A5M39TG140 Airfast Power Amplifier Module

Rev. 0 — January 2023

The A5M39TG140 is a fully integrated Doherty power amplifier module designed for wireless infrastructure applications that demand high performance in the smallest footprint. Ideal for applications in massive MIMO systems, outdoor small cells and low power remote radio heads. The field-proven LDMOS and GaN-on-SiC power amplifiers are designed for TDD LTE and 5G systems.

3700–3980 MHz

• Typical LTE Performance: $P_{out} = 9 \text{ W Avg.}$, $V_{DC1} = V_{DP1} = 5 \text{ Vdc}$, $V_{DC2} = V_{DP2} = 48 \text{ Vdc}$, $1 \times 20 \text{ MHz}$ LTE, Input Signal PAR = 8 dB @ 0.01% Probability on CCDF. ⁽¹⁾

Carrier Center Frequency	Gain (dB)	ACPR (dBc)	PAE (%)
3710 MHz	32.6	-32.4	46.4
3840 MHz	32.7	-32.8	46.6
3970 MHz	32.3	-32.7	46.4

1. All data measured with device soldered in NXP reference circuit.

Features

- 2-stage module solution that includes an LDMOS integrated circuit as a driver and a GaN final stage amplifier
- Advanced high performance in-package Doherty
- Fully matched (50 ohm input/output, DC blocked)
- Designed for low complexity digital linearization systems
- · Reduced memory effects for improved linearized error vector magnitude

A5M39TG140

3700–3980 MHz, 32 dB, 9 W Avg. AIRFAST POWER AMPLIFIER MODULE

1. V_{DP2} and V_{DC2} are DC coupled internal to the package and must be powered by a single DC power supply.

Table 1. Functional Pin Description

Pin Number	Pin Function	Pin Description
1, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27	GND	Ground
2, 12	N.C.	No Connection
3	V _{DP2}	Peaking Drain Supply, Stage 2
4	V _{DP1}	Peaking Drain Supply, Stage 1
5	RF _{in}	RF Input
6	V _{GP2}	Peaking Gate Supply, Stage 2
7	V _{GP1}	Peaking Gate Supply, Stage 1
8	V _{GC1}	Carrier Gate Supply, Stage 1
9	V _{GC2}	Carrier Gate Supply, Stage 2
10	V _{DC1}	Carrier Drain Supply, Stage 1
11	V _{DC2}	Carrier Drain Supply, Stage 2
17	RF _{out}	RF Output

Table 2. Maximum Ratings

Rating	Symbol	Value	Unit
Gate-Bias Voltage Range	V _{G1} V _{G2}	−0.5 to +10 −8, 0	Vdc
Operating Voltage Range	V _{DD1} V _{DD2}	4.75 to 5.25 +38 to +55	Vdc
Maximum Forward Gate Current, $I_{G (A+B)}$, @ T_{C} = 25°C	I _{GMAX}	8.1	mA
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature	T _C	125	°C
Maximum Channel Temperature	т _{сн}	225	°C
Peak Input Power (3840 MHz, Pulsed CW, 10 μsec(on), 10% Duty Cycle, V _{DC1} = V _{DP1} = 5 Vdc, V _{DC2} = V _{DP2} = 48 Vdc)	P _{in}	28	dBm

Table 3. Lifetime

Characteristic	Symbol	Value	Unit
Mean Time to Failure Case Temperature 125°C, 9 W Avg., 75% Duty Cycle, V _{DC1} = V _{DP1} = 5 Vdc, V _{DC2} = V _{DP2} = 48 Vdc	MTTF	> 10	Years

Table 4. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 125°C, P _D = 11.5 W	R _{θJC} (IR)	5.6 (1)	°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case (2,3) Case Temperature 125°C, P _D = 10.2 W	R _{θCHC} (FEA)	9.8 (Typical)	°C/W

Table 5. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	C3

Table 6. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22–A113, IPC/JEDEC J–STD–020	3	260	°C

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

R_{9CHC} (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = 10^[A + B/(T + 273)], where *T* is the channel temperature in degrees Celsius, *A* = -11.6 and *B* = 9129.
Simulated maximum FEA channel-to-case thermal resistance: 11.5°C/W, P_D = 8.7 W.

