# AFM912N Airfast RF Power LDMOS Transistor

Rev. 0 — November 2022

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and wideband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

### Typical Performance (7.5 Vdc, T<sub>A</sub> = 25°C, CW)

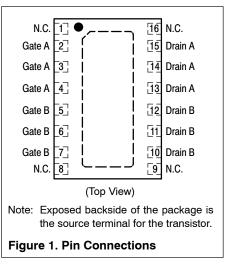
| Frequency<br>(MHz) | Gain<br>Compression | P <sub>out</sub><br>(W) | G <sub>ps</sub><br>(dB) | η <sub>D</sub><br>(%) |
|--------------------|---------------------|-------------------------|-------------------------|-----------------------|
| 941                | P1dB                | 12.5                    | 13.3                    | 65.2                  |
|                    | P3dB                | 15.7                    | 11.3                    | 69.5                  |

### Load Mismatch/Ruggedness

| Frequency<br>(MHz) | Signal<br>Type | VSWR                          | P <sub>in</sub><br>(dBm) | Test<br>Voltage | Result                   |
|--------------------|----------------|-------------------------------|--------------------------|-----------------|--------------------------|
| 941                | CW             | > 10:1 at all<br>Phase Angles | 32.9<br>(3 dB Overdrive) | 10.0            | No Device<br>Degradation |

### Features

- Characterized for operation from 136 to 941 MHz
- Unmatched input and output allowing wide frequency range utilization
- Device can be used single-ended or in a push-pull configuration
- Integrated ESD protection
- Integrated stability enhancements
- Wideband full power across each band
- Extreme ruggedness
- High linearity for: TETRA, SSB


### **Typical Applications**

- Output stage VHF band handheld radio
- Output stage UHF band handheld radio
- Output stage for 700-800 MHz handheld radio

Data Sheet: Technical Data









### Table 1. Maximum Ratings

| Rating                                                                | Symbol           | Value       | Unit      |
|-----------------------------------------------------------------------|------------------|-------------|-----------|
| Drain-Source Voltage                                                  | V <sub>DSS</sub> | -0.5, +30   | Vdc       |
| Gate-Source Voltage                                                   | V <sub>GS</sub>  | -6.0, +12   | Vdc       |
| Operating Voltage                                                     | V <sub>DD</sub>  | 0 to 12.5   | Vdc       |
| Storage Temperature Range                                             | T <sub>stg</sub> | -65 to +150 | °C        |
| Case Operating Temperature Range                                      | T <sub>C</sub>   | -40 to +150 | °C        |
| Operating Junction Temperature Range <sup>(1)</sup>                   | TJ               | -40 to +150 | °C        |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>   | 142<br>1.14 | W<br>W/°C |

### **Table 2. Thermal Characteristics**

| Characteristic                                                                                                            | Symbol          | Value <sup>(2)</sup> | Unit |
|---------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------|
| Thermal Resistance, Junction to Case<br>Case Temperature 78°C, 12.6 W CW, 7.5 Vdc, I <sub>DQ(A+B)</sub> = 130 mA, 941 MHz | $R_{\theta JC}$ | 0.88                 | °C/W |

### **Table 3. ESD Protection Characteristics**

| Test Methodology                      | Class                   |
|---------------------------------------|-------------------------|
| Human Body Model (per JS-001-2017)    | Class 1C, passes 1000 V |
| Charge Device Model (per JS-002-2014) | Class C3, passes 1200 V |

#### Table 4. Moisture Sensitivity Level

| Test Methodology                     | Rating | Package Peak Temperature | Unit |
|--------------------------------------|--------|--------------------------|------|
| Per JESD22-A113, IPC/JEDEC J-STD-020 | 3      | 260                      | °C   |

