibAttributeIndex,
uint8_t* nibAttributeValue

);

Arguments

Table 3-10 specifies the parameters for the NLME_GetRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The requested NIB attribute is successfully retrieved
• gNWInvalidIndex_c — The request is rejected as nibAttributeIndex is out of range (used only for

gNwkNib_PairingTable_c)
• gNWUnsupportedAttribute_c — The request is rejected as nibAttribute parameter is out of valid

range

Functional Description

The NLME_GetRequest API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to obtain information about a desired NIB attribute. If
no corresponding NIB attribute is found, the NLME returns gNWUnsupportedAttribute_c.

This function call does not request starting any BeeStack Consumer process and therefore it is
synchronous. When the application layer receives the return value of the API call, the NLME_GetRequest
is completely executed. There will be no other confirm message sent by BeeStack Consumer trough the
BeeStack Consumer NLME or NLDE SAPs.

Table 3-10. NLME_GetRequest Parameters

Name Type Valid range Description

nibAttribute uint8_t 0x60 – 0x71 The identifier of the NIB attribute to read

nibAttributeIndex uint8_t Attribute specific Used only for gNwkNib_PairingTable_c
attribute

nibAttributeValue uint8_t* Pointer (different of NULL) A pointer to a location where the request
will store the attribute value

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-21

3.2.11 NLME_SetRequest

Prototype
uint8_t NLME_SetRequest
(

uint8_t nibAttribute,
uint8_t nibAttributeIndex,
uint8_t* nibAttributeValue

);

Arguments

Table 3-11 specifies the parameters for the NLME_SetRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The requested NIB attribute is successfully written
• gNWInvalidIndex_c — The request is rejected as nibAttributeIndex is out of range (used only for

gNwkNib_PairingTable_c)
• gNWUnsupportedAttribute_c — The request is rejected as nibAttribute parameter is out of valid

range
• gNWInvalidParam_c — The request is rejected as the value indicated by the nibAttributeValue

pointer is out of the valid range of the nibAttibut

Functional Description

The NLME_SetRequest API function is available both for controller and target nodes.

This function call does not request starting any BeeStack Consumer process and therefore it is
synchronous. When the application layer receives the return value of the API call, the NLME_SetRequest
is completely executed. There will be no other confirm message sent by BeeStack Consumer trough the
BeeStack Consumer NLME or NLDE SAPs.

When any of the activePeriod or dutyCycle NIBs are set using NLME_SetRequest service, the network
will make a call to NLME_RxEnableRequest having the activePeriod NIB as parameter.

Table 3-11. NLME_SetRequest Parameters

Name Type Valid range Description

nibAttribute uint8_t 0x60 – 0x71 The identifier of the NIB attribute to change

nibAttributeIndex uint8_t Attribute specific Used only for gNwkNib_PairingTable_c attribute.

nibAttributeValue uint8_t* Pointer (different of NULL) A pointer to a memory location where the new value for the NIB
attribute is to be read from

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-22 Freescale Semiconductor

3.2.12 NLME_RxEnableRequest

Prototype
uint8_t NLME_RxEnableRequest
(

uint32_t rxOnDuration
);

Arguments

Table 3-12 specifies the parameters for the NLME_RxEnableRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request to enable or disable the receiver was successful
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another request.

As the NLME_RxEnable request will affect the state of the receiver, the previously started process
can not be interrupted.

• gNWInvalidParam_c — The rxOnDuration parameter is outside the valid range.

Functional Description

The NLME_RxEnableRequest API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to disable or to enable (for a finite period or until further
notice) the receiver. This function also allows alternating the periods when the receiver is open with the
periods when the receiver is closed. Table 3-13 provides more details about the output of the
NLME_RxEnableRequest() API call, depending on the value of the rxOnDuration parameter and on the
value of the nwkDutyCycle NIB.

Table 3-12. NLME_RxEnableRequest Parameters

Name Type Valid range Description

rxOnDuration uint32_t 0x000000 – 0xffffff The number of MAC symbols for which the receiver is to be enabled
0x000000 – disabled until further notice
0xffffff – enabled until further notice

Table 3-13. NLME_RxEnableRequest Service Function Details

Input
Output

rxOnDuration parameter nwkDutyCycle NIB

0x00 0x00 Disable receiver until further notice. Deactivate power saving

0xFFFFFF 0x00 Enable receiver until further notice. Deactivate power saving

nwkActivePeriod NIB 0x00 Keep the receiver open for the value of rxOnDuration parameter.
Deactivate power saving

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-23

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NLME_RxEnableRequest is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

any other value 0x00 Keep the receiver open for the value of rxOnDuration parameter.
Deactivate power saving

0x00 not 0x00 Disable receiver until further notice. Deactivate power saving

0xFFFFFF not 0x00 Enable receiver until further notice. Deactivate power saving

nwkActivePeriod NIB not 0x00 Activate power saving. Node starts to automatically open and close
its receiver, based on the values of the nwkActivePeriod and
nwkDutyCycle NIBs.

any other value not 0x00 Freescale implementation specific behavior. Try to set the
nwkActivePeriod NIB to the value of the rxOnDuration parameter. If
the rxOnDuration parameter does not respect the validation
conditions of the nwkActivePeriod NIB (larger or at least equal to and
smaller or at most equal to nwkDutyCycle NIB), function returns
gNWInvalidParam_c status. If nwkActivePeriod NIB is successfully
set to the value of rxOnDuration parameter, power saving mode is
activated. Node starts to automatically open and close its receiver,
based on the values of the nwkActivePeriod and nwkDutyCycle NIBs.

Table 3-13. NLME_RxEnableRequest Service Function Details

Input
Output

rxOnDuration parameter nwkDutyCycle NIB

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-24 Freescale Semiconductor

3.2.13 NLME_ResetRequest

Prototype
uint8_t NLME_ResetRequest
(

bool_t bSetDefaultNib
);

Arguments

Table 3-14 specifies the parameters for the NLME_ResetRequest primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request to reset the NWK layer is successful

Functional Description

The NLME_ResetRequest API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to reset the network layer (setting the NIB attributes to
their default values or retaining their values prior the reset request).

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NLME_ResetRequest is completely executed. There will be no other confirm message sent by BeeStack
Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

NOTE
Issuing this primitive with the bSetDefaultNIB parameter set to TRUE
removes all entries from the pairing table.Issuing this primitive with the
bSetDefaultNIB parameter set to FALSE fills the NIBs (including the pair
table) with their last saved values in the non volatile memory.

Table 3-14. NLME_ResetRequest Parameters

Name Type Valid range Description

bSetDefaultNib bool_t TRUE, FALSE If TRUE, the NWK layer is resetted and all NIB attributes are set to their
default values. If FALSE, the NWK layer is resetted but all NIB
attributes retain their values prior to the generation of the
NLMERESET.request primitive.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-25

3.2.14 NLDE_DataRequest

Prototype
uint8_t NLDE_DataRequest
(

uint8_t deviceId,
uint8_t profileId,
uint8_t* vendorId,
uint8_t nsduLength,
uint8_t* nsdu,
uint8_t txOptions

);

Arguments

Table 3-15 specifies the parameters for the NLDE_DataRequest primitive.
Table 3-15. NLDE_DataRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEntries - 1)

The pairing reference of the destination device. Ignored for
broadcast transmissions.

profileId uint8_t 0x00 – 0xff The ID of the profile describing the data format

vendorId uint8_t* 0x0000 or a valid vendor identifier
(pointer different of NULL)

If the TxOptions parameter specifies that the data is vendor
specific, this parameter specifies the vendor identifier. If this
parameter is equal to 0x0000, the vendor identifier shall be set to
nwkcVendorIdentifier. If the TxOptions parameter specifies that
the data is not vendor specific this parameter is ignored.

nsduLength uint8_t 0 – 90 The length of the payload (in bytes) to be transmitted.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-26 Freescale Semiconductor

The transmission options are defined in the NwkInterface.h header file, as follows:
/* Transmission options */
#define maskTxOptions_Broadcast_c (1<<0)
#define maskTxOptions_UseRecipLongAddress_c (1<<1)
#define maskTxOptions_UseAck_c (1<<2)
#define maskTxOptions_UseSecurity_c (1<<3)
#define maskTxOptions_UseOneChannelOnly_c (1<<4)
#define maskTxOptions_UseChannelDesignator_c (1<<5)
#define maskTxOptions_VendorSpecificData_c (1<<6)

Returns

Possible return values and their significance:
• gNWSuccess_c — The request has been accepted for processing by the network layer
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet
• gNWDenied_c — The request is rejected as the network layer is already processing another

non-interruptible request
• gNWNoMemory_c — The request is rejected as the network needs to allocate messages from the

common message pool which is empty
• gNWDeviceIdNotPaired_c — The request is rejected as a unicast transmission is requested and no

pair information exists at the location specified by deviceId
• gNWFrameCounterExpired_c — The request is rejected as the frame counter has reached its

maximum value
• gNWInvalidParam_c:

nsdu uint8_t* - A pointer to the payload to be transmitted.

txOptions uint8_t - Transmission options for this NSDU.
For b0 (transmission mode):
1 = broadcast transmission
0 = unicast transmission
For b1 (destination addressing mode):
1 = use destination IEEE address
0 = use destination network address
For b2 (acknowledgement mode):
1 = acknowledged transmission
0 = unacknowledged transmission
For b3 (security mode):
1 = transmit with security
0 = transmit without security
For b4 (channel agility mode):
1 = use single channel operation
0 = use multiple channel operation
For b5 (channel normalization mode):
1 = specify channel designator
0 = do not specify channel designator
For b6 (payload mode):
1 = data is vendor specific
0 = data is not vendor specific

Table 3-15. NLDE_DataRequest Parameters

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-27

— The request is rejected as a unicast transmission is used and the deviceId parameter is out of
the valid range

— The request is rejected as profileId parameter is out of the valid range
— The request is rejected as nsduLength parameter is out of the valid range
— The request is rejected as there is no data payload to be transmitted but the nsduLength

parameter is bigger than 0
— The request is rejected as the transmission is secured but the capabilities of the node indicate

that the node doesn’t support security

Functional Description

The NLDE_DataRequest is an asynchronous API function available both for controller and target nodes.
It makes a request for a BeeStack Consumer node to transfer an application data unit to one of the nodes
it is already paired with.

This function call requests the starting of a BeeStack Consumer DataRequest process. If the return value
is gNWSuccess_c, the BeeStack Consumer layer has accepted and already started to process the
DataRequest request. When the DataRequest process will be completed, the application layer will be
notified by a Data confirm message which will be sent by BeeStack Consumer layer trough the BeeStack
Consumer NLDE SAP.

If the return value is not gNWSuccess_c, the BeeStack Consumer Data Request process will not be started.
At this point, the request is considered to be completed and therefore the application should not wait for
any Data Confirm message to be received later.

3.2.15 NWK_GetNodePanId

Prototype
#define NWK_GetNodePanId() nodeData.localPanId

Arguments

The NWK_GetNodePanId macro has no parameters.

Returns

Possible return values and their significance:
• Will return a pointer to a two bytes array containing the IEEE 802.15.4 PAN identifier of the local

node

Functional Description

This macro is available on both controller and target nodes.

On receipt of NWK_GetNodePanId macro, the BeeStack Consumer layer returns a pointer to a 2 bytes
location containing the IEEE 802.15.4 PAN identifier of the local node.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-28 Freescale Semiconductor

3.2.16 NWK_ GetNodeShortAddress

Prototype
#define NWK_GetNodeShortAddress() nodeData.localShortAddress

Arguments

The NWK_GetNodeShortAddress macro has no parameters.

Return value

Possible return values and their significance:
• Will return a pointer to a two bytes array containing the IEEE 802.15.4 short address of the local

node

Functional Description

This macro is available on both controller and target nodes.

On receipt of NWK_GetNodeShortAddress macro, the BeeStack Consumer layer returns a pointer to a 2
bytes location containing the IEEE 802.15.4 short address of the local node.

3.2.17 NWK_GenerateShortAddress

Prototype
void NWK_GenerateShortAddress
(

uint8_t* shortAddress
);

Arguments

Table 3-16 specifies the parameters for the NWK_GenerateShortAddress primitive.

Returns
• This function has no return value.

Table 3-16. NWK_GenerateShortAddress Parameters

Name Type Valid range Description

shortAddress uint8_t* - This is an output parameter for a 2 byte memory
location (provided by the application) that will
contain the new generated network address.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-29

Functional Description

The NWK_GenerateShortAddress API function is available both for controller and target nodes. It makes
a request for a BeeStack Consumer node to generate an IEEE 802.15.4 short address that does not match
any of the short addresses of the entries already in the pair table.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_GenerateShortAddress request is completely executed. There will be no other confirm message
sent by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

3.2.18 NWK_GenerateSecurityKey

Prototype
void NWK_GenerateSecurityKey
(

uint8_t* securityKey
);

Arguments

Table 3-17 specifies the parameters for the NWK_GenerateSecurityKey primitive.

Returns
• This function has no return value.

