

Freescale Semiconductor 32-Bit Embedded Controller Division

MPC5561 Rev0 Errata List

August 1, 2007

Blocks affected

BAM - Boot Assist Module

DSPI - Deserial Serial Peripheral Interface

EBI - External Bus Interface

FLASH - Flash array and Control

FMPLL - Frequency Modulated Phase-Locked Loop

FlexCAN - Controller Area Network Module

FlexRay - FlexRay Communication Module

MPC5561 - Overall Device

NPC - Nexus Port Controller

NZ6C3 - e200z6 Nexus Class 3 Interface

Pad Ring - Pad Ring

SIU - System Integration Unit

e200z6 - Main Processor Core

eDMA - Enhanced Direct Memory Access

eMIOS - Enhanced Modular Input/Output Subsystem

eQADC - Enhanced Queued Analog to Digital Conver

Errata and Information Summary

<u>Errata 2297</u>	BAM: Serial download unavailable to last 16 bytes (4 words) of System RAM
Errata 6049	BAM: VLE added to the LENGTH field during serial boot message
Errata 4127	DMA: New features added
Errata 4535	DMA: Some new features do not function as specified
Errata 1123	DSPI: Changing CTARs between frames in continuous PCS mode causes error
<u>Errata 2264</u>	DSPI: Using DSPI in DSI mode with MTO may cause data corruption
Errata 3397	DSPI: Serialization (DSI) features not implemented
Errata 4022	DSPI: DSPI B pins split to separate supply, VDDEH10
Errata 1874	EBI: Additional Address lines available
Errata 2823	EBI: Do not access external resources when the EBI is disabled
Errata 3111	EBI: Dual controller mode cannot be guaranteed under all conditions
Errata 3839	EBI: Timed out accesses (external TA only) may generate spurious TS_B pulse
Errata 1745	FLASH: The ADR register may get loaded with a flash address even through no ECC error has occurred
Errata 2371	FLASH: Large blocks limited to 1,000 Program/erase cycles
Errata 2419	FLASH: Minimum Programming Frequency is 25 MHz
Errata 715	FMPLL: LOLF can be set on MFD change
Errata 4527	FMPLL: Oscillator Gain Increased
Errata 3138	FlexCAN: New feature - Transmit (TX)/Receive (RX) Warning Interrupts
Errata 3566	FlexCAN: New feature - Self reception disable
Errata 3567	FlexCAN: New feature - Individual RX matching and Message Queuing
Errata 3617	FlexCAN: New Feature - Individual Message Mask Registers
Errata 4414	FlexCAN: Corrupt ID may be sent in early-SOF condition
Errata 3657	FlexRay: A boundary violation frame followed by a valid startup frame during the startup phase may cause an abort of the startup
Errata 4128	FlexRay: Slot Status of Double Transmit Message Buffers updated incorrectly

<u>Errata 5049</u>	FlexRay: System memory overwrite may occur when frame is received with boundary violation
<u>Errata 5755</u>	FlexRay: Incorrect received frame may be marked as valid
<u>Errata 5890</u>	FlexRay: System memory overwritten or invalid data transmitted after timeout of system memory read access
<u>Errata 5891</u>	
Errata 3982	MPC5561: SIU_MIDR[PARTNUM] is 5561, [MASKNUM] is 0x00, DID[PIN]=0x161
Errata 4387	MPC5561: VSTBY pin current is higher than expected
Errata 1800	NPC: MCKO DIV can be set to 0x0 (1X MCKO)
Errata 108	NZ6C3: No indication of an exception causing a Nexus Program Trace (PT) message as opposed to a retired branch instruction causing a PT message.
Errata 1580	NZ6C3: RDY requires TCK to transition
Errata 2273	NZ6C3: No sync message generated after 255 direct branch messages in history mode
Errata 2706	NZ6C3: Data Trace of stmw instructions may cause overruns
Errata 63	Pad Ring: Possible poor system clock just after POR negation.
Errata 64	Pad Ring: RSTOUT is 3-stated during the power-on sequence.
Errata 3545	Pad Ring: FlexRay pins changed to MH type
<u>Errata 3644</u>	Pad Ring: SCI A available on CAN A pins (GPIO[83:84])
<u>Errata 4381</u>	Pad Ring: Pin behavior during power sequencing
Errata 2854	SIU: ECCR[ENGDIV] field extended to eight bits
Errata 3276	SIU: ENGCLK alternate source select bit added to SIU ECCR
Errata 3685	SIU: CRSE bit added to the SIU Configuration Register
Errata 507	e200z6: Core renamed from e500z6
Errata 2312	e200z6: MMU has 32 Table Entries
Errata 3565	e200z6: Way Access Mode bit added to the Cache
Errata 3568	e200z6: Cache can be configured as 4-way by 256 or 8-way by 128
Errata 4075	e200z6: VLE added to core
Errata 5256	e200z6: New SPE Instructions Added

Page 3 Freescale Semiconductor Report Generated: 1 Aug 2007

Errata 5093	eDMA: BWC setting may be ignored between 1st and 2nd transfers and after the last write of each minor loop.
Errata 2305	eMIOS: OPMWC unable to produce close to 100% duty cycle signal
<u>Errata 1742</u>	eQADC: 50% reference channels reads 20 mv low
<u>Errata 2878</u>	eQADC: conversions of muxed digital/analog channels close to the rail
Errata 4050	eQADC: Leakage if any other supply/pin is greater than 0.6V above VDDA
Errata 3819	eQADC: 25% calibration channel sampling requires at least 64 sampling cycles

Errata and Information Details

Errata 2297

Customer Information

TITLE: BAM: Serial download unavailable to last 16 bytes (4 words) of System RAM

DESCRIPTION:

When using the BAM Serial boot download feature, the BAM initializes an additional 4 32-bit words after the end of the downloaded records. This is done to insure that if the core fetches the last instruction of the downloaded code from the internal SRAM while executing the code, it will not prefetch instructions from memory locations that have not been initialized.

Note: if the download image has the exact same size as the internal SRAM, the 20 bytes at the beginning of the SRAM will be written with zero value due to incomplete memory decoding.

WORKAROUND:

When using the Serial download feature of the BAM, make sure that the maximum address of the downloaded code does not exceed the end address of the SRAM minus 16 bytes.

Back to summary list

Errata 6049

Customer Information

TITLE: BAM: VLE added to the LENGTH field during serial boot message

DESCRIPTION:

In serial boot mode, tools download 3 pieces of information: a 64-bit password, followed by a 32-bit start address, and then a 32-bit download length (LENGTH). On devices that support the Variable Length Encoded (VLE) instruction set, the 32-bit LENGTH field has been changed to a 1-bit VLE bit followed by a 31-bit LENGTH. The VLE bit replaces what was the MSB of the LENGTH. Setting the VLE bit to 1 indicates that the downloaded code should be run in VLE mode. Leaving VLE a 0 indicates that the downloaded code should be run in BookE/classic Power Architecture instruction set mode. When the VLE bit is set to 1 the BAM programs EBI, RAM and Flash MMU TLB entries (# 1,2 and 3) with the VLE attribute.