Table 5. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                    | Symbol              | Min | Тур  | Max  | Unit |
|-----------------------------------------------------------------------------------|---------------------|-----|------|------|------|
| Off Characteristics <sup>(3)</sup>                                                |                     |     |      |      |      |
| Zero Gate Voltage Drain Leakage Current ( $V_{DS}$ = 30 Vdc, $V_{GS}$ = 0 Vdc)    | I <sub>DSS</sub>    | _   | _    | 10   | μAdc |
| Gate-Source Leakage Current<br>(V <sub>GS</sub> = 5 Vdc, V <sub>DS</sub> = 0 Vdc) | I <sub>GSS</sub>    |     |      | 500  | nAdc |
| On Characteristics <sup>(3)</sup>                                                 |                     |     |      |      |      |
| Gate Threshold Voltage ( $V_{DS}$ = 10 Vdc, $I_D$ = 78 $\mu$ Adc)                 | V <sub>GS(th)</sub> | 1.7 | 2.1  | 2.6  | Vdc  |
| Drain–Source On–Voltage<br>(V <sub>GS</sub> = 10 Vdc, I <sub>D</sub> = 780 mAdc)  | V <sub>DS(on)</sub> |     | 0.11 | 0.15 | Vdc  |
| Forward Transconductance $(V_{DS} = 7.5 \text{ Vdc}, I_D = 4.7 \text{ Adc})$      | 9 <sub>fs</sub>     |     | 4.4  | —    | S    |

1. Continuous use at maximum temperature will affect MTTF.

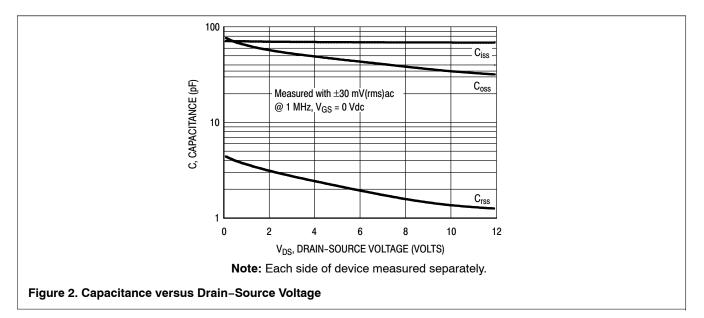
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

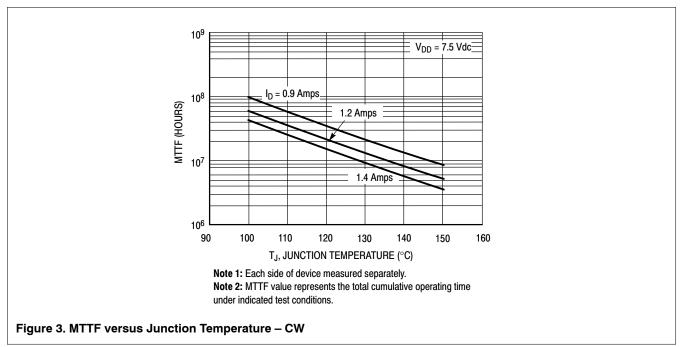
3. Each side of device measured separately.

(continued)

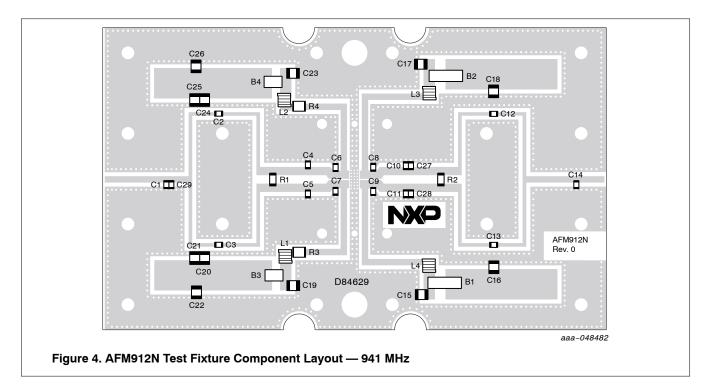
### Table 5. Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted) (continued)

