

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 1

Application Note: JN-AN-1220

ZigBee 3.0 Sensors

This Application Note provides example applications for sensors in a ZigBee 3.0
network that employs the NXP JN516x and/or JN517x wireless microcontrollers. An
example application can be employed as:

• A demonstration using the supplied pre-built binaries that can be run on
nodes of the JN516x/7x hardware kits

• A starting point for custom application development using the supplied C
source files and associated project files

The sensors described in this Application Note are based on ZigBee device types
from the ZigBee Lighting & Occupancy (ZLO) Device Specification.

The ZigBee 3.0 nodes of this Application Note can be used in conjunction with nodes
of other ZigBee 3.0 Application Notes, available from the NXP web site.

1 Introduction
A ZigBee 3.0 wireless network comprises a number of ZigBee software devices that are
implemented on hardware platforms to form nodes. This Application Note is concerned with
implementing the device types for sensors on the NXP JN516x and JN517x platforms.

This Application Note provides example implementations of sensors that use one of the
following device types from the ZigBee Lighting & Occupancy (ZLO) Device Specification:

• Light Sensor

• Occupancy Sensor

• Light, Temperature & Occupancy Sensor (combination device type)

The above device types are detailed in the ZigBee 3.0 Devices User Guide [JN-UG-3114]
and the clusters used by the devices are detailed in the ZigBee Cluster Library (for ZigBee
3.0) User Guide [JN-UG-3115]. The Light, Temperature & Occupancy Sensor is a
combination device type based on the Light Sensor device type with the addition of the
Temperature Measurement cluster and Occupancy Sensing cluster.

 Note: If you are not familiar with ZigBee 3.0, you are advised to refer the
ZigBee 3.0 Stack User Guide [JN-UG-3113] for a general introduction.

The software and documentation resources referenced in this Application Note are available
free-of-charge via the ZigBee 3.0 page of the NXP web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

 ZigBee 3.0 Sensors

2 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

2 Development Environment

2.1 Software

In order to use this Application Note, you need to install the Eclipse-based Integrated
Development Environment (IDE) and Software Developer’s Kit (SDK) that are appropriate for
the chip family which you are using - either JN516x or JN517x:

• JN516x: If developing for the JN516x microprocessors, you will need:

• ‘BeyondStudio for NXP’ IDE [JN-SW-4141]

• JN516x ZigBee 3.0 SDK [JN-SW-4170]

 For installation instructions, refer to the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

• JN517x: If developing for the JN517x microprocessors, you will need:

• LPCXpresso IDE

• JN517x ZigBee 3.0 SDK [JN-SW-4270]

For installation instructions, refer to the JN517x LPCXpresso Installation and User
Guide (JN-UG-3109).

The LPCXpresso software can be obtained as described in the JN517x ZigBee 3.0 SDK
Release Notes, which indicate the version that you will need.

All other resources are available via the ZigBee 3.0 page of the NXP web site.

 Note: The code in this Application Note can be used in either
BeyondStudio or LPCXpresso and the process for importing the
application into the development workspace is the same for both.

 Note: Prebuilt JN5169 and JN5179 application binaries are supplied in
this Application Note package, but the applications can be rebuilt for other
devices in the JN516x and JN517x families (see Section 5.8).

2.2 Hardware

Hardware kits are available from NXP to support the development of ZigBee 3.0
applications. The following kits respectively provide JN516x-based and JN517x-based
platforms for running these applications:

• JN516x-EK004 Evaluation Kit, which features JN5169 devices

• JN517x-DK005 Development Kit, which features JN5179 devices

Both of these kits support the NFC commissioning of network nodes (see Section 3.1).

It is also possible to develop ZigBee 3.0 applications to run on the components of the earlier
JN516x-EK001 Evaluation Kit, which features JN5168 devices, but this kit does not support
NFC commissioning.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 3

3 Application Note Overview
The example applications provided in this Application Note are listed in the following table.
For each application, the table indicates the required device type as well as the device type
(on another node) with which it can be paired for operation.

Application Device Type Paired Device Type

App_LightSensor Light Sensor Control Bridge

App_OccupancySensor Occupancy Sensor Control Bridge

App_LightTemperatureOccupancySensor Light, Temperature &
Occupancy Sensor *

Control Bridge

Table 1: Example Applications and Device Types

* Light Sensor device type with addition of Temperature Measurement and Occupancy Sensing clusters

The Control Bridge is described in in the Application Note ZigBee Control Bridge
[JN-AN-1216].

For each application, source files and pre-built binary files are provided in the Application
Note ZIP package. The pre-built binaries can be run on components of the JN516x-EK004
Evaluation Kit.

• To load the pre-built binaries into the evaluation kit components and run the
demonstration application, refer to Section 4.

• To start developing you own applications based on the supplied source files, refer to
Section 5.

3.1 NFC Hardware Support

Some NXP hardware kits for the development of ZigBee 3.0 applications provide the
possibility of network commissioning through Near Field Communication (NFC). The kits and
components that provide NFC support are indicated in the table below.

Hardware Kit Hardware Components for NFC Field Detect Connection

JN517x-DK005 NFC is built into the OM15028 Carrier Board GPIO 17

JN516x-EK004 DR1174 Carrier Board plus OM15044 and either
OM55679/NT3120 or OM5569/NT322E

Note: A 4K7 resistor should be fitted to the R1 pads on the
OM15044 board to avoid unnecessary reads of the NTAG
due to the FD line floating.

DIO 0

Table 2: NFC Support in JN516x/7x Hardware Kits

The Field Detect of the NFC chip needs to be connected to an IO line of the JN516x/7x
module so that an interrupt can be generated as the device is moved in or out of the field.
This is achieved by fitting a jumper to the pin specified in the above table.

 Note: Early samples of the JN516x-EK004 kit used a yellow wire rather
than a jumper for the Field Detect connection, but the pin is the same.

 ZigBee 3.0 Sensors

4 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

3.2 NFC Data Formats

Two different NFC data formats are supported for commissioning. The Router and End
Device applications can be built to support only one (or none) of these:

• ZigBee Installation Code Format: This is a newer format introduced with v1003 of
this Application Note. The applications are built to use this format by default. This
format uses a key derived from the device’s ZigBee Installation Code to encrypt data in
the NTAG.

• AES Encryption Format: This older format uses an AES key to encrypt data in the
NTAG.

The selection of the data format can be made at compile-time by using makefile variables
described in the Router Command Line Build Options or End Device Command Line Build
Options.

 Note: The Application Note JN-AN-1222, IoT Gateway Host With NFC,
versions v2007 and later is able to commission either of these formats
depending upon the data in the presented NTAG. Earlier versions support
only AES Encryption Format.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 5

4 Running the Demonstration Application
This section describes how to use the supplied pre-built binaries to run the example
applications on components of the JN516x-EK004 or JN517x-DK005 kit. All the applications
run on a JN5169 module on a DR1174 Carrier Board or on a JN5179 module on an
OM15028 Carrier Board, fitted with a specific expansion board.

4.1 Loading the Applications

The table below lists the application binary files supplied with this Application Note and
indicates the JN516x/7x hardware kit components with which the binaries can be used.
These files are located in the Build directories for the relevant applications.

