ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Low Power Integrated Receiver for ISM Band Applications

The MC13145 is a dual conversion integrated RF receiver intended for ISM band applications. It features a Low Noise Amplifier (LNA), two 50Ω linear Mixers with linearity control, Voltage Controlled Oscillator (VCO), second LO amplifier, divide by 64/65 dual modulus Prescalar, split IF Amplifier and Limiter, RSSI output, Coilless FM/FSK Demodulator and power down control. Together with the transmit chip (MC13146) and the baseband chip (MC33410 or MC33411A/B), a complete 900 MHz cordless phone system can be implemented. This device may be used in applications up to 1.8 GHz .

- Low (<1.8 dB @ 900 MHz) Noise Figure LNA with 14 dB Gain
- Externally Programmable Mixer linearity: IIP3 = 10(nom.) to 17 dBm (Mixer1); IIP3 = 10 (nom.) to 17 dBm (Mixer2)
- 50Ω Mixer Input Impedance and Open Collector Output (Mixer 1 and Mixer 2); 50Ω Second LO (LO2) Input Impedance
- Low Power 64/65 Dual Modulus Prescalar (MC12053 type)
- Split IF for Improved Filtering and Extended RSSI Range
- Internal 330Ω Terminations for 10.7 MHz Filters
- Linear Coilless FM/FSK Demodulator with Externally Programmable Bandwidth, Center Frequency and Audio level
- 2.7 to 6.5 V Operation, Low Current Drain (<27 mA, Typ @ 3.6 V) with Power Down Mode (<10 $\mu \mathrm{A}$, Typ)
- 2.4 GHz RF, 1.0 GHz IF1 and 50 MHz IF2 Bandwidth

MC13145
UHF WIDEBAND
RECEIVER SUBSYSTEM
(LNA, Mixer, VCO, Prescalar,
IF Subsystem,
Coilless Detector)

FTA SUFFIX
PLASTIC PACKAGE
CASE 932
(LQFP-48)
ORDERING INFORMATION

Device	Temperature Range	Package
MC13145FTA	$T_{A}=-20$ to $70^{\circ} \mathrm{C}$	LQFP-48

Freescale Smoniqpanductor, Inc.

OVERALL RECEIVER SPECIFICATIONS

MAXIMUM RATINGS

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Recommended Operating Conditions, Electrical Characteristics tables or Pin Descriptions section.
2. Meets Human Body Model (HBM) ≤ 250 V and Machine Model (MM) ≤ 25 V. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

	Rating	Symbol	Min	Typ	Max	Unit
	Power Supply Voltage ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 2.7 \\ 0 \end{gathered}$	-	$\begin{gathered} 6.5 \\ 0 \end{gathered}$	Vdc
	Input Frequency (LNA In, Mxr1 In)	$\mathrm{f}_{\text {in }}$	100	-	1800	MHz
N	Ambient Temperature Range	$\mathrm{T}_{\text {A }}$	-20	-	70	${ }^{\circ} \mathrm{C}$
	Input Signal Level (with minor performance degradation)	$\mathrm{P}_{\text {in }}$	-	-10	-	dBm

RECEIVER DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{Vdc}$; No Input Signal,
unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit
Total Supply Current (Enable $\left.=\mathrm{V}_{\text {CC }}\right)$	$I_{\text {total }}$	24	27	34	mA
Power Down Current (Enable $=\mathrm{V}_{\text {EE }}$	$I_{\text {total }}$	-	10	50	$\mu \mathrm{~A}$

RECEIVER AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{Vdc} ; \mathrm{RF} \ln =1.0 \mathrm{GHz} ; 1 \mathrm{st}\right.$ LO Freq $=1070.7 \mathrm{MHz}$; 2nd LO Freq $=60 \mathrm{MHz} ; f_{\bmod }=1.0 \mathrm{kHz} ; \mathrm{f}_{\mathrm{dev}}= \pm 40 \mathrm{kHz}$; IF filter bandwidth $=280 \mathrm{kHz}$, unless otherwise noted. See Figure 1 Test Circuit)