| Characteristic                                                                                               | Symbol                        | Min                       | Тур          | Max   | Unit |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------|-------|------|
| Dynamic Characteristics <sup>(1)</sup>                                                                       |                               |                           |              | •     |      |
| Reverse Transfer Capacitance (V <sub>DS</sub> = 7.5 Vdc $\pm$ 30 mV(rms)ac @ 1 MHz, V <sub>GS</sub> = 0 Vdc) | C <sub>rss</sub>              |                           | 1.7          | —     | pF   |
| Output Capacitance (V_DS = 7.5 Vdc $\pm$ 30 mV(rms)ac @ 1 MHz, V_GS = 0 Vdc)                                 | C <sub>oss</sub>              | _                         | 39.8         | _     | pF   |
| Input Capacitance (V_{DS} = 7.5 Vdc, V_{GS} = 0 Vdc $\pm$ 30 mV(rms)ac @ 1 MHz)                              | C <sub>iss</sub>              | _                         | 68.9         | _     | pF   |
| <b>Typical Performance</b> (In NXP Test Fixture, 50 ohm system) $V_{DD}$ = 7.5 V                             | ′dc, I <sub>DQ(A+B)</sub> = 1 | 30 mA, P <sub>out</sub> = | 12 W, f = 94 | 1 MHz |      |
| Power Gain                                                                                                   | G <sub>ps</sub>               | _                         | 13.3         | _     | dB   |
| Drain Efficiency                                                                                             | η <sub>D</sub>                | _                         | 65.2         | _     | %    |
| Input Return Loss                                                                                            | IRL                           | _                         | -17          | _     | dB   |
| _oad Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) I <sub>DC</sub>                                | (A+B) = 130 mA                | •                         | •            | •     | •    |
| Load Mismatch/Huggeoness (in IVXP Test Fixture, 50 onm system) I <sub>DC</sub>                               | (A+B) = 130  mA               |                           |              |       | _    |


| Frequency<br>(MHz) | Signal<br>Type | VSWR                       | P <sub>in</sub><br>(dBm) | Test Voltage, V <sub>DD</sub> | Result                |
|--------------------|----------------|----------------------------|--------------------------|-------------------------------|-----------------------|
| 941                | CW             | > 10:1 at all Phase Angles | 32.9<br>(3 dB Overdrive) | 10.0                          | No Device Degradation |


### Table 6. Ordering Information

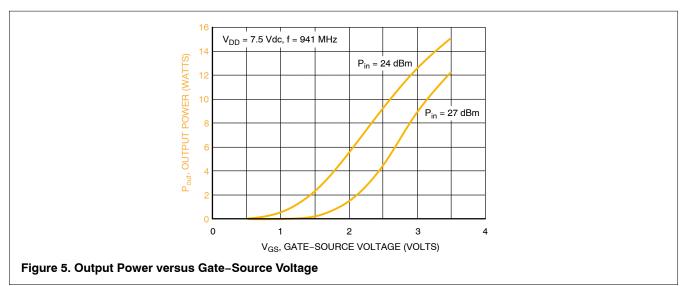
| Device    | Tape and Reel Information                              | Package          |
|-----------|--------------------------------------------------------|------------------|
| AFM912NT1 | T1 Suffix = 1,000 Units, 16 mm Tape Width, 7-inch Reel | DFN $4 \times 6$ |

