

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Low Power Integrated Transmitter for ISM Band Applications

The MC13146 is an integrated RF transmitter targeted at ISM band applications. It features a 50 Ω linear Mixer with linearity control, voltage controlled oscillator, divide by 64/65 dual modulus Prescaler and Low Power Amplifier (LPA). Together with the receiver chip (MC13145) and either baseband chip (MC33410 or MC33411A/B), a complete 900 MHz cordless phone system can be implemented. This device may be used in applications up to 1.8 GHz.

- \bullet Low Distortion LPA: Pout_1 dB Compression Point \approx 10 dBm
- High Mixer Linearity: IIP3 = 10 dBm
- 50 Ω Mixer Input Impedance
- Differential Open Collector Mixer Output
- Low Power 64/65 Dual Modulus Prescaler (MC12054 type)
- 2.7 to 6.5 V Operation, Low Current Drain (25 mA @ 2.0 GHz)
- Powerdown Mode: <60 μA
- Usable up to 1.8 GHz

MC13146

LOW POWER DC – 1.8 GHz TRANSMITTER

SEMICONDUCTOR TECHNICAL DATA

FTA SUFFIX
PLASTIC PACKAGE
CASE 977
(LQFP-24)

ORDERING INFORMATION

		Operating Temperature Range	Package
	MC13146FTA	$T_A = -20 \text{ to } 70^{\circ}\text{C}$	LQFP-24

© Motorola, Inc. 1999

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Poltage EESCALE SEMICO	NV _{CC(max)} R,	INC _{7.} 2005	Vdc
Junction Temperature	T _J (max)	150	°C
Storage Temperature Range	T _{stg}	-65 to 150	°C

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Recommended Operating Conditions, Electrical Characteristics tables or Pin Descriptions section.

2. Meets Human Body Model (HBM) ≤100 V and Machine Model (MM) ≤25 V. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage (TA = 25°C)	VCC VEE	2.7	_ 0	6.5 -	Vdc Vdc
RF Frequency Range	fRF	1.0	_	2500	MHz
Ambient Temperature Range	T _A	-20	_	70	°C
Maximum Input Signal Level	PIF				
- with no damage - with minor performace degradation		_ _	–10 15	- -	dBm dBm

TRANSMITTER DC ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 3.6$ Vdc, no input signal, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Total Supply Current (Enable = V _{CC})	I _{total}	15	18	21	mA
Power Down Current (Enable = VEE)	I _{total}	-	30	100	μΑ
MC Current Input (High)	l _{ih}	70	100	130	μΑ
MC Current Input (Low)	lil	-130	-100	-7 0	μΑ
Input high voltage	V _{ih}	V _{CC} - 0.4	-	-	V
Input low voltge	V _{il}	-	-	0.4	V
Input Current	l _{in}	-50	-	50	μΑ

$\textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \ \text{Per Test Circuit shown in} \\ \textbf{TRANSMITTER AC ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}\text{C}, \ V_{CC} = 3.6 \ \text{Vdc}, \ \text{Enable} = 3.6 \ \text{Vdc}, \$ Figure 1, unless otherwise noted)

Characteristics	Input Pin	Measure Pin	Symbol	Min	Тур	Max	Unit
Amplifier Output Power (with external matching) @ 950 MHz; P _{in} = −19 dBm	PAin	PA _{out}	PA_PO	-4.5	-3.3	-2.1	dBm
Amplifier 1.0 dB Compression Point (@ 950 MHz = fIF_out)	PA _{in}	PA _{out}	P1dBC.Pt.	-	8.0	_	dBm
Amplifier Output Harmonics (with external matching) @ 950 MHz; P _{in} = -19 dBm 2nd 3rd	PA _{in}	PA _{out}	PA – 2f PA – 3f	-25 -35	–37 –52	1 1	dBc
Mixer/Buffer Output (@ 950 MHz = f_{OSC} ; Mixer input (Pin 5) pulled through 270 Ω resistor)		Buf_out+	PMx/Buf_out	-19	-18	-17	dBm
PLL Setup Time [Note 1]	MC	PRSCout	T _{PLL}	-	10	_	nS
Mixer Input Third Order Intercept Point			IIP3	-	10	_	dBm
VCO Phase Noise (@ 10 kHz offset)		Buf_out+		-	-80	_	dBc/Hz
Prescalar Output Level (10 k 8.0 pF Load)		PRSCout		400	_	600	mVpp

NOTES: 1. MC input (50%) to PRSC_{out} rising output (50%) for proper modulus selection.

