
The MPC7400 is a PowerPC™ microprocessor. This document details all known silicon
errata for the MPC7400. Table 1 provides a revision history for this chip errata document.

Table 2 describes the devices to which the errata in this document apply and provides a
cross-reference to match the revision code in the processor version register to the revision
level marked on the part.

Table 3 summarizes all known errata and lists the corresponding silicon revision level to
which it applies. A ‘Y’ entry indicates the erratum applies to a particular revision level, while
a ‘—’ entry means it does not apply.

Table 1. Document Revision History

Rev. No. Significant Changes

0–12 Earlier releases of document.

13 Updated template.
Added Errors 24 and 25.

Table 2. Revision Level to Part Marking Cross-Reference

MPC7400
Revision

Part Marking
Processor Version

Register

2.0 B 000C0200

2.1 C 000C0201

2.2 D 000C0202

2.6 H 000C0206

2.7 I 000C0207

2.8 J 000C0208

2.9 K 000C0209

Advance Information

MPC7400CE/D
Rev. 13, 6/2003

MPC7400 RISC
Microprocessor
Chip Errata

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

2 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

1
IC

B
I m

ay
 c

au
se

ic

ac
he

 c
or

ru
pt

io
n

in

2:
1

an
d

2.
5:

1
sy

st
em

 b
us

 m
od

es

If
an

 IC
B

I a
dd

re
ss

 b
ro

ad
ca

st

co
lli

de
s

w
ith

 a
n

in
st

ru
ct

io
n

ca
ch

e
re

lo
ad

 fr
om

 th
e

bu
s,

 th
e

ic
ac

he
 c

an
 b

e
co

rr
up

te
d.

O
pe

ra
tin

g
sy

st
em

 c
od

e
an

d
se

lf
m

od
ify

in
g

co
de

.
R

un
 th

e
pr

oc
es

so
r

in
 3

:1
 o

r
hi

gh
er

 m
od

e.
Y

—
—

—
—

—
—

2
In

co
rr

ec
t v

al
ue

 w
as

w

rit
te

n
to

 th
e

M
S

R

af
te

r
ru

nn
in

g
P

O
R

A

B
IS

T

W
he

n
ru

nn
in

g
A

B
IS

T
 a

fte
r

P
O

R
, t

he
 r

en
am

es
 r

em
ai

ne
d

va
lid

 c
au

si
ng

 M
S

R
 to

 b
e

up
da

te
d

w
ith

 th
e

in
co

rr
ec

t
va

lu
e.

R
un

ni
ng

 A
B

IS
T

 a
fte

r
P

O
R

In
se

rt
 a

n
IS

Y
N

C
 in

st
ru

ct
io

n
at

th

e
in

te
rr

up
t v

ec
to

r
0x

F
F

F
0_

01
00

Y
Y

Y
Y

Y
Y

Y

3
N

ot
 a

ll
G

P
R

s
an

d
F

P
R

s
ar

e
in

iti
al

iz
ed

af

te
r

A
B

IS
T

N
ot

 a
ll

G
P

R
s

an
d

F
P

R
s

ar
e

in
iti

al
iz

ed
 a

fte
r

A
B

IS
T

 d
ue

 to

in
va

lid
 in

st
ru

ct
io

ns
 in

 th
e

in
st

ru
ct

io
n

bu
ffe

rs
.

G
P

R
s

an
d

F
P

R
s

m
ay

 n
ot

 b
e

in
iti

al
iz

ed
 d

ur
in

g
A

B
IS

T
 if

 th
e

co
nt

en
ts

 o
f t

he
 in

st
ru

ct
io

n
bu

ffe
rs

 c
an

 b
e

de
co

de
d

to

no
n-

ze
ro

 G
P

R
 o

r
F

P
R

de

st
in

at
io

n
ad

dr
es

se
s.

N
on

e
Y

Y
Y

Y
Y

Y
Y

4
L2

 o
rp

ha
n

m
ay

ca

us
e

pr
oc

es
so

r
ha

ng
 a

nd
/o

r
da

ta

co
rr

up
tio

n

If
a

D
at

a
R

el
oa

d
Ta

bl
e

en
tr

y
is

de

al
lo

ca
te

d
(d

ue
 to

 s
pe

cu
la

tiv
e

ca
nc

el
la

tio
n

or
 s

to
re

-m
is

s-

m
er

gi
ng

) t
he

 L
2

m
ay

 s
til

l r
et

ur
n

da
ta

 to
 th

e
re

su
lt

bu
s,

 c
au

si
ng

 a

pr
oc

es
so

r
ha

ng
 a

nd
/o

r
da

ta

co
rr

up
tio

n.

S
ys

te
m

s
us

in
g

L2
 c

ac
he

.
S

et
 D

at
a

R
el

oa
d

Ta
bl

e
si

ze
 to

4

en
tr

ie
s

or
 d

is
ab

le
 th

e
L2

ca

ch
e.

Y
—

—
—

—
—

—

5
S

P
R

 r
eg

is
te

r
co

rr
up

tio
n

af
te

r
H

R
E

S
E

T

A
 r

ac
e

co
nd

iti
on

 w
ith

in
 th

e
cl

oc
k

re
ge

ne
ra

to
r

ci
rc

ui
t m

ay

cr
ea

te
 S

P
R

 r
eg

is
te

r
co

rr
up

tio
n

w
he

n
sw

itc
hi

ng
 fr

om
 s

ca
n

cl
oc

k
to

 g
cl

k.

S
ys

te
m

s
w

hi
ch

 u
se

 S
P

R

re
gi

st
er

s
w

ith
ou

t i
ni

tia
liz

at
io

n.
In

iti
al

iz
e

al
l S

P
R

 r
eg

is
te

rs

af
te

r
re

se
t a

nd
 b

ef
or

e
us

e.
Y

—
—

—
—

—
—

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 3

6
In

co
rr

ec
t

sp
ec

ul
at

iv
e

an
d

fo
ld

in
g

lo
gi

c
m

ay

ca
us

e
pr

oc
es

so
r

ha
ng

 o
r

in
co

rr
ec

t
br

an
ch

 r
es

ol
ut

io
n

W
he

n
fo

ld
in

g
a

no
n-

sp
ec

ul
at

iv
e

br
an

ch
 a

nd
 d

is
pa

tc
hi

ng
 a

sp

ec
ul

at
iv

e
in

st
ru

ct
io

n
in

 th
e

sa
ne

 c
yc

le
, p

os
si

bi
lit

y
of

fo

rw
ar

di
ng

 in
co

rr
ec

t
no

n-
sp

ec
ul

at
iv

e
si

gn
al

 to
 fu

tu
re

fil

e,
 c

au
si

ng
 a

 p
ro

ce
ss

or
 h

an
g

or
 in

co
rr

ec
t b

ra
nc

h
re

so
lu

tio
n.

A
ny

 c
od

e
w

ith
 th

is
 p

ar
tic

ul
ar

in

st
ru

ct
io

n
se

qu
en

ce
.

D
is

ab
le

 b
ra

nc
h

fo
ld

in
g

by

se
tti

ng
 IA

B
R

 w
ith

 a
ny

ad

dr
es

s.

Y
—

—
—

—
—

—

7
S

to
re

 d
at

a
lo

st
 w

he
n

st
or

e
ga

th
er

in
g

is

en
ab

le
d

du
rin

g
ca

ch
e

op
s

O
ve

rla
pp

in
g

st
or

es
 m

ay
 b

e
pe

rf
or

m
ed

 o
ut

 o
f o

rd
er

 w
he

n
st

or
e

ga
th

er
in

g
is

 e
na

bl
ed

 a
nd

a

ca
ch

e
op

 is
 p

er
fo

rm
ed

.

S
to

re
s

m
ay

 c
au

se
 d

at
a

co
rr

up
tio

n
w

he
n

st
or

e
ga

th
er

in
g

is
 e

na
bl

ed
.

D
is

ab
le

 s
to

re
 g

at
he

rin
g.

Y
—

—
—

—
—

—

8
S

to
re

 d
at

a
lo

st
 w

ith

m
is

m
at

ch
ed

LW

A
R

X
/S

T
W

C
X

ad

dr
es

s
pa

irs

If
a

S
T

W
C

X
 th

at
 h

its
 to

 a

sh
ar

ed
 c

ac
he

 li
ne

 is
 p

en
di

ng

w
he

n
a

sn
oo

p
tr

an
sa

ct
io

n
to

 a

di
ffe

re
nt

 a
dd

re
ss

 m
at

ch
es

 th
e

re
se

rv
at

io
n

ad
dr

es
s,

 th
e

S
T

W
C

X
 m

ay
 b

e
ca

nc
el

ed
 a

nd

ex
po

se
 s

ta
le

 d
at

a
in

 th
e

L2
.

A
ny

 c
od

e
w

hi
ch

 u
se

s
m

is
m

at
ch

ed
 L

W
A

R
X

/S
T

W
C

X

ad
dr

es
s

pa
irs

.

1.
 A

vo
id

 m
is

m
at

ch
ed

LW

A
R

X
/S

T
W

C
X

 a
dd

re
ss

pa

irs
, o

r
2.

 O
pe

ra
te

 in
 M

E
I m

od
e

to

pr
ev

en
t S

T
W

C
X

 h
it

to

sh
ar

ed
, o

r
3.

 T
ur

n
of

f t
he

 L
2.

Y
—

—
—

—
—

—

9
L2

 g
lo

ba
l i

nv
al

id
at

e
m

ay
 n

ot
 c

om
pl

et
e

If
a

m
ts

pr
 th

at
 s

et
s

th
e

L2
I b

it
of

th

e
L2

C
R

 is
 fo

llo
w

ed
 c

lo
se

ly
 b

y
a

m
fs

pr
 fr

om
 th

e
L2

C
R

, t
he

m

fs
pr

 m
ay

 n
ot

 r
et

ur
n

th
e

co
rr

ec
t v

al
ue

 o
f t

he
 L

2I
P

 b
it.