Characteristics	Input Pin	Measure Pin	Symbol	MIn	Typ	Max	Unit
SINAD @ -110 dBm LNA Input	LNA In	Det Out	SINAD	12	20	-	dB
12 dB SINAD Sensitivity (Apps Circuit with C-message filter at DetOut)	LNA In	Det Out	SINAD 12 dB	-	-115	-	dBm
30 dB SINAD Sensitivity (No IF filter distortion within $\pm 40 \mathrm{kHz}$)	LNA In	Det Out	SINAD30dB	-	-100	-	dBm
SINAD Variation with IF Offset of $\pm 40 \mathrm{kHz}$ (No IF filter distortion within $\pm 40 \mathrm{kHz}$)	LNA In	Det Out	-	-	5.0	-	dB
Noise Figure: LNA, 1st Mixer \& 2nd Mixer	LNA In	IF Out	NF	-	3.5	5.0	dB
Power Gain: LNA, 1st Mixer \& 2nd Mixer	LNA In	IF Out	G	15	19	25	dB
RSSI Dynamic Range	IF In	RSSI	-	-	80	-	dB
RSSI Current $-10 \mathrm{dBm} @$ IF Input -20 dBm @ IF Input -30 dBm @ IF Input -40 dBm @ IF Input $-50 \mathrm{dBm} @$ IF Input -60 dBm @ IF Input -70 dBm @ IF Input -80 dBm @ IF Input -90 dBm @ IF Input	IF In	RSSI	-	$\begin{gathered} 35 \\ - \\ - \\ - \\ 15 \\ - \\ - \\ - \end{gathered}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \\ & 25 \\ & 20 \\ & 15 \\ & 10 \\ & 5.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 55 \\ - \\ - \\ - \\ 37 \\ - \\ - \\ - \\ 7.0 \end{gathered}$	$\mu \mathrm{A}$
Input 1.0 dB Compression Point(Measured at IF output)			$P_{\text {in1dB }}$	-	-18	-	dBm

RECEIVER AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{Vdc} ; \mathrm{RF} \ln =1.0 \mathrm{GHz} ; 1\right.$ st LO Freq = $1070.7 \mathrm{MHz} ; 2 \mathrm{nd}$ LO Freq $=60 \mathrm{MHz} ; \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz} ; \mathrm{f}_{\mathrm{dev}}= \pm 40 \mathrm{kHz}$; IF filter bandwidth $=280 \mathrm{kHz}$, unless otherwise noted. See Figure 1 Test Circuit)

ARCHIVED BY FREESCALE SEMIICONT Characteristics	$\begin{gathered} \text { pUinpūOR, } \\ \text { Pin } \end{gathered}$	$\begin{aligned} & \text { Measure } \quad \text { Pin } \\ & \quad \text { Pin } \end{aligned}$	Symbol	MIn	Typ	Max	Unit	
Input 3rd Order Intercept Point (Measured at IF output)			IIP3	-	-8.0	-	dBm	
Demodulator Output Swing ($50 \mathrm{k} \\| \mid 56 \mathrm{pF}$ Load)	IF In	Det Out	$V_{\text {out }}$	0.8	1.0	1.2	V_{pp}	
Demodulator Bandwidth ($\pm 1.0 \mathrm{~dB}$ bandwidth)		Det Out	BW	-	100	-	kHz	
Prescalar Output Level ($10 \mathrm{k} \Omega / / 8.0 \mathrm{pF}$ load) Prescaler 64 Frequency $=16.72968 \mathrm{MHz}$ Prescaler 65 Frequency $=16.4723 \mathrm{MHz}$		$\mathrm{PRSC}_{\text {out }}$	$V_{\text {out }}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	V_{pp}	
MC Current Input (High)		MC	lih	70	100	130	$\mu \mathrm{A}$	
MC Current Input (Low)		MC	l_{il}	-130	-100	-70	$\mu \mathrm{A}$	
Input high voltage		Enable	$\mathrm{V}_{\text {ih }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -0.4 \end{aligned}$	-	V_{CC}	V	
Input low voltage		Enable	$\mathrm{V}_{\text {il }}$	0	-	0.4	V	
Input Current		Enable	in	-50	-	50	$\mu \mathrm{A}$	
PLL Setup Time [Note 1]	MC	$\mathrm{PRSC}_{\text {out }}$	TPLL	-	10	-	nS	
SNR @ -30 dBm Signal Input (<40 kHz deviation;with C-Message Filter)				-	50	-	dB	
Total Harmonic Distortion ($<40 \mathrm{kHz}$ deviation;with C-Message Filter)				-	1.0	-	\%	
Spurious Response SINAD (RF In: -50 dBm)				-	12	-	dB	

Freescale Smoniqpanductor, Inc.