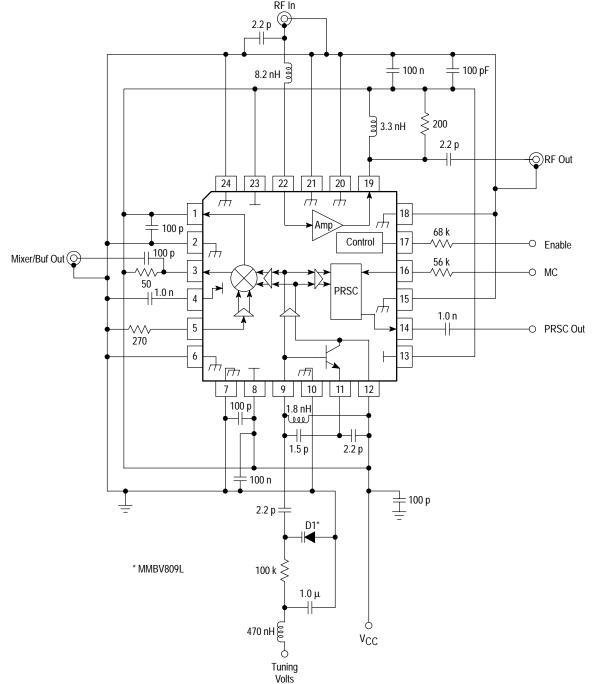
2. Typical performance parameters indicate the potential of the device under ideal operation conditions.

Semiconductor, Inc

Freescale

SEMICONDUCTOR, INC.

FREESCALE


BY

ARCHIVED

Freescale Samiconductor, Inc.

Figure 1. Test Circuit

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005 $_{\mbox{\scriptsize RE}\mbox{\tiny In}}$

PIN FUNCTION DESCRIPTION

Pin	Symbol/Type	Description	Description
ARÇHIVI	Mxr/Buf Out-, Mxr/Buf Out+	Mxr/Buf Out-	Mixer/Buffer Outputs The Mixer/Buffer is a differential open collector configuration which designed to use over a wide frequency range for up conversion as well as direct conversion. Differential to single—ended circuit configuration and matching options are discussed in the Circuit Description section. 6.0 dB of additional Mixer gain can be achieved by conjugately matching the outputs at the desired RF frequency.
2	VEE		V _{EE} , Negative Supply This pin is V _{EE} supply for the mixer IF output. In the application PC board this pin is tied to a common V _{EE} trace with other V _{EE} pins.
4	Mx Lin	Mx Lin VCC	Mixer Linearity Control The mixer linearity control circuit accepts approximately 0 to 200 μA control current to set the dynamic range of the mixer. An Input Third Order Intercept Point, IIP3 of 17 dBm may be achieved at 200 μA of control current.
5	Mxr/Buf In	Mxr/Buf In 450 μA	Mixer/Buffer Input The mixer input impedance is broadband 50 Ω for applications up to 2.4 GHz.
6, 7, 18, 24	VEE	VEE 1 18 VEE 24 VEE =	VEE, Negative Supply These pins are substrate connections on the IC. In the application PC board these pins are tied to a common VEE trace with other VEE pins.
8	Vcc	VCC 9 Base	V _{CC} , Supply Voltage Two V _{CC} pins are provided for the Local Oscillator and LO Buffer Amplifier. The operating supply voltage range is from 2.7 Vdc to 6.5 Vdc. In the PCB layout, the V _{CC} trace must be kept as wide as feasible to minimize inductive reactances along the trace. V _{CC} should be decoupled to V _{EE} at the IC pin.
9	Base	10 VEE 1 = →	On-board VCO Transistor
10	VEE	11 🔻	The transistor has the emitter, base, collector, V _{CC} and V _{EE} pins available. Internal biasing which is compensated for stability over temperature is
11	Emitter	Emitter 2.0 mA 500 μA	provided. It is recommended that the base pin is pulled up to V _{CC} through an RFC chosen for the
12	Collector	12 Land Land Land Land Land Land Land Land	particular oscillator center frequency. The application circuit shows a Colpitts oscillator configuration.