WORKAROUND:

Set the VLE bit (MSB of the 32-bit LENGTH) in the serial boot download data if the code being downloaded uses (was written in) VLE instructions.

Back to summary list

Errata 4127

Customer Information

TITLE: DMA: New features added

DESCRIPTION:

New bits have been added to the eDMA Control Register (EDMA_CR) and the eDMA Error Status Register (EDMA_ESR). A Cancel Transfer bit (EDMA_CR[CX]) was added to allow software to cancel the current data transfer of the executing channel and forcing the minor loop to be complete. The Cancel Transfer with Error bit (EDMA_CR[ECX]) was added to allow software to cancel the current data transfer just as EDMA_CR[CX] except that the transfer cancels with error and Tranfer Cancel Error flag (EDMA_ESR[ECX]) is set. An Enable Minor Loop Mapping bit (EDMA_CR[EMLM]) was added to enable minor loop mapping which changes the structure of TCD word2. A Continuous Link Mode bit (EDMA_CR[CLM]) was added to enable continuous link mode which allows a channel to link to itself at the completion of a minor loop without going through channel arbitration. A Halt bit (EDMA_CR[HALT]) was added to allow halting of DMA operations by stalling the start of any new channels. A Halt on Error bit (EDMA_CR[HOE]) was added to allow any error to cause the EDMA_CR[HALT] bit to be set.

A new bit was added to the eDMA Channel Priority Registers (EDMA_CPRn). A Disable Preempt Ability bit (EDMA_CPRn[DPA]) was added to disable the ability for that specific channel to preempt any channel, regardless of channel priority.

A new bit was added to the eDMA Set Enable Request Register (EDMA_SERQR), eDMA Clear Enable Request Register (EDMA_CERQR), eDMA Set Enable Error Interrupt Register (EDMA_SEEIR), eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR), eDMA Clear Interrupt Request Register (EDMA_CIRQR), eDMA Clear Error Register (EDMA_CER), eDMA Set Start Bit Register (EDMA_SSBR), and eDMA Clear Done Status Bit Register (EDMA_CDSBR). Each of these registers now have a NOP bit (bit 0) added to allow these 8-bit registers to be written using 32-bit writes without unwanted operations.

TCD word2 can be programmed via EDMA_CR[EMLM] to have a new structure. TCD word2 can now be comprised of a Source Minor Loop Offset Enable bit (SMLOE), a Destination Minor Loop Offset Enable bit (DMLOE), a 20-bit Minor Loop Offset field (MLOFF), and a 10-bit minor loop byte transfer count (NBYTES).

Page 6

A new register, eDMA Hardware Request Status Register Low (EDMA_HRSL), has been added at eDMA Base Address + 0x34, $0xFFF4_4034$, which provides at a bitmap for the 32 eDMA channels to allow software the ability to monitor the status of hardware requests.

WORKAROUND:

Do not write software that makes use of these new features if compatibility to devices with eDMA modules that do not support these features is desired.

Back to summary list

Errata 4535

Customer Errata

TITLE: DMA: Some new features do not function as specified

DESCRIPTION:

The Cancel Transfer with Error bit (EDMA_CR[ECX]) does not function correctly. Reading of the Cancel Transfer bit (EDMA_CR[CX]) does not give status of when cancel has been honored. The NOP bits in Set Enable Request Register (EDMA_SERQR), Clear Enable Request Register (EDMA_CERQR), Set Enable Error Interrupt Register (EDMA_SEEIR), Clear Enable Error Interrupt Register (EDMA_CEEIR), Clear Interrupt Request Register (EDMA_CIRQR), Clear Error Register (EDMA_CER), Set Start Bit Register (EDMA_SSBR), and Clear Done Status Bit Register (EDMA_CDSBR) do not function correctly.

WORKAROUND:

EDMA_CR[ECX] should not be used and doing so can cause unexpected results. Software should poll the TCD.ACTIVE bit to determine when the cancel of the executing channel has been honored. Software should not use the NOP bits in SERQR, CERQR, SEEIR, CEEIR, CIRQR, CER, SSBR, and CDSBR and doing so can cause unexpected results.

Back to summary list

Errata 1123

Customer Errata

TITLE: DSPI: Changing CTARs between frames in continuous PCS mode causes error

DESCRIPTION:

Erroneous data could be transmitted if multiple Clock and Transfer Attribute Registers (CTAR) are used while using the Continuous Peripheral Chip Select mode (DSPIx_PUSHR[CONT=1]). The conditions that can generate an error are:

- 1) If DSPIx_CTARn[CPHA]=1 and DSPIx_MCR[CONT_SCKE = 0] and DSPIx_CTARn[CPOL, CPHA, PCSSCK or PBR] change between between frames.
- 2) If DSPIx_CTARn[CPHA]=0 or DSPIx_MCR[CONT_SCKE = 1] and any bit field of DSPIx_CTARn changes between frames except DSPIx_CTARn[PBR].

WORKAROUND:

When generating DSPI bit frames in continuous PCS mode, adhere to the aforementioned conditions when changing DSPIx_CTARn bit fields between frames.

Back to summary list

Errata 2264

Customer Errata

TITLE: DSPI: Using DSPI in DSI mode with MTO may cause data corruption

DESCRIPTION:

Using the DSPI in Deserial Serial Interface (DSI) Configuration (DSPIx_MCR[DCONF]=0b01]) with multiple transfer operation (DSPIx_DSICR[MTOE=1]) enabled, may cause corruption of data transmitted out on the DSPI master if the clock Phase is set for leading edge capture DSPIx_CTARn[CPHA]=0. The first bit shifted out of the master DSPI into the slave DSPI module will be corrupted and will convert a '0' to read as a '1'.

WORKAROUND:

There are three possible workarounds for this issue.

- 1) Select CPHA=1 if suitable for external slave devices.
- 2) Set first bit to '1', or ignore first bit. This may not be a workable solution if this bit is required.
- 3) Connect SOUT from the master to SIN of the first slave externally instead of using internal signals. This is achieved by setting the DSPI Input Select Register (SIU_DISR) to set the SINSELx field of the first slave DSPI to '00' and configuring this slave's sin pin and master sout pin as DSPI sin/sout functions respectively. This workaround is suitable only if these two signals are available to be connected externally to each other.

Errata 3397

Customer Information

TITLE: DSPI: Serialization (DSI) features not implemented

DESCRIPTION:

The DSPI serialization/deserialization features (for serializing slow eMIOS and eTPU signals) are not implemented.

WORKAROUND:

Do not set the DSPI Configuration bits in the DSPI Module Configuration register (DSPIx_MCR) to use the Deserial Serial Interface (DSI) features of the DSPI by setting the DCONF to 0b01 (DSI mode) or 0b10 (combined SPI and DSI mode). Always set DCONF to 0b00, selecting normal SPI configuration.

Back to summary list

Errata 4022

Customer Information

TITLE: DSPI: DSPI_B pins split to separate supply, VDDEH10

DESCRIPTION:

The DSPI_B SINB, SOUTB, SCKB, PCS_B[0:2] were separated from the VDDEH6 and are now powered by the new power supply pin VDDEH10. Ball J23 on the 416 package was changed from being a duplicate VDDEH6 pin to being a separate VDDEH10 supply pin. 324 pin package drawings show the VDDE10 ball placement. VDDEH6 and VDDEH10 are combined/shorted internally on 208 packages.