Application JN5169 Binary File JN516x-EK004 Hardware

LightSensor LightSensor_
NtagIcode_JN5169_DR1175.bin

DR1174 Carrier Board with JN5169 module
DR1175 Lighting/Sensor Expansion Board
OM15044 NTAG Adaptor Board
OM5569/NT322E NTAG Board

LightTemperature
OccupancySensor

LightTemperatureOccupancySensor_
NtagIcode_JN5169_DR1175.bin

OccupancySensor OccupancySensor_
NtagIcode_JN5169_DR1199.bin

DR1174 Carrier Board with JN5169 module
DR1199 Generic Expansion Board
OM15044 NTAG Adaptor Board
OM5569/NT322E NTAG Board

Application JN5179 Binary File JN517x-DK005 Hardware

LightSensor LightSensor_
NtagIcode_JN5179_DR1175.bin

OM15028 Carrier Board with JN5179 module
DR1175 Lighting/Sensor Expansion Board

LightTemperature
OccupancySensor

LightTemperatureOccupancySensor_
NtagIcode_JN5169_DR1175.bin

OccupancySensor OccupancySensor_
NtagIcode_JN5169_DR1199.bin

OM15028 Carrier Board with JN5179 module
DR1199 Generic Expansion Board

Table 3: Application Binaries and Hardware Components

A binary file can be loaded into the Flash memory of a JN516x/7x device using the JN51xx
Flash Programmer [JN-SW-4107], available via the NXP web site. This software tool is
described in the JN51xx Production Flash Programmer User Guide [JN-UG-3099].

 Note: You can alternatively load a binary file into a JN516x/7x device
using the Flash programmer built into the relevant IDE.

 ZigBee 3.0 Sensors

6 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

To load an application binary file into a JN516x/7x module on a Carrier Board of a kit, follow
the instructions below:

1. Connect a USB port of your PC to the USB Mini B port on the Carrier Board using a
‘USB A to Mini B’ cable. At this point, you may be prompted to install the driver for the
cable.

2. Determine which serial communications port on your PC has been allocated to the USB
connection.

3. On your PC, open a command window.

4. In the command window, navigate to the Flash Programmer directory:

C:\NXP\ProductionFlashProgrammer

5. Run the Flash programmer to download your binary file to JN516x/7x Flash memory by
entering a command with the following format at the command prompt:

JN51xxProgrammer.exe –s <comport> -f <path to .bin file>

 where <comport> is the number of the serial communications port.

6. Once the download has successfully completed, disconnect the USB cable and, if
required, reset the board or module to run the application.

Operating instructions for the different applications are provided in the sections below.

4.2 Using the LightSensor Application

This section describes how to commission and operate the LightSensor application in a
ZigBee 3.0 network. To use this application, you must have programmed the relevant
application binary into the JN5169/79 module on a Carrier Board fitted with the DR1175
Lighting/Sensor Expansion Board, as described in Section 4.1:

• LightSensor_NtagIcode_JN5169_DR1175.bin for a JN5169 module

• LightSensor_NtagIcode_JN5179_DR1175.bin for a JN5179 module

4.2.1 Light Sensor Device Functionality

The Light Sensor can be used to provide regular illuminance measurements (from the
Illuminance Measurement cluster) to a control application that adjusts the level of light
emitted by light nodes – these lights can be any ZLO Lighting devices that support the Level
Control cluster. The control application resides on the device to which the Light Sensor is
bound, and this device forms the lights into a group for synchronous control.

The functionality of the LightSensor application is described and illustrated below.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 7

4.2.2 Clearing Context Data on the Device

When loading the application for the first time, any persistent context data must be cleared in
the device.

The context data can be cleared by pressing and releasing the RST/RESET button while
holding down the DIO8/GPIO4 button (both buttons are on the Carrier Board).

A reset is indicated by the white LED cluster on the Lighting/Sensor Expansion Board
illuminating for a second and switching off.

 ZigBee 3.0 Sensors

8 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

4.2.3 Commissioning

The commissioning operations for this device, such as forming/joining a network and
binding, are the same as for the other device types described in this Application Note and
are detailed in Section 4.5. To incorporate the device into a ZigBee 3.0 network, work
through Section 4.5 and then return to this point for device operation.

4.2.4 Operation

There are two modes of operation of the Light Sensor, as follows:

• Normal Mode: The Light Sensor sleeps and wakes up every 61 seconds
(ZLO_MAX_REPORT_INTERVAL), when it obtains a new light reading, updates the

u16MeasuredValue attribute with the new reading and sends a periodic report. This is

done to reduce the current consumption, which increases the battery life.

• Keep-alive Mode: The Light Sensor is permanently active and polling its parent every
second. If the light level changes since the last reading by at least
LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE then the u16MeasuredValue

attribute is updated and the Light Sensor sends out an attribute report after 1 second. If
there is no change, it will send a report every 60 seconds.

The light sensor will be reading the value of the driver at the rate of once every
LIGHT_SENSOR_SAMPLING_TIME_IN_SECONDS (5 seconds) and updating its

u16MeasuredValue attribute accordingly. Thus, the changes in light sensor reading

should be done only at intervals of 5 seconds.

If there is any change in the u16MeasuredValue attribute, the sensor will send out a

report after 1 second (ZLO_MIN_REPORT_INTERVAL), otherwise every 61 seconds

(ZLO_MAX_REPORT_INTERVAL).

The Light Sensor can but put into ‘keep-alive’ mode by power-cycling 3 times at one-second
intervals (otherwise you will not allow the right task to be triggered).

 Note 1: As a sleepy End Device, the Light Sensor goes through a
sleep/wake cycle. If an attribute change occurs just before the device
enters sleep mode, the attribute report will be sent out on the next wake-
up and there will therefore be a delay.

 Note 2: If the Light Sensor is to report frequently, it is recommended that
the bound transmission management feature is enabled in the ZCL by
defining CLD_BIND_SERVER in the zcl_options.h file. This feature and
the required resources are described in the ZigBee Cluster Library User
Guide (JN-UG-3115).

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 9

4.2.5 Light Level Measurement

The calculation detailed below determines the light level that should be produced by the light
for a given illuminance measured at the Light Sensor.

At the Light Sensor, the maximum lux level (as measured by the ALS driver on the DR1175
board) is 4015 and the minimum lux level is 1.

At the light, the light level to be produced is represented as a value in the range 0 to 255
(this is the u8CurrentLevel attribute of the Level Control cluster).

A divisor is defined which is used (later) in calculating the produced light level from the
measured Lux value:

ILLUMINANCE_LUX_LEVEL_DIVISOR = 4015/254 ~ 16

(i.e. ILLUMINANCE_MAXIMUM_LUX_LEVEL/CLD_LEVELCONTROL_MAX_LEVEL)

The value of the u8CurrentLevel attribute (of the Level Control cluster) for the light is then

calculated as follows:

CLD_LEVELCONTROL_MAX_LEVEL - (u16MeasuredLux/ILLUMINANCE_LUX_LEVEL_DIVISOR)

where u16MeasuredLux is the attribute of the Illuminance Measurement cluster reported to

the light.

Therefore:

• When the measured illuminance is at its maximum value of 4015 lux, the light level to
be produced by the light is 4

• When the measured illuminance is at its minimum value of 1 lux, the light level to be
produced by the light is 254

 Note: The Light Sensor needs a light source to measure the correct
thresholds for proper operation (sensitivity increases based on the
amount of light falling on sensor).

4.2.6 LED Indication of Different States

The following table lists the different behaviours of LED D4 on the Lighting/Sensor
Expansion Board and the corresponding states of the node.

Light/LED Indication

LED D4 flashes 1 second ON, 1 second OFF: Joining or re-joining the network

LED D4 flashes 250ms ON, 250ms OFF: Keep-alive mode

LED D4 OFF: Node is in the network or sleeping

LED D4 flashes 500ms ON, 500ms OFF: Initiator mode active

4.2.7 Sensing Clusters

The Light Sensor uses the Illuminance Measurement cluster to hold its results. The
Illuminance Measurement cluster contains the “Measured Value” attribute which is used to
store the light level measured by the sensor. Binding to this cluster (Id 0x0400) will enable a
remote device to receive reports when the value of this attribute on the sensor changes.