Functional Description

The NWK_GenerateSecurityKey API function is available both for controller and target nodes. It makes
a request for a BeeStack Consumer node to generate a security key that does not match any of the security
keys of the existing entries in the pair table.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_GenerateSecurityKey request is completely executed. There will be no other confirm message
sent by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

Table 3-17. NWK_GenerateSecurityKey Parameters

Name Type Valid range Description

securityKey uint8_t* - This is an output parameter for a 16 byte memory location (provided by the
application) containing the new generated security key.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-30 Freescale Semiconductor

3.2.19 NWK_AddNewPairTableEntry

Prototype
uint8_t NWK_AddNewPairTableEntry
(

uint8_t* localShortAddress,
uint8_t recipChannel,
uint8_t* recipMacAddress,
uint8_t* recipPanId,
uint8_t* recipShortAddress,
uint8_t recipCapabilities,
uint8_t* securityKey,
uint8_t* recipUserString

);

Arguments

Table 3-18 specifies the parameters for the NWK_ AddNewPairTableEntry primitive.

Returns

Possible return values and their significance:
• the index in the pair table corresponding to the new added entry
• gNWNoOrigCapacity_c: the request is rejected as there is no room in the pair table to add a new

entry
• gNWInvalidParam_c: the request is rejected as recipChannel parameter is out of the valid range

Table 3-18. NWK_ AddNewPairTableEntry Parameters

Name Type Valid range Description

localShortAddress uint8_t* A valid short address
(pointer different of NULL)

The network address to be assumed by the local device. This is
an input parameter.

recipChannel uint8_t 15, 20, 25 The expected channel of the new paired device.

recipMacAddress uint8_t* A valid 802.15.04 IEEE
address (pointer different
of NULL)

The IEEE address of the new paired device. This is an input
parameter.

recipPanId uint8_t* A valid PAN identifier
(pointer different of NULL)

The PAN identifier of the new paired device. This is an input
parameter.

recipShortAddress uint8_t* A valid short address
(pointer different of NULL)

The network address of the new paired device. This is an input
parameter.

recipCapabilities uint8_t - The node capabilities of the new paired device.

securityKey uint8_t* A valid security key
(pointer different of NULL)

The link key to be used to secure the paired link. This is an input
parameter.

recipUserString uint8_t* A valid user string (pointer
different of NULL)

The user string of the new paired device. This is an input
parameter.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-31

Functional Description

The NWK_AddNewPairTableEntry API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to add a new paired link in its pair table, without starting
a pair process. The pairing information must be provided by the application.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_AddNewPairTableEntry request is completely executed. There will be no other confirm message
sent by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

3.2.20 NWK_SavePersistentData

Prototype
void NWK_SavePersistentData
(

void
);

Arguments
• This function has no arguments.

Returns
• This function has no return value.

Functional Description

The NWK_SavePersistentData API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to save the BeeStack Consumer sensitive information
into the non volatile memory. This sensitive information includes the pair table (nodeData) and the NIB
table (gNwkNib). This information will not be written in FLASH during the function call. The function
call will only mark this information as being pending to be written in FLASH. The actual write in FLASH
operation will be executed in the Idle Task of the application, the first time it is run.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_SavePersistentData request is completely executed. There will be no other confirm message sent
by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-32 Freescale Semiconductor

3.2.21 NWK_ SaveFrameCounter

Prototype
uint8_t NWK_SaveFrameCounter
(

void
);

Arguments
• This function has no arguments.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request for saving of the nwkFrameCounter NIB attribute into FLASH was

successfully marked as pending
• gNWNodeNotStarted_c — The request is rejected as the node is not started yet

Functional Description

The NWK_SaveFrameCounter API function is available both for controller and target nodes, but only after
the node is started.

It makes a request for a BeeStack Consumer node to save the nwkFrameCounter NIB attribute into Flash.
The pair table and the rest of the NIB table will not be updated in Flash. This information will not be
written in FLASH during the function call. The function call will only mark this information as being
pending to be written in FLASH. The actual write in FLASH operation will be executed in the Idle Task
of the application, the first time it is run.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_SaveFrameCounter request is completely executed. There will be no other confirm message sent
by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-33

3.2.22 NWK_SetMacAddress

Prototype
uint8_t NWK_SetMacAddress(uint8_t* pMacAddress);

Arguments

Table 3-19 specifies the parameters for the NWK_SetMacAddress primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The request to set the MAC address of the local node to a specific value was

successful
• gNWInvalidParam_c — The request is rejected as pMacAddress parameter is NULL

Functional Description

The NWK_SetMacAddress API function is available both for controller and target nodes and should
always be called after the resetting the node, but before starting it.

It makes a request for a BeeStack Consumer node to set the MAC address of the local node to a specific value.
The IEEE MAC address must be provided by the application.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_SetMacAddress request is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

Table 3-19. NWK_SetMacAddress Parameters

Name Type Valid range Description

pMacAddress uint8_t* Valid IEEE MAC address The IEEE address to be used by the local
device. This is an input parameter.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-34 Freescale Semiconductor

3.2.23 NWK_GetMacAddress

Prototype
uint8_t NWK_GetMacAddress(uint8_t* pMacAddress);

Arguments

Table 3-20 specifies the parameters for the NWK_GetMacAddress primitive.

Returns

Possible return values and their significance:
• gNWSuccess_c — The IEEE MAC address of the local node was successfully obtained
• gNWInvalidParam_c — The request is rejected as pMacAddress parameter is NULL

Functional Description

The NWK_GetMacAddress API function is available both for controller and target nodes.

It makes a request to retrieve the local node’s IEEE 802.15.4 extended address into a specific location.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_GetMacAddress request is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

3.2.24 NWK_GetLastPacketLQI

Prototype
uint8_t NWK_GetLastPacketLQI(void);

Arguments
• This function has no arguments.

Returns

Possible return values and their significance:
• LQI of the last received network packet

Table 3-20. NWK_GetMacAddress Parameters

Name Type Valid range Description

pMacAddress uint8_t* - This is an output parameter for a 8 byte
memory location (provided by the application)
containing the IEEE MAC address of the local
node.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-35

Functional Description

The NWK_GetLastPacketLQI API function is available both for controller and target nodes.

It makes a request for a BeeStack Consumer node to get the LQI of the last received packet. This function
call does not request the starting of any BeeStack Consumer process and for this reason its call is
synchronous. When the application layer receives the return value of the API call, the
NWK_GetLastPacketLQI request is completely executed. There will be no other confirm message sent by
BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

3.2.25 NWK_GetAllowedLowPowerInterval

Prototype
uint32_t NWK_GetAllowedLowPowerInterval(void);

Arguments
• This function has no arguments.

Returns

Possible return values and their significance:
• The amount of time (in MAC symbols) the network can safely can enter low power mode from the

moment this call is made:
• 0x00000000: the BeeStack Consumer network can not enter low power mode at the moment this

request was made. This can happen due to the following reasons:
• The network is not idle (it is executing a process)
• The network is idle, but the receiver is set to be always ON. The network will not allow the

platform to enter low power mode while the receiver is open
• The receiver is set to work in intermittent mode but the function call is made during the active

period of the nwkDutyCycle, when the receiver is open, therefore the network do not allow the
entering of a low power mode

• 0x00FFFFFF: the network is idle and the receiver is set to be always OFF. In this case the network
allows entering low power mode for 0x00FFFFFF MAC symbols (approximately 268.4 seconds),
which is the maximum interval the LPM (low power mode) platform component can be configured
to enter low power

• The amount of time (in MAC symbols) remaining from the moment the call is made until the next
activePeriod is to begin: the network is idle, the receiver is set to work in intermittent mode and
the function call is made during the inactive period of the nwkDutyCycle

Functional Description

The NWK_GetAllowedLowPowerInterval API function is available both for controller and target nodes.

It makes a request for the BeeStack Consumer layer to inform the calling entity about the availability time
interval of the network to enter low power mode.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-36 Freescale Semiconductor

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
NWK_GetAllowedLowPowerInterval request is completely executed. There will be no other confirm
message sent by BeeStack Consumer trough the BeeStack Consumer NLME or NLDE SAPs.

3.2.26 NWK_IsIdle

Prototype
bool_t NWK_IsIdle(void);

Arguments
• This function has no arguments.

Returns

Possible return values and their significance:
• TRUE — The BeeStack Consumer network is in idle state
• FALSE — The BeeStack Consumer network is not in idle state, but is busy executing a process

Functional Description

The NWK_IsIdle API function is available both for controller and target nodes.

This function is used to determine if the BeeStack Consumer layer is in the idle state or not.

This function call does not request the starting of any BeeStack Consumer process and for this reason its
call is synchronous. When the application layer returns from the API call, the NWK_IsIdle request is
completely executed. There will be no other confirm message sent by BeeStack Consumer trough the
BeeStack Consumer NLME or NLDE SAPs.

3.3 Message Data Types
The interface between the Network Layer Management Entity (NLME) as well as the Network Layer Data Entity (NLDE) and
the Application Layer is based on service primitives passed from the network to the application through a Service Access Point
(SAP). Two SAPs must be implemented as functions in the application:

void NWK_NLME_SapHandler(nwkNlmeToAppMsg_t* nwkNlmeToAppMsg)

void NWK_NLDE_SapHandler(nwkNldeToAppMsg_t* nwkNldeToAppMsg)

A message is the entity passed from the network layer to the application layer as a SAP parameter. The
application typically stores the received messages in message queues. A message queue decouples the
execution context which ensures that the call stack does not build up between modules when
communicating. The decoupling also ensures that timing critical modules can queue a message to less
timing critical modules and move on, which ensures that the receiving module does process the message
immediately.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-37

Both NLME and NLDE service primitives use the same type of messages as defined in the NwkInterface.h
file. Because the NLME and NLDE interfaces are based on messages being passed to the SAPs, each message needs to have
its own identifier. These identifiers are shown in the following tables.

This section describes the main C-structures and data types used by the NLME/NLDE interface.

The structures used to describe the BeeStack Consumer confirm and indications have been collected in
single message type as unions, plus a message type that corresponds to the enumerations of the primitives.
These are the structures which transport messages through the SAPs.

For messages from NLME to application the following structure/union is used:
/* General structure of a message received by the application over NLME SAP */
typedef struct nwkNlmeToAppMsg_tag
{
 nwkNlmeToAppMsgType_t msgType;
 union {
 nwkNlmeStartCnf_t nwkNlmeStartCnf;
 nwkNlmeAutoDiscoveryCnf_t nwkNlmeAutoDiscoveryCnf;
 nwkNlmeDiscoveryCnf_t nwkNlmeDiscoveryCnf;
 nwkNlmeDiscoveryInd_t nwkNlmeDiscoveryInd;
 nwkNlmePairCnf_t nwkNlmePairCnf;
 nwkNlmePairInd_t nwkNlmePairInd;
 nwkNlmeUnpairCnf_t nwkNlmeUnpairCnf;

Table 3-21. Primitives in the NLME to Application Direction

Message identifier BeeStack Consumer NLME to
Application Primitives

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

 T
ar

ge
t

Se
ct

io
n

gNwkNlmeStartCnf_c NLME-START.Confirm X X 3.3.1

gNwkNlmeAutoDiscoveryCnf_c NLME-AUTO-DISCOVERY.Confirm X X 3.3.2

gNwkNlmeDiscoveryCnf_c NLME-DISCOVERY.Confirm X X 3.3.3

gNwkNlmeDiscoveryInd_c NLME- DISCOVERY.Indication X X 3.3.4

gNwkNlmePairCnf_c NLME-PAIR.Confirm X X 3.3.5

gNwkNlmePairInd_c NLME- PAIR.Indication X X 3.3.6

gNwkNlmeUnpairCnf_c NLME- UNPAIR.Confirm X X 3.3.7

gNwkNlmeUnpairInd_c NLME- UNPAIR.Indication X X 3.3.8

gNwkNlmeCommStatusInd_c NLME-COMM-STATUS.Indication X X 3.3.9

Table 3-22. Primitives in the NLDE to Application Direction

Message identifier BeeStack Consumer NLDE to
Application Primitives

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

 T
ar

ge
t

Su
b-

cl
au

se

gNwkNldeDataCnf_c NLDE-DATA.Confirm X X 3.3.10

gNwkNldeDataInd_c NLDE-DATA.Indication X X 3.3.11

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-38 Freescale Semiconductor

 nwkNlmeUnpairInd_t nwkNlmeUnpairInd;
 nwkNlmeCommStatusInd_t nwkNlmeCommStatusInd;
 } msgData;
}nwkNlmeToAppMsg_t;

Where nwkNlmeToAppMsgType_t is:
/* Messages used for informing the application about confirms or indications from BeeStack
Consumer arrived trough the NLME SAP */
typedef enum {
 gNwkNlmeStartCnf_c = 0,
 gNwkNlmeAutoDiscoveryCnf_c,
 gNwkNlmeDiscoveryCnf_c,
 gNwkNlmeDiscoveryInd_c,
 gNwkNlmePairCnf_c,
 gNwkNlmePairInd_c,
 gNwkNlmeUnpairCnf_c,
 gNwkNlmeUnpairInd_c,
 gNwkNlmeCommStatusInd_c,
 gNwkNlmeMax_c
}nwkNlmeToAppMsgType_t;

For messages from NLDE to application the following structure/union is used:
/* General structure of a message received by the application over NLDE SAP */
typedef struct nwkNldeToAppMsg_tag
{
 nwkNldeToAppMsgType_t msgType;
 union
 {
 nwkNldeDataCnf_t nwkNldeDataCnf;
 nwkNldeDataInd_t nwkNldeDataInd;
 } msgData;
}nwkNldeToAppMsg_t;

Where nwkNldeToAppMsgType_t is:
/* Messages used for informing the application about confirms or indications from BeeStack
Consumer arrived trough the NLDE SAP */
typedef enum {
 gNwkNldeDataCnf_c = 0,
 gNwkNldeDataInd_c,
 gNwkNldeMax_c
}nwkNldeToAppMsgType_t;

A detailed description of each BeeStack Consumer message is presented in the following sections.