WORKAROUND:

For compatibility to the MPC5554, always power VDDEH6 and VDDEH10 from the same power supply (3.0 to 5.25 volts). If compatibility is not required to the MPC5554, VDDEH10 and VDDEH6 can be supplied by different voltage supplies. This allows one DSPI to operate at a different voltage than the other DSPI modules (3.3 and 5 volts, for example).

Errata 1874

Customer Information

TITLE: EBI: Additional Address lines available

DESCRIPTION:

Two additional address lines (ADDR6 and ADDR7) have been added to the External Bus Interface (EBI). These extra address lines are multiplexed with ADDR30 and ADDR31 as alternate functions and can be selected by the Pin Assignment (PA) field of SIU_PCR[26] and SIU_PCR[27].

WORKAROUND:

Customers should be aware that not all members of the MPC5500 family with an external address bus have these extra 2 address lines.

Note external masters still use ADDR30 and ADDR31 for internal accesses and always use ADDR8 though ADDR31 in this case.

Back to summary list

Errata 2823

Customer Information

TITLE: EBI: Do not access external resources when the EBI is disabled

DESCRIPTION:

When the external bus is disabled in the External Bus Interface Module Control Register (EBI_MCR[MDIS] = 1), accesses through the EBI will not terminate and the master requesting the access will not request another one

WORKAROUND:

Do not disable the EBI or do not allow accesses to the external bus through Memory Management Unit (MMU) settings in the core. Other internal bus masters (such as DMA) bypasses the MMU and therefore these accesses will hang the external bus if the destination is in the external bus address map.

Errata 3111

Customer Errata

TITLE: EBI: Dual controller mode cannot be guaranteed under all conditions

DESCRIPTION:

In dual controller mode, the specification for the phase relationship between EXTAL and CLKOUT is +/-1 ns, however this does not allow adequate set up and hold times to guarantee successful operation of the external bus to a second MCU.

WORKAROUND:

Do not use in Dual Controller mode.

Back to summary list

Errata 3839

Customer Errata

TITLE: EBI: Timed out accesses (external TA only) may generate spurious TS B pulse

DESCRIPTION:

When an external Transfer Acknowledge (TA) access times out, there is a boundary case where the External Bus Interface (EBI) asserts a Transfer Start (TS) pulse as if starting another access, even if no other internal request is pending. The boundary case is when the access is part of a "small access" set (sequence of external accesses to satisfy 1 internal request), and when the external TA arrives around the same cycle (+/- 1 clkout cycle) as the bus monitor timeout (BMT).

Most EBI signals will stay negated during this erroneous transfer (CS, OE, WE, BDIP). However, along with TS assertion, RD_WR may also assert (for 1 cycle only, during this phantom TS), if the prior access that timed out was a write. This condition can generate an erroneous write transfer (with CS negated). The address (ADDR pins) will be incremented to the address of the next small access transfer that would have been performed, and the value driven by the EBI on the DATA bus (if a write) may change. Busy Busy (BB) may be asserted along with the phantom TS (if external master modes is enabled in the EBI Module configuration Register, SIU_MCR[EXTM]=1), and the Transfer Size (TSIZ) value may change.

Internally, the EBI terminates the timeout access, and the internal state machine goes to IDLE after the timeout access. So the EBI will not be "hung" after the spurious TS, and the EBI does respond properly to future internal or external requests.

However, the side effect of the spurious TS is that it may cause an

external non-chip-select device to think an access is being performed to it, resulting in 1 of 2 bad effects (depending on RD_WR value during spurious TS):

- 1) RD_WR high (read): ext. device may drive back read data some number of cycles later, possibly conflicting with a future real access (e.g. write) that might have started by that time.
- 2) RD_WR low (write): ext. device may get an erroneous write performed to it

Note that the soonest possible TS for a real transfer (after the timeout transfer), is 2 cycles after the spurious TS (so 1 cycle gap), meaning this Bug will never result in a 2-cycle TS pulse.

WORKAROUND:

Do not enable bus monitor in the EBI Bus Monitor Control Register (keep $SIU_BMCR[BME]=0$), unless at least 1 of the following 3 conditions can be met:

- 1) The external TA will never be asserted from external device within 1 cycle of when the access would be timing out (see NOTE below)
- 2) No internal requests greater than external bus size will be performed (e.g. doing data-only fetches of 32 bits or less on 32-bit data bus or 16 bits or less on a 16 bit bus only, so a "small access" could never occur).
- 3) The side effect of this TS pulse driven to non-CS device is judged to be tolerable in system after a timeout error occurs; depends on spec of external device and user requirements for data coherency after a timeout error occurs.

NOTE: Of the 3 above, #1 is easiest to achieve in most systems. If the maximum possible TA latency of the external device is known, the user just needs to set the BMT period more than (external device maximum latency + 2), and this condition will not occur.

Back to summary list

Errata 1745

Customer Information

TITLE: FLASH: The ADR register may get loaded with a flash address even through no ECC error has occurred

DESCRIPTION:

The Flash Address Register (FLASH_AR) may be loaded with a flash address when no Error Correction Code (ECC) has occurred. When an ECC does occur, the FLASH_AR is properly set.

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 12

WORKAROUND:

Check the Flash Module Control Register ECC Event Error (FLASH_MCR[EER]=1) to check for an ECC error before examining the ADR register. If an error has occurred then the ADR register data is valid. If an error has not occurred then the FLASH_AR data could change on any flash access.

Back to summary list

Errata 2371

Customer Errata

TITLE: FLASH: Large blocks limited to 1,000 Program/erase cycles

DESCRIPTION:

The electrical specification for Program/Erase cycling on large Flash blocks (all 128K blocks - Middle Address Space [MAS] blocks M0 and M1, plus High Address Space [HAS] blocks H0 to H3/H7/H11/H19 [depending on total flash size]) has been changed to 1,000 PE cycles minimum. The small blocks (16K, 48K, and 64K - Low Address Space [LAS] blocks L0-L5) are still specified as 100,000 PE cycles minimum.

The data retention specification all blocks is still 20 years for blocks cycled less than 1000 times and 5 years for blocks cycled 1001 to 100,000 cycles (1,000 for large blocks).

WORKAROUND:

Only use the small blocks for EEPROM emulation (LAS L0-L5). Do not use blocks MAS M0/M1 or HAS H0 to $\rm H3/H7/H11/H19$ (depending on total flash size) for EEPROM emulation requiring greater than 1,000 Program/Erase cycles. Refer to the latest device electrical specifications (Data Sheet) dated July 2007 or later.

Back to summary list

Errata 2419

Customer Information

TITLE: FLASH: Minimum Programming Frequency is 25 MHz

DESCRIPTION:

Programming and erase operations of the internal flash could fail if the clock to the flash (usually the system clock) is less than $25~\mathrm{MHz}$.

WORKAROUND:

Do not program or erase the flash when the system operating frequency is below $25 \mathrm{Mhz}$.