 ZigBee 3.0 Sensors

10 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

4.3 Using the OccupancySensor Application

This section describes how to commission and operate the OccupancySensor application in
a ZigBee 3.0 network. To use this application, you must have programmed the relevant
application binary into the JN5169/79 module on a Carrier Board fitted with the DR1199
Generic Expansion Board, as described in Section 4.1:

• OccupancySensor_NtagIcode_JN5169_DR1199.bin for a JN5169 module

• OccupancySensor_NtagIcode_JN5179_DR1199.bin for a JN5179 module

4.3.1 Occupancy Sensor Device Functionality

The functionality of the OccupancySensor application is described and illustrated below.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 11

LED Name Physical LED on Board

LED1 D1 on DR1199 expansion board

LED2 D2 on DR1199 expansion board

LED3 D2 on OM15028 carrier board

D6 on DR1174 carrier board

Table 4: LED Hardware Mapping

4.3.2 Clearing Context Data on the Device

When loading the application for the first time, any persistent context data must be cleared in
the device.

The context data can be cleared by pressing and releasing the RST/RESET button while
holding down the DIO8/GPIO4 button (both buttons are on the Carrier Board).

4.3.3 Commissioning

The commissioning operations for this device, such as forming/joining a network and
binding, are the same as for the other device types described in this Application Note and
are detailed in Section 4.5. To incorporate the device into a ZigBee 3.0 network, work
through Section 4.5 and then return to this point for device operation.

 ZigBee 3.0 Sensors

12 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

4.3.4 Operation

Occupancy events are simulated by pressing a button on the board - button SW1 is
assigned as the output of a virtual PIR detector. There are two types of virtual occupancy
sensor: Open Collector and PWM. They are defined in the makefile under “PIR Sensor
Type”. The different sensor types and how to use them are detailed below.

Note that for both types of sensor, LED1 on the Generic Expansion Board is used as an
indicator of the state of the u8Occupancy attribute of the Occupancy Sensing cluster:

• If the u8Occupancy attribute is 0 (i.e. Unoccupied), the LED1 is OFF

• If the u8Occupancy attribute is 1 (i.e. Occupied), the LED1 is ON

Also note the following uses of LED2 and LED3 on the Generic Expansion Board:

• LED3 will flash during a ‘Finding and Binding’ operation started using the button SW4 -
if it continues to flash after completing the ‘Finding and Binding’ then press the button
again.

• LED2 and LED3 may flash intermittently to indicate the operational state when the
JN516x/7x module is awake for sampling or re-joining.

Open Collector Sensor

An Open Collector sensor outputs a constant digital high/low signal for occupancy. In this
demonstration, ‘occupied’ is represented by digital low and ‘unoccupied’ is represented by
digital high.

To define a sensor as an Open Collector, uncomment the compile flag
PIR_TYPE_OPEN_COLLECTOR in the makefile.

Simulating Unoccupied to Occupied Event:

To move the sensor from the unoccupied to occupied state, press and hold down the
button SW1 on the Generic Expansion Board.

Simulating Occupied to Unoccupied Event:

Once in the occupied state, to simulate an ‘unoccupied’ event, release the button SW1. If
no further occupancy event is simulated by pressing the SW1 button within a certain
timeout period (180 seconds, by default), the sensor will automatically move to the
unoccupied state.

 Note: The timeout period can be customised using the macro
APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.

 Once in the occupied state, the sensor can be kept in the occupied state with a single
button-press - a single transition of SW1 will reset the timer that keeps track of the
timeout defined by APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.This

feature is provided to simulate maintaining the occupied state.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 13

PWM Sensor

A PWM sensor toggles its digital output between high and low while occupied.

Simulating Unoccupied to Occupied Event:

To move the sensor from the unoccupied to occupied state, press the button SW1 on the
Generic Expansion Board a certain number of times (5, by default) within a certain
timeout period (10 seconds, by default).

 Note 1: The number of button-presses required can be customised using
the APP_OCCUPANCY_SENSOR_TRIGGER_THRESHOLD macro.

 Note 2: The timeout period can be customised using the
APP_OCCUPANCY_SENSOR_UNOCCUPIED_TO_OCCUPIED_DELAY macro.

Simulating Occupied to Unoccupied Event:

Once in the occupied state, if no further occupancy event is simulated by pressing the
SW1 button within a certain timeout period (180 seconds, by default), the sensor will
automatically move to the unoccupied state.

 Note: The timeout period can be customised using the macro
APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY

Once in the occupied state, the sensor can be kept in the occupied state by repeating the
simulated occupancy event. This will reset the timer that keeps track of the timeout
defined by APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.

Additional Sensor Functionality

The Occupancy Sensor will report its attributes if it is bound to at least one device, the
occupancy state is ‘occupied’ and one of the following actions occurs:

• It has joined a new network

• It has rejoined the network

• It has exited ‘Finding and Binding’

The Occupancy Sensor will start a timer for the number of seconds defined by the macro
APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY if the occupancy state is

‘unoccupied’ and one of the following actions occurs:

• It has joined a new network

• It has rejoined the network

• It has exited ‘Finding and Binding’

 ZigBee 3.0 Sensors

14 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

Attribute Reporting

Attribute Reporting can be configured optionally by defining the macro
ZLO_MIN_REPORT_INTERVAL to be greater than zero. If defined to be greater than zero,

the Occupancy Sensor reports the Occupancy attribute value to the light (to which it is
bound) after 1 second (or ZLO_MIN_REPORT_INTERVAL) if there is any change in the attribute

or, otherwise, every 60 seconds (or ZLO_MAX_REPORT_INTERVAL). On receiving the attribute

report:

• If the u8Occupancy attribute is 0 (i.e. Unoccupied), the light will switch OFF

• If the u8Occupancy attribute is 1 (i.e. Occupied), the light will switch ON

4.3.5 Sleep Options

The Occupancy Sensor is a sleeping End Device and will, by default, attempt to sleep with
RAM held and the 32kHz oscillator on, whenever possible. It will wake up every
ZLO_MAX_REPORT_INTERVAL, which by default is 60 seconds.

Enabling Deep Sleep

The Occupancy Sensor can be configured to enter deep sleep by setting the
ZLO_MAX_REPORT_INTERVAL to zero, which will disable periodic reporting. Since periodic

reporting is disabled, when in the unoccupied state the device does not need to keep track of
time, meaning it can go into deep sleep and wait for the virtual sensor to trigger an
occupancy event.

 Note: When the Occupancy Sensor is in the occupied state, the device
needs to start the ‘occupied to unoccupied’ timer, which means the
device will sleep with RAM held and the 32kHz oscillator on.

 Note: Since the Occupancy Sensor is a sleepy End Device, there may be
a delay in sending out the attribute reports.

Enabling Sleep Prevention

The Occupancy Sensor can be kept awake in ‘keep-alive’ mode by pressing the SW2 button
on the Generic Expansion Board, which causes the LED3 on the board to start flashing
250ms on, 250ms off. The device is put back into normal operational mode by pressing the
SW3 button, which stops LED3 from flashing.

4.3.6 LED Indication of Different States

The following table lists the different behaviours of the LEDs on the Generic Expansion
Board and the corresponding states of the node.