Characteristic	Symbol	Min	Тур	Max	Unit
Carrier + Peaking Stage 2, GaN — Off Characteristics					
Off-State Drain Leakage ⁽¹⁾ (V _{DS} = 150 Vdc, V _{GS} = -8 Vdc)	I _{D(BR)}	_	_	5.0	mAdc
Off-State Gate Leakage (V _{DS} = 48 Vdc, V _{GS} = -7 Vdc)	I _{GLK}	-4.0		—	mAdc
Characteristic	Symbol	Тур	Rai	nge	Unit
Carrier Stage 1, LDMOS — On Characteristics					
Gate Threshold Voltage (V_{DS} = 5 Vdc, I_{DC1} = 120 μ Adc)	V _{GS(th)}	1.35	±C).4	Vdc
Gate Quiescent Voltage (V _{DS} = 5 Vdc, I _{DQC1} = 90 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.95	±C	Vdc	
Carrier Stage 2, GaN — On Characteristics					
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = 10 Vdc, I _D = 8.1 mAdc)	V _{GS(th)}	-2.74	±1.0		Vdc
Gate Quiescent Voltage (V _{DS} = 48 Vdc, I _{DQC2} = 15 mAdc, Measured in Functional Test)	V _{GS(Q)}	-2.77	±1.0		Vdc
Peaking Stage 1, LDMOS — On Characteristics		•	•		
Gate Threshold Voltage (V_{DS} = 5 Vdc, I_{DP1} = 120 μ Adc)	V _{GS(th)}	1.33	±C).4	Vdc
Gate Quiescent Voltage (V _{DS} = 5 Vdc, I _{DQP1} = 50 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.86	±C	Vdc	
Peaking Stage 2, GaN — On Characteristics					
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = 10 Vdc, I _D = 8.1 mAdc)	V _{GS(th)}	-2.74	±1	.0	Vdc
Gate Quiescent Voltage (V _{DS} = 48 Vdc, I _{DQP2} = 0 mAdc, Measured in Functional Test)	V _{GS(Q)}	-3.81	±1	.0	Vdc

1. Carrier side and Peaking side are tied together for these measurements.

(continued)

Table 7. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

		Charac	teristic		Symbol	Min	Тур	Max	Unit
Functio	nal Tests –	- 3700 MHz ⁽¹⁾ (Ir	NXP Doherty F	Production ATE (2) Tes	t Fixture, 50 oł	hm system) V _[_{DD1} = 5 Vdc, V	/ _{DD2} = 48 Vdc	,
1	00 - 1	15 m 1	E0 = 1/2	A/ 1 ON (3) V/		Ava 1 topo	2VV £ 0700 I		

DQC1 = 90 mA, IDQC2 = 13 mA, IDQP1 = 50 mA, VGP2 = (VBIAS - 1.2) (VVCC, Fout = 9 VVAVG, 1-tone CVV, 1 = 5700 MHz.						
Gain	G	29.6	32.2	—	dB	
Drain Efficiency	η_D	39.0	46.9	—	%	
Pout @ 3 dB Compression Point	P3dB	47.0	48.1	—	dBm	

Functional Tests — 3980 MHz ⁽¹⁾ (In NXP Doherty Production ATE ⁽²⁾ Test Fixture, 50 ohm system) $V_{DD1} = 5$ Vdc, $V_{DD2} = 48$ Vdc, $I_{DOC1} = 90$ mA, $I_{DOC2} = 15$ mA, $I_{DOC1} = 50$ mA, $V_{CD2} = (V_{PLAC} - 1.2)$ ⁽³⁾ Vdc, $P_{CL2} = 90$ WAVg, 1-tope CW, f = 3980 MHz.

$DQC1 = 90 \text{ mA}, IDQC2 = 15 \text{ mA}, IDQP1 = 50 \text{ mA}, VGP2 = (VBIAS - 1.2) (+ VdC, F_{out} = 9 \text{ WAV}2., 1-000 \text{ CW}, 1 = 5960 \text{ WH2}.$						
Gain	G	29.0	31.6	_	dB	
Drain Efficiency	η_D	38.0	46.3		%	
Pout @ 3 dB Compression Point	P3dB	47.0	48.0	_	dBm	

Wideband Ruggedness ⁽⁴⁾ (In NXP Doherty Power Amplifier Module Reference Circuit, 50 ohm system) $I_{DQC1} = 90$ mA, $I_{DQC2} = 15$ mA, $I_{DQP1} = 50$ mA, $V_{GP2} = (V_{BIAS} - 1.2)$ ⁽³⁾ Vdc, f = 3840 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

ISBW of 400 MHz at 55 Vdc, 3 dB Input Overdrive from 9 W Avg.	No Device Degradation
Modulated Output Power	

Typical Performance ⁽⁴⁾ (In NXP Doherty Power Amplifier Module Reference Circuit, 50 ohm system) $V_{DD1} = 5$ Vdc, $V_{DD2} = 48$ Vdc, $I_{DQC1} = 90$ mA, $I_{DQC2} = 15$ mA, $I_{DQP1} = 50$ mA, $V_{GP2} = (V_{BIAS} - 1.2)$ ⁽³⁾ Vdc, 3840 MHz