Figure 1. Test Circuit
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

General

 ARThellinç3145 isFanow power duas cohversion Wideband FM receiver incorporating a split IF. This device is designated for use as the receiver in analog and digital FM systems such as 900 Mhz ISM Band Cordless phones and wideband data links with data rates up to 150 kbps . It contains a 1 st and 2 nd mixer, 1st and 2nd local oscillator, Received Signal Strength Indicator (RSSI), IF amplifier, limiting IF, a unique coilless quadrature detector, and a device enable function.
Current Regulation/Enable

The MC13145 is designed for battery powered portable applications. Supply current is typically 27 mA at 3.6 Vdc .

Temperature compensating, voltage independent current regulators are controlled by the Enable Pin where "high" powers up and "low" powers down the entire circuit.

Low Noise Amplifier (LNA)

The LNA is a cascoded common emitter amplifier configuration. Under very large RF input signals, the DC base current of the common emitter and cascode transistors can become very significant. To maintain linear operation of the LNA, adequate dc current source is needed to establish the 2 Vbe reference at the base of the RF cascoded transistor and to provide the base voltage on the common emitter transistor. A sensing circuit, together with a current mirror guarantees that there is always sufficient dc base current available for the cascode transistor under all power levels.

1st and 2nd Mixer

Each mixer is a double-balanced class $A B$ four quadrant multiplier which may be externally biased for high mixer dynamic range. Mixer input third order intercept point of up to 17 dBm is achieved with only 7.0 mA of additional supply current. The 1st mixer has a single-ended input at 50Ω and operates at 1.0 GHz with -3.0 dB of power gain at approximately 100 mVrms LO drive level. The mixers have open collector differential outputs to provide excellent mixer dynamic range and linearity.

1st Local Oscillator

The 1st LO has an on-chip transistor which operates with coaxial transmssion line and LC resonant elements up to 1.8 GHz . A VCO output is available for multi-frequency operation under PLL synthesizer control.

RSSI

The received signal strength indicator (RSSI) output is a current proportional to the log of the received signal amplitude. The RSSI current output (Pin 7) is derived by summing the currents from the IF and limiting amplifier stages. An increase in RSSI dynamic range, particularly at higher input signal levels is achieved. The RSSI circuit is designed to provide typically 80 dB of dynamic range with temperature compensation.

Linearity of the RSSI is optimized by using external ceramic bandpass filters which have an insertion loss of 4.0 dB and 330Ω source and load impedance.

IF Amplifier

The first IF amplifier section is composed of three differential stages with the second and third stages
contributing to the RSSI. This section has internal DC INfeedback and external input decoupling for improved symmetry and stability. The total gain of the IF amplifier block is approximately 40 dB up to 40 MHz .

The fixed internal input impedance is 330Ω. When using ceramic filters requiring source and load impedances of 330Ω, no external matching is necessary. Overall RSSI linearity is dependent on having total midband attenuation of $10 \mathrm{~dB}(4.0 \mathrm{~dB}$ insertion loss plus 6.0 dB impedance matching loss) for the filter. The output of the IF amplifier is buffered and the impedance is 330Ω.

Limiter

The limiter section is similar to the IF amplifier section except that five stages are used with the middle three contributing to the RSSI. The fixed internal input impedance
is 330Ω. The total gain of the limiting amplifier section is approximately 84 dB . This IF limiting amplifier section internally drives the coilless quadrature detector section.

Coilless Quadrature Detector

The coilless detector is a unique design which eliminates the conventional tunable quadrature coil in FM receiver systems. The frequency detector implements a phase locked loop with a fully integrated on chip relaxation oscillator which is current controlled and externally adjusted, a bandwidth adjust, and an automatic frequency tuning circuit. The loop filter is external to the chip allowing the user to set the loop dynamics. Two outputs are used: one to deliver the audio signal (detector output) and the other to filter and tune the detector (AFT).