Light/LED Indication

LED1 (Sensor State): ON – Occupied, OFF - Unoccupied

LED1 Sensor Identifying ON, Sensor not Identifying OFF

LED3 flashes 1 second ON, 1 second OFF: Initiator mode active

LED3 flashes 1 second ON, 1 second OFF: Joining or re-joining the network

LED3 flashes 250ms ON, 250ms OFF: Keep-alive mode

During sleep, LED1 indicates the sensor state but LED2 and LED3 are OFF

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 15

4.3.7 Sensing Clusters

The occupancy sensing cluster contains the u8Occupancy attribute which is used to

indicate the occupied/unoccupied status of the sensor. Binding to this cluster (Id 0x0406) will
enable a remote device to receive reports when the value of the u8Occupancy attribute on

the sensor changes.

4.4 Using the LightTemperatureOccupancySensor Application

This section describes how to commission and operate the
LightTemperatureOccupancySensor application in a ZigBee 3.0 network. To use this
application, you must have programmed the relevant application binary into the JN5169/79
module on a Carrier Board fitted with the DR1175 Lighting/Sensor Expansion Board, as
described in Section 4.1:

• LightTemperatureOccupancySensor_NtagIcode_JN5169_DR1175.bin for a
JN5169 module

• LightTemperatureOccupancySensor_NtagIcode_JN5179_DR1175.bin for a
JN5179 module

4.4.1 Light, Temperature & Occupancy Sensor Device Functionality

The functionality of the LightTemperatureOccupancySensor application is described and
illustrated below.

 ZigBee 3.0 Sensors

16 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

4.4.2 Clearing Context Data on the Device

When loading the application for the first time, any persistent context data must be cleared in
the device.

The context data can be cleared by pressing and releasing the RST/RESET button while
holding down the DIO8/GPIO4 button (both buttons are on the Carrier Board).

A reset is indicated by the white LED cluster on the Lighting/Sensor Expansion Board
illuminating for a second and switching off.

4.4.3 Commissioning

The commissioning operations for this device, such as forming/joining a network and
binding, are the same as for the other device types described in this Application Note and
are detailed in Section 4.5. To incorporate the device into a ZigBee 3.0 network, work
through Section 4.5 and then return to this point for device operation.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 17

4.4.4 Operation

There are two modes of operation of the Light, Temperature & Occupancy (LTO) Sensor, as
follows:

• Normal Mode: The Light, Temperature & Occupancy Sensor sleeps and wakes up
every second. If the light level / temperature level changes since the last reading by at
least LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE /

TEMPERATURE_SENSOR_MINIMUM_REPORTABLE_CHANGE then the

u16MeasuredValue attribute is updated and the Light, Temperature & Occupancy

Sensor sends out an attribute report after 1 second. If there is no change, it will send a
report every 61 seconds (ZLO_MAX_REPORT_INTERVAL).

• Keep-alive Mode: The Light, Temperature & Occupancy Sensor is permanently active
and polls its parent every second. If the light level / temperature level changes since the
last reading by at least LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE /

TEMPERATURE_SENSOR_MINIMUM_REPORTABLE_CHANGE then the

u16MeasuredValue attribute is updated and the Light, Temperature & Occupancy

Sensor sends out an attribute report after 1 second. If there is no change, it will send a
report every 61 seconds (ZLO_MAX_REPORT_INTERVAL).

The Light, Temperature & Occupancy Sensor will be reading the value of driver at the
rate of LIGHT_SENSOR_SAMPLING_TIME_IN_SECONDS /

TEMPERATURE_SENSOR_SAMPLING_TIME_IN_SECONDS (5 seconds) and updating its

u16MeasuredValue attribute accordingly. Thus the changes in light sensor reading

should be done only at intervals of 5 second.

If there is any change in the u16MeasuredValue attribute, sensor will send out report

after 1 second (ZLO_MIN_REPORT_INTERVAL), otherwise every 61 seconds

(ZLO_MAX_REPORT_INTERVAL).

The LTO Sensor device can be put into ‘keep-alive’ mode by pressing the RST/RESET
button on the Carrier Board 3 times. The button-presses must be done at one-second
intervals, as failure to do this will not allow the right task to be triggered at the LTO Sensor.

To return to normal mode from ‘keep-alive’ mode or ‘Finding and Binding’ mode, simply reset
the LTO Sensor.

4.4.4.1 Light Sensor

The maximum lux level as measured by ALS driver on the Lighting/Sensor Expansion Board
is 4015 and the minimum lux level is 1.

 Note: The light sensor needs a light source to measure the correct
thresholds for proper operation (sensitivity increases based on the
amount of light falling on sensor).

In order to address the above issue, you can simulate this light source by shining a torch over
the light sensor and then placing your hand over the light sensor.

4.4.4.2 Occupancy Sensor

Occupancy events are simulated by pressing a button on the Carrier Board - button
DIO8/GPIO4 is assigned as the output of a virtual PIR detector. There are two types of
virtual occupancy sensor: Open Collector and PWM. By default, the Light, Temperature &
Occupancy Sensor operates as an Open Collector sensor.

 ZigBee 3.0 Sensors

18 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

Open Collector Sensor

An Open Collector sensor outputs a constant digital high/low signal for occupancy. In this
demonstration, ‘occupied’ is represented by digital low and ‘unoccupied’ is represented by
digital high.

To define a sensor as an Open Collector, uncomment the compile flag
PIR_TYPE_OPEN_COLLECTOR in the makefile.

Simulating Unoccupied to Occupied Event:

To move the sensor from the unoccupied to occupied state, press and hold down the
button DIO8/GPIO4 on the Carrier Board.

Simulating Occupied to Unoccupied Event:

Once in the occupied state, to simulate an ‘unoccupied’ event, release the button
DIO8/GPIO4. If no further occupancy event is simulated by pressing the DIO8/GPIO4
button within a certain timeout period (180 seconds, by default), the sensor will
automatically move to the unoccupied state.

PWM Sensor

A PWM sensor toggles its digital output between high and low while occupied.

Simulating Unoccupied to Occupied Event:

To move the sensor from the unoccupied to occupied state, press DIO8/GPIO4 on the
Carrier Board a certain number of times (5, by default) within a certain timeout period
(10 seconds, by default).

Simulating Occupied to Unoccupied Event:

Once in the occupied state, if no further occupancy event is simulated by pressing the
DIO8/GPIO4 button within a certain timeout period (180 seconds, by default), the sensor
will automatically move to the unoccupied state.

4.4.4.3 Temperature Sensor

The maximum temperature level as measured by HTS driver on the Lighting/Sensor
Expansion Board is 125 and the minimum temperature level is 1.

4.4.5 LED Indication of Different States

The following table lists the different behaviours of LED D4 on the Lighting/Sensor
Expansion Board and the corresponding states of the node.

Light/LED Indication

LED D4 flashes 1 second ON, 1 second OFF: Joining or re-joining the network

LED D4 flashes 250ms ON, 250ms OFF: Keep-alive mode

LED D4 OFF: Node is in the network or sleeping

LED D4 flashes 500ms ON, 500ms OFF: Initiator mode active

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 19

4.4.6 Sensing Clusters

The Light, Temperature & Occupancy Sensor uses the Illuminance Measurement,
Temperature Measurement and Occupancy Sensing clusters to hold its results.

• The Illuminance Measurement cluster contains the u16MeasuredValue attribute which

is used to indicate the light level measured by the sensor. Binding to this cluster (Id
0x0400) will enable a remote device to receive reports when the value of this attribute
on the sensor changes.

• The Temperature Measurement cluster contains the u16MeasuredValue attribute

which is used to indicate the temperature measured by the sensor. Binding to this
cluster (Id 0x0402) will enable a remote device to receive reports when the value of this
attribute on the sensor changes.