S
ys

te
m

s
w

hi
ch

 u
se

 th
e

L2

ca
ch

e.
1.

 In
se

rt
 a

n
is

yn
c

in
st

ru
ct

io
n

af
te

r
an

y
m

ts
pr

 th
at

 s
et

s
th

e
L2

I b
it

of
 th

e
L2

C
R

, o
r

2.
 U

se
 a

lte
rn

at
e

co
de

se

qu
en

ce
 to

 in
va

lid
at

e
L2

(s

ee
 fu

ll
de

sc
rip

tio
n)

, o
r

3.
 T

ie
 C

H
K

_
pi

n
to

 H
R

E
S

E
T

fo

r
P

O
R

 A
B

IS
T.

Y
—

—
—

—
—

—

10
G

ua
rd

ed

sp
ec

ul
at

iv
e

lo
ad

m

ay
 a

cc
es

s
m

em
or

y

A
 g

ua
rd

ed
 lo

ad
 o

n
a

m
is

pr
ed

ic
te

d
pa

th
 th

at
 is

su

pp
os

ed
 to

 b
e

ca
nc

el
le

d
th

e
cy

cl
e

it
is

 w
rit

te
n

in
to

 th
e

re
lo

ad

ta
bl

e
m

ay
 b

e
al

lo
w

ed
 to

 a
cc

es
s

m
em

or
y.

M
ay

 b
e

pr
es

en
t i

n
an

y
sy

st
em

.
S

et
 th

e
D

L1
 b

yp
as

s
di

sa
bl

e
bi

t i
n

M
S

S
C

R
1.

Y
—

—
—

—
—

—

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n
 (

co
n

ti
n

u
ed

)

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

4 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

11
A

ss
er

tin
g

T
E

A
 a

nd

A
R

T
R

Y
 to

ge
th

er

m
ay

 c
au

se
 lo

ss
 o

f
da

ta

A
ss

er
tin

g
T

E
A

 a
nd

 A
R

T
R

Y

to
ge

th
er

 in
 th

e
fir

st
 c

yc
le

 o
f t

he

sn
oo

p
re

sp
on

se
 w

in
do

w
 m

ay

ca
us

e
lo

ss
 o

f i
si

de
 d

at
a.

A
ny

 s
ys

te
m

 th
at

 p
er

m
its

 th
e

ag
gr

es
si

ve
 ti

m
in

g
of

 T
E

A
 in

 th
e

fir
st

 c
yc

le
 o

f t
he

 s
no

op

re
sp

on
se

 w
in

do
w

.

D
el

ay
 a

ss
er

tio
n

of
 T

E
A

 u
nt

il
th

e
se

co
nd

 c
yc

le
 o

f t
he

 s
no

op

re
sp

on
se

 w
in

do
w

 o
r

la
te

r.

Y
Y

Y
Y

Y
Y

Y

12
G

ua
rd

ed

sp
ec

ul
at

iv
e

lo
ad

w

ith
 fo

ld
in

g
m

ay

ac
ce

ss
 m

em
or

y

A
 g

ua
rd

ed
 lo

ad
 o

n
a

m
is

pr
ed

ic
te

d
pa

th
 w

hi
ch

 is

fo
ld

ed
 in

to
 b

y
a

su
bs

eq
ue

nt

lo
ad

 m
ay

 b
e

al
lo

w
ed

 to
 a

cc
es

s
m

em
or

y.

M
ay

 b
e

pr
es

en
t i

n
an

y
sy

st
em

.
S

et
 th

e
LF

Q
_S

IZ
E

 b
its

 in

M
S

S
C

R
1

to
 ‘1

0.
’

Y
Y

—
—

—
—

—

13
S

pe
cu

la
tiv

e
in

st
ru

ct
io

n
st

re
am

m

ay
 c

au
se

du

pl
ic

at
e

da
ta

ca

ch
e

ta
gs

A
 c

an
ce

le
d

sp
ec

ul
at

iv
e

lo
ad

 o
n

a
m

is
pr

ed
ic

te
d

pa
th

 c
au

se
s

a
re

lo
ad

 o
f t

he
 d

at
a

ca
ch

e
in

 th
e

sa
m

e
cy

cl
e

th
at

 a
 s

to
re

 to
 th

e
sa

m
e

ca
ch

e
lin

e
ac

ce
ss

es
 th

e
ca

ch
e,

 c
re

at
in

g
du

pl
ic

at
e

da
ta

ca

ch
e

ta
gs

M
ay

 b
e

pr
es

en
t i

n
an

y
sy

st
em

.
1.

 S
et

 th
e

L1
O

P
Q

_S
IZ

E
 b

its

in
 M

S
S

C
R

1
to

 ‘1
0,

’ o
r

2.
 S

et
 th

e
L1

W
D

B
_S

IZ
E

 b
its

in

 M
S

S
C

R
1

to
 ‘1

0,
’ o

r
3.

 S
et

 th
e

D
R

LT
_S

IZ
E

 b
its

 in

M
S

S
C

R
1

to
 ‘1

0.
’

Y
Y

Y
Y

Y
—

—

14
S

pe
cu

la
tiv

e
or

no

n-
co

he
re

nt

tr
an

sa
ct

io
ns

 m
ay

ca

us
e

lo
ss

 o
f d

at
a

S
pe

cu
la

tiv
e

tr
an

sa
ct

io
ns

 o
r

co
he

re
nc

y
tr

an
sa

ct
io

ns

m
ap

pe
d

to
 n

on
-c

oh
er

en
t

ca
ch

ea
bl

e
sp

ac
e

m
ay

 b
e

dr
op

pe
d

in
 M

A
X

B
us

 m
od

e,

le
ad

in
g

to
 a

n
un

de
si

ra
bl

e
pr

oc
es

so
r

st
at

e

M
ay

 b
e

pr
es

en
t i

n
M

A
X

B
us

sy

st
em

s.
In

 M
A

X
B

us
 m

od
e:

1.
 S

et
 th

e
N

G
B

E
 b

it
of

M

S
S

C
R

0
to

 ‘1
’ a

nd
 s

et
 th

e
S

P
D

 b
it

of
 H

ID
0

to
 ‘1

,’
or

2.
 S

et
 th

e
L2

M
Q

_S
IZ

E
 b

it
in

M

S
S

C
R

1
to

 ‘1
.’

Y
Y

Y
Y

Y
—

—

15
D

at
a

st
re

am
 to

uc
h

m
ay

 c
au

se

du
pl

ic
at

e
da

ta

ca
ch

e
ta

gs

A
 D

at
a

S
tr

ea
m

 T
ou

ch

in
st

ru
ct

io
n

th
at

 a
cc

es
se

s
th

e
da

ta
 c

ac
he

 in
 th

e
sa

m
e

cy
cl

e
th

at
 a

 c
an

ce
le

d
sp

ec
ul

at
iv

e
lo

ad
 c

au
se

s
a

re
lo

ad
 o

f t
he

sa

m
e

lin
e

to
 th

e
da

ta
 c

ac
he

m

ay
 c

re
at

e
du

pl
ic

at
e

da
ta

ca

ch
e

ta
gs

.

M
ay

 b
e

pr
es

en
t i

n
an

y
sy

st
em

th

at
 u

se
s

th
e

D
S

T
(T

)/
D

S
T

S
T

(T
)

in
st

ru
ct

io
ns

.

1.
 S

et
 th

e
N

O
P

D
S

T
 b

it
in

H

ID
0,

 o
r

2.
 S

et
 th

e
D

R
LT

_S
IZ

E
 b

its
 in

M

S
S

C
R

1
to

 ‘0
1,

’ o
r

3.
 F

lu
sh

 th
e

ca
ch

e
on

id

en
tif

ic
at

io
n

of
 th

e
pr

ob
le

m

an
d

co
nt

in
ue

.

Y
Y

Y
Y

Y
—

—

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n
 (

co
n

ti
n

u
ed

)

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 5

16
In

co
rr

ec
t c

on
di

tio
n

co
de

 o
n

m
is

m
at

ch
ed

LW

A
R

X
/S

T
W

C
X

pa

ir

A
 S

T
W

C
X

 in
st

ru
ct

io
n

m
ay

 b
e

pe
rf

or
m

ed
 w

ith
ou

t s
et

tin
g

th
e

co
nd

iti
on

 c
od

e
if

th
e

st
or

e
hi

ts

in
 th

e
L2

 a
nd

 th
e

LW
A

R
X

in

st
ru

ct
io

n
th

at
 s

et
 th

e
re

se
rv

at
io

n
is

 to
 a

no
th

er

co
he

re
nc

y
gr

an
ul

e.

A
ny

 c
od

e
w

hi
ch

 u
se

s
m

is
m

at
ch

ed
 L

W
A

R
X

/S
T

W
C

X

ad
dr

es
s

pa
irs

1.
 A

vo
id

 m
is

m
at

ch
ed

LW

A
R

X
/S

T
W

C
X

 a
dd

re
ss

pa

irs
, o

r
2.

 T
ur

n
of

f t
he

 L
2.