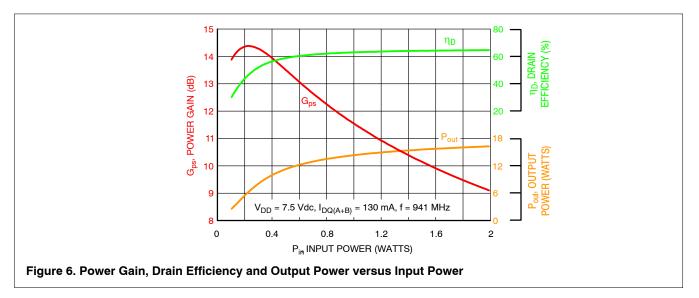

1. Each side of device measured separately.

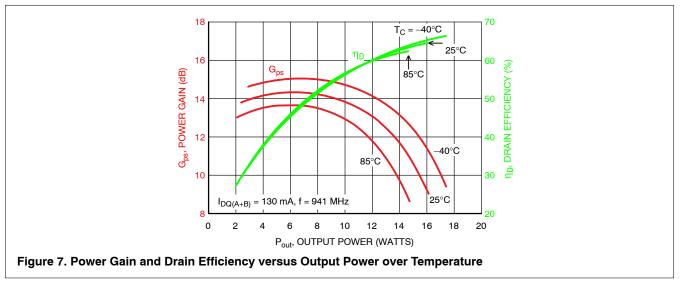
## **Typical Characteristics**






# 941 MHz Test Fixture — $3'' \times 5''$ (7.8 cm $\times$ 12.7 cm)





### Table 7. AFM912N Test Fixture Component Designations and Values — 941 MHz

| Part               | Description                                   | Part Number         | Manufacturer |
|--------------------|-----------------------------------------------|---------------------|--------------|
| B1, B2             | Long RF Bead                                  | 2743021447          | Fair-Rite    |
| B3, B4             | Short RF Bead                                 | 2743019447          | Fair-Rite    |
| C1                 | 2 pF Chip Capacitor                           | 600F2R0BT250XT      | ATC          |
| C2, C3             | 8.2 pF Chip Capacitor                         | 600F8R2BT250XT      | ATC          |
| C4, C5             | 6.8 pF Chip Capacitor                         | 600F6R8BT250XT      | ATC          |
| C6, C7, C8, C9     | 9.1 pF Chip Capacitor                         | 600F9R1BT250XT      | ATC          |
| C10, C11           | 5.6 pF Chip Capacitor                         | 600F5R6BT250XT      | ATC          |
| C12, C13           | 150 pF Chip Capacitor                         | 600F151JT250XT      | ATC          |
| C14                | 3 pF Chip Capacitor                           | 600F3R0BT250XT      | ATC          |
| C15, C17, C19, C23 | 1 μF Chip Capacitor                           | GRM32CR72A105KA35L  | Murata       |
| C16, C18, C22, C26 | 10 μF Chip Capacitor                          | C3225X7S1H106M250AB | TDK          |
| C20, C21, C24, C25 | 0.1 µF Chip Capacitor                         | GRM32MR71H104JA01L  | Murata       |
| C27, C28           | 0.2 pF Chip Capacitor                         | 600F0R2BT250XT      | ATC          |
| C29                | 5.1 pF Chip Capacitor                         | 600F5R1BT250XT      | ATC          |
| L1, L2             | 8 nH Inductor, 3 Turns                        | A03TKLC             | Coilcraft    |
| L3, L4             | 5 nH Inductor, 2 Turns                        | A02TJLC             | Coilcraft    |
| R1, R2             | 100 Ω, 1/4 W Chip Resistor                    | CRCW1206100RFKEA    | Vishay       |
| R3, R4             | 3.3 Ω, 1/2 W Chip Resistor                    | ERJ-14YJ3R3U        | Panasonic    |
| PCB                | Rogers RO4350B, 0.030″, e <sub>r</sub> = 3.66 | D84629              | MTL          |