• The Occupancy Sensing cluster contains the u8Occupancy attribute which is used to

indicate the occupied/unoccupied status of the sensor. Binding to this cluster (Id
0x0406) will enable a remote device to receive reports when the value of the occupancy
attribute on the sensor changes.

 ZigBee 3.0 Sensors

20 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

4.5 Network Commissioning Operations

This section describes the network commissioning operations for all the device types
described in this Application Note. You should work through this section to incorporate a
device in a network.

4.5.1 Forming and Joining a Network

To create a network with the Control Bridge (JN5169/79 USB Dongle) as the Coordinator
and add one sensor node to it, follow the procedure below.

1. Plug a JN5169/79 USB Dongle into your PC and program the dongle with the Control
Bridge binary ZigBeeNodeControlBridge_JN51xx_FULL_FUNC_DEVICE.bin,
supplied in the Application Note ZigBee Control Bridge [JN-AN-1216].

2. On the PC, start the ZigBee Gateway User Interface application, ZGUI.exe (supplied
with the above Application Note).

3. In the interface, click Settings (top-left) and then, in the resulting dialogue box, select
the serial port to which the Control Bridge device is connected and set the Baud Rate
field to 1000000.

4. Click OK to apply the serial port configuration.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 21

5. In the interface, fill in the Set CMSK (channel mask) and Permit Join fields, and ensure
the other fields are as shown below.

6. Connect to the Control Bridge device by clicking Open Port (top-left).

7. Reset the Control Bridge device by clicking the Reset button on the Management tab.

8. Set the Control Bridge device type to COORDINATOR in the Set Type field on the
Management tab.

 ZigBee 3.0 Sensors

22 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

9. Start the network by clicking the Start NWK button on the Management tab. This
should start the network and information should be output via the Raw Data and
Received Message View panes, as shown below.

10. Open the network for devices to join by clicking the Permit Join button and start a
sensor device. When the device has joined the network, an End Device Announce
message will be displayed in the Received Message View pane, as shown below.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 23

 Note 1: If a sensor node does not find a suitable network to join, it goes
into a soft sleep after scanning all the primary and secondary channels.

 Note 2: If a sensor node loses its parents, it goes into a soft sleep after
trying to rejoin on all the channels.

4.5.2 Joining an Existing Network using NFC

A sensor node can join or move to an existing network by exchanging NFC data with a
ZigBee IoT Gateway Host, described in the Application Note ZigBee IoT Gateway Host with
NFC (JN-AN-1222). This provides a fast and convenient method to introduce new devices
into such a network.

Ensure the hardware is set up for NFC as described in Section 3.1.

Instructions for this process are included in the above Application Note (JN-AN-1222).

4.5.3 Allowing Other Nodes to Join

If you wish to add other nodes to the network, open the network for devices to join by
clicking the Permit Join button in the interface again (see Step 10 above).

4.5.4 Binding Nodes (Control Bridge)

To create a binding between a cluster on a sensor node and the Control Bridge, follow the
procedure below.

1. In the interface, fill in the Bind fields on the Management tab as shown below.

2. Place the sensor node in the persistent poll/keep-alive mode to ensure that it is able to
receive a Bind Request from the Control Bridge.

Address of
the sensor

device

Cluster to bind
to (Occupancy

shown)

Target
Endpoint of
Bind Entry

Source
Endpoint of
Bind Entry

Address of the
Control Bridge

device

Set to
IEEE Addr

 ZigBee 3.0 Sensors

24 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

3. Initiate binding by clicking the Bind button. If successful, the result will be shown in the
Received Message View pane, as shown below.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 25

4. Once binding to the desired cluster is complete, the sensor node can be taken out of
the persistent poll/keep-alive mode. At this point, any reports generated by a sensor
node for bound clusters should be displayed in the Received Message View pane. An
example of this is shown below for an Occupancy Sensor reporting a change in the
state of its u8Occupancy attribute.

4.5.5 Binding Nodes (Finding and Binding)

To create a binding between clusters on two nodes in the network, follow the procedure
below.

1. Put the target node (to which you wish to bind the sensor node) into identify mode.

2. Put the sensor node into ‘Finding and Binding’ mode as follows:

• If a Light Sensor, hold down the button DIO8/GPIO4 on the Carrier Board until the
target device stops identifying (the sensor node will indicate that it is in ‘Finding and
Binding’ mode by flashing an LED).

• If an Occupancy Sensor, hold down the button SW4 on the Generic Expansion
Board until the target device stops identifying (the sensor node will indicate that it is
in ‘Finding and Binding’ mode by flashing an LED).

• If a Light, Temperature & Occupancy Sensor, press the RST/RESET button on the
Carrier Board 5 times (the sensor node will indicate that it is in ‘Finding and Binding’
mode by flashing a red LED). The button-presses must be done at one-second
intervals, as failure to do this will not allow the right task to be triggered at the
sensor. Once the target device stops identifying, press the RST/RESET button on
the sensor node again to come out of Finding and Binding mode.

4.5.6 Performing a Factory Reset

To return the sensor node to its factory-new state, hold down the button DIO8/GPIO4 and
then press/release the RST/RESET button, both of which are on the underlying Carrier
Board.

 ZigBee 3.0 Sensors

26 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

5 Developing with the Application Note
The example applications provided in this Application Note were developed using the:

• JN516x ZigBee 3.0 SDK [JN-SW-4170] and the ‘BeyondStudio for NXP’ IDE
[JN-SW-4141]

• JN517x ZigBee 3.0 SDK [JN-SW-4270] and the LPCXpresso IDE

These are the resources that you should use to develop JN516x and JN517x ZigBee 3.0
applications, respectively. They are available free-of-charge via the ZigBee 3.0 page of the
NXP web site.

Throughout your ZigBee 3.0 application development, you should refer to the documentation
listed in Section 8.

5.1 Application Start-up

The diagram below illustrates the typical start-up flow of an NXP ZigBee 3.0 device.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 27

Cold Start Warm Start

vInitialiseApp()

Stabilise clock
Debug initialisation

Watchdog Event Trap

vAppMain() PWRM_CALLBACK(Wakeup)

Debug initialisation

RAM held?

No

Restore MAC settings
General hardware re-initialisation

Set up interrupts
Resume Ztimer operation

Yes

Power Manager initialisation
Persistent Data Manager initialisation

Protocol Data Unit Manager initialisation
General hardware initialisation

APP_vInitialiseNode()

LED initialisation
Button initialisation

Clear context (optional)
Load context

Load the pre-configured link key (no context)
Initialise the Application Framework

Start the ZigBee stack (context restore)
Initialise the ZCL
BDB initialisation

Idle Loop:
Run ZPS task
Run BDB task

Run Ztimer task
Run Application task

Reset the Watchdog timer
Check if sleep is possible

Service the Power Manager

vISR_SystemController()

DIO / Wake Timer ISR

Clear down interrupt flag and execute
the user-defined callback function

vWakeCallBack()

Restart timers

Return to the idle loop

Sleep?

Sleep

PWRM_CALLBACK(PreSleep)

Save MAC settings
Disable hardware peripherals

Clear DIO interrupt flags
Stop Ztimer operation

No

Yes

app_xxxx_node.c

app_start.c

File Key:

app_xxxx_buttons.c

app_sleep_handler.c

Doze

ISR/Task
activates &
completes

APP_vInitResources()

Initialise Timers
Create Timers
Create Queues

APP_vSetUpHardware()

Set up interrupts

app_main.c

APP_vMainLoop()

 ZigBee 3.0 Sensors

28 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

5.2 Code Common to All Sensors

app_ntag_aes.c contains the code that drives the NFC commissioning data exchange and
initiates the joining process when valid data is read from the NTAG. This code uses the older
NTAG data format that employs AES encryption and is not used in the default builds.

app_ntag_icode.c contains the code that drives the NFC commissioning data exchange
and initiates the joining process when valid data is read from the NTAG. This code uses the
newer NTAG data format that employs ZigBee Installation Code encryption and is used in
the default builds.

app_pdm.c provides error event callbacks for the Persistent Data Manager (PDM), in order
to notify the application of the state of the PDM.