Y
Y

Y
Y

Y
Y

Y

17
T

LB
S

Y
N

C
 m

ay

ha
ng

 in
 th

e
pr

es
en

ce
 o

f a
 D

S
T

T
he

 M
P

C
74

00
 m

ay
 n

ot
 m

ak
e

fo
rw

ar
d

pr
og

re
ss

 if
 a

 D
S

T
 h

as

ca
us

ed
 a

n
M

M
U

 ta
bl

ew
al

k,
 th

at

M
M

U
 ta

bl
ew

al
k

w
as

 m
ar

ke
d

by

a
T

LB
IE

 in
st

ru
ct

io
n,

 a
nd

 a

T
LB

S
Y

N
C

 in
st

ru
ct

io
n

is

pi
pe

lin
ed

 th
e

cy
cl

e
af

te
r

th
e

M
M

U
 ta

bl
ew

al
k

ac
ce

ss
es

 th
e

dL
1

ca
ch

e.

A
ny

 s
ys

te
m

 w
hi

ch
 h

as
 a

n
ac

tiv
e

D
S

T
 e

ng
in

e
w

hi
le

ex

ec
ut

in
g

a
T

LB
S

Y
N

C

in
st

ru
ct

io
n

in
 a

 p
riv

ile
ge

d
co

nt
ex

t.

In
se

rt
 a

 D
S

S
A

LL
 in

st
ru

ct
io

n
be

fo
re

 a
 T

LB
S

Y
N

C

in
st

ru
ct

io
n.

Y
Y

Y
Y

Y
Y

Y

18
Q

ue
ue

in
g

si
x

tr
an

sa
ct

io
ns

 to

se
co

nd
ar

y
bu

s
m

ay

ha
ng

 th
e

sy
st

em

Q
ue

ue
in

g
si

x
tr

an
sa

ct
io

ns
 fr

om

a
si

ng
le

 M
A

X
 p

ro
ce

ss
or

 c
ou

ld

us
e

al
l D

at
a

Tr
an

sa
ct

io
n

Q
ue

ue

re
so

ur
ce

s
an

d
ha

ng
 th

e
sy

st
em

if

fo
rw

ar
d

pr
og

re
ss

 c
an

no
t b

e
m

ad
e

by
 a

llo
w

in
g

M
A

X
 to

co

m
pl

et
e

at
 le

as
t o

ne

ou
ts

ta
nd

in
g

tr
an

sa
ct

io
n.

A
ny

 s
ys

te
m

 w
hi

ch
 a

llo
w

s
si

x
ou

ts
ta

nd
in

g
tr

an
sa

ct
io

ns
 fr

om
 a

si

ng
le

 p
ro

ce
ss

or
 a

nd
 w

hi
ch

 h
as

a

se
co

nd
ar

y
bu

s
w

ith

ch
ar

ac
te

ris
tic

s
as

 d
et

ai
le

d
in

fu

ll
de

sc
rip

tio
n.

1.
 L

im
it

th
e

nu
m

be
r

of

ou
ts

ta
nd

in
g

tr
an

sa
ct

io
ns

 fr
om

a

se
co

nd
ar

y
bu

s
to

 fi
ve

 in

sy
st

em
 lo

gi
c,

 o
r

2.
 M

ar
k

th
e

m
em

or
y

sp
ac

e
on

th

e
se

co
nd

ar
y

bu
s

as

gu
ar

de
d

an
d

av
oi

d
D

S
T

(S
T

)(
T

)
an

d
LM

W

in
st

ru
ct

io
ns

.

Y
Y

Y
Y

Y
Y

Y

19
C

on
se

cu
tiv

e
in

te
rr

up
ts

 m
ay

 b
e

no
nr

ec
ov

er
ab

le

C
on

se
cu

tiv
e

pe
rf

or
m

an
ce

m

on
ito

r,
de

cr
em

en
te

r,
or

th

er
m

al
 m

an
ag

em
en

t i
nt

er
ru

pt
s

m
ay

 b
ec

om
e

no
n-

re
co

ve
ra

bl
e.

A
ny

 s
ys

te
m

 w
hi

ch
 e

na
bl

es
 a

co

m
bi

na
tio

n
of

 p
er

fo
rm

an
ce

m

on
ito

r,
de

cr
em

en
te

r,
or

th

er
m

al
 m

an
ag

em
en

t i
nt

er
ru

pt
s

at
 th

e
sa

m
e

tim
e.

A
vo

id
 e

na
bl

in
g

an
y

co
m

bi
na

tio
n

of
 p

er
fo

rm
an

ce

m
on

ito
r,

de
cr

em
en

te
r,

or

th
er

m
al

 m
an

ag
em

en
t

in
te

rr
up

ts
 a

t t
he

 s
am

e
tim

e.

Y
Y

Y
Y

Y
Y

Y

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n
 (

co
n

ti
n

u
ed

)

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

6 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

20
D

is
ab

lin
g

L2
 c

ac
he

m

ay
 h

an
g

pr
oc

es
so

r
T

he
 M

P
C

74
00

 m
ay

 h
an

g
if

th
e

L2
 c

ac
he

 is
 d

is
ab

le
d

du
rin

g
an

ou

ts
ta

nd
in

g
in

st
ru

ct
io

n
fe

tc
h.

A
ny

 s
ys

te
m

 w
hi

ch
 e

xe
cu

te
s

co
de

 to
 d

is
ab

le
 th

e
L2

 c
ac

he
.

1.
 M

ar
k

th
e

co
de

 th
at

di

sa
bl

es
 th

e
L2

 c
ac

he
 a

s
C

ac
he

 In
hi

bi
te

d,
 o

r
2.

 P
re

lo
ad

 th
e

co
de

 th
at

di

sa
bl

es
 th

e
L2

 c
ac

he
 in

to
 th

e
in

st
ru

ct
io

n
ca

ch
e

be
fo

re

ex
ec

ut
io

n.

Y
Y

Y
Y

Y
Y

Y

21
Ti

m
eb

as
e

or

de
cr

em
en

te
r

m
ay

lo

se
 a

cc
ur

ac
y

in
 n

ap

m
od

e

T
he

 ti
m

eb
as

e
co

un
te

r
or

de

cr
em

en
te

r
m

ay
 lo

se

ac
cu

ra
cy

 w
he

n
tr

an
si

tio
ni

ng

fr
om

 th
e

na
p

po
w

er
 s

av
in

g
m

od
e.

A
ny

 s
ys

te
m

 w
hi

ch
 u

se
s

th
e

na
p

po
w

er
 s

av
in

g
m

od
e

an
d

re
qu

ire
s

ab
so

lu
te

 a
cc

ur
ac

y
fr

om
 th

e
tim

eb
as

e
co

un
te

r
or

de

cr
em

en
te

r.

1.
 A

vo
id

 th
e

us
e

of
 n

ap
 m

od
e,

or 2.

 A
vo

id
 u

si
ng

 th
e

tim
eb

as
e

co
un

te
r

or
 d

ec
re

m
en

te
r

fo
r

hi
gh

ly
 a

cc
ur

at
e

m
ea

su
re

m
en

ts
.

Y
Y

Y
Y

Y
Y

Y

22
R

ea
d

an
d

w
rit

e
m

em
or

y
pr

ob
le

m

us
in

g
C

O
P

 E
X

M
E

M

S
ev

er
al

 c
lo

ck
 re

ge
ne

ra
to

rs
 th

at

ne
ed

 to
 b

e
in

vo
lv

ed
 in

 E
xm

em

op
er

at
io

n
re

ce
iv

e
th

e
w

ro
ng

c1

_t
es

t s
ig

na
l.

T
hi

s
m

ea
ns

 th
at

in

fo
rm

at
io

n
in

 th
es

e
la

tc
he

s
is

lo

st
 d

ur
in

g
an

 E
xm

em
 s

hi
ft.

A
ny

 s
ys

te
m

 w
hi

ch
 u

se
s

‘c
op

ex

m
em

’ t
o

ge
t a

cc
es

s
to

m

em
or

y.

LS
R

L
m

us
t b

e
us

ed
 fo

r
ex

te
rn

al
 m

em
or

y
ac

ce
ss

.
Y

Y
Y

Y
Y

Y
Y

23
IF

T
T

 m
od

e
do

es
 n

ot

id
en

tif
y

d
cb

t/
d

st

in
st

ru
ct

io
ns

 a
s

da
ta

fe

tc
he

s

T
he

 In
st

ru
ct

io
n

F
et

ch

Tr
an

sa
ct

io
n

Ty
pe

 (
IF

T
T

)
en

co
di

ng
 d

iff
er

en
tia

tio
n

m
od

e
do

es
 n

ot
 c

or
re

ct
ly

 id
en

tif
y

d
cb

t/
d

st
 in

st
ru

ct
io

ns
 a

s
da

ta

fe
tc

he
s.

A
ny

 s
ys

te
m

 w
hi

ch
 d

ep
en

ds
 o

n
IF

T
T

 to
 d

iff
er

en
tia

te
 in

st
ru

ct
io

n
fr

om
 d

at
a

fe
tc

he
s.

1.
 R

ep
la

ce
 d

cb
t/

d
st

 w
ith

d

cb
ts

t/
d

st
st

.
2.

 S
et

 H
ID

0[
N

O
P

T
I]

an
d

H
ID

0[
N

O
P

D
S

T
] t

o
no

-o
p

al
l

to
uc

h
in

st
ru

ct
io

ns
.

3.
 R

em
ov

e
d

cb
t/

d
st

 fr
om

 th
e

co
de

.

Y
Y

Y
Y

Y
Y

Y

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n
 (

co
n

ti
n

u
ed

)

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 7

24
L2

 g
lo

ba
l i

nv
al

id
at

e
m

ay
 n

ot
 c

le
ar

 w
ay

 0

af
te

r
L2

 u
sa

ge

T
he

 L
2

gl
ob

al
 in

va
lid

at
e

fu
nc

tio
n

m
ay

 n
ot

 c
le

ar
 w

ay
 0

 o
f

th
e

L2
 c

ac
he

 a
fte

r
L2

 c
ac

he

us
ag

e.
 T

he
 L

2
gl

ob
al

 in
va

lid
at

e
fu

nc
tio

n
op

er
at

es
 c

or
re

ct
ly

 if
 it

is

 p
er

fo
rm

ed
 b

ef
or

e
th

e
L2

ca

ch
e

ha
s

be
en

 u
se

d
fo

r
th

e
fir

st
 ti

m
e.