3.3.1 nwkNlmeStartCnf_t

Message Structure

The semantics of the nwkNlmeStartCnf_t message is as follows:
typedef struct nwkNlmeStartCnf_tag
{

uint8_t status;
}nwkNlmeStartCnf_t;

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-39

Structure Members

Table 3-23 specifies the fields available in the nwkNlmeStartCnf_t message structure.

 Possible values of the status:
• gNWSuccess_c — The Start process has completed successfully
• gNWNoMemory_c — The Start process has failed to complete as the network needs to allocate

messages from the common message pool which is empty

A detailed description for the MAC status possible values can be found in R[2].

Functional Description

The Start Confirm message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that a BeeStack Consumer Start process has completed and also
offers valuable information about the way this request has been accomplished.

For details on how the BeeStack Consumer Start process is initiated, see Section 3.2.1,
“NLME_StartRequest”.

3.3.2 nwkNlmeAutoDiscoveryCnf_t

Message Structure

The semantics of the nwkNlmeAutoDiscoveryCnf_t message are as follows:
typedef struct nwkNlmeAutoDiscoveryCnf_tag
{

uint8_t status;
uint8_t origMacAddress[8];
uint8_t origPanId[2];

}nwkNlmeAutoDiscoveryCnf_t;

Structure Members

Table 3-24 specifies the fields available in the nwkNlmeAutoDiscoveryCnf_t message structure.

Table 3-23. nwkNlmeStartCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSuccess_c, gNWNoMemory_c or any
other MAC status returned by the
MLME-SCAN.confirm,
MLME-START.confirm or
MLME-SET.confirm primitives

The status of the BeeStack Consumer Start process.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-40 Freescale Semiconductor

Possible values of the status:
• gNWSuccess_c — The Auto Discovery process has completed successfully
• gNWNoMemory_c — The Auto Discovery process is ended as the network needs to allocate

messages from the common message pool which is empty
• gNWDiscoveryTimeout_c — The Auto Discovery process is ended because a Discovery request

with parameters matching the auto discovery parameters was not received during the
autoDiscDuration time interval

• gNWAborted_c — The Auto Discovery process is ended because another asynchronous request
was initiated. Even if the new request was ended returning an error status, the Auto Discovery
process is still ended.

• gNWDiscoveryError_c — The Auto Discovery process is ended because two discovery requests
from two different nodes were received during the autoDiscDuration time

A detailed description for the MAC status possible values can be found in R[2]

Functional Description

The Auto Discovery Confirm message can be received by the application layer both on controller and
target nodes.

This message notifies the application layer that a BeeStack Consumer Auto Discovery process has
completed and also offers valuable information about the way this request has been accomplished.

For details on how the BeeStack Consumer Auto Discovery process is initiated, see Section 3.2.2,
“NLME_AutoDiscoveryRequest”.

Table 3-24. nwkNlmeAutoDiscoveryCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSuccess_c,
gNWDiscoveryTimeout_c,
gNWAborted_c ,
gNWNoMemory_c ,
gNWDiscoveryError_c or any other
MAC status returned by the
MCPS-Data.confirm primitive

The status of the BeeStack Consumer
Auto Discovery process.

origMacAddress uint8_t array with 8
elements

a valid MAC address The IEEE address to which the
discovery response was sent

origPanId uint8_t array with 2
elements

a valid PAN Id The PAN Id to which the discovery
response was sent

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-41

3.3.3 nwkNlmeDiscoveryCnf_t

Message Structure

The semantics of the nwkNlmeDiscoveryCnf_t message are as follows:
typedef struct nwkNlmeDiscoveryCnf_tag
{

uint8_t status;
uint8_t nrDiscoveredNodes;
nodeDescriptorBlock_t* pNodeDescriptorBlocks;

}nwkNlmeDiscoveryCnf_t;

#define aNodeDescriptorsPerBlock 2

struct nodeDescriptorBlock_tag {
 nodeDescriptor_t nodeDescriptorList[aNodeDescriptorsPerBlock];
 uint8_t nodeDescriptorCount;
 struct nodeDescriptorBlock_tag* pNext;
};

typedef struct nodeDescriptor_tag
{
 uint8_t status;
 uint8_t recipChannel;
 uint8_t recipPanId[2];
 uint8_t recipMacAddress[8];
 uint8_t recipCapabilities;
 uint8_t recipVendorId[2];
 uint8_t recipVendorString[gSizeOfVendorString_c];
 appCapabilities_t recipAppCapabilities;
 uint8_t recipUserString[gSizeOfUserString_c];
 uint8_t recipDeviceTypeList[gMaxNrOfNodeDeviceTypes_c];
 uint8_t recipProfilesList[gMaxNrOfNodeProfiles_c];
 uint8_t requestLQI;
}nodeDescriptor_t;

typedef struct nodeDescriptorBlock_tag nodeDescriptorBlock_t;

Structure Members

Table 3-25 specifies the fields available in the nwkNlmeDiscoveryCnf_t message structure.
Table 3-25. nwkNlmeDiscoveryCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSuccess_c, gNWAborted_c ,
gNWNoMemory_c ,
gNWDiscoveryTimeout_c,
gNWDiscoveryError_c or any other
MAC status returned by the
MCPS-Data.confirm primitive

The status of the BeeStack
Consumer DiscoveryRequest
process.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-42 Freescale Semiconductor

Possible values of the status:
• gNWSuccess_c — The DiscoveryRequest process has completed successfully
• gNWAborted_c — The DiscoveryRequest process is ended because another asynchronous request

was initiated. Even if the new request completed, returning an error status, the DiscoveryRequest
process is still ended

• gNWNoMemory_c — The DiscoveryRequest process is ended as the network needs to allocate
messages from the common message pool which is empty

• gNWDiscoveryTimeout_c — The DiscoveryRequest process is ended because no Discovery
responses were received during the discDuration time interval

• gNWDiscoveryError_c — The DiscoveryRequest process ended because more than
nwkcMaxNodeDescListSize (4) distinct discovery responses were received during the
discDuration time

A detailed description for the MAC status possible values can be found in R[2]. For details on
nodeDescriptor_t see R[1].

Functional Description

The Discovery Confirm message can be received by the application layer both on controller and target
nodes.

This message notifies the application layer that a BeeStack Consumer DiscoveryRequest process has
completed and also offers valuable information about the way this request has been accomplished.

For details on how the BeeStack Consumer DiscoveryRequest process is initiated, see Section 3.2.3,
“NLME_DiscoveryRequest”.

nrDiscoveredNodes uint8_t 0x00 – 0x04 (0x00 -
nwkcMaxNodeDescListSize)

The number of node descriptors
discovered

pNodeDescriptorBlocks nodeDescriptorBlock_t - Pointer to a list of node descriptors
discovered.

Table 3-25. nwkNlmeDiscoveryCnf_t message structure

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-43

3.3.4 nwkNlmeDiscoveryInd_t

Message Structure

The semantics of the nwkNlmeDiscoveryInd_t message are as follows:
typedef struct nwkNlmeDiscoveryInd_tag
{

uint8_t status;
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t requestedDeviceType;
uint8_t rxLinkQuality;

}nwkNlmeDiscoveryInd_t;

Structure Members

Table 3-26 specifies the fields available in the nwkNlmeDiscoveryInd_t message structure.
Table 3-26. nwkNlmeDiscoveryInd_t message structure

Name Type Valid range Description

Status uint8_t gNWSuccess_c,
gNWNoRecipCapacity_c

The status of the pairing table

origMacAddress uint8_t array with
8 elements

A valid IEEE address The IEEE address of the device requesting the
discovery

origCapabilities uint8_t - The node capabilities of the originator of the
discovery request

origVendorId uint8_t array with
2 elements

A valid Vendor ID The vendor identifier of the originator of the discovery
request

origVendorString uint8_t* 7 octets The vendor string of the originator of the discovery
request.

origAppCapabilities appCapabilities_t - The application capabilities of the originator of the
discovery request

origUserString uint8_t* NULL or 15 characters The user string of the originator of the discovery
request

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by the originator of
the discovery request

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by the originator of
the discovery request

requestedDeviceType uint8_t 0x00 – 0xff The device type being discovered. 0xff indicates any
device

rxLinkQuality uint8_t 0x00 – 0xff The link quality of the discovery request, as passed
by the MAC

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-44 Freescale Semiconductor

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{

uint8_t bUserStringSpecified :1;
uint8_t nrSupportedDeviceTypes :2;
int8_t reserved1 :1;
uint8_t nrSupportedProfiles :3;
int8_t reserved2 :1;

}appCapabilities_t;

where bUserStringSpecified indicates whether the discovery requesting device has a defined user string,
while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of origDeviceTypeList and
origProfileIdList.

Possible values of the status:
• gNWSuccess_c — A free entry exists in the pair table
• gNWNoRecipCapacity_c — There is no free entry in the pair table

Functional Description

The NLME_Discovery Indication message can be received by the application layer both on controller and
target nodes.

This message notifies the application layer that a BeeStack Consumer DiscoveryRequest command was
received.

On receipt of the NLME_Discovery Indication message, the application decides whether to respond (using
a NLME_DiscoveryResponse) based on the information contained in the primitive. If the application
decides not to respond, no primitive is issued.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-45

3.3.5 nwkNlmePairCnf_t

Message Structure

The semantics of the nwkNlmePairCnf_t message are as follows:
typedef struct nwkNlmePairCnf_tag
{

uint8_t status;
uint8_t deviceId;
uint8_t recipVendorId[2];
uint8_t* recipVendorString;
appCapabilities_t recipAppCapabilities;
uint8_t* recipUserString;
uint8_t* recipDeviceTypeList;
uint8_t* recipProfilesList;

}nwkNlmePairCnf_t;

Structure Members

Table 3-27 specifies the fields available in the nwkNlmePairCnf_t message structure.

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{

Table 3-27. nwkNlmePairCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSucces_c,
gNWNoMemory_c,
gNWNoResponse_c,
gNWNoRecipCapacity_c,
gNWNotPermitted_c,
gNWSecurityTimeout_c,
gNWSecurityFailure_c, or a
status value from the
MCPS-DATA.confirm primitive

The status of the BeeStack Consumer
PairRequest process.

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEntries –
1), 0xff

The pairing table reference for this pairing link
(will be 0xff if status is not gNWSuccess_c)

recipVendorId uint8_t array with
2 elements

A valid vendor identifier The vendor ID of the pair response originator

recipVendorString uint8_t* A pointer to a 7 bytes array The vendor string of the pair response originator

recipAppCapabilities appCapabilities_t - The application capabilities of the pair response
originator

recipUserString uint8_t* NULL or 15 characters The user defined identification string of the pair
response originator

recipDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by the pair
response originator

recipProfileIdList uint8_t* Each integer:
0x00 – 0xfe

The list of profile IDs supported by the pair
response originator

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-46 Freescale Semiconductor

uint8_t bUserStringSpecified :1;
uint8_t nrSupportedDeviceTypes :2;
uint8_t reserved1 :1;
uint8_t nrSupportedProfiles :3;
uint8_t reserved2 :1;

}appCapabilities_t;

where bUserStringSpecified indicates whether the pair response originator has a defined user string, while
nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of recipDeviceTypeList and
recipProfileIdList.

Possible values of the status:
• gNWSuccess_c — The PairRequest process has completed successfully
• gNWNoResponse_c — No pair response was received from the device the pair request was sent to
• gNWNotPermitted_c — The target device has denied the pair request
• gNWNoRecipCapacity_c — The target device has no room in the pair table to accept the pair

request
• gNWSecurityTimeout_c — Process is ended as the security link key seeds transfer was not

completed during ((n+1) * nwkcMaxKeySeedWaitTime) time interval
• gNWSecurityFailure_c — The process is ended as a seed with invalid sequence number was

received
• gNWNoMemory_c — The PairRequest process is ended as the network needs to allocate messages

from the common message pool which is empty

A detailed description for the MAC status possible values can be found in R[2].

Functional Description

The Pair Confirm message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that a BeeStack Consumer PairRequest process has completed
and also offers valuable information about the way this request has been accomplished.