5.3 NTAG Folder (AES Format)

The NTAG library and header files containing the public APIs for NFC are held in the NTAG
directory. This code uses the older NTAG data format that employs AES encryption and is
not used in the default builds.

5.4 NFC Folder (ZigBee Installation Code Format)

The NFC libraries and header files containing the public APIs for NFC are held in the NFC
directory. This code uses the newer NTAG data format that employs ZigBee Installation
Code encryption and is used in the default builds.

Documentation for these APIs and the app_ntag_icode.c/h APIs can be found in the
NFC.chm help file in the Doc directory of this Application Note.

5.5 Light Sensor Application Code

This section describes the application code for the LightSensor, which is provided in the
Source directory for the application. You may wish to use this code as a basis for your own
application development. You can rebuild your customised application as described in
Section 5.8.

5.5.1 Operational State Machine

The operational state machine (sDeviceDesc.eNodeState) is located within
app_light_sensor_state_machine.c. If further operational modes are required, additional
states must be added to this switch statement.

5.5.2 Button Press and Release Handling

Buttons are debounced in APP_cbTimerButtonScan() contained in
app_light_sensor_buttons.c. Any button events are then passed into the PP_msgEvents
queue for processing in APP_ZLO_vSensor_Task() in app_zlo_sensor_node.c, where the
button event is eventually handled in vAppHandleAppEvent() contained in the file
app_event_handler.c

5.5.3 Sleeping

The application makes a call to vAttemptToSleep() contained in the file
app_sleep_handler.c every time it passes around the main processing loop. This function
checks the state of a number of application timers. If all timers considered to be “non-sleep
preventing” are stopped, the function will stop any remaining timers and decide whether the
device should sleep with memory held (with a wake timer to wake up after a pre-determined
sleep period) or enter deep sleep mode (which requires external influence in the form of a
DIO state change or a device reset to wake from).

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 29

5.5.4 Configuration Macros

The following macros, which can be found in App_LightSensor.h, are available for
configuring the Light Sensor:

#define LIGHT_SENSOR_MINIMUM_MEASURED_VALUE 0x0001

#define LIGHT_SENSOR_MAXIMUM_MEASURED_VALUE 0xFAF

#define LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE 0x01

#define LIGHT_SENSOR_SAMPLING_TIME_IN_SECONDS 5

The sampling time is the rate at which the u16MeasureValue attribute will be changed.

5.6 Occupancy Sensor Application Code

This section describes the application code for the OccupancySensor, which is provided in
the Source directory for the application. You may wish to use this code as a basis for your
own application development. You can rebuild your customised application as described in
Section 5.8.

5.6.1 Operational State Machine

The operational state machine (sDeviceDesc.eNodeState) is located within
app_occupancy_sensor_state_machine.c. If further operational modes are required,
additional states must be added to this switch statement.

5.6.2 Button Press and Release Handling

Buttons and occupancy sensor inputs are debounced in APP_cbTimerButtonScan()
contained in app_occupancy_buttons.c. Any button events are then passed into the
APP_msgEvents queue for processing in APP_ZLO_vSensor_Task() in
app_zlo_sensor_node.c, where the button event is eventually handled in
vAppHandleAppEvent() contained in the file app_event_handler.c.

5.6.3 Sleeping

The application makes a call to vAttemptToSleep(), contained in the file
app_sleep_handler.c, every time it passes around the main processing loop. This function
checks the state of a number of application timers. If all timers considered to be “non-sleep
preventing” are stopped, the function will stop any remaining timers and decide whether the
device should sleep with memory held (with a wake timer to wake up after a pre-determined
sleep period) or enter deep sleep mode (which requires external influence in the form of a
DIO state change or a device reset to wake from).

5.6.4 Configuration Macros

The following macros, which can be found in App_OccupancySensor.h, are available for
configuring the sensor:

#define APP_OCCUPANCY_SENSOR_UNOCCUPIED_TO_OCCUPIED_DELAY 10
#define APP_OCCUPANCY_SENSOR_TRIGGER_THRESHOLD 5
#define APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY 180

5.7 Light, Temperature and Occupancy Sensor Application Code

This section describes the application code for LightTemperatureOccupancySensor, which is
provided in the Source directory for the application. You may wish to use this code as a
basis for your own application development. You can rebuild your customised application as
described in Section 5.8.

 ZigBee 3.0 Sensors

30 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

5.7.1 Operational State Machine

The operational state machine (sDeviceDesc.eNodeState) is located within
app_sensor_state_machine.c. If further operational modes are required, additional states
must be added to this switch statement.

5.7.2 Button Press and Release Handling

Buttons and occupancy sensor inputs are debounced in APP_cbTimerButtonScan()
contained in app_sensor_buttons.c. Any button events are then passed into the
APP_msgEvents queue for processing in APP_ZLO_vSensor_Task() in
app_zlo_sensor_node.c, where the button event is eventually handled in
vAppHandleAppEvent() contained in the file app_event_handler.c

5.7.3 Sleeping

The application makes a call to vAttemptToSleep(), contained in the file
app_sleep_handler.c, every time it passes around the main processing loop. This function
checks the state of a number of application timers. If all timers considered to be “non-sleep
preventing” are stopped, the function will stop any remaining timers and decide whether the
device should sleep with memory held (with a wake timer to wake up after a pre-determined
sleep period) or enter deep sleep mode (which requires external influence in the form of a
DIO state change or a device reset to wake from).

5.7.4 Configuration Macros

The following macros, which can be found in App_LightTemperatureOccupancySensor.h,
are available for configuring the sensor:

#define LIGHT_SENSOR_MINIMUM_MEASURED_VALUE 0x0001

#define LIGHT_SENSOR_MAXIMUM_MEASURED_VALUE 0xFAF

#define LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE 0x01

#define LIGHT_SENSOR_SAMPLING_TIME_IN_SECONDS 5

#define TEMPERATURE_SENSOR_MINIMUM_MEASURED_VALUE 0x0001

#define TEMPERATURE_SENSOR_MAXIMUM_MEASURED_VALUE 0xFAF

#define TEMPERATURE_SENSOR_MINIMUM_REPORTABLE_CHANGE 0x01

#define TEMPERATURE_SENSOR_SAMPLING_TIME_IN_SECONDS 5

The sampling time is the rate at which the u16MeasureValue attribute will be changed.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 31

5.8 Rebuilding the Applications

This section describes how to rebuild the supplied applications, which you will need to do if
you customise the applications for your own use.

5.8.1 Pre-requisites

It is assumed that you have installed the relevant NXP development software on your PC, as
detailed in Section 2.

In order to build the application, this Application Note [JN-AN-1219] must be unzipped into
the directory:

<IDE installation root>\workspace

where <IDE Installation root> is the path in which the IDE was installed. By default, this is:

• C:\NXP\bstudio_nxp for BeyondStudio

• C:\NXP\LPCXpresso_<version>_<build>\lpcxpresso for LPCXpresso

The workspace directory is automatically created when you start the IDE.

All files should then be located in the directory:

…\workspace\ JN-AN-1220-Zigbee-3-0-Sensors

There is a sub-directory for each application, each having Source and Build sub-directories.
There will also be sub-directories JN516x and JN517x containing the project definition files.