Back to summary list

Errata 715

Customer Errata

TITLE: FMPLL: LOLF can be set on MFD change

DESCRIPTION:

Normally, the Loss of Lock Flag (FMPLL_SYNCR[LOLF]) would not be set if the loss of lock occurred due to changing of the Multiplication Factor Divider bits or PREDIV bits (FMPLL_SYNCR[MFD] or [PREDIV]) or enabling of Frequency Modulation (FMPLL_SYNCR[Depth]>0b00). However, if LOLF has been set previously (due to an unexpected loss of lock condition) and then cleared (by writing a 1), a change of the MFD, PREDIV or DEPTH fields can cause the LOLF to be set again which can trigger an interrupt request if LOLIRQ bit is set.

In addition, changing the RATE bit will also set the LOLF regardless of previous conditions.

WORKAROUND:

The Loss of Lock Interrupt Request enable in the Synthesizer Control Register (FMPLL_SYNCR[LOLIRQ]) should be cleared before any change to the multiplication factor (MFD), PREDIV, modulation depth (DEPTH), or modulation rate (RATE) to avoid unintentional interrupt requests. After the PLL has locked (LOCK=1), LOLF should be cleared (by writing a 1) and LOLIRQ may be set again if required.

Back to summary list

Errata 4527

Customer Information

TITLE: FMPLL: Oscillator Gain Increased

DESCRIPTION:

The gain of the oscillator was increased to handle a $40~\mathrm{MHz}$ crystal on some devices. The $40~\mathrm{MHz}$ crystal, however, is not supported on all devices.

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 14

WORKAROUND:

A resistor may need to be added between the XTAL pin and the crystal. Consult the crystal manufacturer for the recommended crystal configuration, however, 2.7K ohms is a good starting point for an 8 MHz crystal and a 470 ohms for a 40 MHz crystal.

Back to summary list

Errata 3138

Customer Information

TITLE: FlexCAN: New feature - Transmit (TX)/Receive (RX) Warning Interrupts

DESCRIPTION:

The Warning Interrupt bit has been added in the FlexCAN Module Configuration Register, CANx_MCR[WRNEN] (bit 10). In addition two bits have been added in the FlexCAN Control Register, Transmit Warning Interrupt Mask, CANx_CR[TWRNMSK] (bit 20) and the Receive Warning Mask, CANx_CTRL[RWRNMSK] (bit 21) allow applications to enable monitoring for Transmit and Receive error counters and generate an interrupt for either if the error count reaches 96 errors or more. Consequently, two status bits have been added in the FlexCAN Error and Status register to signal interrupts for these additional interrupt causes, the Transmit Warning Interrupt bit (CANx_ESR[TWRNINT], bit 14) and the Receive Warning Interrupt bit (CANx_ESR[RWRNINT], bit 15). Both of these status bits are cleared by writing a 1 to the bit.

WORKAROUND:

For backwards software compatibility with the MPC5554, MPC5553, and the initial versions of the MPC5534, do not use this new feature or insure that the feature exists prior to their use.

Back to summary list

Errata 3566

Customer Information

TITLE: FlexCAN: New feature - Self reception disable

DESCRIPTION:

The FlexCAN can now be configured to disallow reception of frames transmitted by itself by setting the Self Reception Disable bit in the FlexCAN Module Configuration Register (CANx_MCR[SRXDIS]=0b1, bit 14).

WORKAROUND:

For backwards software compatibility with the MPC5554, MPC5553, and the initial versions of the MPC5534, do not use these new features or insure that the features exist prior to their use.

Back to summary list

Errata 3567

Customer Information

TITLE: FlexCAN: New feature - Individual RX matching and Message Queuing

DESCRIPTION:

The FlexCAN allows reception of the same message ID in multiple message buffers by setting the new Message Buffer Filter Enable control bit in the FlexCAN Module Configuration Register, CANx_MCR[MBFEN] (bit 15). By programming more than one Message Buffer with the same ID or using a mask, received messages will be queued into the Message Buffers.

WORKAROUND:

For backwards software compatibility with the MPC5554, MPC5553, and the initial versions of the MPC5534, do not use this new feature or insure that the feature exists prior to their use.

Back to summary list

Errata 3617

Customer Information

TITLE: FlexCAN: New Feature - Individual Message Mask Registers

DESCRIPTION:

When the FlexCAN Message Buffer Filter Enable control bit in the FlexCAN Module Configuration Register, CANx_MCR[MBFEN] (bit 15), is set, additional filtering is provided by the RXIMRO to RXIMR63 Individual Mask Registers which replace RXGMASK, RX14MASK and RX15MASK.

WORKAROUND:

This feature may not exist on all parts, and for software compatibility with devices that do not include Individual message mask registers, do not use the additional message mask registers. They can be used if backwards software compatibility is not required.

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 16

Back to summary list

Errata 4414

Customer Information

TITLE: FlexCAN: Corrupt ID may be sent in early-SOF condition

DESCRIPTION:

This erratum is not relevant in a typical CAN network, with oscillator tolerances inside the specified limits, because an early start of frame condition (early-SOF) should not occur.

An early-SOF may only be a problem if the oscillators in the network operate at opposite ends of the tolerance range (maximum 1.58%), which could lead to a cumulated phase error after 10 bit-times larger than phase segment 2.

A corrupt ID will be sent out if a transmit message buffer is identified for transmission during INTERMISSION, and an early-SOF condition is entered due to a dominant bit being sampled during bit 3 of INTERMISSION.

The message sent will be taken from the newly set up transmit buffer (Tx MB), with the exception of the 1st 8 ID bits, which are taken from the previously selected Tx MB.

The CRC is correctly calculated on the resulting bit stream so that receiving nodes will validate the message.

The early-SOF condition is detailed in the Bosch CAN Specification Version 2.0 Part B, Section 3.2.5 INTERFRAME SPACING - INTERMISSION.

WORKAROUND:

- 1) Configure Tx MBs during FREEZE mode, or
- 2) Out of FREEZE mode, configure Tx MBs during bus idle:
- For networks with low traffic, determine Bus Idle status by reading the Idle bit of the Error and Status register (CANX ESR[IDLE]).
- For networks with high traffic, configure Tx MBs after the 3rd bit of intermission, and before the third bit of the CRC field from the next transmission.

Errata 3657

Customer Errata

TITLE: FlexRay: A boundary violation frame followed by a valid startup frame during the startup phase may cause an abort of the startup

DESCRIPTION:

The FlexRay module may abort the startup due to a wrong deviation measurement if:

- (a) The FlexRay module is in STARTUP state and
- (b) the FlexRay module receives a startup frame that violates the boundary at the beginning of the slot followed by a valid startup frame in the same slot.

The following flags and fields may be affected:

- (a) The PROTSTATE field of the Protocol Status Register FR_PSR0 may indicate INTEGRATION_LISTEN instead of NORMAL_ACTIVE after the startup.
- (b) The OFFSETCORR field in the Offset Correction Value Register
- (FR_OFCORVR) may show a wrong value for the related communication cycle.
- (c) The RATECORR field in the Rate Correction Value Register (FR_RTCORVR)
- may show a wrong value for the related communication cycle pair.
- (d) The Clock Correction Limit Reached Interrupt Flag CCL_IF of the Protocol Interrupt Flag Register 0 (FR_PIFR0) may be set by the FlexRay module, indicating an EXCEED_BOUNDS condition due to the erroneous deviation measurement.