PIN FUNCTION DESCRIPTION (continued)

PIN FUNCTION DESCRIPTION (continued) Pin Symbol/Type Description Description											
ARÇHIVI 13	FD RY FREES	CALE SEMICONDUCTOR, INC. 2005	·								
13	V _{CC}	13 Vcc 1	V _{CC} , Supply Voltage								
14	PRSC Out	PRSC Out 1.0 mA	Prescaler Output The prescaler output provides 500 mVpp drive to the F _{in} Pin of a PLL synthesizer. Conjugately matching the interface will increase the drive delivered to the PLL input.								
15	V _{EE}	15 VCC	V _{EE} , Negative Supply								
16	MC	16 T	Dual Modulus Control Current Input This requires a current input of typically 200 μApp.								
17	Enable	17 Enable	Transmitter Enable Enable the transmitter by pulling the pin up to V _{CC} .								
19	PA _{out}		PA Out The output is an open collector of the cascode transistor low power amplifier (LPA); it is externally biased. The output may be conjugately matched with a shunt L, and series L and C network.								
20, 21	VEE	PA _{out} VEE =	VEE, Negative Supply VEE pin is taken to an ample dc ground plane through a low impedance path. The path should be kept as short as possible. A two sided PCB is implemented so that ground returns can be easily made through via holes.								
22	PA _{in}	V _{ref2} V _{ref2} V _{ref2} V _{ref1}	PA In The input is the base of the common emitter transistor. Minimum external matching is required to optimize the input return loss and gain.								
23	Vcc		V _{CC} , Positive Supply V _{CC} pin is taken to the incoming positive battery or regulated dc voltage through a low impedance trace on the PCB. It is decoupled to V _{EE} ground at the pin of the IC.								

CIRCUIT DESCRIPTION

General

Incontrol voltage. Incontrol vol

Current Regulation/Enable

The device features temperature compensating, voltage independent current regulators which are controlled by the enable function in which "high" powers up the IC.

Mixer: General

The mixer is a double–balanced four quadrant multiplier biased class AB allowing for programmable linearity control via an external current source. An input third order intercept point of 20 dBm has been achieved. The mixer has a 50 Ω single–ended RF input and open collector differential outputs. An onboard Local Oscillator transistor has the emitter, base and collector pinned out to implement a low phase noise VCO in various configurations. Additionally, a buffered prescaler output is provided for operation with a low frequency synthesizer. For direct conversion applications the input of the mixer may be terminated to ground through a 120 to 330 Ω resistor.

Local Oscillator/Voltage Control Oscillator

The on–chip transistor operates with coaxial transmission line or LC resonant elements to over 1.8 GHz. Biasing is done with a temperature/voltage compensated current source in the emitter. A RFC from V_{CC} to the base is recommended.

The transistor can be operated in the classic Colpitts, Clapp, or Hartley configuration. The application circuit (Figure 8) depicts a parallel resonant VCO which can cover the entire 902 to 928 MHz frequency band with phase noise of approximately –80 dBc/Hz at a 10 kHz offset (see Figure 2). For this configuration, the LO will be driven with approximately 100 mVrms, and the frequency of oscillation can be approximated by:

$$F_{OSC} = \frac{1}{\left(2\pi \sqrt{\left(\frac{C1 C2}{C1 + C2}\right)\left(\frac{C3 Cv}{C3 + Cv} + 3.6 \text{ pF}\right)(L1 + 1.8 \text{ nH})}\right)}$$

where Cv is the equivalent capacitance of the varactor at the Control voltage.