5.8.2 Build Instructions

The software provided with this Application Note can be built for both JN516x and JN517x.

The applications can be built from the command line using the makefiles or from the IDE –
makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 5.8.2.1.

• To build using the IDE, refer to Section 5.8.2.2.

5.8.2.1 Using Makefiles

This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for a JN516x microcontrollers

• JENNIC_CHIP_FAMILY=JN517x to build for a JN517x microcontrollers

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

• OTA=0 to build without OTA client

• OTA=1 to build with OTA client

 ZigBee 3.0 Sensors

32 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

• OTA_ENCRYPTED=0 to build OTA images without encryption

• OTA_ENCRYPTED=1 to build OTA images with encryption

• APP_NTAG_ICODE=0 to build without NTAG/NFC (ZigBee Installation Code format)

support

• APP_NTAG_ICODE=1 to build with NTAG/NFC (ZigBee Installation Code format)

support (this is the default option)

• APP_NTAG_AES=0 to build without NTAG/NFC (AES Encryption format) support (this

is the default option)

• APP_NTAG_AES=1 to build with NTAG/NFC (AES Encryption format) support

To build an application and load it into a JN516x/7x board, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and at the command
prompt enter an appropriate make command for your chip type, as illustrated below.

 For example, for JN5169:

 make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5169 clean all

For example, for JN5179:

 make JENNIC_CHIP_FAMILY=JN517x JENNIC_CHIP=JN5179 clean all

 The binary file will be created in the Build directory, the resulting filename indicating the
chip type (e.g. 5169) for which the application was built.

4. Load the resulting binary file into the board. You can do this from the command line
using the JN51xx Production Flash Programmer, as described in Section 4.1.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 33

5.8.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

This section describes how to use the IDE to build the demonstration application.

To build the application and load it into JN516x/7x boards, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start the IDE and import the relevant project as follows:

a) In the IDE, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported, only select the project file
appropriate for the chip family and IDE you are using and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

the IDE and use the drop-down list associated with the hammer icon in the toolbar
to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the board. You can do this using the integrated Flash
programmer, as described in the User Guide for the IDE that you are using.

5.9 Debugging the Demonstration Application

5.9.1 Serial Debug

Each node in the demonstration prints out debug information via the UART port based on
the debug flags set in the makefile. This debug information can be viewed using terminal
emulator software, e.g. Tera Term. Connect the node of interest to a PC using the Mini-USB
cable (supplied in the evaluation kit) and configure the terminal emulator’s COM port as
follows:

BAUD Rate 115200

Data 8 bits

Parity None

Stop bit 1 bit

Flow Control None

Debug can be disabled for production by setting the ‘Trace’ flag in the relevant node’s
makefile to zero. The makefile also defines a subset of debug flags that allows localised
debug statements to be collectively enabled or disabled, e.g. TRACE_START.

By default, there are certain debug print lines left in the Application Note code to trace any
issues.

5.9.2 JTAG Debug

The application on a node can be debugged from BeyondStudio for NXP via a JTAG
connection. This method requires additional hardware to form the JTAG interface on the
node, including a JTAG expansion board and JTAG adaptor/dongle. JTAG debugging is fully
described in the Application Note JN516x JTAG Debugging in BeyondStudio (JN-AN-1203).

 ZigBee 3.0 Sensors

34 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

6 Over-The-Air (OTA) Upgrade
Over-The-Air (OTA) Upgrade is the method by which a new firmware image is transferred to
a device that is already installed and running as part of a network. This functionality is
provided by the OTA Upgrade cluster. In order to upgrade the devices in a network, two
functional elements are required.

• OTA Server: First the network must host an OTA server, which will receive new OTA
images from manufacturers, advertise the OTA image details to the network, and then
deliver the new image to those devices that request it.

• OTA Clients: The second requirement is for OTA clients, which are located on the
network devices that may need to be updated. These devices periodically interrogate
the OTA server for details of the firmware images that it has available. If a client finds a
suitable upgrade image on the server, it will start to request this image, storing each
part as it is received. Once the full image has been received, it will be validated and
the device will boot to run the new image.

New images are always pulled down by the clients, requesting each block in turn and filling
in gaps. The server never pushes the images onto the network.

6.1 Overview

Support for the OTA Upgrade cluster as a client has been included for the Light Sensor,
Occupancy Sensor and LightTemperatureOccupancy Sensor devices. In order to build with
these options, add OTA=1 to the command line before building. This will add the relevant

functionality to the lights and invoke post-build processing to create a bootable image and
two upgrade images. The produced binaries will be stored in the OTABuild directory. By
default, unencrypted binaries will be produced. In order to build encrypted binaries, add the
OTA_ENCRYPTED=1 option to the command line before building.

• If built for the JN5168 device, then external Flash memory will be used to store the
upgrade image before replacing the old one.

• If built for the JN5169 or JN5179 device, then the internal Flash memory will be used
to store the upgrade image by default. External Flash memory could be used if
desired.

The Application Note ZigBee 3.0 IoT Control Bridge (JN-AN-1216) has OTA server
functionality built into it. A device called OTA_server is provided to host the upgrade images
that the clients will request.

6.2 OTA Upgrade Operation

To implement an OTA upgrade:

1. Build the light application with OTA=1 in the makefile to enable OTA upgrade (this option

is not enabled by default). There is an OTA debug flag defined in the makefile:
CFLAGS += -DDEBUG_APP_OTA. Uncomment this line if the OTA debug is required.

 The binary files for the light are created in the OTABuild folder – bootable binaries have
the extension .bin and no version suffix, and upgrade binaries have the extension .ota
or .bin and a version suffix. The upgrade image is intended to be loaded into external
Flash memory of the OTA server using the JN51xx Production Flash Programmer
(JN-SW-4107), as described in Step 4 below. Encrypted upgrade binary images will
have a _ENC suffix. There are three binaries in a set, with the files having different
versions with different headers so that the upgrading of the light can be tested - a
bootable image, version 1 (v1), and two upgrade images, versions 2 and 3 (v1 and v2).

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 35

2. Program one of the bootable binary files from the OTABuild folder into the internal
Flash memory of the JN516x/7x device on the Carrier Board of the light node - for
example, LightSensor_NtagIcode_Ota_JN5179_DR1175.bin. You can do this using
the JN51xx Flash Programmer within the relevant IDE. Alternatively, you can use the
JN51xx Production Flash Programmer (JN-SW-4107) described in the JN51xx
Production Flash Programmer User Guide (JN-UG-3099).

3. Form a network with the sensor and the Control Bridge in the normal way.

4. Load a .ota upgrade image (v2 or v3) into the external Flash memory of the Control
Bridge using the JN51xx Production Flash Programmer (JN-SW-4107) - the required
command line will be similar to the following:

Jn51xxProgrammer –S external –s COM<port> -f <filename>

5. When viewing the UART output from the sensor node, the upgraded image should be
found and the sensor node upgraded.

Any devices with OTA clients in the network will periodically send Match Descriptor
Requests in order to find an OTA server. Once a server responds, it will then be sent an
IEEE Address Request in order to confirm its address details. After this, the clients will
periodically send OTA Image Requests to determine whether the server is hosting an image
for that client device. In response to the Image Request, the server will return details of the
image that it is currently hosting - Manufacturer Code, Image Tag and Version Number. The
client will check these credentials and decide whether it requires this image. If it does not, it
will query the server again at the next query interval. If the client does require the image, it
will start to issue Block Requests to the server to get the new image.

The Sensor OTA implementation differs from the other Zigbee 3 applications as it

1) Sleeps during the OTA upgrade.