A
ny

 s
ys

te
m

 w
hi

ch
 u

se
s

th
e

L2

gl
ob

al
 in

va
lid

at
e

fu
nc

tio
n

af
te

r
th

e
L2

 c
ac

he
 h

as
 b

ee
n

us
ed

.

1)
 L

im
it

us
e

of
 th

e
L2

 g
lo

ba
l

in
va

lid
at

e
fu

nc
tio

n
to

 b
ef

or
e

th
e

L2
 c

ac
he

 h
as

 b
ee

n
us

ed

fo
r

th
e

fir
st

 ti
m

e.
2)

 U
se

 L
2

ca
ch

e
ha

rd
w

ar
e

flu
sh

.

Y
Y

Y
Y

Y
Y

Y

25
Li

ve
-lo

ck
 w

he
n

In

P
LL

 b
yp

as
s

m
od

e
In

 P
LL

 b
yp

as
s

m
od

e
(i.

e.
, b

us

m
od

e
of

 1
:1

 r
at

io
),

 th
er

e
is

 a

po
ss

ib
ili

ty
 fo

r
a

se
lf-

sn
oo

pa
bl

e
tr

an
sa

ct
io

n
to

 b
e

se
lf-

A
R

T
R

Ye
d

fo
re

ve
r.

A
ny

 s
ys

te
m

 in
 P

LL
 b

yp
as

s
m

od
e

th
at

 u
se

s
se

lf-
sn

oo
pa

bl
e

tr
an

sa
ct

io
ns

 th
at

 m
ay

 b
e

se
lf-

A
R

T
R

Ye
d.

A
vo

id
 s

el
f-

sn
oo

pa
bl

e
tr

an
sa

ct
io

ns
 in

 P
LL

 b
yp

as
s

m
od

e,
 o

r
im

pl
em

en
t

sy
nc

hr
on

iz
at

io
n

su
ch

 th
at

 th
e

tr
an

sa
ct

io
ns

 w
ill

 n
ot

 b
e

re
tr

ie
d.

Y
Y

Y
Y

Y
Y

Y

Ta
b

le
3.

 S
u

m
m

ar
y

o
f

S
ili

co
n

 E
rr

at
a

an
d

 A
p

p
lic

ab
le

 R
ev

is
io

n
 (

co
n

ti
n

u
ed

)

N
o

.
P

ro
b

le
m

D
es

cr
ip

ti
o

n
Im

pa
ct

W
o

rk
 A

ro
u

n
d

s
P

re
se

n
t

in
 V

er
si

o
n

:

2.
0

2.
1

2.
2

2.
6

2.
7

2.
8

2.
9

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

8 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 1: ICBI may cause icache corruption in 2:1 and 2.5:1 bus
modes

Overview:

An ICBI address broadcast which collides with an instruction cache reload from the system bus
may cause icache corruption if the processor is running in core-to-bus clock ratios of 2:1 or 2.5:1.

Detailed Description:

If a self generated or externally generated ICBI request is snooped from the address bus in the
same processor cycle in which the critical word of data for an instruction fetch is returned from the
system bus, the data from the system bus will be written into the iL1 cache but the tag will not be
updated with the new tag value. This results in icache corruption in which the instructions stored in
the icache with the old tag value do not match the instructions stored in main memory for that
corresponding address.

Note that for this scenario to happen, bits 20–26 of the ICBI address must not match bits 20–26 of
the instruction fetch and the instruction address which is corrupted must be marked least recently
used. This corruption will only cause a detectable software failure if the corrupted instruction
address, already marked least recently used, is referenced by the instruction stream before it is
deallocated from the iL1 cache by another miss to that same cache set.

Projected Impact:

Operating system code and self modifying code.

Work Arounds:

Run the processor at 3:1 or higher clock ratio to the bus.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 9

Error No. 2: Incorrect value was written to the MSR after running POR
ABIST

Overview:

When running Array Built In Self Test (ABIST) after Power On Reset (POR), the renames remain
valid causing MSR to be updated with the incorrect value.

Detailed Descriptions:

After POR, MAX generates a global cancel and immediately branches to the system interrupt
vector 0xFFF0_0100. Because ABIST will be running after POR, the bus holds off fetching vector
0xFFF0_0100 until ABIST is completed. During ABIST, all rename valid bits are set to initiate
initialization of the register files. Once ABIST is completed, the fetching of 0xFFF0_0100 is
started, but the renames remain valid. Because the global cancel was executed prior to ABIST,
there is no mechanism to clear the rename valid bits. Any instructions executed in the interrupt
routine that need a source operand will use the valid renames instead of the correct operand. If this
source operand is an MTMSR, then the incorrect value is written to the MSR.

Projected Impact:

Systems that run ABIST after POR.

Work Arounds:

This problem can be fixed in software by inserting an ISYNC instruction at the interrupt vector,
0xFFF0_0100.

Projected Solution:

This may be fixed in a future MAX revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

10 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 3: Not all GPRs and FPRs are initialized after ABIST

Overview:

Not all GPRs and FPRs are initialized after ABIST due to invalid instructions in the instruction
buffers.

Detailed Descriptions:

During ABIST, the GPRs and FPRs are supposed to be initialized sequentially to a known value.
However, after HRESET, the instruction buffer contains invalid instructions with random data.
These random bits could be decoded to actual GPR or FPR destination addresses, resulting in
corrupted GPR or FPR registers.

Projected Impact:

GPRs and FPRs may not be initialized during ABIST if the contents of the instruction buffers can
be decoded to non-zero GPR or FPR destination addresses.

Work Arounds:

No work around identified.

Projected Solution:

This may be fixed in a future MAX revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 11

Error No. 4: L2 Orphan can cause processor hang and/or data
corruption

Overview:

If a Data Reload Table entry clears its ‘needs_l2_data’ bit while that entry is accessing the L2
SRAMs (due to speculative load cancellation or store-miss-merging), the L2 may still signal the
result bus that data for that entry is being returned. This may cause the processor to hang and/or
create data corruption.

Detailed Description:

When the ‘needs_l2_data’ bit of a Data Reload Table entry goes away while the L2 is fetching data
from the L2 SRAMs for this entry, the L2 can erroneously signal the result bus complex that the
critical double/quad word is being returned, even though the transaction no longer needs the data.
This situation can happen when speculative loads are cancelled or when store-miss-merging has
written an entire cache line.

The erroneous signal to the result bus will not cause any harm unless the entry whose
‘needs_l2_data’ bit was cleared is reallocated with a new entry that represents a load operation. If
this is the case, the result bus complex will incorrectly finish the load and write the wrong data to
the rename registers. If the newly allocated load is part of a misaligned load (e.g., a load float
double that crosses a double word boundary), the state of the rename register may be corrupted in
a way such that the processor hangs.

Projected Impact:

This affects any system using the L2 cache.

Work Arounds:

Set bits 3:4 of MSSCR1 to b’11’ to force the Data Reload Table size to 4 entries or disable the L2
cache.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

12 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 5: SPR register corruption after HRESET

Overview:

A race condition within the clock regenerator circuit may create SPR register corruption when
switching from scan clock to gclk.

Detailed Description:

The basic problem is a race between jt2_scan_c2_ and gclk in the clock regenerator circuit. The
scan clock jt2_scan_c2_ does not receive the same routing priority as gclk. The delay in
propagating jt2_scan_c2_ across the chip causes the jt2_scan_c2_ signal to hold beyond the next
gclk pulse. This creates a spurious c2 clock pulse from the clock regenerator. The jt2_scan_c2_
signal is the hold enable of the clock regenerator which causes the master latch to flush data from
its input to the input of the slave latch. The spurious c2 clock pulse is fed to the slave latch which
allows the data from the input of the master latch to propagate to the output of the slave latch.

The rename bus is precharged to 1s and the rename valid bit is set valid during reset. An SPR
register that is written from the rename bus can become corrupted when the version of
jt2_scan_c2_ which is seen at its clock regenerator exhibits the behavior described above.

Projected Impact:

This affects any system which uses SPR registers without initialization.

Work Arounds:

Initialize all SPR registers after reset and before use.

Table 4. Suggested Initial Values for SPR Registers

Register Initial Value Notes

DEC 0xFFFFFFFF

TBU
TBL

0x00000000
0x00000000

MSR 0x00000040 MSR[IP] set

UPMC0
UPMC1
UPMC2
UPMC3

0x00000000
0x00000000
0x00000000
0x00000000

HID0 0x00000000

IABR 0x00000000

DABR 0x00000000

MSSCR0
MSSCR1

0x00000000
0x00000000

L2CR 0x00000000

ICTC 0x00000000

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 13

Projected Solution:

Fixed in Rev. 2.1.

THRM1
THRM2
THRM3

0x00000000
0x00000000
0x00000000

PIR 0x00000000

VRSAVE 0x00000000

MMCR0
MMCR1
MMCR2

0x00000000
0x00000000
0x00000000

UMMCR0
UMMCR1
UMMCR2

0x00000000
0x00000000
0x00000000

SIA 0x00000000

USIA 0x00000000

SPRG0
SPRG1
SPRG2
SPRG3

0x00000000
0x00000000
0x00000000
0x00000000

DAR 0x00000000

DSISR 0x00000000

EAR 0x00000000

SDR1 0x00000000

SRR0
SRR1

0x00000000
0x00000040 SRR1[MSR_IP] from reset interrupt state

LR 0x00000000

XER 0x00000000

BAMR 0x00000000

FPSCR 0x0000000000000000

Table 4. Suggested Initial Values for SPR Registers (continued)

Register Initial Value Notes

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

14 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 6: Incorrect speculative and folding logic may cause a
processor hang

Overview:

Folding a branch and dispatching a speculative instruction in the same cycle may cause incorrect
information to be sent to the future file, which may cause branches to hang or resolve incorrectly.