For details on how the BeeStack Consumer PairRequest process is initiated, see Section 3.2.5,
“NLME_PairRequest”.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-47

3.3.6 nwkNlmePairInd_t

Message Structure

The semantics of the nwkNlmePairInd_t message are as follows:
typedef struct nwkNlmePairInd_tag
{

uint8_t status;
uint8_t origPanId[2];
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t keyExTransferCount;
uint8_t deviceId;

}nwkNlmePairInd_t;

Structure Members

Table 3-28 specifies the fields available in the nwkNlmePairInd_t message structure.
Table 3-28. nwkNlmePairInd_t message structure

Name Type Valid range Description

Status uint8_t gNWSuccess_c,
gNWNoRecipCapacity_c,
gNWDuplicatePairing_c

The status of the provisional pairing

origPanId uint8_t array with 2
elements

The PAN identifier of the device requesting the pair

origMacAddress uint8_t array with 8
elements

A valid IEEE address The IEEE address of the device requesting the pair

origCapabilities uint8_t - The node capabilities of the device requesting the
pair

origVendorId uint8_t array with 2
elements

A valid Vendor ID The Vendor Id of the device requesting the pair

origVendorString uint8_t* 7 octets The Vendor string of the device requesting the pair

origAppCapabilities appCapabilities_t - The application capabilities of the device requesting
the pair

origUserString uint8_t* NULL or 15 characters The user defined identification string of the device
requesting the pair

origDeviceTypeList uint8_t* Each integer:
0x00 – 0xfe

The list of device types supported by the device
requesting the pair

origProfileIdList uint8_t* Each integer:
0x00 – 0xff

The list of profile IDs supported by the device
requesting the pair.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-48 Freescale Semiconductor

appCapabilities_t is defined as:
typedef struct appCapabilities_tag
{

uint8_t bUserStringSpecified :1;
uint8_t nrSupportedDeviceTypes :2;
uint8_t reserved1 :1;
uint8_t nrSupportedProfiles :3;
uint8_t reserved2 :1;

}appCapabilities_t;

where bUserStringSpecified indicates whether the originating pair request device has a defined user string,
while nrSupportedDeviceTypes and nrSupportedProfiles indicate the sizes of origDeviceTypeList and
origProfileIdList.

Possible values of the status:
• gNWSuccess_c — A new provisional entry containing the information about the pair requesting

device was created
• gNWNoRecipCapacity_c — No room in the pair table to create an entry containing the information

about the pair requesting device
• gNWDuplicatePairing_c — The information about the pairing requesting device already exists

in the pair table, in the entry pointed by the deviceId field

Functional Description

The Pair Indication message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that a BeeStack Consumer PairRequest command was
received.

On receipt of the Pair Indication message, the application decides whether to respond (using a
NLME_PairResponse) based on the information contained in the primitive. If the application decides not
to respond, no primitive is issued.

keyExTransferCoun
t

uint8_t 0x00 – 0xff The number of transfers the originator of the pair
requested this node to use to exchange the link key
if it accepts the pair request.

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEn
tries – 1), 0xff

Next free pairing reference that will be used if this
pairing request is successful. If this value is equal to
0xff, the NWK layer has no free pairing table entries.

Table 3-28. nwkNlmePairInd_t message structure

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-49

3.3.7 nwkNlmeUnpairCnf_t

Message Structure

The semantics of the nwkNlmeUnpairCnf_t message are as follows:
typedef struct nwkNlmeUnpairCnf_tag
{

uint8_t status;
uint8_t deviceId;

}nwkNlmeUnpairCnf_t;

Structure Members

Table 3-29 specifies the fields available in the nwkNlmeUnpairCnf_t message structure.

Possible values of the status:
• gNWSuccess_c — The UnpairRequest process has completed successfully
• gNWNoMemory_c — The UnpairRequest process is ended as the network needs to allocate messages

from the common message pool which is empty

A detailed description for the MAC status possible values can be found in R[2].

Functional Description

The Unpair Confirm message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that a BeeStack Consumer UnpairRequest process has
completed and also offers valuable information about the way this request has been accomplished. Even
if the status is not gNWSucces_c, due to the fact that the MCPS-DATA.confirm reported an error in the
transmission of the UnpairRequest frame, the entry is still removed from the pairing table.

For details on how the BeeStack Consumer UnpairRequest process is initiated, see Section 3.2.7,
“NLME_UnpairRequest”.

Table 3-29. nwkNlmeUnpairCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSucces_c,
gNWNoMemory_c or any
other status value from
the MCPS-DATA.confirm
primitive

The status of the BeeStack Consumer
UnpairRequest process.

deviceId uint8_t 0x00 – 0xff The pairing table reference for this pairing link. In
case the status is not gNWSuccess_c this
parameter is not valid.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-50 Freescale Semiconductor

3.3.8 nwkNlmeUnpairInd_t

Message Structure

The semantics of the nwkNlmeUnpairInd_t message are as follows:
typedef struct nwkNlmeUnpairInd_tag
{

uint8_t deviceId;
}nwkNlmeUnpairInd_t;

Structure Members

Table 3-30 specifies the fields available in the nwkNlmeUnpairInd_t message structure.

Functional Description

The Unpair indication message can be received by the application layer both on controller and target
nodes.

This message notifies the application layer that a BeeStack Consumer Unpair request command was
received.

On receipt of the Unpair indication message, the application decides whether to respond (using a
NLME_UnpairResponse) based on the information contained in the primitive. If the application decides
not to respond, no primitive is issued.

3.3.9 nwkNlmeCommStatusInd_t

Message Structure

The semantics of the nwkNlmeCommStatusInd_t message are as follows:
typedef struct nwkNlmeCommStatusInd_tag
{

uint8_t deviceId;
uint8_t targetPanId[2];
uint8_t targetAddressMode;
uint8_t targetAddress[8];
uint8_t status;

}nwkNlmeCommStatusInd_t;

Structure Members

Table 3-31 specifies the fields available in the nwkNlmeCommStatusInd_t message structure.

Table 3-30. nwkNlmeUnpairInd_t message structure

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries – 1) The pairing table reference that has been
removed from the pairing table.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-51

Possible values of the status:
• gNWSuccess_c — The BeeStack Consumer Pair response or the BeeStack Consumer Discovery

were successfully sent
• gNWNoMemory_c — The CommStatus process is ended as the network needs to allocate messages

from the common message pool which is empty
• gNWSecurityFailure_c — The CommStatus process is ended as a BeeStack Consumer Pair

response was sent, but no Ping request was received during nwkResponseWaitTime time period,
or because the received Ping request was not valid

• gNWSecurityTimeout_c — The CommStatus process is ended as the security link key seeds
transfer was not completed during ((n+1) * nwkcMaxKeySeedWaitTime) time interval

A detailed description for the MAC status possible values can be found in R[2]

Functional Description

The Comm Status indication message can be received by the application layer both on controller and target
nodes.

This message notifies the application layer about the status of a BeeStack Consumer communication (the
status of sending discovery response or pair response).

For details on how the BeeStack Consumer CommStatus process is initiated, see Section 3.2.6,
“NLME_PairResponse” and Section 3.2.4, “NLME_DiscoveryResponse”.

Table 3-31. nwkNlmeCommStatusInd_t message structure

Name Type Valid range Description

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEnt
ries – 1), 0xff

Reference into the pairing table indicating the recipient
node. A value of 0xff indicates that a discovery response
frame was sent.

targetAddress uint8_t array
with 8 elements

A valid IEEE/short address
(depending of the
targetAddressMode)

The address of the destination device. If the short address
is used, only the first two bytes of the array are valid.

targetPanId uint8_t array
with 2 elements

Valid PAN identifier The PAN ID of the destination device

targetAddressMode uint8_t 0, 1 The type of the address:
1 – 64 bit IEEE address
0 – 16 bit short address

Status uint8_t gNWSuccess_c,
gNWNoMemory_c,
gNWSecurityFailure_c,
gNWSecurityTimeout_c,
or any other status value
from the
MCPS-DATA.confirm
primitive

The status of the transmission.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-52 Freescale Semiconductor

3.3.10 nwkNldeDataCnf_t

Message Structure

The semantics of the nwkNldeDataCnf_t message are as follows:
typedef struct nwkNldeDataCnf_tag
{

uint8_t status;
uint8_t deviceId;
uint8_t profileId;

}nwkNldeDataCnf_t ;

Structure Members

Table 3-32 specifies the fields available in the nwkNldeDataCnf_t message structure.

Possible values of the status:
• gNWSuccess_c — The DataRequest process has completed successfully
• gNWNoResponse_c — The DataRequest process has failed as no MAC ack was received from the

recipient device, even though the data transmission was acknowledged
• gNWNoMemory_c — The DataRequest process has failed as the network needs to allocate messages

from the common message pool which is empty
• gNWAborted_c — The DataRequest process is interrupted by another request that needs to start a

process.

A detailed description for the MAC status possible values can be found in R[2].

Functional Description

The Data confirm message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that a BeeStack Consumer DataRequest process previously
requested has completed and also offers valuable information about the way this request has been
accomplished.

For details on how the BeeStack Consumer DataRequest process is initiated, see Section 3.2.14,
“NLDE_DataRequest”.

Table 3-32. nwkNldeDataCnf_t message structure

Name Type Valid range Description

Status uint8_t gNWSucces_c, gNWNoResponse_c,
gNWNoMemory_c, gNWAborted_c or any
other status value from the
MCPS-DATA.confirm primitive

The status of the BeeStack Consumer
DataRequest process.

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries – 1) The pairing table reference for the NSDU being
confirmed

profileId uint8_t 0x00 - 0xFE The profileId that was provided in the NLDE Data
Request for which the confirm is received

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-53

3.3.11 nwkNldeDataInd_t

Message Structure

The semantics of the nwkNldeDataInd_t message are as follows:
typedef struct nwkNldeDataInd_tag
{

uint8_t deviceId;
uint8_t profileId;
uint8_t vendorId[2];
uint8_t LQI;
uint8_t rxFlags;
uint8_t dataLength;
uint8_t* pData;

}nwkNldeDataInd_t;

Structure Members

Table 3-33 specifies the fields available in the nwkNldeDataInd_t message structure.

The reception indication flags are defined in the NwkInterface.h header file, as follows:
/* Reception options */
#define maskRxOptions_Broadcast_c (1<<0)
#define maskRxOptions_UseSecurity_c (1<<1)
#define maskRxOptions_VendorSpecificData_c (1<<2)

Table 3-33. nwkNldeDataInd_t message structure

Name Type Valid range Description

deviceId uint8_t 0x00 –
(nwkcMaxPairingTable
Entries - 1), 0xff

Reference into the pairing table which matched the information
contained in the received NSDU.
A value of 0xff indicates that a broadcast frame was received that
does not correspond to an entry in the pairing table.

profileId uint8_t 0x00 – 0xff The identifier of the profile indicating the format of the received data.

vendorId uint8_t array with
two elements

A valid vendor identifier If the RxFlags parameter specifies that the data is vendor specific,
this parameter specifies the vendor identifier. If the RxFlags
parameter specifies that the data is not vendor specific this
parameter is ignored.

LQI uint8_t 0x00 – 0xff LQI value measured during reception of the NSDU

rxFlags uint8_t - Reception indication flags for this NSDU.
For bB0B (reception mode):
1 = received as broadcast
0 = received as unicast
For bB1B (security mode):
1 = received with security
0 = received without security
For bB2B (payload mode):
1 = data is vendor specific
0 = data is not vendor specific

pData uint8_t* - A pointer to the received payload data

dataLength uint8_t 0 – 90 The length of the received payload

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-54 Freescale Semiconductor

Functional Description

The Data indication message can be received by the application layer both on controller and target nodes.

This message notifies the application layer that an application data has just been received and also offers
valuable information related to the sender of the packet and the way this packet has been received.

3.4 BeeStack Consumer Data Types

3.4.1 NodeData Database
NodeData Database is a structure defined in RAM memory that keeps information about the current node
(the PAN identifier and the short address of the current node) and the pair table.

NodeData Database is a structure defined in the RAM memory which keeps MAC related information
about the current node (the PAN identifier and the short address) and also information about the nodes that
are paired with it. The information in this table is modified during some of the BeeStack Consumer
processes such as Start, Pair, Unpair, Set and Reset, and each time it is changed, the whole structure is
saved in NVM. When a node is started, the application can choose if it wants to restore the NodeData
Database structure from NVM, or if it wants a clean version of it, by setting the
gNwkNib_StartWithNetworkInfoFromFlash_c NIB accordingly.

The NodeData Database type definition can be found in the NwkInterface.h header file.
/* NodeData Database structure */
typedef struct nodeData_tag
{

uint8_t localPanId[2];
uint8_t localShortAddress[2];
pairTableEntry_t pairTableEntry[gMaxPairingTableEntries_c];

} nodeData_t;

/* Structure of information kept inside an entry in the pair table of a BeeStack Consumer node */
typedef struct pairTableEntry_tag
{

uint8_t localShortAddress[2];
uint8_t recipChannel;
uint8_t recipMacAddress[8];
uint8_t recipPanId[2];
uint8_t recipShortAddress[2];
uint8_t recipCapabilities;
uint32_t recipFrameCounter;
uint8_t securityKey[gSizeOfSecurityKey_c];

 /* Fields that do not appear in the spec but present in the FSL implementation of BeeStack
Consumer */
 uint8_t recipUserString[gSizeOfUserString_c];
}pairTableEntry_t;

/* Define the number of the entries in the node's pair table */
#ifndef gMaxPairingTableEntries_c
 #define gMaxPairingTableEntries_c 5
#endif
A copy of the NodeData structure among with the NIB attributes table is also kept in FLASH, by
the NVM platform component.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-55

/* This data set contains network layer variables to be preserved across resets */
NvDataItemDescription_t const gaNvNwkDataSet[] = {
 {(uint8_t*)&nodeData, sizeof(nodeData_t)},
 {(uint8_t*)&gNwkNib, sizeof(nwkNib_t)},
 {NULL, 0} /* Required end-of-table marker. */
};

Table 3-34 specifies the fields available in the nodeData_t message structure.