WORKAROUND:

There is no workaround for this erratum.

Back to summary list

Errata 4128

Customer Errata

TITLE: FlexRay: Slot Status of Double Transmit Message Buffers updated incorrectly

DESCRIPTION:

This erratum only affects FlexRay modules that have at least two double transmit message buffers configured by the application.

After the transmission of a non-null frame from a double transmit message buffer, the FlexRay module

1) updates the slot status of the transmit side of this double transmit message buffer,

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 18

- 2) does not update the slot status of the commit side of this double transmit message buffer, and
- 3) updates the slot status of the commit side of the double transmit message buffer with the highest message buffer ID.

Due to internal commit operations on double transmit message buffers it can happen, that the slot status of the commit side and transmit side are exchanged after the update. As a result, the slot status of the double transmit message buffer is incorrect for a certain amount of time.

WORKAROUND:

If the application has configured at most one double transmit message buffer, the slot status of this message buffer is always correct.

If the application has configured more than one double transmit message buffers, it should ignore the slot status of the double transmit message buffers and instead should use the dedicated slot status reporting registers provided by the FlexRay module to get the slot status information. These registers are

- Channel A Status Error Counter Register (FR_CASERCR)
- Channel B Status Error Counter Register (FR_CBSERCR)
- Protocol Status Register 2 (FR_PSR2)
- Protocol Status Register 3 (FR_PSR3)
- Slot Status Registers (FR_SSR0 up to FR_SSR7)
- Slot Status Counter Registers (FR_SSCR0 up to FR_SSCR3)

Back to summary list

Errata 5049

Customer Errata

TITLE: FlexRay: System memory overwrite may occur when frame is received with boundary violation

DESCRIPTION:

When the FlexRay module receives a non-null frame which overlaps the end of a slot or segment, it may write an undetermined 16-bit data item to an unintended address in the Message Buffers Header and Message Buffer Data area in the system memory under one of the following circumstances:

a) the received frame overlaps the end of the static segment, and the last static slot is subscribed for reception, and a dynamic segment is configured, and the first dynamic slot is not subscribed for reception or transmission.

- b) the received frame overlaps the end of the static segment, and the last static slot is subscribed for reception, and no dynamic segment is configured,
- c) the received frame overlaps the end of the dynamic segment, and at least one slot in the dynamic segment is subscribed for reception. This erroneous write operation may corrupt the Data Field Offset in the Message Buffer Header Field. The FlexRay module will use this Data Field Offset to determine the address to store or fetch frame payload data.

If the Data Field Offset was corrupted, payload data are written to and

Page 19 Freescale Semiconductor Report Generated: 1 Aug 2007

read from an unpredictable location within a 64 KByte system memory window starting at the address defined by the System Memory Base Address Registers (SYMBADHR, SYMBADLR). As a consequence, in case of a subsequent reception, the content of any location within this 64 KByte window can be corrupted and, in case of a subsequent transmission, incorrect messages can be transmitted.

Additionally, when the FlexRay module receives a non-null frame which overlaps the end of slot, it may write to both receive shadow buffers, even if a message buffer segment is not used for reception at all.

WORKAROUND:

The reception of an frame which overlaps the end of a slot or segment is indicated by the aggregated boundary violation flags ABVB/ABVB in the Protocol Status Register 3 (PSR3).

To avoid the error situation a) the application should either

- 1) configure a receive message buffer for the first slot in the dynamic segment without any cycle counter filtering, or
- 2) not configure a receive message buffer or receive FIFO for the last slot in the static segment.
- To avoid the error situation b) the application should not configure a receive message buffer or receive FIFO for the last slot in the static segment.

To avoid the error situation c) the application should not configure a receive message buffer or receive FIFO for the dynamic segment.

- If all three error situations can not be avoided, the application should
- 1) locate the Message Buffer Header Fields for all transmit message buffers before (at lower addresses in Internal SRAM) those of the receive message buffers, and
- 2) reserve 244 bytes of unused Internal SRAM space after the last Message Buffer Header Field, and
- 3) observe the Boundary Violation flags PSR3[ABVA] and PSR3[ABVB]. In case of a boundary violation, the application should stop the FlexRay module by the protocol command FREEZE and then reconfigure the message buffer header fields of the receive message buffers and reconfigure the receive shadow buffers

To avoid an undetermined write access to a non-configured receive shadow buffer, the application should configure the receive shadow buffers for all used message buffer segments even if a segment is used only for transmission.

Back to summary list

Errata 5755

Customer Errata

TITLE: FlexRay: Incorrect received frame may be marked as valid

DESCRIPTION:

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 20

When the FlexRay module has received a frame in the static slot n which overlaps the end of slot n, then a valid frame received in the following slot n+1 may be stored incorrectly. In this case, the content of the Frame Header in the Message Buffer Header Field and Frame Data in the Message Buffer Data Field of the message buffer subscribed to slot n+1 may be incorrect.

If a receive message buffer is subscribed to slot n+1, the valid frame bits VFB/VFA in the Slot Status Field and the Data Updated bit DUP in the Message Buffer Configuration, Control, Status Registers (MBCCSRn) will be set.

If the receive FIFO is subscribed to slot n+1, the Receive FIFO Not Empty interrupt flag FNEAIF/FNEBIF in the Global Interrupt Flag and Enable Register is set and an additional message is put in the receive FIFO.

WORKAROUND:

The FlexRay module will set the boundary violation bit BVB/BVA in the Slot Status Field of the message buffer subscribed to slot n+1, because a frame reception is still running at the start of slot n+1. The BVB/BVA flags can be used to detect the error condition.

The application should not process received frames with the boundary violation bit BVA/BVB set in the Slot Status Field of the message buffer.

Back to summary list

Errata 5890

Customer Errata

TITLE: FlexRay: System memory overwritten or invalid data transmitted after timeout of system memory read access

DESCRIPTION:

When the FlexRay module performs a read operation from the system memory and the system memory subsystem fails to deliver the requested data within the number of system clock cycles configured by the TIMEOUT field in the System Memory Timeout Register (SYMATOR), the FlexRay module will proceed its operation with a read value of 0.

If the value to be read was in the Frame Header of the Message Buffer Header Field, an incorrect frame header will be transmitted.

If the value to be read was the Data Offset Field of the Message Buffer Header Field the FlexRay module will

- a) in case of a transmit slot, fetch the payload data from the start of the 64 KByte system memory window starting at the address defined by the System Memory Base Address Registers (SYMBADHR, SYMBADLR), and consequently transmit incorrect payload data, or
- b) in case of a receive slot, write the payload data to the start of the 64

KByte system memory window starting at the address defined by the System Memory Base Address Registers (SYMBADHR,SYMBADLR), and consequently overwrite several Message Buffer Header Fields.

If the value to be read was in the Message Buffer Data Field an incorrect payload word will be transmitted.

WORKAROUND:

To prevent the occurrence of an system memory timeout, the application should configure the priorities for the system memory bus masters in the Crossbar Switch properly along with an appropriate setting of the SYMATOR[TIMEOUT] field.