Figure 2. 2nd Mixer NF \& Gain versus LO Power

Evaluation PCB

The evaluation PCB is a versatile board which allows the MC13145 to be configured as a dual-conversion receiver, or to characterize individual operating parameters.

The general purpose schematic and associated parts list for a typical application are given in Figure 15. Please refer to AN1687/D and AN1691/D for additional details and applications for the device.

LO POWER (dBm)
11 -

PIN FUNCTION DESCRIPTION

	Pin	Symbol/Type	Description	Description
	47	BWadj	See Figure 3.	COILLESS DETECTOR Bandwidth Adjust The deviation bandwidth of the detector response is determined by the combination of an on-chip capacitor and an external resistor to ground.
	2	$F_{\text {adj }}$		Frequency Adjust The free running frequency of the detector oscillator is defined by the combination of an on-chip capacitor and an external resistor, Radj from frequency adjust pin to ground.
	1,48	$\mathrm{V}_{\text {EE }}$		V_{EE}, Negative Supply These pins are V_{EE} supply for the coilless detector circuit.
	3	AFT Out		AFT Out The AFT is low pass filtered with a corner frequency below the audio bandwidth allowing the error to be added to the center frequency adjust signal at Fadj, Pin 2. The low frequency high pass corner is set by the external capacitor, Ct from AFT out (Pin 3) to AFT in (Pin 4) and external resistor, Rt from AFT out to Fadj (Pin 2).
	4	AFT In		AFT In The AFT in is used to set the buffer transfer function.
$\begin{array}{ll} 0 & 0 \\ 0 & \frac{1}{2} \\ 0 \end{array}$	5	Det Gain		Detector Gain The AFT buffer is used to set the buffer transfer function.
- c	6	Det Out		Detector Output Set gain and output level of detector with resistor to Det Out Pin.

Figure 3. Coilless Detector Internal Circuit

Freescale Smbigenductor, Inc.

Freescale Smoniqqunductor, Inc.

\begin{tabular}{|c|c|c|c|c|}
\hline \& Pin \& Symbol/Type \& Description \& Description \\
\hline \& \[
\begin{gathered}
21 \\
\text { ARCHIV }
\end{gathered}
\] \& \begin{tabular}{l}
Enable \\
ED BY FREES
\end{tabular} \& \& \begin{tabular}{l}
Enable \\
Enable the receiver by pulling the pin up to \(\mathrm{V}_{\mathrm{CC}}\).
\end{tabular} \\
\hline \& 26 \& \(\mathrm{V}_{\mathrm{EE}}\) \& \multirow[t]{2}{*}{} \& \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{EE}}\), Negative Supply \\
\(V_{E E}\) supply for the mixer IF output.
\end{tabular} \\
\hline \& \begin{tabular}{|r|r}
\hline 27 \\
\\
\hline 28 \\
\\
\\
\\
\\
\end{tabular} \& IF1+

IF1- \& \& | 1st Mixer Outputs |
| :--- |
| The Mixer is a differential open collector output configuration which is designed to use over a wide frequency range. The differential output of the mixer has back to back diodes across them to limit the outnut voltage swing and to nrevent nulling of the VCO. Differential to single-ended circuit configuration and matching options are shown in the Test Circuit. Additional mixer gain can be achieved by matching the outputs for the desired passband Q. |

\hline \& 22

23 \& Collector \& \multirow[t]{3}{*}{} \& | On-board VCO Transistor |
| :--- |
| The transistor has the emitter, base, collector, VCC, and VEE pins available. Internal biasing which is compensated for stability over temperature is provided. It is recommended that the base pin is pulled up to VCC through an RFC chosen for the particular oscillator center frequency . |

\hline \multirow[t]{5}{*}{} \& 25 \& V_{CC} \& \& | V_{CC}, Positive Supply Voltage |
| :--- |
| A VCC pin is provided for the VCO. The operating supply voltage range is from 2.7 Vdc to 6.5 Vdc . |

\hline \& 18, 26 \& $\mathrm{V}_{\text {EE }}$ \& \& V_{EE}, Negative Supply Voltage