Table 3-35 specifies the fields available in the pairTableEntry_t message structure.

Table 3-34. nodeData_t message structure

Name Type Valid range Description

localPanId uint8_t array with
two elements

Valid PAN identifier The PAN identifier of the current node. In case the current
node type is controller, the PAN identifier will be set to 0

localShortAddress uint8_t array with
two elements

Valid short address The short address of the current node. In case the current
node type is controller, the short address will be set to 0

pairTableEntry pairTableEntry_t - The entries in the pair table. Freescale BeeStack
Consumer implementation supports up to 16 entries in the
pair table when running on MC1323x platform and up to 8
entries in the pair table when running on MC1320x,
MC1321x and MC1322x platforms.

Table 3-35. pairTableEntry_t message structure

Name Type Valid range Description

localShortAddress uint8_t array with 2 elements Valid short address The short address of the current node in the
PAN of the target device

recipChannel uint8_t 15, 20, 25 The channel the target device was paired on

recipMacAddress uint8_t array with 8 elements Valid IEEE address the IEEE address of the target device

recipPanId uint8_t array with 2 elements Valid PAN identifier the PAN ID of the target device

recipShortAddress uint8_t array with 2 elements Valid short address the short address of the target device

recipCapabilities uint8_t - the node capabilities of the target device

recipFrameCounter uint32_t 0x00000000 – 0xffffffff the frameCounter of the latest network packet
received from the target device

securityKey uint8_t array with 16 elements - the security key for the paring link. In case no
security is used, the securityKey will be set to 0.

recipUserString uint8_t array with 15 elements - the user string of the target device

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-56 Freescale Semiconductor

3.4.2 BeeStack Consumer NIBs
The NIB comprises attributes required to manage the NWK layer of a device. The attributes contained in
the NIB are shown in the following table:

Table 3-36. NIB Attributes

Name Type Identifier Description

nwkActivePeriod uint32_t gNwkNib_ActivePeriod_c The active period of a device
in MAC symbols

nwkBaseChannel uint8_t gNwkNib_BaseChannel_c The logical channel that was
chosen during device
initialization

nwkDiscoveryLQIThreshold uint8_t gNwkNib_DiscoveryLQIThreshold_c The LQI threshold below
which discovery requests will
be rejected

nwkDiscoveryRepetitionInterval uint32_t gNwkNib_DiscoveryRepetitionInterval_c The interval, in MAC
symbols, at which discovery
attempts are made on all
channels

nwkDutyCycle uint16_t gNwkNib_DutyCycle_c The duty cycle of a device in
MAC symbols. A value of
0x000000 indicates the
device is not using power
saving

nwkFrameCounter uint32_t gNwkNib_FrameCounter_c The frame counter added to
the transmitted NPDU

nwkIndicateDiscoveryRequests bool_t gNwkNib_IndicateDiscoveryRequests_c Indicates whether the NLME
indicates the reception of
discovery request command
frames to the application.
TRUE indicates that the
NLME notifies the
application

nwkInPowerSave bool_t gNwkNib_InPowerSave_c The power save mode of the
node. TRUE indicates that
the device is operating in
power save mode

nwkPairingTable uint8_t gNwkNib_PairingTable_c The pairing table managed
by the device

nwkMaxDiscoveryRepetitions uint8_t gNwkNib_MaxDiscoveryRepetitions_c The maximum number of
discovery attempts made at
the
nwkDiscoveryRepetitionInter
val rate

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-57

nwkMaxFirstAttemptCSMABackoffs uint8_t gNwkNib_MaxFirstAttemptCSMABackoffs_c The maximum number of
backoffs the MAC CSMA-CA
algorithm will attempt before
declaring a channel access
failure for the first
transmission attempt

nwkMaxFirstAttemptFrameRetries uint8_t gNwkNib_MaxFirstAttemptFrameRetries_c The maximum number of
MAC retries allowed after a
transmission failure for the
first transmission attempt

nwkMaxReportedNodeDescriptors uint8_t gNwkNib_MaxReportedNodeDescriptors_c The maximum number of
node descriptors that can be
obtained before reporting to
the application

nwkResponseWaitTime uint32_t gNwkNib_ResponseWaitTime_c The maximum time in MAC
symbols, a device shall wait
for a response command
frame following a request
command frame

nwkScanDuration uint8_t gNwkNib_ScanDuration_c A measure of the duration of
a scanning operation,
according to [R2]

nwkUserString uint8_t gNwkNib_UserString_c The user defined character
string used to identify this
node

nwkStartWithNetworkInfoFromFlash bool_t gNwkNib_StartWithNetworkInfoFromFlash_c Freescale specific attribute.
Indicates whether during the
start process the network
layer variables stored in
NVM (nodeData and
gNwkNib) will be restored
from NVM or not. TRUE
indicates that the variables
will be restored with NVM
data. FALSE indicates that
the node will start with an
empty pair table and with the
NIB table filled with the
default values specified by
the standard.

Table 3-36. NIB Attributes (continued)

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-58 Freescale Semiconductor

nwkAcceptDataInAutoDiscoveryMod
e

bool_t gNwkNib_AcceptDataInAutoDiscoveryMode
_c

Kept only for interface
backwards compatibility with
older BeeStack Consumer
stacks. Setting it to any of the
TRUE or FALSE values will
have no effect on the
network behavior. The NLDE
Data.Indication packets are
always forwarded by the
network to the application no
matter the process that is
currently taking place (Ex:
pair, discovery,
AutoDiscovery, Idle)

nwkKeySeedPALevel uint8_t gNwkNib_KeySeedPALevel_c Freescale specific attribute.
Allows the upper layer to set
the power level used for
transmitting the key seeds
during the pair process to
either a smaller or a bigger
value than the one specified
by the ZigBee RF4CE
standard: -15dBm. This NIB
can be set to any uint8_t
value in the range [0,10].
Default value is 5. More
details about the relation
between the values of the
NIB and the values of the
output power are presented
in Table 3-37.

Table 3-36. NIB Attributes (continued)

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-59

/* Network NIB attribute identifiers */
typedef enum
{

nwkKeepPairInfoAtDuplicatePairFail bool_t gNwkNib_KeepPairInfoAtDuplicatePairFail_c Freescale specific attribute.
Allows the upper layer to
request the network not to
delete the pair information in
case when the pair is done
for an entry already in the
pair table and the pair
process fails. Available on
both controller and target
nodes. Default value is
FALSE.

nwkFADisabled bool_t gNwkNib_FADisabled_c Freescale specific attribute.
Allows the upper layer to
request the network to
disable the Frequency Agility
module and remain locked
on one single channel. This
channel is pointed by
gNwkNib_BaseChannel_c
NIB. If this NIB is set to
TRUE then: 1. All the
multi-channel transmissions
will be performed on the
channel indicated by the
gNwkNib_BaseChannel_c
NIB 2. The node will remain
locked on the channel
indicated by
gNwkNib_BaseChannel_c
NIB even if it will receive data
frames with
channelDesignator option
requesting it to switch to
another channel. 3. The
node will remain locked on
the channel indicated by
gNwkNib_BaseChannel_c
NIB even this channel is
experiences heavy traffic or
radio interference conditions.
The recommended
sequence for having a node
work on one single channel
is: 1. Set the
gNwkNib_FADisabled_c NIB
to TRUE. 2. Set the
gNwkNib_BaseChannel_c
NIB to the one the network
should work on (one of the
15, 20 or 25 values)

Table 3-36. NIB Attributes (continued)

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-60 Freescale Semiconductor

gNwkNib_FirstAttribute_c = 0x60,
gNwkNib_ActivePeriod_c = 0x60,
gNwkNib_BaseChannel_c,
gNwkNib_DiscoveryLQIThreshold_c,
gNwkNib_DiscoveryRepetitionInterval_c,
gNwkNib_DutyCycle_c,
gNwkNib_FrameCounter_c,
gNwkNib_IndicateDiscoveryRequests_c,
gNwkNib_InPowerSave_c,
gNwkNib_PairingTable_c,
gNwkNib_MaxDiscoveryRepetitions_c,
gNwkNib_MaxFirstAttemptCSMABackoffs_c,
gNwkNib_MaxFirstAttemptFrameRetries_c,
gNwkNib_MaxReportedNodeDescriptors_c,
gNwkNib_ResponseWaitTime_c,
gNwkNib_ScanDuration_c,
 gNwkNib_UserString_c,

 /* Freescale defined NIB attributes */
gNwkNib_StartWithNetworkInfoFromFlash_c,
gNwkNib_AcceptDataInAutoDiscoveryMode_c,
gNwkNib_KeySeedPALevel_c,
gNwkNib_KeepPairInfoAtDuplicatePairFail_c,
gNwkNib_FADisabled_c,
gNwkNib_LastAttribute_c

} nwkNibAttribute_t;

/* Network NIB table structure */
typedef struct nwkNib_tag
{

uint32_t nwkActivePeriod;
uint8_t nwkBaseChannel;
uint8_t nwkDiscoveryLQIThreshold;
uint32_t nwkDiscoveryRepetitionInterval;
uint16_t nwkDutyCycle;
uint32_t nwkFrameCounter;
bool_t nwkIndicateDiscoveryRequests;
bool_t nwkInPowerSave;
uint8_t nwkPairingTable;
uint8_t nwkMaxDiscoveryRepetitions;
uint8_t nwkMaxFirstAttemptCSMABackoffs;
uint8_t nwkMaxFirstAttemptFrameRetries;
uint8_t nwkMaxReportedNodeDescriptors;
uint32_t nwkResponseWaitTime;
uint8_t nwkScanDuration;
uint8_t nwkUserString[15];

 /* Freescale defined NIB attributes */
bool_t nwkStartWithNetworkInfoFromFlash;
bool_t nwkAcceptDataInAutoDiscoveryMode;
uint8_t nwkKeySeedPALevel;
bool_t nwkKeepPairInfoAtDuplicatePairFail;
bool_t nwkFADisabled;

} nwkNib_t;

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-61

3.4.3 Saving BeeStack Consumer Sensitive Information in FLASH
The management of saving information in FLASH is handled by the NVM platform component. This
component handles 2 independent data sets, one for the application specific data and another one for the
network specific data. Each data set can store and retrieve from FLASH up to 504 bytes of information.

The BeeStack Consumer network sensitive information that needs to be preserved between resets of the
board consists of the nodeData structure and the NIB table. While the NIB table has a fixed size, the size

Table 3-37. gNwkNib_KeySeedPALevel_c NIB Details

gNwkNib_KeySeedPALevel_c BeeStack Consumer
On S08/QE128 Platform

BeeStack Consumer
On ARM7 Platform

BeeStack Consumer
On MC1323x

0 -28.7 dBm -28 dBm -30.63 dBm

1 -22 dBm -21 dBm -28.52 dBm

2 -18.5 dBm -19 dBm -25.30 dBm

3 -16.2 dBm -17 dBm -22.77 dBm

4 -15.9 dBm -16 dBm -19.02 dBm

5 -15.3 dBm -15 dBm -15.88 dBm

6 -8.5 dBm -10 dBm - 9.37 dBm

7 -7.0 dBm -4.5 dBm - 7.07 dBm

8 -1.6 dBm -1.5 dBm - 4.26 dBm

9 -0.66 dBm -1 dBm 0.20 dBm

10 1.42 dBm 1.7 dBm 2.30 dBm

Table 3-38. gNwkNib_KeySeedPALevel_c NIB Details

gNwkNib_KeySeedPALevel_c BeeStack Consumer
On S08/QE128 Platform

BeeStack Consumer
On ARM7 Platform

BeeStack Consumer
On MC1323x Platform

0 -28.7 dBm -28 dBm -24.9 dBm

1 -22 dBm -21 dBm -22.3 dBm

2 -18.5 dBm -19 dBm -21.0 dBm

3 -16.2 dBm -17 dBm -19.7 dBm

4 -15.9 dBm -16 dBm -17.1 dBm

5 -15.3 dBm -15 dBm -14.5 dBm

6 -8.5 dBm -10 dBm -10.6 dBm

7 -7.0 dBm -4.5 dBm - 9.3 dBm

8 -1.6 dBm -1.5 dBm - 8.0 dBm

9 -0.66 dBm -1 dBm 0.0 dBm

10 1.42 dBm 1.7 dBm 3.0 dBm

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-62 Freescale Semiconductor

of the nodeData structure depends on the number of entries in the pair table. The maximum number of
entries in the pair table is derived by the limitation that the size of the nodeData plus the size of the NIB
table should not exceed the following:

• 504 bytes on the MC1320x, MC1321x and MC1322x platforms
• 1016 bytes on the MC1323x platform

The maximum number of entries in the pair table of a BeeStack Consumer node is as follows:
• When the network runs on a MC1320x, MC1321x or MC1322x platform this value is 8
• When the network runs on a MC1323x platform this value is 16

The NVM component can only handle the save in FLASH of a whole data set. This means that even if the
application has changed only a NIB value, the whole NIB table plus nodeData structure will be saved in
FLASH, and not only that particular NIB. However, there is one exception from this rule. Considering that
during the life cycle of a BeeStack Consumer product the value that will probably be the most often written
in FLASH is the frameCounter NIB, a special mechanism was designed to allow saving it without actually
having to update the whole network data set in FLASH. The mechanism uses the remaining space in the
network data set (504 bytes – size of nodeData – size of NIB table) to consecutively store in FLASH the
values of the frameCounter NIB, each time they are updated. When there is no room left in the 504 bytes
space of the network data set to retain a new update of the frameCounter NIB, the whole network dataSet
is updated in FLASH. This mechanism minimizes the number of FLASH pages writes that a BeeStack
Consumer application will trigger during its life time cycle.