To prevent the overwrite of Message Buffer Header Fields, the application should reserve 254 bytes of unused memory at the start of the FlexRay Memory Window.

To prevent the transmission of incorrect payload data, the application should continuously observe or assign an interrupt service routine to the System Bus Communication Failure Error Flag SBCF_EF in the CHI Error Flag Register (CHIERFR). When this flag is set or the interrupt is triggered, the application should stop the FlexRay module by the protocol command FREEZE.

Back to summary list

Errata 5891

Customer Errata

TITLE: FlexRay: System memory access immediately timed out if SYMATOR[TIMEOUT] set to 0x1F

DESCRIPTION:

If the FlexRay module performs a read or write operation on the system memory and the TIMEOUT field in the System Memory Timeout Register (SYMATOR) is set to its maximum value of 0x1F, the FlexRay module will immediately set the System Bus Communication Failure Error Flag SBCF_EF in the CHI Error Flag Register (CHIERFR). In case of an read operation, the FlexRay module will proceed its operation and assume a read value of 0.

WORKAROUND:

The application should not write the value of 0x1F to the SYMATOR[TIMEOUT] field.

Errata 3982

Customer Information

TITLE: MPC5561: SIU_MIDR[PARTNUM] is 5561, [MASKNUM] is 0x00, DID[PIN]=0x161

DESCRIPTION:

The part number field in the MCU Identification Register (SIU_MIDR[PARTNUM]) is 0x5561. The initial mask revision number (SIU_MIDR[MASKNUM]) is 0x00. The Part Number Identification field in the Nexus Port Controller Device Identification Register/JTAGC Identification (NPC_DID[PIN]) is 0x161.

WORKAROUND:

Software should be aware that the SIU_MIDR[MASKNUM] field can change in the future. Tools should be aware of the JTAGC_ID/NPC_DID[PIN]. In addition, tools should be aware that the revision number in the JTAG and Nexus ID could change in the future (JTAGC_ID/NPC_DID[PRN]).

Back to summary list

Errata 4387

Customer Errata

TITLE: MPC5561: VSTBY pin current is higher than expected

DESCRIPTION:

The VSTBY pin does not meet data sheet values for standby current at $25\mathrm{C}$ or $85\mathrm{C}$.

WORKAROUND:

Expect that at least 50 uA of additional current will be required on the power supply for the VSTBY pin compared to specified values, Alternately if no standby functionality required, connect Vstby pin to ground.

Back to summary list

Errata 1800

Customer Information

TITLE: NPC: MCKO_DIV can be set to 0x0 (1X MCKO)

DESCRIPTION:

The Nexus Port Controller Port Configuration Register MCKO Divider bits (NPC_PCR[MCKO_DIV]) can be set to 0b000 to select a 1X clock rate as the Nexus Auxiliary output port frequency for the MCKO and MDO pins. Note: Depending on the system frequency, this may force the MCKO and MDO pins to switch at a frequency higher than can be supported by the pins. This frequency is 80 MHz, unless specified in the device electrical specification of the Nexus MCKO and MDO pins.

WORKAROUND:

Insure that the maximum operating frequency of the MDO and MCKO pins is not violated if the NPC_PCR[MCKO_DIV] is set to 0b000.

Note: tools may not support 1X mode. Check with your tool vendor.

Back to summary list

Errata 108

Customer Errata

TITLE: NZ6C3: No indication of an exception causing a Nexus Program Trace (PT) message as opposed to a retired branch instruction causing a PT message.

DESCRIPTION:

The e200z6 core Nexus (NZ6C3) transmits a Program Trace Indirect Branch message without indicating if the message was sent due to a taken branch or due to an exception. The instruction count for an exception is 1 less than a normal indirect branch. The result is that program trace reconstruction can be off by one instruction.

WORKAROUND:

Trace reconstruction tools should be aware that the I-CNT is different for Exceptions than for Indirect Branches. The tool may need to know (from the user or by parsing registers) the exception handler addresses from the Interrupt vector prefix register (IVPR) and the Interrupt vector offset registers (IVORxx). Users also should not jump directly to interrupt handler addresses. Tools can then differentiate between exceptions and indirect branches.

Errata 1580

Customer Errata

TITLE: NZ6C3: RDY requires TCK to transition

DESCRIPTION:

The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a read access) or the write to the Read/Write Access Data Register (RWD)(to begin a write access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG Update-DR state. This prevents the access from being performed and therefore will not signal its completion via the READY (RDY) output unless the JTAG controller receives an additional TCK.

WORKAROUND:

When using the RDY signal to indicate the end of a Nexus read/write access, ensure that TCK continues to run for at least 1 TCK after leaving the Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or by continuing with the next Nexus/JTAG command.

Back to summary list

Errata 2273

Customer Information

TITLE: NZ6C3: No sync message generated after 255 direct branch messages in history mode

DESCRIPTION:

When using the branch history mode of direct branch program trace in the e200z6 core, a synchronization message is not transmitted after 255 program trace messages in a row. This will occur if resource full messages are sent and not counted for triggering a sync message indicating that the branch history fields are full. The resouce full message is generated when more than 31 direct branches occur without an indirect branch or exception.

WORKAROUND:

Debuggers should account for the possibility that more than 255 messages could be received without a program trace synchronization message by keeping track of the last known program trace address prior to branch history resource full messages.

Back to summary list

Report Generated: 1 Aug 2007

Errata 2706

Customer Information

TITLE: NZ6C3: Data Trace of stmw instructions may cause overruns

DESCRIPTION:

If Nexus data trace is enabled on a section of memory that is loaded or stored with a store multiple word (stmw), or load multiple word (lmw for data read traces), an overrun condition could occur, even if the stall on overrun feature is enabled (NZ6C3_DC1[OVC]=0b011). Stalls can only occur on instruction boundaries. The stmw/lmw instructions can generate up to 16 Nexus trace messages with a single instruction. If there are not 16 queue locations available, an overflow will occur. Stall mode does not stall the core until there are only four locations available in the e200 Nexus message queue. Therefore if a stmw/lmw generates more than four messages or if additional Nexus messages are generated, the queue will overflow. The stmw/lmw instructions load or store two 32-bit registers at a time (64-bit stores/loads) if an even number of registers are selected.

WORKAROUND:

If stall mode is enabled (NZ6C3_DC1[OVC]=0b011), limiting store multiple word instruction in a data trace region to store/load 8 registers or less, will improve the chances that an overrun will not occur, but this is dependent on other messages that could be generated simultaneously with the data trace messages. If stall mode is disabled, or stmw instructions with more than 8 registers are stored, accept overruns in the data and program trace flow.

Back to summary list

Errata 63

Customer Information

TITLE: Pad Ring: Possible poor system clock just after POR negation.

DESCRIPTION:

The pins RSTCFG_B and PLLCFG[0:1] select one of three PLL modes or allows a clock to be injected, bypassing the PLL. When Power On Reset (POR) negates, if the transitions on these pins selects the bypass mode, a poor clock on EXTAL can provide a poor clock to MCU logic no longer reset by POR. The state of that logic can be corrupted.