For higher frequency operation, a series tuned oscillator configuration is recommended. Table 1 contains the S-parameters for the VCO transistor in a common collector configuration. This information is useful for designing a VCO at other operating frequencies or for various other oscillator topologies.

The output power (at Mix/Buf Out) can be varied by adjusting the value of R5 as illustrated in Figures 3 and 4. Figure 5 shows the typical operating window for the prescaler.

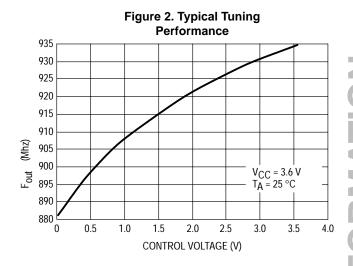
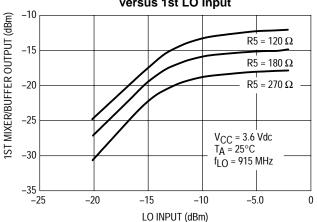
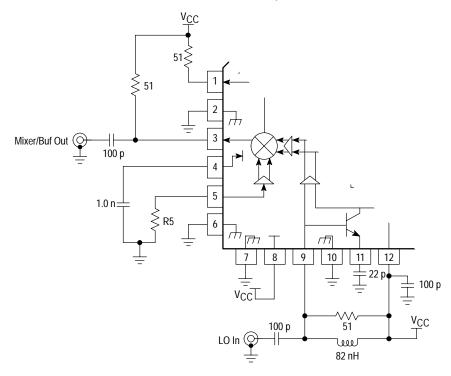
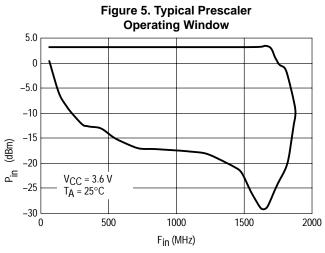



Figure 3. Mixer/Buffer Output versus 1st LO Input




Ш

Freescale Samigonductor, Inc.

Figure 4. Test Circuit for Figure 3.

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

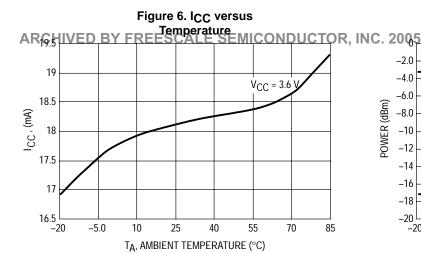
Mixer/Buffer Input

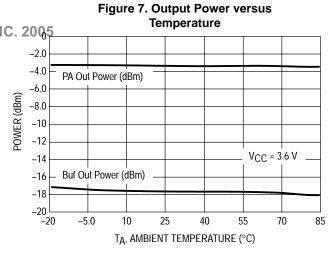
The Mixer/Buf In pin is a broadband, 50 Ω input used to drive the IF port of the mixer (see Table 2, S11 parameters). The Mixer/Buf In pin can be used in one of three modes:

- 1. A IF signal can be applied to this pin and up–converted to the desired RF frequency.
- 2. A resistor can be connected to ground, controlling the RF output power.
- A resistor can be connected to VCC, disabling the entire mixer.

The linear gain of the Mixer/Buf when used as a buffer is approximately -5.0 to -8.0 dB.

Mixer/Buffer Outputs


The mixer outputs (Mixer/Buf Out + and Mixer/Buf Out –) are balanced, open collector. A shunt resistor of 200 Ω minimum to V_{CC} is recommended for stability.