The BeeStack Consumer network will request the saving of the whole network data set information in
FLASH in the following situations:

• After calling the NLME_Start service if:
— The start was issued without persistent information from FLASH. This is done to save the pair

table in FLASH that was cleared during the start process
— The start was issued for the first time after the board was programmed. This is done to create

the network dataSet in FLASH
• After a call to NLME_PairResponse, if the pair process was completed successfully. This is done

to save the updated pair table in FLASH
• After a call to NLME_UnpairRequest call. This is done to save the updated pair table in FLASH
• After a call to NLME_UnpairResponse call. This is done to save the updated pair table in FLASH.
• After a call to NLME_SetRequest, only if the NIB is not NwkNib_FrameCounter_c and also

different from its previous version. Setting a NIB to the same value it had before does not trigger
the save of the NIB table in FLASH.

• After a call to NWK_AddNewPairTableEntry call. This is done to save the updated pair table in
FLASH.

• After a call to NWK_SavePersistentData call. This is done because it is explicitly requested by the
application.

• After a call to NLME_RxEnableRequest, only if the value of any of the nwkActivePeriod or
nwkInPowerSave NIBs has changed. This allows and automatic start of an intermittent Rx

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 3-63

(inPowerSave) operation after a reset with NIB table loaded from FLASH in the case where the
node was previously in intermittent Rx (inPowerSave) mode.

The BeeStack Consumer network requests the saving of the frameCounter NIB in the following situations:
• After a call to NLME_SetRequest when NIB is equal to gNwkNib_FrameCounter_c.
• After a call to NLME_Start call using persistent information from FLASH, as the frameCounter is

incremented with nwkcFrameCounterWindow and the new value is saved back in FLASH.
• When the frameCounter reaches the nwkcFrameCounterWindow value.
• After a call to NWK_SaveFrameCounter call.

BeeStack Consumer Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

3-64 Freescale Semiconductor

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 4-1

Chapter 4
BeeStack Consumer/SynkroRF Hybrid Software Overview
This chapter provides a brief overview of the ZigBee RF4CE (BeeStack Consumer)/SynkroRF hybrid
network software.

4.1 Network Topology
The BeeStack Consumer/SynkroRF hybrid node allows a Freescale BeeStack Consumer network and a
SynkroRF network to coexist and communicate with each other. A hybrid node can be part of either type
of network.

4.2 Node Functionality Enumeration
The basic node types for the Freescale BeeStack Consumer/SynkroRF hybrid network software are as
follows:

• Controller Node - This device contains a subset of the BeeStack Consumer/SynkroRF hybrid
features. The controller node type is used in remote control applications. This node does not start
a PAN. During the pairing process, it receives a Pan Id and Short Address from the target node it
has paired with, whether it is paired with an BeeStack Consumer node or a SynkroRF node. These
values are used in future communications with the paired target node.

• Target Node - This device contains a subset the BeeStack Consumer/SynkroRF hybrid features.
The target node type is used in Consumer Electronics device applications (e.g. TVs, DVDs, etc.).
It is intended to be used in backbone powered devices. Starting a target node always starts a new
PAN. A target node is able to accept pair requests from both BeeStack Consumer and SynkroRF
nodes. The same PAN is used for both BeeStack Consumer and for SynkroRF communications.

NOTE
A hybrid device must operate as the same type of node in either type of
network. For example, it is not possible to operate as an BeeStack Consumer
controller and a SynkroRF target (controlled device), or an BeeStack
Consumer target and a SynkroRF controller.

BeeStack Consumer/SynkroRF Hybrid Software Overview

BeeStack Consumer Reference Manual, Rev. 2.0

4-2 Freescale Semiconductor

4.3 Hybrid Available Libraries
This section describes the libraries available for the BeeStack Consumer/SynkroRF hybrid software stack.
Table 4-1 describes each of the two available libraries.

Table 4-1. BeeStack Consumer/SynkroRF Hybrid Network Libraries

Library Type Description Typical Usage

BeeStackConsumer_SynkroHybrid.lib Contains all BeeStack Consumer/SynkroRF
hybrid features.

Should be used by applications
exercising all network features.
Includes API parameters
validation.

BeeStackConsumer_SynkroHybrid_ZTC.lib Contains all BeeStack Consumer/SynkroRF
hybrid features and also supports monitoring
the interface between the MAC and the
network from the ZTC application

Should be used in the
development and validation
phase. The added support for
monitoring the stack interfaces
increases the code size
requirements.

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-1

Chapter 5
BeeStack Consumer/SynkroRF Hybrid Network Layer
Interface Description
This chapter describes the BeeStack Consumer/SynkroRF hybrid network layer interface.

5.1 General Hybrid Network Interface Information
The BeeStack Consumer/SynkroRF hybrid network layer adds new primitives to the existing ZigBee
RF4CE Network Layer Management Entities (NLME) and Network Layer Data Entities (NLDE). No new
network layer entities were created, but several new utility functions were added.

The SynkroRF functionality is initialized at the same time as the ZigBee RF4CE functionality. When the
application calls the ZigBee RF4CE NLME_Start service, the hybrid network layer starts the SynkroRF
node as well as the ZigBee RF4CE node. A call to ZigBee RF4CE NLME_Reset service also resets the
SynkroRF node.

5.2 System API
This section describes the additional structures and functions available in the System API of a BeeStack
Consumer/SynkroRF hybrid node. To use the API, the NwkInterface.h header file must be included in
the relevant source code files.

Table 5-1. SynkroRF Hybrid API (Application to Network Layer Direction)

Hybrid API Function Name Description

O
ve

r t
he

 a
ir

A
ct

iv
ity

Sy
nc

hr
on

ou
s

C
al

l

Av
ai

la
bl

e
on

 C
on

tr
ol

le
r

Av
ai

la
bl

e
on

 T
ar

ge
t

Se
ct

io
n

NLME

SynkroRF_PairRequest This function call initiates the controller
side SynkroRF pairing process

X X 5.2.1

SynkroRF_PairResponse This function call initiates the target side
SynkroRF pairing process

X X 5.2.2

SynkroRF_ClearPairingInformation This function removes a pairing entry
with a SynkroRF device

X X X 5.2.3

NLDE SynkroRF_SendCommand This function call initiates the command
transmission process.

X X X 5.2.4

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-2 Freescale Semiconductor

All SynkroRF hybrid API calls return a code to report on their operation. No new return codes are defined
for SynkroRF hybrid nodes. Instead, the same codes as defined by the ZigBee RF4CE specification are
used.

The SynkroRF pairing processes started by SynkroRF_PairRequest and SynkroRF_PairResponse are
uninterruptable. The command transmission process is interruptable.

The following sections provide a detailed description of each hybrid SynkroRF API function.

5.2.1 SynkroRF_PairRequest

Prototype
uint8_t SynkroRF_PairRequest(
 uint8_t deviceType,
 uint8_t* pPairingData,
 uint8_t length,
 uint16_t timeOut
);

Arguments

Table 5-2 specifies the parameters for the SynkroRF_PairRequest primitive.

Freescale
Implementation
Specific Utility
Services

SynkroRF_AddnewPairTableEntry This function allows the application to
insert ‘offline’ the information of a new
SynkroRF entry in the pair table,
without initiating a pair process.

X X X 5.2.5

SynkroRF_GetPairedDeviceInfo This function allows the application to
obtain a copy of the pair table entry of a
SynkroRF device.

X X X 5.2.6

NWK_GetNodeType This function allows the application to
get the (BeeStack Consumer or
SynkroRF) used for a particular entry in
the pairing

X X X 5.2.7

Table 5-2. NLME_PairRequest Parameters

Name Type Valid range Description

deviceType uint8_t gDeviceType_Max The SynkroRF device type to search for during pairing.

Table 5-1. SynkroRF Hybrid API (Application to Network Layer Direction)

Hybrid API Function Name Description

O
ve

r t
he

 a
ir

A
ct

iv
ity

Sy
nc

hr
on

ou
s

C
al

l

Av
ai

la
bl

e
on

 C
on

tr
ol

le
r

Av
ai

la
bl

e
on

 T
ar

ge
t

Se
ct

io
n

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-3

Return value

Possible return values and their significance:
gNWSuccess_c The request has been accepted for processing by the network layer
gNWNodeNotStarted_cThe node has not yet been started
gNWDenied_c The network layer is already processing another non-interruptible request
gNWNoMemory_c The network could not allocate needed messages from the common message pool
gNWNotPermitted The function was called on a target node; the service is only available on controller

nodes
gNWNoOrigCapacity_cThere is no room in the pair table to add a new entry
gNWInvalidParam_c: TimeOut is smaller than 300 ms

Length is greater than 0 and pPairingData is NULL

Functional Description

SynkroRF_PairRequest is an asynchronous API function available on BeeStack Consumer/SynkroRF
hybrid controller nodes. It makes a request for a hybrid controller node to establish a connection link with
a SynkroRF controlled node which has the given device type. Included in the pair request frame is some
application defined data, up to 64 bytes long.

This function call requests the starting of a SynkroRF controller pairing process. If the return value is
gNWSuccess_c, the network layer has accepted the request for processing. When the pairing process is
completed, the application layer will be noticed by a SynkroRF pair confirm message which will be sent
by the network layer trough the NLME SAP.

SynkroRF pairing can proceed with either a legacy SynkroRF node or another BeeStack
Consumer/SynkroRF hybrid node on the SynkroRF protocol.

Two hybrid nodes cannot be paired on both RF4CE and SynkroRF protocols in the same time. The second
pairing will fail.

If the return value is not gNWSuccess_c, the SynkroRF controller pairing process has not been started. At
this point, the request is considered to be complete, therefore the application should not expect a pair
confirm message to arrive later.

pPairingData uint8_t* - Additional application defined data to be included in the pair request frame.

length uint8_t 0 - 64 The length of the additional data to be included in the pair request frame.

timeOut uint16_t 300 – 65536 The amount of time, in milliseconds, after which the pairing process is
aborted in the absence of pair responses.

Table 5-2. NLME_PairRequest Parameters

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-4 Freescale Semiconductor

5.2.2 SynkroRF_PairResponse

Prototype
uint8_t SynkroRF_PairResponse(
 uint8_t deviceId,
 uint8_t status,
 uint8_t length,
 uint8_t* pPairingData
);

Arguments

Table 5-3 specifies the parameters for the SynkroRF_PairResponse primitive.

Return value

Possible return values and their significance:
gNWSuccess_c The request has been accepted for processing by the network layer
gNWNodeNotStarted_cThe node has not yet been started
gNWDenied_c The network layer is already processing another non-interruptible request
gNWNoMemory_c The network could not allocate needed messages from the common message pool
gNWInvalidParam_c An incorrect deviceId was supplied

Length is greater than 0 and pPairingData is NULL
The supplied status is other than gNWSuccess_c or gNWNotPermitted_c

Functional Description

SynkroRF_PairResponse is an asynchronous API function available on BeeStack Consumer/SynkroRF
hybrid target nodes. It makes a request for a hybrid node to exchange information with a SynkroRF
controller node that has previously initiated pairing.

This function initiates the target side SynkroRF pairing process on a BeeStack Consumer/SynkroRF
hybrid node.

If the return value is gNWSuccess_c, the network layer has accepted the request for processing. When the
pairing process is complete, the application layer will be notified by a CommStatus indication message
sent trough the NLME SAP.

Table 5-3. SynkroRF_PairResponse Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – 0xfe The reference to the provisional pair table entry

status uint8_t gNWSuccess_c,
gNWNotPermitted_c

Whether or not the application accepts pairing

length uint8_t 0 - 64 The amount of data to be included in the pair response frame

pPairingData uint8_t* - A pointer to the data to be included in the pair response frame

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-5

If the return value is not gNWSuccess_c, the pairing process has not been started. At this point, the request
is considered to be complete, therefore the application should not expect a CommStatus indication
message to arrive later.

5.2.3 SynkroRF_ClearPairingInformation

Prototype
uint8_t Synkro_ClearPairingInformation (
 uint8_t deviceId
);

Arguments

Table 5-4 specifies the parameters for the SynkroRF_ClearPairingInformation primitive.