WORKAROUND:

If the default PLL and Boot configuration (external crystal reference and boot from internal flash) will be used, then negate the RSTCFG pin (=1). For any other configuration, depending on the final mode required, the pins must have the following values on the pins when the internal POR negates.

After POR negates, the RSTCFG_B and PLLCFG[0:1] can be changed to their final value, but should avoid switching through the 0,0,0 state on these pins. See application note AN2613 "MPC5554 Minimum Board Configuration" for one example off the external configuration circuit.

Back to summary list

Errata 64

Customer Information

TITLE: Pad Ring: RSTOUT is 3-stated during the power-on sequence.

DESCRIPTION:

RSTOUT_B is 3-stated during power on reset.

WORKAROUND:

Connect an external pull device to RSTOUT_B during power on reset. This should be pull-down unless an external reset configuration circuit is being used, in which case it should be pull-up. Refer to AN2613 'MPC5554 Minimum Board Configurations' for further information.

Back to summary list

Errata 3545

Customer Errata

TITLE: Pad Ring: FlexRay pins changed to MH type

DESCRIPTION:

To meet the specified speed on the FlexRay interface for channel B pins FR_TX_B and FR_TX_B_EN, the pad type was changed to a MH type pad. Other MPC55XX parts that implement FlexRay may have other pad types or have a different pad used for these functions.

WORKAROUND:

Refer to the specific device reference manual and errata sheet for details on the specific implementation for any other MPC5500 device. Exact drop-in replacement may not be available for this feature.

Back to summary list

Errata 3644

Customer Information

TITLE: Pad Ring: SCI_A available on CAN_A pins (GPIO[83:84])

DESCRIPTION:

The Serial Interface (SCI_A) transmit (TX) and receive (RX) functions have been added to the pin multiplexer on the GPIO83/CAN_A_TX and GPIO84/CAN_A_RX pins and can be selected in the Pad Configuration Registers.

WORKAROUND:

Do not use the SCI_A TX and RX functions on the CAN_A pins if backwards hardware compatibility is required with previously defined devices (MPC5534, MPC5553, and MPC5554). The SCI_A TX and RX can be selected by setting the Pin Assignment bits of the Pad Configuration Register to 0b10 (PCR83 and PCR84).

Back to summary list

Errata 4381

Customer Information

TITLE: Pad Ring: Pin behavior during power sequencing

DESCRIPTION:

The power sequence pin states table in the device data sheet (electrical specification) did not specify the influence of the weak pull devices on the output pins during power up. When VDD is sufficiently low to prevent correct logic propagation, the pins may be pulled high to VDDE/VDDEH by the weak pull devices.

At some point prior to exiting the internal power-on reset state, the pins will go high-impedance until POR is negated.

When the internal POR state is negated, the functional state during reset will apply and weak pull devices (up or down) will be enabled as defined in the device Reference Manual.

WORKAROUND:

The best solution is to minimize the ramp time of the VDD supply to a time period less than the time required to enable external circuitry connected to the device outputs.

Back to summary list

Errata 2854

Customer Information

TITLE: SIU: ECCR[ENGDIV] field extended to eight bits

DESCRIPTION:

Two additional bits (bits 15:16) have been added to the divider (ENGDIV) for the Engineering Clock (ENGCLK) in the External Clock Control register (SIU_ECCR).

WORKAROUND:

For backwards compatibility to other devices either do not use the extra two bits, otherwise software will only be compatiable on devices that include these two extra bits for the divider.

Back to summary list

Errata 3276

Customer Information

TITLE: SIU: ENGCLK alternate source select bit added to SIU_ECCR

DESCRIPTION:

An alternate source selection bit has been added to the System Integration Unit External Clock Control Register (SIU_ECCR[ENGSSEL], bit 24) to select the clock source that drives the Engineering Clock (ENGCLK) pin through the engineering clock divider from either the system clock or the EXTAL frequency.

WORKAROUND:

Set the SIU_ECCR[ENGSSEL] to 0b1 to enable the select the crystal (or external clock on EXTAL) as the source of the ENGCLK divider. Setting the bit to 0b0 will select the system clock to the engineering clock divider (backwards compatible).

Back to summary list

Errata 3685

Customer Information

TITLE: SIU: CRSE bit added to the SIU Configuration Register

DESCRIPTION:

A new bit was added to the System Integration Unit to disable driving both the normal external bus and the calibration bus interface.

The Calibration Reflection Suppression Enable (SIU_CCR[CRSE]) bit enables the suppression of reflections from the External Bus Interface's calibration bus onto the non-calibration bus. The EBI drives some outputs to both the calibration and non-calibration busses. When CRSE is asserted (0b1), the values driven onto the calibration bus pins will not be reflected onto the non-calibration bus pins. When CRSE is negated (0b0), the values driven onto the calibration bus pins will be reflected onto the non-calibration bus pins. CRSE only enables reflection suppression for non-calibration bus pins that do not have a negated state to which the pins return at the end of the access. CRSE does not enable reflection suppression for the non-calibration bus pins that have a negated state to which the pins return at the end of an access. Those reflections always are suppressed. Furthermore, the suppression of reflections from the non-calibration bus onto the calibration bus is not enabled by CRSE. Those reflections also always are suppressed.

WORKAROUND:

Set the CRSE bit in the SIU_CCR to prevent signals on the calibration bus from being reflected onto the normal external bus interface.

Back to summary list

Errata 507

Customer Information

TITLE: e200z6: Core renamed from e500z6

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 30

DESCRIPTION:

The name of the main processing core has been changed from the e500z6 to the e200z6.

WORKAROUND:

Expect the new name for the e200z6 core in documentation.

Back to summary list

Errata 2312

Customer Information

TITLE: e200z6: MMU has 32 Table Entries

DESCRIPTION:

Initial documentation for the MPC5554 stated that there would be only 24 table entries in the e200z6 core Memory Managment Unit (MMU). Actually, 32 entries were implemented and will remain in the future e200z6 devices.

WORKAROUND:

All 32 of the MMU table entries can be used.

Back to summary list

Errata 3565

Customer Information

TITLE: e200z6: Way Access Mode bit added to the Cache

DESCRIPTION:

A new feature has been added to the e200 Cache to allow the cache ways to be completely disabled if not enabled specifically for either data or instruction use. Setting the Way Access Mode (WAM, bit 10) in the Level 1 Cache Control and Status register 0 (L1CSR0) completely disables look ups in ways that are not specifically disabled by the Additional Way Instruction Disable (AWID), Way Instruction Disable (WID), Additional Way Data Disable (AWDD), and Way Data disable (WDD) fields(L1CSR0[WAM]=0b1). Note the AWID and AWDD bits are not available on devices with 8K of cache.

WORKAROUND:

For future compatibility (with devices that support the WAM bit), set the WAM bit when writing to the L1CSRO. On devices that do not support WAM, writing this bit has no affect and will read back as cleared (0b0). This allows software to be written to take advantage of WAM capability on devices that will support it. Setting WAM will reduce the operating power consumption of the cache on devices that support WAM.