Detailed Description:

The problem occurs with a minimum sequence of four instructions:

1. An instruction that may set a CR bit
(... a few instructions may be inserted here ...)

2. A branch which does not update count or link

3. A conditional branch (one that doesn’t update count or link) that is conditional upon the same
CR nibble that instruction 1 might set

4. Another instruction that may set the same CR nibble (a stwcx. in this instruction will cause a
hang)

This will possibly cause the part to hang, or to take the wrong leg of a branch.

Instruction 1 gets dispatched.

Instruction 2 can resolve, and is marked to be folded in instruction-buffer.

Instruction 3 is a branch, which cannot resolve until instruction 1 is finished. So it goes into an
unresolved branch slot and is folded out of the instruction buffer.

At this point, instruction 1 is in the completion buffer, waiting to finish.

Instruction 2 is in I-buff 0, marked non-speculative and to be folded.

Instruction 3 is in ubr0 slot waiting for instruction 1, not in the I-buffer.

Instruction 4 is in I-buff 1, marked as speculative.

Instructions 2 and 4 get dispatched in the same cycle. Normally, there is some logic around each
I-buffer signal relating to dispatch, so that when an instruction is folded out of I-buff 0, I-buff 1
becomes the first dispatched instruction seen by completion.

The error was that this special fold case was not done correctly for the speculative signal going
into the future file. Thus, instruction 4 was seen as a non-speculative instruction that updated the
CR. Thus, the future file marked that CR nibble busy until that instruction completed. But it won’t
complete until the branch (instruction 3) resolves. But the branch won’t resolve because the future
file is incorrectly signaling that the CR nibble is busy. Thus, the processor will hang.

NOTE: If instruction 4 is not a STWCX., it will be able to finish speculatively. Its CR bits will be
forwarded to the future file and on to the branch unit. Thus, if this instruction is not a STWCX., the
failure might be seen as an incorrect branch resolution.

Projected Impact:

This has the potential to impact any code where branches are being folded, with back to back
conditional branches, and with high latency instructions that update the CR register.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 15

Work Arounds:

Disable branch folding by putting part in single step mode, branch trace mode, or by turning on
IABR.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

16 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 7: Store data lost when store gathering is enabled during
cache ops

Overview:

Overlapping stores may be performed out of order when store gathering is enabled and a cache op
(dcba, dcbi, dcbz, dcbf, dcbst) is performed.

Detailed Description:

The following example code sequence will be subject to this erratum:

lwzx EA: 00403080 (miss in data cache)
stwx EA: 00403080
dcbz EA: 00403080
stwx EA: 00403084

When lwzx is executed, it should miss in the L1 cache and create a reload request. The following
instruction stwx EA: 00403080 will hit to the reload request created by the previous lwzx and will
remain in the committed store queue (CSQ) until the reload is complete. While the reload is in
progress, the dcbz instruction will also hit on the reload request created by the lwzx and remain in
CSQ. It should be noted here that dcbz instruction will modify 8 words starting at address location
00403080.

Due to this erratum, the next instruction, stwx EA: 00403084, erroneously gathers with stwx
EA: 00403080. When the reload for the lwzx is complete, the gathered stwx will update address
locations 00403084 and 00403088. Then dcbz will then update address locations
00403080—0040309A. It can be seen here that the address locations 00403084 and 00403088 are
modified out-of-order resulting in data loss.

Projected Impact:

Possible data corruption in the system where store gathering is enabled and a cache op (dcba,
dcbi, dcbz, dcbf, dcbst) is used.

Work Arounds:

Disable store gathering by clearing the store gathering enable (SGE) bit in the HID0 register. SGE
is bit 24 in the HID0 register. Note that this has the following negative performance impact: two
adjacent stw instructions mapped to write-through or cache-inhibited space will no longer gather
into a single 8-byte bus operation. Instead, two separate 4-byte bus operations will be performed.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 17

Error No. 8: Store data lost with mismatched LWARX/STWCX address
pairs

Overview:

If a STWCX that hits to a shared cache line is pending when a snoop transaction to a different
address matches the reservation address, the STWCX may be canceled and expose stale data in the
L2.

Detailed Description:

The following sequence of events is needed to create this erratum:

1. A load instruction establishes a cache line in the exclusive state in the L1.

2. Because of repeated accesses to the same cache set as the cache line in step 1, the cache line is
castout to the L2, still in the exclusive state.

3. Another load instruction forces the reload of the cache line from the L2 to the L1.

4. A store instruction stores to the cache line and changes the state in the L1 to modified, while
the old data in the exclusive state remains in the L2.

5. A snoop READ transaction to the cache line changes the state in both caches to shared and
pushes the correct data from the L1 to memory.

6. A STWCX instruction that hits to the shared cache line in the L1 but is different from the
current reservation address invalidates the cache line in the L1, creates an entry in the reload
table for the cache line, and ultimately causes a KILL transaction to the cache line to be queued
in the L2MQ.

7. A snoop RESERVATION KILL (rwitm, rwitm atomic, rclaim, wr w/kill, wr w/flush, wr
w/flush atomic, kill) transaction that matches the reservation address kills the reservation,
causing the reload table entry for the pending STWCX hit to shared to be invalidated, causing
the cache line to be lost and the L2MQ entry for the KILL transaction to be dequeued.

8. Any subsequent access to the cache line in this processor will incorrectly see stale data in the
L2.

Projected Impact:

Any code which uses mismatched LWARX/STWCX address pairs.

Work Arounds:

Any of the following will serve as a work around to this erratum:

1. Avoid STWCX instructions that do not match the current reservation address or force a DCBF
to the STWCX address before a STWCX that does not match the current reservation address.

2. Operate in MEI mode to avoid STWCX hit to shared.

3. Turn off the L2.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

18 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 9: L2 global invalidate may not complete

Overview:

If an mtspr that sets the L2I bit of the L2CR register is followed closely by an mfspr from the
L2CR register, the mfspr may not return the correct value of the L2IP bit.

Detailed Description:

After an mtspr that sets the L2I bit of the L2CR register is executed, it takes two cycles before the
L2IP bit of the L2CR register is updated. If during these two cycles an mfspr reads the L2CR, it
will not return the correct value of the L2IP bit.

Consider the following code:

addis r1,r0,0x0020 # set L2I bit of L2CR
mtspr L2CR, r1

loop: mfspr r2,L2CR # read L2CR
andi. r2,r2,0x0001 # mask off L2IP bit
bne loop # repeat if L2IP == 1

This loop may exit after the first iteration. Because the loop is done, the system will think that the
L2 has been fully invalidated, when in fact the invalidation is actually still in progress. If the L2 is
then enabled (by setting the L2E bit in the L2CR), the global invalidation state machine will
terminate without running to completion, thus leaving uninitialized data in the L2 tag.

Projected Impact:

Systems which use the L2 cache.

Work Arounds:

Any of the following will serve as a work around to this erratum:

1. Insert an isync instruction after any mtspr that sets the L2I bit of the L2CR.

2. Use the following code to invalidate the L2 tag:

addis r1, r0, 0x0020
mtspr L2CR, r1 # set L2I bit of L2CR
sync # wait for all memory transaction to

 finish
addis r1, r0, 0x0000
mtspr L2CR, r1 # clear L2I bit of L2CR

Note: This code is very similar to that recommended for flushing the L1 data cache and
L2 cache using their respective hardware flush mechanisms.

3. Tie the CHK pin to HRESET to force ABIST to run on power-up. This will clear all arrays
including the L2 tag, thus eliminating the need for L2 global invalidation before enabling the
L2 cache.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 19

Error No. 10: Guarded speculative load may access memory

Overview:

A guarded load on a mispredicted path that is supposed to be canceled the cycle it is written into
the reload table may be allowed to access memory.

Detailed Description:

A conditional branch is mispredicted and folded out of the instruction stream. Because of
dependencies, the conditional branch is not resolved until the completion buffer is completely
filled with the speculative path. The key is that since the completion buffer is full with the
speculative path, the first IDN, or completion buffer entry number, issued to the correct path will
be the same as the first IDN of the speculative path. The first instruction on the speculative path is
a guarded load which is allowed to access the DL1. The conditional branch is resolved not taken
and the load is marked cancelled the same cycle it is written into the DL1 reload table.

In the next cycle, the cancel request for the load in the DL1 reload table is processed. This sets up
several status bits, including ‘needs_reload’ and ‘needs_forward,’ to change in the next cycle.
Also, the DL1 reload table makes a request to the L2 for the load. Finally, a new load instruction is
dispatched on the correct path which is given the same IDN as the original guarded speculative
load.

In the next cycle, the ‘needs_reload’ and ‘needs_forward’ status bits are processed. This sets up
the invalidation of the DL1 reload table entry for the load in the next cycle. Also, the L2 makes a
request to the L2MQ for the load. Also the IDN of the new load on the correct path is marked as
the oldest in the machine. Because this new load has the same IDN number as the original guarded
speculative load, the speculative bit in the DL1 reload table entry for the original guarded
speculative load will be reset in the next cycle.

In the next cycle, both the DL1 reload table entry valid bit and speculative bit are reset at the same
time, causing the L2MQ to miss the fact that the instruction was canceled, providing the means for
the guarded speculative load to access memory.

