Philips Semiconductors B.V.

Gerstweg 2, 6534 AE Nijmegen, The Netherlands

Report nr. : RNR-T45-97-B-0789
Author : T. Buss
Date $: 30^{\text {th }}$ of September 97
Department : P.G. Transistors \& Diodes, Development

2GHz LOW NOISE AMPLIFIER WITH THE BFG410W

update of report RNR-T45-96-B-772

Abstract

: This application note contains an example of a Low Noise Amplifier with the new BFG410W Double Poly RF-transistor. The LNA is designed for a frequency $f=2 G H z$. The Noise Figure NF~1.7dB at $f=2 \mathrm{GHz}$ and the gain $S_{21} \sim 14 d B$.

Appendix I: Schematic of the circuit
Appendix II: Printlayout and list of used components \& materials
Appendix III: Results of simulations and measurements

Philips Semiconductors B.V.

Introduction:

With the new Philips silicon bipolar double poly BFG400W series, it is possible to design low noise amplifiers for high frequency applications with a low current and a low supply voltage. These amplifiers are well suited for the new generation low voltage high frequency wireless applications. In this note a first study of such an amplifier will be given. This amplifier is designed for a working frequency of 2 GHz .

Designing the circuit:

The circuit is designed to show the following performance:
transistor: BFG410W
$\mathrm{V}_{\mathrm{ce}}=2 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SUP}} \sim 3.3 \mathrm{~V}$
freq $=2 \mathrm{GHz}$
Gain~14dB
$\mathrm{NF}<=1.7 \mathrm{~dB}$
VSWRi<1:2
VSWRo<1:2
In the simulations the effect of extra RF-noise caused by the SMA-connectors was omitted, so in the practical situation the NF is $\sim 0.1 \mathrm{~dB}$ higher. This LNA is not optimised for the highest IP3. The IP3 can be optimised by:
I. an extra series RC-decoupling of the base to the ground
II. increasing I_{c}

With the solution I. two extra components are necessary, and with solution II, the Noise Figure of the LNA increases and the optimum source impedance also.

The in- and outputmatching is realised with a LC-combination. Also extra emitter-inductance on both emitterleads (μ-strips) are used to improve the matching and the Noise Figure.

Designing the layout:

A lay-out has been designed with HP-MDS. Appendix II contains the printlayout.

Measurements:

Simulations (with realistic RF-models of al used parts) and measurements of the total circuit (epoxy PCB) are done (Appendix III).

Philips Semiconductors B.V.

Appendix I: Schematic of the circuit

Figure 1: LNA circuit
2 GHz LNA Component list:

Component:	Value:	Comment:
R1	$47 \mathrm{~K} \Omega$	Bias.
R2	10Ω	Better RF-stability (K>1).
R3	22Ω	RF-block.
R4	560Ω	Cancelling $\mathrm{H}_{\text {FE- }}$-spread.
C1	1 pF	Input match.
C2	5.6 pF	2 GHz short.
C3	5.6 pF	2GHz short.
C4	1 nF	RF-short
C5	3.3 pF	Output match.
C7	0.47 pF	Better RF-stability ($\mathrm{K}>1$).
$\mu \mathrm{s} 1$	$\mathrm{W}=0.25 \mathrm{~mm}$	μ-stripline $\mathrm{Z}_{0} \sim 95 \Omega$ (PCB: $\varepsilon_{\mathrm{r}} \sim 4.6, \mathrm{H}=0.5 \mathrm{~mm}$)
$\mu \mathrm{s} 2$	$\mathrm{W}=0.25 \mathrm{~mm}$	μ-stripline $Z_{0} \sim 95 \Omega$ (PCB: $\left.\varepsilon_{r} \sim 4.6, \mathrm{H}=0.5 \mathrm{~mm}\right)$
$\mu \mathrm{s} 3$	$\mathrm{W}=0.25 \mathrm{~mm}$	μ-stripline $Z_{0} \sim 95 \Omega$ (PCB: $\varepsilon_{r} \sim 4.6, \mathrm{H}=0.5 \mathrm{~mm}$)
$\mu \mathrm{s} 4$	(next table)	Emitter induction: μ-stripline + via

Philips Semiconductors B.V.

μ S4 Emitter induction (μ-stripline + via):

Name	Dimension	Description
L1	2.0 mm	length μ-stripline; $\mathrm{Z}_{0} \sim 48 \Omega \quad\left(\mathrm{PCB}: \varepsilon_{\mathrm{r}} \sim 4.6, \mathrm{H}=0.5 \mathrm{~mm}\right)$
L2	1.0 mm	length interconnect stripline and via-hole area
L3	1.0 mm	length via-hole area
W1	0.5 mm	width μ-stripline
W2	1.0 mm	width via-hole area
D1	0.4 mm	diameter of via-hole

Philips Semiconductors B.V.

Appendix II: Printlayout and list of used components \& materials

2 GHz LNA
BFG410W

Figure 2: Printlayout
2GHz LNA Component list:

Component:	Value:	
	size:	
R1	$47 \quad \mathrm{~K} \Omega$	0603 Philips
R2	$10 \quad \Omega$	0603 Philips
R3	$22 \quad \Omega$	0603 Philips
R4	$560 \quad \Omega$	0603 Philips
C1	$1 \quad \mathrm{pF}$	0603 Philips
C2	5.6 pF	0603 Philips
C3	5.6 pF	0603 Philips
C4	$1 \quad \mathrm{nF}$	0603 Philips
C5	3.3 pF	0603 Philips
C5	$0.47 \quad \mathrm{pF}$	0603 Philips
PCB	$\varepsilon_{\mathrm{r}} \sim 4.6, \mathrm{H}=0.5 \mathrm{~mm}$	FR4

Philips Semiconductors B.V.

Appendix III: Results of simulations and measurements:
BFG410W, Vsup $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$:

	HP-MDS Simulation: S-par.	HP-MDS Simulation: SPICE- model	Measurements PCB:	Comment:
\mid S21 $\left.\right\|^{2}[\mathrm{~dB}]$	14.2	14.6	14.3	
\mid S12 $\left.\right\|^{2}[\mathrm{~dB}]$	-24.6	-27.4	-29.5	
VSWRi	2.6	2.1	2.2	
VSWRo	1.3	1.3	2.1	
Noise Figure [dB]	1.6	1.8	1.7	
IP3 $[\mathrm{dBm}]$ (output)	-	-	-	not measured

Figure 3: HP-MDS simulation circuit