VBW Resonance Point, 2-tone, 1 MHz Tone Spacing (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		300	_	MHz
1-carrier 20 MHz LTE, 8 dB Input Signal PAR					
Gain	G	—	32.7	—	dB
Power Added Efficiency	PAE	_	46.6	—	%
Adjacent Channel Power Ratio	ACPR	—	-32.8	—	dBc
Adjacent Channel Power Ratio	ALT1	—	-45.7	—	dBc
Adjacent Channel Power Ratio	ALT2	—	-48.9	—	dBc
Gain Flatness ⁽⁵⁾	G _F	—	0.4	—	dB
Pulsed CW, 10% Duty Cycle					
Pout @ 3 dB Compression Point	P3dB	—	48.2	—	dBm
AM/PM @ P3dB	Φ	—	21	—	0
Gain Variation @ Avg. Power over Temperature (-40°C to +105°C)	ΔG	_	0.055	_	dB/°C
P3dB Variation over Temperature (-40°C to +105°C)	∆P3dB		0.007	_	dB/°C

Table 8. Ordering Information

Device	Tape and Reel Information	Package	
A5M39TG140T2	T2 Suffix = 2,000 Units, 24 mm Tape Width, 13-inch Reel	10 mm \times 6 mm Module	

1. Part input and output matched to 50 ohms.

2. ATE is a socketed test environment.

3. Increase V_{GP2} (peaking side) until I_{DQP2} = 40 mA current is attained, and then subtract 1.2 V for final V_{GP2} bias voltage.

4. All data measured in fixture with device soldered in NXP reference circuit.

5. Gain flatness = Max(G(f_{Low} to f_{High})) - Min(G(f_{Low} to f_{High}))

Correct Biasing Sequence

Turn ON:

Bias ON the GaN final stage first

- 1. Set gate voltage V_{GC2} and V_{GP2} to –5 V.
- 2. Set drain voltage V_{DC2} and V_{DP2} to nominal supply voltage (+48 V).
- 3. Increase V_{GP2} (peaking side) until I_{DQP2} = 40 mA current is attained, and then subtract 1.2 V for final V_{GP2} bias voltage.
- 4. Increase V_{GC2} (carrier side) until I_{DQC2} current is attained.

Bias ON the LDMOS driver stage second

- 5. Set drain voltage V_{DC1} and V_{DP1} to nominal supply voltage (+5 V).
- 6. Increase V_{GC1} (carrier side) until I_{DQC1} current is attained.
- 7. Increase V_{GP1} (peaking side) until I_{DQP1} current is attained.
- 8. Apply RF input power to desired level.

Turn OFF:

Bias OFF the GaN final stage first

- 1. Disable RF input power.
- 2. Adjust gate voltage V_{GC2} and V_{GP2} to –5 V.
- Adjust drain voltage V_{DC2} and V_{DP2} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Disable V_{GC2} and V_{GP2} .

Bias OFF the LDMOS driver stage second

- 5. Adjust gate voltage V_{GC1} and V_{GP1} to 0 V.
- 6. Adjust drain voltage V_{DC1} and V_{DP1} to 0 V.

Table 9. A5M39TG140 Reference Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C4, C11, C12	10 μF Chip Capacitor	GRM32EC72A106KE05L	Murata
C2, C3, C9, C10	1 μF Chip Capacitor	GRM21BC72A105KE01L	Murata
C6, C7	1000 pF Chip Capacitor	GRM155R72A102KA01D	Murata
Q1	Power Amplifier Module	A5M39TG140	NXP
R1, R2, R5, R6, R8, R9	0 Ω, 1/20 W Chip Resistor	RC0201JR-070RL	Yageo
R3, R4	10 Ω, 1/20 W Chip Resistor	RC0201FR-0710RL	Yageo
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D170087	MTL

Note: Component numbers C5, C8 and R7 are intentionally omitted.

•

A5M39TG140 AWLYYWWZ

Figure 4. Product Marking

Package Information

H-PLGA-27 I/O 10 X 6 X 1.365 PKG, 1 PITCH

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.
 - 4. DIMENSION APPLIES TO ALL LEADS AND FLAG.
 - 5. THE BOTTOM VIEW SHOWS THE SOLDERABLE AREA OF THE PADS. THE CENTER PAD (PIN 27) IS SOLDER MASK DEFINED. SOME PERIPHERAL PADS ARE SOLDER MASK DEFINED (SMD) AND OTHERS ARE NON-SOLDERMASK DEFINED (NSMD).

NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	6 SEP 2019
MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE	standard: NON—JEDEC	drawing number: 98ASA01540D	REVISION: O	PAGE: 6

Product Documentation and Tools

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Development Tools

• Printed Circuit Boards

Failure Analysis

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

Revision History

The following table summarizes revisions to this document.

Revision	Date	Description
0	Jan. 2023	Initial release of data sheet

How to Reach Us

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© NXP B.V. 2023

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: January 2023 Document identifier: A5M39TG140