\hline \& 29 \& | Lin Adj2 |
| :---: |
| |
| Mxr2 ln | \& \& | 2nd Mixer Linearity Control |
| :--- |
| The mixer linearity control circuit accepts approximately 0 to $400 \mu \mathrm{~A}$ control current to set the dynamic range of the mixer. An Input Third Order Intercept Point, IIP3 of 17 dBm may be achieved at $400 \mu \mathrm{~A}$ of control current. IIP3 default with no external bias is 10 dBm . |

\hline \& 30 \& Mxr2 In \& \& | 2nd Mixer Input |
| :--- |
| The mixer input impedance is broadband 50Ω. |

\hline \& 31 \& V_{CC} \& \& VCC, Positive Supply

\hline
\end{tabular}

Freescale Smoniqqunductor, Inc.

Figure 4. IF Amplifier Functional Diagram
ARCHIVED BY FREESCALE SEMIJCONDUCTOR, INC. 2005

Pin	Symbol/Type	Description	Description
43	V_{CC}	See Figure 5.	$V_{\text {cc }}$, Positive Supply Voltage
44	Lim In		Limiting Amplifier Input Limiting amplifier input source impedance is 330Ω. This amplifier has 84 dB of gain with 3.0 dB bandwidth of 40 MHz ; this enables the IF and limiting ampliers chain to hard limit on noise.
45, 46	Lim Dec1, Lim Dec2		If Decoupling These pins are decoupled to V_{CC} to provide stable operation of the 2nd IF limiting amplifier.
7	RSSI		RSSI The RSSI circuitry in the 2nd, 3rd, \& 4th amplifier stages outputs a current when the output of the previous stage enters limiting. The net result is a RSSI current which represents the logarithm of the IF input voltage. An external resistor to ground is used to provide a voltage output.

Figure 5. Limiter Amplifier Functional Diagram

Figure 6. 2nd Mixer Gain

Figure 7. 2nd Mixer $\mathrm{P}_{1} \mathrm{~dB}$ versus LO Drive

Figure 9. 2nd Mixer Gain versus Lin Adj Current

Figure 10. Test Circuit for Figures 6 thru 9.

Freescale Smonigqpaductor, Inc.

APPLICATION INFORMATION

Input Matching / Components

 ARGis desifableto use a mixer to provide image frequency rejection. The filter is selected based on cost, size and performance tradeoffs. Typical RF filters have 1.5 to 2.5 dB insertion loss. The evaluation PC board layout accommodates ceramic RF filters which are offered by various suppliers.Interface matching between the LNA, RF filter and the mixer will be required. The interface matching networks shown in the evaluation circuit are designed for 50Ω interfaces.

1st Mixer Output \& 2nd Mixer Input Interface Matching

In a wideband system the primary sensitivity of the receiver backend may be achieved before the last mixer. The evaluation circuit shows the matching and impedance transformation network bewtween the 1st mixer open collector differential outputs and 2nd mixer single ended 50 ohm input. This adjustable shielded transformer and tapped capacitor transform network does two things: 1) bandpass limits the 1st IF signal with a loaded Q of approximately 40 and 2) provides adequate second image rejection and a low cost alternative to a SAW filter.

However, a SAW filter may be selected as a more costly alternative while providing improved 2nd image rejection and a fixed tuned 1st IF filter.

2nd Mixer \& Limiting IF Matching / Filtering

A simple LCR network is needed to interface the 2nd mixer differential outputs to 330 ohm ceramic filters or directly to the 330 ohm IF input. TDK, Toko and Murata offer single 10.7 MHz ceramic filters with various 3.0 dB bandwidths from 110 to 380 kHz . Murata offers a series-parallel resonator pair (part number KMFC545) with a 3.0 dB bandwidth of ± 325 kHz and a maximum insertion loss of 5.0 dB . However, even the series-parallel ceramic filter pair yields only a maximum bandpass of 650 kHz . In some data applications a wider band IF bandpass is necessary.