Projected Impact:

May be present in any system.

Work Arounds:

Set the DL1 bypass disable bit (bit 29) in MSSCR1.

Projected Solution:

Fixed in Rev. 2.1.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

20 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 11: Asserting TEA and ARTRY together may cause loss of
data

Overview:

Asserting TEA and ARTRY together in the first cycle of the snoop response window may cause
loss of I-side data.

Detailed Description:

The following bus activity will result in the errata:

The Bus Interface Unit will cancel the data tenure and mark the address tenure for resubmission to
the bus. This is the normal course of action if the ARTRY has precedence over the TEA. The
Instruction Reload Table will cancel the address tenure and start another address tenure for the
same address. This is the normal course of action if the TEA has precedence over the ARTRY. The
Bus Interface Unit will continue to resubmit the original address tenure until it completes without
ARTRY. At this point it will signal completion to the Instruction Reload Table which is no longer
expecting that transaction to be active.

Projected Impact:

Any system that permits the aggressive timing of TEA in the first cycle of the snoop response
window.

Work Arounds:

Delay assertion of TEA until the second cycle of the snoop response window or later.

Projected Solution:

This may be fixed in a future revision.

TS AACK

DBG

ARTRY

TEA

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 21

Error No. 12: Guarded speculative load with folding may access
memory

Overview:

A guarded load on a mispredicted path which is folded into by a subsequent load may be allowed
to access memory.

Detailed Description:

A conditional branch is mispredicted and folded out of the instruction stream. Because of
dependencies, the conditional branch is not resolved until the completion buffer is completely
filled with the speculative path. The key is that since the completion buffer is full with the
speculative path, the first IDN, or completion buffer entry number, issued to the correct path will
be the same as the first IDN of the speculative path. The first instruction on the speculative path is
a guarded load which is allowed to access the DL1 and is written into the DL1 reload table.

In the next cycle, the conditional branch is resolved not taken and a cancel request for the
speculative path is sent. The DL1 reload table makes a request to the L2 for the load despite the
cancel. In addition, a subsequent load on the speculative path to the same cache line as the first
speculative load accesses the DL1 and is sent to the load fold queue despite the cancel.

In the next cycle, the cancel request is processed by both the reload table and the load fold queue.
In the reload table, several status bits, including ‘needs_reload’ and ‘needs_forward,’ will be reset
in the next cycle. In the load fold queue, the entry will be invalidated in the next cycle. However,
the cancel does not prevent the subsequent speculative load in the load fold queue from setting an
active signal that indicates it requires the reload table entry of the first speculative load. In
addition, the L2 makes a request to the bus miss queue for the first speculative load. Finally, a new
load instruction is dispatched on the correct path which is given the same IDN as the original
guarded speculative load.

In the next cycle, the original guarded speculative load is valid in the bus miss queue, despite
having been cancelled. The active from the load fold queue prevents the reload table valid bit from
being reset for one cycle, even though the ‘needs_forward’ and ‘needs_reload’ bits are already
reset. Finally, the IDN of the new load on the correct path is marked as the oldest in the machine.
Because this new load has the same IDN number as the original guarded speculative load, the
speculative bit in the DL1 reload table entry for the original guarded speculative load will be reset
in the next cycle.

In the next cycle, both the DL1 reload table entry valid bit and speculative bit are reset at the same
time, causing the L2MQ to miss the fact that the instruction was canceled, providing the means for
the guarded speculative load to access memory.

It is a violation of the architecture specification for a guarded load to access memory speculatively.
This becomes a problem in applications using memory mapped I/O space where reading an
address may set or reset a control flag.

Projected Impact:

May be present in any system.

Work Arounds:

Set the LFQ_SIZE bits (bits 5–6) in MSSCR1 to ‘10.’ Note that this will slow down load accesses
to the DL1 to a maximum of one every other cycle.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

22 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Projected Solution:

Fixed in Rev. 2.2.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 23

Error No. 13: Speculative instruction stream may cause duplicate data
cache tags

Overview:

A canceled speculative load on a mispredicted path causes a reload of the data cache in the same
cycle that a store to the same cache line accesses the cache, creating duplicate data cache tags.

Detailed Description:

A store to cache line A is dispatched, becomes the oldest instruction in the machine, reads data,
and ends up in the completed store queue. This store is followed by a conditional branch that is
mispredicted taken. The instruction at the target of the mispredicted branch is a load to
non-overlapping bytes of cache line A. The load correctly bypasses the store, misses in the cache,
and allocates a data reload table entry. The reload request from the load hits in the L2.

In cycle 0, the L2 completely returns the last beat of data for the speculative load request and this
data is written into the data reload data buffer. Also in this cycle, the branch is resolved.

In cycle 1, the speculative load is marked as ready to reload the dL1, a speculative cancel is issued
due to the mispredicted branch, and the store starts an access at the dL1.

In cycle 2, the reload for the speculative load starts an access at the dL1. The speculative cancel in
the previous cycle causes the needs_reload bit for the speculative load data reload table entry to be
reset. The store has progressed to the second stage of the dL1 pipeline and checks all reload table
entries for an address collision. Because the needs_reload bit for the speculative reload has been
reset, the address collision test fails and the store allocates a new data reload table entry.

In cycle 3, the second half of the speculative reload finishes. Cache line A is now valid in the
cache and in the data reload table.

A subsequent access to the same cache line will identify the data reload table and/or data cache
duplicate tag.

Projected Impact:

May be present in any system.

Work Arounds:

Any of the following will serve as a work around to this erratum:

1. Set the L1OPQ_SIZE bits (bits 7–8) in MSSCR1 to ‘10.’ Note that this will slow down store
accesses to the DL1 to a maximum of one every other cycle.

2. Set the L1WDB_SIZE bits (bits 9–10) in MSSCR1 to ‘10.’ Note that this will slow down store
accesses to the DL1 to a maximum of one every other cycle. Because L1 Write Data Buffer
entries remain active for a longer period of time than L1 OP Queue entries, this work around is
expected to result in lower performance.

3. Set the DRLT_SIZE bits (bits 3–4) in MSSCR1 to ‘10.’ Note that this will slow down load and
store accesses to the DL1 to a maximum of one every other cycle. This work around is
expected to result in the lowest performance of the three options.

Projected Solution:

Fixed in Rev. 2.8.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

24 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 14: Speculative or non-coherent transactions may cause
loss of data

Overview:

Speculative transactions or coherency transactions mapped to non-coherent cacheable space may
be dropped in MAXBus mode, leading to an undesirable processor state. The problem does not
occur in 60x mode.

Detailed Description:

Transactions that are canceled after being written into the L2 miss queue (L2MQ) of the bus
interface unit (BIU) may leave the L2MQ in an undesirable state. Transaction cancellations can
occur in one of two ways. In the speculative cancellation case, the transactions are loads from two
separate mispredicted branches. In the coherency cancellation case, the transactions are
consecutive stores that are converted to coherency-only KILL transactions due to store miss
merging.

The sequence and timing of events needed to sensitize the errata are quite complicated and rely on
two critical timing windows occurring.

A transaction is written into the first entry of the L2MQ. Two more transactions are written into
the second and third L2MQ entries and are subsequently canceled, leaving two empty holes in the
L2MQ. One more transaction is written into the fourth entry of the L2MQ. The first transaction
then starts and completes an address tenure.

In the first of the two critical timing windows, the fourth transaction starts an address tenure, is
cancelled, and is eliminated from the queue before completing the address tenure. ARTRY is
asserted for this address tenure that was just eliminated from the L2MQ. The queue is now in an
undesirable state.

In the second of the two critical timing windows, another transaction is dispatched to the L2MQ
during the last core cycle of the ARTRY bus cycle indicated above. This is allocated the L2MQ
entry previously allocated by the first transaction. Due to the state of the L2MQ at the time, this
transaction will not immediately make a bus request. Because the L2MQ is in an undesirable state,
any further transactions that are queued to the L2MQ may go to the system bus out of program
order or they may hang the processor.

Projected Impact:

May be present in MPX bus systems.

Work Arounds:

Any of the following will serve as a work around to this erratum:

1. Set the speculative disable bit (bit 22) in HID0 to ‘1.’ This will disable data cache and
instruction cache speculation. Also, set the non-global broadcast enable bit (bit 22) in MSSCR0
to ‘1.’ This will force all non-coherent transactions to the system data bus.

2. Set the L2MQ_SIZE bit (bit 14) in MSSCR1 to ‘1.’ This will limit the L2 miss queue to 1 entry
and will avoid the scenario described above.

3. Run the processor in 60x mode. The problem is not present in 60x mode.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 25

Projected Solution:

Fixed in Rev. 2.8.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

26 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 15: Data stream touch may cause duplicate data cache tags

Overview:

A Data Stream Touch instruction that accesses the data cache in the same cycle that a canceled
speculative load causes a reload of the same line to the data cache may create duplicate data cache
tags.

Detailed Description:

A data stream touch (DST, DSTT) or data stream touch for store (DSTST, DSTSTT) instruction to
cache line A is dispatched and sets up a data stream engine. This data stream touch is followed by
a conditional branch that is mispredicted taken. The instruction at the target of the mispredicted
branch is a load to non-overlapping bytes of cache line A. The load misses in the cache and
allocates a data reload table entry. The reload request from the load hits in the L2.

In cycle 0, the L2 completely returns the last beat of data for the speculative load request and this
data is written into the data reload data buffer. Also in this cycle, the branch is resolved.

In cycle 1, the speculative load is marked as ready to reload the dL1, a speculative cancel is issued
due to the mispredicted branch, and the data stream touch starts an access at the dL1.