The outputs can be used as a single-ended driver or connected in a balanced-to-unbalanced configuration. If the single-ended driver configuration is used, the unused output must be tied directly to VCC. For the balanced-to-unbalanced configuration, an additional 3.0 to 6.0 dB of power gain can be achieved. Conjugate matching is easily accomplished to the desired load by the addition of a shunt and series element (see Table 2, S22 parameters).

Low Power Amplifier (LPA)

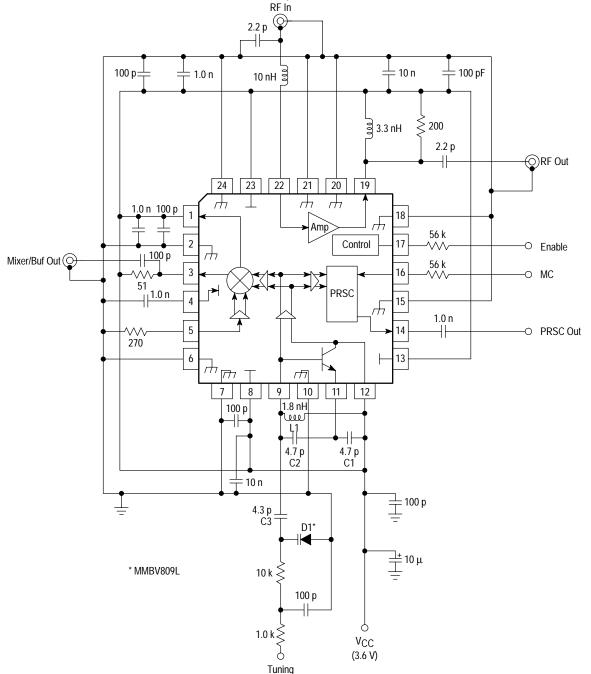
The LPA is internally biased at low supply current (approximately 2.0 mA emitter current) for optimal low power operation, yielding a 10 dBm 1.0 dB output power compression point. Input and output matching may be achieved at various frequencies using few external components (see Table 3 S–parameters). Typical power gain is 16 dB with the input/output conjugately matched to the source/load impedance. A minimum 200 Ω shunt resistor from the output to $V_{\rm CC}$ is recommended for stability.

Semiconductor, Inc

Freescale

SEMICONDUCTOR, INC.

FREESCALE


ВҮ

ARCHIVED

Freescale Samiganductor, Inc.

Figure 8. Applications Circuit

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Volts

Evaluation PCB

The evaluation PCB is a versatile board which allows the MC13146 to be configured as a basic transmitter, or to parasitics. Figures 10, 11, and 12 show the ac characterize individual operating parameters.

The general purpose schematic and associated parts list for the PCB is given in Figure 9. This parts list build-up is identical to the Test Circuit illustrated in Figure 1, although parameters can very significantly due to differences in PCB parasitics. Figures 10, 11, and 12 show the actual PCB

Please refer to AN1687/D and AN1691/D for additional details and applications for the device.