2) OTA requires Poll Requests as the sensor is a sleeping device. Poll requests are
started/stopped as required.

Once all blocks of the new image have been requested and received, the new image will be
verified, the old one invalidated, and the device will reboot and run the new image. The client
will resume periodically querying the server for new images.

6.3 Image Credentials

There are four main elements of the OTA header that are used to identify the image, so that
the OTA client is able to decide whether it should download the image. These are
Manufacturer Code, Image Type, File Version and OTA Header String:

• Manufacturer Code: This is a 16-bit number that is a ZigBee-assigned identifier for
each member company. In this application, this number has been set to 0x1037, which
is the identifier for NXP. In the final product, this should be changed to the identifier of
the manufacturer. The OTA client will compare the Manufacturer Code in the
advertised image with its own and the image will be downloaded only if they match.

• Image Type: This is a manufacturer-specific 16-bit number in the range 0x000 to
0xFFBF. Its use is for the manufacturer to distinguish between devices. In this
application, the Image Type is set to the ZigBee Device Type of the sensor - for
example, 0x0400 for a Light Sensor or 0x1400 if the image is transferred in an
encrypted format. The OTA client will compare the advertised Image Type with its own
and only download the image if they match. The product designer is entirely free to
implement an identification scheme of their own.

 ZigBee 3.0 Sensors

36 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

• File Version: This is a 32-bit number representing the version of the image. The OTA
client will compare the advertised version with its current version before deciding
whether to download the image.

• OTA Header String: This is a 32-byte character string and its use is manufacturer-
specific. In this application, the OTA client will compare the string in the advertised
image with its own string before accepting an image for download. If the strings match,
then the image will be accepted. In this way, the string can be used to provide extra
detail for identifying images, such as hardware sub-types.

6.4 Encrypted and Unencrypted Images

OTA images can be provided to the OTA server in either encrypted or unencrypted form.
Encrypting the image will protect sensitive data in the image while it is being transferred from
the manufacturer to the OTA server. Regardless of whether the image itself is encrypted, the
actual transfer over-air will always be encrypted in the same way as any other on-air
message. The encryption key is stored in protected e-fuse and is set by the manufacturer.

For JN5169 and JN517x builds, to use encrypted images the following define must be
included as a build option in the zcl_options.h file:

#define INTERNAL_ENCRYPTED

6.5 Upgrade and Downgrade

The decision to accept an image following a query response is under the control of the
application. The code, as supplied, will accept an upgrade or a downgrade. As long as the
notified image has the right credentials and a version number which is different from the
current version number, the image will be downloaded. For example, if a client is running a
v3 image and a server is loaded with a v2 image then the v2 image will be downloaded. If it
is required that the client should only accept upgrade images (v2 -> v3 -> v5), or only accept
sequential upgrade images (v2 -> v3 -> v4 -> v5) then the application callback function that
handles the Image Notifications in the OTA client will need to be modified.

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 37

7 Advanced User Information

7.1 Saving Network Context

All device types are protected from losing their network configuration during a power outage
by means of context saving. The required network parameters are automatically preserved
in non-volatile memory by the ZigBee PRO Stack (ZPS). On restart, the radio channel,
Extended PAN ID (EPID) and security keys are restored.

Application-specific information can also be preserved in the non-volatile memory, which is
most commonly used to preserve the application’s operating state.

7.2 Security Key

Security policy and default security keys are defined in the ZigBee Base Device Behaviour
(BDB) Specification. Pre-configured link keys are provided in the ZigBee Base Device file
bdb_link_keys.c, included in the JN516x/7x ZigBee 3.0 SDK.

 ZigBee 3.0 Sensors

38 © NXP Semiconductors 2018 JN-AN-1220 (v1005) 20-Sep-2018

8 Related Documents
The following manuals will be useful in developing custom applications based on this
Application Note:

• ZigBee 3.0 Stack User Guide [JN-UG-3113]

• ZigBee Devices User Guide [JN-UG-3114]

• ZigBee Cluster Library (for ZigBee 3.0) User Guide [JN-UG-3115]

• JN51xx Core Utilities User Guide [JN-UG-3116]

• BeyondStudio for NXP Installation and User Guide [JN-UG-3098]

• JN517x LPCXpresso User Guide [JN-UG-3109]

• JN51xx Production Flash Programmer User Guide [JN-UG-3099]

All the above manuals are available as PDF documents from the ZigBee 3.0 page of the
NXP web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Sensors

JN-AN-1220 (v1005) 20-Sep-2018 © NXP Semiconductors 2018 39

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Introduction
	2 Development Environment
	2.1 Software
	2.2 Hardware

	3 Application Note Overview
	3.1 NFC Hardware Support
	3.2 NFC Data Formats

	4 Running the Demonstration Application
	4.1 Loading the Applications
	4.2 Using the LightSensor Application
	4.2.1 Light Sensor Device Functionality
	4.2.2 Clearing Context Data on the Device
	4.2.3 Commissioning
	4.2.4 Operation
	4.2.5 Light Level Measurement
	4.2.6 LED Indication of Different States
	4.2.7 Sensing Clusters

	4.3 Using the OccupancySensor Application
	4.3.1 Occupancy Sensor Device Functionality
	4.3.2 Clearing Context Data on the Device
	4.3.3 Commissioning
	4.3.4 Operation
	4.3.5 Sleep Options
	4.3.6 LED Indication of Different States
	4.3.7 Sensing Clusters

	4.4 Using the LightTemperatureOccupancySensor Application
	4.4.1 Light, Temperature & Occupancy Sensor Device Functionality
	4.4.2 Clearing Context Data on the Device
	4.4.3 Commissioning
	4.4.4 Operation
	4.4.4.1 Light Sensor
	4.4.4.2 Occupancy Sensor
	4.4.4.3 Temperature Sensor

	4.4.5 LED Indication of Different States
	4.4.6 Sensing Clusters

	4.5 Network Commissioning Operations
	4.5.1 Forming and Joining a Network
	4.5.2 Joining an Existing Network using NFC
	4.5.3 Allowing Other Nodes to Join
	4.5.4 Binding Nodes (Control Bridge)
	4.5.5 Binding Nodes (Finding and Binding)
	4.5.6 Performing a Factory Reset

	5 Developing with the Application Note
	5.1 Application Start-up
	5.2 Code Common to All Sensors
	5.3 NTAG Folder (AES Format)
	5.4 NFC Folder (ZigBee Installation Code Format)
	5.5 Light Sensor Application Code
	5.5.1 Operational State Machine
	5.5.2 Button Press and Release Handling
	5.5.3 Sleeping
	5.5.4 Configuration Macros

	5.6 Occupancy Sensor Application Code
	5.6.1 Operational State Machine
	5.6.2 Button Press and Release Handling
	5.6.3 Sleeping
	5.6.4 Configuration Macros

	5.7 Light, Temperature and Occupancy Sensor Application Code
	5.7.1 Operational State Machine
	5.7.2 Button Press and Release Handling
	5.7.3 Sleeping
	5.7.4 Configuration Macros

	5.8 Rebuilding the Applications
	5.8.1 Pre-requisites
	5.8.2 Build Instructions
	5.8.2.1 Using Makefiles
	5.8.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

	5.9 Debugging the Demonstration Application
	5.9.1 Serial Debug
	5.9.2 JTAG Debug

	6 Over-The-Air (OTA) Upgrade
	6.1 Overview
	6.2 OTA Upgrade Operation
	6.3 Image Credentials
	6.4 Encrypted and Unencrypted Images
	6.5 Upgrade and Downgrade

	7 Advanced User Information
	7.1 Saving Network Context
	7.2 Security Key

	8 Related Documents