In cycle 2, the reload for the speculative load starts an access at the dL1. The speculative cancel in
the previous cycle causes the needs_reload bit for the speculative load data reload table entry to be
reset. The data stream touch instruction has progressed to the second stage of the dL1 pipeline and
checks all reload table entries for an address collision. Because the needs_reload bit for the
speculative reload has been reset, the address collision test fails and the data stream touch allocates
a new data reload table entry.

In cycle 3, the second half of the speculative reload finishes. Cache line A is now valid in the
cache and in the data reload table.

A subsequent access to the same cache line will identify the data reload table and/or data cache
duplicate tag.

Projected Impact:

May be present in any system that uses the DST(T)/DSTST(T) instructions.

Work Arounds:

Any of the following will serve as a work around to this erratum:

1. Set the NOPDST bit (bit 30) in HID0 to ‘1.’ This will effectively no-op all DST(T)/DSTST(T)
instructions.

2. Set the DRLT_SIZE bits (bits 3–4) in MSSCR1 to ‘01.’ This will set the data reload table to
two entries. The data stream engine will only access the cache if the data reload table has both
entries free.

3. Identify the problem by setting the EIEC bit (bit 13) in HID0 to ‘1’ and enabling machine
check interrupts. Schedule a hardware flush of the cache on identification of the problem and
continue. This solution may only be appropriate in systems where there is no snooping traffic to
the affected cache line.

Projected Solution:

Fixed in Rev. 2.8.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 27

Error No. 16: Incorrect condition code on mismatched LWARX/STWCX
pair

Overview:

A STWCX instruction may be performed without setting the condition code if the store hits in the
L2 and the LWARX instruction that set the reservation is to another coherency granule.

Detailed Description:

The errata requires that cache line A be resident in the L2 but not the data L1. This can happen if
the line was cast out of the data L1 into the L2 for pure data accesses or if the line was loaded into
the L2 at the time of instruction fetch due to instruction/data cache line sharing.

First, a LWARX instruction sets a reservation to cache line B.

Next, a STWCX instruction to cache line A misses in the L1 and then makes an access to the L2.

Then, a snoop RESERVATION KILL (rwitm, rwitm atomic, rclaim, wr w/kill, wr w/flush, wr
w/flush atomic, kill) transaction that matches the reservation address (cache line B) kills the
reservation.

If the above conditions are met, there is a one cycle window in which the STWCX can
successfully perform the store and yet report an unsuccessful condition code. Use of mismatched
LWARX/STWCX pairs is highly discouraged.

Projected Impact:

May be present in any system which uses mismatched LWARX/STWCX address pairs.

Work Arounds:

Either of the following will serve as a work around to this erratum:

1. Avoid STWCX instructions that do not match the current reservation address or force a DCBF
to the STWCX address before a STWCX that does not match the current reservation address.

2. Turn off the L2. The problem will not occur if the L2 is disabled.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

28 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 17: TLBSYNC may hang in the presence of a DST

Overview:

The MPC7400 may not make forward progress if a DST instruction has caused an MMU
tablewalk, that MMU tablewalk was marked by a TLBIE instruction, and a TLBSYNC instruction
is pipelined the cycle after the MMU tablewalk accesses the dL1 cache.

Detailed Description:

The errata requires that a DST engine be active during a TLBSYNC instruction. The DST engine
must also have been activated in the same context as the TLBSYNC instruction, meaning that it
was initiated while the processor was in the privileged state.

First, the DST engine makes a request for an address that initiates an MMU tablewalk.

Then, a TLBIE instruction marks the MMU tablewalk instruction because of a potential change in
translation. A mark will identify all memory requests that were translated before the TLBIE
instruction was executed. Because all TLBIE instructions are snooped from the processor bus
regardless of the processor that initiated the transaction, the source of the TLBIE instruction is not
relevant.

Finally, a TLBSYNC instruction must follow the MMU tablewalk back-to-back in the pipeline.
Because the TLBSYNC is always high priority in the L1OPQ, this opens a one cycle window
where the TLBSYNC may pass the marked MMU tablewalk at arbitration to the L2. Once the
TLBSYNC has passed the marked tablewalk, it will progress to the system bus. This processor
will then infinitely self-ARTRY the TLBSYNC instruction because of the marked MMU
tablewalk instruction. The system will be in a livelock condition.

Projected Impact:

Any system which has an active DST engine while executing a TLBSYNC instruction in a
privileged context.

Work Arounds:

Insert a DSSALL instruction before a TLBSYNC instruction.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 29

Error No. 18: Queueing six transactions to secondary bus may hang
the system

Overview:

Queueing six transactions from a single MAX processor to a secondary bus could use all data
transaction queue resources and hang the system if forward progress cannot be made by allowing
MAX to complete at least one outstanding transaction.

Detailed Description:

This errata details a scenario where a system may not make forward progress. The errata requires a
series of queued transactions to a secondary bus. For this situation to occur, the MAX processor
must also be required to snoop a transaction from another device connected to a secondary bus.
The errata can affect both uni-processor and multiprocessor implementations.

First, the MAX processor initiates, and the system chipset logic accepts, six transactions to a
secondary bus. These transactions do not need to be consecutive, although all six transactions need
to have completed their address tenure without completing a data tenure or a tenure on the
secondary bus. The six transactions fill up the six entry data transaction queue (DTQ) in the MAX
processor, making it impossible for the processor to issue or snoop any more transactions until at
least one of its DTQ entries is freed by the completion of an outstanding (pipelined) data tenure.

Then, the system chipset requires that a memory transaction, which was already accepted or posted
to the secondary bus, make an address transaction on the processor system bus. Because the DTQ
of the processor is full, there is no room for a data tenure should the MAX processor need to push
modified data in response to the snooped transaction. The MAX processor will assert ARTRY to
the snooped transaction until one of the queued transactions finishes a data tenure, allowing the
processor to complete the snoop copyback.

If the system logic is unable to allow a data tenure for any of the queued transactions from the
processor until the snooped write has completed, neither the Max processor nor the secondary bus
can proceed until the other is complete. This could result in a deadlock scenario.

Projected Impact:

Any system which allows 6 outstanding transactions from a single processor and which has a
secondary bus with the characteristics detailed above. While few system logic designs would have
such characteristics, those which cannot retry transactions from devices connected to the
secondary bus might show susceptibility to this errata.

Another possible design which might be affected would have an arbitration scheme such that the
device the MAX processor is snooping is always given higher priority than the target device(s) of
the MAX processor’s queued transactions.

Finally, any system in which a snooped transaction will prevent the execution of any other
transactions until it completes can also be impacted.

Work Arounds:

Either of the following will serve as a work around to this erratum:

1. Limit the number of outstanding transactions to a secondary bus from a single processor to five
in system logic.

2. Mark the memory space on the secondary bus as guarded and avoid DST(ST)(T) and LMW
instructions.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

30 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 31

Error No. 19: Consecutive interrupts may be nonrecoverable

Overview:

Consecutive performance monitor, decrementer, or thermal management interrupts may become
nonrecoverable.

Detailed Description:

The performance monitor, decrementer, and thermal management interrupts are all gated by the
external interrupt enable bit of the MSR (bit 16). Once processing of one of these interrupts is
started, the hardware will reset MSR(EE) = 0 to prevent taking a second interrupt during the
processing of the first interrupt. The process of resetting the MSR(EE) bit takes two processor
clocks.

The priorities for these interrupts are as follows:

1. PFM—Performance Monitor Interrupt

2. DEC—Decrementer Interrupt

3. TMI—Thermal Management Interrupt

If a higher priority interrupt request occurs the first cycle of lower priority interrupt processing, the
machine may appear to start processing the lower priority interrupt and then switch to processing
the higher priority interrupt. In addition, the SRR0 register will contain the address of the lower
priority interrupt vector and the SRR1 register will contain the MSR values normally seen during
interrupt processing, including MSR(EE) = 0 and MSR(RI) = 0. This results in the loss of the last
instruction address, effectively making the interrupt non-recoverable.

Note that other interrupts maskable by the MSR(EE) bit including the System management
interrupt and the external interrupt are not affected by this errata.

Projected Impact:

Any system which enables a combination of performance monitor, decrementer, or thermal
management interrupts at the same time.

Work Arounds:

Avoid enabling any combination of performance monitor, decrementer, or thermal management
interrupts at the same time.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

32 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 20: Disabling L2 cache may hang processor

Overview:

The MPC7400 may hang if the L2 cache is disabled during an outstanding instruction fetch.

Detailed Description:

The problem centers around the interaction of the instruction cache and the L2 cache as the L2
cache is disabled. The scenario is as follows:

1. An ifetch misses in the icache and allocates a reload table entry.

2. When the instructions return from the BIU, they are forwarded around the icache and
dispatched as well as written to the IRLDQ.

3. One of these instruction is a mtspr targeting the L2CR. This instruction disables the L2.

4. When all beats of data return to the IRLDQ, the IRLT arbitrates to reload the L2. Because the
L2 is now disabled, it does not expect reload requests from the IRLT.

5. The unexpected reload request is mishandled by the L2 and passed to the BIU as an ifetch miss.

Projected Impact:

Any system which executes code to disable the L2 cache.

Work Arounds:

1. Mark the code that disables the L2 cache as cache inhibited.

2. Preload the code that disables the L2 cache into the instruction cache before execution. This
requires the code be structured in such a way that the instruction fetch be completed before the
mtspr is executed. For example:

offset instruction

1C branch to offset 3C /* preload mtspr without executing */

20 mtspr 1017, r? /* disable L2 */
24 sync
28 isync
2C branch to offset 60
3C branch to offset 40

40 sync
44 isync
48 branch to offset 20

60 next sequential fetch

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 33

Error No. 21: Timebase or decrementer may lose accuracy in nap
mode

Overview:

The timebase counter or decrementer may lose accuracy when transitioning from the nap power
saving mode.