Figure 9. Evaluation PCB Schematic

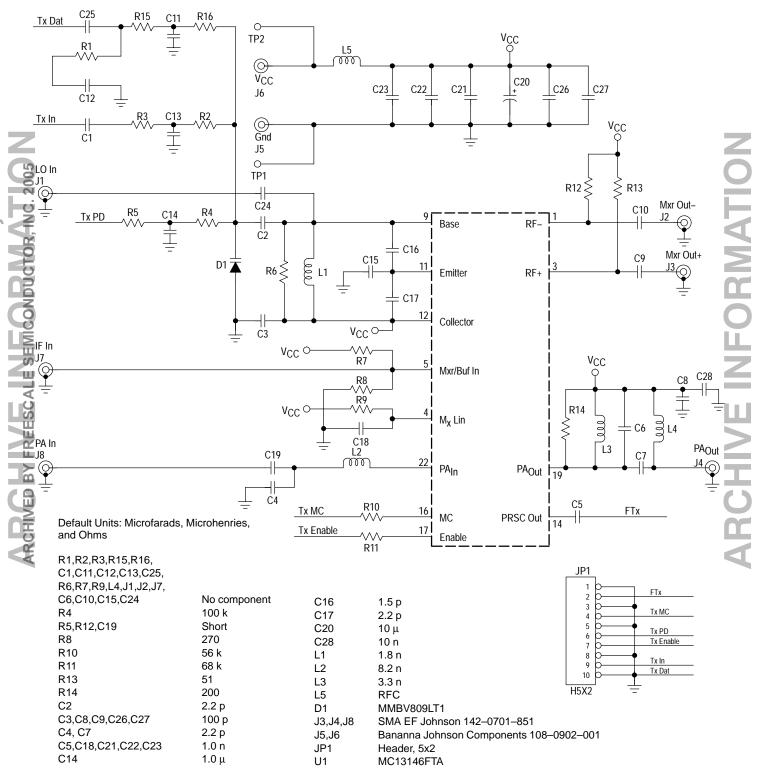
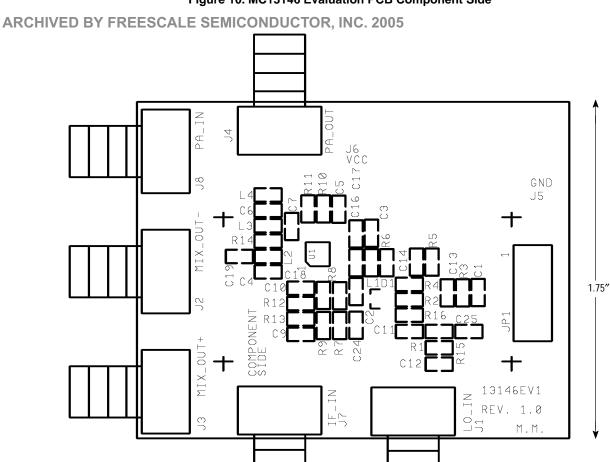



Figure 10. MC13146 Evaluation PCB Component Side

2.25"

FREESCALE SEMICONDUCTOR

Freescale

Freescale Samia anductor, Inc.

Figure 11. MC13146 Evaluation PCB Ground Plane

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

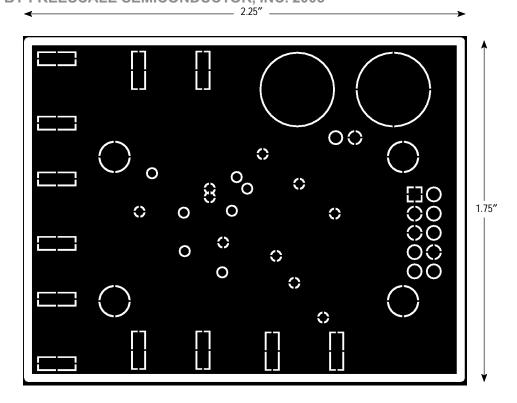
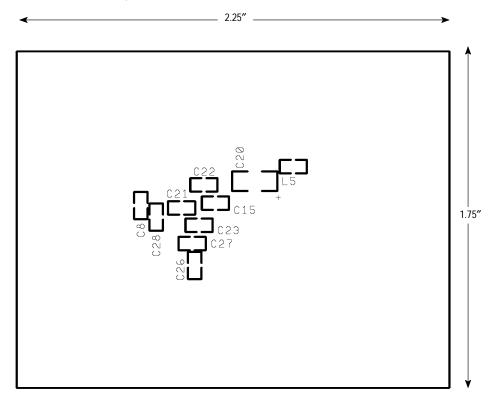



Figure 12. MC13146 Evaluation PCB Solder Side

FREESCALE

Freescale Samiganductor, Inc.