Return value

Possible return values and their significance:
gNWSuccess_c The relevant pair table entry has been deleted
gNWNodeNotStarted_cThe node has not yet been started
gNWDenied_c The request is rejected as the network layer is already processing another

non-interruptible request
gNWDeviceIdNotPaired_cThe request is rejected as no pair information exists at the location specified

 by deviceId
gNWInvalidParam_c deviceId is outside the allowed range

The pair table entry pointed to by deviceId belongs to an RF4CE node

Functional Description

SynkroRF_ClearPairingInformation is a synchronous API function available both for hybrid controller
and hybrid target nodes. It is used to request the deletion of the pair table entry of a paired SynkroRF node.

Table 5-4. SynkroRF_ClearPairingInformation Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries – 1) The reference to the local pair table entry that is to
be removed.

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-6 Freescale Semiconductor

5.2.4 SynkroRF_SendCommand

Prototype
uint8_t SynkroRF_SendCommand(
 uint8_t deviceId,
 uint16_t cmdId,
 uint8_t* pData,
 uint8_t length,
 bool_t bAckRequired
);

Arguments

Table 5-5 specifies the parameters for the SynkroRF_SendCommand primitive.

Return value

Possible return values and their significance:
gNWSuccess_c The request has been accepted for processing by the network layer
gNWNodeNotStarted_cThe node has not yet been started
gNWDenied_c The network layer is already processing another non-interruptible request
gNWNoMemory_c The network could not allocate needed messages from the common message pool
gNWDeviceIdNotPaired_cThe supplied deviceId points to an empty pair table entry
gNWFrameCounterExpired_cThe frame counter has reached its maximum value
gNWInvalidParam_c The supplied deviceId is invalid (either out of range or belongs to an RF4CE node)

The payload is incorrect for the given command. See the SynkroRF Network
Reference Manual for more details.
The requested command is not supported by the destination node as indicated by
its node descriptor. See the SynkroRF Network Reference Manual for details.
Length is greater than 0 and pData is NULL.

Table 5-5. SynkroRF_SendCommand Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries - 1) The pairing reference of the destination device.

cmdId uint16_t 0x0000 – 0xFFFF The ID of the SynkroRF command to be transmitted

pData uint8_t* - A pointer to the command payload to be transmitted.

length uint8_t - The length of the payload (in bytes) to be
transmitted.

bAckRequired bool_t FALSE, TRUE Whether to request a MAC layer acknowledgement
to the frame

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-7

Functional Description

SynkroRF_SendCommand is an asynchronous API function available both for controller and target nodes.
It makes a request to the network layer to transmit a SynkroRF command to one of the nodes it is already
paired with.

This function call requests the starting of a SynkroRF command transmission process.

If the return value is gNWSuccess_c, the network has accepted the request for processing. When the
command transmission process is complete, the application layer will be noticed by a SynkroRF command
confirm message sent through the NLDE SAP.

If the return value is not gNWSuccess_c, the SynkroRF command transmission process has not been
started. At this point, the request is considered to be complete, therefore the application should not expect
any SynkroRF command confirm message to arrive later.

5.2.5 SynkroRF_AddNewPairTableEntry

Prototype
uint8_t SynkroRF_AddNewPairTableEntry(
 uint8_t* localShortAddress,
 uint8_t recipChannel,
 uint8_t* recipMacAddress,
 uint8_t* recipPanId,
 uint8_t* recipShortAddress,
 SynkroRFNodeDescriptor_t* pRecipNodeDescriptor,
 uint8_t* recipUserString
);

Arguments

Table 5-6 specifies the parameters for the SynkroRF_AddNewPairTableEntry primitive.
Table 5-6. SynkroRF_AddNewPairTableEntry Parameters

Name Type Valid range Description

localShortAddress uint8_t* A valid short address (pointer different
of NULL)

The network address to
be assumed by the local
device

recipChannel uint8_t 15, 20, 25 The expected channel of
the new paired device.

recipMacAddress uint8_t* A valid 802.15.4 IEEE address
(non-NULL pointer)

The IEEE address of the
new paired device.

recipPanId uint8_t* A valid PAN identifier (non-NULL
pointer)

The PAN identifier of the
new paired device.

recipShortAddress uint8_t* A valid short address (non-NULL
pointer)

The network address of
the new paired device.

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-8 Freescale Semiconductor

SynkroRFNodeDescriptor_t is defined as:
typedef struct SynkroRFNodeDescriptor_tag
{
 uint8_t deviceType; /* device Type */
 uint8_t vendorId[2]; /* vendor Id */
 uint8_t productId[2]; /* product Id */
 uint8_t versionId; /* version Id */
 uint8_t supportedConnections; /* the number of connections supported on this node */
 uint8_t capabilities[gSynkroRFMaxDeviceCapabilities_c];
}SynkroRFNodeDescriptor_t;

Where: deviceType is the SynkroRF device type of the device, vendorId, productId and
versionId contain the vendor ID, product ID and version ID of the device,
supportedConnections is the size of the pair table and capabilities is a bitfield
array (5 bytes long) indicating what SynkroRF command sets the device can
handle.

Return value

The index in the pair table corresponding to the new added entry. Possible return values and their
significance:
gNWNoOrigCapacity_cThere is no room in the pair table to add a new entry
gNWInvalidParam_c The recipChannel parameter is invalid

Functional Description

SynkroRF_AddNewPairTableEntry is a synchronous API function available both on controller and target
nodes.

It makes a request for a BeeStack Consumer/SynkroRF hybrid node to add a new SynkroRF entry in its
pair table, without starting a pair process. The pairing information must be provided by the application.

This function call does not request the starting of any network layer process and for this reason its call is
synchronous. When the application layer receives the return value of the API call, the
SynkroRF_AddNewPairTableEntry request has been carried out. No confirm messages of any kind will
arrive through the SAPs.

pRecipNodeDescriptor SynkroRFNodeDescriptor_t* non-NULL pointer The node capabilities of
the new paired device.

recipUserString uint8_t* A valid user string (non-NULL pointer) The user string of the
new paired device.

Table 5-6. SynkroRF_AddNewPairTableEntry Parameters

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-9

5.2.6 SynkroRF_GetPairedDeviceInfo

Prototype
uint8_t SynkroRF_GetPairedDeviceInfo(
 uint8_t deviceId,
 SynkroRFPairTableEntry_t* pSynkroRFPairTableEntry
);

Arguments

Table 5-7 specifies the parameters for the SynkroRF_GetPairedDevice primitive.

SynkroRFPairTableEntry_t is defined as follows:
typedef struct SynkroRFPairTableEntry_tag
{
 uint8_t localShortAddress[2];
 uint8_t recipChannel;
 uint8_t recipMacAddress[8];
 uint8_t recipPanId[2];
 uint8_t recipShortAddress[2];
 uint32_t recipFrameCounter;
 SynkroRFNodeDescriptor_t recipSynkroRFNodeDescriptor;
 uint8_t recipUserString[gSizeOfUserString_c];
}SynkroRFPairTableEntry_t;

Return value

Possible return values and their significance:
gNWSuccess_c The paired device info has been copied to the specified address
gNWDeviceIdNotPaired_cThe supplied deviceId points to an empty pair table entry
gNWInvalidParam_c The supplied deviceId is out of range or points to an RF4CE node

Functional Description

SynkroRF_GetPairedDeviceInfo is a synchronous API function available both on controller and target
nodes.

It makes a request for the network layer to copy the pair table data of the indicated SynkroRF device to the
given location.

Table 5-7. SynkroRF_GetPairedDeviceInfo Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEntries - 1)

The pair table index of the
device about which information
is requested

pSynkroRFPairTableEntry SynkroRFPairTableEntry_t* - The memory area where the
paired device info should be
placed

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-10 Freescale Semiconductor

This function call does not request the starting of any network layer process and for this reason its call is
synchronous. When the application layer receives the return value of the API call, the
SynkroRF_GetPairedDeviceInfo request has been carried out. No confirm messages of any kind will
arrive through the SAPs.

5.2.7 Nwk_GetNodeType

Prototype
protocolType_t Nwk_GetNodeType(
 uint8_t deviceId
);

Arguments

Table 5-8 specifies the parameters for the Nwk_GetNodeType primitive.

Return Value

The function returns the protocol type used by the paired node in the form of an enumeration which has
the following possible self-explanatory values.
typedef enum protocolType_tag
{
 gProtocolTypeRF4CE_c,
 gProtocolTypeSynkroRF_c
}protocolType_t;

Functional Description

Nwk_GetNodeType is a synchronous API function available on both target and controller nodes. It
informs the application of the protocol used for communication by the paired node.

The function does not perform any validation of the deviceId parameter, so care must be taken to have a
valid deviceId before calling the function.

Table 5-8. Nwk_GetNodeType Parameters

Name Type Valid range Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries - 1) The pair table index of the device about which
information is requested

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-11

5.3 Message Data Types
The interface between the Network Layer Management Entity (NLME) as well as the Network Layer Data
Entity (NLDE) and the Application Layer is based on service primitives passed from the network to the
application through a Service Access Point (SAP). Two SAPs must be implemented as functions in the
application:

• void NWK_NLME_SapHandler(nwkNlmeToAppMsg_t* nwkNlmeToAppMsg)
• void NWK_NLDE_SapHandler(nwkNldeToAppMsg_t* nwkNldeToAppMsg)

SynkroRF services also communicate with the application through these two SAPs.

The BeeStack Consumer/SynkroRF hybrid service primitives use the same type of messages as defined in
the NwkInterface.h file. Because the hybrid interfaces are based on messages being passed to the SAPs,
each message needs to have its own identifier. These identifiers are enumerated in the following tables.

This section describes the main C-structures and data types used by the NLME/NLDE interface.

The structures used to describe the ZigBee RF4CE confirm and indication messages have been collected
in a single message type as a union plus a message type that corresponds to the enumerations of the
primitives. These are the structures which transport messages through the SAPs. For hybrid nodes, the
structures have been enhanced with the hybrid functionality related messages.

For messages from NLME to the application, the following structure/union is used:
/* General structure of a message received by the application over NLME SAP */
typedef struct nwkNlmeToAppMsg_tag
{
 nwkNlmeToAppMsgType_t msgType;
 union {
 nwkNlmeStartCnf_t nwkNlmeStartCnf;
 nwkNlmeAutoDiscoveryCnf_t nwkNlmeAutoDiscoveryCnf;
 nwkNlmeDiscoveryCnf_t nwkNlmeDiscoveryCnf;
 nwkNlmeDiscoveryInd_t nwkNlmeDiscoveryInd;

Table 5-9. New Hybrid Primitives (NLME to Application Direction)

Message identifier SynkroRF process

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

 T
ar

ge
t

Se
ct

io
n

gNwkSynkroRFPairCnf_c Controller pairing process X 5.3.1

gNwkSynkroRFPairInd_c Target pairing process X 5.3.2

Table 5-10. New Hybrid Primitives in the NLDE to Application Direction

Message identifier SynkroRF process

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

 T
ar

ge
t

Se
ct

io
n

gNwkSynkroRFCommandCnf_c Command transmission X X 5.3.3

gNwkSynkroRFCommandInd_c Command reception X X 5.3.4

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-12 Freescale Semiconductor

 nwkNlmePairCnf_t nwkNlmePairCnf;
 nwkNlmePairInd_t nwkNlmePairInd;
 nwkNlmeUnpairCnf_t nwkNlmeUnpairCnf;
 nwkNlmeUnpairInd_t nwkNlmeUnpairInd;
 nwkNlmeCommStatusInd_t nwkNlmeCommStatusInd;
 nwkSynkroRFPairCnf_t nwkSynkroRFPairCnf;
 nwkSynkroRFPairInd_t nwkSynkroRFPairInd;
 } msgData;
}nwkNlmeToAppMsg_t;

Where: nwkNlmeToAppMsgType_t is as follows:
/* Messages used for informing the application about confirms or indications from RF4CE arrived
trough the NLME SAP */
typedef enum {
 gNwkNlmeStartCnf_c = 0,
 gNwkNlmeAutoDiscoveryCnf_c,
 gNwkNlmeDiscoveryCnf_c,
 gNwkNlmeDiscoveryInd_c,
 gNwkNlmePairCnf_c,
 gNwkNlmePairInd_c,
 gNwkNlmeUnpairCnf_c,
 gNwkNlmeUnpairInd_c,
 gNwkNlmeCommStatusInd_c,
 gNwkSynkroRFPairCnf_c = 0xF0,
 gNwkSynkroRFPairInd_c,
 gNwkNlmeMax_c
}nwkNlmeToAppMsgType_t

For messages from NLDE to application the following structure/union is used:
/* General structure of a message received by the application over NLDE SAP */
typedef struct nwkNldeToAppMsg_tag
{
 nwkNldeToAppMsgType_t msgType;
 union
 {
 nwkNldeDataCnf_t nwkNldeDataCnf;
 nwkNldeDataInd_t nwkNldeDataInd;
 nwkSynkroRFCommandCnf_t nwkSynkroRFCommandCnf;
 nwkSynkroRFCommandInd_t nwkSynkroRFCommandInd;
 } msgData;
}nwkNldeToAppMsg_t;

Where: nwkNldeToAppMsgType_t is as follows:
/* Messages used for informing the application about confirms or indications from RF4CE arrived
trough the NLDE SAP */
typedef enum {
 gNwkNldeDataCnf_c = 0,
 gNwkNldeDataInd_c,
 gNwkSynkroRFCommandCnf_c = 0xF0,
 gNwkSynkroRFCommandInd_c,
 gNwkNldeMax_c
}nwkNldeToAppMsgType_t;

A detailed description of each hybrid message is presented in the following sections.