# Typical Characteristics — 941 MHz Test Fixture







### AFM912N Airfast RF Power LDMOS Transistor, Rev. 0, November 2022

### 941 MHz Test Fixture

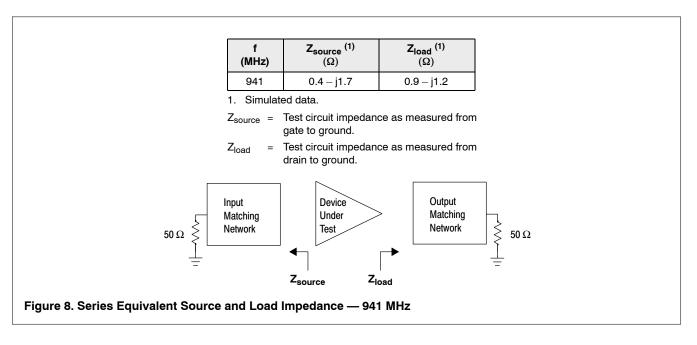
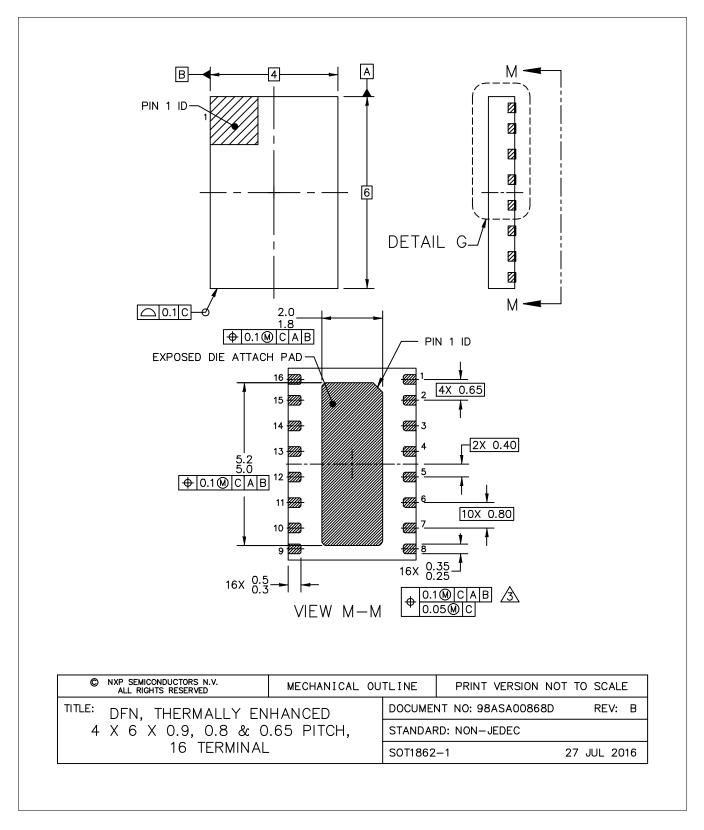
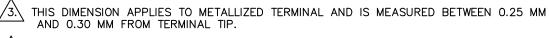






Figure 9. Product Marking

AFM912N Airfast RF Power LDMOS Transistor, Rev. 0, November 2022


### **Package Information**





NOTES:

- 1. DIMENSIONING & TOLERANCING CONFIRM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.



/4. COPLANARITY APPLIES TO THE EXPOSED HEAT SLUG AS WELL AS THE TERMINALS.

| TITLE:DFN, THERMALLY ENHANCED<br>4 X 6 X 0.9, 0.8 & 0.65 PITCH,<br>16 TERMINALDOCUMENT NO: 98ASA00868DREV: BSTANDARD: NON-JEDECSTANDARD: NON-JEDECSOT1862-127 JUL 2016 | © NXP SEMICONDUCTORS N.V.<br>ALL RIGHTS RESERVED | MECHANICAL OUTLINE |         | PRINT VERSION NO   | от то | SCAL   | .E  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|---------|--------------------|-------|--------|-----|
| 4 X 6 X 0.9, 0.8 & 0.65 PITCH, STANDARD: NON-JEDEC                                                                                                                     | TITLE: DFN, THERMALLY EN                         | HANCED             | DOCUMEN | NT NO: 98ASA00868D |       | REV:   | В   |
| 16 TERMINAL SOT1862-1 27 JUL 2016                                                                                                                                      | 4 X 6 X 0.9, 0.8 & 0.65 PITCH,                   |                    | STANDAR | RD: NON-JEDEC      |       |        |     |
|                                                                                                                                                                        |                                                  |                    | SOT1862 | -1                 | 27    | JUL 20 | 016 |

AFM912N Airfast RF Power LDMOS Transistor, Rev. 0, November 2022

### **Product Documentation, Software and Tools**

Refer to the following resources to aid your design process.

### **Application Notes**

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

#### **Engineering Bulletins**

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

### Software

• Electromigration MTTF Calculator

#### **Development Tools**

Printed Circuit Boards

### **Revision History**

The following table summarizes revisions to this document.

| Revision | Date      | Description                   |
|----------|-----------|-------------------------------|
| 0        | Nov. 2022 | Initial release of data sheet |

#### How to Reach Us

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

#### © NXP B.V. 2022

#### All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: November 2022 Document identifier: AFM912N