Table 1. VCO Transistor S–Parameters 3.6 Vdc; 50 Ω Load and Source Impedance; Common Collector

Freq A(MHz) VE	S11 D BMagREI	S11 SCAngE SE	S21 MICMagNDU	S21 CTOAngINC.	S12 200Mag	S12 Ang	S22 Mag	S22 Ang		
25	0.99	-1	0.88	0	0.01	44	0.10	-7		
50	0.99	-2	0.92	-1	0.02	61	0.09	-9		
100	0.98	-5	0.95	-2	0.04	70	0.07	-37		
150	0.98	-7	0.97	-3	0.06	73	0.07	-47		
200	0.97	-10	1.04	-4	0.07	73	0.06	-86		
300	0.95	-14	1.11	-8	0.10	71	0.09	-124		
400	0.93	-19	1.23	-12	0.13	67	0.14	-149		
450	0.92	-21	1.26	-14	0.15	66	0.15	-155		
500	0.91	-23	1.30	-16	0.16	65	0.17	-159		
600	0.86	-28	1.35	-20	0.19	61	0.20	-167		
750	0.79	-37	1.46	-25	0.24	57	0.26	-172		
800	0.79	-39	1.48	-26	0.25	56	0.28	-174		
850	0.77	-42	1.48	-28	0.26	54	0.29	-177		
900	0.74	-44	1.47	-31	0.28	52	0.28	-179		
950	0.67	-49	1.53	-35	0.30	49	0.31	174		
1000	0.61	-55	1.59	-38	0.33	47	0.34	171		
1250	0.45	-81	1.61	-50	0.41	38	0.38	157		
1500	0.35	-159	1.68	-67	0.53	16	0.38	134		
1750	0.85	107	1.60	-100	0.57	-15	0.33	97		
2000	1.02	76	1.17	-117	0.47	-32	0.18	86		
2250	1.25	76	1.13	-125	0.55	-38	0.19	89		
2500	1.58	53	0.84	-150	0.56	-64	0.09	57		

Table 2. Mixer Input/Output S–Parameters: 200 Ω Pull–Up Resistor

	The second secon										
Freq ARMHz)VE	S11 DBMagRE	S11 ESCAngE SE	S21 MICMagNDU	S21 CTOAngINC.	S12 200Mag	S12 Ang	S22 Mag	S22 Ang			
50	0.11	176.8	0.43	-4.2	0.001	38.7	0.60	-1.9			
100	0.11	177.9	0.43	-7.5	0.002	19.8	0.60	-3.5			
200	0.11	179.4	0.42	-13.7	0.001	28.3	0.60	-6.7			
300	0.10	179.5	0.42	-20.7	0.001	69.8	0.61	-9.9			
400	0.10	177.2	0.42	-27.3	0.001	106.3	0.61	-13.2			
450	0.11	174.9	0.41	-31.1	0.001	135.2	0.62	-14.8			
500	0.10	177.7	0.42	-34.1	0.002	138.2	0.62	-16.6			
600	0.09	174.3	0.42	-41.8	0.003	150.5	0.63	-20.0			
700	0.09	167.2	0.41	-49.3	0.005	158.7	0.64	-23.5			
750	0.08	162.8	0.41	-53.9	0.006	166.0	0.65	-25.2			
800	0.08	156.6	0.40	-58.4	0.008	166.5	0.65	-26.9			
850	0.06	152.3	0.40	-62.7	0.009	171.2	0.66	-28.7			
900	0.05	145.2	0.39	-66.4	0.012	177.6	0.66	-30.3			
il 950	0.04	131.1	0.38	-71.6	0.015	-179.7	0.67	-31.9			
1000	0.02	101.1	0.38	-76.7	0.019	178.0	0.68	-33.7			
1250	0.08	-41.5	0.27	-96.8	0.042	137.1	0.73	-43.2			
1500	0.40	-87.6	0.24	-90.2	0.036	129.9	0.78	-53.3			
1750	0.50	-144.1	0.30	-114.0	0.058	142.8	0.86	-63.8			
2000	0.51	-173.5	0.22	-133.0	0.174	151.6	0.96	-81.3			