Local Oscillators - VHF/UHF Applications

The on-chip transistor may be used for HF and VHF local oscillator with higher order overtone crystals. It is recommended that a Butler overtone oscillator configuration is used. The crystal is driven from the emitter and is coupled to the high impedance base through a capacitive tap network. Operation at the desired overtone frequency is ensured by the parallel resonant circuit formed by an inductor and the tap capacitors and parasitic capacitances of the on-chip transistor and PC board. A high tolerance, high Q ceramic or air wound surface mount component may be used if the other components have tight enough tolerances; however, a variable inductor provides an adjustment for gain and frequency of the resonant tank ensuring lock up and start-up of the crystal oscillator. The overtone crystal is chosen with ESR of typically 80 ohms and 120 ohms maximum; if the resistive loss in the crystal is too high the performance of oscillator may be impacted by lower gain margins.

A series LC network to ac ground (which is $V_{C C}$) is comprised of the inductance of the base lead of the on-chip transistor and PC board traces and tap capacitors. Parasitic oscillations often occur in the 200 to 900 MHz range. A small resistor is placed in series with the base (pin 9) to cancel the
negative resistance associated with this undesired mode of NOscillation. Since the base input impedance is so large a small resistor in the range of 27 to 68 ohms has very little effect on the desired Butler mode of oscillation.

The crystal parallel capacitance, C_{0}, provides a feedback path that is low enough in reactance at frequencies of 5th overtones or higher to cause trouble. C_{0} has little effect near resonance because of the low impedance of the crystal motional arm ($\mathrm{R}_{\mathrm{m}}-\mathrm{L}_{\mathrm{m}}-\mathrm{C}_{\mathrm{m}}$). As the tunable inductor which forms the resonant tank with the tap capacitors is tuned off the crystal resonant frequency it may be difficult to tell if the oscillation is under crystal control. Frequency jumps may occur as the inductor is tuned. In order to eliminate this behavior an inductor, L_{0}, is placed in parallel with the crystal. L_{0} is chosen to be resonant with the crystal parallel capacitance, C_{0}, at the desired operation frequency. The inductor provides a feedback path at frequencies well below resonance; however, the parallel tank network of the tap capacitors and tunable inductor prevent oscillation at these frequencies.

Coilless Detector

The coilless detector (see Figure 3) is unique and offers cost and performance advantages over the conventional quadrature detector. It consists of a current controlled oscillator (ICO) and a phase detector. The error current, I is also amplified to provide an output, and the output is duplicated and filtered and fed back to the oscillator to provide automatic fine tuning (AFT).

The oscillator free running frequency, fo is set by $R f$ and is calculated by the following equation where C is approximately 4.0 pF :

$$
f 0=1 /\left(8^{*} R f^{*} C\right)
$$

The demodulator bandwidth is set by Rb and is shown in Figure 14.

The AFT is filtered by Ct and Rt. The low pass pole creates a high pass pole in the overall demodulator frequency response at:

$$
\mathrm{A} /\left(2^{*} \pi^{*} \mathrm{Ct}^{*} \mathrm{Rt}\right)
$$

where A , the current gain $=10$.
Typical coilless detector output level is:

$$
V_{\text {out }}(\text { peak })=\left(\text { f peak }^{\text {dev }} / \mathrm{f}_{\mathrm{f}} \mathrm{~F}\right)^{*} \mathrm{~A}^{*} \mathrm{i}^{\star} \mathrm{RI}
$$

For example, if peak deviation is $25 \mathrm{kHz}, \mathrm{i}=250 \mu \mathrm{~A}$ at f F $=10.7 \mathrm{MHz}$, and RI is $50 \mathrm{k} \Omega$; then $\mathrm{V}_{\text {out }}$ is 292 mVp or 584 mVpp.

The AFT Out pin is capable of voltage swings from about 300 mV to $\mathrm{V}_{\mathrm{CC}}-300 \mathrm{mV}$. At these extreme values, the AFT circuit can become saturated and very long detector lock-up times may be observed. It is best, therefore, to limit the AFT Out swing from about 500 mV to $\mathrm{V}_{\mathrm{CC}}-500 \mathrm{mV}$ and attempt to center the AFT Out voltage at $\mathrm{V}_{\mathrm{CC}} / 2$ for a detector lock condition.