Back to summary list

Errata 3568

Customer Information

TITLE: e200z6: Cache can be configured as 4-way by 256 or 8-way by 128

DESCRIPTION:

A new feature has been added to the e200 Cache to select the configuration of the cache as either 4 or 8 cache ways. Setting the Cache Organization bit (CORG, bit 27) in the Level 1 Cache Control and Status register 0 (L1CSR0) changes the cache from 8 ways of 128 sets (L1CSR0[CORG]=0b0) to 4 ways of 256 sets each (L1CSR0[CORG]=0b1). This reduces the number of ways that must accessed in parallel by the core when a data or instruction is accessed in the cache. This reduces the power requirements of the cache.

WORKAROUND:

For future compatibility (with devices that support the CORG bit), set the CORG bit when writing to the L1CSR0. On devices that do not support CORG, writing this bit has no affect and will read back as cleared (0b0). This allows software to be written to take advantage of CORG capability on devices that will support it. The CORG can be set to reduce the operating power consumption of the cache by organizing the cache as 4 ways of 256 sets.

Back to summary list

Errata 4075

Customer Information

TITLE: e200z6: VLE added to core

DESCRIPTION:

Report Generated: 1 Aug 2007 Freescale Semiconductor Page 32

An optional Variable Length Encoded (VLE) instruction set has been added to the e200z6 core. VLE is an alternate instruction set that includes both 16-bit and 32-bit instruction encodings. Additional bits have been added to several registers to support this mode of operation. See the "e200z6 with VLE" addendum to the "e200z6 Reference Manual" for complete details on the instruction set and register bits. The addendum is available at: http://www.freescale.com/files/32bit/doc/ref_manual/e200z6RMAD1.pdf

WORKAROUND:

Insure that the device in use implements VLE before executing code from a page defined as VLE in a Memory Management Unit's table entry.

Back to summary list

Errata 5256

Customer Information

TITLE: e200z6: New SPE Instructions Added

DESCRIPTION:

e200z6 cores that support VLE also have additional instructions available in the traditional PowerPC instruction set.

The following SPE instructions have been added:
evfsmadd - Vector Floating-Point Single-Precision Multiply-Add
evfsnmadd - Vector Floating-Point Single-Precision Negative Multiply-Add
evfsmsub - Vector Floating-Point Single-Precision Multiply-Subtract
evfsnmsub - Vector Floating-Point Single-Precision Negative
Multiply-Subtract
efsmadd - Floating-Point Single-Precision Multiply-Add
efsnmadd - Floating-Point Single-Precision Negative Multiply-Add
efsmsub - Floating-Point Single-Precision Multiply-Subtract
efsnmsub - Floating-Point Single-Precision Negative Multiply-Subtract

In addition, the restriction of doubleword alignment (64-bit) for SPE load/store instructions has been removed.

WORKAROUND:

For backwards compatibility to devices that do not support VLE, do not use these new SPE instructions. Compilers may provide a switch to allow or to not allow use of these additional instructions in assembly code.

Errata 5093

Customer Errata

TITLE: eDMA: BWC setting may be ignored between 1st and 2nd transfers and after the last write of each minor loop.

DESCRIPTION:

The eDMA Transfer Control Descriptor Bandwidth Control field setting may be ignored between 1st and 2nd transfers and after the last write of each minor loop. This will occur if the source and destination sizes are equal. This behaviour is a side effect of measures designed to reduce start-up latency. Reference Manuals may fail to mention this behaviour.

WORKAROUND:

There are 2 possible workarounds:

- 1) Adjust the Transfer Control Descriptor (TCD) to make the source size not equal to the destination sizes (i.e. ssize = 16 bit, dsize = 32 bit). This delays the write which allows BWC[0:1] arriving from the TCD to be considered in the execution pipeline during start-up.
- 2) Adjust the TCD so the channel executes a single read/write sequence and then retires. In addition, the channel can be configured to execute a minor loop link to itself which will restart the channel after arbitration and channel start-up latency. The total number of bytes transferred can be controlled by the major loop count.

Back to summary list

Errata 2305

Customer Errata

TITLE: eMIOS: OPMWC unable to produce close to 100% duty cycle signal

DESCRIPTION:

The Center Aligned Output Pulse Width Modulation with Dead-time Mode (OPWMC) of the eMIOS module does not function correctly if the trailing edge dead time is programmed to a value outside of the current cycle time. The OPWMC mode requires that matches occur in the specific order: A, A, and then B, where the first A must match on the up count of the modulus counter, the second A match occurs on the down count of the modulus counter, and the B match occurs on the internal counter. If the programmed B match value is greater than the time required for the modulus counter to count down from the second A match and then up to the first A match of the next cycle, the first A match of the next cycle will be missed and the mode will not function correctly from that point on.

WORKAROUND:

Configure the selected modulus counter time base and the internal counter of the channel in OPWMC mode to count at the same rate. Program the value of the B match (dead time) to a value less than 2 times the programmed A match value.

Back to summary list

Errata 1742

Customer Information

TITLE: eQADC: 50% reference channels reads 20 mv low

DESCRIPTION:

The equation given for the definition of the 50% reference channel (channel 42) of the Enhanced Queued Analog to Digital Converter (eQADC) is not correct. The 50% reference point will actually return approximately 20mV (after calibration) lower than the expected 50% of difference between the High Reference Voltage (VRH) and the Low Reference Voltage (VRL).

WORKAROUND:

Do not use the 50% point to calibrate the ADC. Only use the 25% and 75% points for calibration.

After calibration, software should expect that the 50% Reference will read 20 mV low (2032 +/-4 counts).

Back to summary list

Errata 2878

Customer Information

TITLE: eQADC: conversions of muxed digital/analog channels close to the rail

DESCRIPTION:

If the VDDEH9 and the VDDA power supplies are at different voltage levels, the input clamp diodes on the multiplexed digital and analog signals (AN12, AN13, AN14, and AN15) will clamp to the lower of the two supplies.

If VDDEH9 is lower than the VDDA, conversions on these channels will not obtain full scale readings if voltage is close the the VDDA voltage.

WORKAROUND:

When multiplexed digital/analog signals are used as analog inputs, connect VDDEH9 to VDDA and do not use any of the digital functions multiplexed on these pins.

Back to summary list

Errata 4050

Customer Information

TITLE: eQADC: Leakage if any other supply/pin is greater than 0.6V above VDDA

DESCRIPTION:

Additional leakage could occur if any pin or power supply on the device (except VSTBY) is greater than 0.6 volts above the VDDA supply, including during power off conditions. The leakage will be to the VDDA supply. This leakage path is active only after the VDDA supply is powered. The leakage path remains active until internal POR is asserted.

WORKAROUND:

Expect higher leakages until the voltages are reduced to within 0.6 volts of the voltage on VDDA.

Back to summary list

Errata 3819

Customer Information

TITLE: eQADC: 25% calibration channel sampling requires at least 64 sampling cycles

DESCRIPTION:

The 25%*(VRH-VRL) calibration channel (ADC channel 44) will not convert to specification with an ADC sample time less than 64 cycles.

WORKAROUND:

For accurate calibration, the 25% calibration channel should be converted using the Long Sample Time (LST) setting for either 64 or 128 ADC sample cycles in the ADC Conversion Command Message (LST = 0b10 or 0b11).

End of Report

Page 37 Freescale Semiconductor Report Generated: 1 Aug 2007