Table 3. LPA S-Parameters: 200 Ω Pull-Up Resistor

! — — — —	1		1						
Freq (MHz)	S11 Mag	S11 Ang	S21 Mag	S21 Ang	S12 Mag	S12 Ang	S22 Mag	S22 Ang	
200	0.76	-26.0	9.3	148.1	0.0006	73.3	0.60	-12.4	
300	0.71	-37.5	8.5	135.2	0.0011	74.4	0.60	-18.5	
400	0.67	-47.2	7.6	124.5	0.0011	79.6	0.61	-24.6	
450	0.64	-51.7	7.2	118.6	0.0010	66.0	0.62	-28.3	
500	0.62	-55.4	6.9	114.2	0.0011	45.4	0.62	-31.6	
600	0.58	-63.7	6.3	105.3	0.0012	16.7	0.64	-38.8	
700	0.54	-72.1	5.6	95.2	0.0016	-20.9	0.66	-45.6	
750	0.52	-74.6	5.4	91.8	0.0013	-36.9	0.66	-48.5	
800	0.51	-77.9	5.2	87.7	0.0023	-50.8	0.67	-52.6	
850	0.49	-80.3	5.0	83.8	0.0033	-63.6	0.68	-56.1	
900	0.49	-83.5	4.7	79.6	0.0044	-78.7	0.68	-60.3	
950	0.48	-85.4	4.5	77.2	0.0060	-90.3	0.68	-63.2	
1000	0.48	-88.8	4.3	74.7	0.0082	-97.6	0.68	-65.8	
1250	0.51	-102.7	3.7	58.8	0.0249	-136.6	0.73	-74.6	
1500	0.48	-119.7	3.3	37.6	0.0273	172.0	0.90	-87.7	
1750	0.47	-130.0	2.7	20.5	0.0290	166.5	0.97	-103.7	
2000	0.51	-136.7	2.2	-1.1	0.0386	164.1	1.01	-119.1	

TNG.

DUCTOR

SEMICON

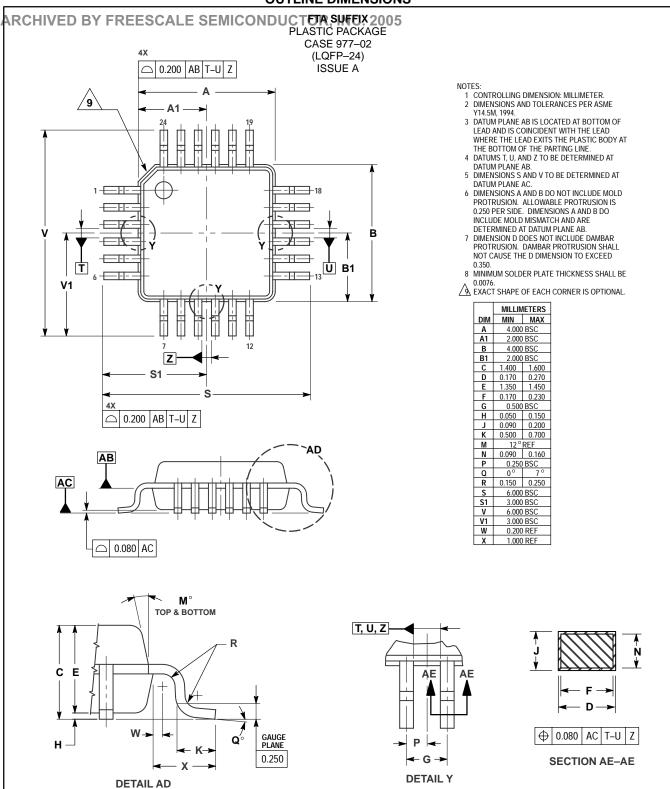
Ш

⋖

RE

CHINED

AR


BYF

Semiconductor

reescal

Freescale Sampanductor, Inc.

OUTLINE DIMENSIONS

ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

HOME PAGE: http://motorola.com/sps/