As an example, for $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, the ideal AFT Out voltage at lock would be 1.35 V , with an available swing of 0.5 V to 2.2 V (1.7 V total). If the AFT tuning range is to be $\pm 500 \mathrm{kHz}$, this corresponds to an adjustment current of $1.0 \mathrm{MHz} / \mathrm{f} \mid \mathrm{F}^{*} \mathrm{i}$. From Figure 11, to set fIF at 10.7 MHz , i is approximately $240 \mu \mathrm{~A}$, and the total adjustment current range is therefor about $22.4 \mu \mathrm{~A}$ over a 1.7 V total swing, or $\mathrm{Rt}=75.9 \mathrm{k}$. At lock,
current equaling (AFT Out - Fadj)/Rt will be flowing into the Fadj node. This current then is approximately ($1.35 \mathrm{~V}-$
$0.7 \mathrm{~V}) / 75.9 \mathrm{k} \Omega$ or $8.6 \mu \mathrm{~A}$. The Fadj resistor, Rf , is therefore equal to $0.7 \mathrm{~V} /(240 \mu \mathrm{~A}+8.6 \mu \mathrm{~A})$ or about $2.82 \mathrm{k} \Omega$.

Figure 11. Fadj Current

Figure 13. BWadj Resistor versus BWadj Current

Figure 12. Fadj Resistor versus IF Frequency

Figure 14. IF Frequency versus BWadj Current

Freescale Smoniqpanductor, Inc.
Table 1. LNA S-Parameters: 3.6 Vdc

Freq $A R(M H z) / E[$	S11 BYMagREE	$\begin{gathered} \text { S11 } \\ \text { SCAAng SE } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { S21 } \\ \text { MIC(Mag) } \\ \hline \end{array}$	$\begin{gathered} \text { S21 } \\ \text { IORAng. } \\ \hline \end{gathered}$	$\begin{array}{r} \text { S12 } \\ 2 \mathrm{Mag} \\ \hline \end{array}$	$\begin{array}{r} \hline \text { S12 } \\ \text { Ang } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{S} 22 \\ & \mathrm{mag} \end{aligned}$	$\begin{aligned} & \text { S22 } \\ & \text { Ang } \end{aligned}$
25	0.84	-3.0	10.8	176	0.00005	-27	1.0	-1.2
50	0.84	-71	10.7	171	0.0004	76	1.0	-3.7
100	0.83	-15	10.3	162	0.0006	61	0.99	-4.9
150	0.81	-22	10.	154	0.0011	91	0.99	-7.3
200	0.78	-28	9.6	147	0.001	60	0.99	-9.7
300	0.73	-41	9.0	132	0.002	42	0.99	-15
400	0.66	-50	7.8	116	0.00070	22	0.95	-19
450	0.64	-54	7.4	111	0.0014	39	0.96	-21
500	0.62	-59	7.0	106	0.0009	69	0.96	-23
750	0.51	-77	5.5	80	0.0013	-51	0.94	-33
800	0.49	-80	5.2	75	0.002	-80	0.93	-36
850	0.47	-81	4.9	71	0.004	-120	0.92	-37
900	0.46	-82	4.6	67	0.0057	-130	0.92	-38
950	0.44	-82	4.3	62	0.008	-142	0.91	-40
1000	0.45	-81	3.9	58	0.014	-162	0.95	-41
1250	0.55	-94	3.5	47	0.029	140	0.099	-50
1500	0.48	-120	3.1	24	0.02	63	0.94	-65
1750	0.43	-126	2.5	6.9	0.0066	79	0.93	-74
2000	0.43	-135	2.1	-9.9	0.0099	129	0.92	-85
2250	0.45	-145	1.8	-27	0.017	133	0.91	-96
2500	0.47	-155	1.5	-43	0.021	132	0.89	-106
2750	0.51	-167	1.2	-60	0.03	130	0.88	-118
3000	0.55	-180	1.0	-78	0.039	120	0.85	-129

Freescale Smoniqquductor, Inc.

Figure 16. Evaluation PCB Component Side
Figure 17. Evaluation PCB Solder Side
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Freescale Smoniqpanductor, Inc.

Figure 18. Evaluation PCB Ground Plane
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005

Figure 19. Evaluation PCB Power Plane

OUTLINE DIMENSIONS

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{4}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System

- US \& Canada ONLY 1-800-774-1848
- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334
HOME PAGE: http://motorola.com/sps/