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-13

5.3.1 nwkSynkroRFPairCnf_t

Message structure

The nwkSynkroRFPairCnf_t message has the following structure:
typedef struct nwkSynkroRFPairCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t length;
 uint8_t* pPairingData;
}nwkSynkroRFPairCnf_t;

Structure members

Table 5-11 specifies the fields available in the nwkSynkroRFPairCnf_t message structure.

Possible values of the status:
gNWSuccess_c The SynkroRF pairing process has completed successfully
gNWNoResponse_c No pair response was received until the time-out if the MAC layer could not

transmit the SynkroRF pair request frame over the air, the status field will contain
the status returned by the MAC. A detailed description for the MAC status
possible values can be found in R[2].

Functional Description

The SynkroRF Pair Confirm message can be received by the application layer on BeeStack
Consumer/SynkroRF hybrid controller nodes.

This message notifies the application layer that a SynkroRF pairing process has completed and provides
information about how the process has completed.

Table 5-11. nwkSynkroRFPairCnf_t message Structure

Name Type Possible values Description

status uint8_t gNWSucces_c, gNWNoResponse_c,
or a status value from the MCPS-DATA.confirm
primitive

The status of the SynkroRF pairing process.

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries – 1), 0xff The pairing table reference for this pairing link (will be
0xff if status is not gNWSuccess_c)

length uint8_t - The length of the additional pairing data present in the
pair response frame

pData uint8_t* - Additional pairing data present in the pair response
frame

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-14 Freescale Semiconductor

5.3.2 nwkSynkroRFPairInd_t

Message structure

The nwkSynkroRFPairInd_t message has the following structure:
typedef struct nwkSynkroRFPairInd_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t LQI;
 uint8_t length;
 uint8_t* pPairingData;
 SynkroRFNodeDescriptor_t* pNodeDescriptor;
}nwkSynkroRFPairInd_t;

Structure members

Table 5-12 specifies the fields available in the nwkSynkroRFPairInd_t message structure.

SynkroRFNodeDescriptor_t is defined as:
typedef struct SynkroRFNodeDescriptor_tag
{
 uint8_t deviceType; /* device Type */
 uint8_t vendorId[2]; /* vendor Id */
 uint8_t productId[2]; /* product Id */
 uint8_t versionId; /* version Id */
 uint8_t supportedConnections; /* the number of connections supported on this node */
 uint8_t capabilities[gSynkroRFMaxDeviceCapabilities_c];
}SynkroRFNodeDescriptor_t;

Where: deviceType is the SynkroRF device type of the device, vendorId, productId and
versionId contain the vendor ID, product ID and version ID of the device,
supportedConnections is the size of the pair table and capabilities is a bitfield
array (5 bytes long) indicating what SynkroRF commands the device can handle.

Table 5-12. nwkSynkroRFPairInd_t message Structure

Name Type Possible values Description

status uint8_t gNWSuccess_c,
gNWNoRecipCapacity_c,
gNWDuplicatePairing_c

The status of the provisional pairing

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEn
tries – 1), 0xff

Next free pairing reference that will be used if
this pairing request is successful. If this value
is equal to 0xff, the NWK layer has no free
pairing table entries.

length uint8_t 0 - 64 The length of any additional pairing data
present in the pair request frame

pPairingData uint8_t* - A pointer to any additional data present in the
pair request frame

pNodeDescriptor SynkroRFNodeDescriptor_t* - The SynkroRF node descriptor of the device
requesting pairing

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-15

Possible values of the status are as follows:
gNWSuccess_c A new provisional entry containing the information about the pair requesting

device was created
gNWNoRecipCapacity_cThe pair table is full
gNWDuplicatePairing_cThe device requesting pairing is already in the pair table

Functional Description

The SynkroRF pair indication message can be received by the application on hybrid target nodes.

This message notifies the application layer that a SynkroRF pair request command was received.

On receipt of the SynkroRF pair indication message, the application decides whether to accept pairing
based on the information in the message. The application informs the network layer of the decision using
the SynkroRF_PairResponse function call.

5.3.3 nwkSynkroRFCommandCnf_t

Message structure

The nwkSynkroRFCommandCnf_t message has the following structure:
typedef struct nwkSynkroRFCommandCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
} nwkSynkroRFCommandCnf_t;

Structure members

Table 5-13 specifies the fields available in the nwkSynkroRFCommandCnf_t message structure.

Possible values of the status:
gNWSuccess_c The command has been successfully transmitted
gNWNoResponse_c A MAC layer acknowledgement has been requested and not received even after

retransmission
gNWNoMemory_c No message buffers could be allocated to construct the frame

Table 5-13. nwkSynkroRFCommandCnf_t message Structure

Name Type Valid range Description

status uint8_t gNWSucces_c,
gNWNoResponse_c,
gNWNoMemory_c, gNWAborted_c
or any other status value from the
MCPS-DATA.confirm primitive

The status of the SynkroRF command transmission process.

deviceId uint8_t 0x00 –
(nwkcMaxPairingTableEntries – 1)

The pairing table reference of the command destination.

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-16 Freescale Semiconductor

gNWAborted_c The transmission process has been aborted by another request if the MAC layer
could not transmit the SynkroRF command frame over the air, the status field will
contain the status returned by the MAC.

Functional Description

The SynkroRF command confirm message can be received by the application layer both on hybrid
controller and hybrid target nodes.

This message notifies the application layer about the end result of a request to transmit a SynkroRF
command.

5.3.4 nwkSynkroRFCommandInd_t

Message structure

The nwkSynkroRFCommandInd_t message has the following structure:
typedef struct nwkSynkroRFCommandInd_tag
{
 uint8_t deviceId;
 uint16_t cmdId;
 uint8_t LQI;
 uint8_t dataLength;
 uint8_t* pData;
}nwkSynkroRFCommandInd_t;

Structure members

Table 5-14 specifies the fields available in the nwkSynkroRFCommandInd_t message structure.

Functional Description

The SynkroRF command indication message can be received by the application layer both on hybrid
controller and hybrid target nodes.

It informs the application of the reception of a SynkroRF command from a paired device.

Table 5-14. nwkSynkroRFCommandInd_t message Structure

Name Type Possible values Description

deviceId uint8_t 0x00 – (nwkcMaxPairingTableEntries - 1), 0xff Reference to the pair table entry of the command
originator

cmdId uint16_t - The ID of the received SynkroRF command.

LQI uint8_t 0x00 – 0xff LQI value measured during reception of the NSDU

dataLength uint8_t 0 – 90 The length of the command payload

pData uint8_t* - A pointer to the received payload data

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

Freescale Semiconductor 5-17

5.4 Hybrid Data Types
The following sections detail each to the hybrid data types.

5.4.1 NodeData Database
The overall structure of the NodeData Database of a hybrid node is unmodified from that of a pure ZigBee
RF4CE node. Pair table entries belonging to SynkroRF nodes have bit 7 of the recipCapabilities field
set to 1.

5.4.2 Hybrid NIBs
BeeStack Consumer/SynkroRF hybrid nodes do not have additional NIBs compared to pure ZigBee
RF4CE nodes. The discoveryLQIThreshold NIB acts also as a SynkroRF pairing threshold.

5.4.3 Local SynkroRF Node Descriptors
Two SynkroRF devices exchange node descriptors during pairing. The node descriptor of a device is a
constant structure that resides in flash and is completed at compile time.

The structure is of type SynkroRFNodeDescriptor_t, which is defined as:
typedef struct SynkroRFNodeDescriptor_tag
{
 uint8_t deviceType; /* device Type */
 uint8_t vendorId[2]; /* vendor Id */
 uint8_t productId[2]; /* product Id */
 uint8_t versionId; /* version Id */
 uint8_t supportedConnections; /* the number of connections supported on this node */
 uint8_t capabilities[gSynkroRFMaxDeviceCapabilities_c];
}SynkroRFNodeDescriptor_t;

Where: deviceType is the SynkroRF device type of the device, vendorId, productId and
versionId contain the vendor ID, product ID and version ID of the device,
supportedConnections is the size of the pair table and capabilities is a bitfield
array (5 bytes long) indicating what SynkroRF command sets the device can
handle.

BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description

BeeStack Consumer Reference Manual, Rev. 2.0

5-18 Freescale Semiconductor

5.4.4 Saving Sensitive Information in FLASH
The process of saving data to FLASH is the same on hybrid nodes as on pure ZigBee RF4CE nodes.

In addition to a pure node, the hybrid network also requests to save the information from the entire network
data set in FLASH in the following situations:

• After a SynkroRF_PairResponse call, if the pair process was completed successfully, to save the
updated pair table

• After the arrival of SynkroRF pair indication message, if the pair process was completed
successfully, to save the updated pair table

• After a SynkroRF_ClearPairingInformation call, to save the updated pair table
• After a SynkroRF_AddNewPairTableEntry call, to save the updated pair table

	About This Book
	Audience
	Organization
	Revision History
	Definitions, Acronyms, and Abbreviations
	References
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe

	Chapter 2 BeeStack Consumer Software Overview
	2.1 Network Topology
	2.2 Node Functionality Enumeration
	2.3 System Overview
	2.4 BeeStack Consumer Available Libraries

	Chapter 3 BeeStack Consumer Network Layer Interface Description
	3.1 Network Layer Interface
	3.2 System API
	3.2.1 NLME_StartRequest
	3.2.2 NLME_AutoDiscoveryRequest
	3.2.3 NLME_DiscoveryRequest
	3.2.4 NLME_DiscoveryResponse
	3.2.5 NLME_PairRequest
	3.2.6 NLME_PairResponse
	3.2.7 NLME_UnpairRequest
	3.2.8 NLME_UnpairResponse
	3.2.9 NLME_UpdateKeyRequest
	3.2.10 NLME_GetRequest
	3.2.11 NLME_SetRequest
	3.2.12 NLME_RxEnableRequest
	3.2.13 NLME_ResetRequest
	3.2.14 NLDE_DataRequest
	3.2.15 NWK_GetNodePanId
	3.2.16 NWK_ GetNodeShortAddress
	3.2.17 NWK_GenerateShortAddress
	3.2.18 NWK_GenerateSecurityKey
	3.2.19 NWK_AddNewPairTableEntry
	3.2.20 NWK_SavePersistentData
	3.2.21 NWK_ SaveFrameCounter
	3.2.22 NWK_SetMacAddress
	3.2.23 NWK_GetMacAddress
	3.2.24 NWK_GetLastPacketLQI
	3.2.25 NWK_GetAllowedLowPowerInterval
	3.2.26 NWK_IsIdle

	3.3 Message Data Types
	3.3.1 nwkNlmeStartCnf_t
	3.3.2 nwkNlmeAutoDiscoveryCnf_t
	3.3.3 nwkNlmeDiscoveryCnf_t
	3.3.4 nwkNlmeDiscoveryInd_t
	3.3.5 nwkNlmePairCnf_t
	3.3.6 nwkNlmePairInd_t
	3.3.7 nwkNlmeUnpairCnf_t
	3.3.8 nwkNlmeUnpairInd_t
	3.3.9 nwkNlmeCommStatusInd_t
	3.3.10 nwkNldeDataCnf_t
	3.3.11 nwkNldeDataInd_t

	3.4 BeeStack Consumer Data Types
	3.4.1 NodeData Database
	3.4.2 BeeStack Consumer NIBs
	3.4.3 Saving BeeStack Consumer Sensitive Information in FLASH

	Chapter 4 BeeStack Consumer/SynkroRF Hybrid Software Overview
	4.1 Network Topology
	4.2 Node Functionality Enumeration
	4.3 Hybrid Available Libraries

	Chapter 5 BeeStack Consumer/SynkroRF Hybrid Network Layer Interface Description
	5.1 General Hybrid Network Interface Information
	5.2 System API
	5.2.1 SynkroRF_PairRequest
	5.2.2 SynkroRF_PairResponse
	5.2.3 SynkroRF_ClearPairingInformation
	5.2.4 SynkroRF_SendCommand
	5.2.5 SynkroRF_AddNewPairTableEntry
	5.2.6 SynkroRF_GetPairedDeviceInfo
	5.2.7 Nwk_GetNodeType

	5.3 Message Data Types
	5.3.1 nwkSynkroRFPairCnf_t
	5.3.2 nwkSynkroRFPairInd_t
	5.3.3 nwkSynkroRFCommandCnf_t
	5.3.4 nwkSynkroRFCommandInd_t

	5.4 Hybrid Data Types
	5.4.1 NodeData Database
	5.4.2 Hybrid NIBs
	5.4.3 Local SynkroRF Node Descriptors
	5.4.4 Saving Sensitive Information in FLASH