Detailed Description:

The nap power saving mode is entered when the processor asserts QREQ and the system logic
responds with QACK. The timebase counter and decrementer switch from being clocked by the
normal gclk distribution tree to the pll gclk2 distribution tree. The normal gclk distribution tree is
shut off to conserve power.

When the nap power saving mode is exited, the gclk distribution tree is re-started and the timebase
counter and decrementer switch back to being clocked by the normal gclk distribution tree. The
nap power saving mode can be exited in one of the following ways:

1. Deasserting QACK to allow the processor to snoop.

2. Asserting INT, SMI, or MCP.

3. Taking a decrementer, performance monitor, or thermal management interrupt.

4. Asserting hard or soft reset.

If any of the first three categories of events happen in a six processor-clock cycle window after
having entered the nap state, the timebase counter and decrementer may miss clock ticks for the
remainder of the six processor-clock cycle window. This will not cause harm to the operation of
the processor, but may cause a loss of accuracy in the timebase counter or decrementer.

Projected Impact:

This can be an issue for any system which uses the nap power saving mode and requires absolute
accuracy from the timebase counter or decrementer. For instance, if a timebase is maintained
across two processors in a multiprocessing system, there can be scenarios where one processor
may appear to drift with respect to the other processor.

Work Arounds:

1. Avoid the use of nap mode, or

2. Avoid using the timebase counter or decrementer for highly accurate measurements.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

34 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 22: Memory access problem using COP EXMEM

Overview:

Accessing memory using the ‘cop exmem’ command may fail randomly.

Detailed Description:

Several clock regenerators that need to be involved in Exmem operation receive the wrong c1_test
signal. This means that information in these latches is lost during an Exmem shift. Hence,
accessing memory using the ‘cop exmem’ command may fail in a random fashion.

Projected Impact:

This can be an issue for any system which uses COP to access memory.

Work Arounds:

Use LSRL instead of EXMEM to access memory.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 35

Error No. 23: IFTT mode does not identify dcbt/dst instructions as data
fetches

Overview:

The Instruction Fetch Transaction Type (IFTT) encoding differentiation mode does not correctly
identify dcbt or dst instructions as data fetches.

Detailed Description:

When the HID0[IFTT] bit is set, the MPC7400 processor can differentiate instruction fetches from
data fetches using their TT encoding on the system bus. Data fetches are identified as READ
ATOMIC (TT = 11010), while instruction fetches are identified as READ (TT = 01010).

Touch-for-load instructions including dcbt and dst are identified as READ (TT = 01010)
regardless of the setting of the HID0[IFTT] bit. These instructions will perform as expected from a
processor perspective regardless of their TT encoding on the system bus.

Projected Impact:

This can be an issue for any system which depends on IFTT to differentiate instruction from data
fetches.

Work Arounds:

1. Replace dcbt instructions with dcbtst and replace dst instructions with dstst. Note that this
could have the detrimental effect of lowering performance because loads cannot fold to
touch-for-store instructions. See the MPC7400 User’s Manual, Section 3.5.3.2, for a caution on
touch-for-store instructions.

2. Set HID0[NOPTI] and HID0[NOPDST] to no-op all touch instructions.

3. Remove dcbt and dst instructions from the code.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

36 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

Error No. 24: L2 global invalidate may not clear way 0 after L2 usage

Overview:

The L2 cache global invalidate function may not clear way 0 of the L2 cache after L2 cache usage.
The L2 cache global invalidate function operates correctly if it is performed before the L2 cache
has been enabled for the first time.

Detailed Description:

The MPC7400 supports global (not flash) invalidation of the L2 cache through the L2CR[L2I]
parameter. Setting L2CR[L2I] causes a global invalidation of the L2 cache. A global invalidation
is performed by automatically sequencing through the L2 cache tags and clearing all bits of the tag
(tag data bits, tag status bits, and FIFO bit) for each of the two ways: way 0 and way 1.

When sequencing through the L2 cache tags for way 0 and way 1, the L2 global invalidate way
select is masked by an internal latch. Depending on the state of the internal latch, the L2 global
invalidate function may not clear the tags for way 0 of the L2 cache.The L2 global invalidate
function will always correctly clear way 1 of the L2 Cache.

The state of this internal latch is always correct after the assertion of HRESET. Setting L2CR[L2I]
after an HRESET assertion, but prior to enabling the L2 cache, will correctly invalidate all of the
L2 tags. Using the L2 global invalidate after enabling the L2 may not invalidate all of the L2 tags.

Projected Impact:

This can be an issue for any system which uses the L2 global invalidate function after the L2 cache
has been enabled for the first time.

Work Arounds:

Either of the following will serve as a work around to this erratum:

1. Limit use of the L2 global invalidate function to before the L2 cache has been enabled for the
first time.

2. Use L2 cache hardware flush. Using L2CR[L2HWF] will correctly invalidate all of the L2 tags,
but this feature will maintain coherency. The system should be able to handle possible castouts
of modified data. Once the L2 cache has been enabled and used, there is no way to guarantee
the invalidation of the L2 tags without maintaining coherency.

Projected Solution:

This may be fixed in a future revision.

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 37

Error No. 25: Live-lock when in PLL bypass mode

Overview:

When running in PLL bypass mode, when a self-snoopable transaction (TLBIE, ICBI, SYNC,
TLBSYNC) is self-ARTRYed for any reason, it will be self-ARTRYed forever.

Detailed Description:

The MPC7400 was designed to perform all snooping operations in core to bus clock ratios of 2:1
or greater. These two cycles are needed to collect all the necessary snoop responses from around
the chip and drive the ARTRY, SHD0, and SHD1 pins as necessary.

In PLL bypass mode, the core and system clocks are the matched, which results in a single internal
snoop cycle per system clock. The problem centers around a hold latch in the ARTRY logic that is
normally reset in the second internal snoop cycle. Once this latch is set for a self-snooped
transaction, there is no way to clear it.

The value in this hold latch will then propagate to the pins, causing a false single-cycle assertion
on the ARTRY pin. The part will then react as if it had asserted ARTRY again, causing an infinite
cycle of ARTRY assertions for the self-snooped transaction. Note that this false single-cycle
assertion of ARTRY could result in problems for other processors in an MP system.

This problem can also occur with the SHD0 and SHD1 pins, although it is not expected to result in
system issues.

Projected Impact:

This can be an issue for any system that uses the nonstandard, PLL bypass mode of operation and
self-snoopable transactions (TLBIE, ICBI, SYNC, TLBSYNC) that may be self-ARTRYed.

In PLL bypass mode, a self-snoopable transaction that is self-ARTRYed for any reason will be
self-ARTRYed forever. In addition, the false single-cycle assertion of ARTRY caused by this issue
could also result in problems for other processors in an MP system.

Work Arounds:

Avoid using TLBIE, ICBI, SYNC, TLBSYNC in PLL bypass mode, or implement a
synchronization routine such that these instructions never have a reason to be retried.

Projected Solution:

This erratum will not be fixed in future revisions of the MPC7400. This is a processor limitation
for this nonstandard mode of operation (PLL bypass mode).

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

38 MPC7400 RISC Microprocessor Chip Errata MOTOROLA

THIS PAGE INTENTIONALLY LEFT BLANK

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MOTOROLA MPC7400 RISC Microprocessor Chip Errata 39

THIS PAGE INTENTIONALLY LEFT BLANK

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

MPC7400CE/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-480-768-2130
(800) 521-6274

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. The described product is a PowerPC microprocessor.
The PowerPC name is a trademark of IBM Corp. and used under license. All other product or
service names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

ARCHIVED BY FREESCALE SEMICONDUCTOR, IN
C.

	Table�1. Document Revision History
	Table�2. Revision Level to Part Marking Cross-Reference
	Table�3. Summary of Silicon Errata and Applicable Revision�
	Error No. 1: ICBI may cause icache corruption in 2:1 and 2.5:1 bus modes
	Error No. 2: Incorrect value was written to the MSR after running POR ABIST
	Error No. 3: Not all GPRs and FPRs are initialized after ABIST
	Error No. 4: L2 Orphan can cause processor hang and/or data corruption
	Error No. 5: SPR register corruption after HRESET
	Table�4. Suggested Initial Values for SPR Registers�

	Error No. 6: Incorrect speculative and folding logic may cause a processor hang
	Error No. 7: Store data lost when store gathering is enabled during cache ops
	Error No. 8: Store data lost with mismatched LWARX/STWCX address pairs
	Error No. 9: L2 global invalidate may not complete
	Error No. 10: Guarded speculative load may access memory
	Error No. 11: Asserting TEA and ARTRY together may cause loss of data
	Error No. 12: Guarded speculative load with folding may access memory
	Error No. 13: Speculative instruction stream may cause duplicate data cache tags
	Error No. 14: Speculative or non-coherent transactions may cause loss of data
	Error No. 15: Data stream touch may cause duplicate data cache tags
	Error No. 16: Incorrect condition code on mismatched LWARX/STWCX pair
	Error No. 17: TLBSYNC may hang in the presence of a DST
	Error No. 18: Queueing six transactions to secondary bus may hang the system
	Error No. 19: Consecutive interrupts may be nonrecoverable
	Error No. 20: Disabling L2 cache may hang processor
	Error No. 21: Timebase or decrementer may lose accuracy in nap mode
	Error No. 22: Memory access problem using COP EXMEM
	Error No. 23: IFTT mode does not identify dcbt/dst instructions as data fetches
	Error No. 24: L2 global invalidate may not clear way 0 after L2 usage
	Error No. 25: Live-lock when in PLL bypass mode

